
ABSTRACT

BROWN, ELISABETH MARY MARGARET. A Nonlinear Conservation Law Modeling Carbon
Sequestration. (Under the direction of Michael Shearer.)

A quasi-linear hyperbolic partial differential equation with a discontinuous flux models geologic

carbon dioxide (CO2) migration and storage through residual trapping [17]. Dual flux curves

emerge in this model, giving rise to flux discontinuities. One flux describes the invasion of the

plume into pore space, and the other captures the flow as the plume drains and leaves CO2

bubbles behind, which are then trapped by brine in the pore space between rock grains. Flux

functions with discontinuities in space have been previously studied; however, the flux in this

model depends on how the plume height changes in time, a different kind of discontinuity that

introduces new patterns. A striking feature of this simple model is that, because of its dual flux

curves, solutions of the conservation law can include the prediction that the entire CO2 plume

is deposited as bubbles in a finite time.

The model is explored in more detail, and some mathematical issues are resolved. We describe

the construction of fundamental wave solutions of the equation, namely shock waves and rarefac-

tion fans. To establish the admissibility of shock waves, we introduce the notion of cross-hatch

characteristics to address the ambiguity of characteristic speeds in regions of the characteristic

plane where the solution is constant. Detailed analytic solutions of wave interactions result-

ing from the dual flux model include some properties that do not occur in conventional scalar

conservation laws. Some wave interactions yield novel phenomena due to the dual flux, such

as shock-rarefaction interactions that would persist for all time with a single flux, here are

completed in finite time.

The existence of an entropy solution of the Cauchy problem for any initial CO2 plume is

established using wave-front tracking. To prove this theorem, we construct piecewise constant

approximate solutions of the Cauchy problem using expansion shocks in place of rarefaction

waves. In order to establish that a subsequence of approximate solutions converges to an entropy

solution of the Cauchy problem, we have to account for the dual fluxes carefully.
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Chapter 1

Introduction

Some 35.7 billion tonnes of carbon dioxide (CO2) were emitted into the atmosphere in 2014

[34], an increase from the previous year’s global CO2 emissions of 32 gigatonnes [19]. In 2000,

the Intergovernmental Panel on Climate Change projected a range of estimated emissions from

fossil fuel combustion and industrial processes for the year 2020; current emissions are within

that annual planning range of 29 to 44 billions tonnes of CO2 [20]. The capture of CO2 before

its exodus into the atmosphere seems to be a promising technological solution to reduce the

escalating global impact of CO2 emissions. In such a process, gaseous CO2 is collected at

industrial sites and power plants, compressed, and injected into geological formations deep

underground, as shown in Figure 1.0.1. Geotechnical evidence suggests that there is a potential

subsurface storage capability of 2,000 billion tonnes of CO2 in porous reservoirs worldwide [20].

A goal of future and ongoing carbon dioxide capture and storage projects, such as the Sleipner

project where nearly one million tonnes of CO2 are injected annually into a permeable sandstone

layer beneath the North Sea [41, 44, 48], is to permanently trap CO2 kilometers underground

and prevent the greenhouse gas from entering the atmosphere [14, 33]. While a wealth of seismic

surveys of the Sleipner project have indicated no signs of leakage [6], the possibility of escape

of the injected CO2 from brine-filled aquifers remains a concern.

During injection, the captured gaseous CO2 is compressed and becomes supercritical; hence,

upon release into the porous rock, the sequestered CO2 behaves like a liquid. The supercritical

CO2 is less dense than the ambient brine, so the injected plume rises within the aquifer [16,

17, 18]. Appropriate sites for carbon capture and storage projects have an impermeable cap

rock in the geological formation that acts as a barrier to hinder the upward migration of the

1



Figure 1.0.1: Schematic of the carbon sequestration process. Captured CO2 is injected below
an impermeable layer of rock for storage. Taken from [43].

buoyant plume and keep the CO2 beneath the Earth’s surface [2]. Once the plume rises to

the impermeable upper boundary, the CO2 travels along inclines in the cap’s lower surface and

spreads through the porous rock as a gravity current. As the plume migrates, it deposits bubbles

of CO2 that remain in place. The sequestration is successful if all of the CO2 in the plume is

deposited before the plume reaches fractures within the cap rock that would allow leakage of

the plume from the aquifer [14, 19, 40, 44].
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This mechanism to permanently immobilize CO2 within a porous medium is known as residual

trapping. Capillary forces between the two fluids (brine and supercritical CO2) stably trap

bubbles of CO2 within pore spaces. As the plume of CO2 migrates through a previously brine-

filled aquifer, surface tension within the pore geometry around the rock grains inhibits the brine

from refilling all pore space in the wake of the plume. As shown in Figure 1.0.2, some of the CO2

becomes residually trapped in nooks and crannies within the pore space as isolated ganglia that

become disconnected from the bulk of the plume as brine permeates into the remaining pore

space [14, 17, 19, 21, 36]. Without residual trapping, the CO2 plume could migrate indefinitely.

Residual trapping reduces the volume of mobile CO2 within the plume and enables aquifers

with a fractured cap rock to be used effectively for CO2 storage.

Hesse, Orr, and Tchelepi [17] formulated a nonlinear hyperbolic partial differential equation

with a discontinuous flux to model geologic carbon dioxide migration and storage through

residual trapping. As shown in the model derivation in Section 2, the switch between the two

concave dual flux functions is prescribed to occur at points (x, t) where the height h(x, t) of the

plume at position x at time t changes from increasing to decreasing in time, i.e., ∂h(x,t)
∂ t changes

sign. A striking feature of this simple model is that, because of its dual flux curves, solutions

of the equation can include the prediction that the entire CO2 plume is deposited as bubbles

in a finite time.

Figure 1.0.2: As a CO2 plume flows through permeable rock, some of the CO2 becomes resid-
ually trapped in the pore spaces between rock grains.
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In this dissertation, we explore the model in more detail, resolving some mathematical issues

and establishing the existence of entropy solutions of the Cauchy problem using wave-front

tracking. In Chapter 2, we derive the modeling equation of [17], including the switch between

the two flux functions, depending on whether the plume is propagating into a region of brine or

depositing CO2 droplets. In Chapter 3, we describe the construction of fundamental wave solu-

tions of the equation, namely shock waves and rarefaction waves. To establish the admissibility

of shock waves, we introduce the notion of cross-hatch characteristics to address the ambiguity

of characteristic speeds. Chapter 4 includes a detailed description of wave interactions, includ-

ing some properties that do not occur in conventional scalar conservation laws. In Chapter 5,

we construct piecewise constant approximate solutions of the Cauchy problem using expansion

shocks in place of rarefaction waves. In order to establish that a subsequence of approximate

solutions converges to an entropy solution of the Cauchy problem, we have to account for the

dual fluxes carefully. The analytic solution of the example included in Chapter 6 relies on the

inclusion of cross-hatch characteristics from both flux functions, and exact numerical wave-front

tracking solutions are presented in Chapter 7. We conclude the dissertation in Chapter 8 with

some remarks.
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Chapter 2

The Dual Flux Model

In this chapter, we outline several simplifying assumptions about the aquifer and the nature of

the flow, then derive the model, a first order conservation law with a switch in flux depending

on whether, at a given location, the CO2 plume is advancing or depositing bubbles in its wake.

Further details regarding the model can be found in Hesse, Orr, and Tchelepi [17].

2.1 Model Assumptions

Subsurface geology often has complicated spatial variability, and three-dimensional models

of carbon sequestration involve unresolved and difficult issues. To simplify matters, we con-

sider a porous aquifer that is locally uniform in the transverse direction and analyze the two-

dimensional propagation of a cross-section of the flow through a porous aquifer of constant

thickness H beneath an impermeable cap rock sloped at constant angle θ. A buoyant plume of

supercritical carbon dioxide, CO2 , with height h(x, t) at position x and time t is introduced to

the brine-filled aquifer for storage, as shown in Figure 2.1.1. Each incompressible fluid occupies

a distinct portion of the aquifer, so, with this sharp interface assumption, the dissolution of

CO2 into the brine is neglected [17, 19].

The viscosity contrast between the two fluids propels the CO2 plume to invade available pore

space as it migrates laterally as a gravity current [14, 22, 35]. The advection-dominated migra-

tion is mainly horizontal, and the displacement of the brine by the CO2 plume is assumed to be

slow enough so that the gravity-capillary equilibrium is maintained in any vertical cross-section

5



Figure 2.1.1: A CO2 plume in a porous layer with variables used in derivation of model.

[17]. Assume Pc is the constant capillary pressure “necessary to squeeze a hydrocarbon droplet

through a pore throat” [45], and let pI(x, t) be the pressure at the interface between brine and

supercritical CO2 at position x at time t . Suppose hb(x, t) = H − h(x, t) is the depth of the

brine at position x at time t, and let z be the orthogonal distance from the bottom of the

aquifer. When z = hb(x, t), the pressure, p(x, t), equals the interface pressure, pI(x, t) .

Under the assumption that pressure within the current is hydrostatic, the pressure within the

CO2 plume can be determined. Recall that hydrostatic pressure at a point depends on the

density of the fluid, gravitational constant g , and depth at which the pressure is measured.

When z > hb(x, t), the point (x, z) is located within the CO2 plume, as shown in Figure

2.1.2(a). The hydrostatic pressure induced by the CO2 layer increases as z decreases from H to

hb(x, t); hence, the pressure within the plume is given by

p(x, t) = Pc + pI(x, t)− ρ g
[
z − hb(x, t)

]
cos (θ)

where ρ is the density of the supercritical CO2 . As shown in Figure 2.1.2(b), a point (x, z) is

in the brine layer when z < hb(x). Since the brine is beneath the interface, hydrostatic pressure

will add to the interface pressure, and it follows that the pressure in the brine layer is

p(x, t) = pI(x, t) + (ρ+ ∆ρ) g
[
hb(x, t)− z

]
cos (θ)

where ρ+ ∆ρ is the density of the brine; with this notation, it is clear that brine is more dense
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than CO2 . It follows that the pressure at a point (x, z) at time t within the aquifer is given by

p(x, t) =

{
Pc + pI(x, t)− ρ g

[
z − hb(x, t)

]
cos (θ) when z > hb(x, t) ,

pI(x, t) + (ρ+ ∆ρ) g
[
hb(x, t)− z

]
cos (θ) when z ≤ hb(x, t) .

(2.1.1)

Within the aquifer, volume is conserved, and the conservation of momentum equation for this

fluid flow through a porous medium is given in the form of Darcy’s law [16, 19, 21, 44]. Consider

phase j, where j = b indicates brine, and CO2 is designated by j = c . For phase j, define qj

as volume flux per unit width, krj as relative permeability, µj as viscosity, and λj =
krj
µj

as

the constant mobility; the effect of the residual CO2 on the mobility of the brine is assumed

to be negligible. Let k be the permeability of the porous medium. The multiphase extension

of Darcy’s law is given by qj = − k λj ∂φj∂x , where φj = p(x, t) + ρj g
[
x sin (θ) + z cos (θ)

]
is

the potential of phase j and is consistent with literature pertaining to petroleum engineering’s

black oil model [1, 42, 46]. The potential adjusts the pressure given by (2.1.1) and scales by the

vertical distance between any point (x, z) within the aquifer and the origin (x, z) = (0, 0) , see

Figure 2.1.3(a). For the CO2 plume, it follows that

∂φc
∂x

=
∂

∂x

[
Pc + pI(x, t)− ρ g

[
z − hb(x, t)

]
cos (θ) + ρ g

[
x sin (θ) + z cos (θ)

]]
=
∂ pI(x, t)

∂x
+ ρ g cos (θ)

∂

∂x

[
H − h(x, t)

]
+ ρ g sin (θ)

=
∂ pI(x, t)

∂x
+ ρ g

[
−∂h(x, t)

∂x
cos (θ) + sin (θ)

]
. (2.1.2)

(a) (b)

Figure 2.1.2: Hydrostatic pressure geometry in the (a) CO2 and (b) brine layers.
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Similarly for the brine layer,

∂φb
∂x

=
∂

∂x

[
pI(x, t) + (ρ+ ∆ρ) g

[
hb(x, t)− z

]
cos (θ) + (ρ+ ∆ρ) g

[
x sin (θ) + z cos (θ)

]]
=
∂ pI(x, t)

∂x
+ (ρ+ ∆ρ) g

[
−∂h(x, t)

∂x
cos (θ) + sin (θ)

]
. (2.1.3)

The flow rate per unit width of the CO2 phase is Qc(x, t) = h(x, t) qc , and the flow rate per

unit width of the brine phase is Qb(x, t) = hb(x, t) qc . From Figure 2.1.3(b), if ∆x diminishes

to zero, then Qc +Qb = 0 . Combining this conservation of volume equation with the extended

Darcy’s law yields h(x, t)
[
−k λc ∂φc∂x

]
= −

(
H−h(x, t)

) [
−k λb ∂φb∂x

]
, and by (2.1.2) and (2.1.3),

it follows that

∂ pI(x, t)

∂x
=

−g
[
−∂h(x, t)

∂x
cos (θ) + sin (θ)

] [(
H − h(x, t)

)
λb (ρ+ ∆ρ) + h(x, t)λc ρ

]
h(x, t)λc +

(
H − h(x, t)

)
λb

.

Hence, the flow rate of the plume becomes

Qc(x, t) = k g∆ρ
h(x, t)λc

(
H − h(x, t)

)
λb

h(x, t)λc +
(
H − h(x, t)

)
λb

[
−∂h(x, t)

∂x
cos (θ) + sin (θ)

]
. (2.1.4)

(a) (b)

Figure 2.1.3: (a) Vertical distance between origin and any point (x, z) . (b) Replicated from
[17]: Flow rates for brine and CO2 impact the time rate of change of volume for an arbitrary
control volume.
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Conservation of volume over an arbitrary control length, ∆x , is shown in Figure 2.1.3(b), and

it follows that the time rate of change of the plume volume, Vc , depends on the flow of CO2

into and out of the control volume and CO2 sources or sinks, R′c , within the control volume as

∂Vc
∂t

= Qc(x, t)−Qc(x+ ∆x, t) +R′c , (2.1.5)

the differential form of (2.3) in [17].

2.2 Residual Trapping

Under the assumption that the formation of residual CO2 drives trapping within aquifers, the

sink term in (2.1.5) will depend on how residual trapping changes the plume volume in time.

Let Sjr be the constant residual saturation of phase j left behind the CO2 plume front [17, 24]

and suppose that the possibility of residually trapping bubbles of CO2 within the pore space is

proportional to the porosity of the porous medium, φ .

Consider a plume with initial location shown as in Figure 2.2.1 that then migrates to the right.

On the advancing face of the plume, the thickness of the plume is increasing, and ∂h(x,t)
∂t > 0 .

When ∂h(x,t)
∂t > 0 , migrating CO2 is invading new pore space while remaining hydraulically

connected to the plume; hence, no volume is lost when the plume is advancing. Correspondingly,
∂h(x,t)
∂t < 0 in the wake of the plume. When the plume is draining from a region of the aquifer

and ∂h(x,t)
∂t < 0 , brine invades, and bubbles of CO2 are isolated within the available pore space;

thus, a volume of CO2 is lost as residual saturation, Scr , in the wake of the plume. Hence, for

a small time step, the volume of CO2 that is lost from a control volume of width ∆x within

the plume is given by

R′c =


0 when

∂h(x, t)

∂t
> 0 ,

φ Scr ∆x
∂h(x, t)

∂t
when

∂h(x, t)

∂t
< 0 ,

and (2.1.5) becomes

∂Vc
∂t

=


Qc(x, t)−Qc(x+ ∆x, t) when

∂h(x, t)

∂t
> 0 ,

Qc(x, t)−Qc(x+ ∆x, t) + φScr ∆x
∂h(x, t)

∂t
when

∂h(x, t)

∂t
< 0 .

(2.2.1)

Notice that R′c acts as a sink for CO2 in (2.2.1) because ∂h(x,t)
∂t is negative in the region where

residual trapping occurs. Hence, a residual surface of trapped bubbles of CO2 remains in the

wake of the plume.
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Figure 2.2.1: Initial plume shape represented by dashed line. When plume is invading new pore
space, ∂ h(x,t)

∂ t > 0 , and when the plume is draining and leaving a residual surface, ∂ h(x,t)
∂ t < 0 .

Because capillary entry pressure prevents the drainage of the brine from the smallest pores, some

residual brine remains as the CO2 plume advances into a region of the aquifer. The volume of

CO2 within a fixed control width is proportional to the depth of the plume and the amount of

available pore space not occupied by residual brine. Hence,

∂Vc
∂t

= φ (1− Sbr) ∆x
∂h(x, t)

∂t
,

which, when combined with (2.2.1) yields

φ (1− Sbr) ∆x
∂h(x, t)

∂t
=


Qc(x, t)−Qc(x+ ∆x, t) ,

∂h(x, t)

∂t
> 0 ,

Qc(x, t)−Qc(x+ ∆x, t) + φScr ∆x
∂h(x, t)

∂t
,

∂h(x, t)

∂t
< 0 .

Dividing this by ∆x and taking a limit of the resulting expression as ∆x→ 0 implies

φ (1− Sbr)
∂h(x, t)

∂t
=


−∂Qc(x, t)

∂x
,

∂h(x, t)

∂t
> 0 ,

−∂Qc(x, t)
∂x

+ φScr
∂h(x, t)

∂t
,

∂h(x, t)

∂t
< 0 .

(2.2.2)

The mobility ratio, M = λc
λb

, between the supercritical carbon dioxide and the brine depends
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on permeability and viscosity of each phase; for carbon sequestration, the invading CO2 is more

mobile than the ambient brine, so that M≥ 1 [17, 33]. From (2.1.4), it follows that

∂Qc(x, t)

∂x
=

∂

∂x

(
−k g∆ρ

h(x, t)λc
(
H − h(x, t)

)
λb

h(x, t) (λc − λb) +H λb

[
− sin (θ) +

∂h(x, t)

∂x
cos (θ)

])

= −k g∆ρ λc
∂

∂x

(
h(x, t)

(
H − h(x, t)

)
h(x, t) (M− 1) +H

[
− sin (θ) +

∂h(x, t)

∂x
cos (θ)

])
.

Combination of the above expression with (2.2.2) yields

∂h(x, t)

∂t
=



k g∆ρ λc
φ (1− Sbr)

∂

∂x

(
h(x, t)

(
H − h(x, t)

)
h(x, t) (M− 1) +H

[
− sin (θ) +

∂h(x, t)

∂x
cos (θ)

])

when
∂h(x, t)

∂t
> 0 ,

k g∆ρ λc
φ (1− Sbr − Scr)

∂

∂x

(
h(x, t)

(
H − h(x, t)

)
h(x, t) (M− 1) +H

[
− sin (θ) +

∂h(x, t)

∂x
cos (θ)

])

when
∂h(x, t)

∂t
< 0 .

This can be written in terms of a discontinuous conductivity, κ , to obtain

∂h(x, t)

∂t
= κ

∂

∂x

(
h(x, t)

(
H − h(x, t)

)
h(x, t) (M− 1) +H

[
− sin (θ) +

∂h(x, t)

∂x
cos (θ)

])
(2.2.3)

where

κ =


κ0 =

k g∆ρ λc
φ (1− Sbr)

,
∂h(x, t)

∂t
> 0 ,

κ1 =
k g∆ρ λc

φ (1− Sbr − Scr)
,

∂h(x, t)

∂t
< 0 .

(2.2.4)
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2.3 Dimensionless Partial Differential Equation [17]

Advection-dominated migration is assumed, resulting in the following dimensionless scalings:

ξ =
x

L
, τ =

t κ1 sin (θ)

L
, η(ξ, τ) =

h(x, t)

H
, σ =

κ

κ1
, (2.3.1)

where L is a characteristic length along the impermeable cap, for example the initial extent

of a typical plume as shown in Figure 2.1.1. Hence, ξ is the dimensionless spatial variable, τ

the non-dimensional advective characteristic time scale, and η ∈
[

0 , 1
]

is the fraction of the

aquifer occupied by a CO2 plume, which is referred to as the dimensionless plume height. The

residual surface of immobile CO2 remaining in the wake of the migrating plume is controlled

by a dimensionless residual trapping parameter, ε = Scr
1−Sbr ∈

[
0 , 1

)
: when ε = 0 , there is no

pore space available to residually trap CO2 , whereas, ε = 1 indicates an aquifer with all pore

space available for sequestration of CO2 . Both ε and M are constant material properties of a

given, porous, isotropic aquifer filled with known fluids [14, 17, 21]. From (2.2.4) and (2.3.1),

the switch parameter σ ∈
(

0 , 1
]

is given by

σ =


1− ε ≤ 1 ,

∂ η(ξ, τ)

∂τ
> 0 ,

1 ,
∂ η(ξ, τ)

∂τ
< 0 .

(2.3.2)

As shown in Figure 2.3.1, when ητ > 0 , the migrating CO2 is invading new pore spaces, and the

switch parameter depends on the trapping parameter. Conversely, when the plume is draining

and ητ < 0 , no new trapping locations are sought, and the brine invades, isolating bubbles of

CO2 in a residual surface. We define a quadratic function f as

f
(
η(ξ, τ)

)
=

η(ξ, τ)
(
1− η(ξ, τ)

)
η(ξ, τ) (M− 1) + 1

. (2.3.3)

Combination of (2.3.3) and the fact that h(x, t) = H η(ξ, τ) implies that equation (2.2.3) can

be rewritten as

∂h(x, t)

∂t
= κ

∂

∂x

(
H f

(
η(ξ, τ)

) [
− sin (θ) +

∂h(x, t)

∂x
cos (θ)

])
.
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Figure 2.3.1: Shown in dimensionless variables, a residual area of immobile CO2 remains as
the plume migrates to the right.

Substitution of the dimensionless variables from (2.3.1) into the previous expression yields

κ1 sin(θ)

L

∂ η(ξ, τ)

∂τ
= − κ

L

∂

∂ξ

(
f
(
η(ξ, τ)

)
sin (θ)

)
+
κ

L

∂

∂ξ

(
∂η(ξ, τ)

∂ξ

H f
(
η(ξ, τ)

)
cos (θ)

L

)

=⇒ 1

σ

∂ η(ξ, τ)

∂τ
= −

∂f
(
η(ξ, τ)

)
∂ξ

+
∂

∂ξ

(
∂ η(ξ, τ)

∂ξ

H f
(
η(ξ, τ)

)
L tan (θ)

)
.

The Péclet number, Pe =
L tan (θ)

H
> 0 , and it follows that

1

σ

∂ η(ξ, τ)

∂τ
+
∂f
(
η(ξ, τ)

)
∂ξ

=
1

Pe

∂

∂ξ

(
f
(
η(ξ, τ)

) ∂ η(ξ, τ)

∂ξ

)
.

In a sloping aquifer, advection dominates diffusion, so Pe is large because the Péclet number

represents the ratio of the rate of advection of a physical quantity by the flow to the rate of

diffusion of the same quantity. As Pe → ∞ in the aforementioned equation, we obtain a first

order partial differential equation given by [17]:

∂ η(ξ, τ)

∂τ
+

∂

∂ξ

(
σ f
(
η(ξ, τ)

))
= 0 , (2.3.4)

where σ is a function of ∂ η(ξ,τ)
∂τ . The conservation law given in (2.3.4) is a scalar equation that

is non-dimensional, quasi-linear, and hyperbolic.
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2.4 Summary of the Dual Flux Model

In this section, we compile the relevant components of the governing equation that are frequently

referenced as we move forth through this dissertation. It is convenient to introduce subscript

notation rather than partial notation, so it follows from (2.3.2) that the switch parameter

σ ∈
(

0 , 1
]

is given by

σ =

{
1− ε , ητ > 0 ,

1 , ητ < 0 ,
(2.4.1)

for trapping parameter ε ∈
[

0 , 1
)

. From [17] and (2.3.4), the evolution of a gravity current

with residual trapping can be modeled as a nonlinear conservation law given by

ητ +
(
σ f(η)

)
ξ

= 0 , (2.4.2)

in which the flux, σf , is a fractional flow rate obtained by eliminating pressure from a version

of Darcy’s law. From (2.3.3), the flux function is

σ f(η) = σ
η (1− η)

η (M− 1) + 1
, (2.4.3)

from which it follows that

σ f ′
(
η
)

= σ
η2 (1−M)− 2 η + 1

[ η (M− 1) + 1 ]2
. (2.4.4)

The switch between migration and deposition represented by the parameter σ = σ(ητ ) gives rise

to discontinuities in the flux, (2.4.3). Dual flux curves emerge in this model and are shown in

Figure 2.4.1. The lower flux curve describes the invasion of the plume into pore space, and the

upper flux captures the flow as the plume leaves CO2 bubbles behind, which are then trapped

by brine in the pore space. The value η = η∗ with f ′(η∗) = 0 plays a significant role in the

construction of admissible shock solutions of (2.4.2). For the flux function (2.4.3), we have

η∗ =
1

1 +
√
M

.

Flux functions with discontinuities in space have been previously studied, [8, 29, 39]; however,

the flux in this model depends on the sign of ητ , a different kind of discontinuity that introduces

new phenomena. For ε = 0 , there is a single flux function; the aquifer has no available pore

space to trap CO2 , and the plume migrates according to the classical case in which the plume
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Figure 2.4.1: Dual fluxes (2.4.3) forM = 10 and ε = 0.4 . Both flux curves attain a maximum
value at η∗ = 1

/(
1 +
√
M
)
. The characteristic speeds satisfy 0 < (1 − ε) f ′(η) < f ′(η) if

η < η∗, and f ′(η) < (1− ε) f ′(η) < 0 if η > η∗.

volume remains fixed and would migrate indefinitely with no deposition. Typically ε ∈
(

0 , 1
)

in geologic storage [17, 21, 33, 36], and the entire compactly supported plume may be trapped

within available pore space after a finite time and within a finite aquifer volume.
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Chapter 3

Characteristics and Shocks

In this chapter, we explain the role of the discontinuous switch parameter, see (2.4.1), in the

construction of shocks and rarefactions. We also resolve an ambiguity, related to the constant

regions of η in the characteristic plane, by introducing cross-hatch characteristics.

