
ABSTRACT

MEEHAN, EMILY. Posets and Hopf Algebras of Rectangulations. (Under the direction
of Nathan Reading.)

A rectangulation is a way of decomposing a square into rectangles. We consider two

types of rectangulations, diagonal rectangulations and generic rectangulations.

Diagonal rectangulations with n rectangles are counted by the Baxter number B(n).

In this thesis, we first characterize a collection of posets on n, which we call Baxter posets,

that are counted by B(n). Given a diagonal rectangulation, the set of linear extensions

of the corresponding Baxter poset is the fiber of a lattice homomorphism from the right

weak order on permutations of [n] to a lattice on diagonal rectangulations. Given a

Baxter poset, we also describe how to obtain the unique Baxter permutation and the

unique twisted Baxter permutation which are linear extensions of the poset.

Both diagonal rectangulations and generic rectangulations form bases for Hopf al-

gebras which are isomorphic to sub Hopf algebras of the Malvenuto-Reutenauer Hopf

algebra of permutations. The Hopf algebra of diagonal rectangulations is described in

the work of Law and Reading. In this thesis, we describe a lattice on generic rectangu-

lations which, like the lattice on diagonal rectangulations, is isomorphic to a quotient of

the right weak order on permutations. Making use of this lattice, we describe the Hopf

algebra of generic rectangulations. As is the case in the Hopf algebra of diagonal rectan-

gulations, in the Hopf algebra of generic rectangulations, the product operation of two

basis elements is a sum of elements in an interval in the lattice of generic rectangula-

tions. Each element in this interval gives a way of combining the rectangulations. The

coproduct operation is a sum of ways of splitting a rectangulation.
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Chapter 1

Introduction

A rectangulation of size n is an equivalence class of decompositions of a square S into n

rectangles. Two decompositions R1 and R2 are members of the same equivalence class if

and only if there exists a homeomorphism of the square, fixing its vertices, that takes R1

to R2. We will consider two types of rectangulations, called diagonal rectangulations

and generic rectangulations, exploring posets and natural algebraic operations related to

these rectangulations.

In this chapter, we define diagonal and generic rectangulations and provide general

background regarding Hopf algebras. After defining a combinatorial Hopf algebra, we

provide two examples, the Malvenuto-Reutenauer Hopf algebra and the Hopf algebra of

diagonal rectangulations. We then describe a method for constructing sub Hopf algebras

of the Malvenuto-Reutenauer Hopf algebra and provide an example of this construction.

Finally, we briefly outline the remaining chapters of the thesis.

1.1 Baxter Numbers and Diagonal Rectangulations

Definition 1.1.1. We say that a rectangulation is a diagonal rectangulation if, for some

representative of the equivalence class, the top-left to bottom-right diagonal of S contains

an interior point of each rectangle of the decomposition.

Diagonal rectangulations of size n are counted by the Baxter number

B(n) = (
n + 1

1
)
−1

(
n + 1

2
)
−1

n

∑
k=1

(
n + 1

k − 1
)(
n + 1

k
)(
n + 1

k + 1
).
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The original combinatorial objects counted by the Baxter numbers, called Baxter permu-

tations, first appeared in the work of Glen Baxter [4]. In investigating Eldon Dyer’s ques-

tion about whether commuting continuous functions f and g from [0,1] into [0,1] have a

common fixed point, Baxter used a subset of the permutations of [2n−1] ∶= {1, ...,2n−1}

to encode maps between the fixed points of g ○ f and the fixed points of f ○ g. In [7],

Chung, Graham, Hoggatt, and Kleiman referred to these permutations as Baxter per-

mutations. Noting that each Baxter permutation is completely determined by its odd

entries, they mapped each Baxter permutation to a unique permutation of [n], which

they called a “reduced” Baxter permutation. We will follow current literature and refer

to these “reduced” Baxter permutations as Baxter permutations.

Definition 1.1.2. A permutation σ1⋯σn is a Baxter permutation if and only if there

exists no i < j < k < l such that σk + 1 < σi + 1 = σl < σj or σj + 1 < σl + 1 < σi < σk.

The Baxter numbers also count twisted Baxter permutations [14], certain triples of

non-intersecting lattice paths [8], noncrossing arc diagrams consisting of only left and

right arcs [18], certain Young tableaux [12], twin binary trees [12], diagonal rectangu-

lations [2, 9, 14], and other families of combinatorial objects. Several of these Baxter

objects, including diagonal rectangulations, can be obtained by pairing “twin” Catalan

objects as described in Section 2.1. In Definition 2.1.6, we define a family of combinato-

rial objects, called adjacency posets, which arise naturally from diagonal rectangulations.

Each adjacency poset captures the left-right and above-below adjacencies of rectangles

in the corresponding rectangulation. In Definition 2.1.11, we define a collection of posets,

which we call Baxter posets. By proving that a poset is a Baxter poset if and only if it is

the adjacency poset of some diagonal rectangulation, we demonstrate that Baxter posets

are also counted by the Baxter numbers. We then describe bijections between Baxter

posets and related Baxter objects.

In our discussion of rectangulations, we will make use of the following terms.

Definition 1.1.3. Given a rectangulation R of a square S, we call a point in S a vertex

of R if the point is the vertex of some rectangle of R. An edge of R is a line segment

contained in the side of some rectangle of R such that the endpoints of the line segment

are vertices and the segment has no vertices in its interior. A maximal union of edges

forming a line segment is a wall of R.

2



A⊗A⊗A A⊗A

A⊗A A

m⊗ id

id⊗m m

m

A⊗K A K⊗A

AA⊗A A⊗A

id⊗ µ id µ⊗ id

mm

Figure 1.1: Commutative diagrams for Definition 1.2.1.

The set of diagonal rectangulations is a subset of a second set of rectangulations,

which we call generic rectangulations.

Definition 1.1.4. A rectangulation is a generic rectangulation if no four rectangles of

the rectangulation share a vertex.

In some sense, even though combinatorial objects in bijection with diagonal rectan-

gulations have been the focus of more mathematical research, as a collection of rectan-

gulations, generic rectangulations are a more natural combinatorial object.

1.2 Hopf Algebras

The set of all diagonal rectangulations and the set of all generic rectangulations form

bases for two combinatorial Hopf algebras, respectively called the Hopf algebra of diag-

onal rectangulations and the Hopf algebra of generic rectangulations. In Section 1.4, we

provide results from [14] which describe the Hopf algebra of diagonal rectangulations. In

Chapter 3, we describe the Hopf algebra of generic rectangulations.

To define a combinatorial Hopf algebra, we require the following definitons. These

definitions agree with the definitions provided in [11], except here we take K to be a field

rather than a commutative ring.

Definition 1.2.1. A unital associative algebra (A,m,µ) is a vector space A over a field K
with linear maps m ∶ A⊗A → A and µ ∶ K → A which satisfy the commutative diagrams

in Figure 1.1. In the diagrams, the map id denotes the identity map on A, the map

A→ A⊗K sends a↦ a⊗ 1K, and the map A→ K⊗A sends a↦ 1K ⊗ a.

Definition 1.2.2. A counital coassociative algebra (A,∆, ε) is a vector space A over a

field K with linear maps ∆ ∶ A → A ⊗ A and ε ∶ A → K which satisfy the commutative

3



A⊗A⊗A A⊗A

A⊗A A

∆⊗ id

id⊗∆ ∆

∆

A⊗K A K⊗A

AA⊗A A⊗A

id⊗ ε id ε⊗ id

∆∆

Figure 1.2: Commutative diagrams for Definition 1.2.2.

A B

A⊗A B ⊗B

φ

∆A ∆B

φ⊗ φ

A B

K

φ

εA εB

Figure 1.3: Commutative diagrams for Definition 1.2.3.

diagrams in Figure 1.2. In these diagrams, the map A⊗K→ A sends a⊗ 1K ↦ a and the

map K⊗A→ A sends 1K ⊗ a↦ a.

The left diagram of Figure 1.1 captures the associativity of m. The diagrams of

Figure 1.2 are obtained by reversing the arrows in the diagrams in Figure 1.1 and replacing

the multiplication map m by the comultiplication map ∆.

Definition 1.2.3. A morphism of coalgebras (A,∆A, εA) and (B,∆B, εB) is a linear map

φ ∶ A→ B such that the diagrams in Figure 1.3 commute.

The next definition makes use of coalgebra structures on K and A ⊗ A where A

is a coalgebra. Taking ∆K to be the canonical isomorphism from K → K ⊗ K and εK

to be id ∶ K→ K we have that (K,∆K, εK) is a coalgebra. Given any two coalgebras

(A,∆A, εA) and (B,∆B, εB), we can construct a coalgebra (A⊗B,∆A⊗B, εA⊗B) using the

map T ∶ A ⊗ B → B ⊗ A that sends a ⊗ b ↦ b ⊗ a. Specifically, the comultiplication in

A⊗B is obtained by first applying ∆A⊗∆B to an element of A⊗B to obtain an element

of A ⊗ A ⊗ B ⊗ B, and then applying id ⊗ T ⊗ id to the result to obtain an element of

A ⊗ B ⊗ A ⊗ B. The map εA⊗B is obtained by first applying εA ⊗ εB to an element of

A⊗B to obtain an element of K⊗K and then applying the canonical isomorphism from

K⊗K→ K to obtain an element of K.

Definition 1.2.4. A bialgebra (A,m,µ,∆, ε) over a field K is a vector space over K such

that:

4



A⊗A A

A⊗A⊗A⊗A

A⊗A⊗A⊗A A⊗A

m

∆

∆⊗∆

id⊗ T ⊗ id

m⊗m

A⊗A A

K⊗K

K

m

ε

ε⊗ ε

K A

K⊗K A⊗A

µ

∆K ∆

µ⊗ µ

K A

K

µ

εK = id ε

Figure 1.4: Commutative diagrams capturing the final item in Definition 1.2.4.

• (A,m,µ) is a unital associative algebra,

• (A,∆, ε) is a counital coassociative algebra, and

• m and µ are homomorphisms of coalgebras.

Since m ∶ A ⊗ A → A and µ ∶ K → A, for these maps to be homomorphisms of

coalgebras, we require the coalgebra structures on K and A ⊗ A defined above. The

condition that m and µ are coalgebra homomorphisms is equivalent to the commutativity

of the four diagrams in Figure 1.4.

Definition 1.2.5. A Hopf algebra is a bialgebra (A,m,µ,∆, ε) with an endomorphism

S ∶ A→ A, called the antipode such that the diagram in Figure 1.5 commutes.

Definition 1.2.6. A vector space A is a graded vector space if A = ⊕n≥0An. A map

φ ∶ A → B between graded vector spaces is a graded map if applying φ to any element

of An results in an element of Bn for all n. A bialgebra (A,m,µ,∆, ε) over a field K is a

graded bialgebra if A is a graded vector space and m,µ,∆, and ε are graded maps.

The field K admits the trivial grading K = ⊕n≥0An in which A0 = K. Given a grading

on a vector space A = ⊕n≥0An, we obtain a natural grading on A ⊗ A by taking each

element of Ap ⊗Aq to be an element of the p + q graded piece of A⊗A.

5



A⊗A A⊗A

A K A

A⊗A A⊗A

S ⊗ id

∆ m

ε µ

∆ m

id⊗ S

Figure 1.5: A commutative diagram for Definition 1.2.5.

Definition 1.2.7. Given a graded vector space A = ⊕n≥0An over a field K, if A0 ≅ K,

then we say that A is connected.

The bialgebras we will consider are both graded and connected, so the following

proposition allows us to obtain Hopf algebras without proving the existence of antipodes.

Proposition 1.2.8 ([11, Proposiition 1.36]). Every graded, connected bialgebra has an

antipode.

The Hopf algebra of diagonal rectangulations and the Hopf algebra of generic rect-

angulations are combinatorial Hopf algebras. A combinatorial Hopf algebra is defined by

Aguiar, Bergeron, and Sottile [3] to be a graded, connected Hopf algebra A with a multi-

plicative linear functional ζ ∶ A → K. Informally, the term combinatorial Hopf algebra is

used to refer to a graded Hopf algebra whose basis elements are indexed by some combi-

natorial object such that the product encodes some way of combining these combinatorial

objects and the coproduct encodes some way of decomposing these combinatorial objects.

We will make use of the informal definition of a combinatorial Hopf algebra.

1.3 The Malvenuto-Reutenauer Hopf Algebra

For us, the Malvenuto-Reutenauer Hopf algebra of permutations is an especially impor-

tant example of a combinatorial Hopf algebra. We will consider two sub Hopf algebras of

the Malvenuto-Reutenauer Hopf algebra, the Hopf algebra of twisted Baxter permuta-

tions and the Hopf algebra of 2-clumped permutations, which are respectively isomorphic

to the Hopf algebra of diagonal rectangulations and the Hopf algebra of generic rectan-

gulations.

6



Let Sn denote the set of permutations of [n] and K[Sn] denote the vector space over K
whose basis elements are indexed by permutations of [n]. Let K[S∞] = ⊕n≥0 K[Sn] denote

the graded vector space over K whose basis elements are indexed by permutations of [n]

for n ≥ 0. The set of all permutations of the empty set contains a single element which

we denote by ∅. To simplify notation, we refer to the basis element indexed by the

permutation σ using the permutation σ itself (so elements of K[S∞] are denoted by

linear combinations of permutations of any size). The vector space K[S∞] is connected

since K[S0] = K[∅] ≅ K. Using the product and coproduct described below, we obtain a

Hopf algebra, called the Malvenuto-Reutenauer Hopf algebra, from this graded, connected

vector space [15].

To describe the product, we require the following definitions.

Definition 1.3.1. Given the one-line notation for a permutation ψ = ψ1⋯ψq ∈ Sq and

some p ∈ N, define the shift of ψ by p, denoted ψ′
[p]

to be (ψ1+p)⋯(ψq +p). We say that a

permutation υ ∈ Sn is a shifted shuffle of the ordered pair (σ,ψ) where σ ∈ Sp and ψ ∈ Sq,

if n = p + q and σ and ψ′
[p]

are subsequences of υ.

Define the product σ ●MR ψ of two basis elements in the Malvenuto-Reutenauer Hopf

algebra to be the sum of all shifted shuffles of the ordered pair (σ,ψ).

Example 1.3.2. An example of this operation is

213 ●MR 21 = 21354 + 21534+25134 + 52134 + 21543 + 25143

+ 52143 + 25413 + 52413 + 54213.

Since ●MR ∶ K[Sp] ⊗ K[Sq] → K[Sp+q], this product is a graded map. The map

µ ∶ K→ K[S∞] is given by 1K ↦ ∅.

To define the coproduct, we will make use of the following map.

Definition 1.3.3. The map st takes a sequence s1, . . . , sp of distinct natural numbers

and sends it to the unique permutation σ1⋯σp ∈ Sp such that for each i ≠ j in [p], we

have si < sj if and only if σi < σj. We call the resulting permutation the standardization

of the sequence.

For example, st(254) = 132 ∈ S3. The coproduct of a basis element in the Malvenuto-

7



Reutenauer Hopf algebra is given by

∆MR(σ) =
n

∑
i=0

st(σ1, . . . , σi) ⊗ st(σi+1, . . . , σn).

In this notation, st(σ1, σ0) and st(σn+1, σn) represent the empty permutation, denoted ∅.

Example 1.3.4. An example of this coproduct is

∆MR(31254) = ∅ ⊗ 31254 + 1⊗ 1243+21⊗ 132 + 312⊗ 21

+ 3124⊗ 1 + 31254⊗∅.

Since ∆MR ∶ K[Sn] → ∑p+q=nK[Sp]⊗K[Sq], this coproduct is a graded map. The map

ε ∶ K[S∞] → K is given by ∅ ↦ 1K and σ ↦ 0K for all σ ≠ ∅.

The product operation in the Malvenuto-Reutenauer Hopf algebra interacts nicely

with a partial order on permutations called the right weak order.

Definition 1.3.5. Given σ ∈ Sn, define inv(σ) = {(σi, σj) ∣ i < j and σi > σj}. If σ,ψ ∈ Sn

then we say that σ ≤ ψ in the right weak order if and only if inv(σ) ⊆ inv(ψ).

This definition implies that σ ⋖ ψ in the right weak order if and only if σ can be

obtained from ψ by transposing adjacent entries σi and σi+1 of σ which satisfy σi < σi+1

in numerical order.

Definition 1.3.6. Let C denote a set of elements in a poset. If there exists a unique min-

imal element in {y ∣ y ≥ c for all c ∈ C}, then that minimal element is called the join of C

and is denoted ⋁C. If there exists a unique maximal element in {y ∣ y ≤ c for all c ∈ C},

then that maximal element is called the meet of C and is denoted ⋀C. If ⋁C and ⋀C

exist for every collection C in a poset, then we call the poset a lattice.

The right weak order on permutations is a lattice. For any collection of permutations,

the join of these permutations in the right weak order is the unique permutation whose

inversion set is found by taking the union and then the transitive closure of the inversion

sets of the permutations in the collection. A non-inversion in a permutation σ is an ordered

pair (σi, σj) such that i < j and σi < σj. The meet of a collection of permutations in the

right weak order is the unique permutation whose set of non-inversions is found by taking

the union and then the transitive closure of the non-inversion sets of the permutations

in the collection.
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Given two permutations σ ∈ Sp and ψ ∈ Sq, the product σ ●MR ψ is the sum of the

elements of the interval [σψ′
[p]
, ψ′

[p]
σ] in the right weak order on Sp+q. As we discuss in

Section 1.5, many Hopf subalgebras of the Malvenuto-Reutenauer Hopf algebra can be

described by considering certain lattice congruences on the right weak order.

1.4 The Hopf Algebra of Diagonal Rectangulations

Let dRecn denote the set of diagonal rectangulations of size n and consider K[dRec∞] =

⊕n≥0 K[dRecn], the graded vector space over K consisting of linear combinations of diag-

onal rectangulations of any finite size. Defining the product and coproduct as described

below, we obtain the Hopf algebra of diagonal rectangulations [14, Theorem 6.8].

Definition 1.4.1. Let C denote a collection of line segments and points contained in

a square. We say that C is a partial diagonal rectangulation if there exists a diagonal

rectangulation D such that each line segment of D contains either a line segment or point

of C. We call such a diagonal rectangulation D a completion of C.

In Figure 1.6, the rightmost diagram in the first row of the computation is a partial

diagonal rectangulation. The rectangulations appearing in the second row of the figure

are completions of this partial diagonal rectangulation. The sum of all completions of a

partial diagonal rectangulation C is denoted by ∑complC.

Let D1 ∈ dRecp and D2 ∈ dRecq. To find the product of D1 and D2, denoted D1●dRD2,

we begin with a p + q unit square with lower-left vertex at (0,0). Place D1 and D2 in

this square so that the upper-left corner of D1 is at (0, n), the lower-right corner of D2

is at (n,0), and the lower-right corner of D1 and upper-left corner of D2 are at (p, q).

Remove the bottom and right side of D1 and the top and left side of D2 from this diagram.

Let C denote the union of the collection of remaining line segments, the boundary square,

and V = {(p, q)}. Then D1 ●dR D2 is the sum of all completions of C. Figure 1.6 shows

the product of two diagonal rectangulations.

As is the case in the Maleneuto-Reutenauer Hopf algebra, the product in the Hopf

algebra of diagonal rectangulations can be described as the sum of the elements of an

interval in a lattice. Making use of a map ρ from permutations to diagonal rectangulations,

this lattice is obtained from a lattice quotient of the right weak order. In Section 1.5, we

describe the details of the construction of this lattice in greater generality.
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●dR = ∑
compl

= + + + + +

Figure 1.6: The product of two diagonal rectangulations in the Hopf algebra of diagonal
rectangulations.

Definition 1.4.2. We say that P is a path in a diagonal rectangulation D if P joins

the upper-left vertex of the boundary square to the lower-right vertex of the boundary

square and consists of down and right steps along edges of D.

For each such path, let Rl(P) denote the union of the boundary of the square and

edges of D below P, and let Ru(P) denote the union of the boundary of the square and

the edges of D above P. The coproduct in the Hopf algebra of diagonal rectangulations is

∆dR(D) = ∑
P

( ∑
compl

Rl(P) ⊗ ∑
compl

Ru(P)),

where the outer summation denotes the sum over all paths in D. Figure 1.7 shows the

computation of the coproduct of the diagonal rectangulation shown in the left column of

the figure. That column shows the six distinct paths in the diagonal rectangulation. The

sum of the elements in the right column is the coproduct of this diagonal rectangulation.

1.5 H-Families and Pattern Avoidance

In this section, we describe a method for constructing sub Hopf algebras of the Malvenuto-

Reutenauer Hopf algebra using lattice homomorphisms.

Definition 1.5.1. A map f from a lattice L to a lattice M is a lattice homomorphism

if f(l1 ∧L l2) = f(l1) ∧M f(l2) and f(l1 ∨L l2) = f(l1) ∨M f(l2) for all l1, l2 ∈ L.

In other words, a function f ∶ L → M is a lattice homomorphism if f respects the

meet and join operations of the lattices.
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P Rl(P) Ru(P)
∑

compl

Rl(P) ⊗ ∑
compl

Ru(P)

∅ ∅ ⊗

⊗ + ⊗

⊗

⊗

⊗ + ⊗

∅ ⊗ ∅

Figure 1.7: The coproduct of a diagonal rectangulation in the Hopf algebra of diagonal
rectangulations.

Definition 1.5.2. We say that an equivalence relation on a lattice is a lattice congruence

if there exists a lattice homomorphism f such that each congruence class is a fiber of f .

Each fiber of a lattice homomorphism is an interval so we can choose to refer to each

congruence class of a lattice congruence using the unique minimal element or the unique

maximal element of that congruence class. Given a lattice congruence Θ on a lattice L

and x ∈ L, let π↓(x) and π↑(x) respectively denote the minimal element and the maximal

element of the equivalence class of x.

