
ABSTRACT

AMBROSINO, MARY ELIZABETH. Maximum Gap of (Inverse) Cyclotomic Polynomials.
(Under the direction of Hoon Hong.)

The cyclotomic polynomial Φn is the monic polynomial whose zeroes are the n-th primitive

roots of unity and the inverse cyclotomic polynomial Ψn is the monic polynomial whose zeroes

are the n-th non-primitive roots of unity. They have numerous applications in number theory,

abstract algebra, and cryptography. Thus it is beneficial to further our understanding of their

properties. In this dissertation, we present results on the size of their maximum gap, that is,

the largest difference between consecutive exponents in the polynomials, denoted g(Φn) and

g(Ψn). In this paper, we assume that n is odd, square-free. A summary of results is as follows:

We present lower bounds for g(Φn) and g(Ψn):

1. We prove five lower bounds: α±, β±, γ±, δ− and ε±

2. We observe that they are very often equal to g(Φn) and g(Ψn)

3. We analyze their time complexity compared to direct computation of g(Φn) and g(Ψn)

We discuss an exact expression for g(Φn):

1. We conjecture that, for n = mp where m is a product of odd primes and p is an odd

prime, g(Φmp) = ϕ(m) if and only if p > m

2. We present an algorithm which we use to check the conjecture for infinitely many values

of mp

3. We prove the conjecture when m = p1p2 and p = p3, where p3 ≡p1p2 +1, p2 ≡p1 ±1

We discuss an exact expression for g(Ψn):

1. We prove that g(Ψn) = δ− under a certain condition

2. We show the condition “almost always” holds in a certain sense
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Chapter 1

Introduction

In this dissertation we study the cyclotomic and inverse cyclotomic polynomial. The cyclotomic

polynomial Φn is the monic polynomial whose zeroes are the n-th primitive roots of unity

and the inverse cyclotomic polynomial Ψn is the monic polynomial whose zeroes are the n-th

non-primitive roots of unity. Some examples of each are given below

Φ1(x) = −1 + x Ψ1(x) = 1

Φ2(x) = 1 + x Ψ2(x) = −1 + x

Φ3(x) = 1 + x + x2 Ψ3(x) = −1 + x

Φ4(x) = 1 + x2 Ψ4(x) = −1 + x2

Φ5(x) = 1 + x + x2 + x3 + x4 Ψ5(x) = −1 + x

Φ6(x) = 1− x + x2 Ψ6(x) = −1− x + x3 + x4

Φ7(x) = 1 + x + x2 + x3 + x4 + x5 + x6 Ψ7(x) = −1 + x

Φ8(x) = 1 + x4 Ψ8(x) = −1 + x4

Φ9(x) = 1 + x3 + x6 Ψ9(x) = −1 + x3

The cyclotomic polynomials are a fundamental family of objects in number theory and
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their properties and applications have long been studied. The inverse cyclotomic polynomials

are relatively newer objects, but there have also been several recent studies on them. They have

numerous applications in number theory, abstract algebra, and cryptography. The cyclotomic

polynomial is used to prove many important theorems: a special case of Dirichlet’s theorem on

primes in arithmetic progressions [21], Wedderburn’s Theorem that every finite division ring is

a field [30] and the constructibility of regular n-gons [26], among others. The polynomials also

have numerous applications in cryptography; in particular, they are used to construct certain

cryptosystems [29, 35] and to study the efficiency of a certain class of cryptosystems [22].

Thus the cyclotomic and inverse cyclotomic polynomials are important objects and it is

beneficial to further our understanding of them. Many of their properties have been studied

previously, such as the maximum value of their coefficients and the number of nonzero terms

[3, 4, 7, 8, 9, 10, 13, 14, 16, 17, 18, 19, 20, 25, 28, 33, 36]. In [23], a study was initiated on the

size of their maximum gap, that is, the largest difference between consecutive exponents in the

polynomials, denoted g(Φn) and g(Ψn). In this dissertation, we continue that investigation and

contribute some new results.

In Chapter 2, we review the basic properties and structures of the cyclotomic and inverse cy-

clotomic polynomials. We discuss some fundamental results, as well as more recent and relevant

theorems on their structure and size of their maximum gap.

In Chapter 3, we present several lower bounds for the size of the maximum gap of the two

polynomials. These expressions were discovered by carefully inspecting and finding patterns

among the size of the maximum gap of many cyclotomic and inverse cyclotomic polynomials.

Suppose that one of the maximum gaps in Φn or Ψn occurs between xl and xu (disregarding

coefficients). We observed that very often u is a divisor of n and l is the signed sum of divisors

of n. The first four bounds presented in this chapter, α±, β±, γ± and δ−, were constructed

by generalizing u and l based off the indices of the divisors of n that appeared in them. Here

the “+” refers to lower bounds for the cyclotomic polynomial and the “−” refers to those for
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the inverse cyclotomic polynomial. We observe that they are simple to compute and very often

equal to the size of the maximum gap. We generalize these four formulas into another lower

bound, ε±, which captures these and many more gap sizes, many of which are equal to the size

of the maximum gap. The complexity of α±, β±, γ±, δ− and ε± is analyzed; we compare their

complexity to that of the fastest known algorithm for computing the cyclotomic and inverse

cyclotomic polynomial. We also analyze the complexity of ε̃±, another lower bound which we

conjecture to capture the same gap sizes as ε±, but is simpler to compute.

In Chapter 4, we conjecture an exact expression for g(Φn) under a certain condition. Let

n = mp, where m is a product of odd primes and p is an odd prime. We conjecture that

g(Φmp) = ϕ(m) if and only if p > m. We present an algorithm which we use to check the

conjecture for infinitely many values of mp. This algorithm is based off a structure result found

in [1]. It allows us to show that g(Φmp) only depends on m and rem(p,m). Thus given m, we

only need to check finitely many values of p in order to check the conjecture for infinitely many

p. We use this algorithm to verify the conjecture for m < 1000. We then prove the conjecture

when m = p1p2 and p = p3 where p3 ≡p1p2 +1 and p2 ≡p1 ±1. This result is proved using

another structure result found in [1] which allows us to perform a detailed analysis of the gap

structure of Φp1p2p3 .

In Chapter 5, we provide a sufficient condition that g(Ψn) is equal to δ−, one of the lower

bounds presented in Chapter 3. We show that given k, the number of prime factors of n, the

condition “almost always” holds in a certain sense when the first (smallest) prime factor of n

is fixed.
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Chapter 2

Review

In this chapter, we will review the definition and various properties of the cyclotomic and inverse

cyclotomic polynomial.

2.1 Cyclotomic Polynomial

Given n, a positive integer, the roots of the polynomial xn − 1 are of the form e2πi k
n , where

1 ≤ k ≤ n. Thus we have the following equation

xn − 1 =
n∏

k=1

(
x− e2πi k

n

)

The roots
{

e2πi 1
n , . . . , e2πi n

n

}
are called the n-th roots of unity. A root of unity is called

primitive if it is of the form e2πi k
n where k is coprime to n, that is, gcd(k, n) = 1.

Example 2.1. The first few n-th roots of unity and n-th primitive roots of unity are given

below.
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n n− th roots of unity n− th primitive roots of unity

1
{

e2πi 1
1

}
= {1} {1}

2
{

e2πi 1
2 , e2πi 2

2

} {
e2πi 1

2

}
= {−1}

3
{

e2πi 1
3 , e2πi 2

3 , e2πi 3
3

} {
e2πi 1

3 , e2πi 2
3

}

4
{

e2πi 1
4 , e2πi 2

4 , e2πi 3
4 , e2πi 4

4

} {
e2πi 1

4 , e2πi 3
4

}
= {i,−i}

5
{

e2πi 1
5 , e2πi 2

5 , e2πi 3
5 , e2πi 4

5 , e2πi 5
5

} {
e2πi 1

5 , e2πi 2
5 , e2πi 3

5 , e2πi 4
5

}

Definition 2.1 (Cyclotomic Polynomial). The n-th cyclotomic polynomial Φn is the polynomial

whose zeroes are the n-th primitive roots of unity.

Φn(x) =
∏

1≤k≤n
gcd(k,n)=1

(
x− e2πi k

n

)

Example 2.2. The first few cyclotomic polynomials are given below

Φ1 = x− e2πi = −1 + x

Φ2 = x− e2πi 1
2 = x− (−1) = 1 + x

Φ3 =
(
x− e2πi 1

3

)(
x− e2πi 2

3

)
=

(

x +
1
2
−

√
3

2
i

)(

x +
1
2

+

√
3

2
i

)

= 1 + x + x2

Φ4 =
(
x− e2πi 1

4

)(
x− e2πi 3

4

)
= (x− i) (x + i) = 1 + x2

Φ5 =
(
x− e2πi 1

5

)(
x− e2πi 2

5

)(
x− e2πi 3

5

)(
x− e2πi 4

5

)
= 1 + x + x2 + x3 + x4

We observe that the above examples of the cyclotomic polynomial are all monic and have

integer coefficients. In general, this is true. It may also seem that all cyclotomic polynomials

have coefficients that are either −1, 0, or 1. However, in general this is not true. The smallest

n whose cyclotomic polynomial has a coefficient not in {−1, 0, 1} is 105, and was discovered in

1883 by Migotti [31]. It is interesting to note that 105 is also the smallest number that is the
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product of three odd primes.

Example 2.3.

Φ105 =1 + x + x2 − x5 − x6 − 2x7 − x8 − x9 + x12 + x13 + x14 + x15 + x16

+ x17 − x20 − x22 − x24 − x26 − x28 + x31 + x32 + x33 + x34

+ x35 + x36 − x39 − x40 − 2x41 − x42 − x43 + x46 + x47 + x48

Observe that the coefficient of x7 and x41 in Φ105 is −2.

We recall some basic functions from number theory, Euler’s totient function and the Möbius

function. These functions and some results using them are useful for proving many properties

of the cyclotomic polynomial.

Definition 2.2 (Euler’s totient function). Let ϕ(n) be the number of positive integers less than

or equal to n that are relatively prime to n.

Remark 2.1. From the definition of Φn and ϕ(n) we see that deg(Φn) = ϕ(n).

Example 2.4. A few examples of Euler’s totient function are given below.

ϕ(1) = 1, ϕ(2) = 2

ϕ(6) = 2, ϕ(10) = 4

Lemma 2.1. Let m,n be integers. We have

1. n =
∑

d|n ϕ(d)

2. If gcd(m,n) = 1, then ϕ(mn) = ϕ(m)ϕ(n)

3. If p is prime, then ϕ(pk) = pk − pk−1

6



4. If n = pe1
1 ∙ ∙ ∙ p

ek
k is the prime factorization of n, then

ϕ(n) =
k∏

i=1

pei−1
i (pi − 1) = n

k∏

i=1

(

1−
1
pi

)

Proof. Proofs of this theorem can be found in many textbooks, including [6, 15, 34].

Definition 2.3 (Möbius function). We define μ(n) as follows

μ(n) =






1 n = 1

(−1)k n = p1 ∙ ∙ ∙ pk

0 otherwise

where pi are distinct prime numbers.

Remark 2.2. If gcd(m,n) = 1, then μ(mn) = μ(m)μ(n).

Example 2.5. The following are some examples of the Möbius function.

μ(1) = 1, μ(2) = −1

μ(4) = 0, μ(15) = 1 = (−1) ∙ (−1) = μ(3) ∙ μ(5)

Definition 2.4. We define the radical of a positive integer n to be the product of the distinct

prime factors of n. That is,

rad(n) =
∏

p|n
p prime

p

Example 2.6. The following are some examples of the radical.

rad(3) = 3, rad(15) = 15

rad(27) = 3, rad(1125) = 15

7



Corollary 2.1. We have the following

∑

d|n

μ(d) =






1 if n = 1

0 if n > 1

Proof. The proof for n = 1 is obvious. Suppose that n > 1. Let P = rad(n). Any divisor d of n

that does not divide P is not square free, so μ(d) = 0. Thus

∑

d|n

μ(d) =
∑

d|P

μ(d)

Let p be any prime that divides P . Then

∑

d|P

μ(d) =
∑

d|P
p

μ(d) + μ(pd) =
∑

d|P
p

μ(d)− μ(d) = 0

Example 2.7. The following is an example of Corollary 2.1. When n = 12, we see that

∑

d|12

μ(d) = μ(1) + μ(2) + μ(3) + μ(4) + μ(6) + μ(12) = 1− 1− 1 + 0 + 1 + 0 = 0

Theorem 2.1 (Möbius inversion formula). Let f and g be functions such that f(n) =
∏

d|n g(d).

Then g(n) =
∏

d|n

(
f
(

n
d

))μ(d).

Proof. We have

∏

d|n

(
f
(n

d

))μ(d)
=
∏

d|n




∏

e|n
d

g(e)





μ(d)

8



=
∏

e|n




∏

d|n
e

g(e)μ(d)





=
∏

e|n

(
g(e)

∑
d|n

e
μ(d)
)

= g(n)

where the last line holds by Corollary 2.1.

We will now use the previous definitions and results to prove some basic results regarding

the cyclotomic polynomial.

Theorem 2.2. We have

xn − 1 =
∏

d|n

Φd(x)

Proof. Consider

xn − 1 =
∏

1≤k≤n

(
x− e2πi k

n

)
=
∏

d|n

∏

1≤k≤n
gcd(k,n)=d

(
x− e2πi k

n

)
=
∏

d|n

Φn/d(x) =
∏

d|n

Φd(x)

Theorem 2.3. We have

Φn(x) =
∏

d|n

(
xd − 1

)μ(n/d)

Proof. Recall from Theorem 2.2

xn − 1 =
∏

d|n

Φd(x)

By letting f(n) = xn − 1 and g(n) = Φn(x) in Theorem 2.1, we have

Φn(x) =
∏

d|n

(
xn/d − 1

)μ(d)
=
∏

d|n

(
xd − 1

)μ(n/d)

9



Remark 2.3. Note that from the above theorem we easily see that

Φp =
xp − 1
x− 1

= 1 + x + x2 + ∙ ∙ ∙+ xp−1

Example 2.8. The following is an example of Theorem 2.3.

Φ12(x) = x4 − x2 + 1

∏

d|12

(
xd − 1

)μ(12/d)
= (x1 − 1)μ(12)(x2 − 1)μ(6)(x3 − 1)μ(4)(x4 − 1)μ(3)(x6 − 1)μ(2)(x12 − 1)μ(1)

= (x2 − 1)1(x4 − 1)−1(x6 − 1)−1(x12 − 1)1

= x4 − x2 + 1

Theorem 2.4. Φn ∈ Z[x] and is monic.

Proof. We will prove this by induction on n. When n = 1, clearly Φn = x−1. Assume Φd ∈ Z[x]

and is monic for all d < n. Recall that

xn − 1 = Φn ∙
∏

d|n
d<n

Φd

From the induction hypothesis,
∏

d|n
d<n

Φd ∈ Z[x] and is monic. From the definition of Φn, we see

that it is monic. Thus Φn ∈ Q[x] and is monic. Since xn−1 ∈ Z[x], we have that Φn ∈ Z[x].

Theorem 2.5. Φn(x) is irreducible over Q[x].

Proof. Proofs of this theorem can be found in many textbooks, including [6, 15, 34].
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Theorem 2.6. If n ≥ 3 is odd, then

Φ2n(x) = Φn(−x)

Proof. We have

Φ2n(x) =
∏

d|2n

(
xd − 1

)μ(2n/d)

=
∏

2|d

(
xd − 1

)μ(2n/d)∏

d|n

(
xd − 1

)μ(2n/d)

=
∏

d|n

(
xd − 1

)μ(2n/d) (
x2d − 1

)μ(n/d)

=
∏

d|n

(
xd − 1

)−μ(n/d) (
x2d − 1

)μ(n/d)

=
∏

d|n

(
x2d − 1
xd − 1

)μ(n/d)

=
∏

d|n

(
xd + 1

)μ(n/d)

=
∏

d|n

(
−xd − 1

)μ(n/d)

= Φn(−x)

Theorem 2.7. We have

Φn(x) = Φrad(n)

(
x

n
rad(n)

)

11



Proof. Consider

Φn(x) =
∏

d|n

(
xn/d − 1

)μ(d)

=
∏

d|rad(n)

(
xn/d − 1

)μ(d)

=
∏

d|rad(n)

(
(
x

n
rad(n)

) rad(n)
d
− 1

)μ(d)

= Φrad(n)

(
x

n
rad(n)

)

Example 2.9. The following examples demonstrate Theorems 2.6 and 2.7

1. Φ3(x) = 1 + x + x2

2. Φ6(x) = Φ3(−x) = 1− x + x2

3. Φ9(x) = Φ3

(
x3
)

= 1 + x3 + x6

Theorem 2.8. Let n ≥ 2 and Φn =
∑ϕ(n)

s=0 asx
s. Then we have

1. Φn(x) = xϕ(n)Φn

(
1
x

)

2. as = aϕ(n)−s for 0 ≤ s ≤ ϕ(n)

Proof. 1. Let α be a root of Φn(x). Since Φn(x) ∈ Z[x] and complex roots come in conjugate

pairs, α = 1/α is a root of Φn(x). Note that xϕ(n)Φn

(
1
x

)
is a polynomial in Z[x] with degree

ϕ(n) and root α. Since Φn(x) is irreducible in Q[x], we have that Φn(x) = c ∙ xϕ(n)Φn

(
1
x

)

for some nonzero rational number c. Note that Φn(1) = c ∙ Φn(1) so c = 1 and we have

that Φn(x) = xϕ(n)Φn

(
1
x

)
.

