
ABSTRACT

BARNARD, EMILY SARAH. The Canonical Join Representation in Algebraic Combinatorics.
(Under the direction of Nathan Reading.)

We study the combinatorics of a certain minimal factorization of the elements in a finite

lattice L called the canonical join representation. The join ⋁A = w is the canonical join rep-

resentation of w if A is the unique lowest subset of L satisfying ⋁A = w (where “lowest” is

made precise by comparing order ideals under containment). When each element in L has a

canonical join representation, we define the canonical join complex to be the abstract simplicial

complex of subsets A such that ⋁A is a canonical join representation. In the first chapter, we

characterize the class of finite lattices whose canonical join complex is flag, and show how the

canonical join complex is related to the topology of L.

Next, we study the canonical join complex of the Tamari lattice in types A and B. We realize

the canonical join complex of the Tamari lattice as a complex of noncrossing arc diagrams, give

a shelling order on its facets, and show that it is homotopy equivalent to a wedge of Catalan-

many spheres. We extend these results to the c-Cambrian lattices of type A, which we show to

be vertex decomposable.

We close this document by considering a family of counting problems, analogous to the

well-studied Coxeter-Catalan combinatorics. In our construction, each object to be counted is

obtained by doubling a Coxeter-Catalan object. We show that, given a finite Coxeter group W ,

each of these new counting problems has the same solution, which we call the W -biCatalan

number.
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Chapter 1

Introduction

1.1 The canonical join representation

Throughout mathematics, and algebra in particular, one sees the unique decomposition of an

object into irreducible or indecomposable components. In number theory, this is the prime

factorization of an integer; in commutative algebra, this is the primary decomposition of an

ideal; and in representation theory, this is the direct sum decomposition of a representation into

indecomposable representations. The organizing principle of this thesis is the lattice-theoretic

analogue: the canonical join representation .

Recall that a lattice L is a partially ordered set such that each pair of elements w and v

has a smallest upper bound, called the join , and a greatest lower bound, called the meet . We

write w∨v or ⋁{w, v} for the join of w and v, and w∧v or ⋀{w, v} for the meet. Alternatively,

one can think of a lattice as a universal algebra, with operations (∨,∧) that are associative,

idempotent, and satisfy the absorption laws: w ∨ (w ∧ v) = w and w ∧ (w ∨ v) = w. A lattice

homomorphism is a map φ ∶ L → L′ between lattices L and L′ that respects the meet and

join operations. We say that the image of φ is a lattice quotient of L.

Informally, the canonical join representation of an element w is its unique minimal “fac-

torization” in terms of the join operation. (There is an analogous notion in terms of the meet

operation that is called the canonical meet representation.) In the literature, the canonical join

representation is sometimes called the canonical form [44, Section IV.2], and first appeared in

the study of free lattices. The lattice F is generated freely by the set X if it is generated by X,

and satisfies the usual universal property for free objects, as shown in Figure 1.1. Alternatively,

one constructs F by writing down all possible polynomial equations in the operations (∨,∧) with

the set X as variables. We define an equivalence relation on these polynomial expressions, so

that a ≡ b if and only if a and b represent the same element in F . Determining which expressions

belong to the same class is called the word problem, and its solution by Whitman is the basis

1



X F

L

ι

φ
φ̃

Figure 1.1: Any map φ of from the set X to a lattice L extends uniquely to a lattice homo-
morphism φ̃ ∶ F → L.

for much of the research on free lattices [39, Section 2]. As a part of his solution, Whitman

constructed an algorithm that transforms any given polynomial expression into a “shortest”

form [44, Appendix G, Section 1]. It turns out that this expression is also the canonical join

representation of the corresponding element, and it is minimal in an order-theoretic sense: In a

general lattice L, the expression ⋁A is the canonical join representation of an element w if it is

the unique “lowest” irredundant expression for w as a join. One makes the notion of “lowest”

precise by comparing order ideals. In this case, we also say that the set A is a canonical join

representation (although, more precisely, we mean that ⋁A is a canonical join representation).

Later, Jónsson noticed a further connection between the algebraic structure of a lattice

and this canonical form [53]. Certain elements in a lattice may not admit a canonical join

representation. (For example, Figure 2.3 depicts two lattices, and in each the top element does

not have a unique minimal expression ⋁A.) When L is finite, each element admits a canonical

join representation if and only if the lattice also satisfies a certain weakening of the distributive

law called join-semidistributivity :

If x ∨ y = x ∨ z, then x ∨ (y ∧ z) = x ∨ y. (SD∨)

We say that L is join-semidistributive if it satisfies SD∨ for each x, y, and z. If L also

satisfies the dual condition (where we replace ∨ with ∧) then it is semidistributive . For the

remainder of this introduction, we assume that L is finite and join-semidistributive.

1.2 The combinatorics of the canonical join representation

We focus our attention on the discrete structure of the collection ∆(L) of subsets A ∈ 2L such

that A is a canonical join representation. Recall that an abstract simplicial complex ∆ on a

set of vertices V is a collection of subsets of V satisfying: First, {v} ∈ ∆ for each v ∈ V . Second,

if A ∈ ∆ then each subset A′ ⊂ A also belongs to ∆. We call the collection of edges and vertices

in ∆ its one-skeleton .

We will see that ∆(L) has the structure of an abstract simplicial complex. We call this

2



complex the canonical join complex of L. Its vertex set is the set of elements that cannot

be written as a nontrivial join of lower elements. These elements are called join-irreducible .

(That is, j is join-irreducible if j = ⋁A implies that j ∈ A.)

As combinatorialists, we ask questions like:

• How many faces does the canonical join complex have?

• What is the facial structure of the canonical join complex?

Because L is finite and join-semidistributive, the answer to the first question is immediate:

Each element admits a canonical join representation, so the number of faces is just the size

of L. (The empty face is the canonical join representation for the smallest element.)

Answering the second question will be the main focus of Chapter 2, where we consider a

certain combinatorial property called the flag property. See Theorem 2.1.1. A complex ∆ is

flag if its minimal non-faces have size equal to 2. Informally, we can think of this condition as

saying: There are no “hollow” simplices in ∆. More precisely, complex ∆ is flag if and only if

it is determined by its underlying one-skeleton as follows: Given a set A of vertices, A is a face

in ∆ if and only if A is a clique in the one-skeleton for ∆.

The flag property appears at the intersection of combinatorics with graph theory, differential

geometry, and topology. In particular, its connection to the Charney-Davis conjecture(s) [21] has

received much attention. The Charney-Davis conjecture is essentially the polyhedral analogue

to a classical conjecture of Hopf. Hopf’s conjecture relates the geometry and topology of a

Riemannian manifold M , and states: If M has dimension 2n, and its sectional curvature is

nonpositive, then (−1)nχ(M) ≥ 0, where χ(M) is the Euler characteristic of M . (Informally, the

sectional curvature is the Gaussian curvature of the surface we obtain by taking two-dimensional

slices of M . See [38, Conjecture 54].) When we further restrict to polyhedral flag complexes,

the Charney-Davis conjecture has a purely combinatorial reformulation. See [38, Conjecture 72]

or [63, Conjecture 1]. Next, we discuss a few familiar examples of flag complexes.

Example 1.2.1. Suppose that ∆ is a cell complex, and write BCS(∆) for the barycentric

subdivision of ∆. Geometrically, we construct BCS(∆) by adding a vertex vF at the barycenter

of each face F in ∆. A subset of vertices {vF1 , . . . , vFk} is a face if and only if it corresponds

with a flag of faces F1 ⊂ ⋯ ⊂ Fk in ∆. Clearly, each collection of vertices in BCS(∆) satisfies:

if each pair is a face, then the entire collection is a face. Thus, BCS(∆) is flag.

Example 1.2.2. Let P be a partially ordered set. The order complex for P is the simplicial

complex whose k-dimensional faces are the chains x0 < ⋯ < xk. Suppose that each pair of

elements in a subset A of P is comparable. Since A is totally ordered if and only if each pair is

comparable, we conclude that the order complex for P is flag.

3



Example 1.2.3. Fix a convex polygon P , and consider the simplicial complex ∆(P ) whose faces

correspond to partial tilings of P by triangles, so that its facets correspond to triangulations of

P and its vertices correspond to the diagonals in P . It is well-known that this complex can be

realized as the boundary of a convex polytope, called the simplicial associahedron . Observe

that a collection of diagonals belongs to a (partial) triangulation if and only if each pair in the

collection does not cross. Thus, ∆(P ) is flag.

1.3 Finite Coxeter groups

Many of the most interesting join-semidistributive lattices are closely related to the weak order

on a finite Coxeter group. We now turn our attention to the combinatorics of the canonical join

representation in this context. In preparation for our results, we will give a gentle introduction

to finite Coxeter groups and the weak order. (To find a complete discussion of finite Coxeter

groups, with precise statements and proofs, see [12, 51].)

A Coxeter group W is a group of transformations on Euclidean space, generated by orthog-

onal reflections. The collection of reflecting hyperplanes is called the Coxeter arrangement

for W , and it is fixed by the action of the group. Each finite Coxeter group is equipped with

a special set of generators called simple generators, and these are typically a proper sub-

set of all of its reflections. The group W has the following presentation in terms of its simple

generators s1, . . . , sn:

W = ⟨s1, . . . , sn ∶ (sisk)mi,k = e⟩

The numbers mi,k are symmetric in i and k, and satisfy: mi,k ∈ Z+ ∪ {∞}, mi,k ≥ 2 when i ≠ k,

and mi,i = 1.

We encode this data with a graph called the Coxeter diagram that is defined as follows:

Take the simple generators s1, . . . , sn as nodes, and connect si to sk whenever the number

mi,k ≥ 3. We typically label the edge {si, sk} by the number mi,k whenever mi,k > 3. A Coxeter

group is irreducible if its associated Coxeter diagram is connected. Finite irreducible Coxeter

groups have been classified by their Coxeter diagrams. There are four infinite families—called

An, Bn, Dn and I2(n)—and six exceptional types. Examples include the symmetry groups for

regular polytopes and the Weyl groups which appear in the study of semisimple Lie algebras.

Below, we give two familiar examples.

Example 1.3.1. Consider the symmetry group W of an equilateral triangle drawn in R3,

so that its vertices are the standard basis vectors e1, e2, and e3. Each reflecting hyperplane

corresponds to an edge of the triangle as follows: The edge connecting ei and ek determines

an orthogonal plane, Hi,k = {x ∈ R3 ∶ xi = xk}, that cuts the edge in half and contains the

third vertex. The reflection through Hi,k interchanges the ith and kth coordinates in R3. The
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reader will recognize that W is the symmetric group S3 (or A2 in the Weyl group notation). In

general, we identify Sn with the symmetry group of the standard (n − 1)-simplex. The simple

generators are the set of reflections corresponding to the adjacent transpositions. We usually

write si for the transposition (i, i + 1), where i ∈ {1,2, . . . , n − 1}. Thus, we have mi,i+1 = 3 and

otherwise mi,k = 2.

Example 1.3.2. Consider the symmetry group W of the regular n-cube, whose vertices in Rn

are {(e1±⋯±en)}. The reflecting hyperplanes for W have normal vectors ei, ek±ei. We often re-

alize W as the group of signed permutations. These are permutations on the set ±{1, . . . , n}
that satisfy the symmetry condition w(i) = −w(−i). In this permutation representation, each

reflection corresponds either to a pair of transpositions (i, k)(−i,−k) or a “symmetric” trans-

position (−i, i). The simple generators correspond to the transpositions (i, i+ 1)(−i,−i− 1) and

(−1,1), where i ∈ {1,2, . . . , n − 1}. We usually write s0 for the transposition (−1,1), and si for

(i, i + 1)(−i,−i − 1). Thus, m0,1 = 4, mi,i+1 = 3 for i > 0, and mi,k = 2 otherwise. In the Weyl

group notation, this is Bn.

We represent the elements of W as words in the simple generators S, although there are

typically many such expressions for each element. The length l(w) is the size of a reduced, or

shortest possible, expression for w. The weak order on W is defined by the cover relations

w <⋅ ws whenever l(w) < l(ws) and s ∈ S. Thus, the Hasse diagram for the weak order is

just the Cayley graph for W (with generating set S). For each finite W , the weak order is a

semidistributive lattice (see [26, Lemma 9]). In particular, each element has a canonical join

representation.

123

132213

312231

321

Figure 1.2: The weak order on the symmetric group S3

Example 1.3.3. Returning to the symmetric group Sn, from Example 1.3.1, we can describe

the weak order as follows: Write each permutation in Sn in its one-line notation as w1w2 . . .wn,

where w(i) = wi. Acting on the right by the transposition (i, i+1) corresponds to swapping the

entries wi and wi+1. Thus, one moves up in the weak order by swapping adjacent entries that

are in order (that is wi < wi+1) and leaving all other entries fixed. See Figure 1.2.
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1.4 The topology of the canonical join complex

In Chapter 3, we study the canonical join representation in certain lattice quotients of the weak

order. These lattice quotients inherit semidistributivity, so each element admits a canonical join

representation.

We begin by considering the Tamari lattice. The Tamari lattice is named for Dov Tamari,

who proved that it is a lattice [40, 50], and defined it as follows: Consider a fixed word

a1a2 . . . an+1 and all of the possible ways to properly distribute brackets among its letters. We

think of the bracketing as defining a binary operation, where each (rightward) application of

the associative law corresponds to a cover relation. For example, the Tamari lattice T2 consists

of the single cover relation (a1a2)a3 <⋅ a1(a2a3).
Since its original definition, the Tamari lattice has made surprising appearances in algebra,

topology, category theory, and even physics (not to mention combinatorics) [59]. Appropriately,

it has many realizations. It is convenient for us to realize Tn as the lattice quotient of the

weak order on Sn consisting of the permutations that avoid the pattern 312. We say that

a permutation avoids the 312-pattern if, for each pair of numbers i < k that appear out

of order in w1 . . .wn, we have that each j ∈ {i + 1, . . . , k − 1} precedes i and k. The Hasse

diagram for Tn is an orientation of the one-skeleton of a polytope. This polytope is the simple

associahedron—the dual (or polar) polytope of ∆(P ) from Example 1.2.3.

Remark 1.4.1. The canonical join representation “sees” the geometry of the Hasse diagram

for Tn. More precisely, for any finite join-semidistributive lattice, there is a bijection from the

set {y ∶ w ⋅> y} to the canonical join representation of w. (This is Proposition 2.2.2.) Similar

constructions were used to study the cover relations in free lattices. (See [39, Theorem 3.5].)

When the Hasse diagram for L is the dual graph for a simplicial sphere ∆, as it is for the

weak order and the Tamari lattice, the f -vector for the canonical join complex is equal to the

h-vector for ∆.

Informally, a complex ∆ is shellable if we can linearly order its facets F1, . . . , Fm so that

when we glue Fi into the complex ⋃i−1
r=1 Fr of earlier facets, one of two possible events occurs:

Either the topology of the resulting complex does not change; or we close off a sphere of

dimension ∣Fi∣ −1. In Chapter 3, we show that the canonical join complex of Tn is shellable. See

Theorem 3.1.1. We extend these results in two directions: We show that the type-B analogue to

the Tamari lattice is also shellable (Theorem 3.1.2), and we show that each c-Cambrian lattice

in type A is shellable (Theorem 3.1.3). The c-Cambrian lattices are a fundamental object of

Coxeter-Catalan combinatorics, and are closely studied because of their connection with cluster

algebras of finite type [68, 75]. See Example 1.5.2 below.
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Remark 1.4.2. The canonical join complexes that we study here are all non-pure, meaning

that their facets have different dimensions. We use the notion of non-pure shellability developed

by Björner and Wachs in [13] and [14]. As an immediate consequence, we also obtain a direct-

sum decomposition of the associated Stanely-Reisner ring that generalizes the Cohen-Macaulay

property of pure complexes. See [14, Theorem 12.3]. Historically, the connection to the Cohen-

Macaulay property was a major impetus behind the study of shellable complexes [13].

1.5 Coxeter-biCatalan combinatorics

In Chapter 4, we use the canonical join representation to solve an enumerative problem at the

heart of Coxeter-biCatalan combinatorics. Before we outline our results, we make a very

brief introduction to Coxeter-Catalan combinatorics. A more complete history and discussion

of examples can be found in [2] and [33].

Our story begins with the classical Catalan numbers

Cn =
1

n + 1
(2n

n
).

The study of the Catalan numbers dates back at least to Euler, who considered the problem

of enumerating the triangulations of a fixed convex polygon [60]. Since that time, the Catalan

numbers have appeared throughout algebraic combinatorics and enumerate more than 200

different combinatorial objects [83, Introduction]. Below, we call such an object a Catalan

object .

Example 1.5.1. Our touchstone example is the Tamari lattice Tn. Recall that the Hasse

diagram for the Tamari lattice can be realized as the one-skeleton for the simple associahedron.

Since the vertices for the simple associahedron are parametrized by the triangulations of a fixed

convex polygon, we conclude that there are Catalan many elements in Tn.

In Coxeter-Catalan combinatorics, many of the traditional Catalan objects are seen as a

special case of a general construction. This general construction yields a Coxeter group analogue

for each of the traditional Catalan objects. So, for example, each Coxeter group has its own

version of the Tamari lattice. (More precisely, each Coxeter group has a family of Tamari-like

lattices.) See Example 1.5.2. In general, this construction depends on a choice of a Coxeter

group W , a set of simple generators S, an orientation c of the Coxeter diagram (c is also some-

times called a Coxeter element), and a collection of vectors Φ related to the combinatorics

of the Coxeter arrangement.

Example 1.5.2. Recall that the Tamari lattice Tn is the lattice quotient of the weak order

on Sn consisting of the 312-avoiding permutations. This pattern avoidance condition is a special
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case of a more general lattice quotient construction that can be applied to the weak order on

any finite Coxeter group. This general construction yields the so-called c-Cambrian lattices,

a family of lattice quotients parametrized by an orientation c of the associated Coxeter diagram.

In particular, when c is an orientation of the type-A Coxeter diagram in which all of the arrows

point in the same direction, we recover a Tamari lattice. (In this case, we say that c is a linear

orientation.) Like the Tamari lattice, each c-Cambrian lattice can be realized as an orientation

of the one-skeleton for a simple polytope called the W -associahedron.

The next theorem is the cornerstone of Coxeter-Catalan combinatorics. In the statement,

Cat(W ) is the Coxeter-Catalan number . When W is the symmetric group, we obtain the

classical Catalan number. The numbers e1, . . . en are the exponents of W , certain numbers that

originate in the study of the invariant theory for W . The number h is the Coxeter number for

W . See [51, Section 3.20].

Theorem 1.5.3. For each finite Coxeter group W , the enumeration of each Coxeter-Catalan

object has the same solution:

Cat(W ) =
n

∏
i=1

ei + h + 1

ei + 1
.

In Coxeter-biCatalan combinatorics, we carry out a “doubling” or “twinning” process

on each Coxeter-Catalan object, and obtain a new family of enumerative problems. In Exam-

ple 1.5.4, we describe the doubled version of the Tamari lattice. In general, the doubled version

of each c-Cambrian lattice is a lattice quotient of the weak order called the c-biCambrian lat-

tice . When c is bipartite, we call the c-biCambrian lattice the bipartite biCambrian lattice .

(We say that c is bipartite if each pair of adjacent arrows point in opposite directions.)

Example 1.5.4. Like the c-Cambrian lattices, each c-biCambrian lattice is a certain lattice

quotient of the weak order on W . When W is the symmetric group, each c-biCambrian lattice is

determined by pattern-avoidance conditions. For example, when c is a linear orientation for the

type-A Coxeter diagram, the c-biCambrian lattice is the lattice quotient of Sn consisting of the

permutations that avoid both the 41-2-3-pattern and the 2-3-41-pattern, and whose enumeration

is given by the Baxter numbers. See [10, 24].

We closely study the canonical join representation in the bipartite biCambrian lattice of

type-A. Our work here motivates a restrictive characterization of the canonical join representa-

tion in the bipartite biCambrian lattice in general. This characterization is a key ingredient in

the proof of our main result: We show that, when c is bipartite, the analogue to Theorem 1.5.3

holds: For each finite Coxeter group, each of the “doubled” Coxeter-Catalan objects has the

same enumeration, the Coxeter-biCatalan number . See Theorem 4.1.1.
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Chapter 2

The Canonical Join Complex

2.1 Introduction

In this chapter, we consider the facial structure of the canonical join complex. The following

theorem is our main result.

Theorem 2.1.1. Suppose L is a finite join-semidistributive lattice. Then the canonical join

complex of L is flag if and only if L is semidistributive.

In light of Theorem 2.1.1, we define the canonical join graph of L to be the one-skeleton

of its canonical join complex. Canonical join representations and canonical join graphs appear in

many familiar guises. See Section 2.2 for connections to comparability graphs and noncrossing

partitions.

Recall that the canonical join representation of an element w is the is unique “lowest”

irredundant expression for w in terms of the join operation. There is an analogous factorization

in terms of the meet operation called the canonical meet representation that is defined dually

(by replacing “lowest” with “highest” and “join” with “meet” in the sentence above). A finite

lattice L is semidistributive if and only if each of its elements admits both a canonical join

representation and a canonical meet representation [39, Theorem 2.24]. Suppose that L is a

finite join-semidistributive lattice. Theorem 2.1.1 implies that the canonical join complex of L

is flag if and only if each element admits a canonical meet representation.

It is not hard to find examples of finite join-semidistributive lattices whose canonical join

complex is not flag. A key example is shown below in Figure 2.1. Observe that each pair of

atoms in this lattice is a face in the canonical join complex. Since the join of all three atoms

is redundant (because we can remove b and obtain the same join), the canonical complex is an

empty triangle. Also, note that the bottom element 0̂ of this lattice does not have a canonical

meet representation: Both a ∧ e and c ∧ d are meet-representations for 0̂ that are “as high as
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c
b

a

d e

c

b

a

Figure 2.1: The canonical join complex is an empty triangle.

possible”. This lattice also exhibits some unpleasant topological properties. We will see below

that the combinatorics of the canonical join complex are closely related to the topology of its

lattice.

The crosscut complex of L is the abstract simplicial complex whose faces are the subsets

A′ of atoms in L such that ⋁A′ < 1̂. A lattice is crosscut-simplicial if the crosscut complex

for each interval is either a simplex or the boundary of a simplex. The Crosscut Theorem says

that the order complex of a finite poset P is homotopy equivalent to its crosscut complex ([11,

Theorem 10.8]). Therefore, if L is crosscut-simplicial then each interval [x, y] in L is either

contractible or homotopy equivalent to a sphere with dimension two less than the number of

atoms in [x, y]. (See also [47, Theorem 3.7].) In particular, µ(x, y) ∈ {−1,0,1}.

Observe that the facets of the crosscut complex for the lattice L in Figure 2.1 are {a, b} and

{b, c}. Therefore, L is not crosscut-simplicial. By contrast, Hersh and Mészáros recently showed

that a large class of finite semidistributive lattices—including the class of finite distributive

lattices, the weak order on a finite Coxeter group, and the Tamari lattice ([47, Theorems 5.1,

5.3 and 5.5])—are crosscut-simplicial. Building on their work, McConville proved that if L is

semidistributive, then it is crosscut-simplicial ([57, Theorem 3.1]). When each element in L has

a canonical join representation, we prove that the converse is true.

Theorem 2.1.2. Suppose that L is a finite join-semidistributive lattice. The following are

equivalent:

1. The canonical join complex of L is flag.

2. L is crosscut-simplicial.

3. L is semidistributive.

As an immediate corollary, we obtain the following topological obstruction to the flag prop-

erty of the canonical join complex.

Corollary 2.1.3. Suppose that L is a finite join-semidistributive lattice and its canonical join

complex is flag. Then:
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1. Each interval [x, y] in L is either contractible or homotopy equivalent to Sd−2, where d is

the number of atoms in [x, y];

2. The Möbius function takes only the values {−1,0,1} on the intervals of L.

McConville showed in [57, Corollary 5.4] that if L is crosscut-simplicial then so is each

of its lattice quotients. Because semidistributivity is preserved under taking sublattices and

quotients when L is finite (see Section 2.4.1), we immediately obtain the following extension of

McConville’s result for finite join-semidistributive lattices.

Corollary 2.1.4. Suppose that L is a finite join-semidistributive lattice that is crosscut-simplicial.

Then each sublattice and quotient lattice of L is also crosscut-simplicial.

Theorem 2.1.1 is surprising in part because its proof does not explicitly use the canonical

meet representation of the elements in L. Instead, we make use of a local characterization of

the canonical join representation in terms of cover relations, and a bijection κ from the join-

irreducible to the meet-irreducible elements in L. As an easy consequence of this approach,

we obtain the following nice result. In the statement, the canonical meet complex is the

complex of subsets A in L such that the meet ⋀A is a canonical meet representation.

Corollary 2.1.5. Suppose that L is a finite semidistributive lattice. Then the bijection κ induces

an isomorphism from the canonical join complex to the canonical meet complex of L.

Using the isomorphism from Corollary 2.1.5, one obtains an operation on the canonical

join complex that generalizes the operation of rowmotion (on the set of antichains in a poset)

and the operation of Kreweras complementation (on the set of noncrossing partitions). See

Remark 2.3.15.

The canonical join complex was first introduced in [72], in which Reading showed that it is

flag for the special case of the weak order on the symmetric group (see Example 2.2.6). Recently,

canonical join representations have played a role in the study of functorially finite torsion classes

for the preprojective algebra of Dynkin-type W , when W is a simply laced Weyl group (see for

example [41, 52]). In the forthcoming [9], the authors study the canonical join complex of any

finite dimensional associative algebra Λ of finite representation type. Since the weak order on

any finite Coxeter group W and the lattice of torsion classes for Λ of finite representation type

are both examples of finite semidistributive lattices (see [26, Lemma 9] and [41, Theorem 4.5]),

we obtain the following two applications of Theorem 2.1.1:

Corollary 2.1.6. Suppose that W is a finite Coxeter group. Then the canonical join complex

of the weak order on W is flag.
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Corollary 2.1.7. Suppose that Λ is an associative algebra of finite representation type, and

tors(Λ) is its lattice of torsion classes ordered by containment. Then the canonical join complex

of tors(Λ) is flag.

2.2 Motivation and examples

Before we give the technical background for our main results, we describe several familiar

examples in which the combinatorics of canonical join representations appear. We begin with

an example from number theory and commutative algebra.

Example 2.2.1 (The divisibility poset). It is often useful to give a canonical factorization

of the elements in a set of equipped with some algebraic structure. A familiar example is the

primary decomposition of an ideal in a Noetherian ring. The canonical join representation is the

natural lattice-theoretic analogue. Indeed, when L is the the divisibility poset (whose elements

are the positive integers ordered r ≤ s if and only if r∣s), the canonical join representation of

x ∈ L coincides with the primary decomposition of the ideal generated by x:

x = ⋁{pd ∶ p is prime and pd is the largest power of p dividing x}.

Suppose that L is a finite lattice, such that each element in L admits a canonical join

representation. One pleasant property of the canonical join representation (and its dual, the

canonical meet representation) is that it “sees” the geometry the Hasse diagram for L. Suppose

that w ∈ L has the canonical join representation ⋁A. We will shortly prove that the factors

that appear in A are naturally in bijection with the elements covered by w. So, the down-

degree of w is equal to the size of A. Specifically, we will prove the following proposition. (See

Lemma 2.3.3 and Proposition 2.3.4. Similar constructions appear in the literature, for example

see [39, Theorem 3.5] which gives essentially the same statement for free lattices.)

Proposition 2.2.2. Suppose that ⋁A = w is a face in the canonical join complex of L. Then,

for each element y that is covered by w there is a corresponding element j ∈ A such that j∨y = w,

and j is the unique minimal element in L with this property. The correspondence y ↦ j is a

bijection.

With this proposition in mind, we consider the class of finite distributive lattices.

Example 2.2.3 (Finite distributive lattices). Suppose that L is a finite distributive lattice.

Recall that the fundamental theorem of finite distributive lattices (see for example [81, Theo-

rem 3.4.1]) says that L is the lattice J(P) of order ideals of some finite poset P. Suppose that

A is an antichain in P. We write IA for the order ideal generated by A (that is, the elements of
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A are the maximal elements of IA). Dually, we write IA for the order ideal satisfying: A is the

set of minimal elements in P ∖ IA. Observe that the order ideals covered by IA are exactly of

the form IA∖{y} = IA ∖ {y}, where y ∈ A. Since Iy is the smallest order ideal in J(P) containing

y, it follows immediately from Proposition 2.2.2 that the canonical join representation of IA is

⋃{Iy ∶ y ∈ A}. (Dually, the canonical meet representation for the ideal IA is ⋂{Iy ∶ y ∈ A}.) It

follows that the canonical join graph of J(P) is the incomparability graph of P.

Comparability graphs were classified by a theorem of Gallai which we quote from [88,

Theorem 2.1] below.

Theorem 2.2.4. A graph G is a comparability graph for a finite poset if and only if it does not

contain as an induced subgraph any graph from [88, Table 1] or the complement of any graph

appearing in [88, Table 2].

As an immediate corollary we have the following characterization of the canonical join graphs

for finite distributive lattices.

Proposition 2.2.5. The graph G is the canonical join graph for a finite distributive lattice if

and only if G does not contain, as an induced subgraph, the complement of any graph forbidden

by Theorem 2.2.4.

Example 2.2.6 (The Symmetric group and noncrossing arc diagrams). Reading gave an ex-

plicit combinatorial model for the canonical join complex of the weak order on the symmetric

group Sn in terms of certain noncrossing arc diagrams. A noncrossing arc diagram is a

diagram consisting of n nodes arranged vertically, together with a collection of curves called

arcs that satisfy certain compatibility conditions. In particular, the arcs in a noncrossing arc

diagram do not intersect in their interiors. (See [72] or Section 3.2.2 for details.) Each diagram

is determined by its combinatorial data: the endpoints of its arcs and on which side (either left

or right) each arc passes the nodes in the diagram.

Figure 2.2: Some examples of noncrossing arc diagrams.

We say that two arcs are compatible if there is a noncrossing arc diagram that contains

them. The following is a combination of [72, Corollary 3.4 and Corollary 3.6]. (In the statement
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of the Theorem, we take “a collection of arcs” to also mean a collection of noncrossing arc

diagrams, each containing a single arc.)

Theorem 2.2.7. There is a bijection δ from the set of join-irreducible permutations in Sn to

the set of noncrossing arc diagrams on n nodes that contain precisely one arc. Moreover, a

collection of arcs E corresponds to a face in the canonical join complex of Sn if and only if the

arcs in E are pairwise compatible.

Example 2.2.8 (The Tamari lattice and noncrossing partitions). Recall from Example 1.5.2,

the Tamari lattice Tn is a finite semidistributive lattice (see for example [42, Theorem 3.5]),

which can be realized as an ordering on the set of triangulations for a fixed convex polygon P .

The simple associahedron is a convex polytope, whose faces are in bijection with the collections

of pairwise noncrossing diagonals of P (see [33, Figure 3.5]). The Hasse for Tn is an orienta-

tion for the one-skeleton of the associahedron. Since the number of factors in a canonical join

representation (called the canonical joinands) for w ∈ Tn is equal to the down-degree of w, we

obtain the following result:

Proposition 2.2.9. The f -vector for the canonical join complex of the Tamari lattice Tn is

equal to the the h-vector of the rank n−1 associahedron. Specifically, the number of size-k faces

in the canonical join complex is equal to the Narayana number

N(n, k) = 1

n
( n

k + 1
)(n
k
).

Indeed, the canonical join representation of w ∈ Tn is essentially a noncrossing partition.

Recall that the Tamari lattice Tn may be realized as the set of permutations avoiding the 312-

pattern. It is a fact that a permutation avoids the 312-pattern if and only if its image under

the bijection δ (from Theorem 2.2.7) is a noncrossing arc diagram consisting of only right arcs.

(A right arc is an arc that does not pass to the left of any node. See the leftmost noncrossing

diagram in Figure 2.2.) Rotating such a diagram by a quarter-turn gives the familiar represen-

tation of a noncrossing partition as a bump diagram. (See [72, Example 4.5] for details, and

[75, Theorem 2.7] and the discussion following [75, Proposition 8.8] for a type-free discussion.)

2.3 Finite semidistributive lattices

2.3.1 Definitions

In this chapter, we study only finite lattices. We write 0̂ for the unique smallest element in L

and 1̂ for the unique largest element. A join-representation of w is an expression ⋁A which

evaluates to w in L. At times we will also refer to the set A as a join-representation. We write
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cov↓(w) for the set {y ∈ L ∶ w ⋅> y}. Similarly, we write cov↑(w) for the set of upper covers of

w. Recall that w is join-irreducible if w = ⋁A implies that w ∈ A. (In particular, the bottom

element 0̂ is not join-irreducible, because it is equal to the empty join.) Since L is finite, w is

join-irreducible when cov↓(w) has exactly one element. Meet-irreducible elements satisfy the

dual condition. We write Irr(L) for the set of join-irreducible elements in L.

A join-representation ⋁A of w is irredundant if ⋁A′ < ⋁A for each proper subset A′ ⊂ A.

Each irredundant join-representation is an antichain in L. We say that the subset A of L join-

refines a subset B if, for each element a ∈ A, there exists some element b ∈ B such that a ≤ b.
Join-refinement defines a preorder on the subsets of L that is a partial order (corresponding to

the containment of order ideals) when restricted to the set of antichains in L.

We write ijr(w) for the set of irredundant join-representations of w. The canonical join

representation of w in L is the unique minimal element, in the sense of join-refinement,

of ijr(w), when such an element exists. We write can(w) for the canonical join representation

of w. An element j ∈ can(w) is a canonical joinand for w. If A = can(w), we say that A

joins canonically , or A is a canonical join representation in L (although, more precisely, we

mean that the expression ⋁A is a canonical join representation). It follows immediately from

the definition that each canonical joinand of w is join-irreducible. Moreover, the canonical join

representation of each join-irreducible element j exists and is equal to {j}. The canonical

meet representation of w is defined dually (when it exists).

In Figure 2.3, we give two examples in which the canonical join representation of 1̂ does

not exist. In the modular lattice on the left each pair of atoms is a lowest-possible, irredundant

ea b

dc

Figure 2.3: Two finite lattices whose top elements have no canonical join representation.

join-representation for the top element. Since there is no unique such join-representation, the

canonical join representation for 1̂ does not exist. Arguing dually, we see that the canonical

meet representation for the bottom element 0̂ does not exist either. In the lattice on right, each

element has a canonical meet representation. However, both a∨d and b∨c are minimal elements

of ijr(1̂). Again, the canonical join representation of 1̂ does not exist.

In the lattice on the right, we observe the following failure of the distributive law: both e∨a
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and e ∨ b are expressions for 1̂, but e ∨ (a ∧ b) is equal to e. (A similar failure is easily verified

among the atoms of the modular lattice.) We will see that correcting for precisely this kind of

failure of distributivity guarantees the existence of canonical join representations, when L is

finite.

A lattice L is join-semidistributive if L satisfies the following implication for every x, y

and z:

If x ∨ y = x ∨ z, then x ∨ (y ∧ z) = x ∨ y (SD∨)

L is meet-semidistributive if it satisfies the dual condition:

If x ∧ y = x ∧ z, then x ∧ (y ∨ z) = x ∧ y (SD∧)

A lattice is semidistributive if it is join-semidistributive and meet-semidistributive. The fol-

lowing result is the finite case of [39, Theorem 2.24].

Theorem 2.3.1. Suppose that L is a finite lattice. Then L satisfies SD∨ if and only if each

element in L has a canonical join representation. Dually, L satisfies SD∧ if and only if each

element in L has a canonical meet representation.

Assume that L is a finite join-semidistributive lattice, and let j ∈ Irr(L). We write j∗ for

the unique element covered by j, and K(j) for the set of elements a ∈ L such that a ≥ j∗ and

a /≥ j. When it exists, we write κ(j) for the unique maximal element of K(j). It is immediate

that κ(j) is meet-irreducible. Below, we quote [39, Theorem 2.56]:

Proposition 2.3.2. A finite lattice L is meet-semidistributive if and only if κ(j) exists for

each join-irreducible element j in L.

Below we establish a bijection from the set cov↓(w) to can(w). A similar construction also

appears in [39, Theorem 3.5]. Suppose that w ∈ L. For each y ∈ cov↓(w), there is some element

j ∈ can(w) such that y ∨ j = w (because there is some element j ∈ can(w) such that j /≤ y). For

this j, the set can(w) join-refines {j, y}. Because can(w) is an antichain, each j′ ∈ can(w)∖{j}
satisfies j′ ≤ y. Therefore, j is the unique canonical joinand of w such that y∨j = w. We define a

map η ∶ cov↓(w) → can(w) which sends y to the unique canonical joinand j such that y ∨ j = w.

Lemma 2.3.3. Suppose that L is a finite join-semidistributive lattice, and w ∈ L. Then the

map η ∶ cov↓(w) → can(w) is a bijection such that y ≥ ⋁ can(w) ∖ {η(y)} and y ∈ K(η(y)) for

each y ∈ cov↓(w).

Proof. Suppose there exist distinct y and y′ in cov↓(w) satisfying η(y) = η(y′). Then, y∨y′ = w,

and can(w) does not join-refine {y, y′} (because η(y) is below neither y nor y′). We have a

contradiction, because can(w) is the unique minimal element (in join-refinement) of ijr(w). By
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this contradiction, we conclude that η is injective. Suppose that j ∈ can(w). Since ⋁ can(w) is

irredundant,⋁(can(w)∖{j}) < w. Thus, there is some y ∈ cov↓(w) such that y ≥ ⋁(can(w)∖{j}).
If y ≥ j then y = w, and that is absurd. We conclude that j = η(y), and that η is a bijection.

We have already argued, in the paragraph above the statement of the proposition, that

y ≥ ⋁ can(w) ∖ {η(y)}. To complete the proof, suppose that y ∨ η(y)∗ = w. Since, can(w) does

not join-refine {y, η(y)∗} (because η(y) /≤ η(y)∗ and η(y) /≤ y), we obtain a contradiction as

above. We conclude that y ∨ η(y)∗ < w. Since y is covered by w, we have y ∨ η(y)∗ = y. Thus,

y ∈ K(η(y)), for each y ∈ cov↓(w).

As a consequence of Lemma 2.3.3, we obtain a proof of Proposition 2.2.2, which we restate

here with the notation from of Lemma 2.3.3.

Proposition 2.3.4. Suppose that L is a finite join-semidistributive lattice, and y is covered

by w in L. Then, η(y) is the unique minimal element of L such that η(y) ∨ y = w.

Proof. Suppose that x ∈ L has x ∨ y = w. Since can(w) join-refines {x, y} and η(y) and y are

incomparable, we conclude that η(y) ≤ x.

In fact, the previous proposition characterizes of finite join-semidistributive lattices. (Similar

constructions exist; for example, see the proof of [1, Theorem 3-1.4].) Because the proof is similar

to the proof of Lemma 2.3.3, we leave the details to the reader.

Proposition 2.3.5. Suppose that L is a finite lattice. The following conditions are equivalent:

1. For each w ∈ L and each y ∈ cov↓(w), there is a unique minimal element η(y) ∈ L satisfying

y ∨ η(y) = w.

2. L is join-semidistributive.

Suppose that L is a finite join-semidistributive lattice, j ∈ Irr(L), and F is a canonical

join representation. The next lemma, in particular, implies that F ∪ {j} is a canonical join

representation if and only if ⋁F ∨ j > ⋁F ∨ j∗.

Lemma 2.3.6. Suppose that L is a finite join-semidistributive lattice and j ∈ Irr(L). Then:

1. j is a canonical joinand of y ∨ j, for each y ∈ K(j);

2. j is a canonical joinand of ⋁F ∨ j if and only if ⋁F ∨ j > ⋁F ∨ j∗, for each subset F of

L ∖ {j}.

Proof. If y = j∗, then the first statement is obvious (because {j} is the canonical join represen-

tation), so we assume that y and j are incomparable. We write w for the join j∨y, and we write

A = {j′ ∈ can(w) ∶ j′ ≤ j} and A′ = {j′ ∈ can(w) ∶ j′ ≤ y}. Because can(w) join-refines {j, y},
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we have A ∪ A′ = can(w). Also, the set A is not empty because the join y ∨ j is irredundant.

We want to show that A = {j}. Since j is join-irreducible, it is enough to show that j = ⋁A.

Since y ≥ ⋁A′, we see that ⋁A∨ y = j ∨ y. If ⋁A < j, then j∗ ∨ y = j ∨ y, and that is impossible

because y ∈ K(j). We conclude that j is a canonical joinand of y ∨ j.
If ⋁F ∨ j > ⋁F ∨ j∗, then ⋁F ∨ j∗ ∈ K(j). We conclude that j is a canonical joinand of

⋁F ∨ j. The remaining direction of the second item is straightforward to verify.

We close this subsection by quoting the following easy proposition (for example see [72,

Proposition 2.2]), which says that the canonical join complex is indeed a simplicial complex.

Proposition 2.3.7. Suppose L is a finite lattice, and the join ⋁A is a canonical join repre-

sentation in L. Then each proper subset of A also joins canonically.

2.3.2 The flag property

In this section we prove Theorem 2.1.1. We begin by presenting the key arguments in one

direction the proof: If L is a finite semidistributive lattice, then its canonical join complex is

flag. Most of the work is done in the following two lemmas.

Lemma 2.3.8. Suppose that L is a finite semidistributive lattice, and F is a subset of Irr(L)
such that ∣F ∣ ≥ 3 and each proper subset of F is a face in the canonical join complex. Then the

joins ⋁(F ∖ {j}) and ⋁(F ∖ {j′}) are incomparable for each distinct j and j′ in F .

Proof. Without loss of generality we assume that ⋁F = 1̂. Suppose there exists distinct j, j′ ∈ F
such that ⋁(F ∖ {j}) ≥ ⋁(F ∖ {j′}). On the one hand, we have (⋁(F ∖ {j})) ∨ (⋁(F ∖ {j′}))
is equal to ⋁F = 1̂. On the other hand, (⋁(F ∖ {j})) ∨ (⋁(F ∖ {j′})) = ⋁(F ∖ {j}). Thus,

⋁(F ∖{j}) = 1̂. Since F has at least three elements, there exists j′′ ∈ F ∖{j, j′}. We write w′ for

j

j∗

⋁F ∖ {j, j′} ⋁F ∖ {j, j′′}

w′ w′′

⋁F ∖ {j} = 1̂

y′ y′′

Figure 2.4: Dashed lines represent order relations in L while solid lines represent cover relations.