Conditions on lattice congruences that give rise to Hopf subalgebras of the Malvenuto-

Reutenauer Hopf algebra are described in [16]. Since these conditions result in a Hopf

algebra, such a family of congruences is called an H-family of congruences. Let Θ denote

an H-family of congruences where Θn denotes the lattice congruence on Sn, and let ZΘ
n

denote the quotient Sn/Θn. For each n, we use AvΘ
n to denote the collection of the

minimal elements of the congruence classes. This notation is used because for each H-

family of congruences, these minimal elements can be described using pattern avoidance

conditions.
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Definition 1.5.3. Let p = p1⋯pl ∈ Sl and p̃ be obtained by inserting a single dash between

some adjacent entries of p. We say that a permutation ψ ∈ Sn contains the pattern p̃ if

there exists some subsequence ψi1⋯ψil of ψ such that:

• For all j, k ∈ [l], subsequence elements satisfy ψij < ψik if and only if pj < pk.

• If pj and pj+1 are not separated by a dash in p̃, then ij = ij+1 − 1.

If ψ does not contain the pattern p, we say that ψ avoids p.

The first item in the above definition can be rephrased as the requirement that the

relative order of the terms in the subsequence matches the relative order of the entries

of p. The second item indicates that if pj and pj+1 are not separated by a dash in p̃,

then ψij and ψij+1 must be adjacent in ψ.

Example 1.5.4. Consider ψ = 546312 ∈ S6. The subsequence 5612 is an occurrence of

the pattern 3-4-1-2 in ψ, but is not an occurrence of the pattern 3-41-2 since the 6 and 1

are non-adjacent in ψ.

The pattern 3-41-2 is an example of a pattern which we will call an adjacent cliff

pattern.

Definition 1.5.5. Let p̃ be a pattern and p = p1⋯pl ∈ Sl denote the associated permuta-

tion obtained by removing the dashes from p̃. Then p̃ is an adjacent cliff pattern if pi = l,

pi+1 = 1, entries pi and pi+1 are not separated by a dash in p̃, and every other pair of

consecutive entries of p̃ is separated by a dash. The pattern p̃′, with associated permuta-

tion p′ = p′1⋯p
′
l, is a scramble of the adjacent cliff pattern p̃ if p̃′ is also an adjacent cliff

pattern with p′i = l, the first i − 1 entries of p′ is a permutation of the first i − 1 entries

of p, and p′i+2⋯p
′
l is a permutation of {pi+2, . . . , pl}. We say that permutations σ and ψ

are related by an adjacent cliff transposition of the pattern p if one of these permutations,

say σ, contains an occurrence σj1⋯σjl of the adjacent cliff pattern p such that σji = l and

transposing σji and σji+1 in σ results in the permutation ψ.

Example 1.5.6. The pattern 2-4-51-3 is a scramble of the pattern 4-2-51-3. The permu-

tations 4316725 and 4316275 are related by an adjacent cliff transposition of the pattern

2-4-51-3.
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A family of lattice congruences is an H-family of congruences if and only if the family

of congruences is defined by some collection C of adjacent cliff patterns. Specifically, given

a collection C of adjacent cliff patterns, the elements of AvΘ
n are the permutations that

avoid all scrambles of these adjacent cliff patterns [16, Theorem 9.3]. The equivalence

classes of a given H-family of congruences are defined by declaring [σ]Θ = [ψ]Θ if and

only if σ and ψ are related by a sequence of adjacent cliff transpositions of patterns which

are scrambles of elements of C.

Consider the graded vector space K[AvΘ
∞] = ⊕n≥0 K[AvΘ

n ]. Define rΘ ∶ K[S∞] →

K[AvΘ
∞] by rΘ(σ) = σ if σ ∈ AvΘ

n and rΘ(σ) = 0 otherwise. Let cΘ ∶ K[AvΘ
∞] → K[S∞]

denote the map that takes each σ ∈ AvΘ
p to the sum of the elements of the fiber Θ−1

p (σ).

If one wants cΘ to embed K[AvΘ
∞] as a sub Hopf algebra of the Malvenuto-Reutenauer

Hopf algebra, then it must be the case that for all σ ∈ AvΘ
p , ψ ∈ AvΘ

q ,

cΘ(σ ●Av ψ) = c
Θ(σ) ●MR c

Θ(ψ) and (cΘ ⊗ cΘ)(∆Av(σ)) = ∆MR(c
Θ(σ)).

The conditions on H-families ensure that this is possible [16, Corollary 1.4]. Since rΘ

restricted to the image of cΘ is the inverse of cΘ, applying rΘ and rΘ ⊗ rΘ respectively

to these equalities, we obtain

σ ●Av ψ = rΘ(cΘ(σ) ●MR c
Θ(ψ)) and ∆Av(σ) = (rΘ ⊗ rΘ)(∆MR(c

Θ(σ))).

From the conditions on H-families, it follows that σ ●Av ψ = rΘ(σ ●MR ψ). In other words,

to find the product of σ and ψ in K[AvΘ
∞], we find the sum of all shifted shuffles of the

ordered pair (σ,ψ) and then eliminate permutations which are not elements of AvΘ
p+q. This

coincides with the sum of all elements of the interval [σψ′
[p]
, π↓(ψ′[p]σ)] in the lattice ZΘ

p+q,

the quotient of the right weak order on Sp+q by the congruence Θp+q [13, Equation 6]. To

find the coproduct of σ in K[AvΘ
∞], we find the coproduct in the Malvenuto-Reutenauer

Hopf algebra of the sum of all permutations that map to [σ]Θ and then eliminate terms

which are not elements of K[AvΘ
∞] ⊗K[AvΘ

∞].

1.6 The Hopf Algebra tBax

The Hopf algebra described in this section is an example of a sub Hopf algebra of the

Malvenuto-Reutenauer Hopf algebra that is constructed using the method from Sec-
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tion 1.5.

The definition of a Baxter permutation provided in Section 1.1 (requiring that a

Baxter permutation σ = σ1⋯σn contain no i < j < k < l such that σk+1 < σi+1 = σl < σj or

σj+1 < σl+1 < σi < σk) can be rephrased using pattern avoidance conditions. Specifically, a

Baxter permutation is a permutation that avoids the patterns 2-41-3 and 3-14-2. A second

set of permutations counted by the Baxter numbers, called twisted Baxter permutations

has a similar pattern avoidance description.

Definition 1.6.1. A twisted Baxter permutation is a permutation that avoids the pat-

terns 2-41-3 and 3-41-2.

These pattern avoidance conditions are equivalent to the requirement that if σi > σi+1

then either all values numerically between σi+1 and σi are left of σi in σ, or all of these

values are right of σi+1 in σ. For a proof that twisted Baxter permutations are counted

by the Baxter numbers, see [14, Theorem 8.2].

Since the patterns 2-41-3 and 3-41-2 are adjacent cliff patterns, we can use them to

construct an H-family of congruences. Note that no additional patterns are obtained by

considering the scrambles of these patterns. Defining [σ]Θ = [ψ]Θ if σ and ψ are related

by some sequence of adjacent cliff transpositions of the patterns 2-41-3 and 3-41-2 results

in an H-family of congruences in which the minimal element of each congruence class

is a twisted Baxter permutation. In other words, making use of the results quoted in

Section 1.5, the twisted Baxter permutations form a basis for a sub Hopf algebra of the

Malvenuto-Reutenauer Hopf algebra. We use tBax to denote this Hopf algebra.

The product and coproduct operations in tBax are obtained as described in Sec-

tion 1.5.

Example 1.6.2. Examples of the product and coproduct operations of tBax applied to

specific basis elements are shown below.

213 ●tB 21 = rtB(21354 + 21534 + 25134 + 52134 + 21543 + 25143 + 52143

+ 25413 + 52413 + 54213)

= 21354 + 21534 + 52134 + 21543 + 52143 + 54213
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∆tB(2143) = rtB ⊗ rtB(∆MR(2143 + 2413))

= rtB ⊗ rtB(∅ ⊗ 2143 + 1⊗ 132 + 21⊗ 21 + 213⊗ 1 + 2143⊗∅

+∅⊗ 2413 + 1⊗ 312 + 12⊗ 12 + 231⊗ 1 + 2413⊗∅)

= ∅⊗ 2143 + 1⊗ 132 + 21⊗ 21 + 213⊗ 1 + 2143⊗∅ + 1⊗ 312 + 12⊗ 12 + 231⊗ 1

Notice that the product 213●tB21 is the sum of elements in the interval [21354,54213]

in the lattice on twisted Baxter permutations obtained by taking the quotient of the right

weak order by Θ.

The Hopf algebra of twisted Baxter permutations is isomorphic to the Hopf algebra

of diagonal rectangulations described in Section 1.4 via a bijection ρ between these com-

binatorial families. The details of ρ are given in Section 2.2. Applying ρ to the product

and coproduct computations shown in Example 1.6.2, we obtain the examples shown in

Figure 1.6 and Figure 1.7.

1.7 Description of Remaining Chapters

In Chapter 2, we introduce a family of posets called Baxter posets that correspond

to diagonal rectangulations. We prove that Baxter posets are counted by the Baxter

numbers by showing that they are the adjacency posets of diagonal rectangulations.

Given a diagonal rectangulation, we describe the cover relations in the associated Baxter

poset. Given a Baxter poset, we describe a method for obtaining the associated Baxter

permutation and the associated twisted Baxter permutation.

In Chapter 3, we explore the Hopf algebra of 2-clumped permutations, a sub Hopf

algebra of the Malvenuto-Reutenauer Hopf algebra that, in turn, contains tBax as a sub

Hopf algebra. As with the Hopf algebra tBax described in Section 1.6, the operations in

the Hopf algebra of 2-clumped permutations can be described extrinsically in terms of the

operations in the Malvenuto-Reutenauer Hopf algebra. Making use of a bijection between

2-clumped permutations and generic rectangulations, we can describe the Hopf algebra of

2-clumped permutations using generic rectangulations. We describe the cover relations in

a lattice of generic rectangulations that is a lattice congruence of the right weak order on

permutations. We then use this lattice to describe the product and coproduct operations
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in the Hopf algebra of generic rectangulations. The descriptions we obtain are similar to

the descriptions of the Hopf algebra of diagonal rectangulations provided in Section 1.4.
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Chapter 2

Baxter Posets

In this chapter, we define Baxter posets and prove that they are also counted by the

Baxter numbers. Baxter posets are closely related to Catalan combinatorics. Specifically,

Baxter posets (and the closely related diagonal rectangulations) can be realized through

“twin” Catalan objects. Additionally, the relationship between Baxter posets and di-

agonal rectangulations is analogous to the relationship between two Catalan objects,

specifically sub-binary trees and triangulations of convex polygons. As a prelude to our

discussion of Baxter posets, we describe a few Catalan objects and bijections between

them.

2.1 Catalan and Baxter Objects

The Catalan number C(n) = 1
n+1

(
2n
n
) counts the elements of Sn that avoid the pat-

tern 2-31. The map τb, described below and illustrated in Figure 2.1, assigns a triangu-

lation of a convex (n+ 2)-gon to each element of Sn, and restricts to a bijection between

permutations that avoid 2-31 and triangulations of polygons. Let σ = σ1⋯σn ∈ Sn and

let P be a convex (n + 2)-gon. For convenience, deform P so that P is inscribed in the

upper half of a circle, and label each vertex of P , in numerical order from left to right,

with an element of the sequence 0,1, . . . , n+1. For each i ∈ {0, . . . , n}, construct a path Pi

from the vertex labeled 0 to the vertex labeled n + 1 that visits the vertices labeled by

elements of {σ1, . . . , σi} in numerical order. The union of these paths defines τb(σ), a

triangulation of P .

Given a triangulation ∆ of a convex (n + 2)-gon P , deform P (and ∆) as above.
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Figure 2.1: The Catalan objects obtained by applying τb and the dual graph construction
to the 2-31 avoiding permutation 52143768.

Construct a graph with an edge crossing each edge of ∆ except the horizontal diameter,

as shown in red in the left diagram of Figure 2.1. (This is essentially the dual graph

of ∆.) In what follows, we will call this the dual graph construction. Terminology for

the resulting family of trees is mixed in the literature, with adjectives such as complete,

planar, rooted, and binary appearing inconsistently. We will call the resulting tree a

binary tree and provide a careful definition.

Definition 2.1.1. We say that a rooted tree is a binary tree if every non-leaf has exactly

two children, with one child identified as the left child and the other as the right child.

The dual graph construction gives a bijection between triangulations of a convex

(n+2)-gon and binary trees with 2n+1 vertices. The root of the binary tree corresponds

to the bottom triangle of ∆ and children are identified as left or right according to the

embedding of ∆ in the plane. For a reason that will become apparent later, we deform each

binary tree resulting from this bijection as shown in the right diagram of Figure 2.1 so

that the root is the lowermost vertex. Removing the leaves of a binary tree and retaining

the left-right labeling of each child, we obtain a tree which we call a sub-binary tree.

Definition 2.1.2. A sub-binary tree is a rooted tree in which every vertex has 0, 1, or 2

children, and each child is labeled left or right, with at most one child of each vertex

receiving each label.

The leaf-removal map is a bijection between binary trees with 2n + 1 vertices and

sub-binary trees with n vertices. In the example shown in Figure 2.1, the edges removed

by this map are shown as dashed segments.

We will make use of a second similar map from permutations to triangulations. The

map τt described below restricts to a bijection between elements of Sn that avoid 31-2 and
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Figure 2.2: The Catalan objects obtained by applying τt and the dual graph construction
to the 31-2 avoiding permutation 21547863.

triangulations of a convex (n+ 2)-gon. Let σ ∈ Sn and P a convex (n+ 2)-gon. Deform P

and label its vertices as shown in the example in Figure 2.2. For each i ∈ {0,1, . . . , n},

construct the path Pi that begins at the vertex labeled 0, visits in numerical order each

vertex labeled by an element of [n] − {σ1, . . . , σi}, and ends at the vertex labeled n + 1.

The union of these paths is τt(σ). Performing the dual graph construction and then the

leaf-removal map, we obtain corresponding binary and sub-binary trees. This time, we

choose to deform the binary and sub-binary trees so that the root is the uppermost

vertex, as illustrated in the right diagram of Figure 2.2.

Although a sub-binary tree is an unlabeled graph, for each sub-binary tree with n

vertices, there exists a unique labeling of its vertices by the elements of [n] such that

every parent vertex has a label numerically larger than the labels of its left descendants

and numerically smaller than the labels of its right descendants. An example of a sub-

binary tree with such a labeling is show in Figure 2.3. Let T be a labeled sub-binary

tree embedded in the plane as shown in Figure 2.3 and ∆T the associated triangulation.

View T as the Hasse diagram of a poset.

Definition 2.1.3. A total order L of the elements of T is a linear extension of T if x <T y

implies that x <L y.

The linear extensions of T , viewed as permutations in one-line notation, are exactly

the permutations that map to ∆T under τb. To see why, label each triangle of ∆T according

to the label of its middle (from left to right) vertex, as illustrated in Figure 2.3. The

linear extensions of T are exactly the permutations that map to ∆T because x <T y if

and only if the triangle labeled y is “above” the triangle labeled x. Similarly, given a

sub-binary tree T ′, embedded in the plane as illustrated in Figure 2.2, and associated
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Figure 2.3: The labeling of a sub-binary tree obtained from the labeling of the triangles
in the corresponding triangulation.

triangulation ∆T ′ , we obtain a labeling of T ′ such that the linear extensions of T ′ are

exactly the permutations that map to ∆T ′ under τt.

We now relate the Catalan objects described above to Baxter objects. Specifically, we

will see that diagonal rectangulations are made by gluing together binary trees, and we

will construct Baxter posets so that they play the same role for diagonal rectangulations

that sub-binary trees play for triangulations.

Recall that a twisted Baxter permutation is a permutation that avoids the patterns

2-41-3 and 3-41-2 and that the twisted Baxter permutations in Sn are counted by the Bax-

ter number B(n). Twisted Baxter permutations are related to diagonal rectangulations

by way of pairs of binary trees, called twin binary trees.

Definition 2.1.4. Given σ ∈ Sn, call the pair (τb(σ), τt(σ)) a pair of twin binary trees.

Gluing the twin binary trees associated with any permutation along their leaves,

we obtain a decomposition of a square into n rectangles. We then rotate the resulting

figure π/4 radians clockwise. Each decomposition resulting from this binary tree gluing

map is a diagonal rectangulation.

Example 2.1.5. The result of applying the binary tree gluing map to the permutation

52147862 is shown in the left diagram of Figure 2.4. The binary trees which are glued

together in this example are shown in Figures 2.1 and 2.2.

The binary tree gluing map restricts to a bijection between twisted Baxter permuta-

tions and diagonal rectangulations.

Given a diagonal rectangulation, label the rectangles of the decomposition according

to the order in which they appear along the diagonal, labeling the upper-leftmost rect-
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angle with 1 and the lower-rightmost rectangle with n. We refer to the rectangle with

label i as “rectangle i.”

Definition 2.1.6. Given a labeled diagonal rectangulation D, construct a poset P by

declaring x <P y if the interior of the bottom or left side of rectangle y intersects the

interior of the top or right side of rectangle x, and then taking the reflexive and transitive

closure of these relations. We call the resulting poset on [n] the adjacency poset of D.

Adjacency posets are defined in [9, 14]. Remark 6.7 in [14] explains that, before

taking the reflexive and transitive closure, these relations are acyclic. Thus the adjacency

poset is a partial order on [n]. (A more general set of posets, corresponding to elements

of the Baxter monoid, are defined in [10].) Each adjacency poset captures the “right

of” and “above” relations of the diagonal rectangulation just as each sub-binary tree

captures the “above” relations of the corresponding triangulation. Additionally, given an

adjacency poset P and the corresponding diagonal rectangulation D, the set of linear

extensions of P is the set of permutations that map to D under the binary tree gluing

map [14, Remark 6.7]. We note that two permutations σ and ψ map to the same diagonal

rectangulation if and only if τb(σ) = τb(ψ) and τt(σ) = τt(ψ). Thus, the set of linear

extensions of the adjacency poset of a diagonal rectangulation is the intersection of the

sets of linear extensions of the labeled sub-binary trees obtained from τb and τt.

As a diagonal rectangulation can be constructed from twin binary trees, the adjacency

poset of a diagonal rectangulation can be constructed using the corresponding labeled

sub-binary trees. Let D be a diagonal rectangulation, P the associated adjacency poset,

and Tb and Tt respectively denote the corresponding labeled sub-binary trees obtained

from τb and τt. By declaring x <P y if x <Tb y or x <Tt y and then taking the transitive

closure, we obtain all of the relations of P . Although it is simple to use the relations

of Tb and Tt to list the relations of P , it is not so straightforward to obtain a description

of the Hasse diagram of P or to characterize the set of adjacency posets of diagonal

rectangulations.

Definition 2.1.7. In any poset P , we say that y covers x, denoted x ⋖P y, if x <P y and

there exists no z such that x <P z <P y.

In Theorem 2.3.2, the first main result of this chapter, we show that x ⋖ y in the

adjacency poset P if and only if, in the associated diagonal rectangulation, rectangles x

and y form one of the configurations shown in Figure 2.7. This theorem allows us to
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Figure 2.4: The rectangulation and adjacency poset obtained from the twisted Baxter
permutation 52147863.

obtain a Hasse diagram for the adjacency poset from a diagonal rectangulation just as

we easily obtain a sub-binary tree from a triangulation.

For our second result, which characterizes adjacency posets, we require the following

definitions.

Definition 2.1.8. A poset P is bounded if it has an element that is greater than all

other elements and an element that is less than all other elements.

Definition 2.1.9. Given a poset P on [n], a 2-14-3 chain is a chain b <P a ⋖P d <P c

of P such that a < b < c < d in numerical order. We similarly define a 3-14-2 chain, a

2-41-3 chain, and a 3-41-2 chain.

Definition 2.1.11 will refer to a planar embedding of a poset, so we first provide a

careful definition of a Hasse diagram and then a definition of a planar embedding of a

poset.

Definition 2.1.10. Given a partially ordered set P , construct a graph G such that the

vertices of G are labeled by the elements of P and there is an edge joining vertex x to

vertex y if and only if x ⋖P y or y ⋖P x. An embedding of G in R2 is a Hasse diagram

for P if and only if for all x ⋖P y, vertex y is above vertex x in the plane and each edge

of the embedding is a line segment. A planar embedding of a poset P is a Hasse diagram

for P in which no two edges intersect.

Making use of these terms, we consider a subset of the posets on [n].

Definition 2.1.11. A poset P on [n] is a Baxter poset if and only if it satisfies the

following conditions:
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1. P is bounded.

2. If x ∈ P , then x is covered by at most two elements and covers at most two elements.

3. P contains no 2-14-3, no 3-14-2, no 2-41-3, and no 3-41-2 chains.

4. If [x, y] is an interval of P such that the open interval (x, y) is disconnected, then

∣x − y∣ = 1.

5. There exists a planar embedding of P such that for every interval [x, y] of P with

(x, y) disconnected, if w, z ∈ (x, y) and w is left of z, then w < x < z in numerical

order.

Condition 2 of Definition 2.1.11 implies that every open interval (x, y) of a Baxter

poset consists of at most two connected components. Condition 5 implies that if (x, y)

is disconnected, then the elements of one connected component are all smaller than x

and y while the elements of the other connected component are larger than x and y. We

call the embedding described in Condition 5 of Definition 2.1.11 a natural embedding of

the Baxter poset.

We can now state the main result of Chapter 2.

Theorem 2.1.12. A poset P is a Baxter poset if and only if it is the adjacency poset of

a diagonal rectangulation.

Remark 2.1.13. One might hope for an unlabeled version of the Baxter poset from which

the labeled poset can be obtained, just as sub-binary trees have a canonical labeling.

However, without “decorating” the poset with additional combinatorial information, this

is not possible. This is quickly apparent since, when n = 4, of the 22 Baxter posets, 20

of these are chains. Decorating each poset to indicate the numerical order of each pair

x <P y with (x, y) disconnected is insufficient. Additionally, decorating every edge of the

Hasse diagram to indicate the numerical order of the elements of the cover relation does

not allow us to determine a unique Baxter poset.

Recall that the original Baxter object, Baxter permutations, are elements of Sn that

avoid the patterns 2-41-3 and 3-14-2. Given a diagonal rectangulation D, the set of per-

mutations that map to D under the binary tree gluing map contains a unique twisted

Baxter permutation and a unique Baxter permutation (see Theorem 2.2.1). Other au-

thors (see [14, Proof of Lemma 8.4], [9, Proof of Lemma 6.6]) have described algorithms
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for obtaining these permutations from a diagonal rectangulation. Our final results of

this chapter describe how to obtain these pattern avoiding permutations directly from a

Baxter poset. Here, we describe a method of obtaining the Baxter permutation.