3.1 Cross-hatch Characteristics

Since the switch parameter, σ , is not defined when ητ = 0 , the characteristic speed is not well-

defined in regions of the characteristic plane where the solution is constant. To resolve this, we

include characteristics determined by both flux curves at each point where ητ = 0 ; we refer

to the characteristics as cross-hatch characteristics since they form a cross-hatch pattern in

regions where η is constant. This new pattern of characteristics is illustrated in Figure 3.2.2(a).

The two possible characteristic speeds are σ f ′(η) with σ = 1 or σ = 1 − ε in equation

(2.4.4). We refer to the larger or greater characteristic speed as the faster speed, and the other

characteristic speed as the slower speed. In constant regions of the characteristic plane with

cross-hatch characteristics, faster characteristics travel with the faster characteristic speed,

and slower characteristics travel with the slower characteristic speed. The faster and slower

characteristics as in Definition 3.1.1 are shown on the dual flux curves in Figure 3.1.1.

Definition 3.1.1. (a) If η < η∗, the faster speed is f ′(η) , and the slower speed is (1− ε) f ′(η) .

(b) If η > η∗, the faster characteristic speed is (1− ε) f ′(η) , and the slower speed is f ′(η) .

16



Figure 3.1.1: For η < η∗, 0 < (1− ε)f ′(η) < f ′(η), and for η > η∗, f ′(η) < (1− ε)f ′(η) < 0 .

The reason for introducing cross-hatch characteristics becomes apparent when considering ini-

tial value problems similar to one considered in Hesse, Orr, and Tchelepi. In [17], the character-

istic portrait in Figure 7 has a gap with no characteristics in a region with constant solution. We

resolve this non-physical gap by including cross-hatch characteristics, ensuring that the solution

value at any point in the characteristic plane can be obtained by tracing characteristics back

to the initial condition. The particular example of Figure 4.2.1 exhibits a shock curve on which

the shock speed becomes one of the characteristic speeds at a time τgraze , thus risking loss of

admissibility. Continuation of the solution for τ > τgraze then depends on cross-hatch charac-

teristics, as explained in Section 4.2. Another example with a solution that relies on cross-hatch

characteristics is given in Chapter 6.

3.2 Shocks

The Riemann problem composed of equation (2.4.2) and initial condition

η (ξ, 0) =

{
ηL , ξ < 0 ,

ηR , ξ > 0 ,

has discontinuous weak solutions known as shock waves. Consider the piecewise constant func-

tion

17



η (ξ, τ) =

{
ηL , ξ < Λ τ ,

ηR , ξ > Λ τ
(3.2.1)

propagating with speed Λ . Since σ in (2.4.1) is selected by the sign of ητ , we set σ = 1 if η

jumps down, in the sense of distributions, across the shock as time increases; otherwise, if the

jump is up, we set σ = 1− ε . This fixes the value of σ, and we can write the Rankine-Hugoniot

jump condition for the specific flux (2.4.3),

Λ =
σ
[
f(ηR)− f(ηL)

]
ηR − ηL

=
σ
[

1− (M− 1) ηR ηL − ηR − ηL
][

ηR (M− 1) + 1
] [
ηL (M− 1) + 1

] . (3.2.2)

Hesse et al. [17] justified the choice of σ in a slightly different way by including dissipative terms

that smooth the shock.

For a scalar conservation law with a single flux function, admissible shocks satisfy the Lax

entropy condition, requiring characteristics to enter the shock on both sides [25]. Here, with

two fluxes, we specify shock admissibility as follows:

Definition 3.2.1. The shock wave (3.2.1) is admissible if and only if the faster characteristics

enter the shock from both sides. See Figure 3.2.1.

Figure 3.2.1: Faster characteristics on each side of admissible shock impinge on the shock.

18



Thus, for (3.2.1), we require f ′(ηL) > f ′(ηR). Since the flux is concave, ηL < ηR is necessary for

an admissible shock, just as it would be for a single flux equation. Such a step up is shown in

Figure 3.2.5(a). As shown in Figure 3.2.2(a), ητ < 0 across a forward shock (i.e., with Λ > 0),

so that σ = 1 . Consequently, not only is Λ determined from the upper flux curve, but also the

faster characteristics enter the shock, see Figure 3.2.2(b). For an admissible backward shock,

with Λ < 0 , we have σ = 1−ε , and the shock is admissible if and only if the characteristics found

on the lower flux curve impinge on the shock on the right, because they are the less negative

characteristics, and enter the shock on the left because either they are the faster characteristics

(if ηL > η∗), or both families have positive speed (if ηL < η∗), as shown in Figure 3.2.3.

The following Lemma states that all characteristics enter an admissible shock unless the slower

family leaves on the left, as shown in Figure 3.2.4.

Lemma 3.2.2. The only characteristics that can leave an admissible shock belong to the slower

family, and are on the left of the shock.

Proof : Consider an admissible shock (3.2.1). If ηR < η∗, the faster characteristic speed is

on the upper flux, so f ′(ηR) < Λ is required. Thus, (1 − ε) f ′(ηR) < Λ also. Hence, both

characteristics on the right impinge on the shock. If ηR > η∗, the faster characteristic speed

is on the lower flux curve, so admissibility requires (1 − ε) f ′(ηR) < Λ . Since ηR > η∗,

f ′(ηR) < (1 − ε) f ′(ηR) , and the slower characteristic on the right also enters the shock.

Hence, both characteristics on the right always impinge on an admissible shock.

(a) (b)

Figure 3.2.2: A forward shock with Λ > 0. (a) Characteristic plane with cross-hatch charac-
teristics in constant regions. (b) Shock speed determined from the upper flux curve.
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(a) (b)

Figure 3.2.3: Backward shock, Λ < 0 , for which (a) ητ > 0 , so the shock speed is found from
the lower flux curve, (b).

If ηL < η∗ < ηR yields a backward shock, both characteristics on the left have positive speed

whilst the shock speed is negative, so both characteristics on the left must enter the shock.

When ηL < η∗ results in a forward shock to ηR, the faster characteristic entering the shock

from the left has speed f ′(ηL) > Λ , since σ = 1 . If Λ < (1− ε) f ′(ηL) , the slower character-

istics will also impinge on the forward shock; however, it is possible that (1− ε) f ′(ηL) < Λ ,

in which case the slower characteristics on the left emanate from the shock. Similarly, if

η∗ < ηL , an admissible shock requires 0 > σ f ′(ηL) > Λ for σ = 1 − ε . The more negative

characteristic speed f ′(ηL) may or may not satisfy f ′(ηL) > Λ , so the slower characteristics

on the left can leave the shock.

In summary, since the faster characteristics must impinge on the shock from both sides, the

slower characteristics on the right also enter the shock, but the slower characteristics on the

left can leave the shock, as in Figure 3.2.4(b). �

For a constant η = ηJ 6= η∗, there exists ηCJ 6= ηJ such that f(ηCJ ) = f(ηJ) . For the flux

(2.4.3), ηCJ is given by

ηCJ =
1− ηJ

(M− 1) ηJ + 1
. (3.2.3)

For example, in Figure 3.2.2(b), we show ηR > η∗ and the corresponding ηCR . If ηL = ηCR ,

then the shock (3.2.1) is stationary, Λ = 0 , which can be calculated from either flux curve.
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(a) (b)

Figure 3.2.4: (a) All four characteristics enter admissible shock. (b) Slower characteristics on
left leave admissible shock.

In Figure 3.2.5 we show the three types of shock waves (3.2.1) as sharp jumps in the plume

interface height. Any centered solution (3.2.1) can be shifted away from the origin since (2.4.2)

is translationally invariant. A shock wave emanating from a position ξ = ξ̃ is a mathematical

representation of the physically relevant sharp vertical interface between the CO2 plume and

brine within the aquifer given by the initial condition where plume to the right of ξ̃ has a larger

height than the plume on the left, as shown in Figure 3.2.5(b). When ηL < ηR , (3.2.1) yields

a shock wave solution where the interface between plume and underlying brine maintains its

initial shape and travels with speed Λ . When Λ = 0 , the stationary shock shown in Figure

3.2.5(b) persists at the location of the initial discontinuity, ξ̃ , shown in Figure 3.2.5(a). For a

forward shock to the right, the interface leaves a residual surface in the plume’s wake, containing

a region of trapped residual bubbles, as shown in Figure 3.2.5(c). Hence, the use of the upper

flux curve with switch parameter σ = 1 during the construction of forward shocks is justified.

For backward shocks, shown in Figure 3.2.5(d), new pore spaces are available for CO2 to fill as

the plume advances to the left, so the switch parameter depends on trapping, and σ = 1− ε .
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(a) (b)

(c) (d)

Figure 3.2.5: (a) An initial step up yields a shock wave. (b) Stationary vertical interface be-
tween brine and CO2 plume, Λ = 0 . (c) Forward shock, Λ > 0 . (d) Backward shock, Λ < 0 .

3.3 Expansion Shocks

We consider expansion shocks because we will need them in Chapter 4 as approximations

to rarefactions in wave-front tracking. For scalar conservation laws, expansion shocks have

characteristics leaving the shock in forward time on both sides of the shock, as shown in Figure

3.3.1. In our case, we can have two characteristic speeds on either side of a shock. Analogous

to Definition 4.2.1, it turns out to be appropriate to define a shock to be an expansion shock

if the slower characteristics on each side emanate from the shock, Figure 3.3.1. Following a

similar argument as in the proof of Lemma 4.2.2, the faster characteristics on the right also

leave the shock, but the faster characteristics on the left may or may not enter the shock, as

shown in Figure 3.3.2. Consider a shock wave solution (3.2.1). We have shown that if ηR > ηL ,

then the shock is admissible, and the faster characteristics enter the shock from both sides. If

ηR < ηL , we argue that the shock is necessarily an expansion shock. For forward expansion

shocks, Λ > 0 is determined in (3.2.2) with σ = 1− ε since ητ > 0 in the sense of distributions.
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Figure 3.3.1: Slower characteristics on each side of admissible shock leave the shock in forward
time.

The corresponding characteristics, with speed (1 − ε) f ′(η) , leave the shock on both sides. It

follows that the shock is an expansion shock. Similarly, for Λ < 0 , we have σ = 1 in (3.2.2), and

the characteristics with speed f ′(η) leave the backward shock, which is necessarily an expansion

shock.

(a) (b)

Figure 3.3.2: Backward expansion shock. (a) All characteristics leave the shock. (b) The faster
characteristics on the left, with speed (1− ε) f ′(ηL) , enter the shock.
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3.4 Rarefactions

Centered rarefaction fans are continuous weak solutions of (2.4.2) and have the form

η (ξ, τ) =


ηL ,

ξ

τ
< σ f ′(ηL) ,

η̌

(
ξ

τ

)
, σ f ′(ηL) <

ξ

τ
< σ f ′(ηR) ,

ηR , σ f ′(ηR) <
ξ

τ
,

(3.4.1)

where η̌ is a function of the similarity variable ξ/τ . The method of characteristics reduces

the construction of a solution to the conservation law given by (2.4.2) to solving ordinary

differential equations throughout the solution space; hence, the speed of the characteristics is

dξ/dτ = σ f ′(η), and, for the flux (2.4.3), the function η̌ in (3.4.1) is given by

η̌

(
ξ

τ

)
=


ξ (1−M)− στ +

√
Mστ

[
ξ (M− 1) + στ

]
(M− 1)

[
ξ (M− 1) + στ

] , M 6= 1 ,

1

2

[
1− ξ

στ

]
, M = 1 .

(3.4.2)

In Figure 3.4.1(a) we show a rarefaction wave approximated by three expansion shocks; from

left to right, the expansion shocks have increasing speeds. Expansion shocks approximating a

rarefaction do not approach. The rarefaction with ηR < η∗ < ηL in Figure 3.4.1(b) has both

forward and backward characteristics with speeds that depend on the value of σ , as explained

in the figure caption.

(a) (b)

Figure 3.4.1: (a) Three expansion shocks approximating a centered rarefaction wave. Since η
is necessarily decreasing from left to right in the rarefaction wave, we have that ητ < 0 left of
the τ axis, so that σ = 1 , as indicated in (b). To the right, ητ > 0 , so that σ = 1− ε there.
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In the limit, an admissible rarefaction fan is indeed approximated by an increasing number of

expansion shocks. Since we require σ f ′(ηL) < σ f ′(ηR) to yield a rarefaction, it follows that

ηR < ηL . In Figure 3.4.2, we show the construction of a rarefaction wave, resolving a step down

in η , using both flux functions.

The rarefaction solution, given by (3.4.1) and (3.4.2), varies continuously from ηL to ηR in

Figure 3.4.1(b). Note η̌ is continuous across ξ = 0 even though σ in (3.4.2) has a discontinuity

at this position [17]. However, there is a discontinuity in the slope of the plume interface due to

the jump in σ . The discontinuity in the flux function captures the slope discontinuity between

the CO2 plume and underlying brine in the physical system at the position where the plume

invades new portions of the aquifer. From (3.4.2), we calculate the derivative

η̌ξ =


−
√
Mστ

2
[
ξ (M− 1) + στ

]3/2 , M 6= 1 ,

− 1

2στ
, M = 1 .

(3.4.3)

From (3.4.3), we calculate the jump in the derivative ηξ(ξ/τ) at ξ = 0 , where f ′(η) = 0 , and σ

(a) (b)

Figure 3.4.2: (a) A step down yields a rarefaction fan. (b) With parametersM = 10 , ε = 0.4 ,
the upper flux curve is traversed by

(
η̌ , σ f(η̌)

)
as the rarefaction fans from ηL down to η∗,

then jumps down to the lower flux curve as the solution decreases from η∗ to ηR .
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Figure 3.4.3: A rarefaction wave propagating left and right. The discontinuity in σ corresponds
to a discontinuity in the interface slope.

switches from σ = 1 to σ = 1− ε :

[ ηξ ] =

√
M

2 τ

ε

1− ε
. (3.4.4)

The discontinuous slope ηξ at ξ = ξ̃ is shown in Figure 3.4.3 for the case where ηR < η∗ < ηL .

The plume is migrating to the right, leaving a region of trapped residual bubbles with ξ < ξ̃

and invading new pores where ξ > ξ̃ .
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Chapter 4

Wave Interactions

It follows from Chapter 3 that the solution of the Riemann problem
ητ +

(
σ f(η)

)
ξ

= 0 , ξ ∈ R , τ > 0 ,

η(ξ, 0) =

{
ηL , ξ < 0 ,

ηR , ξ > 0

is a classical compressive shock if ηL < ηR and a rarefaction fan if ηL > ηR . While the structure

of these individual waves depends on the details of two flux functions and the switch between

them, the outcome is, broadly speaking, the same as for a convex scalar conservation law with

a single flux.

In this chapter, we consider pairs of Riemann problems, demonstrating differences from prop-

erties of scalar equations with a single flux. Each Riemann problem generates a single wave; we

are interested in whether or not the waves interact, and the result of the interaction.

4.1 Catalog of Interactions

A detailed classification of all combinations of left-hand waves from ηL to ηM paired with right-

hand waves from ηM to ηR yielded a complete catalog of interactions. For ηL and ηR different

from ηM , consider initial data of the form:
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η(ξ, 0) =


ηL , ξ < ξ1 ,

ηM , ξ1 < ξ < ξ2 ,

ηR , ξ2 < ξ .

(4.1.1)

There are eight possible pairs of a left-hand and a right-hand wave, as shown in Figure 4.1.1.

Due to the shape of the discontinuous flux function, the eight possible initial conditions with

three constant states can be further divided, and these specific pairings are listed in Table 4.1.

We focus on the main features of solutions of initial value problems with initial data of the

form (4.1.1) that were obtained during the complicated classification. We noted similarities

between the solutions of different pairs, see Figure 4.1.2, and restructured the original pairs

into four broad cases. Similar to the classical case with a single concave flux function, if η(ξ, 0)

is decreasing, ηL > ηM > ηR as in Pair 8, then the solution consists of two rarefaction waves

that do not approach, see Figure 4.3.1(a). Consequently, since the speed of an approximating

expansion shock is between the speeds of the corresponding rarefaction’s trailing and leading

characteristics, two expansion shocks will not approach.

We treat the three remaining continuous cases in turn, and, if the data has an initial rarefaction,

we examine the interactions involving expansion shock approximations. Case A has a shock

wave on the left and a rarefaction on the right and encompasses Pairs 1-3. Case B has η(ξ, 0)

(P1) (P2) (P3) (P4)

(P5) (P6) (P7) (P8)

Figure 4.1.1: Initial condition with (P1) ηL = ηR < ηM , (P2) ηL < ηR < ηM , (P3) ηR < ηL <
ηM , (P4) ηM < ηL = ηR, (P5) ηM < ηR < ηL, (P6) ηM < ηL < ηR, (P7) ηL < ηM < ηR, and
(P8) ηR < ηM < ηL .
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Table 4.1: Possible initial conditions with three states.

Pair 1 ηL = ηR < ηM

a ηL = ηR < ηM < η∗

b ηL = ηR < ηCM < η∗ ≤ ηM
c ηL = ηR = ηCM < η∗ < ηM
d ηCM < ηL = ηR < η∗ < ηM
e η∗ ≤ ηL = ηR < ηM

Pair 2 ηL < ηR < ηM

a ηL < ηR < ηM < η∗

b ηL < ηR < η∗ < ηM with ηL < ηCM
c ηL = ηCM < ηR < η∗ < ηM
d ηCM < ηL < ηR < η∗ < ηM
e ηL < ηCM < η∗ < ηR < ηM
f ηL = ηCM < η∗ < ηR < ηM
g ηCM < ηL < η∗ < ηR < ηM
h η∗ < ηL < ηR < ηM

Pair 3 ηR < ηL < ηM

a ηR < ηL < ηM < η∗

b ηR < ηL < ηCM < η∗ < ηM
c ηR < ηL = ηCM < η∗ < ηM
d ηR < ηL < η∗ < ηM with ηCM < ηL
e ηR < η∗ < ηL < ηM
f η∗ < ηR < ηL < ηM

Pair 4 ηM < ηL = ηR

a ηM < ηL = ηR < η∗

b ηM < ηCR < η∗ < ηL = ηR
c ηM = ηCR < η∗ < ηL = ηR
d ηCR < ηM < η∗ < ηL = ηR
e η∗ < ηM < ηL = ηR

Pair 5 ηM < ηR < ηL

a ηM < ηR < ηL < η∗

b ηM < ηR < η∗ < ηL
c ηM < ηCR < η∗ < ηR < ηL
d ηM = ηCR < η∗ < ηR < ηL
e ηCR < ηM < η∗ < ηR < ηL
f η∗ < ηM < ηR < ηL

Pair 6 ηM < ηL < ηR

a ηM < ηL < ηR < η∗

b ηM < ηL < η∗ < ηR with ηM < ηCR
c ηM = ηCR < ηL < η∗ < ηR
d ηCR < ηM < ηL < η∗ < ηR
e ηM < ηCR < η∗ < ηL < ηR
f ηM = ηCR < η∗ < ηL < ηR
g ηCR < ηM < η∗ < ηL < ηR
h η∗ < ηM < ηL < ηR

Pair 7 ηL < ηM < ηR

a ηL < ηM < ηR < η∗

b ηL < ηM < ηCR < η∗ < ηR
c ηL < ηM = ηCR < η∗ < ηR
d ηL < ηM < η∗ < ηR with ηCR < ηM
e ηL < ηCM < η∗ < ηM < ηR
f ηL = ηCM < η∗ < ηM < ηR
g ηCM < ηL < η∗ < ηM < ηR
h η∗ < ηL < ηM < ηR

Pair 8 ηR < ηM < ηL

a ηR < ηM < ηL < η∗

b ηR < ηM < η∗ < ηL
c ηR < η∗ < ηM < ηL
d η∗ < ηR < ηM < ηL

increasing yielding two successive shock waves, as in Pair 7. Case C has a rarefaction-shock

initial condition with a jump down then a jump up, as in Pairs 4-6.
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Figure 4.1.2: Summary of results for eight possible initial pairings.

4.2 Case A: Shock - Rarefaction: ηL < ηM and ηR < ηM

In this case, we have a shock with speed Λ emanating from ξ1 and a rarefaction centered at

ξ2 > ξ1 . To see that the two waves approach, we check that the shock speed is greater than

the speed of the trailing characteristic in the rarefaction. There are two cases to consider, (i)

Λ > 0 and (ii) Λ < 0 . In case (i), the shock admissibility condition requires f ′(ηM ) < Λ , so

that the speed σ f ′(ηM ) of the trailing edge of the rarefaction is less than the shock speed,

whether ηM < η∗, for which σ = 1−ε , or ηM > η∗, for which σ = 1 . In case (ii), we have Λ < 0

and ητ > 0 . Thus, ηM > η∗ but now shock admissibility requires (1 − ε) f ′(ηM ) < Λ , and the

rarefaction, with trailing edge traveling at speed f ′(ηM ) < (1− ε) f ′(ηM ) < Λ < 0 , approaches

the shock. Therefore, the trailing characteristic from the rarefaction on the right will always be

slower than the shock on the left, so the discontinuities always approach in Case A.
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4.2.1 Case A: Example

In this example, we derive the analytic solution and illustrate basic shock construction in

the characteristic plane for a specific Case A interaction. The exact solution is plotted in

the characteristic plane, Figure 4.2.1(b), and the code that generated the plot is included in

Appendix B.1. For demonstrative purposes, we consider a specific Pair 2d initial condition with

M = 1. Since ηCM < ηL , we begin with a backward shock from ηL up to ηM that emanates

from ξ = ξ1 , and a rarefaction from ηM down to ηR centered at ξ = ξ2 . The negative shock

speed is determined by the dark blue chord on the lower flux curve in Figure 4.2.1(a) and is

Λ = σ (1− ηM − ηL), where σ = 1− ε ; the backward shock in the characteristic plane is given

by ξ = Λ τ + ξ1 and is shown in dark blue in Figure 4.2.1(b). The trailing characteristic in the

rarefaction has speed st = f ′(ηM ) < Λ and is a bold light blue line in Figure 4.2.1(b). The

trailing characteristic begins to interact with the backward shock at transition time τT = ξ2−ξ1
Λ−st

and transition position ξT = st τT +ξ2 , shown as the cyan star in Figure 4.2.1(b). Since ξT < ξ2 ,

the characteristic speeds within the rarefaction from ηM down to η∗ are determined with σ = 1 ,

and for
(
ξ , τ

)
, the rarefaction solution is

ηrare =
1

2

[
1− ξ − ξ2

τ

]
. (4.2.1)

In this region, a resulting backward shock from ηL up to ηrare emanating from
(
ξT , τT

)
is given

by
dξ

dτ
= σ (1− ηrare − ηL) ,

for σ = 1− ε, which, when combined with (4.2.1) and solved, yields the shock position

ξ = ξ2 +

(
σ

2− σ

)(
1− 2 ηL

)
τ +

[(
ξT − ξ2

)
τ
−σ

2
T −

(
σ

2− σ

)(
1− 2 ηL

)
τ

2−σ
2

T

]
τ
σ
2 (4.2.2)

while ηrare > ηCL , as shown as the black line in Figure 4.2.1(b). When ηrare = ηCL for J = L in

(3.2.3), the chord between ηL and ηrare is horizontal and can be found on either flux curve in

Figure 4.2.1(a). The green star in Figure 4.2.1(b) is the stationary shock point
(
ξS , τS

)
found

by solving for τ in (4.2.1) and substituting into (4.2.2) to find ξ = ξS .

As the rarefaction continues to erode away on the right side of the shock, the result is a forward

shock, given by
dξ

dτ
= 1− ηrare − ηL , (4.2.3)

between ηL and the solutions within the rarefaction, ηCL > ηrare > η∗ given by (4.2.1). The
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forward shock emanates from
(
ξS , τS

)
, and the position is given by

ξ = ξ2 +
(
1− 2 ηL

)
τ +

[(
ξS − ξ2

)
τ
− 1

2
S −

(
1− 2 ηL

)
τ

1
2
S

]
τ

1
2 ,

which is the red line in Figure 4.2.1. When ηrare = η∗, the characteristic speed can be found

from the horizontal tangent on either flux curve in Figure 4.2.1(a). Here, ξ = ξ∗ = ξ2 and

τ = τ∗ = τS

(
ηCL−ηL
η∗−ηL

)2
, indicated by the black star in Figure 4.2.1(b). As a forward shock from

ηL to ηrare progresses, σ = 1 − ε through the rarefaction. Hence, at a given
(
ξ , τ

)
within the

portion the rarefaction from η∗ to ηR, the solution is

ηrare =
1

2

[
1− ξ − ξ2

σ τ

]
, (4.2.4)

(a) (b)

Figure 4.2.1: For shock-rarefaction interaction with ηL = 0.2 , ηM = 1 , ηR = 0.3 , ε = 0.4 , (a)
characteristic and shock speeds determined from discontinuous flux curves, and (b) solution in
characteristic plane. Dashed red lines in (a) correspond to point 1○ in (b) where shock speed
equals slower characteristic speed on left.
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which, when combined with (4.2.3) yields the shock position in this region,

ξ = ξ2 +

(
σ

2σ − 1

)(
1−2 ηL

)
τ+

[(
ξ∗−ξ2

)
τ∗ - 1

2σ −
(

σ

2σ − 1

)(
1−2 ηL

)
τ∗

2σ−1
2σ

]
τ

1
2σ , (4.2.5)

shown in pink in Figure 4.2.1(b). Table 4.2 summarizes the three possible analytic solutions for

exact shock position derived above and an additional possible backward shock obtained when

ηrare in (4.2.4) when mobilityM = 1 . For this example, a forward shock persists until it reaches

the leading edge of the rarefaction, given by a bold green line in Figure 4.2.1(b). Since ηR < η∗,

the leading characteristic is given by ξ = ξ2 +σ
(
1−2 ηR

)
τ , which can be combined with (4.2.5)

to yield the finite interaction position, ξF , and time, τF , the dark blue star in Figure 4.2.1(b).

