
ABSTRACT

OZCAN, SEYMA NUR. Development of Well-Balanced and Asymptotic Preserving Numerical
Methods for Partial Differential Equations . (Under the direction of Dr. Alina Chertock.)

In the context of this dissertation, we focus on numerical solutions of two separate

models which are encountered in physical and biological studies.

We begin with hyperbolic balance laws and develop a second-order well-balanced

central-upwind scheme for various systems of these types of equations, in particular, the

models of isothermal gas dynamics with source, traffic flow with relaxation to equilibrium

velocities and Euler equations of gas dynamics with gravitation are considered. The pro-

posed scheme is capable of exactly preserving state-state solutions expressed in terms

of nonlocal equilibrium variables. The new scheme is based on modifications in the re-

construction and evolution steps of a Godunov-type central-upwind method. The crucial

step in the construction of the second-order scheme is a well-balanced piecewise linear

reconstruction of equilibrium variables, which is combined with a well-balanced evolution

in time, achieved by reducing the amount of numerical viscosity (present at the central-

upwind scheme) in the areas where the flow is at (near) steady-state regime. We show the

performance of our newly developed central-upwind scheme and demonstrate importance

of perfect balance between the fluxes and gravitational forces on a number of one- and

two-dimensional examples.

The second part is devoted to the chemotaxis phenomena, taken from biological appli-

cations, that describes the biased motion of cells in response to the chemical substance in

a medium. We study a two-dimensional multiscale chemotaxis model based on a combi-

nation of the macroscopic evolution equation for chemoattractant and the microscopic

model for cell evolution. The latter is governed by a Boltzmann-type kinetic equation with a

local turning kernel operator which describes the velocity change of the cells. The parabolic

scaling yields a non-dimensional kinetic model with a small parameter, which represents

the ratio of the mean free path and the typical length scale. We propose a new asymptotic

preserving numerical scheme that reflects the convergence of the studied micro-macro

model to its macroscopic counterpart—the Patlak-Keller-Segel system—in the singular

limit. The method is based on the operator splitting strategy and suitable higher-order

time discretizations. In particular, we use the so-called even-odd decoupling and approx-

imate the stiff terms arising in the singular limit implicitly. We prove that the resulting



scheme satisfies the asymptotic preserving property. More precisely, it yields a consistent

approximation of the Patlak-Keller-Segel system as the scaling parameter tends to 0. The

performance of the proposed scheme is illustrated via a number of numerical experiments.
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CHAPTER 1

Introduction

In this dissertation, we study two distinct sets of systems that arise in various physical and

biological applications.

The first part of the dissertation is devoted to the development of novel numerical

methods for hyperbolic conservation laws with the source term, so-called hyperbolic

balance laws, in which non-smooth solutions and complicated wave structures may appear.

In the second part, we numerically study multiscale chemotaxis models, which are based

on macroscopic evolution equations for the chemoattractant concentration coupled with

a microscopic model for the cell evolution.

In this introductory chapter, we provide a brief overview of existing shock-capturing

methods used to numerically solve the hyperbolic conservation/balance laws and asymp-

totically preserving methods used to resolve multiscale phenomena.

1



1.1 Hyperbolic Conservation/Balance Laws

We consider a multi-dimensional system of hyperbolic conservation laws:

qt +∇x ·F (q) = 0, (1.1)

where x ∈Rd and t ∈R+ are the spatial and time variables, q(x, t ) is the vector of conserved

variables and F (q) is the vector of flux terms. The main difficulty in numerically solving

the system (1.1) is due to the loss of smoothness even if the initial condition is smooth.

Typically, the solutions of (1.1) possess complicated nonlinear structures such as shock and

rarefaction waves. Capturing such solutions in an accurate, efficient and robust way requires

the use of high-resolution shock capturing techniques, see, e.g. [55, 62, 118, 139, 144, 157].

Godunov-type finite-volume methods, first established in [57], are one of the most

typical numerical methods to solve (1.1) due to their accurate and non-oscillatory shock

capturing procedure. Those are reconstruction-evolution-projection methods, in which the

numerical solution is first realized in terms of cell averages over specific control volumes.

These cell-averages are then used to construct a global piece-wise polynomial solution

which is evolved in time and finally projected back onto the original grid.

For instance, consider the one-dimensional (1-D) system of conservation laws:

qt +F (q)x = 0. (1.2)

The cell averages of the computed solution at a certain time level t n are obtained by inte-

grating the solution over the spatial grid cells C j := [x j− 1
2
, x j+ 1

2
], which is taken to be uniform

for simplicity, of size |C j |=∆x :

qn
j :≈

1

∆x

∫

C j

q(x , t n )d x . (1.3)

Then, following the Godunov scheme’s approach, the approximate solution at time t n is

reconstructed by a global piecewise polynomial:

eq(x , t n )≈pn
j (x ), for x ∈ (x j− 1

2
, x j+ 1

2
), (1.4)

2



where pn
j are polynomial pieces that are generically discontinuous at the cell interfaces

x = x j± 1
2
. A library of different reconstruction procedures is available, see, e.g. [2, 36, 56,

63, 64, 80, 90, 97, 109, 111, 112, 115, 118–120, 126, 141, 143, 148, 152]. Next, the reconstructed

piecewise polynomial interpolant is used as initial data at t = t n , which is evolved to the

next time level t = t n+1 by integrating the system (1.2) over space-time control volumes

C j × [t n , t n+1].

Depending on the choice of the control volume, Godunov-type schemes are mainly

split into two subclasses: central and upwind, as shown in Figure 1.1.

Central (staggered) schemes allow one to evolve the solution without (approximately)

solving any Riemann problems, in which the cell averages are computed over the centered

grid rather than the original computational cells:

qn+1
j+ 1

2
=

1

2∆x





∫ x
j+ 1

2

x j

pn
j (x )d x +

∫ x j+1

x
j+ 1

2

pn
j+1(x )d x



−
1

∆x

∫ t n+1

t n

�

F (q(x j+1, t ))−F (q(x j , t ))
�

d t .

(1.5)

Here, the flux integrals can be evaluated exactly, since the solution q(x , t ) is smooth along

the lines x = x j± 1
2

for t ∈ [t n , t n+1] provided a suitable time-step restriction.

The first-order central schemes were introduced in the 1950s, [51, 106], and called Lax-

Friedrichs (LF) schemes in the literature. LF schemes are simple and universal to apply due

to their Riemann-problem-solver-free feature, since particularly in multi-dimensional prob-

lems, Riemann problem solvers do not exist. Central schemes have been broadly developed

including staggered and nonstaggered variants, higher-order methods, multidimensional

generalizations, see, e.g. [4, 10, 35, 81, 91, 96, 97, 103, 104, 111, 112, 114, 117, 120, 126, 131–133,

138].

On the other hand, in the upwind schemes, also proposed in the 1950s, [57], the solution

cell averages at t = t n+1 are obtained by approximating the integrals on the right-hand side

of

qn+1
j =qn

j −
1

∆x

∫ t n+1

t n

�

F (q(x j+ 1
2
, t ))−F (q(x j− 1

2
, t ))

�

d t . (1.6)

Since the solution q(x , t n ) is discontinuous at x = x j± 1
2
, an (approximate) solution of

the (generalized) Riemann problems arising at the cell interfaces is required, see, e.g.,

[9, 14, 36, 56, 57, 90, 109, 150]. Thus, these schemes are restricted to the systems, in which

3



Figure 1.1 Central (staggered) control volume (left), F n
j = F (q(x j , t n )). Upwind control volume

(right), F n
j−1/2 =F (q(x j−1/2, t n )).

Riemann problem solvers are available. However, they are highly accurate, less dissipative

and less diffusive than central schemes, since the latter does not catch the resolution of

nonlinear waves, which causes a larger numerical dissipation.

Recently, a new class of Godunov-type finite-volume methods –central-upwind (CU)

schemes– has been developed by combining the simplicity and universality of the central

scheme with the high accuracy and low dissipation of the upwind approach. The key idea

behind the construction of the CU schemes is to use the upwinding information, that is the

one-sided local speeds of propagation of the waves emerging at cell interfaces. These are

right- and left-sided speeds, which allow one to design two special sets of control volumes

as shown in Figure 1.2. One of these control volumes (colored with blue in Figure 1.2)

contains all (nonsmooth) nonlinear waves generated at time t = t n at cell interfaces while

the second one (colored with green in Figure 1.2) contains smooth parts of the solution.

The stability condition, if chosen properly, would then, guarantee that no waves reach the

boundaries, hence the evolution mechanism within the control volumes remain central

and no Riemann problem solver is required. Once evolved in time, the solution must be, as

usual, projected back on the original uniform grid.

The CU schemes were initially introduced in [103] for hyperbolic systems of conser-

vation laws and further developed in [19, 20, 38, 93, 95–99, 101, 102, 105]. These schemes

are efficient, highly accurate and do not require any (approximate) Riemann problem

solver (the latter makes the CU schemes applicable in a “black-box manner” to a wide

variety of multidimensional hyperbolic systems of conservation and balance laws). As it is

4



Figure 1.2 Central-upwind control volumes. The solution is nonsmooth in the blue colored con-
trol volume and it is smooth in the green control volume.

demonstrated in [93, 95], the CU scheme has reduced numerical dissipation and enhanced

resolution of contact waves.

Solving the system of conservation laws (1.1) with additional source terms, i.e. the

system of balance laws, makes the development of the solution a more complicated task. A

system of balance laws reads:

qt +∇x ·F (q) =S(q), (1.7)

where S(q) is the vector of source terms. In many applications, a special class of solutions

to (1.7), steady-state solutions, are of particular interest and especially important in cases

when small perturbations of the steady states are considered as solutions of the system

(1.7). Capturing such solutions numerically is one of the major difficulties since the size of

these perturbations may be smaller than the size of the truncation error on a coarse grid.

To overcome this difficulty, one can use a very fine grid, but in many physically relevant

situations this may be computationally unaffordable. Another problem one may come

across while solving the system of balance laws (1.7) is preserving the positivity of the

computed solution of physically relevant problems. The numerical oscillations may cause

negative values for physical quantities, such as, density, pressure or water height.