⋁(F ∖ {j′}) and w′′ for ⋁(F ∖ {j′′}). See Figure 2.4. Because both F ∖ {j′} and F ∖ {j′′} are
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faces in the canonical join complex, j is a canonical joinand for both w′ and w′′. Lemma 2.3.3

implies that there exists y′ ∈ cov↓(w′) and y′′ ∈ cov↓(w′′) such that y′, y′′ ∈ K(j). Moreover,

y′ ≥ ⋁(F ∖ {j, j′}) and similarly y′′ ≥ ⋁(F ∖ {j, j′′}).
So, we have: y′∨y′′ ≥ (⋁(F ∖ {j, j′}))∨(⋁(F ∖ {j, j′′})) = ⋁(F ∖{j}). Since ⋁(F ∖{j}) = 1̂,

we conclude that ⋁K(j) = 1̂, contradicting Proposition 2.3.2.

Lemma 2.3.9. Suppose that L is a finite join-semidistributive lattice, and F is a subset of

Irr(L) satisfying the following conditions: First, ∣F ∣ ≥ 3; second, each proper subset of F is a

face in the canonical join complex of L; third, ⋁F is irredundant; fourth F is not a face of the

canonical join complex. Then there exists j ∈ F such that κ(j) does not exist.

Proof. Without loss of generality, we assume that ⋁F = 1̂. Since the join ⋁F is irredundant,

there exists some j ∈ F such that j /∈ can(1̂). Lemma 2.3.6 implies that ⋁(F ∖{j})∨j∗ = 1̂. Let j′

and j′′ be distinct elements in F∖{j}. As in the proof of Lemma 2.3.8, let y′ and y′′ be the unique

elements covered by ⋁F ∖{j′} and ⋁F ∖{j′′}, respectively, with y′, y′′ ∈ K(j). Thus, y′, y′′ ≥ j∗.

Also y′ ≥ ⋁(F ∖ {j, j′}) and y′′ ≥ ⋁(F ∖ {j, j′′}). Therefore, y′ ∨ y′′ ≥ ⋁(F ∖ {j}) ∨ j∗ = 1̂. The

statement follows.

Proof of one direction of Theorem 2.1.1. We show that if L is semidistributive, then its canon-

ical join complex is flag. Suppose that F ⊂ Irr(L) such that ∣F ∣ ≥ 3 and each proper subset

of F is a face of the canonical join complex. Without loss of generality, assume that ⋁F = 1̂.

Lemma 2.3.8 says that for each distinct j and j′ in F , the joins ⋁(F ∖ {j}) and ⋁(F ∖ {j′})
are incomparable. Thus, we have

⋁(F ∖ {j}) < (⋁(F ∖ {j})) ∨ (⋁(F ∖ {j′})) = ⋁F.

We conclude that ⋁F is irredundant. Lemma 2.3.9 implies that F is a face of the canonical

join complex.

We now turn to the other direction of Theorem 2.1.1. In the following lemmas we will assume

that L is a finite join-semidistributive lattice in which fails SD∧. By Proposition 2.3.2, there is

some j ∈ Irr(L) such that κ(j) does not exist. Our goal is to construct a set A ⊂ Irr(L) such

that A ∪ {j} is a “hollow face” in the canonical join complex. More precisely, the set A must

satisfy the following conditions. (NF stands for “not-flag”.)

(NF1) A ∪ {j} is not a face in the canonical join complex of L.

(NF2) Each pair of elements in A ∪ {j} is a face in the canonical join complex.

The essential idea is that among all of the subsets of Irr(L) satisfying (NF1), a set A chosen

as low as possible in L will also satisfy (NF2). For us, “as low as possible” means that A is chosen
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to be minimal in join-refinement. The argument is somewhat delicate because join-refinement

is a preorder, not a partial order, on subsets of L. So, we must take extra care to compare

only antichains Y ⊂ Irr(L) satisfying (NF1). To further emphasize this point, we write A≪B

when A join-refines B, for antichains A and B. We write A(j) for the collection of antichains

Y ⊆ L ∖ {j} satisfying Y ∪ {j} is an antichain. We write E(j) for the set of j′ ∈ Irr(L) ∖ {j}
such that j′∨j is a canonical join representation. When it is possible, we suppress j, and simply

write E.

Lemma 2.3.10. Suppose that L is a finite join-semidistributive lattice and j ∈ Irr(L) such

that κ(j) does not exist. Let E be the set of j′ ∈ Irr(L) ∖ {j} such that j′ ∨ j is a canonical join

representation. Then:

1. ⋁E ∨ j = ⋁E ∨ j∗;

2. There exists a nonempty antichain Y in A(j) such that ⋁Y ∨ j = ⋁Y ∨ j∗.

Proof. Assume that ⋁E∨j > ⋁E∨j∗. Lemma 2.3.6 says that j is a canonical joinand of ⋁E∨j.
Also, for each element a in K(j), j is a canonical joinand of a∨j. That is, a∨j has the canonical

join representation ⋁E′ ∨ j for some subset E′ ⊂ E. Thus a ∨ j ≤ ⋁E ∨ j, and in particular

a ≤ ⋁E ∨ j. Lemma 2.3.3 implies that there is a unique element y ∈ K(j) covered by ⋁E ∨ j.
If a /≤ y, then y ∨ a = ⋁E ∨ j. Proposition 2.3.4 says that j is the unique minimal element of

L whose join with y is equal to ⋁E ∨ j. Therefore, j ≤ a, contradicting the fact that a ∈ K(j).
We conclude that a ≤ y. We have proved that y = κ(j), contradicting our hypothesis. Thus,

⋁E ∨ j = ⋁E ∨ j∗.

For the second statement, observe that if E is empty, then Lemma 2.3.6 implies that

K(j) = {j∗}, contradicting the assumption that κ(j) does not exist. We conclude that E

is nonempty. Since the antichain of maximal elements Y ⊆ E satisfies ⋁Y = ⋁E, we have the

desired result.

Lemma 2.3.10 says that the collection of antichains Y in A(j) satisfying

⋁Y ∨ j = ⋁Y ∨ j∗ (NC)

is nonempty. (Actually, we have shown something stronger: The collection of antichains Y ⊆ E(j)
that satisfy (NC) is nonemtpy.) We write (NC) for “not-canonical” because Lemma 2.3.6 im-

plies that ⋁Y ∨ j is not a canonical join representation. In particular, j is not a canonical

joinand of ⋁Y ∨ j.
We choose such an antichain in A(j) so that it is minimal in join-refinement. Suppose that

B is this antichain, taken “as low as possible”. The next lemma is the difficult part of the proof

of the remaining direction of Theorem 2.1.1. We argue that (B∖{b})∪{j} is a face in canonical
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join complex for each b ∈ B. Thus, if B has at least three elements, then B ∪ {j} is the “hollow

face” that we want to construct. We will deal with the case where ∣B∣ ≤ 2 in Lemma 2.3.12 and

Lemma 2.3.13.

Lemma 2.3.11. Suppose that L is a finite join-semidistributive lattice and j ∈ Irr(L) such

that κ(j) does not exist. Among all antichains in A(j) that satisfy (NC), let B be minimal in

join-refinement. Then (B ∖ {b}) ∪ {j} is a canonical join representation, for each b ∈ B.

Proof. We begin by pointing out two easy observations about the join-refinement relation. (Note

that the second observation, (JR2), may fail if S ∪ {x} and T ∪ {x} are not antichains.)

(JR1) For any pair of subsets S and T , if S join-refines T then each subset S′ ⊆ S also join-

refines T .

(JR2) Suppose that S ∪ {x} and T ∪ {x} are antichains. Then, S ∪ {x}≪T ∪ {x} if and only

if S≪T .

In particular, (JR1) implies that B ∖ {b}≪B. Thus, ⋁(B ∖ {b}) ∨ j∗ < ⋁(B ∖ {b}) ∨ j.

Lemma 2.3.6 says that j is a canonical joinand of ⋁(B ∖ {b}) ∨ j. We write C ∪ j for the

canonical join representation of ⋁(B ∖ {b}) ∨ j, where j ∉ C. We claim that C ∪ {b} = B. In

Figure 2.5, we depict the relationship between C, B, and B∖{b} in the join-refinement order. In

the figure, we have C∪{j}≪(B∖{b})∪{j}, because C∪{j} is the canonical join representation

for ⋁(B ∖ {b}) ∨ j. By (JR2), we have C≪B ∖ {b}.

C

B ∖ {b}C ∪ {j}

(B ∖ {b}) ∪ {j}
B

B ∪ {j}

Figure 2.5: Some order relations in the join-refinement order for L.

We make two observations that follow immediately from Lemma 2.3.6. First, we observe

that j not a canonical joinand of ⋁B ∨ j. Thus,

⋁C ∨ j = ⋁(B ∖ {b}) ∨ j < ⋁B ∨ j. (2.3.1)

Second, we observe that:

⋁(C ∪ {b}) ∨ j = ⋁(C ∪ {b}) ∨ j∗. (2.3.2)
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Indeed, if ⋁(C ∪ {b})∨ j∗ < ⋁(C ∪ {b})∨ j then Lemma 2.3.6 says that j is a canonical joinand

of ⋁(C ∪ {b}) ∨ j = ⋁B ∨ j. We have just noted that j is a not a canonical joinand for ⋁B ∨ j.
If C ∪ {b} is an antichain, then applying (JR2) to the relation C≪B ∖ {b}, we have C ∪

{b}≪B. Thus, we have C ∪ {b} is an antichain in A(j) that satisfies (NC) and join-refines B.

By minimality of B, we conclude that C ∪{b} = B as desired. So, we assume that C ∪{b} is not

an antichain. The inequality in (2.3.1) implies that there exists no c ∈ C with b ≤ c. We write C ′

for the set {c ∈ C ∶ c < b}.

C

B ∖ {b}C ∪ {j}

(B ∖ {b}) ∪ {j} B

B ∪ {j}

C ∖C ′

(C ∖C ′) ∪ {b}

Figure 2.6: Some relations in the join-refinement order for L.

We make three easy observations: First, (C ∖C ′) ∪ {b} is member of A(j). Second, apply-

ing (JR1) to the relation C≪B ∖ {b}, we have that C ∖ C ′≪B ∖ {b}. By (JR2), we conclude

that (C ∖C ′) ∪ {b}≪B. We depict these relations in Figure 2.6. Third,

⋁((C ∖C ′) ∪ {b}) ∨ j = ⋁(C ∪ {b}) ∨ j = ⋁(C ∪ {b}) ∨ j∗ = ⋁((C ∖C ′) ∪ {b}) ∨ j∗,

where the first and third equalities follow from the fact that ⋁(C∪{b}) is equal to ⋁(C∖C ′)∪{b},

and the middle equality is (2.3.2).

Therefore, the set (C∖C ′)∪{b} is an antichain in A(j) that satisfies (NC) and join-refines B.

By the minimality of B, we have B = (C ∖C ′) ∪ {b}. Since C≪B ∖ {b}, we have that C join-

refines its proper subset C ∖C ′. That is a contradiction (because C is an antichain). Thus, C ′

is empty. We have proved the desired result.

Our candidate for a “hollow face” in the canonical join complex is the antichain B∪{j} from

Lemma 2.3.11. As we have noted, if B has at least three elements then B satisfies both (NF1)

and (NF2).

Suppose that B = {b1, b2}. By Lemma 2.3.11, {j, bi} is a canonical join representation, for

i = 1,2. (Thus, B is minimal in join-refinement among the antichains in E(j) that satisfy (NC).)

The next lemma, in particular, implies that {b1, b2} is a canonical join representation.
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Lemma 2.3.12. Suppose that L is a finite join-semidistributive lattice and j ∈ Irr(L) such that

κ(j) does not exist. Among all antichains in A(j) that satisfy (NC), let B be minimal in join-

refinement. Suppose that B has at least two elements. Then each pair of elements in B ∪{j} is

a face in the canonical join complex.

Proof. If B has three or more elements, then the statement follows from Lemma 2.3.11 and

Proposition 3.2.1. Assume that B has two elements, b1 and b2. By Lemma 2.3.11, we have

{j, bi} is a canonical join representation, for i = 1,2. Consider {b1, b2}. We will argue that b1 is

a canonical joinand of b1 ∨ b2, and complete the proof by symmetry.

Assume that (b1)∗ ∨ b2 = b1 ∨ b2. We observe that (b1)∗ ∨ b2 ∨ j = (b1)∗ ∨ b2 ∨ j∗. If (b1)∗ ≤ j∗,

then we have b2 ∨ j = b2 ∨ j∗, contradicting Lemma 2.3.6. By the same reasoning, (b1)∗ /≤ b2.

Also, j /≤ (b1)∗ because b1 and j are incomparable. Similarly, b2 /< (b1)∗. Thus, {(b1)∗, b2}
is an antichain in A(j) that satisfies (NC) and join-refines {b1, b2}. But this contradicts our

hypothesis, which says that B is minimal in join-refinement among all such antichains. By this

contradiction, we conclude that (b1)∗ ∨ b2 < b1 ∨ b2. Lemma 2.3.6 says that b1 is a canonical

joinand of b1 ∨ b2.

Finally, we turn to the case where B is a singleton. This turns out to be a non-issue. The

next lemma says that we can always find such an antichain in A(j) with at least two elements.

Lemma 2.3.13. Suppose that L is a finite join-semidistributive lattice and j ∈ Irr(L) such that

κ(j) does not exist. Then there exists an antichain A ∈ A(j) satisfying:

1. A has at least two elements; and

2. A is minimal in join-refinement among all antichains in A(j) that satisfy (NC).

Proof. Recall that E(j) is the set of j′ ∈ Irr(L) ∖ {j} such that j′ ∨ j is a canonical join

representation. Take A to be a nonempty antichain that is minimal in join-refinement among

all antichains Y ⊆ E(j) that satisfy (NC). Lemma 2.3.10 implies that such an antichain A

exists. For each a ∈ A, we have a ∨ j is a canonical join representation. It follows immediately

from Lemma 2.3.6 that A has at least two elements.

Now we prove that A is minimal in join-refinement among all antichains in A(j) that

satisfy (NC). Suppose that B ∈ A(j) satisfies (NC), and B≪A. Without loss of generality,

assume that B is minimal in join-refinement with this property. If B has two or more elements,

then Lemma 2.3.11 implies that B is a subset of E(j). Therefore, B = A. Thus we can assume

that B = {b}. Since B join-refines A, there is some a ∈ A such that b ≤ a.
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b

a

y

j∗

j

y′

w

Figure 2.7: A depiction of the argument for Lemma 2.3.13. Dashed lines represent order rela-
tions in L while solid lines represent cover relations.

Write w for a∨ j. Since a∨ j is the canonical join representation of w, Lemma 2.3.3 implies

that cov↓(w) has precisely two elements, y and y′. Let η(y) = j and η(y′) = a, so that y ∈ K(j)
and y ≥ a. See Figure 2.7. Thus, we have b ≤ a ≤ y. On the one hand, (b∨ j)∨y = (b∨ j∗)∨y = y.

On the other hand, b∨(j ∨ y) = b∨w = w. By this contradiction, we have proved the result.

Finally, we complete the proof of the main result.

Proof of the remaining direction of Theorem 2.1.1. Now we argue that if L is a finite join-

semidistributive lattice and the canonical join complex of L is flag, then L is semidistributive.

By Proposition 2.3.2, it is enough to show that for each j ∈ Irr(L) the element κ(j) exists.

Suppose j ∈ Irr(L) and κ(j) does not exist. Among all nonempty antichains in A(j) that

satisfy (NC), let A be minimal in join-refinement, and choose A so that it has at least two

elements. Lemma 2.3.13 says that such an antichain A exists. Lemma 2.3.6 implies that A ∪ {j}
is not face of the canonical join complex. Finally, Lemma 2.3.12 says that each pair of elements

in A ∪ {j} is face in the canonical join complex. We have reached a contradiction to our hy-

pothesis that the canonical join complex is flag. By this contradiction, we conclude that L is

semidistributive.

Suppose that m is meet-irreducible and write m∗ for the unique element covering m. When

it exists, let κ∗(m) be the smallest element j ∈ L with j ≤ m∗ and j /≤ m. It is immediate that

κ∗(m) is join-irreducible. Proposition 2.3.2, applied to the dual lattice, says that L is meet-

semidistributive if and only if κ∗(m) exists for each meet-irreducible element m. In fact, L is

semidistributive if and only if κ is a bijection, with inverse map κ∗; this is the finite case of [39,

Corollary 2.55]. Applying the dual argument for the canonical meet complex, we immediately

obtain the following result. (Recall that Theorem 2.3.1 says that each element in L has a

canonical meet representation if and only if L is meet-semidistributive.)

Corollary 2.3.14. Suppose that L is a finite meet-semidistributive lattice. Then, the canonical

meet complex for L is flag if and only if L is semidistributive.
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Next, we prove Corollary 2.1.5 by showing that the bijection κ taking a join-irreducible

element j to κ(j) induces an isomorphism from the canonical join complex of L to the canonical

meet complex of L.

Proof of Corollary 2.1.5. Corollary 2.3.14 says that the canonical meet complex of L is flag,

so it is enough to show that κ bijectively maps edges of the canonical join complex to edges

of the canonical meet complex. Suppose that {j1, j2} is a face of the canonical join complex,

and write m1 for κ(j1) and m2 for κ(j2). Suppose that m1 ∧m2 = (m1)∗ ∧m2. Lemma 2.3.3

implies that there exists some y ∈ cov↓(j1 ∨ j2) satisfying : j1 ≤ y ≤ κ(j2). (See Figure 2.8

for an illustration.) Since j1 ≤ (m1)∗, we conclude that j1 ≤ (m1)∗ ∧m2 = m1 ∧m2. We see

that j1 ≤ m1 and that is a contradiction. Therefore, (m1)∗ ∧ m2 > m1 ∧ m2. By the dual

statement of Lemma 2.3.6, we conclude that m1 is a canonical meetand of m1 ∧m2, and by

symmetry m2 is also a canonical meetand of m1∧m2. The dual argument establishes the desired

isomorphism.

y

j1 ∨ j2

j1

(j1)∗

(m1)∗

κ(j1) =m1 j2

(j2)∗

Figure 2.8: An illustration of the argument for the proof of Corollary 2.1.5. Dashed gray lines
represent relations in L while solid black lines represent cover relations.

We close this section by relating Corollary 2.1.5 to Example 2.2.3 and Example 2.2.8, from

Section 2.2.

Remark 2.3.15. Suppose that F is a face of the canonical join complex of a finite semidis-

tributive lattice L. Corollary 2.1.5 says that ⋀κ(F ) is a canonical meet representation. By

taking the canonical join representation of ⋀κ(F ), we can view the map κ as an operation on

the canonical join complex. Similarly, we can view κ∗ as an operation on the canonical meet

complex.

The main premise of [3] is that the action of Kreweras complementation on the set of

noncrossing partitions and the action of Panyshev complementation on the set of nonnesting

25



partitions (that is, the set of antichains in the root poset for a finite cystrallographic root system)

coincide. Indeed, both maps are an instance of the operation of κ (or κ∗) on the canonical join

complex (or canonical meet complex).

On the one hand, the action of κ on the canonical join complex of the Tamari lattice coincides

with Kreweras complementation (recall from Example 2.2.8 that canonical join representations

in the Tamari lattice are essentially noncrossing partitions). On the other hand, Panyshev

complementation is a special case of an operation on the set of antichains in a finite poset P
called rowmotion , as we now explain. When A is an antichain in P, we write Row(A) for the

antichain {x ∈ P ∶ x is minimal among elements not in IA}. (Our notation is based on [86]. See

also [3, 18, 19, 37, 62, 80].) So, we have IA = IRow(A). It follows immediately from the definition

of κ∗ that κ∗(Iy) ↦ Iy. We obtain the following result.

Proposition 2.3.16. Suppose that P is a finite poset, and A is an antichain in P. Then the

map κ∗, acting on faces of the canonical meet complex of J(P), sends the order ideal IA to the

order ideal IRow(A).

2.3.3 Crosscut-simplicial lattices

In this section, we prove Corollary 2.1.2. Recall that one direction of the proof was given as [57,

Theorem 3.1]. Because it is easy, we give an alternative argument in the next paragraph.

Write A for the set of atoms in L. When L is a finite semidistributive lattice every join

of two atoms is a canonical join representation. In particular, Theorem 2.1.1 implies that each

distinct subset of atoms gives rise to a distinct element in L. Thus the crosscut complex for L

is either the boundary of the simplex on A or equal to the simplex on A, depending on whether

⋁A = 1̂ or ⋁A < 1̂. Since each interval in L inherits semidistributivity, it follows that L is

crosscut-simplicial.

Figure 2.9: A finite crosscut-simplicial lattice failing both SD∨ and SD∧.

Before we proceed with the proof of the converse, we point out that the join-semidistributivity

hypothesis in Corollary 2.1.2 is crucial. (For example, consider the crosscut-simplicial lattice
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shown in Figure 2.9. This lattice fails both SD∨ and SD∧.) Join-semidistributivity gives us a

powerful restriction: A finite join-semidistributive lattice L fails SD∧ if and only if L contains

the lattice shown in Figure 2.1 as a sublattice ([39, Theorem 5.56]).

We now begin our proof. The following lemmas will be useful. The first lemma is a local

version of Theorem 2.3.1, and appears as [73, Lemma 9-2.5].

Lemma 2.3.17. Suppose that L is a finite lattice satisfying the following property:

If x, y, and z are elements of L with x ∧ y = x ∧ z and also, y and z cover a common

element, then x ∧ (y ∨ z) = x ∧ y.

Then L is meet-semidistributive.

Lemma 2.3.18. Suppose that L is a finite join-semidistributive lattice that fails SD∧. Then

there exists x, y, and z such that y ∨ z > x and x, y, and z cover a common element.

Proof. We prove the proposition by induction on the size of L. As mentioned above, L contains

the lattice shown in Figure 2.1 as sublattice, and this proves the base case. By Lemma 2.3.17,

we can assume that there exist x, y, and z in L such that x ∧ y = x ∧ z, x ∧ (y ∨ z) ≠ x ∧ y,

and cov↓(y)∩ cov↓(z) is not empty. Among all such triples, we choose {x, y, z} minimal in join-

refinement. Write a for the element in cov↓(y) ∩ cov↓(z) (if there is more than one element in

cov↓(y) ∩ cov↓(z), then y ∧ z does not exist). If x also covers a, then we are done (because if

x ⋅> a and y ∨ z /> x, then (y ∨ z) ∧ x = a, and that contradicts our assumption that {x, y, z} fail

SD∧). So we assume that x does not cover a.

x

y ∨ z

w
y z

a

x ∧ y = x ∧ z

Figure 2.10: Dashed lines represent relations in L and solid lines represent cover relations.

We first prove that x < y∨z. We write w for x∧(y∨z). See Figure 2.10. Observe that x∧y < w
(because x, y and z fail SD∧, the inequality is strict). On the one hand w∧(x∧y) = x∧y. On the
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other hand, x ≥ w, so (x∧w)∧y = w∧y. By symmetry, w∧z = x∧z. Therefore, w∧y = w∧z. Note

that w ≠ y∧w (otherwise w ≤ y∧x, and that is absurd). Finally, we observe that w∧(y∨z) = w.

Thus, {w,y, z} fails SD∧. The minimality of {x, y, z} in join-refinement implies that w = x. We

have proved the claim that y ∨ z > x. By induction, we may assume y ∨ z = 1̂.

y ∨ z = 1̂

x
y z

a

x ∧ y = x ∧ z

y ∨ z = 1̂

x ∧ y = x ∧ z

x y z

x ∨ y x ∨ z

a

Figure 2.11: Dashed lines represent relations in L while solid lines represent cover relations.

Next, we claim that x∨ y and x∨ z are incomparable. By way of contradiction assume that

x∨z ≥ x∨y, so we have x∨z ≥ x, y, z. Therefore, z∨x = z∨y, as shown on the left in Figure 2.11.

Observe that z ∨ (x ∧ y) = z. Since L is join-semidistributive, we have z = 1̂. This contradicts

the fact that x∧z ≠ x∧(y∨z). We have proved the claim that x∨y and x∨z are incomparable.

Finally, we claim that there is some w′ ∈ cov↑(a)∖{y, z}. Suppose that {y, z} = cov↑(a), and

consider the righthand of Figure 2.11. Either y ≤ a ∨ x or z ≤ a ∨ x, but not both. Indeed, if

x ∨ a ≥ y, z then x ∨ a = 1̂, so x ∨ a = x ∨ y = x ∨ z. This contradicts the fact that x ∨ y and x ∨ z
are incomparable. By symmetry, we assume that y ≤ x∨a. Then y ≤ x∨a ≤ x∨ z. Thus we have

x ∨ y ≤ x ∨ z, also contradicting the fact that x ∨ y and x ∨ z are incomparable. We conclude

that there exists some w′ ∈ cov↑(a) ∖ {y, z} (in particular, w′ ≤ a ∨ x). The claim follows. The

triple {w′, y, z} satisfies the statement of the proposition.

Proof of Theorem 2.1.2. We prove that if L is join-semidistributive and crosscut-simplicial then

it is semidistributive. Assume that L is fails SD∧. Lemma 2.3.18 says that there exists x, y

and z covering a common element a ∈ L such that y ∨ z > x. In particular, [a, y ∨ z] is not

crosscut-simplicial because {y, z} is not a face in the crosscut complex. That is a contradiction.

Therefore, L is a finite semidistributive lattice, and the statement follows from Theorem 2.1.1.
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2.4 Lattice-theoretic constructions

2.4.1 Sublattices and quotient lattices

A map φ ∶ L→ L′ between lattices L and L′ is a lattice homomorphism if φ respects the meet

and join operations. The image of φ is a sublattice of L′ and a lattice quotient of L. It is

immediate that each sublattice of a semidistributive lattice is also semidistributive. When L is

finite, the image φ(L) also inherits semidistributivity (see [73, Proposition 1-5.24]). Outside of

the finite case, it is not generally true that if L is semidistributive, then φ(L) is semidistributive.

(Similarly statements hold for meet and join-semidistributivity.) We obtain the following result

as an immediate corollary of Theorem 2.1.1.

Corollary 2.4.1. Suppose that L is a finite join-semidistributive lattice whose canonical join

complex is flag. Then, the canonical join complex of each sublattice and quotient lattice of L is

also flag.

An equivalence relation Θ on L is a lattice congruence if Θ satisfies the following: if

x ≡Θ y, then x ∨ t ≡Θ y ∨ t and x ∧ t ≡Θ y ∧ t for each x, y, and t in L (see [44, Lemma 8]). It is

immediate that the fibers of the lattice homomorphism φ constitute a lattice congruence of L.

Conversely, each lattice congruence also gives rise to a lattice quotient (see [44, Theorem 11]).

When L is finite, Θ is lattice congruence if and only if it satisfies the following: Each class is

an interval; the map πΘ
↓ sending x ∈ L to the smallest element in its Θ-class is order preserving;

the map π↑Θ sending x ∈ L to the largest element in its Θ-class is order preserving. Both πΘ
↓ and

π↑Θ are lattice homomorphisms onto their images, and πΘ
↓ (L) and π↑Θ(L) are isomorphic lattice

quotients of L. As a lattice quotients, both πΘ
↓ (L) and π↑Θ(L) are endowed with their own join

and meet operations. So, for example, when we write ⋁A or ⋀A for some subset A ⊂ πΘ
↓ (L),

we must indicate whether the join or meet is taken in L or in its lattice quotient. It turns out

that πΘ
↓ (L) is a sub-join-semilattice of L, meaning that the join operation in πΘ

↓ (L) coincides

with the join operation in L. However, in general, the expression ⋀A may differ depending on

whether the meet is taken in L or in πΘ
↓ (L). (In other words, πΘ

↓ (L) is generally not a sublattice

of L.) Similar statements hold for π↑Θ(L).
Below we quote [71, Proposition 6.3]. In the proposition, a join-irreducible element j ∈ L is

contracted by the congruence Θ if j is congruent to the unique element that it covers.

Proposition 2.4.2. Suppose that L is a finite join-semidistributive lattice and Θ is a lattice

congruence on L with associated projection map πΘ
↓ . Then, the element x belongs to πΘ

↓ (L) if

and only if no canonical joinand of x is contracted by Θ.

Suppose that x ∈ πΘ
↓ (L). Since πΘ

↓ is a sub-join-semilattice of L, the canonical join repre-

sentation of x taken in the lattice quotient πΘ
↓ (L) is equal to the canonical join representation

taken in L.
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Corollary 2.4.3. Suppose that L is a finite join-semidistributive lattice with canonical join

complex ∆, and Θ is a lattice congruence on L. Then, the canonical join complex of πΘ
↓ (L)

is the induced subcomplex of ∆ supported on the set of join-irreducible elements not contracted

by Θ.

Remark 2.4.4. The canonical join complex of a sublattice L′ of L need not be an induced

subcomplex of ∆. In fact, the sets Irr(L′) and Irr(L) may be disjoint. For example, consider

the canonical join complex of the sublattice {0̂, 1̂} in the boolean lattice Bn, where n > 1.

b

c

a

b

c

a

Figure 2.12: The Tamari lattice T3 and its canonical join complex.

Remark 2.4.5. In general, not every induced subcomplex of ∆ is the canonical join complex of

a lattice quotient of L. Each lattice congruence is determined by the set of join-irreducible ele-

ments that it contracts. But, a given collection of join-irreducible elements may not correspond

to a lattice congruence. For j and j′ in Irr(L), we say that j forces j′ if every congruence

that contracts j also contracts j′. In the Tamari lattice T3 pictured in Figure 2.12 both a

and b force c. So, for example, there is no quotient of T3 whose canonical join complex is the

subcomplex induced by {b, c}.

2.4.2 Products and sums

In the following easy propositions, we construct new semidistributive lattices from old ones,

and give the corresponding construction for the canonical join complex. Recall that the join

of the simplicial complexes ∆ and ∆′ is the complex ∆ ∗∆′ = {F ∪ F ′ ∶ F ∈ ∆ and F ′ ∈ ∆′}.

Proposition 2.4.6. Suppose that L1 and L2 are finite, join-semidistributive lattices with cor-

responding canonical join complex ∆i for i = 1,2. Then the canonical complex for L1 ×L2 is the

join ∆1 ∗∆2.

The ordinal sum of lattices L1 and L2 written L1⊕L2 is the lattice whose set of elements

is the disjoint union L1 ⊎ L2, ordered as follows: x ≤ y if and only if x ≤ y in Li, for i = 1,2, or

x ∈ L1 and y ∈ L2.
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Proposition 2.4.7. Suppose that L1 and L2 are finite, join-semidistributive lattices with cor-

responding canonical join complex ∆i, for i = 1,2. Then the canonical join complex of L1 ⊕ L2

is equal to the disjoint union ∆1 ⊎∆2 ⊎ {v}, in which the vertex v corresponds to the minimal

element of L2.

We define the wedge sum L1

≻ L2 to be the lattice quotient of the ordinal sum L1 ⊕L2 in

which the minimal element of L2 is identified with the maximal element of L1. (Our nonstandard

terminology is inspired by the wedge sum of topological spaces.)

Proposition 2.4.8. Suppose that L1 and L2 are finite, join-semidistributive lattices with cor-

responding canonical join complex ∆i, for i = 1,2. Then the canonical join complex of L1

≻ L2

is equal to the disjoint union ∆1 ⊎∆2.

2.4.3 Day’s doubling construction

A subset C of L is order-convex if for each x, y ∈ C with x ≤ y, we have that the interval

(x, y) belongs to C. Suppose that C ⊆ L is order convex, and let 2 be the two element chain

0 < 1. We write X for the set of elements x ∈ L such that x ≥ c for some c ∈ C. Define L[C] to

be the following induced subposet of L × 2:

[((L ∖X) ∪C) × 0] ⊎ (X × 1)

We say that L[C] is obtained by doubling L with respect to C. This procedure, due to Day

[28], is defined more generally for all posets. If L is also a lattice, then L[C] is a lattice and

the map πC ∶ L[C] → L given by (x, ε) ↦ x is a surjective lattice homomorphism (see [28] or

[57, Lemma 6.1]). In the next proposition, we show that when C is an interval in L, doubling

L with respect to C also preserves semidistributivity.

Proposition 2.4.9. Suppose that L is a finite semidistributive lattice, I = [a, b] is an interval in

L, and write E for the edge set of the canonical join graph for L. Then L[I] is semidistributive,

and the canonical join graph for L[I] has edge set

E ′ ⊎ {{(j,0), (a,1)} ∶ j ∈ can(w) for w ∈ I and j /≤ a} ,

where E ′ is the set of pairs {(j, ε), (j′, ε′)}, such that {j, j′} ∈ E, and (j, ε) and (j′, ε′) are the

minimal elements of the fibers π−1
I (j) and π−1

I (j′), respectively.

In the proof below we check that L[I] satisfies (1) from Proposition 2.3.5. (The obvious

dual argument gives meet-semidistributivity). One can also verify semidistributivity directly

for L[I] using [57, Lemma 6.1]. Our approach has the advantage of giving the canonical join
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representation of each element of L[I]. In either case, the argument is tedious but, at least,

elementary.

Proof. Suppose that (w, ε) is not in I × 1, where ε = 0,1. Observe that the map πI ∶ (y, ε′) ↦ y

is a bijection from cov↓((w, ε)) to cov↓(w). For each y ∈ cov↓(w), write η(y) for the unique

minimal element of L satisfying y ∨ η(y) = w. We write (y, ε′) for the corresponding element in

cov↓((w, ε)). Let (η(y), ε′′) be the minimal element of the fiber π−1
I (η(y)) in L[I]. We claim

that (η(y), ε′′) ∨ (y, ε′) = (w, ε). If ε = 0, the claim is immediate, and if ε = 1 then the claim

follows from the fact that (w,0) /∈ L[I]. It is straightforward, using the surjection πI , to check

that (η(x), ε′′) is the unique minimal element of L[C] whose join with (x, ε′) is equal to (y, ε).
Suppose that (w,1) ∈ I×1. If w = a, then (w,1) = (a,1) is join-irreducible. So, it is immediate

that it satisfies condition (1) of Proposition 2.3.5. So we assume that w > a. Observe that the

lower covers of (w,1) are (y,1) such that y ∈ cov↓(w) ∩ I and (w,0). We claim that the set

{η(y) ∶ y ∈ cov↓(w) ∩ I} is precisely the set of canonical joinands of w that are not weakly

below a. If y ∈ cov↓(w) ∖ I, then y ∨ a = w. By minimality of η(y), we conclude that η(y) ≤ a.

If y ∈ cov↓(w) ∩ I and η(y) ≤ a, then η(y) ∨ y = y, which is a contradiction. The claim follows.

As above, it is straightforward to check that (η(y),0) is the unique minimal element in L[I]
whose join with (y,1) is equal to (w,1), for each y ∈ cov↓(w) ∩ I.

Suppose that (w′, ε′) ∨ (w,0) = (w,1), where ε′ ∈ {0,1}. Then ε′ = 1, and we have w′ ≥ a.

Therefore, (a,1) is the unique minimal element whose join with (w,0) is equal to (w,1). Propo-

sition 2.3.5 says that L is join-semidistributive. The second statement follows from Proposi-

tion 2.3.4.

Below we gather some useful facts that follow immediately from the proof of Proposi-

tion 2.4.9.

Proposition 2.4.10. Suppose that L is a finite semidistributive lattice, I = [a, b] is an interval

in L, and j ∈ Irr(L) such that j ≠ a. For each w ∈ L and ε, ε′ ∈ {0,1} the following statements

hold:

1. If (j, ε) is a canonical joinand of (w, ε′) in L[I], then j is a canonical joinand of w.

2. If (j, ε) is a canonical joinand of (w, ε′) ∈ I × 2 then ε = 0.

3. If (j, ε) is a canonical joinand of (w,0) ∈ I × 0 and j /≤ a, then (j, ε) is also a canonical

joinand of (w,1).

4. (w, ε′) has (a,1) as canonical joinand if and only if (w, ε′) ∈ I × 1.

A lattice is congruence uniform if it is obtained from the one element lattice by a

finite sequence of doublings of intervals. Suppose that L is a finite congruence uniform lattice.
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Proposition 2.4.9 says that after each iteration of the doubling procedure, the resulting lattice

has precisely one additional join-irreducible element, namely (a,1), where a is the smallest

element of the interval that is doubled. Thus the canonical join graph of each congruence

uniform lattice L has a natural labeling, in which the vertex labeled i is the join-irreducible

element that is added in the i
th

step of the doubling sequence for L.

Remark 2.4.11. Non-isomorphic congruence uniform lattices may have the same labeled

canonical join graphs. For example, doubling the boolean lattice B2 with respect to any single-

ton interval I = {x}, results in the labeled canonical join graph depicted in Figure 2.13 below.

When x is equal to 0̂ or 1̂, we obtain the ordinal sums B0⊕B2 and B2⊕B0, respectively. When x

is either join-irreducible element of B2, the resulting lattice is isomorphic to the Tamari lattice

T3 from Figure 2.12.

2

3

1

Figure 2.13: The canonical labeled join graph of three non-isomorphic congruence uniform
lattices.

We conclude this subsection with various applications of Proposition 2.4.9. In each example,

we discuss how to realize a labeled or unlabeled graph as the canonical join graph for some

congruence uniform lattice.

Example 2.4.12 (Complete graphs). In our first example we consider the complete graph Kn

on n vertices, which can be realized as the canonical join graph for the boolean lattice Bn. In

fact, the boolean lattice is the only lattice whose canonical join graph is Kn.

Proposition 2.4.13. Supposed that L is a finite semidistributive lattice with canonical join

graph equal to the complete graph Kn. Then, L is isomorphic to Bn.

Proof. Write xS for the element with canonical join representation ⋁({ji ∶ i ∈ S}, where S is

subset of [n] = {1,2 . . . , n}. Suppose that xS ≤ xS′ for some S′ ⊆ [n], and there exists k ∈ S that

is not in S′. Since jk ∨ ⋁({ji ∶ i ∈ S′} is a canonical join representation, in particular this join

is irredundant. So, jk /≤ ⋁({ji ∶ i ∈ S′} = xS′ , and that is a contradiction. Therefore, the map

xS ↦ S is order preserving. It is immediate that the inverse map is order preserving.
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Example 2.4.14 (Chordal graphs). Similar to the construction of the complete graph (as a

labeled canonical join graph), one can construct certain chordal graphs as the canonical join

graph for a congruence uniform lattice. In the construction, each doubling with respect to some

interval I has I × 2 isomorphic to a boolean lattice.

Suppose that G is a graph. The closed neighborhood N[v] is the subgraph of G induced

by the set of vertices v′ adjacent to v, together with v. The open neighborhood N(v) is the

subgraph induced by the set N[v] ∖ {v}. A perfect elimination ordering for G is a linear

ordering v1 < v2 < ⋯ < vn of the vertices of G such that for each i = 1,2, . . . , n, the intersection

of N[vi] with the set {vi, vi+1, . . . , vn} is a clique in G. Recall that a graph G is chordal if and

only if it has a perfect elimination ordering.

Proposition 2.4.15. Suppose that G is a labeled graph and L = vn < vn−1 < . . . < v1 is a perfect

elimination ordering. If N(vi+1) ⊆ N(vi) for each i ∈ [n − 1], then there exists a congruence

uniform lattice L such that G is its labeled canonical join graph.

Proof. We prove the statement by induction on n. We write L′ for a congruence uniform lattice

whose labeled canonical join graph is the subgraph induced by the first n − 1 vertices in G. In

particular, L′ is isomorphic to L′′[I] where L′′ is congruence uniform, I = [a, b] is an interval

in L′′, and the vertex vn−1 corresponds to the join-irreducible element (a,1) in L′.

We give the argument for the case when that vn and vn−1 are neighbors. The proof is similar

when vn /∈ N(vn−1). We write {vi1 , . . . , vik} for the set of vertices N(vn)∖{vn−1}, and ji1 , . . . , jik
for the corresponding join-irreducible elements in L′. Since L is a perfect elimination order, the

vertices {vi1 , . . . , vik , vn−1} form a clique in the subgraph induced by V ∖{vn}. By Theorem 2.1.1

the canonical join complex of L′ is flag. Thus, the expression (a,1) ∨ (⋁{ji1 , . . . , jik}) is the

canonical join representation for some element in (y, ε) in L′. (In particular, that jil /≤ (a,0) for

each l ∈ [1, k].) The fourth item of Proposition 2.4.10 implies that y ∈ [a, b] and ε = 1.

Consider the interval I ′ = [(a,0), (y,1)]. We claim that G is the labeled canonical join graph

for L′[I ′]. It is straightforward (with Proposition 2.4.9) to verify that the new vertex, vn, in

the canonical join graph for L′[I ′], is adjacent to vi1 , . . . , vik , and vn−1. Conversely, assume that

v is some vertex that is adjacent to vn in the canonical join graph for L′[I ′]. Write (j, ε′) for

the corresponding join-irreducible element in L′. To prove the claim, we need to show that

(j, ε′) ∈ {ji1 , . . . , jik , (a,1)}. (That is, we need to check that vn is adjacent to only the vertices

{vi1 , . . . , vik , vn−1}.) This is obvious if (j, ε′) = (a,1), so we assume that j ≠ a. Proposition 2.4.9

implies that (j, ε′) is the canonical joinand for some element (w, ε′′) ∈ I ′ and also (j, ε′) /≤ (a,0).
First we show that ⋁{(j, ε′), (a,1)} is a canonical join representation in L′. Observe that

(w, ε′′) ∈ [a, b] × 2 (because I ′ ⊆ [a, b] × 2). The first item of Proposition 2.4.10 says that j is a

canonical joinand of w in L′′ (and in particular, j ≤ w). The second item says that ε′ = 0, so that

(j, ε′) = (j,0). Therefore, j /≤ a. Proposition 2.4.9 implies that (j, ε′) and (a,1) join canonically
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in L′, as desired. For the remainder of the proof, we write (j,0) instead of (j, ε′).
Because L is a perfect elimination ordering (and the vertex v corresponding to (j,0) occurs

strictly earlier than vn−1) the set {ji1 , . . . , jik , (j,0), (a,1)} is a face in the canonical join complex

of L′. If we can show that

⋁({ji1 , . . . , jik , (a,1), (j,0)}) = (y,1),

then we will have proved the claim. Clearly, (a,0) < (j,0) ∨ (a,1). Also, (j,0) ∨ (a,1) ≤ (w,1)
(because j ≤ w and a < w). We conclude that (j,0)∨(a,1) belongs to I ′. Since I ′ is a sublattice

of L′, the following expression also belongs to I ′:

((a,1) ∨ (j,0)) ∨ ((a,1) ∨⋁{ji1 , . . . , jik}) .

Therefore, ⋁({ji1 , . . . , jik , (a,1), (j,0)}) = (y,1) as desired.