After the final point
(
ξF , τF

)
, there are only two outgoing constant states separated by a shock

with strength ηR − ηL , shown as a cyan line in Figure 4.2.1. We have shown that if ηL < ηR ,

the result of the interaction is a single shock with strength ηR − ηL ; the total number of waves

decreases from two to one, and the total variation decreases from 2 ηM − ηL − ηR to ηR − ηL .

If ηL = ηR , the result of the interaction is a plume of constant height ηL = ηR ; the total

variation decreases from 2 (ηM − ηL) to 0 , and the number of waves decreases from two to

zero. If ηL > ηR , then the long-time behavior is a rarefaction wave from ηL down to ηR , the

remnants of the short-time wave joining ηM to ηR , after the interaction with the shock wave

has completed.

The catalog of interactions shows that for Case A, which initially contained a shock and rar-

efaction, the total variation always decreases and the middle state ηM is always eliminated from

the solution in finite time.

4.2.2 Case A: Summary & Cross-hatch Characteristics

In Figure 4.2.1, we illustrate the solution as the interaction between shock and rarefaction

proceeds for the specific flux (2.4.3) withM = 1 and other constant values shown in the figure.

On the left, we show the track of the rarefaction through the flux curves as the characteristics

fan from negative to positive speed. The rarefaction fan provides the values of η on the right of

the shock as the evolution proceeds. The shock speed is represented by the slope of the chords

in Figure 4.2.1(a). As the speed switches from negative to positive, the chord moves from the

lower flux graph to the upper, as ητ changes sign. The crossover is represented by the horizontal

dashed line. In this Case A example, the construction proceeds until the rarefaction wave has

been completely absorbed by the shock.
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Table 4.2: Shock position ξ = ξ̂ + α
(
1− 2 η̂

)
τ +

[(
ξe − ξ̂

)
τ -β1
e − α

(
1− 2 η̂

)
τ β2e

]
τ β1 for a

shock emanating from
(
ξe , τe

)
that is the result of a rarefaction emanating from ξ̂ interacting

with a constant state η̂ , for M = 1 and σ = 1 − ε . The colored circles correspond to shock
colors in Figures 4.2.1 and 4.4.3.

ηrare
dξ/dτ

1− ηrare − η̂ σ ( 1− ηrare − η̂ )

α = 1 α = σ
2−σ

1

2

[
1− ξ − ξ̂

τ

]
β1 = 1

2 β1 = σ
2

β2 = 1
2 β2 = 2−σ

2

α = σ
2σ−1 α = σ

1

2

[
1− ξ − ξ̂

σ τ

]
β1 = 1

2σ β1 = 1
2

β2 = 2σ−1
2σ β2 = 1

2

This interaction of a shock with a rarefaction looks similar to such interactions for a scalar

conservation law with convex flux [29, 37]. However, there is a small but significant difference.

While the shock has negative speed, it is calculated from the flux (1 − ε) f(η) . The shock is

admissible because the characteristics on the left have positive speed, and the faster character-

istics on the right have speed (1− ε) f ′(η) , which is slower than the shock speed, as shown in

Figure 4.2.1(b). In fact, for the smaller flux (in the lower graph), the shock satisfies the Lax

entropy condition. However, as the shock turns and gains positive speed, we switch to the upper

flux curve. The characteristics on the right both have negative speed to start with, and hence

impinge on the shock. On the left, both characteristics travel faster than the shock. In fact, as

the shock turns, it has zero speed, and the characteristics for both fluxes have positive speed,

so this property persists for some further time.

However, as the shock continues to accelerate, there is a time, 1○ in Figure 4.2.1(b), when the

shock moves with the characteristic speed of (1 − ε) f ′(ηL) of the smaller flux, see red dashed

lines in Figure 4.2.1(a) corresponding to η = ηgraze . Consequently, if we continue to look only at

the single family of characteristics that were significant for the shock when it had negative speed,

then the shock fails to satisfy the Lax entropy condition after this time. Since the rarefaction

to the right of this shock can only increase the shock speed, the slower characteristics on the

left will no longer enter the resulting shock; hence, cross-hatch characteristics are a necessary

and interesting construction because we have to include the characteristics of the larger flux
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(which had already been invoked to calculate the shock speed) in order to make sense of the

subsequent progress of the shock wave. In Figure 4.2.1(b), you can see quite clearly that a

characteristic grazes the shock at point 1○, but it is the slower (green) characteristic - the

faster (blue) characteristics on the left continue to impinge on the shock. This example and

other similar instances are the reason for including both families of characteristics (cross-hatch

characteristics) in open regions of the ( ξ , τ) plane where η is constant.

Figure 4.2.1(b) also demonstrates the result of Lemma 4.2.2. Consider the resulting shock ema-

nating from τF . The characteristics determined by both the upper and lower flux curves for ηR

enter the shock, as do the faster characteristics on the left, shown in blue. The slower charac-

teristics on the left are determined by the lower flux curve since ηL < η∗ ; these characteristics

from the slower family exit the shock.

4.2.3 Case A : Shock - Expansion Shock: ηL < ηM and ηR < ηM

For the wave-front tracking method, rarefactions are approximated by one or more expansion

shocks. In Case A, a shock on the left will always interact with a rarefaction on the right;

however, when the rarefaction is replaced by a piecewise constant approximation, the shock

from ηL up to ηM and slowest (left-most) expansion shock between ηM and ηexpM ∈ [ ηR , ηM )

do not always interact. Let ΛLM =
f(ηM )− f(ηL)

ηM − ηL
:

(i) If ΛLM > 0 , a forward shock with speed ΛLM connects ηL and ηM . If ηM ≤ η∗, the expansion

shock between ηM and ηexpM also has positive speed; however, if ηM > η∗ , the expansion shock

could have positive, zero, or negative speed. The shock and expansion shock will only interact

if the shock moves faster than the expansion shock. Let η̃M < ηM be such that
η̃M = 0 , if (1− ε) f(ηM )− f(0)

ηM
< ΛLM ,

(1− ε) f(ηM )− f(η̃M )

ηM − η̃M
= ΛLM , otherwise.

Hence, the shock and approximating expansion shock(s) do not approach if ηL < ηM with

ΛLM > 0 and ηexpM satisfies

ηR ≤ ηexpM ≤ η̃M < ηM . (4.2.6)
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(ii) For the case when ΛLM ≤ 0 , the shock speed, (1 − ε) ΛLM , is reduced due to residual

trapping. Define ηM < ηM to be such that

(1− ε) ΛLM =
f(ηM )− f(ηM )

ηM − ηM
.

The shock wave and expansion shock wave do not interact if ηL < ηM has ΛLM ≤ 0 and ηexpM

is such that

ηR ≤ ηexpM ≤ ηM < ηM (4.2.7)

because the speed of the expansion shock approximating the rarefaction from ηM to ηR exceeds

or equals the speed of the shock from ηL to ηM . Hence, if we have an expansion shock from

ηM down to ηexpM , where ηexpM does not satisfy (4.2.6) or (4.2.7), then the shock and approxi-

mating expansion shock interact to yield interactions analogous to continuous shock-rarefaction

interactions in Case A.

4.3 Case B: Shock - Shock: ηL < ηM < ηR

The second case involves a shock from a left state up to a middle state followed by a shock from

the middle state up to a right state. Since the flux function is concave, the shock from ηL to

ηM will have a greater shock speed than the shock from ηM to ηR , so the shocks will approach

each other and interact at a finite time to yield a simple shock from ηL up to ηR with strength

ηR − ηL . If the speeds of the approaching shocks have the same sign, the resulting shock has

the same direction; if not, the resulting shock is forward if f(ηL) < f(ηR) as in Figure 4.3.1(b),

stationary if f(ηL) = f(ηR) , or backward if f(ηL) > f(ηR) . The total variation is unchanged

before and after the discontinuities interact, and the middle state is eliminated in finite time

for Case B.

4.4 Case C: Rarefaction - Shock: ηM < ηL and ηM < ηR

This case mirrors Case A, in that the short-time solution is a rarefaction wave to the left of

a shock wave. However, whereas in Case A the two waves approach, in Case C their approach

depends on further restrictions on the data. The reason for this is that the slower characteristics

on the left can leave the shock (Lemma 3.2.2); they are necessarily parallel to the leading edge

of the rarefaction. We distinguish two subcases in which the waves do not approach:
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(i) If ηM ≤ η∗, define η̃M by

f(η̃M )− f(ηM )

η̃M − ηM
= (1− ε) f ′(ηM ) ,

and let λM denote this speed, shown in Figure 4.4.1. Then λM > 0 is the speed of the leading

edge of the rarefaction, and if ηR = η̃M , then it is also the speed of the shock, since the shock

has a jump up and positive speed. Then for ηM ≤ η∗ and

ηM < ηR ≤ η̃M , ηM < ηL , (4.4.1)

the shock from ηM to ηR has positive and larger speed:

f(ηR)− f(ηM )

ηR − ηM
≥ λM .

Thus, (4.4.1) is sufficient to guarantee that the shock and rarefaction do not approach.

(a) (b)

Figure 4.3.1: (a) Pair 8b has fanning rarefactions separated by a fixed distance for all time.
(b) Case B example (Pair 7e) has two shocks colliding.
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(ii) Similarly, if ηM > η∗, then the shock speed and speed of the leading edge of the rarefaction

wave are both negative. In this case, the rarefaction is backward and uses the larger flux f(η)

whereas the shock uses the lower flux (1 − ε) f(η) . Consequently, the interaction condition

becomes

(1− ε) f(ηR)− f(ηM )

ηR − ηM
> f ′(ηM ) .

Define ηM > ηM by 
ηM = 1 , if (1− ε) f(1)− f(ηM )

1− ηM
> f ′(ηM ) ,

(1− ε) f(ηM )− f(ηM )

ηM − ηM
= f ′(ηM ) , otherwise.

Then the two waves do not approach if η∗ < ηM and

ηM < ηR ≤ ηM , ηM < ηL . (4.4.2)

In summary, if neither (4.4.1) nor (4.4.2) are satisfied by ηR , then the rarefaction wave and

shock wave interact much as in Case A. Otherwise, the shock travels faster than the rarefaction,

and there is no interaction.

(a) (b)

Figure 4.4.1: No interaction when speed of leading characteristic in rarefaction is less than
shock speed represented on (a) discontinuous flux curves and (b) characteristic plane with
ηL = 0.51, ηM = 0, ηR = 0.9, σ = 0.05, and η̃M ≈ 0.95 .
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4.4.1 Case C: Example

We derive a representative Case C (Pair 6e) analytic solution when M = 1 which has a rar-

efaction from ηL down to ηM emanating from ξ = ξ1 and a forward shock from ηM up to ηR

centered at ξ2 > ξ1 . The initial total variation for this case is ηL+ηR−2 ηM . The leading char-

acteristic of the rarefaction interacts with the forward shock at
(
ξT , τT

)
, point (a) in Figures

4.4.2 and 4.4.3. Subsequently, the rarefaction solution is given by (4.2.4) and the forward shock

by (4.2.3); hence, the resulting shock position, shown in pink in Figure 4.4.3, is given by Table

4.2 with ξe = ξT , τe = τT , ξ̂ = ξ1 , and η̂ = ηR , until the shock becomes stationary at
(
ξS , τS

)
,

point (b) in Figures 4.4.2 and 4.4.3. Then the speeds of the shock and the characteristics in

the rarefaction are reduced by σ = 1− ε , and a backward shock position is obtained from the

orange entry in Table 4.2 with ξe = ξS , τe = τS , ξ̂ = ξ1 , and η̂ = ηR and is drawn in orange in

Figure 4.4.3. This shock path continues until ηrare = η∗ at
(
ξ∗, τ∗

)
, point (c) in Figures 4.4.2

and 4.4.3, at which point ηrare is given by (4.2.1), and the backward shock position, shown in

black in Figure 4.4.3, is determined by Table 4.2 until ηrare = ηL , if possible.

Unlike Cases A and B, not all initial conditions in Case C lead to an eliminated initial middle

state in finite time. Some solutions in Case C exhibit unusual behavior due to the flux disconti-

nuity that does not arise in scalar equations with a single flux: shock speeds determined by one

flux curve can equal corresponding characteristic speeds found on the other flux curve. In Fig-

ure 4.4.2(e), the plume asymptotically approaches a height of η̃ ∈
(

max(η∗, ηM ) , min(ηL, ηR)
)

such that

f ′(η̃) = (1− ε) f(ηR)− f(η̃)

ηR − η̃
.

Hence, if ηL ≥ η̃ , the backward shock does not reach the rarefaction’s trailing characteristic; the

shock speed approaches the characteristic speed corresponding to η̃ shown in purple in Figure

4.4.3(g). The result approaches a rarefaction from ηL down to η̃ and a shock from η̃ up to ηR ;

since ηM < η̃ , the total variation of the solution decreases to ηL + ηR− 2 η̃ . However, if ηL < η̃

as in Figure 4.4.3(f), the middle state is eliminated in finite time, resulting in a decrease of

total variation to ηR − ηL .
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(a) (b)

(c) (d)

(e)

Figure 4.4.2: Shock speeds and characteristic speeds determined by discontinuous flux curves
for ηM = 0 , ηR = 0.9 , ε = 0.7,M = 1 . Points (a)-(e) correspond to points on Figure 4.4.3.
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(f) (g)

Figure 4.4.3: Analytic solution for ηM = 0 , ηR = 0.9 , ε = 0.7 ,M = 1 with (f) ηL = 0.51 < η̃ ,
and (g) ηL = 0.7 > η̃ . Points (a)-(e) correspond to Figures 4.4.2(a)-(e).

It is also possible for a middle state to asymptote to a value η ∈
(
ηM , min(η∗, ηL, ηR)

)
such

that

(1− ε) f ′(η) =
f(ηR)− f(η)

ηR − η

since the speed of a forward shock is determined by the upper flux curve, and the characteristic

speed to the right of the center of a rarefaction is found on the lower flux curve. Again, the

total variation of the solution decreases. Hence, for Case C, if there is an interaction, the total

variation always decreases, and the number of outgoing waves is non-increasing.

4.4.2 Case C : Expansion Shock - Shock: ηM < ηL and ηM < ηR

When the rarefaction in Case C is approximated with one (or more) expansion shock(s), the

fastest (right-most) expansion shock connects ηexpM ∈
(
ηM , ηL

]
down to ηM with speed

ΛeM =
f(ηexpM )− f(ηM )

ηexpM − ηM
.

In Case C, we necessitated restrictions on the incoming waves to obtain an interaction. Likewise,

we have two conditions where the expansion shock and shock diverge:
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(i) If ΛeM ≥ 0 , the expansion shock speed is found on the lower flux curve. Define η̃M > ηM by

(1− ε) ΛeM =
f(η̃M )− f(ηM )

η̃M − ηM
.

The expansion shock from ηexpM to ηM and the shock from ηM to ηR do not approach if

ηM < ηexpM ≤ ηL with ΛeM ≥ 0 , and ηR satisfies

ηM < ηR ≤ η̃M . (4.4.3)

(ii) If ΛeM < 0 , let ηM > ηM be such that
ηM = 1 , if (1− ε) f(1)− f(ηM )

1− ηM
> ΛeM ,

(1− ε) f(ηM )− f(ηM )

ηM − ηM
= ΛeM , otherwise.

The approximating expansion shock on the left and the shock to the right do not approach if

ηM < ηexpM ≤ ηL with ΛeM < 0 with a given ηR such that

ηM < ηR ≤ ηM . (4.4.4)

Hence, an expansion shock wave and shock wave will move apart if the shock speed is greater

than the expansion shock speed. Contrastingly, if ηR does not satisfy (4.4.3) or (4.4.4), then

the expansion shock wave and shock wave approach and interact as in previous cases.

4.5 Non-increasing Total Variation & Number of Waves

If (4.2.6)-(4.4.4) are not satisfied, then the two incoming waves interact. Given an initial rar-

efaction, if the result of an interaction is a rarefaction, the resulting rarefaction is smaller than

the initial rarefaction. When the initial rarefaction is approximated by one or more expansion

shocks, as in Case A and Case C , we ensure that the size of each expansion shock is below

a threshold value; since the interaction can only decrease the size of a rarefaction, the corre-

sponding number of approximating expansion shocks will not increase. All possible results for

two approaching waves between three incoming constant states are summarized in Table 4.3:

total variation and number of waves cannot increase due to an interaction.
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Table 4.3: Wave interaction summary.

Case Initial Waves Total Variation Number of Waves

A ηL < ηM , ηR < ηM decreases decreases

A ηL < ηM , ηexpM < ηM decreases decreases

B ηL < ηM < ηR constant decreases

C ηM < ηL , ηM < ηR decreases
decreases (if ηL < η < η̃)

constant (otherwise)

C ηM < ηexpM , ηM < ηR decreases decreases
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Chapter 5

Existence Theorem

Plume migration within a porous aquifer depends on the geometry of the carbon dioxide plume

at the end of injection [19, 21]. An analytic solution for a specific idealized CO2 plume is

constructed by Hesse, Orr, and Tchelepi [17]. We consider the scalar conservation law (2.4.2)

and an arbitrary initial plume of supercritical carbon dioxide, ητ +
(
σ f(η)

)
ξ

= 0 , ξ ∈ R , τ > 0 ,

η(ξ, 0) = η0(ξ) , ξ ∈ R ,
(5.0.1)

in which η0 ∈ L1(R) ∩ BV (R) with 0 ≤ η0 ≤ 1 . In this chapter, we describe the wave-front

tracking method, following the approach of LeFloch [26], and then prove the following result:

Theorem 5.0.1. For η0 ∈ L1(R) ∩ BV (R) with 0 ≤ η0 ≤ 1 , the Cauchy problem (5.0.1) has

a classical entropy solution η(ξ, τ) ∈ L1
loc , satisfying

(a) inf(η0) ≤ η(ξ, τ) ≤ sup(η0) , ξ ∈ R, τ > 0 ,

(b) TV
(
η(ξ, τ)

)
≤ TV

(
η0

)
, ξ ∈ R, τ ≥ 0 ,

(c)
∥∥∥η(ξ, τ2)− η(ξ, τ1)

∥∥∥
L1(R)

≤ TV (η0) sup
∣∣f ′∣∣ ∣∣τ2 − τ1

∣∣ , ξ ∈ R, τ1, τ2 ≥ 0 ,

including convergence to the initial condition:
∥∥∥η(ξ, τ) − η0

∥∥∥
L1(R)

≤ TV (η0) sup |f ′| τ
for all τ ≥ 0 .
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5.1 Wave-front Tracking

Dafermos [10] introduced wave-front tracking as a method to construct approximate solutions

for scalar, nonlinear, hyperbolic partial differential equations. The method has since been greatly

generalized to systems of hyperbolic conservation laws [3, 4]. Much can be learned about the

structure of the solution of a Cauchy problem from this superposition of solutions to Riemann

problems [9, 11, 13, 27].

Since a sharp interface between the invading CO2 and ambient brine was assumed, the shape

of the invading plume is well-defined and acts as an initial guide for construction of wave

interactions. At any position ξ in the aquifer, η0 = 0 indicates all brine, and η0 = 1 corresponds

to all CO2 ; therefore, 0 ≤ inf(η0) ≤ sup(η0) ≤ 1 . In the wave-front tracking algorithm, we first

approximate the initial plume shape, η0(ξ) , with a sequence of piecewise constant functions,

ηh0 (ξ) , with h > 0 , such that

inf(η0) ≤ ηh0 ≤ sup(η0)

TV (ηh0 ) ≤ TV (η0) (5.1.1)

ηh0 → η0 in the L1 norm as h→ 0+.

Each approximation ηh0 is constructed to have a finite number of discontinuities of magnitude

at most h . The construction of a piecewise constant solution for short time involves solving

the Riemann problems associated with each discontinuity in ηh0 ; the solutions to the resulting

Riemann problems are known from Chapter 3. Rarefaction waves are replaced by expansion

shocks of the same magnitude. The classical and expansion shock waves constructed from the

initial discontinuities yield a piecewise constant approximation of the solution that persists until

two wave-fronts approach. When waves meet, we refer to the collision as an interaction, and the

solution is obtained as in Chapter 4. If the resulting solution is an admissible shock, the resulting

jump up between constant states may exceed the initial threshold h ; large admissible shocks do

not pose any complications as we move forward in the proof, so the shock is propagated forward

without change. If the resulting solution is a rarefaction wave, then (as observed in the previous

chapter) the magnitude is necessarily smaller than h ; the rarefaction wave is approximated

by an expansion shock with magnitude less than h , traveling with the shock speed of that

discontinuity. The resulting discontinuities travel with constant shock speeds until the next

interaction time, where the solution process repeats as in Chapter 4. Continuing in this way,

we generate a piecewise constant solution of the conservation law for each approximation of the

given plume. We have thus constructed ηh(ξ, τ) , a sequence of wave-front tracking approximate

solutions generated by the sequence of initial data ηh0 (ξ) .
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5.2 Proof: Existence of a Weak Solution of (5.0.1)

In this section, we show that the Cauchy problem (5.0.1) admits a weak solution that satisfies

conditions of Theorem 5.0.1. The proof is similar to the general proof outlined in Lefloch [26];

however, the discontinuous flux is carefully considered for this problem. We prove the existence

of a limit function of the wave-front tracking approximations and show that the limit function

is a weak solution of (5.0.1).

5.2.1 Existence of a Limit Function

In Chapter 4, we showed that the number of waves and total variation decreased or remained

constant at any interaction time and remained constant between interaction times. Conse-

quently, the number of wave interactions and resulting wave-fronts in each ηh remains finite for

all τ > 0 , so the approximations are globally well-defined and prolong for all time [4]. Though

LeFloch [26] considers the possibility of an accumulation of interaction points, the issue is eas-

ily resolved for (5.0.1): the initial number of discontinuities is finite, and the number of waves

cannot increase as a result of any interaction, so there are finitely many interactions and, hence,

no accumulation points.

Each approximation ηh is bounded by the corresponding ηh0 , as summarized by Figure 4.1.2

in the catalog of interactions. It follows from (5.1.1) that inf(η0) ≤ ηh(ξ, τ) ≤ sup(η0) at any

position and time; hence,
∥∥ηh(ξ, τ)

∥∥
L∞
≤ 1 . As summarized in Table 4.3, total variation is

non-increasing; therefore, TV
(
ηh(ξ, τ)

)
≤ TV

(
η0(ξ)

)
for all ξ ∈ R and τ ≥ 0 .

Since the initial approximations were constructed with a finite number of waves, there will

be finitely many, call that number K , classical and expansion shocks in ηh within
[
τ1, τ2

]
,

any time interval containing no interaction time. For m = 1, . . . ,K , let ym
′ be the speed of

propagating shock front ξ = ym(τ) in ηh for τ ∈
[
τ1, τ2

]
; by (2.4.3),

∣∣ym′∣∣ ≤ sup
∣∣f ′∣∣ <∞ . The

approximate solution to the left/right of wave-front ym is ηh
(
ym(τ)∓, τ

)
. In the ( ξ , η ) plane,

the L1 norm is the area between the solutions at times τ1 and τ2 , as established in Figure

5.2.1. If, at a time τ , a propagating front has a solution value to the left of it, ηh
(
ym(τ)−, τ

)
,

which is larger than the η value to the right of the shock, ηh
(
ym(τ)+, τ

)
, then this is a positive

addition to the L1 norm, as shown for all propagating fronts in Figure 5.2.1 except y4 . For y4 ,

the resulting area is subtracted from the other areas. The L1 norm is the absolute value of the

result, as shown at the bottom of Figure 5.2.1. It follows that the approximate solutions ηh

satisfy the uniform estimate given by
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Figure 5.2.1: Geometric demonstration of the L1 norm.