Therefore, it is important to design a well-balanced and positivity preserving, i.e. struc-

ture preserving, numerical scheme, that is, a method which is capable of exactly preserving

some steady-state solutions as well as maintaining the positivity of the numerical solution

when it is necessitated by the physical application. Then, perturbations of these solutions

5



will be resolved on a coarse grid in a non-oscillatory way. Well-balanced schemes were

introduced in [61] and mainly developed in the context of shallow water equations; see,

e.g., [5, 11, 12, 18, 29, 49, 53, 83, 86, 92, 100, 108, 127, 136, 137, 140, 155]. Positivity preserv-

ing well-balanced schemes for shallow water equations can be reviewed in, for exam-

ple, [5, 11, 12, 18, 28, 53, 92, 100]. Some of these schemes have been extended for the Euler

equations with gravitational fields. In [110], quasi-steady wave-propagation methods were

developed for models with a static gravitational field. In [13], well-balanced finite-volume

methods, which preserve a certain class of steady states, were derived for nearly hydrostatic

flows. In recent works [26,43,151], finite-volume methods that preserve more general classes

of steady states and handle more general gravitational potentials have been introduced.

In [121, 149, 156], gas-kinetic schemes were extended to the multidimensional gas dynamic

equations and well-balanced numerical methods were developed for problems in which

the gravitational potential was modeled by a piecewise step function. More recently, higher

order finite-difference [154] and finite-volume [113]methods for the gas dynamics with

gravitation have been introduced.

1.2 Kinetic Chemotaxis Models

The second part of the dissertation is focused on the study of the oriented movement of cells

in response to a chemical gradient (chemoattractant), so-called chemotaxis phenomena.

Chemotaxis can be represented by a multiscale model which involves a class of Boltzmann-

type kinetic equation for the evolution of the cell density and a macroscopic equation for

the chemoattractant concentration. This model was introduced in [147] based on a stochas-

tic approach and further developed by the kinetic theory in [3, 129, 145] for the chemotaxis.

The non-dimensionalized system reads as:

ε ft +v ·∇x f =
1

ε
T ( f ),

τSt =∆S +ψ(S ,ρ),
(1.8)

where f (x, t ,v) is the local density of cells at the positionx ∈Rd with the velocityv ∈V ⊂Rd

at time t , the gradient term v ·∇x f describes the transport of cells with v and the turning
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kernel operator T expresses the rate of change from the velocity v′ to v. S (x, t ) and ρ(x, t )

are the macroscopic density of the chemoattractant and cells, respectively. The interaction

between cells and the chemoattractant is given by the functionψ. The non-dimensional

scaling parameter ε is the ratio of the average distance travelled between two velocity

changes (the mean free path) and the typical length scale.

The diffusion limit of the multiscale chemotaxis system (1.8) has been extensively

studied within the last few decades. For example, some of the literature can be found

in [1,3,23–25,68,71,76,79,130,135,153] and references therein. Under certain assumptions,

the limiting problem as ε→ 0 results in the macroscopic system of equations for the cell

density and chemoattractant concentration, known as Patlak-Keller-Segel (PKS) system,

[134] and [87, 88]:
ρt =∇· (∇ρ−χρ∇S ),

τSt =∆S +ψ(S ,ρ),
(1.9)

where χ is the chemotactic sensitivity constant.

Since solutions of the system (1.8) reveal a multiscale character, their numerical resolu-

tion generates some major difficulties. For instance, the limiting solutions of (1.8) as ε→ 0

may be different in nature from that of the solutions for finite values of ε > 0. As was shown

in a number of analytical works, the solution of the PKS system (1.9) may blowup under

certain regimes, [21, 34, 52, 65–67, 69, 78, 124], while the behavior of solution to the kinetic

chemotaxis model (1.8) depends on the choice of the turning kernel and may not blowup

as the solution of the PKS model, see, e.g. [15, 25, 76, 77].

From the numerical point of view, the use of standard explicit numerical methods in the

ε→ 0 regime, would require very restrictive time and space discretization steps: typically

they would need to be proportional to ε as∆t ,∆x ∼O (ε) or∆t ,∆x ∼O (ε2), due to stability

conditions. This rapidly becomes too costly from a practical point of view and consequently

numerical solutions for small values of ε may be out of reach. Moreover, standard implicit

schemes, which will be uniformly stable for 0< ε < 1, may be inconsistent with the limit

problem and thus may provide a wrong solution when ε → 0. Thus, designing robust

numerical methods, whose accuracy and efficiency is independent of ε is an important

and challenging task, which is the focus of this dissertation.

One of the most powerful numerical techniques applicable to such problems is asymptotic-

7



preserving (AP) methods, originally introduced in [82] to solve kinetic equations in diffusive

regimes and were later generalized for a variety of kinetic models; see, e.g., [39,40,44,47,73–

75, 79, 84, 107]. The idea behind the AP methods is proposing a numerical transition from

one model to another, which is able to be preserved at the discrete level. More specifically,

for a fixed mesh size and time step, an AP scheme should be automatically transformed

into a stable discretization of the limiting model as ε → 0. An illustrative description of

AP schemes is shown in Figure 1.3, where Pε stands for the continuous problem with its

limit problem P0 and Pε,h is the stable discretization of the problem Pε with h = (∆t ,∆x ).

As ε→ 0, the AP scheme, Pε,h , results in a consistent discretization P0,h for P0 as well.

Figure 1.3 Model of AP schemes. Pε : a continous problem; P0: a well-posed limiting problem of Pε ;
Pε,h : a stable discretization of Pε ; P0,h : a stable discretization of P0.

To review the properties of AP schemes referring to Figure 1.3, [73, 125]:

• Consider a continuous problem Pε and its well-posed limiting problem P0

• For fixed ε > 0, Pε,h is a stable discretization of Pε with a given time and space dis-

cretization h = (∆t ,∆x )

• For fixed discretization h = (∆t ,∆x ), Pε,h tends to an accurate discretization of P0

• The stability of the scheme does not rely on ε

In the context of the kinetic chemotaxis model, a 1-D AP method has been designed for

various turning kernels in [23]. Additionally, a numerical investigation has been done for
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the 2-D spherically symmetric initial data in ε = 1 regime. Moreover, for 1-D models, an

AP scheme based on a micro-macro decomposition has been proposed and implemented

in [8]. Recently, in [45], a general framework to design an AP scheme has been proposed for

the transport equation that models chemotaxis.

1.3 Outline of the Dissertation

The rest of the dissertation is organized as follows.

• In Chapter 2, we describe a second-order semi-discrete CU scheme and illustrate

its well-balanced modifications for several systems of equations. Particularly, In

Section 2.2, we consider 2×2 balance laws, while in Sections 2.3 and 2.4 the Euler

equations of gas dynamics with gravitation in both one- and two-dimensional spaces

are considered, respectively. In Section 2.2.2, we provide a number of examples to

demonstrate the performance of the prescribed well-balanced numerical scheme

for 2×2 systems of balance laws. In Sections 2.3.2 and 2.4.2, we examine the validity

of the proposed well-balanced method on several numerical examples for one- and

two-dimensional Euler equations with gravitation.

• In Chapter 3, we characterize a micro-macro model for chemotaxis and develop an

AP scheme to resolve the multiscale phenomena of the system. In Section 3.3, we

present the AP scheme The performance of the proposed AP scheme is illustrated in

a number of numerical experiments in Section 3.5.
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Part I

Hyperbolic Balance Laws
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CHAPTER 2

Well-Balanced Central-Upwind Schemes

The contents of this chapter have been submitted to SIAM Journal on Scientific Computing,

[27] and Proceedings of the Sixteenth International Conference on Hyperbolic Problems:

Theory, Numerics, Applications, [30].

In this chapter, we first outline a second-order CU scheme from [93] in Section 2.1.

We start with considering 2× 2 systems of balance laws in Section 2.2 and present how

the described CU scheme can be modified to preserve the steady states of the system. In

Section 2.3 and Section 2.4, we illustrate the well-balanced modifications of the CU scheme

for 1-D and 2-D Euler equations of gas dynamics with gravitation, respectively. In Sections

2.2.2, 2.3.2 and 2.4.2, we implement the proposed CU scheme on a number of numerical

examples.

2.1 Second-Order Semi-Discrete Central-Upwind Scheme -

Overview

In this section, we briefly describe a second-order semi-discrete CU scheme from [93]

applied to the 1-D in Section 2.1.1 and 2-D systems in Section 2.1.2.
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2.1.1 One-Dimensional Central-Upwind Scheme

For simplicity, we first partition the computational domain into finite-volume cells C j :=

[x j− 1
2
, x j+ 1

2
] of size |C j |=∆x centered at x j , j = jL , . . . , jR . We assume that at time level t ,

the cell averages of the numerical solution,q j (t ) :=
1
∆x

∫

C j
q(x , t )d x , are available.

We consider the following 1-D system

qt +F (q)x =S(q), (2.1)

where q(x , t ) is the vector of unknown variables, F and S are the vectors of the flux and

source terms and we apply the semi-discrete CU scheme which results in the following

system of ODEs:
d

d t
q j =−
F j+ 1

2
−F j− 1

2

∆x
+S j , (2.2)

where

F j+ 1
2

:=
a+

j+ 1
2
F (qE

j )−a−
j+ 1

2
F (qW

j+1)

a+
j+ 1

2
−a−

j+ 1
2

+α j+ 1
2

�

qW
j+1−q

E
j −δq j+ 1

2

�

, α j+ 1
2

:=
a+

j+ 1
2
a−

j+ 1
2

a+
j+ 1

2
−a−

j+ 1
2

(2.3)

are the CU numerical fluxes, andS j are the approximations of the cell averages of the

source term. In (2.3),

δq j+ 1
2
=minmod

�

qW
j+1−q

∗
j+ 1

2
, q∗

j+ 1
2
−qE

j

�

(2.4)

is a built-in anti-diffusion term with

q∗
j+ 1

2
=

a+
j+ 1

2
qW

j+1−a−
j+ 1

2
qE

j −
�

F (qW
j+1)−F (q

E
j )
	

a+
j+ 1

2
−a−

j+ 1
2

, (2.5)

and the minmod function defined by

minmod(z1, z2, . . .) :=











min(z1, z2, . . .), if zi > 0 ∀i ,

max(z1, z2, . . .), if zi < 0 ∀i ,

0, otherwise.

