ABSTRACT

LEMAIRE, PAUL CHARLES. Atomic Layer Deposition and Controlling Film and Crystal Nucleation. (Under the direction of Gregory N. Parsons).

Typically, conformally coating fibers or high aspect ratio substrates with thin films has proven problematic. Two techniques that are well suited for overcoming these challenges include atomic layer deposition (ALD) and molecular layer deposition (MLD). ALD and MLD are vapor-phase techniques that use sequential half reactions to deposit highly conformal films with angstrom-level thickness control. By purging excess unreacted reactants, ALD and MLD are able to deposit thin films only on substrate surfaces, making them ideal for conformally coating fibers or porous substrates in order to impart new chemical functionality to substrate surfaces.

ALD has proven especially applicable for the continued development of metal organic framework (MOF) multifunctional materials. MOFs are chemically functionalized micro- and mesoporous materials with high surface areas, and are attractive for multiple applications including filtration, gas storage, and catalysis. The amount of MOF loading on fiber substrates has been increased by coating fibers with ALD in order to generate nucleation sites. In addition, ALD modification of the MOFs themselves through post-synthetic modification is a strategy to impart new properties, including improved chemical stability and selective catalytic activity.

The highly controlled ALD surface reactions also make ALD ideal for selective deposition, in which a film is only deposited in predetermined regions. Area-selective thin film deposition is expected to be important for advanced sub-10 nanometer semiconductor devices, enabling feature patterning, alignment to underlying structures and edge definition.
There are multiple strategies to achieve selective ALD, including utilizing inherent differences in the surface chemistry of different material surfaces or through periodic etching of undesired nuclei on specific surfaces.

In order to make ALD, MLD, and MOF deposition even more applicable it is important to understand the underlying nucleation mechanisms. Nucleation is defined as the initial process that occurs in the formation of a crystal from a solution, a liquid, or a vapor. A small number of ions, atoms, or molecules become arranged in a pattern characteristic of a crystalline solid, forming a site upon which additional particles are deposited as the crystal or film grows. Accordingly this dissertation focuses on understanding nucleation reactions in order to increase crystal loading on substrates, limit unwanted substrate degradation, and achieve controlled selective deposition.

The first half of this dissertation focuses on the interactions between ALD and organic-inorganic materials, including MOFs. By studying CuBTC MOF nucleation mechanisms, we show that ALD oxide surfaces facilitate CuBTC nucleation by enhancing copper nitrate adsorption and through the formation of intermediary hydroxy double salts. We then analyze ALD precursor interactions with the MOF, UiO-66-NH₂. The ALD precursors react induce reversible distortion of the MOF metal clusters, reacting predominantly at the MOF surface region. We also discuss the MLD deposition of organic-inorganic porous films with swelling properties due to the formation of a quaternary ammonium salt functionality.

In the second half of this dissertation, we discuss the selective deposition and etching of thin films. We investigated the causes of metallic tungsten nucleation on SiO₂ and other “non-growth” surfaces during the WF₆/SiH₄ W-ALD process. We provide evidence that WF₆ and
SiH$_4$ react with vicinal hydroxyl sites on oxide surfaces, initiating undesired nucleation. Using this information, we investigated strategies to widen the “selectivity window” or increase the amount of tungsten selectively deposited on one surface versus another. We widened the W-ALD selectivity window by lowering the process temperature, diluting the ALD vapor precursors, and utilizing different carrier gases. Finally, based on observed etching during the W-ALD incubation period, we developed a thermal-driven and self-limiting TiO$_2$ atomic layer etching (ALE) process using WF$_6$ and BCl$_3$.
Atomic Layer Deposition and Controlling Film and Crystal Nucleation

by
Paul Charles Lemaire

A dissertation submitted to the Graduate Faculty of
North Carolina State University
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Chemical Engineering

Raleigh, North Carolina

2017

APPROVED BY:

_______________________________ _______________________________
Dr. Gregory N. Parsons Dr. Jan Genzer
Committee Chair

_______________________________ _______________________________
Dr. Michael D. Dickey Dr. Saad Khan
DEDICATION

To my family, friends, research group, and adviser. They all helped me towards my doctorate degree and put up with my sense of humor.
BIOGRAPHY

Paul Lemaire was born in Morristown, NJ to Paul and Laura Lemaire, and grew up in Madison, NJ. After graduating from Madison High School, Paul went to Villanova University in Villanova, PA to study chemical engineering. While at Villanova University, he was fortunate to learn the importance and joys of service and research. Paul took part in multiple service trips to areas including Fort Smith AK, Marion SC, Antigua Guatemala, and San Salvador El Salvador. Paul also co-led a trip to Winston Salem NC. He worked with the local communities to help construct affordable homes and learned about the hardships that all too many people fall victim to and are forced to live with on a daily basis. Paul was also able to take part in undergraduate research with Professor Weinstein and Professor Skaf at Villanova and with Professor Riman at Rutgers University in New Brunswick NJ. After graduating with his bachelors from Villanova University, Paul continued his studies at North Carolina to pursue his doctorate in chemical engineering. Here he was fortunate to receive a position in Dr. Gregory Parsons’ research group. In June 2017, will be driving cross country to start a position at LAM Research in Portland OR.
ACKNOWLEDGMENTS

No person is truly an island and I am no exception. There are several people to whom I am greatly indebted for the completion of this dissertation. First I must thank my parents. They have been my greatest confidants, providing an endless supply of support and insight, shaping me into the man I am today. My father helped foster my love of math, science, and just tinkering in general, whereas my mother helped keep me from becoming a cliché engineer, playing a large role in my “personality.” I also have to thank my older sisters, Caitlin, Danielle, and Sarah who helped raise me and will always be lifelong friends.

I would also be remiss if I failed to thank Professor Gregory N. Parsons and his entire research group. Professor Parsons made sure to always be available when I needed help. But possibly even more important, he let me make my own mistakes and discoveries, allowing me to develop into a true researcher. I am also extremely fortunate to work with past and present group members whose experience and knowledge was invaluable, but more importantly cultivated into true friendships. Without this support, I am confident the past five years would not have gone by so quickly.
TABLE OF CONTENTS

LIST OF TABLES ... xiv

LIST OF FIGURES ... xv

CHAPTER 1. INTRODUCTION .. 1

1.1 Principles of Atomic Layer Deposition and Molecular Layer Deposition 1

1.1.1 Atomic Layer Deposition (ALD) ... 1

1.1.2 Atomic Layer Deposition on Polymer Substrates ... 3

1.1.3 Selective Atomic Layer Deposition (S-ALD) ... 4

1.1.4 Molecular Layer Deposition (MLD) ... 6

1.2 Chemical Vapor Etching and Atomic Layer Etching .. 8

1.2.1 Chemical Vapor Etching .. 8

1.2.2 Atomic Layer Etching (ALE) ... 9

1.3 Metal Organic Frameworks (MOFs) ... 11

1.3.1 General Metal Organic Framework Properties ... 11

1.3.2 Properties of the UiO-66 MOF and MOF Analogs ... 12

1.3.3 Properties of the CuBTC MOF .. 13

1.3.4 Investigating Nucleation and Deposition of the CuBTC MOF .. 15

1.3.4.1 Homogenous and Heterogeneous MOF Nucleation ... 15
1.3.4.2 Role of Substrate Surface Charge on CuBTC Nucleation............................ 15
1.3.4.3 CuBTC Nucleation on Chemically Functionalized Surfaces 17
1.3.5 Post-Synthetic Modification of MOF Substrates 17

CHAPTER 2. EXPERIMENTAL TOOLS ... 19

2.1 Atomic Layer Deposition Reactor... 19
2.2 Quartz Crystal Microbalance (QCM) Analysis ... 20
2.3 Fourier Transform Infrared Spectroscopy (FTIR) Analysis 20
2.4 Spectroscopic Ellipsometry (SE)... 22
2.5 X-Ray Photoelectron Spectroscopy (XPS) .. 23

CHAPTER 3. COPPER BENZENETRICARBOXYLATE METAL-ORGANIC FRAMEWORK NUCLEATION MECHANISMS ON METAL OXIDE POWDERS AND THIN FILMS FORMED BY ATOMIC LAYER DEPOSITION ... 25

3.1 Abstract ... 25
3.2 Introduction .. 26
3.3 Experiment .. 28
3.3.1 MOF Precursors and Materials ... 28
3.3.2 Substrate Preparation and Growth of Crystalline Materials 29
3.3.3 Material Characterization ... 33
3.4 Results ... 34
3.4.1 Reaction products on ALD-coated fibers after Cu(NO$_3$)$_2$/BTC solvothermal exposure .. 34

3.4.2 Products on ALD-coated fibers exposed to BTC only under solvothermal conditions .. 39

3.4.3 Reaction products after sequential BTC + Cu(NO$_3$)$_2$ solvothermal exposure . 40

3.4.4 Reaction products after Cu(NO$_3$)$_2$ exposure ... 41

3.4.5 Products on ALD metal oxides after Cu(NO$_3$)$_2$ + BTC sequential exposure ... 43

3.5 Discussion of Results .. 46

3.6 Conclusions ... 49

3.7 Acknowledgement ... 49

CHAPTER 4. REACTANT-DEPENDENT SURFACE NODE DISTORTION DURING ATOMIC LAYER DEPOSITION ON UIO-66-NH$_2$ METAL ORGANIC FRAMEWORK .. 50

4.1 Abstract .. 50

4.2 Introduction .. 51

4.3 Experimental ... 55

4.3.1 List of materials ... 55

4.3.2 Synthesis of UiO-66-NH$_2$ powder ... 55

4.3.3 Immobilization of UiO-66-NH$_2$ crystals on substrates ... 56
4.3.4 Reactant exposure and ALD reactor conditions ... 56
4.4 Ex-situ characterization of UiO-66-NH$_2$ powders ... 57
4.5 In-situ characterization of ALD processes .. 58
4.6 Results .. 59
 4.6.1 As-formed UiO-66-NH$_2$ MOF .. 59
 4.6.2 UiO-66-NH$_2$ Reactions with TiCl$_4$ and TMA .. 62
 4.6.3 ALD Precursor Penetration into UiO-66-NH$_2$.. 65
 4.6.4 Sequential ALD precursor/water exposure steps on UiO-66-NH$_2$ 67
 4.6.5 Interactions between ALD precursors and dehydroxylated UiO-66-NH$_2$ 70
 4.6.6 Ex-situ TEM characterization of ALD-modified UiO-66-NH$_2$ 72
4.7 Discussion ... 74
 4.7.1 Precursor Reactions on Hydroxylated and Dehydroxylated UiO-66-NH$_2$ 74
 4.7.2 Reversible Surface Node Distortion during ALD on UiO-66 77
4.8 Conclusion ... 78
4.9 Acknowledgement ... 79

CHAPTER 5. RAPID VISIBLE COLOR CHANGE AND PHYSICAL SWELLING
DURING WATER EXPOSURE IN TRIETHANOLAMINE-METALCONE FILMS
FORMED BY MOLECULAR LAYER DEPOSITION .. 80
 5.1 Abstract ... 80
CHAPTER 6. UNDERSTANDING INHERENT SUBSTRATE SELECTIVITY DURING ATOMIC LAYER DEPOSITION: EFFECT OF SURFACE PREPARATION, HYDROXYL DENSITY AND METAL OXIDE COMPOSITION ON NUCLEATION MECHANISMS DURING TUNGSTEN ALD
6.1 Abstract .. 112
6.2 Introduction .. 113
6.3 Experimental ... 116
 6.3.1 List of supplies and materials .. 116
 6.3.2 Substrate surface preparation .. 116
 6.3.3 W-ALD reactor design ... 118
 6.3.4 ALD reaction sequence ... 118
 6.3.5 Sample characterization .. 118
6.4 Results .. 120
 6.4.1 Comparison of W-ALD nucleation on silicon, metal, and metal oxide substrates 120
 6.4.2 Role of surface hydroxyl groups in the loss of W-ALD selectivity 122
 6.4.3 SiH₄ and WF₆ interaction with SiO₂, Al₂O₃, and TiO₂ 126
 6.4.4 Expanding the W-ALD selectivity window .. 129
6.5 Discussion ... 131
 6.5.1 Surface hydroxyls as tungsten nucleation sites .. 132
 6.5.2 Fluorination of oxide substrates ... 133
 6.5.3 SiH₄ reactions with surface hydroxyls .. 135
 6.5.4 Limiting WF₆ and SiH₄ reactions with surface hydroxyls 135

6.6 Conclusion .. 136

6.7 Acknowledgements .. 137

CHAPTER 7. INFLUENCE OF TEMPERATURE AND CARRIER GAS FLOW RATE ON THE TUNGSTEN ATOMIC LAYER DEPOSITION “SELECTIVITY WINDOW” .. 138

7.1 Abstract ... 138

7.2 Introduction .. 139

7.3 Experimental .. 142

7.3.1 List of supplies and materials ... 142

7.3.2 Substrate surface preparation .. 142

7.3.3 W-ALD reactor design ... 143

7.3.4 ALD reaction sequence .. 143

7.3.5 Sample characterization .. 144

7.4 Results ... 145

7.4.1 Process Temperature and Tungsten Nucleation on Si and Oxide Surfaces 145

7.4.2 Tungsten Nucleation versus Process Pressure/Carrier Flow Rate 148

7.4.3 Modulating Process Temperature/Pressure with Inert Gas Dosing 150

7.5 Discussion ... 153

7.6 Conclusion ... 156
CHAPTER 8. SELECTIVE SELF-LIMITING THERMAL ATOMIC LAYER ETCHING OF TiO₂ USING SEQUENTIAL EXPOSURES OF WF₆ AND BCl₃

8.1 Abstract ... 158
8.2 Introduction .. 159
8.3 Experimental ... 162
 8.3.1 List of supplies and materials .. 162
 8.3.2 W-ALD reactor design and reaction sequence .. 163
 8.3.3 Sample characterization .. 164
 8.3.4 Thermodynamic modeling .. 165
8.4 Results and Discussion ... 165
 8.4.1 Vapor Chemical Etching of TiO₂ using WF₆ .. 165
 8.4.2 Thermodynamic Modeling of Metal Oxide Etching by WF₆ .. 167
 8.4.3 TiO₂ Surface Characterization following Etching by WF₆ ... 169
 8.4.4 Effect of TiO₂ Thickness on Vapor Etch Rate .. 173
 8.4.5 Schematic of the WF₆ Vapor Etch Reaction Process ... 175
 8.4.6 Addition of Surface Modifiers to Increase Etching Rate ... 176
 8.4.7 TiO₂ Atomic Layer Etching using WF₆/BCl₃ ... 178
 8.4.8 Schematic of the WF₆/BCl₃ ALE Reaction Process ... 183
8.5 Summary and Conclusions .. 184
REFERENCES .. 186

APPENDICES .. 209

APPENDIX A. CO-AUTHORED PUBLICATIONS ... 210

A.1 Highly Adsorptive, MOF-Functionalized Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition ... 210

A.3 Platinum-Free Cathode for Dye-Sensitized Solar Cells Using Poly(3,4-ethylenedioxythiophene) (PEDOT) Formed via Oxidative Molecular Layer Deposition 212

A.4 Wafer-Scale Selective-Area Deposition of Nanoscale Metal Oxide Features Using Vapor Saturation into Patterned Poly(methyl methacrylate) Templates 213

A.5 Facile Conversion of Hydroxy Double Salts to Metal–Organic Frameworks Using Metal Oxide Particles and Atomic Layer Deposition Thin Film Templates 214

A.6 Using Hydrogen to Expand the Inherent Substrate Selectivity Window During Tungsten Atomic Layer Deposition .. 215
LIST OF TABLES

Table 3.1: List of Cu-BTC solvothermal precursors, intermediate species, and products 29
Table 4.1. Reported vapor-phase deposition of materials on MOF substrates 54
Table 5.1. Experimental film composition (±2 at. %) based on high resolution XPS scans of ~300 nm Ti-TEA films deposited at 150°C. Expected atomic composition based on the stochiometric composition: Ti$_3$(C$_6$H$_{12}$NO$_3$)$_4$. ... 93
Table 5.2. Experimental film composition (±2 at. %) based on high resolution XPS scans of ~300 nm Al-TEA films deposited at 150°C. Expected atomic composition based on the stochiometric composition: Al(C$_6$H$_{12}$NO$_3$). .. 93
Table 5.3: Film composition (±2 at. %) based on high resolution XPS scans of Al-TEA-HCl films deposited at 150°C. Expected Al-TEA-HCl film composition based on the stochiometric composition: Al(C$_6$H$_{12}$NO$_3$)(Cl$^-$), assuming one chloride anion per protonated nitrogen. .. 102
LIST OF FIGURES

Figure 1.1: Schematic representation of the Al_2O_3 ALD reaction sequence. 1
Figure 1.2: Schematic representation of the metallic tungsten ALD reaction sequence. 3
Figure 1.3: Reaction sequence for an alucone film deposited with a) TMA and b) ethylene glycol... 7
Figure 1.4: General reaction scheme for a thermally-driven ALE process, in which unlike the energy-enhanced, surface volatilization depends on a ligand exchange reaction...................... 10
Figure 1.6: CuBTC structure in which the green and pink spheres denote the primary and secondary MOF pores respectively... 14
Figure 2.1: Schematic view of viscous flow reactor for ALD, fitted with an in-situ quartz crystal microbalance (QCM) probe. .. 19
Figure 2.2 Configuration for in-situ FTIR analysis of ALD processes 22
Figure 3.1. Schematic of the standard and sequential solvothermal Cu-BTC synthesis. The fiber mat substrates coated with ALD metal oxides are added to the mixed solution where they wet and settle on the bottom of the PTFE-container. After full reaction at 120°C, the fiber mats are rinsed and dried... 31
Figure 3.2: Cu-BTC nucleation on PP/ALD with (a) images (b) XRD after exposure to Cu-BTC solvothermal solution at room temperature for ~30 s and (c) percent Cu-BTC mass loading on PP/ALD plotted versus reaction time at 120°C. The PP/ZnO samples show a rapid Cu-BTC nucleation as shown by XRD and accompanied by a rapid color change from white to blue and an early initial mass loading... 36
Figure 3.3: Zeta-potential as a function of pH for PP and PP/ALD samples 37
Figure 3.4: XRD of powders generated by oxide facilitated synthesis showing rapid Cu-BTC deposition on ZnO, CdO, and MgO powders, and little growth on Cu$_2$O, NiO, TiO$_2$, and Al$_2$O$_3$.

Figure 3.5: (a) XRD of PP/ALD samples after 20 h in BTC solution, showing patterns consistent with Zn-BTC and Al-BTC MOFs. (b) Percent Cu-BTC mass loading as a function of reaction time using PP/Al$_2$O$_3$ and PP/Al-BTC substrates. The relatively slow MOF growth on Al-BTC indicates that this compound is not an important intermediate in the growth of Cu-BTC on Al$_2$O$_3$.

Figure 3.6: (a) FTIR of O-NO$_2$ stretching band for samples after exposure to Cu(NO$_3$)$_2$ solution for 1 h at 120°C. The narrower band splitting for the symmetric and asymmetric O-NO$_2$ stretching band suggests formation of a monodentate hydroxyl double salt (HDS) on PP/ZnO and predominantly bidentate Cu(NO$_3$)$_2$ on PP and PP/Al$_2$O$_3$ as shown in the structure diagrams. (b) XRD analysis of PP/ALD samples after 16 hours in Cu(NO$_3$)$_2$ solution. The reflections corresponding to a HDS are visible on each substrate, with the most intense signal on the ZnO surface.

Figure 3.7: XRD spectra of PP/ALD samples after 16 h in Cu(NO$_3$)$_2$ solution followed by 0.5 h in BTC solution. Reflections from Cu-BTC are seen on the PP/ZnO sample, indicating that the HDS produced during the Cu(NO$_3$)$_2$ exposure (shown in Figure 3.4) converts rapidly to Cu-BTC on this surface. Reflections from Cu-BTC are not observed on the PP/TiO$_2$ or PP/Al$_2$O$_3$ substrates.

Figure 3.8: FTIR spectra of (a) (Cu,Cu)-HDS and (b) (Cu,Zn)-HDS powders prior to and following exposure to a BTC solution at room temperature for 5 minutes. The relative change
in C=O, C=C, and \(=C-H \) bands suggest BTC is incorporated into the (Cu,Zn)-HDS and not the (Cu,Cu)-HDS. A reference Cu-BTC spectrum is included

Figure 3.9: FTIR spectra of powders generated by ZnO facilitated Cu-BTC deposition using different copper precursors. The results suggest that Cu-BTC was formed for each of the copper precursors except copper acetate (Cu(OAc)\(_2\)).

Figure 4.1: SEM image and XRD patterns of as-formed UiO-66-NH\(_2\) powder. The UiO-66-NH\(_2\) XRD pattern is compared to a UiO-66 pattern simulated from CCDC 837796.

Figure 4.2: a) FTIR spectra of UiO-66-NH\(_2\) at 150 (black) and 250°C (red) and differential spectra (blue) and b) an expanded view from 2000-600 cm\(^{-1}\), showing loss of the hydroxyl bands (OH) and loss of the carboxylate bands (COO\(^-\)) with elevated heating. Panel c) shows molecular structure of the hydroxylated (Zr\(_6\)O\(_4\)(OH)\(_4\)) and dehydroxylated (Zr\(_6\)O\(_6\)) metal clusters, including 4 carboxylate groups out of the expected 12 aminoterephthalic acid linkers. Potential reaction sites for the ALD precursors include: 1) hydroxide groups, 2) bridging oxygens, and 3) coordinated oxygen on the carboxylate groups.

Figure 4.3: Differential FTIR spectra of hydroxylated UiO-66-NH\(_2\) powders exposed to repeated exposures of a) TiCl\(_4\) and b) H\(_2\)O at 150°C. The H\(_2\)O exposure in b) follows a TiCl\(_4\) exposure equivalent to the first exposure in a). The starting UiO-66-NH\(_2\) spectrum at 1/20\(^{th}\) scale collected before any exposure is included in each panel as reference.

Figure 4.4: QCM analysis of a) repeated TiCl\(_4\) /repeated H\(_2\)O and b) similar repeated doses of TMA and H\(_2\)O on hydroxylated UiO-66-NH\(_2\) at 150°C.

Figure 4.5: FTIR spectra of hydroxy stretching band of UiO-66-NH\(_2\) prior to and following a) 10 TiCl\(_4\) exposures and b) 3 TMA exposures, both at 150°C.
Figure 4.6: Differential FTIR spectra of sequential exposures of a) TiCl₄/H₂O and b) TMA/H₂O on hydroxylated UiO-66-NH₂ at 150°C. The initial UiO-66-NH₂ spectrum is included as reference at 1/20⁰th scale. .. 68

Figure 4.7: QCM analysis of sequential exposures of a) TMA/H₂O and b) TiCl₄/H₂O on hydroxylated UiO-66-NH₂ at 150°C. Panels c), e) and d), f) show expanded views of a) and b) respectively. .. 70

Figure 4.8: Differential FTIR spectra of dehydroxylated UiO-66-NH₂ at 250°C following sequential exposures to a) TiCl₄-H₂O and b) TMA-H₂O. The initial UiO-66-NH₂ spectrum is included as reference at 1/20⁰th scale. .. 71

Figure 4.9: QCM analysis of sequential exposures of a) TiCl₄-H₂O on hydroxylated UiO-66-NH₂ at 150 and on dehydroxylated UiO-66-NH₂ at 250°C, with b) showing an expanded view during cycles 5 and 6. The data at 150°C is reproduced from Figure 5.7...................... 72

Figure 4.10: TEM images and corresponding diagrams of UiO-66-NH₂ with a) and c) 100 cycles of TMA/H₂O and b) and d) 200 cycles of TiCl₄/H₂O, both deposited at 150°C. The resulting TiO₂ and Al₂O₃ films were 20 and ~7.5 nm thick respectively, with TiO₂-modified UiO-66-NH₂ exhibiting an interfacial layer.. 73

Figure 4.11: Differential FTIR spectra comparing dehydroxylation of UiO-66-NH₂. The spectra of the samples after annealing is shown at 1/5⁰th its actual scale. The initial UiO-66-NH₂ spectrum is included as reference at 1/20⁰th scale. .. 77

Figure 5.1: Al-TEA reaction sequence with successive a) TMA and b) TEA exposure 86

Figure 5.2. Al-TEA film thickness per cycle at 150°C as a function of a) TMA and b) TEA dose time and c) film thickness versus cycle number. Lines are meant to guide eyes. 87
Figure 5.3: Ti-TEA film thickness per cycle at 150°C as a function of a) TiCl₄ and b) TEA dose time and c) film thickness versus cycle number. Lines are meant to guide eyes. .. 88

Figure 5.4: Growth rate versus reactor temperature for a) Al-TEA and b) Ti-TEA. Lines are meant to guide eyes... 89

Figure 5.5: Quartz crystal microbalance (QCM) analysis: a) Al-TEA at 150°C, b) Ti-TEA at 150°C, c) Al-TEA at 200°C, d) Ti-TEA at 200°C.. 90

Figure 5.6: Mid-range FTIR spectra for ~300 nm Al-TEA and Ti-TEA films deposited at 150°C. ... 92

Figure 5.7: High resolution XPS scans of Cl 2p and N 1s peaks for the ~300 nm Al-TEA and Ti-TEA films deposited at 150°C. ... 94

Figure 5.8: Changes in triethanolamine-metalcone film b) thickness and b) refractive index at a wavelength of 632.8 nm over time in open laboratory conditions. Lines are meant to guide eyes. .. 96

Figure 5.9: QCM results of 100 cycles of a) Ti-TEA and b) Al-TEA films deposited at 150°C which then remain in the heated conditions with flowing carrier gas for ~14 hours. 97

Figure 5.10: Time-resolved goniometric analysis monitoring the water droplet contact angle versus time on ~300 nm Al-TEA and Ti-TEA films deposited at 150°C. .. 98

Figure 5.11: Thickness of Al-TEA and Ti-TEA films versus relative humidity. 99

Figure 5.12: Images of a 500 cyc Ti-TEA film in which the process humidity increases from a) < 1% relative humidity, to e) ~65% relative humidity. ... 100

Figure 5.13: QCM analysis Al-TEA-HCl MLD process at 150°C... 101

Figure 5.14: FTIR spectra for the Al-TEA-HCl and Al-TEA films deposited at 150°C...... 101
Figure 5.15: High resolution XPS scans of Cl 2p and N 1s peaks for the Al-TEA-HCl and Al-TEA films deposited at 150°C. ... 103

Figure 5.16: Thickness of Al-TEA and Al-TEA-HCl films versus relative humidity. 104

Figure 5.17: QCM analysis of a) methanol and b) ammonia loading on ~300 nm Ti-TEA film. .. 105

Figure 5.18: Ti-TEA reaction sequence with successive a) TiCl₄ and b) TEA exposure, showing byproduct HCl pronating the TEA nitrogen. ... 108

Figure 6.1: Results of W-ALD on Si, Au, and SiO₂ surfaces from a) in-situ QCM analysis and b) XPS analysis of W 4f peaks after 30 W ALD cycles. .. 121

Figure 6.2: In-situ QCM analysis of a) W-ALD on ZnO, Al₂O₃, SiO₂, and TiO₂ surfaces and b) an enlarged view of W-ALD on TiO₂, which shows film etching during the nucleation period. .. 122

Figure 6.3: In-situ FTIR of thermal SiO₂ on PS following piranha clean, measured at 100, 200 and 300°C, showing loss of surface bound water, with some surface bound water remaining after 300°C.. 123

Figure 6.4: a) Ex-situ FTIR of thermal SiO₂ on PS at room temperature before and after piranha clean, and the resulting difference spectrum, showing removal of isolated hydroxyls and an increase in the concentration of germinal hydroxyls and adsorbed water. b) SE delta parameter at 700 nm for piranha-cleaned and as-is SiO₂ wafers. ... 124

Figure 6.5: Impact of ex-situ annealing samples at 600 and 800°C prior to W-ALD: a) Ex-situ FTIR spectra of thermal SiO₂ on PS and difference spectra of the hydroxylated thermal
SiO$_2$ after 600 and 800°C anneal. Difference spectra referenced to SiO$_2$+Piranha spectra, b) SE delta parameter at 700 nm for SiO$_2$ samples following W-ALD at 220°C. Figure 6.6: SE delta parameter at 700 nm for SiO$_2$ samples after 30 W ALD cycles following x SiH$_4$ pre-exposure cycles. The delta data from the piranha-cleaned SiO$_2$ in Figure 4 is repeated for clarity. Figure 6.7: XPS spectra of TiO$_2$ and Al$_2$O$_3$ ALD films exposed to 0 (black), 10 (red), and 50 (blue) SiH$_4$ exposures. With increasing number of SiH$_4$ exposures, the Si 2p peak increases on both the TiO$_2$ and Al$_2$O$_3$ surfaces. Figure 6.8: In-situ QCM analysis comparing W-ALD on a) TiO$_2$ and b) Al$_2$O$_3$ for the as-is oxide (red), oxide with 50 SiH$_4$ pre-exposures (black), and oxide with 50 WF$_6$ pre-exposures (blue). Figure 6.9: Ex-situ XPS W 4f high resolution scans for Si and SiO$_2$ samples following: a) 50 W-ALD cycles at 160°C, b) 30 W-ALD cycles at 220°C, and c) 20 W-ALD cycles at 300°C. d) Ratio of W 4f Area on Si versus SiO$_2$ at different reactor temperatures. Figure 7.1: SE delta parameter at 700 nm versus deposition temperature for SiO$_2$ and Si samples following 50 W-ALD cycles. Figure 7.2. Ex-situ XPS high resolution scans of the a) W 4f and b) F 1s regions for SiO$_2$ samples after 20, 30, and 50 W-ALD cycles at 300, 220, and 160°C respectively. The number of W-ALD cycles for each temperature was chosen based on when the delta parameter, Δ, decreased to ~30°, indicative of tungsten nucleation as described above. Figure 7.3: In-situ QCM analysis of W-ALD nucleation on TiO$_2$ surfaces at different process temperatures.
Figure 7.4: a) Operating pressure versus Ar carrier flow rate b) SE delta parameter at 700 nm versus flow rate for SiO$_2$ (black) and Si (blue) substrates after 40 W-ALD cycles at 220°C.

Figure 7.5: In-situ QCM analysis of W-ALD nucleation on TiO$_2$ surfaces with an Ar carrier gas flow rate of 105 (black), 210 (red), and 900 (blue) sccm at 220°C.

Figure 7.6: QCM analysis steady state W-ALD at 220°C with a reactor volume of 4700 cm3, where a) He and b) H$_2$ are dosed immediately before the WF$_6$ for 5 s. During the He and H$_2$ dosing, there is an observed decrease in the QCM loading, consistent with sample heating.

Figure 7.7: QCM analysis of W-ALD in smaller reactor volume (~750 cm3) where H$_2$ was dosed for 5 s a) immediately before and b) 45 s before the WF$_6$ dosing. In the smaller reactor volume, the decrease in the QCM signal during the H$_2$ dosing due to sample heating is more pronounced, but returns to the initial mass loading during a sufficiently long Ar purge step.

Figure 7.8: Ex-situ high resolution XPS scans of the a) W 4f and b) Si 2p regions for SiO$_2$ samples following 40 W-ALD cycles at 220°C. Three reaction sequences were used: SiH$_4$/Ar/WF$_6$/Ar (red), SiH$_4$/Ar/CH$_4$/WF$_6$/Ar (blue), and SiH$_4$/Ar/He/WF$_6$/Ar (black). Samples in which CH$_4$ and He were dosed immediately prior to the WF$_6$ exhibit lower tungsten concentration and a more pronounced Si signal from the underlying SiO$_2$ wafer.

Figure 8.1: QCM analysis of a) 200 cycles of Al$_2$O$_3$ or TiO$_2$ followed immediately by 50 WF$_6$/Ar exposures of 1/60 s each; and b) 100 TiO$_2$ ALD cycles followed by 1 WF$_6$ exposure of 50 s.
Figure 8.2: Equilibrium concentrations of species from 25 to 400°C for a system initially containing a) 1 mole WF$_6$ and 1 mole TiO$_2$ and b) 1 mole WF$_6$ and 0.667 mole Al$_2$O$_3$...... 168

Figure 8.3: a) QCM analysis TiO$_2$ ALD followed by 50 WF$_6$ doses at 120 and 220°C and b) an enlarged view of the mass loading during the WF$_6$ doses, showing net mass loss during each WF$_6$ step at 220°C and little to no change at 120°C............................... 169

Figure 8.4: High resolution XPS scans of a) Ti 2p, b) Si 2p, c) W 4f, and d) F 1s regions for ~6.5 nm TiO$_2$ films exposed to 0, 1, 5 and 15 WF$_6$ doses at 220°C............................... 171

Figure 8.5: Peak intensity of high resolution XPS scans of a) Ti 2p (459.1 eV) and Si 2p (99.3 eV) and b) W 4f and (38 eV) and F 1s (685.2 eV) for 5.5 nm TiO$_2$ films exposed to 0, 10, 25, 50, 100 WF$_6$ doses at 220°C. Lines are meant to guide eyes. 172

Figure 8.6: a) Thickness and b) refractive index at 632.8 nm of samples with 5.5 nm TiO$_2$ followed by 0, 15, 25, 50, and 100 WF$_6$ doses at 220°C, measured with spectroscopic ellipsometry. Lines are meant to guide eyes... 173

Figure 8.7: QCM analysis of WF$_6$ etching following 50, 100, and 200 TiO$_2$ ALD cycles on a bare Au QCM crystal at 220°C and 1.75 Torr... 174

Figure 8.8: Proposed etching mechanism for TiO$_2$ films exposed to WF$_6$ at 220°C: 1) WF$_6$ adsorbs on thick TiO$_2$ surface, forming surface-bound TiO$_x$F$_z$ and WO$_x$F$_y$. 2) Additional WF$_6$ exposure further fluorinates the TiO$_x$F$_z$ and WO$_x$F$_y$, creating volatile WF$_x$O$_2$ and TiF$_4$, etching the TiO$_2$ film. ... 175

Figure 8.9: High resolution XPS scans of a) Ti 2p, b) F 1s, c) W 4f, and d) Sn 3d regions for 6.5 nm TiO$_2$ films following 0, 15, 25 WF$_6$/Ar/Sn(acac)$_2$/Ar cycles at 220°C and 1.75 Torr. .. 177
Figure 8.10: a) QCM analysis at 170°C and 1.75 Torr of TiO$_2$ ALD followed by 25 BCl$_3$/Ar doses (pink), 50 WF$_6$/Ar doses (red), 50 WF$_6$/Ar/Sn(acac)$_2$/Ar cycles (black), or 50 WF$_6$/Ar/BCl$_3$/Ar cycles (blue). b) Expanded view of the WF$_6$/Ar/BCl$_3$/Ar etch sequence.