Definition 2.1.14. Let P denote the planar embedding of a poset. The edges of the

embedding separate the plane into maximal connected components. We call the closure

of a bounded connected component a region of the embedding.

Let P be the natural embedding of a Baxter Poset. Assign an arrow to each region

of the embedding as follows: If the maximal element of a region is greater (in numerical

order) than the minimal element of that region, then that region is assigned a right-

pointing arrow, and otherwise the region is assigned a left-pointing arrow. An example

is shown in Figure 2.5.

Definition 2.1.15. If a region Ri of the natural embedding of a Baxter poset contains

a right-pointing arrow and σ is a linear extension of P in which all labels of elements

contained in the left side of Ri precede all labels of elements contained in the right side

of Ri, then we say that σ respects the arrow of Ri. Similarly, we say that σ respects the

arrow of a region Ri containing a left-pointing arrow if all labels contained in the right

side of Ri precede all labels of elements contained in the left side of Ri. If σ respects the

arrows of every region of P , then we say that σ respects the arrows of P .

The existence of a linear extension of P that respects the arrows of P should not be

immediately obvious to the reader.

Theorem 2.1.16. Given a Baxter poset P with its natural embedding, the unique Baxter

permutation that is a linear extension of P is the unique linear extension that respects

the arrows of the embedding.

By adding a single relation for each region of the natural embedding of P , we obtain

an alternate description of the map from an adjacency poset to its Baxter permutation.

Specifically, for each region R with minimal element x and maximal element x + 1 we

declare that the maximal element (with respect to the partial order P ) of the left com-

ponent of (x, y) is less than the minimal element of the right component. Similarly, for

each region R with maximal element x and minimal element x + 1, we declare that the

maximal element of the right component of (x, y) is less than the minimal element of the
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Figure 2.5: A diagonal rectangulation, the corresponding adjacency poset with an arrow
assigned to each region, and the Baxter permutation obtained using Theorem 2.1.16

left component. By Theorem 2.1.16, the resulting partial order is a total order on [n]

and this total order is a Baxter permutation.

In Section 2.2, we describe the map ρ (mentioned in Sections 1.4 and 1.6) from per-

mutations to diagonal rectangulations that coincides with the binary tree gluing map

described in this section and provide some background related to diagonal rectangula-

tions. We prove Theorem 2.3.2 (the characterization of the cover relations of the adja-

cency poset) in Section 2.3. Our main result regarding Baxter posets, Theorem 2.1.12, is

proved in Section 2.4. Finally, in Section 2.5, we describe how to obtain a twisted Baxter

permutation from a Baxter poset and then prove Theorem 2.1.16.

2.2 Diagonal Rectangulations

Recall that a rectangulation is a diagonal rectangulation if, for some representative of the

equivalence class, the top-left to bottom-right diagonal of S contains an interior point

of each rectangle of the decomposition. In our discussion of diagonal rectangulations,

we often blur the distinction between an equivalence class and a representative of the

equivalence class. We most often refer to a diagonal rectangulation using the distinguished

representative with edges intersecting the diagonal in equally spaced points.

We now define a map ρ from Sn to the set of diagonal rectangulation of size n.

Figure 2.6 shows the construction of ρ(23154). The map ρ agrees with the map (described

in Section 2.1) in which a diagonal rectangulation is constructed from a permutation by
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Figure 2.6: The map ρ applied to the permutation 23154.

gluing together twin binary trees and then rotating the result. Our description of ρ

matches the description in [14, Section 6] and is essentially equivalent to maps described

in [2, Section 3], [1, Section 4], and [9, Section 5].

Let σ = σ1⋯σn ∈ Sn and S a square in R2 with bottom-left vertex at (0,0) and top-

right vertex at (n,n). Place n+1 points at (i, n− i) for i ∈ {0, . . . , n}. Label each of the n

spaces between these points in order with an element of [n], starting with 1 in the upper-

leftmost space and finishing with n in the lower-rightmost space. We construct ρ(σ) by

considering the entries of σ sequentially from left to right. Let Ti−1 denote the union of

the left and lower boundaries of S and the rectangles of ρ(σ) constructed using the first

i−1 entries of σ. In step i of the construction, we form a new rectangle that contains the

diagonal label σi. We refer to this rectangle as rectangle σi. We construct rectangle σi as

follows. If the point u = (σi −1, n−(σi −1)) is contained in Ti−1, then place the upper-left

corner of rectangle σi so that it coincides with the uppermost point on the segment of Ti−1

containing u. Otherwise, the upper-left corner of rectangle σi is the first point of Ti−1 hit by

the left-pointing horizontal ray with base point at u. Similarly, if the point l = (σi, n−σi)

is contained in Ti−1, then place the lower-right corner of rectangle σi so that it coincides

with the rightmost point on the segment of Ti−1 containing l. Otherwise, the lower-right

corner of rectangle σi is the first point of Ti−1 hit by the downward pointing vertical ray

with base point at l. In the arguments that follow, we will use the observation that, by

construction, the left side and bottom of rectangle σi are contained in Ti−1 for all i ∈ [n].

The description of the construction of rectangle σi in ρ(σ) can be rephrased follows: At

step i, construct the largest possible rectangle such that the left side and bottom of this

rectangle are contained in Ti−1 and the rectangle contains only the diagonal label σi.

We will also use the observation that, since the interior of each rectangle of a diagonal

rectangulation D intersects the upper-left to bottom-right diagonal of S, no set of four

rectangles of D share a vertex.
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Theorem 2.2.1 ([14, Theorem 6.1, Corollary 8.7]). The map ρ restricts to a bijection be-

tween twisted Baxter permutations and diagonal rectangulations. The map ρ also restricts

to a bijection between Baxter permutations and diagonal rectangulations.

Recall that we say that permutations σ and ψ are related by an adjacent cliff trans-

position of the pattern 2-41-3 or the pattern 3-41-2 if one of these permutations, say σ

contains a subsequence σiσjσj+1σk that is an occurrence of one of these two patterns and

switching σj and σj+1 in σ results in the permutation ψ.

Proposition 2.2.2 ([14, Proposition 6.3]). Two permutations σ and ψ satisfy ρ(σ) =

ρ(ψ) if and only if they are related by a sequence of adjacent cliff transpositions of the

patterns 2-41-3 and 3-41-2.

Since σ ⋖ ψ in the right weak order if and only if ψ can be obtained from σ by

transposing adjacent entries σi and σi+1 of σ which satisfy σi < σi+1 in numerical order, and

the unique twisted Baxter permutation that maps to a fixed diagonal rectangulation D

avoids the patterns 2-41-3 and 3-41-2, making use of Proposition 2.2.2, we see that the

twisted Baxter permutation is the minimal element of the right weak order that maps

to D under ρ.

Proposition 2.2.3 ([14, Proposition 4.5]). Let D be a diagonal rectangulation and σ ∈ Sn

such that ρ(σ) =D. Then σ is a twisted Baxter permutation if and only if σ is the minimal

element of the right weak order such that ρ(σ) =D.

2.3 Adjacency Posets

In Section 2.1, we provided a definition of the adjacency poset of a diagonal rectangula-

tion D. Specifically, we obtained the relations of the adjacency poset by declaring x <P y

if rectangle x and rectangle y are adjacent with rectangle x left of or below rectangle y,

and then taking the reflective and transitive closure of these relations. At times, we will

make use of an equivalent definition of the adjacency poset.

Given a diagonal rectangulation D of size n in R2 with bottom-left corner at (0,0)

and top-right corner at (n,n), define the partial order Q on [n] as follows: if there exist

a point p in the interior of rectangle x and a point q in the interior of rectangle y such

that q − p has positive coordinates declare x ≤Q y, and then take the transitive closure of

these relations.
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Proposition 2.3.1. Given a diagonal rectangulation D of size n, the adjacency poset P

is the poset Q defined above.

Proof. If x ⋖P y then, by the definition of the adjacency poset, the interior of the bottom

(or left side) of rectangle y intersects the interior of the top (or right side) of rectangle x.

Thus there exist points p ∈ int(rectangle x) and q ∈ int(rectangle y) such that q − p has

positive coordinates. Therefore, by the definition of Q, we have that x ≤Q y.

If x ⋖Q y, then there exist points p ∈ int(rectangle x) and q ∈ int(rectangle y) such that

q − p has positive coordinates. Consider the line segment joining p to q. If this segment

passes through the vertex of some rectangle, since D contains only finitely many vertices,

we may perturb p or q, obtaining points p′ and q′, so that p′ and q′ are respectively in the

interiors of rectangles x and y, the segment joining p′ and q′ contains no vertices of D,

and q′ − p′ has positive coordinates. Thus, we may assume that the segment joining p

and q contains no vertices of D. The segment passes through the interiors of the sequence

of rectangles x = z0, z1, . . . , zm−1, y = zm. For all i ∈ [m], the segment exits rectangle zi−1

and enters rectangle zi at a point in the interior of a side of both rectangles so zi <P zi+1.

Therefore x <P y.

We note that the transitive closure in the definition of Q is required (since we have

chosen to refer to each diagonal rectangulation using the representative with edges in-

tersecting the diagonal in equally spaced points). Consider the rectangulation ρ(312465)

shown in Figure 2.10. Since the interior of the right side of rectangle 2 intersects the

interior of the left side of rectangle 4, we have that 2 <P 4. Similarly, 4 <P 6, so by tran-

sitivity 2 <P 6. However, there do not exist p ∈ int(rectangle 2) and q ∈ int(rectangle 6)

such that q − p has positive coordinates.

We give a description of the Hasse diagram of the adjacency poset of a diagonal

rectangulation by describing its cover relations.

Theorem 2.3.2. Let D be a diagonal rectangulation and P the corresponding adjacency

poset. Then x ⋖P y if and only if rectangles x and y form one of the configurations shown

in Figure 2.7.

Proof. Let D be a diagonal rectangulation and P the adjacency poset of D. Assume

that in D, rectangles x and y form one of the configurations shown in Figure 2.7. In each

configuration, by definition, x <P y. Assume that rectangles x and y form configuration (i)
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Figure 2.7: Configurations in a diagonal rectangulation that correspond to cover rela-
tions in the adjacency poset.

x
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Figure 2.8: An illustration for the proof of Theorem 2.3.2.

and there exists some z ∈ [n] such that x <P z <P y. Since z <P y and P is acyclic, y ≮P z.

Thus rectangle z contains no interior points in the lined region of Figure 2.8. Similarly,

since z ≮P x, rectangle z contains no interior points in the dotted region of Figure 2.8.

Therefore, any rectangle z such that x <P z <P y is completely contained in an unshaded

region of Figure 2.8. However, by the definition of P , no label of a rectangle contained in

the lower-right unshaded region of Figure 2.8 is covered by y. Similarly, in P no label of a

rectangle contained in the upper-left unshaded region of Figure 2.8 covers x. Additionally,

no label of a rectangle contained in the lower-right unshaded region is covered by the

label of a rectangle contained in the upper-left unshaded region. Thus there exists no z

such that x <P z <P y. Hence x ⋖P y. For the remaining configurations of Figure 2.7,

similar considerations demonstrate that x ⋖P y.

To prove the other direction of the theorem, assume that x ⋖P y. Since the set of

linear extensions of P is the fiber ρ−1(D) and x ⋖P y, there exists a linear extension

σ = σ1⋯σn of P such that x = σi and y = σi+1. Let Tj−1 denote the union of the left

and bottom boundaries of the square S and the partial diagonal rectangulation formed

in the construction of ρ(σ) after considering the first j − 1 entries of σ. Recall that

the bottom and left edge of rectangle σj are contained in Tj−1 for all j ∈ [n]. Using

Definition 2.1.6 (the first definition of the adjacency poset), since x ⋖P y, we have that

rectangles x and y are adjacent with rectangle x left of or below rectangle y. There
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Figure 2.9: Relative locations of rectangles x and y used in the second half of the proof
of Theorem 2.3.2.

are 18 possible configurations of adjacent rectangles in a rectangulation. Of these 18

configurations, only the 8 configurations shown in Figure 2.9 can possibly satisfy the

condition that the bottom and left edge of rectangle y are contained in Ti. To complete

the proof of the theorem, we observe that configurations (a) and (c) of Figure 2.9 cannot

occur in any diagonal rectangulation. In a diagonal rectangulation, the upper-left to

bottom-right diagonal of S passes through every rectangle of the rectangulation, but this

is impossible in a rectangulation containing either of these configurations. Thus, if x ⋖P y,

then rectangles x and y form one of the configurations shown in Figure 2.7.

Example 2.3.3. Figure 2.10 shows two diagonal rectangulations and their adjacency

posets. The posets are constructed using the correspondence between cover relations

of P and the rectangle configurations shown in Figure 2.7.

2.4 Characterization of Adjacency Posets

To prove Theorem 2.1.12, we require the following definitions and results. Recall that

given a rectangulation R, a line segment that is not contained in the boundary of S

and is a maximal (with respect to inclusion) union of edges of rectangles is called a

wall of R. Given a planar embedding of a poset P , the embedding separates the plane

into maximal connected components. Recall that we call the closure of each bounded

connected component a region of the embedding.
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Figure 2.10: The adjacency posets corresponding to the diagonal rectangulations
ρ(312546) and ρ(312465).

Definition 2.4.1. Given a planar embedding of a lattice P , for each x ∈ P , define S(x)

to be the union of the chains of P containing x and the horizontal line segments whose

endpoints are contained in these chains. We say that x is left of y in the embedding

if y is not contained in S(x) and a left-pointing horizontal ray with vertex at y passes

through S(x). We similarly define right of.

In Figure 2.11, the gray region is S(x). We note that since P is a lattice, x is left of y

if and only if y is right of x. Furthermore, if x and y are incomparable in P , then either x

is left of y or x is right of y.

Definition 2.4.2. Let L = {L1, . . . , Ll} denote a collection of linear extensions of a

poset P . We say that L is a realizer of P if the intersection of these total orders is P .

The dimension of a poset P is the size of the smallest realizer.

The following is a well-known result, which we will use to find a realizer of an adjacency

poset. In the proposition and its proof, given σ = σ1⋯σn ∈ Sn, we declare σi <σ σj if and

only if i < j. We will routinely pass between a permutation and its associated total order.

Proposition 2.4.3. Let [σ,ψ] be an interval in the right weak order on Sn. The elements

of [σ,ψ] are the linear extensions of the intersection of these total orders.

31



x

y

0̂

1̂

Figure 2.11: The shaded region shows S(x). Since y is not contained in S(x) and the
left-pointing horizontal ray with base point at y intersects S(x), we say that x is left of y.

Proof. Let σ = σ1⋯σn and ψ = ψ1⋯ψn. Denote the intersection of the total orders σ and ψ

by σ ∩ ψ.

Let u be a linear extension of σ ∩ ψ. If (σi, σj) ∈ inv(σ) then, since σ ≤ ψ in the

right weak order, (σi, σj) ∈ inv(ψ). Thus (σi, σj) ∈ inv(u). If (ui, uj) ∈ inv(u), then either

uj ≮σ ui or uj ≮ψ ui. Since σ and ψ are total orders, we have that (ui, uj) ∈ inv(σ) or

(ui, uj) ∈ inv(ψ). In the right weak order σ ≤ ψ, so (ui, uj) ∈ inv(ψ). We conclude that

u ∈ [σ,ψ].

Let u = u1⋯un ∈ [σ,ψ] and assume that u is not a linear extension of σ∩ψ. Thus there

exist i, j ∈ [n] with i < j such that uj <σ ui and uj <ψ ui. If uj > ui in numerical order, then

(uj, ui) ∈ inv(σ) and (uj, ui) ∉ inv(u), contradicting the assumption that σ ≤ u in the

right weak order. If uj < ui in numerical order, then (ui, uj) ∈ inv(u) and (ui, uj) ∉ inv(ψ),

contradicting the assumption that u ≤ ψ in the right weak order. Therefore, if u ∈ [σ,ψ],

then u is a linear extension of σ ∩ ψ.

Since each congruence class of a lattice congruence on the right weak order is an

interval [16, Section 2] and since each fiber of ρ is such a congruence class [14, Prop. 6.3],

each fiber of ρ is an interval of the right weak order. Let D be a diagonal rectangulation

and let L1 and L2 be respectively the minimum and maximum elements in the right weak

order on Sn such that ρ(L1) = ρ(L2) = D. By Proposition 2.4.3, and since any poset is

determined by its set of linear extensions, L = {L1, L2} is a realizer of the adjacency

poset of D.

Given a linear extension L = σ1⋯σn of a poset P on [n], let πL ∶ [n] → [n] be defined

by πL(x) = i if and only if x = σi. The inverse of the permutation σ1⋯σn is πL(1)⋯πL(n).
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If P has realizer L = {L1, L2}, then the projection of L denoted by πL (P ) is a map

from [n] to R2 given by πL (x) = (πL1(x), πL2(x)). This is an embedding of P into the

componentwise order on R2. To view this embedding of P as a Hasse diagram for P , we

take “up” to be the direction of the vector ⟨1,1⟩.

Theorem 2.4.4 ([20, p. 69]). If P is a lattice with realizer L = {L1, L2}, then the em-

bedding of P into the componentwise order on R2 given by πL (P ) is a planar embedding

of P .

The following proposition is [5, p 32, Exercise 7(a)]. Since every Baxter poset is finite,

bounded, and has a planar embedding, this proposition implies that every Baxter poset

is a lattice.

Proposition 2.4.5. A finite planar poset P is a lattice if and only if P is bounded.

The following lemma is [6, Lemma 2.1]:

Lemma 2.4.6. Let P be a bounded poset such that every chain of P is of finite length.

If, for any x and y in P such that x and y both cover some element z, the join x ∨ y

exists, then P is a lattice.

We now have the necessary tools to prove the main result of Chapter 2, that adjacency

posets and Baxter posets coincide.

(Proof of Theorem 2.1.12). Let D be a diagonal rectangulation of size n and P the as-

sociated adjacency poset. We first demonstrate that P satisfies the five conditions of

Definition 2.1.11. The rectangle x of D whose lower-left corner coincides with the lower-

left corner of S contains interior points below and left of interior points of all other

rectangles of D. Thus for every y ∈ [n]−{x}, we have that x <P y . Similarly, the label of

the rectangle of D whose upper-right corner coincides with the upper-right corner of S

is greater, in P , than every other element of P . Therefore, P is a bounded poset.

Observe that any rectangle x of D is the left rectangle of at most one of the configura-

tions shown in Figure 2.7 and the bottom rectangle of at most one of the configurations

shown in Figure 2.7. Thus, x is covered by at most two elements of P . Similarly, x covers

at most two elements of P .

To show that P meets Condition 3 of Definition 2.1.11, for a contradiction assume

that P contains a 2-14-3, a 3-14-2, a 2-41-3 or a 3-41-2 chain. This implies that some
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Figure 2.12: Given that x ⋖P xa and x ⋖P xr with xa ≠ xr, in diagonal rectangulation D
rectangles x,xa and xr form one of the three configurations shown.

linear extension σ of P contains this pattern with the “4” and “1” adjacent. By Proposi-

tion 2.2.2, transposing the “4” and “1” in this linear extension results in a permutation σ′

such that ρ(σ) = ρ(σ′). Since the fiber ρ−1(D) is the set of linear extensions of P , the

permutation σ′ is also a linear extension of P . However, this contradicts the assumption

that the “4” and the “1” are related in P .

Since the labeling of the rectangles of D comes from the map ρ from permutations to

diagonal rectangulations, to demonstrate that P meets Condition 4 of Definition 2.1.11,

we rely on observations about this map. Consider an interval [x, y] of P such that (x, y)

is disconnected. There exist xr ≠ xa such that x ⋖P xr and x ⋖P xa. By Theorem 2.3.2,

since no four rectangles of a diagonal rectangulation share a vertex, rectangles x,xa,

and xr form one of the configurations shown in Figure 2.12. In Diagram (i), the left side

of rectangle xa is missing to indicate that the lower-left vertex of rectangle xa coincides

with or is left of the upper-left vertex of rectangle x. The bottom of rectangle xr is missing

in Diagram (ii) to similarly indicate that the lower-left vertex of rectangle xr coincides

with or is below the lower-right vertex of rectangle x.

First assume that rectangles x,xa, and xr are in the configuration shown in Dia-

gram (i) of Figure 2.12 and let W be the vertical wall on the right side of rectangle x.

The lower-right vertex of rectangle x and the lower-left vertex of rectangle xr coincide,

so rectangle x is the lowermost rectangle on the left side of W . By the definition of ρ,

rectangle x+ 1 is the uppermost rectangle adjacent to the right side of W and the lower-

left corner of rectangle x + 1 is below the upper-right corner of rectangle x. Since the

interiors of the right edge of rectangle xa and the left edge of rectangle x + 1 intersect,

we have that xa <P x + 1. Since the upper-right corner of rectangle x + 1 is strictly right

of W and above rectangle xr, we have that xr <P x + 1. We wish to show that x + 1 = y,

i.e., there does not exist z <P x+1 such that xa <P z and xr <P z. We will prove a stronger
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statement: xa ∨xr exists and xa ∨xr = x+ 1. Since x+ 1 is an upper bound for xa and xr,

it suffices to demonstrate that any other upper bound z satisfies x + 1 ≤P z. To obtain

a contradiction, assume that x + 1 ≰P z for some upper bound z. We use an argument

similar to the argument used in the proof of Theorem 2.3.2. Since x <P z, we have that

z ≰P x. Thus rectangle z contains no interior points that are both left of the vertical

line containing W and below the horizontal line containing the top of rectangle x. Since

x + 1 ≰P z, rectangle z contains no interior points that are both right of the vertical line

containing W and above the horizontal line containing the bottom of rectangle x + 1.

Thus z is contained in either the region left of the vertical line containing W and above

the horizontal line containing the top of rectangle x or the region right of the vertical

line containing W and below the horizontal line containing the bottom of rectangle x+1.

Note that these regions are disjoint, that rectangle xa is contained in the first region,

and that rectangle xr is contained in the second region. In P , the label of a rectangle

contained in the first region cannot cover the label of a rectangle contained in the second

region and vice versa. Thus xa ≮P z or xr ≮P z, a contradiction. Therefore xa ∨xr = x+ 1.