A similar argument, replacing the interval [(a,0), (y,1)] with [(a,1), (y,1)], proves the case

in which vn and vn−1 are not adjacent. The argument is valid because N(vn) ⊆ N(vn−1).

b

c

a

d e

b

c

a

e d

Figure 2.14: The two leftmost graphs are isomorphic Hasse diagrams for the distributive lattice
L. Rightmost is the lattice obtained by doubling the interval [a, e] in L.

Example 2.4.16 (Cycle graphs). For each positive integer n, there is a finite congruence

uniform lattice whose canonical join graph is isomorphic to the unlabeled cycle graph Cn on n

vertices. We provide an illustration for n = 5,6, and 7. Leftmost in Figure 2.14 is the Hasse

diagram for a distributive lattice L, and rightmost is the Hasse diagram obtained by doubling

the interval [a, e] in L. (The middle Hasse diagram is isomorphic to the leftmost Hasse diagram,

and serves only to make the doubling as clear as possible.) Each distributive lattice is congruence

uniform, so the rightmost lattice is congruence uniform, as desired. It is an easy exercise to verify

that the canonical join graph for this right-most lattice is isomorphic to C5.

The analogous construction is given in Figure 2.15 for n = 6 and 7. In these cases, the lattice
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a

e

a

e

Figure 2.15: Doubling the interval [a, e] in the leftmost congruence uniform lattice yields the
left-middle lattice, whose canonical join graph is isomorphic to C6. Doubling the interval [a, e]
in the right-middle lattice yields the rightmost lattice, whose canonical join graph is isomorphic
to C7.

L being doubled is not distributive. Because it is easy to check that L is congruence uniform, we

leave the details to the reader. (Note that Cn, for n ≥ 5 is among the minimal graphs excluded

by Theorem 2.2.4, and so does not appear as the canonical join graph for a distributive lattice.)

2.5 Discussion and open problems

The discussion in Section 2.4 does not constitute a complete list of lattice theoretic operations

which preserve (join)-semidistributivity. For example, the derived lattice C(L) discussed in [78],

the box product defined in [45] (see also, [90, Corollary 8.2]), and the lattice of multichains from

[58] all preserve (join)-semidistributivity.

Because it is relatively easy, we will discuss this last operation in a small example. Recall

that an m-multichain in a poset P is a collection of m elements satisfying x1 ≤ x2 ≤ . . . ≤ xm.

We write an m-multichain as a tuple (x1, . . . , xm) or more compactly as a vector x⃗. We write

the set of all m-multichains, partially ordered component-wise, as P[m]. When P is a lattice,

then P[m] is a sublattice of the m-fold direct product of Pm (see [58, Theorem 2.4]). It follows

immediately that if L satisfies SD∨ or SD∧ then L[m] also does, for each m ∈ N (see also, [58,

Proposition 2.10]). In the proposition below, (j)k is the element (0̂, . . . , 0̂, j, . . . , j), where k is

the left-most coordinate that is equal to j.

Proposition 2.5.1. Suppose that L is a finite lattice. Then, Irr(L[m]) is equal to the set

{(j)k ∶ j ∈ Irr(L)}, where k ∈ [m].

Proof. We first show that (j)k is join-irreducible when j ∈ Irr(L). Suppose that w⃗ ∨ v⃗ = (j)k.
We have wi ∨ vi = j, for each i ≥ k. Since j is join-irreducible, we may assume that wk = j.
Since w⃗ is a multichain, we have that j ≤ wi for each i ≥ k. Thus, w⃗ = (j)k, as desired.
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Next, suppose that w⃗ ∈ Irr(L[m]). Let wk be the first nonzero entry in w⃗, and assume that

wk /∈ Irr(L) so that there exist a and b in L ∖ {wk} with wk = a ∨ b. Then

w⃗ = (0̂, . . . , 0̂, a,wk+1, . . . ,wm) ∨ (0̂, . . . , 0̂, b,wk+1, . . . ,wm).

By this contradiction, we conclude that wk ∈ Irr(L). Next, suppose that wi ≠ wk, for some

i > k. Since wk < wi, there is an element y ∈ cov↓(wi) such that wk ≤ y. We have the following

nontrivial join-representation of w⃗:

w⃗ = (0̂, . . . , 0̂,wk, . . . , y,wi+1, . . . ,wm) ∨ (0̂, . . . , 0̂, y′′,wk+1, . . . ,wi, . . . ,wm),

where y′′ ∈ cov↓(wk). Therefore wi = wk, and the proposition follows.

Example 2.5.2. Let L be the weak order on the symmetric group S3, and consider L[2]. The

lattice L and L[2] are shown in Figure 2.16, and the corresponding canonical join complexes

are shown in Figure 2.17. Observe that if j∨j′ is a canonical join representation in L then both

(0̂, j) ∨ (0̂, j′) and (j, j) ∨ (j′, j′) are canonical join representations in L[2]. This accounts for

the edges {(0̂, a), (0̂, b)} and {(a, a), (b, b)} in the complex for L[2].

To see how we obtain the remaining edges in Figure 2.17, consider the canonical join rep-

resentation of (d, 1̂). Observe that cov↓((d, 1̂)) = {(d, d), (b, 1̂)}. It is easily checked that (d, d)
is the smallest element in L[2] whose join with (b, 1̂) is equal to (d, 1̂). Similarly, (0̂, a) is the

smallest element whose join with (d, d) is equal to (d, 1̂). Therefore, the canonical join represen-

tation for (d, 1̂) = (d, d) ∨ (0̂, a). The canonical join representations of the remaining elements

in L[2] are computed similarly.

This example is emblematic of the general construction, as can be seen in the next propo-

sition which describes the canonical join graph for L[m]. We leave the details of proof to the

reader.

Proposition 2.5.3. Suppose that L is a finite semidistributive lattice with join-irreducible

elements j and j′.

1. If i < k then {(j)i, (j′)k} is a face in the canonical join complex of L[m] if and only if j′

is a canonical joinand of j ∨ j′ in L.

2. If i = k, then {(j)i, (j′)k} is a face in the canonical join complex of L[m] if and only if

{j, j′} is a face in the canonical join complex of L.

Note that the operation on the canonical join complex corresponding to L ↦ L[m] depends

on the lattice L (not just the canonical join complex of L).
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a
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(0, a) (0, b)

(0, c)

(a,a)

(0, d)

(b, b)

(c, c) (d,d)

(d, 1̂)

(b, 1̂)

Figure 2.16: Left: The weak order for the symmetric group S3. Right: The lattice of 2-
multichains.

a b

c d (0̂, a) (0̂, b)

(b, b) (a,a)

(0̂, c)

(d,d)

(0̂, d)

(c, c)

Figure 2.17: Left: The canonical join complex of weak order for the symmetric group S3. Right:
The canonical join complex of the lattice of 2-multichains.

Question 2.5.4. What lattice theoretic operations (preserving join-semidistributivity) corre-

spond to geometric operations on the canonical join complex that are independent of L?

Alternatively, it would be interesting to know which geometric operations (on the class

of finite simplicial complexes) have a corresponding lattice theoretic analogue. We point out

that conspicuously absent from the discussion in Section 2.4 is closure under taking induced

subcomplexes (see Remark 2.4.5).

Question 2.5.5. Let C be the class of simplicial complexes that can be realized as the canonical

join complex of some finite semidistributive lattice. Is C closed under taking induced subcom-

plexes?

Say that Gn is the set of labeled graphs that can be realized the (labeled) canonical join graph

for a congruence uniform lattice with n join-irreducible elements, and G is the union ⋃n∈N Gn.

Using Stembridge’s poset Maple package ([84]) and Proposition 2.4.9, we have counted the

number of elements of Gn for n ≤ 6. While our computations indicate that not every labeled
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graph appears, they also suggest that G is closed under subgraphs (so that the corresponding

class of simplicial complexes is closed under taking subcomplexes). We close this chapter by

asking two related questions:

Question 2.5.6. Which labeled graphs can be realized as the labeled canonical join graph for

some congruence uniform lattice?

Question 2.5.7. Suppose that G is the canonical join graph for a congruence uniform lattice L.

What data, in addition to G, is necessary in order to determine L up to isomorphism?

39



Chapter 3

The Canonical Join Complex of the

Tamari Lattice

3.1 Introduction

In this chapter, we study the canonical join complex of the Tamari lattice. Recall that, in-

formally, the canonical join representation of an element w is the unique lowest irredundant

expression ⋁A for w in terms of the join operation. (As in the previous chapter, we abuse the

notation and say that A is a canonical join representation.) The canonical join complex is

the abstract simplicial complex whose faces are the subsets A of L such that A is a canonical

join representation. In general, the canonical join complex is not a pure complex. (In particular,

the canonical join complex of the Tamari lattice is very different from the associahedron.) We

recall the canonical join complex of the Tamari lattice T3 in Figure 3.1.

b

c

a

b

c

a

Figure 3.1: The Tamari lattice T3 and its canonical join complex.

The canonical join complex was first defined in [72] by Reading for the special case of the

symmetric group Sn (ordered according to the weak order). Recall from Example 2.2.6 that

canonical join representation of a permutation is encoded by a noncrossing arc diagram, a

generalization of the bump diagram for a noncrossing partition. Each diagram consists of a
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collection of curves, called arcs, that satisfy certain compatibility relations. For example, no

two arcs may intersect in their interior. (See Section 3.2.2 for the complete definition.) Each

arc corresponds to a vertex of the canonical join complex, and a collection of arcs corresponds

to a face if and only if each pair of arcs is compatible. (This is [72, Corollary 3.5].) Figure 3.2

shows the noncrossing arc diagrams that correspond to the faces in the canonical join complex

of the weak order on S3.

Figure 3.2: The faces in the canonical join complex of the weak order on S3.

Like the h-complex of the Coxeter complex defined in [31], the entries of the f -vector

of the canonical join complex of the weak order on the symmetric group are equal to the

Eulerian numbers. (However, in general, the canonical join complex of the symmetric group is

not isomorphic, or even homotopy-equivalent, to the h-complex of the Coxeter complex.) Similar

statements hold for the canonical join complex of the Tamari lattice and certain Tamari-like

lattices called c-Cambrian lattices: The entries of the f -vector of the canonical join complex of

the Tamari lattice (and each c-Cambrian lattice in type A) are equal to the Narayana numbers.

(Recall, this is Proposition 2.2.9.)

For each finite Coxeter group W and each orientation c of its associated Coxeter diagram,

recall that there is a lattice quotient of the weak order on W called the c-Cambrian lattice .

The canonical join representation of its elements is closely related to the associated cluster alge-

bra and to the noncrossing partition lattice NC(W,c) [75]. In type A, each c-Cambrian lattice is

a lattice quotient of the weak order on Sn, consisting of certain pattern avoiding permutations.

In particular, when c is a linear orientation—an orientation in which all of the arrows point in

the same direction—the corresponding c-Cambrian lattice is a Tamari lattice. For one choice of

linear orientation, the elements of this quotient are the 312-avoiding permutations. Recall that,

throughout, we write Tn for this realization of the Tamari lattice. (For the opposite orientation,

the elements of the corresponding c-Cambrian lattice avoid the pattern 231.)

As with the classical Tamari lattice, the type-B Tamari lattice can be realized as a partial

order on certain triangulations of a fixed convex polygon or certain bracket vectors. We realize

the type-B Tamari lattice T sn as a c-Cambrian lattice for the type-B Coxeter group Bn (where c

is a linear orientation for the type-B Coxeter diagram). See [68, Section 7] and [87].

Below we give our main results. In the following theorems and throughout the chapter, we
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do not distinguish between an abstract simplicial complex and its geometric realization. In the

statements below, Cat(Ar−1) is the classical Catalan number 1
r+1

(2r
r
), Cat(Br) = (2r

r
) is the

type-B Catalan number, and Cat+(Br) = (2r−1
r−1

) is the (type-B) positive Catalan number.

Theorem 3.1.1. The canonical join complex of the Tamari lattice Tn is shellable. It is con-

tractible when n is even and homotopy equivalent to a wedge of Cat(Ar−1) many spheres, all of

dimension r − 1, when n = 2r + 1.

Theorem 3.1.2. The canonical join complex of the Tamari lattice T sn in type-B is shellable.

1. When n = 2r, the canonical join complex is homotopy equivalent to a wedge of Cat(Br)
many spheres all of dimension r − 1.

2. When n = 2r − 1 for r > 1, the canonical join complex is homotopy equivalent to a wedge

of Cat+(Br) −Cat(Ar−2) = 2(2r−2
r−2

) many spheres, equally distributed in dimensions r − 1

and r − 2.

As an immediate consequence, we have that the alternating sum of the Narayana numbers

is either zero or a signed Catalan number. For n even, the alternating sum of type-B Narayana

numbers is a type-B Catalan number. These identities are well-known and also appear as

specializations of Coker’s identities. See [25], or [23, Equation 1.1] for the type-A case and [23,

Equation 2.1] for type-B case.

The topology of each Tamari-like c-Cambrian lattice in type A is similarly nice.

Theorem 3.1.3. For each orientation c of the type-A Coxeter diagram, the canonical join

complex of the corresponding c-Cambrian lattice is vertex decomposable.

Since vertex decomposability implies shellability, and the Tamari lattice is an example of a

c-Cambrian lattice, Theorem 3.1.3 implies the shellability assertion in Theorem 3.1.1. We pull

out the special case of the Tamari lattice for two reasons: First, constructing a shelling of its

facets is easy; and second, our work in type A will motivate the proof of Theorem 3.1.2.

We conclude this introduction by noting that the particularly nice topological results for

the Tamari lattice (and the Tamari-like c-Cambrian lattices in type A) do not extend to other

finite Coxeter groups. For each orientation c, the c-Cambrian lattice in the type-D5 Coxeter

group is not shellable.

3.2 Background

3.2.1 Lattice-theoretic background

In this section, we briefly review the necessary lattice-theoretic terminology. Much of this mate-

rial is repeated from Section 2.3.1. We recall it here for the convenience of the reader. Readers
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who are familiar with the definitions are welcome to skim or skip this section.

Throughout, we assume that L is a finite lattice. A join-representation for an element

w ∈ L is an expression ⋁A that evaluates to w, where A is a subset of L. A join-representation

⋁A is a irredundant if, for each proper subset A′ ⊂ A, we have that ⋁A′ < ⋁A. Observe that

if ⋁A is irredundant, then A is an antichain. We write ijr(w) for the collection of irredundant

join-representations of w. We partially order ijr(w) as follows: A≪B whenever the order ideal

generated by A is contained in the order ideal generated by B. (This relation is also sometimes

called join-refinement [39, Section I.3].) The canonical join representation of w is the

unique minimal element of ijr(w), when such an element exists. The elements j ∈ A are called

the canonical joinands of w. At times we say that the set A is a canonical join representation,

although more precisely we mean that the expression ⋁A is a canonical join representation.

Recall that when L is finite and each element admits a canonical join representation, we

say that L is join-semidistributive . If the dual lattice is also join-semidistributive, then we

say that L is semidistributive . Suppose that L is a finite join-semidistributive lattice. We

define the canonical join complex of L to be the collection of subsets A such that A is a

canonical join representation. The next proposition is [72, Proposition 2.2], and it implies that

the canonical join complex is an abstract simplicial complex.

Proposition 3.2.1. Suppose L is a finite lattice and A is a canonical join representation in L.

Then each subset of A is a canonical join representation.

Recall that j is join-irreducible if, whenever j = ⋁A, we have j ∈ A. (Equivalently, j is join-

irreducible if and only if it covers precisely one element in L.) Thus, if j is join-irreducible then

{j} is its canonical join representation. On the other hand, if A is a canonical join representation,

then each element a ∈ A is join-irreducible. So, the vertex set for the canonical join complex

of L is its set of join-irreducible elements.

Recall from Section 2.4.1 that lattice congruence Θ is an equivalence relation on the

elements of L that respects the meet and join operations. That is, if w ≡Θ u, then w ∨ t ≡Θ u∨ t
and w ∧ t ≡Θ u ∧ t for each w,u, and t in L. Equivalently, when L is finite, a lattice congruence

is an equivalence relation satisfying the following three properties: First, each Θ-class is an

interval. Second, the map πΘ
↓ ∶ L → L that sends w to the smallest element in its Θ-class is

order preserving. Third, the map π↑Θ ∶ L → L that sends w to the largest element in its Θ-class

is order preserving. When Θ is a lattice congruence, the image πΘ
↓ (L) is a lattice in its own

right, and the map πΘ
↓ ∶ L→ πΘ

↓ (L) respects the meet and join operations in both L and πΘ
↓ (L).

In general, a map φ ∶ L′ → L′′ between lattices L′ and L′′ that respects the meet and join

operations is called a lattice homomorphism , and the image φ(L′) is a lattice quotient

of L′. In particular, πΘ
↓ (L) is a lattice quotient of L. Similarly the image of π↑Θ is a lattice

quotient of L, and it is isomorphic to πΘ
↓ (L).
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3.2.2 The noncrossing arc complex

In this section, we review the definition of a noncrossing arc diagram, establish some useful

notation, and review the connection to canonical join representations. The definitions here are

based on [72], where the reader will find additional examples. For the remainder of the chapter,

we write [n] for the set {1,2, . . . , n}, and [i, k] for the set {i, i + 1, . . . , k} when i < k.

A noncrossing arc diagram consists of n nodes arranged vertically and labeled in in-

creasing order from bottom to top, together with a (possibly empty) collection of curves called

arcs. Each arc connects two distinct nodes and travels monotonically upward from its lower

endpoint to its higher endpoint, passing either to the left or to the right of each node in between.

In addition, each pair of arcs α and α′ must satisfy:

(C1) α and α′ do not share the same top endpoint or the same bottom endpoint;

(C2) α and α′ do not intersect in their interiors.

The support of an arc α, written supp(α), with endpoints i < l is the set of numbers

{i, i + 1, . . . , l}. We write supp(α)○ for the set {i + 1, . . . l − 1}. When supp(α)○ is empty, we say

that α is a simple arc. We say that the arcs α and α′ are combinatorially equivalent if α

and α′ have the same endpoints and for each k ∈ supp(α)○, α and α′ pass on the same side

(either left or right) of k. Each arc is considered only up to combinatorial equivalence. Two arcs

are compatible if there is a noncrossing arc diagram that contains them. The next proposition

is [72, Proposition 3.2].

Proposition 3.2.2. Given any collection of pairwise compatible arcs, there is a noncrossing

arc diagram whose arcs are combinatorially equivalent to the given arcs.

The noncrossing arc complex on n nodes is the simplicial complex whose faces are

the collections of pairwise compatible arcs. We view each collection of compatible arcs as a

noncrossing arc diagram. For example, Figure 2.2 depicts some of the nonempty faces in the

noncrossing arc complex on seven nodes. To avoid confusion, we will only use the word vertex to

refer to a vertex of the noncrossing arc complex; that is, a diagram with that contains precisely

one arc. The endpoint of an arc will always be referred to as a node.

Next, we describe a bijection δ from the symmetric group Sn to the faces of the noncrossing

arc complex on n nodes. We write each a permutation in one-line notation as a1 . . . an. For

each descent ai > ai+1 there is a corresponding arc with endpoints ai+1 < ai. This arc passes to

the right (respectively left) of each number al with l < i (respectively, l > i). For example, the

noncrossing arc diagram for the permutation 4123 has a single arc connecting 1 and 4. Because

the numbers 2 and 3 are on the right side of the descent (in the one-line notation), the second

and third nodes also lie on the right side of this arc. See Figure 3.3. We can visualize this map
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Figure 3.3: From left to right: δ(4123), δ(2413), δ(2341), and δ(3412).

as follows: Plot the points {(i, ai) ∶ i ∈ [n]}, and connect (i, ai) with (i + 1, ai+1) by a straight

line segment whenever ai > ai+1. Then, deform the picture until the points lie in a vertical line

(so that the y-coordinates label the nodes in the diagram). The lines connecting descents curve

to become arcs in the diagram. (See [72, Figure 4] for an example.) The next theorem is [72,

Theorem 3.1].

Theorem 3.2.3. The map δ is a bijection from the set of permutations in Sn to the set of

noncrossing arcs diagrams on n nodes.

Recall that, in the weak order on the symmetric group, permutations are ordered by con-

tainment of inversion sets. (An inversion for w1 . . .wn is a pair (wi,wj) with wi > wj , where

1 ≤ i < j ≤ n. The inversion set of w1 . . .wn is the set of all such pairs.) Each descent wi > wi+1

in the permutation w1 . . .wn corresponds to a cover w1 . . .wiwi+1 . . .wn ⋅> w1 . . .wi+1wi . . .wn

in which the positions of wi and wi+1 are swapped. (These entries are highlighted in red.) In

particular, a permutation is join-irreducible if and only if it has precisely one descent. Thus,

the map δ restricts to a bijection from the set of join-irreducible permutations to the set of

noncrossing arc diagrams with exactly one arc. The weak order on Sn is semidistributive [26],

so each permutation has a canonical join representation.

Proposition 2.2.2, in particular, says that for each w ∈ Sn, there is a bijection from the set

{y ∶ w ⋅> y} to the canonical join representation of w. The canonical joinand j associated to

the element y ∈ {y ∶ w ⋅> y} satisfies: j is the unique minimal element in Sn whose join with y

is equal to w. (In the context of Coxeter groups, Proposition 2.2.2 is a generalization of [72,

Proposition 3.2] and [75, Theorem 8.1].) We can think of this bijection y ↦ j as a map from the

set of descents of w to its canonical join representation. (It follows immediately that the number

of faces with k vertices in the canonical join complex of the weak order on Sn is the Eulerian

number ⟨n
k
⟩.) Interpreted as a map from descents to canonical joinands, this bijection is exactly

the same correspondence between descents and arcs that is induced by δ. The arcs appearing

in δ(w) correspond to the join-irreducible permutations in its canonical join representation.

Example 3.2.4. Consider w = 2431 and the cover relation 2431 ⋅> 2413 (associated to the

(3,1) descent highlighted in red). Consider the set {u ∈ Sn ∶ u ∨ 2413 = 2431}. Observe that

each such permutation u must have (3,1) as an inversion. The minimal elements that contain

this inversion are the join-irreducible permutations 2314 and 3124, in which (3,1) is a descent.
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Figure 3.4: Left: δ(2431). Right: The arc corresponding to the canonical joinand 2314.

Only the former is below w. We conclude that 2314 is a canonical joinand of w, and indeed its

arc appears in the noncrossing arc diagram δ(w). (More generally, see [72, Proposition 2.3].)

Example 3.2.4 motivates the proof of [72, Theorem 3.4], which we now quote.

Theorem 3.2.5. The restriction of δ to the set of join-irreducible permutations in Sn induces

an isomorphism from the canonical join complex of the weak order on Sn to the noncrossing

arc complex on n nodes.

Recall that a complex is flag if each of its minimal non-faces has size 2. As an immediate

consequence of Proposition 3.2.2 and Theorem 3.2.5, the canonical join complex of the weak or-

der on Sn is flag. (See [72, Corollary 3.6]. This is a special case of our main result, Theorem 2.1.1,

from the previous chapter.)

3.2.3 The c-Cambrian congruence and the Tamari lattice

Recall that we realize the Tamari lattice Tn as the subposet of the weak order on Sn consisting

of the permutations that avoid the pattern 312. In this section, we review the connection to the

c-Cambrian congruence. Then, we characterize the canonical join complex of the Tamari lattice

in terms of noncrossing arc diagrams.

Recall that a permutation w = w1, . . . ,wn avoids the pattern 312 if it has no subsequence

of entries wi > wl > wk, with 1 ≤ i < k < l ≤ n. (In other words, wi plays the role of 3, wk plays

the role of 1, and wl plays the role of 2.) It is well-known that w contains an instance of the

312-pattern if and only if it contains such a triple in which the “3” and the “1” are adjacent.

(Equivalently, w contains a subsequence wi > wl > wk with k = i + 1.)

Let c denote an orientation of the type-A Coxeter diagram. Each choice of orientation gives

rise to a partition of [2, n − 1] into a set R of right nodes and its complementary set L of left

nodes as follows: Label the nodes of the Coxeter diagram in decreasing order from left to right.

If the edge between i − 1 and i has a left (respectively right) arrow then i ∈ L (respectively

i ∈ R), where i ∈ [2, n − 1]. We decorate each element of [2, n − 1] with either an under-bar or

an over-bar as follows: We write i for each i ∈ L and i for each i ∈ R.

Suppose that w ⋅> v in the weak order on Sn. Recall that we obtain v by swapping the entries

of a descent wi > wi+1 in the one-line notation for w. Thus, there is a corresponding arc α ∈ δ(w)
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with endpoints wi+1 < wi. We say that v is obtained from w by a 312 → 132 move if α passes

to the left of some node in L. (We think of 2 as representing an element of L.) Similarly, v is

obtained from w by a 2̄31→ 2̄13 move if α passes to the right of some node in R.

Example 3.2.6. Consider w = 2357164 and v = 2351764 in S7, where R = {2,4,6} and

L = {3,5}. We have 2357164 ⋅> 2351764, where we swap the fourth and fifth entries. Since

the corresponding arc (with endpoints at 1 < 7) passes to the right of 2, we conclude that v is

obtained from w by a 2̄31→ 2̄13 move.

We define a relation on the covering pairs w ⋅> v in Sn as follows: v ≡ w if and only if v

is obtained from w by either a 2̄31 → 2̄13 or a 312 → 132 move. The transitive closure of

this relation is a lattice congruence Θc (on the weak order) on Sn called the c-Cambrian

congruence. (The fact that Θc is indeed a lattice congruence is [68, Theorem 5.1]. See also

Proposition 4.3.1.) We have the following proposition.

Proposition 3.2.7. A join-irreducible permutation is contracted by Θc precisely when its cor-

responding arc passes to the left of some element in L or to the right of some element in R.

Suppose that c is the linear orientation, in which every arrow points left. Observe that a

join-irreducible permutation is not contracted by Θc precisely when its corresponding arc does

not pass to the left of any node. Equivalently, a join-irreducible permutation is not contracted

by Θc if and only if it avoids 312. Proposition 2.4.3 implies that w ∈ πΘc
↓

(Sn) if and only if w

also avoids 312. Thus, the Tamari lattice Tn is equal to πΘc
↓

(Sn). The next proposition follows

immediately from Proposition 2.4.3 and Theorem 3.2.5. In the statement of the proposition, a

right arc is an arc that does not pass to the left of any node.

Proposition 3.2.8. The canonical join complex ∆(n) of the Tamari lattice Tn is isomorphic

to the subcomplex of the noncrossing arc complex on n nodes induced by the set of rights arcs.

We write αi,k for the right arc with endpoints i < k. (Observe that there is precisely one

right arc for each pair of nodes i, k ∈ [n].) Throughout the remainder of the chapter, we write

∆(n) for the complex of compatible right arcs on n nodes. At times it is convenient to restrict

the node set to a contiguous subset of [n]. We write ∆([i, k]) for subcomplex of ∆(n) induced

by restricting to the nodes [i, k].

3.2.4 The type-B Tamari lattice

In this section, we define the type-B Tamari lattice and characterize its canonical join complex.

Throughout, we write [±n] for the set {−n, . . . ,−1,1, . . . , n} and S±n for the symmetric group

on [±n]. A signed permutation (in full one-line notation) is a permutation w−n . . .w−1w1 . . .wn

satisfying w−i = −wi. As usual, we write Bn for the type-B Coxeter group of rank n. Recall that
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the weak order on Bn can be realized as the sublattice of S±n induced by the set of signed

permutations. The symmetry condition that defines a signed permutation implies that descents

may come in pairs: When i > −1, each descent wi > wi+1 has a symmetric partner w−i−1 > w−i.
(One moves down by a cover relation in the weak order on Bn either by swapping the positions

of both of these symmetric descents, or by swapping the −1 and 1 positions when w−1 > w1.) It

follows immediately that the noncrossing arc diagram (with nodes labeled −n, . . . ,−1,1, . . . , n

from bottom to top) corresponding to a signed permutation is fixed by a half-turn rotation

through the middle of its diagram. We call such diagrams symmetric noncrossing arc dia-

grams, and a symmetric arc is either a pair of arcs that are related by the half-turn rotation

or a single arc this is fixed by the rotation. See Figure 3.6 for some examples.

The next proposition is a special case of Proposition 4.3.20. In the statement, a symmetric

orientation for the Coxeter diagram of S±n is an orientation that is fixed by a half-turn

rotation through the middle node.

Proposition 3.2.9. Suppose that c is a symmetric orientation for the Coxeter diagram for

S±n. Then the c-Cambrian congruence Θc on S±n restricts to a lattice congruence Θ′
c on Bn.

Moreover, a signed permutation w is in π
Θ′
c
↓

(Bn) if and only if is belongs to πΘc
↓

(S±n).

In particular, let c be the symmetric orientation for S±n with L = [n−1] and R = [−n+1,−1].
Then, the congruence Θ′

c (from Proposition 3.2.9) on the weak order on Bn is the c-Cambrian

congruence for a linear orientation of the type-B Coxeter diagram. (See Proposition 4.3.15.) We

define the type-B Tamari lattice T sn to be the lattice quotient π
Θ′
c
↓

(Bn). Our definition agrees

with the definition given in [68, Section 7]. (See also [87].)

The next result follows from Proposition 3.2.7 and Proposition 3.2.9.

Proposition 3.2.10. The canonical join complex of the type-B Tamari lattice T sn is isomorphic

to the subcomplex of symmetric noncrossing arc diagrams on [±n] induced by set of symmetric

arcs which do not pass to the left of any positive node or to the right of any negative node.

We write ∆s(n) for the canonical join complex of the type-B Tamari lattice T sn. There is

precisely one symmetric arc for each pair of nodes in [±n]. Given a pair of arcs αi,k and α−k,−i

that together comprise a symmetric arc in ∆s(n), we write αsi,k for the corresponding symmetric

arc, where k > i and k > −i. When the endpoints of a symmetric arc are not specified, we simply

write αs. To distinguish the arc αi,k from the symmetric arc αsi,k, we sometimes refer to the

former as an ordinary arc. A simple symmetric arc is either a pair of simple arcs fixed

by a half-turn rotation through the center of the diagram, or the ordinary simple arc with

endpoints −1 and 1.
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3.2.5 Noncrossing perfect matchings

In this section, we introduce and count certain matchings on graphs. Recall that the Coxeter-

Catalan number corresponding to the Coxeter group W is the number

Cat(W ) =
n

∏
i=1

ei + h + 1

ei + 1
,

where {e1, . . . en} are the exponents for W , and h is its Coxeter number (see [51, Section 3.20]).

When W is rank 0, the formula for Cat(W ) is the empty product, which we interpret to be 1.

In the identities given below, it is convenient for us to write B0 and B1. We interpret B0

as the rank 0 Coxeter group, and we interpret B1 as the rank 1 Coxeter group. So, we have

Cat(A0) = Cat(B0) = 1, and also Cat(B1) = Cat(A1) = 2. The positive Catalan number is

the number

Cat+(W ) =
n

∏
i=1

ei + h − 1

ei + 1
.

The next lemma follows immediately from the formulas for Cat(Bn) and Cat+(Bn). (Recall

that, the Coxeter number for Bn is equal to 2n, and its exponents are 1,3, . . .2n − 1.)

Lemma 3.2.11. Cat(Bn) = 2 Cat+(Bn), for n > 0.

The next lemma is essentially [35, Proposition 3.7], specialized to W = Bn−1 and k = n − 1.

Lemma 3.2.12. Cat+(Bn) = ∑n−2
i=0 Cat(Bi)Cat(An−i−2) +Cat(Bn−1)

A perfect matching on the set [2n] is a partition of [2n] into blocks of size two. We will

represent a perfect matching in the following way: Draw 2n nodes vertically, and label them in

increasing order 1,2, . . . ,2n from bottom to top. We draw the edges in a matching so that they

pass to the right of the nodes between their endpoints. A perfect matching is noncrossing if no

two edges cross in their interiors. It is well-known that there are Cat(An−1) many noncrossing

perfect matchings on {1,2, . . . ,2n}. (See for example [82, Exercise 6.19].)

Consider the set of noncrossing perfect matchings on [±n]. We label the nodes in increasing

order −n, . . . ,−1,1, . . . , n. Such a matching M is symmetric if it is fixed by negation. That is,

the set {a, b} is an edge in M if and only if {−a,−b} is also an edge. We say that the edge {−a, a}
is fixed by negation . Write Or for the number of symmetric noncrossing perfect matchings

on the set [±(2r − 1)], and Er for the number of symmetric noncrossing perfect matchings on

the set [±(2r)].

Proposition 3.2.13. Let Or and Er be defined as above.

1. Or = Cat+(Br), when r ≥ 1
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2. Er = Cat(Br), when r ≥ 0

Proof. We prove the proposition by induction. The base cases are trivial. We assume that for

each i < r, both statements hold. We count symmetric noncrossing perfect matchings on the set

[±(2r − 1)] in which j is the largest positive number such that {−j, j} is an edge. Because the

restriction to the (possibly empty) set {j + 1, . . . ,2r − 1} is a noncrossing perfect matching, j is

odd.

When j = 2r−1, we remove this edge to obtain a symmetric noncrossing perfect matching on

[±(2r − 2)]. By induction, there are Cat(Br−1) many such matchings. In general, for j = 2i + 1,

we map our matching to a pair (A,B) where A is a noncrossing perfect matching on the nodes

{j + 1, . . . ,2r − 1}, and B is a symmetric noncrossing perfect matching on the set [±(j − 1)]. By

induction there are Cat(Bi)Cat(Ar−i−2) many matchings. Summing over i ≥ 0 (and adding the

term where j = 2r−1), we obtain Or = ∑r−2
i=0 Cat(Bi)Cat(Ar−i−2)+Cat(Br−1). By Lemma 3.2.12,

we conclude that Or = Cat+(Br).
For each symmetric noncrossing perfect matching on [±2r], write j for the number that

is paired with 2r. (So, j ranges over the set {1,3, . . . ,2r − 1} ∪ {−2r}.) Our argument above

implies that there are Cat+(Bn) many matchings with j = −2r. Take j = 2i+1, with i ∈ [0, r−2].
Each matching maps bijectively to a pair (A,B), where A is a noncrossing perfect matching

on the set {j + 1, . . . ,2r − 1}, and B is a symmetric noncrossing perfect matching on the set

[±(j − 1)]. By induction, we have Cat(Bi)Cat(Ar−i−2) many diagrams. Summing over all i,

we obtain ∑r−2
i=0 Cat(Bi)Cat(Ar−i−2) + Cat(Br−1). Finally, we add the term Cat+(Bn), where

j = −2r. Together Lemma 3.2.12 and Lemma 3.2.11 imply Er = Cat(Br).

We write Mn for the set of symmetric noncrossing perfect matchings on [±n] that satisfy

either of the two conditions below:

• M contains an edge {k,−k} where k > 1.

• There exists no edge in M that is fixed by negation.

Equivalently, M /∈ Mn if and only if {−1,1} ∈M , and this is the only edge in M that is fixed

by negation. When n is even, every noncrossing perfect matching belongs to Mn. In the next

proposition we count Mn for n odd.

Proposition 3.2.14. Suppose that n = 2r − 1. The number of elements in Mn is equal to

Cat+(Br) −Cat(Ar−2) = 2(2r−2
r−2

).

Proof. Let j be the largest positive number satisfying {−j, j} ∈ M . Observe that, when n is

odd, M ∉Mn precisely when the number j = 1. Each matching with j = 1 maps bijectively to a

noncrossing perfect matching on [2, n]. The statement follows from Proposition 3.2.13.
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3.3 Shellability of the Tamari lattices

3.3.1 The Tamari lattice in type A

Before we proceed with the proof of Theorem 3.1.1 we recall some terminology. A d-complex

is a simplicial complex in which the maximal dimension of the faces is equal to d. A d-complex

is pure if each of its facets has dimension d. It is not difficult to verify that ∆(n) is not pure.

A (not necessarily pure) complex is shellable if its facets can be arranged in a linear order

F1, . . . , Fm so that the subcomplex (⋃k−1
i=1 Fi) ∩ Fk is a pure simplicial complex of dimension

dim(Fk)−1 for all k ∈ [2,m]. (We write Fk for the collection of faces in Fk.) Such a linear order

is called a shelling . A facet F is a homology facet if (⋃k−1
i=1 Fi) ∩ Fk is equal to the entire

boundary of Fk. The following theorem is a combination of [13, Theorem 3.4 and Theorem 4.1].

Theorem 3.3.1. Suppose that ∆ is a shellable complex. Then ∆ is homotopy equivalent to a

wedge of spheres where each r-dimensional sphere corresponds to an r-dimensional homology

facet.

Suppose that L = F1, F2, . . . , Fm is a shelling of the facets for a non-pure simplicial complex.

The rearrangement lemma [13, Lemma 2.6], says that L can be rearranged so that it satisfies

the following condition. (We write (DD) for “decreasing dimension”.)

For facets F and F ′, if ∣F ∣ > ∣F ′∣ then F precedes F ′ in L. (DD)

We will see that this condition is sufficient for shelling the facets of ∆(n).
Fix some non-simple right arc αi,k ∈ ∆(n). Suppose that α′ is a right arc that is compatible

with αi,k. Note that α′ does not have i as its bottom endpoint, nor i + 1 as its top endpoint

(otherwise the two arcs share bottom endpoints or they cross). Also, since α′ is a right arc, it does

not pass between i and i+ 1. Thus, {α′, αi,i+1} is a face in ∆(n). Similarly, {α′, αk−1,k} ∈ ∆(n).
Since ∆(n) is a flag complex, we immediately obtain the following lemma.

Lemma 3.3.2. Suppose that αi,k is a right arc in ∆(n) with 1 ≤ i < k − 1 ≤ n − 1. Then, for

each face F ∪ {αi,k} in ∆(n), the set F ∪ {αi,i+1, αk−1,k} is in ∆(n).

For each arc α in ∆(n) write S(α) for the set of simple arcs that are compatible with it. In

the next lemma we show that the degree of a face J is determined by the set ⋂α∈J S(α). Recall

that the degree of F , denoted deg(F ), is the maximal size of the faces containing F .

Lemma 3.3.3. Suppose that J is a face in ∆(n), and write S′ = ⋂α∈J S(α). Then, S′ ∪ J is a

facet of ∆(n), and every other face F that contains J has size strictly smaller than ∣J ∪S′∣. In

particular, deg(J) = ∣J ∪ S′∣.
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Proof. Observe that S′ is the unique maximal set of simple arcs that are compatible with each

arc in J . Since any two simple arcs are compatible, S′ ∪ J is in ∆(n). Suppose that αi,k is a

non-simple right arc satisfying: the set J∪S′∪{αi,k} is in ∆(n). (In particular, αi,k is compatible

with each arc in S′.) Then Lemma 3.3.2 implies that J ∪S′∪{αi,i+1, αk−1,k} is also in ∆(n). The

maximality of S′ implies that {αi,i+1, αk−1,k} ∈ S′. Since αi,k is not compatible with either αi,i+1

or αk−1,k, we have reached a contradiction.

Suppose that F is a face in ∆(n) containing J , and F /⊆ J ∪S′. Thus, F contains some non-

simple arc that does not belong to J . Applying Lemma 3.3.2, we replace each such non-simple

arc (not in J) with a pair of simple arcs and obtain a chain of faces that is strictly increasing

in size. This chain terminates in a face of the form J ∪ S′′, where S′′ is a collection of simple

arcs. Thus S′′ ⊆ S′, and we conclude that ∣F ∣ < ∣J ∪ S′∣.

Finally, we prove a more detailed version of Theorem 3.1.1.

Theorem 3.3.4. Let L = F1, . . . , Fm be a linear ordering of the facets of ∆(n) satisfying (DD).

Then L is a shelling for ∆(n), and Fk is a homology facet if and only if it contains no simple

arcs. Moreover,

• when n = 2r, each facet contains a simple arc;

• and when n = 2r + 1, each homology facet has precisely r arcs and maps bijectively to a

noncrossing perfect matching on [2r].

Proof of Theorem 3.3.4 and Theorem 3.1.1. Let F1, . . . , Fm be a linear ordering of the facets

of ∆(n) satisfying (DD), and consider the complex Fk⋂(⋃k−1
i=1 Fi), where k ranges over the

set [2,m]. We write J for the set of non-simple arcs in Fk and S′ for the set of simple arcs

in Fk. Lemma 3.3.3 implies that every other facet containing J occurs after Fk in this linear

ordering. So, each face of Fk⋂(⋃k−1
i=1 Fi) is contained in (J ∪ S′) ∖ {α}, for some α belonging

to J . Lemma 3.3.2 says that we can swap out α for a pair of simple arcs, and obtain a face with

strictly larger size. We conclude that (J ∪ S′) ∖ {α} is a facet of Fk⋂(⋃k−1
i=1 Fi) for each α ∈ J .

We have proved that F1, . . . , Fm is a shelling of ∆(n), and Fk is a homology facet if and only

if it contains no simple arcs. We write H(n) for the set of noncrossing arc diagrams that are

facets in ∆(n) and that do not contain any simple arcs. In general, we write H([i, k]) for the

set of noncrossing arc diagrams that are facets in ∆([i, k]) and that do not contain any simple

arcs.

Suppose that n = 2r, and F is a facet of ∆(n). We prove by induction on r that F contains

a simple arc. Since F is a facet, there is some arc that has 1 as its bottom endpoint and l ≤ n as

its top endpoint. If l is equal to 2, then we are done; assume that l is greater than 2. We remove

this arc and both of its endpoints. If some other arc α′ in F had l as its bottom endpoint,
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then we shift α′ down so that it now has a bottom endpoint at the node l − 1. (No other arc in

F has l − 1 as a bottom endpoint. Otherwise it would either cross the arc α1,l or share a top

endpoint with it.) We obtain a facet of ∆(n − 2). Since this procedure preserves the size of the

support of each arc in F ∖ {α1,l}, we are done by induction.

Pull apart
Deleted isolated

nodes

Ð→Ð→

Figure 3.5: A demonstration of the map µ.

When n = 2r + 1, we define a map µ from H(n) to the set of noncrossing perfect matchings

on the set [n − 1] as follows: Suppose that F ∈ H(n). Each pair of arcs in F that share an

endpoint are pulled apart, and isolated nodes are deleted. See Figure 3.5. It is not difficult to

check that µ is a well-defined bijection by induction. We describe the argument that µ is well-

defined: As above, each facet contains an arc α1,l. This arc encloses a noncrossing arc diagram

F ′ ∈ H([2, l − 1]). The remaining arcs form a noncrossing arc diagram F ′′ ∈ H([l, n]). By

induction µ(F ′) is a noncrossing perfect matching M ′ on [2, l − 2], and µ(F ′′) is a noncrossing

perfect matching M ′′ on [l, n − 1]. Thus, we have µ(F ) = {1, l − 1} ∪M ′ ∪M ′′ is a noncrossing

perfect matching on [n − 1].
Observe that each noncrossing perfect matching on [2r] has r edges. Under the map µ, arcs

become edges. The last item of Theorem 3.3.4 follows.