Figure 8.11: a) Thickness and b) refractive index of 7 nm TiO$_2$ versus WF$_6$/BCl$_3$ ALE cycle number as measured by spectroscopic ellipsometry. The TiO$_2$ ALD and ALE were performed at 170°C with an ALE dosing sequence of WF$_6$/Ar/BCl$_3$/Ar (1/60/2.5/60 s). Lines are meant to guide eyes.

Figure 8.12: High resolution XPS scans of a) W 4f and b) F 1s regions for 7 nm TiO$_2$ film (black), 7 nm TiO$_2$ following 50 WF$_6$/BCl$_3$ cycles at 170°C (red), and 5.5 nm TiO$_2$ following 50 WF$_6$ doses at 220°C (blue).

Figure 8.13: QCM analysis of a) WF$_6$/Ar/BCl$_3$/Ar sequence at 110, 130, 150, 170 and 190°C and b) 10 WF$_6$/Ar followed by 10 BCl$_3$/Ar (repeated 3 times), at 110, 130, 150, and 170°C.

Figure 8.14: Proposed etch mechanism for the TiO$_2$ ALE process using WF$_6$ and BCl$_3$ at 170°C: 1) WF$_6$ adsorbs on thick TiO$_2$ surface, forming surface-bound TiO$_x$F$_z$ and WO$_x$F$_y$. 2) BCl$_3$ volatilizes the surface metal oxy fluoride species, forming TiCl$_4$, WCl$_2$O$_2$ and BF$_3$.

xxiv
CHAPTER 1. INTRODUCTION

1.1 Principles of Atomic Layer Deposition and Molecular Layer Deposition

1.1.1 Atomic Layer Deposition (ALD)

Atomic layer deposition (ALD) is a vapor-phase technique to deposit nano-scale coatings on substrates while maintaining thickness control and conformality. ALD coatings can be thin enough that there are no obvious changes to visual characteristics, feel, and flexibility. It consists of two sequential self-limiting reactions as shown in Figure 1.1. In a typical reaction sequence, a substrate is first exposed to one of the reactants, which selectively reacts with the surface. The unconverted reactant is purged from the system by carrier gas. Without sufficient purge times, unremoved precursors can react by chemical vapor deposition (CVD), causing thicker and less uniform coatings. The system is then dosed with the second reactant which reacts with the first and restores the original surface functionality. This cycle is repeated to add additional layers.

Figure 1.1: Schematic representation of the Al₂O₃ ALD reaction sequence.
Figure 1.1 shows the model reaction for atomic layer deposition, Al₂O₃ ALD. Al₂O₃ is deposited through the sequential exposure of trimethylaluminum (TMA) and water, in which the surface undergoes the chemistry shown in the reactions below, with asterisks denoting surface species.⁵ The Al₂O₃ and similar oxide ALD processes consist of Lewis acid-base reactions. These reactions are ligand exchanges and not oxidative or reductive reactions.

\[
\text{Al-OH}^* + \text{Al(CH₃)₃} \rightarrow \text{Al-O-Al(CH₃)₂}^* + \text{CH₄}
\]

\[
\text{Al-O-Al-CH₂}^* + \text{H₂O} \rightarrow \text{Al-O-Al-OH}^* + 2\text{CH₄}
\]

The net Al₂O₃ ALD reaction sequence is highly exothermic. The reactions are spontaneous even at low temperatures, without undesired reactant decomposition, desorption, or condensation.²⁵ TiO₂ and ZnO ALD sequences can also be accomplished at low temperature.⁵ For an ALD process, there is typically a temperature range in which the growth per ALD cycle is not largely dependent on the temperature. This is referred to as the “temperature window.” Outside this window, deposition becomes temperature dependent, in which the growth rate per cycle can increase or decrease due to incomplete surface reaction, desorption of surface sites, precursor condensation, or precursor decomposition.⁵ A broad temperature window is especially significant for temperature sensitive substrates like polypropylene which can have a melting point as low as 135 °C.⁶

In addition to oxides; metals, carbides, nitrides, and sulfides can also be deposited through ALD.⁵,⁷ Unlike the Al₂O₃ ALD process, depositing metal films via ALD requires reduction reactions. A lack of viable reducing agents limits the number of metals that can be deposited.
via ALD because most metals have a relatively large positive reduction potential.8,9 Metallic tungsten can be deposited at relatively low temperatures (as low as \(\sim 150^\circ C \)) using tungsten hexafluoride (\(\text{WF}_6 \)) and a reducing agent such as monosilane (\(\text{SiH}_4 \))10-13 or disilane (\(\text{Si}_2\text{H}_6 \))14-17 Figure 1.2 shows the proposed reaction mechanism for the deposition on Si-H\(_x\) and SiO\(_2\) surfaces.18 During normal steady state growth, \(\text{WF}_6 \) adsorbs and reacts on a metal surface. \(\text{SiH}_4 \) then removes fluorine from the adsorbed \(\text{WF}_x \) species and reduces the tungsten to \(\text{W}^0 \). \(\text{SiH}_4 \) adsorbs on the reduced tungsten surface, creating a reducing layer.11,13,15,16 Analogous to Al\(_2\)O\(_3\) ALD, these two steps can then be repeated to increase the film thickness.

\textbf{Figure 1.2:} Schematic representation of the metallic tungsten ALD reaction sequence.

\subsubsection{1.1.2 Atomic Layer Deposition on Polymer Substrates}

One can utilize Al\(_2\)O\(_3\) ALD to deposit Al\(_2\)O\(_3\) films on nearly every substrate including polymers.19 Al\(_2\)O\(_3\) ALD introduces additional hydroxyl groups, typically making substrates more hydrophilic. ALD coating can make fibers more rigid, imparting hydrophobicity
because of reduced contact area between the water droplet and the fibers. Typically, ALD will have better results when a substrate surface already has hydroxyl groups to help initiate nucleation. For example, ALD of thin films on cotton or nylon fibers are highly conformal, with TEM showing an abrupt interface between the fiber and film because these polymers have a high concentration of surface active sites. In contrast, non-hydroxylated surfaces can inhibit nucleation or yield incomplete nucleation focused on substrate defect areas.

Al₂O₃ deposition on polypropylene occurs when TMA diffuses into the polymer subsurface. Sub-surface diffusion causes retention of excess precursors even upon purging. This leads to Al₂O₃ film nucleation and non-ideal CVD growth that increases the film thickness by introducing impurities.

1.1.3 Selective Atomic Layer Deposition (S-ALD)

As companies begin work producing integrated circuits with less than 10 nm feature sizes, standard patterning techniques, such as lithography, become much less applicable because of challenges maintaining edge definition and alignment to the underlying features. One solution to this problem is to limit the number of patterning steps and instead selectively deposit the desired material, such as a metal or dielectric. There are multiple strategies for selective atomic layer deposition (S-ALD). The simplest strategy is inherent selectivity, which takes advantage of the different surface chemistries of a patterned substrate. For example, the tungsten ALD schematic shown in Figure 1.2 shows that the precursors will selectively react with a Si-H or metal surface over an oxide surface. The Si-H or a metal surface reduces the WF₆ to W⁰ leading to film deposition. In contrast, the stability of an oxide
surface leads to a high energy barrier for precursor adsorption and accordingly tungsten nucleation. Using less reactive precursors can create an even larger barrier for deposition on “non-growth” surface. For example, using an alcohol instead of water as an oxygen source improved the selectivity of ZrO\textsubscript{2} ALD on patterned substrates. Yet despite the theoretically high thermodynamic barriers, deposition eventually occurs on the non-growth surface, typically due to the presence of defects.

Another common strategy is to passivate or block one of the surfaces on a patterned substrate and selectively deposit on the “unblocked” surface with ALD. These blocking layers are typically photoresists or self-assembled monolayers (SAMs). For example, the SAM octadecylphosphonic acid was used to selectively passivate copper surfaces over SiO\textsubscript{2} surfaces. For a SAM layer to be an effective blocking layer, it is crucial to form densely packed, highly hydrophobic monolayers. Yet regardless of the quality of the SAM film, deposition eventually occurs on the passivated surface, with nucleation occurring due to defect sites or as a result of non-planar substrates. One solution is to intermittently remove and regenerate the passivating SAM layer with an in-situ vapor-phase process.

Competitive adsorption of gaseous species can be utilized to generate a more selective S-ALD process. Instead of using a solid mask or SAM layer, ALD deposition is inhibited on non-growth surfaces by blocking precursor adsorption by simultaneously dosing a volatile reagent that will preferentially adsorb on the non-growth surface. For example, a ZrO\textsubscript{2} ALD process using tetrakis(dimethylamido)zirconium(IV) and water preferentially deposits ZrO\textsubscript{2} on an oxide surface over a metal surface, but selectivity is quickly lost. But by dosing
trimethylamine (TEA) simultaneously with the two reactants, the TEA will adsorb on the copper surface, preventing the ZrO$_2$ precursors from reacting on the non-growth surface.38 The shortcoming of this process is that deposition on the growth surface is often also depressed.

Finally, the overall selectivity of an S-ALD process can be increased by utilizing a selective etching process. An initial etch step can remove active sites on the non-growth surface to passivate it from undesired deposition. For example, ethanol vapor can etch the native oxide layer on copper, removing hydroxyl sites that could react with the ALD precursors.27,39 In addition, an etch-back step can be used periodically during a deposition. The etch step ideally removes or getters the nuclei on the non-growth surface with minimal etching of the film deposited on the desired growth surface.40

1.1.4 Molecular Layer Deposition (MLD)

Molecular layer deposition (MLD) is a deposition process analogous to ALD, but instead of depositing inorganic films such as an oxide or metal, MLD deposits purely organic or organic-inorganic films. For example, purely organic nylon-66 films have been deposited with adipoyl chloride and 1,6-hexanediamine.41 Another technique to generate organic films is through oxidative molecular layer deposition (oMLD), in which a monomer precursor is polymerized with an oxidant, generating a polymer film such as poly(3,4-ethylenedioxythiophene) (PEDOT).42,43
Deposition of organic-inorganic films referred to as “metalones” involves self-limiting half-reactions between organic and organometallic (or metal-halide) reactants. The metal precursors are typically metal precursors used in metal oxide ALD (e.g. TMA). These MLD include alucone,44,45 zincone,46,47 titanicone,48 and others.49,50 Figure 1.3 shows a proposed reaction sequence for an alucone film deposited with the precursors TMA and ethylene glycol.5,44 Most film reaction studies to date have focused on metal precursors reacting with ethylene glycol,44–46,48–50 glycerol,48,51 glycidol,52 and various carboxylic acids,53–55 generally leading to polymeric O-M-O-(CH\textsubscript{x})\textsubscript{y}-O-M-O repeat units as determined by spectroscopic and other analyses. Metalcone films have multiple possible applications including flexible electronics,47 sacrificial films to form conductive carbon-rich56 or porous oxide films,57,58 encapsulation and protective layers on chemically reactive fibers, and antireflective coatings.44

Figure 1.3: Reaction sequence for an alucone film deposited with a) TMA and b) ethylene glycol.
1.2 Chemical Vapor Etching and Atomic Layer Etching

1.2.1 Chemical Vapor Etching

The semiconductor industry is looking towards controllable etching techniques to supplement currently used thin film deposition techniques in order to design and manufacture smaller and more complicated transistor nodes. For example vapor phase etching of native oxide on silicon (Si) is an etching process of interest to the semiconductor industry. Hydrogen fluoride (HF) liquid etching of Si native oxide$^{59-61}$ is ubiquitously utilized in the semiconductor industry, but in-situ vapor etching helps limit the reformation of an interfacial oxide layer between Si and a deposited film.$^{10,62-66}$ For both solution and vapor phase etching, H$_2$O plays a significant role in HF etching of the native oxide, with significantly lower etch rates in anhydrous conditions.$^{67-70}$ In vapor phase etching, water creates a interfacial layer between the substrate and gas and acts as a proton donor and acceptor to catalytically activate the HF etch.60,68,69 Although HF is a promising etchant, the high HF concentrations can lead to uncontrolled etching.

1,1,1,5,5,5-Hexafluoroacetone (hHfac) is another acid that can dry etch oxides. Like HF, hHfac can break metal –oxygen bonds, forming volatile metal complexes. For example, hHfac71 and a hHfac and O$_3$/H$_2$O$_2$72,73 processes were used to etch ZnO and copper respectively. The etch products, Zn(hfac)$_2$ and Cu(hfac)$_2$ volatilize at temperatures as low as 150°C, enabling low temperature etching.$^{71-73}$ Issues arise for these etching techniques at higher temperatures, where above 200°C there is increased chemical degradation, leading to carbon and fluorine contamination in the films.$^{71-73}$
Steady-state plasma etching is a more common way to continuously dry etch a broader range of materials. By using high-energy species in techniques such as reactive ion etching (RIE), magnetron reactive ion etching, electron cyclotron resonance etching, ion beam etching, and plasma etching, it is possible to volatilize a much larger range of species than by chemical etching alone at relatively high etch rates.74 For example, RIE uses a partially ionized plasma glow discharge that generates reactive and non-reactive ions, electrons, photons, and multiple other species.75 By biasing the substrate it is possible to achieve directional or anisotropic etching, which is advantageous for creating trenches and other patterns.75 Yet these highly reactive species are prone to recombination and transport limited phenomena, making them less applicable for high-aspect ratio substrates.75,76 In addition, the reactive species can damage sensitive structure features, due to roughening or contamination, which is a major concern for the semiconductor industry.74

1.2.2 Atomic Layer Etching (ALE)

Atomic layer etching (ALE) is an etching technique based on the principles of ALD. ALE consist of a sequence of self-limiting surface reactions, but instead of depositing a film, ALE instead removes a layer of the substrate with each cycle.77 A typical ALE consists of two half reactions: an adsorption and activation step. In the adsorption step, the precursor modifies the substrate surface in a manner that reduces the activation energy required to remove that layer.78 For example, Si substrate is exposed to chlorine gas to form a SiCl$_3$ layer and an oxide is typically chlorinated or fluorinated with BCl$_3$75,79 or HF respectively.80-83 The adsorption step ideally modifies only the surface layer, passivating the substrate from further
modification. The modified layer is then removed via volatilization through an activation step. The activation step can consist of a thermally-driven ligand exchange80-83 as shown in Figure 1.440 or energy enhanced species such as argon bombardment as shown in Figure 1.5.75,77-79 The nature of the activation step can impact whether the etching is anisotropic or isotropic. ALE processes enable more conformal etching processes,77 with thermal-driven ALE having the added bonus of enabling etching in high aspect ratio structures.40

![Figure 1.4: General reaction scheme for a thermally-driven ALE process, in which unlike the energy-enhanced, surface volatilization depends on a ligand exchange reaction.](image)

![Figure 1.5: General reaction scheme for an energy-enhanced ALE process, consisting of an adsorption and activation step.](image)
There has been considerable work by George et al. studying selective etching of oxides using hydrofluoric acid (HF) in combination with different metal coregents. Specifically, HF was used to fluorinate metal oxides including Al₂O₃, HfO₂, and ZrO₂ creating a passivating metal fluoride layer. Exposing the metal fluoride layer to a co-reagent such as trimethylaluminum (TMA), tin acetylacetonate (Sn(acac)_2), diethylaluminum chloride (DMAC), or silicon tetrachloride (SiCl₄) can lead to a ligand-exchange reaction. Depending on the metal fluoride and the extent of the ligand-exchange, the modified surface layer will be volatilized, reforming the original substrate surface termination. For example, an AlF₃ surface layer is proposed to react with Sn(acac)₂ to form volatile Al(acac)₃ and SnF(acac)₂. Selective oxide etching has been achieved by adjusting the process temperature and selecting specific metal precursors that serve as ligand sources. For example, a HF/TMA ALE process was observed to etch Al₂O₃ but not ZrO₂ at 300°C.

1.3 Metal Organic Frameworks (MOFs)

1.3.1 General Metal Organic Framework Properties

Metal organic frameworks (MOFs) are inorganic-organic solid state compounds formed through coordination bonds between metal cations and organic ligands. The MOF structure consists of rigid pores that retain their structure upon solvent removal. MOFs exhibit a high degree of crystallinity, relatively high thermal stability, very high surface area, and a maximum porosity that exceeds that of zeolites. In addition, these inorganic-organic compounds can be tuned for specific applications, such as adjusting MOF pore size to control
transport through the pores or the replacement of ligands with other molecules.89 As a result, MOF materials are of considerable interest for gas storage and toxic gas adsorption.90

1.3.2 \textit{Properties of the UiO-66 MOF and MOF Analogs}

The UiO-6691 and NU-100092 series of MOF contain Zr\textsubscript{6} octahedral clusters and carboxylate linkers, giving rise to strong coordination bonds.93 This imparts these MOFs with strong thermal and chemical stability, in addition to the high surface area and porosity typical for MOF materials. It is also possible to tune the properties of UiO-66 by replacing the organic benzene dicarboxylate linker with analogous linkers with side groups including amine, nitro, and bromide side groups.94 The amine functionalized UiO-66-NH\textsubscript{2} creates more Lewis base sites and makes the MOF more “electron rich” in comparison to standard UiO-66.94 As a result, UiO-66-NH\textsubscript{2} can adsorb and degrade chemical warfare agents (CWA’s),95 act as a visible-light photocatalyst,96 and has double the CO\textsubscript{2} and CH\textsubscript{4} storage capacity relative to UiO-66.97

Another special property of the UiO-66 and NU-1000 MOF series is that they can transition between a hydroxylated and dehydroxylated state. In their hydroxylated state, the metal clusters are Zr\textsubscript{6}O\textsubscript{8} cores in octahedral geometry, with each octahedral face bridged by a μ_3-OH or μ_3-O moiety, corresponding to Zr\textsubscript{6}O\textsubscript{4}(OH)\textsubscript{4} stoichiometry. Treatment at elevated temperatures first leads to loss of physisorbed water and solvent, followed by release of two H\textsubscript{2}O from each metal cluster, yielding dehydroxylated Zr\textsubscript{6}O\textsubscript{6} that takes on a distorted structure.98,99 Rehydroxylation allows repopulation of the bridging hydroxyl groups. Dehydroxylation, generating missing linker sites, and tuning the zirconium nodes sites with
solvents such as methanol can increase the concentration of active sites available for catalysis and other applications.100,101

1.3.3 Properties of the CuBTC MOF

Another MOF of particular interest is copper benzene tricarboxylate (Cu\textsubscript{3}(BTC)\textsubscript{2}), referred to as CuBTC, HKUST-1, or MOF-199. CuBTC consists of Cu\textsubscript{3}(H\textsubscript{2}O)\textsubscript{2} dimer units linked by 1,3,5-benezenetricarboxylate groups (BTC). CuBTC is typically synthesized solvothermally by heating the MOF precursor solution for extended periods of time. The copper and organic precursor react to form sub-structures referred to as secondary building units (SBUs), which then combine to form the complete three-dimensional MOF structure.86 Each copper metal fills the residual axial coordination sites with weakly bound axial water ligands.87,102 The CuBTC structure as shown in Figure 1.6 consists of channels \textasciitilde9 Å in diameter surrounded by tetrahedral side pockets \textasciitilde5 Å in diameter.103 The channels and pockets are then interconnected by triangular windows \textasciitilde3.5 Å.86,104 Collectively, this generates the electrically neutral and three dimensional open framework.104
Due to its structure and composition, CuBTC is extremely hydrophilic and acts as a Lewis acid.102,105 MOF structures are fairly resilient due to the coordination bonds, but dissociation of the cluster-link bond will destroy the framework.87 Exposure to high temperatures and moisture can therefore cause CuBTC decomposition. Finally, CuBTC can be readily modified by removing water ligands from the copper center in order to expose metal sites for applications such as gas adsorption.106
1.3.4 Investigating Nucleation and Deposition of the CuBTC MOF

1.3.4.1 Homogenous and Heterogeneous MOF Nucleation

Immobilizing MOF materials on substrates demands an understanding of homogenous and heterogeneous nucleation. Homogenous nucleation occurs when crystals self-nucleate in solution.107 In the specific context of MOFs, homogenous nucleation likely occurs through the rapid SBU formation in solution.108 In comparison, heterogeneous nucleation occurs on pre-existing surfaces and is typically thermodynamically favored because of the lower energy barrier.107 For that reason, lowering the reaction temperature is one way to favor heterogeneous nucleation over homogenous nucleation. Heterogeneous growth on a substrate tends to yield strong attachment and helps limit unnecessary reactant depletion.102

1.3.4.2 Role of Substrate Surface Charge on CuBTC Nucleation

Metal oxide properties such as surface charge and dissolution rates are a function of the specific oxide and solution environment. Under aqueous conditions, metal oxides can consist in three main forms: MO−, MOH, or MOH2+.109 The dominant state will make the oxide surface behave more like an acid (electron recipient) or a base (electron donor). The isoelectric point (IEP) value is a way to quantify the relative acidity-basicity of a surface. The zeta potential is measured over varying pH values and the IEP is the pH value where the surface has a zero net charge (aka MOH). The reported IEP value ranges for the metal oxides of interest are as follows: Al\textsubscript{2}O\textsubscript{3}: 8-8.5, TiO\textsubscript{2}: 5-6.5, and ZnO: 8.6-9.1.109 These values convey that Al\textsubscript{2}O\textsubscript{3} and ZnO can be considered basic surfaces while TiO\textsubscript{2} is considered more acidic.
In addition, certain oxides dissociate in aqueous conditions in order to maintain thermodynamic equilibrium. A Pourbaix diagram shows the equilibrium phases at different solution pH and applied potentials, as shown in Figure 1.7. This shows that without an applied potential, ZnO will form Zn$^{2+}$ cations and etch under acidic aqueous conditions. Through similar analysis, one can determine that Al$_2$O$_3$ will also etch in acidic aqueous conditions, but TiO$_2$ is relatively stable.

![Pourbaix diagram for zinc at 25°C.](image)

Figure 1.7: Pourbaix diagram for zinc at 25°C.

Work studying heterogeneous CuBTC nucleation has shown that favorable copper adsorption increases overall CuBTC loading onto a substrate. For example, Abbasi et al. increased the heterogenous CuBTC nucleation on silk fibers by dipping the fibers in alkaline solution prior to MOF deposition. It was hypothesized that the alkaline solution deprotonates the silk carboxylic groups and the negative surface charge improves Cu$^{2+}$ retention. In agreement, Pinto et al. showed that there was only minimal heterogeneous CuBTC nucleation on their modified “acidic” cellulose. Finally, Zacher et al. observed that little to no growth
occurred on acidic SiO₂ surfaces while more basic Al₂O₃ substrates showed dense growth under the same reaction conditions. These results suggest that negatively charged or basic surfaces support CuBTC nucleation.

1.3.4.3 CuBTC Nucleation on Chemically Functionalized Surfaces

A substrate surface functionality can control if and how CuBTC nucleates or adheres to a surface. Through the use of SAMs, it was observed that CuBTC attaches to carboxylic acid (COOH) and hydroxyl (OH) terminated surfaces through the (111) and (100) crystal face respectively. The COOH sites interact with the copper metal centers by replacing the carboxylic acid groups from the MOF organic linker, BTC. OH sites on the other hand, coordinate to the MOF metal centers by replacing the axially coordinated water groups. The oriented attachment initiated during nucleation is maintained with additional MOF growth. Furthermore, Zacher et al. noted that CF₃ surfaces inhibited MOF nucleation.

1.3.5 Post-Synthetic Modification of MOF Substrates

Post-synthetic modification of MOFs is a strategy to impart desirable stability, catalytic activity, other functionality to the MOFs that are not present in the as-synthesized system. Solvent assisted linker exchange (SALE) or solvent assisted linker incorporation (SALI) are two techniques to generate MOFs that cannot be synthesized directly through de novo synthesis techniques. A general scheme for the concept of post-synthetic modification of MOFs is included in Figure 1.8. For example, different carboxylate-derived functionalities were inserted into the NU-1000 MOF via SALI in order
to create charge compensating sites. Kim et al. also showed that the zirconium metal centers in UiO-66 readily exchange with titanium (IV) and hafnium (IV) during extended soaking in metal-halide solution.

![Figure 1.8](image.png)

Figure 1.8: Post-synthetic modification of a MOF substrate.

Vapor-phase techniques based on chemical vapor deposition (CVD) and atomic layer deposition (ALD) have also been utilized for post-synthetic modification of MOFs. For example, Peterson et al. made the CuBTC MOF hydrophobic by coating the surface with a perfluorohexane film via plasma CVD. The Farha and Hupp group applied ALD in MOFs (AIM) to modify mesoporous NU-1000. The relatively large pore size, channel dimension, thermal stability and availability of reactive hydroxyl groups made them suitable for bulk reactive modification by the common ALD reactants trimethylaluminum (TMA) and diethylzinc (DEZ). In further work, this same group used bis(di-isoopylacetamidinato)cobalt(II) with either water or H$_2$S to uniformly deposit Co$^{2+}$ ions or Co$_9$S$_8$ respectively, inside NU-1000. The addition of Co$_9$S$_8$ sites makes the NU-1000 catalytically active for selective hydrogenation of m-nitrophenol over m-aminophenol.
Atomic layer deposition (ALD) of conformal thin films were carried out in a home-built ALD reactors, with a general reactor design included in Figure 2.1. A typical reactor chamber consists of a tube that is ~40-60 cm long and 4-10 cm wide to ensure that the flow is fully developed before reaching the samples. 306 stainless steel lines are plumbed from a carrier gas (nitrogen or argon) to the reactor. The deposition chamber and steel lines are heated resistively with heat tape or tube furnaces using PID controllers. Gas flow and precursor delivery are controlled with pneumatically actuated valves, which allows consistent precursor dosing and purging between exposures.

Figure 2.1: Schematic view of viscous flow reactor for ALD, fitted with an in-situ quartz crystal microbalance (QCM) probe.
2.2 Quartz Crystal Microbalance (QCM) Analysis

In-situ real-time monitoring of mass loading or etching on a substrate was monitored using quartz crystal microbalance (QCM) analysis. QCM analysis is based on the fact that quartz is a piezoelectric material. Applying alternating current to a properly cut quartz (typically AT quartz cut at \(\sim 35^\circ \)) induces oscillations in the crystal.\(^{137}\) Keeping other variables constant, the frequency of the oscillation depends on the thickness of the quartz crystal. Equation 2.1 shows how the change in crystal frequency \((\Delta f)\) correlates to a change in mass loading \((\Delta m)\).

\[\Delta f = -\frac{f_0^2 \Delta m}{C p_f A} \]

\(^{137}\) Where \(f_0\) is the fundamental frequency, \(C\) is a frequency constant, and \(p_f\) and \(A\) are the film density and area respectively. For the QCM analysis included in this document, \(f_0\) and \(C\) were set as 6,000,000 Hz and 228.304 Hz/\(\mu\)g respectively, with a deposition area \(A\) of 0.357 cm\(^2\). This equation holds as long as \(\Delta f/f_0\) is less than \(\sim 2\%\) because the film thickness is treated as an extension of the overall crystal thickness.\(^{137}\) It should also be noted that the crystal frequency is also impacted by changes in process temperature, which is a common source of error in QCM analysis. Finally, to ensure that deposition only occurs on the top crystal face, a gas purge is delivered to the crystal backside to act as a gas shield.\(^{46,138}\)

2.3 Fourier Transform Infrared Spectroscopy (FTIR) Analysis

Fourier Transform Infrared Spectroscopy (FTIR) is an absorption analytical technique that correlates an energy change between two quantized state in a molecule sample to the frequency of absorbed light in the infrared region.\(^{139}\) FTIR differs from other absorptive
spectroscopy in that it utilizes broadband light source in order to generate multiple frequencies of light simultaneously. The raw data, or interferogram, is then processed with a Fourier transform.

Depending on the molecule, a final processed spectrum consists of different vibrational modes, including stretching, bending, scissoring, rocking and twisting modes. The wavenumber of an absorption band conveys the relative energy of a molecular bond and can be utilized to identify the chemical species present in a sample. Furthermore, the local bonding environment can be characterized by shifts in bands. For example, FTIR analysis of a nitrate anion coordinated to a metal will include symmetric and asymmetric stretching bands in the spectra. The difference in wavenumber between these two bands indicates the degree of ion symmetry and whether the metal-nitrate bonding is monodentate or bidentate.

This analysis extents to other moieties as well, such as carboxylate groups.

FTIR analysis was performed in ThermoNicolet 6700 IR bench with DTGS detector for ex-situ analysis and MCT-A detector for in-situ analysis. The FTIR was operated in transmission mode with 200-2050 scans per spectra at 4 cm\(^{-1}\) resolution. A home-built reactor shown in Figure 2.2 was used for in-situ FTIR analysis. This reactor configuration allowed substrates to be analyzed by FTIR without exposing samples to ambient conditions. This was ideal for monitoring changes in surface chemistry following separate ALD half reactions. After each ALD half reaction, the reactor is purged of any reactants and gate-valves are opened, allowing the IR beam to pass through the substrate to the IR detector and
a spectrum is collected. This spectrum can then be analyzed with the previously collected spectrum used as the background.

Figure 2.2 Configuration for in-situ FTIR analysis of ALD processes

2.4 Spectroscopic Ellipsometry (SE)

Ellipsometry is an optical technique to measure the thickness of a film based on changes in the polarization of an incident light beam that reflects off a substrate. Specifically, spectroscopic ellipsometry (SE) utilizes multiple wavelengths in order to determine both the optical constants \((n, k)\) and thickness of a film. For a transparent film, the raw ellipsometric data, the phase difference \((\Delta)\) and the amplitude ratio \((\psi)\), are used in a Cauchy model to determine the film properties. It is also possible to use the raw data itself to monitor the extent of nucleation. For example, \(\Delta\) is particularly sensitive to changes in surface roughness, making it ideal for monitor the formation and coalescence of nuclei. \(\Delta\) can
also be plotted versus ψ over time or cycle number to determine if growth proceeds through a
layer or island growth model.137

2.5 \textit{X-Ray Photoelectron Spectroscopy (XPS)}

X-ray photoelectron spectroscopy (XPS) is a surface-sensitive analytical technique used to
monitor and characterize thin film nucleation and composition. Samples are exposed to x-
rays (generated by an Al or Mg target), ejecting core electrons from surface atoms in the
sample. Electrons that inelastically scatter, returning to their initial energy state, become the
spectra background. But electrons ejected from the surface atoms (the first few nm) are less
prone to scattering and generate the spectra. This is the basis for why XPS is a surface
sensitive technique. These emitted electrons have kinetic energies given by Equation 2.2:

$$KE = h\nu - BE - \varphi_s$$

(2.2)

Where KE is the kinetic energy of the ejected electron, $h\nu$ is the x-ray energy (1487 eV for
Al source), BE is the binding energy of the core electron, and φ_s is the spectrometer work
function. Using the intensity and relative binding energy of the resulting peaks, is it possible
to determine quantitative elemental composition analysis and the chemical state of the
element within the film. For example, a peak associated with a metal will have a lower
binding energy than the corresponding oxidized metal. The electronegative oxygen draws
electron density away from the metal, so that the remaining electrons bound to the metal are
more strongly bound and require more energy to remove them via the X-rays.
XPS analysis can also be used to determine the thickness of thin films by monitoring the attenuation of a substrate signal. For example, in this document, the extent of SiH₄ and WF₆ adsorption on TiO₂ was estimated by assessing the decay of the Ti 2p 3/2 signal based on equation 2.3 as follows:

\[
\frac{I}{I_0} = e^{-t\lambda}
\]

(2.3)

Where \(I_0\) and \(I\) are the initial and final intensities of the Ti 2p 3/2 signal before and after adsorption respectively, \(t\) is the film thickness, and \(\lambda\) is the inelastic mean-free path (IMFP) of the electron. NIST’s Electron Effective-Attenuation-Length (EAL) database was used to determine the IMFP value, which is a measure of photoelectron transport. The IMFP values depends on material properties of both the substrate and deposited film. The kinetic energy of the attenuated Ti 2p 3/2 signal was determined to be 1028.1 eV by subtracting the incident kinetic energy for the Al x-ray source (1486.6 eV) by the binding energy of the Ti 2p 3/2 signal (458.5 eV). The photoionization asymmetry parameter of Ti 2p 3/2 is 1.41 based on the EAL database. Next the IMFP value depends on properties of the deposited film. For example, for a SiO₂ film formed by SiH₄ adsorption, we used a band gap of 9 eV and a density of 2.65 g/cm². Finally, for the Specs XPS used in this study, X-Ray incidence angle is ~30° from surface and x-ray source to analyzer is ~60°.
CHAPTER 3. COPPER BENZENETRICARBOXYLATE METAL-ORGANIC FRAMEWORK NUCLEATION MECHANISMS ON METAL OXIDE POWDERS AND THIN FILMS FORMED BY ATOMIC LAYER DEPOSITION

The following work is reproduced with permission from Paul C. Lemaire, Junjie Zhao, Philip S. Williams, Howard J. Walls, Sarah D. Shepherd, Mark D. Losego, Gregory W. Peterson, and Gregory N. Parsons. ACS Applied Material Interfaces 2016, 8, 9514–9522.

3.1 Abstract

Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzene-tricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al₂O₃, ZnO, and TiO₂ layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form an oxide-metal-
source MOF, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

3.2 Introduction

Metal organic frameworks (MOFs) are inorganic-organic solid state compounds formed through coordination bonds between metal clusters and organic ligands and show great potential for filtration, catalysis, gas storage, and sensing applications. MOFs exhibit a high degree of crystallinity, relatively high thermal stability, very high surface area that is more defined than activated carbon. Despite these advantages, MOF crystals are typically formed as a powder which limits and constrains the way the MOFs can be used. Growing MOF thin films on functional substrates such as fibrous materials could therefore lead to new advances in MOF-based devices and composites.

Many methods have been attempted to integrate MOF materials onto fiber matrices including solvothermal, layer by layer, suspension sprays, and microwave-facilitated techniques. Conformal metal oxides or organic-inorganic films formed by atomic layer deposition (ALD) and molecular layer deposition (MLD) respectively can be directly converted into specific MOFs. Recent reports show that ALD metal oxide films can also serve as nucleation layers to promote the heterogeneous nucleation and growth of a wide variety of MOFs on polymer fiber substrates, including Cu-BTC, MOF-74, and UiO-66. While these methods are promising for immobilizing MOFs, little is known
about the initial key reaction steps during MOF nucleation and growth on ALD metal oxide thin films.