(2.6)
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In (2.3), (2.4) and (2.5), qE
j and qW

j+1 are the one-sided point values of the computed

solution at cell interfaces x = x j+ 1
2
. To construct a second-order scheme, these variables

are to be calculated using the piecewise linear reconstruction

eq(x , t ) =
∑

j

�

q j (t ) + (qx ) j (x − x j )
�

·χC j
(x ), (2.7)

whereχC j
is a characteristic function of the interval C j . We then obtain

qE
j := eq(x j+ 1

2
−0) =q j +

∆x

2
(qx ) j , qW

j+1 := eq(x j+ 1
2
+0) =q j+1−

∆x

2
(qx ) j+1. (2.8)

To avoid oscillations, the vertical slopes in (2.8), (qx ), are to be computed using a nonlinear

limiter applied to the cell averages {q j }. In all of the numerical experiments presented in

Section 2.3.2, we have used a generalized minmod limiter (see, e.g., [115, 126, 148]) applied

in the component-wise manner:

(qx ) j =minmod

�

θ
q j+1−q j

∆x
,
q j+1−q j−1

2∆x
, θ

q j −q j−1

∆x

�

,

where the parameter θ ∈ [1,2] controls the amount of numerical dissipation: the use of

larger values of θ typically leads to a less dissipative, but more oscillatory scheme.

The one-sided local speeds of propagation, a±
j+ 1

2
, are estimated using the smallest λ1

and largest λN eigenvalues of the Jacobian matrix ∂ F (q)/∂ q:

a+
j+ 1

2
=max

§

λN

�

∂ F

∂ q
(qE

j )
�

,λN

�

∂ F

∂ q
(qW

j+1)
�

, 0
ª

,

a−
j+ 1

2
=min

§

λ1

�

∂ F

∂ q
(qE

j )
�

,λ1

�

∂ F

∂ q
(qW

j+1)
�

, 0
ª

.
(2.9)

Finally, the semi-discrete ODE system, (2.2) should be integrated in time by a high-order

accurate and stable ODE solver. For example, in the numerical examples presented in

Sections 2.2.2 and 2.3.2, we use the third-order strong stability preserving (SSP) Runge-

Kutta method (see, e.g., [58, 60, 144] and Appendix A.1). In order to make computations
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stable, the time step should be chosen with the following CFL condition:

∆t = κ
∆x

max
j
|a±

j+ 1
2
|
, κ≤

1

2
. (2.10)

2.1.2 Two-Dimensional Central-Upwind Scheme

In this section, we implement a second-order semi-discrete CU scheme, [93], to the follow-

ing 2-D system:

qt +F (q)x +G(q)y =S(q), (2.11)

where q(x , y , t ) is the vector of unknown variables, F and G are the fluxes in x - and y -

directions, respectively, and S is the source term.

We consider a rectangular computational domain and divide it into the uniform Carte-

sian cells C j ,k := [x j− 1
2
, x j+ 1

2
]× [yk− 1

2
, yk+ 1

2
] of size |C j ,k | = ∆x∆y centered at (x j , yk ), j =

jL , . . . , jR , k = kL , . . . , kR . We assume that at a certain time level t , the cell averages of the

computed numerical solution,

q j ,k (t ) :=
1

∆x∆y

∫∫

C j ,k

q(x , y , t )d x d y ,

are available.

We employ the semi-discrete CU scheme which leads to the following system of ODEs:

d

d t
q j ,k =−

F j+ 1
2 ,k −F j− 1

2 ,k

∆x
−
G j ,k+ 1

2
−G j ,k− 1

2

∆y
+S j ,k , (2.12)

where

F j+ 1
2 ,k :=

a+
j+ 1

2 ,k
F (qE

j ,k )−a−
j+ 1

2 ,k
F (qW

j+1,k )

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

+α j+ 1
2 ,k

�

qW
j+1,k −q

E
j ,k −δq j+ 1

2 ,k

�

,

α j+ 1
2 ,k :=

a+
j+ 1

2 ,k
a−

j+ 1
2 ,k

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

(2.13)
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G j ,k+ 1
2

:=
b +

j ,k+ 1
2
G(qN

j ,k )− b −
j ,k+ 1

2
G(qS

j ,k+1)

b +
j ,k+ 1

2
− b −

j ,k+ 1
2

+β j ,k+ 1
2

�

qS
j ,k+1−q

N
j ,k −δq j ,k+ 1

2

�

,

β j ,k+ 1
2

:=
b +

j ,k+ 1
2
b −

j ,k+ 1
2

b +
j ,k+ 1

2
− b −

j ,k+ 1
2

(2.14)

are the CU numerical fluxes, andS j k is the approximations of the cell averages of the source

term and

δq j+ 1
2 ,k =minmod

�

qW
j+1,k −q

∗
j+ 1

2 ,k
, q∗

j+ 1
2 ,k
−qE

j ,k

�

(2.15)

and

δq j ,k+ 1
2
=minmod

�

qS
j ,k+1−q

∗
j ,k+ 1

2
, q∗

j ,k+ 1
2
−qN

j ,k

�

(2.16)

are build-in anti-diffusion terms with

q∗
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
qW

j+1,k −a−
j+ 1

2 ,k
qE

j ,k −
�

F (qW
j+1,k )−F (q

E
j ,k )
	

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

,

and

q∗
j ,k+ 1

2
=

b +
j ,k+ 1

2
qS

j ,k+1− b −
j ,k+ 1

2
qN

j ,k −
�

G(qS
j ,k+1)−G(q

N
j ,k )
	

b +
j ,k+ 1

2
− b −

j ,k+ 1
2

,

with the minmod function defined in (2.6). Notice that the anti-diffusion terms (2.15) and

(2.16) can be rigorously derived from the fully discrete CU framework; see [93] for details,

though they are slightly different from the ones presented in [93].

The one-sided point values of the computed solution at cell interfaces (x j± 1
2
, yk ) and

(x j , yk± 1
2
) are obtained using the piecewise linear reconstruction:

eq(x , y ) =
∑

j ,k

�

q j ,k + (qx ) j ,k (x − x j ) + (qy ) j ,k (y − yk )
�

·χC j ,k (x ,y ), (2.17)

whereχC j ,k
is a characteristic function of the finite-volume-cell C j ,k .
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We then obtain

qE
j ,k := eq(x j+ 1

2 ,k −0) =q j ,k +
∆x

2
(qx ) j ,k , qW

j+1,k := eq(x j+ 1
2 ,k +0) =q j+1,k −

∆x

2
(qx ) j+1,k ,

(2.18)

qN
j ,k := eq(yj ,k+ 1

2
−0) =q j ,k +

∆y

2
(qy ) j ,k

, qS
j ,k+1 := eq(yj ,k+ 1

2
+0) =q j ,k+1−

∆y

2
(qx ) j ,k+1.

(2.19)

Similarly to the 1-D case, to avoid oscillations, the slopes (qx ) j ,k and (qy ) j ,k are computed

with a nonlinear limiter, for example, the generalized minmod limiter:

(qx ) j ,k =minmod

�

θ
q j+1,k −q j ,k

∆x
,
q j+1,k −q j−1,k

2∆x
, θ

q j ,k −q j−1,k

∆x

�

,

(qy ) j ,k
=minmod

�

θ
q j ,k+1−q j ,k

∆y
,
q j ,k+1−q j ,k−1

2∆y
, θ

q j ,k −q j ,k−1

∆y

�

.

(2.20)

We then estimate the one-sided local speeds of propagation in the x - and y - directions,

respectively, using the smallest and largest eigenvalues of the Jacobians ∂ F
∂ q and ∂G

∂ q :

a+
j+ 1

2 ,k
=max

�

λN

�

∂ F

∂ q
(qE

j ,k )
�

,λN

�

∂ F

∂ q
(qW

j+1,k )
�

, 0
�

,

a−
j+ 1

2 ,k
=min

�

λ1

�

∂ F

∂ q
(qE

j ,k )
�

,λ1

�

∂ F

∂ q
(qW

j+1,k )
�

, 0
�

,

b +
j ,k+ 1

2
=max

�

λN

�

∂G

∂ q
(qN

j ,k )
�

,λN

�

∂G

∂ q
(qS

j ,k+1)
�

, 0
�

,

b −
j ,k+ 1

2
=min

�

λ1

�

∂G

∂ q
(qN

j ,k )
�

,λ1

�

∂G

∂ q
(qS

j ,k+1)
�

, 0
�

,

(2.21)

where λ1 < . . .<λN are the N eigenvalues of the corresponding Jacobians.

Finally, a sufficiently accurate and stable ODE solver, for example, the third-order SSP

Runge-Kutta method (see, e.g. [58, 60, 144] and Appendix A.1), is used to solve the ODE

system (2.12) with a modified CFL condition:

∆t = κmin







∆x

max
j ,k
|a±

j+ 1
2 ,k
|
,

∆y

max
j ,k
|b ±

j ,k+ 1
2
|







, κ≤
1

2
. (2.22)
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Remark 2.1.1 It should be observed, that the CU schemes, (2.1)-(2.9) or (2.11)-(2.21), do

not, in general, preserve steady state solutions when applied to systems of balance laws.

In what follows, we explain the well-balanced adjustments of the prescribed CU schemes,

(2.1)-(2.9) and (2.11)-(2.21), in regard to several models.

2.2 2×2 Systems of Balance Laws

In this section, we consider a 2×2 system of balance laws of the following form:

¨

ρt + f1(ρ, q )x = 0,

qt + f2(ρ, q )x =−s (ρ, q ),
(2.23)

which can be rewritten in the vector form as

qt +F (q)x =S(q), (2.24)

where

q :=

�

ρ

q

�

, F (q) :=

�

f1(ρ, q )

f2(ρ, q )

�

, S(q) :=

�

0

−s (ρ, q )

�

, (2.25)

are the vectors of the conservative variables, flux and source terms, respectively, and x ∈R
and t ∈R+ are the spatial and time variables. These type of balance laws systems appear

as mathematical models in many applications, see, e.g., [16, 41, 42, 50, 54]. System (2.23)

is also a common model for gas flow in high-pressure transmission pipelines [7, 128] and

traffic flow [6, 37], both will be our primary motivation for designing a numerical method

and validating computational results in this section.