3.3.2 The Tamari lattice in type B

We now turn to the symmetric noncrossing arc complex ∆s(n). We will break the proof of

Theorem 3.1.2 into several steps: We begin by showing that ∆s(n) has a shelling L (Theo-

rem 3.3.8). Then, we count the homology facets for ∆s(n) (Proposition 3.3.10), and finally we

determine their dimensions (Proposition 3.3.11 and Proposition 3.3.12). We will reuse much

our work from the previous section by choosing L so that the homology facets are exactly those

which do not contain any simple symmetric arcs. (Recall that a simple symmetric arc is

either a pair of simple arcs fixed by a half-turn rotation through the center of the diagram, or
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the ordinary simple arc with endpoints −1 and 1.)

In the previous section, we had a key observation: Any non-simple arc in a face of ∆(n)
could be swapped out for two simple arcs (this is Lemma 3.3.2). As a consequence, for any

face F in ∆(n), the unique largest face containing F is constructed by adding as many simple

arcs as possible. Both of these statements fail for ∆s(n).

Figure 3.6: Each diagram contains two symmetric arcs.

Example 3.3.5. Consider the face in ∆s(3) with arcs {αs−1,3, α
s
−2,2}, shown leftmost in Fig-

ure 3.6. We can swap out αs−1,3 for one simple symmetric arc, namely αs2,3 to obtain the face

{αs2,3, αs−2,2}. But αs−1,1 is not compatible with αs−2,2. The reader can verify that the two faces

{αs−1,3, α
s
−2,2} and {αs2,3, αs−2,2} are both maximal faces (containing the arc αs−2,2). Similarly, we

can swap out αs−2,2 for only one simple symmetric arc. (The faces shown in the leftmost and

rightmost diagrams in Figure 3.6 are the maximal faces containing αs−1,3.)

For αsi,k in ∆s(n), (the centrally symmetric analogue to) Lemma 3.3.2 may fail whenever

i = −1 or i = −k; and in this case, there may be several maximal faces that contain αsi,k. So, we

require that our linear ordering L satisfies one other condition, in addition to (DD). First, we

write down the centrally-symmetric analogues to Lemma 3.3.2 and Lemma 3.3.3.

Lemma 3.3.6. Suppose that αsi,k is in ∆s(n), and αsi,k is not a simple symmetric arc. Let

F ∪ {αsi,k} be face of ∆s(n).

1. If 0 < i < k, then the set F ∪ {αsi,i+1, α
s
k−1,k} is in ∆s(n).

2. If −k < i < −1, then the set F ∪ {αs−i−1,−i, α
s
k−1,k} is in ∆s(n).

3. If i = −1 or i = −k, then the set F ∪ {αsk−1,k} is in ∆s(n).

Proof. The first item follows immediately from Lemma 3.3.2. For the second and third items,

the same argument as given in the paragraph preceding Lemma 3.3.2 works here, with one main

difference: While the arcs in ∆(n) do not pass between any nodes (because they are right arcs),

the arcs in ∆s(n) may have an “inflection”. If i < 0, then the ordinary arcs that comprise αsi,k
pass between −1 and 1. These are the only nodes that the arcs in ∆s(n) pass between. In

particular, for both of the cases above, there is no arc in F that passes between k−1 and k.

54



We write S(αs) for the set of simple symmetric arcs that are compatible with a symmetric

arc αs in ∆s(n).

Lemma 3.3.7. Suppose that J is a face in ∆s(n), and write S′ = ⋂αs∈J S(αs). Then, S′ ∪J is

a facet of ∆s(n) and deg(J) = ∣J ∪ S′∣.

Proof. The proof here is essentially the same as the proof of Lemma 3.3.3. The main difference

is that J ∪S′ may not be the unique maximal face containing J (as we saw above in Figure 3.6).

Suppose that F is a face in ∆s(n) that contains J , and F /⊆ J ∪S′. Observe that S′ is the unique

maximal collection of simple symmetric arcs that are compatible with each arc in J . Thus, F

contains some non-simple symmetric arc that is not in J . We use Lemma 3.3.6 to swap out

these non-simple symmetric arcs for simple symmetric arcs. We obtain a chain of faces that is

weakly increasing in size. This chain still terminates in a face of the form J ∪S′′, where S′′ is a

collection of simple symmetric arcs, and we have S′′ ⊆ S as before. The statement follows.

Theorem 3.3.8. Let L = F1, . . . Fm be a linear ordering of the facets of ∆s(n) satisfying (DD)

and the following condition: If Fi and Fk are facets with the same size and if the number of

simple symmetric arcs in Fi is greater than the number of simple symmetric arcs in Fk, then

i < k. Then L is a shelling of ∆s(n), and Fi is a homology facet if and only if it does not contain

any simple symmetric arcs.

Proof. For our proof here, we use the same argument that appears in the first paragraph of the

proof for Theorem 3.3.4. Consider the complex Fk⋂(⋃k−1
i=1 Fi), where k ∈ [2,m]. We write J for

the set of non-simple symmetric arcs in Fk and S′ for the set of simple symmetric arcs in Fk.

Lemma 3.3.7 implies that every other facet in ∆s(n) containing J occurs after Fk. So, each

face of Fk⋂(⋃k−1
i=1 Fi) is contained in (J ∪ S′) ∖ {αs}, for some element αs belonging to J .

Lemma 3.3.6 says that we can swap out αs in J ∪S′ for at least one simple symmetric arc. The

resulting face either has strictly larger size or it has strictly more simple symmetric arcs. We

conclude that (J ∪ S′) ∖ {αs} is a facet of Fk⋂(⋃k−1
i=1 Fi) for each αs ∈ J .

Let Hs(n) denote the set of noncrossing arc diagrams that are facets in ∆s(n) and that

contain no simple symmetric arcs. Next, we define a map µs from Hs(n) to the set of symmetric

noncrossing perfect matchings on [±n].
Suppose that F ∈ Hs(n). We would like to use the map µ (defined in the third paragraph of

the proof for Theorem 3.3.4) whenever possible. To that end, we write P (F ) for the set of arcs

αsi,k ∈ F with 0 < i < k, and N(F ) for the set of arcs αsi,k ∈ F with i < 0 < k. We will see that

the set P (F ) decomposes into a collection of smaller noncrossing arc diagrams, each of which

is either a maximal collection of non-simple ordinary right arcs or, symmetrically, a maximal

collection of non-simple ordinary “left arcs”. We will apply the map µ to each collection of right
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arcs and, by symmetry, to each collection of left arcs. That leaves us with one main challenge:

how to pair off the endpoints of the arcs in N(F ). Before we can describe µs more precisely,

we need the following easy lemma.

ppp

ppp

ppp

ppp
Figure 3.7: An illustration for the proof of Lemma 3.3.9.

Lemma 3.3.9. Suppose that αsi1,k1 and αsi2,k2 are symmetric arcs in ∆s(n) with ij < 0 < kj, for

j ∈ {1,2}, and k1 < k2. Then, αsi1,k1 and αsi2,k2 are compatible if and only if i1 < i2.

Proof. Without loss of generality, assume that k2 = n. Observe that if i2 = −n, then it is not

compatible with any arc αi,k where i < 0 < k. So, we assume that −n < i2. In particular, αsi2,k2
consists of two arcs, related by a half-turn rotation of the diagram. We write α for the arc with

endpoints i2 < k2 and −α for its symmetric partner. Observe that the arc −α encloses the nodes

1, . . . ,−i2 − 1, so that any arc that has one endpoint in this set also has its second endpoint in

this set. (See Figure 3.7.) Thus −i1 > −i2.

For the converse, recall that 1 and −1 are the only nodes that α and −α pass between. Thus,

any arc that begins at a node between −i2 and k2 and that ends at a negative node between i2

and −k2 (passing to the right of positive nodes and to the left of negative nodes) is compatible

with α and with −α.

We write N(F ) = {αsi1,k1 , α
s
i2,k2

, . . . , αsil,kl} where k1 < ⋯ < kl. The upshot of Lemma 3.3.9

is that −il < ⋯ < −i1 < k1. We make three similar observations. First, consider the restriction

of F to the nodes [kl, n]. This is a maximal collection of ordinary right arcs, none of which are

simple. Thus, this restriction is an element of H([kl, n]). Second, when −il > 1, the restriction

to [(−il − 1)] is also maximal collection of ordinary right arcs. This diagram is an element

ofH(−il−1). Third, the nodes between any consecutive pair in the set {−il < ⋯−i1 < k1 < ⋯ < kl}
are filled in with a maximal collection of right arcs. (See Figure 3.8.) So, for example, the

restriction of F to the set [kj , kj+1 − 1] belongs to H([kj , kj+1 − 1]), for each j ∈ [1, l − 1].
The analogous statement holds for the restriction to [−ij ,−ij−1−1], where j ∈ [2, l], and for the

restriction to [−i1, k1−1]. We write F1, F−il , . . . , Fkl for the collection of these smaller noncrossing

arc diagrams, where we index each diagram by its bottom node.
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k2

k1

Figure 3.8: The nodes [k1, k2 −1] are filled in with a maximal collection of ordinary right arcs.

We are now prepared to describe the map µs. We apply the map µ to each of the diagrams

F1, F−il , . . . , Fkl . Recall that µ sends a maximal collection of non-simple right arcs on the nodes

[a, b] to a matching on the set [a, b− 1]. It is convenient for us to shift the indices of the image

of µ up by one instead. For example, when −il > 1, we map the noncrossing arc diagram F1 on

[1,−il−1] to a noncrossing perfect matching on [2,−il−1], and we send F−ij (a noncrossing arc

diagram on [−ij ,−ij−1 − 1]) to a matching on [−ij + 1,−ij−1 − 1]. We carry out the symmetric

process on the “left arcs” in the negative portion of the diagram.

Thus, we have paired off every number in [±n], except 1 ≤ −il < ⋯ < kl (and the corre-

sponding negative numbers). We complete the matching as follows: We add the edges {1,−il}
and {−1, il}, unless −il = 1. If −il = 1, then we add the edge {−1,1}. Finally, for each number

a ∈ {−il−1 < ⋯ < kl−1} we add the edge {−a, a}. If kl ≠ −il, then we also add {−kl, kl}. (Note that

if kl = −il, then l = 1.) We can visualize the entire construction in three steps as follows:

First step. Cut every arc in N(F ) where it passes between −1 and 1. We call the resulting

curves, each of which have precisely one endpoint, arc segments. We write αa for the arc seg-

ment whose endpoint is a. Reflect the negative half of the diagram about the vertical column

of the nodes, so that each arc and arc segment passes to the right of each node.

Second step. Apply the map µ to each of the diagrams F1, F−il , . . . , Fkl , as described above. The

effect of shifting our indices up is to “pull apart” two adjacent arcs (as in Figure 3.5). For each

a ∈ {−il, . . . , kl}, the bottom arc in Fa is pulled apart from the arc segment αa that is below it.

The one exception occurs when we shift up the indices of µ(F1): In this case, the shift makes 1

an isolated node. We carry out the symmetric process on the negative half of the diagram.

Third step. Anchor the arc segment α−il to 1 and symmetrically anchor αil to −1, unless il = −1.

If il = −1, then we glue the segments α−il and αil together between −1 and 1. We glue each
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remaining arc segment αa to the corresponding negative segment α−a. See Figure 3.9 and Fig-

ure 3.10. (In the pictures, we focus on the cutting and gluing. We leave out all but the bottom

node from each of the diagrams F1, F−il , . . . , Fkl .)

Figure 3.9: An illustration of the map µs when il ≠ −1.

Figure 3.10: An illustration of the map µs when il = −1.

In the next proposition, we prove that µs is a bijection onto Mn. Recall from Section 3.2.5

that M ∉ Mn if and only if {−1,1} is the unique edge in M that is fixed by negation. (We say

an edge {a, b} is fixed by negation if b = −a.)

Proposition 3.3.10. Let µs be the map from Hs(n) to the set of symmetric noncrossing perfect

matchings on [±n] defined in the preceding paragraphs. Then, µs is a bijection onto Mn.

Proof. For each diagram F ∈ Hs(n), the set N(F ) is nonempty. In particular, there is an arc

αsi,k ∈ F with i < 0 < k, where 1 < k. (Otherwise, F ∪{αs−1,1} is a face.) We have two possibilities:

First, it is possible that i = −k, and αsi,k is the unique element in N(F ). In that case, µs sends F
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to a matching M that does not contain any edges that are fixed by negation. Otherwise, µs

sends F to a matching that contains the edge {k,−k}. Thus the image of µs is contained inMn.

We define an inverse map ν ∶ Mn → Hn. Suppose that M ∈ Mn, and collect the set of

positive numbers {m1 < ⋯ < mt} that satisfy {−mi,mi} ∈M and 1 < mi. We write m0 for the

number that is paired with 1. Either m0 = −1 or 1 < m0. Also, m0 < m1, otherwise M has a

crossing.

We make three similar observations. First, the restriction of M to [mt+1, n] is a noncrossing

perfect matching. Second, the restriction to the set [mi + 1,mi+1 − 1] is a noncrossing perfect

matching, for each i ∈ [1, t−1]. Third, if m0 ≠ −1, then the restriction to the set [2,m0−1] is also

noncrossing perfect matching. We begin the construction of ν(M) by applying µ−1 to each of

these matchings. Each time we apply µ−1, we shift down the indices of the resulting diagram by

one. So, for example, we map the matching on [mt + 1, n] to a maximal collection of right arcs

on the nodes [mt, n]. Then, we insert the symmetric left arcs. We complete the construction by

adding the arcs αs−mi,mt−i where 0 ≤ i ≤ ⌊ t2⌋. If the set {m1, . . . ,mt} is empty, then we add the

arc αs−m0,m0
. (Recall that, for M ∈ Mn, if {m1, . . . ,mt} is empty then m0 ≠ −1.) We visualize

the construction in three steps.

Step 1: Cut.

Step 2: Apply µ−1

and shift down.

Ð→Ð→

Figure 3.11: An illustration of the first two steps for the map ν. We curve some of the edges
in the matching M to make them more suggestive of the arcs they will become in ν(M).
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First step. For each i ∈ [t], we cut the edge connecting −mi < mi where its passes to the right

of −1 and 1. If m0 = −1, then we also cut this edge. If m0 ≠ −1, then we detach the node 1

from the edge {1,m0}. Symmetrically, we detach −1 from the edge {−m0,−1}. (So, in this

case, 1 and −1 are isolated nodes.) We call these edges, which now have precisely one endpoint,

segments.

Second step. We apply µ−1 as described in the paragraph above. With each application of µ−1

we obtain a noncrossing arc diagram F ′. The effect of shifting the indices in F ′ down is to

glue the bottom node in F ′ to the top node of the segment below it. See Figure 3.11. The one

exception occurs when we apply µ−1 to the matching on [2,m0 − 1]: After shifting the indices

down, the bottom node of the corresponding arc diagram is 1. This process creates no crossings

nor any incompatible shared endpoints. We carry out the symmetric process on the negative

half of the diagram.

Third step. We reflect the negative half of the diagram about the vertical column of the nodes,

so that each edge and segment now passes on the left side of the negative nodes. We call the

segments in the negative half of the diagram left segments. The segments in the positive

half of the diagram are called right segments. Then, we pair each right segment with a left

segment, and we glue the pair together so that they pass between −1 and 1. We pair the highest

remaining right segment with highest remaining left segment. (We measure the height of a

segment by the value of its endpoint.) See Figure 3.12.

Figure 3.12: An illustration of the map ν.

We write F for ν(M), and we verify that F ∈ Hs(n). We begin by checking that each pair

of arcs in F is compatible. In our pictorial description above, we already noted that F does not

have any endpoint incompatibilities. As we transform M into the noncrossing arc diagram F ,
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the only possible place where we might possibly create a crossing is in the third step, where we

glue together left and right segments. Lemma 3.3.9 guarantees that there are no crossings. Since,

by our construction, F is symmetric, we conclude that it belongs to ∆s(n). We claim that F is

a facet. Observe that, after the second step in the construction, we have a maximal collection

of ordinary right arcs between each consecutive pair of segments. The claim follows. Finally we

check that F has no simple symmetric arcs. Since µ−1 is well-defined, the only possible simple

symmetric arc in F is αs−1,1. Suppose that there is an ordinary (though possibly not right) arc

α ∈ F that has 1 as its top endpoint. According to our construction, its bottom endpoint is −mt.

Since M ∈ Mn, we conclude that −mt < −1. It is clear from the pictorial construction that ν is

the inverse to µs. The proposition follows.

By Proposition 3.2.13 we conclude that when n = 2r, the complex ∆s(n) is homotopy

equivalent to a wedge of Cat(Br) many spheres. By Proposition 3.2.14, when n = 2r − 1, the

complex ∆s(n) is homotopy equivalent to a wedge of Cat+(Br) −Cat(Ar−2) many spheres. In

the next two propositions we count the number of symmetric arcs in F , for each F ∈ Hs(n). The

analogous computation for (ordinary) noncrossing arc diagrams in H(n) was easy: Under the

map µ, arcs became edges, and there are r edges in each noncrossing perfect matching on [2r].
In the next proposition, we make essentially the same argument, replacing “arcs” and “edges”

with “symmetric arcs” and “symmetric edges” in the sentence above.

Our first task is to make precise what is meant by “symmetric edges”. Write M for µs(F ).
As in the proof of Proposition 3.3.10, let m1 < ⋯ < mt be the set of positive numbers satisfying

{−mi,mi} ∈ M and mi > 1. Let m0 be the number that is paired with 1. Informally, we say

that a collection of edges is symmetric if the collection contributes precisely one symmetric arc

to F .

More precisely, we say that the three edges {1,m0}, {−m0,1}, and {−mt,mt} are a sym-

metric triple , when m0 ≠ −1 and {m1, . . . ,mt} is nonempty. We make two observations: First,

under the map ν (after cutting/detaching, reflecting, and gluing), these three edges become the

symmetric arc αs−m0,mt . Thus, the symmetric triple contributes precisely one symmetric arc to

F = ν(M). Second, M contains at most one symmetric triple.

A symmetric pair of edges in M is any of the following:

• {a, b} and {−a,−b}, where 1 < a < b;

• {−mi,mi} and {−mt−i,mt−i}, where i > 0;

• {−1,1} and {−mt,mt}, when m0 = −1.

Observe that each symmetric pair of edges in M contributes precisely one symmetric arc to F .

In particular, the pair {a, b} and {−a,−b} contributes the symmetric arc αsa,b; the pair {−mi,mi}
and {−mt−i,mt−i} contributes αs−mi,mt−i ; and {−1,1} and {−mt,mt} contributes αs−1,mt .
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If mi =mt−i then we say that {−mi,mi} is a symmetric edge . We make two observations:

First, after cutting, reflecting and re-gluing, {−mi,mi} becomes the symmetric arc αs−mi,mi .

Thus, the symmetric edge contributes precisely one symmetric arc. Second, the arc αs−mi,mi is

fixed by the half-turn rotation of F . Since F has at most one such centrally symmetric arc, M

also has at most one symmetric edge. We make one final observation: In our pictorial description

of the map ν, no edge is deleted. Thus, every edge in M either belongs a symmetric triple or a

symmetric pair; or it is a symmetric edge.

Proposition 3.3.11. Suppose that F ∈ Hs(n).

1. If n = 2r, then F has precisely r symmetric arcs.

2. If n = 2r − 1 with r > 1, then F has precisely r symmetric arcs if and only if it contains a

symmetric arc of the form α−1,k , where 1 < k ≤ n. Otherwise, F contains r−1 symmetric

arcs.

Proof. Write M for µs(F ). Let m1 < ⋯ < mt be the set of positive numbers satisfying

{−mi,mi} ∈M and mi > 1. Let m0 be the number that is paired with 1.

First, assume that M contains a symmetric triple: {1,m0}, {−m0,−1}, and {−mt,mt}. If

n = 2r−1, we claim that each of the remaining 2r−4 edges belongs to a symmetric pair. Since M

has at most one symmetric edge and at most one symmetric triple, the claim follows. The

symmetric triple contributes one symmetric arc to F , and the remaining edges contribute r − 2

symmetric arcs. We conclude that F has r − 1 symmetric arcs. If n = 2r, then, after accounting

for the symmetric triple, there are 2r−3 remaining edges. Precisely one of these is a symmetric

edge, and every other edge belongs to a symmetric pair. Together, the symmetric edge and the

symmetric triple contribute two symmetric arcs to F . The remaining 2r − 4 edges contribute

r − 2 symmetric arcs. We conclude that F has r edges.

Now, assume that M does not contain a symmetric triple. So, each edge in M is either a

symmetric edge or belongs to a symmetric pair. We conclude that the number of symmetric

arcs in F is either n/2 if n is even or (n + 1)/2 if n is odd.

Observe that F contains a symmetric arc αs−1,k with k > 1 if and only if m0 = −1. When n

is odd, the set {m1, . . . ,mt} is nonempty (because M ∈ Mn). Thus, when is n odd, F contains

a symmetric arc αs−1,k if and only if M does not contain a symmetric triple. The statement

follows.

Finally, we complete the proof of Theorem 3.1.2 by showing that the diagrams in Hs(2r−1)
are equally distributed between sizes r − 1 and r.

Proposition 3.3.12. There is an equal number of symmetric noncrossing arc diagrams in

Hs(2r − 1) with size r − 1 and with size r.
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Proof. Write n = 2r − 1. As in the proof of Proposition 3.3.10, let {m1, . . . ,mt} be the set of

positive numbers satisfying {−mi,mi} ∈ M and mi > 1. Let m0 be the number that is paired

with 1. Since n is odd and M ∈ Mn, the set {m1, . . . ,mt} is nonempty. We define an involution

on Mn that toggles between the matchings in which m0 ≠ −1 and those in which m0 = −1.

Informally, this map interchanges the role of m0 and m1.

First suppose that m0 ≠ −1. We map M to a matching M̃ in which the edges {1,m0} and

{−m0,−1} are replaced with the edges {−1,1} and {−m0,m0}. Observe that m0 is the smallest

in [2, n] that is paired with its negative in M̃ . (Thus, m0 plays the role of m̃1.) If m0 = −1,

then we replace {−1,1} = {−m0,m0} and {−m1,m1} with the edges {1,m1} and {−m1,−1}.

(Thus, m1 plays the role of m̃0.) The statement follows.

3.4 Vertex Decomposability of the c-Cambrian lattices

In the final section of this chapter, we turn to the proof of Theorem 3.1.3. The proof involves

three inductive arguments, one of which is complicated by breaking into cases. Before we dive

in, we review the definition of the c-Cambrian lattices in type A, and for each c, we explain

how to model the canonical join complex of the corresponding c-Cambrian lattice as a complex

of noncrossing arc diagrams.

3.4.1 The c-Cambrian lattices

Each c-Cambrian lattice of type An−1 is defined as the lattice quotient πΘc
↓

(Sn) of the weak

order on Sn where Θc is the c-Cambrian congruence (defined in Section 3.2.3). Recall that each

c-Cambrian congruence Θc is determined by an orientation c that partitions the set [2, n−1] into

a set R of right nodes and a set L of left nodes. Proposition 3.2.7 says that a join-irreducible

permutation is contracted by Θc precisely when its corresponding arc passes to the left of

some element in L or to the right of some element in R. The next proposition generalizes

Proposition 3.2.8. It follows immediately from Proposition 2.4.3 and Theorem 3.2.5. (See also

[72, Example 4.9].)

Proposition 3.4.1. Let c be any choice of orientation for the Coxeter diagram of An−1. Then

the canonical join complex of the c-Cambrian lattice (of type An−1) is isomorphic to the sub-

complex of the noncrossing arc complex on n nodes induced by the set of arcs that do not pass

to the left of any element in L or to the right of any element in R.

We write ∆(n,R,L) for the canonical join complex of the c-Cambrian lattice (of type An−1).

Observe that there is a unique arc α in ∆(n,R,L) for each pair of endpoints 1 ≤ i < k ≤ n. This

arc passes to left of each node in R ∩ supp○(α) and to the right of each node in L ∩ supp○(α).
We abuse notation and, for the remainder of the chapter, we write αi,k for this arc.
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Let J be any subset of [n]. We write ∆J(n,R,L) for the complex of noncrossing arc diagrams

obtained from ∆(n,R,L) by deleting the nodes in [n] ∖J and any arc that is adjacent to some

node in [n] ∖ J .

Remark 3.4.2. Consider the complex ∆(n,R,L), where L is any subset of [2, n − 1] and

R = [2, n−1]∖L. Upon restricting to the nodes in L, each arc in ∆L(n,R,L) may be interpreted

as a right arc (because each arc passes to right of every node between its endpoints). Thus,

∆L(n,R,L) is isomorphic to ∆(l) where l = ∣L∣.

Remark 3.4.2 motivates the proof of the next lemma. In the statement, the symbol (∗)
denotes the join operation for simplicial complexes. Recall that the join of the simplicial com-

plexes ∆ and ∆′ is the complex:

∆ ∗∆′ = {F ∪ F ′ ∶ F ∈ ∆ and F ′ ∈ ∆′}.

The link of a vertex v in ∆ is the subcomplex:

lk(v) = {F ∈ ∆ ∶ v ∉ F and F ∪ {v} ∈ ∆}.

Lemma 3.4.3. Let L be any subset of [2, n − 1] and let R be the complementary subset. Then

the link of α1,n in ∆(n,R,L) is isomorphic to ∆R(n,R,L) ∗∆L(n,R,L).

Proof. Observe that any arc α′ ∈ lk(α1,n) lies either strictly to the left or strictly to the right

of α1,n. So, α′ must either have both of its endpoints in L or both of its endpoints in R. Thus α′

corresponds to an arc either in ∆L(n,R,L) or ∆R(n,R,L). Whenever the support of an arc

in ∆L(n,R,L) intersects the support of an arc in ∆R(n,R,L), they have α1,n between them.

Thus, each arc in ∆L(n,R,L) is compatible with each arc in ∆R(n,R,L). We conclude that

the link lk(α1,n) is isomorphic to ∆R(n,R,L) ∗∆L(n,R,L).

3.4.2 Vertex decomposability

Before we proceed with the proof of Theorem 3.1.3 we recall some terminology. A (not neces-

sarily pure) simplicial complex ∆ is vertex decomposable if either ∆ is a simplex or there is

a vertex v satisfying:

(VD1) The complex ∆ ∖ v is vertex decomposable.

(VD2) The link lk(v) is vertex decomposable.

(VD3) No facet of lk(v) is a facet of ∆ ∖ v.
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In this case, the vertex v is called the shedding vertex . (A nonpure vertex decomposable sim-

plicial complex is sometimes called semipure vertex decomposable , see [54, Definition 3.29].)

The following is [14, Theorem 11.3].

Theorem 3.4.4. If ∆ is a vertex decomposable complex then it is shellable.

When ∆ is vertex decomposable, with shedding vertex v, one constructs a shelling induc-

tively: Write F1, . . . , Fa for a shelling of ∆ ∖ {v} and E1, . . .Eb for a shelling of lk(v). Then,

F1, . . . , Fa,E1 ∪ {v}, . . . ,Eb ∪ {v} is a shelling of ∆.

We will need the following well-known fact (see, for example, [54, Theorem 3.30]).

Lemma 3.4.5. Suppose that ∆ and ∆′ are vertex decomposable complexes. Then, the join

∆ ∗∆′ is also vertex decomposable.

Our proof of Theorem 3.1.3 is by induction on n. The base case, when n = 3 is obvious.

(Figure 3.1 shows the canonical join complex when n = 3.) Throughout the remainder of the

section, we assume that ∆(m′, S′, T ′) is vertex decomposable for all m′ < n and for each subset

T ′ ⊂ [2,m′ − 1]. (The set S′ = [2,m′ − 1] ∖ T ′.) The next theorem is the main result in this

section, and it implies Theorem 3.1.3.

Theorem 3.4.6. Assume that ∆(m′, S′, T ′) is vertex decomposable for all m′ < n and all

T ′ ⊆ [2,m − 1]. Let L be any subset of [2, n − 1] and let R be the complementary subset. The

complex ∆(n,R,L)∖{α1,n, . . . , α1,k} is vertex decomposable, where k ranges over the set [3, n].

Proposition 3.4.7. If Theorem 3.4.6 holds, then ∆(n,R,L) is vertex decomposable with shed-

ding vertex α1,n. In particular, Theorem 3.1.3 holds.

Proof. By Theorem 3.4.6 and induction on n, we have ∆(n,R,L) ∖ {α1,n} is vertex decom-

posable. This is (VD1). By Lemma 3.4.3, our inductive hypothesis on n, and Lemma 3.4.5 we

obtain (VD2). Suppose that F ∈ lk(α1,n). Each arc αi,k ∈ F has i > 1. We conclude that the set

F ∪ {α1,2} is a noncrossing arc diagram in ∆(n,R,L) ∖ {α1,n}. In particular F is not a facet in

∆(n,R,L) ∖ {α1,n}. Thus, we obtain (VD3).

To prove Theorem 3.4.6, we argue that α1,k is a shedding vertex for the complex ∆(n,R,L)∖
{α1,n, . . . , α1,k+1}, where k ∈ [3, n − 1]. The argument is by induction on k. The main difficulty

is in verifying that (VD2) holds. Unfortunately, this requires a third induction that is further

complicated by cases.

Our general strategy is to pull out any straightforward facts that we will need along the

way. We organize the proof(s) of vertex decomposability by checking conditions (VD1), (VD2),

and (VD3) in separate lemmas. We begin by checking that the base case holds for our induction

on k.
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Lemma 3.4.8. Assume that ∆(m′, S′, T ′) is vertex decomposable for all m′ < n and for each

T ′ ⊆ [2,m − 1]. Then ∆(n,R,L) ∖ {α1,n, . . . , α1,3} is vertex decomposable.

Proof. The only arc in ∆(n,R,L) ∖ {α1,n, . . . , α1,3} that has 1 as a bottom endpoint is α1,2.

Also, α1,2 is the only arc that has 2 as a top endpoint. Thus, ∆(n,R,L) ∖ {α1,n, . . . , α1,3} is

isomorphic to the join ∆[2,n](n,R,L) ∗ {α1,2}. The complex ∆[2,n−1](n,R,L) is vertex decom-

posable by our hypothesis. The statement follows from Lemma 3.4.5.

Now, we argue that α1,k is a shedding vertex for ∆(n,R,L) ∖ {α1,n, . . . , α1,k+1}, where

k ∈ [3, n− 1]. Our inductive hypothesis implies that (VD1) holds. The next lemma will simplify

some of our discussion of the link of α1,k. The statement follows from the fact that each pair of

arcs in {α1,n . . . , α1,3} share a bottom endpoint at 1.

Lemma 3.4.9. For each k ∈ [3, n − 1], the link of α1,k taken in ∆(n,R,L) coincides with the

link taken in ∆(n,R,L) ∖ {α1,n, . . . , α1,k+1}.

In light of Lemma 3.4.9, we compute lk(α1,k) in ∆(n,R,L) for the remainder of the section.

The next lemma implies that α1,k satisfies (VD3).

Lemma 3.4.10. Let L be any subset of [2, n − 1] and let R be the complementary subset.

Suppose that F ∈ lk(α1,k), where k ∈ [3, n− 1]. Then F ∪{α1,2} is a noncrossing arc diagram in

∆ ∖ {α1,n, . . . α1,k}. In particular, F is not a facet in ∆(n,R,L) ∖ {α1,n . . . , α1,k}.

Proof. It is enough to check is that no arc in F has 1 as a bottom endpoint. This follows

immediately from the fact that F ∈ lk(α1,k).

We have reduced the proof of Theorem 3.4.6 to checking that the link lk(α1,k) in ∆(n,R,L)
is vertex decomposable. (By Lemma 3.4.9, this implies that condition (VD2) holds.) Recall

from Lemma 3.4.3 that the link lk(α1,n) is isomorphic to ∆R(n,R,L) ∗∆L(n,R,L). The arcs

in lk(α1,k) also split into two disjoint sets, depending on whether they pass on the left or the

right side of α1,k, as we now make precise in Lemma 3.4.11. In the statement, and for the

remainder of the section, we write ∆∖k
J (n,R,L) for subcomplex induced by the set of arcs in

∆J(n,R,L) that do not have k as a top endpoint, where k ∈ J .

Lemma 3.4.11. Let L is any subset of [2, n − 1], R = [2, n − 1] ∖ L, and consider the link of

α1,k in ∆(n,R,L), where k ∈ [3, n − 1].

1. If k ∈ L, then lk(α1,k) is isomorphic to ∆I1(n,R,L)∗∆∖k
J1

(n,R,L), where I1 = [2, k−1]∩L
and J1 = [k,n] ∪R.

2. If k ∈ R, then lk(α1,k) is isomorphic to ∆I2(n,R,L)∗∆∖k
J2

(n,R,L), where I2 = [2, k−1]∩R
and J2 = [k,n] ∪L.
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Proof. We prove the first item, where k ∈ L. The proof of the second item is symmetric. Suppose

that αi,l ∈ lk(α1,k). If i < k < l, then αi,l likes on the right side of α1,k (because k ∈ L). We

conclude that i ∈ R. Similarly, i ∈ [2, k − 1] ∩ L if and only if l ∈ [2, k − 1] ∩ L. (If a compatible

arc begins at a point on the left side of α1,k, it must end at a point on the left side. Otherwise

it will intersect α1,k. See Figure 3.13 and Example 3.4.12.) Thus, each arc in the link of α1,k

corresponds to an arc in either ∆I1(n,R,L) or ∆∖k
J1

(n,R,L). Note that whenever the support of

an arc in ∆I1(n,R,L) intersects the support of an arc in ∆∖k
J1

(n,R,L), they have α1,k between

them. Thus, each arc in ∆I1(n,R,L) is compatible with each arc in ∆∖k
J1

(n,R,L). The statement

follows.

Figure 3.13: The arcs α1,7 and α2,8 in ∆(9,{4,5,8},{2,3,6,7}).

Example 3.4.12. In Lemma 3.4.11 we consider the link of α1,k, where k ∈ L. As an example,

consider α1,7 in ∆(9,{4,5,8},{2,3,6,7}). Note that any arc whose bottom endpoint lies in

[2,6]∩L also has its top endpoint in this set—otherwise it intersects α1,7 as shown in Figure 3.13.

With Lemma 3.4.11 in hand, we have further reduced the proof of Theorem 3.4.6 to showing

that the complex ∆∖k
J (n,R,L) is vertex decomposable, where J = [k,n] ∪R or J = [k,n] ∪ L.

By symmetry, we assume that J = [k,n] ∪ R. This is the case where k ∈ L (the first item in

Lemma 3.4.11). In particular, k is the smallest node in J ∩ L. Write m for the cardinality of

the set [k,n] ∪R, and n1 < n2 < ⋯ < nr−1 for the numbers in R ∩ [2, k − 1]. After reindexing,

we have that ∆∖k
J (n,R,L) is isomorphic to a complex of the form ∆∖r(m,S,T ), where T is a

subset of [2,m − 1], and r is its smallest element. (Throughout, S = [2,m − 1] ∖ T .) If we can

prove the next proposition, then we will have completed the proof of Theorem 3.4.6.

Proposition 3.4.13. Assume that ∆(m′, S′, T ′) is vertex decomposable for each m′ ≤ n − 1 and

each subset T ′ ⊆ [2,m′]. Take m ≤ n − 1, and let r ∈ [2,m − 1]. If the subset T ⊆ [2,m − 1] is

chosen so that r is its smallest element, then ∆∖r(m,S,T ) is vertex decomposable.

We prove Proposition 3.4.13 by induction on m. (The base case where m = 2 is trivial.)

The argument is complicated, and will occupy the remainder of the section. It requires three
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separate cases, and we use the inductive hypothesis on m in each case.

We begin with the case when r > 3, where we can reuse almost all of our earlier work.

Our goal is to prove the following proposition. The hypothesis in the statement is our inductive

hypothesis on m for Proposition 3.4.13. (We assume that ∆(m′′, S′′, T ′′) is vertex decomposable

as part of the inductive hypothesis on n for Theorem 3.1.3.)

Proposition 3.4.14. Assume that Proposition 3.4.13 holds whenever m is replaced by m′′ < m.

In particular, we assume that ∆(m′′, S′′, T ′′) is vertex decomposable, for each T ′′ ⊆ [2,m′′ − 1].
Take m ≤ n−1, and let r ∈ [3,m−1]. Suppose that the subset T ⊂ [2,m−1] is chosen so that r is

its smallest element. Then the complex ∆∖r(m,S,T ) ∖ {α1,m, . . . , α1,k} is vertex decomposable,

where k ∈ [3,m] ∖ {r}.

We prove Proposition 3.4.14 by induction on k, just as we had been doing for Theorem 3.4.6.

The analogues to Lemma 3.4.3 and Lemma 3.4.9 hold. Importantly, because r > 3, the analogue

to Lemma 3.4.10 also holds. (The reader can verify that Lemma 3.4.10 fails in ∆∖2(m,S,T ).)
First we gather some useful facts that will help us to check (VD2).

Lemma 3.4.15. Let r ∈ [3,m−1], and suppose that the subset T ⊂ [2,m−1] is chosen so that r

is its smallest element.

1. Suppose that k < r. Then the link of of α1,k taken in ∆∖r(m,S,T ) is isomorphic to

∆[2,k−1](m,S,T ) ∗∆∖r
[k,m]

(m,S,T ).

2. Suppose that k > r. Then the link of α1,k taken in ∆∖r(m,S,T ) coincides with the link

taken in ∆(m,S,T ).

Proof. First, assume that k < r, and, for the moment, consider lk(α1,k) taken in ∆(m,S,T ).
Since [2, r − 1] ⊂ S, we have k ∈ S. Lemma 3.4.11 says that lk(α1,k) is isomorphic the join

∆I2(m,S,T ) ∗ ∆∖k
J2

(m,S,T ), where I2 = [2, k − 1] ∩ S and J2 = [k,m] ∪ T . We observe that

[2, k − 1] ∩ S = [2, k − 1] and [k,m] ∪ T = [k,m]. Thus, the condition that no arc has k as a

top endpoint in ∆∖k
J2

(m,S,T ) is vacuous. Therefore, ∆∖k
J2

(m,S,T ) = ∆J2(m,S,T ). We conclude

that the link of α1,k taken in ∆∖r(m,S,T ) is isomorphic to ∆[2,k−1](m,S,T ) ∗∆∖r
[k,m]

(m,S,T ).
Now, assume that k > r, and consider the link of α1,k taken in ∆(m,S,T ). No arc in lk(α1,k)

has r as its top endpoint because r is the smallest element of T . (See Figure 3.14 and Exam-

ple 3.4.16). Thus lk(α1,k) in ∆∖r(m,S,T ) coincides with the link taken in ∆(m,S,T ). The

second item follows.
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Figure 3.14: The arc α1,7 in ∆(9,{1,2,3,4,5,7},{6,8}).

Example 3.4.16. Consider α1,7 in the complex ∆(9,{1,2,3,4,5,7},{6,8}) shown in Fig-

ure 3.14. There is no arc with 6 as a top endpoint that is compatible with α1,7. So, the link of α1,7

taken in ∆(9,{1,2,3,4,5,7},{6,8}) coincides with the link taken in ∆∖6(9,{1,2,3,4,5,7},{6,8}).

Proof of Proposition 3.4.14. We prove the proposition by induction on k. The proof for the base

case is the same as the proof given in Lemma 3.4.8. The complex ∆∖r(m,S,T )∖{α1,m, . . . , α1,3}
is isomorphic to ∆∖r

[2,m]
(m,S,T ) ∗ {α1,2}. The complex ∆∖r

[2,m]
(m,S,T ) is vertex decomposable

by our hypothesis.

We argue that α1,k is a shedding vertex for ∆∖r(m,S,T ) ∖ {α1,m, . . . , α1,k+1}, where k ∈
[3,m − 1] ∖ {r}. We have (VD1) by induction. Observe that the analogue to Lemma 3.4.9

holds: The link of α1,k taken in ∆∖r(m,S,T ) ∖ {α1,m . . . , α1,k+1} coincides with the link taken

in ∆∖r(m,S,T ). By Lemma 3.4.15, our hypothesis, and Lemma 3.4.5 we obtain (VD2). Since

r > 2, the analogue to Lemma 3.4.10 also holds: For each F ∈ lk(α1,k), the set F ∪{α1,2} belongs

to ∆∖r(m,S,T ) ∖ {α1,m . . . , α1,k}. Thus, we obtain (VD3).

The next proposition is analogous to Proposition 3.4.7 and completes the proof of the case

where r > 3 for Proposition 3.4.13.

Proposition 3.4.17. Assume that Proposition 3.4.13 holds whenever m is replaced by m′′ < m.

In particular, we assume that ∆(m′′, S′′, T ′′) is vertex decomposable, for each T ′′ ⊆ [2,m′′ − 1].
Take m ≤ n − 1, and let r ∈ [3,m − 1]. Suppose that the subset T ⊂ [2,m − 1] is chosen so that r

is its smallest element. Then, ∆∖r(m,S,T ) is vertex decomposable with shedding vertex α1,m.

Proof. The proof is almost word-for-word the same as the proof of Proposition 3.4.7. Proposi-

tion 3.4.14 implies that (VD1) holds. Observe that the analogue of Lemma 3.4.3 holds: The link

of α1,m in ∆∖r(m,S,T ) is isomorphic to ∆S(m,S,T ) ∗∆∖r
T (m,S,T ). (The same argument es-

tablishes its proof here.) Consider ∆∖r
T (m,S,T ). Since r is smallest element in T , the condition

that no arc has r as its top endpoint is vacuous. We conclude that ∆∖r
T (m,S,T ) is isomorphic

∆T (m,S,T ). Our hypothesis implies that both ∆T (m,S,T ) and ∆S(m,S,T ) are vertex de-

composable. By Lemma 3.4.5, we have (VD2). For each F ∈ lk(α1,k), the set F ∪ {α1,2} is in

∆∖r(m,S,T ) ∖ {α1,m} (because r > 2). Thus, we have (VD3).
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We have further reduced the proof of Theorem 3.4.6 to the following statement:

Proposition 3.4.18. Assume that Proposition 3.4.13 holds whenever m is replaced by m′′ <m.

In particular, we assume that ∆(m′′, S′′, T ′′) is vertex decomposable, for each T ′′ ⊆ [2,m′′ − 1].
Suppose that T is any subset of [2,m− 1] containing 2. Then ∆∖2(m,S,T ) is vertex decompos-

able.

We break the proof of Proposition 3.4.18 into two cases depending whether or not 3 ∈ T .

(Two cases are necessary. See Remark 3.4.23.) When 3 ∉ T , our argument is very similar to the

one used for Proposition 3.4.14. So, we present this case first. Our goal is to prove the following:

Proposition 3.4.19. Assume that Proposition 3.4.13 holds whenever m is replaced by m′′ <m.