When rectangles x,xa and xr form the configuration shown in Diagram (ii) of Fig-

ure 2.12, by considering the horizontal wall W above rectangle x and the rightmost rect-

angle above W , rectangle x − 1, we similarly show that y = x − 1 and that xa ∨ xr = x − 1.

In the case illustrated in Diagram (iii) of Figure 2.12, we first observe that since D is a

diagonal rectangulation, the wall above or on the right side of rectangle x extends beyond

the upper-right corner of rectangle x. In either case, using the previous arguments, we

show that y = x + 1 or y = x − 1 and y = xa ∨ xr.

To demonstrate that P meets Condition 5 of Definition 2.1.11, note that by Con-

dition 1 of the definition, and since we verified that y = xa ∨ xr in each case of the

proof of Condition 4, Lemma 2.4.6 implies that P is a lattice. Let L1 and L2 be re-

spectively the minimum and maximum elements in the right weak order on Sn such

that ρ(L1) = ρ(L2) = D. By Proposition 2.4.3, L = {L1, L2} is a realizer of P . By Theo-

rem 2.4.4, the Hasse diagram obtained from πL (P ) is a planar embedding of P . Let [x, y]

be an interval of P such that (x, y) is disconnected. Let x ⋖P xl and x ⋖P xr where xl

is left of xr in the planar Hasse diagram obtained from πL (P ). Let πL (xl) = (a, b) and

πL (xr) = (c, d). Since xl and xr are incomparable with xl left of xr in the planar Hasse

diagram, we have that a < c and b > d in numerical order. This implies that xl precedes xr

in L1 and xl follows xr in L2. Since L1 ≤ L2 in the right weak order, (xl, xr) ∈ inv(L2).
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Thus xl < xr in numerical order.

Rectangles x,xl, and xr form one of the configurations shown in Figure 2.12 (with xl

replacing xa). In every diagram of Figure 2.12, each rectangle xi such that xl ≤P xi <P y

is contained in the region above the horizontal line containing the top of rectangle x and

left of the vertical line containing the left side of rectangle y. Thus rectangle xi intersects

the diagonal of S in that region. This implies that xi < x in numerical order. Additionally,

for each xj such that xr ≤P xj <P y, since rectangle xj intersects the diagonal of D in

the region right of the vertical line containing the right side of rectangle x and below the

horizontal line containing the bottom of rectangle y, we have that x < xj in numerical

order. Thus one connected component of (x, y) contains elements numerically smaller

than x and y while the other connected component contains elements numerically larger

than x and y. Since xl < xr in numerical order with xl contained in the left component

of (x, y) and xr contained in the right component, given w, z ∈ (x, y) such that w is left

of z in this planar embedding of P , we have that w < x < z in numerical order.

We have shown that the adjacency poset P satisfies each of the conditions in Defini-

tion 2.1.11, so P is a Baxter poset.

Now let P be a Baxter poset. To demonstrate that P is an adjacency poset, we first

show that the set of linear extensions of P is a union of fibers of ρ. In what follows,

we assume that P is embedded as described in Condition 5 of Definition 2.1.11. Let

σ = σ1⋯σn be a linear extension of P and suppose ψ = σ1⋯σj−1σj+1σjσj+2⋯σn such

that ρ(σ) = ρ(ψ). We will show that ψ is also a linear extension of P . Since ρ(σ) = ρ(ψ)

and σ ⋖ ψ or ψ ⋖ σ in the right weak order, by Proposition 2.2.2, the permutations σ and ψ

are related by a single adjacent cliff transposition of the pattern 2-41-3 or the pattern

3-41-2. Let aσjσj+1b be an occurrence of a 2-41-3, a 2-14-3, a 3-41-2, or a 3-14-2 pattern

in σ. Since σ is a linear extension of P , the permutation ψ is also a linear extension

of P if and only if σj and σj+1 are incomparable in P . To proceed via contradiction,

assume that σj and σj+1 are comparable in P . Because σj precedes σj+1 in σ and σ is

a linear extension of P , we have that σj+1 ≮P σj. Thus σj <P σj+1. This implies that

σj ⋖P σj+1 since any σk such that σj <P σk <P σj+1 would be between σj and σj+1 in

every linear extension of P (and in particular in σ). By Condition 3 of Definition 2.1.11,

at least one of {a, b} is incomparable with at least one of {σj, σj+1}. We assume that a

is incomparable with σj or σj+1 and note that if b is instead incomparable with σj or

σj+1, then the argument is analogous. Since a precedes σj in σ, our assumption implies
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Figure 2.13: An illustration for the proof of Theorem 2.1.12.

that either a <P σj+1 and a and σj are incomparable, or a is incomparable with both σj

and σj+1. In either case, a and σj are incomparable.

By Proposition 2.4.5, P is a lattice so we may consider S(a) and S(σj). First assume

that a is left of σj and consider the maximal chain C1 of P from a to the minimal element

of P , denoted 0̂, that follows the right boundary of S(a). Let C2 denote the maximal

chain of P from σj to 0̂ that follows the left boundary of S(σj). Note that C1 and C2

intersect at a ∧ σj and let C ′
1 and C ′

2 denote the chains from a and σj to a ∧ σj obtained

by truncating C1 and C2 respectively. Figure 2.13 shows an example of the chains C ′
1

and C ′
2. Each edge of C ′

1 and C ′
2 is the edge of a region of P that lies right of C ′

1 and left

of C ′
2. Starting at a, traveling down C ′

1 to a ∧ σj, label the sequence of regions right of

and adjacent to C ′
1 with R1, . . . ,Rl. Starting at a∧σj, and traveling up C ′

2 to σj, continue

by labeling the sequence of regions left of and adjacent to C ′
2 with Rl,Rl+1, . . . ,Rm. In

Figure 2.13, l = 4 and m = 6. For each i ∈ [m−1], by Condition 2 of Definition 2.1.11, the

region Ri shares an edge with the region Ri+1. (Otherwise C1 is not the right boundary

of S(a) or C2 is not the left boundary of S(σj).) Since P is a lattice, for i ∈ [m], each

region Ri has a minimal element, denoted ri contained in the boundary of Ri. Each ri is

a vertex of C ′
1 ∪C

′
2. (If the edge of some region is contained in C ′

1 ∪C
′
2 and that region’s

minimal element is not on C ′
1∪C

′
2, then again either C1 is not the right boundary of S(a)

or C2 is not the left boundary of S(σj).) For each i ∈ [l], the minimal element ri is

contained in the left side of the region Ri+1. Thus, by Condition 5 of Definition 2.1.11, we

have that a < r1 < ⋯ < rl = a∧σj in numerical order. For each i ∈ {l+1, . . . ,m}, the minimal

element ri is contained in the right side of region Ri−1. Thus a∧σj = rl < rl+1 < ⋯ < rm < σj
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in numerical order. Combining these strings of inequalities, we conclude that a < σj in

numerical order.

In a similar way, construct a sequence of regions S1, . . . , Sp using the section of the

right boundary of S(a) from a to a∨σj+1 and the section of the left boundary of S(σj+1)

from σj+1 to a ∨ σj+1. If a <P σj+1, then a ∨ σj+1 = σj+1. Whether a <P σj+1 or a and σj+1

are incomparable in P , using the sequence of maximal elements of these regions together

with Condition 5 of Definition 2.1.11, we obtain a chain of inequalities and conclude that

a < σj+1 in numerical order. However, combining the conclusions that a < σj and a < σj+1

contradicts to the assumption that aσjσj+1b is an occurrence of a 2-41-3, a 2-14-3, a

3-41-2 or a 3-14-2 pattern.

If σj is left of a in P , then to construct sequence of regions R1, . . . ,Rm, let C1 be the

right boundary of S(σj) and C2 be the left boundary of S(a). To construct the sequence

of regions S1, . . . , Sp, use the right boundary of S(σj+1) and the left boundary of S(a).

Using these sequences and the corresponding chains of inequalities, we conclude that in

numerical order σj < a and σj+1 < a. This conclusion again contradicts the assumption

that aσjσj+1b is an occurrence of a 2-41-3, a 2-14-3, a 3-41-2, or a 3-14-2 pattern. In

both cases, we see that σj and σj+1 are incomparable in P . Therefore the set of linear

extensions of P is a union of fibers of ρ.

Any two linear extensions of a poset are related by a sequence of adjacent transposi-

tions. Consider two linear extensions σ and ψ of P that differ by an adjacent transposi-

tion. To complete the proof that P is an adjacency poset, we will show that ρ(σ) = ρ(ψ).

Specifically, we demonstrate that σ and ψ are related by an adjacent cliff transposi-

tion of the pattern 2-41-3 or the pattern 3-41-2. Suppose that σ = σ1⋯σjσj+1⋯σn and

ψ = σ1⋯σj−1σj+1σjσj+2⋯σn. Since σj precedes σj+1 in σ but σj+1 precedes σj in ψ, we

have that σj and σj+1 are incomparable in P . This implies that σj ∧ σj+1 ∉ {σj, σj+1} and

σj ∨σj+1 ∉ {σj, σj+1}. Without loss of generality, up to swapping σ and ψ, we can assume

that σj is left of σj+1 in P . Consider sequences of regions R1, . . . ,Rm and S1, . . . , Sp,

defined as in the previous paragraph, replacing a with σj. Using these sequences of

adjacent regions and the resulting inequalities, we obtain σj < σj ∧ σj+1 < σj+1 and

σj < σj∨σj+1 < σj+1 in numerical order. By definition, σj∧σj+1 <P σj and σj∧σj+1 <P σj+1,

so σj ∧σj+1 precedes σj and σj+1 in σ and ψ. Similarly, σj and σj+1 precede σj ∨σj+1 in σ

and ψ. Thus the sequence (σj ∧ σj+1)σjσj+1(σj ∨ σj+1) is an occurrence of a 2-41-3, a

2-14-3, a 3-41-2, or a 3-14-2 pattern in σ.
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2.5 Twisted Baxter and Baxter Permutations from

Baxter posets

Definition 2.5.1. Let P be a poset. We say that a subset I of the elements of P is an

order ideal of P if and only if for every a ∈ I, if b <P a, then b ∈ I. We say that an ordering

a1⋯ai of a subset of the elements of P is a partial linear extension of P if {a1, . . . , aj} is

an order ideal of P for all j ∈ [i].

Given a poset P on [n], the permutation σ is a linear extension of P if and only

if σ satisfies the definition of a partial linear extension. Given a partial linear extension

σ1⋯σi−1 of P , we define Ai ⊆ [n] by u ∈ Ai if and only if σ1⋯σi−1u is a partial linear

extension of P . We label this set Ai because it forms an antichain (a set of pairwise

incomparable elements) of P .

Theorem 2.5.2. Given a Baxter poset P , the unique twisted Baxter permutation σ =

σ1⋯σn that is a linear extension of P is obtained by choosing σi = min(Ai) for each i ∈ [n].

Note that min(Ai) denotes the smallest, in numerical order, element of Ai. If a Baxter

poset P is given a natural embedding, then this selection is equivalent to choosing the

leftmost (in the embedding) element of Ai for each i ∈ [n].

Proof. Let P be a Baxter poset and D the associated diagonal rectangulation. By The-

orem 2.1.12, the total order σ is a linear extension of P if and only if ρ(σ) = D. Since ρ

restricts to a bijection between diagonal rectangulations and twisted Baxter permutations

(Theorem 2.2.1), there is a unique linear extension σ = σ1⋯σn of P that is a twisted-

Baxter permutation. To construct σ one entry at a time, we must describe a method for

choosing σi from Ai. By Proposition 2.2.3, the permutation σ is the minimal element of

the right weak order such that ρ(σ) = D. That is, σ is the linear extension of P that

contains the fewest inversions. Therefore, σi = min(Ai) for all i ∈ [n].

The following results will be used in the proof of Theorem 2.1.16. The next lemma

is equivalent to Corollary 4.2 in [14] which states that σ is a Baxter permutation if and

only if σ−1 is a Baxter permutation. The description of Baxter permutations provided in

this lemma is a rephrasing of Definition 1.1.2.
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Lemma 2.5.3. The permutation σ is a Baxter permutation if and only if σ contains no

subsequence σiσjσkσl such that ∣σl − σi∣ = 1 and the subsequence is an occurrence of the

pattern 2-4-1-3 or the pattern 3-1-4-2.

By Theorem 2.2.1, there exists a unique linear extension of P that is a Baxter per-

mutation.

Lemma 2.5.4. Let P be a Baxter poset and σ be the unique Baxter permutation that is

a linear extension of P . Then σ respects the arrows of P .

Proof. Let P be a Baxter poset with a natural embedding. Let σ denote a linear extension

that does not respect the arrow of some region R of P . Let minR and maxR respectively

denote the minimal and maximal elements of R. By Condition 4 of Definition 2.1.11,

we have that minR and maxR differ in value by one. Since σ does not respect the arrow

of R, there exists a subsequence minR σiσj maxR of σ such that σi and σj are contained

in the boundary of R, one of these contained in the left component of (minR,maxR) and

the other contained in the right component of (minR,maxR), and this subsequence is an

occurrence of a 2-4-1-3 or a 3-1-4-2 pattern. Thus, by Lemma 2.5.3, the permutation σ

is not a Baxter permutation.

We make several useful observations about the map ρ. Justifications of some of these

observations can be found in the proof of Theorem 2.1.12. Given a diagonal rectangula-

tion D, if W is a horizontal wall of D and rectangle a is the leftmost rectangle below and

adjacent to W , then rectangle a − 1 is the rightmost rectangle above and adjacent to W

and a precedes a − 1 in every permutation σ such that ρ(σ) = D. Each rectangle below

and adjacent to W has a label larger than a and each rectangle above and adjacent to W

has a label smaller than a − 1. Similarly, if W is a vertical wall of D and rectangle a is

the lowermost rectangle left of and adjacent to W , then rectangle a+ 1 is the uppermost

rectangle right of and adjacent to W and a precedes a + 1 in every permutation σ such

that ρ(σ) = D. Additionally, every rectangle left of and adjacent to W has label smaller

than a and every rectangle right of and adjacent to W has label larger than a + 1.

The lemma below follows from the definition of a Baxter permutation, the above

observations, and Lemma 2.5.3.

Lemma 2.5.5. Let D be a diagonal rectangulation and σ = σ1⋯σn ∈ Sn such that

ρ(σ) =D. If σ is a Baxter permutation, then σ satisfies the following properties:
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• If rectangles σi and σj are adjacent to a horizontal wall W with rectangle σi below W

and rectangle σj above W , then σi precedes σj in σ and

• If rectangles σi and σj are adjacent to a vertical wall W with rectangle σi left of W

and rectangle σj right of W , then σi precedes σj in σ.

To complete the proof of Theorem 2.1.16, we will refer to generic rectangulations. In

this section, we need generic rectangulations exclusively to prove Lemma 2.5.9, a lemma

about diagonal rectangulations, so we only provide the required background related to

generic rectangulations from [17]. Additional background concerning generic rectangula-

tions can be found in Chapter 3. Recall that a rectangulation R is a generic rectangulation

if and only if there exists no set of four rectangles of R that share a vertex.

As with diagonal rectangulations, there is a map γ that takes a permutation on [n]

to a generic rectangulation of size n (see Section 3.3) and restricts to a bijection between

a subset of Sn and generic rectangulations containing n rectangles. We will not need a

complete description of γ in this section, so we instead quote the required results.

Theorem 2.5.6 ([17, Theorem 4.1]). The map γ restricts to a bijection between generic

rectangulations containing n rectangles and permutations of [n] that avoid scrambles of

the patterns 2-4-51-3 and 3-51-2-4.

The next proposition relates adjacent cliff transpositions involving these patterns to

the map γ and is analogous to Proposition 2.2.2.

Proposition 2.5.7 ([17, Proposition 4.3]). Two permutations σ and ψ satisfy γ(σ) =

γ(ψ) if and only if they are related by a sequence of adjacent cliff transpositions of scram-

bles of the patterns 2-4-51-3 and 3-51-2-4.

The map γ labels each rectangle of the constructed generic rectangulation with an

element of [n]. Given a generic rectangulation R, this labeling of rectangles is unique

i.e., if x, y ∈ Sn such that γ(x) = γ(y), then the labeling of the rectangles obtained

from γ(x) agrees with the labeling of the rectangles obtained from γ(y). Thus we can

refer to the rectangle of R with label i as rectangle i.

Given a generic rectangulation R and a wall W of R, we record the order in which

the rectangles adjacent to W appear along W .

Definition 2.5.8. Let W be a horizontal wall of R. Temporarily label each vertex con-

tained in W as follows. If the vertex is the upper-left vertex of some rectangle x, then label
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the vertex with x. Otherwise, the vertex is the lower-right vertex of some rectangle y,

and we label it with y. The left-to-right ordering of the vertices along W provides an or-

dering of these vertex labels, and we call this ordering the wall shuffle of W denoted σW .

Similarly, if W ′ is a vertical wall of R, we temporarily label the vertices contained in W ′.

We label a vertex with x if it is the lower-right vertex of rectangle x. Otherwise, the

vertex is the upper-left vertex of some rectangle y and we label the vertex with y. The

bottom-to-top order of these labels along W gives us σW ′ , the wall shuffle of W ′.

The map γ constructs a generic rectangulation R from a permutation in two steps.

Given σ ∈ Sn, we first construct ρ(σ). Then, for each wall of ρ(σ), the vertices are labeled

as described above. Finally, the vertices (and the attached edges) are reordered along each

wall so that the wall shuffle of each wall is a subsequence of σ. In this section, the key

point is that, to specify a generic rectangulation, it suffices to identify the associated

diagonal rectangulation and an order of the vertices along each wall (i.e. a wall shuffle

for each wall).

Given a Baxter permutation σ, the conditions given in Lemma 2.5.5 specify the wall

shuffles of the generic rectangulation γ(σ). As a result, we can make use of generic

rectangulations to prove the following lemma.

Lemma 2.5.9. Let D be a diagonal rectangulation. Then there is a unique permutation σ

such that ρ(σ) = D and such that σ satisfies the properties given in Lemma 2.5.5. This

permutation σ is the Baxter permutation associated with D.

Proof. Let D be a diagonal rectangulation and σ the unique Baxter permutation such

that ρ(σ) = D. The permutation σ satisfies the properties given in Lemma 2.5.5. As-

sume that there exists a second permutation ψ such that ρ(ψ) = D and ψ satisfies the

properties given in Lemma 2.5.5. Since ρ(σ) = ρ(ψ) and the wall shuffles of γ(σ) agree

with the wall shuffles of γ(ψ), we have that γ(σ) = γ(ψ). Thus, by Proposition 2.5.7,

the permutations σ and ψ are related by a sequence of adjacent cliff transpositions of

scrambles of the patterns 2-4-51-3 and 3-51-2-4. This implies that some subsequence of σ

is an occurrence of a scramble of the pattern 2-4-15-3, the pattern 2-4-51-3, the pattern

3-15-2-4, or the pattern 3-51-2-4. First, assume that σiσjσkσk+1σl is an occurrence of

the pattern 2-4-15-3 in σ. This means that σk < σi < σl < σj < σk+1 in numerical order.

However, this implies that the subsequence σjσkσk+1σl is an occurrence of the pattern

3-14-2 in σ, contradicting our assumption that σ is a Baxter permutation. If σ contains
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an occurrence of one of the other seven patterns, then we similarly show that σ is not a

Baxter permutation. We conclude that the unique permutation mapping to D under ρ

and satisfying the properties of Lemma 2.5.5 is the Baxter permutation σ.

Lemma 2.5.10. Let D be a diagonal rectangulation with Baxter poset P naturally em-

bedded in the plane. If a linear extension σ of P respects the arrows of P then σ satisfies

the properties of Lemma 2.5.5.

Proof. To show that σ satisfies the properties of Lemma 2.5.5, we will show that σ satisfies

these properties for each possible configuration of rectangles adjacent to the wall.

First assume that on at least one side of the wall W there is only one adjacent

rectangle. Let W be a horizontal wall with a single rectangle, rectangle r1, below W and

sequence of rectangles r2, . . . , rl above W . For all i ∈ {1, . . . , l − 1}, an interior point of

rectangle i is strictly below and left of an interior point of rectangle i + 1. Thus, by the

definition of the adjacency poset and Theorem 2.1.12, we have that r1 <P r2 <P ⋯ <P rl.

IfW is horizontal with a single rectangle, rectangle rl, aboveW and sequence of rectangles

r1, . . . , rl−1 below W , then we reach the same conclusion. In either case, in P , the labels

of the rectangles adjacent to W form a chain and, in this chain, all labels of rectangles

below W precede all labels of rectangles above W . When W is a vertical wall with a

single rectangle either left of or right of W , the argument is the same. In these cases, we

conclude that the labels of rectangles adjacent to W form a chain in P and the labels of

rectangles left of W precede the labels of rectangles right of W in this chain. Thus every

linear extension of P satisfies the properties of Lemma 2.5.5 for walls that are adjacent

to exactly one rectangle on at least one side.

Now assume that on both sides of the wallW there are at least two adjacent rectangles.

We will prove the claim that if W is a horizontal wall, then the labels of rectangles

adjacent to W form a subset of the labels adjacent to some region of P . Let W be

horizontal and, as illustrated in the left diagram of Figure 2.14, label from left to right

the rectangles adjacent to and below W with the sequence b1, . . . , bi. Label the rectangles

adjacent to and above W , again from left to right, a1, . . . , aj. Since D is diagonal and

rectangles b1 and a1 are the leftmost rectangles adjacent to W , these rectangles form the

configuration shown in Diagram (i) of Figure 2.7. Thus, by Theorem 2.3.2, we have that

b1 ⋖P a1. If a1 <P b2, then there exists a sequence of xks such that a1 ⋖P x1 ⋖P ⋯ ⋖P xl ⋖ b2.