12



2. Note

Φn(x) =
ϕ(n)∑

s=0

asx
s =

ϕ(n)∑

s=0

asx
ϕ(n)−s =

ϕ(n)∑

s=0

aϕ(n)−sx
s

Example 2.10. Let n = 15. Then ϕ(15) = 8 and

Φ15(x) = 1− x + x3 − x4 + x5 − x7 + x8

x8Φ15

(
1
x

)

= x8
(
x−8 − x−7 + x−5 − x−4 + x−3 − x−1 + x0

)

= 1− x + x3 − x4 + x5 − x7 + x8

Clearly,

a0 = a8 = 1 a1 = a7 = −1

a2 = a6 = 0 a3 = a5 = 1

a4 = −1

2.2 Inverse Cyclotomic Polynomial

The inverse cyclotomic polynomial has been studied more frequently in recent years. While

the n-th cyclotomic polynomial has the n-th primitive roots of unity as its zeroes, the inverse

cyclotomic polynomial has the n-th non-primitive roots of unity as its zeroes.

Definition 2.5 (Inverse cyclotomic polynomial). The n-th inverse cyclotomic polynomial Ψn

is the polynomial whose zeroes are the n-th non-primitive roots of unity.

Ψn(x) =
∏

1≤k≤n
gcd(k,n) 6=1

(
x− e2πi k

n

)

Remark 2.4. The inverse cyclotomic polynomial is not the actually inverse of the cyclotomic

13



polynomial; rather, it would be more precise to call it the multiplicative inverse, since we have

the following relation

xn − 1 = Φn(x) ∙Ψn(x)

Example 2.11. The first few inverse cyclotomic polynomials are given below

Ψ1(x) =
x− 1
x− 1

= 1

Ψ2(x) =
(
x− e2πi 2

2

)
=

x2 − 1
x + 1

= −1 + x

Ψ3(x) =
(
x− e2πi 3

3

)
=

x3 − 1
x2 + x + 1

= −1 + x

Ψ4(x) =
(
x− e2πi 2

4

)(
x− e2πi 4

4

)
=

x4 − 1
x2 + 1

= −1 + x2

Ψ5(x) =
(
x− e2πi 5

5

)
=

x5 − 1
x4 + x3 + x2 + x + 1

= −1 + x

We observe that the above examples of the inverse cyclotomic polynomial are all monic and

have integer coefficients. In general, this is true. It shares these and several other properties

with the cyclotomic polynomial.

Definition 2.6. For consistency, we define the degree of the inverse cyclotomic polynomial to

be ψ(n). Note that ϕ(n) + ψ(n) = n. (Also note that this is different than the Dedekind psi

function.)

Theorem 2.9. We have the following

1. Ψn(x) ∈ Z[x] and is monic

2. Ψn(x) =
∏

d|n
d 6=n

(
xd − 1

)−μ(n/d)

3. Ψ2n(x) = (1− xn) ∙Ψn(−x), if n ≥ 3 is odd

4. Ψn(x) = Ψrad(n)

(
x

n
rad(n)

)

14



5. Ψn(x) = −xψ(n)Ψn

(
1
x

)

Proof. .

1. Since Φn(x) ∈ Z[x] and xn − 1 ∈ Z[x], we have that Ψn(x) ∈ Z[x]. By the definition of

Ψn(x) we see that it is monic.

2. Ψn(x) =
xn − 1
Φn(x)

=
xn − 1

∏

d|n

(
xd − 1

)μ(n/d)
=
∏

d|n
d 6=n

(
xd − 1

)−μ(n/d)

3. Ψ2n(x) =
x2n − 1
Φ2n(x)

=
(xn − 1)(xn + 1)

Φn(−x)
= −

(xn − 1)((−x)n − 1)
Φn(−x)

= (1− xn) ∙Ψn(−x)

4. Ψn(x) =
xn − 1
Φn(x)

=
xn − 1

Φrad(n)

(
x

n
rad(n)

) =

(
x

n
rad(n)

)rad(n)
− 1

Φrad(n)

(
x

n
rad(n)

) = Ψrad(n)

(
x

n
rad(n)

)

5. Ψn(x) =
xn − 1
Φn(x)

=
xn − 1

xϕ(n)Φn

(
1
x

) = −xn

(
1
x

)n
− 1

xϕ(n)Φn

(
1
x

) = −xψ(n)

(
1
x

)n
− 1

Φn

(
1
x

) = −xψ(n)Ψn

(
1
x

)

Note that unlike the cyclotomic polynomial, the inverse cyclotomic polynomial is not ir-

reducible in Q[x]. In fact, if n is not prime then Ψn(x) is reducible, as we see in the next

theorem.

Theorem 2.10. We have

Ψn(x) =
∏

d|n
d 6=n

Φd(x)

Proof. By Theorem 2.2 we have

Ψn(x) =
xn − 1
Φn(x)

=

∏
d|n Φd(x)

Φn(x)
=
∏

d|n
d 6=n

Φd(x)
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2.3 Structure of (Inverse) Cyclotomic Polynomial

Currently, there are no explicit non-recursive formulas to compute Φn or Ψn. In this section,

we review some well known results and formulas about the the structure of the cyclotomic and

inverse cyclotomic polynomials.

Proposition 2.1. Let p be prime. We have

Φp(x) = 1 + x + x2 + ∙ ∙ ∙+ xp−1

Proof. See Remark 2.3 in Section 2.1.

Proposition 2.2. Let p be prime. We have

Ψp(x) = −1 + x

Proof. We have

Ψp(x) =
xp − 1
Φp(x)

=
xp − 1

1 + x + x2 + ∙ ∙ ∙+ xp−1
= −1 + x

The first nontrivial case of the cyclotomic polynomial is when n is the product of two distinct

odd primes. The following theorem can be found in [12].

Theorem 2.11. We have

Φp1p2(x) =

(
r∑

i=0

xip

)


s∑

j=0

xjq



−

(
q−1∑

i=r+1

xip

)


p−1∑

j=s+1

xjq



x−pq

where p and q are distinct primes, and (p− 1)(q− 1) = rp+ sq, where r and s are non-negative

integers. Moreover, if Φpq(x) =
∑ϕ(pq)

k=0 akx
k, then for any 0 ≤ k ≤ (p− 1)(q − 1) we have
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1. ak = 1 if and only if k = ip + jq for some 0 ≤ i ≤ r and 0 ≤ j ≤ s

2. ak = −1 if and only if k + pq = ip + jq for some r + 1 ≤ i ≤ q − 1 and s + 1 ≤ j ≤ p− 1

3. ak = 0 otherwise.

Proof. Let

f(x) :=

(
r∑

i=0

xip

)


s∑

j=0

xjq



 −

(
q−1∑

i=r+1

xip

)


p−1∑

j=s+1

xjq



x−pq

We will show that f(x) = Φpq(x) by showing

1. f(x) is monic

2. f(x) has degree ϕ(pq)

3. f(ζ) = 0 where ζ is a primitive pq−th root of unity

First note that the first and second products in f(x) are both monic, so f(x) is monic, proving

(1). The degree of the first product is

rp + sq = (p− 1)(q − 1) = ϕ(pq)

The degree of the second product is

(q − 1)p + (p− 1)q − pq = (p− 1)(q − 1)− 1 = ϕ(pq)− 1

Thus the degree of f(x) is ϕ(pq), proving (2). Let ζ be a primitive pq−th root of unity. Then

Φpq (ζ) = Φp (ζq) = Φq (ζp)

This implies
r∑

i=0

(ζp)i = −
q−1∑

i=r+1

(ζp)i ,
s∑

j=0

(ζq)j = −
p−1∑

i=s+1

(ζq)j

17



Hence (
r∑

i=0

ζip

)


s∑

j=0

ζjq



−

(
q−1∑

i=r+1

ζip

)(
p−1∑

i=s+1

ζjq

)

= 0

Since ζpq = 1, we have that ζ is a zero of f(x), proving (3).

To prove the second statement of the theorem, we will show that the monomial terms in each

of the two products in f(x) are respectively different. Suppose not, so there exist i1, i2 ∈ [0, q−1]

and j1, j2 ∈ [0, p− 1] such that

i1p + j1q = i2p + j2q or i1p + j1q = i2p + j2q − pq

Then q|(i1 − i2), so i1 = i2. Similarly, j1 = j2.

Proposition 2.3. We have

Ψpq(x) = −
(
1 + x + ∙ ∙ ∙+ xp−1

)
+
(
xq + xq+1 + ∙ ∙ ∙+ xq+p−1

)

Proof. Note that by Theorem 2.10

Ψpq(x) = Φ1(x) ∙ Φp(x) ∙ Φq(x)

= (x− 1)
(
1 + x + ∙ ∙ ∙+ xp−1

) (
1 + x + ∙ ∙ ∙+ xq−1

)

=
(
1 + x + ∙ ∙ ∙+ xp−1

)
(−1 + xq)

= −
(
1 + x + ∙ ∙ ∙+ xp−1

)
+
(
xq + xq+1 + ∙ ∙ ∙+ xq+p−1

)

The first nontrivial case of the inverse cyclotomic polynomial is when n is the product of

three distinct odd primes. Currently, there are no explicit non-recursive formulas.

In [1], the structure of Φn was studied extensively. Many results were presented, including
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the following two theorems. Their proofs can be found in [1].

Theorem 2.12. Let m be odd square-free, and p prime. Let q = quo (p,m) and r = rem (p,m).

Let

Φmp =
ϕ(m)−1∑

i=0

fm,p,ix
ip deg fm,p,i < p

fm,p,i =
q∑

j=0

fm,p,i,jx
jm deg fm,p,i,j < m

For all 0 ≤ i ≤ ϕ(m)− 1, we have

(C1) fm,p,i,0 = ∙ ∙ ∙ = fm,p,i,q−1

(C2) fm,p,i,q = rem (fm,p,i,0, x
r)

(C3) fm,p,i,0 = fm,p′,i,0 if p ≡m p′

Theorem 2.13 (Structure Theorem). Let p3 ≡p1p2 +1 and p2 ≡p1 ±1. We have

Φn(x) =
ϕ(p1p2)−1∑

a=0

fa(x) xap3 deg fa < p3

fa(x) =
q3∑

b=0

fa,b(x) xbp1p2 deg fa,b < p1p2

fa,0 (x) = ∙ ∙ ∙ = fa,q3−1 (x)

=






+A(x) −xp2A(x) if a = 0

+B(x) −x(u+1)p2−a −xp2B(x) +xp1p2−a if a > 0, w ≤ u and ¬D(a)

+C(x) −xp2B(x) +xp1p2−a if a > 0, w ≤ u and D(a)

−D(x) −x(u+1)p2−a +xp2D(x) +xp1p2−a if a > 0, w > u and ¬D(a)

−x(u+1)p2−a −D(x) +xp2D(x) +xp1p2−a if a > 0, w > u and D(a)

fa,q3 (x) =






1 if a = 0

0 if a > 0
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where

A(x) =
p1−1∑

k=0

xk, B(x) =
p1−1−w∑

k=u+1−w

xk, C(x) =
p1−2−w∑

k=u+1−w

xk, D(x) =
p1+u−w∑

k=p1−w

xk

u := quo (a, p2)

v := quo (rem (a, p2) , p1)

w := rem (rem (a, p2) , p1)

q3 := quo (p3, p1p2)

p2 :=






p2 − 1 if p2 ≡p1 +1

p2 if p2 ≡p1 −1

D(a) :⇔ p2 ≡p1 −1 ∧ v = q2

2.4 Size of Maximum Gap

In this section we introduce the notion of the size of the maximum gap of a polynomial, and

in particular of the cyclotomic and inverse cyclotomic polynomial. We review the trivial cases

and previous results.

Definition 2.7 (Size of maximum gap). Let f(x) =
∑t

i=1 ctx
et where ci 6= 0 and e1 < ∙ ∙ ∙ < et.

The size of the maximum gap, written as g(f), is given by

g(f) = max
1≤i<t

(ei+1 − ei) , g(f) = 0 when t = 1

Example 2.12. We give some examples of the size of the maximum gap.

1. Let f1(x) = 1 + x + x3 − x5 + 2x6. Then g(f1) = 2 since 2 is the maximum amongst
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1− 0, 3− 1, 5− 3, 6− 5.

2. Let f2(x) = −x + x3 + 5x15 − 3x20 + x21. Then g(f2) = 12 since 12 is the maximum

amongst 3− 1, 15− 3, 20− 5, 21− 20.

Remark 2.5. Note that we use the phrase “size of maximum gap” to refer to the maximum

difference between exponents that appear in a polynomial. We may also use the phrase “gap” to

refer to any gap between exponents that appear, and “maximum gap” to refer to the largest of all

such gaps. For example, there is a gap between −x5 and 2x6 in f1(x) above, and the maximum

gap occurs between x and x3, and x3 and −x5. Note that where the maximum gap occurs may

not be unique in a polynomial, but the size of the maximum gap is unique.

We now consider the size of the maximum gap in terms of the cyclotomic and inverse

cyclotomic polynomial.

Proposition 2.4. We have

1. g(Φn) =
n

rad(n)
g
(
Φrad(n)

)

2. g(Ψn) =
n

rad(n)
g
(
Ψrad(n)

)

3. g(Φ2n) = g(Φn), where n ≥ 3 is odd

4. g(Ψ2n) = max {ϕ(n), g(Ψn)}, where n ≥ 3 is odd

Proof. Note

1. By Theorem 2.7, we have that Φn(x) = Φrad(n)

(
x

n
rad(n)

)
. Thus g(Φn) = n

rad(n)g
(
Φrad(n)

)
.

2. By Theorem 2.9, we have that Ψn(x) = Ψrad(n)

(
x

n
rad(n)

)
. Thus g(Ψn) = n

rad(n)g
(
Ψrad(n)

)
.

3. By Theorem 2.6, we have that Φ2n(x) = Φn(−x). Thus g(Φ2n) = g(Φn).

4. By Theorem 2.9, we have that Ψ2n(x) = (1−xn) ∙Ψn. Thus g(Ψ2n) = max {ϕ(n), g(Ψn)}.
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Therefore, without losing generality, from now on we will only study the size of the maximum

gap of the cyclotomic and inverse cyclotomic polynomial where n is odd and square-free.

Proposition 2.5. Let p, q, and r be distinct odd primes. Then we have that

1. g(Φ1) = 1

2. g(Ψ1) = 0

3. g(Φp) = 1

4. g(Ψp) = 1

5. g(Φpq) = p− 1

6. g(Ψpq) = q − p + 1

7. g(Ψpqr) = 2qr − ψ(pqr) “almost always”, where p < q < r.

Proof. Note that (1), (2), (3), (4), (6) are trivial. (5) was first proved in [23]. Additional proofs

can be found in [11, 32, 37]. (7) was proved in [23], and a more precise notion of “almost always”

is given there.

The original motivation for studying the size of the maximum gap of the cyclotomic and

inverse cyclotomic polynomial came from elliptic curve cryptography; the computing time of

the Atei pairing over elliptic curves depends on the maximum gap of the inverse cyclotomic

polynomials whose degree are decided from the parameter of the elliptic curves [24, 27, 36, 38].

However the problem of finding the maximum gap is interesting on its own and its study can

be viewed as a first step toward the detailed understanding of the sparsity structure of Φn and

Ψn.
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2.5 Time Complexities

In this section, we review the bit time complexities for some relevant computations. We use the

big O notation which we define as follows

Definition 2.8 (Big O Notation). Let f(x1, . . . , xn) and g(x1, . . . , xn) be functions defined on

real numbers. Then we have f(x1, . . . , xn) = O (g(x1, . . . , xn)) if and only if

∃M > 0, N > 0 ∀(x1, . . . , xn)
(
∃i xi ≥ N ⇒ |f(x1, . . . , xn)| ≤ M |g(x1, . . . , xn)|

)

We present the bit time complexities of some common operations using big O notation:

1. Multiplying two numbers of length L1, L2: O(L1L2)

2. Adding two numbers of length L1, L2: O(max{L1, L2})

3. Adding s numbers with length L: O(sL+ s2). See Lemma 2.2 which follows for the proof.

4. Taking the maximum of two numbers of length L1, L2: O(max{L1, L2})

5. Factoring a number with length L (using the General Number Field Sieve [5]):

O
(
exp 3

√(
64
9 + o(1)

)
L(log L)2

)

We prove the claim in (3) above. Let L(a) be the length of a. As a worst case scenario, let

us assume

L(a1) = ∙ ∙ ∙ = L(as) = max{L(a1), . . . , L(as)} = L

for integers {a1, . . . , as}.

Lemma 2.2. We have

1. L(a1 + ∙ ∙ ∙+ as) ≤ L + s− 1
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2. T+ (s, L) = O
(
sL + s2

)

for integers {a1, . . . , as} and where T+ (s, L) is the time required to add s numbers, the largest

of which is length L.

Proof. We prove the first claim by induction on s ≥ 2. First note

L(a1 + a2) ≤ max{L(a1), L(a2)}+ 1 = L + 1

Now assume the claim is true for s, that is,

L(a1 + ∙ ∙ ∙+ as) ≤ L + s− 1

We want to show this is true for s + 1.