In particular, we assume that ∆(m′′, S′′, T ′′) is vertex decomposable, for each T ′′ ⊆ [2,m′′ − 1].
Suppose T ⊂ [2,m − 1], and T contains 2 but not 3.

1. The complex ∆∖2(m,S,T ) ∖ {α1,m, . . . , α1,k} is vertex decomposable, where k ∈ [4,m].

2. In particular, ∆∖2(m,S,T ) is vertex decomposable, with α1,m its shedding vertex.

As above, we will prove the first item of Proposition 3.4.19 by induction on k. Before we

dive into the proof, we gather some useful lemmas. In the base case of the induction on k, we

argue that α2,3 is a shedding vertex for ∆∖2(m,S,T ) ∖ {α1,m, . . . , α1,4}. The next lemma will

be useful.

Lemma 3.4.20. Suppose T ⊂ [2,m − 1], and T contains 2 but not 3. Consider the arc α1,k

in ∆∖2(m,S,T ), where k ∈ [4,m]. Then, α1,k intersects α2,3. In particular, the link of α2,3 in

∆∖2(m,S,T ) is isomorphic to ∆[3,m](m,S,T ).

Proof. Since 2 ∈ T and 3 ∈ S, every arc α1,k with 3 < k passes between the nodes 2 and 3.

Thus, α1,k crosses the simple arc α2,3. In particular, α ∈ ∆∖2(m,S,T ) is compatible with α2,3

if and only if its bottom endpoint is greater than or equal to 3. Thus, the link of α2,3 in

∆∖2(m,S,T ) is isomorphic to ∆[3,m](m,S,T ).

The next lemma is analogous to Lemma 3.4.10, and will help us check (VD3).

Lemma 3.4.21. Suppose that T ⊂ [2,m − 1], and T contains 2 but not 3. Consider the link

of α1,k taken in ∆∖2(m,S,T ).

1. For each F ∈ lk(α1,k), the set F ∪{α1,3} ∈ ∆∖2(m,S,T )∖{α1,m, . . . , α1,k}, where k ∈ [4,m].

2. For each F ∈ lk(α2,3), the set F ∪ {α1,3} ∈ ∆∖2(m,S,T ) ∖ {α1,m, . . . , α1,4, α2,3}.
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Proof. Consider the first item. Since α1,k is not compatible with α1,l (as long as l ≠ k), it is

enough to show that F ∪{α1,3} belongs to ∆∖2(m,S,T ). Suppose that αi,l ∈ lk(α1,k). The only

arcs that have 3 as a top endpoint are α2,3 and α1,3. Lemma 3.4.20 implies that α2,3 ∉ lk(α1,k).
Also, α1,3 ∉ lk(α1,k) because α1,3 and α1,k share a bottom endpoint at 1. Thus, l ≥ 4. When

i ≥ 3, it is obvious that αi,l and α1,3 are compatible. When i = 2, then it is enough to check

that α1,3 and α2,4 are compatible. Since ∆∖2(m,S,T ) is flag, we obtain the first item.

The second item follows immediately from Lemma 3.4.20.

The following lemma will help us check that (VD2) holds.

Lemma 3.4.22. Suppose that T ⊆ [2,m − 1]. Then the link of α1,k taken in ∆∖2(m,S,T )
coincides with the link taken in ∆(m,S,T ) for each k ∈ [3,m].

Proof. We note that α1,2 is the only arc that has 2 as its top endpoint. So, it is the only arc that

we delete when we pass from ∆(m,S,T ) to ∆∖2(m,S,T ). Consider the link lk(α1,k) taken in

∆(m,S,T ). The arcs α1,2 and α1,k are not compatible because they share a bottom endpoint.

So, we lose nothing by passing to ∆∖2(m,S,T ). The statement follows.

Proof of Proposition 3.4.19. We prove the first item by induction on k. In the base case we

need to show that ∆∖2(m,S,T ) ∖ {α1,m, . . . , α1,4} is vertex decomposable. We claim that α2,3

is a shedding vertex. Checking (VD1) is somewhat involved, so we consider this condition last.

By Lemma 3.4.20, the link lk(α2,3) taken in ∆∖2(m,S,T ) ∖ {α1,m, . . . , α1,4} coincides with

the link taken in ∆∖2(m,S,T ). In particular, link of α2,3 is isomorphic ∆[3,m](m,S,T ). The

complex ∆[3,m](m,S,T ) is vertex decomposable by our hypothesis. Thus, we obtain (VD2). By

the second item in Lemma 3.4.21, we obtain (VD3). We observe that α1,3 is the only arc in

∆∖2(m,S,T ) ∖ {α1,m, . . . , α1,4, α2,3} with 3 as its top endpoint. There is no arc in this complex

that has 1 as its bottom endpoint. Thus, the complex ∆∖2(m,S,T ) ∖ {α1,m, . . . , α1,4, α2,3} is

isomorphic to ∆∖3
[2,m]

(m,S,T ) ∗ {α1,3}. By our hypothesis and Lemma 3.4.5, we have (VD1).

We have proved that the base case holds.

Next, we argue that α1,k is a shedding vertex in ∆∖2(m,S,T )∖{α1,m, . . . , α1,k+1}, for each k

in the set [4,m − 1]. We have (VD1) by induction. Note that the analogue to Lemma 3.4.9

holds: The link of α1,k taken in ∆∖2(m,S,T ) ∖ {α1,m, . . . , α1,k+1} coincides with the link taken

in ∆∖2(m,S,T ). By Lemma 3.4.22, our hypothesis, and Lemma 3.4.5, we obtain (VD2). Con-

dition (VD3) follows immediately from the first item of Lemma 3.4.21. We have completed the

proof of the first item.

Finally, we argue that α1,m is a shedding vertex for ∆∖2(m,S,T ). The first item in the

proposition gives us (VD1). By Lemma 3.4.22, the link of α1,m taken in ∆∖2(m,S,T ) coin-

cides with its link in ∆(m,S,T ). Lemma 3.4.3 implies that the link lk(α1,m) is isomorphic to
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∆S(m,S,T ) ∗∆T (m,S,T ). By our hypothesis and Lemma 3.4.5, we have (VD2). By the first

item in Lemma 3.4.21 we obtain (VD3).

Figure 3.15: The set {α3,5, α2,3} ∈ lk(α1,4), and it is a facet in ∆∖2(5,{4},{2,3})∖{α1,5, α1,4}.

Remark 3.4.23. Observe that the our proof for Lemma 3.4.19 fundamentally fails if both 2

and 3 are in T . As a specific example, consider ∆∖2(5,{4},{2,3}). We claim that α1,4 is not a

shedding vertex for ∆∖2(5,{4},{2,3}) ∖ {α1,5}. The set {α3,5, α2,3} belongs to lk(α1,4), and it

is a facet in ∆∖2(5,{4},{2,3}) ∖ {α1,5, α1,4}. See Figure 3.15. Thus, the condition (VD3) fails.

We have reduced the proof of Theorem 3.4.6 to one final proposition. This is the last case

in the proof of Proposition 3.4.13.

Proposition 3.4.24. Assume that Proposition 3.4.13 holds whenever m is replaced by m′′ <m.

In particular, we assume that ∆(m′′, S′′, T ′′) is vertex decomposable, for each T ′′ ⊆ [2,m′′ − 1].
Suppose that T ⊆ [2,m−1] and 2,3 ∈ T . Then ∆∖2(m,S,T ) is vertex decomposable. In particular,

1. ∆∖2(m,S,T ) ∖ {α2,m, . . . , α2,k} is vertex decomposable, where k ∈ [4,m]; and

2. α2,m is a shedding vertex for ∆∖2(m,S,T ).

As before, we prove the first item of Proposition 3.4.24 by induction on k. In the base case,

we will argue that α1,3 is a shedding vertex for ∆∖2(m,S,T )∖{α2,m, . . . , α2,4}. The next lemma

will be useful.

Lemma 3.4.25. Suppose that T ⊆ [2,m − 1] and 2,3 ∈ T , and consider α2,k in ∆∖2(m,S,T ),

where k ∈ [4,m]. Then:

1. α2,k intersects the arc α1,3.

2. In particular, the link of α1,3 taken in ∆∖2(m,S,T ) ∖ {α2,m, . . . , α2,4} coincides with the

link taken in ∆(m,S,T ).

Proof. The first item is easily verified by drawing the arcs α1,3 and α2,k. For example, see Fig-

ure 3.16 below. It follows immediately that the link of α1,3 taken in ∆∖2(m,S,T )∖{α2,m, . . . , α2,4}
coincides with the link taken in ∆∖2(m,S,T ). Recall that in passing from ∆(m,S,T ) to
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Figure 3.16: In ∆(9,{4,5,8},{2,3,6,7}), arcs α2,8 and α1,3 intersect.

∆∖2(m,S,T ) we simply delete α1,2. Since α1,2 ∉ lk(α1,3), we obtain the second statement of the

lemma.

The next lemma is the analogue to Lemma 3.4.9. (The statement holds because each arc in

{α2,m, . . . , α2,4} has a bottom endpoint at 2.)

Lemma 3.4.26. Suppose that T ⊆ [2,m − 1] and k ∈ [4,m − 1]. The link of α2,k taken in

∆∖2(m,S,T ) ∖ {α2,m, . . . , α2,k+1} coincides with the link taken in ∆∖2(m,S,T ).

In light of Lemma 3.4.26, we will take the link of α2,k in ∆∖2(m,S,T ). The next lemma is

analogous to Lemma 3.4.10 and will help us check (VD3).

Lemma 3.4.27. Suppose that T ⊆ [2,m − 1], 2,3 ∈ T , and k ∈ [4,m]. Consider the link of α2,k

taken in ∆∖2(m,S,T ) and the link of α1,3 taken in ∆(m,S,T ).

1. For each F ∈ lk(α2,k) the set F ∪ {α2,3} ∈ ∆∖2(m,S,T ) ∖ {α2,m, . . . , α2,k}.

2. For each F ∈ lk(α1,3) the set F ∪ {α2,3} ∈ ∆∖2(m,S,T ) ∖ {α2,m, . . . , α2,4, α1,3}.

Proof. If α ∈ lk(α2,k), then α’s bottom endpoint is not equal to 2. By the first item in

Lemma 3.4.25, no arc in lk(α2,k) has 3 as a top endpoint. In addition, there is no arc in

∆∖2(m,S,T ) that passes between the nodes 2 and 3 (because both 2 and 3 belong to T ). The

first statement follows.

Suppose that αi,l ∈ lk(α1,3). Lemma 3.4.25 implies that i ≥ 3. The second statement follows.

In the following lemma we compute the link of α2,k in ∆∖2(m,S,T ). The first two items in

the statement are analogous to Lemma 3.4.11, and their proofs are similar. The third item is

analogous to Lemma 3.4.3. Since its proof is identical to the argument given in Lemma 3.4.3,

we do not repeat it here.

Lemma 3.4.28. Suppose that T ⊆ [2,m − 1], 2,3 ∈ T , and k ∈ [4,m]. Consider the link of α2,k

in ∆∖2(m,S,T ).
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1. If k ∈ T , then lk(α2,k) is isomorphic to ∆I1(m,S,T )∗∆∖k
J1

(m,S,T ), where I1 = [3, k−1]∩T
and J1 = [k,m] ∪ S ∪ {1}.

2. If k ∈ S, then lk(α2,k) is isomorphic to ∆I2(m,S,T ) ∗ ∆∖k
J2

(m,S,T ), where the set I2 is

equal to ([4, k − 1] ∩ S) ∪ {1} and J2 = [k,m] ∪ (T ∖ {2}).

3. If k =m, then lk(α2,k) is isomorphic to ∆K1(m,S,T )∗∆K2(m,S,T ), where K1 = S ∪{1}
and K2 = T ∖ {2}.

Proof. First assume that k ∈ T . Each arc αi,l in lk(α2,k) with i < k < l lies on the right side

of α2,k. So, i belongs to S or is equal to 1. Conversely, every arc in lk(α2,k) that has 1 as

a bottom endpoint must pass to the right of α2,k (because 2 ∈ T ) and end in S or above k.

Every arc in lk(α2,k) that has one endpoint in [3, k − 1] ∩ T must have the other endpoint in

[3, k − 1] ∩ T (because every arc that begins on the left side of α2,k also ends on the left side).

The first statement follows.

When k ∈ S, each arc αi,l in lk(α2,k) with i < k < l lies on the left of α2,k. Thus, i ∈ T . Since

both 2 and 3 are in T , the smallest possible bottom endpoint for such an arc is 3. On the other

hand, suppose that αi,l satisfies l ∈ [4, k − 1] ∩S. Because 2,3 ∈ T (and αi,l lies on the right side

of α2,k), we have i = 1 or i ∈ [4, k − 1] ∩ S. The second item follows.

In the next lemma, we argue that each of the complexes, ∆∖k
J1

(m,S,T ) and ∆∖k
J2

(m,S,T ),
from Lemma 3.4.28 satisfies the hypotheses of Proposition 3.4.13, with an eye toward establish-

ing (VD2).

Lemma 3.4.29. Let i = 1,2. Suppose that ki ∈ [4,m], and Ti ⊆ [2,m − 1] satisfies:

• k1 ∈ T1;

• k2 ∉ T2;

• 2,3 ∈ Ti for both i = 1,2.

Let J1 = [k1,m]∪S1∪{1}, and let J2 = [k2,m]∪(T2 ∖ {2}). Then, ∆∖ki
Ji

(m,Si, Ti) is isomorphic

to a complex ∆∖r′′i (m′′
i , S

′′
i , T

′′
i ) satisfying the hypotheses of Propososition 3.4.13 with m′′

i <m,

for both i = 1,2.

Proof. First, we consider ∆∖k1
J1

(m,S1, T1). Observe that k1 is the smallest node in T1 ∩ J1.

Since S1 does not contain 2 or 3, the cardinality of J1 is strictly less than m. Thus, after

reindexing the node set J1, we obtain the desired isomorphism.

Next, consider ∆∖k2
J2

(m,S2, T2). Observe that k2 is the smallest node in S2 ∩ J2. Since

k2 ≥ 4, the cardinality of J2 is strictly less than m. Also, ∆∖k2
J2

(m,S2, T2) is isomorphic to

∆∖k2
J2

(m,S′, T ′), where S′ = T2 and T ′ = S2. After reindexing the node set for ∆∖k2
J2

(m,S′, T ′),
we obtain the desired isomorphism.
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Proof of Proposition 3.4.24. In the base case for our induction on k, we consider the complex

∆∖2(m,S,T ) ∖ {α2,m, . . . , α2,4}. We claim that α1,3 is a shedding vertex, and we begin by

checking (VD2) and (VD3). By the second item in Lemma 3.4.25, we may take the link of α1,3

in ∆(m,S,T ). The first item in Lemma 3.4.25 implies that each arc in the link of lk(α1,3) has

a bottom endpoint that is greater than or equal to 3. Thus, the link lk(α1,3) isomorphic to

∆[3,m](m,S,T ). By our hypothesis this complex is vertex decomposable, and we obtain (VD2).

By second item in Lemma 3.4.27, the link lk(α1,3) satisfies (VD3).

Consider ∆∖2(m,S,T ) ∖ {α2,m, . . . , α2,4, α1,3}. The only arc in this complex that has 2 as a

bottom endpoint is α2,3, and similarly, α2,3 is the only arc that has 3 as a top endpoint. Since

no arc passes between 2 and 3, we conclude that each arc in ∆∖2(m,S,T )∖{α2,m, . . . , α2,4, α1,3}
is compatible with α2,3. Thus, the complex ∆∖2(n,S, T )∖{α2,m, . . . , α2,4, α1,3} is isomorphic to

the join

(∆∖2(m,S,T ) ∖ {α2,m, . . . , α2,4, α1,3, α2,3}) ∗ {α2,3}.

The complex ∆∖2(m,S,T ) ∖ {α2,m, . . . , α2,4, α1,3, α2,3} is isomorphic to ∆∖3
J (m,S,T ), where

J = [m] ∖ {2}. (The isomorphism is obtained by deleting the node 2 in each diagram F in

∆∖2(m,S,T ) ∖ {α2,m, . . . , α2,4, α1,3, α2,3}.) By our hypothesis, ∆∖3
J (m,S,T ) is vertex decom-

posable. By Lemma 3.4.5, we obtain (VD1). We have proved that the base case holds.

We argue that α2,k is a shedding vertex for ∆∖2(n,S, T )∖{α2,m, . . . , α2,k+1}, for k ∈ [4,m−1].
We have (VD1) by induction. We consider the link of α2,k as computed in Lemma 3.4.28.

By Lemma 3.4.29, our hypothesis, and Lemma 3.4.5, we have (VD2). By the first item in

Lemma 3.4.27, the link lk(α2,k) satisfies (VD3). We conclude that α2,k is a shedding vertex for

∆∖2(m,S,T ) ∖ {α2,m, . . . , α2,k+1}, as desired. This completes the proof of the first item.

For the second item, we claim that α2,m is shedding vertex for ∆∖2(m,S,T ). The first item

of this proposition gives us (VD1). The third item in Lemma 3.4.28 says that the link of α2,m

is isomorphic to ∆K1(m,S,T ) ∗∆K2(m,S,T ), where K1 = S ∪ {1} and K2 = T ∖ {2}. For each

i = 1,2, the complex ∆Ki(m,S,T ) is vertex decomposable by our hypothesis. By Lemma 3.4.5,

we obtain (VD2). (VD3) follows from the first item in Lemma 3.4.27.

This completes the inductive argument (on m) that Proposition 3.4.13 holds. Thus, we

obtain (VD2) in our inductive argument (on k) for Theorem 3.4.6. In turn, this completes the

inductive argument (on n) for Theorem 3.1.3.
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Chapter 4

Coxeter BiCatalan Combinatorics

4.1 Introduction

This chapter1 considers enumeration problems closely related to Coxeter-Catalan combinatorics.

(For background on Coxeter-Catalan combinatorics, see for example [2, 32]). Each enumeration

problem can be thought of as counting pairs of “twin” Coxeter-Catalan objects—twin sortable

elements or twin nonnesting partitions, etc. Many of the terms used in this introductory section

are new to this chapter and will be explained in Section 4.2.

In the setting of sortable elements and Cambrian lattices/fans, the enumeration problem is

to count the following families of objects:

• maximal cones in the bipartite biCambrian fan (the common refinement of two bipartite

Cambrian fans);

• pairs of twin c-sortable elements for bipartite c;

• classes in the bipartite biCambrian congruence (the meet of two bipartite Cambrian con-

gruences);

• elements of the bipartite biCambrian lattice;

• c-bisortable elements for bipartite c.

In type A, c-bisortable elements for bipartite c are in bijection with permutations avoiding a

set of four bivincular patterns in the sense of [15, Section 2] and with alternating arc diagrams,

1 The content of this chapter, Coxeter-biCatalan Combinatorics, will appear in the Journal of Algebraic
Combinatorics under the same title and with authorship Emily Barnard and Nathan Reading. Barnard was the
initial writer for the following: Sections 4.3.3–4.3.5 and Sections 4.4.3–4.4.5. In particular, the counting arguments
for the (alternating) noncrossing arc diagrams and for the c-bisortable elements were originally constructed by
Barnard. Portions of Section 4.3.6 were initially written by both authors. In particular, the folding arguments
were written by Barnard. Collaborative revisions were made throughout.
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as will be explained in Sections 4.3.1–4.3.3. In type B, similar bijections exist with certain

signed permutations and with centrally symmetric alternating arc diagrams, as described in

Section 4.3.5.

In the setting of nonnesting partitions (antichains in the root poset), the enumeration prob-

lem is to count two families of objects:

• antichains in the doubled root poset;

• pairs of twin nonnesting partitions.

In the setting of clusters of almost positive roots (in the sense of [35]), the problem is to

count two families of objects:

• maximal cones in the bicluster fan (the common refinement of the cluster fan, in the

original bipartite sense of Fomin and Zelevinsky, and its antipodal opposite);

• pairs of twin clusters, again in the bipartite sense.

In the setting of noncrossing partitions, the problem is to count the following families of

objects:

• pairs of twin bipartite c-noncrossing partitions;

• pairs of twin bipartite (c, c−1)-noncrossing partitions.

The main result of this chapter is the following.

Theorem 4.1.1. For each finite Coxeter group/root system, all of the enumeration problems

posed above have the same answer.

In all of the settings above except the nonnesting setting, the objects described above can

be defined for arbitrary choices of a Coxeter element. However, the enumerations depend on

the choice of Coxeter element, and we emphasize that Theorem 4.1.1 is an assertion about the

enumeration in the case where the Coxeter element is chosen to be bipartite. See Section 4.2.2

for the definition of Coxeter elements and bipartite Coxeter elements.

The enumeration problems in the nonnesting setting require a crystallographic root sys-

tem, but Theorem 4.1.1 still holds in the other settings for noncrystallographic types. See also

Remark 4.2.1.

We will see in Section 4.2 that within each group of bullet points above, the various enu-

meration problems have the same answer essentially by definition. Using known uniform cor-

respondences from the usual Coxeter-Catalan combinatorics, it is straightforward to give (in

Theorems 4.2.18 and 4.2.21) uniform bijections connecting the Cambrian/sortable setting to the

noncrossing and cluster settings. The difficult part of the main result is the following theorem

which connects the nonnesting setting to the other settings.
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Theorem 4.1.2. For crystallographic W , c-bisortable elements for bipartite c are in bijection

with antichains in the doubled root poset.

More specifically, we have the following refined version of Theorem 4.1.2.

Theorem 4.1.3. For crystallographic W and for any k, the number of bipartite c-bisortable

elements with k descents equals the number of k-element antichains in the doubled root poset.

Our proof of Theorems 4.1.2 and 4.1.3 in Section 4.4 would be uniform if a uniform proof

were known connecting the nonnesting setting to the other settings of the usual Coxeter-Catalan

combinatorics. Indeed, the opposite is true: A well-behaved uniform bijection proving Theo-

rem 4.1.2 or Theorem 4.1.3 would imply a uniform proof of the analogous Coxeter-Catalan

statement. (See Remark 4.4.30 for details.) However, the proofs of these theorems are far from

a trivial recasting of Coxeter-biCatalan combinatorics in terms of Coxeter-Catalan combina-

torics. Instead, it requires a count of antichains in the doubled root poset indirectly in terms of

the Coxeter-Catalan numbers and a nontrivial proof that the same formula holds for bipartite

c-bisortable elements. The formula uses a notion of “double-positive” Catalan and Narayana

numbers, which already appeared in [7] as the local h-polynomials of the positive cluster com-

plex. (See Remark 4.4.7.)

We propose the terms W -biCatalan number and W -biNarayana number and the sym-

bols biCat(W ) and biNark(W ) for the numbers appearing in Theorems 4.1.1 and 4.1.3.

Theorem 4.1.4. The W -biCatalan numbers for irreducible finite Coxeter groups are listed in

Table 4.1.

Table 4.1: The W -biCatalan numbers

W An Bn Dn E6 E7 E8 F4 H3 H4 I2(m)
biCat(W ) (2n

n
) 22n−1 6 ⋅ 4n−2 − 2(2n−4

n−2
) 1700 8872 54066 196 56 550 2m

The type-A and type-B cases of Theorem 4.1.4 are proved, in the nonnesting setting, in

Section 4.2.1 by recasting the antichain count as a count of lattice paths. The same cases

can also be established in the setting of c-bisortable elements by recasting the problem in

terms of alternating arc diagrams. Although the latter approach is more difficult, we carry

out the type-A and type-B enumeration by the latter approach in Section 4.3, because the

combinatorial models for bipartite c-bisortable elements in types A and B are of independent

interest, and because the enumeration of alternating arc diagrams provides the crucial insight
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which leads to the recursive proof of Theorem 4.1.1. (See Remark 4.3.13.) The type-D case of

Theorem 4.1.4 is much more difficult, and involves solving the type-D case of the recursion used

in the proof of Theorem 4.1.2. The formula in type D was first guessed using the package GFUN

[77]. The enumerations in the exceptional types were obtained using Stembridge’s posets and

coxeter/weyl packages [84].

We also obtain formulas for the W -biNarayana numbers outside of type D. Generating

functions for biNarayana numbers for some type-D Coxeter groups are shown in Table 4.4. At

present we have no conjectured formula for the Dn-biNarayana numbers. See Section 4.4.9 for

a modest conjecture.

Theorem 4.1.5. The biNarayana numbers for each of the irreducible finite Coxeter groups,

except in type D, are given by the generating functions shown in Table 4.2.

Table 4.2: The biNarayana numbers

W ∑n
k=0 biNark(W ) qk

An ∑n
k=0 (

n
k
)2qk

Bn ∑n
k=0 (

2n
2k

)qk

E6 1 + 66q + 415q2 + 736q3 + 415q4 + 66q5 + q6

E7 1 + 119q + 1139q2 + 3177q3 + 3177q4 + 1139q5 + 119q6 + q7

E8 1 + 232q + 3226q2 + 13210q3 + 20728q4 + 13210q5 + 3226q6 + 232q7 + q8

F4 1 + 44q + 106q2 + 44q3 + q4

G2 1 + 10q + q2

H3 1 + 27q + 27q2 + q3

H4 1 + 116q + 316q2 + 116q3 + q4

I2(m) 1 + (2m − 2)q + q2

Naturally, one would like a uniform formula for the W -biCatalan number, but we have

not found one. A tantalizing near-miss is the non-formula ∏n
i=1

h+ei−1
ei

, where h is the Coxeter

number and the ei are the exponents. This expression captures the W -biCatalan numbers

for W of types An, Bn, H3, and I2(m)—the “coincidental types” of [92]—but fails to even be

an integer in some other types. In every case, the expression is a surprisingly good estimate of

the W -biCatalan number.

Section 4.2 is devoted to filling in definitions and details for the discussion above and prov-

ing the easy parts of Theorem 4.1.1. In Section 4.3, we explain why, in type A, the bipartite
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Table 4.4: The type-D biNarayana numbers

D4 1 + 20q + 42q2 + 20q3 + q4

D5 1 + 35q + 136q2 + 136q3 + 35q4 + q5

D6 1 + 54q + 343q2 + 600q3 + 343q4 + 54q5 + q6

D7 1 + 77q + 731q2 + 2011q3 + 2011q4 + 731q5 + 77q6 + q7

D8 1 + 104q + 1384q2 + 5556q3 + 8638q4 + 5556q5 + 1384q6 + 104q7 + q8

D9 1 + 135q + 2402q2 + 13314q3 + 29868q4

+29868q5 + 13314q6 + 2402q7 + 135q8 + q9

D10 1 + 170q + 3901q2 + 28624q3 + 87874q4 + 126336q5

+87874q6 + 28624q7 + 3901q8 + 170q9 + q10

bisortable elements are in bijection with alternating arc diagrams and carry out the enumer-

ation of alternating arc diagrams. We carry out a similar enumeration in type B, in terms of

centrally symmetric alternating arc diagrams. We conjecture that the bipartite biCambrian fan

is simplicial (and thus that its dual polytope is simple), and prove the conjecture in types A

and B. In Section 4.4, we discuss double-positive Coxeter-Catalan numbers and establish a for-

mula counting antichains in the doubled root poset in terms of double-positive Coxeter-Catalan

numbers. We then show that bipartite c-bisortable elements satisfy the same recursion, thus

proving Theorem 4.1.3 and completing the proof of Theorem 4.1.1. Finally, we establish some

additional formulas involving double-positive Coxeter-Catalan numbers, Coxeter-Catalan num-

bers, and Coxeter-biCatalan numbers and use them to prove the formula for biCat(Dn) and

thus complete the proof of Theorem 4.1.4.

4.2 BiCatalan objects

In this section, we fill in the definitions and details behind the enumeration problems discussed

in the introduction. An exposition in full detail would require reviewing Coxeter-Catalan com-

binatorics in full detail, so we leave some details to the references.

4.2.1 Antichains in the doubled root poset and twin nonnesting partitions

The root poset of a finite crystallographic root system Φ is the set of positive roots in Φ,

partially ordered by setting α ≤ β if and only if β − α is in the nonnegative span of the simple

roots. Recall that the dual of a poset (X,≤) is the poset (X,≥). That is, the dual has the same

ground set, with x ≤ y in the dual poset if and only if x ≥ y in the original poset. The doubled
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A5 B3 D4

D6 F4

Figure 4.1: Some doubled root posets

root poset consists of the root poset, together with a disjoint copy of the dual poset, identified

on the simple roots. Figure 4.1 shows some doubled root posets.

The antichain counts in types A and B are easy and known, in the guise of lattice path

enumeration. Antichains in the doubled root poset of type An are in an easy bijection with

lattice paths from (0,0) to (n,n) with steps (1,0) and (0,1). The bijection can be made so

that the number of elements in the antichain corresponds to the number of right turns in

the path (the number of times a (1,0)-step immediately follows a (0,1)-step). To specify a

path with k right turns, we need only specify where the right turns are. This means choosing

0 ≤ x1 < ⋯ < xk ≤ n − 1 and 1 ≤ y1 < ⋯ < yk ≤ n and placing right turns at (x1, y1), . . . , (xk, yk).
Thus, as is well-known, there are (n

k
)2

paths with k right turns.

Antichains in the doubled root poset of type Bn are similarly in bijection with lattice paths

from (−2n + 1,−2n + 1) to (2n − 1,2n − 1) with steps (2,0) and (0,2) that are symmetric with

respect to the reflection through the line y = −x. The k-element antichains correspond to paths

with either 2k right turns, (k of which are to the left of the line y = −x) or 2k − 1 right turns

(k − 1 of which are left of the line y = −x and one of which is on the line y = −x). Each path
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is uniquely determined by its first 2n − 1 steps, whereupon the path intersects the line y = −x.

Thus, the paths map bijectively to words of length 2n − 1 in the letters N and E (for North

steps (0,2) and East steps (2,0)). Appending the letter E to the end of each word, the k-

element antichains correspond to the words having exactly k positions where an E appears

immediately after an N . (The number of right turns in the path is odd if and only if one of

these is position 2n.) The 2n-letter words ending in E and having exactly k instances of an E

following an N are in bijection with 2k-element subsets of {1, . . . ,2n}. (Given such a word, take

the set of positions where the letter changes, with the convention that an N in the first position

is a change but an E in the first position is not. So, for example, ENNEEE gives the subset

{2,4} and NEEENE gives {1,2,5,6}.) We see that there are (2n
2k
) k-element antichains, and

22n−1 total antichains, in the doubled root poset of type Bn.

Remark 4.2.1. It is not clear in general how one should define a “root poset” for a noncrystal-

lographic root system. See [2, Section 5.4.1] for a discussion. In type I2(m), there is an obvious

way to define an unlabeled poset generalizing the root posets of types A2, B2, and G2. We say

“unlabeled” here because it is obvious how the poset should look but not obvious how the poset

elements should correspond to roots. There is also an unlabeled type-H3 root poset suggested

in [2, Section 5.4.1]. For these choices of root posets, one can verify that Theorem 4.1.1 holds

in these types as well.

Remark 4.2.2. The doubled root poset, and similar posets, were probably first considered

by Proctor (see [85, Remark 4.8(a)]) and then by Stembridge, as a tool for counting reduced

expressions for certain elements of finite Coxeter groups. In the simply-laced types (A, D, and E),

the doubled root poset corresponds to the smashed Cayley order defined by Stembridge in

[85, Section 4]. In the non-simply laced types, the smashed Cayley order is disconnected and is

a strictly weaker partial order than the doubled root poset. Stembridge [85, Theorem 4.6] shows

that the component whose elements are short roots is a distributive lattice. Thus in particular

the doubled root posets of types A, D, and E are distributive lattices. One can easily check

distributivity in the remaining crystallographic types B, F, and G (and in fact in types H3

and I2(m)). By the Fundamental Theorem of Distributive Lattices [81, Theorem 3.4.1], the

doubled root poset is isomorphic to the poset of order ideals in its subposet of join-irreducible

elements. These posets of join-irreducible elements are shown in Figure 4.2 for several types. An

explicit root-theoretic description of the poset of join-irreducible elements in the simply-laced

types also appears in [85, Theorem 4.6].

The support of a root β is the set of simple roots appearing with nonzero coefficient in the

expansion of β in the basis of simple roots. The support of a set of roots is the union of the

supports of the roots in the set. We write ∆ for the simple roots and, given a set A of roots,

we write A○ for the set of non-simple roots in A. If A1 and A2 are nonnesting partitions (i.e.
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A6 B6 D6 H3

F4 E6 E7 E8

Figure 4.2: Some posets of join-irreducibles of doubled root posets
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antichains in the root poset), then (A1,A2) is a pair of twin nonnesting partitions if and

only if A1 ∩∆ = A2 ∩∆, and supp(A○
1) ∩ supp(A○

2) = ∅.

Given an antichain A in the doubled root poset, define top(A) to be the intersection of A

with the root poset that forms the top of the doubled root poset. Define bottom(A) to be the

intersection of A with the dual root poset that forms the bottom of the doubled root poset. Both

top(A) and bottom(A) are sets of positive roots. The following proposition is an immediate

consequence of the observation that a root β in the top part of the doubled root poset is related

to a root γ in the bottom part of the doubled root poset if and only if the supports of β and γ

overlap.

Proposition 4.2.3. The map A ↦ (top(A),bottom(A)) is a bijection from antichains in the

doubled root poset to pairs of twin nonnesting partitions.

We pause to observe that the first biNarayana number (the number of elements of the

doubled root poset) is the number of roots minus the rank of W .

Proposition 4.2.4. If W is an irreducible finite Coxeter group with Coxeter number h and

rank n, then biNar1(W ) = n(h − 1).

4.2.2 BiCambrian fans

The Cambrian fan is a complete simplicial fan whose maximal faces are naturally in bijection

[69, 74] with seeds in an associated cluster algebra of finite type and with noncrossing partitions.

Furthermore, the Cambrian fan is the normal fan [48, 49] to a simple polytope called the gen-

eralized associahedron [20, 35], which encodes much of the combinatorics of the associated

cluster algebra. More directly, the Cambrian fan is the g-vector fan of the cluster algebra. (This

was conjectured, and proved in a special case, in [74, Section 10] and then proved in general

in [93].)

The defining data of a Cambrian fan is a finite Coxeter group W and a Coxeter element c

of W . We emphasize that the results discussed in Section 4.1 concern a special “bipartite”

choice of c, as explained below, but for now we proceed with a discussion for general c. A Cox-

eter element is the product of a permutation of the simple generators of W , or equivalently

it is an orientation of the Coxeter diagram of W . Given a choice of W , we will assume the

usual representation of W as a reflection group acting with trivial fixed subspace. The collec-

tion of reflecting hyperplanes in this representation is the Coxeter arrangement of W . The

hyperplanes in the Coxeter arrangement cut space into cones, which constitute a fan called

the Coxeter fan F(W ). The maximal cones of the Coxeter fan are in bijection with the ele-

ments of W . The Cambrian fan C(W,c) is the coarsening of the Coxeter fan obtained by gluing
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Figure 4.3: Cambrian fans and the biCambrian fan in type B2

together maximal cones according to an equivalence relation on W called the c-Cambrian con-

gruence. Further details on the c-Cambrian congruence appear in Section 4.2.3. For fixed W ,

all choices of c give distinct but combinatorially isomorphic Cambrian fans.

For each Coxeter element c, the inverse element c−1 is also a Coxeter element, corresponding

to the opposite orientation of the diagram. We define the biCambrian fan BC(W,c) to be the

coarsest common refinement of the Cambrian fans C(W,c) and C(W,c−1). Since both C(W,c)
and C(W,c−1) are coarsenings of F(W ), so is BC(W,c). Naturally, BC(W,c−1) = BC(W,c).

Example 4.2.5. To illustrate the definition, take W of type B2 with simple generators s1

and s2. Figure 4.3 shows, from left to right, the s1s2-Cambrian fan, the s2s1-Cambrian fan, and

the s1s2-biCambrian fan. Observe that the s1s2-biCambrian fan coincides with the B2 Coxeter

fan. In general, when W is rank 2, the c-biCambrian fan for any choice of Coxeter element c is

equal to the Coxeter fan F(W ).

Example 4.2.6. For W of type A3, there are two non-isomorphic c-biCambrian fans, shown

in Figures 4.4 and 4.5 respectively. Each figure can be understood as follows: Intersecting the

c-biCambrian fan with a unit sphere about the origin, we obtain a decomposition of the sphere

into spherical convex polygons. The picture shows a stereographic projection of this polygonal

decomposition to the plane. In each case, the walls of one Cambrian fan are shown in red and

the walls of the opposite Cambrian fan are shown in blue. Walls that are in both Cambrian

fans are shown dashed red and blue.

Remark 4.2.7. We observe that in Examples 4.2.5 and 4.2.6 that the common walls of C(W,c)
and C(W,c−1) are exactly the reflecting hyperplanes for the simple generators of W . This

fact true in general, and the simplest proof involves shards. We will not define shards here,

but definitions and results can be found, for example, in [71]. Assuming for a moment that

background, we sketch a proof. First, recast [75, Theorem 8.3] as the statement that the c-

Cambrian congruence removes all but one shard from each reflecting hyperplane of W . As

explained in the argument for [70, Proposition 1.3] (located in [70, Section 3] just after the

proof of [70, Theorem 1.1]), the antipodal map sends the shard that is not removed by the

c-Cambrian congruence to the shard that is not removed by the c−1-Cambrian congruence. The
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Figure 4.4: The linear biCambrian fan in type A3

Figure 4.5: The bipartite biCambrian fan in type A3
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only shards that are fixed by the antipodal map are shards that consist of an entire reflecting

hyperplane, and [71, Lemma 3.11] says that these are exactly the reflecting hyperplanes for the

simple generators.

The c−1-Cambrian fan C(W,c−1) coincides with −C(W,c), the image of the c-Cambrian fan

under the antipodal map. This is an immediate corollary of [70, Proposition 1.3], which is a

statement about the c-Cambrian congruence. See also [76, Remark 3.26]. Thus we have the

following proposition which amounts to an alternate definition of the biCambrian fan.

Proposition 4.2.8. The biCambrian fan BC(W,c) is the coarsest common refinement of C(W,c)
and −C(W,c).

Since C(W,c) and C(W,c−1) are the normal fans of two generalized associahedra, a standard

fact (see [94, Proposition 7.12]) yields the following result.

Proposition 4.2.9. For any W and c, the fan BC(W,c) is the normal fan of a polytope,

specifically, the Minkowski sum of the generalized associahedra dual to C(W,c) and C(W,c−1).

The definition of BC(W,c) seems strange a priori, but it is well-motivated a posteriori by

enumerative results. The first such result is Theorem 4.2.10 below. When W is the symmetric

group Sn (i.e. when W is of type An−1), the Coxeter diagram of W is a path. A linear Coxeter

element of Sn is the product of the generators in order along the path.

Theorem 4.2.10. When W is the symmetric group Sn and c is the linear Coxeter element,

the number of maximal cones in BC(W,c) is the Baxter number.

For more on the Baxter number, see [10, 24]. Theorem 4.2.10 was observed empirically (in

the language of lattice congruences) in [67, Section 10] and then proven by J. West [91]. See

also [43, 55]. The theorem is also related to the observation by Dulucq and Guibert [30] that

pairs of twin binary trees are counted by the Baxter number.

Once one sees that the Baxter number counts maximal cones of BC(W,c) for W of type A

and for a particular c, it is natural to look at other types of finite Coxeter group W , with the

idea of defining a “W -Baxter number” for each finite Coxeter group W . Indeed, there is a good

notion of a “type-B Baxter number” discovered by Dilks [29]. The Coxeter diagram of type B

is also a path, and taking c to be a linear Coxeter element, the maximal cones of BC(W,c)
are counted by the type-B Baxter number. Despite the nice type-B result, there seems to be

little hope for a reasonable definition of the W -Baxter number, because some types of Coxeter

diagrams are not paths and thus it is not clear how to generalize the notion of a linear Coxeter

element.

There is, however, a choice of Coxeter element that can be made uniformly for all finite

Coxeter groups. Since the Coxeter diagram of any finite Coxeter group is acyclic, the diagram
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is in particular bipartite. Thus we can fix a bipartition S+ ∪ S− of the diagram and orient each

edge of the diagram from its vertex in S− to its vertex in S+. The resulting Coxeter element

is called a bipartite Coxeter element , and if c is a bipartite Coxeter element of W , we call

BC(W,c) a bipartite biCambrian fan .

Proposition 4.2.9 says that BC(W,c) is the normal fan of a polytope, but does not guarantee

that this polytope is simple (equivalently, that this fan is simplicial). In fact, simpleness fails

for the linear Coxeter element of Sn, and this failure can be seen already in S4. (See Figure 4.4,

and also [55, Figure 13]. The latter shows the 1-skeleton of this polytope disguised as the Hasse

diagram of a certain lattice.) We conjecture that the situation is better in the bipartite case.

Conjecture 4.2.11. If W is a bipartite Coxeter element, then BC(W,c) is a simplicial fan.

(Equivalently, its dual polytope is simple.)

We have verified Conjecture 4.2.11, with the aid of Stembridge’s packages [84], up to rank 6.

Also, in Section 4.3.6, we prove the following theorem using alternating arc diagrams, by ap-

pealing to some results of [52] linking the lattice theory of the weak order to the representation

theory of finite-dimensional algebras, and then applying a folding argument.

Theorem 4.2.12. Conjecture 4.2.11 holds in types A and B.

In Section 4.2.3, we will prove the following theorem.

Theorem 4.2.13. If Conjecture 4.2.11 holds for a Coxeter group W , then the h-vector of the

simplicial sphere underlying BC(W,c), for c bipartite, has entries biNark(W ).

In light of the evidence for Conjecture 4.2.11 and in light of Theorem 4.2.13, we propose

the term simplicial W -biassociahedron for the polytope whose face fan is BC(W,c) for c

bipartite, and simple W -biassociahedron for the polytope whose normal fan is BC(W,c) for c

bipartite.

Remark 4.2.14. Theorems 4.1.5, 4.2.12, and 4.2.13 imply that the An-biassociahedron has the

same h-vector as the Bn-associahedron (also known as the cyclohedron). One is naturally led

to ask whether these two polytopes are combinatorially isomorphic. The answer is no already

for n = 3. The normal fan to the A3-biassociahedron is shown in Figure 4.5. The dual graph

to this fan has a vertex that is incident to two hexagons and a quadrilateral. The graph of the

B3-associahedron (shown for example in [32, Figure 3.9]) has no such vertex.