Since b1 ⋖P a1, and b2 <P aj, for each k ∈ [l] we have that b1 <P xk <P aj. Thus each

rectangle xk is contained either in the region above W and left of the line containing
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Figure 2.14: Illustrations for the proof of Lemma 2.5.10.

the left side of rectangle aj or below W and right of the line containing the right side

of rectangle b1. But in P , no rectangle in the first of these regions covers a rectangle in

the second of these regions. We see by this contradiction that a1 ≮P b2. Since b1 <P b2

and a1 ≮P b2, there exists some c such that b1 ⋖P c and c ≠ a1. By Theorem 2.3.2,

rectangle c is adjacent to the right side of rectangle b1. Since rectangles b1, a1 and c form

a configuration shown in Diagram (ii) or (iii) of Figure 2.12, we have that a1 ∨ c = aj

(as shown in the proof of Theorem 2.1.12). This implies that b1 and aj are contained in

a shared region R of the embedded poset. Observe that for each k ∈ [i], the lower-left

vertex of rectangle bk is strictly below and left of the upper-right vertex of rectangle bi

so bk <P bi <P aj. Similarly, for each l ∈ [j], we have that al <P aj.

For a contradiction, assume that there exists a label of a rectangle adjacent to W

that is not contained in the boundary of R. We consider the case in which some al is not

contained in the boundary of R, as illustrated in the right diagram of Figure 2.14. Since

al < b1 in numerical order, al is contained in the left connected component of the interval

(b1, aj). Since al is not contained in the left boundary of R, the element al is contained

in the left boundary of some other region, R′. Let d denote an element contained in

the right boundary of R′. The planarity of the embedding of P implies that d satisfies

b1 <P d. Thus d ≮P b1, implying that that no interior points of rectangle d are strictly left

of and below the upper-right corner of rectangle b1. Additionally, al ≮P d so no interior

points of rectangle d are strictly right of and above the lower-left corner of rectangle al.

Since d and al are contained respectively in the right and left boundaries of R′, we have

that al < d in numerical order. This implies that rectangle d is contained in the section
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of the diagonal rectangulation D below the horizontal line containing W and right of

the vertical line containing the right side of rectangle b1. Thus b1 < d in numerical order.

However, this contradicts the assumption that P is embedded naturally in the plane.

We conclude that each al for l ∈ [j] is contained in the left boundary of R. A similar

argument demonstrates that each bk for k ∈ [i] is contained in the right boundary of R.

Thus, the claim holds.

Since W is horizontal, b1 − 1 = aj, implying that the arrow of R points to the left. By

assumption, σ respects the arrows of R so each bk occurs before every al in σ, i.e. for

every horizontal wall, σ satisfies the first condition of Lemma 2.5.5.

A virtually identical argument demonstrates that if W is vertical, and on both sides

of W there are at least two adjacent rectangles, then σ satisfies the second condition of

the lemma.

We can now prove Theorem 2.1.16.

Proof of Theorem 2.1.16. Let P be a Baxter poset, X be the set of linear extensions of P

that respect the arrows of P and let σ be the Baxter permutation that is a linear extension

of P . By Lemma 2.5.4, the Baxter permutation σ is in X. By Lemma 2.5.10, each element

of X satisfies the properties given in Lemma 2.5.5. However, by Lemma 2.5.9, only one

linear extension of P satisfies these properties so X = {σ}.
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Chapter 3

The Hopf Algebra of Generic

Rectangulations

In this chapter, we shift our focus to generic rectangulations, rectangulations in which

no four rectangles share a vertex.

In [17], Reading describes a map γ from permutations of [n] to generic rectangulations

of size n. The fibers of γ define an H-family of lattice congruences on the right weak order

on Sn. This map γ restricts to a bijection between certain pattern avoiding permutations,

which we call 2-clumped permutations, and generic rectangulations. Since each fiber

of γ contains a unique 2-clumped permutation and this 2-clumped permutation is the

minimal element (with respect to the right weak order) of the fiber, the set of all 2-

clumped permutations forms a basis for a Hopf subalgebra of the Malvenuto-Reutenauer

Hopf algebra of permutations. We call this Hopf sub-algebra Cl2 and use Cl2n to denote

the set of 2-clumped permutations of size n. As described in Section 1.5, the product

and coproduct operations in Cl2, which we denote respectively by ●Cl2 and ∆Cl2 , can be

defined using the corresponding operations in the Malvenuto-Reutenauer Hopf algebra

and then eliminating elements not in the Hopf algebra of 2-clumped permutations. In this

section we provide an alternate description of these operations. Specifically, we describe

the operations in the Hopf algebra of generic rectangulations, a Hopf algebra that is

isomorphic to Cl2.
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3.1 Results

Let gRec denote the Hopf algebra of generic rectangulations that is isomorphic to Cl2

via γ and let ●gR and ∆gR respectively denote the product and coproduct operations

in gRec. We denote the set of all generic rectangulations of size n by gRecn. Given two

generic rectangulations R1 ∈ gRecp and R2 ∈ gRecq we will describe R1 ●gRR2 as the sum

of the elements in an interval of a lattice on gRecp+q. This is analogous to the description

of the product in the Malvenuto-Reutenauer Hopf algebra as a sum of all elements in

an interval of the right weak order on Sp+q. The first main result of this chapter will

describe this lattice on gRecn in terms of the combinatorics of generic rectangulations.

Before providing this description, we explain the relationship between this lattice and

the right weak order on Sn. The fibres of the map γ from Sn to gRecn define a lattice

congruence on the right weak order. The natural isomorphism from the quotient of the

right weak order on Sn (modulo this congruence) to the set of generic rectangulations

defines a lattice structure on gRecn. Reusing notation, we also let gRecn denote this

partial order on generic rectangulations of size n. In our description of the lattice gRecn,

we use two types of local moves, called generic pivots and wall slides, illustrated by the

five diagrams in Figure 3.1.

The right two diagrams of Figure 3.1 show wall slides.

Definition 3.1.1. Given a vertical wall W of R, a vertical wall slide switches the order

of two walls incident to the interior of W . Let Wl and Wr be walls of R incident to the

interior of W such that Wl extends to the left of W , wall Wr extends to the right of W

and no other wall incident to W has endpoint between the endpoints of Wl and Wr. A

wall slide performed on Wl and Wr switches their relative orders along W and results

in a new generic rectangulation. Similarly, a horizontal wall slide switches the order of

two walls incident to a horizontal wall W and results in a new generic rectangulation.

If Wu is incident to W , extending up from W , and Wd is incident to W , extending down

from W , such that no other walls incident to W have endpoints between the endpoints

of Wu and Wd, then switching the order of Wu and Wd on W is a horizontal wall slide.

The precise definition of a generic pivot is more complicated than that of a wall slide.

Definition 3.1.2. We call an edge that can participate in a generic pivot a pivotable edge.

A generic pivot replaces a pivotable vertical (or horizontal) edge of a generic rectangula-

tion with a distinct horizontal (or vertical) edge resulting in a new generic rectangulation.
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Figure 3.1: Every cover relation in gRecn is obtained by performing one of the local
changes shown in the figure on a generic rectangulation. If the configuration is to partic-
ipate in the illustrated move, no edge of the generic rectangulation can have an endpoint
in the interior of a dashed segment.

The left three diagrams of Figure 3.1 illustrate the three types of generic pivots. In each

case, a segment separating two rectangles is removed and replaced with a segment that

produces a distinct generic rectangulation. The dashed segments of each diagram indicate

edges to which no additional segments of R may be incident.

If a segment of R is incident to a dashed edge, then the edge separating the two

rectangles is not pivotable. In this case, a wall slide or sequence of wall slides must move

the edge(s) incident to the dashed segments before the generic pivot can occur. When

a generic pivot is performed, the new edge introduces new vertice(s) along some wall(s)

of R and these vertice(s) must be placed with respect to the other vertices already on

that wall so that no edges are incident to dashed segments in the new rectangulation.

We now state our first main result of this chapter.

Theorem 3.1.3. Let R1 and R2 be generic rectangulations of size n. Then R1 ⋖ R2 in

gRecn if and only if :

• R1 and R2 are related by a generic pivot such that the pivoted edge is vertical

in R1, or

• R1 and R2 are related by a single wall slide as shown in the two rightmost diagrams

of Figure 3.1.

Example 3.1.4. Figure 3.2 shows several examples of the cover relations described in

Theorem 3.1.3. The map γ provides a labeling of each rectangle in these rectangulations
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Figure 3.2: A sequence of cover relations in gRec7.

by an element of [7]. In the first rectangulation of Figure 3.2, a generic pivot cannot

be performed on the edge separating the shaded rectangles since the edge separating

rectangles 1 and 2 is incident to the interior of the upper segment (or top) of rectangle 3.

Performing a horizontal wall slide on the bold edges of the first rectangulation of the

sequence, we obtain the second rectangulation. A generic pivot can then be performed

on the edge separating rectangles 3 and 4 in the second rectangulation of the sequence to

obtain the third rectangulation. To obtain the fourth rectangulation of the sequence, a

generic pivot is performed on the edge between rectangles 2 and 5. Performing the pivot

introduces a new vertex along the wall separating rectangles 5 and 7. To avoid having an

edge incident to the right side of rectangle 5 in the fourth rectangulation (as is disallowed

in Figure 3.1), the left vertex of the edge separating rectangles 6 and 7 is placed above

the right vertex of the edge separating rectangles 2 and 5. This is possible because, before

performing the generic pivot on the edge separating rectangles 2 and 5, the edge between

rectangles 6 and 7 can be moved up without changing the equivalence class of the generic

rectangulation.

Having described the lattice gRecn, we use this lattice to describe ●gR, the product

operation in the Hopf algebra gRec.

Definition 3.1.5. Given generic rectangulations R1 and R2, let R1R′
2 denote the hor-

izontal concatenation of R1 and R2. This is a generic rectangulation obtained by first

placing R1 adjacent to R2 so that the right side of R1 coincides with the left side of R2.

The resulting figure is rescaled so that the outer boundary of R1 ∪ R2 is a square and

wall slides are performed on the shared wall so that all edges extending left from the

shared wall are below all edges extending right from the shared wall. Let R′
2R1 denote
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Figure 3.3: The horizontal concatenation R1R′
2 and the vertical concatenation R′

2R1 of
generic rectangulations R1 and R2. In each concatenation, the wall shared by R1 and R′

2

is bolded.

the vertical concatenation of R1 and R2 which is obtained by placing R1 adjacent to R2

so that the top of R2 coincides with the bottom of R1, rescaling, and then performing

wall slides along the shared wall so that all edges extending down from the wall are left

of all edges extending up from the wall.

Examples of a horizontal and a vertical concatenation are shown in Figure 3.3. The

numbering of the rectangles in the figure again comes from the map γ, defined in

Section 3.3. We denote the horizontal and vertical concatenations by R1R′
2 and R′

2R1

respectively because this notation mimics the notation used for related permutations.

Specifically, in Section 1.3, the product of two permutations σ ∈ Sp and ψ ∈ Sq in the

Malvenuto-Reutenauer Hopf algebra is described as the sum of the elements of the in-

terval [σψ′
[p]
, ψ′

[p]
σ] in the right weak order. In Section 1.5, the product of σ ∈ AvΘ

p and

ψ ∈ AvΘ
q in the Hopf algebra AvΘ is given by the sum of the elements of the interval

[σψ′
[p]
, π↓(ψ′[p]σ)] in the lattice ZΘ

p+q.

Our next main result is the following theorem.

Theorem 3.1.6. Let R1 and R2 be generic rectangulations of size p and q respectively

such that p + q = n. Then

R1 ●gR R2 = ∑[R1R′
2,R

′
2R1]

where the summation denotes the sum of all elements of gRecn in the interval [R1R′
2,R

′
2R1].
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Figure 3.4: Configurations that good paths avoid.

To describe ∆gR, the coproduct in gRec, we require several additional definitions.

Definition 3.1.7. Let R be a generic rectangulation and P be a path from the top-left

corner to the bottom-right corner of R, consisting of down and right steps which are

edges of R. We say that P is a good path if it meets the following two conditions:

• The interior of no vertical segment of P contains vertices v and v′ of R such that

vertex v is the upper-left vertex of a rectangle of R, vertex v′ is the lower-right

vertex of a rectangle of R and v is below v′.

• The interior of no horizontal segment of P contains vertices h and h′ of R such that

vertex h is the lower-right vertex of a rectangle of R, vertex h′ is the upper-left

vertex of a rectangle of R and h is left of h′.

The left diagram of Figure 3.4 illustrates the configuration described in the first

condition of the definition and the right diagram of the figure illustrates the configuration

described in the second condition.

Example 3.1.8. A good path in a generic rectangulation is shown as the darkened path

in the upper-left diagram of Figure 3.5. In this rectangulation, the path traveling from

the upper-left corner of S to the lower-right corner of S, passing above rectangles 1,

3, 4, 5, and 8, and below the remaining rectangles is not a good path. The lower-right

vertex of rectangle 4 and the upper-left vertex of rectangle 7, both lying on the interior

of a single vertical segment of the path, violate the second condition in the definition of

a good path.

Let p denote the number of rectangles below a good path P and q the number of

rectangles above P. As in Section 1.4, let Rl(P) consist of the edges of S together with

the edges of R strictly below P and Ru(P) consist of the edges of S together with the
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Figure 3.5: Given a good path P in a generic rectangulation, we construct the vertical
and horizontal completions of Rl(P) and Ru(P).

edges of R strictly above P, as shown in the example in Figure 3.5. We will construct,

from Rl(P), two generic rectangulations, Rl(P)∣ and Rl(P)−, elements of gRecp, respec-

tively called the vertical and horizontal completions of Rl(P). Similarly, from Ru(P), we

will construct the vertical completion Ru(P)∣ and horizontal completion Ru(P)−, both

elements of gRecq.

The vertical completion Rl(P)∣ is constructed using the following four steps:

• Each open horizontal edge of Rl(P) (i.e. each horizontal edge of Rl(P) whose right

endpoint lies on P in R) is extended to the right by ε.

• Each open vertical segment of Rl(P) is extended upwards until it meets one of the

horizontal edges extended in the previous step or the upper edge of S.

• Every horizontal edge extended in the first step is further extended to the right

until the extension meets the interior of some vertical edge or the right side of S.

Call each new vertex constructed in this step a constructed vertex.
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• Along each vertical wall W , wall slides changing the order of a vertex of Rl(P) and a

constructed vertex are performed until the resulting order meets one of the following

conditions: the set of constructed vertices is immediately above the uppermost

vertex that is the right endpoint of an edge in Rl(P), or if no vertex of Rl(P)

meets this condition, then wall slides are performed until the constructed vertices

are below all other vertices on W .

Example 3.1.9. In the example shown in the lower left diagram of Figure 3.5, the

extension of all open horizontal edges of Rl(P) in the first step of the construction

of Rl(P)∣ prevents the extension of the left edge of rectangle 7 above the bottom edge

of rectangle 4. In the final step of the construction, wall slides are performed to place

the edge separating rectangles 9 and 10 above the constructed vertices. After these wall

slides, the constructed vertices (which are enlarged for emphasis) are immediately above

the right endpoint of the edge between rectangles 7 and 8.

The vertical completion Ru(P)∣ is similarly constructed, extending horizontal edges

to the left rather than to the right, vertical edges down rather than up, and performing

slides along each vertical wall W containing constructed vertices so that constructed

vertices are immediately below the lowermost vertex that is the left endpoint of an edge

in Ru(P) or, if no such vertex exists, so that the constructed vertices are above all other

vertices on W .

The constructions of the horizontal completions are similar. To construct Rl(P)−:

• Extend upwards by ε every open vertical edge of Rl(P).

• Extend to the right each open horizontal edge of Rl(P) until the edge meets a

vertical edge.

• Further extend each vertical edge extended in the first step until the extension

meets the interior of some horizontal edge or the top of S. Call the new vertices

constructed in this step constructed vertices.

• Perform wall slides along each horizontal wall W containing the constructed ver-

tices, changing the order of a constructed vertex and a vertex of Rl(P) in each wall

slide, until all constructed vertices are immediately to the right of the rightmost ver-

tex that is the upper endpoint of an edge in Rl(P), or if no vertex of Rl(P) meets
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this condition, until the constructed vertices are to the left of all other vertices

on W .

Example 3.1.10. An example of Rl(P)− is shown in the middle diagram of the lower row

of Figure 3.5. Notice that in this diagram, unlike in Rl(P)−, the horizontal wall between

rectangles 3 and 5 and the horizontal wall between rectangles 3 and 1 is extended until

it reaches the right side of S. Since no edges of Rl(P) extend down from the horizontal

wall W between rectangles 3 and 5, in the final step of the construction, wall slides are

performed until the constructed vertices (again enlarged for emphasis) are to the left of

the other vertex on W .

We construct Ru(P)− by extending vertical segments downward, horizontal edges to

the left, and performing wall slides along horizontal walls containing constructed vertices

so that all constructed vertices are immediately to the left of the leftmost vertex that is

the lower endpoint of an edge in Ru(P) or, if no such vertex exists, so that the constructed

vertices are right of all other vertices on W .

Theorem 3.1.11. Let R ∈ gRecn,

IP = ∑[Rl(P)∣,Rl(P)−] and JP = ∑[Ru(P)∣,Ru(P)−].

where the summations respectively denote the sum of all elements of gRecp in the interval

[Rl(P)∣,Rl(P)−] and the sum of all elements of gRecq in the interval [Ru(P)∣,Ru(P)−].

Then

∆gR(R) = ∑
P is good

IP ⊗ JP .

3.2 The Hopf Algebra of 2-Clumped Permutations

In [17], Reading proves that generic rectangulations are in bijection with 2-clumped

permutations. To define k-clumped permutations, and in particular the 2-clumped per-

mutations needed in this section, we first define a descent.

Definition 3.2.1. A pair σi, σi+1 of some σ ∈ Sn is a descent of σ if σi > σi+1. For every

descent of σ, we define a clump to be a maximal set of consecutive values a, a + 1, ..., b

with σi+1 < a < b < σi such that in σ either all elements of {a, a + 1, ..., b} occur to the

left of the descent or all elements of {a, a + 1, ..., b} occur to the right of the descent. A

permutation σ is a k-clumped permutation if every descent of σ has at most k associated

clumps.
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Example 3.2.2. The pair 92 is a descent of the permutation 167439285. Four clumps

are associated with this descent, {3,4},{5},{6,7}, and {8}. The permutation 167439285

is k-clumped for any k ≥ 4 because four clumps are associated with the descent 92 and

fewer clumps are associated with any other descent of the permutation.

Permutations that avoid the patterns {2-31,31-2} are 0-clumped permutations. Every

descent σiσi+1 in a 0-clumped permutation satisfies σi − σi+1 = 1. There is a bijection

between 0-clumped permutations in Sn and compositions of n. To find the composition

of n that corresponds to the 0-clumped permutation σ = σ1⋯σn, use σ to record a sequence

of pluses and commas. Specifically, if σi > σi+1, then the ith entry of the sequence is a

plus. Otherwise, the ith entry of the sequence is a comma. For example, the permutation

217654398 corresponds to the sequence +,+ + ++,+. Inserting a 1 between each pair of

consecutive entries of this sequence, we obtain 1+1,1+1+1+1+1,1+1 or the composition

2,5,2. In [14], twisted Baxter permutations, permutations that avoid the patterns 2-41-3

and 3-41-2, are shown to be in bijection with diagonal rectangulations. The twisted Baxter

permutations are exactly the 1-clumped permutations. The permutations considered in

this chapter avoid scrambles of the patterns 2-4-51-3 and 3-51-2-4 and are called 2-

clumped permutations. For m,n ∈ Z≥0, let Clmn denote the subset of Sn containing all

m-clumped permutations. Define V to be the dashed sequence of all even natural numbers

strictly between 1 and m + 3 listed in numerical order such that all adjacent entries are

separated by a dash. Define V C to be the analogous dashed sequence of all odd natural

numbers strictly between 1 and m+ 3 . Then σ ∈ Clmn if and only if σ ∈ Sn that avoids all

scrambles of the pattern V -(m + 3)1-V C and the pattern V C-(m + 3)1-V . The union of

the elements of Clmn for all n ≥ 0 forms a basis for a Hopf algebra that we call the Hopf

algebra of m-clumped permutations [16, Corollary 1.4, Theorem 9.4].

Define πm↓ ∶ Sn → Clmn by πm↓ (σ) = ψ if and only if ψ is the minimal element with

respect to the right weak order on Sn that can be obtained from σ using a sequence of ad-

jacent cliff transpositions of scrambles of the patterns V -(m+3)1-V C and V C-(m + 3)1-V .

Such a unique minimal element exists because the map πm↓ defines a lattice congruence

on the right weak order in which πm↓ (ψ) ≠ ψ if and only if ψ contains an occurrence of

a scramble of V -(m + 3)1-V C or a scramble of V C-(m + 3)1-V [16, Theorem 9.3]. Every

congruence class of a lattice congruence on the right weak order is an interval.

Having described the basis elements in the Hopf algebra of m-clumped permutations,

we now focus on the Hopf algebra of 2-clumped permutations and describe the opera-
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tions ●Cl2 and ∆Cl2 . Let x ∈ Cl2p and y ∈ Cl2q . Specializing the equation for the product

given in Section 1.5 to the Hopf algebra of 2-clumped permutations, we obtain:

x ●Cl2 y = ∑[xy′
[p], π

2
↓(y

′
[p]x)]

where the summation denotes the sum of all elements of the right weak order restricted

to Cl2p+q. We observe that y′
[p]
x ∈ Cl2p+q so π2

↓(y
′
[p]
x) = y′

[p]
x. We will use the following

corollary to prove Theorem 3.1.6 in Section 3.5.

Corollary 3.2.3. Let x ∈ Cl2p and y ∈ Cl2q . Then

x ●Cl2 y = ∑[xy′
[p], y

′
[p]x].

We now define terms necessary to describe ∆Cl2 . Given a sequence a = a1⋯an, of

distinct natural numbers, recall that we define the standardization of a, denoted by st(a),

to be the unique permutation x = x1⋯xn ∈ Sn that respects the ordering of the entries

of a. That is, xi < xj if and only if ai < aj.

Definition 3.2.4. Let x ∈ Cl2n. We say that a subset T ⊆ [n] is good with respect to x if

there exists some permutation x′ = x′1⋯x
′
n ∈ Sn such that π2

↓(x
′) = x and T = {x′1, ..., x

′
∣T ∣

}.

Given a good set T such that ∣T ∣ = p and q = n − p, let xmin be the minimal element of

the right weak order on Sn such that π2
↓(xmin) = x and the first p entries of xmin are the

elements of T . Let xmax be the maximal element of the right weak order on Sn such that

π2
↓(xmax) = x and the first p entries of xmax are the elements of T .