L(a1 + ∙ ∙ ∙+ as+1) = L ((a1 + ∙ ∙ ∙+ as) + as+1)

≤ max{L(a1 + ∙ ∙ ∙+ as), L(as+1)}+ 1

By the induction hypothesis, we have

L(a1 + ∙ ∙ ∙+ as) ≤ L + s− 1

Therefore,

L(a1 + ∙ ∙ ∙+ as+1) ≤ max{L(a1 + ∙ ∙ ∙+ as), L(as+1)}+ 1

≤ max{L + s− 1, L}+ 1

= L + s

which proves the claim.
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We prove the second claim by first showing the following

T+ (s, L) = O

(

(s− 1)L +

(
s− 1

2

))

for all s ≥ 2. We will prove this by induction on s. First note

T+(2, L) = O (L)

(2− 1)L +

(
2− 1

2

)

= L

Assume true for s, so that

T+ (s, L) = O

(

(s− 1)L +

(
s− 1

2

))

(2.1)

We want to show this is true for s + 1. Note that since a1 + ∙ ∙ ∙+ as+1 = (a1 + ∙ ∙ ∙+ as) + as+1,

we have

T+ (s + 1, L) = T+(s, L) + T+ (2, L + s− 1) (2.2)

Note that

T+ (2, L + s− 1) = O(L + s− 1) (2.3)

Combining (2.1), (2.2) and (2.3), we get that

T+(s + 1, L) = O

(

sL +

(
s− 1

2

)

+

(
s− 1

1

))

T+(s + 1, L) = O

(

sL +

(
s

2

))

which proves the claim. Therefore,

T+(s + 1, L) = O

(

sL +

(
s

2

))
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T+(s + 1, L) = O
(
sL + s2

)

We consider the time complexity of computing Φn and Ψn. In [2] the fastest known al-

gorithms for computing the polynomials were given. In Section 5 of that paper, the authors

state that the number of computations in Z required to compute Φn and Ψn is O
(
2ω(n)ϕ(n)

)

and O
(
2ω(n)ψ(n)

)
, respectively. Note that this does not take into consideration the bit lengths

of the intermediate integers. Thus, if they are taken into consideration, the time complexity

could be larger. Let k be the number of prime factors of n and L be the length of the largest

prime factor of n. Note that ϕ(n) < 2kL. Assume, though unrealistic, that the bit length of

all intermediate integers remains L. Then we have that the time complexity of computing Φn,

TΦ(k, L), is

TΦ(k, L) = O
(
2k2kLL2

)

TΦ(k, L) = O
(
2k(L+1)L2

)

TΦ(k, L) = O
(
2k(L+1)+νL

)

TΦ(k, L) = O
(
2k(L+1)+ν(L+1)

)

TΦ(k, L) = O
(
2(k+ν)(L+1)

)

where ν > 0 is an arbitrarily small number. Similarly, the time complexity of computing Ψn

is O
(
2(k+ν)(L+1)

)
. Of course, this is an optimistic estimate, as the length of the intermediate

integers will be larger than L.

26



Chapter 3

Lower Bounds

In this chapter, we present various lower bounds for the cyclotomic and inverse cyclotomic

polynomial.

Introduction

Our challenge is to find general expressions for g(Φn) and g(Ψn) where n is the product of an

arbitrary number of odd primes. To understand the complexity of this problem, we consider

the following graphs, where the x-axis is n odd, square-free and the y-axis is g(Φn) and g(Ψn).

g(Φn) g(Ψn)

Figure 3.1 Plots of g(Φn) and g(Ψn)
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We observe that although at first there may seem to be some patterns in the plots, in general,

the size of the maximum gap does not follow any obvious universal patterns. After several years

of attempts we have not yet found any general expressions, due to combinatorial blowup in

the number of cases to consider. Thus, we propose to consider instead a weaker challenge: find

expressions for lower bounds of g(Φn) and g(Ψn). The weaker challenge is still useful for the

original motivation from elliptic curve cryptography.

Thus, in this chapter, we tackle the weaker challenge of finding expressions for lower bounds.

The main contributions (precisely stated in Section 3.1) are as follows.

1. We provide four expressions (α±, β±, γ± and δ−) for lower bounds (Theorems 3.1, 3.2,

3.3 and 3.4). These expressions were discovered by carefully inspecting and finding pat-

terns among the maximum gaps of many cyclotomic and inverse cyclotomic polynomials.

The four expressions are easy to compute. Furthermore, numerous computer experiments

indicate that the combination (maximum) of the four expressions is very often exact

(Section 3.3.1).

2. We abstract the four expressions into a single general expression ε± (Theorem 3.5). The

general expression was discovered by observing that each of the four expressions can be

rewritten as the difference of two numbers, say u and l, where u is a certain divisor of n

and l is a signed sum of several other divisors of n. We also observed that there is indeed

a gap between xl and xu in the polynomials, which led to an idea for proving the general

expression. The general expression takes more time to compute, since it captures many

other gaps that are not captured by the four expressions. As a result, ε± is always greater

than or equal to α±, β±, γ± and δ−. Indeed, numerous computer experiments indicate

that it is almost always exact (Section 3.3.2).

3. We analyze the complexity of α±, β±, γ± and δ−. We also analyze the complexity of ε±

and ε̃±, another general lower bound which we observe captures all the same gaps as ε±
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but is simpler to compute.

The chapter is structured as follows: In Section 3.1, we precisely state the lower bounds and

the conjecture informally described above. In Section 3.2, we illustrate each bound using small

examples. In Section 3.3, we report experimental findings on the quality of the bounds (how

often they are exact). In Section 3.4, we prove the lower bounds. In Section 3.5, we analyze the

complexity of the lower bounds.

3.1 Main Results

In this section, we precisely state the main results of this chapter. From now on, let n = p1 ∙ ∙ ∙ pk

where p1 < ∙ ∙ ∙ < pk are odd primes. We are ready to state the four lower bounds for (inverse)

cyclotomic polynomials.

Theorem 3.1 (Special bound α±). We have g(Φn) ≥ α+(n) and g(Ψn) ≥ α−(n) where

α±(n) = max
1≤r<k

ρ(k−r)=∓1

(pr − ϕ(p1 ∙ ∙ ∙ pr−1))

Theorem 3.2 (Special bound β±). We have g(Φn) ≥ β+(n) and g(Ψn) ≥ β−(n) where

β±(n) = max
1≤r<k

ρ(k−r)=∓1

(min {pr+1, p1 ∙ ∙ ∙ pr} − ψ(p1 ∙ ∙ ∙ pr))

Theorem 3.3 (Special bound γ±). We have g(Φn) ≥ γ+(n) and g(Ψn) ≥ γ−(n) where

γ±(n) = max
1≤r<k

ρ(k−r)=∓1





p1 ∙ ∙ ∙ pr −

∑

d|n
ω(d)<r

±μ (n/d) d







29



Theorem 3.4 (Special bound δ−). We have g(Ψn) ≥ δ−(n) where

δ−(n) = 2
n

p1
− ψ(n)

Now we describe a more general lower bound, which is abstracted from the above four special

bounds. For this, we need a few notations.

Notation 3.1. For a positive integer d and a set B of positive integers, let

d = {h : d | h} B =
⋃

d∈B

d

d = {h : h | d} B± = {d ∈ B : μ (n/d) = ±1}

Now are ready to state the general bound, unifying the four special bounds.

Theorem 3.5 (General bound ε±). We have g(Φn) ≥ ε+(n) and g(Ψn) ≥ ε−(n) where

ε±(n) = max
B(n\{n}
C±(B)

(

min(n \ {n} \B) −
∑

d∈B

±μ (n/d) d

)

where

C±(B) ⇔ ∀d ∈ B #(B± ∩ d) ≥ #(B∓ ∩ d)

Remark 3.1. The above four special bounds α±, β±, γ± and δ− can be obtained from the

general bound ε± by considering only certain B’s:

α±: B = {d : d|p1 ∙ ∙ ∙ pr−1 and ω (d) < r} for 1 ≤ r < k and ρ (k − r) = ∓1

β±: B = {d : d|p1 ∙ ∙ ∙ pr and ω (d) < r} for 1 ≤ r < k and ρ (k − r) = ∓1

γ±: B = {d : d|p1 ∙ ∙ ∙ pk and ω (d) < r} for 1 ≤ r < k and ρ (k − r) = ∓1

δ−: B = {d : d|p1 ∙ ∙ ∙ pk and ω (d) < k and d 6= p2 ∙ ∙ ∙ pk}
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It turns out that these B’s satisfy C±(B).

3.2 Examples

In Table 3.1 below, we give the values of g(Φn), g(Ψn) and the lower bounds on several values

of n.

Table 3.1 Values of the size of the maximum gap and lower bounds on several values of n

n 3 ∙ 5 ∙ 11 ∙ 13 3 ∙ 5 ∙ 7 ∙ 71 7 ∙ 11 ∙ 13 ∙ 17 3 ∙ 7 ∙ 11 ∙ 13 3 ∙ 5 ∙ 7 ∙ 11

g(Φn) 3 14 210 17 10

α+(n) 3 2 6 2 2

β+(n) 2 14 6 2 2

γ+(n) 2 2 210 2 2

ε+(n) 3 14 210 17 2

n 5 ∙ 7 ∙ 11 ∙ 13 7 ∙ 11 ∙ 13 ∙ 17 3 ∙ 5 ∙ 7 ∙ 11 7 ∙ 11 ∙ 13 ∙ 41 7 ∙ 11 ∙ 13

g(Ψn) 3 30 95 11 7

α−(n) 3 5 3 5 6

β−(n) 0 −4 0 4 6

γ−(n) 0 30 −10 6 6

δ−(n) −123 −635 95 −515 5

ε−(n) 3 30 95 11 6

In the above tables, we marked the exact ones in boldface, that is, the ones that match

g(Φn) or g(Ψn). For the last column, we chose the smallest n such that g(Φn) and g(Ψn) is not
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equal to any of the lower bounds. After checking all the values of n < 15013, we have not found

any such example for the cyclotomic case where k = 3.

3.2.1 Examples for special bounds

In the following, we will illustrate how the bounds α±, β±, γ± and δ− in Table 3.1 are computed

for some of the examples. First we compute examples for the cyclotomic polynomial, and then

examples for the inverse cyclotomic polynomial.

Example 3.1 (α+). Let n = 3 ∙ 5 ∙ 11 ∙ 13. We will compute α+(n). Let

u = pr

l = ϕ(p1 ∙ ∙ ∙ pr−1)

The following shows the values of u−l for all choices of r such that 1 ≤ r < k and ρ(k−r) = −1.

r u l u− l

1 3 1 2

3 11 8 3

Thus α+(n) = 3.

Example 3.2 (β+). Let n = 3 ∙ 5 ∙ 7 ∙ 71. We will compute β+(n). Let

u = min {pr+1, p1 ∙ ∙ ∙ pr}

l = ψ(p1 ∙ ∙ ∙ pr)

The following shows the values of u− l for all choices of r such that 1 ≤ r < k and ρ (k − r) =
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−1.

r u l u− l

1 3 1 2

3 71 57 14

Thus β+(n) = 14.

Example 3.3 (γ+). Let n = 7 ∙ 11 ∙ 13 ∙ 17. We will compute γ+(n). Let

u = p1 ∙ ∙ ∙ pr

B = {d : d | n and ω (d) < r}

l =
∑

d∈B

μ (n/d) d

The following shows the values of u− l for all choices of r such that 1 ≤ r < k and ρ (k − r) =

−1.

r u B l u− l

1 7 {1} 1 6

3 7 ∙ 11 ∙ 13 {1, 7, 11, 13, 17, 77, 91, 119, 143, 187, 221} 791 210

Thus γ+(n) = 210.

Example 3.4 (α−). Let n = 5 ∙ 7 ∙ 11 ∙ 13. We will compute α−(n). Let

u = pr

l = ϕ(p1 ∙ ∙ ∙ pr−1)

The following shows the values of u− l for all choices of r such that 1 ≤ r < k and ρ (k − r) =

+1.

r u l u− l

2 7 4 3
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Thus α−(n) = 3.

Example 3.5 (γ−). Let n = 7 ∙ 11 ∙ 13 ∙ 17. We will compute γ−(n). Let

u = p1 ∙ ∙ ∙ pr

B = {d : d | n and ω (d) < r}

l =
∑

d∈B

−μ (n/d) d

The following shows the values of u− l for all choices of r such that 1 ≤ r < k and ρ (k − r) =

+1.

r u B l u− l

2 7 ∙ 11 {1, 7, 11, 13, 17} 47 30

Thus γ−(n) = 30.

Example 3.6 (δ−). Let n = 3 ∙ 5 ∙ 7. We will compute δ−(n). Note

δ−(n) = 2
n

p1
− ψ(n)

= 2
3 ∙ 5 ∙ 7

3
− (3 ∙ 5 ∙ 7− (3− 1) (5− 1) (7− 1))

= 13

Thus δ− (n) = 13.

3.2.2 Examples for general bound

In the following, we will illustrate how the bounds ε± in Table 3.1 are computed for some of

the examples. First we compute examples for the cyclotomic polynomial, and then examples

for the inverse cyclotomic polynomial.
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Example 3.7 (ε+). Let n = 3 ∙ 7 ∙ 11 ∙ 13. We will compute ε+(n). Let

u = min A

l =
∑

d∈B

μ (n/d) d

The following shows the values of u − l for some A and B such that A ] B = n \ {n}, A 6= ∅,

and C+(B). There are 1566 such pairs of A and B, so we only list a few below.

A B u l u− l

{3, 7, 11, 13, 3 ∙ 7, . . .} {1} 3 1 2

{11, 13, 3 ∙ 11, 3 ∙ 13, 7 ∙ 11, . . .} {1, 3, 7, 3 ∙ 7} 11 12 −1

{13, 3 ∙ 13, 7 ∙ 11, 7 ∙ 13, . . .} {1, 3, 7, 11, 3 ∙ 7, 3 ∙ 11} 13 34 −21

{7 ∙ 11, 7 ∙ 13, 11 ∙ 13, . . .} {1, 3, 7, 11, 13, 3 ∙ 7, 3 ∙ 11, 3 ∙ 13} 7 ∙ 11 60 17

∙ ∙ ∙ ∙ ∙ ∙

Thus ε+(n) = 17.

Example 3.8 (ε−). Let n = 7 ∙ 11 ∙ 13 ∙ 41. We will compute ε−(n). Let

u = min A

l =
∑

d∈B

−μ (n/d) d

The following shows the values of u − l for some A and B such that A ] B = n \ {n}, A 6= ∅,
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and C−(B). There are 13301 such pairs of A and B, so we only list a few below.

A B u l u− l

{11, 13, 41, 7 ∙ 11, 7 ∙ 13, . . .} {1, 7} 11 6 5

{1, 41, 7 ∙ 11, 7 ∙ 13, 11 ∙ 13, . . .} {7, 11, 13} 1 31 −30

{41, 7 ∙ 11, 7 ∙ 13, 11 ∙ 13, . . .} {1, 7, 11, 13} 41 30 11

∙ ∙ ∙ ∙ ∙ ∙

Thus ε−(n) = 11.

In the following, we explain the condition C±(B). Recall that

C±(B) ⇔ ∀d ∈ B #(B± ∩ d) ≥ #(B∓ ∩ d)

In words, this condition is true if for every number d that divides some number in B, the

number of multiples of d in B± is greater than or equal to the number of multiples of d in B∓.

We also explain the condition though examples. We will consider the “+” case; the “−” case is

analogous. Let n = 3 ∙ 5 ∙ 7 ∙ 11 and B = {1, 3, 3 ∙ 5}. Note that B+ = {1, 3 ∙ 5} and B− = {3}.

We consider every element of the set B = {1, 3, 5, 3 ∙ 5}.

b #
(
B+ ∩ b

)
#
(
B− ∩ b

)

1 2 1

3 1 1

5 1 0

3 ∙ 5 1 0

Since for every choice of b, the middle column is greater than or equal to the right column, the

condition C+(B) is true for this choice of B.
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Again let n = 3 ∙ 5 ∙ 7 ∙ 11 and now choose B = {1, 3, 7, 3 ∙ 5}. Note that B+ = {1, 3 ∙ 5} and

B− = {3, 7}. We consider every element of the set B = {1, 3, 5, 7, 3 ∙ 5}

b #
(
B+ ∩ b

)
#
(
B− ∩ b

)

1 2 2

3 1 1

5 1 0

7 0 1

3 ∙ 5 1 0

When b = 7, we have that the middle column is less than the right column, thus the condition

C+(B) is false for this choice of B.

We make the interesting observation that this condition is combinatorial, not arithmetic.

That is, given the number k of prime factors of n, we can compute all sets B such that C±(B)

is true. For example, if we write the first set B in terms of the indices of the prime factors of

n, such that B = {{0}, {1}, {1, 2}} we can determine whether C+(B) is true without knowing

the values of the prime factors.

b # {c ∈ B+ | b ⊂ c} # {c ∈ B− | b ⊂ c}

{0} 2 1

{1} 1 1

{2} 1 0

{1, 2} 1 0

This is all to say that the condition C±(B) in ε±(n) does not need to be checked for every choice

of B; rather, the sets B such that B ( n \ {n} and C±(B) can be predetermined given k.
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3.3 Quality

3.3.1 Quality of special bounds

The following graphs in Figure 3.2 show how often the lower bound is equal to the size of the

maximum gap.

f+(b) f−(b)

f+(b) =
# {n < b : g(Φn) = max{α+(n), β+(n), γ+(n)}}
# {n < b}

f−(b) =
# {n < b : g(Ψn) = max{α−(n), β−(n), γ−(n), δ−(n)}}
# {n < b}

Figure 3.2 Plots of how often the size of the maximum gap is equal to one of the special lower bounds

In the above graphs, f+(15013) = 0.9829 and f−(15013) = 0.9984.

3.3.2 Quality of general bound

The following graphs in Figure 3.3 show how often the lower bound is equal to the size of the

maximum gap.
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f+(b) f−(b)

f+(b) =
#{n < b : g(Φn) = ε+(n)}
#{n < b}

f−(b) =
#{n < b : g(Ψn) = ε−(n)}
#{n < b}

Figure 3.3 Plots of how often the size of the maximum gap is equal to the general bound

In the above graphs, f+(15013) = 0.9957 and f−(15013) = 0.9984.

3.4 Proof

In this section, we prove the main results (Theorems 3.1, 3.2, 3.3, 3.4 and 3.5). We will first prove

the general lower bound ε± (Theorem 3.5). Then we will prove the three special lower bounds

α±, β± and γ± (Theorems 3.1, 3.2, and 3.3) as certain restrictions of Theorem 3.5. Although δ−

(Theorem 3.4) can be proven in the same manner, we prove it in a different (simpler) manner.