Several groups have explored nucleation and thin film growth of copper benzene-tricarboxylate (Cu-BTC) MOF32,113,114,155,156, referred to as Cu\textsubscript{3}(BTC)\textsubscript{2}, HKUST-1, or MOF-199. Results suggest for example, that the copper precursor reacts with the substrate to form stable Cu2+ or secondary building unit (SBU) species, thereby promoting subsequent Cu-BTC heterogeneous nucleation.113–117 Negatively charged or alkaline substrates appear to have a stronger interaction with the positively charged Cu2+ precursors, helping to facilitate Cu-BTC formation.32,113,114 Bunge et al.168 showed that immobilizing copper species via reactive dyes facilitated strong Cu-BTC attachment to fiber substrates. Work also shows that Cu-BTC nucleation can be adjusted to some degree by the substrate surface functionality. For example, the (111) and (100) crystal faces of the Cu-BTC shows preference to attach to COOH and OH substrate surface groups, respectively, whereas CF\textsubscript{3} surface groups tend to inhibit MOF nucleation.32–35

We previously reported that the Cu-BTC MOF crystal size and loading was affected by the substrate ALD metal oxide.166 We proposed that the different Cu-BTC deposition was possibly due to differences in substrate wettability, surface roughness, and isoelectric point (IEP) values.166 Herein, we specifically investigate these factors in more detail and show results of subsequent experiments that demonstrate MOF nucleation and growth on metal oxides involves the stabilization of intermediate hydroxy double salts (HDS), where the HDS structure depends strongly on the composition of the metal oxide used.
This work describes experiments exploring Cu-BTC nucleation on three representative ALD oxide thin film coatings, including Al₂O₃, ZnO and TiO₂. We analyzed the properties of the ALD functionalized fiber mats (referred to as “PP/ALD”) in aqueous conditions and how these substrates interact individually and sequentially with the two Cu-BTC precursors: copper nitrate (Cu(NO₃)₂) and 1,3,5-benzene-tricarboxylic acid (BTC) to form Cu-BTC. In addition, we further investigated the nucleation mechanism by using a series of metal oxide powders as catalysts, different copper precursors, and HDS powders.

3.3 Experiment

3.3.1 MOF Precursors and Materials

A list of the Cu-BTC solvothermal precursors, intermediate species, and products is included in Table 3.1. Non-woven polypropylene (PP) was acquired from the Nonwovens Cooperative Research Center (NCRC) at North Carolina State University. Non-woven PP fiber mats are ~0.3 mm thick, with fiber diameter ranging from 0.6 μm to 9.0 μm. Polypropylene (Type WPP) Membrane Circle, 47 mm in diameter with 0.45 μm diameter pores were purchased from GE Healthcare Life Sciences. 1,3,5-benzene-tricarboxylic acid (BTC), copper nitrate trihydrate (Cu(NO₃)₂), copper chloride dihydrate (CuCl₂), copper sulfate pentahydrate (Cu(SO₄)₂), and copper acetate monohydrate (Cu(OAc)₂) were purchased from Sigma Aldrich. Metal oxide powders including Al₂O₃, TiO₂, NiO, CaO, Cu₂O, MgO, CdO and ZnO were also purchased from Sigma Aldrich. Materials were used as received.
Table 3.1: List of Cu-BTC solvothermal precursors, intermediate species, and products

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Material</th>
<th>Chemical Formula</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-BTC</td>
<td>Copper BTC or HKUST-1 MOF</td>
<td>Cu$_3$(BTC)$_2$·3H$_2$O</td>
<td>MOF formed on surface</td>
</tr>
<tr>
<td>PP/ALD</td>
<td>Polypropylene fiber with ALD metal oxide</td>
<td>-</td>
<td>Substrate material</td>
</tr>
<tr>
<td>Cu(NO$_3$)$_2$</td>
<td>Copper Nitrate</td>
<td>Cu(NO$_3$)$_2$·3H$_2$O</td>
<td>MOF precursor</td>
</tr>
<tr>
<td>BTC</td>
<td>1,3,5-Benzene-tricarboxylic acid</td>
<td>C$_9$O$_6$H$_3$</td>
<td>MOF precursor (deprotonated)</td>
</tr>
<tr>
<td>(Cu,Cu)-HDS</td>
<td>Copper Hydroxy Nitrate</td>
<td>Cu$_2$(OH)$_3$NO$_3$</td>
<td>Surface intermediate</td>
</tr>
<tr>
<td>(Cu,Zn)-HDS</td>
<td>Copper, Zinc Hydroxy Nitrate</td>
<td>(Cu,Zn)$_2$(OH)$_3$NO$_3$</td>
<td>Surface intermediate</td>
</tr>
<tr>
<td>Cu$_2$O</td>
<td>Copper (I) Oxide</td>
<td>Cu$_2$O</td>
<td>Degradation product</td>
</tr>
<tr>
<td>Al-BTC</td>
<td>MIL-96</td>
<td>Al${12}$O(OH)${18}$(H$_2$O)$_3$(Al$_2$(OH)$_3$)[BTC]$_6$·24H$_2$O</td>
<td>Side product</td>
</tr>
<tr>
<td>Zn-BTC</td>
<td></td>
<td>[Zn$_3$(BTC)$_2$(H$_2$O)$_2$]·2H$_2$O</td>
<td>Side product</td>
</tr>
</tbody>
</table>

3.3.2 Substrate Preparation and Growth of Crystalline Materials

PP samples were coated with 20 nm of Al$_2$O$_3$, ZnO, or TiO$_2$ in a lab–made ALD reactor at ~1.0 Torr and 100°C. Clean silicon wafers, placed up- and down-stream of the PP confirmed uniform ALD.

To form Cu-BTC MOFs, 0.42 g BTC (2.0 mmol) in 12 mL of ethanol, and 0.87 g Cu(NO$_3$)$_2$ (3.6 mmol) in 12 mL of deionized water, were added simultaneously to a PTFE-lined pressure vessel containing neat (untreated) or ALD–treated fiber mats. This sequence is written: PP/ALD + Cu(NO$_3$)$_2$/BTC. (Figure 3.1). The pressure vessel was sealed and heated at 120°C in an Isotemp™ vacuum oven for times ranging from 2 to 20 hrs. After cooling for 2 hours, samples were removed under fume hood ventilation, rinsed in equivolume water-ethanol (20 min) and dried under vacuum (0.1 Torr, 120°C, 16 hours).
The PP/ALD fiber mats were massed prior to and following the solvothermal process to determine the Cu-BTC percent mass loading. The Cu-BTC loaded mats were weighed following drying, after sitting in ambient conditions for at least 15 min. Mass effects due to fiber degradation, oxide etching, and ambient water uptake by Cu-BTC were assumed to be negligible when comparing the relative Cu-BTC loading on the three PP/ALD samples.
Figure 3.1. Schematic of the standard and sequential solvothermal Cu-BTC synthesis. The fiber mat substrates coated with ALD metal oxides are added to the mixed solution where they wet and settle on the bottom of the PTFE-container. After full reaction at 120°C, the fiber mats are rinsed and dried.

The PP/ALD + Cu(NO₃)₂/BTC procedure was adapted for single or sequential reactant exposures, including Cu(NO₃)₂ or BTC only: (PP/ALD + Cu(NO₃)₂ or PP/ALD + BTC) or in
sequence (PP/ALD + Cu(NO$_3$)$_2$ + BTC or PP/ALD + BTC + Cu(NO$_3$)$_2$) as shown in Figure 1. For these sequences, the BTC (0.42 g) and Cu(NO$_3$)$_2$ (0.87 g) solutions were each 24 mL equivoolume ethanol-water solutions.

Metal oxide powders including Al$_2$O$_3$, TiO$_2$, NiO, CaO, Cu$_2$O, MgO, CdO and ZnO were also tested for MOF growth in place of the PP/ALD substrates. For each test, 0.21 g BTC (1.0 mmol) dissolved in 6 mL of ethanol was mixed in a scintillation vial with 0.44 g Cu(NO$_3$)$_2$ (1.8 mmol) dissolved in 6 mL of deionized water. After mixing the BTC and Cu(NO$_3$)$_2$ solutions, 0.18 mmol of the dry metal oxide powder was immediately added to the vial and allowed to react at room temperature for 5 minutes. The final solution was filtered and the collected powder was analyzed by X-ray diffraction (XRD).

To study the interaction of different copper precursors with ZnO powders, CuCl$_2$, Cu(SO$_4$)$_2$, or Cu(OAc)$_2$ were used in place of the Cu(NO$_3$)$_2$, using the same solution concentrations and reaction conditions.

In addition to metal oxide powders, we prepared powders of two hydroxy double salts: Cu$_2$(OH)$_3$NO$_3$ and (Zn,Cu)(OH)$_3$NO$_3$, abbreviated (Cu,Cu)-HDS and (Zn,Cu)-HDS, respectively, to study the Cu-BTC nucleation mechanism. To generate (Cu,Cu)-HDS, 24 ml of the Cu(NO$_3$)$_2$ water-ethanol solution was heated at 120°C for 24 hours. For the (Zn,Cu)-HDS, 0.36 mmol of dry ZnO powder was added to the Cu(NO$_3$)$_2$ solution at room temperature under constant stirring and allowed to react for 5 minutes. The resulting powders were rinsed and dried following the procedure previously described for the MOF/fiber mats.
The collected powder was characterized with Fourier transform infrared spectroscopy (FTIR).

3.3.3 Material Characterization

XRD was performed using a Rigaku SmartLab™ X-ray diffraction tool (Cu Kα X-ray source). After vacuum drying (120°C, 0.1 Torr, 12 h) the MOF BET surface area and pore size distribution was measured using a Quantachrome™ Autosorb-1C in the P/Po range of 0.05~0.31. The ALD thickness on silicon was measured with spectroscopic ellipsometry (J.A. Woollam Co., Inc.). FTIR was performed with a Thermo Nicolet™ 6700 IR bench with a deuterated triglycerine sulfate detector operated in transmission mode with 2050 scans at 4 cm⁻¹ resolution.

The isoelectric point of the coated and uncoated fibers was determined by measuring the zeta potential at variable pH with a SurPASS™ electrokinetic analyzer. Each run required 10 16.5 mm PP circular fiber mats with approximately 500 mL of a 0.001 M potassium chloride electrolyte solution. The pH was varied during testing by adding 0.05 M potassium hydroxide or 0.05 M hydrochloric acid solutions.
3.4 Results

3.4.1 Reaction products on ALD-coated fibers after Cu(NO₃)₂/BTC solvothermal exposure

During solvothermal synthesis, the crystal morphology and extent of Cu-BTC MOF growth on metal oxide-coated fibers depends on the composition of the ALD oxide. After 20 hours of solvothermal reaction at 120°C using a mixed Cu(NO₃)₂/BTC solution, we found the Cu-BTC crystals on the PP/ZnO, PP/Al₂O₃, and PP/TiO₂ were approximately 5, 30, and 50 µm in diameter respectively. On the PP/ZnO, PP/Al₂O₃ and PP/TiO₂ substrates the resulting Cu-BTC mass loading was found to be: 325%, 302% and 251% respectively. Likewise, the measured BET surface areas of the resulting PP/ALD/MOF samples were 764, 694 and 509 m²/g respectively. We note that the ZnO substrate showed the highest mass loading and the highest surface area per unit mass.

Using mixed Cu(NO₃)₂/BTC solutions, we investigated the nucleation kinetics of the MOF growth process on each of the ALD coating materials. Upon exposure to the unheated solvothermal solution the PP/ZnO substrate turned blue and XRD confirms formation of Cu-BTC MOF, as shown in Figure 3.2(a) and (b) respectively. In comparison, PP/Al₂O₃ turned a much lighter blue and PP/TiO₂ appeared to retain its original yellow color, consistent with less MOF growth. We note that the images in Figure 3.2(a) were collected after only 30 seconds of reaction at room-temperature consistent with very fast MOF formation on the ZnO. Using ZnO for rapid room-temperature Cu-BTC deposition is further discussed by Zhao et. al.¹⁶⁷
Figure 3.2(c) shows the Cu-BTC mass loading on Al_2O_3, TiO_2 and ZnO ALD coated fibers as a function of the solvothermal reaction time. All the substrates show an early nucleation phase followed by a sharp increase in mass gain leading to a plateau. This trend is ascribed to nucleation and initial growth of MOF on fiber substrate (i.e. heterogeneous growth), followed by more rapid homogeneous MOF growth of the MOF nucleation layer. The final mass loading on all three substrates is the same due to similar reactant consumption. After 2 hours, the weight of PP/ZnO substrates increased by 100%, and the weight of PP/Al_2O_3 increased by 50%. On the PP/Al_2O_3, XRD analysis showed formation of Al-BTC. The PP/TiO$_2$ showed modest measurable weight gain (>~10%) only after 7 hours of solvothermal reaction.
Figure 3.2: Cu-BTC nucleation on PP/ALD with (a) images (b) XRD after exposure to Cu-BTC solvothermal solution at room temperature for ~30 s and (c) percent Cu-BTC mass loading on PP/ALD plotted versus reaction time at 120°C. The PP/ZnO samples show a rapid Cu-BTC nucleation as shown by XRD and accompanied by a rapid color change from white to blue and an early initial mass loading.

To identify possible differences in the metal oxides that could influence MOF nucleation, we measured the surface isoelectric point (IEP) to determine the relative concentration of M-OH$^+$, M-OH, or M-O$^-$ surface sites on the ALD oxides at various pH values. The IEP describes the acidity or basicity of a surface, i.e., its tendency to donate or accept protons. As
shown in Figure 3.3, the uncoated PP fibers showed an IEP of 3.83, indicating an acidic surface. After coating with ZnO and Al₂O₃ the IEP increased to 9.52 and 8.88 respectively, indicating more basic surfaces, whereas TiO₂ remained acidic with an IEP near 5.91. These results correspond well with the reported IEP values for these bulk oxide materials.¹⁰⁹

![Zeta-potential as a function of pH for PP and PP/ALD samples](image)

Figure 3.3: Zeta-potential as a function of pH for PP and PP/ALD samples

To further explore the importance of the metal oxide in Cu-BTC nucleation, we tested various metal oxide powders (including oxides of Zn, Cd, Mg, Ni, Ca, Al and Ti) as reactants
for Cu-BTC formation. For each experiment, 0.18 mMol of oxide powder was added to the Cu(NO$_3$)$_2$/BTC solvothermal solution and allowed to react at room temperature for 5 minutes. The XRD patterns of the resulting products (Figure 3.4) confirm that Cu-BTC formed in the samples containing ZnO, CdO, and MgO. In addition to Cu-BTC, the MgO, NiO, and TiO$_2$ powders also led to other crystalline products, including [Cu(BTC-H$_2$)$_2$(H$_2$O)$_2$]:3H$_2$O,159,169 the one dimensional coordination polymer [Cu(C$_9$H$_4$O$_6$)(H$_2$O)$_3$]$_n$,170 and poorly-defined Cu-BTC material.171 Under the conditions studied, the CaO or Al$_2$O$_3$ powders led to no measureable crystal products observed by XRD.

![XRD graph](image)

Figure 3.4: XRD of powders generated by oxide facilitated synthesis showing rapid Cu-BTC deposition on ZnO, CdO, and MgO powders, and little growth on Cu$_2$O, NiO, TiO$_2$, and Al$_2$O$_3$.

38
3.4.2 Products on ALD-coated fibers exposed to BTC only under solvothermal conditions

To further isolate the reaction sequence, we studied PP/ALD substrates exposed to BTC in water-ethanol at 120°C. Figure 3.5 presents XRD results for the ALD-coated fiber mats after 20 hours of reaction. The XRD patterns are consistent with MOF products, Al-BTC (MIL-96)162,172,173 and Zn-BTC174,175 on the PP/Al\textsubscript{2}O\textsubscript{3} and PP/ZnO samples respectively. The XRD of the PP/TiO\textsubscript{2} substrates after reaction showed no measureable products. In separate experiments, the ALD oxides were exposed to heated acidic conditions (nitric acid/DI-water/ethanol solution at pH of ~2.5 at 120°C), similar to the Cu-BTC solvothermal conditions. We find that both Al\textsubscript{2}O\textsubscript{3} and ZnO etch readily, whereas the TiO\textsubscript{2} was relatively stable, consistent with reported Pourbaix diagrams.110,111 Therefore, the Al-BTC and Zn-BTC MOFs may result from etched metal cations that dissolve and react with BTC in solution to redeposit as MOF crystals. Similar mechanisms were proposed by KhALEskaya et al.161 and Bechelany et al.162 who analyzed conversion or ZnO and Al\textsubscript{2}O\textsubscript{3} to ZIF-8 and MIL-53.
Figure 3.5: (a) XRD of PP/ALD samples after 20 h in BTC solution, showing patterns consistent with Zn-BTC and Al-BTC MOFs. (b) Percent Cu-BTC mass loading as a function of reaction time using PP/Al$_2$O$_3$ and PP/Al-BTC substrates. The relatively slow MOF growth on Al-BTC indicates that this compound is not an important intermediate in the growth of Cu-BTC on Al$_2$O$_3$.

3.4.3 Reaction products after sequential BTC + $\text{Cu(NO}_3\text{)}_2$ solvothermal exposure

Following 20 h of BTC exposure at 120°C, the Al-BTC and Zn-BTC MOFs formed on ALD Al$_2$O$_3$ and ZnO were further exposed to 20 hours of Cu(NO$_3$)$_2$ solution. After reaction, XRD shows evidence for Cu$_2$O on both substrates, as well as a HDS. There was no evidence for metal exchange between either Al-BTC or Zn-BTC with dissolved Cu(NO$_3$)$_2$ to form Cu-BTC.

The kinetics of MOF formation on PP/Al$_2$O$_3$ and PP/Al-BTC during solvothermal growth using mixed Cu(NO$_3$)$_2$/BTC solution was also analyzed, and results are shown in Figure 3.5(b). The ~50% mass loading on the PP/Al$_2$O$_3$ between 0-4 hours is due to the formation of Al-BTC, which is confirmed by XRD analysis. Therefore, the rate of Cu-BTC nucleation on
Al-BTC is comparable to the ALD Al₂O₃, indicating that the Al-BTC does not act to facilitate Cu-BTC nucleation on Al₂O₃.

3.4.4 Reaction products after Cu(NO₃)₂ exposure

Figures 3.6(a) and (b) show infrared transmission and XRD analysis respectively after exposing ALD metal oxides on polypropylene to copper nitrate solution. After 1 hour of Cu(NO₃)₂ exposure at 120°C, the FTIR shows absorption bands in the 1500-1300 cm⁻¹ range, consistent with O-N-O₂ asymmetric and symmetric stretching modes, respectively,¹⁴⁰,¹⁷⁶,¹⁷⁷ as well as absorbance in the 3685-3150 cm⁻¹ region, consistent with significant hydroxyl content. Coordination of nitrate anions to copper affects the ion symmetry and the degeneracy of the ONO₂ modes, leading to splitting of the N-O₂ symmetric and asymmetric stretching bands.¹⁴⁰ A nitrate bound in a monodentate configuration shows a relatively small degree of band splitting, whereas bidentate binding produces a larger band splitting of ~85 cm⁻¹.
Figure 3.6: (a) FTIR of O-NO$_2$ stretching band for samples after exposure to Cu(NO$_3$)$_2$ solution for 1 h at 120°C. The narrower band splitting for the symmetric and asymmetric O-NO$_2$ stretching band suggests formation of a monodentate hydroxyl double salt (HDS) on PP/ZnO and predominantly bidentate Cu(NO$_3$)$_2$ on PP and PP/Al$_2$O$_3$ as shown in the structure diagrams. (b) XRD analysis of PP/ALD samples after 16 hours in Cu(NO$_3$)$_2$ solution. The reflections corresponding to a HDS are visible on each substrate, with the most intense signal on the ZnO surface.

For the PP substrate with no ALD metal oxide present, 1 h of Cu(NO$_3$)$_2$ exposure leads to relatively weak N-O$_2$ asymmetric and symmetric stretching modes with a band splitting of 187 cm$^{-1}$. The same process on the PP/Al$_2$O$_3$ substrate also leads to a relative weak signal, but more narrowly split peaks also begin to appear near 1355 and 1430 cm$^{-1}$. Reaction on the PP/ZnO substrate produces large N-O modes with a narrow band splitting of 62 cm$^{-1}$.

The wide band splitting observed on polypropylene and PP/Al$_2$O$_3$ substrates suggests the copper nitrate coordinates to a surface hydroxide unit, likely through a loss of coordinated water, retaining the bidentate nitrate configuration. On the PP/ZnO, the narrow band splitting
indicates a transition to a more weakly-held nitrate ion in a monodentate bonding configuration, indicative of a HDS.140,176,178,179

After exposing the ALD metal oxide films to Cu(NO$_3$)$_2$ solution for 16 hours, XRD patterns in Figure 3.6(b) are consistent with the crystal structure of (Cu,Cu)-HDS and (Zn,Cu)-HDS (i.e., Cu$_2$(OH)$_3$NO$_3$ and (Zn,Cu)(OH)$_3$NO$_3$ respectively), which are not readily distinguishable by XRD. It is notable that HDS also forms on PP/Al$_2$O$_3$ and PP/TiO$_2$. However, the HDS likely forms more quickly on ZnO because the metal oxide provides a metal source for (Zn,Cu)-HDS formation. After 20 hours of Cu(NO$_3$)$_2$ exposure, XRD analysis of PP/ALD samples show diffraction peaks at 36.5 and 42.4, consistent with conversion of Cu(NO$_3$)$_2$ to Cu$_2$O.180,181

3.4.5 Products on ALD metal oxides after Cu(NO$_3$)$_2$ + BTC sequential exposure

PP/ALD substrate were exposed to the Cu(NO$_3$)$_2$ precursor solution at 120°C for 16 h, followed by 0.5 h in the BTC solution at 120°C, and Figures 3.7 shows XRD results. Following the Cu(NO$_3$)$_2$ + BTC exposure, the XRD indicates Cu-BTC on the PP/ZnO, whereas the PP/Al$_2$O$_3$ and PP/TiO$_2$ show peaks only from HDS species. After longer (20 h) Cu(NO3)2 and BTC exposures, XRD shows Cu-BTC on all three oxide substrates. Also after long reaction times, XRD from the PP/ZnO and PP/TiO$_2$ substrates shows peaks consistent with Cu$_2$(OH)BTC(H$_2$O),182 a known degradation product of Cu-BTC.159,183
Figure 3.7: XRD spectra of PP/ALD samples after 16 h in Cu(NO\textsubscript{3})\textsubscript{2} solution followed by 0.5 h in BTC solution. Reflections from Cu-BTC are seen on the PP/ZnO sample, indicating that the HDS produced during the Cu(NO\textsubscript{3})\textsubscript{2} exposure (shown in Figure 3.4) converts rapidly to Cu-BTC on this surface. Reflections from Cu-BTC are not observed on the PP/TiO\textsubscript{2} or PP/Al\textsubscript{2}O\textsubscript{3} substrates.

For further analysis, (Cu,Cu)- and (Zn,Cu)-HDS powders were also allowed to react with a 8 mM BTC solution for 5 min at room temperature. Figure 3.8 shows FTIR analysis of the starting HDSs and the resulting products. The starting double salts show peaks at 1450 and 1325 cm-1 associated with the O-N-O\textsubscript{2} asymmetric and symmetric stretching, and hydroxyl bands in the 3500-3200 cm-1 region. Following the BTC exposure, the (Cu,Cu)-HDS sample did not show a significant change in the FTIR spectra (Figure 3.8(a)). However, starting from (Cu,Zn)-HDS (Figure 3.8(b)) the BTC exposure led to a marked increase in C=O, C=C, and =C-H band intensity, consistent with Cu-BTC MOF, as well as broadening of the hydroxy bands to ~2750 cm-1 indicative of the carboxylic acid O-H stretch in Cu-BTC MOF. The rapid formation (within 5 min) of Cu-BTC from the (Cu,Zn)-HDS suggests that BTC
anion undergoes rapid ion exchange with the nitrate anion in the hydroxy double salt. The FTIR results indicate that similar ion exchange is less rapid for the (Cu,Cu) HDS under the conditions studied.

Figure 3.8: FTIR spectra of (a) (Cu,Cu)-HDS and (b) (Cu,Zn)-HDS powders prior to and following exposure to a BTC solution at room temperature for 5 minutes. The relative change in C=O, C=C, and C-H bands suggest BTC is incorporated into the (Cu,Zn)-HDS and not the (Cu,Cu)-HDS. A reference Cu-BTC spectrum is included.

In addition to Cu(NO$_3$)$_2$, other copper reactants including CuCl$_2$, Cu(SO$_4$)$_2$, or Cu(OAc)$_2$ were combined with BTC and ZnO powder in water/ethanol mixtures to test for formation of hydroxy double salts and Cu-BTC. The resulting powder products were analyzed by FTIR, as shown in Figure 3.9. A reference spectrum for Cu-BTC powder is also shown. Using CuCl$_2$, Cu(SO$_4$)$_2$, and Cu(NO$_3$)$_2$, the IR spectra all show prominent peaks at 1623, 1373, and 728 cm$^{-1}$ consistent with Cu-BTC. For Cu(OAc)$_2$ however, the FTIR predominantly shows peaks consistent with unreacted Cu(OAc)$_2$.
Figure 3.9: FTIR spectra of powders generated by ZnO facilitated Cu-BTC deposition using different copper precursors. The results suggest that Cu-BTC was formed for each of the copper precursors except copper acetate (Cu(OAc)$_2$).

3.5 Discussion of Results

The results from surface and bulk analyses presented above allow us to consider various mechanisms for Cu-BTC nucleation growth on metal-oxide coated PP fibers and metal oxide powders. The isoelectric point analysis of the metal oxide surfaces showed higher surface pH than the uncoated polymer, and the more basic surface of all the metal oxide films studied likely helps promote precursor adsorption.32,113,114

The XRD results in Figure 3.5(a) shows that the BTC precursor reacts with ZnO and Al$_2$O$_3$ to form Zn-BTC and Al-BTC MOFs, respectfully. It is likely that these Zn- and Al-BTC MOFs form via etching of the metal oxide to form solvated metal ions that coordinate with the BTC precursor and crystalize on the fiber surface. Further kinetic growth analysis
shown in Figure 3.5(b) using pre-formed Al-BTC on PP/Al₂O₃ suggests that the Al-BTC is relatively inert to further Cu-BTC nucleation and growth. Some Cu-BTC crystals may adhere to these surfaces, consistent with Mao et al. who found that Al-BTC nanorods (MIL-110) can help link Cu-BTC to aluminum oxide, but these crystals are relatively weakly bound to the surface.

For the metal oxide surfaces studied here, the FTIR and XRD results in Figure 3.6 show a fast reaction between ZnO and Cu(NO₃)₂ leading to HDS-related peaks, ascribed to (Zn,Cu)-HDS. This assignment is consistent with reported time-of-flight mass spectroscopy data showing copper diffusion and reaction after exposing ALD ZnO to a room-temperature solution containing Cu(NO₃)₂. The HDS is comprised of stacked metal\(^{2+}\) ions (i.e. Cu\(^{2+}\) and/or Zn\(^{2+}\)) in distorted octahedral sites weakly bound to intercalated NO₃\(^{-}\) anions. A variety of hydroxy double salts can be readily prepared by precipitation, hydrolysis, or anion exchange techniques, and they are known to support anion exchange, where the NO₃\(^{-}\) coordinated to a metal center can be displaced by various anions including benzoate, alkyl sulfates, and radioactive anions such as iodide.

Conversion of ALD ZnO to (Zn,Cu)-HDS could proceed via Cu(NO₃)₂ adsorption followed by rapid Zn\(^{2+}\)-Cu\(^{2+}\) ion exchange, where the Zn cations in (Zn,Cu)-HDS weaken the degree of covalent bonding between Cu\(^{2+}\) and NO₃\(^{-}\). This mechanism is consistent with Aguirre et al., who found that Mg(OH)₂ promotes fast formation of (Cu,Cu)-HDS at room temperature, likely through facile nitrate ion transfer from Cu\(^{2+}\) to Mg\(^{2+}\). The (Zn,Cu)-HDS is an important intermediate for Cu-BTC formation. This is shown in the XRD and FTIR
results in Figure 3.7 and 3.8(b) respectively, which confirm that Cu-BTC forms via sequential reaction of ZnO with Cu(NO3)2 and BTC. The (Zn,Cu)-HDS formed upon Cu(NO3)2 exposure reacts quickly with BTC to form Cu-BTC.

The XRD results in Figure 3.6(b) also show HDS formation on Al2O3 and TiO2. For the Al2O3 and TiO2, the HDS peaks are ascribed to (Cu,Cu)-HDS, where the Al+3 and Ti+4 ions preclude mixed-metal HDS structures. Figure 3.8(a) shows that the (Cu,Cu)-HDS on the Al2O3 and TiO2 does not readily form Cu-BTC, likely due to relatively slow nitrate-BTC anion exchange at the studied conditions.

The results of experiments using metal oxide powder and different copper salt precursors are also consistent with this scheme for Cu-BTC MOF formation. The XRD results in Figure 3.4 show that MgO, CdO, and ZnO powders all exhibited good Cu-BTC nucleation at room temperature. The Mg,176,187 Cd,190 and Zn176,180,187 oxides are known to form hydroxy salts with crystal structure similar to (Zn,Cu)-HDS, in turn promoting Cu-BTC nucleation. Furthermore, in addition to Cu(NO3)2, results in Figure 3.9 show that in the presence of ZnO, CuCl2 and Cu(SO4)2 also readily yield Cu-BTC. CuCl2, and Cu(SO4)2 are known reactants for HDS formation.186,191–193 The Cu(OAc)2 can also react with ZnO to yield a HDS, but the reaction is slow and requires relatively high temperature to achieve appreciable rates.186 Further study is necessary to understand how the lability of HDS ligands affects the Cu-BTC nucleation and structural properties, such as porosity.
3.6 Conclusions

Cu-BTC MOF thin films can form on ALD metal oxides, including Al₂O₃, ZnO and TiO₂. The rate of Cu-BTC MOF nucleation depends strongly on the composition of the metal oxide, with notably faster growth on ZnO compared to Al₂O₃ and TiO₂. The fast rate on ALD ZnO is ascribed to the facile formation of a mixed zinc-copper hydroxy double salt, (Zn,Cu)(OH)₃NO₃, or (Zn,Cu)-HDS, which does form on TiO₂ or Al₂O₃. The (Zn,Cu)-HDS allows rapid ion exchange with the BTC³⁻ in solution yielding covalently surface-bound Cu-BTC crystals that then facilitate further Cu-BTC growth. The facile reaction between ZnO and Cu(NO₃)₂ to form (Zn,Cu)-HDS, also extended to CdO and MgO powders to produce analogous HDS structures. Substituting Cu(NO₃)₂ with other copper salts, including CuCl₂ and Cu(SO₄)₂ which have not previously been reported for Cu-BTC formation, also yielded (Zn,Cu)-HDS powders that reacted with BTC to form Cu-BTC. This insight into the MOF thin film nucleation can enable MOF crystal and thin film growth processes for a variety of advanced applications.

3.7 Acknowledgement

The authors acknowledge funding from ECBC through grant #W911SR-07-C-0075 and from the Joint Science and Technology Office through Army Research Office grant #W911NF-13-1-0173. The authors acknowledge the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation.
CHAPTER 4. REACTANT-DEPENDENT SURFACE NODE DISTORTION DURING ATOMIC LAYER DEPOSITION ON UiO-66-NH$_2$ METAL ORGANIC FRAMEWORK

The following work is reproduced with permission from Paul C. Lemaire, Dennis T. Lee, Junjie Zhao, and Gregory N. Parsons. “Reactant-Dependent Surface Node Distortion during Atomic Layer Deposition on UiO-66-NH$_2$ Metal Organic Framework.” Submitted to The Journal of American Chemistry. 2017

4.1 Abstract

Metal organic frameworks (MOFs) are chemically functionalized micro- and mesoporous materials with high surface areas, and are attractive for multiple applications including filtration, gas storage, and catalysis. Post-synthetic modification (PSM), via solution or vapor-based techniques, is a way to impart additional complexity and functionality into these materials. There is a desire to shift towards vapor-phase methods in order to ensure more controlled modification and more efficient reagent and solvent removal from the modified MOF material. In this work we explore how the metal precursors titanium tetrachloride (TiCl$_4$) and trimethylaluminum (TMA), commonly used in atomic layer deposition, react with UiO-66-NH$_2$ MOF. Using in-situ quartz crystal microbalance (QCM) and Fourier transform infrared spectroscopy (FTIR) at 150 and 250°C, we find that the ALD precursors react with μ_3-OH hydroxyl and μ_3-O bridging oxygen groups on Zr$_6$ nodes, as well as oxygen from carboxylate linker groups. The reactions occur predominantly at the crystal surface, with TiCl$_4$ exhibiting greater diffusion into the MOF subsurface. FTIR analysis suggests that
at 150°C, both TiCl₄ and TMA reversibly dehydroxylate the hydroxylated UiO-66-NH₂, which is accompanied by distortion of the zirconium metal clusters. Finally, we show that TiCl₄ is able to react with the dehydroxylated UiO-66-NH₂ structure, suggesting that TiCl₄ is able to react directly with the carboxylate groups on the organic ligand or the bridging oxygens in the metal-clusters. Better understanding of chemical and thermally-driven MOF dehydroxylation reactions can be important for improved post-synthetic modification of MOFs.

4.2 Introduction

Metal organic frameworks (MOFs) are inorganic-organic solid state compounds formed through coordination bonds between metal clusters and organic ligands and show great potential for filtration, catalysis, gas storage, and sensing applications. MOFs exhibit a high degree of crystallinity, relatively high thermal stability, very high surface area that is more defined than activated carbon. In addition, various isoreticular MOF structures are readily attained with different reactive or surface area properties by modifying metal centers or linker composition during hydrothermal synthesis.