4.2.3 The biCambrian congruence, twin sortable elements, and bisortable

elements

A congruence Θ on a lattice L is an equivalence relation respecting the meet and join opera-

tions. As in previous chapters, we consider only finite lattices, and some results quoted in this
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section can fail for infinite lattices. On a finite lattice, congruences are characterized by three

properties: congruence classes are intervals; the projection πΘ
↓ , mapping each element to the

bottom element of its congruence class, is order preserving; and the projection π↑Θ, mapping

each element to the top element of its congruence class, is order preserving. The Θ-classes are

exactly the fibers of πΘ
↓ . The quotient L/Θ of a finite lattice L modulo a congruence Θ is a

lattice isomorphic to the subposet induced by the set πΘ
↓ (L) of elements that are the bottoms

of their congruence classes. The congruence Θ is determined by the set πΘ
↓ (L): Specifically

x ≡ y modulo Θ if and only if the unique maximal element of πΘ
↓ (L) below x equals the unique

maximal element of πΘ
↓ (L) below y.

The map πΘ
↓ is a lattice homomorphism from L onto the subposet πΘ

↓ (L), but care must be

taken to avoid misinterpreting this fact. Literally, the fact that πΘ
↓ is a lattice homomorphism

means that for any U ⊆ L, we have πΘ
↓ (⋁U) = ⋁x∈U πΘ

↓ (x) and πΘ
↓ (⋀U) = ⋀x∈U πΘ

↓ (x), but in

each identity, the join on the left side occurs in L while the join on the right side occurs in

πΘ
↓ (L). It is easy to check that πΘ

↓ (L) is also a join-sublattice of L, so the distinction between

the join in L and the join in πΘ
↓ (L) is unnecessary. However, in general, πΘ

↓ (L) need not be a

meet-sublattice of L, so in interpreting the identity πΘ
↓ (⋀U) = ⋀x∈U πΘ

↓ (x), it is crucial to be

clear on where the meets occur.

The maximal cones of the Coxeter fan F(W ), partially ordered according to a suitable

linear functional, form a lattice isomorphic to the weak order on W . (This fact is true either for

the right or left weak order. We will work with the right weak order.) Any lattice congruence Θ

on the weak order on W defines a fan FΘ(W ) coarsening F(W ). (See [67, Theorem 1.1] and

[67, Section 5].) Specifically, for each Θ-class, the union of the corresponding maximal cones in

F(W ) is itself a convex cone, and the collection of all these convex cones and their faces is the

fan FΘ(W ). Each Coxeter element c specifies a congruence Θc on the weak order called the

c-Cambrian congruence . (See [68] for the definition.) The fan FΘc(W ) is the c-Cambrian

fan C(W,c) described earlier.

The set Con(L) of all congruences on a given lattice L is itself a sublattice of the lattice

of set partitions of L. In particular, the meet of two congruences is the coarsest set partition

of L refining both congruences. We define the c-biCambrian congruence to be the meet,

in Con(W ), of the Cambrian congruences Θc and Θc−1 . The fan FΘ(W ) for Θ = Θc ∧ Θc−1 is

the coarsest common refinement of F(Θc(W )) and F(Θc−1(W )). Thus the c-biCambrian fan

BC(W,c) is the fan FΘ(W ) for Θ = Θc∧Θc−1 . In particular, the c-biCambrian congruence classes

are in bijection with the maximal cones of BC(W,c). We define the c-biCambrian lattice to

be the quotient of the weak order modulo the c-biCambrian congruence. The elements of the

c-biCambrian lattice are thus in bijection with the maximal cones of BC(W,c).
We write πc↓ for the projection taking each element of W to the bottom element of its

c-Cambrian congruence class, and similarly πc
−1
↓ . (That is, πc↓ stands for πΘ

↓ where Θ = Θc.)
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Consider the map that sends each c-biCambrian congruence class to the pair (πc↓(w), πc−1↓ (w)),
where w is any representative of the class. Because the c-biCambrian congruence Θ is the meet

Θc ∧ Θc−1 , two elements u and v are congruent in the c-biCambrian congruence if and only

if πc↓(u) = πc↓(v) and πc
−1
↓ (u) = πc−1↓ (v). Thus, the map from classes to pairs is a well-defined

bijection from c-biCambrian congruence classes to its image.

The bottom elements of the c-Cambrian congruence are called c-sortable elements. (In

fact c-sortable elements have an independent combinatorial definition [69, Section 2], but were

shown to be the bottom elements of c-Cambrian congruences in [70, Theorems 1.1 and 1.4].)

Given elements u and v of W , we define the pair (u, v) to be a pair of twin (c, c−1)-sortable

elements of W if there exists w ∈W such that u = πc↓(w) and v = πc−1↓ (w). The map considered

in the previous paragraph is a bijection between c-biCambrian congruence classes and pairs

of twin (c, c−1)-sortable elements of W . The twin sortable elements are similar in spirit to the

twin binary trees of [30], which were already mentioned in connection with Theorem 4.2.10.

Indeed, for W of type A and c linear, the connection is implicit in the construction in [55] of a

diagonal rectangulation from a pair of binary trees. (See also [55, Remark 6.6].) Also in type A,

but for general c, the twin binary trees are generalized in [22] to twin Cambrian trees, which

correspond explicitly to pairs of twin (c, c−1)-sortable elements. Indeed, [22, Proposition 57]

amounts to another computation of the type-A biCatalan number, quite different from the two

given here (in Sections 4.2.1 and 4.3.4).

Another set of objects naturally in bijection with c-biCambrian congruence classes are the

bottom elements of c-biCambrian congruence classes. We coin the term c-bisortable elements

for these bottom elements. Although the c-sortable elements have a direct combinatorial char-

acterization [69, Section 2], we currently have no direct combinatorial characterization of c-

bisortable elements. We do offer the following indirect characterization of c-bisortable elements

in terms of c-sortable elements and c−1-sortable elements.

Proposition 4.2.15. For any c, an element w ∈W is c-bisortable if and only if there exists a

c-sortable element u and a c−1-sortable element v such that w = u ∨ v in the weak order. When

w is c-bisortable, we can take u = πc↓(w) and v = πc−1↓ (w).

Proof. Given c-bisortable w, take u = πc↓(w) and v = πc−1↓ (w). Then u ≤ w and v ≤ w. Since

Cambrian congruence classes are intervals, any upper bound w′ for u and v with w′ ≤ w is

congruent to u modulo Θc and congruent to v modulo Θc−1 . Thus w′ is congruent to w in the

c-biCambrian congruence. Since w is the bottom element of its c-biCambrian congruence class,

we conclude that w′ = w. We have shown that w = u ∨ v.

Suppose w = u∨v for some c-sortable element u and some c−1-sortable element v. Since πc↓(w)
is the unique maximal c-sortable element below w, we have πc↓(w) ≥ u. Similarly, πc

−1
↓ (w) ≥ v.

If there exists w′ < w in the same c-biCambrian congruence class as w, then w′ ≥ πc↓(w′),

90



πc↓(w′) = πc↓(w) ≥ u, and w′ ≥ πc−1↓ (w′) = πc−1↓ (w) ≥ v. This contradicts the fact that w = u ∨ v,

and we conclude that w is c-bisortable.

Recall that for any congruence Θ on a finite lattice L, the set πΘ
↓ (L) is a join-sublattice of L.

The Cambrian congruences have a stronger property: For any Coxeter element c, the c-sortable

elements constitute a sublattice [70, Theorem 1.2] of the weak order on W . It is natural to ask

whether the same is true for c-bisortable elements, but the answer is no. We give an example

for W = S5 and bipartite c: The permutations 45312 and 53142 are both c-bisortable but their

meet 31452 is not. (To check this example, Proposition 4.3.6 will be very helpful.)

Each c-bisortable element v covers some number of elements in the c-biCambrian lattice.

By a general fact on lattice quotients (see for example [71, Proposition 6.4]), v covers the same

number of elements in the weak order on W . This number is des(v), the number of descents of v.

(We will define descents in Section 4.4.5.) The descent generating function of c-bisortable

elements is the sum ∑xdes(v) over all c-bisortable elements v. We will show that its coefficients

are the W -biNarayana numbers. Its coefficients are the W -biNarayana numbers. A general fact

about lattice quotients of the weak order [67, Proposition 3.5] implies that, when BC(W,c) is

simplicial, the descent generating function of c-bisortable elements equals the h-polynomial of

BC(W,c). In the bipartite case, Theorem 4.2.13 follows immediately.

4.2.4 Twin clusters and bicluster fans

Clusters of almost positive roots were introduced in [35], where they were used to define the

generalized associahedra. In [36], clusters of almost positive roots were used to model cluster

algebras of finite type. Here, we will not need the cluster-algebraic background, which can be

found in [36]. Instead, we define almost positive roots and c-compatibility and quote some

results about c-clusters and their relationship to c-sortable elements. We will also not need the

more refined notion of “compatibility degree.”

In a finite root system, the almost positive roots are those roots which either are positive,

or are the negatives of simple roots. The definition of compatibility in [35] is a special case

(namely the bipartite case) of what we here call c-compatibility. The general definition was

given in [56], but here we give a rephrasing found in [69, Section 7], translated into the language

of almost positive roots.

We write {α1, . . . , αn} for the simple roots and {s1, . . . , sn} for the simple reflections. For

each i in {1, . . . , n}, we define an involution σi on the set of almost positive roots by

σi(β) ∶=
⎧⎪⎪⎨⎪⎪⎩

β if β = −αj with j ≠ i, or

siβ otherwise.
(4.2.1)
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We write [β ∶ αi] for the coefficient of αi in the expansion of β in the basis of simple roots. A

simple reflection si is initial in a Coxeter element c if c has a reduced word starting with si.

If si is initial in c, then sicsi is another Coxeter element.

The c-compatibility relations are a family of symmetric binary relations ∥c on the almost

positive roots. They are the unique family of relations with

(i) For any i in {1, . . . , n}, and Coxeter element c,

−αi ∥c β if and only if [β ∶ αi] = 0.

(ii) For each pair of almost positive roots β1 and β2, each Coxeter element c, and each si

initial in c,

β1 ∥c β2 if and only if σi(β1) ∥sicsi σi(β2).

The c-clusters are the maximal sets of pairwise c-compatible almost positive roots. By

[35, Theorem 1.8] and [56, Proposition 3.5], for fixed W , all c-clusters are of the same size,

and furthermore, each is a basis for the root space (the span of the roots). Write R≥0C for the

nonnegative linear span of a c-cluster C. Then [35, Theorem 1.10] and [56, Theorem 3.7] state

that the cones R≥0C, for all c-clusters C, are the maximal cones of a complete simplicial fan.

We call this fan the c-cluster fan .

We define the c-bicluster fan to be the coarsest common refinement of the c-cluster fan

and its antipodal opposite. A pair (C1,C2) of c-clusters is called a pair of twin c-clusters if

the cones R≥0C1 and −R≥0C2 (the nonpositive linear span of C2) intersect in a full-dimensional

cone. It is immediate that maximal cones in the c-bicluster fan are in bijection with pairs of

twin c-clusters.

Example 4.2.16. For W of type A3, up to symmetry there are two different c-bicluster fans:

one for linear c and one for bipartite c, shown in Figures 4.6 and 4.7 respectively. These are

again stereographic projections as explained in Example 4.2.6.

The two fans in Example 4.2.16 are combinatorially isomorphic. Despite this tantalizing

fact, in this chapter, we only explore bicluster fans in the special case of bipartite Coxeter

elements (the original setting of [35, 36]), where they are easily related to biCambrian fans. For

the bipartite choice of c, [74, Theorem 9.1] says that the c-Cambrian fan is linearly isomorphic

to the cluster fan. Combining this fact with Proposition 4.2.8, we have the following theorem.

Theorem 4.2.17. For all finite Coxeter groups W and for bipartite of c, the c-bicluster fan

is linearly isomorphic to the c-biCambrian fan.
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α3

−α3

Figure 4.6: The linear bicluster fan in type A3

α1

−α1

α2

−α2

α3

−α3

Figure 4.7: The bipartite bicluster fan in type A3
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Because of the bijection between c-bisortable elements and maximal cones in BC(W,c) and

the bijection between maximal cones in the c-bicluster fan and pairs of twin c-clusters, we have

the following immediate consequence of Theorem 4.2.17.

Theorem 4.2.18. For all finite Coxeter groups W , c-bisortable elements for bipartite c are in

bijection with pairs of twin c-clusters.

Combining Theorems 4.2.13 and 4.2.17, we obtain the following theorem.

Theorem 4.2.19. If Conjecture 4.2.11 holds for a Coxeter group W , then the bipartite c-

bicluster fan is simplicial and the h-vector of the underlying simplicial sphere has entries

biNark(W ).

4.2.5 Twin noncrossing partitions

The absolute order on a finite Coxeter group W is the prefix order (or equivalently the subword

order) on W relative to the generating set T , the set of reflections in W . (By contrast, the prefix

order relative to the simple reflections S is the weak order, while the subword order relative to

S is the Bruhat order.) We will use the symbol ≤T for the absolute order. The c-noncrossing

partitions in a finite Coxeter group W are the elements of W contained in the interval [1, c]T
in the absolute order on W . For details on the absolute order and noncrossing partitions, see

for example [2, Chapter 2]. For our purposes, the key fact is a theorem of Brady and Watt.

Let W be a finite Coxeter group of rank n represented as a reflection group in Rn and let

T be the set of reflections of W . For each reflection t ∈ T , let βT be the corresponding positive

root. Given w ∈ [1, c]T , define a cone

Fc(w) = {x ∈ Rn ∶ x ⋅ βt ≤ 0 ∀ t ≤T w, x ⋅ βt ≥ 0 ∀ t ≤T cw−1} .

The following theorem combines [17, Theorem 1.1] with [17, Theorem 5.5].

Theorem 4.2.20. For c bipartite, the map Fc is a bijection from [1, c]T to the set of maximal

cones in the c-Cambrian fan.

The astute reader will notice a difference between our definition of Fc and the definition

appearing in [17, Section 1]. The set of reflections t such that t ≤T w is the intersection of T

with some (non necessarily standard) parabolic subgroup of W . The definition in [17] imposes

inequalities x ⋅ βt ≤ 0 only for those βt that are simple roots for that parabolic subgroup. Our

definition imposes additional inequalities, all of which are implied by the inequalities for the

simple roots. We similarly add additional redundant inequalities of the form x ⋅ βt ≥ 0.

Theorem 4.2.20 suggests a definition of twin noncrossing partitions. In fact, given Proposi-

tion 4.2.8, two natural definitions suggest themselves. Given u, v ∈ [1, c]T , we call (u, v) a pair
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of twin c-noncrossing partitions if Fc(u) ∩ (−Fc(v)) is full-dimensional. Similarly, given

u ∈ [1, c]T and v ∈ [1, c−1]T , we call (u, v) a pair of twin (c, c−1)-noncrossing partitions

if Fc(u) ∩ Fc−1(v) is full-dimensional. Theorem 4.2.20 now immediately implies the following

theorem.

Theorem 4.2.21. For all W and bipartite c, the c-bisortable elements are in bijection with

pairs of twin c-noncrossing partitions and with pairs of twin (c, c−1)-noncrossing partitions.

4.3 Bipartite c-bisortable elements and alternating arc diagrams

In this section, we show how bipartite c-bisortable elements of type A are in bijection with

certain objects called alternating arc diagrams. We then prove the type-A enumeration of

bipartite c-bisortable elements in Theorem 4.1.1 by counting alternating arc diagrams and

prove the type-B enumeration by counting centrally symmetric alternating arc diagrams.

4.3.1 Pattern avoidance

The Coxeter group of type An is the symmetric group Sn+1. We will write permutations x

in Sn+1 in their one-line notations x1⋯xn+1. In the weak order on permutations in Sn+1, there

is a cover x1⋯xn+1 <⋅ y1⋯yn+1 if and only if there exists i such that yi = xi+1 > xi = yi+1 and

yj = xj for j /∈ {i, i + 1}. We say that x is covered by y via a swap in positions i and i + 1.

The Cambrian congruences on Sn+1 are described in detail in [68]. We quote part of the

description here. The simple generator si for An is the transposition (i i+1), for i = 1,2, . . . n.

Each Coxeter element c can be encoded by a coloring of the elements 2, . . . , n that we call a

barring . Each element i is either overbarred and marked i if si occurs before si−1 in every

reduced word for c, or underbarred and marked i if si occurs after si−1 in every reduced word

for c. Passing from c to c−1 means swapping overbarring with underbarring.

We say x is obtained from y by a 231 → 213 move if x is covered by y via a swap in

positions i and i + 1, for some i, and if there exists an overbarred element xj with j < i and

xi < xj < xi+1. Similarly, x is obtained from y by a 312 → 132 move if x is covered by y via

a swap in positions i and i + 1, for some i, and if there exists an underbarred element xj with

i + 1 < j and xi < xj < xi+1. Combining [68, Proposition 5.3] and [68, Theorem 6.2], we obtain

the following proposition:

Proposition 4.3.1. Suppose x and y are permutations in Sn+1 with x <⋅ y in the weak order,

and assume that the numbers 2, . . . , n have been barred according to c. Then x and y are in the

same c-Cambrian congruence class if and only if x is obtained from y by a 231→ 213 move or

a 312→ 132 move.
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As an immediate corollary, we see that a permutation y is the bottom element of its c-

Cambrian congruence class (i.e. is c-sortable) if and only if none of the permutations covered

by y are obtained from y by a 231→ 213 move or a 312→ 132 move. In other words, there is no

subsequence bca of y with a < b < c, with c immediately preceding a, and with b overbarred and

no subsequence cab of y with a < b < c, with c immediately preceding a, and with b underbarred.

In this case, we say that y avoids 231 and 312.

We can similarly describe bottom elements of c-biCambrian congruence classes (the c-

bisortable elements), keeping in mind that passing from c to c−1 means swapping overbarring

with underbarring: An element y is the bottom element of its c-biCambrian congruence class

if and only if none of the permutations covered by y are obtained from y by a 231 → 213 or

312 → 132 move that is also a 231 → 213 or 312 → 132 move. Thus c-bisortable permutations

are described by a complicated pattern-avoidance condition that we will only describe, later,

for the case of bipartite c, where it becomes much simpler.

4.3.2 Noncrossing arc diagrams

We now review the notion of noncrossing arc diagrams from [72]. Beginning with n + 1

distinct points on a vertical line, numbered 1, . . . , n + 1 from bottom to top, we draw some

(or no) curves called arcs connecting the points. Each arc moves monotone upwards from one

of the points to another, passing either to the left or to the right of each point in between.

Furthermore no two arcs may intersect in their interiors, no two arcs share the same upper

endpoint, and no two arcs may share the same lower endpoint. We consider arc diagrams only

up to their combinatorics, i.e. which pairs of points are joined by an arc and which points are

left and right of each arc.

Given a permutation x1⋯xn+1 in Sn+1, we define a noncrossing arc diagram δ(x1⋯xn+1).
Each descent xi > xi+1 becomes an arc α in δ(x1⋯xn+1) with lower endpoint xi+1 and upper

endpoint xi. For each integer j with xi+1 < j < xi that occurs to the left of xi in x1⋯xn+1, the

point j is left of the arc α. For each integer j with xi+1 < j < xi that occurs to the right of xi+1

in x1⋯xn+1, the point j is right of the arc α. It was shown in [72, Theorem 3.1] that δ is a

bijection from permutations to noncrossing arc diagrams. More specifically, for each k, the map

δ restricts to a bijection from permutations with k descents to noncrossing arc diagrams with

k arcs.

A c-sortable arc is an arc that belongs to δ(v) for some c-sortable permutation v. The

following characterization of c-sortable arcs in terms of the barring associated to c is immediate

from the pattern-avoidance description above. (Compare [72, Example 4.9].)

Proposition 4.3.2. For W = An and any c, the c-sortable arcs are the arcs that do not pass to

the left of any underbarred element of {2, . . . , n} and do not pass to the right of any overbarred
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element of {2, . . . , n}.

In particular, since c and c−1 correspond to opposite barrings, the only arcs that are both c

and c−1-sortable are the arcs that connect adjacent endpoints i and i + 1.

Combining the above descriptions of c-sortable and c-bisortable elements in terms of over-

barred and underbarred elements, we obtain the following proposition.

Proposition 4.3.3. For W = An and any c, the map δ restricts to a bijection from c-bisortable

permutations with k descents to noncrossing arc diagrams on n+ 1 vertices with k arcs, each of

which is either c or c−1-sortable.

Proof. Suppose x = x1⋯xn is a permutation such that δ(x) has an arc that is neither c-sortable

nor c−1-sortable. This arc has upper endpoint xi and lower endpoint xi+1 for some i and it

fails the conclusion of Proposition 4.3.2 for c and for c−1. That is, it either passes left of an

underbarred element or right of an overbarred element and it either passes left of an overbarred

element or right of an underbarred element. Thus, switching xi with xi+1 is both a 231 → 213

or 312 → 132 move and a 231 → 213 or 312 → 132 move. Therefore, x is not c-bisortable. The

argument is easily reversed to prove the converse.

Alternately, Proposition 4.3.3 follows from the description of the c-biCambrian congruence

as the meet of the c-Cambrian and c−1-Cambrian congruences.

4.3.3 Alternating arc diagrams

We now consider the case where c is bipartite. Let c+ be the product of the simple generators si

where i is even, and c− be the product of the simple generators si where i is odd. The bipartite

Coxeter elements in An are c+c− and its inverse c−c+. The barring associated to c+c− has all

even numbers overbarred and all odd numbers underbarred. A right-even alternating arc

is an arc that passes to the right of even vertices and to the left of odd vertices. A left-even

alternating arc is an arc that passes to the left of even vertices and to the right of odd vertices.

A right-even alternating arc diagram is a noncrossing arc diagram all of whose arcs are

right-even alternating, and left-even alternating arc diagrams are defined analogously. The

following proposition is an immediate consequence of Proposition 4.3.2.

Proposition 4.3.4. Suppose W = An and c is the bipartite Coxeter element c+c−.

1. The map δ restricts to a bijection from c-sortable permutations to right-even alternating

arc diagrams.

2. The map δ restricts to a bijection from c−1-sortable permutations to left-even alternating

arc diagrams.
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Figure 4.8: Some alternating noncrossing arc diagrams

In each case, δ restricts further to send permutations with k descents bijectively to arc diagrams

with k arcs.

An alternating arc is an arc that is either right-even alternating or left-even alternating

or both. We call a noncrossing arc diagram consisting of alternating arcs an alternating arc

diagram . Figure 4.8 shows several alternating noncrossing arc diagrams. From left to right,

they are δ(5371624), δ(6473125), and δ(4275136). The following proposition is the bipartite

case of Proposition 4.3.3.

Proposition 4.3.5. For W = An and c bipartite, the map δ restricts to a bijection from c-

bisortable permutations with k descents to alternating arc diagrams on n+ 1 points with k arcs.

Observe that an arc fails to be alternating if and only if it passes on the same side of two

consecutive numbers. Thus, we obtain the following simpler description of the pattern avoidance

condition defining bipartite c-bisortable elements.

Proposition 4.3.6. If c is the bipartite Coxeter element c+c− of An, a permutation x = x1⋯xn+1

is c-bisortable if and only if, for every descent xi > xi+1, there exists no k with xi+1 < k < k+1 < xi
such that k and k+1 are on the same side of the descent (i.e. k and k+1 both left of xi or both

right of xi+1).

The condition in Proposition 4.3.6 is that x avoids subsequences dabc, dacb, bcda, and cbda

with a < b < c < d, with d and a adjacent in position, and with b and c being adjacent in value.

This is an instance of bivincular pattern avoidance in the sense of [15, Section 2]. We will not

review the notation for bivincular patterns from [15], but we restate Proposition 4.3.6 in that

notation as follows:

Proposition 4.3.7. For c bipartite, a permutation is c-bisortable if and only if it avoids the

bivincular patterns (2341,{3} ,{2}), (3241,{3} ,{2}), (4123,{1} ,{2}), and (4132,{1} ,{2}).
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4.3.4 Counting alternating arc diagrams

Let [n] denote the set {1,2, . . . , n}. To prove the type-A enumeration of bipartite c-bisortable

elements in Theorem 4.1.1, we give a bijection π from noncrossing alternating arc diagrams on

n + 1 vertices with k arcs to pairs (S,T ) of subsets of [n] with ∣S∣ = ∣T ∣ = k.

To describe the bijection, we begin with the case k = 1. Recall that we number the endpoints

in a diagram 1, . . . , n + 1 from bottom to top. Suppose Σ is an alternating arc diagram whose

only arc connects i to j with i < j. If the arc is right-even alternating, define π(Σ) to be

({i} ,{j − 1}). If the arc is left-even alternating, define π(Σ) to be ({j − 1} ,{i}). (Any arc that

is both right-even alternating and left-even alternating has j = i + 1. The bijection sends this

arc to ({i} ,{i}).)
Now suppose that Σ is a noncrossing arc diagram with more than one arc. Whenever we

encounter a right-even alternating arc in Σ with endpoints i < j, we put i into S and j−1 into T ;

whenever we encounter a left-even alternating arc with endpoints i < j we put j −1 into S and i

into T . More precisely, suppose that Σ is an alternating arc diagram with k arcs. Let S′ denote

the set of numbers i such that i is bottom endpoint of a right-even alternating arc in Σ and

let S′′ denote the set of numbers j − 1 such that j is the top endpoint of a left-even alternating

arc in Σ. Let T ′ denote the set of numbers j′ −1 such that j′ is the top endpoint of a right-even

alternating arc in Σ and let T ′′ denote the set of numbers i′ such that i′ is the bottom endpoint

of a left-even alternating arc. The map π sends Σ to the pair (S′ ∪ S′′, T ′ ∪ T ′′).

Theorem 4.3.8. The map π is a bijection from the set of alternating arc diagrams on n + 1

points to the set of pairs of subsets of [n] of the same size. For each k, the bijection restricts

to a bijection from alternating arc diagrams with k arcs to pairs of subsets of size k.

In preparation for the proof of Theorem 4.3.8, we will break each alternating diagram into

smaller pieces. Two alternating arcs with endpoints i < j and i′ < j′ overlap if the intersection

of the sets {i, . . . , j−1} and {i′, . . . , j′−1} is nonempty. Informally, the arcs overlap if some part

of one arc passes along side of the other arc. (If they only touch at their endpoints but don’t pass

along side one another, then they do not overlap). Given a collection E of arcs, we can define

an “overlap graph” with vertices E and edges given by overlapping pairs in E . We say that the

collection E is overlapping if this overlap graph is connected. Each noncrossing diagram can

be broken into overlapping components, maximal overlapping collections of arcs. The definition

of alternating arc diagrams and the definition of right-even and left-even alternating arcs let

us immediately conclude that two distinct arcs appearing in the same alternating arc diagram,

one right-even alternating and one left-even alternating, cannot overlap. We have proved the

following fact.

Proposition 4.3.9. Each overlapping component of an alternating arc diagram fits exactly one

of the following descriptions: (1) It consists of right-even alternating arcs that are not left-even
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alternating; (2) It consists of left-even alternating arcs that are not right-even alternating; or

(3) it consists of a single arc that is right-even and left-even alternating (and thus connects two

adjacent points).

Proposition 4.3.9 implies that, on each overlapping component, the map π collects all of the

top endpoints of the arcs into one set, and all of the bottom endpoints into the other set.

Now we describe how to break an alternating diagram Σ into its overlapping components.

Let P (Σ) be the set of numbers p ∈ [n + 1] such that no arc in Σ passes left or right of p. (A

point p ∈ P (Σ) may still be an endpoint of one or two arcs.) Write P (Σ) = {p0, . . . , pm} with

p0 < ⋯ < pm. In every case, p0 = 1 and pm = n + 1. For each i, we claim that an arc in Σ has

its lower endpoint in {pi−1, pi−1 + 1, . . . , pi − 1} if and only if it has its upper endpoint in the set

{pi−1 + 1, pi−1 + 2, . . . , pi}. Indeed, if an arc has a lower endpoint in {pi−1, pi−1 + 1, . . . , pi − 1},

then since it cannot pass on either side of pi, it must end at a number in {pi−1 + 1, . . . , pi}.

A similar argument proves the converse, so we have established the claim. Let Σi denote the

set of arcs with lower endpoints in {pi−1, pi−1 + 1, . . . , pi − 1} (and thus with upper endpoints

in the set {pi−1 + 1, pi−1 + 2, . . . , pi}). By construction, Σi is an overlapping component, and all

overlapping components are Σi for some i. Let (Si, Ti) be the image of Σi under π, so that

π(Σ) = (⋃mi=1 Si , ⋃mi=1 Ti).
We say that two arcs are compatible if there is a noncrossing arc diagram containing both

arcs. Our next task is to understand for which pairs (s, t) and (s′, t′) there exists an overlapping

pair of compatible alternating arcs, one with endpoints s and t + 1 and one with endpoints s′

and t′ + 1. Since the arcs must overlap but may not share the same bottom endpoint and may

not share the same top endpoint, and taking without loss of generality s < s′, there are only

two cases. These cases are covered by the following two lemmas, which are easily verified.

Lemma 4.3.10. Suppose s < s′ ≤ t < t′. Then there exist two compatible alternating arcs, one

with endpoints s and t + 1 and one with endpoints s′ and t′ + 1 if and only if s′ and t have

the same parity. The pair of arcs can be chosen in exactly two ways, either both as right-even

alternating arcs or both as left-even alternating arcs.

Lemma 4.3.11. Suppose s < s′ < t′ < t. Then there exist two compatible alternating arcs, one

with endpoints s and t + 1 and one with endpoints s′ and t′ + 1 if and only if s′ and t′ have

opposite parity. The pair of arcs can be chosen in exactly two ways, either both as right-even

alternating arcs or both as left-even alternating arcs.

Given a pair (S,T ) of k-subsets of [n], we will always write S = {s1, . . . , sk} with s1 < ⋯ < sk
and T = {t1, . . . , tk} with t1 < ⋯ < tk. Define Q(S,T ) to be the set of numbers q ∈ [n + 1] such

that, for all j from 1 to k, neither sj < q ≤ tj , nor tj < q ≤ sj .

Lemma 4.3.12. Let Σ be an alternating arc diagram. Then Q(π(Σ)) = P (Σ).
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Proof. Write (S,T ) for π(Σ). If p ∈ P (Σ), then no arc passes left or right of p. Thus there

exists k such that sj and tj are less than p for all j ≤ k and sj and tj are greater than or equal

to p for all j > k. We see that p ∈ Q(S,T ).
Suppose that q ∈ (Q,S), and there exists some arc α that passes to the left or right of q.

The arc α belongs to some overlapping component of Σ, and each pair si, ti in the image of a

different component satisfies si, ti < q or si, ti > q. Thus, we may as well assume that Σ consists

of a single overlapping component. Write π(Σ) = ({s1, . . . , sk} ,{t1, . . . , tk}) with s1 < ⋯ < sk
and t1 < ⋯ < tk. Lemma 4.3.9 says that Σ consists of either right-even overlapping arcs or left-

even overlapping arcs. Without loss of generality, we assume that Σ consists of only right-even

overlapping arcs, so that {s1, . . . , sk} is the set of bottom endpoints of those arcs. Thus, si ≤ ti
for each i = 1,2, . . . , k. Let si be the bottom endpoint of α, and let l be the largest number

such that sl < q. We make two observations. First, α must connect si with tj + 1, where j is

strictly greater than i (otherwise si < q < tj + 1 ≤ ti), and j is strictly greater than l (otherwise

sj < q ≤ tj). Second, tl+1 ≥ q > tl, because tl+1 ≥ sl+1 ≥ q > tl ≥ sl. We conclude that each

number in the set of bottom endpoints {sl+1, sl+2, . . . , sk} must connect with a number in the

set {tl+1 + 1, . . . , tk + 1}. Since tj + 1 is already connected to si, there is some number in the set

{tl+1 + 1, . . . , tk + 1} that is the top endpoint of two arcs, and that is a contradiction.

We are now prepared to prove the main theorem of this section.

Proof of Theorem 4.3.8. We first show that π is well-defined. Since each arc in Σ contributes

exactly one of its endpoints to S′ ∪S′′ and the other to T ′ ∪T ′′, both S′ ∪S′′ and T ′ ∪T ′′ have

size k as long as each contribution to S′ ∪ S′′ is distinct and each contribution to T ′ ∪ T ′′ is

distinct. Each contribution to S′ is distinct because no two arcs share the same lower endpoint,

and each contribution to S′′ is distinct because no two arcs share the same upper endpoint.

Proposition 4.3.9 implies that a right-even alternating arc with bottom endpoint i and a distinct

left-even alternating arc with top endpoint i + 1 are not compatible. Thus the only elements

of S′ ∩ S′′ come from arcs that are both right-even alternating and left-even alternating, and

we see that each contribution to S′ ∪ S′′ is distinct. The symmetric argument shows that each

contribution to T ′∪T ′′ is distinct. We have shown that π is a well-defined map from alternating

arc diagrams with k arcs to pairs of k-element subsets of [n].
We complete the proof by exhibiting an inverse η to π. Let (S,T ) be a pair of k-element

subsets of [n]. Write Q(S,T ) = {q0, . . . , qm} with q0 < ⋯ < qm. For each i from 1 to m, define

Si = S ∩{qi−1, qi−1 + 1, . . . , qi − 1} and Ti = T ∩{qi−1, qi−1 + 1, . . . , qi − 1}. We claim that ∣Si∣ = ∣Ti∣,
and more specifically, that sj ∈ Si if and only if tj ∈ Ti. Indeed, suppose sj ∈ Si, so that

qi−1 ≤ sj < qi. If tj < qi−1, then tj < qi−1 ≤ sj , contradicting the fact that qi−1 ∈ Q(S,T ). If

tj ≥ qi, then sj < qi ≤ tj , contradicting the fact that qi ∈ Q(S,T ). We conclude that tj ∈ Ti. The

symmetric argument completes the proof of the claim.
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Now, in light of Lemma 4.3.12 and the definition of π, by subtracting qi−1 − 1 from each

element of Si and Ti, we reduce to the case where m = 1 and thus Q = {1, n + 1} and (S1, T1) =
(S,T ). In particular, all of the arcs in the diagram η(S,T ) are right-even alternating, or all of

the arcs are left-even alternating. If n = 1, then either (S,T ) = (∅,∅), in which case η(S,T )
has no arc, or (S,T ) = ({1} ,{1}), in which case η(S,T ) has an arc connecting 1 and 2.

If n > 1, then we observe that the element 1 must be in S or in T but must not be in both.

Indeed, if 1 is in neither set or in both, we see that 2 ∈ Q(S,T ), and this is a contradiction.

In particular, we will need to construct an arc whose lower endpoint is 1 and whose upper

endpoint is above 2. This arc will pass by 2, and so it is either right-even alternating or left-

even alternating (but not both). If 1 ∈ S, then the corresponding arc is right-even alternating,

and if 1 ∈ T this arc is left-even alternating. Without loss of generality, we assume 1 ∈ S, so that

each i in S is a bottom endpoint and for each j in T , j + 1 is a top endpoint of a right-even

alternating arc in η(S,T ). To complete the proof, we show that there is a unique way to pair

off each bottom endpoint in S with a top endpoint in T so that the union of the resulting arcs

is a noncrossing arc diagram. Since the arcs in the diagram are all right-even alternating, we

must pair each element of S with a larger element of T .

We first decide which element of T we should pair with sk. Because sk is the maximum

element of S, Lemma 4.3.10 implies that we must pair sk with some t′ such that the set

{t ∈ T ∶ sk < t < t′, t − sk odd} is empty. Similarly, Lemma 4.3.11 implies that we must either

pair sk with tk or pair sk with some t′ such that t′ − sk is odd. Furthermore, if we choose t′

according to those two rules, no matter how we pair the remaining elements of S and T , the arcs

produced will be compatible with the arc whose bottom endpoint is sk. We are forced to pair

sk with min{t ∈ T ∶ t ≥ sk, t − sk odd}, or with tk if {t ∈ T ∶ t ≥ sk, t − sk odd} = ∅. By induction

on k, there is a unique way to pair the elements of S∖{sk} with the elements of T ∖{t′} to make

a noncrossing alternating diagram. Putting in the pair (sk, t′) we obtain the unique pairing of

elements of S with elements of T to make a noncrossing alternating diagram. The base of the

induction is where k = 1. Here existence of a pairing is trivial and uniqueness comes from the

requirement that the arc whose bottom endpoint is 1 must be right-even alternating.

Remark 4.3.13. The proof of Theorem 4.3.8 provides key insights that lead to our proof

of Theorems 4.1.2 and 4.1.3. When we generalize beyond type A, the role of the arcs in an

alternating arc diagram will be played by the canonical joinands of a bipartite c-bisortable

element. (The latter are defined in Section 4.4.3. For the connection between arcs and canonical

join representations, see [72, Section 3].) The fact that distinct right-even alternating and left-

even alternating arcs do not overlap translates into the fact that, for c bipartite, c and c−1-

sortable join-irreducible permutations have disjoint support—a fact that we will prove uniformly

in Section 4.4.5.
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In light of the proof of Theorem 4.3.8, we might count alternating arc diagrams Σ with n+1

points in the following way: First, choose the set P (Σ) = {p0, . . . , pm} with p0 < ⋯ < pm. When

pi+1 = pi + 1, choose either to connect pi to pi + 1 with an arc or not. When pi+1 > pi + 1, choose

either to use right-even alternating or left-even alternating arcs, and construct a diagram on

the points pi, . . . , pi+1, such that for every j with pi + 1 ≤ j ≤ pi+1 − 1, some arc passes left or

right of j. Once we fix the type of arc (right-even or left-even alternating), the number of such

diagrams on pi, . . . , pi+1 is the number that in Section 4.4 will be called the double-positive

Catalan number Cat++(Am) for m = pi+1−pi. The proof of Theorems 4.1.2 and 4.1.3 generalizes

this method of counting and shows that a corresponding method also counts antichains in the

doubled root poset.

Remark 4.3.14. Looking ahead to Section 4.4, the previous remark implies an interpretation

of the type-A double-positive Narayana number which—after some combinatorial manipula-

tions that amount to changing from a bipartite Coxeter element to a linear Coxeter element—

coincides with the interpretation given in [7, Theorem 1.1].

4.3.5 Enumerating bipartite c-bisortable elements in type B

In this section, we use certain alternating arc diagrams to prove the enumeration of bipartite

c-bisortable elements of type B given in Theorem 4.1.1. We first analyze the c-biCambrian

congruence on the weak order for Bn. In order to reuse much of our work from Section 4.3.4,

we realize the weak order on Bn as a sublattice of the weak order on A2n−1, through the usual

signed-permutation model.

In any finite Coxeter group, the map y ↦ w0yw0 is a rank-preserving automorphism of weak

order (where w0 is the longest element). It is a well-known fact (and an easy exercise) that for

any lattice automorphism, the set of fixed points of the automorphism is a sublattice. When W

is A2n−1 it is easy to check that the set of fixed points of this map is a Coxeter group isomorphic

to Bn. (For example, take as simple generators the fixed points sis2n−1−i for i < n, and sn.)

Writing each x in A2n−1 as a permutation of the set {±1,±2, . . . ,±n} with full one-line

notation x−nx−n+1⋯x−1x1⋯xn−1xn, conjugation by w0 acts by negating all of the entries of x

and reversing its order. The fixed points of this automorphism are the signed permutations

on {±1,±2, . . . ,±n}, meaning the permutations which satisfy xi = −x−i. The subposet of the

weak order on A2n−1 induced by the signed permutation is a sublattice, isomorphic to the weak

order on Bn. Because xi = −x−i, it is convenient to write signed permutations in an abbreviated

notation as x1x2⋯xn.

It is easy to check that the signed permutation y1 . . . yn (written in abbreviated notation)

covers x1 . . . xn in the weak order on Bn if and only if one of the two following conditions is

satisfied: Either yi = xi+1 > xi = yi+1 for i, i + 1 ∈ [n] and yj = xj for each j /∈ {i, i + 1}, or
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0 < x1 = −y1 and xj = yj for all j ∈ {2,3, . . . , n}. In the former case, the symmetry yi = −y−i
implies that y−i−1 = x−i > x−i−1 = y−i, so that the full one-line notation of y−n, . . . , yn has two

descents: yi > yi+1 and y−i−1 > y−i. (For more information on this realization of the weak order

on the type-B Coxeter group see [12, Section 8.1]).

To define noncrossing diagrams of type B, we place 2n points on a vertical line, labeled

from bottom to top by the integers −n,−n + 1, . . . − 1,1, . . . , n − 1, n such that there is a central

symmetry that, for each i, maps the point labeled i to the point labeled −i. A centrally

symmetric noncrossing diagram is a noncrossing arc diagram that is fixed by the central

symmetry. The map δ restricts to a bijection from signed permutations to centrally symmetric

noncrossing diagrams. We use the term centrally symmetric arc to describe either an arc

that is fixed by the central symmetry or a pair of arcs that form an orbit under the symmetry.

For each k, the map δ restricts further to a bijection between signed permutations with k

descents and centrally symmetric noncrossing diagrams with k centrally symmetric arcs.

The simple generators of Bn, are s0 = (−1 1) and si = (−i−1 −i)(i i+1) for i = 1, . . . , n − 1,

written in cycle notation as permutations of {±1, . . . ,±n}. A symmetric Coxeter element

of A2n−1 is a Coxeter element that is fixed by the automorphism y ↦ w0yw0. Equivalently, the

Coxeter element can be written as a product of some permutation of the elements s0, . . . , sn−1

defined above. This product in A2n−1 can be interpreted as a Coxeter element of Bn, which

we denote by c̃. A Coxeter element is symmetric if and only if it corresponds to a barring

of {±1, . . . ,±(n − 1)} with the property that i is overbarred if and only if −i is underbarred.

Thus, a signed permutation avoids the pattern 231 if and only if it also avoids the pattern 312

(in its full one-line notation). The signed permutations avoiding 231 (and equivalently 312) in

their full notation are exactly the c̃-sortable elements by [68, Theorem 7.5]. Comparing with

the description of c-sortable permutations following Proposition 4.3.1, we obtain the following

proposition.

Proposition 4.3.15. Suppose c is a symmetric Coxeter element of A2n−1 and suppose c̃ is the

corresponding Coxeter element of Bn. A signed permutation is c̃-sortable in Bn if and only if

it is c-sortable as an element of A2n−1.

The analogous result holds for c̃-bisortable elements.

Proposition 4.3.16. Suppose c is a symmetric Coxeter element of A2n−1 and suppose c̃ is the

corresponding Coxeter element of Bn. A signed permutation is c̃-bisortable in Bn if and only if

it is c-bisortable as an element of A2n−1.

Proof. Suppose w is a signed permutation. If w is c̃-bisortable, then Proposition 4.2.15 says that

w = u∨v for some c̃-sortable signed permutation u and some c̃−1-sortable signed permutation v.