In order to simplify the presentation of the proof, we introduce some notations.

Notation 3.2.

nr = p1 ∙ ∙ ∙ pr l±(B) =
∑

d∈B

±μ (n/d) d

3.4.1 Proof of general bound

Recall

ε±(n) = max
B(n\{n}
C±(B)

(

min(n \ {n} \B) −
∑

d∈B

±μ (n/d) d

)
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where

C±(B) ⇔ ∀d ∈ B #(B± ∩ d) ≥ #(B∓ ∩ d)

The idea of the proof is as follows (we will explain the process for the cyclotomic polynomial;

the proof for the inverse cyclotomic polynomial is analogous):

1. Recall that

Φn =
∏

d∈n

(
xd − 1

)μ(n/d)

2. We choose B ⊂ n and split Φn accordingly

Φn =
∏

d∈B

(
xd − 1

)μ(n/d) ∏

d∈n\B

(
xd − 1

)μ(n/d)

The condition C+(B) ensures that the first product is a polynomial.

3. We write Φn as follows (ignoring the signs of each term)

Φn = G+ + xu + xu+1H

where G+ =
∏

d∈B

(
xd − 1

)μ(n/d)
, u = min (n \ {n} \B), and H is some polynomial.

4. If u > deg(G+), then there is a gap in Φn between xdeg(G+) and xu.

5. Note that deg(G+) =
∑

b∈B μ(n/d) d. Thus g(Φn) ≥ min (n \ {n} \B)−
∑

b∈B μ(n/d)d

6. Taking the maximum over all sets B satisfying C+(B) gives us ε+(n), our first lower bound

for Φn.

We break the proof into several lemmas.

Notation 3.3. Let

FC :=
∏

c∈C

(xc − 1)
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and F (C) = 1 if C = ∅.

Lemma 3.1. We have that
FB±

FB∓
is a polynomial if

C±(B) = true

B ⊂ n

Proof. Let C ⊂ n. Consider the following equalities.

FC =
∏

c∈C

(xc − 1) =
∏

c∈C

∏

d|c

Φd =
∏

d∈n

∏

c∈C
d|c

Φd =
∏

d∈n

Φ#{c∈C : d|c}
d =

∏

d∈n

Φ#(C∩d)
d

Thus

FB±

FB∓
=

∏

d∈n

Φ#(B±∩d)
d

∏

d∈n

Φ#(B∓∩d)
d

=
∏

d∈n

Φ#(B±∩d)−#(B∓∩d)
d

Note that for d ∈ n \B, we have #(B+ ∩ d) = 0 and #(B− ∩ d) = 0. Thus,

FB±

FB∓
=
∏

d∈B

Φ#(B±∩d)−#(B∓∩d)
d

Recall C±(B) ⇐⇒ ∀d ∈ B #(B± ∩ d) ≥ #(B∓ ∩ d). Therefore,
FB±

FB∓
is a polynomial.

Lemma 3.2. We have

P± ≡xmin(A)+1 ±






−(−1)|A|G± − xmin(A) if min (A) ∈ A±

−(−1)|A|G± + xmin(A) if min (A) ∈ A∓
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where

P± =
Fn± F{n}∓

Fn∓

G± =
FB±

FB∓

A ]B = n \ {n}

A 6= ∅

C±(B) = true

|B| = #{b ∈ B}

and the notation � ≡xmin(A)+1 4 stands for xmin(A)+1|�−4.

Proof. For simplicity, in the rest of this proof we will use u instead of min(A). Since A 6= ∅,

min(A) is defined. Note

Fn∓ P± = Fn± F{n}∓

F{n}∓ FA∓ FB∓ P± = FA± FB± F{n}± F{n}∓

Case: u ∈ A±. Since u = min A we have

FA±\{u} ≡xu+1 (−1)|A
±|−1

FA∓ ≡xu+1 (−1)|A
∓|

F{n}± ≡xu+1 (−1)|{n}
±|

F{n}∓ ≡xu+1 (−1)|{n}
∓|

Thus

FB∓ P± ≡xu+1 (−1)|A|−1+|{n}±|(xu − 1) FB±
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Since C±(B), by Lemma 3.1 we have

FB∓ P± ≡xu+1 (−1)|A|−1+|{n}±|(xu − 1) FB∓ G±

Note that 0 is the only root of xu+1 and FB∓(0) = (−1)|B
∓|. Hence gcd(FB∓ , xu+1) = 1.

Thus we can cancel FB∓ from both sides, obtaining

P± ≡xu+1 (−1)|A|−1+|{n}±|(xu − 1)G±

≡xu+1 −(−1)|A|−1+|{n}±|G± + (−1)|A|−1+|{n}±|xuG±

Note that G±(0) = (−1)|B|. Thus we have

P± ≡xu+1 −(−1)|A|−1+|{n}±|G± + (−1)|A|−1+|{n}±|+|B|xu

≡xu+1 (−1)−1+|{n}±|
(
−(−1)|A|G± + (−1)|A|+|B|xu

)

≡xu+1 ±
(
−(−1)|A|G± + (−1)2

k−1xu
)

≡xu+1 ±
(
−(−1)|A|G± − xu

)

which proves the lemma.

Case: u ∈ A∓. Since u = min A we have

FA± ≡xu+1 (−1)|A
±|

FA∓\{u} ≡xu+1 (−1)|A
∓|−1

F{n}± ≡xu+1 (−1)|{n}
±|

F{n}∓ ≡xu+1 (−1)|{n}
∓|
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Thus

(xu − 1)FB∓ ∙ P± ≡xu+1 (−1)|A|−1+|{n}±|FB±

Since C±(B), by Lemma 3.1 we have

(xu − 1)FB∓ ∙ P± ≡xu+1 (−1)|A|−1+|{n}±|FB∓ ∙G±

Note that 0 is the only root of xu+1 and FB∓(0) = (−1)|B
∓|. Hence gcd(FB∓ , xu+1) = 1.

Thus we can cancel FB∓ from both sides, obtaining

(xu − 1) P± ≡xu+1 (−1)|A|−1+|{n}±|G±

Multiplying both sides by (xu + 1), we have

(xu + 1)(xu − 1)P± ≡xu+1 (xu + 1)(−1)|A|−1+|{n}±|G±

(x2u − 1)P± ≡xu+1 (−1)|A|−1+|{n}±|G± + (−1)|A|−1+|{n}±|xuG±

−P± ≡xu+1 (−1)|A|−1+|{n}±|G± + (−1)|A|−1+|{n}±|xuG±

P± ≡xu+1 −(−1)|A|−1+|{n}±|G± − (−1)|A|−1+|{n}±|xuG±

Note that G±(0) = (−1)|B|. Thus we have

P± ≡xu+1 −(−1)|A|−1+|{n}±|G± − (−1)|A|−1+|{n}±|+|B|xu

≡xu+1 (−1)−1+|{n}±|
(
−(−1)|A|G± − (−1)|A|+|B|xu

)

≡xu+1 ±
(
−(−1)|A|G± − (−1)2

k−1
xu
)

≡xu+1 ±
(
−(−1)|A|G± + xu

)

which proves the lemma.
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Proof of Theorem 3.5-(1). Using the same notation as in Lemma 3.2, note

P+ = Φn

Let A and B be such that A ]B = n \ {n}, A 6= ∅, and C+(B). By Lemma 3.2, we have

Φn = +






−(−1)|A|G+ − xmin(A) + xmin(A)+1H if min (A) ∈ A+

−(−1)|A|G+ + xmin(A) + xmin(A)+1H if min (A) ∈ A−

for some polynomial H. Note

deg G+ = deg

(
FB+

FB−

)

=
∑

d∈B+

d−
∑

d∈B−

d =
∑

d∈B

μ (n/d) d = l+(B)

If min(A) ≤ l+(B), then clearly

g(Φn) ≥ min(A)− l+(B)

If min(A) > l+(B), then xl+(B) and xmin(A) appear in Φn, so we have

g(Φn) ≥ min(A)− l+(B)

Thus

g(Φn) ≥ max
A]B=n\{n}

A 6=∅
C+(B)

min(A)− l+(B) = max
B(n\{n}
C+(B)

(

min(n \ {n} \B) −
∑

d∈B

μ (n/d) d

)

= ε+(n)

The theorem has been proved.
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Proof of Theorem 3.5-(2). Using the same notation as in Lemma 3.2, note

P− = Ψn

Let A and B be such that A ]B = n \ {n}, A 6= ∅, and C−(B). By Lemma 3.2, we have

Ψn = −






−(−1)|A|G− − xmin(A) + xmin(A)+1H if min (A) ∈ A−

−(−1)|A|G− + xmin(A) + xmin(A)+1H if min (A) ∈ A+

for some polynomial H. Note

deg G− = deg

(
FB−

FB+

)

=
∑

d∈B−

d−
∑

d∈B+

d =
∑

d∈B

−μ (n/d) d = l−(B)

If min(A) ≤ l−(B), then clearly

g(Ψn) ≥ min(A)− l−(B)

If min(A) > l−(B), then xl−(B) and xmin(A) appear in Ψn, so we have

g(Ψn) ≥ min(A)− l−(B)

Thus

g(Ψn) ≥ max
A]B=n\{n}

A 6=∅
C−(B)

min(A)−l−(B) = max
B(n\{n}
C−(B)

(

min(n \ {n} \B) −
∑

d∈B

−μ (n/d) d

)

= ε−(n)

The theorem has been proved.
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3.4.2 Proof of special bounds

We will first prove the lower bounds α±, β± and γ±, which are all proved in a similar manner.

We will then prove δ− in a different manner.

We prove the lower bounds α±, β± and γ± by restricting the choice of B as mentioned in

Section 5.1. Recall that the restrictions of B for are very similar. To handle them all at the

same time, we will use the following uniform notation

Ωjr =
{

c ∈ nj : ω (c) < r
}

Note that B for α±, β± and γ± can be compactly written as B = Ωr−1,r, B = Ωrr and B = Ωkr

respectively. In the following three lemmas, we will show that C± (Ωjr) holds. Recall that

C±(Ωjr) ⇔ ∀d ∈ Ωjr #(Ω±
jr ∩ d) ≥ #(Ω∓

jr ∩ d)

The outline of the proof is as follows:

1. Given d ∈ Ωjr and s ∈ {+,−} we show that #(Ωs
jr ∩ d) can be written as a sum of

binomial coefficients.

2. Using a telescoping sum property of binomial coefficients, we show #(Ω±
jr∩d)−#(Ω∓

jr∩d)

is non-negative

Lemma 3.3. We have, for s ∈ {+,−}, that

#
(
Ωs

jr ∩ d
)

=
∑

0≤i<r−ω(d)
ρ(i)=sρ(k−ω(d))

(
j − ω (d)

i

)

for 1 ≤ r < k, r − 1 ≤ j ≤ k and d ∈ Ωjr.
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Proof. Note

#
(
Ωs

jr ∩ d
)

= #
{
c ∈ nj : ω (c) < r, μ(n/c) = s, d | c

}

= #
{
ld ∈ nj : ω (ld) < r, μ(n/ (ld)) = s

}

= #
{
l ∈ nj/d : ω(l) < r − ω (d) , μ(l) = sμ (n/d)

}

Note

sμ (n/d) = sρ (k − ω (d))

Thus

#
(
Ωs

jr ∩ d
)

= #
⊎

0≤i<r−ω(d)
ρ(i)=sρ(k−ω(d))

{
l ∈ nj/d : ω(l) = i

}

=
∑

0≤i<r−ω(d)
ρ(i)=sρ(k−ω(d))

#
{

l ∈ nj/d : ω(l) = i
}

=
∑

0≤i<r−ω(d)
ρ(i)=sρ(k−ω(d))

(
ω (nj/d)

i

)

=
∑

0≤i<r−ω(d)
ρ(i)=sρ(k−ω(d))

(
j − ω (d)

i

)

which proves the lemma.

Lemma 3.4 (Telescoping sum). We have

∑

0≤i≤u

ρ(i)

(
t

i

)

=






ρ(u)
(
t−1
u

)
if t ≥ 1

1 if t = 0
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Proof. When t ≥ 1, we have

∑

0≤i≤u

ρ(i)

(
t

i

)

=
∑

0≤i≤u

ρ(i)

(
t− 1
i− 1

)

+
∑

0≤i≤u

ρ(i)

(
t− 1

i

)

= −
∑

−1≤i≤u−1

ρ(i)

(
t− 1

i

)

+
∑

0≤i≤u

ρ(i)

(
t− 1

i

)

= −ρ (−1)

(
t− 1
−1

)

+ ρ (u)

(
t− 1

u

)

= ρ(u)

(
t− 1

u

)

When t = 0, we have

∑

0≤i≤u

ρ(i)

(
t

i

)

= ρ (0)

(
0
0

)

+
∑

1≤i≤u

ρ(i)

(
0
i

)

= 1 + 0 = 1

Lemma 3.5. We have C±(Ωjr) for 1 ≤ r < k, ρ(k − r) = ∓1 and r − 1 ≤ j ≤ k.

Proof. Recall

C±(Ωjr) ⇐⇒ ∀d ∈ Ωjr #
(
Ω±

jr ∩ d
)
≥ #

(
Ω∓

jr ∩ d
)

Note

#
(
Ω±

jr ∩ d
)
−#

(
Ω∓

jr ∩ d
)

=
∑

0≤i<r−ω(d)
ρ(i)=±ρ(k−ω(d))

(
j − ω (d)

i

)

−
∑

0≤i<r−ω(d)
ρ(i)=∓ρ(k−ω(d))

(
j − ω (d)

i

)

by Lemma 3.3

=
∑

0≤i<r−ω(d)
ρ(i)=−ρ(k−r)ρ(k−ω(d))

(
j − ω (d)

i

)

−
∑

0≤i<r−ω(d)
ρ(i)=+ρ(k−r)ρ(k−ω(d))

(
j − ω (d)

i

)

since ρ (k − r) = ∓1
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=
∑

0≤i<r−ω(d)
ρ(i)=−ρ(r−ω(d))

(
j − ω (d)

i

)

−
∑

0≤i<r−ω(d)
ρ(i)=+ρ(r−ω(d))

(
j − ω (d)

i

)

=
∑

0≤i<r−ω(d)

−ρ (r − ω (d)) ρ (i)

(
j − ω (d)

i

)

= −ρ (r − ω (d))
∑

0≤i<r−ω(d)

ρ (i)

(
j − ω (d)

i

)

= −ρ (r − ω (d))






ρ (r − ω (d)− 1)
(j−ω(d)−1
r−ω(d)−1

)
if j − ω (d) ≥ 1

1 if j − ω (d) = 0
by Lemma 3.4

=






−ρ (r − ω (d)) ρ (r − ω (d)− 1)
(j−ω(d)−1
r−ω(d)−1

)
if j − ω (d) ≥ 1

−ρ (r − ω (d)) if j − ω (d) = 0

=






(j−ω(d)−1
r−ω(d)−1

)
if j − ω (d) ≥ 1

−ρ (r − ω (d)) if j − ω (d) = 0

Consider the case j−ω (d) = 0: Since r−1 ≤ j = ω (d) ≤ r−1, we have ω (d) = r−1. Therefore

we have

#
(
Ω±

jr ∩ d
)
−#

(
Ω∓

jr ∩ d
)

=






(j−ω(d)−1
r−ω(d)−1

)
if j − ω (d) ≥ 1

−ρ (1) if j − ω (d) = 0

=






(j−ω(d)−1
r−ω(d)−1

)
if j − ω (d) ≥ 1

1 if j − ω (d) = 0

≥ 0

which proves the lemma.

Now that we have shown that C±(Ωjr) holds, we restrict our choice of B in ε± to Ωjr and

simplify the expression.
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Lemma 3.6. We have, for r − 1 ≤ j ≤ k,

ε±(n) ≥ max
1≤r<k

ρ(k−r)=∓1








min {pj+1, nr} −
∑

d|nj

ω(d)<r

±μ (n/d) d








where pk+1 is viewed as ∞.

Proof. Note

ε±(n) = max
B(n\{n}
C±(B)

(
min(n \ {n} \B) − l±(B)

)

≥ max
B(n\{n}
C±(B)
1≤r<k

ρ(k−r)=∓1
B=Ωjr

min(n \ {n} \ Ωjr)− l±(Ωjr) by restricting the choice of B to Ωjr

= max
1≤r<k

ρ(k−r)=∓1
C±(Ωjr)

min (n \ {n} \ Ωjr)− l± (Ωjr)

= max
1≤r<k

ρ(k−r)=∓1

min (n \ {n} \ Ωjr)− l± (Ωjr) by Lemma 3.5

Note

min (n \ {n} \ Ωjr) = min (n \ {n} \ Ωjr)

= min (n \ {n} \ {c : c|nj , ω (c) < r})

= min {c : c|n, c 6= n and (c - nj or ω (c) ≥ r)}

= min
(
min {c : c|n, c 6= n and c - nj} , min {c : c|n, c 6= n and ω (c) ≥ r}

)

= min

(

min

{

c : c|n, c 6= n and ∃
i≥j+1

pi|c

}

, nr

)

= min {pj+1, nr}
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Note

l± (Ωjr) =
∑

d∈Ωjr

±μ (n/d) d =
∑

d∈nj

ω(d)<r

±μ (n/d) d

Hence

ε±(n) ≥ max
1≤r<k

ρ(k−r)=∓1








min {pj+1, nr} −
∑

d∈nj

ω(d)<r

±μ (n/d) d








Lemma 3.7. We have

ϕ (nr) =
∑

d|nr

μ (nr/d) d

Proof. Note

ϕ (nr) = (p1 − 1) ∙ ∙ ∙ (pr − 1) = (−1)r (1− p1) ∙ ∙ ∙ (1− pr) = (−1)r
∑

d|nr

μ (d) d =
∑

d|nr

μ (nr/d) d

To prove that α± is a lower bound, we set j = r−1 as mentioned earlier, and then simplify.