Notice that xmin depends on both x and the selected set T which is good with respect

to x. Define xmin∣T to be the ordering of the elements of T as they appear in xmin.

The ordering of the elements of T as they appear in xmax is denoted by xmax∣T . Letting

TC = [n] −T , we similarly define xmin∣TC and xmax∣TC . The following theorem, which will

be used to prove Theorem 3.1.11 in Section 3.5, is a specialization of [13, Theorem 1.3].

Theorem 3.2.5. Given x ∈ Cl2n,

∆Cl2(x) = ∑
T is good

IT ⊗ JT

where IT is the sum of the elements in the interval [st(xmin∣T ), π2
↓(st(xmax∣T ))] of the
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right weak order on Sp restricted to Cl2p and JT is the sum of elements in the interval

[st(xmin∣TC), π2
↓(st(xmax∣TC))] of the right weak order on Sq restricted to Cl2q .

3.3 The Map from Permutations to Generic Rectan-

gulations

Having defined 2-clumped permutations, we now describe the map γ from permutations

to generic rectangulations which restricts to a bijection between 2-clumped permutations

and generic rectangulations. The map γ ∶ Sn → gRecn is described in [17, Section 3] in two

parts: we first make use of the map ρ from Sn to the set dRecn of diagonal rectangulations

of size n described in Section 2.2, and then we perform wall slides to obtain an element

of gRecn.

Let x = x1⋯xn ∈ Sn. To find γ(x), first construct ρ(x). Then, for each interior wall W

of ρ(x), record a subsequence σW of x consisting of the labels of rectangles adjacent to W .

For each wall W of ρ(x), we temporarily label the vertices on W using the rectangles

adjacent to W (as described in Section 2.5 and below), and then use σW and the labeling

to determine which wall slides should be performed to obtain γ(x). Every vertex on an

interior wall W is either the lower-right vertex or the upper-left vertex of some rectangle.

Note that no vertex of a diagonal rectangulation is both the lower-right vertex of a

rectangle and the upper-left vertex of a rectangle. Thus the labeling described below will

result in a total ordering of the entries of σW . If the vertex is the lower-right vertex of

some rectangle xi, then label the vertex with xi. Otherwise, the vertex is the upper-left

vertex of some rectangle xj and we label the vertex with xj. If W is a vertical wall, we

perform wall slides so that the bottom to top order of the labeled vertices on W coincides

with σW . Since each vertical wall slide switches the order of a wall that extends to the

left of W and a wall that extends to the right of W , we explain why it is always possible

to perform a sequence of wall slides so that the bottom to top order of the vertices

agrees with σW . Each vertex on W that is the lower-right vertex of some rectangle is the

endpoint of an edge extending to the left of W and each vertex of W that is the upper-

left vertex of some rectangle is the endpoint of an edge extending right of W . By the

construction of ρ(x), the subsequence of σW consisting of the lower-right corner vertices

on W and the subsequence of σW consisting of upper-left corner vertices on W both agree

with the bottom to top ordering of these vertices along W , so it is possible to perform a
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Figure 3.6: The left illustrations shows ρ(53417286). The right illustration shows
γ(53417286).

sequence of wall slides to obtain the desired vertex order. If W is a horizontal wall, we

perform wall slides so that the left to right order of the labeled vertices on W coincides

with σW . A similar argument shows that the desired vertex order can be obtained by

some sequence of horizontal wall slides. In either case, because σW records the ordering

of the walls along W in γ(x), we call σW the wall shuffle of W .

Example 3.3.1. The diagonal rectangulation that results from applying ρ to the permu-

tation 53417286 is illustrated in the left diagram of Figure 3.6. Note that the small labels

along the diagonal of the square are used in the construction of ρ(x). The larger labels

(labeling the enlarged vertices of the rectangulation) are used to obtain γ(x) from ρ(x).

To find γ(x) from ρ(x), we consider the wall shuffle corresponding to every interior wall

of ρ(x). Since a wall slide cannot be performed along any wall with fewer than two

rectangles adjacent to each side, we only need to examine the walls with at least two

rectangles adjacent to each side. There are two such walls in ρ(x). First consider the

vertical wall W between rectangle 5 and rectangle 7. For this wall, σW = 54726. We label

the vertices along W as illustrated in the left diagram of Figure 3.6. To make the ordering

of the labels along W in γ(x) agree with σW , the wall slide switching the order of ver-

tices labeled 7 and 4 is performed. Next consider the horizontal wall W ′ of ρ(x) between

rectangle 1 and rectangle 3. For this wall, σW ′ = 3412. We label the vertices along W ′ as

illustrated in the left diagram of Figure 3.6. Since the left to right order of these vertices

in ρ(x) is 3142, we perform a wall side switching the order of the vertices labeled 1 and 4

along W ′ to obtain γ(x), shown in the right diagram of the figure.

Additional examples of the map γ are shown in Figures 3.2 and 3.3. The generic
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rectangulations in both figures are labeled with γ(x) where x is the unique 2-clumped

permutation such that γ(x) is the desired rectangulation. In Figure 3.2, the bold entries in

each permutation are transposed to find the next permutation in the sequence. Examining

the permutation 3142576 associated with the leftmost generic rectangulation, we see that

a generic pivot cannot be performed on the edge separating the shaded rectangles because

the 3 and 4 are non-adjacent and there exists no permutation x ∈ S7 such that the 3 and 4

are adjacent in x and γ(x) = γ(3142576).

The theorem below is a rephrasing of a more general result from [16, Section 2].

Theorem 3.3.2. Given a generic rectangulation R, the fiber γ−1(R) forms an interval

in the right weak order.

Using the construction in the proof of [17, Proposition 4.2], we define ψ, the inverse

of the restriction of γ to the set of 2-clumped permutations. To demonstrate that γ is

a surjective map, that proof begins with an arbitrary generic rectangulation R and the

associated diagonal rectangulation D. A permutation x is constructed, entry by entry, so

that ρ(x) = D and each wall shuffle of R is a subsequence of x. Let Ti−1 be the partial

diagonal rectangulation obtained after completing the first i−1 steps in the construction

of ρ(x). In the proof of [17, Proposition 4.2], the requirement that ρ(x) =D is translated

into the requirement that (in D) the left side and bottom of rectangle xi are contained

in Ti−1 for all i ∈ [n]. We say that x1⋯xi respects the wall shuffles of R if there exists no

xj ∈ [n] − {x1, ..., xi} such that xj precedes some element of {x1, ..., xi} in a wall shuffle

of R. The requirement that each wall shuffle of R is a subsequence of x is equivalent to

the requirement that x1⋯xi respects the wall shuffles of R for all i ∈ [n]. Using these

equivalences, to show that γ is surjective, the proof of [17, Proposition 4.2] demonstrates

that for all i ∈ [n] there exists some xi ∉ {x1, ..., xi−1} such that the left side and bottom

of rectangle xi are contained in Ti−1 and x1⋯xi respects the wall shuffles of R. In this

construction, each time an entry of x is selected, there may be a choice. We define ψ(R)

be the permutation obtained by choosing the minimum possible entry at each step. We

will prove the following proposition.

Proposition 3.3.3. The map ψ ∶ gRecn → Cl2n is the inverse of the restriction of γ to

2-clumped permutations.

To prove Proposition 3.3.3, we will use the following proposition, which appears as

part of [17, Proposition 2.2].
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Proposition 3.3.4. A permutation y is the minimal element of the right weak order

such that γ(y) = R if and only if y is a 2-clumped permutation.

Proof of Proposition 3.3.3. Let R ∈ gRecn. To prove the proposition, it suffices to demon-

strate that ψ(R) ∈ Cl2n, or equivalently, by Proposition 3.3.4, that ψ(R) is the minimal

element of the right weak order mapping to R under γ. Let ψ(R) = p = p1⋯pn and x ∈ Sn

such that x ⋖ p in the right weak order. Then there exists some i ∈ [n − 1] such that

x = p1⋯pi−1pi+1pipi+2⋯pn and pi+1 < pi. Since xj = pj for all j ∈ [i − 1], and pi is the

smallest entry of any permutation starting with p1⋯pi−1 and mapping to R under γ, we

have that γ(x) ≠ R. By Theorem 3.3.2, the permutation p is the minimal element of the

right weak order such that γ(p) = R.

3.4 The Lattice of Generic Rectangulations

In this section, we prove Theorem 3.1.3. To do so, we rely on results about diagonal

rectangulations from [14] and results about generic rectangulations from [17]. Recall that

we call each element of Cl1n a twisted Baxter permutation and that the map ρ ∶ Sn → dRecn

restricts to a bijection between Cl1n and dRecn [14, Theorem 6.1]. The right weak order

on Sn modulo the fibers of ρ is a lattice on the set of twisted Baxter permutations.

Applying ρ to the elements of this lattice results in a lattice of diagonal rectangulations

of size n which, reusing notation, we call dRecn.

To describe the cover relations of dRecn, we define diagonal pivots. Diagonal pivots

and generic pivots are closely related.

Definition 3.4.1. Diagonal rectangulations D and D′ are related by a diagonal pivot if

and only if they are related by a local change shown in one of the three leftmost diagrams

of Figure 3.1, where the dotted segment of each diagram is ignored.

In this thesis, we call each of these local moves a diagonal pivot to emphasize that

they are performed on diagonal rectangulations rather than generic rectangulations. The

reader should note that this differs from the definition of a diagonal pivot given in [14],

where the move illustrated in the leftmost diagram of Figure 3.1 is called a diagonal pivot

and the other two local moves which we also call diagonal pivots are instead called vertex

pivots. The cover relations in dRecn are described in [14, Theorem 7.1]:
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Theorem 3.4.2. Two diagonal rectangulations D and D′ of size n have D ⋖D′ in dRecn

if and only if they are related by a diagonal pivot such that the pivoted edge is vertical

in D.

The following is a restatement of [17, Theorem 4.5, part (3)] and, using the definition

of the right weak order, is a corollary of Proposition 2.2.2.

Theorem 3.4.3. Assume that x ⋖ y in the right weak order. Then ρ(x) = ρ(y) if and only

if y = y1⋯yn and x = y1⋯yi−1yi+1yiyi+2⋯yn are related by an adjacent cliff transposition of

the pattern 2-41-3 or the pattern 3-41-2 in which some subsequence yjyiyi+1yk of y is an

occurrence of the pattern 3-41-2 or the pattern 2-41-3.

The analogous result, which is a corollary of Proposition 2.5.7 also holds for generic

rectangulations [17, Proposition 4.3].

Theorem 3.4.4. Assume that x ⋖ y in the right weak order. Then γ(x) = γ(y) if and

only if x and y are related by an adjacent cliff transposition of a scramble of the pattern

2-4-51-3 or the pattern 3-51-2-4 in which y contains a scramble of the pattern 2-4-51-3

or a scramble of the pattern 3-51-2-4.

The following is a specialization of a more general result [16, Proposition 2.2] to the

case of 2-clumped permutations and generic rectangulations.

Proposition 3.4.5. Let y ∈ Cl2n. Then R ∈ gRecn is covered by γ(y) in the lattice of

generic rectangulations of size n if and only if there exists some permutation x ∈ Sn with

γ(x) = R such that x ⋖ y in the right weak order on Sn.

The following proposition is a specialization of [19, Prop 9-5.4]:

Proposition 3.4.6. Given distinct R1,R2 ∈ gRecn, we have that R1 ⋖ R2 in gRecn if

and only if there exist x1, x2 ∈ Sn such that γ(x1) = R1 and γ(x2) = R2 with x1 ⋖ x2 in

the right weak order on Sn.

In light of Proposition 3.4.5, the next proposition is one direction of Theorem 3.1.3.

Proposition 3.4.7. Let x ∈ Sn and y ∈ Cl2n such that x ⋖ y in the right weak order. Then

γ(x) = R1 and γ(y) = R2 are related by a generic pivot or wall slide shown in Figure 3.1

with the bottom diagram corresponding to R1 and the top diagram corresponding to R2.
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Proof. Let y = y1⋯yn. Since x ⋖ y in the right weak order on Sn, we have that x =

y1⋯yi−1yi+1yiyi+2⋯yn with yi+1 < yi. By Proposition 3.3.4, γ(x) ≠ γ(y). We consider two

cases: ρ(x) = ρ(y) and ρ(x) ≠ ρ(y).

First assume that ρ(x) = ρ(y). Since γ(x) ≠ γ(y), rectangulations R1 and R2 differ by

wall slides. Every wall shuffle of R1 is a subsequence of x, so interchanging two elements

of x to obtain y changes the order of at most two elements of any wall shuffle. Suppose

first that more than one wall shuffle of R1 differs from the corresponding wall shuffle

of R2. Specifically, assume that the adjacent pair yi+1yi appears in two or more wall

shuffles of R1, so rectangles yi+1 and yi are adjacent to at least two shared walls. Since

ρ(x) = ρ(y), the corresponding wall shuffles of R2 contain adjacent pair yiyi+1, implying

that rectangles yi and yi+1 are on opposite sides of those walls. Two rectangles can be

adjacent to opposite sides of at most one vertical wall and at most one horizontal wall. If

these simultaneously occur, then the rectangles are part of a group of four rectangles that

share a single vertex, contradicting the assumption that R1 is a generic rectangulation.

Thus rectangles yi and yi+1 share a single wall, implying that exactly one wall shuffle of R1

differs from the corresponding wall shuffle of R2. If the shared wall W is horizontal, then

since yi+1 < yi and the label of each rectangle above W is smaller than the label of each

rectangle below W , rectangle yi+1 is above W and rectangle yi is below W . Switching

their order in x to obtain y results in the horizontal wall slide shown in the far right

diagram of Figure 3.1. Similarly, if the shared wall W is vertical, since the label of each

rectangle to the left of W is smaller than the label of each rectangle to the right of W ,

rectangle yi+1 is left of W and rectangle yi is right of W . Switching their order results in

the vertical wall slide illustrated in Figure 3.1.

Now assume that ρ(x) ≠ ρ(y). Theorem 3.4.2 implies that ρ(x) and ρ(y) are related

by a diagonal pivot such that the pivoted edge is vertical in ρ(x). If there exist a, b with

yi+1 < a, b < yi such that a occurs to the left of position i in y and b occurs to the right

of position i + 1 in y, then x contains the subsequence ayi+1yib which is an occurrence

of the pattern 2-14-3 or the pattern 3-14-2 and y contains the subsequence ayiyi+1b. By

Theorem 3.4.3, this implies that ρ(x) = ρ(y), contradicting our initial assumption, so this

cannot occur. We now consider three remaining cases. In this proof, it will be convenient

to use the correspondences established in the proof of [14, Theorem 7.1] between each

case and a specific diagonal pivot.

Case 1: yi = yi+1 + 1. In this case, ρ(x) and ρ(y) are related by the diagonal pivot shown
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in the leftmost diagram of Figure 3.1. We will show that this implies that R1 and R2 are

related by the generic pivot shown in the leftmost diagram of Figure 3.1. Let W1 denote

a wall of ρ(x) (or equivalently a wall of R1) that is adjacent to neither rectangle yi nor

rectangle yi+1 and W2 the corresponding wall of ρ(y) (or equivalently R2). Since W2 is

also not adjacent to either rectangle, σW1 = σW2 . Thus the wall shuffles of R1 and R2 differ

only on walls adjacent to the union of rectangles yi and yi+1. We consider each of the wall

shuffles of R1 containing yi or yi+1. In R1, the wall shuffle associated to the pivoted edge

is yi+1yi and in R2 it is yiyi+1. Now examine σW1b
, σW1a , σW1l

, and σW1r , the wall shuffles of

the walls below, above, to the left, and to the right of the union of rectangles yi and yi+1

in R1. We compare these wall shuffles with σW2b
, σW2a , σW2l

, and σW2r , the correspond-

ing wall shuffles in R2, to demonstrate that they differ exactly as shown in Figure 3.1.

Since σW1b
and σW1a contain both yi and yi+1, and since yi and yi+1 are adjacent in x,

they are also adjacent in σW1b
and σW1a . The wall shuffle of a horizontal wall records the

ordering of the left edges of rectangles below the wall and the right edges of rectangles

above the wall so the adjacency of yi+1 and yi in these wall shuffles implies that no edge

of R1 is adjacent to the interior of the bottom of rectangle yi or the top of rectangle yi+1.

Similarly, in R2 no edge is adjacent to the interior of the left side of rectangle yi+1 or the

right side of rectangle yi. Since rectangle yi+1 is not adjacent to W2b and only yi and yi+1

are switched in y, wall shuffle σW2b
is obtained by removing yi+1 from σW2b

. Using the

same argument, we see that: wall shuffle σW1a is obtained by removing yi from σW1a , wall

shuffle σW2l
is obtained by inserting yi immediately before yi+1 in σW1l

, and wall shuf-

fle σW2r is obtained by inserting yi+1 immediately after yi in σW1r . Thus the wall shuffles

of R1 and R2 differ exactly as shown in the leftmost diagram of Figure 3.1 and no walls

are adjacent to the interior of any dashed segment.

Case 2: yi > yi+1+1 and every a with yi+1 < a < yi occurs to the right of position i+1 in y.

In this case, ρ(x) and ρ(y) are related by the diagonal pivot shown in the second diagram

of Figure 3.1. Now consider R1 and R2. As in Case 1, only wall shuffles containing yi

or yi+1 are effected by interchanging yi and yi+1 in x to obtain y. Again, examining each

wall shuffle of R1 and relating it to the corresponding wall shuffle of R2, we see that R1

and R2 are related as shown in the second diagram of Figure 3.1.

Case 3: yi > yi+1 + 1 and every a with yi+1 < a < yi occurs to the left of position i in y. In

this case, ρ(x) and ρ(y) are related by the diagonal pivot shown in the third diagram of

Figure 3.1, and this case is handled like Case 2.
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The other direction of Theorem 3.1.3 follows from the following sequence of proposi-

tions.

Proposition 3.4.8. Let y ∈ Sn and yiyjykylym be an occurrence of the pattern 3-5-1-4-2

in y. If every yp satisfying ym < yp < yl occurs before yj in y, then y contains an occurrence

of the pattern 3-51-4-2.

Proof. Since every yp such that ym < yp < yl occurs before yj in y, each entry of y

between yj and yk is either greater than yl or less than ym. If every entry of y between yj

and yk is greater than yl, then the subsequence yiyk−1ykylym is an occurrence of the

pattern 3-51-4-2 in y. Otherwise, let yq denote the first entry of y between yj and yk such

that yq < ym. In this case, yiyq−1yqylym is an occurrence of the pattern 3-51-4-2.

Proposition 3.4.9. Let R1,R2 ∈ gRecn such that R1 and R2 are related by a single

generic pivot as shown in the leftmost diagram of Figure 3.1 with the lower illustra-

tion corresponding to R1 and the upper illustration corresponding to R2. Then R1 ⋖ R2

in gRecn.

Proof. Let R1 and R2 be generic rectangulations as described in the proposition and E be

the horizontal edge of R2 that is pivoted to form R1. Let ψ(R2) = y = y1⋯yn, the unique

element of Cl2n such that γ(y) = R2. Label the rectangles directly below and above E

rectangle yi and rectangle yj respectively.

Let Ti be the partial diagonal rectangulation obtained after the first i steps in the

construction of ρ(y) = D2. By the definition of ψ(R2), entry yi+1 is the smallest element

of {yi+1, ..., yn} such that the left side and bottom of rectangle yi+1 are contained in Ti

and y1⋯yi+1 respects the wall shuffles of R2. To show that R1 ⋖ R2 in gRecn, we first

demonstrate that i + 1 = j.

To reach that goal, we will begin by showing that the bottom and left side of rectan-

gle yj are contained in Ti. Diagram (i) of Figure 3.7 illustrates a possible configuration

of rectangles yi and yj with respect to Ti−1 in D2. Since R2 is a generic rectangulation,

the wall containing E is E itself. Rectangulations R2 and D2 differ only by a sequence of

wall slides and no wall slides can be performed along E so the top of rectangle yi and the

bottom of rectangle yj coincide in D2. Thus the bottom of rectangle yj is contained in Ti.

To demonstrate that the left edge of rectangle yj is contained in Ti, assume for a contra-

diction that this is not the case (as illustrated in Diagram (i) of Figure 3.7). Then there

exists some rectangle yp not contained in Ti, such that the right side of rectangle yp is
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Figure 3.7: Illustrations for the proofs of Propositions 3.4.9-3.4.10.

adjacent to the left side of rectangle yj and the bottom of rectangle yp is contained in Ti.

In y, the entry yp occurs after yi but before yj. However, after wall slides are performed

to obtain γ(y) = R2 from D2, this implies that the lower-right corner of rectangle yp is

contained in the interior of the left side of rectangle yj, contradicting the assumption

that E is a pivotable edge in R2.

Now we show that adding rectangle yj to the partial rectangulation immediately

after yi respects the wall shuffles of R2. Let Wl,Wr,Wb and Wa be the walls respectively

to the left of, to the right of, below, and above rectangle yj in Diagram (i) of Figure 3.7.

Since only rectangles yi and yj border Wb, following yi immediately by yj in y respects this

wall shuffle. If there is some yp between yi and yj in σWl
, then rectangle yp is on the left side

of Wl and in R2 the bottom right vertex of rectangle yp is contained in the interior of the

left side of rectangle yj, contradicting the assumption that E is pivotable. The analogous

argument shows that yi and yj are adjacent in σWr . Now consider Wa. If rectangle yj

is the lower leftmost rectangle on Wa, then yj is the first entry of σWa so following yi

immediately by yj in y respects the wall shuffle of Wa. Otherwise, the upper-left vertex

of rectangle yj coincides with a vertex of Ti−1. This case is illustrated in Figure 3.8. Let

rectangle yl be the rectangle contained in Ti−1 whose upper-right vertex coincides with the

upper-left vertex of rectangle yj, let rectangle yp be the leftmost rectangle not contained

in Ti−1 such that the bottom of rectangle yp is contained in Wa, and let rectangle yk

be the rightmost rectangle such that the bottom of rectangle yk is contained in Wa. If

following yi immediately by yj does not respect σWa , then yp precedes yj in y. Since

rectangle yk is the final rectangle above and adjacent to Wa, entry yk follows yj in y.
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Figure 3.8: An illustration used in the proof of Proposition 3.4.9

Note that yp < yk < yl < yj < yi so ylyiypyjyk is an occurrence of the pattern 3-5-1-4-2 in y.