∥∥∥ ηh(ξ, τ2)− ηh(ξ, τ1)
∥∥∥
L1
≤

K∑
m=1

∣∣∣ ηh(ym(τ1)−, τ1

)
− ηh

(
ym(τ1)+, τ1

)∣∣∣ ∣∣ym′∣∣ ∣∣ τ2 − τ1

∣∣
≤ TV

(
η0

)
sup

∣∣f ′∣∣ ∣∣ τ2 − τ1

∣∣ , (5.2.1)

since the sum of the vertical distances traveled along the η-axis is TV
(
ηh(ξ, τ)

)
≤ TV

(
η0

)
at time τ ∈

[
τ1, τ2

]
. Hence, we have shown that the sequence of functions ηh satisfies the

conditions of both Helly’s Compactness Theorem (Theorem A.1.1) and the Time-Dependent

Helly’s Theorem (Theorem A.2.1). Ergo, there exists a subsequence of ηh, call it ηh,h, and there
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exists a function with bounded variation, η : R× R+ → [ 0 , 1 ] , such that

ηh,h(ξ, τ)→ η(ξ, τ) in L1
loc ,∥∥η(ξ, τ)

∥∥
L∞

+ TV
(
η(ξ, τ)

)
≤ κ , and (5.2.2)∥∥η(ξ, τ2)− η(ξ, τ1)

∥∥
L1 ≤ κ

∣∣ τ2 − τ1

∣∣
for all ξ ∈ R , τ, τ1, τ2 ∈ R+, and some κ > 0 . We also have TV

(
η(ξ, τ)

)
≤ lim inf

h→0+
TV
(
ηh,h(ξ, τ)

)
by Theorem A.1.1. Since ηh,h is a subsequence of ηh, TV

(
ηh,h(ξ, τ)

)
≤ TV

(
η0(ξ)

)
. Combination

with the aforementioned lower semi-continuity property yields

TV
(
η(ξ, τ)

)
≤ TV

(
η0(ξ)

)
for all ξ ∈ R and τ ≥ 0 ,

which is analogous to (b) in Theorem 5.0.1. Similarly, it follows that another property of the

limit function is

inf(η0) ≤ η(ξ, τ) ≤ sup(η0) for all ξ ∈ R and τ > 0 ,

paralleling (a) in Theorem 5.0.1. By (5.2.2),
[
ηh,h(ξ, τ2)− ηh,h(ξ, τ1)

]
→
[
η(ξ, τ2)−η(ξ, τ1)

]
in

L1
loc ; hence

∥∥η(ξ, τ2)− η(ξ, τ1)
∥∥
L1 ≤ lim infh→0+

∥∥ηh,h(ξ, τ2)− ηh,h(ξ, τ1)
∥∥
L1 by the lower semi-

continuity property of norms. Since ηh,h is a subsequence of ηh, combination of the previous

inequality and the aforementioned uniform estimate yields a property akin to inequality (c) in

Theorem 5.0.1:

∥∥η(ξ, τ2)− η(ξ, τ1)
∥∥
L1 ≤ TV (η0) sup

∣∣f ′∣∣ ∣∣ τ2 − τ1

∣∣ for all ξ ∈ R and τ1, τ2 ≥ 0 .

5.2.2 Limit Function is a Weak Solution

The wave-front tracking approximations ηh are exact solutions of ηhτ +
(
σ f(ηh)

)
ξ

= 0 because,

by construction, the Rankine-Hugoniot jump condition (3.2.2) is satisfied across all admissible

and expansion shocks. For 0 ≤ η ≤ 1 , it follows from (2.4.3) that
∣∣σ f ′(η)

∣∣ ≤ ∣∣ f ′(0)
∣∣ = 1 since

M≥ 1 for carbon sequestration. By (5.2.2), we have that ηh,h → η in L1
loc , which implies that

limh→0+
∫∫

ηh,h ϕ dξ dτ =
∫∫

η ϕ dξ dτ for any test function ϕ ∈ C1
0 (R× R+) [47]. Hence,
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∣∣∣∣ lim
h→0+

∫
R+

∫
R
ϕξ

[(
σ f(ηh,h)

)
−
(
σ f(η)

)]
dξ dτ

∣∣∣∣ ≤ lim
h→0+

∫
R+

∫
R

∣∣∣ϕξ ∣∣∣ sup
0≤η≤1

∣∣σ f ′ ∣∣ ∣∣∣ηh,h − η∣∣∣ dξ dτ
≤ lim

h→0+

∫
R+

∫
R

∣∣ϕξ ∣∣ ∣∣∣ηh,h − η∣∣∣ dξ dτ
= 0 .

Because ηh,h is a subsequence of ηh, it follows that ηh,hτ +
(
σ f(ηh,h)

)
ξ

= 0 , and

0 = − lim
h→0+

∫
R+

∫
R
ϕ
[
ηh,hτ +

(
σ f(ηh,h)

)
ξ

]
dξ dτ

= lim
h→0+

∫
R+

∫
R

[
ϕτ η

h,h + ϕξ
(
σ f(ηh,h)

) ]
dξ dτ + lim

h→0+

∫
R
ϕ(ξ, 0) ηh,h(ξ, 0) dξ

=

∫
R+

∫
R

[
ϕτ η + ϕξ

(
σ f(η)

) ]
dξ dτ +

∫
R
ϕ(ξ, 0) η(ξ, 0) dξ .

Therefore, the limit function η(ξ, τ) from (5.2.2) is a weak solution of the conservation law

(5.0.1) for all ξ ∈ R and τ > 0 .

The inequality
∥∥η(ξ, τ) − η(ξ, 0)

∥∥
L1 ≤ lim infh→0+

∥∥ηh,h(ξ, τ) − ηh,h(ξ, 0)
∥∥
L1 follows from the

lower semi-continuity property of the L1 norm [4, 26]. The uniform estimate derived in (5.2.1)

yields
∥∥ηh,h(ξ, τ)−ηh,h(ξ, 0)

∥∥
L1 ≤ TV (η0) sup |f ′| τ for all τ > 0 . Combination yields

∥∥η(ξ, τ)−
η(ξ, 0)

∥∥
L1 ≤ TV (η0) sup |f ′| τ for all τ > 0 ; thus,

∥∥η(ξ, τ) − η(ξ, 0)
∥∥
L1 converges to zero as

τ → 0+. Since the initial condition given in (5.0.1) is η(ξ, 0) = η0(ξ) for all ξ ∈ R , it follows

that η(ξ, τ)→ η0(ξ) as τ → 0+, and the limit function η(ξ, τ) exactly satisfies the given initial

condition in (5.0.1). Hence, for all time, we have convergence to the initial condition similar to

Theorem 5.0.1: ∥∥∥η(ξ, τ)− η0(ξ)
∥∥∥
L1(R)

≤ TV (η0) sup
∣∣f ′∣∣ τ for all τ ≥ 0 .

5.3 Proof: Limit Function is an Entropy Solution of (5.0.1)

In this section, a proof of the existence of classical entropy solutions to the Cauchy problem

(5.0.1) is presented. We prove that the limit function found in the previous section satisfies an

entropy inequality throughout the characteristic plane.
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Let U(ηh,h) be an arbitrary C2 strictly convex entropy function, and F (ηh,h) be a corresponding

entropy flux with F ′(ηh,h) = σ f ′(ηh,h)U ′(ηh,h) for σ given by (2.4.1). Hence, the discontinuous

definition of the entropy flux is F ′(ηh,h) = f̃ ′(ηh,h)U ′(ηh,h) where

f̃ ′(ηh,h) =


f ′(ηh,h) ,

∂ ηh,h

∂ τ
< 0 ,

(1− ε) f ′(ηh,h) ,
∂ ηh,h

∂ τ
> 0 .

(5.3.1)

In cross-hatch regions of the characteristic plane where the solution ηh,h is constant between

propagating wave-fronts, it follows that[
U(ηh,h)

]
τ

+
[
F (ηh,h)

]
ξ

= U ′(ηh,h) ηh,hτ + F ′(ηh,h) ηh,hξ = 0 . (5.3.2)

In this section, we prove that wave-fronts in ηh,h that are propagating as admissible shocks or

rarefactions in the rest of the characteristic plane also satisfy the entropy inequality[
U(ηh,h)

]
τ

+
[
F (ηh,h)

]
ξ
≤ 0 . (5.3.3)

5.3.1 Classical Shocks Satisfy the Entropy Inequality

Solutions to the Riemann problem with ηL < ηR are classical shock waves satisfying the Lax

entropy condition because the faster characteristics enter the shock from both sides, see Section

3.2. Such wave-fronts have a piecewise constant solution given by

ηh,h (ξ, τ) =

{
ηL , ξ < Λτ ,

ηR , ξ > Λτ ,
(5.3.4)

with speed Λ given in (3.2.2) for a C2 strictly concave flux (2.4.3).

Lemma 5.3.1. Shock wave-fronts (5.3.4) that satisfy the Lax entropy condition satisfy the

entropy inequality (5.3.3).

Proof : As described in Section 3.2, shock waves that are admissible in the sense of Lax have

ηL < ηR due to the concavity of the dual flux curves. For η > ηL , let

Λ(η) =
σ
[
f(η)− f(ηL)

]
η − ηL

=⇒ Λ′(η) =
σ f ′(η)− Λ(η)

η − ηL
, (5.3.5)

50



as in [4, 38]. For any shock connecting ηL up to η , it is apparent from Figures 5.3.1(a)-(b)

that σ f ′(η) < Λ(η) for both σ = 1 and σ = 1− ε ; therefore,

Λ′(η) < 0 . (5.3.6)

Since the entropy function U is C2 and strictly convex, it follows that U ′′ > 0 , and for

η > ηL ,

U ′(η) >
U(η)− U(ηL)

η − ηL
. (5.3.7)

For η > ηL , we define E(η) = −Λ(η)
[
U(η) − U(ηL)

]
+ F (η) − F (ηL) for convex entropy

pairs
(
U,F

)
. Differentiation yields

E′(η) = −Λ(η)U ′(η)− Λ′(η)
[
U(η)− U(ηL)

]
+ F ′(η)

= U ′(η)
[
σ f ′(η)− Λ(η)

]
− Λ′(η)

[
U(η)− U(ηL)

]
by defintion of F ′

= Λ′(η)
(
U ′(η) (η − ηL) −

[
U(η)− U(ηL)

] )
by (5.3.5)

< 0

for η > ηL by (5.3.6) and (5.3.7). If η = ηL , there is no shock between η and ηL , so E(ηL) = 0

and E′(ηL) = 0 . Since we showed that E strictly decreases as η increases from ηL , it follows

that E(ηR) < 0 for ηR > ηL , as in Figure 5.3.1(c). Hence, for classical admissible shocks

with ηL < ηR ,

−Λ
[
U(ηR)− U(ηL)

]
+ F (ηR)− F (ηL) < 0 , (5.3.8)

which, in the sense of distributions, is equivalent to the entropy inequality in (5.3.3). �

5.3.2 Admissible Shock Entropy Inequality: Example

We have just showed that the entropy inequality holds across classical shocks for all convex

entropy functions and concave flux functions. In this section, we demonstrate that, indeed, the

inequality holds for a specific convex entropy and concave discontinuous flux.

Equation (2.4.2) has admissible stable shock solutions when ηL < ηR in the sense of Lax [25].

For this example, consider M = 1 . From Section 3.2, σ = 1 across a forward shock, so the

characteristics determined by the upper flux curve impinge on the shock; hence, Λ = 1−ηL−ηR
and f ′(ηR) < Λ < f ′(ηL) . Thus, for forward shocks, we need only consider the characteristics
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(a) (b) (c)

Figure 5.3.1: For forward shocks with Λ(η) > 0 in (a) and backward shocks with Λ(η) < 0
in (b), the characteristics determined by upper (in blue) and lower (in green) flux curves are
slower (more negative) than the shocks (in red). (c) Since E(ηL) = E′(ηL) = 0 and E′(η) < 0
for all η > ηL , it follows that E(ηR) < 0 .

from the upper flux curve with σ f(η) = η − η2 in (2.4.3). Suppose we let the convex entropy

function be defined as
U(η) = η2 − η . (5.3.9)

Hence, F ′(η) = σ f ′(η)U ′(η) = −4 η2 + 4 η − 1 . It follows that

ηL < ηR =⇒ 1

3
(ηL − ηR)3 < 0 =⇒

−
[
1− ηL − ηR

] [
ηR

2 − ηR − ηL2 + ηL

]
− 4

3
ηR

3 + 2 ηR
2 − ηR +

4

3
ηL

3 − 2 ηL
2 + ηL < 0

=⇒ −Λ
[
U(ηR)− U(ηL)

]
+ F (ηR)− F (ηL) < 0 ,

so the entropy inequality (5.3.3) is satisfied for admissible forward shock solutions of (2.4.2).

Similarly, recall Section 3.2 where σ = 1 − ε > 0 across an admissible backward shock, so

the characteristics determined by the lower flux curve impinge on the shock. For admissible

backward shocks, Λ = σ
[
1 − ηL − ηR

]
and σ f ′(ηR) < Λ < σ f ′(ηL) . Hence, we consider

the characteristics from the lower flux curve with σ f(η) = (1 − ε)
[
η − η2

]
which leads to a

separate entropy flux F such that F ′(η) = (1− ε)
[
− 4 η2 + 4 η − 1

]
for the previously defined

entropy function U in (5.3.9). It follows that (1− ε) (ηL− ηR)3 < 0 , and we obtain the entropy

inequality as in the case of forward admissible shocks; hence, backward shock solutions of (2.4.2)

that satisfy the Lax entropy condition are entropy admissible.
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Since stationary shocks are a limiting case of either admissible forward or backward shocks, the

entropy inequality (5.3.3) holds for a specific convex entropy function (5.3.9) and concave flux

(2.4.3), despite the discontinuous switch parameter σ in the flux function.

5.3.3 Rarefaction Waves Satisfy the Entropy Inequality

In the wave-front tracking algorithm, as we construct solution ηh,h , recall that wave-fronts

with ηR < ηL yield rarefaction fans which are replaced by expansion shocks (with magnitudes

no greater than h ) to obtain a piecewise constant approximation. In ηh,h, a propagating front

ξ = ym(τ) between two constant states can be either a classical or expansion shock. Define ηLm :=

ηh,h(ym(τ)−, τ) as the constant solution to the left of wave-front ym and ηRm := ηh,h(ym(τ)+, τ)

as the solution value just to the right of a given shock ym . Since both admissible and expansion

shocks in ηh,h are constructed to satisfy the Rankine-Hugoniot jump condition, we define the

constant speed of propagation for wave-front ym as

y′m =
σ
[
f
(
ηLm
)
− f

(
ηRm
) ]

ηLm − ηRm
, (5.3.10)

for discontinuous switch parameter σ in (2.4.1). Expansion shocks ym in ηh,h are constructed

to satisfy ∣∣∣ ηLm − ηRm ∣∣∣ ≤ h . (5.3.11)

Define V to be an arbitrary portion of the characteristic plane through which only wave-front

ξ = ym(τ) propagates, as shown in Figure 5.3.2(a), and let ∂V denote the boundary of V . Let

V−/+ be the portion of V to the left/right of the propagating front. In Figure 5.3.2(b), notice

that the unit outward normal vector from V− along ξ = ym(τ) is n̂ = 1√
(y′m)2 + 1

(
− y′m , 1

)
.

Let ψ(ξ, τ) ≥ 0 be an arbitrary smooth test function with compact support, ψ ∈ C1
0 (V ) . For

entropy pair
(
U, F

)
, define ω(ψ) as

ω(ψ) := −
∫∫

V

[
U(ηh,h)ψτ +F (ηh,h)ψξ

]
dξ dτ = −

∫∫
V−

[
~F ·∇ψ

]
dξ dτ −

∫∫
V+

[
~F ·∇ψ

]
dξ dτ

where ~F =
(
U(ηh,h), F (ηh,h)

)
and ∇ =

(
∂
∂τ ,

∂
∂ξ

)
. Integration by parts and Green’s identity

yield ∫∫
V−

[
~F · ∇ψ

]
dξ dτ =

∫
∂V−

[
ψ ~F · n̂

]
ds−

∫∫
V−

[
ψ∇ · ~F

]
dξ dτ . (5.3.12)
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Since the solution ηh,h is smooth inside V− , it follows from (5.3.2) that∫∫
V−

[
ψ∇ · ~F

]
dξ dτ =

∫∫
V−

ψ

([
U(ηh,h)

]
τ

+
[
F (ηh,h)

]
ξ

)
dξ dτ = 0 .

From Figure 5.3.2(b), we can distinguish between portions of the boundary ∂V ,∫
∂V−

[
ψ ~F · n̂

]
ds =

∫
∂V− | ξ=ym(τ)

[
ψ ~F · n̂

]
ds+

∫
∂V− | ξ 6=ym(τ)

[
ψ ~F · n̂

]
ds ,

and find
∫
∂V− | ξ 6=ym(τ)

[
ψ ~F · n̂

]
ds = 0 because

[
∂V−

∣∣ ξ 6= ym(τ)
]
∈ ∂V and ψ has compact

support on V . Expression (5.3.12) simplifies to∫∫
V−

[
~F · ∇ψ

]
dξ dτ =

∫
∂V−

∣∣ ξ=ym(τ)

ψ(ξ, τ)√
(y′m)2 + 1

(
−U(ηh,h) y′m + F (ηh,h)

)
ds

for n̂ as previously defined. The propagating front passes through V between times τ1 and τ2

on Figure 5.3.2(a). We transform the above expression to obtain

(a) (b)

Figure 5.3.2: (a) Arbitrary volume V through which front ξ = ym(τ) propagates, and (b)
details of volume V− and ∂V− .
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∫∫
V−

[
~F · ∇ψ

]
dξ dτ =

∫ τ2

τ1

ψ
(
ym(τ), τ

) [
−U
(
ηLm
)
y′m + F

(
ηLm
) ]

dτ .

Using the unit outward normal vector from V+ along ξ = ym(τ) , we obtain a similar expression

for
∫∫
V+

[
~F · ∇ψ

]
dξ dτ from which it follows that

ω(ψ) =

∫ τ2

τ1

ψ
(
ym(τ), τ

)[
− y′m

(
U
(
ηRm
)
− U

(
ηLm
))

+ F
(
ηRm
)
− F

(
ηLm
) ]
dτ

for one arbitrary propagating front ξ = ym(τ) through an arbitrary volume V of the characteris-

tic plane. This can be extended to the entire solution plane R×R+ traversed by all propagating

fronts as in LeFloch [26]. Let ϕ(ξ, τ) ≥ 0 be an arbitrary smooth test function with compact

support, ϕ ∈ C1
0 (R× R+) . Define Ω(ϕ) such that

Ω(ϕ) := −
∫ ∞

0

∫ ∞
−∞

[
U(ηh,h)ϕτ + F (ηh,h)ϕξ

]
dξ dτ .

Notice that Ω sums ω for each propagating front between interactions for τ ∈ R+ since portions

of the characteristic plane between admissible and/or expansion shocks have constant solution

and, by (5.3.2), are crushed and do not contribute to Ω. It follows that

Ω(ϕ) =
∑

shocks

∫ ∞
0

ϕ
(
ym(τ), τ

)[
− y′m

(
U
(
ηRm
)
− U

(
ηLm
))

+ F
(
ηRm
)
− F

(
ηLm
) ]
dτ . (5.3.13)

For admissible shocks, −y′m
(
U(η+

m)−U(η−m)
)

+F (η+
m)−F (η−m) < 0 by (5.3.8), and by defintion,

ϕ
(
ym(τ), τ

)
≥ 0 ; hence,

∑
classical
shocks

∫ ∞
0

ϕ
(
ym(τ), τ

) [
− y′m

(
U(η+

m)− U(η−m)
)

+ F (η+
m)− F (η−m)

]
dτ ≤ 0 .

Since (5.3.13) is the sum over all classical shocks and expansion shocks, it follows that

Ω(ϕ) ≤
∑

expansion
shocks

∫ ∞
0

ϕ
(
ym(τ), τ

)[
− y′m

(
U
(
ηRm
)
− U

(
ηLm
))

+ F
(
ηRm
)
− F

(
ηLm
) ]
dτ

≤
∑

expansion
shocks

∫ ∞
0

ϕ
(
ym(τ), τ

) ∣∣∣∣∣
∫ ηRm

ηLm

[
− y′m U ′(n) + F ′(n)

]
dn

∣∣∣∣∣ dτ , (5.3.14)

since y′m is a constant shock speed for any expansion shock from ηLm to ηRm with ηLm > ηRm .
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Combining the piecewise definition of the flux (5.3.1) with the speed given by (5.3.10) for σ = 1

or σ = 1− ε yields

∣∣∣∣∣
∫ ηRm

ηLm

[
− y′m U ′(n) + F ′(n)

]
dn

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ ηRm

ηLm

U ′(n)

[
f̃
(
ηRm
)
− f̃

(
ηLm
)

ηLm − ηRm
+ f̃ ′(n)

]
dn

∣∣∣∣∣
≤

∣∣∣∣∣
∫ ηRm

ηLm

U ′(n)

ηLm − ηRm

[
f̃
(
ηRm
)
− f̃

(
ηLm
)

+ f̃ ′
(
ηRm
)(
ηLm − ηRm

)]
dn

∣∣∣∣∣ ,
because f̃ ′(n) ≤ f̃ ′

(
ηRm
)

for any n ≥ ηRm as shown in Figure 5.3.3. For some η̂ between ηRm and

ηLm , a Taylor approximation yields

f̃
(
ηLm
)

= f̃
(
ηRm
)

+ f̃ ′
(
ηRm
) (
ηLm − ηRm

)
+

1

2
f̃ ′′(η̂)

(
ηLm − ηRm

)2
.

Hence,∣∣∣∣∣
∫ ηRm

ηLm

[
− y′m U ′(n) + F ′(n)

]
dn

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

ηRm − ηLm

∫ ηRm

ηLm

U ′(n) f̃ ′′(η̂)
(
ηLm − ηRm

)2
dn

∣∣∣∣∣
≤

∣∣∣∣∣ 1

ηRm − ηLm
sup

0≤η≤1

∣∣U ′ ∣∣ sup
0≤η≤1

∣∣ f̃ ′′ ∣∣ (ηLm − ηRm)2
∫ ηRm

ηLm

dn

∣∣∣∣∣
by the strict concavity of the flux f and entropy flux U .

Figure 5.3.3: For expansion shock ym , the black tangent lines to the discontinuous flux curves
always have f̃ ′(ηLm) ≤ f̃ ′(n) ≤ f̃ ′(ηRm) for n ∈

[
ηRm , η

L
m

]
and f̃ given by (5.3.1).
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By (5.3.11),
∣∣∣ ηLm − ηRm ∣∣∣ ≤ h , thus,

∣∣∣∣∣
∫ ηRm

ηLm

[
− y′m U ′(n) + F ′(n)

]
dn

∣∣∣∣∣ ≤ h sup
0≤η≤1

∣∣U ′ ∣∣ sup
0≤η≤1

∣∣ f̃ ′′ ∣∣ ∣∣∣ ηLm − ηRm ∣∣∣ .
Recall that at any τ ∈ R+, the total number of propagating fronts in ηh,h is finite; let M be

the finite number of expansion shocks. Therefore, (5.3.14) becomes

Ω(ϕ) ≤
M∑
m=1

∫ ∞
0

ϕ
(
ym(τ), τ

)
h sup

0≤η≤1

∣∣U ′ ∣∣ sup
0≤η≤1

∣∣ f̃ ′′ ∣∣ ∣∣∣ ηLm − ηRm ∣∣∣ dτ
≤ h sup

0≤η≤1

∣∣U ′ ∣∣ sup
0≤η≤1

∣∣ f̃ ′′ ∣∣ sup
τ∈R+

[
TV
(
ηh,h(ξ, τ)

)] ∫ ∞
0

sup
ξ∈R

ϕ
(
ξ, τ
)
dτ . (5.3.15)

Since U is convex and continuous on a closed bounded interval, supη
∣∣U ′ ∣∣ is bounded. Since

ηh,h ∈
[

0 , 1
]
, it follows from (2.4.3) that supη

∣∣∣f̃ ′′(ηh,h)
∣∣∣ =

∣∣f ′′(0)
∣∣ , a bounded constant

determined by the mobility in the aquifer. By Table 4.3, total variation is bounded for the

approximation. Finally, since ϕ ∈ C1
0 (R× R+) , the final integral is bounded.

Hence, as h → 0 in (5.3.15), Ω(ϕ) ≤ 0 for all convex entropy pairs
(
U,F

)
. From Section

3.4, as h → 0 , the strength of approximating expansion shocks given by (5.3.11) diminishes,

and continuous rarefaction solutions are obtained in the limit ; this limiting property is shown

in Figure 5.3.4. By (5.2.2), as h→ 0 , ηh,h(ξ, τ)→ η(ξ, τ) . Consequently, in the limit as h→ 0 ,

Ω(ϕ) ≤ 0 =⇒ −
∫ ∞

0

∫ ∞
−∞

[
U(η)ϕτ + F (η)ϕξ

]
dξ dτ ≤ 0

=⇒
∫ ∞

0

∫ ∞
−∞

ϕ(ξ, τ)
[
U(η)τ + F (η)ξ

]
dξ dτ +

∫ ∞
−∞

ϕ(ξ, 0)U
(
η(ξ, 0)

)
dξ ≤ 0 ,

so the entropy inequality (5.3.3) is satisfied in the weak sense across rarefaction fans.

5.4 Existence of a Classical Entropy Solution

Hence, we have completed the proof of Theorem 5.0.1, and the Cauchy problem (5.0.1) has a

classical entropy solution. To summarize, in this chapter, it has been shown that:
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(a) (b) (c)

Figure 5.3.4: As the size of the expansion shocks decreases
(
and therefore the number of

expansion shocks increases from one (a) to three (b)
)
, the rarefaction is obtained in the limit

(c). Here, ηL = ηR = 0.1 , ηM = 0.6 , and ε = 0.4 .

• The wave-front tracking approximations, ηh = ηh(ξ, τ) , based on solutions to Riemann

problems from Chapters 3 and 4 are well-defined globally in time. The total number of

waves in ηh is uniformly bounded in time.

• As shown in Section 5.2.1, for η0 ∈ L1(R) ∩ BV (R) with 0 ≤ η0 ≤ 1 , the approximate

solutions, ηh , satisfy the uniform estimates

inf(η0) ≤ ηh(ξ, τ) ≤ sup(η0) , ξ ∈ R , τ > 0 ,

TV
(
ηh(ξ, τ)

)
≤ TV

(
η0

)
, ξ ∈ R , τ ≥ 0 ,∥∥∥ηh(ξ, τ2)− ηh(ξ, τ1)

∥∥∥
L1(R)

≤ TV (η0) sup
∣∣f ′∣∣ ∣∣τ2 − τ1

∣∣ , ξ ∈ R , τ1 , τ2 ≥ 0 .