Proof of Theorem 3.1. We set j = r − 1. Note

ε±(n) ≥ max
1≤r<k

ρ(k−r)=∓1





min {pr−1+1, nr} −

∑

d|nr−1

ω(d)<r

±μ (n/d) d





 by Lemma 3.6

Note that

min {pr−1+1, nr} = min {pr, nr} = pr

52



Note that

∑

d|nr−1

ω(d)<r

±μ (n/d) d =
∑

d|nr−1

±μ (n/d) d

=
∑

d|nr−1

±μ (n/nr−1) μ (nr−1/d) d

=
∑

d|nr−1

±1 ∙ ±1μ (nr−1/d) d

=
∑

d|nr−1

μ (nr−1/d) d

= ϕ (nr−1) by Lemma 3.7

Thus

ε±(n) ≥ max
1≤r<k

ρ(k−r)=∓1

(pr − ϕ (nr−1)) = max
1≤r<k

ρ(k−r)=∓1

(pr − ϕ (p1 ∙ ∙ ∙ pr−1)) = α±(n)

Hence

g(Φn) ≥ ε+(n) ≥ α+(n)

g(Ψn) ≥ ε−(n) ≥ α−(n)

The theorem has been proved.

To prove that β± is a lower bound, we set j = r as mentioned earlier, and then simplify.
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Proof of Theorem 3.2. We set j = r. Note

ε±(n) ≥ max
1≤r<k

ρ(k−r)=∓1








min {pr+1, nr} −
∑

d∈nr

ω(d)<r

±μ (n/d) d








by Lemma 3.6

Note that

∑

d∈nr

ω(d)<r

±μ (n/d) d =
∑

d∈nr\{nr}

±μ (n/nr) μ (nr/d) d

=
∑

d∈nr\{nr}

±1 ∙ ∓1 ∙ μ (nr/d) d

= −
∑

d∈nr\{nr}

μ (nr/d) d

= μ (nr/nr) nr −
∑

d∈nr

μ (nr/d) d

= nr −
∑

d|nr

μ (nr/d) d

= nr − ϕ (nr) by Lemma 3.7

= ψ(nr)

Thus

ε±(n) ≥ max
1≤r<k

ρ(k−r)=∓1

(min {pr+1, nr} − ψ(nr))

= max
1≤r<k

ρ(k−r)=∓1

(min {pr+1, p1 ∙ ∙ ∙ pr} − ψ(p1 ∙ ∙ ∙ pr))

= β±(n)
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Hence

g(Φn) ≥ ε+(n) ≥ β+(n)

g(Ψn) ≥ ε−(n) ≥ β−(n)

The theorem has been proved.

To prove that γ± is a lower bound, we set j = k as mentioned earlier, and then simplify.

Proof of Theorem 3.3. We set j = k. Note

ε±(n) ≥ max
1≤r<k

ρ(k−r)=∓1





min {pk+1, nr} −

∑

d∈n
ω(d)<r

±μ (n/d) d





 by Lemma 3.6

Note

min {pk+1, nr} = min {∞, nr} = nr

Thus

ε±(n) ≥ max
1≤r<k

ρ(k−r)=∓1





nr −

∑

d∈n
ω(d)<r

±μ (n/d) d







= max
1≤r<k

ρ(k−r)=∓1





p1 ∙ ∙ ∙ pr −

∑

d|n
ω(d)<r

±μ (n/d) d







= γ±(n)

Hence

g(Φn) ≥ ε+(n) ≥ γ+(n)
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g(Ψn) ≥ ε−(n) ≥ γ−(n)

The theorem has been proved.

It is possible to prove Theorem 3.4 in a similar way to the last three theorems, by restricting

B as mentioned in Section 5.1, that is,

B = {d : d|p1 ∙ ∙ ∙ pk and ω (d) < k and d 6= p2 ∙ ∙ ∙ pk}

However, it is simpler to prove it in a different way. We show that Ψn can be written as the

sum of a polynomial with that same polynomial, shifted. When the shift is large enough, a gap

appears in the middle of Ψn.

Lemma 3.8. We have

Ψn(x) = H(x)
(
x

n
p1 − 1

)

where H(x) = Φnk−1

(
x

n
nk

)
Φnk−2

(
x

n
nk−1

)
∙ ∙ ∙Φn1

(
x

n
n2

)
.

Proof. Recall the well known property of cyclotomic polynomials

Φnp(x) =
Φn(xp)
Φn(x)

where p is a prime and not a factor of n. In terms of the inverse cyclotomic polynomial, it can

be immediately restated as

Ψnp(x) = Φn(x)Ψn(xp)

Repeatedly applying the above equality on Ψn(x), we have

Ψn(x) = Φnk−1

(
x

n
nk

)
Ψnk−1

(
x

n
nk−1

)

= Φnk−1

(
x

n
nk

)
Φnk−2

(
x

n
nk−1

)
Ψnk−2

(
x

n
nk−2

)
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= ∙ ∙ ∙

= Φnk−1

(
x

n
nk

)
Φnk−2

(
x

n
nk−1

)
∙ ∙ ∙Φn1

(
x

n
n2

)
Ψn1

(
x

n
p1

)

= H(x) Ψn1

(
x

n
p1

)

Recall that for a prime p, we have

Ψp(x) = x− 1

Hence

Ψn(x) = H(x)
(
x

n
p1 − 1

)

Proof of Theorem 3.4. From Lemma 3.8 we have

Ψn(x) = H(x)
(
x

n
p1 − 1

)

= −H(x) + H(x) ∙ x
n
p1

Note

deg (H(x)) = ψ(n)−
n

p1

tdeg
(
H(x) ∙ x

n
p1

)
=

n

p1

We have
n

p1
−

(

ψ(n)−
n

p1

)

= 2
n

p1
− ψ(n) = δ−(n)

If δ−(n) ≤ 0, then there is nothing to show. If δ−(n) > 0 then there is a gap in Ψn(x) between

x
ψ(n)− n

p1 and x
n
p1 . Therefore

g(Ψn) ≥ δ−(n)
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The theorem has been proved.

3.5 Complexity

In this section, we analyze the bit time complexity of the special lower bounds and the general

lower bound. We will see that the general lower bound ε± has a very large computational

complexity, so we introduce a new general lower bound, ε̃± which is defined as follows:

ε̃±(n) = max
b∈n±

B=n±
b ∪(n±

b )∓

C±(B)

(

min (n \ {n} \B)−
∑

d∈B

±μ (n/d) d

)

where Ab = {a ∈ A : a < b}. We conjecture that ε±(n) = ε̃±(n) for all n. We have verified

this conjecture for all n ≤ 15015. Thus we also analyze the complexity of ε̃±, which we observe

to be much less than that of ε±.

Table 3.2 below is a summary of the bit time complexities of the various computations.
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Table 3.2 Time complexities

computation complexity

Φn O
(
2kL
)

operations over Z [2]

Ψn O
(
2kL
)

operations over Z [2]

α± O
(
k2L2

)

β± O
(
k2L2

)

γ± O
(
2(1+ν)kL2

)

δ− O
(
kL2

)

ε± O
(
2(1+ν)2k

L2
)

ε̃± O
(
2(3+ν)kL2

)

In the above table, ν > 0 is an arbitrarily small number (note that we cannot use the conven-

tional ε since it is already used to denote the lower bound). Observe that the time it takes to

compute Φn is exponential in both k and L. However, recall from Chapter 2 Section 2.5 that

this was an optimistic estimate, since [2] only provides the number of operations in Z, and does

not take into account the lengths of the integers in intermediate steps. Thus if one takes them

into account the actual time complexity could be even larger.

Since α±, β± and δ− are linear or quadratic in k and quadratic in L, we observe that they

are much faster to compute. For γ±, ε± and ε̃±, we consider the time complexities when each

of k and L is fixed. When k is fixed, Φn and Ψn are exponential in L and γ±, ε± and ε̃± are

quadratic in L. Thus in this case, they are much faster to compute. When L is fixed, it is more

difficult to compare the time it takes to compute the lower bounds and Φn and Ψn. However,

note that when L, which is the length of the largest prime, is fixed, k is dependent on L and

cannot grow arbitrarily large. We will not get into that discussion here, since it involves a deeper

59



examination into the distribution of prime numbers. However, note that it is more common in

practice for k, the number of prime factors, to be fixed, and the length of the largest prime to

be allowed to grow larger. Thus, in that sense, our lower bounds are much faster to compute

than direct computation of the cyclotomic polynomial.

We also remark that the complexities of the lower bounds are based on “brute force” imple-

mentations of the formulas. It is likely that the complexities can be reduced by using “smarter”

implementations.

Before we get into the formal analysis of the time complexity of the lower bounds, we first

state the following assumptions that we make to account for the asymptotically worst case:

1. We assume that all primes in the factorization of n are equal to the largest prime. There-

fore, we assume that the bit length of every prime is equal to the bit length of the largest

prime, that is, log2(pi) = L for all 1 ≤ i ≤ k where L = max1≤i≤k log2(pi). This implies

pi = 2L for all 1 ≤ i ≤ k. It follows that

n = p1 ∙ ∙ ∙ pk = 2L ∙ ∙ ∙ 2L =
(
2L
)k

= 2kL

log2(n) = log2(2
kL) = kL

2. When we take the maximum over 1 ≤ r < k, ρ(k − r) = ∓1, we take the maximum over

1 ≤ r ≤ k − 1.

3.5.1 Complexity of shared operations

We list the time complexities for some important operations

1. Compute all divisors of n = p1 ∙ ∙ ∙ pk. The following shows the time complexity of com-

puting all the divisors with a given number of prime factors.
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divisors time to compute

{p1, . . . , pk} 0

{p1p2, . . . , pk−1pk}
(
k
2

)
L2

{p1p2p3, . . . , pk−2pk−1pk}
(
k
3

)
2L2

∙ ∙ ∙

{p1 ∙ ∙ ∙ pk−1, . . . , p2 ∙ ∙ ∙ pk}
(

k
k−1

)
(k − 2)L2

n 0

Summing all of these, we get

(
k−1∑

i=2

(
k

i

)

(i− 1)

)

L2 = (k − 2)
(
2k−1 − 1

)
L2

Thus the time to compute all the divisors of n is O
(
k2kL2

)
. We make an important

note here that when we compute n, we will also compute a graph showing the divisor

relationships between the elements in n. The nodes of the graph will be the elements of n

and the edges are the divisor relations. Two nodes will be joined by an edge if one element

is a divisor of the other. When doing this, we can also determine whether a divisor is in

n+ or n−. Doing so will not take any more computational time and it will allow us to

simplify our computations later on in our analysis.

2. Sort n. The number of comparisons required to do this is O
(
2k log(2k)

)
, and the time

to compute each of those operations will be the length of the largest number we are

comparing, which is kL. Thus we have that the worst case computing time for sorting n,

Tsort(k, L), is given by the following

Tsort(k, L) = O
(
2k log(2k)kL

)
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Tsort(k, L) = O
(
k22kL

)

Therefore, the time complexity for sorting the divisors is O
(
k22kL

)
.

3.5.2 Complexity of lower bounds

Table 3.3 below is a summary of the complexities of the lower bounds.

Table 3.3 Time complexities of the lower bounds

computation complexity

α± O
(
k2L2

)

β± O
(
k2L2

)

γ± O
(
2(1+ν)kL2

)

δ− O
(
kL2

)

ε± O
(
2(1+ν)2k

L2
)

ε̃± O
(
2(3+ν)kL2

)

We give an informal interpretation of the above results, discussing those computations which

dominate the complexity:

• For bounds α± and β±, we take the maximum over k elements. To compute the numbers

of which we are taking the maximum we continually multiply prime factors of n, which

gives us O
(
kL2

)
. Thus, in total, we get O

(
k2L2

)
.

• For γ±, we compute all divisors of n, which gives us k2kL2. We then add and subtract

them, which gives us another factor of k in the complexity. Thus we get the time com-

plexity O
(
k22kL2

)
, or O

(
2(1+ν)kL2

)
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• To compute δ−, we are not taking the maximum over anything. Essentially, we continually

multiply prime factors of n, as we did in α± and β±, which gives us O
(
kL2

)
.

• To compute ε±, we compute all divisors of n, which gives us O
(
k2kL2

)
. The comparing

and adding numbers gives us an extra 2k term. The computation that dominates the

computation of this lower bound is taking the maximum over 22k
numbers. Thus we get

O
(
k22k+2kL2

)
, or O

(
2(1+ν)2k

L2
)

• To compute ε̃±, the main operations we perform are to compute n, sort n, compare

elements in n and add elements of n. All of these combined gives us O
(
k222kL2

)
. Taking

the maximum over 2k elements gives us an extra 2k factor in the complexity, so we end

up with O
(
k223kL2

)
, or O

(
2(3+ν)kL2

)

3.5.2.1 α±

Recall

α±(n) = max
1≤r<k

ρ(k−r)=∓1

(pr − ϕ(p1 ∙ ∙ ∙ pr−1))

1. We compute ϕ(p1 ∙ ∙ ∙ pr−1) for all 1 ≤ r ≤ k − 1. The following shows the computational

time for each value of r.
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r ϕ(p1 ∙ ∙ ∙ pr−1) time to compute ϕ(p1 ∙ ∙ ∙ pr−1)

1 1 0

2 ϕ(p1) = p1 − 1 0

3 ϕ(p1p2) = ϕ(p1)(p2 − 1) L2

4 ϕ(p1p2p3) = ϕ(p1p2)(p3 − 1) 2L2

5 ϕ(p1p2p3p4) = ϕ(p1p2p3)(p4 − 1) 3L2

∙ ∙ ∙

k − 1 ϕ(p1 ∙ ∙ ∙ pk−2) = ϕ(p1 ∙ ∙ ∙ pk−3)(pk−2 − 1) (k − 3)L2

For each value of r, we multiply ϕ(p1 ∙ ∙ ∙ pr−2), which has length (r− 2)L, and (pr−1− 1),

which has length L, so the time to compute ϕ(p1 ∙ ∙ ∙ pr−1) is (r − 2)L2.

Summing all of these, we get

k−3∑

r=1

rL2 =
(k − 3)(k − 4)

2
L2 = O

(
k2L2

)

2. We subtract pr and ψ(p1 ∙ ∙ ∙ pr−1). We assume that the largest length of two numbers we

are subtracting is kL. Thus the subtraction will take O(kL) time. Since we do this for all

1 ≤ r ≤ k − 1, in total, this will take O
(
k2L

)
time.

3. We take the maximum over r. We assume that we have k things to take the maximum

of, each with bit length kL. It will take O
(
k2L

)
time to compute the maximum.

Combining all of the time complexities, we get that the complexity of computing α± is

O
(
k2L2

)
.
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3.5.2.2 β±

β±(n) = max
1≤r<k

ρ(k−r)=∓1

(min {pr+1, p1 ∙ ∙ ∙ pr} − ψ(p1 ∙ ∙ ∙ pr))

1. We compute p1 ∙ ∙ ∙ pr and ψ(p1 ∙ ∙ ∙ pr) for all 1 ≤ r ≤ k − 1. The following shows the

computation time for each value of r. Recall that ψ(n) = n− ϕ(n).

r p1 ∙ ∙ ∙ pr ϕ(p1 ∙ ∙ ∙ pr) time to compute ψ(p1 ∙ ∙ ∙ pr)

1 p1 p1 − 1 0

2 p1p2 ϕ(p1)(p2 − 1) L2 + L2 = 2L2

3 p1p2p3 ϕ(p1p2)(p3 − 1) 2L2 + 2L2 = 4L2

4 p1p2p3p4 ϕ(p1p2p3)(p4 − 1) 3L2 + 3L2 = 6L2

∙ ∙ ∙

k − 1 p1 ∙ ∙ ∙ pk−1 ϕ(p1 ∙ ∙ ∙ pk−2)(pk−1 − 1) (k − 2)L2 + (k − 2)L2 = 2(k − 2)L2

Summing all of these, we get

k−2∑

r=1

2rL2 = 2
(k − 2)(k − 3)

2
L2 = O

(
k2L2

)

2. We take the minimum of pr+1 and p1 ∙ ∙ ∙ pr. We have two things to take the maximum of

and we assume that the largest length of the two is kL. Thus taking the maximum will

take O(kL) time. Since we do this for all 1 ≤ r ≤ k − 1, in total, this will be O(k2L).

3. We subtract the minimum of pr+1 and p1 ∙ ∙ ∙ pr and ψ(p1 ∙ ∙ ∙ pr). We assume that the

largest length of two numbers we are subtracting is kL. Thus the subtraction will be

O(kL). Since we do this for all 1 ≤ r ≤ k − 1, in total, this will be O
(
k2L

)
.
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4. Finally, we take the maximum over all 1 ≤ r ≤ k − 1. We assume that we are taking the

maximum of k numbers, each of which have length kL. This will be O
(
k2L

)
.

Combining all of the time complexities, we see that the complexity of computing β± is

O
(
k2L2

)
.

3.5.2.3 γ±

γ±(n) = max
1≤r<k

ρ(k−r)=∓1





p1 ∙ ∙ ∙ pr −

∑

d|n
ω(d)<r

±μ (n/d) d







1. We compute the divisors of n which is O
(
k2kL2

)
.

2. We order the divisors of n based on their number of prime factors. That is, we order

all divisors with one prime factor, two prime factors, and so on. The time that takes is

O
(
k22kL

)
.

3. We do the following operations for all 1 ≤ r ≤ k − 1

(a) We compute p1 ∙ ∙ ∙ pr. This will not take any time since these numbers were already

calculated when we found the divisors of n.