Every rectangle yq with label satisfying yk < yq < yj is in Ti−1 because the label yq is on

the diagonal of the square S between labels yk and yj. Thus every such yq precedes yi

in y. By Proposition 3.4.8, permutation y contains a 3-51-4-2 pattern, contradicting the

assumption that y = ψ(R2).

We have shown that the bottom and left side of rectangle yj are contained in Ti

and adding rectangle yj to Ti immediately after rectangle yi respects the wall shuffles

of R2. Next we demonstrate that yj is the smallest of {yi+1, ..., yn} with these properties.

Assume that there is some yp ∈ {yi+1, ..., yn} with these properties such that yp < yj in

numerical order. As demonstrated in the previous paragraph, rectangle yp is not adjacent

to Wl, the left wall of rectangle yj which is also the left wall of rectangle yi. Since yp < yj

in numerical order, rectangle yp contains a label above and to the left of the label for

rectangle yj so rectangle yp shares no walls with rectangle yi. Since the addition of

rectangle yp to the partial rectangulation after rectangle yi respects the wall slides of R2,

this implies that the addition of rectangle yp to the partial rectangulation immediately

before rectangle yi also respects the wall slides of R2. Because yp < yj and the left and

bottom sides of rectangle yp are contained in Ti, the left and bottom sides of rectangle yp

are also contained in Ti−1. However, since yp < yi, this contradicts our choice of yi as the

ith entry of ψ(R2), i.e. rectangle yp could have been added to Ti−1 instead of rectangle yi.

Thus j = i + 1. Observing that γ(y1⋯yjyi⋯yn) = R1 completes the proof.

Proposition 3.4.10. Let R1,R2 ∈ gRecn such that R1 and R2 are related by a single

generic pivot as shown in the second diagram from the left in Figure 3.1 with the lower

illustration corresponding to R1 and the upper illustration corresponding to R2. Then

R1 ⋖ R2 in gRecn.

Proof. Let D2 denote the diagonal rectangulation associated with R2. As in the proof of
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Proposition 3.4.9, let E denote the horizontal edge of R2 that is pivoted to form R1 and

let permutation y = y1⋯yn = ψ(R2). Label the rectangle directly below E with yi and the

rectangle directly above E with yj. Let Wl,Wr,Wb, and Wa refer to the walls respectively

to the left of, to the right of, below, and above rectangle yj in D2. As in the proof of

Proposition 3.4.9, we demonstrate that i + 1 = j.

Diagram (ii) of Figure 3.7 shows a possible configuration of rectangles yi and yj with

respect to Ti−1 in D2. In D2, as in R2, the upper-left vertex of rectangle yi and the

lower left vertex of rectangle yj coincide. Additionally, as in R2, the lower-right vertex of

rectangle yj is contained in the interior of the top of rectangle yi in D2. To see why the

second statement is true, note that performing a wall slide to switch the relative locations

of the lower-right vertex of rectangle yj and the upper-right vertex of rectangle yi results in

a rectangulation which is not diagonal. Thus the bottom of rectangle yj is contained in Ti.

Arguments identical to those used in the proof of Proposition 3.4.9 show that the left edge

of rectangle yj is also contained in Ti and that adding rectangle yj immediately following

rectangle yi respects σWl
and σWa . Since rectangle yj is the lowermost rectangle on the left

side of Wr, the wall shuffle σWr begins with yj. If yj does not immediately follow yi in σWb
,

then rectangles yi and yj are not in the configuration shown in the second diagram of

Figure 3.1. Specifically, if yj does not immediately follow yi in σWb
, then there exists some

rectangle yp whose left side is adjacent to rectangle yi and whose top is contained in Wb.

Performing wall slides to obtain R2 from D2, the lower-right corner of rectangle yj is not

contained in the interior of the top of rectangle yi. Thus y1⋯yiyj respects the wall shuffles

of R2. Again using the argument from the proof of Proposition 3.4.9, we see that yj is

the smallest element of {yi+1, ..., yn} such that the walls of the corresponding rectangle

are contained in Ti and whose selection respects the wall shuffles of R2 so i + 1 = j. The

proof is completed by observing that γ(y1⋯yi+1yi⋯yn) = R1.

We now describe four maps that will be used to complete the proofs of Theorem 3.1.3

and Theorem 3.1.11. Let rfÓ be the automorphism of generic rectangulations of size n

that takes a generic rectangulation R to the generic rectangulation R′ obtained by re-

flecting R about the upper-left to lower-right diagonal of the square S. Let rfÒ be the

automorphism that takes a generic rectangulation R to the generic rectangulation R′ ob-

tained by reflecting R about the lower-left to upper-right diagonal of S. Let rp ∶ Sn → Sn

denote the map on permutations that reverses the positions of entries in the one-line

notation for a permutation. Let rv ∶ Sn → Sn denote the map on permutations that re-
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verses the values of the permutation, replacing each entry xi of the permutation x with

n + 1 − xi. For example, rp(34521) = 12543 and rv(34521) = 32145.

The maps rp and rv are antiautomorphisms of the right weak order on Sn. As noted

in [14, Remark 6.5, Remark 6.10], rfÓ ○ρ = ρ○ rp and rfÒ ○ρ = ρ○ rv. Since applying rfÓ to

an arbitrary generic rectangulation reverses each wall shuffle, the wall shuffles of rectan-

gulation rfÓ ○γ agree with the wall shuffles of rectangulation γ ○ rp. Thus rfÓ ○γ = γ ○ rp.

Additionally, given a generic rectangulation R with wall shuffle σW = xi1⋯xip , the wall

shuffle of the corresponding wall W ′ in rfÒ(R) = R′ is σW ′ = (n + 1 − xi1)⋯(n + 1 − xip).

Thus the wall shuffles of rfÒ ○ γ agree with the wall shuffles of γ ○ rv so rfÒ ○ γ = γ ○ rv.

Lemma 3.4.11. The map rfÓ is an antiautomorphism of the lattice of generic rectan-

gulations.

Proof. Let R1,R2 ∈ gRecn such that R1 ⋖ R2 in gRecn. By Proposition 3.4.6, there

exist x1, x2 ∈ Sn such that γ(x1) = R1, γ(x2) = R2, and x1 ⋖ x2 in the right weak

order on Sn. Because rp is an antiautomorphism of the right weak order, we have that

rp(x1) ⋗ rp(x2) in the right weak order. Since γ(x1) ≠ γ(x2), and rfÓ ○ γ = γ ○ rp, we

have that γ(rp(x1)) ≠ γ(rp(x2)). Again applying Proposition 3.4.6, we obtain γ(rp(x1)) ⋗

γ(rp(x2)) in gRecn. Since γ○rp = rfÓ○γ, we conclude that rfÓ(R1) ⋗ rfÓ(R2) in gRecn. An

identical argument shows that if rfÓ(R1) ⋗ rfÓ(R2) in gRecn, then R1 ⋖ R2 in gRecn.

Proposition 3.4.12. Let R1,R2 ∈ gRecn such that R1 and R2 are related by a single

generic pivot as shown in the center diagram of Figure 3.1 with the lower illustration cor-

responding to R1 and the upper illustration corresponding to R2. Then R1 ⋖ R2 in gRecn.

Proof. Let R1 and R2 be generic rectangulations as described in the proposition. Generic

rectangulations rfÓ(R1) and rfÓ(R2) meet the conditions described in Proposition 3.4.10

(with the lower diagram of Figure 3.1 corresponding to R2 and the upper diagram of

Figure 3.1 corresponding to R1) so rfÓ(R1) ⋗ rfÓ(R2) in gRecn. Thus by Lemma 3.4.11,

R1 ⋖ R2 in gRecn.

Proposition 3.4.13. Let R1,R2 ∈ gRecn such that R1 and R2 are related by a single

wall slide as shown in the fourth or fifth diagram of Figure 3.1 with the lower illustra-

tion corresponding to R1 and the upper illustration corresponding to R2. Then R1 ⋖ R2

in gRecn.
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Proof. First assume that R1 and R2 differ by a single vertical wall slide as shown in

the fourth diagram of Figure 3.1. Let W1 and W2 respectively denote the walls in R1

and R2 on which the wall slide occurs. Let ψ(R2) = y = y1⋯yn. We wish to find some j

such that interchanging yj and yj+1 in y results in a permutation x with γ(x) = R1. Let

σW2 = yw1⋯ywi
ywi+1

⋯ywf
be the wall shuffle of W2 and σW1 = yw1⋯ywi+1

ywi
⋯ywf

be the

wall shuffle of W1 as illustrated in Figure 3.9. To prove that R1 ⋖ R2 in gRecn, we will

show that ywi
and ywi+1

are adjacent in y and that switching their locations in y results

in a permutation x such that γ(x) = R1. Using the definition of the map ρ, we observe

that ywi+1
< yw1 < yw1 + 1 = ywf

< ywi
. Let a1⋯al be the sequence of elements between ywi

and ywi+1
in y. Let am be the last element of the sequence satisfying ywi+1

< am < yw1 , if such

an entry exists. If rectangle am were not adjacent to W , then by the definition of ρ(y),

rectangle ywi+1
would also not be adjacent to W . Thus, rectangle am must be adjacent

to W . However, this implies that am occurs between ywi
and ywi+1

in σW2 , a contradiction.

Now let am be the first element of the sequence a1⋯al satisfying ywf
< am < ywi

. Then,

by the definition of ρ, the left side of rectangle am is contained in W . This implies

that am occurs between ywi
and ywi+1

in σW2 , again a contradiction. Thus every element

of the sequence a1⋯al must be less than ywi+1
or greater than ywi

. Let am denote the

first element of the sequence that satisfies am < ywi+1
, if such an element exists. In this

case, (taking a0 = ywi
if m = 1) we reach a contradiction since yw1am−1amywi+1

ywf
is an

occurrence of the 3-51-2-4 pattern in y. Thus am > ywi
for all m. However, this is also

impossible since if al ≥ ywi
, then the subsequence yw1ywi

alywi+1
ywf

of y forms a 2-4-51-3

pattern in y. Therefore, ywi
and ywi+1

are adjacent in y. Let x = y1⋯ywi+1
ywi

⋯yn. Since

yw1ywi
ywi+1

yf is an occurrence of the pattern 2-41-3 in y, by Theorem 3.4.3, we have

that ρ(x) = ρ(y). Now consider the wall shuffles of x and y. Switching the order of ywi

and ywi+1
in y to obtain x switches their order in the wall shuffle associated with W2 so

σW1 = yw1⋯ywi+1
ywi

⋯ywf
. Every other wall shuffle of R2 is unchanged in γ(x) since ρ(x) =

ρ(y) and rectangles xwi
and xwi+1

are adjacent to no other shared wall. Thus γ(x) = R1.

Now assume that R1 and R2 differ by a single horizontal wall slide such that the

lower illustration of Figure 3.1 corresponds to R1 and the upper illustration corresponds

to R2. By the definition of rfÓ, generic rectangulations rfÓ(R1) and rfÓ(R2) differ by

a single vertical wall slide such that rfÓ(R1) contains the configuration shown in upper

illustration of the fourth diagram of Figure 3.1 and rfÓ(R2) contains the configuration

in the lower illustration. By the first part of this proof, rfÓ(R2) ⋖ rfÓ(R1). Thus, by
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yw1

ywi
ywi+1

ywf

R1

yw1

ywi

ywi+1

ywf

R2

Figure 3.9: Diagrams used in the proof of Proposition 3.4.13. In each diagram, yw1 is
the lowest rectangle on the left side of W and ywf

is the uppermost rectangle on the right
side of W . No additional edges of R1 or R2 may be adjacent to the dashed segments.

Lemma 3.4.11, we have that R1 ⋖ R2.

3.5 The Product and Coproduct

In this section, we prove Theorems 3.1.6 and 3.1.11.

Proof of Theorem 3.1.6. Let x ∈ Cl2p and y ∈ Cl2q such that γ(x) = R1 and γ(y) = R2.

Corollary 3.2.3 states that x ●Cl2 y = ∑[xy′
[p]
, y′

[p]
x] where the summation denotes the

sum of all elements of the interval [xy′
[p]
, y′

[p]
x] in the lattice of 2-clumped permutations

of size p + q. Applying the bijection γ to this equation, we obtain γ(x) ●gR γ(y) = R1 ●gR

R2 = ∑[γ(xy′
[p]

), γ(y′
[p]
x)], where the summation denotes the sum of all elements of the

interval [γ(xy′
[p]

), γ(y′
[p]
x)] in gRecn. Applying γ to xy′

[p]
and y′

[p]
x results in the generic

rectangulations R1R′
2 and R′

2R1 respectively.

To prove that the coproduct in gRec is given by Theorem 3.1.11 requires more work.

Applying γ to the equation in Theorem 3.2.5 and noting that γ(π2
↓(y)) = γ(y) for any

permutation y, we first obtain the following corollary:

Corollary 3.5.1. Suppose R ∈ gRecn and x ∈ Cl2n such that γ(x) = R. Then

∆gR(R) = ∑
T is good

with respect to x

IT ⊗ JT
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where IT is the sum of elements in the interval [γ(st(xmin∣T )), γ(st(xmax∣T ))] in gRecp

and JT is the sum of elements in the interval [γ(st(xmin∣TC)), γ(st(xmax∣TC))] in gRecq.

Theorem 3.1.11 will follow from Corollary 3.5.1, and Lemmas 3.5.4, 3.5.8, and 3.5.11.

In the proof of Lemma 3.5.4, we will demonstrate that for any x ∈ Cl2n such that γ(x) = R

there is a natural correspondence between sets that are good with respect to x and

good paths in R. Then, in the proofs of Lemmas 3.5.8 and 3.5.11, we will show that

for each good set T and corresponding good path P, we have γ(st(xmin∣T )) = Rl(P)∣,

γ(st(xmax∣T )) = Rl(P)−, γ(st(xmin∣TC)) = Ru(P)∣, and γ(st(xmax∣TC)) = Ru(P)−.

Example 3.5.2. The upper left diagram in Figure 3.5 shows the generic rectangula-

tion R obtained by applying γ to the 2-clumped permutation x = 5387412 10○96. The set

T = {1,3,4,5,7,8,9,10} is good with respect to x. For this good set, xmin = 538741 10○926

and xmax = 587 10○934126. In this example, we see that the rectangulation γ(st(xmin∣T ))

coincides with the construction of Rl(P)∣, the rectangulation γ(st(xmax∣T )) coincides

with the construction of Rl(P)−, the rectangulation γ(st(xmin∣TC)) coincides with the

construction of Ru(P)∣, and the rectangulation γ(st(xmax∣TC)) coincides with the con-

struction of Ru(P)−.

To prove Theorem 3.1.11, we first make the following helpful observations about good

sets. Given x ∈ Cl2n such that γ(x) = R, let P be the partial order on [n] such that the

permutation x′ ∈ Sn is a linear extension of P if and only if γ(x′) = R. We call P the good

set poset of R. For each generic rectangulation, a good set poset exists because of the

more general, well-known result given in Proposition 2.4.3. Since each fiber of γ forms an

interval in the right weak order, for each generic rectangulation a good set poset exists.

The order ideals of the good set poset P correspond exactly to the sets that are good

with respect to x. For each good set T , let P ∣T denote the order ideal of P consisting of

the elements of T . The minimal linear extension of P ∣T is xmin∣T . Similarly, the minimal

linear extension of P ∣TC is xmin∣TC , the maximal linear extension of P ∣T is xmax∣T , and

the maximal linear extension of P ∣TC is xmax∣TC . To better understand the good sets

associated with x, we describe the poset P . Although the good set poset is defined by

a property that holds for adjacency posets of diagonal rectangulations, we note that the

good set poset cannot be obtained from a generic rectangulation in the same way that

an adjacency poset is obtained from a diagonal rectangulation (by declaring x <P y if

rectangles x and y are adjacent with rectangle x is left of or below rectangle y, and then
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taking the transitive closure of those relations). Because of the relationship between the

maps ρ and γ, the construction of a good set poset from a generic rectangulation is a

modification of the construction of an adjacency poset from a diagonal rectangulation.

The proof of the next result makes use of that relationship.

Lemma 3.5.3. Let ri and rj be rectangles of a generic rectangulation R with n rectangles,

and P be the good set poset of R. If ri comes before rj in some wall shuffle of R, then

ri <P rj. Taking the transitive closure of these relations gives all of the relations in P .

Proof. Given two permutations x and x′ in Sn, we have that R = γ(x) = γ(x′) if and only

if ρ(x) = ρ(x′) and the wall shuffles of γ(x) are the same as the wall shuffles of γ(x′).

Let ρ(x) =D and define the poset Q on [n] by declaring ri <Q rj if:

• In D, the right edge of rectangle ri and the left edge of rj intersect in their interiors,

• In D, the top edge of rectangle ri and the bottom edge of rectangle rj intersect in

their interiors, or

• In some wall shuffle of R, the entry ri precedes rj

and then taking the transitive closure. The first two bullets in the definition of Q ensure

that if x and x′ are linear extensions of Q, then ρ(x) = ρ(x′). The third item ensures that

the wall permutations of x and x′ agree. By the definition of γ, the permutation x′ is a

linear extension of Q if and only if γ(x′) = γ(x). Thus to prove the lemma, it suffices to

demonstrate that ri <P rj if and only if ri <Q rj.

Since the condition for ri <P rj is identical to the final condition for ri <Q rj, we have

that ri <P rj implies ri <Q rj. For the other direction, first assume that in D the right

edge of rectangle ri intersects the interior of the left edge of rectangle rj (so ri <Q rj)

along some vertical wall W . As illustrated in the left diagram of Figure 3.10, since D is a

diagonal rectangulation, each of the edges extending to the left of the wall is above each

of the edges extending to the right of the wall. This implies that either rectangle ri is

the lowermost rectangle on the left side of the vertical wall separating the two rectangles

(shown as the darker shaded region in the diagram) or rectangle rj is the uppermost

rectangle on the right side of the wall (shown as the lightly shaded region). This implies

that ri is the first entry of σW or rj is the final entry of σW so in either case, ri <P rj.

Similarly, as illustrated in the right diagram of Figure 3.10, if the top edge of rectangle ri

intersects the interior of the bottom edge of rectangle rj along some horizontal wall W
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Figure 3.10: An illustration used in the proof of Lemma 3.5.3.

in D, then we again see that ri precedes rj in σW so ri <P rj. Since the final condition

for ri <Q rj is identical to the condition for ri <P rj and any relationship that comes from

the transitive closure in Q also holds in P , we have that ri <Q rj implies ri <P rj.

Lemma 3.5.4. Let x ∈ Cl2n such that γ(x) = R. The set T is good with respect to x if and

only if the union of the rectangles of R labeled by elements of T are exactly the rectangles

below some good path P in R.

Proof. Let x ∈ Cl2n such that γ(x) = R, the poset P be the good set poset of R, and

T = {t1, ..., tp} be a good set with respect to x (i.e. an order ideal of P ). If T = ∅, then

the path P passing above and left of the rectangles of R labeled by elements of T travels

down the left side and then across the bottom of the square S. This is a good path in R.

Now suppose that T ≠ ∅. Let RT denote the set of rectangles of R labeled by elements

of T . To show that RT is the set of rectangles below some good path, we will show that:

• RT contains the bottom, left vertex of S,

• RT is a connected set with no interior holes, and

• the path P starting at the top, left corner of S, traveling along the left edge of S

until it reaches the boundary of RT , tracing the upper right boundary of RT , and

then traveling along the bottom of S to the bottom right corner of S is a good

path.

Since x can be obtained from any permutation x′ such that γ(x′) = R by a sequence

of adjacent cliff transpositions of scrambles of the patterns 2-4-51-3 and 3-51-2-4, the
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first entry of x is also the first entry of x′. Thus by the definition of γ, some rectangle

of RT contains the bottom, left vertex of S.

If RT is not connected, has an interior hole, or P contains a left or up step, then the

left side or bottom of some rectangle ti ∈ RT intersects the boundary of some rectangle u

such that u ∈ [n] − T . The two leftmost diagrams of Figure 3.11 illustrate these cases. In

each of the diagrams of Figure 3.11, the shaded rectangles are contained in RT . If the

left side of rectangle ti intersects the right side of rectangle u along a vertical wall W

(as illustrated in the leftmost diagram of Figure 3.11), then the lower-right vertex of

rectangle u is below the upper-left vertex of rectangle ti on W . Note that the lower-right

vertex of rectangle u is not necessarily contained in the left side of rectangle ti as shown

in the diagram, but it is necessarily below the upper-left vertex of rectangle ti. Thus u

precedes ti in σW , contradicting the assumption that T is an order ideal of P . Similarly, if

the bottom of rectangle ti intersects the top of rectangle u along a horizontal wall W (as

illustrated in the second diagram of Figure 3.11), then the upper-left vertex of rectangle u

is left of the lower-right vertex of rectangle ti on W . This also contradicts the assumption

that T is an order ideal of P .

To complete the argument, we show that P meets the two conditions for a good path.

Assume, for a contradiction, that the interior of a vertical segment of P contains vertices v

and v′ of R such that v is the upper-left vertex of a rectangle u with u ∉ T , vertex v′

is the lower-right vertex of a rectangle ti ∈ RT and v is below v′. This configuration

is illustrated in the third diagram of Figure 3.11. The thick segment in the diagram is

contained in P. Since the upper-left vertex of rectangle u occurs below the bottom right

vertex of rectangle ti along their shared wall, entry u precedes ti in the associated wall

shuffle, contradicting the assumption that T is a good set. Using the same reasoning,

we conclude that the configuration illustrated in the rightmost diagram of Figure 3.11

also does not occur along P, that is, the interior of no horizontal segment of P contains

vertices h and h′ of R such that h is the lower-right vertex of a rectangle u ∉ T , h′ is the

upper-left vertex of a rectangle ti ∈ RT and h is left of h′. Thus the upper right border

of RT determines a good path in R.