• A subsequence ηh,h of ηh converges to a classical entropy-admissible solution η = η(ξ, τ)

of the Cauchy problem (5.0.1),

ηh,h(ξ, τ)→ η(ξ, τ) in L1
loc for all τ ∈ R+, ξ ∈ R ,

and
[
U(η)

]
τ

+
[
F (η)

]
ξ
≤ 0 in the limit as h→ 0 for every convex entropy pair

(
U,F

)
.
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We also showed that the limit function η(ξ, τ) satisfies

inf(η0) ≤ η(ξ, τ) ≤ sup(η0) , ξ ∈ R , τ > 0 ,

TV
(
η(ξ, τ)

)
≤ TV

(
η0

)
, ξ ∈ R , τ ≥ 0 ,∥∥∥η(ξ, τ2)− η(ξ, τ1)

∥∥∥
L1(R)

≤ TV (η0) sup
∣∣f ′∣∣ ∣∣τ2 − τ1

∣∣ , ξ ∈ R , τ1 , τ2 ≥ 0 ,

and, for all τ ≥ 0 , the initial condition has the property∥∥∥η(ξ, τ)− η0

∥∥∥
L1(R)

≤ TV (η0) sup
∣∣f ′∣∣ τ .
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Chapter 6

Comprehensive Example

In Chapter 5, we established the existence of entropy solutions of the Cauchy problem (5.0.1)

for plumes of CO2 with bounded variation and any initial geometry. Chapter 4 provided new

clarity on how the resulting wave interactions work, and we now understand new patterns that

emerged during the construction of wave solutions. In this chapter, we provide an example that

demonstrates the need to include cross-hatch characteristics whilst constructing solutions, and

we illustratively justify the continuum case with expansion shocks. At the end of this chapter, we

translate the results of an example with dimensionless parameters back to physical parameters.

6.1 Rarefaction-Shock-Rarefaction Solution

We consider the conservation law (2.4.2) and an initial plume with geometry shown in Figure

6.1.1(a) and given by:

η0(ξ) =



0 , ξ ≤ −26 ,

ηL = 0.3 , −26 < ξ ≤ −2.5 ,

ηrare = −0.1 ξ + 0.05 , −2.5 < ξ ≤ −0.5 ,

ηM = 1 , −0.5 < ξ ≤ 0.5 ,

ηR = 0.2 , 0.5 < ξ < 10 ,

0 , ξ ≥ 10 .

(6.1.1)
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This initial condition has compact support since the plume height is zero when ξ 6∈
(
−26 , 10

)
.

For ξ ∈
(
−2.5 ,−0.5

)
, the initial plume features a non-centered rarefaction fan with ηrare < η∗ ;

hence, the characteristic speeds in the non-centered rarefaction are determined by the lower flux

curve. Additionally, the initial plume has shock waves emanating from ξ = −26 and -0.5 and

rarefaction waves centered at ξ = 0.5 and 10 , as emphasized in Figure 6.1.1(b). The initial

plume (6.1.1) satisfies the conditions of Theorem 5.0.1; hence, the resulting Cauchy problem

admits an entropy solution.

For early time, the shock solution unfolds in a manner similar to the example in Section 4.2.1;

however, the solution differs because, on the left, this example has a rarefaction rather than

a constant state. The position for a shock abutting a non-centered rarefaction is determined

numerically since we do not have a closed formula for the result of this wave interaction. In the

Case A example, the initial backward shock travels at a constant speed until the shock begins to

interact with the rarefaction on the right, whereas in this example, the interaction between the

non-centered rarefaction fan on the left and ηM=1 on the right yields a shock with increasing

shock speed, shown in blue in Figure 6.1.2. At time (a) in the same figure, the non-centered

rarefaction on the left begins to interact with the rarefaction on the right between ηM and

ηR , resulting in a backward shock until point (b) where the shock becomes stationary then

advances as a forward shock until time (c). After this point, the characteristics entering the

shock from the rarefaction on the left and from the rarefaction on the right have characteristic

speeds determined by the lower flux curve. The resulting forward shock speed is determined by

the upper flux curve.

(a) (b)

Figure 6.1.1: Initial condition where (b) is a magnification of a portion of (a).
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6.2 Graze Characteristic Leads to Cross-hatch Characteristics

At point (d) in Figure 6.1.2, the shock speed equals the speed of the entering characteristic

from the non-centered rarefaction on the left; we define ηgraze as the solution associated with

Figure 6.1.2: Exact solution for ηL = 0.3 , η0(−0.5) = 0.1 , ηM = 1 , ηR = 0.2 , M = 1 and
ε = 0.4 . The non-centered rarefaction on the right interacts with ηM until point (a), when the
plume breaks away from the bottom of the aquifer. The two rarefactions begin to interact at
point (a) to yield a shock that becomes stationary at (b). After point (c), the speeds of both
rarefactions are reduced due to trapping. At point (d), the shock speed equals the speed of
the entering characteristic corresponding to ηgraze in the non-centered rarefaction, resulting in
a constant region with cross-hatch characteristics. The faster characteristics, in red, now enter
the shock from the left. The shock persists until time τe , when the ηgraze characteristic within
the rarefaction enters the shock from the right, point (e).
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this characteristic. Though this result resembles point 1○ in Figure 4.2.1(b) where the slower

characteristic on the left grazed the shock, there is a significant caveat in this example: charac-

teristics within rarefactions are well-defined from Chapter 3. Hence, unlike Section 4.2.1, there

is no faster characteristic on the left that can bring information into the shock; however, the

speed of the shock continues to increase because the solution within the rarefaction on the right

is continuously decreasing.

After point (d), interesting phenomena arise since the constant solution value ηgraze persists,

yielding a constant region between the characteristic associated with ηgraze in the rarefaction on

the left and the shock on the right. This constant region of the characteristic plane is filled with

cross-hatch characteristics, per Section 3.1. Without cross-hatch characteristics, there would be

a non-physical gap in the characteristic plane. Regarding the resulting shock between the con-

stant state ηgraze on the left and the rarefaction on the right: sans cross-hatch characteristics,

there would be no incoming information from the left side of the shock. The faster character-

istics, determined by the upper flux curve, will now enter the shock.

6.3 Expansion Shock Justification

We use expansion shocks to provide a justification of the emergent constant state ηgraze in

Figure 6.1.2. The non-centered rarefaction and the rarefaction centered at ξ = 0.5 in the

initial condition, Figure 6.1.1(b), are approximated with expansion shocks, see Figure 6.3.1.

The expansion shock speeds are indicated by the directions and lengths of corresponding red

arrows, and the backward shock between η = 0.1 and 1 is shown.

Figure 6.3.1: Expansion shock approximations of initial rarefactions.
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Figures 6.3.2(a)-(c) correspond to points (a)-(c) on Figure 6.1.2. In (a), the backward shock

interacts with the fastest expansion shock on the left; in (b), the expansion shocks on the

left reduce the classical shock speed to zero. In (c), the forward classical shock encounters the

expansion shock with zero speed approximating the vertical characteristic in the rarefaction

on the right. After this, the shock continues to gain speed due to the interactions with faster

expansion shocks on the left.

(a)

(b)

(c)

Figure 6.3.2: Expansion shock representation of the continuous solution in Figure 6.1.2, with
corresponding points (a)-(c).
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The grazing characteristic from the continuous rarefaction on the left grazes the classical shock

at point (d) in Figure 6.1.2. The corresponding piecewise constant states are shown in Figure

6.3.3(d) where the speed of the expansion shock on the left equals the speed of the entropy-

satisfying shock. Henceforth, the expansion shock and classical shock will not approach each

other ; however, the classical compressive shock will continue to gain speed as it interacts with

slower expansion shocks on the right, Figure 6.3.3(de). This continues until the shock encounters

the expansion shock corresponding to a jump down from ηgraze , rendering the shock speed zero,

at τe . Since expansion shocks do not approach, Section 4.1, after point (e), the result is a

constant state ηL on the left, then expansion shocks down to constant state to ηgraze , followed

by other expansion shocks down to constant state ηR , Figure 6.3.3(e). We have used expansion

shocks to show that the constant ηgraze persists. Increasing the number of expansion shocks will

yield entropy-satisfying rarefactions in the limit, justifying the constant state ηgraze from the

continuum case in Figure 6.1.2.

(d)

(de)

(e)

Figure 6.3.3: Expansion shock justification of constant state ηgraze .
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6.4 Solution After Constant ηgraze Region Emerges

The shock between ηgraze and the rarefaction on the right advances forward until point (e) in

Figure 6.1.2. Here, η within the rarefaction on the right equals ηgraze , so the shock strength

diminishes to zero. Point (e) also corresponds to the time, τe = 30.1 , where the faster charac-

teristic, shown in red, becomes parallel to the resulting shock; the faster characteristic and the

forward shock are both determined by the upper flux curve.

After τe , we examine the solution resulting from the entire finite initial plume, Figure 6.1.1(a),

and combine the attractive wave dynamics generated by the initial condition (6.1.1) with the

resulting shock emanating from ξ = −26 and the rarefaction centered at ξ = 10. To the left of

this shock, η = 0 , and to the right of this rarefaction, η = 0 , corresponding to a brine-filled

aquifer outside of the initial plume extent. Hence, moving from left to right at τe , we have a

constant region - shock - constant region - rarefaction - constant region - rarefaction - constant

region - rarefaction - constant region:

η(ξ, τe) =



0 , ξ . −4.9 ,

ηL , −4.9 < ξ . 4.7 ,

−0.0217 ξ + 0.4024 , 4.7 < ξ . 7.2 ,

ηgraze ≈ 0.2458 , 7.2 < ξ . 9.7 ,

−0.0277 ξ + 0.5140 , 9.7 < ξ . 11.3 ,

ηR , 11.3 < ξ . 20.8 ,

−0.0277 ξ + 0.7769 , 20.8 < ξ . 28.1 ,

0 , ξ > 28.1 .

(6.4.1)

The three rarefactions cannot approach, as shown in Chapter 3. After τe , the compact support,

η = 0 , to the left of the plume drives the solution, and the resulting forward shock eventually

interacts with the remnants of the non-centered rarefaction from ηL down to ηgraze , resulting in

a faster forward shock; this analytic solution is shown in Figure 6.4.1. The shock continues to

gain speed as it interacts with the constant state ηgraze , then the rarefaction from ηgraze down

to ηR , the constant state ηR , and finally the rarefaction from ηR down to η = 0 , shown in blue

and purple in Figure 6.4.1. The shock persists until it reaches the characteristic in the right-

most rarefaction that corresponds to η = 0 . After this point, η = 0 throughout the aquifer, and

the plume is completely trapped within pore space. For this example, we determined that the

final interaction time is τend = 168.45 at a final interaction position of ξfinal = 111.07 , shown

as a blue star in Figure 6.4.1.
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Figure 6.4.1: Analytic solution of initial condition that is completely trapped as residual bub-
bles after a finite time, τend = 168.45 , and at a finite position, ξfinal = 111.07 , the blue star.
Here, M = 1 , ε = 0.4 , and the plume has ηL = 0.3 , ηgraze ≈ 0.25 , and ηR = 0.2 , with η = 0
in the rest of the aquifer.

6.5 Results with Dimensional Parameters

We now translate the non-dimensional analytic results from Section 6.4 back to physical quan-

tities. In this modeling example, we solved (2.4.2) throughout the characteristic plane for the

initial plume given in Figure 6.1.1(a) to find that the final interaction time was τend = 168.45 at

a final interaction position of ξfinal = 111.07. After this point, there is no more plume migration,

as the entire volume of CO2 has been deposited as droplets within the pore space.

67



To obtain estimates of the finite migration time and distance of the injected plume in Figure

6.1.1(a), we assume parameter values estimated by geotechnical data given in [17, 31, 33]:

φ = 0.15 , ∆ρ = 300 kilograms
meter3

, and k = 0.5 darcy ≈ 4.93× 10−13 square meters. We consider an

aquifer where the mobility of the two fluids is equal, M = 1 , and we assume that the aquifer

has Scr = Sbr ≈ 0.285 . Consequently, ε = 0.4 is the trapping parameter, krc is taken as 0.37

[5], and µc = 2 × 10−3 kilograms
m s [12]. An appropriate length scale for this model is the initial

lateral extent of the plume, assumed to be 1000 meters, so L ≈ 27.8 meters, based on the initial

extent of ξ = 36 in Figure 6.1.1(a). The Viking Formation is an aquifer in western Canada

that is 30 meters thick [33], but carbon sequestration projects also occur in formations with

H > 300 meters [31]. In this modeling exercise, θ = 1.5◦ [17]. The units given guarantee that τ

is dimensionless.

It follows from (2.2.4) that κ1 ≈ 4.17 × 10−6 meters per second. Hence, from (2.3.1), we find

that the plume is completely trapped as bubbles at time

τend = 168.45 =⇒ tend ≈ 1358 years . (6.5.1)

In Figure 6.1.1(a), we see that the initial plume spanned from ξ = −26 to ξ = 10, with compact

support, η = 0 , outside of that region of the aquifer. The analytic results in Figure 6.4.1 indicate

the final migration position is ξfinal = 111.07 ; hence, the residual surface has a lateral extent of

ξend = 137.07 underground. From (2.3.1), it follows that

ξend = 137.07 =⇒ xend ≈ 3808 meters . (6.5.2)

Hence, a plume with initial geometry (6.1.1), η0 ∈ L1(R) ∩ BV (R) , and aquifer parameters

subject to (2.4.2) is completely residually trapped in a finite time and after a finite distance.

The plume, which was originally one kilometer across like a crossword, displaced the in situ

brine and left bubbles over a span of almost four kilometers within the subsurface rock matrix

of the aquifer.
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Chapter 7

Exact Numerical Solutions

In this chapter, we present results from an implementation of the wave-front tracking method.

We developed a numerical scheme to capture changing plume shape during migration, and

the annotated MATLAB code that we wrote to obtain solutions and figures in this chapter

is included in Appendix B.2. The code yields wave-front tracking solutions for any general

initial plume configuration; for demonstrative purposes, we consider one initial condition for

the remainder of this chapter.

7.1 Wave-front Tracking Algorithm

In this section, we derive exact wave-front tracking solutions for a specific initial plume geom-

etry, shown in Figure 7.1.1(a). To run the MATLAB code that we developed, the user decides

how many middle plume height values within the initial plume will be used to construct ap-

proximations for the initial condition; as shown in Figure 7.1.1(b), we approximate the smooth

initial plume in this section with seven η values that are evenly-spaced along the initial lateral

extent of the plume.

To implement the wave-front tracking method, a piecewise constant approximation of the initial

condition is constructed, as in Figure 7.1.1(c). At each jump discontinuity, the resulting Riemann

problem is solved; resulting rarefaction fans are approximated by expansion shocks. All shock

speeds are well-defined on the dual flux curves, as shown in Figures 7.1.2 and 7.1.3. The speed

of a forward compression shock is determined by the upper flux curve, Figure 7.1.2(a), because

ητ < 0 across the shock which implies σ = 1 . The speed of a backward compression shock is
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(a)

(b)

(c)

Figure 7.1.1: (a) Initial condition η0 ∈ L1(R) ∩ BV (R) , (b) seven middle η values within
initial plume, and (c) piecewise constant approximation.

determined by the lower flux curve, Figure 7.1.2(b), because ητ > 0 across the shock which

implies σ = 1 − ε . Correspondingly, because ητ > 0 across a forward expansion shock, the

speed is determined by the lower flux curve, Figure 7.1.3(a), and the speed of a backward

expansion shock is determined by the upper flux curve, Figure 7.1.3(b), since ητ < 0 across
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the shock. Throughout this chapter, the colors of the wave-front solutions in the characteristic

plane will correspond to the colors in Figures 7.1.2 and 7.1.3: forward compression shocks are

blue, backward compression shocks are pink, forward expansion shocks are grey, and backward

expansion shocks are orange.

(a) (b)

Figure 7.1.2: Compression shocks have ηL < ηR . (a) Speed of forward compression shock
determined by upper flux curve. (b) Speed of backward compression shock determined by lower
flux curve.

(a) (b)

Figure 7.1.3: Expansion shocks have ηL > ηR . (a) Speed of forward expansion shock deter-
mined by lower flux curve. (b) Speed of backward expansion shock found on upper flux curve.
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To initiate the algorithm for this example, the positions of the initial shock wave-fronts are

determined in the characteristic plane. For increasing position ξ in Figure 7.1.4(a) and (b),

there are two forward shocks, then five backward shocks (three of which are expansion shocks),

then two forward expansion shocks. On the left side of any plume with compact support, there

will always be a forward classical shock because the discontinuity at this point is always a jump

(a)

(b) (c)

Figure 7.1.4: Exact wave-front solutions of initial Riemann problems up to the first shock
collision in (a) characteristic plane and (b) solution space, where shocks are shown as vertical
interfaces. In (b) and (c), arrows indicate directions and magnitudes of propagating shocks. (c)
At this interaction time, τ = 0.72 , an orange backward expansion shock collides with a pink
classical backward shock and eliminates the solution state η = 0.93 , the black star in (b).
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up from η = 0 to any value of η within the plume. Similarly, the right-most shock will always be

a forward expansion shock from any η value in the plume down to η = 0 outside of the plume.

The initial wave-fronts propagate until two adjacent shocks collide at the first interaction time,

labeled in Figure 7.1.4(a). At this point, the middle state in common with both incoming shock

waves, η = 0.93
(
indicated by the black star in Figure 7.1.4(b)

)
, is eliminated. The resulting

shock emanating from this first point of interaction is a backward classical shock from η = 0.86

up to η = 0.92 ; all other shocks in the characteristic plane maintain their initial speeds. The

entropy-satisfying classical compressive shock waves and the expansion shock waves propagate,

and, as adjacent shocks interact, those resulting shock waves are also tracked throughout the

characteristic plane, as shown in Figure 7.1.5(a). In that figure, it is apparent that the entire left

(a) (b)

Figure 7.1.5: (a) Initial plume approximated by piecewise constant states (top) such that the
maximum jump up (compressive shock) and jump down (expansion shock) is hmax = 0.47 , and
(bottom) the resulting exact wave-front tracking solution for ε = 0.8 in characteristic space.
(b) Corresponding migrating plume and residual surface in solution space at interaction times.
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wave-front is always a classical forward shock [28]; the final forward shock on the left interacts

with the right-most expansion shock at a finite final interaction time and position. At this

point, all constant middle states within the plume have been eliminated, and after this time,

the solution is η = 0 throughout the characteristic plane.

The evolution of the plume in characteristic space, Figure 7.1.5(a), corresponds to a time

progression of the plume migration underground, Figure 7.1.5(b). For ε = 0.8 andM = 1 , this

schematic has numerical solutions for the plume shape at interaction times, where two shocks

collide in the characteristic plane. In engineering practice, the value of the mobility ratio M is

larger (usually between 10 and 20), and the impact of the trapping parameter ε is even smaller

[17, 28]. In Figure 7.1.5(b), we visualize plume migration, which is generally to the right due to

a combination of groundwater flow and aquifer slope. The mobile CO2 invades new pore space

and leaves trapped CO2 in its wake. The shape of the migrating plume at each interaction time

is simulated in Figure 7.1.5(b), with mobile CO2 within the plume shown in dark blue, the

residual surface region containing trapped CO2 drawn in light blue, and brine in white.

7.2 Trapping Comparison of Wave-front Tracking Solutions

The wave-front tracking results obtained in Section 7.1 correspond to plume migration in an

aquifer with a trapping parameter of ε = 0.8 . The initial piecewise constant plume shape and

final residual surface of trapped bubbles from Figure 7.1.5(b) are superimposed in Figure 7.2.1.

The scant residual surface outside of the initial plume location indicates the plume did not

migrate very far, and most of the droplets of CO2 were deposited in the initial plume location.

Figure 7.2.1: Initial plume and resulting residual surface for trapping parameter ε = 0.8 and
maximum shock size = 0.47 .
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Varying the trapping parameter in simulations will alter the final migration distances and times

of the plume. In this section, we obtain results when the trapping parameter, ε , is decreased,

meaning that less of the pore space is available to trap CO2 .

A decrease in the trapping parameter, ε , implies that σ = 1−ε increases. With less trapping, the

lower flux curve increases in height, and the magnitudes of the speeds of backward compressive

shocks and forward expansion shocks increase, as those shock speeds are determined by the

lower flux curve. The speeds of forward compressive shocks and backward expansion shocks

are unchanged, because those shocks are determined on the upper flux curve, which is not

dependent on the amount of trapping.

For this trapping comparison, we track the wave-fronts when ε = 0.4 and assume the same

initial condition approximated the same way as in Section 7.1 when ε = 0.8 . The piecewise

constant plume in Figure 7.2.2(a) is the same as the initial condition in Figure 7.1.4(b); the

horizontal scale is the only difference between those figures. In Figure 7.2.2(a), the arrows

corresponding to the forward compressive shocks and backward expansion shocks are the same

as in Figure 7.1.4(b); however, when the trapping parameter is decreased from ε = 0.8 , as

(a) (b)

Figure 7.2.2: Trapping parameter is decreased to ε = 0.4 . (a) Initial shock speeds and di-
rections for piecewise constant plume approximation with maximum shock size = 0.47 . (b)
Wave-front propagation of plume migration after one interaction, when the constant state in-
dicated by the black star in (a) is eliminated.
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in the previous section, to ε = 0.4 , the forward expansion shocks, in grey, are faster to the

right, and the backward compressive shocks, in pink, are faster to the left. The first interaction

between neighboring wave-fronts occurs at a different location, indicated by a black star, for this

different trapping parameter; in Figure 7.2.2(b), the first interaction occurs when the second-

and third-from-the-left wave-fronts interact, whereas in Figure 7.1.4(b), the first interaction

occurs when the fifth- and sixth-from-the-left wave-fronts interact. When ε = 0.4 , wave-fronts

are tracked in characteristic space, Figure 7.2.3(a), and solution space, Figure 7.2.3(b), until

the final interaction point, at which point the plume is fully sequestered.

We consider the same approximation of the same initial condition to deduce impact of changes

in trapping parameter, ε , on the final plume migration time and distance. The final interaction

point is defined as the time, τ , and position, ξ , when the last two remaining wave-fronts

collide; beyond this point, η = 0 throughout the aquifer, indicating that the plume is completely

(a) (b)

Figure 7.2.3: (a) (top) Initial plume approximated as in Section 7.1, and (bottom) the result-
ing exact wave-front tracking solution for ε = 0.4 in characteristic space. (b) Corresponding
migrating plume and exact residual surface for ε = 0.4 in solution space.
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residually trapped. When ε = 0.8 , the final interaction point is
(
τ , ξ

)
≈
(

12.71 , 4.33
)

from

Figure 7.1.5. When ε = 0.4 , the final interaction is
(
τ , ξ

)
≈
(

36.12 , 21.83
)

from Figure 7.2.3.

A decrease in trapping leads to an increase in final migration distance, as shown in Figure 7.2.4.

We translate the dimensionless results for this trapping comparison to dimensional time and

length. Parameters for the porous aquifer and fluids are taken as in Section 6.5 [5, 12, 17, 31, 33].

For trapping parameter ε = 0.8 , it follows that the final interaction point is t ≈ 239 years and

x ≈ 1.6 kilometers, whereas, when trapping is decreased to ε = 0.4 , the final interaction point

is t ≈ 2620 years and x ≈ 6.0 kilometers. Hence, when pore space available to trap CO2 is

more limited, the trapping parameter decreases, and results from this section show that plume

migration continues over a longer time and distance.

Figure 7.2.4: Residual surfaces when ε = 0.8 (more trapping) and ε = 0.4 (less trapping).
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7.3 Sequence of Numerical Wave-front Tracking Solutions

In this section, we illustrate the construction of a sequence of exact wave-front tracking solutions

resulting from a sequence of piecewise constant approximations to an initial condition with

bounded variation. The maximum size of compression shocks (jumps up) and expansion shocks

(jumps down) in the piecewise constant approximation of the initial condition in Figure 7.1.5 was

hmax = 0.47 . In the limit as hmax → 0 , an entropy-satisfying solution with rarefactions would

be obtained. In Figures 7.3.1-7.3.4, we approximate the initial condition with an increasing

number of piecewise constant states thereby decreasing hmax , the maximum size of classical and

expansion shocks. We use the sequence of approximations of the initial condition to construct

a sequence of wave-front tracking solutions to the Cauchy problem for five decreasing values

(a) (b)

Figure 7.3.1: (a) Initial approximation with hmax = 0.37 and resulting exact wave-front track-
ing solution. (b) The plume migrates until the final interaction time, τend = 13.08 , after which
point, a residual surface is all that remains.
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of hmax . With hmax = 0.37 in Figure 7.3.1, larger jumps are approximated by an increased

number of smaller shocks, slightly altering interaction times and positions. We further refine

the initial approximation of the given CO2 plume by decreasing the allowable jump between η

values of adjacent constant states to hmax = 0.27 in Figure 7.3.2, then down to hmax = 0.17 in

Figure 7.3.3, and finally, in Figure 7.3.4(a), the maximum size of compression and expansion

shocks in the piecewise constant approximation of the initial condition is set at hmax = 0.07 ;

in Figure 7.3.4(b), wave-fronts are tracked until the first interaction point, at which time the

constant state indicated by a black star in Figure 7.3.4(a), is eliminated. In Figures 7.3.4(c)

and 7.3.5, wave-fronts are tracked until the final interaction point.

(a) (b)

Figure 7.3.2: Results of numerical implementation of the wave-front tracking method for an
approximation of the initial condition with hmax = 0.27 .
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In this chapter, we considered the wave-front tracking solutions of the Cauchy problem for

(2.4.2), a nonlinear conservation law with discontinuous dual flux functions, and initial CO2

plume in Figure 7.1.1(a). If hmax is allowed to vary and decrease, we see the result of Helly’s

Compactness Theorem A.1.1: a subsequence of a sequence of solutions, such as those in Figures

7.3.1-7.3.5, will converge to an entropy-satisfying solution, as proven in Chapter 5.