(b) We find the alternating sum
∑

d|n
ω(d)<r

μ (n/d) d. We calculate this in the following

manner: Consider the largest d such that μ(n/d) = +1. Subtract divisors e of n such

that μ(n/e) = −1 up until the point where the difference would be less than zero.

Note that the resulting number, call it s1, will be less than n. Then add to s1 the

next largest number d such that μ(n/d) = +1. Since d < n, the resulting sum will

be less than 2n. Again, subtract divisors e of n such that μ(n/e) = −1 up until the

point where the difference would be less than zero. Note that the resulting number,

call it s2, will be less than n. Then add to s2 the next largest number d such that
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μ(n/d) = +1. Since d < n, the resulting sum will be less than 2n. We continue adding

and subtracting numbers in this manner until we have accounted for all divisors of n

such that ω(d) < r. In summary, what we have done is add and subtract numbers that

are never larger than 2n, and the number of additions and subtractions we perform

is at most 2k. The computational time of this is O
(
2k ∙ (2kL)

)
, or O

(
k2kL

)
.

4. We take the maximum over all 1 ≤ r ≤ k−1. We assume that we are taking the maximum

of k numbers, each of which have length kL. This will take O
(
k2L

)
.

Combining all of the time complexities, we get that the time to compute γ±, Tγ±(k, L), is

the following

Tγ±(k, L) = O
(
k2kL2 + k22kL + k(k2kL) + k2L

)

Tγ±(k, L) = O
(
k22kL2

)

Tγ±(k, L) = O
(
2(1+ν)kL2

)

for some ν > 0.

3.5.2.4 δ−

δ−(n) = 2
n

p1
− ψ(n)

In order to compute n
p1

= p2 ∙ ∙ ∙ pk, we need to compute p2, p2p3, p2p3p4 and so on. In order

to compute ψ(n), we need to compute ϕ(p1), ϕ(p1p2), ϕ(p1p2p3) and so on. We analyze the

time these take to compute in the following:
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r p2 ∙ ∙ ∙ pr ϕ(p1 ∙ ∙ ∙ pr) time to compute p2 ∙ ∙ ∙ pr and ψ(p1 ∙ ∙ ∙ pr)

1 ϕ(p1) 0

2 p2 ϕ(p1p2) 0 + L2 = L2

3 p2p3 ϕ(p1p2)(p3 − 1) L2 + 2L2 = 3L2

4 p2p3p4 ϕ(p1p2p3)(p4 − 1) 2L2 + 3L2 = 5L2

∙ ∙ ∙

k p2 ∙ ∙ ∙ pk ϕ(p1 ∙ ∙ ∙ pk−1)(pk − 1) (k − 2)L2 + (k − 1)L2 = (2(k − 1)− 1)L2

Summing all of the computational times, we get

k−1∑

r=2

(2(r − 1)− 1) L2 = (k − 2)2L2 = O
(
k2L2

)

Therefore, the complexity of computing δ− is O
(
k2L2

)
.

3.5.2.5 ε±

ε±(n) = max
B(n\{n}
C±(B)

(

min (n \ {n} \B) −
∑

d∈B

±μ (n/d) d

)

1. We compute n. The number of computations will be O
(
k2kL2

)
. Recall that when we com-

pute n, we also compute a graph showing the divisor relationships between the elements

in n.

2. We consider all proper subsets B of n \ {n}. There are 22k−1 such sets.

(a) We check the condition C±(B). Recall that to check this, for every element in B

we need to see how many elements in B± and B∓ are multiples of that element.

Since we already computed the graph of divisor relations, we do not need to do any
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arithmetic at this step. We iterate through the graph, only looking at edges. Thus

this requires at most 2k operations, and we do this for every element in B, which

will at most be 2k, so the time complexity at this step is O
(
2k2k

)
, or O

(
22k
)
.

(b) We find min (n \ {n} \B). We need to make at most 2k comparisons of numbers with

length at most kL. Thus this will be O
(
k2kL

)
.

(c) We consider now the alternating sum of elements in B. The number of computations

to compute this is the number of computations it takes to add all the elements of B.

As a worst case scenario, assume #B = #n = 2k, and the length of each number is

kL. Thus we are adding 2k numbers, each with length kL. By Lemma 2.2, the time

to compute this will be O
(
k2kL + 22k

)
.

3. We now take the maximum of 22k−1 numbers, each of which has length at most kL. This

is O
(
k22k−1L

)
.

Combining all of the above computations, we get that the time to compute ε±, Tε±(k, L) is

the following:

Tε±(k, L) = O
(
k2kL2 + 22k−1

(
22k + k2kL + k2kL + 22k

)
+ k22k−1L

)

Tε±(k, L) = O
(
k2kL2 + 22k+2k + k22k+kL + k22k+kL + 22k+2k + k22k−1L

)

Tε±(k, L) = O
(
k2kL2 + 22k+2k + k22k+kL

)

Tε±(k, L) = O
(
k22k+2kL2

)

Tε±(k, L) = O
(
2(1+ν)2k

L2
)

for some ν > 0. Therefore, the complexity of computing ε± is O
(
2(1+ν)2k

L2
)
.
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3.5.2.6 ε̃±

Let Ab = {a ∈ A : a < b}.

ε̃±(n) = max
b∈n±

B=n±
b ∪(n±

b )∓

C±(B)

(

min (n \ {n} \B)−
∑

d∈B

±μ (n/d) d

)

1. We compute n, which is O
(
k2kL2

)
.

2. We sort n, which is O
(
k22kL

)
.

3. Note that we have to do the following operations 2k−1 times.

(a) We consider the time it takes to compute B, given b.

i. First we consider all elements in n± that are less than b. To do this, we it-

erate through n±, and check if we have reached b. In the worst case, we will

have to iterate through all elements of n±, which is 2k−1. This requires at most

2k−1 operations, each taking kL. Thus, the time complexity is O
(
2k−1kL

)
, or

O
(
k2kL

)
.

ii. Then we consider the set of divisors of those elements, but only those that are

in n∓. Since we have already computed the graph of divisor relations, we do

not need to do any arithmetic at this step. We iterate through the graph, only

looking at edges from b. Thus this requires at most 2k−1 operations, so the time

complexity at this step is O
(
2k−1

)
, or O

(
2k
)
.

(b) We consider now checking the condition C±(B). Recall that to check this, for every

element in B we need to see how many elements in B± and B∓ are multiples of

that element. Since we already computed the graph of divisor relations, we do not

need to do any arithmetic at this step. We iterate through the graph, only looking
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at edges. Thus this requires at most 2k operations, and we do this for every element

in B, which will at most be 2k, so the time complexity at this step is O
(
2k2k

)
, or

O
(
22k
)
.

(c) We consider now finding min (n \ {n} \B). Note that when we found B, we could

have also found min (n \ {n} \B) without increasing the time complexity. Thus we

have a sorted set, and to find the minimum we simply need to look at the first

element. This will not take any time to do.

(d) We consider now the alternating sum of elements in B. The number of computations

to compute this is the number of computations it takes to add all the elements of B.

As a worst case scenario, assume #B = #n = 2k, and the length of each number is

kL. Thus we are adding 2k numbers, each with length kL. By Lemma 2.2, the time

to compute will be O
(
k2kL + 22k

)
.

4. We then take the maximum of 2k−1 numbers, each with length at most kL. This is

O
(
k2kL

)
.

Combining all of the above computations, we get that the time to compute ε̃±, Tε̃±(k, L),

is given by the following

Tε̃±(k, L) = O
(
k2kL2 + k22kL + 2k−1

(
k2kL + 2k + 22k + k2kL + 22k

)
+ k2kL

)

Tε̃±(k, L) = O
(
k2kL2 + k22kL + k22kL + 22k + 23k + k22kL + 23k + k2kL

)

Tε̃±(k, L) = O
(
k2kL2 + k22kL + k22kL + 23k

)

Tε̃±(k, L) = O
(
k223kL2

)

Tε̃±(k, L) = O
(
2(3+ν)kL2

)

for some ν > 0. Therefore, the complexity of computing ε̃± is O
(
2(3+ν)kL2

)
.
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Chapter 4

Exact Cyclotomic

In this chapter, we present a conjecture for an exact expression for g(Φn), along with support-

ing evidence that the conjecture is true for infinitely many families of n. We then prove the

conjecture in a specific case of the ternary cyclotomic polynomial.

Introduction

Consider Figure 4.1 below, which shows plots of g(Φn) where n = mp, m is fixed and p is an

odd prime.
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g(Φ3∙5∙p) g(Φ5∙11∙p)

g(Φ3∙5∙7∙p) g(Φ3∙7∙11∙p)

Figure 4.1 Plots of g(Φmp) for various values of m

An immediate observation in all these plots is that when p > m, we have g(Φmp) = ϕ(m).

After studying these and many more plots, we conjectured that g(Φp1∙∙∙pk
) = ϕ(p1 ∙ ∙ ∙ pk−1) if

and only if pk > p1 ∙ ∙ ∙ pk−1 (Conjecture 4.1). It is a natural generalization of the result in [23]:

g(Φp1p2) = p1 − 1 = ϕ(p1). The conjecture has been already verified for m = p1 ∙ ∙ ∙ pk−1 < 1000

and arbitrary pk (Theorem 4.3). The verification technique is based on a structural result

that g(Φmpk
) only depends on m and rem(pk,m) (Theorem 4.2). Thus, given m, we only need

to check finitely many pk values in order to check the conjecture for infinitely many pk. We

organized it into an algorithm (Algorithm 4.1) and ran it for all odd square-free m < 1000.

We prove the conjecture for a specific case of the ternary cyclotomic polynomial. Given
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n = p1p2p3 where p3 ≡p1p2 +1 and p2 ≡p1 ±1, we prove that g(Φp1p2p3) = ϕ(p1p2). This class

of the ternary cyclotomic polynomials is of particular interest because it is flat; that is, their

largest coefficient is no more than 1 in magnitude.

4.1 Main Results

Conjecture 4.1 (Equivalent condition on g(Φn)). We have

g(Φn) = ϕ(p1 ∙ ∙ ∙ pk−1) if and only if pk > p1 ∙ ∙ ∙ pk−1

Theorem 4.1 (Exact formula in certain ternary cyclotomic case). We have

g(Φp1p2p3) = ϕ(p1p2)

if p3 ≡p1p2 +1 and p2 ≡p1 ±1.

4.2 Evidence for equivalent condition on g(Φn)

Note that the conjecture is trivially true for k = 1. In [23], the conjecture is proved for k = 2.

For k ≥ 3 the conjecture is still open. One way to check (support or disprove) the conjecture is

to compute Φn for many n with k ≥ 3 and to check whether the maximum gap is ϕ(p1 ∙ ∙ ∙ pk−1)

or not. We did this for n up to 40, 000, without finding any counter-example. However, this

method only shows that the conjecture is true for finitely many such n.

In this section, we will describe an algorithm (Algorithm 4.1) which allows the conjecture to

be checked for infinitely many such n and we will report that we have done so (Theorem 4.3).

For the sake of notational simplicity, let m = p1 ∙ ∙ ∙ pk−1 and p = pk. Then the above conjecture

can be restated as: g(Φmp) = ϕ(m) if and only if p > m. The algorithm (which will be given
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later) is based on the following theorem.

Theorem 4.2 (Invariance). Let m be odd square-free. Let p, p′ > m be primes such that

p ≡m p′. Then

g(Φmp) = g(Φmp′)

Proof. Let m be odd square-free. Let p > m be prime. We will divide the proof into several

steps.

1. Let q = quo (p,m) and r = rem (p,m). Let

Φmp =
ϕ(m)−1∑

i=0

fm,p,ix
ip deg fm,p,i < p

fm,p,i =
q∑

j=0

fm,p,i,jx
jm deg fm,p,i,j < m

We recall the following results from [1]: For all 0 ≤ i ≤ ϕ(m)− 1, we have

(C1) fm,p,i,0 = ∙ ∙ ∙ = fm,p,i,q−1

(C2) fm,p,i,q = rem (fm,p,i,0, x
r)

(C3) fm,p,i,0 = fm,p′,i,0 if p ≡m p′

2. From Φmp =
∑ϕ(m)−1

i=0 fm,p,ix
ip, we have

g(Φmp) = max

{

max
0≤i≤ϕ(m)−1

g(fm,p,i), max
0≤i≤ϕ(m)−2

(p + tdeg(fm,p,i+1)− deg(fm,p,i))

}

(4.1)

3. From fm,p,i =
∑q

j=0 fm,p,i,jx
jp and (C1) and (C2), we have

g(fm,p,i) = max {g(fm,p,i,0), g(fm,p,i,q), m + tdeg(fm,p,i,0)− deg(fm,p,i,0)}

= max {g(fm,p,i,0), m + tdeg(fm,p,i,0)− deg(fm,p,i,0)} (4.2)
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4. From p− qm = r, we have

p + tdeg(fm,p,i+1)− deg(fm,p,i) =






p + tdeg(fm,p,i+1,0)− ((q − 1)m + deg(fm,p,i,0)) if fm,p,i,q = 0

p + tdeg(fm,p,i+1,0)− (qm + deg(fm,p,i,q)) else

=






r + m + tdeg(fm,p,i+1,0)− deg(fm,p,i,0) if fm,p,i,q = 0

r + tdeg(fm,p,i+1,0)− deg(rem (fm,p,i,0, x
r)) else

(4.3)

5. Combining the equalities (4.1), (4.2) and (4.3), we see g(Φmp) depends only on m, r and

fm,p,i,0.

6. Let p′ > m be a prime other than p. Then g(Φmp′) also depends only on m, r′ and fm,p′,i,0.

7. Suppose p ≡m p′. Then obviously r = r′. Furthermore from (C3), we have fm,p,i,0 =

fm,p′,i,0. Thus g(Φmp) = g(Φmp′).

The above proof can be visualized in the following example: We visualize a polynomial by

a graph where the horizonal axis stands for the exponents and the vertical axis stands for the

corresponding coefficients. Let m = 7, p = 17 and p′ = 31. Then ϕ(m) − 1 = 6, q = 2, q′ = 4

and r = 8. The partition of the coefficients of Φmp and Φmp′ into fm,p,i,j ’s is illustrated by the

following diagram. Note that the space in Φmp with no red line serves the purpose of aligning

the two polynomials; it does not represent a gap in the exponents.

Φmp:

fm,p,0,0

m

fm,p,0,1

mm

fm,p,0,2

r

p

fm,p,1,0

m

fm,p,1,1

mm

fm,p,1,2

r

p

. . . . . .

Φmp′ :

fm,p′,0,0

m

fm,p′,0,1

m

fm,p′,0,2

m

fm,p′,0,3

m

fm,p′,0,4

r

p′

fm,p′,1,0

m

fm,p′,1,1

m

fm,p′,1,2

m

fm,p′,1,3

m

fm,p′,1,4

r

p′

. . . . . .
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We observe the following characteristics in the above diagram, as expected from the results

in [1]:

(C1) fm,p,i,0 = ∙ ∙ ∙ = fm,p,i,q−1

(C2) fm,p,i,q = rem(fm,p,i,0, x
r)

(C3) fm,p,i,0 = fm,p′,i,0

After considering the diagram and these properties, we see visually why it is true that

g(Φmp) = g(Φmp′).

From the above theorem (Theorem 4.2) we immediately obtain the following algorithm.

Algorithm 4.1 (Checking the conjecture).

In: m, odd square-free, say m = p1 ∙ ∙ ∙ pk−1 and p1 < ∙ ∙ ∙ < pk−1

Out: truth of the claim that ∀
prime p>pk−1

[ g(Φmp) = ϕ(m) ⇐⇒ p > m ]

1. for p from pk−1 + 1 to m− 1, p prime, do

(a) F ← Φmp

(b) g ← the maximum gap of F

(c) if g = ϕ(m) then return false

2. for r from 1 to m− 1, where gcd(m, r) = 1, do

(a) p← the smallest prime larger than m such that rem(m, p) = r

(b) F ← Φmp

(c) g ← the maximum gap of F
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(d) if g 6= ϕ(m) then return false

3. return true

We have implemented the above algorithm in C language. The cyclotomic polynomials were

computed using the algorithm called Sparse Power Series (Algorithm 4 in [2]) because it is the

fastest known algorithm for inputs where p is not very big compared to m. The code for the

algorithm has been kindly provided by Andrew Arnold, one of the authors of [2]. By executing

the program, so far we have proved the following.

Theorem 4.3 (Evidence of the conjecture for infinitely many primes). For all primes p and

m < 1000, we have

g(Φmp) = ϕ(m) if and only if p > m

In other words, for all k and for all p1, . . . , pk such that p1 ∙ ∙ ∙ pk−1 < 1000, we have

g(Φp1∙∙∙pk
) = ϕ(p1 ∙ ∙ ∙ pk−1) if and only if pk > p1 ∙ ∙ ∙ pk−1.

The above computation took 86 minutes on a MacBook Pro (CPU: 2.4 GHz Intel Core i5,

Memory: 16 GB 1600 MHz DDR3). Of course, one could continue to check larger m values

using larger computing resources.

4.3 Proof

The proof of Theorem 4.1 is structured as follows:

1. In Theorem 4.4, we state an important theorem on the structure of the ternary cyclotomic

polynomial found in [1]

2. In Lemma 4.1 we use Theorem 4.4 to break down g(Φp1p2p3) into the maximum of two

parts
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3. In Subsections 4.3 and 4.3, we prove that each of the parts is less than or equal to ϕ(p1p2)

4. In Subsection 4.3, we prove Theorem 4.1

We recall the following result due to [1], which we presented in Chapter 2, Theorem 2.13.