UiO-66 and NU-1000 are particularly interesting because of their thermal and chemical stability. These MOFs contain Zr₆ octahedral clusters and carboxylate linkers, giving rise to strong coordination bonds that promote stability. In their hydroxylated state, the metal clusters are Zr₆O₈ cores in octahedral geometry with each octahedral face bridged by a μ₃-OH or μ₃-O moiety, corresponding to Zr₆O₄(OH)₄ stoichiometry. Treatment at elevated
temperatures first leads to loss of physisorbed water and solvent, followed by release of two \(\text{H}_2\text{O} \) from each metal cluster, yielding dehydroxylated \(\text{Zr}_6\text{O}_6 \) that takes on a distorted structure.\(^{98,99}\) Rehydroxylation allows repopulation of the bridging hydroxyl groups. Analysis of the metal clusters in UiO-66 and NU-1000 via X-ray scattering indicates that the distortion coincides with a transition from the original cubic symmetry to the more asymmetric monoclinic geometry, where the phase transition and dehydroxylation are typically coincident but not necessarily physically interrelated.\(^99\) This structural transition is reversible but kinetically slow, requiring several days to weeks for reconfiguration upon water exposure.\(^99\)

Researchers have also turned attention to understanding post-synthetic modification of MOFs to impart desirable stability,\(^{118-120}\) catalytic activity,\(^{121,122}\) other functionality to the MOFs that are not present in the as-synthesized system. Solvent assisted linker exchange (SALE)\(^{123,124}\) or solvent assisted linker incorporation (SALI)\(^{125,126}\) are two techniques to generate MOFs that cannot be synthesized directly through \textit{de novo} synthesis techniques. Kim et al. also showed that the zirconium metal centers in UiO-66 readily exchange with titanium (IV) and hafnium (IV) during extended soaking in metal-halide solution.\(^{127}\)

Vapor-phase techniques based on chemical vapor deposition (CVD) and atomic layer deposition (ALD) have also been utilized for post-synthetic modification of MOFs.\(^{92,108,128-136}\) Table 4.1 summarizes some of the reported efforts using CVD and ALD to deposit metals, metal oxides, sulfides, and other materials in or on various metal-organic frameworks. For example, Peterson et al. made the CuBTC MOF hydrophobic by coating the surface with a
perfluorohexane film via plasma CVD.131 The Farha and Hupp group applied ALD in MOFs (AIM)92,132,133 to modify mesoporous NU-1000. The relatively large pore size, channel dimension, thermal stability and availability of reactive hydroxyl groups made them suitable for bulk reactive modification by the common ALD reactants trimethylaluminum (TMA) and diethylzinc (DEZ).92 Diffuse reflectance infrared Fourier transform spectroscopy showed that the TMA reacts with all the terminal hydroxyl groups on the hydroxylated $\mathrm{Zr_6(\mu_3-O)_4(\mu_3-OH)_4}$ metal cluster sites in NU-1000, whereas the DEZ tends to react predominantly with the hydroxyl groups pointing into the channels. This selectivity for -OH sites has been ascribed to favorable dispersion interactions between the DEZ precursor and the coordinated linkers, promoting precursor localization and hence more favorable overall reaction kinetics within the small pore regions.197 In further work, this same group used bis(di-isoopylacetamidinato)cobalt(II) with either water135 or $\mathrm{H_2S}$133 to uniformly deposit $\mathrm{Co^{2+}}$ ions or $\mathrm{Co_9S_8}$ respectively, inside NU-1000. The addition of $\mathrm{Co_9S_8}$ sites makes the NU-1000 catalytically active for selective hydrogenation of m-nitrophenol over m-aminophenol.133
Table 4.1. Reported vapor-phase deposition of materials on MOF substrates

<table>
<thead>
<tr>
<th>MOF</th>
<th>Deposition Technique</th>
<th>Deposited Material</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOF-5</td>
<td>CVD</td>
<td>Fe, Pt, Au, Cu, Zn, Sn</td>
<td>108</td>
</tr>
<tr>
<td>MOF-5</td>
<td>CVD</td>
<td>Ru</td>
<td>129</td>
</tr>
<tr>
<td>UiO-66</td>
<td>CVD/SVI</td>
<td>Cr(CO)_3</td>
<td>130</td>
</tr>
<tr>
<td>Cu-BTC</td>
<td>PECVD</td>
<td>C_{6}F_{14}</td>
<td>131</td>
</tr>
<tr>
<td>NU-1000</td>
<td>ALD</td>
<td>Al_{2}O_{3}, ZnO</td>
<td>92, 99</td>
</tr>
<tr>
<td>NU-1000</td>
<td>ALD</td>
<td>In_{2}O_{3}, Al_{2}O_{3}</td>
<td>132</td>
</tr>
<tr>
<td>NU-1000</td>
<td>ALD</td>
<td>Co_9S_8</td>
<td>133</td>
</tr>
<tr>
<td>MIL-101</td>
<td>ALD</td>
<td>NiO</td>
<td>134</td>
</tr>
<tr>
<td>NU-1000</td>
<td>ALD</td>
<td>Co^{2+}, Ni^{2+}</td>
<td>135, 136</td>
</tr>
<tr>
<td>NU-1000</td>
<td>ALD-ME</td>
<td>Cu, Ni, Co</td>
<td>128, 198</td>
</tr>
</tbody>
</table>

The mesoporous structure of NU-1000 provides pores and channels large enough to transport and incorporate TMA and DEZ throughout the MOF. There is also interest in how ALD reactions can be used to selectively modify the surface of microporous MOF crystals. Forming thin surface molecular barrier layers on MOFs have applications as capping layers for retaining weakly adsorbing molecules or selective gas filtration. In this work, we combined in-situ FTIR and quartz crystal microbalance (QCM) analyses with ex-situ TEM to explore ALD vapor-phase routes for modification of UiO-66-NH₂ crystals. We provide evidence that the ALD precursors are able to react with μ₃-OH hydroxyl and μ₃-O bridging
oxygen groups on Zr₆ nodes, and oxygen from carboxylate linker groups. The size and steric limitation of the ALD precursors impedes their complete access into the microporous UiO-66-NH₂ network, but we show that some precursor transport can proceed into the near-surface regions of the exposed crystal facets. Additionally, the ALD precursors can promote reversible dehydroxylation and distortion of the Zr₆(μ₃-O)₄(μ₃-OH)₄ clusters. Transmission electron micrographs confirm atomically abrupt interfaces between UiO-66 and highly conformal ALD thin film over-layers.

4.3 Experimental

4.3.1 List of materials

Aminoterephthalic acid (99%), zirconium tetrachloride (99.99%), and anhydrous dimethylformamide (99.8%) were purchased from Sigma Aldrich and used without further treatment. Trimethylaluminum (TMA) and titanium tetrachloride (TiCl₄) were obtained from Strem Chemicals Inc. and used without further treatment. Deionized water (H₂O) was used as the co-reactant. We monitored the ALD deposition with silicon wafers [100] purchased from WRS Materials and with QCM crystals purchased from Inficon. For the carrier and purge gas, dry nitrogen (99.999%) was passed through an Entegris™ GateKeeper inert gas purifier to remove any residual water before entering the reactor.

4.3.2 Synthesis of UiO-66-NH₂ powder

To form UiO-66-NH₂ MOFs, 0.08 g of zirconium tetrachloride (0.3 mmol) was added to 20 mL of dimethylformamide and mixed room temperature until completely dissolved. 0.062 g
2-aminoterephthalic acid (0.3 mmol) was added to the zirconium tetrachloride solution, mixed for three minutes and then added to a teflon-lined pressure vessel. The pressure vessel was sealed and heated at 120°C in an Isotemp™ vacuum oven for 24 hours. After cooling for 2 hours, the MOF powers were collected by filtering the reactant solution. The powders were washed in DMF and then exchanged in pure ethanol for 3 days and dried under vacuum at 120°C.

4.3.3 Immobilization of UiO-66-NH₂ crystals on substrates

To attach the MOF crystals on planar substrates, it was necessary to create a MOF suspension. 0.1 g of UiO-66-NH₂ powder was added to 20 mL of methanol and the suspension was sonicated for 1 hour at room temperature. Using a spin coater, 75 µL of the suspension was dropped onto 1 cm² silicon wafer. The spin coater recipe consisted of spinning the wafer at 500 rpm for 15 sec followed by an increased rate of 2500 rpm to remove any weakly attached crystals. This was repeated 5 times and then the samples were dried using compressed nitrogen. The same procedure was used for immobilizing UiO-66-NH₂ onto QCM crystal substrates.

4.3.4 Reactant exposure and ALD reactor conditions

The UiO-66-NH₂ crystals were exposed to the ALD precursors in a homebuilt hot wall viscous flow vacuum reactor described previously. The nitrogen carrier gas flow rate was maintained at 165 standard cubic centimeters per minute (sccm) for an operating pressure of ~0.6 Torr. The TiCl₄, TMA, and H₂O precursor bottles were maintained at room temperature.
The inlet and outlet gas lines were temperature controlled with heating tape to prevent precursor condensation in the reactor. The reactor temperature was held at 150 or 250°C. Samples were heated at the set-point temperature for at least 2 hr prior to deposition or analysis. For FTIR analysis at 250°C, the reactor was held at 150°C and a sample holder with mounted cartridge heaters was used to heat samples to 250°C.

A typical ALD cycle followed a TiCl₄(Hold)/N₂/H₂O(Hold)/N₂ sequence with dose, exposure and purge times of 1.5(60)/120/1.5(60)120 s respectively. A needle valve reduced the TiCl₄ and TMA precursor dose so that the 1.5 s dose corresponds to ~50 mTorr pressure increase. The longer exposure time during the 60 s hold yielded a ~2.7×10⁶ L exposure.

4.4 Ex-situ characterization of UiO-66-NH₂ powders

After vacuum drying (120°C, 0.1 Torr, 12 h) the MOF BET surface area and pore size distribution was measured using a Quantachrome™ Autosorb-1C in the P/P₀ range of 0.02-0.07. The external surface area was estimated using the V-T method in the P/P₀ range of 0.1-0.5. XRD was performed using a Rigaku SmartLab™ X-ray diffraction tool (Cu Kα X-ray source). Transmission electron spectroscopy (TEM) was performed on a JEOL 2000FX. UiO-66-NH₂ crystals were imaged using an FEI™ Verios 460L scanning electron microscope (SEM), in which samples were sputter-coated with 5~10 nm of Au-Pd before imaging.
4.5 *In-situ characterization of ALD processes*

The ALD process conditions were characterized with two in-situ techniques, quartz crystal microbalance (QCM) and Fourier transform infrared spectroscopy (FTIR) analyses. For QCM analysis, a 6 Hz gold coated QCM crystal sensor (Inficon) was mounted onto the QCM housing with conductive epoxy as previously described. The mass change signals were detected by an Inficon™ SQM-160 monitor and recorded using a home designed LabVIEW™ program. The UiO-66-NH₂ loading on the crystals was estimated using the crystal frequency at 150°C for a bare crystal and the crystal with the immobilized UiO-66-NH₂ crystals. QCM results are shown as mass loading per ng of MOF to compensate for variability in the UiO-66-NH₂ immobilization on the QCM crystals.

In-situ FTIR analysis was performed with a ThermoNicolet™ 6700 FTIR bench with a deuterated triglycine sulfate detector incorporated into a homebuilt ALD reactor described previously. Spectra were taken following the metal and water exposures after the chamber was purged for two minutes. FTIR spectra were collected at the temperature the samples were exposed to the ALD precursors. Gates to the FTIR windows were then opened and 500 scans at 4 cm⁻¹ resolution in the frequency range of 4000 to 650 cm⁻¹. An MCT-A detector was used through CsI FTIR windows. To highlight the changes in the spectrum upon exposure, data were collected, processed and presented in differential mode, using the previous collected spectrum as the reference.
4.6 Results

4.6.1 As-formed UiO-66-NH$_2$ MOF

The UiO-66-NH$_2$ powder formed via the solvothermal synthesis was characterized via SEM, XRD, BET, and FTIR. SEM images in Figure 4.1 show ~150-200 nm octahedral crystals consistent with previous reports of UiO-66-NH$_2$. Figure 4.1 also shows a comparison of the as-formed UiO-66-NH$_2$ powder XRD, exhibiting the characteristic peaks of the UiO-66 diffraction pattern. In addition, BET analysis shows that the UiO-66-NH$_2$ crystals have an overall surface area of 1008 m2/g, and the corresponding external surface area of the crystals is 127 m2/g, consistent with reported values.

Figure 4.1: SEM image and XRD patterns of as-formed UiO-66-NH$_2$ powder. The UiO-66-NH$_2$ XRD pattern is compared to a UiO-66 pattern simulated from CCDC 837796.

Figure 4.2 shows spectra collected from FTIR of the UiO-66-NH$_2$ structure at 150°C before and after annealing in an inert environment at 250°C. Both spectra show strong peaks at...
1569, 1417, and 1380 cm$^{-1}$ consistent with asymmetric and symmetric carboxylate (COO$^-$) bonding in the organic linker.94,97,98,200 The COO$^-$ peak at 1417 cm$^{-1}$ which is present in the UiO-66-NH$_2$ spectrum94,97,200 is typically not observed in the non-amine UiO-66,201,202 likely due to differences in the local electron density in the carbon ring induced by the amine group.96,203 A peak at 1252 cm$^{-1}$ and peaks at 3512 and 3402 cm$^{-1}$ respectively indicate the C-N stretching and the N-H stretching modes of a primary amine (-NH$_2$).94,97,200 A small shoulder at 1626 cm$^{-1}$ is assigned to the H-N-H scissoring mode.94

In the as-formed MOF, the bottom-most FTIR spectrum in Figure 4.2a shows a band at 3668 cm$^{-1}$ assigned to hydroxyl (OH) stretching, and features at 680 and 735 cm$^{-1}$ corresponding to Zr-O bands. After heating the UiO-66-NH$_2$ to 250°C for 12 hr, there is a small loss at ~1700 cm$^{-1}$ due to the loss of residual DMF,204 along with significant loss of OH modes. We also note a decrease in the Zr-O feature at 735 cm$^{-1}$ and an increase at 764 cm$^{-1}$. In the skeletal region, the FTIR spectrum of the symmetric cubic ZrO$_2$ is expected to show three Zr-O features near 530, 625 and 725 cm$^{-1}$.205 In contrast, in monoclinic ZrO$_2$, the Zr atoms are seven-fold coordinated, with half of the oxygen atoms in planar trigonal coordination and the other half arranged in a distorted tetrahedral geometry. This decreased symmetry in the oxygen environment leads to a higher frequency oscillation for asymmetric Zr-O stretching.205 In the as-formed MOF, the FTIR modes at 680 and 735 cm$^{-1}$ agree with the expected cubic structure for the Zr$_6$(μ$_3$-O)$_4$(μ$_3$-OH)$_4$ node. Upon heat treatment, the decrease at 735 and increase at 764 cm$^{-1}$ is consistent with the node structure transforming from the 8-fold coordinated cubic Zr$_6$O$_4$(OH)$_4$ to the 7-fold coordinated dehydroxylated monoclinic
Zr₆O₆, as shown schematically in Figure 4.2c. The thermal treatment also leads to loss of the COO⁻ bands at 1569, 1417, and 1380 cm⁻¹. The positive-going shoulder on the high-wavenumber side of loss peaks indicates peak blue-shift, in agreement with that reported by Valenzano et al. This shift is further evidence for the expected transition from Zr₆O₄(OH)₄ to disordered Zr₆O₆. Similar trends in COO⁻ modes upon dehydroxylation were reported after thermal treatment of MOF-74.
Figure 4.2: a) FTIR spectra of UiO-66-NH$_2$ at 150 (black) and 250°C (red) and differential spectra (blue) and b) an expanded view from 2000-600 cm$^{-1}$, showing loss of the hydroxyl bands (OH) and loss of the carboxylate bands (COO$^-$) with elevated heating. Panel c) shows molecular structure of the hydroxylated (Zr$_6$O$_4$(OH)$_4$) and dehydroxylated (Zr$_6$O$_6$) metal clusters, including 4 carboxylate groups out of the expected 12 aminoterephthalic acid linkers. Potential reaction sites for the ALD precursors include: 1) hydroxide groups, 2) bridging oxygens, and 3) coordinated oxygen on the carboxylate groups.

4.6.2
UiO-66-NH$_2$ Reactions with TiCl$_4$ and TMA

As a first experiment, we set out to determine the amount of precursor needed to completely react with or “saturate” the UiO-66-NH$_2$ MOF. MOF powder samples were exposed to 10
TiCl$_4$ sequential exposure dose steps as outlined in the Experimental section, and results were monitored by in-situ FTIR and by QCM analysis. Figure 4.3a shows the initial UiO-66-NH$_2$ FTIR spectra and in-situ difference spectra following the 1, 2, 3, 5, and 10 TiCl$_4$ exposure steps. The difference spectra represent the net change from the previously collected spectrum. The first TiCl$_4$ exposure at 150°C produces a loss at 1700 cm$^{-1}$ attributed to DMF desorption. The C-N and N-H bands at 1252 and 1626 cm$^{-1}$ exhibit losses, which we attribute to chlorination of the amine groups by byproduct HCl formed upon ligand exchange between TiCl$_4$ and node hydroxyl groups.207 A red-shift in the N-H stretching modes is also observed (not shown), consistent with amine chlorination. A slight blue shift in the C-N band, possibly indicates that TiCl$_4$ weakly and reversibly coordinates to the amine group.$^{208-211}$

![Differential FTIR spectra of hydroxylated UiO-66-NH$_2$ powders exposed to repeated exposures of a) TiCl$_4$ and b) H$_2$O at 150°C. The H$_2$O exposure in b) follows a TiCl$_4$ exposure equivalent to the first exposure in a). The starting UiO-66-NH$_2$ spectrum at 1/20th scale collected before any exposure is included in each panel as reference.](image-url)
The TiCl$_4$ exposure also produces loss of the OH signal at 3668 cm$^{-1}$, the Zr-O bands at 680 and 735 cm$^{-1}$ and the COO$^-$ signals at 1569, 1417, and 1380 cm$^{-1}$. There is also a small increase at 764 cm$^{-1}$. We note that the observed losses in the COO$^-$ and OH signals, and changes in the Zr-O features follow the trend observed in Figure 4.2 for thermally-driven dehydroxylation. In this case, the dehydroxylation occurs at significantly reduced temperature (150 vs 250°C) and only within the near-surface of the MOF crystals accessed by the ALD precursor (vide infra). Between the 5th and 10th TiCl$_4$ exposure, the FTIR spectrum undergoes only very small changes, consistent with TiCl$_4$ reaction saturation.

Following TiCl$_4$ saturation, the effect of H$_2$O dosing on the FTIR spectra are given in Figure 4.3b. The initial dose of H$_2$O produces an increase of the COO$^-$ and the OH signal, indicative of rehydroxylation of the metal node. The water exposure step also reverses the previously observed changes in the Zr-O features; the modes at 680 and 735 cm$^{-1}$ increase, and the feature at 764 cm$^{-1}$ decreases. These changes occur rapidly (on the scale of minutes) within the controlled time used for ALD reactant exposure. A further red-shift in the C-N signal also appears, consistent with weakening of the C-N bond by continued chlorination of the N-H by HCl produced during the second ALD half-reaction. A further H$_2$O dose results in only small changes in the FTIR signal, indicating rapid saturation for the H$_2$O reaction step.

In-situ QCM analysis was used to further assess individual precursor reactions with UiO-66-NH$_2$. The QCM crystals were loaded with 25-100 µg/cm2 of UiO-66-NH$_2$ crystals and exposed to 10 doses of the ALD precursor followed by 10 doses of the H$_2$O co-reactant. Figures 4.4a and b show QCM traces collected during TiCl$_4$/H$_2$O and TMA/H$_2$O exposures,
respectively. Consistent with the FTIR results, saturation in mass uptake coincides with ~7 dose steps of TiCl₄, and after TiCl₄, one H₂O dose step is sufficient to completely react with the deposited TiClₓ species.

![Graph showing mass loading vs. time for TiCl₄ and H₂O treatments.]

Figure 4.4: QCM analysis of a) repeated TiCl₄/repeated H₂O and b) similar repeated doses of TMA and H₂O on hydroxylated UiO-66-NH₂ at 150°C.

Repeating this analysis with TMA shows that the reaction with UiO-66-NH₂ is nearly completely saturated after a single TMA exposure, producing a mass increase of 0.1 ng/ng MOF. Additional TMA exposure exhibited negligible increases in the sample loading. As with the TiCl₄ treated sample, one H₂O dose was sufficient to saturate the reaction with the deposited metal ALD precursor.

4.6.3 ALD Precursor Penetration into UiO-66-NH₂

A key question we seek to answer is: to what extent does the ALD precursor react with the available Zr₆O₄(OH)₄ nodes on the surface and within the bulk of the MOF crystal? We
expected limited molecular diffusion into the MOF pores because the TMA and TiCl$_4$ molecules have an effective molecular radius of \(\sim 4\text{Å} \),212,213 which is close to the UiO-66-NH$_2$ channel opening dimension of 5-6Å.214,215 To evaluate the extent of precursor diffusion into the UiO-66-NH$_2$ crystal, we used FTIR to monitor the intensity of the OH band at \(\sim 3665\text{cm}^{-1} \) before and after exposure to a saturating doses of TiCl$_4$ and TMA. For the UiO-66-NH$_2$ crystals used here, the BET analysis shows the total surface area and the external crystal surface area are 1008 and 127 m2/g, respectively. Therefore, we estimate that full consumption of the hydroxyl groups on the crystal surface facets will decrease the overall OH signal by \(\sim 13\% \).

Figures 4.5a and b show FTIR spectra associated with the OH peaks before and after exposure to saturating doses TiCl$_4$ and TMA, respectively. After TiCl$_4$ exposure, the OH signal intensity decreases by approximately 24\%, whereas the TMA leads to \(\sim 9\% \) loss. This suggests that TiCl$_4$ partially diffuses into the MOF, whereas TMA reacts predominantly with hydroxyl sites available on the crystal surface with minimal diffusion into the MOF crystal itself.
Figure 4.5: FTIR spectra of hydroxy stretching band of UiO-66-NH$_2$ prior to and following a) 10 TiCl$_4$ exposures and b) 3 TMA exposures, both at 150°C.

4.6.4 Sequential ALD precursor/water exposure steps on UiO-66-NH$_2$

The feasibility of continuous ALD on MOF substrates was assessed with FTIR. The differential FTIR spectra for the UiO-66-NH$_2$ for sequential exposures of TiCl$_4$/H$_2$O and TMA/H$_2$O are shown in Figure 5.6a and b respectively. Consistent with results in Figure 4.3, the TiCl$_4$ and TMA exposures lead to a decrease in COO$^-$ and related changes in Zr-O bands. The addition of H$_2$O reverses the signal change, i.e. the COO$^-$ and cubic Zr-O bands reemerge and the monoclinic Zr-O band signal decreases. This signal gain/loss behavior continued for at least 13 and 10 cycles for the TiCl$_4$/H$_2$O and TMA/H$_2$O processes respectively. This indicates that more than 10 ALD cycles are needed to encapsulate the MOF and block it from further reaction with the ALD precursors.
Figure 4.6: Differential FTIR spectra of carboxylate and hydroxyl regions following sequential exposures of a) and b) TiCl$_4$/H$_2$O and c) and d) TMA/H$_2$O on hydroxylated UiO-66-NH$_2$ at 150°C. The initial UiO-66-NH$_2$ spectrum is included as reference at 1/20$^\text{th}$ scale.

Figures 4.7a and b show QCM results collected during the first and subsequent precursor/water exposure cycles for TMA/water and TiCl$_4$/water, respectively. The first TMA and TiCl$_4$ doses produce a large net mass uptake (~0.1 - 0.2 ng per ng of MOF), followed by smaller, but consistent mass uptake signals during the following reactant and
water exposures. During the first few cycles of steady state reaction (ALD cycles 5 and 6 in Figure 4.7b and e), the mass uptake during TMA and TiCl₄ exposures followed by mass loss during purging can be ascribed to precursor adsorption/desorption on the MOF at or near the external surface. Also during cycles 5 and 6, there is a more pronounced desorption step following the TiCl₄ exposure than the TMA exposure, which we attribute to the partial TiCl₄ diffusion into the MOF. The water exposure steps show similar trends for both sequences. Later in the steady-state process (ALD cycles 20 and 21 in Figures 4.7c and f), the mass uptake during all exposure steps is significantly smaller for the TMA/H₂O process, consistent with ALD on a solid surface. In contrast, the TiCl₄/H₂O process still shows significant mass uptake during the precursor exposures, suggesting that the TiCl₄ can penetrate and react more deeply within the MOF pores.
Figure 4.7: QCM analysis of sequential exposures of a) TMA/H₂O and d) TiCl₄/H₂O on hydroxylated UiO-66-NH₂ at 150°C. Panels b), c) and e), f) show expanded views of a) and d) respectively.

4.6.5 Interactions between ALD precursors and dehydroxylated UiO-66-NH₂

To better understand the role of the MOF hydroxyl sites on ALD growth, thermally dehydroxylated UiO-66-NH₂ was sequentially exposed to the ALD precursors to determine if the hydroxyl sites are necessary for precursor adsorption and reaction. Figure 4.8 shows the differential spectra for UiO-66-NH₂ following the first three sequential exposures to TiCl₄-H₂O and TMA-H₂O at 250°C. The FTIR spectra for the UiO-66-NH₂ switch between COO⁻ losses and gains with each subsequent exposure. There are prominent COO⁻ losses for the first TiCl₄ exposure, but for both the TiCl₄/H₂O and TMA/H₂O processes, the extent of feature changes at 250°C is less than that observed under similar exposures on the
hydroxylated MOF at 150°C (Figure 4.6). As expected at 250°C, for both TiCl₄ and TMA, the OH band at 3668 cm⁻¹ is relatively small and does not switch with each subsequent exposure.

Figure 4.8: Differential FTIR spectra of dehydroxylated UiO-66-NH₂ at 250°C following sequential exposures to a) TiCl₄-H₂O and b) TMA-H₂O. The initial UiO-66-NH₂ spectrum is included as reference at 1/20th scale.

ALD film growth on dehydroxylated MOF was also monitored by QCM. Figure 4.9 shows QCM results for TiO₂ ALD on hydroxylated and dehydroxylated UiO-66-NH₂ at 150 and 250°C, respectively. As expected, removing the hydroxyl groups reduces the reactivity with TiCl₄, most notably in the first few ALD cycles. However, the net mass change for one ALD cycle during steady state is approximately 0.004 ng per ng of MOF at both 150 and 250°C, suggesting that ALD film growth proceeds on the outer surface of both hydroxylated and dehydroxylated UiO-66-NH₂. In Figure 4.9b, the expanded view of QCM results during cycles 5 and 6 shows mass gain during the precursor dose, followed by mass loss during the
purge step. As with the growth on the hydroxylated MOF, we ascribe this trend to precursor adsorption and diffusion into the near-surface region of the MOF followed by expulsion during the purge step. Similar QCM trends are reported during ALD on relatively non-reactive polymers, where subsurface diffusion and reaction readily occurs.20

Figure 4.9: QCM analysis of sequential exposures of a) TiCl$_4$-H$_2$O on hydroxylated UiO-66-NH$_2$ at 150 and on dehydroxylated UiO-66-NH$_2$ at 250°C, with b) showing an expanded view during cycles 5 and 6. The data at 150°C is reproduced from Figure 5.7.

4.6.6 \textit{Ex-situ TEM characterization of ALD-modified UiO-66-NH$_2$}

The FTIR and QCM results suggest that ALD of Al$_2$O$_3$ and TiO$_2$ can proceed on the external surface of the UiO-66-NH$_2$ crystals. Results suggest, however, that the TMA reacts readily on the crystal surface, whereas the TiCl$_4$ tends to diffuse and react in the MOF near-surface region. To explore this result in more detail, we used TEM imaging to observe the structure of the ALD coatings on UiO-66-NH$_2$ as well as the nature of the ALD metal oxide/MOF
interface. Resulting TEM images are presented in Figures 4.10a and c for ALD Al$_2$O$_3$ and TiO$_2$ respectively, deposited at 150°C on UiO-66-NH$_2$ crystals.

Figure 4.10: TEM images and corresponding diagrams of UiO-66-NH$_2$ with a) and b) 100 cycles of TMA/H$_2$O and c) and d) 200 cycles of TiCl$_4$/H$_2$O, both deposited at 150°C. The resulting TiO$_2$ and Al$_2$O$_3$ films were 20 and ~7.5 nm thick respectively, with TiO$_2$-modified UiO-66-NH$_2$ exhibiting an interfacial layer.
At 150°C, the saturated growth per cycle for the ALD Al$_2$O$_3$20,23 and TiO$_2$10 processes used here are expected to be ~1.1 and ~0.4 Å per cycle, respectively. For the ALD layers on UiO-66-NH$_2$ in Figure 4.10a and c, 100 cycles of TMA/H$_2$O and 200 cycles of TiCl$_4$/H$_2$O produce coatings which are ~20 and ~7.5 nm thick. The thickness on TiO$_2$ is consistent with the predicted thickness, whereas the Al$_2$O$_3$ layer is thicker than expected. The excess Al$_2$O$_3$ growth is ascribed to the presence of water during the TMA exposure step. This could result from water that was not fully removed after MOF synthesis or from water infusion during the first few water dose steps before consolidation of oxide nuclei. Careful examination of the TEM images reveals that TMA/H$_2$O produces an atomically abrupt Al$_2$O$_3$/UiO-66 interface, whereas the TiCl$_4$/H$_2$O ALD leads to a graded interface, corresponding to a high contrast layer 1-2 nm thick at the boundary between the UiO-66-NH$_2$ and the ALD TiO$_2$. As discussed below, this interface layer can result from differences in active reactive sites for TMA and TiCl$_4$ on the UiO-66-NH$_2$ MOF, thereby helping TiO$_2$ to rapidly “seal” the MOF pores and reducing adverse effects associated with water adsorption during ALD.

4.7 Discussion

4.7.1 Precursor Reactions on Hydroxylated and Dehydroxylated UiO-66-NH$_2$

In a typical ALD reaction sequence for Al$_2$O$_3$ or TiO$_2$, the TMA or TiCl$_4$ precursors are expected to undergo ligand exchange with surface hydroxyls and in some cases can insert into available bridging oxygen sites.216 Figure 4.2c shows molecular structures of the hydroxylated and non-hydroxylated zirconium metal cluster bound to the organic linker via the carboxylate groups. During ALD on the UiO-66-NH$_2$ MOFs, similar reactions could
proceed with: (1) the μ_3-OH hydroxyl; and (2) the μ_3-O bridging oxygen groups on Zr$_6$ nodes. For hydroxylated MOFs, open cluster sites on the crystal surface will present additional -OH groups, e.g. at missing linker sites or with physisorbed H$_2$O. As noted above, the pore opening dimension in the microporous UiO-66-NH$_2$ network will limit ALD precursor access, with near surface penetration depending on the nature of the precursor. This is supported by the structure of metal oxide/MOF interfaces observed here by TEM. On the other hand, Gallington et al. found that for NU-1000 MOFs with similar Zr$_6$O$_4$(OH)$_4$ nodes and larger pores, the ALD precursor diethyl zinc (DEZ) can penetrate through the MOF crystal, where it selectively reacts with terminal hydroxyls in the smaller pores. Related work by Gates et al. also found that hydrogen bound water and vicinal hydroxyl groups could also be removed and tuned with methanol vapor.101 The selectivity is ascribed to favorable dispersion force interactions between the organic linkers and the precursor ligands.197

Carboxylate groups that bind the linker to the metal-oxide node, labeled as (3) in Figure 4.2c, provide another site for precursor interaction with the MOF. For example dye molecules readily bind to metal oxides via carboxylate or phosphate groups and ALD reactions with binding groups are known to enhance adhesion and bonding stability.$^{217-219}$ FTIR analysis of ALD on carboxylate-linked Ru-dyes bound to TiO$_2$ found a Lewis acid/base interaction for TiCl$_4$ and TMA with the carboxyl site. In separate studies, density functional modeling and FTIR also concluded Lewis acid/base adduct formation upon TMA interaction with carbonyl units in poly(methyl)methacrylate thin films.143 All of these processes will likely proceed during ALD on MOFs, and within the regions of the MOF crystal that can be accessed by the
vapor reactant (i.e. on the surface of the MOF crystal in our case) and they are expected to substantively impact the node and linker binding structure.

As shown in the QCM results in Figures 4.4 and 4.7, exposing the fully hydroxylated UiO-66-NH₂ to TMA or TiCl₄ leads to rapid initial mass uptake, as expected for substantial reaction on the exposed crystal surface. Correlated FTIR data in Figures 4.3, 4.5 and 4.6 all show loss of the OH bands, consistent with ligand exchange at surface-accessible μ₃-OH sites. The OH modes remaining after exposure (Figure 4.5) are within the MOF crystal bulk and are therefore not accessed by the ALD precursor. Careful inspection of the FTIR data in Figure 4.3 further reveals that in addition to OH loss, reaction with the ALD precursors produces a loss and blue-shift in the COO⁻ stretching modes and changes in the Zr-O modes stretching features, nearly identical to the changes observed in Figure 4.2 upon UiO-66-NH₂ thermal dehydroxylation. Interestingly, subsequent H₂O exposure after TiCl₄ reverses the COO⁻ mode blue-shift and Zr-O loss, returning the modes to their original position before precursor exposure.

Analysis of the ALD reaction on the dehydroxylated MOF leads to further insight. A lack of hydroxyl groups will impede metal oxide ALD initiation on metal oxide surfaces. As anticipated therefore, we see by QCM (Figure 4.9) that dehydroxylating the UiO-66-NH₂, leads to less mass uptake during the initial TiCl₄ doses. However, even with reduced extent of reaction, the COO⁻ modes in Figure 4.9 show a blue-shift after TiCl₄ and TMA dosing, and like on the hydroxylated MOF, subsequent H₂O exposure steps reverses the COO⁻ mode blue-shift. Moreover, the extent of the change, as estimated by the intensity of the difference
spectra, is similar for the hydroxylated and dehydroxylated materials as summarized in Figure 4.11. In addition, Figure 4.11 also shows that annealing UiO-66-NH$_2$ causes a much larger loss of the COO- and Zr-O modes than the TiCl$_4$ exposure at 150°C, reconfirming that the TiCl$_4$ reaction occurs predominantly at the MOF surface and near-surface regions, while annealing occurs throughout the MOF crystal bulk. We also note that the Zr-O modes are not strongly affected by precursor or water exposure steps at 250°C.

![Figure 4.11: Differential FTIR spectra comparing dehydroxylation of UiO-66-NH$_2$. The spectra of the samples after annealing is shown at 1/5th its actual scale. The initial UiO-66-NH$_2$ spectrum is included as reference at 1/20th scale.](image)

4.7.2 Reversible Surface Node Distortion during ALD on UiO-66

Based on the above analysis we assert that during ALD on UiO-66 MOFs, TiCl$_4$ and TMA reacts on the Zr$_6$ nodes at accessible μ_3-OH and μ_3-O bridging sites via ligand exchange and insertion respectively, as well as at COO$^-$ sites on accessible linker groups, likely through
acid/base adducts. At low temperature (150°C) on the hydroxylated Zr$_6$O$_4$(OH)$_4$ sites, the precursor reaction appears to promote distortion of the Zr-O bonding that is rapidly reversible (within the ~1 min upon subsequent water vapor exposure). This node distortion has an FTIR spectral signature consistent with previously observed irreversible node transition from cubic to monoclinic symmetry that occurs at higher temperatures upon thermal dehydroxylation. The reversibility in this case may reflect the extra degrees of freedom afforded the surface-terminal nodes on the exposed MOF crystal.

4.8 Conclusion

In this work we report site-specific reactions during conformal nanoscale metal oxide coating on UiO-66-NH$_2$ MOF via atomic layer deposition. The ALD precursors TMA and TiCl$_4$ react with μ$_3$-OH hydroxyl and μ$_3$-O bridging oxygen groups on Zr$_6$ nodes, as well as oxygen from carboxylate linker groups, at sites accessible at or near the crystal terminal surface. When the MOF metal-oxide nodes are hydroxylated, Zr$_6$O$_4$(OH)$_4$, low temperature ALD precursor reaction promotes changes in linker bonding a reversible structure transition in Zr-O nodes exposed on the crystal face. When UiO-66-NH$_2$ is thermally dehydroxylated before ALD, precursor exposure modifies the linker units, consistent with precursor/linker Lewis acid/base interactions, but the FTIR shows no visible change in the Zr-O network, consistent with stable conformational rearrangement during the pre-deposition thermal exposure. We also see distinctions between precursors during ALD on MOFs. From the QCM, FTIR, and TEM data, the TMA as a strong Lewis acid reacts readily on the MOF crystal surface to block transport and promote an atomically sharp metal oxide/MOF interface. However, the TiCl$_4$
can transport a short distance into the MOF crystal before reacting, leading to a more graded oxide/MOF interface. Low temperature modification or encapsulation of UiO-66-NH$_2$ has significant implications for catalytic applications and long term storage of MOF materials.