The steady states, ρt = qt = 0, of (2.23) satisfy the following time-independent system:

¨

f1(ρ, q )x = 0,

f2(ρ, q )x =−s (ρ, q ),
(2.26)
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as well as f1(ρ, q )t = f2(ρ, q )t = s (ρ, q )t = 0, which yields

f1(ρ, q )≡Const, f2(ρ, q ) +

x
∫

s (ρ, q )dξ≡Const, ∀x , t . (2.27)

The goal is to construct a numerical scheme which is able to preserves the given steady

states (2.27) and their small perturbations. To this end, we incorporate the source term into

the flux in the second equation of the system (2.23) and introduce a new reconstruction-

evolution process to guarantee that all steady states of (2.23) are captured exactly. Fol-

lowing [27, 29], we introduce new equilibrium variables, which are preserved during the

reconstruction and propagate in time according to a modified evolution step.

It is instructive to note that the scheme described in Section 2.1 does not necessarily

preserve the steady state solutions (2.27). To cite an example, we consider the case where

f1(ρ, q ) = q and therefore q = Const and ρ =ρ(x ) satisfies the steady state (2.27). Imple-

menting the CU scheme (2.2)–(2.9) with δq j+ 1
2
≡ 0 in (2.3) for, say, the first component of

the solution will result in the following semi-discrete approximation:

dρ j

d t
=−

1

∆x





a+
j+ 1

2
q E

j −a−
j+ 1

2
q W

j+1

a+
j+ 1

2
−a−

j+ 1
2

+α j+ 1
2
(ρW

j+1−ρ
E
j )

−
a+

j− 1
2
q E

j−1−a−
j− 1

2
q W

j

a+
j− 1

2
−a−

j− 1
2

+α j− 1
2
(ρW

j −ρ
E
j−1)



 .

The last equation reduces to

dρ j

d t
=−

α j+ 1
2
(ρW

j+1−ρ
E
j )−α j− 1

2
(ρW

j −ρ
E
j−1)

∆x
, (2.28)

since q E
j = q W

j+1 = q E
j−1 = q W

j =Const. However, in general, the piecewise linear approxima-

tion, (2.7), forms discontinuities at the cell interfaces, so that the point values ρW
j+1 and ρE

j

(ρW
j and ρE

j−1) are not necessarily equal. Thus, right hand side of the ODE (2.28) does not

vanish and the scheme fails to preserve the steady state.
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2.2.1 Well-Balanced Central-Upwind Scheme

In this section, we present a well-balanced modification of the CU scheme described in

Section 2.1. To this end, we first define new variables:

K := f1(ρ, q ), and L := f2(ρ, q ) +R , R :=

x
∫

s (ρ, q )dξ, (2.29)

and rewrite the system (2.23) as:
(

ρt +Kx = 0,

qt + L x = 0,
(2.30)

which can be put into the vector form (2.24) with the different flux and zero source terms:

where q = (ρ, q )T , F (q) = (K , L )T and S(q)≡ (0, 0)T . Obviously, the steady state of (2.30) will

be in the following form:

K ≡Const, L ≡Const. (2.31)

2.2.1.1 Reconstruction

We start by describing a special reconstruction procedure, which is implemented to obtain

the point values, qE
j and qW

j+1, used in (2.3), and is based on reconstructing equilibrium

variables, K and L , instead of conservative ones, ρ and q . To this end, we first compute the

values K j and L j from the cell averages,ρ j and q j , i.e.,

K j = f1(ρ j ,q j ), L j = f2(ρ j ,q j ) +R j , (2.32)

where the values of R j are evaluated by applying the midpoint quadrature rule to the integral

in (2.29) and using the following recursive relation:

R j =
1

2
(R j− 1

2
+R j+ 1

2
), R j+ 1

2
=R (x j+ 1

2
) =R j− 1

2
+∆x s (ρ j ,q j ), (2.33)

starting from R1/2 ≡ 0.

The point values of K and L at the cell interfaces x = x j± 1
2

are then obtained from
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(2.7)–(2.6):

K E
j = K j +

∆x

2
(Kx ) j , L E

j = L j +
∆x

2
(L x ) j ,

K W
j = K j −

∆x

2
(Kx ) j , L W

j = L j −
∆x

2
(L x ) j .

(2.34)

Finally, equipped with the values of K E,W
j , L E,W

j and R j± 1
2
, we compute the corresponding

point values of ρ and q by solving the following four nonlinear equations in terms of

ρE
j ,ρW

j , q E
j and q W

j , respectively:

K E
j = f1(ρ

E
j , q E

j ), L E
j = f2(ρ

E
j , q E

j ) +R j+ 1
2
,

K W
j = f1(ρ

W
j , q W

j ), L W
j = f2(ρ

W
j , q W

j ) +R j− 1
2
.

Clearly, the procedure would significantly simplify when one of the conservative vari-

ables is also an equilibrium one, say, K = f1(ρ, q ) = q . In such case, the point values q E,W
j

can be obtained directly from (2.6)–(2.7) and thus only two nonlinear equations should be

solved to obtainρE,W
j for each j . In all of our examples presented below, the set of nonlinear

equations (2.34) was solved analytically.

2.2.1.2 Evolution

We then evolve the cell averages,q j = (ρ j ,q j )
T , in time by using the following system of

ODEs:
d

d t
q j =−

FFF j+ 1
2
−FFF j− 1

2

∆x
. (2.35)

Here, we take the built-in anti-diffusion term q j+ 1
2
≡ 0 in the numerical fluxesFFF j± 1

2
whose

two components are given as follows:
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F (1)
j+ 1

2
=

a+
j+ 1

2
K E

j −a−
j+ 1

2
K W

j+1

a+
j+ 1

2
−a−

j+ 1
2

+α j+ 1
2
(ρW

j+1−ρ
E
j )H

�

|K j+1−K j |
∆x

·
|Ω|

max j {K j , K j+1}

�

,

F (2)
j+ 1

2
=

a+
j+ 1

2
L E

j −a−
j+ 1

2
L W

j+1

a+
j+ 1

2
−a−

j+ 1
2

+α j+ 1
2
(q W

j+1−q E
j )H

�

|L j+1− L j |
∆x

·
|Ω|

max j {L j , L j+1}

�

,

(2.36)

and α j+ 1
2

is defined in (2.3) with the corresponding one-sided local speeds a±
j+ 1

2
, which are

estimated by using the smallest and largest eigenvalues of the Jacobian ∂ F /∂ q.

The second components in the numerical flux functions (2.36) are modified (compared

to (2.3)) to preserve the steady states. Namely, a smooth functionH , satisfying

H (φ) =
(Cφ)m

1+ (Cφ)m
, H (0) = 0, (2.37)

is introduced for some constants C > 0 and m > 0. When the solution is a steady state,

e.g. both K E
j = K W

j+1 = K j ≡ Const and L E
j = L W

j+1 = L j ≡ Const, H vanishes, so is each

component of the numerical flux in (2.36). Otherwise,H is very close to 1 and then the

scheme reduces to the classical semi-discrete central upwind scheme (2.3). The normaliza-

tion factors,
|Ω|

max j {K j , K j+1}
and

|Ω|
max j {L j , L j+1}

, where |Ω| is the size of the computational

domain, are introduced in order to make the functionH nondimensional and independent

of the choice of C and m .

We summarize this observation in the following theorem.

Theorem 2.2.1 The semi-discrete CU scheme, (2.35)–(2.37), with the reconstruction de-

scribed in Section 2.2.1.1 gives an absolute balance between the source and flux terms and

thus preserves the steady state, (2.27), exactly, i.e. the scheme is well-balanced.

Proof: Let us start with assuming that at a certain time level t the solution reaches its steady

state and

K E
j = K W

j+1 = K j ≡ K ∗ and L E
j = L W

j+1 = L j ≡ L ∗, ∀ j , (2.38)
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where K ∗ and L ∗ are constants. We show thatq j = (ρ j ,q j )
T remains constant in time, which

means the right-hand side of the ODE system (2.35) diminishes with given conditions

(2.66). Indeed, identities in (2.66) implyH = 0, which in turns results inF (1)
j+ 1

2
= K ∗ and

F (2)
j+ 1

2
= L ∗. Therefore, bothF (1)

j+ 1
2
−F (1)

j− 1
2
= 0 andF (2)

j+ 1
2
−F (2)

j− 1
2
= 0 and thus from (2.35) we

obtain
dq j

d t
= 0, ∀ j . �

2.2.2 Numerical Examples

In this section, we test the performance of the developed well-balanced method and show

that it preserves steady state solutions exactly for several 2×2 systems. In particular, the

system of isothermal Euler equations of gas dynamics with friction and with the bottom

profile and the model for traffic flow with relaxation are studied.

In all of the experiments reported below, we implemented the second-order well-

balanced CU scheme (2.35)–(2.37) and compared the obtained results with those computed

by the non well-balanced CU scheme (2.1)–(2.3). The scheme parameters were taken as

θ = 1.3 in Examples 2.4, 2.5 and θ = 1 in Example 2.6; C = 200 in Examples 2.4, 2.6 and

C = 400 in Example 2.5 and m = 1 in (2.37) in all of the examples. For the time evolution, we

used the third-order SSP Runge-Kutta method (see, e.g., [58, 60, 144] and Appendix A.1) to

solve the semi-discrete ODE system (2.35) with the CFL constant in (2.10) taken as κ= 0.4

in Examples 2.4, 2.6 and κ= 0.1 in Example 2.5.

Example 2.4—Gas dynamics with pipe-wall friction.

In this example, we solve the isothermal Euler equations of gas dynamics with pipe-wall

friction, which is used for the simulation of high-pressure gas transmission systems [17,128].

The model is governed by the following system of hyperbolic balance laws:











ρt +qx = 0,

qt +

�

c 2ρ+
q 2

ρ

�

x

=−µ
q

ρ
|q |,

(2.39)
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Table 2.1 Example 2.4: L 1-errors and corresponding experimental convergence rates in the well-
balanced computation of K and L at T = 1.

N ‖K (·, 1)−K ∗‖1 ‖L (·, 1)− L ∗‖1

100 1.94E-18 7.77E-18
200 9.71E-19 9.71E-18
400 1.66E-18 9.57E-18
800 2.18E-18 1.18E-17

where, ρ(x , t ) is the density of the fluid with the velocity u (x , t ), q (x , t ) is the momentum,

µ> 0 is the friction coefficient (divided by the pipe cross section) and c > 0 is the speed of

sound.