Theorem 4.4 (Structure Theorem). Let p3 ≡p1p2 +1 and p2 ≡p1 ±1. We have

Φn(x) =
ϕ(p1p2)−1∑

a=0

fa(x) xap3 deg fa < p3

fa(x) =
q3∑

b=0

fa,b(x) xbp1p2 deg fa,b < p1p2

fa,0 (x) = ∙ ∙ ∙ = fa,q3−1 (x)

=






+A(x) −xp2A(x) if a = 0

+B(x) −x(u+1)p2−a −xp2B(x) +xp1p2−a if a > 0, w ≤ u and ¬D(a)

+C(x) −xp2B(x) +xp1p2−a if a > 0, w ≤ u and D(a)

−D(x) −x(u+1)p2−a +xp2D(x) +xp1p2−a if a > 0, w > u and ¬D(a)

−x(u+1)p2−a −D(x) +xp2D(x) +xp1p2−a if a > 0, w > u and D(a)

fa,q3 (x) =






1 if a = 0

0 if a > 0

where

A(x) =
p1−1∑

k=0

xk, B(x) =
p1−1−w∑

k=u+1−w

xk, C(x) =
p1−2−w∑

k=u+1−w

xk, D(x) =
p1+u−w∑

k=p1−w

xk

u := quo (a, p2)

v := quo (rem (a, p2) , p1)

w := rem (rem (a, p2) , p1)
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q3 := quo (p3, p1p2)

p2 :=






p2 − 1 if p2 ≡p1 +1

p2 if p2 ≡p1 −1

D(a) :⇔ p2 ≡p1 −1 ∧ v = q2

In the following lemma, we break down g(Φp1p2p3) based off of the previous theorem.

Lemma 4.1. We have

g(Φp1p2p3) = max

{

max
0≤a≤h

{
g(fa), p3 + tdeg(fa+1)− deg(fa)

}
}

where h = ϕ(p1p2)
2 .

Proof. By Theorem 4.4, we have

g (Φp1p2p3) = g




ϕ(p1p2)−1∑

a=0

fax
ap3





= max

{

max
0≤a≤ϕ(p1p2)−1

g(fp1p2,p3,a), max
0≤a≤ϕ(p1p2)−2

{
p3 + tdeg(fa+1)− deg(fa)

}
}

Since

deg(xhp3fh) = hp3 + deg(fh)

=
ϕ(p1p2)

2
p3 + deg(fh)

>
ϕ(p1p2p3)

2
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and since Φp1p2p3 is symmetric, we have the following equality

g(Φp1p2p3) = g

(
h∑

a=0

fax
ap3

)

Thus we have

g(Φp1p2p3) = max

{

max
0≤a≤h

{
g(fa), p3 + tdeg(fa+1)− deg(fa)

}
}

which proves the lemma.

Therefore, in order to prove g(Φp1p2p3) = ϕ(p1p2), we will show the following:

(G1) max
0≤a≤h

g(fa) = ϕ(p1p2)

(G2) max
0≤a≤h

(p3 + tdeg(fa+1)− deg(fa)) ≤ ϕ(p1p2)

The following lemmas will be used to prove both parts.

Lemma 4.2. We have

deg(fa,0) =






p2(p1 − 1) if a = 0

p1p2 − a if a > 0

tdeg(fa,0) =






u + 1− w if a > 0 and w ≤ u

p1 − w if a > 0 and w > u and ¬D(a)

(u + 1)p2 − a if a > 0 and w > u and D(a)

Proof. Obvious from Theorem 4.4.

Lemma 4.3. We have

f0,0 = −Ψp1p2
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f1,0 = −xp1−1 − xp2−1 + xp1+p2−1 + xp1p2−1

Proof. If a = 0, then by Theorem 4.4 we have

fa,0 =
p1−1∑

k=0

xk − xp2

p1−1∑

k=0

xk

= −Ψp1p2

If a = 1, then u = 0 and w = 1, so by Theorem 4.4 we have

f1,0 = −
p1−1∑

k=p1−1

xk − x(1)p2−1 + xp2

p1−1∑

k=p1−1

xk + xp1p2−1

= −xp1−1 − xp2−1 + xp1+p2−1

which proves the lemma.

Lemma 4.4. We have that u ≤ p1 − 2 for all 1 ≤ a ≤ h + 1.

Proof. Note

u =






quo(a, p2 − 1) if p2 ≡p1 +1

quo(a, p2) if p2 ≡p1 −1

In both cases, u ≤ a
p2−1 . Thus we observe the following

1. a ≤
ϕ(p1p2)

2
+ 1

2. u ≤
a

p2 − 1

3. 1
2(p1 − 1) ≤ p1 − 2

By (1) and (2), we have u ≤ 1
2(p1 − 1) + 1

p2−1 . Since u is an integer, u ≤ 1
2(p1 − 1). Then by

(3), we have u ≤ p1 − 2.
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Proof of G1

Lemma 4.5 (G1). We have

max
0≤a≤h

g(fa) = ϕ(p1p2)

Before we can prove this, we first need to prove several other lemmas.

Lemma 4.6. We have

g(fa) =






ϕ(p1p2) if a = 0

max
{
g(fa,0), p1p2 + tdeg(fa,0)− deg(fa,0)

}
if 1 ≤ a ≤ h

Proof. By Theorem 4.4, we have

g (fa) = g




q3∑

j=0

fa,jx
jp1p2





= max
{
g(fa,0), g(fa,q3), p1p2 + tdeg(fa,0)− deg(fa,0)

}

= max
{
g(fa,0), p1p2 + tdeg(fa,0)− deg(fa,0)

}

From Lemma 4.3 we have f0,0 = −Ψp1p2 , so

g(f0) = max
{
g(f0,0), p1p2 + tdeg(f0,0)− deg(f0,0)

}

= max
{
p2 − p1 + 1, p1p2 + 0− ψ(p1p2))

}

= max
{
p2 − p1 + 1, ϕ(p1p2)

}

= ϕ(p1p2)

which proves the lemma.
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By Lemma 4.6 we see that in order to prove Lemma 4.5, we must prove the following:

(G1-a) max
1≤a≤h

g(fa,0) ≤ ϕ(p1p2)

(G1-b) max
1≤a≤h

(p1p2 + tdeg(fa,0)− deg(fa,0)) ≤ ϕ(p1p2)

Lemma 4.7 (G1-a). We have

max
1≤a≤h

g(fa,0) ≤ ϕ(p1p2)

Proof. We break the proof into four cases, and prove the lemma for each.

1. Case: w ≤ u and ¬D(a). By Theorem 4.4 we have

fa,0 =
p1−1−w∑

k=u+1−w

xk − x(u+1)p2−a − xp2

p1−1−w∑

k=u+1−w

xk + xp1p2−a

Thus

g(fa,0) = max
{
(u + 1)p2 − a− (p1 − 1− w),

p2 + u + 1− w − ((u + 1)p2 − a),

p1p2 − a− (p2 + p1 − 1− w)
}

= max
{
up2 + p2 + w + 1− a− p1,

u + a + 1− w − up2,

p1p2 + w + 1− a− p2 − p1

}

We have

up2 + p2 + w + 1− a− p1 = up2 + p2 + w + 1− (up2 + vp1 + w)− p1

= u(p2 − p2) + p2 − p1(v + 1) + 1

≤ u + p2 + 1 since p2 − p2 ≤ 1
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≤ p1 + p2 − 1 by Lemma 4.4

≤ ϕ(p1p2)

u + a + 1− w − up2 ≤ u + a + 1 by Lemma 4.4

≤ p1 − 1 + a

≤ ϕ(p1p2) since a ≤ ϕ(p1p2)
2

p1p2 + w + 1− a− p2 − p1 ≤ ϕ(p1p2) since w ≤ a

2. Case: w > u and ¬D(a). By Theorem 4.4 we have

fa,0 = −
p1+u−w∑

k=p1−w

xk − x(u+1)p2−a + xp2

p1+u−w∑

k=p1−w

xk + xp1p2−a

Thus

g(fa,0) = max
{
(u + 1)p2 − a− (p1 + u− w),

p2 + p1 − w − ((u + 1)p2 − a),

p1p2 − a− (p2 + p1 + u− w)
}

= max
{
up2 + p2 + w − u− a− p1,

a + p1 − w − up2,

p1p2 + w − a− u− p2 − p1

}

We have

up2 + p2 + w − a− p1 = up2 + p2 + w − (up2 + vp1 + w)− p1
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= u(p2 − p2) + p2 − p1(v + 1)

≤ u + p2 since p2 − p2 ≤ 1

≤ p1 + p2 − 2 by Lemma 4.4

≤ ϕ(p1p2)

a + p1 − w − up2 ≤ a + p1

≤ ϕ(p1p2)

p1p2 + w − a− u− p2 − p1 ≤ ϕ(p1p2) since w ≤ a

3. Case: w ≤ u and D(a). By Theorem 4.4 we have

fa,0 =
p1−2−w∑

k=u+1−w

xk − xp2

p1−1−w∑

k=u+1−w

xk + xp1p2−a

Thus

g(fa,0) = max
{
p2 + u + 1− w − (p1 − 2− w),

p1p2 − a− (p2 + p1 − 1− w)
}

= max
{
p2 + u + 3− p1,

p1p2 + w + 1− a− p2 − p1

}

We have

p2 + u + 3− p1 ≤ p2 + p1 + 1

≤ ϕ(p1p2)
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p1p2 + w + 1− a− p2 − p1 ≤ ϕ(p1p2) since w ≤ a

4. Case: w > u and D(a). By Theorem 4.4 we have

fa,0 = −x(u+1)p2−a −
p1+u−w∑

k=p1−w

xk + xp2

p1+u−w∑

k=p1−w

xk + xp1p2−a

Thus

g(fa,0) = max
{
p1 − w − ((u + 1)p2 − a),

p2 + p1 − w − (p1 + u− w),

p1p2 − a− (p2 + p1 + u− w)
}

= max
{
a + p1 − w − up2 − p2,

p2 − u,

p1p2 + w − a− u− p2 − p1

}

We have

a + p1 − w − up2 − p2 ≤ a + p1

≤ ϕ(p1p2)

p2 − u ≤ p2

≤ ϕ(p1p2)

p1p2 + w − a− u− p2 − p1 ≤ ϕ(p1p2) since w ≤ a
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Therefore, in all four cases we have shown that g(fa,0) ≤ ϕ(p1p2), which proves the lemma.

Lemma 4.8 (G1-b). We have

max
1≤a≤h

(p1p2 + tdeg(fa,0)− deg(fa,0)) ≤ ϕ(p1p2)

Proof. Note that proving

p1p2 + tdeg(fa,0)− deg(fa,0) ≤ ϕ(p1p2)

is equivalent to proving

deg(fa,0)− tdeg(fa,0)− (p1 + p2 − 1) ≥ 0

Recall from Lemma 4.2 that deg(fa,0) = p1p2 − a for all a > 0. We break the proof into three

cases.

1. Case: w ≤ u. By Lemma 4.2, we have

deg(fa,0)− tdeg(fa,0)− (p1 + p2 − 1)

= p1p2 − a− (u + 1− w)− (p1 + p2 − 1)

= ϕ(p1p2) + w − a− u− 1

≥ ϕ(p1p2)− a− u− 1

≥ ϕ(p1p2)− a− p1 + 1 by Lemma 4.4

≥ 0 since a ≤ ϕ(p1p2)
2
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2. Case: w > u and ¬D(a). By Lemma 4.2, we have

deg(fa,0)− tdeg(fa,0)− (p1 + p2 − 1)

= p1p2 − a− (p1 − w)− (p1 + p2 − 1)

= ϕ(p1p2) + w − a− p1

≥ ϕ(p1p2)− a− u

≥ ϕ(p1p2)− a− p1 + 2 by Lemma 4.4

≥ 0 since a ≤ ϕ(p1p2)
2

3. Case: w > u and D(a). By Lemma 4.2, we have

deg(fa,0)− tdeg(fa,0)− (p1 + p2 − 1)

= p1p2 − a− ((u + 1)p2 − a)− (p1 + p2 − 1)

= ϕ(p1p2)− (u + 1)p2

Note that in this case,

a = up2 + vp1 + w

a = up2 + qp1 + w

a = up2 + p2 − p1 + 1 + w

a = (u + 1)p2 − p1 + 1 + w

Thus

deg(fa,0)− tdeg(fa,0)− (p1 + p2 − 1) = ϕ(p1p2)− (u + 1)p2
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= ϕ(p1p2)− (a + p1 − 1− w)

≥ ϕ(p1p2)− a− p1

≥ 0 since a ≤ ϕ(p1p2)
2

Proof of Lemma 4.5 (G1). By Lemma 4.6, we have

g(fa) =






ϕ(p1p2) if a = 0

max
{
g(fa,0), p1p2 + tdeg(fa,0)− deg(fa,0)

}
if 1 ≤ a ≤ h

By Lemma 4.7, we have

max
1≤a≤h

g(fa,0) ≤ ϕ(p1p2)

By Lemma 4.8, we have

max
1≤a≤h

(p1p2 + tdeg(fa,0)− deg(fa,0)) ≤ ϕ(p1p2)

Therefore,

max
0≤a≤h

g(fa) = ϕ(p1p2)

which proves the lemma.

Proof of G2

Lemma 4.9 (G2). We have

max
0≤a≤h

(p3 + tdeg(fa+1)− deg(fa)) ≤ ϕ(p1p2)
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Before we can prove this, we first need to prove several other lemmas.

Lemma 4.10. We have

p3 + tdeg(fa+1)− deg(fa)

=






p1 if a = 0

p1p2 + 1 + tdeg(fa+1,0)− deg(fa,0) else

Proof. By Theorem 4.4, we have

tdeg(fa+1) = tdeg(fa+1,0)

deg(fa) =






q3p1p2 if a = 0

(q3 − 1)p1p2 + deg(fa,0) else

Since p3 − q3p1p2 = r = 1, we have

p3 + tdeg(fa+1)− deg(fa)

=






p3 + tdeg(f1,0)− q3p1p2 if a = 0

p3 + tdeg(fa+1,0)− (q3 − 1)p1p2 − deg(fa,0) else

=






tdeg(f1,0) + 1 if a = 0

p1p2 + 1 + tdeg(fa+1,0)− deg(fa,0) else

Recall from Lemma 4.3,

f1,0 = −xp1−1 − xp2−1 + xp1+p2−1 + xp1p2−1
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Hence,

tdeg(f1,0) + 1 = p1

which proves the lemma.

Lemma 4.11. We have

max
1≤a≤h

(p1p2 + 1 + tdeg(fa+1,0)− deg(fa,0)) ≤ ϕ(p1p2)

Proof. Note that proving

p1p2 + 1 + tdeg(fa+1,0)− deg(fa,0) ≤ ϕ(p1p2)

is equivalent to proving

deg(fa,0)− tdeg(fa+1,0)− (p1 + p2) ≥ 0

Recall that deg(fa,0) = p1p2 − a, for all a > 0. Thus we wish to show that

p1p2 − a− tdeg(fa+1,0)− (p1 + p2) ≥ 0

ϕ(p1p2)− a− 1− tdeg(fa+1,0) ≥ 0

By Lemma 4.2, we have

tdeg(fa+1,0) =






u′ + 1− w′ if w′ ≤ u′

p1 − w′ if w′ > u′ and ¬D(a + 1)

(u′ + 1)p2 − (a + 1) if w′ > u′ and D(a + 1)
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where

u′ = quo(a + 1, p2)

w′ = rem(rem(a + 1, p2), p1)

We break the rest of the proof into three cases:

1. Case: w′ ≤ u′. Then

ϕ(p1p2)− a− 1− tdeg(fa+1,0) = ϕ(p1p2)− a− 1− (u′ + 1− w′)

= ϕ(p1p2)− a− 2− u′ + w′

≥ ϕ(p1p2)− a− 2− u′

≥ ϕ(p1p2)− a− p1 by Lemma 4.4

≥ 0 since a ≤ ϕ(p1p2)
2

2. Case: w′ > u′ and ¬D(a + 1). Then

ϕ(p1p2)− a− 1− tdeg(fa+1,0) = ϕ(p1p2)− a− 1− (p1 − w′)

= ϕ(p1p2)− a− 1− p1 + w′

≥ ϕ(p1p2)− a− 1− p1

≥ 0 since a ≤ ϕ(p1p2)
2

3. Case: w′ > u′ and D(a + 1). Then

ϕ(p1p2)− a− 1− tdeg(fa+1,0) = ϕ(p1p2)− a− 1− ((u′ + 1)p2 − (a + 1))

= ϕ(p1p2)− (u′ + 1)p2
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Let v′ = quo(rem(a + 1, p2), p1). Note that since D(a + 1),

a + 1 = u′p2 + v′p1 + w′

a + 1 = u′p2 + qp1 + w′

a + 1 = u′p2 + p2 − p1 + 1 + w′

a + 1 = (u′ + 1)p2 − p1 + 1 + w′

Thus

ϕ(p1p2)− a− 1− tdeg(fa+1,0) = ϕ(p1p2)− (u′ + 1)p2

= ϕ(p1p2)− (a + 1 + p1 − 1− w′)

≥ ϕ(p1p2)− a− p1

≥ 0 since a ≤ ϕ(p1p2)
2

Proof of Lemma 4.9 (G2). By Lemma 4.10, we have

p3 + tdeg(fa+1)− deg(fa)

=






p1 if a = 0

p1p2 + 1 + tdeg(fa+1,0)− deg(fa,0) else

By Lemma 4.11, we have

max
1≤a≤h

(p1p2 + 1 + tdeg(fa+1,0)− deg(fa,0)) ≤ ϕ(p1p2)
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Since p1 ≤ ϕ(p1p2), we have

max
0≤a≤h

(p3 + tdeg(fa+1)− deg(fa)) ≤ ϕ(p1p2)

Proof of Theorem 4.1

Now that we have proved (G1) and (G2), we are ready to prove the main theorem.