(a) (b)

Figure 7.3.3: Results of numerical implementation of the wave-front tracking method for an
approximation of the initial condition with hmax = 0.17 .
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(a) (b)

(c)

Figure 7.3.4: Initial plume is approximated with 37 constant states due to the restriction,
hmax = 0.07 , on maximum sizes of jumps up (classical shocks) and down (expansion shocks).
(a) Wave-fronts corresponding to 37 initial constant states and shock speeds and directions.
(b) Plume location after one interaction. (c) Exact locations of the wave-fronts are tracked
throughout the characteristic plane until final interaction point of τend = 12.36 and ξfinal = 4.40 .
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Figure 7.3.5: An exact wave-front tracking solution, for maximum allowable initial shock sizes
of hmax = 0.07 , provides a visualization of plume migration at each interaction time. The mobile
plume is blue, the residual surface of trapped bubbles is light blue, and the brine is white.
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Chapter 8

Concluding Remarks

The dual flux model given by (2.4.1)-(2.4.3) and [17] captures underlying large-scale behavior

of carbon dioxide (CO2) plume migration in porous media. In Chapter 2, we showed that the

evolution of a gravity current with residual trapping can be modeled as a nonlinear conservation

law given by

ητ +
(
σ f(η)

)
ξ

= 0 ,

for fractional plume height η = η(ξ, τ) at any position ξ and time τ in a brine aquifer, with a

discontinuous flux given by

σ f(η) = σ
η (1− η)

η (M− 1) + 1
with σ =

{
1− ε , ητ > 0 ,

1 , ητ < 0 ,

for trapping parameter ε and mobility M . Dual flux curves emerge in this model, giving rise

to flux discontinuities. One flux describes the invasion of the CO2 plume into pore space, and

the other captures the flow as the plume drains and leaves a residual surface of trapped CO2

droplets behind. The switch between the two flux functions is prescribed to occur at points

where the height of the plume changes from increasing to decreasing in time.

During the analysis in Chapter 3 of this dissertation, we introduced a new construction with

cross-hatch characteristics in regions of the characteristic plane where the solution is constant,

and the characteristic speed depends on which flux is invoked. By including cross-hatch char-

acteristics, we resolved ambiguous gaps in the characteristic plane of [17] related to regions of

constant solution. The analytic solution of the example in Chapter 6 exhibits a shock curve on
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which the shock speed becomes one of the characteristic speeds, thus risking loss of admissibil-

ity. Continuation of the solution depends on cross-hatch characteristics. Chapter 4 includes a

detailed description of wave interactions, including some properties that do not occur in con-

ventional scalar conservation laws, such as non-increasing total variation and non-increasing

number of propagating waves.

The main result of this dissertation is Theorem 5.0.1. In Chapter 5, we proved the existence of

an entropy solution of the Cauchy problem for any initial CO2 plume using wave-front track-

ing. In Chapter 7, we implemented a numerical construction of piecewise constant approximate

solutions of the Cauchy problem using expansion shocks in place of rarefaction waves. We had

to account for the dual fluxes carefully in order to establish that a subsequence of approxi-

mate solutions converges to an entropy solution of the Cauchy problem and thus complete the

existence proof of Theorem 5.0.1.

A striking feature of this simple model is that, because of its dual flux curves, solutions can

include the prediction that the entire CO2 plume is deposited as bubbles in a finite time. To

prevent detrimental leakage from a sequestration site, plume migration must be stymied before

the plume reaches natural and manmade fractures that exist along the cap rock [14, 19, 40, 44].

Residual trapping decreases the distances traversed by buoyant plumes [17], and final migration

distances can be calculated, as in Chapters 6 and 7. Hence, the potential for leakage through a

fractured cap rock diminishes if the distance between the injection site and known fracture is

greater than the predicted migration distance from the model; the plume would be completely

trapped before the advancing tip of the plume reached the conduit to the atmosphere.

Results from models that predict final migration distances of sequestered carbon dioxide are

used within the legal realm of subsurface property rights [23]. The model analyzed throughout

this dissertation neglected the dissolution of CO2 into brine and undulations in the cap rock,

both of which decrease the amount of migrating CO2 [19, 21, 30]. Hence, the final migration

times and distances obtained by this model may be overestimates when compared to solutions

from a CO2 sequestration equation that incorporates other physics and geology. The model

considered in this dissertation is just simple enough to capture the basic transport properties

of the migration of the supercritical carbon dioxide plume.

This dissertation sparks future research in several directions. We conjecture that if a finite

amount of CO2 is injected into the subsurface, the Cauchy problem (5.0.1) yields a solution

where the plume is completely stored in finite time. Though the dual flux curves add complex-

ity to this conjecture, the examples in Chapters 4, 6, and 7 have solutions where plume size

diminishes to zero in finite time as bubbles become trapped in pore spaces. Progress was made
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in this dissertation regarding a proof structure for this conjecture, as follows. Any compactly

supported plume will have η = 0 as a constant state outside of the initial lateral extent of the

plume. Hence, on the right, there will always be a rarefaction from any value of η > 0 within

the plume down to η = 0 outside of the plume; the right-most propagating characteristic in

the rarefaction will have speed determined from the lower flux curve since 0 < η∗ . The left-

most wave interaction will always be a shock up from η = 0 to any value of η > 0 within

the plume; this classical forward shock speed is determined from the upper flux curve. From

the wave interaction catalog in Chapter 4, we have shown that shock-rarefaction (Case A) or

shock-shock (Case B) interactions always lead to an elimination of the constant middle state.

The resulting shock (from 0 on the left up to any adjacent η on the right) would propagate

until another interaction time, when the interaction would again eliminate a middle state. The

iterative shock construction continues until the shock interacts with the leading characteristic

of the final rarefaction. The positive shock speed will always be greater than the corresponding

positive characteristic speed because of the dual flux curves. We conjecture that, for a plume

with a given initial lateral extent, all resulting final interaction points are within the ideal

envelope case in [17] corresponding to an aquifer completely filled with CO2 throughout its

initial lateral extent. It remains to prove that any initial compactly supported CO2 plume with

bounded variation will be deposited as bubbles in finite time when modeled by the considered

conservation law.

While improvements have been made to the model considered throughout this dissertation,

[7, 14, 15, 28, 32, 48], possible future work includes modifications of the model of [17]. The

model has a problem if η(ξ, 0) has more than one turning point, since if there are two or more,

then the plume is invading a region that already has CO2 bubbles. If the bubbles reconnect

with the plume, the plume height would increase, thereby violating an assumption that the

maximum plume height decreases as shown in Figure 2.3.1. To remedy this, a change could be

made regarding the model assumption of constant saturations of each fluid along the advancing

fronts of the plume so as to distinguish advancing fronts that are propagating into portions of

the aquifer with existing CO2 deposition. Modifying the carbon sequestration model to capture

plume invasion into a region that already has CO2 bubbles would impact the flux, and the

result might be more than two flux functions.

Another direction for future work is the formulation of a uniqueness proof for the nonlinear

conservation law with a dual flux (2.4.1)-(2.4.3). This stems from the existence argument that

we proved in Chapter 5 of this dissertation. Though the general uniqueness proof for a scalar

conservation law with convex flux is outlined in [3], this problem requires a nontrivial extension

of the general case due to the dual flux curves.
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Appendix A

Preliminary Proofs

In this appendix, we develop proofs for preliminary theorems that were referenced in Chapter

5: Helly’s Compactness Theorem and the Time-Dependent Helly’s Theorem. We also present

a proof to the precursor Arzela-Ascoli Theorem which also utilizes the process of creating a

diagonal sequence with special properties.

A.1 Helly’s Compactness Theorem

Theorem A.1.1. Given a sequence of functions, ηh : (a, b) → RN , with bounded variation,

which is defined at every point ξ ∈ (a, b), and satisfies, for some constant C > 0,∣∣∣∣∣∣ηh∣∣∣∣∣∣
L∞( (a,b);RN )

+ TV
(
ηh; (a, b)

)
≤ C, (A.1.1)

then there exists a subsequence, ηn,n, and there exists a function, η : (a, b)→ RN , with bounded

variation such that

ηn,n(ξ)→ η(ξ) (A.1.2)

at every ξ ∈ (a, b).

Also, we have the lower semi-continuity property whereby

TV (η; (a, b)) ≤ lim inf
n→∞

TV (ηn,n; (a, b)) . (A.1.3)
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Proof :

We assume that (a, b) ∈ R is some bounded or unbounded interval. We recall that an arbitrary

function, ηh : (a, b)→ RN , has bounded variation if its total variation is finite:

TV (ηh; (a, b)) = sup

{
q−1∑
k=1

∣∣∣ ηh (ξk+1)− ηh (ξk)
∣∣∣ where a < ξ1 < · · · < ξq < b

}
= C1 < C <∞ .

We know that total variation is nondecreasing. Let us also assume that∣∣∣∣∣∣ηh∣∣∣∣∣∣
L∞( (a,b);RN )

= sup
{ ∣∣ηh(ξ)

∣∣ : ξ ∈ (a, b)
}

= C2 <∞ . (A.1.4)

Hence, C2 + C1 ≤ C by (A.1.1).

Let n =
1

h
be a given positive integer. Let the total variation of ηh on

(
a , ξ

]
be defined as

Tn(ξ) ≡ sup


q−1∑
j=1

∣∣∣ ηh (ξj+1)− ηh (ξj)
∣∣∣ where a < ξ1 < · · · < ξq = ξ

 .

Notice each Tn is nondecreasing, since total variation can only accumulate with increasing ξ .

For each Tn, we also have

∣∣ηh(Ξ)− ηh(ξ)
∣∣ ≤ Tn(p2)− Tn(p1) (A.1.5)

for all a ≤ p1 ≤ ξ ≤ Ξ ≤ p2 ≤ b .

Since the functions ηh have bounded variation, it follows that Tn(ξ) ≤ TV (ηh; (a, b)) = C1 for

all ξ ∈ (a, b). We know total variation is the sum of nonnegative quantities and is hence itself

a nonnegative quantity, so Tn(ξ) ≥ 0 for all ξ ∈ (a, b). Hence,

0 ≤ Tn(ξ) ≤ C1 ∀ ξ ∈ (a, b). (A.1.6)

Consider the rational numbers, Q, between a and b. Define this set of numbers as

X ≡ {q ∈ Q : q ∈ (a, b)} .

Since the rational numbers have countably many elements between a and b, we can list them:

{ q1 , q2 , q3 , . . .} ∈ (a, b).
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We start with q1. Consider {Tn(q1)}∞n=1 = {T1(q1) , T2(q1) , . . . , Tn(q1) , . . .}. Since q1 ∈ (a, b)

and the total variation up to any point in (a, b) is bounded by (A.1.6), we know ∀n, Tn(q1) ≤
C1 < ∞. So, the numerical sequence {Tn(q1)}∞n=1 is bounded. By the Bolzano-Weierstrass

Theorem, {Tn(q1)}∞n=1 has a convergent subsequence, which we will call {T1,n(q1)}∞n=1.

Next consider q2. Consider {T1,n(q2)}∞n=1 = {T1,1(q2) , T1,2(q2) , . . . , T1,n(q2) , . . .}. This is a nu-

merical sequence which is bounded. Again, by the Bolzano-Weierstrass Theorem, {T1,n(q2)}∞n=1

has a convergent subsequence, which we will call {T2,n(q2)}∞n=1.

Notice {T2,n}∞n=1 is a subsequence of {T1,n}∞n=1, and {T2,n}∞n=1 is convergent at both q1 and q2!

We continue and obtain a countable collection of subsequences:

T1,1 T2,1 T3,1 · · ·

T1,2 T2,2 T3,2 · · ·

T1,3 T2,3 T3,3 · · ·
...

...
...

. . .

|| ||
{T1,n}∞n=1 {T2,n}∞n=1

↑ ↑ ↑
converges converges converges

at q1 at q1, q2 at q1, q2, q3

where the elements of the (i+1)th column form a subsequence of the elements of the ith column.

Then, the diagonal sequence {Tn,n}∞n=1 converges at q1, q2, . . . , qn, . . . which are all the points

of X.

This diagonal sequence {Tn,n}∞n=1 is a subsequence of {Tn}∞n=1 which converges at all points of

X. Hence, the limit of {Tn,n}∞n=1 exists at every rational number between a and b. Let

T (q) = lim
n→∞

Tn,n(q) ∀q ∈ X. (A.1.7)

The function T is nondecreasing, and by (A.1.6), the function maps X into [ 0 , C1]. For each

k ≥ 1, we define the set of jump points to be

Jk ≡
{
ξ ∈ (a, b) :

(
lim

Ξ→ξ+
T (Ξ)− lim

Ξ→ξ−
T (Ξ)

)
≥ 1

k

}
(A.1.8)

94



where Ξ ranges over X, and ξ ranges over R. Let

J =
⋃
k≥1

Jk,

so J is the set of real values ξ ∈ (a, b) where the right and left limits of T are distinct. By the

construction of T , each set Jk can contain at most C1k points which implies that J is countable.

Since J and X are both countable, J ∪X has countably many elements, and we can list them:

{x1 , x2 , x3 , . . .} ∈ (a, b).

We start with x1. Consider the sequence
{
ηh(x1)

}
as h→ 0+. Since x1 ∈ (a, b), and

∣∣ηh(ξ)
∣∣ ≤ C2

for any point ξ in (a, b) by (A.1.4), we know ∀h,
∣∣ηh(x1)

∣∣ ≤ C2 < ∞. So, the numerical

sequence
{
ηh(x1)

}
h→0+

is bounded. By the Bolzano-Weierstrass Theorem,
{
ηh(x1)

}
h→0+

has

a convergent subsequence, which we will call
{
η1,n(x1)

}∞
n=1

.

Next consider x2. Consider
{
η1,n(x2)

}∞
n=1

. This is a numerical sequence which is bounded.

Again, by the Bolzano-Weierstrass Theorem, the infinite sequence
{
η1,n(x2)

}∞
n=1

has a conver-

gent subsequence, which we will call
{
η2,n(x2)

}∞
n=1

.

Notice that
{
η2,n

}∞
n=1

is a subsequence of
{
η1,n

}∞
n=1

, and
{
η2,n

}∞
n=1

is convergent at both x1

and x2!

We continue and obtain a countable collection of subsequences:

η1,1 η2,1 η3,1 · · ·

η1,2 η2,2 η3,2 · · ·

η1,3 η2,3 η3,3 · · ·
...

...
...

. . .

|| ||{
η1,n

}∞
n=1

{
η2,n

}∞
n=1

↑ ↑ ↑
converges converges converges

at x1 at x1, x2 at x1, x2, x3

where the elements of the (i+1)th column form a subsequence of the elements of the ith column.

Then, the diagonal sequence {ηn,n}∞n=1 converges at x1, x2, . . . , xn, . . . which are all the points

of J ∪X.
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This diagonal sequence {ηn,n}∞n=1 is a subsequence of
{
ηh
}
h→0+

which converges at all points

of J ∪X. Since each of the functions in the sequence
{
ηh
}
h→0+

has bounded variation, we know

that the subsequence {ηn,n}∞n=1 also has bounded variation. Hence, the limit of {ηn,n}∞n=1 exists

at every point in the countable set J ∪X. Let

η(ξ) = lim
n→∞

ηn,n(ξ) ∀ξ ∈ J ∪X. (A.1.9)

Let ξ /∈ J be an arbitrary real point in (a, b). Hence, ξ /∈ Jk for all k ≥ 1. Then, by (A.1.8),

∀ k ≥ 1, ∃ p1, p2 ∈ X with p1 < ξ < p2 such that

T (p2)− T (p1) <
2

k
. (A.1.10)

It follows that

lim sup
i,j→∞

∣∣ηi,i(ξ)− ηj,j(ξ)∣∣ = lim sup
i,j→∞

∣∣ηi,i(ξ)− η(p1) + η(p1)− ηj,j(ξ)
∣∣

≤ lim sup
i,j→∞

∣∣ηi,i(ξ)− η(p1)
∣∣+ lim sup

i,j→∞

∣∣η(p1)− ηj,j(ξ)
∣∣

= lim sup
i→∞

∣∣ηi,i(ξ)− η(p1)
∣∣+ lim sup

j→∞

∣∣ηj,j(ξ)− η(p1)
∣∣

= lim sup
n→∞

∣∣ηn,n(ξ)− η(p1)
∣∣+ lim sup

n→∞

∣∣ηn,n(ξ)− η(p1)
∣∣

= 2 lim sup
n→∞

∣∣ηn,n(ξ)− lim
n→∞

ηn,n(p1)
∣∣ by (A.1.9) since p1 ∈ X

= 2 lim sup
n→∞

∣∣ηn,n(ξ)− lim sup
n→∞

ηn,n(p1)
∣∣ since ∃ lim, lim sup = lim

= 2 lim sup
n→∞

∣∣ηn,n(ξ)− ηn,n(p1)
∣∣ where ηn,n are functions in ηn

≤ 2 lim sup
n→∞

[
Tn(p2)− Tn(p1)

]
by (A.1.5) since p1 < ξ < p2

= 2 lim sup
n→∞

[
Tn,n(p2)− Tn,n(p1)

]
Tn,n is a subsequence of Tn

= 2 lim
n→∞

[
Tn,n(p2)− Tn,n(p1)

]
Tn,n convergent→ lim sup = lim

= 2
[
T (p2)− T (p1)

]
by (A.1.7) since p1, p2 ∈ X

< 2

[
2

k

]
=

4

k
. by (A.1.10).
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Since ξ /∈ J was an arbitrary real point in (a, b), this result is true for all real points in (a, b)

with ξ /∈ J . Hence, ∀ξ /∈ J , lim sup
i,j→∞

∣∣ηi,i(ξ)− ηj,j(ξ)∣∣ < 4

k
for some given k ≥ 1.

Hence, the sequence {ηn,n}∞n=1 is uniformly Cauchy for points not in J .

Let η(ξ) = lim
n→∞

ηn,n(ξ) ∀ξ /∈ J . Uniformly Cauchy implies lim sup
n→∞

∣∣ηn,n(ξ) − ηn+i,n+i(ξ)
∣∣ < ε

2
for some ε > 0 and some natural number i. Hence,

lim sup
n→∞

∣∣ηn,n(ξ)− η(ξ)
∣∣ = lim sup

n→∞

∣∣∣∣ηn,n(ξ)− lim
i→∞

ηn+i,n+i(ξ)

∣∣∣∣
= lim sup

n→∞

∣∣∣∣ηn,n(ξ)− lim sup
i→∞

ηn+i,n+i(ξ)

∣∣∣∣
= lim sup

n→∞

∣∣ηn,n(ξ)− ηn+i,n+i(ξ)
∣∣

<
ε

2
< ε.

Hence, the sequence {ηn,n}∞n=1 is uniformly convergent for points not in J !

So, the sequence {ηn,n}∞n=1 is a convergent subsequence, with bounded variation, of
{
ηh
}
h→0+

for points not in J . Combination with (A.1.9) yields

η(ξ) = lim
n→∞

ηn,n(ξ) =⇒ η(ξ) = lim
h→0+

ηh,h(ξ) ∀ξ ∈ (a, b). (A.1.11)

For any given points a < ξ1 < · · · < ξq < b where q ≥ 1, by (A.1.11) we know

TV (η; (a, b)) = sup


q−1∑
j=1

∣∣∣ η (ξj+1)− η (ξj)
∣∣∣


= sup


q−1∑
j=1

∣∣∣ lim
n→∞

ηn,n (ξj+1)− lim
n→∞

ηn,n (ξj)
∣∣∣
 .

97



Hence,

TV (η; (a, b)) = sup

 lim
n→∞

 q−1∑
j=1

∣∣∣ ηn,n (ξj+1)− ηn,n (ξj)
∣∣∣


= lim sup
n→∞

sup


q−1∑
j=1

∣∣∣ ηn,n (ξj+1)− ηn,n (ξj)
∣∣∣



≤ lim sup
n→∞

[
TV (ηn,n; (a, b))

]
(A.1.12)

≤ lim sup
h→0+

[
TV (ηh; (a, b))

]
= C1 < C <∞.

Therefore, the function η has bounded variation. Hence, we have shown that there exists a

subsequence, ηn,n, and a function, η, with bounded variation such that ηn,n(ξ)→ η(ξ) at every

ξ ∈ (a, b), which proves (A.1.2).

Since {ηn,n}∞n=1 is convergent, it follows that TV (ηn,n; (a, b)) is convergent. Hence,

lim
n→∞

TV (ηn,n; (a, b)) = lim sup
n→∞

TV (ηn,n; (a, b)) = lim inf
n→∞

TV (ηn,n; (a, b)).

By (A.1.12), we have

TV (η; (a, b)) ≤ lim sup
n→∞

TV (ηn,n; (a, b))

= lim inf
n→∞

TV (ηn,n; (a, b)) = lim inf
h→0+

TV (ηh,h; (a, b)),

which proves (A.1.3) and completes the proof of the Helly’s Compactness Theorem A.1.1. �
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A.2 Time-Dependent Helly’s Theorem

Theorem A.2.1. Given a sequence of functions, ηh : (a, b)× R+ → RN that satisfies∣∣∣∣∣∣ηh(τ)
∣∣∣∣∣∣
L∞( (a,b);RN )

+ TV
(
ηh(τ); (a, b)

)
≤ C (A.2.1)

for all τ ∈ R+ and some constant C > 0, and∣∣∣∣∣∣ηh(τ2)− ηh(τ1)
∣∣∣∣∣∣
L1( (a,b);RN )

≤ C
∣∣τ2 − τ1

∣∣ (A.2.2)

for all τ1, τ2 ∈ R+, then there exists a subsequence, ηn,n, and there exists a function with bounded

variation, η : (a, b)× R+ → RN , such that

ηn,n(τ)→ η(τ) in L1
loc, (A.2.3)∣∣∣∣∣∣η(τ)

∣∣∣∣∣∣
L∞( (a,b);RN )

+ TV
(
η(τ); (a, b)

)
≤ C, and (A.2.4)∣∣∣∣∣∣η(τ2)− η(τ1)

∣∣∣∣∣∣
L1( (a,b);RN )

≤ C
∣∣τ2 − τ1

∣∣ (A.2.5)

for all τ ∈ R+ and all τ1, τ2 ∈ R+.

Proof :

Assume that (a, b) ∈ R is some bounded or unbounded interval. Let τR ≥ 0 be an arbitrary

rational number. By (A.2.1),∣∣∣∣∣∣ηh(τR)
∣∣∣∣∣∣
L∞( (a,b);RN )

+ TV
(
ηh(τR); (a, b)

)
≤ C

for some constant C > 0. Since ηh is a sequence of functions with bounded variation, by Helly’s

Compactness Theorem it follows that there exists a subsequence, ηn,n, of ηh, and there exists

a function η with bounded variation such that

ηn,n(ξ, τR)→ η(ξ, τR)

for all ξ ∈ (a, b). Since τR was an arbitrary rational time,

ηn,n(τR)→ η(τR) ∀τR ≥ 0 and ∀ξ ∈ (a, b). (A.2.6)
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Since ηn,n is a subsequence of ηh, it follows from (A.2.6) that∣∣∣∣∣∣η(τR)
∣∣∣∣∣∣
L∞( (a,b);RN )

+ TV
(
η(τR); (a, b)

)
≤ C

for the limit function η(τR).

Let ε > 0. Let τ ∈ R+ be an arbitrary real number. Hence, there exists τR ∈ R+ such that

|τ − τR| <
ε

4C
. (A.2.7)

Since ηn,n converges to η at all rational times, (A.2.6), the subsequence is Cauchy at all rational

times, and it holds that there exists N > 0 such that∣∣∣ ηp,p(τR)− ηq,q(τR)
∣∣∣ < ε

2
(A.2.8)

for all p and q > N . Thus,∣∣∣∣∣∣ ηp,p(τ)− ηq,q(τ)
∣∣∣∣∣∣
L1

=
∣∣∣∣∣∣ ηp,p(τ)− ηp,p(τR) + ηp,p(τR)− ηq,q(τR) + ηq,q(τR)− ηq,q(τ)

∣∣∣∣∣∣
L1

≤
∣∣∣∣∣∣ηp,p(τ)− ηp,p(τR)

∣∣∣∣∣∣
L1

+
∣∣∣∣∣∣ηp,p(τR)− ηq,q(τR)

∣∣∣∣∣∣
L1

+
∣∣∣∣∣∣ηq,q(τR)− ηq,q(τ)

∣∣∣∣∣∣
L1

by Minkowski’s inequality

≤ C
∣∣τ − τR∣∣+

∣∣∣∣∣∣ηp,p(τR)− ηq,q(τR)
∣∣∣∣∣∣
L1

+ C
∣∣τR − τ ∣∣ by (A.2.2)

< C
( ε

4C

)
+
ε

2
+ C

( ε

4C

)
by (A.2.7) and (A.2.8)

= ε ,

and thus ηn,n is Cauchy for all τ ∈ R+. Since L1 is a complete metric space, ηn,n is convergent

in L1 for all τ ∈ R+. Combination with (A.2.6) yields

ηn,n(τ)→ η(τ) in L1 and therefore in L1
loc

and thus we have shown (A.2.3). Since η(τ) is the limit function for a subsequence of the given

sequence of functions, combination with (A.2.1) and (A.2.2) yields the bounds in (A.2.4) and

(A.2.5) and completes the proof of the Time-Dependent Helly’s Theorem A.2.1. �
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A.3 Arzela-Ascoli Theorem

Theorem A.3.1. If a sequence
{
fn
}∞
n=1

in C(X) is bounded and equicontinuous, then it has

a uniformly convergent subsequence.

Proof :

Let n be a given positive integer, and let x ∈ X. Define B
(
x, 1

n

)
=

{
y ∈ X : d(x, y) <

1

n

}
as

the open ball centered at x with radius 1
n where d is the metric on X. For this given n and

∀x ∈ X, the open balls B
(
x, 1

n

)
completely cover X.