We first check the well-balanced property of the developed scheme by considering

(2.39) with c =µ= 1 and subject to the following initial data (given in terms of equilibrium

variables):

K (x , 0) = q (x , 0) = K ∗ = 0.15 and L (x , 0) = L ∗ = 0.4, (2.40)

in a single pipe x ∈ [0, 1]. Here,

K (x , t ) = q (x , t ) and L (x , t ) =

�

c 2ρ+
q 2

ρ

�

(x , t ) +R (x , t ), (2.41)

are the steady states and R (x , t ) =

∫ x

µ
q (ξ, t )
ρ(ξ, t )

|q (ξ, t )|dξ.

To run the computations we divide the interval Ω= [0, 1] into N uniform grid cells and

apply the well-balanced second-order CU scheme (2.35)–(2.37) to the system (2.39) with

zero-order extrapolations for both K and L at the boundaries of the domain. We compute

the solution until the final time T = 1 with N = 100, 200, 400 and 800 and report L 1-errors,

measured as ‖K (·, T )−K ∗‖1 and ‖L (·, T )− L ∗‖1, in Table 2.1. As one can see, on all of these

grids, the initial data are preserved within the machine accuracy. For comparison, we run

the same computations using the non-well-balanced CU scheme (2.1)–(2.3), in which case

the initial equilibria are preserved within the accuracy of the scheme only, as can be seen

in Table 2.2.
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Table 2.2 Example 2.4: L 1-errors and corresponding experimental convergence rates in the non-
well-balanced computation of K and L at T = 1.

N ‖K (·, 1)−K ∗‖1 rate ‖L (·, 1)− L ∗‖1 rate
100 1.29E-06 - 8.81E-07 -
200 3.30E-07 1.96 2.25E-07 1.97
400 8.34E-08 1.98 5.69E-08 1.98
800 2.09E-08 1.99 1.43E-08 1.99

Next, we solve the system (2.39) with the perturbed initial data:

K (x , 0) = K ∗+ηe −100(x−0.5)2 = 0.5+ηe −100(x−0.5)2 , L (x , 0) = L ∗ = 0.4, (2.42)

with the perturbation constant η> 0. In Fig. 2.1, we plot the obtained momentum pertur-

bations computed using both well-balanced and non-well-balanced schemes with two

different perturbation constants, η= 10−3 and η= 10−6 at time T = 0.2 on N = 100 uniform

grid cells. We also calculate a solution using the non-well-balanced method on finer grids,

i.e., N = 1600 for η= 10−3 and N = 3200 for η= 10−6. We observe that for the larger value of

the constant η= 10−3, both the well-balanced and non-well-balanced schemes can capture

the perturbation even on a coarse mesh. However, when the perturbation is relatively small,

η = 10−6, the well-balanced scheme still can resolve the perturbation on a coarse grid

(N = 100), while the non-well-balanced method is not capable of catching it unless it is

employed on a very fine mesh, say N = 3200.

Example 2.5—Gas dynamics with the bottom profile.

In the second example, we consider the 2×2 system of gas dynamics with bottom profile

where the governing equations are given by:











ρt +qx = 0,

qt +

�

c 2ρ+
q 2

ρ

�

x

=−gρhx (x ),
(2.43)
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Figure 2.1 Example 2.4: Momentum perturbation computed by the well-balanced (WB) and
non-well-balanced (NWB) schemes at time T = 0.2 for η= 10−3 (left) and η= 10−6 (right).

with h (x ) being the bottom profile. This case is relevant to the practical applications when

gas pipes are not horizontal. In particular, the gravitational force needs to be considered in

mountainous regions with high-pressure gas transmission.

Here, we consider the system (2.43) with c = 1, g = 9.81 and an exponential function

h (x ) = e −(x−0.5)2 . (2.44)

We solve the system on the computational domain x ∈ [0, 1] and subject to the following

initial data (again given in terms of equilibrium variables):

K (x , 0) = q (x , 0) = K ∗ = 1 and L (x , 0) = L ∗ = 20, (2.45)

where

K (x , t ) = q (x , t ) and L (x , t ) =

�

c 2ρ+
q 2

ρ

�

(x , t ) +R (x , t ), (2.46)
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Table 2.3 Example 2.5: L 1-errors and corresponding experimental convergence rates in the well-
balanced computation of K and L at T = 1.

N ‖K (·, 1)−K ∗‖1 ‖L (·, 1)− L ∗‖1

100 3.19E-16 1.17E-15
200 3.90E-16 9.76E-16
400 1.99E-16 8.70E-16
800 1.41E-16 9.45E-16

Table 2.4 Example 2.5: L 1-errors and corresponding experimental convergence rates in the non-
well-balanced computation of K and L at T = 1.

N ‖K (·, 1)−K ∗‖1 rate ‖L (·, 1)− L ∗‖1 rate
100 8.97E-03 - 0.117 -
200 2.25E-03 1.99 2.98E-02 1.97
400 5.64E-04 1.99 7.54E-03 1.98
800 1.41E-04 2.00 1.89E-03 1.99

and R =

x
∫

gρ(ξ, t )hx (ξ)dξ. Since (2.45) is a steady state solution of (2.43), we adopt it to

illustrate that the CU scheme (2.35)–(2.37) is well-balanced.

Similarly to the first example, we obtain the solutions of the system (2.43) by imple-

menting both the well-balanced and non-well-balanced CU schemes on a uniform grid

with N = 100, 200, 400 and 800 cells. Tables 2.3 and 2.4 indicate the L 1-errors as estimated

in the previous example in measuring the equilibrium states K and L computed by both

the well-balanced and non-well-balanced schemes. One can clearly see that while the well-

balanced scheme gives errors within machine accuracy, the non-well-balanced method

requires very fine grid, to preserve steady state solution.

We, then, introduce an initial perturbation on momentum as follows:

K (x , 0) = K ∗+ηe −100(x−0.5)2 = 1+ηe −100(x−0.5)2 , L (x , 0) = L ∗ = 20, (2.47)
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where η> 0 is the perturbation constant. We first run the computations with η= 10−1 and

plot the results in Fig. 2.2 (left) obtained at time T = 0.25 by both the well-balanced and

non-well-balanced methods with N = 100 uniform grid cells. In both cases, zero-order

extrapolations are implemented at the boundaries of the computational interval Ω= [0, 1].

For comparison, we also plot a solution obtained by the non-well-balanced scheme with

N = 1600. We observe that, while the well-balanced scheme is capable of resolving the

perturbation on a coarse mesh, the non-well-balanced method requires a finer mesh, e.g.,

N = 1600. In Fig. 2.2 (right), we illustrate the momentum perturbation at time T = 0.25
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Figure 2.2 Example 2.5: Momentum perturbations computed by the well-balanced (WB) and
non-well-balanced (NWB) schemes for η= 10−1 (left) and η= 10−3 (right) at time T = 0.25.

obtained by both the well-balanced and non-well-balanced schemes for a smaller value of

the perturbation constant η= 10−3. We note that our well-balanced scheme can capture

smaller perturbations of the steady states on a coarse mesh, N = 100, while to obtain

corresponding results with the non-well-balanced method, one needs to use a very refined

mesh, N = 6400, which would be costly in most of the cases.
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Example 2.6—Traffic flow with relaxation to equilibrium velocities.

In the last example, we study a second–order model for traffic flow, which has been intro-

duced in [6] to model driver dependent traffic conditions. The model has been investigated

since then by many authors and we refer to [46] for a recent comparison and discussion.

The governing equations are written in terms of the density of cars ρ(x , t ) and the

velocity u (x , t ), as well as a driver property w (x , t ). The latter can be viewed as distance

towards an equilibrium velocity Ve q (ρ). For simplicity, we chose as Ve q (ρ) = 1−ρ, where

ρ = 1 represents maximum density and introduce a fixed relaxation timeτ> 0 for all drivers,

in which case the model reads:















ρt + (ρu )x = 0,

(ρw )t + (ρu w )x =
ρ

τ

�

(1−ρ)−u
�

,

w = u +ρ.

We substitute u =w −ρ, introduce a new variable q =ρu =ρ(w −1) and rewrite the

above system in the conservative form:











ρt + (q +ρ(1−ρ))x = 0,

qt +

�

q 2

ρ
+q (1−ρ)

�

x

=−
1

τ
q .

(2.48)

We observe that in the limit of small relaxation times (τ→ 0), the second equation in

(2.48) formally ensures q → 0 andρ ∈ [0, 1], and the model predictions of (2.48) are expected

to be close to those of the classical Lighthill–Whitham–Richards (LWR) model [116] given

by ρt + (ρ(1−ρ))x = 0.

Clearly, q = 0 is a steady state solution of the system (2.48) for any constant ρ. However,

for fixed positive τ, the system has steady states deviating from the LWR model. In view of

the previous discussion we introduce the equilibrium variables K and L as

K = q +ρ(1−ρ), L =
q 2

ρ
+q (1−ρ) +R , (2.49)
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Table 2.5 Example 2.6: L 1-errors and corresponding experimental convergence rates in the well-
balanced computation of K and L at T = 1.

N ‖K (·, 1)−K ∗‖1 ‖L (·, 1)− L ∗‖1

100 4.21E-17 1.00E-16
200 5.57E-17 8.74E-17
400 1.48E-15 2.46E-15
800 5.50E-17 1.17E-16

where R (x , t ) =

∫ x
1

τ
q (ξ, t )dξ. Then, the steady states are K , L =Const.

We consider the system (2.48) with τ= 1 and set the following initial data given with

respect to the equilibrium variables:

K (x , 0) = K ∗ = 0.375, L (x , 0) = L ∗ = 0.5, (2.50)

which also satisfy the steady state solutions of (2.48).