Proof of Theorem 4.1. By Lemma 4.1, we have

g(Φp1p2p3) = max

{

max
0≤a≤h

{
g(fa), p3 + tdeg(fa+1)− deg(fa)

}
}

In Lemma 4.5, we showed

max
0≤a≤h

g(fa) = ϕ(p1p2)

In Lemma 4.9, we showed

max
0≤a≤h

(p3 + tdeg(fa+1)− deg(fa)) ≤ ϕ(p1p2)

Therefore, we have shown that

g(Φp1p2p3) = ϕ(p1p2)

which proves the theorem.
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Chapter 5

Exact Inverse Cyclotomic

Introduction

We provide a sufficient condition that g(Ψn) = δ− (Theorem 5.1). It is a straightforward

generalization of a result in [23] for the case k = 3. We also show that, for every fixed p1, the

sufficient condition holds “almost always” in a certain sense (Theorem 5.1).

5.1 Main Results

Theorem 5.1 (Sufficient condition on g(Ψn)). We have

1. g(Ψn) = δ−(n) if δ−(n) ≥ 1
2

n
p1

.

2. For every k ≥ 2 and every odd prime p, we have

lim
b→∞

#
{

n : pk ≤ b, p1 = p, δ−(n) ≥ 1
2

n
p1

}

# {n : pk ≤ b, p1 = p }
= 1
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5.2 Examples for sufficient condition on g(Ψn)

Example 5.1. Let n = 3 ∙ 7 ∙ 11. Then δ−(n) = 43. Consider

1
2

(
3 ∙ 7 ∙ 11

3

)

=
77
2
≤ δ−(n)

Computation of Ψn shows that g(Ψn) = 43, as expected from the theorem.

Example 5.2. Let n = 3 ∙ 5 ∙ 7. Then δ−(n) = 13. Consider

1
2

(
3 ∙ 5 ∙ 7

3

)

=
35
2

> δ−(n)

Computation of Ψn shows that g(Ψn) = 13. Therefore, the condition is sufficient but not nec-

essary.

Example 5.3. Let n = 7 ∙ 11 ∙ 13. Then δ−(n) = 5. Consider

1
2

(
7 ∙ 11 ∙ 13

7

)

=
143
2

> δ−(n)

Computation of Ψn shows that g(Ψn) = 6. Thus δ−(n) 6= g(Ψn).

5.3 Quality of sufficient condition on g(Ψn)

The following plots in Figure 5.1 show the following ratio r for various values of k and p.

r =
#
{

n : pk ≤ b, p1 = p, δ−(n) ≥ 1
2

n
p1

}

# {n : pk ≤ b, p1 = p}

We observe that in all cases, the ratio goes to 1, as expected from the theorem.
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k = 2, p = 3 k = 2, p = 11

k = 3, p = 3 k = 3, p = 11

Figure 5.1 Plots validating Theorem 5.1

5.4 Proof

There are two claims in Theorem 5.1. We will prove them one by one.

Proof of Theorem 5.1 Claim 1. We will prove that g(Ψn) = δ−(n) if δ−(n) ≥ 1
2

n
p1

. From

Lemma 3.8 we have

Ψn(x) = −H(x) + H(x) ∙ x
n
p1

Let

δ− (n) = tdeg
(
H(x) ∙ x

n
p1

)
− deg (H(x))

Note that if δ−(n) ≥ deg (H(x)), then we obviously have g(Ψn) = δ−(n). In the following we

simplify the expression δ− (n) and the condition δ−(n) ≥ deg (H(x)). First, we simplify the
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expression δ− (n).

δ− (n) = tdeg
(
H(x) ∙ x

n
p1

)
− deg (H(x))

=
n

p1
−

(

ψ(n)−
n

p1

)

= 2
n

p1
− ψ(n)

Next, we simplify the condition δ−(n) ≥ deg (H(x)).

δ−(n) ≥ deg (H(x)) ⇐⇒ 2
n

p1
− ψ(n) ≥ ψ(n)−

n

p1

⇐⇒ 3
n

p1
− 2 ψ(n) ≥ 0

⇐⇒
3
2

n

p1
− ψ(n) ≥ 0

⇐⇒ 2
n

p1
− ψ(n) ≥

1
2

n

p1

⇐⇒ δ−(n) ≥
1
2

n

p1

Therefore we have shown if δ−(n) ≥ 1
2

n
p1

then g(Ψn) = δ−(n) which proves the first claim of

the theorem.

We visualize the above proof as a diagram. We represent the inverse cyclotomic polynomial

as a horizontal block. A black box (block) represents that the exponent(s) appears in the

polynomial, a gray box (block) represents that the exponent(s) may or may not appear in the

polynomial, and a white box (block) represents that the exponent(s) does not appear. Recall

from the above proof that δ−(n) ≥ 1
2

n
p1

if and only if δ−(n) ≥ deg(H(x)). If this is the case,

then the inverse cyclotomic polynomial is as follows:
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Ψn:

H(x) x
n
p1 H(x)

δ−(n)

Figure 5.2 Diagram showing δ−(n) in Ψn

From Figure 5.2, it is clear that if δ−(n) ≥ deg(H(x)), then g(Ψn) = δ−(n).

The idea for the proof of the second claim is as follows: in Lemma 5.1, we weaken the

condition in Claim 1 to only depend on p1, p2 and k. Then we show that given k, when the

first prime p1 is fixed, the numerator and denominator are combinatorial expressions that are

dominated by the same terms; thus, the limit of their quotient is one. We first prove a technical

lemma.

Lemma 5.1. If p2 > (k − 1)(2p1 − 3) then δ−(n) ≥ 1
2

n
p1

.

Proof. Note

δ−(n) ≥
1
2

n

p1

⇐⇒
3
2

n

p1
≥ ψ(n)

⇐⇒
3
2

n

p1
≥ n− ϕ(n)

⇐⇒
3
2

1
p1
≥ 1−

ϕ(n)
n

⇐⇒
3
2

1
p1
≥ 1−

(

1−
1
p1

)

∙ ∙ ∙

(

1−
1
pk

)

⇐⇒
1
2

1
p1
≥ 1−

1
p1
−

(

1−
1
p1

)

∙ ∙ ∙

(

1−
1
pk

)

⇐⇒
1
2

1
p1
≥

(

1−
1
p1

)(

1−

(

1−
1
p2

)

∙ ∙ ∙

(

1−
1
pk

))
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⇐⇒
1
2
≥ (p1 − 1) ∙

(

1−

(

1−
1
p2

)

∙ ∙ ∙

(

1−
1
pk

))

⇐=⇐=⇐=
1
2
≥ (p1 − 1) ∙

(

1−

(

1−
1
p2

)(

1−
1

p2 + 1

)

∙ ∙ ∙

(

1−
1

p2 + k − 2

))

⇐⇒
1
2
≥ (p1 − 1) ∙

(

1−

(
p2 − 1

p2

)(
p2

p2 + 1

)(
p2 + 1
p2 + 2

)

∙ ∙ ∙

(
p2 + k − 3
p2 + k − 2

))

⇐⇒
1
2
≥ (p1 − 1) ∙

(

1−
p2 − 1

p2 + k − 2

)

⇐⇒
1
2
≥ (p1 − 1) ∙

k − 1
p2 + k − 2

⇐⇒
p2 + k − 2

2
≥ (k − 1) (p1 − 1)

⇐⇒ p2 + k − 2 ≥ (k − 1) (2p1 − 2)

⇐⇒ p2 ≥ (k − 1) (2p1 − 2)− (k − 2)

⇐⇒ p2 ≥ (k − 1) (2p1 − 3) + 1

⇐⇒ p2 > (k − 1) (2p1 − 3)

Therefore, if p2 > (k − 1) (2p1 − 3), then δ−(n) ≥ 1
2

n
p1

.

Proof of Theorem 5.1 Claim 2. We will prove

lim
b→∞

#
{

n : pk ≤ b, p1 = p, δ−(n) ≥ 1
2

n
p1

}

# {n : pk ≤ b, p1 = p }
= 1

Let qi be the i-th odd prime, that is, q1 = 3, q2 = 5, q3 = 7, q4 = 11, etc. Let k ≥ 2. Let p = qv

and b = qw. Then we have

# {n : pk ≤ b, p1 = p}

= # {(p1, . . . , pk) : p1 < ∙ ∙ ∙ < pk ≤ b, p1 = p}

= # {(qi1 , . . . , qik) : qi1 < ∙ ∙ ∙ < qik ≤ qw, qi1 = qv}

= # {(i1, i2, . . . , ik) : i1 < i2 < ∙ ∙ ∙ < ik ≤ w, i1 = v}
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= # {(i2, . . . , ik) : v + 1 ≤ i2 < ∙ ∙ ∙ < ik ≤ w}

= # {(i2, . . . , ik) : v + 1 ≤ i2 < ∙ ∙ ∙ < ik ≤ v + (w − v)}

=

(
w − v

k − 1

)

Thus

# {n : pk ≤ b, p1 = p} =

(
w − v

k − 1

)

Note

#

{

n : pk ≤ b, p1 = p, δ−(n) ≥
1
2

n

p1

}

= #

{

(p1, . . . , pk) : pk ≤ b, p1 = p, δ−(p1 ∙ ∙ ∙ pk) ≥
1
2

p1 ∙ ∙ ∙ pk

p1

}

≥ #{(p1, . . . , pk) : pk ≤ b, p1 = p, p2 > (k − 1)(2p1 − 3)} (from Lemma 5.1)

= #{(qi1 , . . . , qik) : qi1 < ∙ ∙ ∙ < qik ≤ qw, qi1 = qv, qi2 > (k − 1)(2qv − 3)}

= #{(qi1 , . . . , qik) : qi1 < ∙ ∙ ∙ < qik ≤ qw, qi1 = qv, qi2 ≥ qy} where y = argmin
qi>(k−1)(2qv−3)

i

= #{(i1, . . . , ik) : i1 < ∙ ∙ ∙ < ik ≤ w, i1 = v, i2 ≥ y}

= #{(i2, . . . , ik) : v + 1 ≤ i2 < ∙ ∙ ∙ < ik ≤ w, i2 ≥ y}

= #{(i2, . . . , ik) : max {v + 1, y} ≤ i2 < ∙ ∙ ∙ < ik ≤ w}

= #{(i2, . . . , ik) : y ≤ i2 < ∙ ∙ ∙ < ik ≤ w} (since y ≥ v + 1)

=

(
w − y + 1

k − 1

)

Thus we have

#

{

n : pk ≤ b, p1 = p, δ−(n) ≥
1
2

n

p1

}

≥

(
w − y + 1

k − 1

)
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Note

lim
b→∞

#
{

n : pk ≤ b, p1 = p, δ−(n) ≥ 1
2

n
p1

}

# {n : pk ≤ b, p1 = p}
≥ lim

w→∞

(
w−y+1

k−1

)

(
w−v
k−1

) = lim
w→∞

1
(k−1)!w

k−1 + ∙ ∙ ∙
1

(k−1)!w
k−1 + ∙ ∙ ∙

= 1

Since

lim
b→∞

#
{

n : pk ≤ b, p1 = p, δ−(n) ≥ 1
2

n
p1

}

# {n : pk ≤ b, p1 = p}
≤ 1

we can conclude

lim
b→∞

#
{

n : pk ≤ b, p1 = p, δ−(n) ≥ 1
2

n
p1

}

# {n : pk ≤ b, p1 = p}
= 1

which proves the second claim of the theorem.
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Appendix A

Maple Codes

A.1 Utilities

restart:
with(numtheory):
with(ListTools):
with(combinat):
with(plots):
with(Statistics):
unprotect(D):

psi := n-> n - phi(n):

icyc := proc(n,x)
local f;
f := cyclotomic(n,x);
divide(x^n-1,f,’f’);
return f;

end:

exps_cyc := proc(n)
local f,E;
f := cyclotomic(n,x);
coeffs(f,x,’E’);
E := map(degree,sort([E]),x);
if nops(E) > 2 then E := E[1..ceil(nops(E)/2)]; fi;
return E;

end:

108



exps_icyc := proc(n)
local f,E;
f := icyc(n,x);
coeffs(f,x,’E’);
E := map(degree,sort([E]),x);
if nops(E) > 2 then E := E[1..ceil(nops(E)/2)+1]; fi;
return E;

end:

max_gap_cyc := proc(n)
local E,F,g;
E := exps_cyc(n);
F := [seq(E[j+1]-E[j],j=1..nops(E)-1)];
g := max(F);
return g;

end:

max_gap_icyc := proc(n)
local E,F,g;
E := exps_icyc(n);
F := [seq(E[j+1]-E[j],j=1..nops(E)-1)];
g := max(F);
return g;

end:

# returns all the divisors of C (C can be a number or a set)
div_set := proc(C)

local D,d;
D := {seq(op(divisors(d)),d in C)};
return D;

end:

# returns number of prime factors
omega := proc(n)

return nops(factorset(n));
end:

# returns parity
rho := proc(n)

if type(n,even) then return 1; else return -1 fi;
end:
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# returns all elements d in D such that mu(n/d) = pm 1
set_D_pm := proc(n,D,pm)

local S,d;
S := select(d->mobius(n/d) = pm*1,D);
return S;

end:

# returns l^{pm}(D)
lower_D_pm := proc(n,D,pm)

local l,a,b;
l := pm*add(d*mobius(n/d),d in D);
return l;

end:

# returns u^{pm}(D)
upper_D := proc(n,D)

local u;
u := min(D);
return min(u);

end:

# returns C^{pm}(D)
c_D_pm := proc(n,D,pm)

local c,Dp,Dm,num_Dp,num_Dm,d,m;
c := true;
Dp := set_D_pm(n,D,+1);
Dm := set_D_pm(n,D,-1);
for d in div_set(D) do

num_Dp := nops(select(m->evalb(irem(m,d)=0),Dp));
num_Dm := nops(select(m->evalb(irem(m,d)=0),Dm));
if pm*num_Dp < pm*num_Dm then c := false; break fi;

od;
return c;

end:

A.2 Algorithms for lower bounds

alpha_pm := proc(n,pm)
local ps,gs,r,nr_1,k;
ps := factorset(n);
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k := nops(ps);
if k=1 then return 1 fi; if k=2 and pm=-1 then return 1 fi;
gs := [];
for r from 1 to k-1 do

if rho(k-1-r) <> pm then next fi; r;
nr_1 := mul(ps[i],i=1..r-1);
gs := [op(gs), ps[r] - phi(nr_1)];

od;
return max(gs);

end:

beta_pm := proc(n,pm)
local ps,gs,r,nr,k;
ps := factorset(n);
k := nops(ps);
if k=1 then return 1 fi; if k=2 and pm=-1 then return 1 fi;
gs := [];
for r from 1 to k-1 do

if rho(k-1-r) <> pm then next fi; r;
nr := mul(ps[i],i=1..r);
gs := [op(gs), min(nr,ps[r+1]) - psi(nr)];

od;
return max(gs);

end:

gamma_pm := proc(n,pm)
local gs,n_k,B,r,l,u,div_n,ps,k,n_r;
gs := [];
div_n := div_set(n);
ps := [op(factorset(n))];
k := nops(ps);
if k = 1 or k=2 and pm = -1 then return 1 fi;
for r from 1 to k-1 do

if rho(k-1-r) <> pm then next fi;
B := select(d->omega(d) <= r-1, div_n);
n_r := mul(ps[i],i=1..r);
l := lower_D_pm(n,B,pm);
gs := [op(gs), n_r - l];

od;
return max(gs);

end:
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delta_m := proc(n)
local ps;
ps := factorset(n);
return 2*n/ps[1] - (n-phi(n));

end:

epsilon_pm := proc(n,pm)
local gs, D, Sp, Sm, A, B, l, u;
gs := [];
D := div_set(n) minus {n};
for A in powerset(D) minus {{}} do

B := D minus A;
if not c_D_pm(n,B,pm) then next fi;
l := lower_D_pm(n,B,pm); u := upper_D(n,A);
gs := [op(gs), u - l];

od;
return max(gs);

end:

# returns true if n satisfies the sufficient condition for delta_m
suff := n -> evalb(delta_m(n) >= 1/2*n/(factorset(n)[1])):

# returns the smallest prime larger than (p0+1-r)/m such that p = q*m + r
findprime := proc(p0,m,r)

local q,p,P;
for q from ceil((p0+1-r)/m) to 1000 do

p := q*m + r;
if isprime(p) then return p fi;

od:
print("findprime: FAIL"):

end:

epsilon_tilde_pm := proc(n,pm)
local div_n,div_n_pm,div_n_mp,b,B1,B2,B,A,u,l,gs;
div_n := div_set(n);
div_n_pm := set_D_pm(n,div_n,pm);
div_n_mp := set_D_pm(n,div_n,-1*pm);
gs := [];
for b in div_n_pm do

B1 := select(m-> m < b,div_n_pm);
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B2 := set_D_pm(n,div_set(B1),-1*pm);
B := B1 union B2;
A := div_n minus B;
u := upper_D(n,A); l := lower_D_pm(n,B,pm);
gs := [op(gs),u-l];

od;
return max(gs);

end:

A.3 Algorithm to check the conjecture

algorithm_one := proc(m)
local p,r,g;
for p from factorset(m)[-1] + 1 to m-1 do

if not isprime(p) then next fi;
if phi(m) = max_gap_cyc(m*p) then return false fi;

od;
for r from 1 to m-1 do

if gcd(m,r) <> 1 then next fi;
p := findprime(m,m,r);
g := max_gap_cyc(m*p);
if phi(m) <> g then return false fi;

od;
return true;

end:

algorithm := proc(ell)
local m;
for m from 3*5 to ell do

if not issqrfree(m) or type(m,even) or omega(m) < 2 then next fi;
if not algorithm_one(m) then return false fi;

od;
return true;

end:

algorithm(1000);

113