Next we show that given any good path P in R, the labels of the set of rectangles

below and to the left of P, denoted by T , form a good set. It is enough to demonstrate

that T is an order ideal of P , the good set poset of R. For a contradiction, assume that

u ∉ T , ti ∈ T , and u precedes ti in σW , some wall shuffle of R. First let W be a vertical
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Figure 3.11: Diagrams for the proof of Lemma 3.5.4.

wall. If rectangles ti and u are on the same side of W or rectangle u is on the left side of W

while rectangle ti is on the right side of W , then P passes to the right of rectangle ti and

then to the left of rectangle u, or below u and then above ti. Thus P contains a left step

or an up step, a contradiction. If rectangle ti is left of W and rectangle u is right of W ,

since the upper-left corner of rectangle u is below the lower-right corner of rectangle ti, we

have that P contains a left step or violates the first condition of a good path. When W is

a horizontal wall, in each case we again reach a contradiction by showing that P contains

a left or up step, or violates the second condition of a good path.

For every good path P of a generic rectangulation R, in the constructions of Rl(P)∣,

Rl(P)−, Ru(P)∣, and Ru(P)−, the rectangles inherit a labeling (using the elements of T )

from the labeling of R. To simplify notation, in what follows, we do not standardize

these labels. In particular, when we refer to a permutation x such that γ(x) = Rl(P)∣,

this permutation x will be an ordering of the elements of T rather than an ordering of

{1, ..., ∣T ∣}. To use x to construct Rl(P)∣, we label the diagonal of S with the elements of T

written in increasing order along the upper-left to bottom-right diagonal of S and then

construct γ(x) as usual. Additionally, we define the good set poset P ′ of Rl(P)∣ to be

the partial order on T such that x is a linear extension of P ′ if and only if γ(x) = Rl(P)∣.

Definition 3.5.5. Given a set T that is good with respect to x ∈ Cl2n such that γ(x) = R,

we say that an ordering t = t1⋯t∣T ∣ of the elements of T respects the ordering of the good

set poset P of R if and only if there exists x′ = x′1⋯x
′
n ∈ Sn such that x′1⋯x

′
∣T ∣

= t and x′ is a

linear extension of P (or equivalently γ(x′) = R). If some linear extension t of a poset P ′

respects the ordering of the good set poset P of R then we say that P ′ is compatible

with P .

Lemma 3.5.6. Let R be a generic rectangulation, P be a good path in R, poset P be the

good set poset of R, and P ′ be the good set poset of Rl(P)∣. Then P ′ is compatible with P .
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Proof. Let T be the good set corresponding to P (which exists by Lemma 3.5.4). Assume

that P ′ is not compatible with P so there does not exist a linear extension of P ′ that

respects the ordering of P . Since T is a good set with respect to R, there exists an

ordering of the elements of T that respects the ordering of P . If none of these orderings

is a linear extension of P ′ then there exist rj <P ′ ri such that ri <P rj. Below we show

that this cannot occur by demonstrating that if ri, rj ∈ T such that ri <P rj then ri <P ′ rj.

To show that ri <P rj implies ri <P ′ rj, it suffices to prove that if ri ⋖P rj then

ri <P ′ rj. Assume that ri, rj ∈ T and ri ⋖P rj. By Lemma 3.5.3, this implies that ri

immediately precedes rj in some wall shuffle σW of R. We consider cases and make use

of the construction of Rl(P)∣.

If rectangles ri and rj are on the same side of W , then the rectangles are adjacent,

with rectangle ri left of or below rectangle rj. Assume that rectangles ri and rj are both

above a horizontal wall W . Since ri and rj are in T , path P passes above both rectangles,

so the bottom of both rectangles and the edge separating them are contained in Rl(P).

Thus in Rl(P)∣, rectangles ri and rj are adjacent to a horizontal wall and ri precedes rj

in that wall shuffle. Therefore ri <P ′ rj. If rectangles ri and rj are both right of a vertical

wall, the argument is similar. Now assume that rectangles ri and rj are both below a

horizontal wall W . Since ri immediately precedes rj in σW , no vertical edge extends from

the top of rectangle ri. Thus either path P contains no part of the top of rectangle ri or P

contains the tops of rectangles ri and rj. If P contains no part of the top of rectangle ri,

then the top of rectangle ri, part or all of the top of rectangle rj, and the edge separating

rectangles ri and rj remain in Rl(P). To construct Rl(P)∣, the remaining portion of the

top of rectangle rj is extended until it meets a vertical wall. Rectangles ri and rj are

adjacent to the horizontal wall containing this extension. Thus, ri precedes rj in this

wall shuffle of Rl(P)∣ so ri <P ′ rj. If P contains the tops of rectangles ri and rj, then P

contains points left of the upper-left corner of rectangle ri (as shown in the left diagram

of Figure 3.12) or the upper-left corner of rectangle ri is a vertex of P (as shown in

the right diagram of Figure 3.12). In these illustrations, two possible locations of P are

darkened. The dotted segment of the second diagram may or may not be present in R.

In either of these cases, in Rl(P)∣ rectangle rj extends to the top of S and rectangle ri

is adjacent to the wall W ′ containing the left side of rectangle rj. Since rectangle rj is

the uppermost rectangle on the right side of W ′, the final entry of σW ′ is rj. Thus ri

precedes rj in σW ′ and so ri <P ′ rj. If rectangles ri and rj are both adjacent to the left
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ri rj ri rj

Figure 3.12: Configurations of rectangles ri and rj used in the proof of Lemma 3.5.6.

side of a vertical wall W , since ri and rj are adjacent in σW , no edge of R extends from

the right side of rectangle ri. Thus, regardless of the location of P, in Rl(P)∣ the right

sides of rectangles ri and rj are contained in a single vertical wall and rectangle ri remains

below rectangle rj. Therefore ri <P ′ rj.

Now consider the case where rectangles ri and rj are on opposite sides of W . If W is

horizontal, then rectangles ri and rj are in one of the two leftmost configurations shown

in Figure 3.13. Since rj immediately follows ri in σW , no other edge can be adjacent to

the dashed segment in the second diagram. If rectangles ri and rj are in the first config-

uration of Figure 3.13, then, regardless of the location of P, the left edge of rectangle ri

and the horizontal edge between the rectangles remain in Rl(P). Thus by construction,

rectangles ri and rj remain adjacent to W in Rl(P)∣ with the upper-left vertex of rect-

angle ri to the left of the lower-right vertex of rectangle rj so ri <P ′ rj. If rectangles ri

and rj are in the second configuration of Figure 3.13, then we consider two cases. First,

if some part of the right side of rectangle ri is contained in Rl(P) then some part of the

top of rectangle rj is also contained in Rl(P). Thus in Rl(P)∣, rectangles ri and rj remain

adjacent to the extension of W with the lower-right vertex of rectangle ri to the left of

the upper-left vertex of rectangle rj. Therefore ri <P ′ rj. If the right side of rectangle ri is

contained in P, then the dashed segment and the top of rectangle rj are also contained

in P. In Rl(P)∣, the left edge of rectangle rj is extended to the top of S and the bottom of

rectangle ri is extended to meet this vertical edge. Thus rectangles ri and rj are adjacent

to opposite sides of a vertical edge of Rl(P)∣ with the bottom right vertex of rectangle ri

below the top left of rectangle rj. Therefore ri <P ′ rj.

If rectangles ri and rj are on opposite sides of a vertical wall W , then they form one

of the configurations shown in third or fourth diagram of Figure 3.13. If they form the

configuration shown in the third diagram, then the bottom edge of rectangle ri and the

edge between the rectangles remain in Rl(P). Thus in Rl(P)∣, rectangles ri and rj are

adjacent to the extension of W with the bottom right vertex of rectangle ri below the
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Figure 3.13: Additional illustrations used in the proof of Lemma 3.5.6.

top left vertex of rectangle rj so ri <P ′ rj. If rectangles ri and rj form the configuration

shown in the final diagram of Figure 3.13 and some part of the right side of rectangle rj

is not contained in P, then some part of the top of rectangle ri is also not contained in P.

In Rl(P)∣, the top edge of rectangle ri remains below the bottom edge of rectangle rj

so ri <P ′ rj. If instead the right side of rectangle rj is contained in P, then the top of

rectangle ri is also contained in P. In the construction of Rl(P)∣, the extension of the

left side of rectangle ri is stopped by the ε extension of the bottom edge of rectangle rj.

Thus in Rl(P)∣, rectangles ri and rj are adjacent to the horizontal wall containing the

extension of the bottom edge of rectangle rj with the upper-left vertex of rectangle ri

left of the lower-right vertex of rectangle rj so ri <P ′ rj.

Lemma 3.5.7. Let R ∈ gRecn, let P be the good set poset of R, and let P be a good

path in R. Let R̃ ⋖ Rl(P)∣ in gRec∣T ∣ and P̃ be the good set poset of R̃. Then P̃ is not

compatible with P .

Proof. Let T be the good set corresponding with good path P. Again to simplify notation,

we label each rectangle of Rl(P)∣ using the label (which is an element of T ) inherited

from R. By labeling the upper-left to lower-right diagonal of the square S with the

elements of T (in numerical order), we also obtain a labeling of the rectangles of R̃ by

the elements of T . Let P ′ be the partial order on T such that x is a linear extension

of P ′ if and only if γ(x) = Rl(P)∣. Let P̃ denote the partial order on T such that x is a

linear extension of P̃ if and only if γ(x) = R̃. To show that P̃ is not compatible with P ,

we demonstrate that no linear extension of P̃ respects the ordering of P or equivalently

that there exist ri, rj in T satisfying rj <P̃ ri such that ri <P rj.

Since R̃ ⋖ Rl(P)∣ in gRec∣T ∣, by Theorem 3.1.3 a wall slide or generic pivot is per-

formed on Rl(P)∣ to obtain R̃. First assume that rectangles ri and rj of Rl(P)∣ form a

configuration illustrated in one of the three leftmost upper diagrams of Figure 3.1 with

ri <P ′ rj and that the edge E which is pivoted to obtain R̃ is completely contained
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Figure 3.14: An illustration used in the proof of Lemma 3.5.7.

in Rl(P). Since E is completely contained in Rl(P), rectangles ri and rj form this same

configuration in R and we have that ri <P rj. Pivoting E to obtain R̃, we see that rj

precedes ri in a wall shuffle of R̃ so rj <P̃ ri. Thus, in this case, P̃ is not compatible

with P .

We next consider the cases in which Rl(P)∣ and R̃ differ by a wall slide. If they differ

by a horizontal wall slide, then in Rl(P)∣ rectangles ri and rj form the configuration shown

in the left diagram of Figure 3.14. By the construction of Rl(P)∣ (since no new vertical

edges extending upward from a horizontal walls are created), the lower-right vertex and

some portion of the right side of rectangle rj are contained in Rl(P). Additionally, since

the upper-left vertex of rectangle ri is left of the lower-right vertex of rectangle rj and P

is a good path, the left side of rectangle ri is contained in Rl(P). Thus rectangles ri

and rj form the same configuration in R, implying that ri <P rj. Performing a wall slide

to obtain R̃ from Rl(P)∣, we see that rj <P̃ ri. We conclude that in this case, P̃ is not

compatible with P . If rectangulations Rl(P)∣ and R̃ differ by a vertical wall slide, then

in Rl(P)∣ rectangles ri and rj form the configuration shown in the second diagram of

Figure 3.14. If the lower-right vertex of rectangle rj were a constructed vertex, in the

final step of the construction of Rl(P)∣, a wall slide would be performed to move the

vertex below the upper-left vertex of rectangle ri. Thus, this configuration of rectangles

would not appear in Rl(P)∣. Therefore the lower-right vertex of rectangle rj is a vertex

of Rl(P). Because P is a good path, the upper-left vertex of rectangle ri is also a vertex

of Rl(P) so this configuration of rectangles ri and rj appears in R. Thus ri <P rj and

rj <P̃ ri, implying that P̃ is not compatible with P .

Finally, we consider the effect of performing a generic pivot on a horizontal edge E

of Rl(P)∣ such that E is not completely contained in Rl(P). There are two cases to

consider: either E is a new edge of Rl(P)∣ (in other words, no points of E are contained

in Rl(P)) or E is the extension of some edge E′ of R.

First consider the case where no points of E are contained in Rl(P). By the construc-
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Figure 3.15: Diagrams used in the proof of Lemma 3.5.7.

tion of Rl(P)∣, edge E results from a configuration in R as shown in the leftmost diagram

of Figure 3.15. In the diagram, a subset of the rectangles of R are labeled ri, rj, rk, rl,

and a portion of a good path P is shown as a darkened segment. The wall shuffle of the

vertical wall shown contains the subsequence rkrirjrl so ri <P rj. To obtain Rl(P)∣, we

remove P, extend the bottom of rectangle rj by ε to the right, extend the left side of

rectangle ri upwards until it hits the extension of the bottom of rectangle rj and then

extend the bottom of rectangle rj further until it reaches the extension of some vertical

wall or the right side of S. If necessary, we then perform wall slides along vertical walls,

as described in the definition of Rl(P)∣, but these wall slides do not affect the configura-

tion of rectangles ri, rj, and rk in Rl(P)∣ (shown in the center diagram of Figure 3.15).

Let E be the edge of Rl(P)∣ that separates rectangles ri and rj. Performing a generic

pivot on E to obtain R̃ results in the configuration shown in the rightmost diagram of

Figure 3.15. In R̃, the lower-right vertex of rectangle rj is below the upper-left vertex of

rectangle ri along their shared wall, so rj precedes ri in this wall shuffle. Thus rj <P̃ ri,

implying that P̃ is not compatible with P .

Now consider the case where E is the extension of some edge E′ of R. This means that

one endpoint v0 of E′ is contained in Rl(P) and the other is on P. In R, let rectangle ri

be below E′ and rectangle rj be above E′. Thus the upper-left vertex of rectangle ri is

left of the lower-right vertex of rectangle rj on the wall of R containing E′. This implies

that ri <P rj. In Rl(P)∣, rectangles ri and rj are adjacent to E with rectangle ri below

rectangle rj. By the construction of Rl(P)∣, the right endpoint of E is the final vertex

on the horizontal wall containing E. So that E can be pivoted to obtain R̃ from Rl(P)∣,

in Rl(P)∣ rectangles ri and rj must form one of the configurations shown in Figure 3.16.

However, in both cases, pivoting E results in a rectangulation R̃ in which rj precedes ri

in a vertical wall shuffle. Thus rj <P̃ ri. Therefore, regardless of the position of the

80



ri

rj

ri

rj

Figure 3.16: Configurations of ri and rj in Rl(P)∣ which allow for a generic pivot to be
performed on the edge separating the rectangles.

generic pivot or wall slide used to obtain R̃ from Rl(P)∣, the poset P̃ is not compatible

with P .

Lemma 3.5.8. Let R ∈ gRecn and x ∈ Cl2n such that γ(x) = R. For each set T that is good

with respect to x and corresponding good path P, we have that γ(st(xmin∣T )) = Rl(P)∣.

Proof. Again let P be the good set poset of R and P ′ be the good set poset of Rl(P)∣

(where P ′ is a poset on T ). Let

Y = {y ∈ Sn ∣ γ(y) = R and {y1, ..., y∣T ∣} = T}.

The set of all permutations that map to R under γ and the set of all permutations whose

first ∣T ∣ entries are the elements of T each form a nonempty interval in the right weak

order on Sn. Since T is a good set, the intersection of these intervals is nonempty. Thus,

since the right weak order is a lattice, the elements of Y form an interval in this lattice.

By definition, the minimal element of Y is xmin.

Let

X = {x′ ∈ Sn ∣ γ(x′) = R and x′1⋯x
′
∣T ∣

is a linear extension of P ′}.

By Lemma 3.5.6, the set X is non-empty. Note that X ⊆ Y . To prove the lemma, we wish

to show that xmin ∈X.

To obtain a contradiction, assume that xmin ∉ X. Thus, there exists some y ∈ Y such

that y ∉ X and y is covered by an element of X. Since y ∈ Y and y ∉ X, we have that

γ(st(y∣T )) ≠ Rl(P)∣. Then γ(st(y∣T )) is some R̃ such that R̃ ⋖ Rl(P)∣ in gRec∣T ∣. By

Lemma 3.5.7, the good set poset of R̃ is not compatible with P . This implies that y ∉ Y ,

a contradiction.
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In what follows, we will consider distinct rectangulations and good sets simultane-

ously. To identify the rectangulation and good set used in each case, we will use the

notation xmax(R,T ), xmin(R,T ),Rl(P(R,T )), and Ru(P(R,T )) where R indicates the

rectangulation of interest, x ∈ Cl2n such that γ(x) = R, and T is a set that is good with

respect to x. We will also make use of the maps rfÓ, rfÒ, rp, and rv. Given a generic

rectangulation R, recall that rfÓ(R) is the reflection of R about the upper-left to lower-

right diagonal of the square S and rfÒ(R) is the reflection of R about the lower-left to

upper-right diagonal of S. Given a permutation x = x1⋯xn, recall that rp(x) = xn⋯x1

and rv(x) = (n + 1 − x1)⋯(n + 1 − xn).

Lemma 3.5.9. Let R be a generic rectangulation, let x ∈ Cl2n such that γ(x) = R, let

T = {t1, ..., tp} a set that is good with respect to x, and let T ′ = {n + 1 − t1, ..., n + 1 − tp}.

Then xmax(R,T )∣T = rv(xmin(rfÒ(R), T ′)∣T ′).

Proof. Let P be the good set poset of R and P ′ be the good set poset of rfÒ(R). Since

each wall shuffle σW = xi1⋯xis of R corresponds to a wall shuffle σW ′ = (n+ 1−xi1)⋯(n+

1 − xis) of rfÒ(R), we have that xi < xj in P if and only if n + 1 − xi < n + 1 − xj

in P ′. Because T is a good set with respect to R, this implies that T ′ is a good set

with respect to rfÒ(R). The order ideal P ∣T is isomorphic to the order ideal P ′∣T ′ . To find

xmax(R,T )∣T an entry at a time using P ∣T , at each step we consider the elements that have

not yet been selected and are only greater than elements that have already been selected.

From this collection of elements, we choose the numerically largest value. Analogously,

to find xmin(rfÒ(R), T ′)∣T ′ using P ′∣T ′ , we select the numerically smallest value from

the candidate elements at each step. Constructing xmax(R,T )∣T and xmin(rfÒ(R), T ′)∣T ′

simultaneously, at each step the numerically largest candidate element of P coincides

with the numerically smallest candidate element of P ′ under the poset isomorphism.

Thus applying rv to xmin(rfÒ(R), T ′)∣T ′ we obtain xmax(R,T )∣T .

Lemma 3.5.10. Let R ∈ gRecn, let x ∈ Cl2n such that γ(x) = R and let T be a set that is

good with respect to x. Then xmin(R,T )∣TC = rp(xmax(rfÓ(R), TC)∣TC).

Proof. Let P be the good set poset of R and let P ′ denote the good set poset of rfÓ(R).

Since applying rfÓ to R reverses each wall shuffle, we have that P ′ is dual to P . The

set T is an order ideal of P so the set TC is a dual order ideal of P . Thus TC is an

order ideal of P ′. Let ui, uj ∈ TC such that ui < uj in numerical order. Then ui pre-

cedes uj in xmax(rfÓ(R), TC)∣TC if and only if ui <P ′ uj. Equivalently, ui follows uj in
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rp(xmax(rfÓ(R), TC)∣TC) if and only if ui <P ′ uj. Entry ui follows uj in xmin(R,T )∣TC if

and only if uj <P ui. Since P and P ′ are dual posets, the result follows.

Lemma 3.5.11. Let R ∈ gRecn and x ∈ Cl2n such that γ(x) = R. For each set T that

is good respect to x and corresponding good path P, we have γ(st(xmax∣T )) = Rl(P)−,

γ(st(xmin∣TC)) = Ru(P)∣, and γ(st(xmax∣TC)) = Ru(P)−.

Proof. We use Lemma 3.5.8 together with the maps rfÓ, rfÒ, rp and rv to prove the

equalities of this lemma.

To prove the first equality, we define T ′ = {n + 1 − ti ∣ ti ∈ T}. We now describe the

manipulations that appear in (3.1a)-(3.1d) below. Using Lemma 3.5.9, we obtain (3.1a).

Since st ○ rv = rv ○ st and γ ○ rv = rfÒ ○ γ, we obtain (3.1b) from (3.1a). By Lemma 3.5.8,

we have that (3.1c) follows. Finally, since the constructions of the vertical and horizontal

completions of Rl are related by reflection about the bottom-left to upper-right diagonal,

we obtain the desired result.

γ(st(xmax(R,T )∣T )) = γ(st(rv(xmin(rfÒ(R), T ′)∣T ′))) (3.1a)

= rfÒ(γ(st(xmin(rfÒ(R), T ′)∣T ′))) (3.1b)

= rfÒ(Rl(P(rfÒ(R), T ′))∣) (3.1c)

= Rl(P(R,T ))− (3.1d)

To prove the second and third equalities of the lemma, we first use Lemma 3.5.10

(see (3.2a) and (3.3a)). For (3.3a), we apply the involution rfÓ to make use of the equation

in Lemma 3.5.10. To obtain (b) from (a) in both manipulations we note that st○rp = rp○st

and γ ○ rp = rfÓ ○ γ. Then (3.2c) follows from (3.2b) by applying the first result of this

lemma. We obtain (3.2d) since the construction of the horizontal completion of Rl and

the construction of the vertical completion of Ru are related by reflection about the

upper-left to bottom-right diagonal.

γ(st(xmin(R,T )∣TC)) = γ(st(rp(xmax(rfÓ(R), TC)∣TC))) (3.2a)

= rfÓ(γ(st(xmax(rfÓ(R), TC)∣TC))) (3.2b)

= rfÓ(Rl(P(rfÓ(R), TC))−) (3.2c)

= Ru(P(R,T ))∣ (3.2d)
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By Lemma 3.5.8, we have that (3.3c) follows from (3.3b). Since the construction of

the vertical completion of Rl and the construction of the horizontal completion of Ru are

related by reflection about the upper-left to bottom-right diagonal, the final equality of

this lemma follows.

γ(st(xmax(R,T )∣TC)) = γ(st(rp(xmin(rfÓ(R), TC)∣TC))) (3.3a)

= rfÓ(γ(st(xmin(rfÓ(R), TC)∣TC))) (3.3b)

= rfÓ(Rl(P(rfÓ(R), TC))∣) (3.3c)

= Ru(P(R,T ))− (3.3d)

Lemma 3.5.11 completes the proof of Theorem 3.1.11.
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