As before, we first verify that the developed well-balanced CU scheme (2.35)–(2.37) is

capable of preserving steady states of the system (2.48) exactly. To this end, we partition the

computational domain Ω= [0, 1] into N uniform cells and assign zero-order extrapolations

for K and L at the boundaries. We obtain the results at final time T = 1 by implementing the

well-balanced CU scheme with N = 100, 200, 400 and 800 grid cells. In Table 2.5, we present

the L 1-errors computed as before, for equilibrium variables K and L , that is, ‖K (·, T )−K ∗‖1

and ‖L (·, T ) − L ∗‖1, and observe the errors of machine accuracy for the well-balanced

scheme. However, we can conclude that non-well-balanced scheme can maintain the

steady states only within the order of the scheme, as seen in Table 2.6. We then investigate

the performance of the well-balanced scheme by capturing the perturbations of the steady

states. Here, we add a small perturbation to the initial value of the variable q :

q p (x , 0) = q (x , 0) +ηe −50(x−0.5)2 , (2.51)

where η = 10−7 is taken in this example. In Fig. 2.3, we plot the perturbations on the
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Table 2.6 Example 2.6: L 1-errors and corresponding experimental convergence rates in the non-
well-balanced computation of K and L at T = 1.

N ‖K (·, 1)−K ∗‖1 rate ‖L (·, 1)− L ∗‖1 rate
100 2.59E-06 - 8.10E-06 -
200 6.47E-07 2.00 2.02E-06 2.00
400 1.61E-07 2.01 5.04E-07 2.00
800 4.04E-08 1.99 1.25E-07 2.01

equilibrium variables K and L , respectively, obtained by both well-balanced and non-well-

balanced schemes with N = 100 and 200 uniform grid cells at time T = 0.1. For observation,

we also plot the solutions computed by non-well-balanced method on a very fine mesh

with N = 6400. We conclude that while the well-balanced scheme is capable of capturing

the perturbations on a relatively coarse grid, the non-well-balanced scheme needs to be

implemented on a much finer grid.
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Figure 2.3 Example 2.6: Perturbations on the equilibrium variable K (left column) and L (right
column), computed by the well-balanced (WB) and non-well-balanced (NWB) schemes at time
T = 0.1 for η= 10−7.
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2.3 The One-Dimensional Euler Equations of Gas

Dynamics With Gravitation

In this section, we consider the one-dimensional (1-D) Euler equations of gas dynamics

with gravitation in the y -direction:

qt +G(q)y =S(q), (2.52)

where

q :=







ρ

ρv

E






, G(q) :=







ρv

ρv 2+p

v (E +p )






and S(q) :=







0

−ρφy

−ρvφy






(2.53)

are the vectors of the conservative variables, flux and gravitational source term, respectively,

and the corresponding equation of state is

E =
p

γ−1
+
ρv 2

2
. (2.54)

Here, ρ is the density, v is the y -velocity, E is the total energy, p is the pressure andφ is

the time-independent gravitational potential.

Once again, the aim is to construct a well-balanced numerical method which is capable

of exactly capturing steady state solutions, which can be derived as follows. We consider

the system (2.52)-(2.54) and obtain its steady state solutions from the time-independent

system G(q)y =S(q). To this end, we first incorporate the source term −ρφy into the flux

and rewrite the system as follows:











ρt + (ρv )y = 0,

(ρv )t + (ρv 2+ L )y = 0,

Et + (v (E +p ))y =−ρvφy ,

(2.55)

which can be put into the vector form (2.52) with different flux and source terms:
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G(q) :=







ρv

ρv 2+ L

v (E +p )






, S(q) :=







0

0

−ρvφy






, (2.56)

where L is a global variable given by

L := p +R , R (y , t ) :=

y
∫

ρ(η, t )φy (η)dη. (2.57)

It then immediately follows that the simplest steady state of (2.55) is the motionless one,

for which

v ≡ 0 and L ≡Const. (2.58)

As before, we observe that the semi-discrete CU scheme (2.2)–(2.9) illustrated in Section

2.1 is not capable of exactly preserving the steady-state solutions of (2.52). Indeed, substi-

tuting v ≡ 0 into (2.2)–(2.3) and noting that for all k , b +
k+ 1

2
=−b −

k+ 1
2

(since v N
k = v S

k+1 = 0), we

obtain the ODE system



































dρk

d t
=−

βk+ 1
2
(ρS

k+1−ρ
N
k −δρk+ 1

2
)−βk− 1

2
(ρS

k −ρ
N
k−1−δρk− 1

2
)

∆y
,

d (ρv )k
d t

=−
(p S

k+1+p N
k )− (p

S
k +p N

k−1)

2∆y
−ρk (φy )k ,

d E k

d t
=−

βk+ 1
2
(E S

k+1−E N
k −δEk+ 1

2
)−βk− 1

2
(E S

k −E N
k−1−δEk+ 1

2
)

∆y
,

(2.59)

whose right-hand side (RHS) does not necessarily vanish and hence the steady state would

not be preserved at the discrete level. We would like to stress that even for the first-order

version of the CU scheme (2.2)–(2.9), that is, when (qy )k ≡ 0 in (2.7), (2.8), the RHS of

(2.59) does not vanish. This means that the lack of balance between the numerical flux

and source terms is a fundamental problem of the scheme. We also note that for smooth

solutions, the balance error in (2.59) is expected to be of order (∆y )2, but a coarse grid

solution may contain large spurious waves as demonstrated in the numerical experiments

presented in Section 2.3.2. We, then, in Section 2.3.1, derive a well-balanced modification
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of the described CU scheme.

2.3.1 Well-Balanced Central-Upwind Scheme

In this section, we present a well-balanced modification of the CU scheme from Section

2.1. The new scheme will be developed by first introducing a well-balanced reconstruc-

tion performed on the equilibrium variables, (ρ,ρv, L ), rather than the conservative ones,

(ρ,ρv, E ), see, e.g., [27, 29], and then applying a slightly modified CU scheme to the system

(2.55)- (2.57).

2.3.1.1 Well-Balanced Reconstruction

We now point out a special reconstruction, which is used in the derivation of a well-balanced

CU scheme. The main idea is to reconstruct equilibrium variable L rather than E . For

the first two components we still use formula (2.7) to obtain the same piecewise linear

reconstructions as before, eρ(y ) and (Ýρv )(y ), and compute the corresponding point values

of ρN,S and (ρv )N,S, and then obtain v N,S = (ρv )N,S/ρN,S.

To reconstruct L , we first compute the point values of R at the cell interfaces and the

cell centers, recursively, by using the midpoint rule:

RkL− 1
2
= 0,







Rk+ 1
2
=Rk− 1

2
+∆yρk (φy )k ,

Rk =
1

2

�

Rk− 1
2
+Rk+ 1

2

�

,
k = kL , . . . , kR ,

and thus the values of L at the cell centers are

Lk = pk +Rk , (2.60)

where pk = (γ− 1)
�

E k −
ρk

2 v 2
k

�

is obtained from the corresponding EOS (2.54) and vk =

(ρv )k/ρk . Equipped with (2.60), we then apply the minmod reconstruction procedure to

{Lk} and obtain the point values of L at the cell interfaces:

L N
k = Lk +

∆y

2
(L y )k , L S

k+1 = Lk+1−
∆y

2
(L y )k+1

,
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where

(L y )k =minmod
�

θ
Lk+1− Lk

∆y
,

Lk+1− Lk−1

2∆y
, θ

Lk − Lk−1

∆y

�

.

Finally, the point values of p and E needed for computation of numerical fluxes are

p N
k = L N

k −Rk+ 1
2
, p S

k = L S
k −Rk− 1

2

and

E N
k =

p N
k

γ−1
+

�

(ρv )Nk
�2

2ρN
k

, E S
k =

p S
k

γ−1
+

�

(ρv )Sk
�2

2ρS
k

,

respectively.

Remark 2.3.1 If the gravitational potential is linear (e.g.φ(y ) = g y with g being the gravi-

tational constant), then R can be computed by using the piecewise linear reconstruction of

ρ, (2.7), which results in the piecewise quadratic approximation of R :

eR (y ) = g

y
∫

y
kL−

1
2

eρ(ξ)dξ= g
∑

k

�

∆y
k−1
∑

i=kL

ρi +ρk (y − yk− 1
2
) +
(ρy )k

2
(y − yk− 1

2
)(y − yk+ 1

2
)
�

·χCk
(y ).

Then, the point values of R at the cell interfaces and cell centers are

Rk+ 1
2
= g∆y

k
∑

i=kL

ρi and Rk = g∆y
k−1
∑

i=kL

ρi +
g∆y

2
ρk −

g (∆y )2

8
(ρy )k ,

respectively.

2.3.1.2 Well-Balanced Evolution

The cell-averages ofq are evolved in time according to the system of ODEs (2.2). The second

and third components of the numerical fluxes G are computed the same way as in (2.3),

but with G given by (2.56), that is,
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G (2)
k+ 1

2
=

b +
k+ 1

2

�

ρN
k (v

N
k )

2+ L N
k

�

− b −
k+ 1

2

�

ρS
k+1(v

S
k+1)

2+ L S
k+1

�

b +
k+ 1

2
− b −

k+ 1
2

+βk+ 1
2

�

(ρv )Sk+1− (ρv )Nk −δ(ρv )k+ 1
2

�

,

G (3)
k+ 1

2
=

b +
k+ 1

2
v N

k (E
N

k +p N
k )− b −

k+ 1
2
v S

k+1(E
S

k+1+p S
k+1)

b +
k+ 1

2
− b −

k+ 1
2

+βk+ 1
2

�

E S
k+1−E N

k −δρk+ 1
2

�

,

(2.61)

while the first component is modified in order to exactly preserve the steady state (2.58):

G (1)
k+ 1

2
=

b +
k+ 1

2
(ρv )Nk − b −

k+ 1
2
(ρv )Sk+1

b +
k+ 1

2
− b −

k+ 1
2

+βk+ 1
2
H
� |Lk+1− Lk |

∆y
·

ykR+
1
2
− ykL− 1

2

max{Lk , Lk+1}

�

·
�

ρS
k+1−ρ

N
k −δρk+ 1

2

�

.

(2.62)

Notice that the last term in (2.62) is now multiplied by a smooth function H , designed to be

very small when the computed solution is locally (almost) at steady state, that is, at the cell

interfaces where |Lk+1−Lk |
∆y ∼ 0, and to be very close to 1 elsewhere. This is done in order to

guarantee the well-balanced property of the scheme as we show in Theorem 2.3.1 proved in

Section 2.3.1.3. On the other hand, the modification of the original CU flux is quite minor

since H (ψ) is very close to 1 unlessψ is very small.