4.9 Acknowledgement

The authors acknowledge the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation.
CHAPTER 5. RAPID VISIBLE COLOR CHANGE AND PHYSICAL SWELLING DURING WATER EXPOSURE IN TRIETHANOLAMINE-METALCONE FILMS FORMED BY MOLECULAR LAYER DEPOSITION

The following work is reproduced with permission from Paul C. Lemaire, Christopher J. Oldham, and Gregory N. Parsons. “Rapid Visible Color Change and Physical Swelling during Water Exposure in Triethanolamine-Metalcone Films Formed by Molecular Layer Deposition.” Journal of Vacuum Science and Technology A: Vacuum, Surfaces, Film. 2016, 34, 01A134.

5.1 Abstract

Molecular layer deposition (MLD) of “metalcones”, including alucone, zincone, titanicone and others, involves self-limiting half-reactions between organic and organometallic (or metal-halide) reactants. Studies have typically focused on metal precursors reacting with ethylene glycol or glycerol to form the films’ polymeric O-M-O-(CH₂)ₓ-O-M-O repeat units. We report new MLD materials that incorporate tertiary amine groups into the organic linkage. Specifically, reacting triethanolamine (TEA) with either trimethylaluminum (TMA) or titanium tetrachloride (TiCl₄) produces TEA-alucone (Al-TEA) and TEA-titanicone (Ti-TEA), respectively, and the amine group leads to unique physical and optical properties. FTIR analysis confirms that the films have prominent C-H, C-N and M-O-C peaks, consistent with the expected bond structure. When exposed to vapors, including water, alcohol, or ammonia, the Ti-TEA films changed their visible color within minutes and increased physical thickness by >35%. The Al-TEA showed significantly less response. X-ray photoelectron spectroscopy (XPS) and FTIR suggest that HCl generated during MLD
coordinates to the amine forming a quaternary ammonium salt that readily binds adsorbates via hydrogen bonding. The visible color change is reversible, and ellipsometry confirms that the color change results from vapor absorption. The unique absorptive and color-changing properties of the TEA-metalcone films point to new possible applications for MLD materials in filtration, chemical absorption, and multifunctional chemical separations/sensing device systems.

5.2 Introduction

Molecular layer deposition (MLD) of “metalcones”, including alucone,44,45 zincone,46,47 titanicone,48 and others,49,50 involves self-limiting half-reactions between organic and organometallic (or metal-halide) reactants. Most film reaction studies to date have focused on metal precursors reacting with ethylene glycol,44–46,48–50 glycerol,48,51 glycidol,52 and various carboxylic acids,53–55 generally leading to polymeric O-M-O-(CH\textsubscript{x})\textsubscript{y}-O-M-O repeat units as determined by spectroscopic and other analyses.

In their as-deposited form some of these materials are unstable when exposed to ambient atmosphere, resulting in film thickness decrease and bonding degradation.220 The degradation could result from evolution of unbound organic oligomers or metal oxide species dehydrating or dehydrogenating the organic portion of the metalcone film.44,220,221 Metalcone films have multiple possible applications including flexible electronics,47 sacrificial films to form conductive carbon-rich56 or porous oxide films,57,58 encapsulation and protective layers on chemically reactive fibers, and antireflective coatings.44 These and other applications will
benefit from more options for MLD material composition and improved understanding of how MLD films interact with the ambient.

In this work, we report unique properties of metalcone thin films formed using triethanolamine, TEA. The TEA is used in a saturated MLD reaction sequence with either Trimethylaluminum (TMA) or titanium tetrachloride (TiCl₄) to form “TEA-alucone”, Al-TEA, or “TEA-titanicone” Ti-TEA thin films, respectively. The Ti-TEA and Al–TEA films are generally stable in air, and upon exposure to vapors (including water, methanol, ethanol, and ammonia) ellipsometry and visual reflectivity show the Ti-TEA undergoes rapid and reversible vapor absorption, whereas the Al–TEA films remain relatively unchanged. We discuss mechanisms to account for the material–dependent vapor adsorption as well as possible novel applications for these materials.

5.3 Experiment

5.3.1 MLD Precursors and Materials

Trimethylaluminum (TMA) and titanium tetrachloride (TiCl₄) were obtained from Strem Chemicals Inc. and used without further treatment. Anhydrous triethanolamine (TEA) (Sigma-Aldrich) was used as the organic material source and dried through vacuum pumping at room temperature. 12.1 M hydrochloric acid concentrate (HCl) was purchased from Fisher and used as received. We monitored the MLD deposition with silicon wafers [100] purchased from WRS Materials. For the carrier and purge gas, dry nitrogen (99.999%) was passed
through an Entegris GateKeeper inert gas purifier to remove any residual water before entering the reactor.

5.3.2 Reactor setup for triethanolamine-metalcone deposition.

Molecular layer deposition of the triethanolamine-metalcone thin films was carried in a homemade hot wall viscous flow vacuum reactor. The nitrogen carrier gas flow rate was maintained at 280 standard cubic centimeters per minute (sccm) for an operating pressure of ~850 mTorr. The inlet and outlet gas lines were temperature controlled with heat tape to prevent precursor condensation in the reactor. The TEA precursor was loaded into a glass flow-over bubbler and heated to 130°C. The TiCl$_4$, TMA, and HCl precursor bottles were maintained at room temperature.

A typical MLD cycle followed a TMA/N$_2$/TEA/N$_2$ sequence (abbreviated as TMA/TEA) with exposure and purge times of 0.1/30/2/45 seconds respectively. In addition to this process sequence, we also explored the effect of vapor HCl dosing on film composition. For the HCl studies, the cycle followed with a TMA/N$_2$/TEA/N$_2$/HCl/N$_2$ sequence (written as TMA/TEA/HCl) with respective times of 0.1/30/2/45/0.1/30 seconds.

Various MLD process conditions were further characterized using in-situ quartz crystal microbalance (QCM) analysis. For these tests, a 6 Hz gold coated QCM crystal sensor (Inficon) was mounted onto the QCM housing with conductive epoxy as previously described.46 The epoxy and a dry N$_2$ crystal back purge of 50 sccm prevented deposition on
the backside of the QCM crystal. The mass change signals were detected by an Inficon SQM-160 monitor and recorded using a home designed LabVIEW program.

5.3.3 Ex-situ characterization.

The TEA-metalcone film thickness and refractive index at 632.3 nm was measured with a variable-angle alpha-SE spectroscopic ellipsometer (J.A. Woollam Co., Inc.). Ellipsometric measurements were taken after allowing samples to sit at the laboratory temperature and humidity for 15 minutes. We collected humidity-controlled ellipsometry measurements by enclosing the ellipsometer in a sealed Plexiglass case fitted with a humidifier, dry nitrogen (99.999%) gas supply and a humidity sensor and recorder (Omega).

The advancing water contact angle was monitored as a function of time using a Model 200 Rame-Hart contact angle goniometer. The time span was short (<10 seconds) and the water drop was sufficiently large (2–4 mm) so that water evaporation was not significant.

Film composition was characterized using XPS and FTIR analysis. A SPECS X-ray photoelectron spectrometry system operated with an Al anode at 10 kV and 400 W with a PHOIBOS 150 analyzer with a detection limit of ~0.1 at% provided elemental analysis of the deposited films. The collected data was subsequently processed and modeled with CasaXPS software to give elemental analysis. Fourier transform infrared spectroscopy (FTIR) was performed with a ThermoNicolet 6700 IR bench with a deuterated triglycine sulfate detector operated in transmission mode with 2050 scans at 4 cm⁻¹ resolution.
We monitored the color change and mass loading of the deposited TEA-metalcone films by fixing the samples inside a sealed quartz tube and observing the sample visually or monitoring mass change upon exposure to various vapors of interest at atmospheric pressure. Before analysis, the quartz was prepared under dry nitrogen flow. Samples were then placed in the tube and treated under dry nitrogen (99.999%) gas flow at room temperature for 2 hours. To begin exposure, the nitrogen carrier gas was diverted through a bubbler containing water, methanol, or ethanol for 1 minute followed by purging with the dry carrier gas. Ammonia exposure was also performed in the same system using a 5 second exposure to ammonia gas. Color change was monitored via photographic imaging. Mass loading was monitored in the same apparatus via QCM analysis using crystals coated with 500 cycles (250-300 nm) of the TEA-metalcone films.

5.3.4 Results

5.3.4.1 Deposition of triethanolamine-metalcone films

The proposed reaction scheme for the Al-TEA is shown in Figure 5.1 and discussed in detail in the discussion section. To investigate the validity of this reaction scheme and confirm self-limiting growth, we varied the precursor dose time and monitored film thickness after deposition using ellipsometry. Figure 5.2 shows the growth thickness per cycle as a function of TMA and TEA dose time for the Al-TEA formed at 150°C. The Al–TEA film growth saturates near 7 Å per cycle after 0.1 seconds of TMA exposure, but 3 seconds of TEA exposure is needed to achieve the same growth. For the Ti-TEA process, Figure 5.3 shows a similar trend for TiCl₄ and TEA plateaus after a 4-5 seconds exposure. A longer exposure
time is needed for TEA due to its relatively low vapor pressure (0.01 T at 20°C), and effects of precursor retention within the depositing MLD film. These trends, including ‘soft’ saturation in the organic exposure step, are consistent with those reported for other MLD processes. To achieve well-controlled and reproducible growth, we maintained the TEA exposure at 2.0 sec, slightly below full saturation. Figure 5.2 and 5.3 also show the film thickness as measured by ellipsometry versus MLD cycle number for the Al-TEA and Ti-TEA films. At set deposition temperature and dose times, the film thickness is linearly dependent on the cycle number with growth thickness per cycle of 6.7 and 5.1 Å/cycle for the Al-TEA and Ti-TEA respectively.

Figure 5.1: Al-TEA reaction sequence with successive a) TMA and b) TEA exposure
Figure 5.2. Al-TEA film thickness per cycle at 150°C as a function of a) TMA and b) TEA dose time and c) film thickness versus cycle number. Lines are meant to guide eyes.

The growth rate was studied over a temperature range of 150 to 195°C and results are given in Figure 5.4. From 150°C to 195°C, the Al-TEA growth per cycle decreased from 6.7 to 0.8 A/cycle at 195°C. Ti-TEA film growth rate also decreases at higher temperatures from 5.2 at 150°C to 2.0 A/cycle at 195°C.
Figure 5.3: Ti-TEA film thickness per cycle at 150°C as a function of a) TiCl$_4$ and b) TEA dose time and c) film thickness versus cycle number. Lines are meant to guide eyes.
Figure 5.4: Growth rate versus reactor temperature for a) Al-TEA and b) Ti-TEA. Lines are meant to guide eyes

Figure 5.5 shows in-situ QCM analysis demonstrating the mass changes during the metal and TEA exposure steps. Under steady-state MLD at 150°C, Figures 5.5a and b show a mass gain of approximately 65 and 95 ng/cm²/cycle during the TMA and TiCl₄ exposure, respectively. During the TEA exposure, the Al-TEA film (Figure 5.5a) shows a mass gain close to 25 ng/cm²/cycle while the gain is near zero for TEA exposure during Ti-TEA growth.
(Figure 5.5b). Figures 5.5c and d show analogous results collected at 200°C. Increasing temperature leads to a significant decrease in the TMA mass uptake (30 ng/cm²/cycle at 200°C) whereas for TiCl₄ the mass uptake decreases only slightly to 75 ng/cm²/cycle. In both processes, increasing the temperature to 200°C decreased the TEA mass uptake per cycle.

![Quartz crystal microbalance (QCM) analysis: a) Al-TEA at 150°C, b) Ti-TEA at 150°C, c) Al-TEA at 200°C, d) Ti-TEA at 200°C.](image)

Figure 5.5: Quartz crystal microbalance (QCM) analysis: a) Al-TEA at 150°C, b) Ti-TEA at 150°C, c) Al-TEA at 200°C, d) Ti-TEA at 200°C.
5.3.5 Characterization of triethanolamine-metalcone films

We used FTIR analysis to assess the composition of the triethanolamine-metalcone films as shown in Figure 5.6. The bands at 1064 and 1015 cm\(^{-1}\) are attributed to the Ti-O-C and Al-O-C linkages respectively, consistent with the expected organic-inorganic amorphous network structure. This is further supported by the broad C-H stretch from 2962-2875 cm\(^{-1}\), the C-H scissoring at 1456 cm\(^{-1}\), and the Ti-O and Al-O bands at 630 and 669 cm\(^{-1}\) respectively. There are also large hydroxyl bands from 3700-3000 cm\(^{-1}\), indicating that the triethanolamine-metalcone films have a significant amount of unreacted hydroxyl sites. The sloping background at 2000–3000 cm\(^{-1}\) in the Ti-TEA spectrum results from background subtraction. We also observe a small peak at 1226 cm\(^{-1}\) for the C-N bond showing that the amine functionality is maintained, predominantly in the Ti–TEA material. Finally, the FTIR data shows a significantly different N–H bending mode structure. For the Ti–TEA film, clear bands are visible at 1633 and 1392 cm\(^{-1}\) associated with N–H bending. For the Al–TEA film, the N–H bending modes at 1633 and 1392 cm\(^{-1}\) are much less intense. The stronger N–H modes in the Ti-TEA film suggesting that the tertiary amine is protonated during the Ti-TEA MLD process.
Figure 5.6: Mid-range FTIR spectra for ~300 nm Al-TEA and Ti-TEA films deposited at 150°C.

We used XPS analysis to quantify atomic compositions, and results are given in Table 5.1 and Table 5.2. The table compares atomic composition values derived from XPS to values estimated from the expected organic–inorganic network composition, Ti₃(TEA)₄ (Ti₃(C₆H₁₂NO₃)₄) and Al(TEA) (Al(C₆H₁₂NO₃)). For Ti-TEA, the experimental and expected film composition corresponds well, except for ~7 at. % chlorine observed in the deposited films. For the Al-TEA, the trends are similar, except the experiment shows less carbon and more oxygen than expected. This result may indicate TMA hydrolysis of the organic reactant. Excess water vapor in the organic precursor could also increase oxygen and decrease carbon content, and the effect may be more prevalent in the Al–TEA process due to higher reactivity of water with TMA vs TiCl₄.
Table 5.1. Experimental film composition (±2 at. %) based on high resolution XPS scans of ~300 nm Ti-TEA films deposited at 150°C. Expected atomic composition based on the stochiometric composition: Ti$_3$(C$_6$H$_{12}$NO$_3$)$_4$.

<table>
<thead>
<tr>
<th></th>
<th>C 1s</th>
<th>O 1s</th>
<th>N 1s</th>
<th>Ti 2p</th>
<th>Cl 2p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti-TEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental (at. %)</td>
<td>49</td>
<td>29</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Expected (at. %)</td>
<td>56</td>
<td>28</td>
<td>9</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5.2. Experimental film composition (±2 at. %) based on high resolution XPS scans of ~300 nm Al-TEA films deposited at 150°C. Expected atomic composition based on the stochiometric composition: Al(C$_6$H$_{12}$NO$_3$).

<table>
<thead>
<tr>
<th></th>
<th>C 1s</th>
<th>O 1s</th>
<th>N 1s</th>
<th>Al 2p</th>
<th>Cl 2p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-TEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental (at. %)</td>
<td>29</td>
<td>50</td>
<td>4</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Expected (at. %)</td>
<td>55</td>
<td>27</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

The high resolution XPS scans in Figure 5.7 also show the presence of some chlorine in the Al-TEA film. The high resolution scan of the nitrogen 1s for Al-TEA shows a single peak at 398.6 eV, attributed to carbon-nitrogen bonding. In comparison, high resolution analysis of nitrogen in the Ti-TEA film shows two peaks at 399.0 and 400.9 eV. The peak at 399.0 eV is again due to nitrogen-carbon bonds, while the peak at 400.9 eV signifies formation of quaternary nitrogen.222–224
5.3.6 Triethanolamine-metalcone film stability

A common issue for similar metalcone MLD films is film degradation. We monitored the stability in ambient conditions by measuring the film thickness and refractive index over the course of 25 days. After 24 hours, the Ti-TEA film thickness decreased by 6.2% and 14.1% after 500 hours as shown in Figure 5.8a. In comparison the Al-TEA film thickness increased by 5.1% after 24 hours to a film thickness of 1417 Å which stayed relatively constant over
500 hours. This small increase in film thickness is likely attributed to film swelling in the ambient laboratory conditions. We theorize that the Al-TEA film thickness was relatively stable because any film degradation occurred primarily during the deposition process. To augment the thickness measurements, we also tracked the refractive index of the films at 632.8 nm in order to provide an estimate of changes in film density. Figure 5.8b conveys that the refractive index of the Ti-TEA film increases over time, consistent with the film partially degrading to form TiO₂. The Al-TEA refractive index decreases initially, again consistent with higher water content in the film and then remained relatively constant with time.

We also monitored the film stability in the dry heated reactor immediately following deposition. Figure 5.9 includes in-situ QCM results for 100 cycles of the triethanolamine-metalcone films deposited at 150°C and then left in the heated reactor for approximately 14 hours with flowing carrier gas. The Al-TEA film thickness stays relatively constant over the course of the 14 hour time period, but the Ti-TEA mass loading decreases by ~25%. These results in conjuncture with the previously discussed results suggest that the Al-TEA is more stable than the Ti-TEA film and that the Ti-TEA film degradation occurs regardless of relative humidity.
Figure 5.8: Changes in triethanolamine-metalcone film b) thickness and b) refractive index at a wavelength of 632.8 nm over time in open laboratory conditions. Lines are meant to guide eyes.
Figure 5.9: QCM results of 100 cycles of a) Ti-TEA and b) Al-TEA films deposited at 150°C which then remain in the heated conditions with flowing carrier gas for ~14 hours.
5.3.7 *Surface energy and physical swelling of triethanolamine-metalcone films*

We assessed the surface energy of ~300 nm thick Al-TEA and Ti-TEA MLD films via time-resolved goniometric analysis, shown in Figure 5.10. The contact angle for the water droplet immediately decreases upon contact to the Ti-TEA film, decreasing from 42.2 to 26.1° within 5 seconds. The Al-TEA in comparison maintained a relatively constant contact angle of 38.4°. The water droplet contact angle on a native silicon oxide is ~28° indicating that the Al-TEA film is more hydrophobic, likely due to surface roughening.21,225

![Figure 5.10](image)

Figure 5.10: Time-resolved goniometric analysis monitoring the water droplet contact angle versus time on ~300 nm Al-TEA and Ti-TEA films deposited at 150°C.

We observed that the triethanolamine-metalcone films exhibited a visual color change immediately upon removing the samples from the heated reactor. This color change was attributed to changes in the film thickness due to film swelling. To test this theory, we monitored the film thickness in a humidity controlled environment. Figure 5.11 shows the
film thickness versus humidity for the two triethanolamine-metalcone films that were approximately 300 nm thick. From 10-65% relative humidity, the Ti- film thickness significantly changes, increasing from 207.0 to 346.9 nm, a ~75% increase in thickness. Accompanied by this thickness change was a visual color change. Figure 5.12 shows images of a Ti-TEA film in a dry environment and changing color after prolonged exposure to a humid environment. The shrinking and swelling behavior was reversible and repeatable unless the relative humidity exceeded ~65%, which lead to film degradation. The Al-TEA film thickness dependence on humidity is significantly lower than the Ti-TEA film in Figure 5.11. The Al-TEA film thickness increases from 266 to 276 nm as the humidity is increased from 10% to 65%, an increase of ~3%.

Figure 5.11: Thickness of Al-TEA and Ti-TEA films versus relative humidity.
Figure 5.12: Images of a 500 cyc Ti-TEA film in which the process humidity increases from a) < 1% relative humidity, to e) ~65% relative humidity.

5.3.8 Assessing the role of HCl in film structure and physical response

A modified Al-TEA recipe that included an HCl/H$_2$O exposure following the TEA exposure was utilized to study how HCl affects the film composition and properties. Figure 5.13 shows QCM results for the TMA-TEA-HCl process. Similar to the TMA-TEA QCM results shown in Figure 5.5a, TMA and TEA doses both result in a mass increase. The additional HCl/H$_2$O dose also leads to a mass increase which we ascribe to retention of chlorine anions on the protonated nitrogen. Water will also react with available Al-CH$_3$ sites, leading to negligible mass change. Transmission FTIR results for the Al-TEA and Al-TEA-HCl films are shown in Figure 5.14. The data shows the HCl exposure step leads to an N-H bending band at 1656 and a shoulder at 1633 cm$^{-1}$, similar to the FTIR spectra for the Ti-TEA film. In addition, the HCl step tends to increase the intensity of the hydroxyl band in the 3700-3000 cm$^{-1}$ region, consistent with Al–OH formation and possibly some physisorbed water.
Figure 5.13: QCM analysis Al-TEA-HCl MLD process at 150°C.

Figure 5.14: FTIR spectra for the Al-TEA-HCl and Al-TEA films deposited at 150°C.

High resolution XPS analysis of the N 1s and Cl 2p peaks and film composition of the Al-TEA and Al-TEA-HCl are shown in Table 5.3 and Figure 5.15. Figure 5.15 shows the chlorine content increases with the Al-TEA-HCl recipe to 7.3 at% versus the 1.4 at% for the Al-TEA film. The Al-TEA-HCl chlorine content is consistent with approximately one
chlorine atom per nitrogen atom. Finally, Al-TEA-HCl sample has a notable peak N 1s peak at 400.6 eV, which is attributed to N-H formation.

We further monitored the swelling properties of the Al-TEA-HCl film versus the Al-TEA films. As shown in Figure 5.16, the Al-TEA-HCl shows significant film shrinking of ~17.5% at 10% relative humidity, which is similar to what was observed for the Ti-TEA film. Above 55% humidity, the films swelled, as determined by the change in visible color, but the increase in thickness was sufficiently large that it could not be accurately quantified with the ellipsometry model.

Table 5.3: Film composition (±2 at. %) based on high resolution XPS scans of Al-TEA-HCl films deposited at 150°C. Expected Al-TEA-HCl film composition based on the stochiometric composition: Al(C₆H₁₂NO₃)(Cl), assuming one chloride anion per protonated nitrogen.

<table>
<thead>
<tr>
<th>Al-TEA-HCl</th>
<th>C 1s</th>
<th>O 1s</th>
<th>N 1s</th>
<th>Al 2p</th>
<th>Cl 2p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental (at. %)</td>
<td>37</td>
<td>39</td>
<td>5</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Expected (at. %)</td>
<td>50</td>
<td>25</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Figure 5.15: High resolution XPS scans of Cl 2p and N 1s peaks for the Al-TEA-HCl and Al-TEA films deposited at 150°C.
5.3.9 Applying swelling properties to other solvents and gases

The triethanolamine-metalcone thickness and accompanying color changes due to changes in humidity means that these films could be used for sensor applications. A ~300 nm Ti-TEA film was deposited on a QCM crystal and used in a home-made flow-through reactor. After equilibrating with the dry flowing nitrogen carrier gas, the film was exposed to a solvent for 1 minute at constant pressure. After the exposure, the system was purged with the nitrogen carrier gas. Figure 5.17a shows the change in mass loading after the Ti-TEA film was exposed to methanol, with a sharp mass increase of 1778 ng/cm2 followed by a gradual mass loss. Water has the highest mass loading of 3955 ng/cm2 and ethanol has the lowest loading of 331 ng/cm2.

Figure 5.16: Thickness of Al-TEA and Al-TEA-HCl films versus relative humidity.
Finally we tested if these films would load a gas that is of greater interest due to safety concerns: ammonia. Figure 5.17b shows the mass loading for a Ti-TEA film after being exposed to ammonia for 5 seconds. There is a significant mass loading of 6707 ng/cm² after the ammonia exposure and the film appears to retain approximately 3446 ng/cm² of the ammonia after purging. The loading on an uncoated gold QCM crystal was significantly lower (~100 ng/cm²).
5.4 Discussion

The FTIR, XPS, QCM and thickness results in Figures 5.2 through 5.7 indicate that the Al–TEA and Ti–TEA MLD processes produce a coordination polymer of the form (–O–M–O–(CH₃Nₓ)ₓ–O–M–), with thickness and structure defined by the number of MLD cycles and deposition temperature. The QCM results in Figure 5.5 show that increasing the process temperature from 150°C to 200°C leads to a decrease in the TMA and TiCl₄ mass uptake during the metal precursor exposure step. Increasing temperature will lead to more rapid metal precursor desorption and less net mass gain during the precursor exposure step. However, increasing the temperature from 150 to 200°C leads to a much larger decrease in TMA mass uptake than for TiCl₄. We believe that the increased retention of the TiCl₄ at higher temperature is due to a higher degree of nitrogen protonation in the Ti–TEA vs the Al–TEA, as described below.

Excess protonation in the Ti–TEA is consistent with XPS and FTIR results in Figure 5.6 and Figure 5.7. Specifically, the XPS shows that the Al-TEA film has a single carbon-nitrogen peak at 399.0 eV. The Ti-TEA peak has an additional peak at the higher binding energy of 400.9 eV signifying nitrogen-hydrogen bonding. In addition, the ratio of chlorine to nitrogen based on the Ti-TEA film composition in Table 5.1 is ~1:1, consistent with approximately one chloride anion per positively charged nitrogen. The FTIR analysis further shows that the Ti-TEA films have N-H characteristic bands at 1633 and 1392 cm⁻¹, which is not expected in the TEA tertiary amine structure. The excess protonation in the Ti–TEA
could result from the byproduct HCl reacting with the tertiary amine to the form a quaternary ammonium salt ($HR_3N^+Cl^-$).228-230 This sequence is shown schematically in Figure 5.18.

The ionic interaction between the nitrogen and chlorine creates Lewis base sites230 which can bind with acidic TiCl$_4$ thereby promoting precursor retention, even at elevated temperatures, consistent with the QCM results in Figure 5.5d. Methane generated in the Al-TEA process does not generate the quaternary ammonium salt functionality, so even though TMA is a stronger Lewis acid that TiCl$_4$, this mechanism is not active in during the TMA-TEA process.

Based on the reaction schematics in Figures 5.1 and 5.18, the TEA exposure step is expected to produce a net mass gain. However, the mass gain observed by QCM in Figure 5.5 is smaller than expected. This is ascribed to excess consumption of Ti–Cl sites, where more than one Ti–Cl reacts with each TEA (i.e. through double- or triple- reactions), or by reaction with water, produced by thermal degradation of the Ti-TEA film231 (Figure 5.9a). Consumption of multiple Ti-Cl surface sites by the organic monomer was previously reported during MLD using TiCl$_4$ and ethylene glycol.48
The quaternary ammonium salt functionality can also account for the physical swelling properties of the Ti-TEA films. The protonated nitrogen acts as the hydrogen bond donor, enabling hydrogen bonding with water vapor. The strong hydrogen bonding of the Ti-TEA films is due to the positively charged nitrogen which attracts the electron cloud from around the hydrogen nucleus, leaving the hydrogen atom with a positive partial charge.228,229 The films swell as they adsorb water and the change in film thickness manifests as a color change on the reflective silicon surface due to optical interference. A higher concentration of nitrogen protonation is expected to create a more hydrophilic film that can swell to a greater degree.
Using QCM, we tested whether polymer swelling could be induced by other hydroxylated vapors including methanol and ethanol. During the vapor exposure, water showed the highest mass increase of 3955 ng/cm², followed by methanol and ethanol with loading of 1777 and 330 ng/cm² respectively. The extent of Ti-TEA swelling appears to be dependent on the size of the adsorbent (water < methanol < ethanol). In addition, Figure 5.17b shows that Ti-TEA film showed a high propensity for ammonia, with a loading of 6687 ng/cm² versus ~100 ng/cm² for an uncoated gold QCM crystal. This suggests that the high ammonia loading on the Ti-TEA film is not solely due to hydrogen-bonding physisorption. Furthermore there is some evidence that the ammonia is retained in the film even after purging. It is possible that the Ti-TEA film is forming an ammonium cation which is readily retained in the MLD film. Additional work needs to be done to determine the true capacity for toxic gas adsorption in these triethanolamine-metalcone films.

In some instances it was noted that the Al-TEA films exhibited swelling properties similar to that of the Ti-TEA films. The XPS results in Figure 5.7 and Table 5.2 show that the Al-TEA films contain ~1 at. % chlorine, likely due to residual chlorine on the reactor walls, remaining from the Ti-TEA process. We confirmed the correlation between the quaternary ammonium salt and the physical swelling properties with the Al-TEA-HCl process. Nitrogen-hydrogen FTIR bands at 1656 and 1633 cm⁻¹ in Figure 5.14 and the XPS peak at 400.6 eV in Figure 5.15 both suggest that the HCl exposure protonates the nitrogen in the Al-TEA film. Chloride anions balance the positively charged nitrogen consistent with the formation of a quaternary
ammonium salt. After HCl vapor exposure, the Al–TEA films showed physical swelling response similar to that observed for the Ti-TEA.

5.5 Conclusion

In this work, we report unique properties of metalcone MLD films formed using triethanolamine (TEA) with either trimethylaluminum (TMA) or titanium tetrachloride (TiCl₄) producing TEA-alucone (Al-TEA) and TEA-titanicone (Ti-TEA), respectively. We adjusted the reactant dose times, showing that the film thickness per cycle was more dependent on the TEA exposure than the metal precursor exposure. The Al-TEA growth rate decreased at higher deposition temperatures due to TMA diffusion out of the film. In comparison, the Ti-TEA growth rate was less dependent on the reactor temperature because of higher TiCl₄ retention.

We characterized the composition and chemical functionality of the TEA-metalcone films through FTIR and XPS analysis. FTIR showed the expected functionality with prominent C-H, C-N and M-O-C peaks for the two TEA-metalcone films. XPS showed that the experimental Ti-TEA film composition matched calculated values, while the Al-TEA film showed lower carbon content, suggesting partial film hydrolysis. XPS and FTIR also provided evidence that HCl formed in the Ti-TEA process generated a quaternary ammonium salt functionality. As a result the Ti-TEA film in particular exhibited a unique reversible visible color changes when exposed to vapors including water, methanol, ethanol, and ammonia. The color change was attributed to thickness swelling and shrinking and we were able to impart similar properties to the Al-TEA film by exposing the film to HCl vapor.
Finally we studied the loading capacity of these films, which appears to be in part dependent on the adsorbent molecule size. The responsive properties of the TEA-metalcone films make these materials appealing for sensor and filtration applications.

5.6 Acknowledgements

The authors acknowledge the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation.
CHAPTER 6. UNDERSTANDING INHERENT SUBSTRATE SELECTIVITY DURING ATOMIC LAYER DEPOSITION: EFFECT OF SURFACE PREPARATION, HYDROXYL DENSITY AND METAL OXIDE COMPOSITION ON NUCLEATION MECHANISMS DURING TUNGSTEN ALD

6.1 Abstract

Area-selective thin film deposition is expected to be important for advanced sub-10 nanometer semiconductor devices, enabling feature patterning, alignment to underlying structures and edge definition. Several atomic layer deposition (ALD) processes show inherent propensity for substrate-dependent nucleation. This includes tungsten ALD (W-ALD) which is more energetically favorable on Si than on SiO₂. However, the selectivity is often lost after several ALD cycles. We investigated the causes of tungsten nucleation on SiO₂ and other “non-growth” surfaces during the WF₆/SiH₄ W-ALD process to determine how to expand the “selectivity window.” We propose that hydroxyls, generated during the piranha clean, act as nucleation sites for non-selective deposition and show that by excluding the piranha clean or heating the samples, following the piranha clean, extends the tungsten selectivity window. We also assessed how the W-ALD precursors interact with different oxide substrates though individual WF₆ and SiH₄ pre-exposures prior to W-ALD deposition. We conclude that repeated SiH₄ pre-exposures reduce the tungsten nucleation delay, which is attributed to SiH₄ adsorption on hydroxyl sites. In addition, oxide surfaces were repeatedly
exposed to WF$_6$, which appears to form metal fluoride species. We attribute the different tungsten nucleation delay on Al$_2$O$_3$ and TiO$_2$ to the formation of nonvolatile and volatile metal fluoride species respectively. Through this study we have increased the understanding of ALD nucleation and substrate selectivity, which are pivotal to improving the selectivity window for W-ALD and other ALD processes.