Proposition 4.3.15 says that, as elements of A2n−1, u is a c-sortable permutation and v is a c−1-

sortable permutation. Since the weak order on Bn is a sublattice of the weak order on A2n−1,
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the join u ∨ v is the same in A2n−1 as in Bn, and thus Proposition 4.2.15 implies that w is

c-bisortable.

On the other hand, if w is c-bisortable as an element of A2n−1, then as in Proposition 4.2.15,

we can write w as u ∨ v, where u is the c-sortable permutation πc↓(w) and v is the c−1-sortable

permutation πc
−1
↓ (w). Since conjugation by w0 is a lattice automorphism fixing w, we obtain

w = (w0uw0) ∨ (w0vw0). But w0uw0 is c-sortable and below w, so w0uw0 ≤ u. Since conjuga-

tion by w0 is order preserving, we conclude that w0uw0 = u. Similarly w0vw0 = v. Thus, by

Proposition 4.3.15, u is c̃-sortable and v is c̃−1-sortable in Bn. Since the weak order on Bn is a

sublattice of the weak order on A2n−1, Proposition 4.2.15 says that w is c̃-bisortable.

A bipartite Coxeter element c̃ of Bn is a symmetric, bipartite Coxeter element of A2n−1, so

combining Propositions 4.3.5 and 4.3.16, we immediately obtain the following proposition.

Proposition 4.3.17. For W = Bn and c̃ a bipartite Coxeter element, the map δ restricts

to a bijection from c̃-bisortable signed permutations with k descents to centrally symmetric

alternating arc diagrams on 2n points with k centrally symmetric alternating arcs.

Thus, to count the bipartite c-bisortable elements in Bn, it remains only to count cen-

trally symmetric alternating arc diagrams. The points in the noncrossing arc diagram for a

permutation in Sn are labeled 1, . . . ,2n from bottom to top. If we instead label the points

−n, . . . ,−1,1, . . . , n from bottom to top, we can interpret the map π as returning an ordered

pair of subsets of {−n, . . . ,−1,1, . . . n − 1}. Define πB to be the map on centrally symmetric

alternating arc diagrams with 2n vertices that first does the map π to obtain (S,T ) and then

ignores T and outputs only S. The following theorem shows that the number of centrally sym-

metric alternating arc diagrams with k centrally symmetric arcs is (2n−1
2k

) + (2n−1
2k−1

) = (2n
2k
) as

desired.

Theorem 4.3.18. For each k, the map πB restricts to a bijection from centrally symmetric

alternating arc diagrams with k centrally symmetric arcs to subsets of {−n, . . . ,−1,1, . . . n − 1}
of size 2k or 2k − 1.

Proof. We first show that πB is a bijection from centrally symmetric alternating arc diagrams

to subsets of {−n, . . . ,−1,1, . . . n − 1}. Given S ⊆ {±1, . . . ,±n}, we write −S − 1 for the set

{−i − 1 ∶ i ∈ S}, where we interpret 1 − 1 to mean −1 in order to make −S − 1 a subset of

{±1, . . . ,±n}. Showing that πB is a bijection is equivalent to showing that an alternating dia-

gram Σ is centrally symmetric if and only if π(Σ) = (S,−S − 1) for some S.

The terms “right-even alternating” and “left-even alternating” should be understood in

terms of the labeling of points as 1, . . . ,2n. These terms become problematic when we label

points as −n, . . . ,−1,1, . . . , n. (For example, whether a right-even alternating arc passes left or
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right of the point labeled i depends on the sign of i, the parity of i, and the parity of n.)

Without worrying about these details, we make two easy observations: First, an alternating

arc is right-even alternating if and only if its image under the central symmetry is right-even

alternating. Second, the central symmetry swaps top with bottom endpoints and positive with

negative endpoints. These observations immediately imply that π maps centrally symmetric

alternating arc diagrams to pairs of the form (S,−S − 1).
These observations also immediately imply that if π maps an alternating arc diagram Σ to

(S,T ) and Σ′ is the image of Σ under the central symmetry, then π maps Σ′ to (−T +1,−S−1),
where −T + 1 is the set {−i + 1 ∶ i ∈ T}, where we interpret −1 + 1 to mean 1. In particular, if π

maps Σ to (S,−S − 1), then π also maps Σ′ to (S,−S − 1). Since we already know that π is a

bijection, we conclude that in this case Σ must be centrally symmetric. We have shown that Σ

is centrally symmetric if and only if π(Σ) is of the form (S,−S −1). Therefore πB is a bijection.

It is now immediate that πB maps a centrally symmetric alternating arc diagrams with k

centrally symmetric arcs to a (2k−1)-element set if the diagram has an arc that is fixed by the

central symmetry or to a 2k-element set if all of the arcs in the diagram come in symmetric

pairs.

4.3.6 Simpliciality of the bipartite biCambrian fan in types A and B

We now prove Theorem 4.2.12, which states that the bipartite biCambrian fan is simplicial in

types A and B. The proof of the type-A case of Theorem 4.2.12 proceeds by combining results

of [52] and [72].

Some collections of noncrossing arc diagrams (including, we will see, the alternating arc

diagrams), correspond to lattice quotients of the weak order. More specifically, a collection of

noncrossing arc diagrams may be the image, under δ, of the bottom elements of congruence

classes of some congruence. To describe when and how such a situation arises, we need the

notion of a subarc. For i < j and i′ < j′, an arc α connecting i to j is a subarc of an arc α′

connecting i′ to j′ if i′ ≤ i and j′ ≥ j and if α and α′ pass to the same side of every point

between i and j. It follows from [72, Theorem 4.1] and [72, Theorem 4.4] that a subset D of the

noncrossing arc diagrams on n + 1 points is the image, under δ, of the set of bottom elements

for some congruence Θ if and only if all of the following conditions hold.

(i) There exists a set U of arcs such that a noncrossing diagram Σ is in D if and only if all

arcs in Σ are in U .

(ii) If an arc α is not in U and α is a subarc of some arc α′, then α′ is also not in U .

We will call U the set of unremoved arcs of the congruence Θ. If C is any set of arcs and U

is the maximal set such that U ∩C = ∅ and condition (4.3.6) above holds, then we say that the
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congruence Θ is generated by removing the arcs C.

An element j of a finite lattice L is join-irreducible if it covers exactly one element j∗. A

lattice congruence on L contracts a join-irreducible element j if the congruence has j ≡ j∗.

A congruence is uniquely determined by the set of join-irreducible elements it contracts. The

join-irreducible elements of the weak order on An are the permutations in Sn+1 with exactly

one descent. In particular, the map δ restricts to a bijection between join-irreducible elements

in Sn+1 and noncrossing arc diagrams with exactly one arc. (We will think of this restriction

as mapping join-irreducible elements to arcs, rather than to singletons of arcs.) Under this

bijection, the join-irreducible elements not contracted by a congruence Θ correspond to the arcs

in U , where U is the set of unremoved arcs of Θ. The congruence is generated by contracting

a set J of join-irreducible elements if and only if it is generated by removing the arcs δ(J).
We call j a double join-irreducible element if it is join-irreducible and if the unique

element j∗ covered by j is either the bottom element of the lattice or is itself join-irreducible.

The following is part of the main result of [52].

Theorem 4.3.19. Suppose Θ is a lattice congruence on the weak order on An. Then the

following three conditions are equivalent.

(i) The undirected Hasse diagram of the quotient lattice An/Θ is a regular graph.

(ii) FΘ(An) is a simplicial fan.

(iii) Θ is generated by contracting a set of double join-irreducible elements.

We now apply these considerations to alternating arc diagrams. First, it is apparent that

the set of alternating arc diagrams is the image of δ restricted to the set of bottom elements

of a congruence. (Indeed, this is the bipartite c-biCambrian congruence.) It is also apparent

that the congruence is generated by removing the arcs that connect i to i + 3 and that do not

alternate. (That is they pass to the same side of i + 1 and i + 2.) Applying the inverse of δ, we

see that the congruence is generated by contracting the join-irreducible elements

1⋯(i − 1)(i + 1)(i + 2)(i + 3)i(i + 4)⋯(n + 1)

and

1⋯(i − 1)(i + 3)i(i + 1)(i + 2)(i + 4)⋯(n + 1)

for i = 1, . . . , n − 2. These are both double join-irrreducible elements, and thus Theorem 4.3.19

implies the type-A case of Theorem 4.2.12.

We now move to the type-B case of Theorem 4.2.12. Just as in type-A, there is a corre-

spondence between congruences on the weak order and certain sets of (centrally symmetric)
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noncrossing diagrams. However, there is currently no analogue to Theorem 4.3.19 in type B.

Therefore, instead of arguing the type-B case as we argued the type-A case, we will use a folding

argument to show that the type-A case implies the type-B case.

Say a lattice congruence of the weak order on A2n−1 is symmetric under conjugation

by w0 if for all x, y ∈ A2n−1 we have x ≡ y modulo Θ if and only if w0xw0 ≡ w0yw0 modulo Θ.

Proposition 4.3.20. If Θ is a lattice congruence of the weak order on A2n−1 that is symmetric

under conjugation by w0, then its restriction to the sublattice Bn is a congruence Θ′. An element

of Bn is the bottom element of its Θ′-class if and only if it is the bottom element of its Θ-class.

Proof. It is also a well-known and easy fact that the restriction of a lattice congruence to any

sublattice is a congruence on the sublattice, and the first assertion of the proposition follows.

One implication in the second assertion is immediate. For the other implication, suppose x ∈ Bn
is the bottom element of its Θ′-class and let y = πΘ

↓ (x), so that in particular x ≡ y modulo Θ.

Then because Θ is symmetric under conjugation by w0, also x = w0xw0 ≡ w0yw0 modulo Θ.

Since y is the bottom element of its Θ-class, y ≤ w0yw0. Since conjugation by w0 is order

preserving, also w0yw0 ≤ y, so y = w0yw0. Thus y is in the Θ′-class of x, and we conclude that

y = x, so that x is also the bottom element of its Θ-class.

Proposition 4.3.21. Suppose that Θ is a lattice congruence of the weak order on A2n−1 and

let Θ′ denote its restriction to the weak order on Bn. If FΘ(A2n−1) is simplicial and Θ is

symmetric under conjugation by w0, then FΘ′(Bn) is simplicial.

Before we proceed with the proof of Proposition 4.3.21 we define some useful terminology.

Recall that there is a linear functional λ that orients the adjacency graph on maximal cones

in F(W ) to yield a partial order isomorphic to the weak order on W . A facet of a maximal

cone is a lower wall (with respect to λ) if passing through it to an adjacent maximal cone is

the same as moving down by a cover in the weak order. Upper walls are defined dually. The

maximal cones of FΘ(W ) similarly have lower and upper walls with respect to λ; passing from

one cone to an adjacent cone through a lower wall corresponds to moving down by a cover in the

lattice quotient induced by Θ. The lower walls of a maximal cone in FΘ(W ) are the lower walls

of the smallest element in the corresponding Θ-congruence class. (Recall that each maximal

cone in FΘ(W ) is the union of the set of maximal cones in F(W ) in the same Θ-congruence

class.) Dually, the upper walls of a maximal cone in FΘ(W ) are the upper walls of the cone

corresponding to the largest element in the Θ-congruence class.

Proof of Proposition 4.3.21. We begin by considering type A2n−1 in the usual geometric rep-

resentation in R2n. However, to prepare for the type-B construction, we index the standard

unit basis vectors of R2n as −n, . . . ,−1,1, . . . , n. In this representation, there is a reflecting hy-

perplane Hji, with normal vector ej − ei, for each i < j with i, j ∈ {±1, . . . ± n}. The maximal
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cone corresponding to the permutation x−n⋯x−1x1⋯xn has a lower (respectively upper) wall

contained in Hji if and only if there exists r ∈ {−n, . . . ,−1,1, . . . n − 1} such that xr = j and

xr+1 = i (respectively, xr+1 = j and xr = i). As the price for our choice of indices, when r = −1,

we must interpret r + 1 here to mean 1.

Recall that the signed permutations of Bn are exactly the permutations in A2n−1 that

are fixed under conjugation by w0 and that the restriction of weak order to these w0-fixed

permutations is weak order on Bn. As an abuse of terminology, the linear map on R2n that sends

each vector (v−n, . . . , v−1, v1, . . . , vn) to −(vn, . . . , v1, v−1, . . . , v−n) will be called the conjugation

action of w0 on R2n. Let L be the linear subspace of R2n consisting of vectors fixed by this

action. These are the vectors with vi = −v−i for all i. A permutation in A2n−1 is fixed under

conjugation by w0 if and only if its corresponding cone in F(A2n−1) intersects L in its relative

interior, in which case the cone is also fixed under conjugation by w0. Thus, we obtain F(Bn)
as the fan induced on L by F(A2n−1), and the weak order on Bn arises from that induced fan,

ordered by the same linear functional λ as F(A2n−1). Moreover, FΘ′(Bn) is the fan induced

on L by FΘ(A2n−1).
Almost all of the lower walls of a w0-fixed maximal cone C in FΘ(A2n−1) intersect L in pairs.

Specifically, Proposition 4.3.20 implies that any such cone is associated to a signed permutation

x = x−n⋯x−1x1⋯xn that is the bottom element of its Θ-class. A descent x−1x1 of x contributes

a single lower wall to C, and thus a single lower wall to C∩L. We will say that such a lower wall

is centrally symmetric. All other descents of x come in symmetric pairs x−i−1x−i and xixi+1,

contributing two lower walls to C. However, these two walls have the same intersection with L

and thus contribute only one lower wall to C ∩ L. Similar dual statements hold for the upper

walls. Most importantly, among all of the walls of C∩L, there are at most two that are centrally

symmetric: at most one among the set of lower walls, and at most one among set of upper walls.

Since FΘ(A2n−1) is simplicial, C has an odd number of walls. In particular, this implies

that among all of the walls for C, there is exactly one that is centrally symmetric wall. Suppose

that this wall is a lower wall. Then, C has an odd number of lower walls, say 2k − 1, and their

intersection with L yields k lower walls for the corresponding cone C ∩ L in FΘ′(Bn). Since

FΘ(A2n−1) is simplicial, there are 2n− 2k upper walls, which intersect L in pairs, to form n− k
upper walls in FΘ′(Bn). Thus the cone associated to C in FΘ′(Bn) has a total of n walls. The

same argument (switching lower walls with upper walls) shows that if the centrally symmetric

wall is an upper wall, the cone associated to C in FΘ′(Bn) has n walls. We conclude that

FΘ′(Bn) is simplicial.

Proof of the type-B case of Theorem 4.2.12. Let c be a bipartite Coxeter element in A2n−1 and

let c̃ be the same element thought of as a Coxeter element of Bn. Recall that c̃ is also bipartite.

Using the bipartite case of Proposition 4.3.1 (with n replaced by 2n−1), it is easily checked
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that x ≡ y modulo Θc if and only if w0xw0 ≡ w0yw0 modulo Θc. It follows that the c-biCambrian

congruence is symmetric under conjugation by w0. Since a congruence is uniquely determined

by the set of bottom elements of its classes, Proposition 4.3.16 implies that the restriction of

the c-biCambrian congruence to Bn is the c̃-biCambrian congruence. Thus the type-B case of

the theorem follows from Proposition 4.3.21 and the type-A case of the theorem.

4.4 Double-positive Catalan numbers and biCatalan numbers

For each finite Coxeter group W , the positive W -Catalan number Cat+(W ) is defined from the

W -Catalan number Cat(W ) by inclusion-exclusion. In this section, we review the definition of

the positive W -Catalan number and define the double-positive W -Catalan number Cat++(W )
from the positive W -Catalan number by inclusion-exclusion. We then prove Theorems 4.1.2

and 4.1.3 by showing how to count both antichains in the doubled root poset and bipartite c-

bisortable elements by the same formula involving double-positive Catalan numbers. Recall that

these two theorems in particular establish that the terms “biCatalan number” and “biNarayana

number” make sense. As we prove these theorems, we obtain as a by-product a formula for the

W -biCatalan numbers in terms of the double-positive Catalan numbers of parabolic subgroups

of W . This formula leads to a recursion for the W -biCatalan numbers. Using a similar recursion

for the W -Catalan numbers and a few other enumerative facts, we solve that recursion for

biCat(Dn) to complete the proof of Theorem 4.1.4. The recursions discussed here all have

Narayana q-analogues, but we are not at this time able to solve the recursion to find a formula

for biCat(Dn; q). See Section 4.4.9 for a brief discussion of the type-D biNarayana numbers.

The positive W -Catalan and positive W -Narayana numbers have interpretations in each

setting of Coxeter-Catalan combinatorics. (See for example [4, 6, 8, 35, 46, 61, 69, 65].) In this

chapter, we give the usual interpretations in the settings of nonnesting partitions and c-sortable

elements, specifically in Sections 4.4.2 and 4.4.5. We give interpretations of the double-positive

W -Catalan and W -Narayana numbers in the settings of nonnesting partitions and c-sortable

elements.

The double-positive W -Narayana numbers appeared in [7] as the local h-vector of the pos-

itive part of the cluster complex. (See Remark 4.4.7.) As far as we know, [7] was the first

appearance of the double-positive W -Catalan/Narayana numbers and the only appearance be-

fore the current chapter.

4.4.1 Double-positivity

We write S for the set of simple reflections generating W . Given J ⊆ S, the notation WJ stands

for the subgroup of W generated by J . The subgroup WJ is called a standard parabolic
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subgroup of W and is a Coxeter group in its own right with simple reflections J . In particular,

each WJ has a Catalan number. As usual, we define the positive W -Catalan number to be

Cat+(W ) = ∑
J⊆S

(−1)∣S∣−∣J ∣ Cat(WJ). (4.4.1)

We define the double-positive W -Catalan number to be

Cat++(W ) = ∑
J⊆S

(−1)∣S∣−∣J ∣ Cat+(WJ). (4.4.2)

We will prove the following formula for the biCatalan numbers.

Theorem 4.4.1. For any finite Coxeter group W with simple generators S,

biCat(W ) = ∑2∣S∣−∣I ∣−∣J ∣ Cat++(WI)Cat++(WJ), (4.4.3)

where the sum is over all ordered pairs (I, J) of disjoint subsets of S.

We can prove a refinement of Theorem 4.4.1 using the usual notion of positive Narayana

numbers and a notion of double-positive Narayana numbers. The positive W -Narayana

numbers are

Nar+k(W ) = ∑
J⊆S

(−1)∣S∣−∣J ∣ Nark(WJ). (4.4.4)

We define the double-positive W -Narayana number to be

Nar++k (W ) = ∑
J⊆S

(−1)∣S∣−∣J ∣ Nar+k−∣S∣+∣J ∣(WJ). (4.4.5)

In all of the settings where the Narayana numbers appear, it is apparent that Nark(W ) = 0

whenever k < 0 or k is greater than the rank of W . These definitions establish that Nar+k(W ) =
Nar++k (W ) = 0 as well for those values of k.

Defining Cat+(W ; q) = ∑k Nar+k(W )qk and Cat++(W ; q) = ∑k Nar++k (W )qk, equations (4.4.4)

and (4.4.5) correspond to

Cat+(W ; q) = ∑
J⊆S

(−1)∣S∣−∣J ∣ Cat(WJ ; q). (4.4.6)

and

Cat++(W ; q) = ∑
J⊆S

(−q)∣S∣−∣J ∣ Cat+(WJ ; q). (4.4.7)

Taking biCat(W ; q) = ∑k biNark(W )qk, we will prove the following q-analog of Theorem 4.4.1.
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Theorem 4.4.2. For any finite Coxeter group W with simple generators S,

biCat(W ; q) = ∑ q∣M ∣ Cat++(WI ; q)Cat++(WJ ; q), (4.4.8)

where the sum is over all ordered triples (I, J,M) of pairwise disjoint subsets of S.

The following theorem is equivalent to Theorem 4.4.2.

Theorem 4.4.3. For any finite Coxeter group W with simple generators S and any k,

biNark(W ) = ∑
k−∣M ∣

∑
i=0

Nar++i (WI)Nar++k−∣M ∣−i(WJ), (4.4.9)

where the outer sum is over all ordered triples (I, J,M) of pairwise disjoint subsets of S. (If

∣M ∣ > k, then the inner sum is interpreted to be zero.)

To prove these theorems, as well as Theorems 4.1.2 and 4.1.3, we establish (in Proposi-

tions 4.4.8 and 4.4.29) that the right side of (4.4.8) counts antichains A in the doubled root

poset with weight q∣A∣ and also counts bipartite c-bisortable elements v with weight qdes(v). Once

these counts are established, Theorems 4.1.2 and 4.1.3 follow, and in particular the definitions

of the biCatalan and biNarayana numbers are validated. Also, Theorem 4.4.2 holds, leading

immediately to Theorems 4.4.1 and 4.4.3.

4.4.2 Counting twin nonnesting partitions

We now recall the interpretations of the positive Catalan and Narayana numbers and give the

interpretations of double-positive Catalan and Narayana numbers in the nonnesting setting.

(Results in [8, 65] give the same interpretations, but accomplish much more, by establishing

bijections and counting formulas. By contrast, here we are only making simple assertions about

inclusion-exclusion.) After giving these interpretations, we prove that the formula in Theo-

rem 4.4.3 counts k-element antichains in the doubled root poset.

Since it is customary to talk about the “W -Catalan number” rather than the “Φ-Catalan

number,” we will make statements about “the root poset of W ,” when W is a crystallographic

Coxeter group. This is harmless because, although the map from crystallographic root systems

to Coxeter groups is not one-to-one, for each crystallographic Coxeter group, all corresponding

crystallographic root systems have isomorphic root posets. Correspondingly, when WJ is a

standard parabolic subgroup of W , we will say that a root or set of roots is “contained in WJ”

if it is contained in the subset of Φ forming a root system for WJ . An antichain that is not

contained in any proper parabolic WJ has full support, in the sense of Section 4.2.1.

For any J ⊆ S, the number of antichains in the root poset for W that are contained in WJ

is Cat(WJ). By inclusion-exclusion, we conclude that:
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Proposition 4.4.4. The number of antichains in the root poset for W with full support is

Cat+(W ). The number of k-element antichains in the root poset for W with full support is

Nar+k(W ).

For J ⊆ S, the map A ↦ A ∖ {αi ∶ i ∈ J} is a bijection from the set of antichains containing

the simple roots {αi ∶ i ∈ J} to the set of antichains in the root poset for WS∖J .

Using this bijection, we prove the following proposition.

Proposition 4.4.5. The number of antichains in the root poset for W containing no simple

roots is Cat+(W ). The number of k-element antichains in the root poset for W containing no

simple roots is Nar+n−k(W ).

Proof. The bijection mentioned above implies that the generating function for antichains con-

taining the simple roots {αi ∶ i ∈ J} (and possibly additional simple roots) is q∣J ∣ Cat(WS∖J ; q).
By inclusion-exclusion, the generating function for k-element antichains containing no simple

roots is ∑J⊆S(−q)∣S∣−∣J ∣ Cat(WJ ; q). On the other hand, starting with (4.4.6), replacing q by q−1,

multiplying through by q∣S∣ (i.e. qn), and using the known symmetry the q∣J ∣ Cat(WJ ; q−1) is

equal to Cat(WJ ; q) of the coefficients of Cat(WJ ; q), we obtain

∑
k

Nar+n−k(W )qk = ∑
J⊆S

(−q)∣S∣−∣J ∣ Cat(WJ ; q).

The bijection described above restricts to a bijection from the set of antichains with full

support containing the simple roots {αi ∶ i ∈ J} to the set of antichains with full support in

the root poset for WS∖J . Thus, a similar inclusion-exclusion argument yields the following

proposition.

Proposition 4.4.6. The number of antichains in the root poset for W with full support con-

taining no simple roots is Cat++(W ). The number of k-element antichains in the root poset

for W with full support containing no simple roots is Nar++k (W ).

Remark 4.4.7. The polynomials Cat++(W ; q) appeared in [7], where Athanasiadis and Savvi-

dou showed that Cat++(W ; q) is the local h-vector of the positive part of the cluster complex,

as we now explain. We refer to [7] for the relevant definitions, which we will not need here. In

light of [8, Theorem 1.5] and Proposition 4.4.5, the polynomial h(∆+(Φ), x) appearing in [7]

is x∣S∣ Cat+(W ;x−1), where (W,S) is the Coxeter system associated to Φ. Thus the assertion

of [7, Proposition 2.5] is that the local h-vector of the positive part of the cluster complex

is ∑J⊆S(−1)∣S∣−∣J ∣x∣J ∣ Cat+(W ;x−1). But since the local h-vector is symmetric by [79, Theo-

rem 3.3], we can replace x by x−1 and multiply by x∣S∣ to show that the local h-vector is

∑J⊆S(−x)∣S∣−∣J ∣ Cat+(W ;x) = Cat++(W ;x).
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We now prove the key result on antichains in the doubled root poset.

Proposition 4.4.8. For any finite Coxeter group W with simple generators S, the generating

function ∑A q∣A∣ for antichains A in the doubled root poset is

∑ q∣M ∣ Cat++(WI ; q)Cat++(WJ ; q), (4.4.10)

where the sum is over all ordered triples (I, J,M) of pairwise disjoint subsets of S.

Proof. In light of Proposition 4.4.6, the proposition amounts to the following assertions: First,

there is a bijection from antichains A in the doubled root poset to triples (B,C,M) such

that B and C are antichains in the root poset for W , each containing no simple roots, and

the sets I = supp(B), J = supp(C) and M are pairwise disjoint. Second, under this bijection,

∣B∣ + ∣C ∣ + ∣M ∣ = ∣A∣. Every antichain A in the doubled root poset consists of some set B of

positive non-simple roots in the top root poset, some set C of positive non-simple roots in the

bottom root poset, and some set M of simple roots. The sets I, J , and M are pairwise disjoint

because A is an antichain. The map A↦ (B,C,M) is the desired bijection.

It will be useful to have a similar formula for antichains in the (not doubled) root poset,

which are known to be counted by Cat(W ).

Theorem 4.4.9. For any finite Coxeter group W with simple generators S.

Cat(W ; q) = ∑ q∣J ∣ Cat++(WI ; q), (4.4.11)

where the sum is over all ordered pairs (I, J) of disjoint subsets of S.

Proof. Every antichain A in the root poset consists of some set B of positive non-simple roots

and some set C of simple roots. Writing I and J for the supports of B and C, again I

and J are disjoint. By Proposition 4.4.6, each pair (I, J) of disjoint subsets of S contributes

q∣J ∣ Cat++(WI ; q) to the count.

The following is an immediate consequence of Proposition 4.4.6 and will also be useful.

Proposition 4.4.10. If W is reducible as W1 ×W2, then

Cat++(W ; q) = Cat++(W1; q)Cat++(W2; q). (4.4.12)

4.4.3 Canonical join representations and lattice congruences

To count bipartite c-bisortable elements, we will use a canonical factorization in the weak order

called the canonical join representation. In this section, we focus exclusively on the lattice-

theoretic tools that we will use in the following sections to complete the proof of Theorem 4.4.3.
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The canonical join representation is a “minimal” expression for an element as a join of

join-irreducible elements. The construction is somewhat analogous to prime factorizations of

integers. Indeed, in the divisibility poset for positive integers, where p ≤ q if and only if p∣q, the

canonical join representation coincides with prime factorization. For our purposes, the canonical

join representation is useful because of how it interacts with lattice congruences. Recall that a

lattice congruence Θ contracts a join-irreducible element j if j is equivalent modulo Θ to the

unique element that it covers. Each congruence Θ of a finite lattice is determined by the set of

join-irreducible elements that it contracts. In particular, we can see which elements of W are

c-sortable or c-bisortable by looking at their canonical join representations (much as we looked

at the arcs in their arc diagrams in types A and B).

The canonical join representation of an element a is an expression a = ⋁A such that A is

minimal in two senses, among sets joining to a. First, the join ⋁A is irredundant , meaning

that there is no proper subset A′ ⊂ A with ⋁A′ = ⋁A. Second, A has the smallest possible

elements (in terms of the partial order on L). Specifically, a subset A of L join-refines a

subset B of L if for each a ∈ A there is an element b ∈ B such that a ≤ b. Join-refinement

is a preorder on the subsets of L that restricts to a partial order on the set of antichains.

The canonical join representation of a, if it exists, is the unique minimal antichain A, in

the sense of join-refinement, that joins irredundantly to a. We sometimes write can(a) for A.

The elements of A are called the canonical joinands of a. It follows immediately that each

canonical joinand is join-irreducible.

Not every finite lattice admits a canonical join representation for each of its elements. For

example, in the diamond lattice M3, which has five elements, three of which are atoms, the

largest element does not have a canonical join representation. Many interesting lattices do

admit canonical join representations, including all finite distributive lattices and, as we will

see, the weak order on finite Coxeter groups. The next proposition establishes the promised

connection between canonical join representations and lattice congruences. (The last assertion

in the proposition also follows from [71, Proposition 6.3].)

Proposition 4.4.11. Suppose L is a finite lattice such that each element in L has a canonical

join representation, and suppose that Θ is a lattice congruence on L. If j is a canonical joinand

of a ∈ L and j is not contracted by Θ, then j is a canonical joinand of πΘ
↓ (a) in L. Moreover,

if πΘ
↓ (a) = a then none of the canonical joinands of a are contracted by Θ.

The assertion that j is a canonical joinand of πΘ
↓ (a) in L implies also that j is a canonical

joinand of πΘ
↓ (a) in πΘ

↓ (L). (Since πΘ
↓ (L) is a join-sublattice of L, every join-representation of

πΘ
↓ (a) in πΘ

↓ (L) is also a join-representation of πΘ
↓ (a) in L.)

Proof. Throughout the proof, we write {j1, . . . jk} for can(a) with j = j1. Recall that the lattice

quotient L/Θ is isomorphic to the subposet of L induced by the set πΘ
↓ (L). Suppose j is not
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contracted by Θ, so that πΘ
↓ (j) = j. Recall that πΘ

↓ is a lattice homomorphism, so πΘ
↓ (a) is

equal to ⋁ki=1 π
Θ
↓ (j1) = j ∨ (⋁ki=2 π

Θ
↓ (ji)), (where the joins are all taken in the lattice quotient

L/Θ). Since L/Θ is also a join-sublattice of L, the join in L/Θ coincides with the join in

L. Thus πΘ
↓ (a) is equal to j ∨ (⋁ki=2 π

Θ
↓ (ji)) in L. Write B for the set can(πΘ

↓ (a)). Thus B

join-refines {j} ∪ {πΘ
↓ (j2), . . . , πΘ

↓ (jk)}. If no element of B is less or equal to j, then this join-

refinement implies that each element ofB is below some element of {πΘ
↓ (j2), . . . , πΘ

↓ (jk)}, so that

πΘ
↓ (a) ≤ ⋁ki=2 π

Θ
↓ (ji). Since also πΘ

↓ (a) is equal to j ∨(⋁ki=2 π
Θ
↓ (ji)), we see that j ≤ ⋁ki=2 π

Θ
↓ (ji).

Recall that πΘ
↓ (ji) ≤ ji for each i, so we have j ≤ ⋁ki=2 ji. This contradicts the fact that ⋁ki=1 ji is

irredundant. We conclude that there is some j′ ∈ B with j′ ≤ j. Observe that (⋁B)∨(⋁ki=2 ji) = a
because j1 = j ≤ πΘ

↓ (a) ≤ a. Thus, {j1, . . . jk} join-refines B ∪{j2, . . . jk}. Since j is incomparable

to each ji, there is some j′′ ∈ B such that j ≤ j′′. But B is an antichain, so j′ = j′′ = j, and thus

j ∈ B as desired.

Suppose πΘ
↓ (a) = a. Then a = ⋁ni=1 π

Θ
↓ (ji), so {j1, . . . jk} join-refines {πΘ

↓ (j1), . . . , πΘ
↓ (jk)}.

Thus, for each ji, there is some jm with ji ≤ πΘ
↓ (jm). But πΘ

↓ (jm) ≤ jm, and since {j1, . . . jk} is

an antichain, we have ji = jm, and thus also ji = πΘ
↓ (ji).

We will use the following easy proposition, which appears as [72, Proposition 2.2].

Proposition 4.4.12. Suppose L is a finite lattice and J ⊂ L. If ⋁J is the canonical join

representation of some element of L and if J ′ ⊆ J , then ⋁J ′ is the canonical join representation

of some element of L.

Next we consider canonical join representations in the weak order. Before we begin, we

briefly review some relevant terminology. For each w ∈W , the length of w, denoted l(w), is the

number of letters in a reduced (that is, a shortest possible) word for w in the alphabet S. The

covers in the (right) weak order on W are w ⋅> ws whenever w ∈W and s ∈ S have l(ws) < l(w).
In this case, the simple generator s is a descent of w. Let T denote the set of reflections in W .

An inversion of w is a reflection t such that l(tw) < l(w). We denote the set of inversions of w

by inv(w). A cover reflection of w is an inversion t of w such that tw = ws for some s ∈ S.

Thus, the cover reflections of w are in bijection with the descents of w. We write cov(w) for

the set of cover reflections of w. The following proposition is quoted from [75, Theorem 8.1].

Proposition 4.4.13. Fix a finite Coxeter group W , and an element w ∈W . The canonical join

representation of w exists and is equal to ⋁ jt where t ranges over the set of cover reflections

of w, and jt is the unique smallest element below w that has t as an inversion. In particular,

w has des(w) many canonical joinands.

Recall that the support of w, written supp(w), is the set of simple reflections appearing in

a reduced word for w, and is independent of the choice of reduced word for w. The following
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lemma is an immediate consequence of the fact that every standard parabolic subgroup WJ is

a lower interval in the weak order on W .

Lemma 4.4.14. For each w ∈W , the support of w equals ⋃j∈can(w) supp(j).

For each element w and standard parabolic subgroup WJ , there is a unique largest element

below w that belongs to WJ . We write wJ for this element and πJ↓ for the map that sends w

to wJ . In [66, Corollary 6.10], it was shown that the fibers of πJ↓ constitute a lattice congruence

of the weak order. We write ΘJ for this congruence. Since πJ↓ sends each element to the bottom

if its fiber, it is a lattice homomorphism from W to πJ↓ (W ), which equals WJ .

Lemma 4.4.15. Suppose that A1 and A2 are antichains with disjoint support such that ⋁A1

and ⋁A2 are both canonical join representations in the weak order on W . Then ⋁(A1 ∪A2) is

a canonical join representation.

Proof. We write A for A1∪A2. First we show that ⋁A is irredundant. By way of contradiction,

assume that there is some j ∈ A such that ⋁A = ⋁(A ∖ {j}). We may as well take j ∈ A1. We

write J for the support of A1. Since the support of each join-irreducible element j′ in A2 is

disjoint from J , and since support decreases weakly in the weak order, we conclude that πJ↓ (j′)
is the identity element. Since πJ↓ is a lattice homomorphism, we have πJ↓ (⋁A) = ⋁A1 and

πJ↓ (⋁(A ∖ {j})) = ⋁(A1 ∖ {j}). We conclude that ⋁A1 = ⋁(A1 ∖ {j}), contradicting the fact

that ⋁A1 is a canonical join representation.

Next we show that can(⋁A) is contained in A. Assume that j′′ is a canonical joinand

of ⋁A. There is some j ∈ A such that j′′ ≤ j. Assume that j ∈ A1, so that supp(j′′) ⊂ J . Thus,

πJ↓ (j′′) = j′′. Proposition 4.4.11 says j′′ is a canonical joinand of πJ↓ (⋁A) = ⋁A1. Because A is

an antichain, j′′ = j. Since ⋁A is irredundant, and A contains can(⋁A), we conclude that A is

equal to can(⋁A).

Observe that if s ∈ S is a cover reflection of w then Proposition 4.4.13 implies that s is also a

canonical joinand of w because simple reflections are atoms in the weak order. We immediately

obtain the following useful fact.

Lemma 4.4.16. Each w ∈W has can(w) ∩ S = cov(w) ∩ S.

In much of what follows, for s ∈ S, we will use the abbreviation ⟨s⟩ to mean S ∖ {s}. It is

known (see for example [70, Lemma 2.8]) that if w ∈W⟨s⟩, then cov(w ∨ s) = cov(w) ∪ {s}. We

close this section with a lemma extends this statement to canonical join representations.

Lemma 4.4.17. If w ∈W⟨s⟩, then can(w ∨ s) = can(w) ∪ {s}.

Proof. Since support is weakly decreasing in the weak order, each j ∈ can(w) has support

contained in ⟨s⟩. Lemma 4.4.15 says that ⋁(can(w) ∪ {s}) is a canonical join representation.
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4.4.4 Canonical join representations of c-bisortable elements

In this section we focus on canonical join representations of c-sortable elements and c-bisortable

elements. Our goal is to prove the following result:

Proposition 4.4.18. Fix a bipartite c-bisortable element w and the corresponding twin (c, c−1)-

sortable elements (u, v) = (πc↓(w), πc−1↓ (w)). Then

(1) can(w) ∩ S = can(u) ∩ can(v)

(2) can(w) is the disjoint union (can(u) ∖ S) ⊎ (can(v) ∖ S) ⊎ (can(w) ∩ S)

(3) The sets supp(can(u) ∖ S), supp(can(v) ∖ S) and can(w) ∩ S are pairwise disjoint.

We begin with an easy application of Proposition 4.4.11 (the first item below can also be

found as [75, Proposition 8.2]).

Proposition 4.4.19. For any Coxeter element c and w ∈W :

1. w is c-sortable if and only if each of its canonical joinands is c-sortable.

2. w is c-bisortable if and only if each of its canonical joinands is either c- or c−1-sortable.

Proof. The first assertion follows immediately from Proposition 4.4.11. Recall the notation Θc

for the c-Cambrian congruence and write Θ for the c-biCambrian congruence. Since Θ is the

meet Θc ∧Θc−1 , a join-irreducible element in W is contracted by Θ if and only if it is contracted

by Θc and by Θc−1 . The second assertion follows.

Recall from Section 4.2.4 that a simple reflection s is initial in a Coxeter element c if there

is a reduced word a1 . . . an for c with a1 = s. Similarly s is final in c if there is a reduced word

a1 . . . an for c with an = s. In much of what follows, the key property of a bipartite Coxeter

element is that every s ∈ S is either initial or final in c.

The following lemma is the combination of [75, Propositions 3.13, 5.3, and 5.4]. Recall that

v⟨s⟩ is the largest element in W below v that belongs to W⟨s⟩.

Lemma 4.4.20. Fix a c-sortable element v in W and a simple reflection s ∈ S.

1. If s is final in c and v ≥ s, then v⟨s⟩ is cs-sortable and v = s ∨ v⟨s⟩.

2. If s be initial in c and s ∈ cov(v), then v⟨s⟩ is sc-sortable and v = s ∨ v⟨s⟩.

If v satisfies the conditions of either item in Lemma 4.4.20, then Lemma 4.4.17 implies that

can(v) = {s} ∪ can(v⟨s⟩). The following two lemmas are an easy application of Lemma 4.4.20.
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Lemma 4.4.21. If j is a c-sortable join-irreducible element and s is final in c with j ≥ s, then

j = s.

Proof. The first assertion of Lemma 4.4.20 says that j = s ∨ j⟨s⟩. Since j is join-irreducible and

not equal to j⟨s⟩, we conclude that j = s.

Lemma 4.4.22. If c is a bipartite Coxeter element and j is a join-irreducible element that is

both c-sortable and c−1-sortable, then j is a simple reflection.

Proof. Because j is join-irreducible, it is not the identity, so there is some s ∈ S such that j ≥ s.
Since c is bipartite, we can assume without loss of generality that s is final in c. (If not, then

replace c with c−1.) Thus j = s by Lemma 4.4.21.

Putting together Lemma 4.4.21 and Lemma 4.4.22, we get an explicit description of πc
−1
↓ (j),

for bipartite c-sortable join-irreducible elements.

Lemma 4.4.23. Suppose that c is a bipartite Coxeter element and j is a c-sortable join-

irreducible element. Let S′ denote the set of simple reflections s such that j ≥ s. Then πc
−1
↓ (j)

is equal to ⋁S′ which, in this case, is the product ∏S′ in W . Moreover, this join is a canonical

join representation.

Proof. The statement of the lemma is obvious if j is a simple reflection, so we assume that j

is not simple. Thus, Lemma 4.4.22 implies that j is not c−1-sortable, so πc
−1
↓ (j) is strictly less

than j.

If any s ∈ S′ is final in c, then Lemma 4.4.21 says that j = s, contradicting our assumption.

Thus, since c is bipartite, each s ∈ S′ is initial. In particular, the elements of S′ pairwise

commute, so that the notation ∏S′ makes sense and equals ⋁S′. Moreover, since ⋁S′ is an

irredundant join of atoms, it is a canonical join representation. Since each simple reflection is

both c- and c−1-sortable, Proposition 4.4.19 says that this element is c−1-sortable. We conclude

that πc
−1
↓ (j) ≥ ⋁S′.

Suppose that j′ is a canonical joinand of πc
−1
↓ (j). There is some simple reflection s such that

j′ ≥ s. Since also j′ ≤ πc−1↓ (j) ≤ j, we conclude that s ∈ S′. Every element of S′ is initial in c and

thus final in c−1, so again by Lemma 4.4.21, j′ = s. We conclude that can(πc−1↓ (j)) ⊆ S′. Thus

πc
−1
↓ (j) = ⋁S′.

Recall that Lemma 4.4.15 says that if j and j′ are join-irreducible elements with disjoint

support, then j ∨ j′ is canonical. In Lemma 4.4.25 below, we prove that when j is bipartite

c-sortable and j′ is bipartite c−1-sortable, the converse is also true. We begin with the case

when j′ is a simple reflection.
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Lemma 4.4.24. Given a bipartite Coxeter element c, a c-sortable join-irreducible element j

and a simple reflection s ∈ supp(j), there exists no element w ∈W with both s and j in can(w).

Proof. In light of Proposition 4.4.12, to prove this proposition, it is enough to show that no

element can have s ∨ j as its canonical join representation. Suppose to the contrary that there

is an element v with canonical join representation s ∨ j. By Proposition 4.4.19, v is c-sortable.

Also s ∨ j is irredundant, so j and s are incomparable. Since c is bipartite, s is either initial or

final in c, so Lemma 4.4.20 says that v = s∨v⟨s⟩. Since v = s∨j is a canonical join representation,

we see that j ≤ v⟨s⟩, contradicting the hypothesis that s is in the support of j.

Lemma 4.4.25. Fix a bipartite Coxeter element c in W . Suppose that j is a c-sortable join-

irreducible element and that j′ is a c−1-sortable join-irreducible element. Suppose that j ∨ j′ is

a canonical join representation for some element of W . Then j and j′ have disjoint support.