Suppose X is closed. Then X is compact since it is closed and bounded. Then, ∃ a finite

collection of open balls for a given n which also covers X. Let Sn be the finite collection of the

x-values which are the centers of this subcollection’s balls. Hence, ∀y ∈ X, d(s, y) < 1
n where

s ∈ Sn. So, Sn is a finite subset of X which is “ 1
n -dense.”

When n proceeds through the integers, we obtain a collection of sets Sn. Let S be the union of

all sets Sn. We see that S is countable since each Sn is finite and therefore countable. S is also

dense in X. Since S has countably many elements, we can list them: {x1 , x2 , x3 , . . .} ∈ X.

We start with x1. Consider {fn(x1)}∞n=1 = { f1(x1) , f2(x1) , . . . , fn(x1) , . . .}. Since x1 ∈ X and

the sequence
{
fn
}∞
n=1

is bounded, we know ∀n, |fn(x1)| ≤ M < ∞ for some M > 0. So, the

numerical sequence {fn(x1)}∞n=1 is bounded. By the Bolzano-Weierstrass Theorem, {fn(x1)}∞n=1

has a convergent subsequence, which we will call {f1,n(x1)}∞n=1.

Next consider x2. Consider {f1,n(x2)}∞n=1 = { f1,1(x2) , f1,2(x2) , . . . , f1,n(x2) , . . .}. This is a nu-

merical sequence which is bounded. Again, by the Bolzano-Weierstrass Theorem, {f1,n(x2)}∞n=1

has a convergent subsequence, which we will call {f2,n(x2)}∞n=1.

Notice that each of functions within the sequences of functions {f2,n}∞n=1 is a function in

{f1,n}∞n=1, so {f2,n}∞n=1 is a subsequence of {f1,n}∞n=1, and {f2,n}∞n=1 is convergent at both

x1 and x2!
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We continue and obtain a countable collection of subsequences:

f1,1 f2,1 f3,1 · · ·

f1,2 f2,2 f3,2 · · ·

f1,3 f2,3 f3,3 · · ·
...

...
...

. . .

|| ||
{f1,n}∞n=1 {f2,n}∞n=1

↑ ↑ ↑
converges converges converges

at x1 at x1, x2 at x1, x2, x3

where the elements of the (i+1)th column form a subsequence of the elements of the ith column.

Then, the diagonal sequence {fn,n}∞n=1 converges at x1, x2, . . . , xn, . . . which are all the points

of S. This diagonal sequence {fn,n}∞n=1 is a subsequence of {fn}∞n=1 which converges at all points

of S.

Let ε > 0. Since the original sequence {fn}∞n=1 is equicontinuous, by definition, we know ∀ε >
0, ∃δ(ε) > 0 3 ∀x, y ∈ X with d(x, y) < δ =⇒ |fn(x)− fn(y)| < ε.

Now choose δ > 0 3 if d(x, y) < δ ∀x, y ∈ X, then

|fn,n(x)− fn,n(y)| < ε

3
(A.3.1)

for all positive integers n. We know this δ exists due to the equcontinuity of the original sequence

and knowledge that each fn,n is a function within the original sequence {fn}∞n=1.

Let M > 0 be an integer 3 1

δ
< M . We know SM ⊂ S and SM is finite. It follows that SM is

“ 1
M -dense” in X and therefore “δ-dense” in X since 1

M < δ.

Since {fn,n}∞n=1 converges at each point in S, we know {fn,n}∞n=1 is a convergent sequence at

each point in SM . Hence, {fn,n}∞n=1 is a Cauchy sequence in SM . Hence, there exists an integer

N > 0 3 ∀n,m > N, and ∀s ∈ SM ,

|fn,n(s)− fm.m(s)| < ε

3
. (A.3.2)
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Let x ∈ X be arbitrary. Since SM is “δ-dense” in X, we know d(x, s) < δ for some s ∈ SM ⊂ X.

Let N∗ = max{M,N}. If n,m > N∗, then ∀s ∈ SM ,

|fn,n(x)− fm,m(x)| = |fn,n(x)− fn,n(s) + fn,n(s)− fm,m(s) + fm,m(s)− fm,m(x)|

≤ |fn,n(x)− fn,n(s)|+ |fn,n(s)− fm,m(s)|+ |fm,m(s)− fm,m(x)|

by triangle inequality

< |fn,n(x)− fn,n(s)|+ ε

3
+ |fm,m(x)− fm,m(s)| by (2)

<
ε

3
+
ε

3
+ |fm,m(x)− fm,m(s)| by (1)

since d(x, s) < δ where x, s ∈ Xand n is a positive integer

<
ε

3
+
ε

3
+
ε

3
by (1)

since d(x, s) < δ where x, s ∈ Xand m is a positive integer

= ε.

Since x ∈ X was arbitrary, this result is true ∀x ∈ X. Hence, ∀x ∈ X, |fn,n(x)− fm,m(x)| < ε

for some given ε > 0 when n,m > N∗.

Hence, the sequence {fn,n}∞n=1 is uniformly Cauchy on X. Let f(x) = limn→∞ fn,n(x) ∀x ∈ X.

When n > N∗, uniformly Cauchy implies |fn,n(x)− fn+k,n+k(x)| < ε
2 for some ε > 0 and some

natural number k. Hence,

|fn,n(x)− f(x)| =
∣∣∣∣fn,n(x)− lim

k→∞
fn+k,n+k(x)

∣∣∣∣
= lim

k→∞
|fn,n(x)− fn+k,n+k(x)|

<
ε

2
< ε.

Hence the sequence {fn,n}∞n=1 is uniformly convergent!

So, the sequence {fn,n}∞n=1 is a uniformly convergent subsequence of {fn}∞n=1. This completes

the proof of the Arzela-Ascoli Theorem A.3.1. �
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Appendix B

Numerical Codes

B.1 MATLAB Implementation of Analytic Results

In this appendix section, we include a MATLAB code that plots the analytic solution for the

initial plume of CO2 in Section 4.2.1. The output from this code is the exact solution in the

characteristic
(
ξ, τ
)
-plane, shown in Figure 4.2.1(b). A user could modify this code for any

combination of three constant states from Pair 2b in Table 4.1 that are arranged in any spatial

configuration by changing the η values in lines 16-18 and the ξ values in lines 19-20.
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Figure B.1.1: Analytic Case A Example MATLAB code.
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1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %%%%%%%%%%%%%%% Analyt ic Case A Example MATLAB code %%%%%%%%%%%%%%%

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 −∗−∗−∗−∗−∗−∗− USER DEFINES PARAMETERS SHOWN IN ORANGE −∗−∗−∗−∗−∗−∗−
5 % c h a r a c t e r i s t i c s with speeds determined by the upper f l u x curve are

p l o t t ed in t h i s b lue : [ 0 0 .7 1 ]

6 % c h a r a c t e r i s t i c s with speeds determined by the upper f l u x curve are

p l o t t ed in t h i s green : [ 0 0 . 7 0 ]

7 hold on

8 % s e t s o l u t i o n parameters to d e f i n e lower f l u x curve

9 eps = 0 .4 ;

10 s i g = 1 − eps ;

11 % l e t mob i l i ty be 1 here because the re i s an a n a l y t i c s o l u t i o n

12 M = 1 ;

13 e t a s t a r = 1 / ( 1 + s q r t (M) ) ;

14

15 % s e t three constant i n i t i a l s t a t e s that have a jump up at p o s i t i o n

x i1 and a jump down at xi2 , as in equat ion ( 4 . 1 . 1 )

16 etaL = 0 .2 ; −∗−∗−∗−∗−∗−∗−∗− USER DEFINED −∗−∗−∗−∗−∗−∗−∗−
17 etaM = 1 ; −∗−∗−∗−∗−∗−∗−∗− USER DEFINED −∗−∗−∗−∗−∗−∗−∗−
18 etaR = 0 .3 ; −∗−∗−∗−∗−∗−∗−∗− USER DEFINED −∗−∗−∗−∗−∗−∗−∗−
19 x i1 = −0.5 ; −∗−∗−∗−∗−∗−∗−∗− USER DEFINED −∗−∗−∗−∗−∗−∗−∗−
20 x i2 = 0 .5 ; −∗−∗−∗−∗−∗−∗−∗− USER DEFINED −∗−∗−∗−∗−∗−∗−∗−
21

22 % c a l c u l a t e upper f l u x va lue s f o r the three eta va lue s

23 f e taL = etaL ∗ (1 − etaL ) ;

24 fetaM = etaM ∗ (1 − etaM) ;

25 fetaR = etaR ∗ (1 − etaR ) ;

26 % c a l c u l a t e c h a r a c t e r i s t i c speeds as determined by upper f l u x curve

27 fpetaL = −2∗etaL +1;

28 fpetaM = −2∗etaM+1;

29 fpetaR = −2∗etaR+1;

30

31 % f i n d speed o f c l a s s i c a l shock from etaL to etaM

32 shocks lope = ( fetaM − f e taL ) /(etaM−etaL ) ;

33 i f shocks lope < 0
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34 shocks lope = s i g ∗ shocks lope ;

35 end

36

37 % f i n d c h a r a c t e r i s t i c speed o f t r a i l i n g edge o f r a r e f a c t i o n

38 i f etaM > e t a s t a r

39 t r a i l s l o p e = fpetaM ;

40 e l s e

41 t r a i l s l o p e = s i g ∗ fpetaM ;

42 end

43

44 % f i n d time when shock and t r a i l i n g edge o f r a r e f a c t i o n c o l l i d e

45 tauT = ( xi2−x i1 ) /( shocks lope−t r a i l s l o p e ) ;

46

47 % plo t shock

48 p lo t ( [ x i1 ; shocks lope ∗tauT+xi1 ] , [ 0 ; tauT ] , ’b ’ , ’ LineWidth ’ , 3 )

49 % plo t t r a i l i n g edge o f r a r e f a c t i o n

50 p lo t ( [ x i2 ; t r a i l s l o p e ∗tauT+xi2 ] , [ 0 ; tauT ] , ’ c o l o r ’ , [ 0 0 . 7 1 ] )

51

52 % i n i t i a t e a lgor i thm to p l o t s o l u t i o n eta at ( xi , tau ) along shock

53 x i = shocks lope ∗ tauT + xi1 ;

54 tau = tauT ;

55 etaa = etaM ;

56 shockk = 1 − etaL − etaM ;

57

58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

59 %%%%%% Plot shock p o s i t i o n be f o r e sigma k i ck s in %%%%%%

60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

61 whi le etaa>e t a s t a r

62 i f shockk <= 0

63 % determine shock p o s i t i o n x i from equat ion ( 4 . 2 . 2 )

64 x i = ( s i g /(2− s i g ) ) ∗(1−2∗ etaL ) ∗ tau+xi2+(tauTˆ(− s i g /2) ∗(

xi1−x i2 )+tauTˆ((2− s i g ) /2) ∗( shocks lope+( s i g /(2− s i g ) )

∗(2∗ etaL−1) ) ) ∗ tau ˆ( s i g /2) ;

65 % use equat ion ( 4 . 2 . 1 ) f o r eta in r a r e f a c t i o n here

66 etaa = (1/2) ∗(1−( xi−x i2 ) / tau ) ;

67 x i j f = x i ;

68 t a u j f = tau ;
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69 e t a a j f = etaa ;

70 % backward shock r e s u l t s in t h i s r eg i on

71 shockk = s i g ∗(1−etaL−etaa ) ;

72 p lo t ( xi , tau , ’ . k ’ )

73 e l s e

74 x i = (1−2∗ etaL ) ∗ tau+xi2 +(( x i j f −x i2 ) ∗ t a u j f ˆ(−1/2)−(1−2∗
etaL ) ∗ t a u j f ˆ(1/2) ) ∗ tau ˆ ( . 5 ) ;

75 % forward shock given by equat ion ( 4 . 2 . 3 )

76 shockk = 1−etaL−etaa ;

77 etaa = (1/2) ∗(1−( xi−x i2 ) / tau ) ;

78 t a u s t a r i s h = tau ;

79 p lo t ( xi , tau , ’ . r ’ )

80 end

81 tau=tau +0.01;

82 end

83

84 % c a l c u l a t e tau s ta r cor re spond ing to time when shock and v e r t i c a l

c h a r a c t e r i s t i c from r a r e f a c t i o n i n t e r a c t

85 t a u s t a r i s h = t a u j f ∗(((1− etaL )−etaL ) /( e ta s ta r−etaL ) ) ˆ2 ;

86 % c a l c u l a t e a n a l y t i c s o l u t i o n o f f i n a l i n t e r a c t i o n time

87 t f=t a u s t a r i s h ∗ ( ( etaR ∗(2∗ eps−1)−eps ∗(1−2∗ etaL ) ) /( e t a s t a r ∗(2∗ eps−1)+

eps ∗(2∗ etaL−1) ) ) . . .

88 ˆ(2∗(1− eps ) /(2∗ eps−1) ) ;

89 % i n i t i a t e forward shock r e s u l t i n g from i n t e r a c t i o n with

c h a r a c t e r i s t i c s determined by lower f l u x curve

90 tau = t a u s t a r i s h ;

91

92 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

93 %%%%%% Plot shock p o s i t i o n a f t e r sigma k i ck s in %%%%%%

94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

95 whi le tau < t f

96 % determine shock p o s i t i o n x i from equat ion ( 4 . 2 . 5 )

97 x i = ( s i g /(2∗ s ig −1) ) ∗(1−2∗ etaL ) ∗ tau + xi2 + ( tau ˆ(1/(2∗ s i g

) ) ) ∗ (2∗ etaL−1) ∗ ( s i g /(2∗ s ig −1) ) ∗ t a u s t a r i s h ˆ((2∗ s ig

−1)/(2∗ s i g ) ) ;

98 p lo t ( xi , tau , ’ .m’ ) ;

99 tau=tau +0.01;
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100 endspot = ( x i2+s i g ∗(1−2∗etaR ) ∗ tau )−x i ;

101 end

102

103 % Find s l ope o f l e ad ing edge o f r a r e f a c t i o n %

104 i f etaR > e t a s t a r

105 l e a d s l o p e = fpetaR ;

106 e l s e

107 l e a d s l o p e = s i g ∗ fpetaR ;

108 end

109 % plo t l e ad ing edge o f r a r e f a c t i o n

110 p lo t ( [ x i2 ; x i2+(tau −0.01)∗ l e a d s l o p e ] , [ 0 ; tau −0 .01 ] , ’ c o l o r ’ , [ 0 0 . 7 0 ] ) ;

111

112 % format f i g u r e to Ralph−l e v e l o f p e r f e c t i o n and r e a d a b i l i t y

113 l e f t = ’ \ eta L ’ ;

114 middle = ’ \eta M ’ ;

115 r i g h t = ’ \ eta R ’ ;

116 s i g l e g e n d = ’ \ sigma ’ ;

117 %t i t l e ( [ l e f t ’= ’ num2str ( etaL ) ’ , ’ middle ’= ’ num2str ( etaM) ’ , ’

r i g h t ’= ’ num2str ( etaR ) ’ , ’ s i g l e g e n d ’= ’ num2str ( s i g ) ] )

118 h = gca ;

119 s e t (h , ’ FontSize ’ , [ 1 5 ] ) ;

120 h=x l a b e l ( ’ Pos i t ion , \ x i ’ ) ;

121 h=y l a b e l ( ’Time , \ tau ’ ) ;

122 s e t (h , ’ i n t e r p r e t e r ’ , ’ tex ’ ) ;

123 a x i s ( [−1.5 6 0 2 2 ] )

124

125 % f i n d r e s u l t i n g shock speed from etaL to etaR

126 s h o c k r e s u l t = ( fetaR − f e taL ) /( etaR−etaL ) ;

127 i f s h o c k r e s u l t < 0

128 s h o c k r e s u l t = s i g ∗ s h o c k r e s u l t ;

129 e l s e

130 s h o c k r e s u l t = s h o c k r e s u l t ;

131 end

132 % plo t r e s u l t i n g shock

133 p lo t ( [ x i2 + t f ∗ l e a d s l o p e , x i2 + t f ∗ l e a d s l o p e + 3∗ s h o c k r e s u l t ] ,

[ t f , t f +3] , ’ c ’ ) ;

134
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135 % plo t example c h a r a c t e r i s t i c in r a r e f a c t i o n where sigma=1

136 p lo t ( [ x i2 ; x i j f ] , [ 0 ; t a u j f ] , ’ c o l o r ’ , [ 0 0 . 7 1 ] , ’ LineWidth ’ , 1 )

137 % plo t example c h a r a c t e r i s t i c in r a r e f a c t i o n where sigma=1−eps

138 p lo t ( [ x i2 ; x i2 ] , [ 0 ; t a u s t a r i s h ] , ’ c o l o r ’ , [ 0 0 . 7 1 ] , ’ LineWidth ’ , 1 )

139

140 % plo t cros s−hatch c h a r a c t e r i s t i c s in constant r e g i o n s o f

c h a r a c t e r i s t i c plane

141 % plo t cros s−hatch c h a r a c t e r i s t i c s in etaM reg ion

142 p lo t ( [ 0 ; t r a i l s l o p e ∗ . 5 6 8 1 8 2 ] , [ 0 ; . 5 6 8 1 8 2 ] , ’ c o l o r ’ , [ 0 0 . 7 1 ] )

143 p lo t ( [ 0 . 2 5 ; s i g ∗ t r a i l s l o p e ∗ . 6 2 5 + 0 . 2 5 ] , [ 0 ; . 6 2 5 ] , ’ c o l o r ’ , [ 0 0 . 7 0 ] )

144 % plo t cros s−hatch c h a r a c t e r i s t i c s in etaR reg i on

145 taucrossR = 22 ;

146 p lo t ( [ 1 . 5 ; 1 . 5 + taucrossR ∗ l e a d s l o p e ] , [ 0 ; taucrossR ] , ’ c o l o r ’ , [ 0 0 . 7 0 ] ) ;

147 p lo t ( [ 1 . 5 ; 1 . 5 + taucrossR ∗ l e a d s l o p e / s i g ] , [ 0 ; taucrossR ] , ’ c o l o r ’ , [ 0 0 . 7

1 ] ) ;

148 % plo t cros s−hatch c h a r a c t e r i s t i c s in etaL reg i on

149 p lo t ([−7.1490;−7.1490+ taucrossR ∗ fpetaL ] , [ 0 ; taucrossR ] , ’ c o l o r ’ , [ 0 0 . 7

1 ] ) ;

150 p lo t ([−7.9180;−7.9180+ taucrossR ∗ fpetaL ∗ s i g ] , [ 0 ; taucrossR ] , ’ c o l o r ’ , [ 0

0 . 7 0 ] ) ;

151 % c h a r a c t e r i s t i c s from s lower on l e f t LEAVE the r e s u l t i n g shock

152 p lo t ( [ 3 . 7733 ; 3 . 7733+ taucrossR ∗ fpetaL ∗ s i g ] , [ 16 .1255 ;16 .1255+

taucrossR ] , ’ c o l o r ’ , [ 0 0 . 7 0 ] ) ;

153 % c h a r a c t e r i s t i c that GRAZES shock at (1 ) in Figure 4 . 2 . 1 ( b) i s from

the s lower fami ly o f c h a r a c t e r i s t i c s cor re spond ing to etaL

154 p lo t ([−2.4180;−2.4180+ taucrossR ∗ fpetaL ∗ s i g ] , [ 0 ; taucrossR ] , ’ c o l o r ’ , [ 0

0 . 7 0 ] ) ;

155 % i n d i c a t e ( with a s t a r ! ) the graze po int where the r e s u l t i n g shock

has the same speed as the s lower c h a r a c t e r i s t i c s on l e f t

156 p lo t ( 1 . 2 09 0 , 1 0 . 0 75 , ’mp ’ )
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B.2 Wave-front Tracking Numerical Code

In this section, we include a MATLAB code that generates wave-front tracking solutions for

any initial plume of CO2 with compact support. There are two user-defined values that can

be adjusted to refine the solution. In line 24, the user sets the number of points within the

initial condition at which the plume heights will be determined and used to generate an initial

piecewise constant approximation. In line 66, the user sets the maximum size of expansion

shocks, as in equation (5.3.11). If the desired results need appropriately small (magnitude h or

smaller) jumps up and down between constant states, lines 75-80 can be modified, by including

an absolute value, to restrict the size of allowed compression and expansion shocks, as was done

to generate the wave-front tracking solutions in Chapter 7. This code produces three figures:

(1) an initial plume approximated with piecewise constant functions in the
(
ξ, η
)
-plane, and

the wave-front tracking solution in the
(
ξ, τ
)
-plane (2) and

(
ξ, η
)
-plane (3).
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Figure B.2.1: Wave-front tracking MATLAB code.
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1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %%%%%%%%%%%%%%%%% Wave−f r o n t t ra ck ing MATLAB code %%%%%%%%%%%%%%%%%

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 −∗−∗−∗−∗−∗−∗− USER DEFINES PARAMETERS SHOWN IN ORANGE −∗−∗−∗−∗−∗−∗−
5 c l e a r

6 % i n i t i a t e f i g u r e 1 − i n i t i a l plume c o n f i g u r a t i o n and p i e c e w i s e

constant approximation o f i n i t i a l c ond i t i on

7 f i g u r e ( ’ un i t s ’ , ’ normal ized ’ , ’ p o s i t i o n ’ , [ 0 0 . 4 1 ] )

8 subplot ( 1 2 , 1 , [ 1 3 ] )

9 hold on

10

11 % compact support ( a l l b r ine ) ou t s id e o f i n i t i a l CO2 plume

12 etaL = 0 ;

13 etaR = 0 ;

14

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 %%%%%%%%%%%%%%% Generate random plume shape %%%%%%%%%%%%%%%

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18

19 % non−dimens iona l plume he ight i s between 0 ( no CO2 − a l l b r ine )

and 1 ( a l l CO2 − no br ine )

20 minplume = 0 ;

21 maxplume = 1 ;

22

23 % s e t the number o f middle plume he ight va lue s with in the i n i t i a l

plume : i . e . i f the number o f middle va lue s i s 2 , then the random

plume shape w i l l be 0 − f i r s t middle plume he ight va lue − second

middle va lue − 0 .