A sketch of a typical function H is shown in Figure 2.4. In all of our numerical experi-

ments, we have used

H (ψ) =
(Cψ)m

1+ (Cψ)m
, (2.63)

with C = 200 and m = 6. To reduce the dependence of the computed solution on the choice

of particular values of C and m , the argument of H in (2.62) is normalized by a factor
y

kR +
1
2
−y

kL−
1
2

max{Lk ,Lk+1} , which makes H (ψ) dimensionless.

The one-sided local speeds of propagation, b ±
k+ 1

2
, are estimated using the smallest and

largest eigenvalues of the Jacobian ∂G
∂ q :

b +
k+ 1

2
=max

�

v N
k + c N

k , v S
k+1+ c S

k+1, 0
�

, b −
k+ 1

2
=min

�

v N
k − c N

k , v S
k+1− c S

k+1, 0
�

, (2.64)
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Figure 2.4 Sketch of H (ψ), (2.63).

where the velocities, v N
k and v S

k+1, are obtained using the identity v ≡ (ρv )/ρ, c N
k and c S

k+1

are the speeds of sound defined by c 2 = γp/ρ, and the pressures, p N
k and p S

k+1, are obtained

using the EOS (2.54).

Finally, the cell averages of the source term are approximated using the midpoint quadra-

ture rule as follows:

Sk =
�

0, 0,−(ρv )k (φy )k
�T

. (2.65)

2.3.1.3 Proof of the Well-Balanced Property

Theorem 2.3.1 The semi-discrete CU scheme (2.2), (2.61)–(2.65) coupled with the recon-

struction described in Section 2.3.1.1 is well-balanced in the sense that it exactly preserves

the steady state (2.58).

Proof: Assume that at certain time level, we have

v N
k ≡ vk ≡ v S

k ≡ 0 and L N
k ≡ Lk ≡ L S

k ≡ bL , (2.66)

where bL is a constant. To show that the proposed scheme is well-balanced, we need to show

that the RHS of (2.2) is identically equal to zero for the data in (2.66). Since the source term

(2.65) vanishes for vk = 0, it is enough to prove that the numerical fluxes are constant for all

k for the data in (2.66).
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Indeed, the first component (2.62) of the numerical flux vanishes since v N
k = v S

k+1 = 0

and Lk = Lk+1 = bL (the latter implies H
�

|Lk+1−Lk |
∆y ·

y
kR +

1
2
−y

kL−
1
2

max{Lk ,Lk+1}

�

= H (0) = 0). The second

component in (2.61) of the numerical flux is constant and equal to bL since v N
k = v S

k+1 = 0

and L N
k = L S

k+1 = bL . Finally, the third component in (2.61) of the numerical flux also vanishes:

G (3)
k+ 1

2
=βk+ 1

2

�

E S
k+1−E N

k −δEk+ 1
2

�

=
βk+ 1

2

γ−1
·

p S
k+1−p N

k

2

=
βk+ 1

2

2(γ−1)

��

L S
k+1−Rk+ 1

2
)− (L N

k −Rk+ 1
2

��

= 0,

since L N
k = LS

k+1 = bL and δEk+ 1
2
=

1

2
(E S

k+1−E N
k ). �

2.3.2 Numerical Examples

In this section, we present a number of 1-D numerical examples, in which we demonstrate

the performance of the proposed well-balanced semi-discrete CU scheme.

In all of the examples below, we have used the three-stage third-order strong stability

preserving Runge-Kutta method (see, e.g., [58, 60, 144]) to solve the ODE systems (2.2) and

(2.79). The CFL number in (2.10) has been set to κ= 0.4. Also, we have used the following

constant values: the minmod parameter θ = 1.3 and the specific heat ratio γ= 1.4.

In all of the 1-D numerical experiments, we use a uniform mesh with the total number

of grid cells N = kR −kL +1.

Example 2.1—Shock tube problem.

The first example is a modification of the Sod shock tube problem taken from [121, 154].

We solve the system (2.52)–(2.54) withφy ≡ 1 in the computational domain [0, 1] using the

following initial data:

(ρ(y , 0), v (y , 0), p (y , 0)) =

¨

(1, 0, 1), if y ≤ 0.5,

(0.125, 0, 0.1), if y > 0.5,
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and reflecting boundary conditions at both ends of the computational domain. These

boundary conditions are implemented using the ghost cell technique as follows:

ρkL−1 :=ρkL
, vkL−1 :=−vkL

, LkL−1 := LkL
,

ρkR+1 :=ρkR
, vkR+1 :=−vkR

, LkR+1 := LkR
.

We compute the solution using N = 100 uniformly placed grid cells and compare it with

the reference solution obtained using N = 2000 uniform cells. In Figure 2.5, we plot both

the coarse and fine grid solutions at time T = 0.2. As one can see, the proposed CU scheme

captures the solutions on coarse mesh quite well showing a good agreement with both the

reference solution and the results obtained in [121, 154].

Example 2.2—Isothermal equilibrium solution.

In the second example, taken from [154] (see also [110, 121, 149]), we test the ability of the

proposed CU scheme to accurately capture small perturbations of the steady state

ρ(y ) = e −φ(y ), v (y )≡ 0, p (y ) = e −φ(y ), (2.67)

which satisfies (2.58) for the system (2.52)–(2.54) with the linear gravitational potential

φ(y ) = y .

We take the computational domain [0,1] and use a zero-order extrapolation at the

boundaries:
ρkL−1 :=ρkL

e ∆y (φy )kL , vkL−1 := vkL
, LkL−1 := LkL

,

ρkR+1 :=ρkR
e −∆y (φy )kR , vkR+1 := vkR

, LkR+1 := LkR
.

Note that the boundary conditions on L can be recast in terms of p and ρ as

pkL−1 = pkL
+∆yρkL

(φy )kL
, pkR+1 = pkR

−∆yρkR
(φy )kR

.

We first numerically verify the proposed CU scheme capable of exactly preserving the

steady state (2.67). We use several uniform grids and observe that the initial conditions are

preserved within the machine accuracy.

Next, we introduce a small initial pressure perturbation and consider the system (2.52)–
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Figure 2.5 Example 2.1: Solutions computed by the well-balanced CU scheme using N = 100 and
2000 cells.
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(2.54) subject to the following initial data:

ρ(y , 0) = e −y , v (y , 0)≡ 0, p (y , 0) = e −y +ηe −100(y−0.5)2 ,

where η is a small positive number. In the numerical experiments, we use larger (η= 10−2)

and smaller (η= 10−4) perturbations.

We first apply the proposed well-balanced CU scheme to this problem and compute the

solution at time T = 0.25. The obtained pressure perturbation (p (y , 0.25)− e −y ) computed

using N = 200 and 2000 (reference solution) uniform grid cells are plotted in Figure 2.6 for

both η = 10−2 and 10−4. As one can see, the scheme accurately captures both small and

large perturbations on a relatively coarse mesh with N = 200. In order to demonstrate the

importance of the well-balanced property, we apply the non-well-balanced CU scheme

described in Section 2.1 to the same initial-boundary value problem (IBVP). The obtained

results are shown in Figure 2.6 as well. It should be observed that while the larger perturba-

tion is quite accurately computed by both schemes, the non-well-balanced CU scheme

fails to capture the smaller one.

Figure 2.6 Example 2.2: Pressure perturbation (p (y ,0.25)− e −y ) computed by the well-balanced
(WB) and non-well-balanced (Non-WB) CU schemes with N = 200 and 2000 for η = 10−2 (left)
and η= 10−4 (right).
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Example 2.3—Nonlinear gravitational potential.

In this example, we consider the system (2.52)–(2.54) with the nonlinear gravitational

potentialsφ(y ) = 1
2 y 2 andφ(y ) = sin(2πy ) subject to the steady-state initial data

ρ(y , 0) = e −φ(y ), v (y , 0)≡ 0, p (y , 0) = e −φ(y ), (2.68)

with the same boundary conditions as in Example 2.2. We first apply both the well-balanced

and non-well-balanced CU schemes to this IBVP and compute the solution on a sequence

of different meshes until the final time T = 1. We observe that the while the well-balanced

scheme preserves the steady state (2.68) within the machine accuracy, the errors in the

non-well-balanced computations are of the second order of accuracy as shown in Tables

2.7 and 2.8.

Table 2.7 Example 2.3: L 1-errors and corresponding experimental convergence rates in the non-
well-balanced computation of ρ, ρv and E ;φ(y ) = 1

2 y 2.

N ‖ρ(·, 1)−ρ(·, 0)‖1 rate ‖(ρv )(·, 1)− (ρv )(·, 0)‖1 rate ‖E (·, 1)−E (·, 0)‖1 rate
100 8.11E-06 – 9.02E-06 – 2.47E-05 –
200 1.94E-06 2.06 2.36E-06 1.93 5.96E-06 2.05
400 4.70E-07 2.04 6.04E-07 1.96 1.46E-06 2.02
800 1.15E-07 2.03 1.53E-07 1.98 3.62E-07 2.01

Table 2.8 Example 2.3: L 1-errors and corresponding experimental convergence rates in the non-
well-balanced computation of ρ, ρv and E ;φ(y ) = sin(2πy ).

N ‖ρ(·, 1)−ρ(·, 0)‖1 rate ‖(ρv )(·, 1)− (ρv )(·, 0)‖1 rate ‖E (·, 1)−E (·, 0)‖1 rate
100 1.38E-03 – 1.01E-03 – 4.91E-03 –
200 3.38E-04 2.03 2.58E-04 1.97 1.19E-03 2.04
400 8.30E-05 2.01 6.51E-05 1.98 2.93E-04 2.02
800 2.03E-05 2.03 1.63E-05 1.99 7.27E-05 2.01
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We, next, consider the same IBVP but with the following perturbed initial data:

ρ(y , 0) = e −φ(y ), v (y , 0)≡ 0, p (y , 0) = e −φ(y )+ηe −100(y−0.5)2 .