6.2 Introduction

For over 40 years, the number of transistors on an integrated circuit have doubled approximately every two years. Yet as companies begin work producing integrated circuits with less than 10 nm feature sizes, standard patterning techniques, such as lithography, become much less applicable because of challenges maintaining edge definition and alignment to the underlying features. Chemical vapor deposition (CVD) and atomic layer deposition (ALD) processes offer a possible solution to such issues. CVD is a vapor-phase process where one or more volatile inorganic or organic precursors are dosed into a reactor chamber simultaneously. The precursors then decompose on a heated substrate, depositing a thin film and generating volatile byproducts. ALD in comparison, is vapor-phase process that uses two or more sequential self-limiting reactions to deposit conformal films with high thickness control. There are multiple CVD and ALD processes which show a propensity to selectively deposit material on energetically favorable surfaces. For example, a tungsten ALD (W-ALD) process, which uses tungsten hexafluoride (WF$_6$) and silane (SiH$_4$)$^{10-12}$ or disilane (Si$_2$H$_6$)$^{14-17}$ as reactants will selectively deposit tungsten on Si and metal surfaces25,235,236 with slower nucleation on “non-growth” surfaces such as SiO$_2$ where growth
is not desired. The stability of SiO$_2$ leads to a high energy barrier for tungsten deposition because the oxidized silicon atoms are unable to act as sacrificial reductants.25,26,237

Although deposition on non-growth surfaces is thermodynamically much less favorable, deposition will occur after a nucleation period. In order to take full advantage of selective ALD processes, it is pivotal to extend the “selectivity window” or maximize the amount of material deposited on the growth surface before growth begins on the non-growth surface. Previous studies on tungsten CVD provides evidence that the loss of selective tungsten deposition can be attributed to either SiH$_4$ or WF$_6$ adsorption on SiO$_2$. For example, tungsten nucleation delay is enhanced on non-growth surfaces TiN and SiO$_2$ by using a SiH$_4$238 or B$_2$H$_6$12 pretreatment respectively. Kobayashi et al. suggests that selective tungsten CVD depends on the selective dissociation of a reducing agent (H$_2$ or SiH$_4$) on the metal growth surface.236,239

There is also evidence that WF$_6$ is predominantly responsible for loss of selective tungsten deposition. For example, although WF$_6$ cannot readily react with surfaces at low temperatures,235,236 it can condense and weakly adsorb on cooled surfaces.236,237 Chang et al. proposed that WF$_6$ can react will react with SiO$_2$ substrates via surface silanol groups generated during wet sample preparation.26 Additionally, in the presence of hot tungsten, WF$_6$ can also disproportionate to form highly reactive tungsten subfluorides (WF$_x$) that can deposit on SiO$_2$ surfaces.$^{25,240-242}$

Despite the similarities between CVD and ALD processes, it is important to acknowledge that selectivity loss mechanism for CVD processes will not always apply to ALD processes.
For example, because W-CVD process mixes both precursors simultaneously, these processes generate a higher concentration of vapor-phase products, such as silicon subfluorides of SiH$_x$F$_y$ species, than a W-ALD process; byproducts often linked with non-selective tungsten deposition.236,239,242,243 Also, the relatively high deposition rates for CVD processes can mask phenomena such as etching, which are more apparent during ALD processes.236

This work expands understanding of metal ALD nucleation mechanisms on “non-growth” substrates (i.e. where growth is not desired) during selective area ALD. Specifically, we explore the role of substrate surface preparation and composition on the rate of growth initiation, and propose mechanisms for selectivity loss that can broaden the understanding of selective ALD methods. Specifically, we report results for WF$_6$/SiH$_4$ W-ALD nucleation on various metal oxides and demonstrate that the tungsten nucleation delay is dependent on both the oxide composition and the surface hydroxyl concentration. In order to increase the tungsten selectivity window we tested methods to reduce the hydroxyl concentration on metal oxides via pre-annealing and deposition of a halogenated-passivation layer. We investigate how hydroxyl sites interact with the individual WF$_6$ and SiH$_4$ reactants. We find that on SiO$_2$, SiH$_4$ exposure enhances tungsten nucleation which we attribute to SiH$_4$ adsorption, whereas WF$_6$ pre-exposure appears to convert the oxide substrates to metal fluorides, promoting metallic tungsten nucleation.
6.3 Experimental

6.3.1 List of supplies and materials

Tungsten hexafluoride (WF₆) and a dilute 2% silane in argon mixture (SiH₄) were purchased from Galaxy Chemical (Claremore, OK) and Custom Gas Solutions (Durham, NC) respectively and used without further treatment. Trimethylaluminum (TMA), titanium tetrachloride (TiCl₄), and diethyl zinc (DEZ) were obtained from Strem Chemicals Inc. and used without further treatment. The Si substrates were boron doped Si(100) 6-10 Ω-cm (WRS Materials). The SiO₂ substrates were Si(100) 6-10 Ω-cm with 100 nm thermal SiO₂ (WRS Materials), cut into 12 x 12 mm pieces. For the carrier and purge gas, dry 99.999% argon (Ar) was passed through an Entegris GateKeeper inert gas purifier to remove any residual water before entering the reactor.

6.3.2 Substrate surface preparation

The SiO₂ substrates were cut into 12 x 12 mm pieces. SiO₂ samples were cleaned in hot piranha solution (1:1 H₂SO₄:H₂O₂ by volume) for 30 minutes, rinsed with deionized (DI) water, and stored in DI water. Immediately prior to W-ALD, the SiO₂ pieces were rinsed in DI water and dried under flowing N₂ (100 psi). To form hydrogen–terminated silicon, 12 x 12 mm Si pieces were cleaned in the piranha solution described above and stored in DI water. Immediately prior to W-ALD, the Si wafers were dipped in dilute hydrofluoric acid (5 vol%) for 30 s followed by a DI water rinse (30 s) and N₂ drying.
High surface area porous silicon (PS) was prepared using 3 x 3 cm boron doped Si(100) 6-10 Ω-cm wafers. Wafers were secured in a 1.5 cm diameter Teflon™ cell with a platinum wire counter-electrode. Wafers were electrochemically etched for 30 min in a 20 mL solution of 1:1:2 volume ratio of hydrogen fluoride, water, and ethanol at a current density of 15 mA/cm². After etching, silicon surfaces were hydrogen terminated. Porous silicon samples were heated at a ramp rate of 20°C/min to 950°C and held at temperature for 1 hr to form a thermal oxide layer. To hydroxylate the thermal oxide layer, wafers were then placed in a piranha bath for 30 min.

To assess the role of surface hydroxyl sites, piranha-cleaned SiO₂ samples were annealed under air prior to W-ALD. SiO₂ samples were heated at a ramp rate of 20°C/min to 600 or 800°C and held at temperature for 30 min. After cooling to ~300°C, samples were removed from the furnaces and immediately loaded into the ALD reactor for deposition or the ex-situ Fourier transform infrared spectroscopy (FTIR) for characterization.

Approximately 100 nm SiO₂ and Si films were deposited on 6 Hz gold-coated quartz-crystal microbalance (QCM) crystals with the use of a custom-made stainless steel mask. SiO₂ films were deposited at room temperature with a PECVD process with a tetraethyl orthosilicate source. Amorphous Si films were deposited in a LPCVD system at 550°C and 160 mTorr using a 100% Si₂H₆ source, with a ~6 nm/min deposition rate.
6.3.3 **W-ALD reactor design**

Depositions were carried out in a chamber home-built ALD reactor (60 cm long, 10 cm in diameter) described in previous publications.11,18 The deposition chamber was heated resistively to 220°C using PID controllers. The operating pressure was maintained at 1.5 Torr with an Ar carrier flow rate of 210 sccm.

6.3.4 **ALD reaction sequence**

Tungsten deposition was achieved by alternately pulsing SiH\(_4\) and WF\(_6\) with inert Ar purge steps following each exposure. Silicon substrates were loaded into the reactor and allowed to reach thermal equilibrium with the walls by flowing carrier gas for 30 min prior to deposition. The conditions for the starting base-line W-ALD process used the SiH\(_4\)/Ar/WF\(_6\)/Ar (45/45/1/60 s) sequence at 220°C. Selectivity loss mechanisms were investigated by using SiH\(_4\)/Ar (45/45 s) and WF\(_6\)/Ar (1/60 s) sequences to repeatedly expose samples to the individual precursors prior to the standard SiH\(_4\)/Ar/WF\(_6\)/Ar sequence. Finally, Al\(_2\)O\(_3\), TiO\(_2\), and ZnO ALD films were deposited prior to the W-ALD process using a \(x/Ar/H_2O/Ar\) sequence where \(x\) is TMA, TiCl\(_4\), and DEZ respectively, with a timing sequence of 0.25/45/0.25/45 s.

6.3.5 **Sample characterization**

Film nucleation and growth were characterized using ex situ analytical tools. Spectroscopic ellipsometry (SE) data were obtained with a J.A. Woollam alpha-SE ellipsometer at an incidence angle of 70°. FTIR analysis was performed with a ThermoNicolet 6700 IR bench
with a deuterated triglycine sulfate detector operated in transmission mode with 2050 scans at 4 cm\(^{-1}\) resolution. Chemical analysis was done using a SPECS X-ray photoelectron spectroscopy (XPS) system with a PHOIBOS 150 analyzer. Spectra were generated using an Al K\(\alpha\) X-ray source operated at 400 W. For all analyses, data reduction and fitting was carried out using CasaXPS software with charge compensation based on the C 1s (C-C, C-H) peak set to 285 eV. For some analyses, we utilized the Ti 2p XPS peak intensity to estimate the thickness of SiO\(_2\) films formed as a result of SiH\(_4\) adsorption. For this analysis, we measured the attenuation of the Ti 2p 3/2 peak and modeled the film thickness using parameters available from the NIST Effective Attenuation Length Database\(^{244}\) coupled with electron inelastic mean-free path values determined using the TPP-2M equation\(^{245}\). For this equation, we used a bandgap of 3.05 eV and density of 4.23 g/cm\(^3\), consistent with bulk amorphous SiO\(_2\).

Process conditions were further characterized using in-situ QCM analysis. For these tests, a 6 Hz gold coated QCM crystal sensor (Inficon) was placed into the QCM housing. A dry Ar crystal back purge that yielded a \(~\)250 mTorr pressure increase was sufficient to prevent deposition on the backside of the QCM crystal. The mass change signals were detected by an Inficon SQM-160 monitor and recorded using a home designed LabVIEW program.
6.4 Results

6.4.1 Comparison of W-ALD nucleation on silicon, metal, and metal oxide substrates

We first worked to quantify the selectivity for W nucleation on Si versus SiO$_2$ substrates under well-defined ALD conditions.18 Figure 6.1 shows results from a) in-situ QCM and b) XPS analysis respectively. The QCM results show mass uptake on as-received (Au) and externally coated (Si, SiO$_2$) quartz crystals during the initial cycles of W-ALD at 220°C. On Si, growth proceeds readily during the first ALD cycles, whereas the Au surface shows that a few cycles are needed to achieve full growth. The SiO$_2$ surface however requires ~35 ALD cycles before mass uptake is recorded, which is consistent with previous reports.10

X-ray photoelectron spectra of Si and Si/SiO$_2$ substrates after 30 cycles of W-ALD are given in Figure 6.1b. Peaks at 33 and 30.8 eV are associated with W0, whereas the features at 37.5 and 35.3 eV are due to oxidized W. Surface oxidation is expected during open-air transport of the samples from the ALD reactor to XPS analysis. Overall, the intensity of the W 4f peaks, and in particular the W0 signature, are larger on the Si surface versus the SiO$_2$ surface, consistent with more facile nucleation on Si.
Figure 6.1: Results of W-ALD on Si, Au, and SiO$_2$ surfaces from a) in-situ QCM analysis and b) XPS analysis of W 4f peaks after 30 W ALD cycles.

The rate of tungsten nucleation was further investigated by comparing QCM mass uptake during W-ALD on various oxide surfaces. It is known that substrates including polymer fiber mats conditioned with Al$_2$O$_3$ ALD exhibit more rapid tungsten nucleation246.

Figure 6.2a includes results for W-ALD growth initiation on QCM crystals coated with SiO$_2$ and ALD Al$_2$O$_3$, ZnO and TiO$_2$. Results show that ZnO and Al$_2$O$_3$ surfaces exhibit a small nucleation delay of ~10 W-ALD cycles. In comparison, the SiO$_2$ and TiO$_2$ surfaces require between 30-35 W-ALD cycles before there is an appreciable mass increase. Furthermore, prior to the mass gain, the TiO$_2$ surface shows a prominent mass loss between 10-30 W-ALD cycles, which is attributed to TiO$_2$ surface etching. An enlarged view of this etching is shown in Figure 6.2b, showing that the mass losses occur during the WF$_6$ exposures.
Figure 6.2: In-situ QCM analysis of a) W-ALD on ZnO, Al₂O₃, SiO₂, and TiO₂ surfaces and b) an enlarged view of W-ALD on TiO₂, which shows film etching during the nucleation period.

6.4.2 Role of surface hydroxyl groups in the loss of W-ALD selectivity

The effect of SiO₂ surface preparation on W-ALD nucleation was assessed using FTIR and ex-situ ellipsometry. The extent of surface hydroxyl concentration was varied by in-situ thermal treatment and the rate of change of the ellipsometric response was monitored during tungsten nucleation. To alleviate issues with modeling ellipsometry data, we use a previously published approach to trace tungsten nucleation by directly monitoring the ellipsometry delta parameter, Δ, at 700 nm.¹⁸

Figures 6.3 shows in-situ FTIR spectra of the hydroxyl region for a thermal oxide film on a porous silicon (PS) substrate. As the sample temperature is increased from 100-300°C, the broad peak at 3690-3060 cm⁻¹ decreases, attributed to loss of hydrogen-bound water. The FTIR results suggest that there is some adsorbed water on SiO₂ surfaces at the process
conditions of 220°C and 1.5 Torr. In addition, within the studied temperature range the intensity of the isolated hydroxyl feature at 3740 cm$^{-1}$ remains relatively constant.

Figure 6.3: In-situ FTIR of thermal SiO$_2$ on PS following piranha clean, measured at 100, 200 and 300°C, showing loss of surface bound water, with some surface bound water remaining after 300°C.

Figure 6.4a shows spectra from the as-formed porous thermal oxide and after piranha treatment. As formed, the surface shows predominantly isolated hydroxyl features at 3740 cm$^{-1}$. The difference spectra, after the piranha clean, shows a decrease in the isolated hydroxyl signal and positive-going broad peaks at 3690-3060 cm$^{-1}$ due to an increase in hydrogen-bound water. We also note an increase in the peak shoulder at 3735 cm$^{-1}$ which is ascribed to formation of vicinal hydroxyl groups upon piranha cleaning.247
Figure 6.4: a) Ex-situ FTIR of thermal SiO$_2$ on PS at room temperature before and after piranha clean, and the resulting difference spectrum, showing removal of isolated hydroxyls and an increase in the concentration of germinal hydroxyls and adsorbed water. b) SE delta parameter at 700 nm for piranha-cleaned and as-is SiO$_2$ wafers.

Figure 6.4b shows the ellipsometry Δ factor versus W-ALD cycle at 220°C on planar SiO$_2$ thermal oxide prepared with: i) isolated hydroxy groups (as oxidized); and ii) a larger number of vicinal hydroxyl groups (after piranha treatment). For both SiO$_2$ surfaces, the delta parameter is initially measured to be Δ ≈ 78°, and it decreases to 50-30° as the tungsten begins to nucleate. The subsequent increase to 145° correlates with tungsten film coalescence. On SiO$_2$ with predominantly vicinal hydroxyl groups, the Δ value decreases after ~25-30 cycles, consistent with the QCM analysis (Figure 6.1a). However, the SiO$_2$ with mostly isolated hydroxyl exhibits an increased nucleation delay of approximately 50 cycles, suggesting that vicinal hydroxyls on SiO$_2$ are more receptive to tungsten nucleation than the isolated hydroxyl groups.
To further explore the role of adsorbed water and hydroxyl groups on tungsten nucleation, SiO₂ samples with predominantly vicinal hydroxyl groups (i.e. piranha cleaned) were annealed ex-situ in air at 600 and 800°C followed by the W-ALD deposition. FTIR spectra of thermal SiO₂ on PS collected before ALD are given in Figure 6.5a. At both temperatures, annealing leads to loss of the broad hydroxyl bands at 3690-3060 cm⁻¹ and an increase in the isolated hydroxyl band at 3740 cm⁻¹. After 600°C, hydrogen-bonded vicinal hydroxyl groups are visible at 3735 cm⁻¹, but they are lost after 800°C.

The values for Δ versus W-ALD cycle number for SiO₂ samples with and without annealing are presented in Figure 5b. On SiO₂ with predominantly isolated hydroxyls (i.e. after 800°C) the W-ALD nucleation delay increases by ~10 cycles compared to samples without anneal. In comparison, removing surface water (600°C anneal) promotes nucleation, leading to a ~5
cycle reduction in nucleation delay. Similar to the results in Figure 6.4, this data suggests that vicinal hydroxyl groups on SiO$_2$ are more favorable for tungsten nucleation. The data further indicates that physisorbed water, observed in Figure 6.3, can impede tungsten nucleation.

6.4.3 SiH_4 and WF_6 interaction with SiO_2, Al_2O_3, and TiO_2

Results shown above indicate that hydroxyl groups on SiO$_2$ play an important role in W-ALD nucleation. We further hypothesized that exposing oxide substrates to extended doses of one of the W-ALD reactants (SiH$_4$ or WF$_6$) would also influence nucleation. To examine the effect of SiH$_4$ exposure, piranha-cleaned SiO$_2$ samples were pre-exposed to sequential doses of SiH$_4$ followed by SiH$_4$/WF$_6$ W-ALD cycles at 220°C. Figure 6.6 shows that the film delta parameter after 30 W-ALD cycles increases with increasing number of SiH$_4$ pre-exposures, demonstrating that SiH$_4$ promotes W nucleation on SiO$_2$.
Figure 6.6: SE delta parameter at 700 nm for SiO$_2$ samples after 30 W ALD cycles following x SiH$_4$ pre-exposure cycles. The delta data from the piranha-cleaned SiO$_2$ in Figure 4 is repeated for clarity.

Likewise, silicon wafers coated with ALD TiO$_2$ and Al$_2$O$_3$ were repeatedly exposed to SiH$_4$. Figure 6.7 shows Si 2p XPS spectra collected ex-situ on ALD TiO$_2$ and Al$_2$O$_3$ surfaces after increasing number of SiH$_4$ exposures. The intensity of the Si 2p peak at 102.7 (consistent with oxidized silicon) increases with SiH$_4$ exposure on both TiO$_2$ and Al$_2$O$_3$, likely due to SiH$_4$ adsorption and reaction with surface-bound water.
Figure 6.7: XPS spectra of TiO$_2$ and Al$_2$O$_3$ ALD films exposed to 0 (black), 10 (red), and 50 (blue) SiH$_4$ exposures. With increasing number of SiH$_4$ exposures, the Si 2p peak increases on both the TiO$_2$ and Al$_2$O$_3$ surfaces.

The SiH$_4$ pretreatment on TiO$_2$ and Al$_2$O$_3$ also promoted tungsten nucleation, as shown in the QCM results in Figure 6.8. By using 50 SiH$_4$ exposure cycles before W-ALD, nucleation was observed 6-8 cycles sooner. In addition, mass loss ascribed to chemical etching is observed on TiO$_2$, likely due to the volatilization of TiF$_4$, regardless of whether a SiH$_4$ pre-exposure step was applied.
Figure 6.8: In-situ QCM analysis comparing W-ALD on a) TiO$_2$ and b) Al$_2$O$_3$ for the as-is oxide (red), oxide with 50 SiH$_4$ pre-exposures (black), and oxide with 50 WF$_6$ pre-exposures (blue).

The interactions between WF$_6$ and the oxide substrates were investigated by pre-exposing substrates to WF$_6$ followed by the W-ALD process as shown in Figure 6.8. During the 50 WF$_6$ pre-exposures, there is an initial mass gain on the Al$_2$O$_3$ surface which plateaus after 1-2 WF$_6$ pre-exposures. The TiO$_2$ substrate also shows an initial mass gain, but further WF$_6$ exposures result in mass loss. For both the Al$_2$O$_3$ and TiO$_2$ surfaces, the WF$_6$ exposure steps lead to more rapid tungsten nucleation. Comparing the results for WF$_6$ versus SiH$_4$ pre-exposure, the W-ALD nucleation on oxides is more dependent on WF$_6$ adsorption than SiH$_4$ adsorption.

6.4.4 Expanding the W-ALD selectivity window

Using insights and results from surface preparation and individual precursor reaction experiments, we seek to adjust the W-ALD process to expand the ALD selectivity window,
i.e. further slow tungsten nucleation on SiO$_2$ while maintaining high growth per cycle on silicon. Specifically, since results in Figure 6.3 and Figure 6.5 show that a high density of surface bound water can impede tungsten nucleation on SiO$_2$, we hypothesize that a reduced deposition temperature would favor selectivity. Moreover, since SiO$_2$ reacts with SiH$_4$ or WF$_6$ to promote tungsten nucleation, reducing the deposition temperature would also slow the reactions that form active nucleation sites. Results from XPS analysis in Figure 9a-c show the high resolution W 4f scans on Si and SiO$_2$ at different process temperatures. The ratio of the W 4f signals for the Si versus SiO$_2$ as measure of the selectivity is included in Figure 9d. For each temperature, the number of cycles deposited corresponds to the negative-going inflection point in ellipsometry Δ parameter on the SiO$_2$ substrate, i.e. 30 cycles at 220°C as shown in Figure 6.5b (other data not shown). At this inflection point, a larger relative W XPS signal on Si vs SiO$_2$ corresponds to more W on Si and therefore improved selectivity. At 300°C the area of the tungsten 4f signal is \sim1.7x larger on Si than on SiO$_2$. At 220°C this ratio increases to \sim2.4 and reaches \sim3.3 at 160°C, demonstrating improved selectivity at lower temperature. We attribute the improved selectivity to the temperature dependence of the WF$_6$ reaction,16,248 in which the probability of the SiOH-WF$_6$ reaction is more significantly reduced than the SiH-WF$_6$ reaction.
Figure 6.9: Ex-situ XPS W 4f high resolution scans for Si and SiO$_2$ samples following: a) 50 W-ALD cycles at 160°C, b) 30 W-ALD cycles at 220°C, and c) 20 W-ALD cycles at 300°C. d) Ratio of W 4f Area on Si versus SiO$_2$ at different reactor temperatures.

6.5 Discussion

The ellipsometry, XPS, FTIR, and QCM results shown above demonstrate that the composition of a metal oxide substrate as well as the concentration of reactive hydroxyl groups on oxide surfaces play a key role in the rate of tungsten metal nucleation during W-ALD. In this section, we discuss in greater detail how the W-ALD precursors react with the
defect hydroxyl sites in the context of controlling tungsten nucleation, and then present suggestions to further expand substrate selectivity.

6.5.1 Surface hydroxyls as tungsten nucleation sites

A pristine SiO$_2$ surface has a large concentration of stable Si-O bonds that are inert towards most reactants, and preliminary modeling results suggest that there is a large thermodynamic barrier for WF$_6$ to react with a hydroxyl-free SiO$_2$ surface. But SiO$_2$ surfaces are typically populated by silanol sites which can react with precursors, such as WF$_6$, to form a Si-O-WF$_x$ linkage and stable HF. Results in Figure 6.3, 6.4 and 6.5 show that treating SiO$_2$ with a piranha cleaning step introduces vicinal hydroxyl groups which are retained during annealing at 600°C. With this surface preparation, relatively rapid tungsten nucleation is observed on SiO$_2$ by ellipsometry, indicating that vicinal hydroxyl groups promote tungsten nucleation during WF$_6$/SiH$_4$ ALD. Ellipsometry also shows slower nucleation on SiO$_2$ after 800°C anneal, where FTIR shows loss of vicinal hydroxyl species.

We find that tungsten nucleation on SiO$_2$ surfaces occurs at vicinal hydroxyl sites, which is further validated by results for similar tungsten processes. Using triethylborane, tungsten hexafluoride, and ammonia as reactants in an ALD sequence, Hoyas et al. used energy dispersive X-ray fluorescence to monitor WN$_x$C$_y$ nucleation on chemical and thermal SiO$_2$, and at 300°C they observed more rapid nucleation on chemical SiO$_2$ as compared to thermal SiO$_2$. They suggested that the WN$_x$C$_y$ nucleation behavior could be related to the fact that the density of reactive hydroxyls is 2 times larger on chemical SiO$_2$ vs thermal SiO$_2$ (3 and 1.5 nm$^{-2}$ respectively). Without surface hydroxyl groups, WF$_6$ adsorption is severely
hindered. For example, when surface hydroxyls were removed from quartz samples via in-situ annealed at 1100 K, Groenen et al. observed that the tungsten nucleation time was independent of the WF$_6$ pre-exposure time.250 Although isolated hydroxyls are often considered to be relatively reactive,251 during studies of BCl$_3$, TiCl$_4$, and TMA reactions with silica surfaces, Morrow et al.247 concludes that hydrogen bonded vicinal groups are more reactive towards specific ALD precursors such as TiCl$_4$ because they promote bifunctional reactions with more than one vicinal silanol. Based on the results in Figures 6.4, 6.5, and 6.8, we propose that WF$_6$ also preferentially reacts with the vicinal hydroxyl sites on SiO$_2$ surfaces through bifunctional reactions.

6.5.2 Fluorination of oxide substrates

Results in Figures 6.4, 6.5, and 6.8 suggest that WF$_6$ reacts at hydroxyl sites, leading to tungsten nucleation on SiO$_2$ and other oxides. Although WF$_6$ is generally considered a weak fluorinating agent252 it is able to react with hydroxyl sites, converting the metal oxide substrate to a metal fluoride.14,17,26,253 Our results suggest that the different tungsten nucleation behavior for Al$_2$O$_3$ and ZnO versus TiO$_2$ and SiO$_2$ substrates is due to the difference in volatility of the formed metal fluorides. QCM analysis in Figure 6.2 and Figure 6.8, shows that repeated exposures of WF$_6$ etches TiO$_2$, while Al$_2$O$_3$ shows an initial mass loading that plateaus with additional WF$_6$ doses. The different etching behavior is attributed to the fact that TiF$_4$,254,255 is more volatile than AlF$_3$,$^{81,82,256–258}$ at low temperatures. It should also be noted that QCM analysis (not included) also suggests repeated WF$_6$ exposures can
etch SiO₂ film. Like TiF₄, SiF₄ is volatile at low temperatures,²³⁶,²³⁹,²⁴³,²⁵⁰ whereas ZnF₂ is a non-volatile solid,²⁵⁷ analogous to AlF₃.

In the case of TiO₂, we propose that the initial WF₆ exposures fluorinate the TiO₂ to form fluorinated titanium and oxidized tungsten surface species, consistent with the initial mass increase observed by QCM analysis in Figure 6.8. These surface-bound species are likely a mix of nonvolatile TiF₃,²⁵⁴,²⁵⁵ TiOF₂,²⁵⁹ and WO₃.²³⁶,²⁵⁵,²⁶⁰,²⁶¹ Additional WF₆ exposures then increases the substrate fluorine concentration, forming volatile TiF₄²⁶,²³⁸,²⁵³,²⁵⁴ and WOF₄.²³⁶,²⁶¹ The overall etch reaction would then be written as:

\[
\text{TiO}_2(s) + 2\text{WF}_6(g) \rightarrow \text{TiF}_4(g) + 2\text{WO}_4(g)
\]

This is consistent with the work of Kobayashi et al., in which they show that WF₆ reacts with SiO₂ to form volatile WOF₄ and SiF₄.²³⁶ The etching rate depending highly on how the SiO₂ was formed (aka plasma CVD SiO₂ versus thermally grown SiO₂), likely because of differences in hydroxyl concentration.²³⁶ Furthermore, in a similar system, NbCl₅ was observed to etch Nb₂O₅ films by forming volatile NbOCl₃.²⁶² Initially, oxide etching removes potential surface sites for tungsten nucleation, but tungsten or WOFₓ species eventually deposit on the surface during the WF₆ exposures, allowing tungsten film growth. This explains why following WF₆ etching, there is little to no W-ALD nucleation delay on TiO₂ as shown in Figure 6.8. Collectively, this provides evidence that WF₆ adsorption is the rate-limiting step for tungsten nucleation on an oxide surface.
6.5.3 SiH_4 reactions with surface hydroxyls

The tungsten nucleation time is also dependent on SiH_4 exposure time. We suggest that like WF_6, SiH_4 can also adsorb on oxide surfaces by reacting with surface hydroxyls. XPS results in Figure 6.7 indicate that the silicon content on Al_2O_3 and TiO_2 surfaces increases with increasing number of SiH_4 pre-exposures. Attenuation of the Ti 2p 3/2 XPS signal suggests that the TiO_2 sample had a ~4 Å thick SiO_2 over-layer following 50 SiH_4 pre-exposures. In comparison, based on a bulk amorphous density of 2.3 g/cm3, a SiO_2 monolayer is ~3.5 Å thick. This suggest that the in-situ SiH_4 pre-exposures form a Si monolayer on the oxide surfaces, consistent with the observation that approximately one monolayer of SiH_4 adsorbs on oxidized TiN sites by forming Si-O bonds.263,264 The Si monolayer then acts as a reducing layer, hence the earlier tungsten nucleation on SiO_2, Al_2O_3, and TiO_2 following SiH_4 pre-exposures shown in Figure 6.6 and 6.8. This is consistent with the more conformal tungsten films following $\text{SiH}_4$263,264 or $\text{B}_2\text{H}_6$12 pre-exposures. Nevertheless, we do not consider SiH_4 the predominant selectivity loss reactant. Considering that for TiO_2, 50 SiH_4 pre-exposures enhanced W-ALD nucleation by 5-10 cycles compared to the 30-35 cycle for 50 WF_6 pre-exposures.

6.5.4 Limiting WF_6 and SiH_4 reactions with surface hydroxyls

We have provided evidence that both WF_6 and SiH_4 can react with surface hydroxyls, which leads to metallic tungsten nucleation. FTIR results in Figure 6.3 shows that within the 200-300°C temperature range there is still surface bound water on SiO_2 surfaces. There is approximately a monolayer of water on piranha cleaned SiO_2 surfaces265 that can react with
and deplete SiH$_4$ and or WF$_6$ forming non-growth oxide films (SiO$_2$ and WO$_3$ respectively). We conclude that tungsten nucleation on the hydroxylated oxide surface does not proceed until the physisorbed water layer is consumed. This conclusion is supported by the results in Figure 6.5 that shows removing surface bound water by annealing samples at 600°C leads to earlier tungsten nucleation. This may also explain the improved selectivity observed at 160°C than 300°C in Figure 6.9.

In summary, the following three factors are shown to have significant influence on delaying tungsten nucleation on oxide surfaces: 1) having physisorbed water on the non-growth surface, 2) reducing the concentration of surface vicinal hydroxyls, and 3) etching the oxide substrate and removing possible metal nucleation sites. Based on these conclusions, we suggest three strategies to improve the tungsten selectivity: 1) Based on data in Figure 6.9, operating at lower deposition temperatures will improve the selectivity window, which we attribute to the temperature dependence of the WF$_6$ reaction, 2) in-situ annealing or plasma cleaning to minimize the prevalence of surface hydroxyls, and 3) non-volatile metal fluoride species could be removed by incorporating an additional reagent, similar to an ALE process.82,256,257 Overall, a better understanding of selectivity loss mechanism is pivotal for improving the selectivity window for the W-ALD and other selective ALD processes.

6.6 Conclusion

In this paper we investigate W-ALD nucleation mechanisms for SiO$_2$ and other oxide substrates. Our results indicate that tungsten nucleation on SiO$_2$ occurs at hydroxyl sites generated on the surface by the piranha sample preparation. By annealing SiO$_2$ samples prior
to tungsten deposition we show that vicinal hydroxyls help promote WF$_6$ adsorption, while physisorbed water tends to delay tungsten nucleation. On oxide surfaces, we found that SiH$_4$ pre-exposure helped promote tungsten nucleation, which we attribute to the formation of a reducing Si layer. Also on oxide surfaces, WF$_6$ reacts to form metal fluoride species. In the case of TiO$_2$ and SiO$_2$, the metal fluoride species were volatile and lead to film etching. Finally, we demonstrate that the W-ALD selectivity window can be widened by reducing the process temperature, due to the temperature dependence of the WF$_6$ interaction with the oxide surface. Understanding selectivity loss mechanisms is the first step to determining the necessary precursors and reactor conditions for extending the selectivity window of an ALD process.

6.7 Acknowledgements

The work included in this manuscript was funded by the semiconductor research corporation (SRC). The authors acknowledge the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation.
CHAPTER 7. INFLUENCE OF TEMPERATURE AND CARRIER GAS FLOW RATE ON THE TUNGSTEN ATOMIC LAYER DEPOSITION “SELECTIVITY WINDOW”

Paul C. Lemaire and Gregory N. Parsons

This chapter is an article in preparation and may be revised for future publication.

7.1 Abstract

Area-selective thin film deposition is expected to be important for overcoming limitations in conventional patterning techniques for manufacturing semiconductor devices. A tungsten ALD process (W-ALD) has shown propensity for selective deposition of tungsten on Si-H and metal surfaces preferentially over oxide surfaces, but selectivity is loss after a number of W-ALD cycles. In order to expand the “selectivity window” we investigated how the process temperature, carrier flow rate, and choice of carrier gas could delay W-ALD nucleation on oxide surfaces. We assessed these process parameters with spectroscopic ellipsometry (SE), quartz crystal microbalance (QCM), and x-ray photoelectron spectroscopy (XPS) analyses. Reducing the process temperature was observed to extend the W-ALD incubation period on oxides, but at the cost of reduced deposition rates on growth surfaces. Increasing the carrier flow rate expanded the W-ALD selectivity window without significantly reducing tungsten deposition on Si. We propose that increasing the carrier flow rate reduces the precursor concentration in the gas phase, which in turn limits precursor adsorption on the non-growth oxide surfaces. Finally we show that dosing carrier gases (H₂, He, and CH₄) before the WF₆
exposure also extends the W-ALD incubation period on oxide surfaces. We attribute this to a combined effect of precursor dilution, precursor desorption, and blocking of potential active sites on the oxide surfaces. Adjusting process parameters such as temperature and precursor concentration offer simple routes to widen the selectivity window without the need for significant chemical modification of surfaces.

7.2 Introduction

As transistor devices continue to get smaller, there is a growing need for selective deposition techniques as standard patterning techniques become more limited at smaller feature scales. Selective deposition is a way to deposit materials, such as metals or dielectrics, in predetermined regions. Selective atomic layer deposition (S-ALD) is a vapor phase technique that uses two self-limiting half reactions to preferentially deposit conformal films on specific substrates, with angstrom level thickness control.5,11 Typically, S-ALD requires chemical modification of a surface in order to widen the selectivity window. For example, self-assembled monolayers (SAMs) have been used to selectively passivate surfaces to inhibit deposition in the patterned regions. Yet SAMs are typically costly, cannot completely passivate a surface, and do not lend themselves to conventional semiconductor manufacturing.29,30 One solution is to instead take advantage of the inherent differences in surfaces energy of unmodified surfaces. For example, a tungsten ALD (W-ALD) process, which uses tungsten hexafluoride (WF\textsubscript{6}) and silane (SiH\textsubscript{4})10-12 or disilane (Si\textsubscript{2}H\textsubscript{6})14-17 selectively deposits tungsten on Si and metal surfaces.25,235,236 In contrast, “non-growth”
surfaces such as SiO$_2$ exhibit lower rates of tungsten nucleation because the oxidized silicon atoms are unable to act as sacrificial reductants.$^{24-26}$

Although deposition on non-growth surfaces is thermodynamically much less favorable, deposition will occur after an incubation period. In order to take full advantage of selective ALD processes, it is pivotal to extend the “selectivity window” or maximize the amount of material deposited on the growth surface before growth begins on the non-growth surface. Recent results suggest that WF$_6$ reaction with surface hydroxyls is the predominant cause for selectivity loss.13,26 Therefore, limiting WF$_6$ adsorption and reactions with oxide substrates is one strategy to extend the selectivity window.