24 nummids = 7 ; −∗−∗−∗−∗−∗−∗−∗−∗−∗− USER DEFINED −∗−∗−∗−∗−∗−∗−∗−∗−∗−
25 % f i n d s the number o f constant s t a t e s approximating i n i t i a l

cond i t i on : each constant s t a t e occup i e s one s u b i n t e r v a l o f the

plume ’ s i n i t i a l l a t e r a l extent

26 numsubints = nummids + 1 ;

27 % f i n d s the number o f endpoints o f a l l s u b i n t e r v a l s and determines

the i n i t i a l number o f jumps up and down which w i l l approximate

i n i t i a l c ond i t i on
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28 numendpts = nummids + 2 ;

29 % f i n d s the number o f constant s t a t e s in p i e c e w i s e approximation o f

the i n i t i a l cond i t ion , i n c l u d i n g eta = 0 to the l e f t and to the

r i g h t o f plume

30 numconsts = nummids + 3 ;

31

32 % s e t s g r id f o r x i p o s i t i o n

33 xx ( : , 1 ) = l i n s p a c e (−2 ,2 , numendpts ) ;

34

35 % gene ra t e s random i n i t i a l plume geometry each time user runs code

36 r = minplume + (maxplume−minplume ) .∗ rand (nummids , 1 ) ;

37 % example o f r vec to r that generated f i g u r e s shown in de f ense .

va lue s correspond to l a s t to d i g i t s o f years PhDs were earned by

committee members ( and me ! ) : EB AC MS MH RS BB EB

38 % r = [ 0 .17 ; 0 .99 ; 0 .76 ; 0 .96 ; 0 .90 ; 0 .94 ; 0 .17 ] ;

39 r z e r o s = [ etaL ; r ; etaR ] ;

40

41 % plo t i n i t i a l plume cond i t i on in xi−eta plane in f i g u r e 1

42 h = area ( xx ( : , 1 ) , r z e r o s ) ;

43 h . FaceColor = [ 0 0 .8 1 ] ;

44 p lo t ( xx ( : , 1 ) , r z e ro s , ’ c o l o r ’ , [ 0 0 . 8 1 ] )

45

46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

47 %%%%%%% Determine p i e c e w i s e constant approximation %%%%%%%%

48 %%%%%%%%%%%%%%%%%% of i n i t i a l cond i t i on %%%%%%%%%%%%%%%%%%%

49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

50 i = 1 ;

51 f o r i = 1 : numconsts

52 i f i == 1

53 etaxx ( i , 1 ) = etaL ;

54 e l s e i f i == numconsts

55 etaxx ( i , 1 ) = etaR ;

56 % take the average o f the plume he i gh t s at the endpoints o f the

s u b i n t e r v a l to determine the constant approximation o f the

i n i t i a l c ond i t i on in that s u b i n t e r v a l

57 e l s e

58 etaxx ( i , 1 ) = ( r z e r o s ( i ) + r z e r o s ( i −1) ) / 2 ;
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59 end

60 i = i + 1 ;

61 end

62

63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

64 %%%%%%%%% Set maximum s i z e o f expansion shocks , h %%%%%%%%%

65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

66 hMAXjumpSIZE = 0.5 ; −∗−∗−∗−∗−∗−∗−∗− USER DEFINED −∗−∗−∗−∗−∗−∗−∗−
67

68 numexp = 0 ;

69 p o s i t i o n = 2 ;

70 % d e f i n e f i r s t entry in p i e c e w i s e constant i n i t i a l cond i t i on as 0

s i n c e we assume plume has compact support

71 e t a s m a l l r a r e s (1 , 1 ) = etaL ;

72 xxsma l l r a r e s (1 , 1 ) = xx (1 , 1 ) ;

73 f o r i = 1 : numsubints

74 % f i n d jumps DOWN exceed ing thr e sho ld s i z e h , equat ion ( 6 . 3 . 1 1 )

75 i f ( ( r z e r o s ( i )−r z e r o s ( i +1) ) /2) > hMAXjumpSIZE

76 % s i z e o f jump down determines number o f expansion shocks

77 i f rem ( ( r z e r o s ( i )−r z e r o s ( i +1) ) , hMAXjumpSIZE) == 0

78 numexp = f i x ( ( r z e r o s ( i )−r z e r o s ( i +1) ) / hMAXjumpSIZE) ;

79 e l s e

80 numexp = f i x ( ( r z e r o s ( i )−r z e r o s ( i +1) ) / hMAXjumpSIZE) +1;

81 end

82 % determine va lue s o f constant s t a t e s between expansion

shocks and i n i t i a l l o c a t i o n s o f new expansion shocks

83 f o r j = 1 : numexp

84 e t a s m a l l r a r e s ( p o s i t i o n+j −1 ,1) = r z e r o s ( i ) − ( r z e r o s ( i )

− r z e r o s ( i +1) ) / (numexp∗2) ∗ (2∗ j−1) ;

85 xxsma l l r a r e s ( p o s i t i o n+j −1 ,1) = xx ( i +1 ,1) − ( xx ( i +1 ,1)

− xx ( i , 1 ) ) / numexp ∗ (numexp − j ) ;

86 % plo t p i e c e w i s e constant approx o f i n i t i a l plume

87 p lo t ( [ xx sma l l r a r e s ( p o s i t i o n+j −2 ,1) ; xx sma l l r a r e s (

p o s i t i o n+j −1 ,1) ] , [ e t a s m a l l r a r e s ( p o s i t i o n+j −1 ,1)

; e t a s m a l l r a r e s ( p o s i t i o n+j −1 ,1) ] , ’ c o l o r ’ , [ . 6 0 1 ] )

88 p lo t ( [ xx sma l l r a r e s ( p o s i t i o n+j −2 ,1) ; xx sma l l r a r e s (

p o s i t i o n+j −2 ,1) ] , [ e t a s m a l l r a r e s ( p o s i t i o n+j −2 ,1)
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; e t a s m a l l r a r e s ( p o s i t i o n+j −1 ,1) ] , ’ c o l o r ’ , [ . 6 0 1 ] )

89 j = j + 1 ;

90 end

91 p o s i t i o n = p o s i t i o n + numexp ;

92 % plo t expansion shocks that are i n i t i a l l y s u f f i c i e n t l y smal l

enough and c l a s s i c a l shocks o f any s i z e

93 e l s e

94 e t a s m a l l r a r e s ( po s i t i on , 1 ) = etaxx ( i +1 ,1) ;

95 xxsma l l r a r e s ( po s i t i on , 1 ) = xx ( i +1 ,1) ;

96 % plo t constant s t a t e s ( h o r i z o n t a l l i n e s )

97 p lo t ( [ xx sma l l r a r e s ( po s i t i on −1 ,1) ; xx sma l l r a r e s ( po s i t i on

, 1 ) ] , [ e t a s m a l l r a r e s ( po s i t i on , 1 ) ; e t a s m a l l r a r e s (

po s i t i on , 1 ) ] , ’ c o l o r ’ , [ . 6 0 1 ] )

98 % v e r t i c a l l i n e s connect ing constant s t a t e s

99 p lo t ( [ xx sma l l r a r e s ( po s i t i on −1 ,1) ; xx sma l l r a r e s ( po s i t i on

−1 ,1) ] , [ e t a s m a l l r a r e s ( po s i t i on −1 ,1) ; e t a s m a l l r a r e s (

po s i t i on , 1 ) ] , ’ c o l o r ’ , [ . 6 0 1 ] )

100 p o s i t i o n = p o s i t i o n + 1 ;

101 end

102 i = i + 1 ;

103 end

104

105 % d e f i n e f i n a l entry in p i e c e w i s e constant i n i t i a l c ond i t i on as 0

s i n c e we assume plume has compact support

106 e t a s m a l l r a r e s ( po s i t i on , 1 ) = etaR ;

107 % plo t f i n a l expansion shock down to eta = 0

108 p lo t ( [ xx sma l l r a r e s ( po s i t i on −1 ,1) ; xx sma l l r a r e s ( po s i t i on −1 ,1) ] ,

[ e t a s m a l l r a r e s ( po s i t i on −1 ,1) ; e t a s m a l l r a r e s ( po s i t i on , 1 ) ] )

109

110 % format f i g u r e to Ralph−l e v e l o f p e r f e c t i o n and r e a d a b i l i t y

111 h = gca ;

112 s e t (h , ’ FontSize ’ , [ 1 8 ] ) ;

113 h=x l a b e l ( ’ Pos i t ion , \ x i ’ ) ;

114 h=y l a b e l ( ’ Plume Height , \ eta ’ ) ;

115 s e t (h , ’ i n t e r p r e t e r ’ , ’ tex ’ ) ;

116 t i t l e ({ ’ I n i t i a l Random Plume with Piecewi se Approximation ’ ; ’&

Small Expansion Shocks ’ })
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117 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

118 %%%%%%%%%%%%% Solve i n i t i a l Riemann problems %%%%%%%%%%%%%%

119 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

120

121 % i n i t i a t e f i g u r e 2 − s o l u t i o n in c h a r a c t e r i s t i c xi−tau plane !

122 subplot ( 1 2 , 1 , [ 6 1 2 ] )

123 hold on

124 % s e t s o l u t i o n parameters to d e f i n e lower f l u x curve

125 eps = 0 .4 ;

126 s i g = 1 − eps ;

127 % l e t mob i l i ty be 1 here because the re i s an a n a l y t i c s o l u t i o n

128 M = 1 ;

129 e t a s t a r = 1 / ( 1 + s q r t (M) ) ;

130

131 t a u s m a l l r a r e s (1 , 1 ) = 0 ;

132 j = 1 ;

133 % determine shock speeds f o r a l l shocks where another f i l e , f .m, has

func t i on y = f ( eta ) de f ined as y = eta ∗ ( 1 − eta ) ;

134 f o r j = 1 : ( po s i t i on −1)

135 shocks lope ( j , 1 ) = ( f ( e t a s m a l l r a r e s ( j +1 ,1) ) − f ( e t a s m a l l r a r e s ( j

, 1 ) ) ) / ( e t a s m a l l r a r e s ( j +1 ,1)− e t a s m a l l r a r e s ( j , 1 ) ) ;

136 % c l a s s i c a l shocks ( jumps up in i n i t i a l cond i t i on ) have backward

shock speeds reduced due to trapping

137 i f e t a s m a l l r a r e s ( j +1 ,1)>e t a s m a l l r a r e s ( j , 1 )

138 i f shocks lope ( j , 1 ) < 0

139 shocks lope ( j , 1 ) = s i g ∗ shocks lope ( j , 1 ) ;

140 end

141 % expansion shocks ( jumps down in i n i t i a l c ond i t i on ) have

forward shock speeds reduced due to trapping

142 e l s e

143 i f shocks lope ( j , 1 ) > 0

144 shocks lope ( j , 1 ) = s i g ∗ shocks lope ( j , 1 ) ;

145 end

146 end

147 j = j + 1 ;

148 end

149
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150 k = 1 ;

151 % c a l c u l a t e a l l t imes when adjacent shocks would i n t e r a c t / c o l l i d e

152 f o r k = 1 : ( po s i t i on −2)

153 tau in t (k , 1 ) = t a u s m a l l r a r e s (1 , 1 ) + ( xxsma l l r a r e s ( k+1 ,1) −
xxsma l l r a r e s (k , 1 ) ) / ( shocks lope (k , 1 ) − shocks lope ( k+1 ,1) ) ;

154 k = k + 1 ;

155 end

156 % f i n d f i r s t ( s m a l l e s t p o s i t i v e ) time that two shocks i n t e r a c t

157 t a u s m a l l r a r e s (2 , 1 ) = min ( tau in t ( tauint >0) ) ;

158 % determine which two shocks i n t e r a c t f i r s t ( l o c a t i o n=1 i f l e f t −most

shock & adjacent shock c o l l i d e be f o r e any other shock c o l l i s i o n s

/ i n t e r a c t i o n s )

159 i n t l o c (1 , 1 ) = f i n d ( tau in t ( : , 1 ) == t a u s m a l l r a r e s (2 , 1 ) ) ;

160 % % % % Now we have f i r s t column i n i t i a t e d f o r every matrix % % % %

161 % % % % that we need to determine wave−f r o n t t ra ck ing s o l u t i o n % % %

162

163 % plo t a l l i n i t i a l c l a s s i c a l / expansion shocks in c h a r a c t e r i s t i c

plane from time zero up to f i r s t i n t e r a c t i o n time

164 k = 1 ;

165 f o r k = 1 : ( po s i t i on −1)

166 p lo t ( [ xx sma l l r a r e s (k , 1 ) ; xx sma l l r a r e s (k , 1 ) + shocks lope (k , 1 ) ∗
( t a u s m a l l r a r e s (2 , 1 ) − t a u s m a l l r a r e s (1 , 1 ) ) ] , [ t a u s m a l l r a r e s

(1 , 1 ) ; t a u s m a l l r a r e s (2 , 1 ) ] )

167 k = k + 1 ;

168 end

169

170 %%LOOP%%LOOP%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%LOOP%%LOOP%%

171 %%%%%%%%%%% WAVE−FRONT TRACKING ALGORITHM LOOP %%%%%%%%%%%%

172 %%LOOP%%LOOP%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%LOOP%%LOOP%%

173 loop = 2 ;

174 f o r loop = 2 : ( po s i t i on −2)

175 % f i n d p o s i t i o n o f every shock t i p at prev ious i n t e r a c t i o n time

176 i 2 = 1 ;

177 f o r i 2 = 1 : ( ( po s i t i on −1) + 2 − loop )

178 i f i 2 < i n t l o c ( loop −1 ,1)

179 xxsma l l r a r e s ( i2 , loop ) = shocks lope ( i2 , loop−1) ∗ (

t a u s m a l l r a r e s ( loop , 1 ) − t a u s m a l l r a r e s ( loop −1 ,1) ) +
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xxsma l l r a r e s ( i2 , loop−1) ;

180 e l s e i f i 2 > i n t l o c ( loop −1 ,1)

181 xxsma l l r a r e s ( i2 −1, loop ) = shocks lope ( i2 , loop−1) ∗ (

t a u s m a l l r a r e s ( loop , 1 ) − t a u s m a l l r a r e s ( loop −1 ,1) ) +

xxsma l l r a r e s ( i2 , loop−1) ;

182 end

183 i 2 = i 2 + 1 ;

184 end

185 % the c o l l i s i o n o f shocks i n d i c a t e s the e l i m i n a t i o n o f a

constant s t a t e from the s o l u t i o n : i . e . i f i n t e r a c t i o n

l o c a t i o n = 1 , then shock 1 ( between s t a t e s 1 and 2) c o l l i d e s

with shock 2 ( between s t a t e s 2 and 3) − hence , s t a t e 2 i s

e l iminated , and we are l e f t with a shock , c a l l i t shock 1 ,

between prev ious s t a t e s 1 and 3 , c a l l them s t a t e s 1 and 2 .

186 j 3 = 1 ;

187 f o r j 3 = 1 : ( ( po s i t i on −1) + 2 − loop )

188 i f j 3 <= i n t l o c ( loop −1 ,1)

189 e t a s m a l l r a r e s ( j3 , loop ) = e t a s m a l l r a r e s ( j3 , loop−1) ;

190 e l s e i f j 3 > i n t l o c ( loop −1 ,1)

191 e t a s m a l l r a r e s ( j3 , loop ) = e t a s m a l l r a r e s ( j 3 +1, loop−1) ;

192 end

193 j 3 = j3 + 1 ;

194 end

195

196 % determine a l l shock speeds a f t e r prev ious i n t e r a c t i o n time

197 j 4 = 1 ;

198 f o r j 4 = 1 : ( p o s i t i o n − loop )

199 % i f shock i s not invo lved in i n t e r a c t i o n , shock speed

remains as i t was be f o r e t h i s i n t e r a c t i o n time

200 i f j 4 < i n t l o c ( loop −1 ,1)

201 shocks lope ( j4 , loop ) = shocks lope ( j4 , loop−1) ;

202 % i f shock c o l l i d e s at t h i s i n t e r a c t i o n time , determine

outgoing shock speed us ing f l u x curves and s o l u t i o n

va lue s o f new adjacent constant s t a t e s

203 e l s e i f j 4 == i n t l o c ( loop −1 ,1)

204 shocks lope ( j4 , loop ) = ( f ( e t a s m a l l r a r e s ( i n t l o c ( loop

−1 ,1)+1, loop ) ) − f ( e t a s m a l l r a r e s ( i n t l o c ( loop −1 ,1) ,
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loop ) ) ) / ( e t a s m a l l r a r e s ( i n t l o c ( loop −1 ,1)+1, loop )

− e t a s m a l l r a r e s ( i n t l o c ( loop −1 ,1) , loop ) ) ;

205 % c l a s s i c a l shocks ( jumps up in i n i t i a l cond i t i on ) have

backward shock speeds reduced due to trapping

206 i f e t a s m a l l r a r e s ( i n t l o c ( loop −1 ,1)+1, loop )>e t a s m a l l r a r e s

( i n t l o c ( loop −1 ,1) , loop )

207 i f shocks lope ( j4 , loop ) < 0

208 shocks lope ( j4 , loop ) = s i g ∗ shocks lope ( j4 ,

loop ) ;

209 end

210 % expansion shocks ( jumps down in i n i t i a l c ond i t i on )

have forward shock speeds reduced due to trapping

211 e l s e

212 i f shocks lope ( j4 , loop ) > 0

213 shocks lope ( j4 , loop ) = s i g ∗ shocks lope ( j4 ,

loop ) ;

214 end

215 end

216 % i f shock i s not invo lved in i n t e r a c t i o n , shock speed

remains as i t was be f o r e t h i s i n t e r a c t i o n time

217 e l s e i f j 4 > i n t l o c ( loop −1 ,1)

218 shocks lope ( j4 , loop ) = shocks lope ( j 4 +1, loop−1) ;

219 end

220 j 4 = j4 + 1 ;

221 end

222

223 % c a l c u l a t e a l l t imes when adjacent shocks would i n t e r a c t

224 k2 = 1 ;

225 f o r k2 = 1 : ( ( po s i t i on −1)−loop )

226 tau in t ( k2 , loop ) = t a u s m a l l r a r e s ( loop , 1 ) + ( xxsma l l r a r e s ( k2

+1, loop ) − xxsma l l r a r e s ( k2 , loop ) ) / ( shocks lope ( k2 , loop )

− shocks lope ( k2+1, loop ) ) ;

227 k2 = k2 + 1 ;

228 end

229 t a u i n t f i n d = tau in t ( : , loop ) ;

230

231 % f i n d next i n t e r a c t i o n time when two adjacent shocks c o l l i d e
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232 t a u s m a l l r a r e s ( loop +1 ,1) = min ( t a u i n t f i n d ( tau in t f i nd>

t a u s m a l l r a r e s ( loop , 1 ) ) ) ;

233

234 % determine which two shocks c o l l i d e d at t h i s i n t e r a c t i o n time

235 i n t l o c ( loop , 1 ) = ( f i n d ( tau in t ( : , loop ) == t a u s m a l l r a r e s ( loop

+1 ,1) ) ) ;

236

237 % plo t a l l shocks a f t e r t h i s most r e c ent i n t e r a c t i o n time : t h i s

w i l l i n c lude a l l shocks that did not i n t e r a c t ( with speeds

equal to speeds be f o r e i n t e r a c t i o n time ) and shock r e s u l t i n g

from the i n t e r a c t i o n ( with newly c a l c u l a t e d shock speed )

238 j 5 = 1 ;

239 f o r j 5 = 1 : ( po s i t i on−loop )

240 p lo t ( [ xx sma l l r a r e s ( j5 , loop ) ; xx sma l l r a r e s ( j5 , loop ) +

shocks lope ( j5 , loop ) ∗ ( t a u s m a l l r a r e s ( loop +1 ,1) −
t a u s m a l l r a r e s ( loop , 1 ) ) ] , [ t a u s m a l l r a r e s ( loop , 1 ) ;

t a u s m a l l r a r e s ( loop +1 ,1) ] )

241 j 5 = j5 + 1 ;

242 end

243

244 % now loop to repeat and crush i t a l l again !

245 loop = loop + 1 ;

246 end

247

248 % determine f i n a l l a t e r a l extent o f r e s i d u a l s u r f a c e p o s i t i o n

249 f i n a l x i = xxsma l l r a r e s ( j5 −1, loop−1) + shocks lope ( j5 −1, loop−1) ∗
( t a u s m a l l r a r e s ( loop , 1 ) − t a u s m a l l r a r e s ( loop −1 ,1) ) ;

250

251 % format f i g u r e to Ralph−l e v e l o f p e r f e c t i o n and r e a d a b i l i t y

252 h = gca ;

253 s e t (h , ’ FontSize ’ , [ 1 8 ] ) ;

254 h=x l a b e l ( ’ Pos i t ion , \ x i ’ ) ;

255 h=y l a b e l ( ’Time , \ tau ’ ) ;

256 s e t (h , ’ i n t e r p r e t e r ’ , ’ tex ’ ) ;

257 t i t l e ({ ’ ’ ; ’ ’ ; ’ C h a r a c t e r i s t i c Plane with ’ ; ’Wave−f r o n t Tracking

So lu t i on ’ })

258
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259 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

260 %%%%%%%% V i s u a l i z e plume migrat ion in xi−eta plane %%%%%%%%

261 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

262

263 % i n i t i a t e f i g u r e 3 − s o l u t i o n in xi−eta plane !

264 f i g u r e ( ’ un i t s ’ , ’ normal ized ’ , ’ p o s i t i o n ’ , [ . 4 0 . 4 1 ] )

265 hold on

266 % determine the f i n i t e number o f i n t e r a c t i o n t imes

267 vidsimpending = numel ( t a u s m a l l r a r e s ) ;

268

269 % to v i s u a l i z e the e l i m i n a t i o n o f a l l i n i t i a l constant s t a t e s , we

produce a snapshot o f the s o l u t i o n at every i n t e r a c t i o n time

270 r e a l p l o t = 1 ;

271 f o r r e a l p l o t = 1 : vidsimpending

272 j 6 = 1 ;

273 s e t ( gca , ’ FontSize ’ , [ 1 8 ] ) ;

274 s e t ( gca , ’ YDir ’ , ’ Reverse ’ )

275 s e t ( gca , ’ XAxisLocation ’ , ’ top ’ )

276 subplot ( vidsimpending , 1 , r e a l p l o t )

277 a x i s ([−3 c e i l ( f i n a l x i ) 0 1 ] )

278 s e t ( gca , ’ y t i c k ’ , [ 0 0 . 5 1 ] ) ;

279 hold on

280 % plo t s o l u t i o n ( p i e c e w i s e constant plume shape at

c a l c u l a t e d l o c a t i o n in a q u i f e r ) at each i n t e r a c t i o n time

281 f o r j 6 = 1 : ( vidsimpending−r e a l p l o t )

282 h = area ( [ xx sma l l r a r e s ( j6 , r e a l p l o t ) ; xx sma l l r a r e s ( j 6 +1,

r e a l p l o t ) ] , [ e t a s m a l l r a r e s ( j 6 +1, r e a l p l o t ) ;

e t a s m a l l r a r e s ( j 6 +1, r e a l p l o t ) ] ) ;

283 p lo t ( [ xx sma l l r a r e s ( j6 , r e a l p l o t ) ; xx sma l l r a r e s ( j 6 +1,

r e a l p l o t ) ] , [ e t a s m a l l r a r e s ( j 6 +1, r e a l p l o t ) ;

e t a s m a l l r a r e s ( j 6 +1, r e a l p l o t ) ] , ’ c o l o r ’ , [ 0 0 . 8 1 ] )

284 j 6 = j6 + 1 ;

285 end

286 % l a b e l each s o l u t i o n with the corre spond ing i n t e r a c t i o n time

287 s t r = [ ’ \ tau = ’ num2str ( s p r i n t f ( ’ %.2 f ’ , t a u s m a l l r a r e s ( r e a l p l o t

, 1 ) ) ) ] ;

288 t ex t ( ( f l o o r ( f i n a l x i )−2) , 0 . 5 , s t r , ’ FontSize ’ , [ 1 8 ] ) ;
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289 %%BOO%%BOO%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%BOO%%BOO%%

290 %% V i s u a l i z e r e s i d u a l s u r f a c e as ghost images o f prev ious %

291 %%%% l o c a t i o n s o f plume now f i l l e d with bubbles o f CO2 %%%%

292 %%BOO%%BOO%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%BOO%%BOO%%

293

294 % s i n c e we have determined the plume l o c a t i o n at each

i n t e r a c t i o n time , at t h i s step , we inc lude the ghost plume

s o l u t i o n ( r e s i d u a l s u r f a c e ) in graphs at every subsequent

i n t e r a c t i o n time

295 j 8 = r e a l p l o t ;

296 f o r j 8 = r e a l p l o t : ( vidsimpending−1)

297 xxco l = s i z e ( xxsmal l rare s , 2) ;

298 i f ( r e a l p l o t +1)<=xxco l

299 secondxx = xxsma l l r a r e s ( i n t l o c ( r e a l p l o t , 1 ) , ( r e a l p l o t +1) ) ;

300 e l s e secondxx = f i n a l x i ;

301 end

302 s e t ( gca , ’ FontSize ’ , [ 1 8 ] ) ;

303 s e t ( gca , ’ YDir ’ , ’ Reverse ’ )

304 s e t ( gca , ’ XAxisLocation ’ , ’ top ’ )

305 a x i s ([−3 c e i l ( f i n a l x i ) 0 1 ] )

306 s e t ( gca , ’ y t i c k ’ , [ 0 0 . 5 1 ] ) ;

307 subplot ( vidsimpending , 1 , ( j 8 +1) )

308 hold on

309 % ghost s / bubbles are l i g h t blue in p l o t s o f s o l u t i o n plane

310 p lo t ( [ xx sma l l r a r e s ( i n t l o c ( r e a l p l o t , 1 ) , r e a l p l o t ) ; secondxx ] , [

e t a s m a l l r a r e s ( ( i n t l o c ( r e a l p l o t , 1 ) +1) , r e a l p l o t ) ;

e t a s m a l l r a r e s ( ( i n t l o c ( r e a l p l o t , 1 ) +1) , r e a l p l o t ) ] , ’ c o l o r ’ ,

[ 0 . 8 0 .9 1 ] )

311 h = area ( [ xx sma l l r a r e s ( i n t l o c ( r e a l p l o t , 1 ) , r e a l p l o t ) ; secondxx

] , [ e t a s m a l l r a r e s ( ( i n t l o c ( r e a l p l o t , 1 ) +1) , r e a l p l o t ) ;

e t a s m a l l r a r e s ( ( i n t l o c ( r e a l p l o t , 1 ) +1) , r e a l p l o t ) ] ) ;

312 j 8=j8 +1;

313 end

314 % subsequent s o l u t i o n s do not capture the plume he ight be f o r e

the s t a t e i s e l iminated , so that ghost / r e s i d u a l s u r f a c e

l o c a t i o n i s determined here

315 j 7 = r e a l p l o t + 1 ;
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316 f o r j 7 = ( r e a l p l o t +1) : vids impending

317 s e t ( gca , ’ FontSize ’ , [ 1 8 ] ) ;

318 s e t ( gca , ’ YDir ’ , ’ Reverse ’ )

319 s e t ( gca , ’ XAxisLocation ’ , ’ top ’ )

320 a x i s ([−3 c e i l ( f i n a l x i ) 0 1 ] )

321 s e t ( gca , ’ y t i c k ’ , [ 0 0 . 5 1 ] ) ;

322 subplot ( vidsimpending , 1 , j 7 )

323 hold on

324 f o r j 6 = 1 : ( vidsimpending−r e a l p l o t )

325 h = area ( [ xx sma l l r a r e s ( j6 , r e a l p l o t ) ; xx sma l l r a r e s ( j 6 +1,

r e a l p l o t ) ] , [ e t a s m a l l r a r e s ( j 6 +1, r e a l p l o t ) ;

e t a s m a l l r a r e s ( j 6 +1, r e a l p l o t ) ] ) ;

326 h . FaceColor = [ 0 . 8 0 .9 1 ] ;

327 h . EdgeColor = [ 0 . 8 0 .9 1 ] ;

328 p lo t ( [ xx sma l l r a r e s ( j6 , r e a l p l o t ) ; xx sma l l r a r e s ( j 6 +1,

r e a l p l o t ) ] , [ e t a s m a l l r a r e s ( j 6 +1, r e a l p l o t ) ;

e t a s m a l l r a r e s ( j 6 +1, r e a l p l o t ) ] , ’ c o l o r ’ , [ 0 . 8 0 .9 1 ] )

329 j 6 = j6 + 1 ;

330 end

331 j 7 = j7 +1;

332 end

333 % l a b e l only the f i r s t subplot axes in f i g u r e 3

334 x l a b e l ( subplot ( vidsimpending , 1 , 1 ) , ’ Pos i t ion , \ x i ’ ) ;

335 y l a b e l ( subplot ( vidsimpending , 1 , 1 ) , ’ Plume Height , \ eta ’ ) ;

336 j 9 = 2 ;

337 f o r j 9 = 2 : vids impending

338 s e t ( subplot ( vidsimpending , 1 , j 9 ) , ’ XTickLabel ’ , ’ ’ ) ;

339 j 9 = j9 + 1 ;

340 end

341

342 % now crush i t a l l again to c r e a t e the next s o l u t i o n p l o t !

343 r e a l p l o t = r e a l p l o t + 1 ;

344 end
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