Proof. Suppose that s ∈ supp(j)∩supp(j′), and assume without loss of generality that s is initial

in c. It is immediate from the definition of c-sortable elements that s ≤ j. (See for example [75,

Proposition 2.29].) Since s is a c−1-sortable element, also s ≤ πc−1↓ (j ∨ j′). By Lemma 4.4.20(1)

and Lemma 4.4.17, s is a canonical joinand of πc
−1
↓ (j ∨ j′). But also Proposition 4.4.11 says

that j′ is a canonical joinand of πc
−1
↓ (j ∨ j′). We have reached a contradiction to Lemma 4.4.24,

and we conclude that supp(j) ∩ supp(j′) = ∅.

Finally, we prove Proposition 4.4.18.

Proof of Proposition 4.4.18. Lemma 4.4.22 implies that can(w) ∖ S is the disjoint union

(can(w) ∩ S) ⊎ J+ ⊎ J−

where J+ is the set of c-sortable join-irreducible elements in can(w) ∖ S and J− is the set of

c−1-sortable join-irreducible elements in can(w) ∖ S. Moreover, by Lemma 4.4.25, these sets

have pairwise disjoint support. For each j ∈ J−, write S′j for the set of simple reflections s such

that s ≤ j, and S′ = ⋃S′j , where the union ranges over all j ∈ J−. Lemma 4.4.23 says that

πc↓(j) = ⋁S′j . Since πc↓ is a join-homomorphism, πc↓(⋁J−) = ⋁S′. Thus, applying the map πc↓ to

the join ⋁[(can(w)∩S)⊎J+⊎J−], we see that ⋁[(can(w) ∩ S) ⊎ J+ ⊎ S′] is a join representation

of u. Since S′ is contained in the support of J−, the sets can(w)∩S, J+, and S′ also have pairwise

disjoint support. Proposition 4.4.12 says that both ⋁ can(w) ∩ S and ⋁J+ are canonical join

representations. Since ⋁S′ is an irredundant join of atoms, it is also a canonical join represen-

tation. Thus, by Lemma 4.4.15, ⋁[(can(w) ∩ S) ⊎ J+ ⊎ S′] is the canonical join representation

of u. The symmetric argument gives the canonical join representation of v. We conclude that

can(w)∩S = can(u)∩can(v), J+ = can(u) ∖ S, and J− = can(v)∖S. The proposition follows.

120



4.4.5 Counting bipartite c-bisortable elements

In this section, we prove that the formulas in Theorem 4.4.3 counts bipartite c-bisortable el-

ements, thus completing the proofs of Theorems 4.1.2, 4.1.3, 4.4.1, 4.4.2 and 4.4.3. We begin

by interpreting the double-positive Catalan and Narayana numbers in the c-sortable setting.

We define positive c-sortable elements to be the set of c-sortable elements not contained in

any standard parabolic subgroup of W . Equivalently, these are the c-sortable elements whose

support is not contained in any proper subset of S. As the name suggests, positive c-sortable ele-

ments are counted by the positive Catalan numbers. The following analogue of Proposition 4.4.4

is the combination of [69, Corollary 9.2] and [69, Corollary 9.3].

Proposition 4.4.26. For any Coxeter element c of W , the number of positive c-sortable ele-

ments in W is Cat+(W ). The number positive c-sortable elements with k descents is Nar+k(W ).

We define clever c-sortable elements to be c-sortable elements which have no simple

canonical joinands. We continue to let ⟨s⟩ stand for S ∖ {s}. To count clever c-sortable ele-

ments we will use Lemma 4.4.20 to define a map from c-sortable elements v with simple cover

reflection s to c′-sortable elements in the standard parabolic subgroup W⟨s⟩, where c′ is the

restriction of c to W⟨s⟩. Our next task is to show that, for bipartite c, clever c-sortable elements

are analogous, enumeratively, to antichains in the root poset having no simple roots:

Proposition 4.4.27. Fix a bipartite Coxeter element c of W .

1. The number of clever c-sortable elements is Cat+(W ).

2. The number of positive, clever c-sortable elements is Cat++(W ).

3. The number of positive, clever c-sortable elements with exactly k descents is Nar++k (W ).

We emphasize that while Proposition 4.4.26 holds for arbitrary c, Proposition 4.4.27 holds

only for bipartite c. The proof of Proposition 4.4.27 will use inclusion-exclusion and the following

technical lemma.

Lemma 4.4.28. For bipartite c and J ⊆ S, let c′ be the restriction of c to WS∖J .

1. The map πS∖J↓ ∶ v ↦ vS∖J is a bijection from c-sortable elements of W with J ⊆ can(v) to

c′-sortable elements of WS∖J . Also, can(vS∖J) = can(v) ∖ J .

2. The map restricts to a bijection from positive c-sortable elements of W with J ⊆ can(v)
to positive c′-sortable elements of WS∖J .

3. The map restricts to a bijection from positive c-sortable elements of W with J ⊆ can(v)
and with exactly k descents to positive c′-sortable elements of WS∖J with exactly k − ∣J ∣
descents.
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Proof. Suppose that v is c-sortable, and J ⊆ can(v). Lemma 4.4.24 says that the support of

each canonical joinand j in can(v) ∖ J is contained in S ∖ J . (Lemma 4.4.24 applies to the

non-simple elements of can(v). Clearly, each simple reflection s ∈ can(v) ∖ J is supported on

the set S ∖ J .) On the one hand, πS∖J↓ (j) = j for each j ∈ can(v) ∖ J . On the other hand,

πS∖J↓ (s) is the identity element for each s in J . Since πS∖J↓ is a lattice homomorphism, we have

πS∖J↓ (⋁ can(v)) = ⋁[can(v) ∖J]. Proposition 4.4.11 implies that ⋁[can(v) ∖J] is the canonical

join representation of πS∖J↓ (v) = vS∖J . Lemma 4.4.19 says that vS∖J is c′-sortable.

To complete the proof of the first assertion, we construct an inverse map. Suppose that v′

is a c′-sortable element in WS∖J . Lemma 4.4.14 says that the support of each canonical joinand

j ∈ can(v′) is contained in S ∖ J . Lemma 4.4.15 says that the join ⋁[can(v′) ∪ J] is a canonical

join representation for some element v ∈W . Lemma 4.4.19 says that v is c-sortable. We conclude

that the map sending v′ to ⋁[can(v′) ∪ J] is a well-defined inverse.

Lemma 4.4.14, Lemma 4.4.24, and the fact that can(vS∖J) = can(v) ∖ J imply that v is

positive in W if and only if vS∖J is positive in WS∖J . The second assertion follows. The third

assertion then follows from Proposition 4.4.13 and the fact that can(vS∖J) = can(v) ∖ J .

Finally, we complete the proof of that bipartite c-bisortable elements are counted by the

formula in Theorem 4.4.3.

Proposition 4.4.29. For any finite Coxeter group W with simple generators S, the generating

function ∑v qdes(v) for bipartite c-bisortable elements is

∑ q∣M ∣ Cat++(WI ; q)Cat++(WJ ; q),

where the sum is over all ordered triples (I, J,M) of pairwise disjoint subsets of S.

Proof. Similarly to the proof of Proposition 4.4.8, the proposition amounts to establishing a

bijection from bipartite c-bisortable elements w to triples (u′, v′,M) such that u′ is a clever

c-sortable element, v′ is a clever c−1-sortable element, and the sets I = supp(u′), J = supp(v′),
and M are disjoint subsets of S, and then showing that des(w) = des(u′) + des(v′) + ∣M ∣.

Given a bipartite c-bisortable element w, write (u, v) for the pair (πc↓(w), πc−1↓ (w)) of

twin (c, c−1)-sortable elements. Proposition 4.4.18(2) says that can(w) is the disjoint union

(can(u) ∖ S) ⊎ (can(v) ∖ S) ⊎ (can(w) ∩ S). Proposition 4.4.18(4.4.18) says that the sets I =
supp(can(u)∖S), J = supp(can(v)∖S), and M = can(w)∩S are pairwise disjoint subsets of S.

By Proposition 4.4.12, ⋁ can(u) ∖ S is the canonical join representation of a positive, clever

c-sortable element u′ in WI . Similarly, ⋁ can(v) ∖ S is the canonical join representation of a

positive, clever c−1-sortable element v′ in WJ . Applying Proposition 4.4.13 several times, we

see that des(w) = des(u′) + des(v′) + ∣M ∣.
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We will show that this map w ↦ (u′, v′,M) is a bijection by showing that the map

(u′, v′,M) ↦ u′ ∨ v′ ∨ (⋁M) is the inverse. On one hand, given w, construct (u′, v′,M) as

above. Then w equals ⋁ can(w), which equals

(⋁ can(u) ∖ S) ∨ (⋁ can(v) ∖ S) ∨ (⋁ can(w) ∩ S) = u′ ∨ v′ ∨ (⋁M).

On the other hand, given (u′, v′,M) satisfying the description above, set w = u′ ∨ v′ ∨ (⋁M).
Since u′, v′ and M have pairwise disjoint support, we conclude that can(u′), can(v′), and M

also have pairwise disjoint support. Lemma 4.4.15 says that ⋁ can(u′) ⊎ can(v′) ⊎M is the

canonical join representation of w. By Lemma 4.4.19(1), each canonical joinand of u′ is c-

sortable and each canonical joinand of v′ is c−1-sortable. Since each simple generator is both c-

and c−1-sortable, we conclude that each canonical joinand of w either either c- or c−1-sortable.

By Lemma 4.4.19(2), w is c-bisortable. Thus, the map (u′, v′,M) ↦ u′ ∨ v′ ∨ (⋁M) is a well-

defined.

Lemma 4.4.22 says that can(u′)⊎M is equal to the set of c-sortable canonical joinands of w.

Since u′ is clever, can(u′) is equal to the set of c-sortable canonical joinands in can(w) ∖ S.

Similarly, can(v′) is the set of c−1-sortable canonical joinands in can(w)∖S, and can(w)∩S =M .

Define u = πc↓(w) and v = πc−1
↓ (w). Proposition 4.4.18(2) says that can(w) = (can(u) ∖ S) ⊎

(can(v) ∖S) ⊎ (can(w) ∩S). Comparing this to the expression can(w) = can(u′) ⊎ can(v′) ⊎M ,

we see that can(u)∖S = can(u′), that can(v)∖S = can(v′), and that can(w)∩S =M . Thus the

map described above takes w back to (u′, v′,M).

Remark 4.4.30. The proof given here that twin nonnesting partitions are in bijection with

bipartite c-bisortable elements would be uniform if there were a uniform proof connecting c-

sortable elements and nonnesting partitions. The opposite is true as well: Suppose one proved

uniformly that a given map φ is a bijection from antichains in the doubled root poset to

bipartite c-bisortable elements and also that φ preserves the triples (I, J,M) appearing in

Propositions 4.4.8 and 4.4.29. Then the restriction of φ to antichains in the root poset (i.e.

those with J = ∅) is a bijection from antichains in the root poset to c-sortable elements.

Remark 4.4.31. The methods of this section don’t apply well to the case where c is not

bipartite, because the main structural results of the section, Propositions 4.4.18 and 4.4.27, can

fail when c is not bipartite. This can already be seen in A3 for the linear Coxeter element.

4.4.6 BiCatalan and Catalan formulas

In this section and the next, we prepare to prove the formula for biCat(Dn) in Theorem 4.1.4,

thus completing the proof of that theorem. Specifically, the proof requires combining a very large
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number of identities relating q-analogs of biCatalan numbers, Catalan numbers, and double-

positive Catalan numbers that we quote or prove here. In this section, we give recursions for

the q-analogs of W -biCatalan and W -Catalan numbers for irreducible finite Coxeter groups, in

which q-analogs of double-positive Catalan numbers appear as coefficients.

Proposition 4.4.32. For an irreducible finite Coxeter group W and a simple generator s ∈ S,

the q-analog of the W -biCatalan number satisfies

biCat(W ; q) = (1 + q)biCat(WS∖{s}; q)

+ 2∑
S0

Cat++(WS0 ; q)
m

∏
i=1

[1

2
biCat(WSi ; q) +

1 + q
2

biCat(WSi∖{si}; q)] , (4.4.13)

where the sum is over all connected subgraphs S0 of the diagram for W with s ∈ S0, the connected

components of the complement of S0 in the diagram are S1, . . . , Sm, and each si is the unique

vertex in Si that is connected by an edge to a vertex in S0.

Proof. For fixed s, we break the formula in Theorem 4.4.2 into four sums, according to whether s

is in S ∖ (I ∪ J ∪M), in M , in I, or in J . The sum of terms with s ∈ S ∖ (I ∪ J ∪M) equals

biCat(WS∖{s}; q). The sum of terms with s ∈M equals q ⋅ biCat(WS∖{s}; q).
Consider next the sum of terms with s ∈ I, and in each term let S0 be the connected

component of the diagram containing s. Using (4.4.12), we can reorganize the sum according

to S0 to obtain

∑
S0

Cat++(WS0 ; q)∑ q∣M ∣ Cat++(WI′ ; q)Cat++(WJ ; q),

where the S0-sum is as described in the statement of the proposition and the inner sum is over

all ordered triples (I ′, J,M) of disjoint subsets of S ∖S0 such that no element of I ′ is connected

by an edge of the diagram to an element of S0. Again using (4.4.12), we factor the inner sum

further to obtain

∑
S0

Cat++(WS0 ; q)
m

∏
i=1

[∑ q∣Mi∣ Cat++(WIi ; q)Cat++(WJi ; q)] ,

where the Si and si are as in the statement of the proposition and the inner sum runs of over

all ordered triples (Ii, Ji,Mi) of pairwise disjoint subsets of Si with si /∈ Ii. The sum for each i

can be broken up into a sum over terms with si ∈ Ji and terms with si /∈ Ji. Splitting the sum
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over terms with si /∈ Ji in half, we obtain three sums:

∑
si∈Ji

q∣Mi∣ Cat++(WIi ; q)Cat++(WJi ; q)

+ 1

2
∑
si/∈Ji

q∣Mi∣ Cat++(WIi ; q)Cat++(WJi ; q)

+ 1

2
∑
si/∈Ji

q∣Mi∣ Cat++(WIi ; q)Cat++(WJi ; q)

The symmetry between I and J on the right side of Theorem 4.4.2 lets us recognize the sum

of the first two terms as 1
2 biCat(WSi ; q), recalling that s /∈ Ii throughout. The third term is

1+q
2 biCat(WSi∖{si}; q). We see that the sum of terms with s ∈ I is the sum in the proposed

formula, without the factor 2 in front. By symmetry, the sum of terms with s ∈ J is the same

sum, so we obtain the factor 2 in the sum and we have established the desired formula.

We obtain the following recursion for biCat(Dn; q) from Proposition 4.4.32. The notation D2

means A1 ×A1 and D3 means A3.

Proposition 4.4.33. For n ≥ 3,

biCat(Dn; q) = (1 + q)biCat(Dn−1; q)

+
n−3

∑
i=1

Cat++(Ai; q) (biCat(Dn−i; q) + (1 + q)biCat(Dn−i−1; q))

+ 2(1 + q)2 Cat++(An−2; q) + 4(1 + q)Cat++(An−1; q) + 2 Cat++(Dn; q) (4.4.14)

Proof. In Proposition 4.4.32, take s to be a leaf of the Dn diagram whose removal leaves the

diagram for Dn−1. The sum over S0 splits into several pieces. First, the S0 for which the diagram

on S ∖ {S0} is of type Dk for k ≥ 3 give rise to terms

n−3

∑
i=1

Cat++(Ai; q) (biCat(Dn−i; q) + (1 + q)biCat(Dn−i−1; q)) .

Next, the term for which the diagram on S∖{S0} is of type D2 is 2 Cat++(An−2)(1
2(1+q)+

1+q
2 ⋅1)2,

which simplifies to 2(1+q)2 Cat++(An−2). The two terms for which the diagram on S∖{S0} is of

type A1 each contribute 2(1+q)Cat++(An−1). Finally, the term with S0 = S is 2 Cat++(Dn; q).

We obtain the following recursion for biCat(Bn; q) from Proposition 4.4.32 similarly. Here

and throughout the chapter, we interpret B0 and B1 to be synonyms for A0 and A1.
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Proposition 4.4.34. For n ≥ 1,

biCat(Bn; q) =

(1 + q)biCat(Bn−1; q) + 2 Cat++(Bn; q) + 2(1 + q)Cat++(An−1; q)

+
n−2

∑
i=1

Cat++(Ai; q) [biCat(Bn−i; q) + (1 + q)biCat(Bn−i−1; q)] . (4.4.15)

Proof. In Proposition 4.4.32, take s to be a leaf of the Bn diagram whose removal leaves the

diagram for Bn−1. The terms with ∣S0∣ from 1 to n− 2 are in the summation in (4.4.15), but we

separate out the terms with ∣S0∣ = n − 1 and ∣S0∣ = n. For the term with ∣S0∣ = n − 1, we use the

facts that biCat(B1; q) = (1 + q) and that biCat(B0; q) = 1.

Similarly, we obtain the following recursion for biCat(An) by taking s to be either leaf of

the diagram.

Proposition 4.4.35. For n ≥ 1,

biCat(An; q) = (1 + q)biCat(An−1; q) + 2 Cat++(An; q)

+
n−1

∑
i=1

Cat++(Ai; q) [biCat(An−i; q) + (1 + q)biCat(An−i−1; q)] . (4.4.16)

Next we gather some formulas involving the q-Catalan numbers. We begin with the usual

recursion for the type-A Catalan numbers, although this q-version may be less widely familiar.

It is easily obtained through the interpretation of Cat(An; q) as the descent generating function

for 231-avoiding permutations in Sn+1, by breaking up the count according to the first entry in

the permutation. We omit the details.

Proposition 4.4.36. For n ≥ 1,

Cat(An; q) = (1 + q)Cat(An−1; q) + q
n−1

∑
i=1

Cat(Ai−1; q)Cat(An−i−1; q). (4.4.17)

Furthermore, using known formulas for the Narayana numbers, we obtain a recursion that

relates the q-Catalan number in types A and D.

Proposition 4.4.37. For n ≥ 2,

Cat(Dn; q) = n + 1

2
(1 + q)Cat(An−1; q) − (n − 1

2
+ q + n − 1

2
q2)Cat(An−2). (4.4.18)
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Proof. Taking the coefficient of qk on both sides, we see that (4.4.18) is equivalent to

Nark(Dn) =
n + 1

2
(Nark(An−1) +Nark−1(An−1))

− n − 1

2
Nark(An−2) −Nark−1(An−2) −

n − 1

2
Nark−2(An−2). (4.4.19)

This can be verified using the known formulas for the type-A and type-D Narayana numbers.

(See for example in [34, (9.1)] and [34, (9.3)], putting m = 1 in both formulas).

Next, we give a recursion for Cat(W ; q) analogous to (4.4.13). The proof follows the outline

of the proof of Proposition 4.4.32, using Theorem 4.4.9 instead of Theorem 4.4.2. This proof is

simpler than the proof of Proposition 4.4.32, so we omit the details.

Proposition 4.4.38. For an irreducible finite Coxeter group W and a simple generator s, the

q-analog of the W -Catalan number satisfies

Cat(W ; q) = (1 + q)Cat(WS∖{s}; q)

+∑
S0

Cat++(WS0 ; q)
m

∏
i=1

(1 + q)Cat(WSi∖{si}; q), (4.4.20)

where the sum is over all connected subgraphs S0 of the diagram for W with s ∈ S0, the connected

components of the complement of S0 in the diagram are S1, . . . , Sm, and each si is the unique

vertex in Si that is connected by an edge to a vertex in S0.

The following three propositions give the type-A, type-B, and type-D cases of (4.4.20).

Proposition 4.4.39. For n ≥ 0,

Cat(An; q) = Cat++(An; q) + (1 + q)
n−1

∑
i=0

Cat++(Ai; q)Cat(An−i−1; q). (4.4.21)

Proof. If n = 0, then the formula is Cat(A0; q) = Cat++(A0; q), which says 1 = 1. Otherwise,

taking s to be a leaf of the An diagram in (4.4.20), the sum over S0 has the following terms:

∑n−1
i=1 Cat++(Ai; q)(1+q)Cat(An−i−1; q) and Cat++(An; q). Because Cat++(A0; q) = 1, we can merge

the first term into the sum.

Proposition 4.4.40. For n ≥ 0,

Cat(Bn; q) = Cat++(Bn; q) + (1 + q)
n−1

∑
i=0

Cat++(Ai; q)Cat(Bn−i−1; q) (4.4.22)
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Proof. The formula holds for n = 0 and n = 1. For n > 1, take s to be the leaf whose dele-

tion leaves a diagram of type Bn−1 in (4.4.20), and rearrange the formula as in the proof of

Proposition 4.4.21.

Proposition 4.4.41. For n ≥ 3,

Cat(Dn; q) =

(1 + q)Cat(An−1; q) + (1 + q)Cat++(An−1; q) +Cat++(Dn; q)

+ (1 + q)2
n−2

∑
i=1

Cat++(Ai; q)Cat(An−i−2; q)

+ (1 + q)
n−1

∑
i=3

Cat++(Di; q)Cat(An−i−1; q).

(4.4.23)

Proof. Start with Proposition 4.4.38, taking s to be a leaf of the Dn diagram whose removal

leaves the diagram for An−1. For S0 not containing the leaf symmetric to s, we get terms

(1 + q)2∑n−2
i=1 Cat++(Ai; q)Cat(An−i−2; q) and (1 + q)Cat++(An−1; q). (The i = 1 term in the sum

would be wrong, except that Cat++(A1) = 0.) For S0 containing the leaf symmetric to s, we get

(1 + q)∑n−1
i=3 Cat++(Di; q)Cat(An−i−1; q) and Cat++(Dn; q).

4.4.7 The double-positive Catalan numbers

In this section, we consider the double-positive Catalan numbers for the classical reflection

groups, and establish some identities for Cat++(An; q), Cat++(Bn; q), and Cat++(Dn; q) that will

be useful for proving the type-D case of Theorem 4.1.4.

Remark 4.4.42. Athanasiadis and Savvidou, in [7, Theorem 1.2], gave formulas for the poly-

nomials Cat++(W ; q) for each W of finite type by explicitly determining coefficients ξi such that

Cat++(W ; q) = ∑⌊n/2⌋
i=0 ξiq

i(1 + q)n−2i. Similar formulas for the relevant polynomials Cat(W ; q)
are known [64, Propositions 11.14–11.15], so the identities we need can in principle be obtained

by manipulating the formulas from [7, 64]. Indeed, Proposition 4.4.44 is easily obtained in this

way, but such proofs of Propositions 4.4.43 and 4.4.51 appear to be more complicated.

Table 4.6: Some double positive Catalan numbers

W A0 A1 A2 A3 A4 A5 A6 B2 B3 B4 B5 B6 D4 D5 D6 D7

Cat++(W ) 1 0 1 2 6 18 57 2 6 22 80 296 10 42 168 660
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In Table 4.6, we list some examples of the double-positive Catalan numbers for the classical

reflection groups. From inspection of these numbers, several interesting relationships appear.

First, the data suggests that 2 Cat++(An) + Cat++(An−1) = Cat(An−1). Below, we establish a

q-analog of this identity.

Proposition 4.4.43. For n ≥ 1,

(1 + q)Cat++(An; q) + qCat++(An−1; q) = qCat(An−1; q). (4.4.24)

Proof. If n = 1, then the identity is (1 + q) ⋅ 0 + q ⋅ 1 = q ⋅ 1. If n > 1, then by induction, we can

replace (1 + q)Cat++(Ai; q) with q(Cat(Ai−1; q) − Cat++(Ai−1; q)) in the terms i > 1 of (4.4.21)

and observe that Cat++(A0; q) = 1 to obtain

Cat(An; q) = Cat++(An; q) + (1 + q)Cat(An−1; q)

+ q
n−1

∑
i=1

Cat(Ai−1; q)Cat(An−i−1; q)

− q
n−1

∑
i=1

Cat++(Ai−1; q)Cat(An−i−1; q).

The first sum, by Proposition 4.4.36, is (Cat(An; q) − (1 + q)Cat(An−1; q)). The second sum

can be reindexed to q∑n−2
i=0 Cat++(Ai; q)Cat(An−i−2; q), which, by Proposition 4.4.39, equals

q
1+q (Cat(An−1; q) −Cat++(An−1; q)). We obtain

Cat(An; q) = Cat++(An; q) + (1 + q)Cat(An−1; q)

+Cat(An; q) − (1 + q)Cat(An−1; q)

− q

1 + q
(Cat(An−1; q) −Cat++(An−1; q)),

which simplifies to the desired identity.

The data also suggests that Cat++(Dn) = (n − 2)Cat(An−2). Indeed, the following is a q-

analog.

Proposition 4.4.44. For n ≥ 2,

Cat++(Dn; q) = (n − 2)qCat(An−2; q). (4.4.25)

Proof. For n = 2, the identity is q + q2 = (3 − 2)q(1 + q). If n ≥ 3, then we start with (4.4.23).
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The first summation in the formula can be rewritten, using (4.4.21), as

(1 + q)(Cat(An−1; q) − (1 + q)Cat(An−2; q) −Cat++(An−1; q)). (4.4.26)

By induction, the second summation can be rewritten as

(1 + q)q
n−1

∑
i=3

(i − 2)Cat++(Ai−2; q)Cat(An−i−1; q). (4.4.27)

To further simplify (4.4.27), we use (4.4.17) to calculate

(n − 3)(Cat(An−1; q) − (1 + q)Cat(An−2; q))

= (n − 3)q
n−2

∑
i=1

Cat(Ai−1; q)Cat(An−i−2; q)

= q
n−2

∑
i=1

((i − 1)Cat(Ai−1; q)Cat(An−i−2; q)

+ (n − i − 2)Cat(Ai−1; q)Cat(An−i−2; q))

= q
n−2

∑
i=1

(i − 1)Cat(Ai−1; q)Cat(An−i−2; q)

+ q
n−2

∑
i=1

(n − i − 2)Cat(Ai−1; q)Cat(An−i−2; q)

Both sums can be reindexed to agree with (4.4.27), except for the initial factor (1 + q). Thus

(4.4.27) equals n−3
2 (1+q)(Cat(An−1; q)−(1+q)Cat(An−2; q)). Finally, we use (4.4.18) to rewrite

the Cat(Dn; q). We obtain

n + 1

2
(1 + q)Cat(An−1; q) − (n − 1

2
+ q + n − 1

2
q2)Cat(An−2) =

(1 + q)Cat(An−1; q) + (1 + q)Cat++(An−1; q) +Cat++(Dn; q)

+ (1 + q)(Cat(An−1; q) − (1 + q)Cat(An−2; q) −Cat++(An−1; q))

+ n − 3

2
(1 + q)(Cat(An−1; q) − (1 + q)Cat(An−2; q)). (4.4.28)

This can be rearranged to say Cat++(Dn; q) = (n − 2)qCat(An−2; q).

In order to establish a needed identity for double-positive Catalan numbers of type B, we

need a recursion for the q-Catalan number that comes from a completely different direction.

The q-Catalan numbers Cat(W ; q) encode the h-vector of the generalized associahedron for W .

(See, for example, [32, Section 5.2].) For each Coxeter group W of rank n and each i from 0

to n, define fi to be the number of simplices in the simplicial generalized associahedron having
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exactly i vertices (and thus dimension i − 1). Define a polynomial

f(W ;x) =
n

∑
k=0

fk(W )xk.

The following is [35, Proposition 3.7].

Proposition 4.4.45. If W is reducible as W1 ×W2, then f(W ;x) = f(W1;x)f(W2;x). If W

is irreducible with Coxeter number h, then

df(W ;x)
dx

= h + 2

2
∑
s∈S

f(WS∖{s};x) (4.4.29)

Since f(W ) encodes the f -vector of the generalized associahedron and Cat(W ; q) encodes

the h-vector, (4.4.29) implies a formula for Cat(W ; q). Since f(W ) is has coefficients reversed

from the f -polynomial usually used to define h-vectors, the formula for Cat(W ; q) is somewhat

more complicated than (4.4.29).

Proposition 4.4.46. For an irreducible Coxeter group W with rank n ≥ 0 and Coxeter num-

ber h, the q-analog of the Catalan number satisfies

nCat(W ; q) + (1 − q) d

dq
Cat(W ; q) = h + 2

2
∑
s∈S

Cat(WS∖{s}; q). (4.4.30)

Proof. We begin with the right side of (4.4.30) and replace q by x + 1 throughout. The result

is h+2
2 ∑s∈S rev(f(WS∖{s};x)), where rev is the operator that reverses the coefficients of a poly-

nomial. In other symbols: xn−1 h+2
2 ∑s∈S f(WS∖{s};x−1) Using (4.4.29), the quantity becomes

xn−1 df(W ;x−1)
d(x−1)

.

Similarly, Cat(W ;x + 1) = rev(f(W ;x)) = xnf(W ;x−1), so f(W ;x−1) = x−nCat(W ;x + 1).
Thus the right side of (4.4.30) equals

xn−1 d

d(x−1)
[x−nCat(W ;x + 1)]

= xn−1 d

dx
[x−nCat(W ;x + 1)] (−x2)

= −xn+1 [−nx−n−1 Cat(W ;x + 1) + x−n d

dx
Cat(W ;x + 1)]

= nCat(W ;x + 1) − x d

dx
Cat(W ;x + 1)

= nCat(W ;x + 1) − x d

d(x + 1)
Cat(W ;x + 1)

Replacing x by q − 1 throughout, we obtain the left side of (4.4.30).
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The type-B version of (4.4.30) is the following recursion:

Proposition 4.4.47. For n ≥ 0,

nCat(Bn; q) + (1 − q) d

dq
Cat(Bn; q) = (n + 1)

n

∑
i=1

Cat(Ai−1; q)Cat(Bn−i; q). (4.4.31)

The following formula is obtained using known formulas for Narayana numbers of types A

and B.

Proposition 4.4.48. For n ≥ 0,

n

∑
i=1

Cat(Ai−1; q)Cat(Bn−i; q) = nCat(An−1; q). (4.4.32)

Proof. By (4.4.31), the assertion is equivalent to

nCat(Bn; q) + (1 − q) d

dq
Cat(Bn; q) = n(n + 1)Cat(An−1; q). (4.4.33)

Taking the coefficient of qk on both sides, we see that (4.4.33) is equivalent to

(n − k)Nark(Bn) + (k + 1)Nark+1(Bn) = n(n + 1)Nark(An−1). (4.4.34)

This can be verified using the formulas for the type-A and type-B Narayana numbers, found

for example in [34, (9.1)] and [34, (9.2)] (setting m = 1 in both formulas from [34]).

Using (4.4.16) and the observation that biCat(An; q) = Cat(Bn; q), then applying (4.4.22)

twice, (where, in the first instance n is replaced by n + 1 in (4.4.22)), we obtain the following

formula.

Proposition 4.4.49. For n ≥ 1,

Cat(Bn; q) = (1 + q)Cat(Bn−1; q) − (1 + q)Cat++(An−1; q)

+Cat++(Bn; q) + (1 + q)Cat++(Bn−1; q). (4.4.35)

Next, we obtain the following formula.

Proposition 4.4.50. For n ≥ 2,

(1 + q)Cat(Bn; q) =

(1 + q + q2)Cat(Bn−1; q) + (n − 1)q(1 + q)Cat(An−2; q)

+ qCat++(Bn−1; q) + (1 + q)Cat++(Bn; q). (4.4.36)

132



Proof. Using (4.4.24) to replace each instance of (1+ q)Cat++(Ai; q) in (4.4.22) with the differ-

ence q(Cat(Ai−1; q) −Cat++(Ai−1; q)) for i > 0 and splitting into two sums, we obtain:

Cat(Bn; q) = (1 + q)Cat(Bn−1; q) + q
n−1

∑
i=1

Cat(Ai−1; q)Cat(Bn−i−1; q)

− q
n−1

∑
i=1

Cat++(Ai−1; q)Cat(Bn−i−1; q) +Cat++(Bn; q)

We use (4.4.32) with n replaced by n − 1 to evaluate the first sum. We reindex the second sum

and evaluate it using (4.4.22) with n replaced by n − 1.

Cat(Bn; q) = (1 + q)Cat(Bn−1; q) + q(n − 1)Cat(An−2; q)

− q

1 + q
(Cat(Bn−1; q) −Cat++(Bn−1; q)) +Cat++(Bn; q).

We multiply through by (1 + q) and simplify to obtain (4.4.36).

Solving both (4.4.36) and (4.4.35) for (1+q)Cat++(Bn; q) and combining them, then solving

for (1 + q + q2)Cat++(Bn−1; q), we obtain the key result for Cat++(Bn−1).

Proposition 4.4.51.

(1 + q + q2)Cat++(Bn−1; q) = −qCat(Bn−1; q)

+ (n − 1)q(1 + q)Cat(An−2; q) + (1 + q)2 Cat++(An−1) (4.4.37)

4.4.8 The Type D biCatalan number

We now complete the proof of Theorem 4.1.4 by proving the following theorem.

Theorem 4.4.52. For n ≥ 2, the Dn-biCatalan number is

biCat(Dn) = 6 ⋅ 4n−2 − 2(2n − 4

n − 2
). (4.4.38)

Since we have already established the type-A and type-B cases of Theorem 4.1.4, Theo-

rem 4.4.52 is the assertion that biCat(Dn) = 3 biCat(Bn−1) − 2 biCat(An−2). In preparation for

the proof, we let X = X(q) and Y = Y (q) be any rational functions of q and define, for each

n ≥ 2, a rational function Zn = Zn(q) given by

Zn = biCat(Dn; q) −X biCat(Bn−1; q) + Y biCat(An−2; q).
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Combining (4.4.14), (4.4.15), and (4.4.16), we obtain the following recursion for Zn for n ≥ 3.

Zn = (1 + q)Zn−1 +
n−3

∑
i=1

Cat++(Ai; q) (Zn−i + (1 + q)Zn−i−1)

+ 2((1 + q)2 −X(1 + q) + Y )Cat++(An−2) + 4(1 + q)Cat++(An−1)

+ 2 Cat++(Dn; q) − 2X Cat++(Bn−1; q) (4.4.39)

One way to obtain a formula for q-biCatalan numbers biCat(Dn; q) would be to find a choice

of X and Y that makes this recursion for Zn into something that can be solved. We have thus

far been unable to find a choice of X and Y that works. Instead, we will prove Theorem 4.4.52

by showing that if X(1) = 3 and Y (1) = 2, then Zn(1) = 0 for all n ≥ 2. In the proof that follows,

we take convenient choices of X and Y but delay specializing q to 1 until the end, because

specializing earlier does not make the manipulations much easier, and because we hope that

perhaps we are still getting closer to a formula for biCat(Dn; q).

Proof of Theorem 4.4.52. Substituting (4.4.37) and (4.4.25) into (4.4.39), taking X = 1 + q + q2,

and taking Y = 2q − q2 + q3, we obtain

Zn = (1 + q)Zn−1 +
n−3

∑
i=1

Cat++(Ai; q) (Zn−i + (1 + q)Zn−i−1)

+ 2q(1 − q)Cat++(An−2; q) + 2(1 − q)(1 + q)Cat++(An−1; q)

− 2q(1 + (n − 1)q)Cat(An−2; q) + 2qCat(Bn−1; q) (4.4.40)

We next apply (4.4.24) to rewrite the two double-positive q-Catalan numbers in (4.4.40) as a

single q-Catalan number.

Zn = (1 + q)Zn−1 +
n−3

∑
i=1

Cat++(Ai; q) (Zn−i + (1 + q)Zn−i−1)

+ 2q(1 − q)Cat(An−1; q) − 2q(1 + (n − 1)q)Cat(An−2; q) + 2qCat(Bn−1; q) (4.4.41)

Finally specializing q to 1 and using the fact that Cat(Bn−1) = nCat(An−2) for n ≥ 3 (which

is immediate from the well-known formulas for the type-A and type-B Catalan numbers), we

see that

Zn(1) = 2Zn−1(1) +
n−3

∑
i=1

Cat++(Ai) (Zn−i(1) + 2Zn−i−1(1)) (4.4.42)

We easily verify that Z2(1) = 0, and thus we have a simple inductive proof that Zn(1) = 0 for all

n ≥ 2. Since we chose X and Y to have X(1) = 3 and Y (1) = 2, we obtain the desired identity

biCat(Dn) = 3 biCat(Bn−1) − 2 biCat(An−2).
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4.4.9 Type-D biNarayana numbers

Computational evidence suggests the following modest conjecture on the type-D biNarayana

number biNark(Dn).

Conjecture 4.4.53. The type-D biNarayana number biNark(Dn) is a polynomial in n (for

n ≥ 2) of degree 2k and leading coefficient
4k

(2k)!
.

If Conjecture 4.4.53 is true, then Table 4.7 shows
(2k)!

2k
⋅ biNark(Dn) for small k. The k = 1

case is verified by Proposition 4.2.4, and with some effort, the k = 2 case can be proved as well.

Table 4.7:
(2k)!

2k
⋅ biNark(Dn) for small k

k
(2k)!

2k
⋅ biNark(Dn)

0 1

1 2n2 − 3n

2 4n4 − 20n3 + 35n2 − 7n − 24

3 8n6 − 84n5 + 365n4 − 705n3 + 212n2 + 1104n − 1080

4 16n8 − 288n7 + 2268n6 − 9576n5 + 20349n4

−8022n3 − 54133n2 + 104826n − 60480
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par une loi demi-associative. J. Combinatorial Theory 2 1967 215–242.

[41] A. Garver, T. McConville, Lattice properties of oriented exchange graphs and torsion
classes. Preprint available: arxiv:1507.04268v1.

[42] W. Geyer, On Tamari lattices. Discrete Math. 133 (1994), no. 1-3, 99–122.

[43] S. Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees. J. of
Algebra 360 (2012) 115–157.

[44] G. Grätzer, Lattice theory: foundation. Birkhäuser/Springer Basel AG, Basel, 2011.
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[74] N. Reading and D. E. Speyer, Cambrian Fans J. Eur. Math. Soc. (JEMS) 11 no. 2, 407–
447.

[75] N. Reading and D. E. Speyer, Sortable elements in infinite Coxeter groups Trans. Amer.
Math. Soc. 363 (2011) no. 2, 699-761.

[76] N. Reading and D. E. Speyer, Cambrian frameworks for cluster algebras of affine type.
Preprint, 2015. (arXiv:1504.00260)

[77] B. Salvy and P. Zimmermann. GFUN: a Maple package for the manipulation of generating
and holonomic functions in one variable. ACM Trans. Math. Softw. 20 (1994), no. 2,
163–177.

[78] L. Santocanale, Derived semidistributive lattices. Algebra Universalis 63 (2010), no. 2-3,
101–130.

[79] R. P. Stanley, Subdivisions and local h-vectors. J. Amer. Math. Soc. 5 (1992), 805–851.

[80] R. Stanley, Promotion and evacuation, Electron. J. Combin. 16 (2009), no. 2, R9.

[81] R. P. Stanley, Enumerative combinatorics. Vol. 1, second edition. Cambridge Studies in
Advanced Mathematics 49. Cambridge University Press, Cambridge, 2012.

[82] R. P. Stanley, Enumerative combinatorics. Vol. 2, second edition. Cambridge Studies in
Advanced Mathematics 49. Cambridge University Press, Cambridge, 2012.

[83] R.P. Stanley, Catalan numbers. Cambridge University Press, New York, 2015. viii+215 pp.

[84] J. Stembridge, Maple packages for symmetric functions, posets, root systems, and finite
Coxeter groups. Available at http://www.math.lsa.umich.edu/̃jrs/maple.html.

[85] J. Stembridge, Quasi-minuscule quotients and reduced words for reflections. J. Algebraic
Combin. 13 (2001), no. 3, 275–293.

[86] J. Striker and N. Williams, Promotion and Rowmotion. Eur. J. Of Combinatorics, 33,
(2012) no. 8, 1919–1942.

[87] H. Thomas, Tamari lattices and noncrossing partitions in type B. Discrete Mathematics,
306 (2006), no. 21, 2711–2723.

140

http://www.math.lsa.umich.edu/~jrs/maple.html


[88] W. Trotter, Combinatorics and Partially Ordered Sets: Dimension Theory. The Johns
Hopkins University Press, 1992.

[89] M. Wachs, Poset Topology: Tools and Applications, Geometric combinatorics, 497–615,
IAS/Park City Math. Ser., 13, Amer. Math. Soc., Providence, RI, 2007.

[90] F. Wehrung, From join-irreducibles to dimension theory for lattices with chain conditions.
J. Algebra Appl. 1 (2002), no. 2, 215–242.

[91] J. West, personal communication, 2006.

[92] N. Williams, Cataland. Ph.D. Thesis, University of Minnesota, 2013.

[93] S. Yang and A. Zelevinsky Cluster algebras of finite type via Coxeter elements and principal
minors. Transformation Groups 13 (2008), no. 3–4, 855–895.

[94] G. Ziegler, Lectures on polytopes. Graduate Texts in Mathematics, 152. Springer-Verlag,
New York, 1995.

141


	List of Tables
	List of Figures
	Introduction
	The canonical join representation
	The combinatorics of the canonical join representation
	Finite Coxeter groups
	The topology of the canonical join complex
	Coxeter-biCatalan combinatorics

	The Canonical Join Complex
	Introduction
	Motivation and examples
	Finite semidistributive lattices
	Definitions
	The flag property
	Crosscut-simplicial lattices

	Lattice-theoretic constructions
	Sublattices and quotient lattices
	Products and sums
	Day's doubling construction

	Discussion and open problems

	The Canonical Join Complex of the Tamari Lattice
	Introduction
	Background
	Lattice-theoretic background
	The noncrossing arc complex
	The c-Cambrian congruence and the Tamari lattice
	The type-B Tamari lattice
	Noncrossing perfect matchings

	Shellability of the Tamari lattices
	The Tamari lattice in type A
	The Tamari lattice in type B

	Vertex Decomposability of the c-Cambrian lattices
	The c-Cambrian lattices
	Vertex decomposability


	Coxeter BiCatalan Combinatorics
	Introduction
	BiCatalan objects
	Antichains in the doubled root poset and twin nonnesting partitions
	BiCambrian fans
	The biCambrian congruence, twin sortable elements, and bisortable elements
	Twin clusters and bicluster fans
	Twin noncrossing partitions

	Bipartite c-bisortable elements and alternating arc diagrams
	Pattern avoidance
	Noncrossing arc diagrams
	Alternating arc diagrams
	Counting alternating arc diagrams
	Enumerating bipartite c-bisortable elements in type B
	Simpliciality of the bipartite biCambrian fan in types A and B

	Double-positive Catalan numbers and biCatalan numbers
	Double-positivity
	Counting twin nonnesting partitions
	Canonical join representations and lattice congruences
	Canonical join representations of c-bisortable elements
	Counting bipartite c-bisortable elements
	BiCatalan and Catalan formulas
	The double-positive Catalan numbers
	The Type D biCatalan number
	Type-D biNarayana numbers


	References