Adjusting the process temperature is one means of widening the selectivity window. For example, nucleation can be inhibited by lowering the temperature because there is insufficient energy to overcome activation energy barriers.5 In contrast, increasing the process temperatures can also depress nucleation because of higher precursor desorption rates.5 These parameters not only vary among different process chemistries but also across different substrates. For example, the incubation time for copper chemical vapor deposition (CVD) on growth (e.g. aluminum) and non-growth surfaces (e.g. SiO$_2$) decreases as the deposition temperature increases because of reduced activation barriers for the copper precursor adsorption.$^{266-268}$ Adsorption and subsequent deposition is inhibited when the copper-ligand bond strength is stronger than the copper-SiO$_2$ bonding.234

In addition to reactor temperature, process pressure and the carrier gas affects nucleation and selectivity. Increasing the reactant partial pressure reduces the incubation time because the
molecular flux density condensing on the surface is directly proportional to the reactant partial pressure.267-270 Selective deposition of tungsten by WF\textsubscript{6}/SiH\textsubscript{4} CVD is enhanced by operating at lower pressures and at lower SiH\textsubscript{4} concentrations. The carrier gas itself can impact the selectivity by acting as a reducing agent, changing the concentration of active sites on a substrate, or enabling different reaction pathways.267,268 Precursors will also have different diffusivities in certain carrier gases, which in turn impacts the frequency of precursor molecule collisions with surface sites.271,272

The majority of the work studying the impact of process parameters such as reactor temperature or pressure has focused on CVD processes. Although CVD and ALD processes bear many similarities, separating the reactant exposures with inert purging can drastically impact how process parameters can impact deposition rates and selectivity. Accordingly, in this paper, we investigate how process temperature and pressure/carrier flow rate affects the selectivity window for a tungsten atomic layer deposition process (W-ALD). We used spectroscopic ellipsometry (SE), quartz crystal microbalance (QCM), and x-ray photoelectron spectroscopy (XPS) to assess tungsten nucleation on a growth surface (Si) versus non-growth surfaces (SiO\textsubscript{2} and TiO\textsubscript{2}). We observed that lowering the process temperature decreased the tungsten growth per cycle on Si, SiO\textsubscript{2}, and TiO\textsubscript{2} but nevertheless widened the selectivity window. Operating at higher carrier flow rates and overall process pressures depresses tungsten nucleation on SiO\textsubscript{2} and TiO\textsubscript{2} surfaces without significantly impacting the deposition on the Si surfaces. Based on these results we then investigated how
H₂, He, and CH₃ dosing can be used to modify the process temperature and pressure to further improve the W-ALD selectivity.

7.3 Experimental

7.3.1 List of supplies and materials

Tungsten hexafluoride (WF₆) and a dilute 2% silane in argon mixture (SiH₄) were purchased from Galaxy Chemical (Claremore, OK) and Custom Gas Solutions (Durham, NC) respectively and used without further treatment. Titanium tetrachloride (TiCl₄) was obtained from Strem Chemicals Inc. and used without further treatment. The Si substrates were boron doped Si(100) 6-10 Ω-cm (WRS Materials). The SiO₂ substrates were Si(100) 6-10 Ω-cm with 100 nm thermal SiO₂ (WRS Materials), cut into 12 x 12 mm pieces. For the carrier and purge gas, dry 99.999% argon (Ar) was passed through an Entegris GateKeeper inert gas purifier to remove any residual water before entering the reactor.

7.3.2 Substrate surface preparation

The SiO₂ substrates were cut into 12 x 12 mm pieces. SiO₂ samples were cleaned in hot piranha solution (1:1 H₂SO₄:H₂O₂ by volume) for 30 minutes, rinsed with deionized (DI) water, and stored in DI water. Immediately prior to W-ALD, the SiO₂ pieces were rinsed in DI water and dried under flowing N₂ (100 psi). To form hydrogen–terminated silicon, 12 x 12 mm Si pieces were cleaned in the piranha solution described above and stored in DI water. Immediately prior to W-ALD, the Si wafers were dipped in dilute hydrofluoric acid (5 vol%) for 30 s followed by a DI water rinse (30 s) and N₂ drying.
7.3.3 W-ALD reactor design

Depositions were carried out in a chamber home-built ALD reactor described in previous publications.11,18 Precursor and inert gases were diverted to one of two cylindrical process chambers by gas switching valves. The larger deposition chamber was a hot-walled stainless steel tube (60 cm long, 10 cm diameter tube) and second reaction chamber made of fused quartz (60 cm long, 4 cm diameter tube) was positioned in parallel to the steel reactor and shared the same upstream and downstream gas piping. The steel and quartz tube were heated resistively with PID controllers, but the quartz chamber was only heated near the substrate in order to minimize exposed hot metal surfaces. The operating standard operating conditions were a temperature of 220°C and a pressure of 1.5 Torr with an Ar carrier flow rate of 210 sccm.

7.3.4 ALD reaction sequence

Tungsten deposition was achieved by alternately pulsing SiH\textsubscript{4} and WF\textsubscript{6} with inert Ar purge steps following each exposure. Silicon substrates were loaded into the reactor and allowed to reach thermal equilibrium with the walls by flowing carrier gas for 30 min prior to deposition. The conditions for the starting base-line W-ALD process used the SiH\textsubscript{4}/Ar/WF\textsubscript{6}/Ar (45/45/1/60 s) sequence at 220°C. Finally TiO\textsubscript{2} ALD films were deposited prior to the W-ALD process using a TiCl\textsubscript{4}/Ar/H\textsubscript{2}O/Ar sequence with a timing sequence of 0.25/45/0.25/45 s.
Film nucleation and growth were characterized using ex situ analytical tools. Spectroscopic ellipsometry (SE) data were obtained with a J.A. Woollam alpha-SE ellipsometer at an incidence angle of 70°. To alleviate issues with modeling ellipsometry data, we use a previously published approach to trace tungsten nucleation by directly monitoring the ellipsometry delta parameter, \(\Delta \), at 700 nm.13,18 It was observed that the \(\Delta \) value is 78° for the initial SiO\(_2\) surface but decreases to \(~30°\). During film coalescence, the \(\Delta \) value increases to 130°, similar to the \(\Delta \) value on the Si wafers.13,18 Chemical analysis was done using a SPECS X-ray photoelectron spectroscopy (XPS) system with a PHOIBOS 150 analyzer. Spectra were generated using an Al K\(\alpha \) X-ray source operated at 400 W. For all analyses, data reduction and fitting was carried out using CasaXPS software with charge compensation based on the C 1s (C-C, C-H) peak set to 285 eV.

Process conditions were further characterized using in-situ QCM analysis. For these tests, a 6 Hz gold coated QCM crystal sensor (Inficon) was placed into the QCM housing. A dry Ar crystal back purge that yielded a \(~250\) mTorr pressure increase was sufficient to prevent deposition on the backside of the QCM crystal. The mass change signals were detected by an Inficon SQM-160 monitor and recorded using a home designed LabVIEW program.
7.4 Results

7.4.1 Process Temperature and Tungsten Nucleation on Si and Oxide Surfaces

Tungsten deposition on Si and SiO$_2$ surfaces as a function of temperature was monitored by tracking the delta parameter Δ, at 700 nm.13,18 Δ is strongly dependent on surface roughness and inhomogeneity and therefore a good measure of nuclei formation and coalescence.18,144 It was observed that on SiO$_2$, the Δ value was 78° during the W-ALD incubation period. With additional W-ALD cycles, the Δ value decreased to 30° with the formation of tungsten nuclei on the SiO$_2$ surface. Then, with additional W-ALD cycles, the nuclei fully coalesced and the Δ value increased to \sim130°. In contrast, the Δ value decreases from 152° to \sim130° with increasing tungsten film thickness on a Si substrate.13,18

Figure 7.1 shows a similar trend when the W-ALD cycle number is held constant (50 cycles) and the deposition temperature is increased. Below 160°C, ellipsometry suggest there is little to no tungsten nucleation on the SiO$_2$ surface. At 190°C, 50 W-ALD cycles deposits disjointed tungsten nuclei, whereas fully coalesced films are deposited at and above 220°C. In addition, the Δ value on the Si also decreases with increasing temperature, consistent with deposition of thicker tungsten films at higher temperatures.18
SiO$_2$ surfaces following W-ALD deposition at different process temperatures were then characterized with XPS. We chose to vary the number of W-ALD cycles at different process temperatures in order to characterize the surfaces when tungsten was first detected (aka samples with a Δ value of \sim30°). Figure 7.2 shows the high resolution W 4f and F 1s XPS scans for SiO$_2$ samples after 20, 30, and 50 W-ALD cycles at 300, 220, and 160°C respectively. Figure 7.2a shows that there are approximately equal amounts of tungsten on the SiO$_2$ surfaces. The W 4f signal is slightly higher with the 300°C deposition, despite the lower number of W-ALD cycles. This is due to the higher deposition rates at the higher temperatures. We previously showed that more W-ALD cycles at lower process temperature exhibited the highest selectivity of tungsten deposition on Si versus SiO$_2$.13

Figure 7.2b shows that at 160°C, there is a detectable fluorine signal on the SiO$_2$ substrate. It was previously observed that WF$_6$ can react with SiO$_2$236 and TiO$_2$254,255,273 to form SiF$_4$ and
TiF₄. By fluorinating the oxides substrates, the WF₆ accepts oxygen and forms WOₓFₙ.ⁱ³ At 220°C, WOₓFₙ species are volatile, but are non-volatile at and below 170°C. Accordingly, the longer W-ALD incubation delay at lower temperatures is possibly the combined result of higher concentration of nonvolatile fluorinated surface species and lower reactivity of SiH₄ at lower temperatures.¹⁶,²⁴,²⁶,²³⁹,²⁴³,²⁵⁰

Figure 7.2. Ex-situ XPS high resolution scans of the a) W 4f and b) F 1s regions for SiO₂ samples after 20, 30, and 50 W-ALD cycles at 300, 220, and 160°C respectively. The number of W-ALD cycles for each temperature was chosen based on when the delta parameter, Δ, decreased to ~30°, indicative of tungsten nucleation as described above.

W-ALD was also monitored on TiO₂ surfaces with in-situ QCM analysis. Figure 7.3 shows that at a higher process temperature (250°C) the nucleation delay is ~10 W-ALD cycles. In contrast, at lower temperatures (190 and 220°C), the incubation time increases to 30-35 W-ALD cycles. Finally at 160°C, we did not observe steady state tungsten deposition within 50 W-ALD cycles. A process temperature of 160°C may be too low to overcome the activation barrier for the precursor adsorption or reduction reaction. It may also be related to reactor
poisoning by halogenated species from the TiCl₄ or WF₆ precursors at 160°C.¹¹ It should also be noted there was etching of the TiO₂ substrate during the incubation period at 220°C, but not the other process temperatures. We propose that at 220°C, there is a balance between a long enough incubation time and high enough temperature to volatilize etch products. Etching of active sites or WOₓFᵧ surfaces species may account for the slightly longer delay at 220°C than 190°C.

Figure 7.3: In-situ QCM analysis of W-ALD nucleation on TiO₂ surfaces at different process temperatures.

7.4.2 Tungsten Nucleation versus Process Pressure/Carrier Flow Rate

We next assessed how modulating the reactor pressure by increasing the carrier flow rate impacted the W-ALD incubation period. Figure 7.4a shows the reactor pressure increases linearly with an increase in carrier flow rate. In addition, Figure 7.4b shows the Δ value for Si and SiO₂ surfaces after 40 W-ALD cycles versus carrier flow rate. At lower pressure
(~0.75 Torr), 40 W-ALD cycles is sufficient to deposit nearly coalesced films. When the overall reactor pressure is increased to ~5.5 Torr, 40 W-ALD cycles results in disjointed tungsten nuclei. Both the vapor pressure of SiH$_4$ and WF$_6$ are high enough that this reduced tungsten nucleation at higher process pressures is not attributed to reduced precursor exposure. Instead, we propose that operating at higher carrier flow rates dilutes the reactant concentration, reducing the probability of adsorption on the non-growth surfaces. Furthermore, tracking the Δ value on the Si surfaces stays relatively constant from 0.75-5.5 Torr. The WF$_6$ and or SiH$_4$ adsorption is thermodynamically favorable enough on the Si or deposited tungsten surface that varying the reactant concentration does not significantly impact the deposition kinetics.15,24,250

Figure 7.4: a) Operating pressure versus Ar carrier flow rate b) SE delta parameter at 700 nm versus flow rate for SiO$_2$ (black) and Si (blue) substrates after 40 W-ALD cycles at 220°C.

To support the ellipsometric analysis, we assessed tungsten nucleation on TiO$_2$ surfaces as a function of reactor pressure using QCM analysis. Figure 7.5 shows that as the pressure was
increased from 0.9 to 5.5 Torr by increasing the carrier flow rate, the tungsten nucleation delay increased from ~25 to 50 W-ALD cycles. Again we attribute this to precursor dilution and reduced precursor adsorption on the TiO₂ surface. We also observed less pronounced etching at higher process pressures. This is possibly a result of reduced volatilization of etch products at higher pressures. The lower etching may also be due to reduced substrate fluorination because of reduced precursor adsorption at the lower precursor concentration.

![Figure 7.5: In-situ QCM analysis of W-ALD nucleation on TiO₂ surfaces with an Ar carrier gas flow rate of 105 (black), 210 (red), and 900 (blue) sccm at 220°C.](image)

7.4.3 Modulating Process Temperature/Pressure with Inert Gas Dosing

In prior work, it was observed that dosing molecular H₂ immediately prior to the WF₆ exposure extended the W-ALD nucleation delay on SiO₂ surfaces without reducing growth on Si or Au surfaces.¹⁸ It was proposed that H₂ would partially react with the WF₆ in the gas phase, generating HF that passivated SiO₂ surfaces.¹⁸ Based on the results shown in Figures
7.1-7.5 we decided to further investigate the role of H$_2$ in tungsten nucleation. H$_2$ has a high momentum and thermal diffusivity (8700 and 12,300 cm2/s respectively)271 and we reasoned that changes in the reactor pressure, temperature, or reactant diffusivity may also account for reduced tungsten nucleation on SiO$_2$.

Figure 7.6 shows results from QCM analysis of steady state W-ALD in which He or H$_2$ is dosed for 5 s immediately prior to the WF$_6$ dose. During He and H$_2$ dosing, there is an observable decrease in the mass loading, indicating either precursor desorption or surface heating, which would increase the frequency of the QCM crystal.138 This was further investigated by using a smaller volume quartz reactor to magnify any thermal effects. Figure 7.7 shows QCM analysis of steady state W-ALD in which H$_2$ was dosed for 5s either immediately before or 45 s before the WF$_6$ dose. Figure 7.7a shows a more pronounced decrease in the mass loading during the H$_2$ dose than in 7.6b. This is consistent with enhanced heat transfer because of the closer proximity between the QCM crystal and the hot reactor walls in the smaller reactor volume. Figure 7.7b shows that when the crystal is allowed to equilibrate for 45 s after the 5 s H$_2$ dose, the mass loading increases, returning approximately to the mass loading value prior to the H$_2$ dose. Collectively this suggests that the decrease in the mass loading is due to crystal heating.
Figure 7.6: QCM analysis steady state W-ALD at 220°C with a reactor volume of 4700 cm³, where a) He and b) H₂ are dosed immediately before the WF₆ for 5 s. During the He and H₂ dosing, there is an observed decrease in the QCM loading, consistent with sample heating.

Figure 7.7: QCM analysis of W-ALD in smaller reactor volume (~750 cm³) where H₂ was dosed for 5 s a) immediately before and b) 45 s before the WF₆ dosing. In the smaller reactor volume, the decrease in the QCM signal during the H₂ dosing due to sample heating is more pronounced, but returns to the initial mass loading during a sufficiently long Ar purge step.

Inhibition of tungsten nucleation by dosing inert carrier gases was further assessed with XPS analysis. Figure 7.8 includes high resolution XPS scans of the W 4f and Si 2p regions for
SiO₂ samples following 40 W-ALD cycles at 220°C. For the standard SiH₄/Ar/WF₆/Ar recipe, Figure 7.8a shows that there are prominent W 4f peaks at 33 and 30.8 eV associated with W⁰ and features at 37.5 and 35.3 eV due to oxidized W. In comparison, when CH₄ or He was dosed for 5 s immediately prior to the WF₆ exposure, the peaks associated with metallic and oxidized tungsten are significantly reduced. Furthermore, the Si 2p peaks for the CH₄ and He modified W-ALD sequences are visible, whereas Si is below the detection limit following the standard recipe, due to a thick tungsten film.

![Ex-situ high resolution XPS scans](image)

Figure 7.8: Ex-situ high resolution XPS scans of the a) W 4f and b) Si 2p regions for SiO₂ samples following 40 W-ALD cycles at 220°C. Three reaction sequences were used: SiH₄/Ar/WF₆/Ar (red), SiH₄/Ar/CH₄/WF₆/Ar (blue), and SiH₄/Ar/He/WF₆/Ar (black). Samples in which CH₄ and He were dosed immediately prior to the WF₆ exhibit lower tungsten concentration and a more pronounced Si signal from the underlying SiO₂ wafer.

7.5 Discussion

Adjusting the reactor temperature, carrier flow rate, and carrier gas was observed to increase the nucleation delay in two main ways: 1) reduce the probability of WF₆ reacting with active
sites on the oxide surface and 2) limit the ability for SiH$_4$ to reduce the adsorbed fluoride species. Reducing the process temperature reduces tungsten nucleation predominantly by decreasing the SiH$_4$ reduction reaction.248 QCM analysis of W-ALD on TiO$_2$ in Figure 7.3 shows that at 160°C, the initial WF$_6$ dose increases the mass loading, but additional W-ALD cycles do not lead to additional loading. This suggests that the surface is passivated with TiF$_x$ and WF$_y$ surface species because the temperature is too low to supply the necessary thermal energy for SiH$_4$ to adsorb and remove surface fluorine. This is consistent with the XPS results in Figure 7.2b in showing significant fluorine concentration following the W-ALD on SiO$_2$ at 160°C. Reducing the process temperature is not an ideal strategy to widen the selectivity window because it also reduces the deposition rate on the growth surface as shown by the increasing Δ value on the Si surface.

Tungsten nucleation on oxide substrates was also reduced by increasing the argon carrier gas flow rate. We used Equation 7.1 and the results in Figure 7.4b to assess if increasing the flow rate reduced the residence time.

\begin{equation}
\tau = \frac{p}{\dot{M}} \cdot \frac{V \cdot \bar{M}}{R \cdot T}
\end{equation}

Where τ is the reactor residence time, \dot{M} is the mass flow rate, V is the reactor volume, \bar{M} is the molecular weight of argon, R is the ideal gas constant, and T is the temperature. Assuming a constant reactor temperature and volume, the linear increase in pressure with increasing flow rate conveys that the residence time remains relatively constant. This suggests the longer incubation period is not due to a reduction in residence time.
Instead of changing the residence time, we suggest that increasing the carrier gas flow rate extends the W-ALD nucleation delay on SiO$_2$ by diluting the vapor-phase reactants. Decreasing the vapor-phase concentration decreases the probability of precursor adsorption on a surface. For example, ALD of Al$_2$O$_3$ with dilute trimethylaluminum and water leads to incomplete conversion of methyl and hydroxyl species, which reduces the deposition rate per cycle and incorporates unwanted contaminants into the film. Similar phenomena were observed for HfO$_2$ and ZrO$_2$ ALD, where it was observed that higher carrier gas flow impacted the composition of the adsorbate layer and affected the final film properties, such as increasing the film density. In our system, the reduced WF$_6$ adsorption leads was observed as reduced TiO$_2$ etching at 900 sccm because the degree of etching is dependent on the extent of oxide fluorination.

Based on the results assessing the role of temperature and pressure, there are a couple explanations for the reduced tungsten nucleation on oxide surfaces when different carrier gases were dosed immediately before the WF$_6$. First, dosing another gas prior to the WF$_6$ dilutes the precursor, similar to operating at a higher carrier flow rate. The type of gas (H$_2$, He, etc) is also potentially significant because of differences in heat capacity and the diffusivity of WF$_6$ in the gas. For example, the diffusivity of WF$_6$ in He is ~5x that of in Ar, so WF$_6$ is more likely to collide with a carrier gas molecule than the substrate in He than in Ar. Higher diffusivity in a carrier gas will cause convection to dominate molecular motion or diffusion, reducing the number of contacts between WF$_6$ and the oxide surface and extending the W-ALD nucleation delay on an oxide.
The choice of carrier gas may also impact nucleation through thermal effects. The thermal diffusivities of He and H\textsubscript{2} are approximately an order of magnitude higher than Ar271 which allows for better heat transfer between the heated reactor walls and substrate. An increase in the temperature could facilitate in desorption of WF\textsubscript{x} species from the substrate248,274 without supplying additional thermal energy needed for the SiH\textsubscript{4} reduction. The increase in the sample temperature was observed during QCM analysis because the QCM frequency is temperature dependent. Finally, gases like H\textsubscript{2} or CH\textsubscript{4} can dissociatively adsorb on surfaces, which could block adsorption of WF\textsubscript{6}271. It is likely that a combination of these effects play a role in the longer W-ALD incubation period. For example, He has a higher diffusivity than CH\textsubscript{4}, but CH\textsubscript{4} can adsorb on oxide surfaces, which may explain the similar W-ALD delay shown in Figure 7.8.

7.6 Conclusion

In this paper we investigate strategies to widen the W-ALD selectivity window by varying the process temperature and reactant concentration. We observed that the W-ALD nucleation and deposition rate both decreased at lower temperature. The selectivity window was widened at lower process temperatures, but required additional W-ALD cycles to compensate for the lower deposition rates on the growth surface. The longer nucleation delay on the oxide surfaces at the lower process temperature was attributed to surface passivation by fluorine species. Tungsten nucleation was also delayed on SiO\textsubscript{2} surfaces by increasing the carrier gas flow rate. The increase the carrier gas flow rate reduces the probability of WF\textsubscript{6} adsorption on the oxide surfaces due to reactant dilution. Finally, we observed that dosing
H$_2$, He, or CH$_4$ prior to the WF$_6$ exposure also widened the W-ALD selectivity window. We suggest that the addition of these carrier gases may delay tungsten nucleation on oxide surfaces by diluting the WF$_6$, blocking WF$_6$ adsorption though competitive adsorption, or facilitating WF$_6$ desorption through sample heating. Determining new and practical strategies for widening selectivity windows is essential to make vapor-phase deposition processes viable replacements for current patterning techniques.
CHAPTER 8. SELECTIVE SELF-LIMITING THERMAL ATOMIC LAYER
ETCHING OF TiO$_2$ USING SEQUENTIAL EXPOSURES OF WF$_6$ AND BCl$_3$

The following work is reproduced with permission from Paul C. Lemaire and Gregory N. Parsons. “Selective Self-Limiting Thermal Atomic Layer Etching of TiO$_2$ using Sequential Exposures of WF$_6$ and BCl$_3$” Submitted to Chemistry of Materials. 2017

8.1 Abstract

Controlled thin film etching is essential for further development of sub-10 nanometer semiconductor devices. Vapor-phase thermal etching of oxides is appealing for achieving highly conformal etching of high aspect ratio features. We show that tungsten hexafluoride (WF$_6$) can be used to selectively etch amorphous titania (TiO$_2$) films versus other oxides including alumina (Al$_2$O$_3$). WF$_6$ etching of TiO$_2$ was studied with quartz crystal microbalance (QCM), spectroscopic ellipsometry, x-ray photoelectron spectroscopy (XPS) analysis, and thermodynamic modeling. XPS shows evidence for a WO$_x$F$_y$ layer that forms on of the TiO$_2$ films during the etch process, which may act as a surface surfactant layer to help enable fluorination of the TiO$_2$. Etching of TiO$_2$ was observed to be temperature dependent, in which etching was observed at 220°C, but not 120°C. The WF$_6$ etching depends on the volatilization of the metal fluoride and WF$_2$O$_2$, as suggested by thermodynamic modeling. Finally we show that BCl$_3$ can be used as co-reagents with WF$_6$ to develop atomic layer etching (ALE) processes, in which the reactor temperature impacts the TiO$_2$ etch rate per cycle and the ALE saturation behavior. At 170°C, the ALE removal rate
using WF₆/BCl₃ saturates near ~ 0.3 A/cycle, approximately equivalent to the ALD film growth rate at the same process temperature.

8.2 Introduction

The semiconductor industry foresees multiple challenges in designing and manufacturing transistor devices for the 7 and 5-nm nodes. For example, standard patterning techniques, such as lithography, become much less applicable because of challenges maintaining edge definition and alignment to the underlying features. In addition, semiconductor devices typically utilize three dimensional designs, creating complex high-aspect-ratio features. Accordingly, the semiconductor industry is looking towards controllable etching techniques to supplement currently used thin film deposition techniques.

Vapor phase etching of silicon (Si) native oxide is of interest to the semiconductor industry. Hydrogen fluoride (HF) liquid etching of Si native oxide⁵⁹–⁶¹ is ubiquitously utilized in the semiconductor industry, but in-situ vapor etching helps limit the reformation of an interfacial oxide layer between Si and a deposited film.⁶²,¹⁰,⁶³–⁶⁶ For both solution and vapor phase etching, H₂O plays a significant role in HF etching of Si native oxide, with significantly lower etch rates in anhydrous conditions.⁶⁷–⁷⁰ In vapor phase etching, water creates a interfacial layer between the substrate and gas and acts as a proton donator and acceptor to catalytically activate the HF etch.⁶⁰,⁶⁸,⁶⁹ Although HF is a promising etchant, the high HF concentrations can lead to uncontrolled etching.
Extending the anhydrous HF vapor etch to other oxides is often limited, because unlike SiF$_4$, many of the formed metal fluorides are non-volatile at typical process temperatures and pressures. Yet the non-volatile product formation also creates an opportunity to create a more controlled etching process because the surface fluoride species passivate the substrate from additional fluorination. Surface fluorides or chloride can then be removed anisotropically by a subsequent energy-enhanced technique such as Ar$^+$ bombardment or plasma species. Ideally, the two individual steps are self-limiting, creating a process known as atomic layer etching (ALE). But even with large control over the bias and the energy of the species, it is possible to get uncontrolled etching or damage to sensitive features.

In order to limit the issues that arise from energy-enhanced techniques, there is interest in purely thermally-driven chemical ALE processes. Such techniques would enable conformal isotropic etching, which has many applications for etching in high aspect ratio structures. There has been considerable work by George et al. studying selective etching of oxides using HF in combination with different metal coregents. Specifically, HF was used to fluorinate metal oxides including Al$_2$O$_3$, HfO$_2$, and ZrO$_2$ creating a passivating metal fluoride layer. Exposing the metal fluoride layer to a co-reagent such as trimethylaluminum (TMA), tin acetylacetone (Sn(acac)$_2$), diethylaluminum chloride (DMAC), or silicon tetrachloride (SiCl$_4$) can lead to a ligand-exchange reaction. Depending on the metal fluoride and the extent of the ligand-exchange, the modified surface layer will be volatilized, reforming the original substrate surface termination. For example, a AlF$_3$ surface layer is proposed to react with Sn(acac)$_2$ to form volatile Al(acac)$_3$ and SnF(acac)$_2$. This
etching approach bears similarities to earlier work in which zinc oxide and copper were etched with hexafluoroacetionate (hHfac)71 and hHfac and O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2}72,73 processes respectively. Selective oxide etching has been achieved by adjusting the process temperature and selecting specific metal precursors that serve as ligand sources. For example, a HF/TMA ALE process was observed to etch Al\textsubscript{2}O\textsubscript{3} but not ZrO\textsubscript{2} at 300°C.80 But in addition to HF, there are other chemicals that can be used in the surface modification step such as BCl\textsubscript{3},275 Cl\textsubscript{2},24,25 and WF\textsubscript{6}.

WF\textsubscript{6} is an appealing fluorinating agent and etchant. As a higher oxidation state covalently-bound metal fluoride, WF\textsubscript{6} is highly volatile at room temperature.252 Tungsten is also among the most electronegative of the transition metals,277 enabling selective fluoride transfer to other transition metals.252 For example, WF\textsubscript{6} was observed to undergo halogen exchange with TiCl\textsubscript{4} and BCl\textsubscript{3}, but was considerably less reactive than MoF\textsubscript{6}.252 Yet despite being less reactive, fluorination of TiO\textsubscript{2} with WF\textsubscript{6} proceeds with a Gibbs free energy of -14.9 kcal/mol, whereas HF fluorination is endothermic with ΔG = 6.9 kcal/mol. The thermodynamic fluorination step by HF may in part explain why other reported thermally-driven ALE processes that utilize HF are unable to etch TiN.80 In addition, WF\textsubscript{6} has been observed to etch SiO\textsubscript{2}236 and WO\textsubscript{3} films261 and in an analogous system NbCl\textsubscript{5} was observed to etch Nb\textsubscript{2}O\textsubscript{5}262.

WF\textsubscript{6} also has a zero net dipole moment, making it relatively easy to evacuate from a reaction chamber, an attractive feature for a cyclic ALE process. In contrast, HF is “stickier” because of its high dipole moment, which can lead to hydrogen bonding and long residence times.40
In this paper, we demonstrate that WF$_6$ can be used as an etchant for controlled removal of TiO$_2$ films in both chemical vapor etching and atomic layer etching sequences. We find that WF$_6$ selectively etches TiO$_2$ more readily than it etches Al$_2$O$_3$ which we ascribe to the ability of TiO$_2$ to more readily form volatile products at low process temperatures. Using ex-situ XPS analysis, we confirm WF$_6$ etching of TiO$_2$ films and provide evidence that etching proceeds through TiO$_2$ fluorination in the film bulk, and formation of a low density WO$_x$F$_y$ surface layer on the etching film. Thinner TiO$_2$ films require less time to become fully fluorinated, resulting in overall more rapid oxide etching than thicker TiO$_2$ films.

We also find that using a surface coupling agent, the chemical etching via WF$_6$ can be controlled to achieve a self-limiting ALE process. Specifically we find that coupling exposures of WF$_6$ with Sn(acac)$_2$ or BCl$_3$ in a step-wise sequence acts to volatilize the WO$_x$F$_y$ surface layer formed during WF$_6$ etching, enabling etching of a fraction of a monolayer of TiO$_2$ (i.e. ~0.3 Å) per ALE cycle.

8.3 Experimental

8.3.1 List of supplies and materials

99.99% Tungsten hexafluoride (WF$_6$) and 99.9% boron trichloride (BCl$_3$) were purchased in stainless steel lecture bottles from Galaxy Chemical and Matheson respectively. Trimethylaluminum (TMA), titanium tetrachloride (TiCl$_4$) were obtained from Strem Chemicals Inc. and used without further treatment. 99.9% tin acetylacetonate (Sn(acac)$_2$) was purchased from Sigma Aldrich. The Si substrates were boron doped Si(100) 6-10 Ω-cm
WRS Materials) and were used as-received. For the carrier and purge gas, dry 99.999% argon (Ar) was passed through an Entegris GateKeeper inert gas purifier to remove any residual water before entering the reactor.

8.3.2 W-ALD reactor design and reaction sequence

Depositions were carried out in a home-built ALD reactor (60 cm long, 10 cm in diameter) described in previous publications. The deposition chamber was heated resistively using PID controllers. The operating pressure was maintained at 1.5 Torr with an Ar carrier flow rate of 210 sccm. Silicon substrates were loaded into the reactor and allowed to reach thermal equilibrium with the walls by flowing carrier gas for 30 min prior to deposition or etching. Al₂O₃ and TiO₂ ALD films were deposited prior to the W-ALD process using a x/Ar/H₂O/Ar sequence where x is TMA and TiCl₄ respectively, with a timing sequence of 0.25/45/0.25/45 s. The WF₆ flow was restricted with a needle valve to generate a pressure change of 300 mTorr and pulsed for etching using a 1.0/60 s time sequence. In some instances, Sn(acac)₂ and BCl₃ were used as co-reagents with the WF₆. The processes were WF₆/Ar/Sn(acac)₂/Ar and WF₆/Ar/BCl₃/Ar with timing sequences of 1/60/1/60 and 1/60/2.5/60 s respectively. Sn(acac)₂ was heated to 105°C to produce a pressure changed of ~75 mTorr. The BCl₃ pressure was controlled with a gas regulator and needle valve to generate a pressure change of ~750 mTorr during dosing.
Film deposition and etching were characterized using ex-situ and in-situ analytical tools. Spectroscopic ellipsometry (SE) data were obtained with a J.A. Woollam alpha-SE ellipsometer at an incidence angle of 70°. Chemical analysis was done using a SPECS X-ray photoelectron spectroscopy (XPS) system with a PHOIBOS 150 analyzer. Spectra were generated using an Al Kα X-ray source operated at 400 W. For all analyses, data reduction and fitting was carried out using CasaXPS software with charge compensation based on the C 1s (C-C, C-H) peak set to 285 eV. For some analyses, we utilized the Ti 2p 3/2 XPS peak intensity to estimate the thickness of WO₅Fₓ films formed as a result of WF₆ adsorption. For this analysis, we measured the attenuation of the Ti 2p 3/2 peak and modeled the film thickness using parameters available from the NIST Effective Attenuation Length Database, coupled with electron inelastic mean-free path values determined using the TPP-2M equation. For this equation, we used a bandgap of 3.45 eV and density of 3.58 g/cm³, consistent with reported values for amorphous low density WO₃ films.

Process conditions were further characterized using in-situ QCM analysis. For these tests, a 6 MHz gold coated QCM crystal sensor (Inficon) was placed into the QCM housing. A dry Ar crystal back purge that yielded a ~250 mTorr pressure increase was sufficient to prevent deposition on the backside of the QCM crystal. The mass change signals were detected by an Inficon SQM-160 monitor and recorded using a home designed LabVIEW program.
8.3.4 Thermodynamic modeling

Gibbs free energy values and equilibrium amounts in closed systems were calculated using HSC Chemistry 7.1 software. For the equilibrium composition calculations, the starting input amounts were 5 mol Ar, 1 mol WF₆ and 1 mol oxide (TiO₂, HfO₂, ZrO₂, SiO₂, and ZnO). The initial moles of Al₂O₃ were set as 0.667 to compensate for reaction stoichiometry. 50 measurements were done from 25 to 400°C at 1.5 Torr (0.002 bar).

8.4 Results and Discussion

8.4.1 Vapor Chemical Etching of TiO₂ using WF₆

The WF₆ interaction with ALD metal oxide films at 220°C was assessed with in-situ QCM analysis, where the layer to be etched (either Al₂O₃ or TiO₂) is deposited in the reactor on the QCM crystal via ALD immediately before etching experiments. Deposition and etching were performed at the same temperature. Figure 8.1a shows that immediately following steady-state Al₂O₃ or TiO₂ ALD at 220°C, the first 3-5 WF₆ dose steps result in an increase in the mass loading of 355 and 226 ng/cm² for Al₂O₃ and TiO₂ respectively. Additional WF₆ exposures on the Al₂O₃ surface leads to saturation, whereas additional WF₆ exposures on the TiO₂ surface leads to mass loss. After ~17 WF₆ doses, the QCM begins to record a net overall mass loss, and further WF₆ dosing leads to additional mass loss, consistent with TiO₂ etching by the WF₆.
Figure 8.1: QCM analysis of a) 200 cycles of Al₂O₃ or TiO₂ followed immediately by 50 WF₆/Ar exposures of 1/60 s each; and b) 100 TiO₂ ALD cycles followed by 1 WF₆ exposure of 50 s.

The observed TiO₂ etching behavior in Figure 8.1a using a series of WF₆/Ar doses at 1/60 s, respectively, was further assessed in Figure 8.1b to determine the significance of the pulse sequence. Figure 8.1b shows results from QCM analysis of TiO₂ ALD followed by a single continuous WF₆ dose for 50 s. The high vapor pressure of WF₆ ensured that this exposure was equivalent to 50 WF₆/Ar pulses of 1/60 s each. The 50 s WF₆ pulse initially lead to a 360 ng/cm² mass increase, only somewhat larger than for the individual dose steps. As the WF₆ dose continued, the measured mass decreased, but after 50 s, QCM analysis shows a net mass increase of 205 ng/cm² relative to the mass measured immediately following TiO₂ ALD. Based on mechanism studies shown below, we believe that for the continuous and pulsed WF₆ exposure, the initial mass increase corresponds to fluorine and tungsten uptake on the TiO₂ surface, and the later mass decrease is due to etching, likely via removal of TiF₄ and
WF₂O₂ vapor products. The intermittent WF₆ exposure enhances etching by promoting product volatilization during the reactant purge period.

8.4.2 Thermodynamic Modeling of Metal Oxide Etching by WF₆

Thermodynamic calculations based on minimizing free-energy were performed to determine probable product species and to shed light on expected differences for etching of Al₂O₃ and TiO₂ by WF₆. Figure 8.2a shows the calculated equilibrium composition for a closed system initially consisting 1:1 molar ratio of TiO₂ to WF₆ as temperatures changes from 25 to 400°C. At room temperature WF₆ reacts with TiO₂ to form solid WO₃ and solid TiF₄, and at ~125°C the solid TiF₄ completely volatilizes. At ~150°C, WF₆ begins to etch the solid WO₃ to form volatile WF₂O₂. Similar modeling also indicates that WF₆ will etch SiO₂, though SiO₂ differs from TiO₂ because unlike TiF₄, SiF₄ is volatile even at room temperature. It should be noted that in the calculations, when either the initial WF₆:oxide ratio or the Ar partial pressure is increased, the temperature required to generate the volatile products decreases, indicating more favorable etching. This analysis is strictly accurate only for closed systems, where products are not purged.
Figure 8.2: Equilibrium concentrations of species from 25 to 400°C for a system initially containing a) 1 mole WF₆ and 1 mole TiO₂ and b) 1 mole WF₆ and 0.667 mole Al₂O₃.

Similar modeling results for Al₂O₃ shown in Figure 8.2b suggests that WF₆ reacts at room temperature with Al₂O₃ to form solid WO₃ and solid AlF₃. At higher temperatures, like the case of TiO₂, the solid WO₃ reacts further with WF₆ to form volatile WF₂O₂. The AlF₃ remains nonvolatile between 25 to 400°C The solid AlF₃ layer likely passivates the surface, preventing etching. Similar trends were modeled for ZnO, ZrO₂, and HfO₂, and all showed favorable free energy changes for fluorination by WF₆, forming non-volatile metal fluorides. This shows that favorable etching reactions require both favorable surface reactions as well as volatile product formation.

The etching behavior of TiO₂ by WF₆ was assessed experimentally at different temperatures to collaborate the thermodynamic analysis. Data from QCM analysis in Figure 8.3a shows that when the temperature was reduced from 220°C to 120°C, the initial 1-5 WF₆ doses result in a mass gain on the TiO₂ surface. Additional WF₆ doses are accompanied by
relatively small mass increases, which plateau with time. The enlarged view in Figure 8.3b further shows the response to the WF₆ doses at 220°C and 120°C, in which there are clear mass losses following the WF₆ doses at 220°C.

Figure 8.3: a) QCM analysis TiO₂ ALD followed by 50 WF₆ doses at 120 and 220°C and b) an enlarged view of the mass loading during the WF₆ doses, showing net mass loss during each WF₆ step at 220°C and little to no change at 120°C.

8.4.3 TiO₂ Surface Characterization following Etching by WF₆

The composition of the TiO₂ surfaces following the initial few WF₆ cycles, i.e. prior to significant TiO₂ mass loss, was analyzed with ex-situ XPS analysis. Figure 8.4 shows high resolution XPS scans of TiO₂ surfaces after 0, 1, 5 and 15 WF₆ doses. For this analysis, the initial TiO₂ film was sufficiently thin (i.e. ~ 6.5 nm) to allow detection of the underlying Si substrate. In addition, the starting TiO₂ shows evidence for fluorine at ~690 eV, consistent with fluoride from the reactor, likely remaining from previous WF₆ etch experiments. Figure 8.4a shows the Ti 2p signal decreases slightly following 1, 5, and 15 WF₆ doses, but
the Si 2p signal intensity in Figure 8.4b stays relatively constant. This suggests that there is minimal TiO$_2$ etching following 15 or fewer WF$_6$ doses of 1 s each. The decrease in the Ti 2p signal is attributed to the deposition of species (tungsten and fluorides) on the TiO$_2$ surface which scatter some Ti 2p photoelectrons. The presence of surface tungsten and fluorides is confirmed by results in Figure 8.4c and d, showing W 4f and F 1s peaks on the TiO$_2$ surface after 1 WF$_6$ dose. The tungsten signal stays relatively constant between 1 and 15 WF$_6$ doses, whereas the F 1s peak at 685 eV (associated with metal fluorides) progressively increases. This is consistent with WF$_6$ fluorinating the TiO$_2$ surface and with fluorine diffusion into the TiO$_2$ subsurface.254,280
Figure 8.4: High resolution XPS scans of a) Ti 2p, b) Si 2p, c) W 4f, and d) F 1s regions for ~6.5 nm TiO$_2$ films exposed to 0, 1, 5 and 15 WF$_6$ doses at 220°C.

The relative location of the XPS peaks provides additional information concerning the etching mechanisms. For example, after 15 WF$_6$ doses, the Ti 2p doublet shifts by ~0.4 eV to higher binding energy (i.e., the Ti 2p$_{3/2}$ peak shifts from 459.2 to 458.8 eV). This increase in binding energy is consistent with highly electronegative tungsten and fluorides on the TiO$_2$ surface. Full titanium fluorination to TiF$_3$ or TiF$_4$ would produce a much larger shift in the Ti 2p$_{3/2}$ peaks to 462 and 464 eV respectively.280 In addition, the W 4f doublet peaks at 37.9
and 36 eV are shifted ~0.5 eV to higher binding energy compared to oxidized tungsten (37.6 and 35.5 eV), again consistent with surface fluorides. Figure 8.5a shows the Ti 2p and Si 2p peak intensity values collected from the high resolution XPS scans plotted versus number of WF6 dose steps (i.e. WF6 exposure) after 0, 15, 25, 50, and 100 WF6 doses. More WF6 exposures lead to a decrease in the Ti signal and an increase in signal from the silicon substrate, clearly demonstrating the removal of TiO2. The W 4f signal associated with oxidized tungsten (Figure 8.5b) stays constant, even up to 100 WF6 doses. Figure 8.5b also shows that the F 1s signal increases significantly within the first 10 WF6 doses followed by saturating behavior with additional WF6 exposure.

Figure 8.5: Peak intensity of high resolution XPS scans of a) Ti 2p (459.1 eV) and Si 2p (99.3 eV) and b) W 4f and (38 eV) and F 1s (685.2 eV) for 5.5 nm TiO2 films exposed to 0, 10, 25, 50, 100 WF6 doses at 220°C. Lines are meant to guide eyes.

The film thickness for the samples Figure 8.5 was further analyzed by spectroscopic ellipsometry, and results are shown in Figure 8.6. Figure 8.6a shows that as the number of WF6 doses increase, the TiO2 film thickness decreases, consistent with the in-situ QCM and
XPS analysis in Figures 8.1, 8.3, and 8.5. Furthermore, the refractive index at 632.8 nm for the TiO$_2$ films is ~2.3 after 0 and 10 WF$_6$ doses, but decreases to ~1.9 with 25-100 WF$_6$ doses. The decrease in refractive index can be correlated with a decrease in film density. The observed decrease suggests that the WF$_6$ exposure promotes formation of a porous WO$_3$ film279,255 or the formation of a low density WO$_x$F$_y$236,261 surface layer.

Figure 8.6: a) Thickness and b) refractive index at 632.8 nm of samples with 5.5 nm TiO$_2$ followed by 0, 15, 25, 50, and 100 WF$_6$ doses at 220°C, measured with spectroscopic ellipsometry. Lines are meant to guide eyes.

8.4.4 Effect of TiO$_2$ Thickness on Vapor Etch Rate

In the course of our experiments, we noted that the etch rate of TiO$_2$ by WF$_6$ depended on the thickness of the initial TiO$_2$ layer. This result is shown by the QCM results in Figure 8.7. The plot shows QCM results collected during 50, 100, and 200 TiO$_2$ ALD cycles at 220°C (estimated to be 10, 25, 55 Å thick), each followed by 50 WF$_6$/Ar dose steps. The traces for 200 TiO$_2$ ALD cycles + 50 WF$_6$ doses is reproduced from Figures 8.1 and 8.3. Note that
these experiments required continuous data collection over 3-5 hours, and the long-period fluctuations in the QCM data result from small instabilities in the controlled reactor temperature.

Examining the results in Figure 8.7b after 100 TiO\textsubscript{2} ALD cycles, there is an initial mass gain during the first WF\textsubscript{6} dose, similar to that after 200 TiO\textsubscript{2} cycles. However, further WF\textsubscript{6} doses result in a more rapid mass loss. The accelerated mass loss is even more pronounced for the thin 50 cycle TiO\textsubscript{2} film. The thinnest TiO\textsubscript{2} also shows a mass gain of only 28 ng/cm2 during the initial WF\textsubscript{6} doses, in contrast to ~250 ng/cm2 for the thicker 100 and 200 cycle TiO\textsubscript{2} films. Finally, for the thin 50 cycle TiO\textsubscript{2} only 8-10 WF\textsubscript{6} doses were necessary before no additional etching was observed, indicating complete removal of the deposited TiO\textsubscript{2}.

![Figure 8.7: QCM analysis of WF\textsubscript{6} etching following 50, 100, and 200 TiO\textsubscript{2} ALD cycles on a bare Au QCM crystal at 220°\textdegree}C and 1.75 Torr.](image)
8.4.5 Schematic of the WF$\textsubscript{6}$ Vapor Etch Reaction Process

Figure 8.8 shows the proposed WF$\textsubscript{6}$ etching mechanism of TiO$_2$ films at 220°C based on QCM, XPS, and ellipsometric analysis. First, during the initial WF$\textsubscript{6}$ doses, WF$\textsubscript{6}$ adsorbs and reacts with the TiO$_2$ surface, forming a low density WO$_x$F$_y$ layer. Based on QCM analysis of the mass increase during the first WF$\textsubscript{6}$ dose, the WO$_x$F$_y$ layer is estimated to be ~6 Å thick, assuming a density comparable to reported low density WO$_3$ ALD films of ~3.6 g/cm3.279 In contrast, attenuation of the Ti 2p 3/2 XPS signal suggests a thinner WO$_x$F$_y$ film of ~1.6 Å after 1 WF$_6$ pre-exposures. The different calculated thicknesses are likely a result of the assumed film physical properties. It is also possible that the surface-bound species are a mix of nonvolatile TiF$_3$,254,255 TiOF$_2$,259 and WO$_3$.236,261,255,260

Figure 8.8: Proposed etching mechanism for TiO$_2$ films exposed to WF$_6$ at 220°C: 1) WF$_6$ adsorbs on thick TiO$_2$ surface, forming surface-bound TiO$_x$F$_z$ and WO$_x$F$_y$. 2) Additional WF$_6$ exposure further fluorinates the TiO$_x$F$_z$ and WO$_x$F$_y$, creating volatile WF$_2$O$_2$ and TiF$_4$, etching the TiO$_2$ film.

Following the initial WF$_6$ adsorption and formation of WO$_x$F$_y$, subsequent WF$_6$ doses further fluorinate the TiO$_2$ and surface-bound WO$_x$F$_y$. The critical amount of fluorination to achieve volatilization and etching depends on the initial TiO$_2$ thickness as shown by QCM analysis in
Figure 8.7. Fluoride can readily diffuse into metallic titanium254,280 and titanium oxide.282,283 In the case of TiO\textsubscript{2}, the extent of fluoride diffusion depends on the TiO\textsubscript{2} polymorph283 and surface plane, but fluoride implantation tends to be more favorable at surface over subsurface sites.282 We propose that once a critical fluoride concentration is achieved, volatile WF\textsubscript{2}O\textsubscript{2} and TiF\textsubscript{4} are formed, leading to etching. This is consistent with the work showing that WF\textsubscript{6} reacts with SiO\textsubscript{2} to form volatile WOF\textsubscript{4} and SiF\textsubscript{4}.236 Furthermore, in similar systems, WF\textsubscript{6} etched WO\textsubscript{3} films261 and NbCl\textsubscript{5} was observed to etch Nb\textsubscript{2}O\textsubscript{5} films by forming volatile NbOCl\textsubscript{3}.262

8.4.6 Addition of Surface Modifiers to Increase Etching Rate

Based on the XPS analysis in Figure 8.4 and 8.5, the TiO\textsubscript{2} etching by WF\textsubscript{6} produce a thin layer of WO\textsubscript{x}F\textsubscript{y} on the etched TiO\textsubscript{2} surfaces that remains after etch completion. To explore approaches to avoid this layer formation, we performed several experiments. As one approach, Sn(acac)\textsubscript{2} was incorporated into the etch sequence. Sn(acac)\textsubscript{2} has been observed to assist in metal fluoride volatilization in similar atomic layer etching processes.80–82,84 For this experiment, we deposited 200 cycles of TiO\textsubscript{2} at 220°C, then etched at the same temperature using WF\textsubscript{6}/Ar/Sn(acac)\textsubscript{2}/Ar with duration of 1/60/1/60 s for 0, 15, and 25 cycles. Figure 8.9 shows high resolution XPS scans collected after this exposure sequence. Comparing the measured XPS intensities in Figure 8.9 to those in Figure 8.5 (with only WF\textsubscript{6} exposure steps), the addition of Sn(acac)\textsubscript{2} significantly increases the etch rate for a ~6.5 nm TiO\textsubscript{2} film, so that after 25 WF\textsubscript{6}/Sn(acac)\textsubscript{2} cycles the Ti 2p signal is near the detection limit (~0.5 at.%). We also note the presence of surface tin after 15 and 25 cycles at 220°C.
WF$_6$/Sn(acac)$_2$ cycles, the amount of surface fluorine and tungsten is also less than observed in Figure 8.5 after 25 WF$_6$ cycles. These results suggest that the addition of Sn(acac)$_2$ into the WF$_6$/Ar sequential etch process increases the etch rate by creating more volatile etch products such as TiO(acac)$_2$ or TiF$_2$(acac)$_2$.80

Figure 8.9: High resolution XPS scans of a) Ti 2p, b) F 1s, c) W 4f, and d) Sn 3d regions for 6.5 nm TiO$_2$ films following 0, 15, 25 WF$_6$/Ar/Sn(acac)$_2$/Ar cycles at 220°C and 1.75 Torr.
8.4.7 TiO$_2$ Atomic Layer Etching using WF$_6$/BCl$_3$

As shown above in Figures 8.5 and 8.6, the extent of TiO$_2$ etching depended on the number of WF$_6$ doses, and the etching proceeds nearly continuously without evidence for self-limiting behavior. A self-limiting atomic layer etching (ALE) process, consisting of two self-limiting adsorption and activation steps, is more desirable in that it will allow the extent of etching to be well controlled and defined. Therefore, we worked to modify the WF$_6$/Ar/Sn(acac)$_2$/Ar reaction sequence to identify possible ALE conditions. Using the results in Figures 8.2, 8.3, and 8.8, we: 1) reduced the process temperature from 220°C to 170°C to prevent uncontrolled WF$_6$ etching; and 2) explored BCl$_3$ as an alternative co-reagent in place of Sn(acac)$_2$ to volatilize surface-adsorbed product species.

Figure 8.10a shows QCM results collected at 170 °C when freshly deposited TiO$_2$ films were subsequently exposed to: i) BCl$_3$/Ar doses; ii) WF$_6$/Ar doses; iii) WF$_6$/Ar/Sn(acac)$_2$/Ar cycles; and iv) WF$_6$/Ar/BCl$_3$/Ar cycles. At 170°C, without the additional co-reagent, WF$_6$ shows mass gain consistent with surface adsorption, but the mass plateaus indicating little to no TiO$_2$ etching. Dosing only BCl$_3$ appears to initially etch the TiO$_2$, but like the WF$_6$, additional BCl$_3$ does not lead to substantial etching. In contrast, the WF$_6$/Sn(acac)$_2$ sequence produces an initialization period in which the mass increases, followed by controlled layer-by-layer etching. The WF$_6$/BCl$_3$ sequence also shows step-wise linear etching, but unlike the WF$_6$/Sn(acac)$_2$ sequence, it starts immediately from the first BCl$_3$ exposure step. An expanded view of the WF$_6$/BCl$_3$ etching process in Figure 8.10b shows a 21 ng/cm2 mass gain during the WF$_6$ dose, followed by a net mass loss of 53 ng/cm2/cyc upon the subsequent
BCl₃ exposure. By contrast the mass gain measured during our TiO₂ ALD process is 26 ng/cm²/cyc, indicating that the WF₆/BCl₃ etch process removes the equivalent of ~2 ALD layers per cycle.

![Figure 8.10: a) QCM analysis at 170°C and 1.75 Torr of TiO₂ ALD followed by 25 BCl₃/Ar doses (pink), 50 WF₆/Ar doses (red), 50 WF₆/Ar/Sn(acac)₂/Ar cycles (black), or 50 WF₆/Ar/BCl₃/Ar cycles (blue). b) Expanded view of the WF₆/Ar/BCl₃/Ar etch sequence.]

The etch rate for the WF₆/BCl₃ process at 170°C was also analyzed with spectroscopic ellipsometry. Figure 8.11 shows that with increasing number of etch cycles, the TiO₂ thickness decreases linearly in agreement with the QCM results shown in Figure 8.10, with an etch rate per cycle of ~0.3 Å/cyc which is approximately 1 TiO₂ ALD layer per etch cycle. Spectroscopic ellipsometry also shows that the refractive index remains relatively constant with increasing number of ALE cycle number. The constant refractive index during etching indicates a clean TiO₂ surface after each WF₆/BCl₃ atomic layer etch cycle. This contrasts with the results from WF₆ vapor etching (Figure 8.6), where the decrease in refractive index was attributed to formation of a low density WOₓFᵧ layer during etching. In the ALE process,
the WO₃F₃ layer formed after each WF₆ dose is removed by BCl₃, producing the clean TiO₂ surface after each cycle.

Figure 8.11: a) Thickness and b) refractive index of 7 nm TiO₂ versus WF₆/BCl₃ ALE cycle number as measured by spectroscopic ellipsometry. The TiO₂ ALD and ALE were performed at 170°C with an ALE dosing sequence of WF₆/Ar/BCl₃/Ar (1/60/2.5/60 s). Lines are meant to guide eyes.

In addition, XPS analysis of TiO₂ films after the WF₆/BCl₃ etch process (Figure 8.12) shows that tungsten and fluorine content were comparable to the amount on the initial TiO₂ surface. The boron and chlorine content are also below the XPS detection limit, further confirming a clean surface after each WF₆/BCl₃ cycle, consistent with the refractive index results in Figure 8.11b.
Figure 8.12: High resolution XPS scans of a) W 4f and b) F 1s regions for 7 nm TiO₂ film (black), 7 nm TiO₂ following 50 WF₆/BCl₃ cycles at 170°C (red), and 5.5 nm TiO₂ following 50 WF₆ doses at 220°C (blue).

To determine if the surface reactions during the WF₆/BCl₃ etch process showed self-limiting behavior indicative of thermal atomic layer etching (ALE), we used QCM to characterize the effect of process temperature and reactant exposure on the resulting etch rate. Figure 8.13a shows results when the WF₆/Ar/BCl₃/Ar dose was fixed at 1/60/2.5/60 s and the etch temperature was adjusted between 110 and 190°C. The etch rate generally increased with temperature, going from 6.3 to 55.6 ng/cm²/cycle as temperature increases from 110 to 190°C. The higher temperature enhances the rate of etch product volatilization, leading to an overall faster etch rate. Furthermore, the etch rate between 110 and 150°C changes relatively little with temperature, consistent with a desirable “ALE window” in this range. This range corresponds to limited volatility of TiF₄, suggesting that product elimination is a likely rate-limiting step for the ALE reaction mechanism.
The results of reactant saturation studies for the WF$_6$/BCl$_3$ ALE process are shown in Figure 8.13b. For this test, the reactant exposure consisted of sequential sub-doses of the WF$_6$ and BCl$_3$ precursors (i.e. 10 WF$_6$/Ar doses followed by 10 BCl$_3$/Ar doses). We monitored the change in mass uptake after each sub-dose step, in which a plateau in the mass change during the sub-dose sequence would indicate complete consumption of the available active sites and reaction saturation. Results in Figure 8.13b show evidence for saturation for both the WF$_6$ and BCl$_3$ half-reaction steps, where the first sub-dose produces a large mass change, followed by decreasing changes for subsequent sub-doses. In the low temperature range, 110-150°C, reducing the process temperature may promote a more self-limiting process, but longer exposures are needed to attain full saturation. This is attributed to a reduced rate of fluorine diffusion into the TiO$_2$ film at the lower temperature.

Figure 8.13: QCM analysis of a) WF$_6$/Ar/BCl$_3$/Ar sequence at 110, 130, 150, 170 and 190°C and b) 10 WF$_6$/Ar followed by 10 BCl$_3$/Ar (repeated 3 times), at 110, 130, 150, and 170°C.
8.4.8 Schematic of the WF₆/BCl₃ ALE Reaction Process

The proposed WF₆/BCl₃ ALE process is shown in Figure 8.14. First, like the chemical vapor etching mechanism, the WF₆ adsorbs and fluorinates the TiO₂ surface. At the lower process temperatures, the WF₆ alone will not eventually etch the TiO₂, unlike the chemical vapor etching shown in Figure 8.8. The modified surface, consisting of WO_xF_y and TiO_vF_z species are then volatilized by the subsequent BCl₃ exposure, likely through a halogen exchange reaction. XPS analysis suggests that following the BCl₃ exposure, the TiO₂ is pristine, effectively regenerating the initial TiO₂ surface.

The QCM results in Figure 8.10a show that at 170°C, exposing ALD TiO₂ to repeated doses of either WF₆ or BCl₃ leads to no mass loss (i.e. no etching). However, at the same 170°C, Figure 13b shows that the WF₆/BCl₃ dosing sequence does etch TiO₂. Moreover, each half-reaction in the WF₆/BCl₃ etch process exhibits self-limiting saturation behavior, consistent with atomic layer etching. As indicated by the XPS results in Figures 8.4 and QCM results in Figure 8.10, exposing the TiO₂ to WF₆ produces a fluorinated surface layer containing WO_xF_y and TiO_vF_z. We expect that this fluorinated layer impedes fluorine diffusion into the TiO₂, leading to the reaction saturation behavior in Figure 8.13. Results in Figure 8.13 also show that when process temperature is reduced (and the rate of F diffusion is decreased) a larger WF₆ exposure is needed to saturate the WF₆ half-reaction.
8.5 **Summary and Conclusions**

In this article, we investigate how WF₆, WF₆/Sn(acac)₂, and WF₆/BCl₃ processes can be used for the controlled removal of TiO₂ films. WF₆ selectively etches TiO₂ over other oxides including Al₂O₃ as result of the relative volatility of the formed metal fluorides. Using ex-situ XPS and ellipsometry analysis, we confirm WF₆ etching of TiO₂ films and provide evidence that etching proceeds through TiO₂ fluorination and formation of a low density WOₓFᵧ region. Incorporating co-reagents such as Sn(acac)₂ and BCl₃ increased the etch rate and enabled the development of atomic layer etching processes at lower process temperatures. For the ALE process using WF₆ and BCl₃, the rate of etching per cycle decreases at lower temperatures, due to reduced volatilization of etches products. Furthermore, the WF₆/BCl₃ ALE process exhibited saturation behavior, in part due to the formation of a non-volatile WOₓFᵧ layer at the lower process temperatures. Exploring alternative fluorinating or
adsorption species is significant for the further development of thermally-driven etching processes.

8.6 Acknowledgements

The work included in this manuscript was funded by EMD Performance Materials (SAFC). The authors acknowledge the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation.
REFERENCES

(1) Nucleation-Crystallography.

(8) Klesko, J. P.; Thrush, C. M.; Winter, C. H. Thermal Atomic Layer Deposition of Titanium Films Using Titanium Tetrachloride and 2-Methyl-1,4-Bis(trimethylsilyl)-2,5-Cyclohexadiene or 1,4-Bis(trimethylsilyl)-1,4-Dihydropyrazine. Chem. Mater. 2015, 27, 4918–4921.

(25) Desatnik, N. Nucleation on SiO[sub 2] during the Selective Chemical Vapor

(48) Abdulagatov, A. I.; Hall, R. A.; Sutherland, J. L.; Lee, B. H.; Cavanagh, A. S.; George, S. M. Molecular Layer Deposition of Titanicone Films Using TiCl₄ and

(100) Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W.

195

(124) Karagiariidi, O.; Bury, W.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K. Solvent-Assisted

(147) Prince, J. A.; Bhuvana, S.; Anbharasi, V.; Ayyanar, N.; Boodhoo, K. V. K.; Singh, G.

199

Mao, Y.; Cao, W.; Li, J.; Sun, L.; Peng, X. HKUST-1 Membranes Anchored on Porous Substrate by Hetero MIL-110 Nanorod Array Seeds. *Chemistry* 2013, 19,

Dehydrogenation of Propane at Low Temperature. *ACS Cent. Sci.* **2016**, [acscentsci.6b00290](https://doi.org/10.1021/acscentsci.6b00290).

(213) Jóvári, P.; Mészáros, G.; Pusztai, L.; Sváb, E. The Structure of Liquid Tetrachlorides CCl[sub 4], SiCl[sub 4], GeCl[sub 4], TiCl[sub 4], VCl[sub 4], and SnCl[sub 4]. *J. Chem. Phys.* **2001**, *114*, 8082.

(257) Lee, Y.; Sun, H.; Young, M. J.; George, S. M. Atomic Layer Deposition of Metal Fluorides Using HF-Pyridine as the Fluorine Precursor. *Chem. Mater.* 2016, 28, acs.chemmater.5b04360.

(263) Herner, S. B. Homogeneous Tungsten Chemical Vapor Deposition on Silane

APPENDICES
APPENDIX A. CO-AUTHORED PUBLICATIONS

A.1 Highly Adsorptive, MOF-Functionalized Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition

While metal-organic frameworks (MOFs) show great potential for gas adsorption and storage, their powder form limits deployment opportunities. Integration of MOFs on polymeric fibrous scaffolds will enable new applications in gas adsorption, membrane separation, catalysis, and toxic gas sensing. Here, we demonstrate a new synthesis route for growing MOFs on fibrous materials that achieves high MOF loadings, large surface areas and high adsorptive capacities. We find that a nanoscale coating of Al₂O₃ formed by atomic layer deposition (ALD) on the surface of nonwoven fiber mats facilitates nucleation of MOFs on the fibers throughout the mat. Functionality of MOFs is fully maintained after integration, and MOF crystals are well attached to the fibers. Breakthrough tests for HKUST-1 MOFs [Cu₃(BTC)₂] on ALD-coated polypropylene fibers reveal NH₃ dynamic loadings up to 5.93 ± 0.20 mol/kg(MOF+fiber). Most importantly, this synthetic approach is generally applicable to a wide range of polymer fibers (e.g., PP, PET, cotton) and MOFs (e.g., HKUST-1, MOF-74, and UiO-66).

*Junjie Zhao, Mark D. Losego, Paul C. Lemaire, Philip S. Williams, Bo Gong, Sarah E. Atanasov, Trent M. Blevins, Christopher J. Oldham, Howard J. Walls, Sarah D. Shepherd, Matthew A. Browe, Gregory W. Peterson, and Gregory N. Parsons
Integration of metal–organic frameworks (MOFs) on textiles shows promise for enabling facile deployment and expanding MOF applications. While MOFs deposited on flat substrates can show relatively smooth surface texture, most previous reports of MOFs integrated on fibers show poor conformality with many individual crystal domains. Here we report a new low-temperature (<70 °C) method to deposit uniform and smooth MOF thin films on fiber surfaces using an energy enhanced layer-by-layer (LbL) method with an ALD Al₂O₃ nucleation layer. Cross-sectional TEM images show a well-defined core@shell structure of the MOF-functionalized fiber, and SEM shows a flat MOF surface texture. We analyze the thickness and mass increase data of LbL HKUST-1 MOF thin films on ALD-coated polypropylene fibers and find the growth rate to be 288–290 ng cm⁻² per LbL cycle. Unlike planar LbL MOF embodiments where adsorption capacities are difficult to quantify, the large volume quantity on a typical fiber mat enables accurate surface area measurement of these unique MOF morphologies. After 40 LbL cycles the MOFs on fibers exhibit N₂ adsorption BET surface areas of up to 93.6 m² g⁻¹ fiber⁻¹ (∼535 m² g⁻¹ MOF⁻¹) and breakthrough test results reveal high dynamic loadings for NH₃ (1.37 mol NH₃ kg⁻¹ MOF+fiber⁻¹) and H₂S (1.49 mol H₂S kg⁻¹ MOF+fiber⁻¹). This synthesis route is applicable to many polymer fibers, and the fiber@ALD@MOF structure is promising for gas filtration, membrane separation, catalysis, chemical sensing and other applications.

*Junjie Zhao, Bo Gong, William T. Nunn, Paul C. Lemaire, Eric C. Stevens, Fahim I. Sidi, Philip S. Williams, Christopher J. Oldham, Howard J. Walls, Sarah D. Shepherd, Matthew A. Browe, Gregory W. Peterson, Mark D. Losego and Gregory N. Parsons
A.3 Platinum-Free Cathode for Dye-Sensitized Solar Cells Using Poly(3,4-ethylenedioxythiophene) (PEDOT) Formed via Oxidative Molecular Layer Deposition

Thin ~20 nm conformal poly(3,4-ethylenedioxythiophene) (PEDOT) films are incorporated in highly conductive mesoporous indium tin oxide (m-ITO) by oxidative molecular layer deposition (oMLD). These three-dimensional catalytic/conductive networks are successfully employed as Pt-free cathodes for dye-sensitized solar cells (DSSCs) with open circuit voltage equivalent to Pt cathode devices. Thin and conformal PEDOT films on m-ITO by oMLD create high surface area and efficient electron transport paths to promote productive reduction reaction on the PEDOT film. Because of these two synergetic effects, PEDOT-coated m-ITO by oMLD shows power conversion efficiency, 7.18%, comparable to 7.26% of Pt, and higher than that of planar PEDOT coatings, which is 4.85%. Thus, PEDOT-coated m-ITO is an exceptional opportunity to compete with Pt catalysts for low-cost energy conversion devices.

*Do Han Kim, Sarah E. Atanasov, Paul Lemaire, Kyoungmi Lee, and Gregory N. Parsons
A.4 Wafer-Scale Selective-Area Deposition of Nanoscale Metal Oxide Features Using Vapor Saturation into Patterned Poly(methyl methacrylate) Templates

Patterned, chemically reactive poly(methyl)methacrylate can act as a chemical “sponge” via Lewis acid/base adduct formation with metal-organic reactants commonly used in atomic layer deposition. Extended reactant exposures saturate the reactant within the polymer, and subsequent oxidation removes the polymer and converts the saturated reactant to a metal oxide film that precisely mimics the lateral dimensions of the original polymer. Resulting oxide thickness scales with the starting polymer thickness. Regions without polymer are coated with less than 1 nm of metal oxide. Repeatable nanoscale features are formed simultaneously and uniformly across a 150 mm diameter silicon wafer.

*Erinn C. Dandley, Paul C. Lemaire, Zhongwei Zhu, Alex Yoon, Lubab Sheet, Gregory N. Parsons
Rapid room-temperature synthesis of metal–organic frameworks (MOFs) is highly desired for industrial implementation and commercialization. Here we find that a (Zn,Cu) hydroxy double salt (HDS) intermediate formed in situ from ZnO particles or thin films enables rapid growth (<1 min) of HKUST-1 (Cu3(BTC)2) at room temperature. The space-time-yield reaches $>3 \times 10^4$ kg·m$^{-3}$·d$^{-1}$, at least 1 order of magnitude greater than any prior report. The high anion exchange rate of (Zn,Cu) hydroxy nitrate HDS drives the ultrafast MOF formation. Similarly, we obtained Cu-BDC, ZIF-8, and IRMOF-3 structures from HDSs, demonstrating synthetic generality. Using ZnO thin films deposited via atomic layer deposition, MOF patterns are obtained on pre-patterned surfaces, and dense HKUST-1 coatings are grown onto various form factors, including polymer spheres, silicon wafers, and fibers. Breakthrough tests show that the MOF-functionalized fibers have high adsorption capacity for toxic gases. This rapid synthesis route is also promising for new MOF-based composite materials and applications.

Junjie Zhao, William T. Nunn, Paul C. Lemaire, Yiliang Lin, Michael D. Dickey, Christopher J. Oldham, Howard J. Walls, Gregory W. Peterson, Mark D. Losego, and Gregory N. Parsons
A.6 Using Hydrogen to Expand the Inherent Substrate Selectivity Window During Tungsten Atomic Layer Deposition

Area-selective thin film deposition is expected to be important in achieving sub-10 nm semiconductor devices, enabling feature patterning, alignment to underlying structures, and edge definition. Atomic layer deposition (ALD) offers advantages over common chemical vapor deposition methods, such as precise thickness control and excellent conformality. Furthermore, several ALD processes show inherent propensity for substrate-dependent nucleation. For example, tungsten ALD using SiH$_4$ (or Si$_2$H$_6$) and WF$_6$ is more energetically favorable on Si than on SiO$_2$, but selectivity is often lost after several ALD cycles. We show that modifying the W ALD process chemistry can decrease the W nucleation rate on SiO$_2$, thereby expanding the ALD “selectivity window”. Specifically, we find that adding H$_2$ during the WF$_6$ dose step helps passivate SiO$_2$ against W nucleation without modifying W growth on silicon. Surface characterization confirms that H$_2$ promotes fluorine passivation of SiO$_2$, likely through surface reactions with HF produced in the gas phase. This passivation affords at least 10 additional W ALD cycles, corresponding to ~6 nm of additional W growth, before substantial nucleation occurs on SiO$_2$. We show that reactant modification also reduces undesirable nucleation due to substrate proximity or loading effects in patterned film growth. Further understanding of ALD reaction chemistry and film nucleation will lead to improved selective metal and dielectric film deposition, enabling ALD bottom-up patterning.

*Berç Kalanyan, Paul C. Lemaire, Sarah E. Atanasov, Mariah Ritz, and Gregory N. Parsons