We take η= 10−3 and η= 10−5, then compute the solution until the final time T = 0.25 using

both the well-balanced and non-well-balanced CU schemes. In Figures 2.7 and 2.8, we

plot the pressure perturbations (p (y , 0.25)− e −φ(y )) computed using N = 200 and N = 2000

(reference solution) uniform grid cells forφ(y ) = 1
2 y 2 andφ(y ) = sin(2πy ), respectively. For

comparison, we plot the same perturbations computed by applying non-well-balanced

CU scheme with N = 200 uniform grid points. In Figures 2.7-2.8, we also include the

results obtained by non-well-balanced CU scheme with finer mesh sizes. One can conclude

that, while both well-balanced and non-well-balanced schemes can capture the larger

perturbation, e.g. η = 10−4, on a coarse grid; the latter one is not able to preserve this

property for smaller perturbation constant. Asη gets smaller, very fine mesh size is required

to control the perturbation with the non-well-balanced method.

In Figure 2.8, we demonstrate the pressure perturbation (p (y , 0.25)−e −sin(2πy )) obtained

by using well-balanced and non-well-balanced CU schemes on N = 200 uniform grid

cells for η= 10−3. Similarly with the previous discussion, the proposed well-balanced CU

scheme resolves the perturbation precisely on coarser grids, while the non-well-balanced

scheme requires finer grid size, e.g. N = 2000 to capture the perturbation as accurate as the

well-balanced method does.

Then, similarly, we apply a perturbation to the steady state and present that it is resolved

by the well-balanced scheme for each perturbation on a coarse grid. However, the non-

well-balanced one fails to capture the smaller perturbations.
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Figure 2.7 Example 2.3: Pressure perturbation (p (y , 0.25)− e −y 2/2) computed by the well-balanced
(WB) and non-well-balanced (Non-WB) CU schemes for η= 10−5 with N = 200 for each scheme
(left) and N = 1600 for the non-well-balanced scheme (right). The reference solution is computed
with N = 2000 grid pints.

Figure 2.8 Example 2.3: Pressure perturbation (p (y ,0.25) − e −sin(2πy )) computed by the well-
balanced (WB) and non-well-balanced (Non-WB) CU schemes for η= 10−3 with N = 200 for each
scheme (left) and N = 2000 for the non-well-balanced scheme (right). The reference solution is
computed with N = 2000 grid pints.
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2.4 The Two-Dimensional Euler Equations of Gas

Dynamics With Gravitation

In this section, we describe the well-balanced semi-discrete CU scheme for the 2-D Euler

equations of gas dynamics with gravitation. The 2-D system reads as

qt +F (q)x +G(q)y =S(q), (2.69)

where q := (ρ,ρu ,ρv, E )T is a vector of conservative variables, and

F (q) :=











ρu

ρu 2+p

ρu v

u (E +p )











and G(q) :=











ρv

ρu v

ρv 2+p

v (E +p )











(2.70)

are the fluxes in the x - and y -directions, respectively, and

S(q) :=











0

−ρφx

−ρφy

−ρuφx −ρvφy











(2.71)

is the gravitational source term. The system (2.69)–(2.71) is closed using the following

equation of state (EOS):

E =
p

γ−1
+
ρ

2
(u 2+ v 2), (2.72)

where γ stands for the specific heat ratio.

Similarly to the previous sections, our goal is to design a numerical scheme which exactly

preserves the steady states of the system (2.69). First, we rewrite the system (2.69)–(2.72) as

follows:


















ρt + (ρu )x + (ρv )y = 0,

(ρu )t + (ρu 2+K )x + (ρu v )y = 0,

(ρv )t + (ρu v )x + (ρv 2+ L )y = 0,

Et + (u (E +p ))x + (v (E +p ))y =−ρuφx −ρvφy .

(2.73)

45



This system can also be written in the vector form (2.69) with

q :=











ρ

ρu

ρv

E











, F (q) :=











ρu

ρu 2+K

ρu v

u (E +p )











, G(q) :=











ρv

ρu v

ρv 2+ L

v (E +p )











, S(q) :=











0

0

0

−ρuφx −ρvφy











,

where

K := p +Q end L := p +R , (2.74)

are global variables with

Q (x , y , t ) :=

x
∫

ρ(ξ, y , t )φx (ξ, y )dξ, R (x , y , t ) :=

y
∫

ρ(x ,η, t )φy (x ,η)dη. (2.75)

The motionless steady states are then given by

u = v ≡ 0, Kx ≡ 0 and L y ≡ 0. (2.76)

In the succeeding sections, we illustrate the well-balanced numerical scheme to resolve

the steady state solutions of the system (2.73)-(2.75).

2.4.1 Well-Balanced Central-Upwind Scheme

We consider a rectangular computational domain and partition it into the uniform Carte-

sian cells C j ,k := [x j− 1
2
, x j+ 1

2
]× [yk− 1

2
, yk+ 1

2
] of size |C j ,k | = ∆x∆y centered at (x j , yk ), j =

jL , . . . , jR , k = kL , . . . , kR . We assume that at a certain time level t , the cell averages of the

computed numerical solution,

q j ,k (t ) :=
1

∆x∆y

∫∫

C j ,k

q(x , y , t )d x d y ,

are available.
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2.4.1.1 Well-Balanced Reconstruction

Similarly to the 1-D case, we reconstruct only the first three components of the conservative

variables, q, (ρ, ρu and ρv ):

eq (i )(x , y ) =q (i )j ,k + (q
(i )
x ) j ,k (x − x j ) + (q

(i )
y ) j ,k (y − yk ), (x , y ) ∈C j ,k , i = 1, 2, 3,

and compute the corresponding point values at the cell interfaces (x j± 1
2
, yk ) and (x j , yk± 1

2
):

(q (i ))Ej ,k := eq (i )(x j+ 1
2
−0, yk ) =q (i )j ,k +

∆x

2
(q (i )x ) j ,k ,

(q (i ))Wj ,k := eq (i )(x j− 1
2
+0, yk ) =q (i )j ,k −

∆x

2
(q (i )x ) j ,k ,

(q (i ))Nj ,k := eq (i )(x j , yk+ 1
2
−0) =q (i )j ,k +

∆y

2
(q (i )y ) j ,k ,

(q (i ))Sj ,k := eq (i )(x j , yk− 1
2
+0) =q (i )j ,k −

∆y

2
(q (i )y ) j ,k ,

i = 1, 2, 3,

where the slopes (q (i )x ) j ,k and (q (i )y ) j ,k are computed as in (2.20).

The point values for the forth conservative variable E should be calculated from the new

equilibrium variables obtained from the reconstruction of K and L . We stress that since at

the steady states (2.76), K = K (y ) is independent of x and L = L (x ) is independent of y , we,

in fact, perform 1-D reconstructions for K and L in the x - and y -directions, respectively.

To this end, we first use the midpoint rule to compute the point values of the integrals

Q and R in (2.75) at the cell interfaces in the x - and y -directions, respectively:

Q jL− 1
2 ,k = 0,







Q j+ 1
2 ,k =Q j− 1

2 ,k +∆xρ j ,k (φx ) j ,k ,

Q j ,k =
1

2

�

Q j− 1
2 ,k +Q j+ 1

2 ,k

�

,
j = jL , . . . , jR , k = kL , . . . , kR ,

R j ,kL− 1
2
= 0,







R j ,k+ 1
2
=R j ,k− 1

2
+∆yρ j ,k (φy ) j ,k ,

R j ,k =
1

2

�

R j ,k− 1
2
+R j ,k+ 1

2

�

,
j = jL , . . . , jR , k = kL , . . . , kR ,

where (φx ) j ,k :=φx (x j , yk ) and (φy ) j ,k :=φy (x j , yk ). We then compute the cell center values
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K j ,k and L j ,k as follows:

K j ,k = pj ,k +Q j ,k and L j ,k = pj ,k +R j ,k .

We now obtain the point values of K and L at the cell interfaces in the x - and y -directions,

respectively:

K E
j ,k = K j ,k +

∆x

2
(Kx ) j ,k , K W

j ,k = K j ,k −
∆x

2
(Kx ) j ,k ,

L N
j ,k = L j ,k +

∆y

2
(L y ) j ,k , L S

j ,k = L j ,k −
∆y

2
(L y ) j ,k ,

(2.77)

where

(Kx ) j ,k =minmod
�

θ
K j+1,k −K j ,k

∆x
,

K j+1,k −K j−1,k

2∆x
, θ

K j ,k −K j−1,k

∆x

�

and

(L y ) j ,k =minmod
�

θ
L j ,k+1− L j ,k

∆y
,

L j ,k+1− L j ,k−1

2∆y
, θ

L j ,k − L j ,k−1

∆y

�

.

Finally, the values obtained in (2.77) are used to evaluate the point values of p from (2.74):

p E
j ,k = K E

j ,k −Q j+ 1
2 ,k , p W

j ,k = K W
j ,k −Q j− 1

2 ,k ,

p N
j ,k = L N

j ,k −R j ,k+ 1
2
, p S

j ,k = L S
j ,k −R j ,k− 1

2
,

(2.78)

and then the corresponding point values of E are calculated from the EOS (2.72).

2.4.1.2 Well-Balanced Evolution

The cell-averages ofq are evolved in time according to the following system of ODEs:

d

d t
q j ,k =−

F j+ 1
2 ,k −F j− 1

2 ,k

∆x
−
G j ,k+ 1

2
−G j ,k− 1

2

∆y
+S j ,k , (2.79)

whereF and G are numerical fluxes. Introducing the notations

α j+ 1
2 ,k :=

a+
j+ 1

2 ,k
a−

j+ 1
2 ,k

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

and β j ,k+ 1
2

:=
b +

j ,k+ 1
2
b −

j ,k+ 1
2

b +
j ,k+ 1

2
− b −

j ,k+ 1
2

,

we write the components ofF j+ 1
2 ,k and G j ,k+ 1

2
as
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F (1)
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
(ρu )Ej ,k −a−

j+ 1
2 ,k
(ρu )Wj+1,k

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

+α j+ 1
2 ,k H

�

|K j+1,k −K j ,k |
∆x

·
xkR+

1
2
− xkL− 1

2

max j ,k{K j ,k , K j+1,k}

�

·
�

ρW
j+1,k −ρ

E
j ,k −δρ j+ 1

2 ,k

�

,

F (2)
j+ 1

2 ,k
=

a+
j+ 1

2 ,k

�

ρE
j ,k (u

E
j ,k )

2+K E
j ,k

�

−a−
j+ 1

2 ,k
(ρW

j+1,k (u
W
j+1,k )

2+K W
j+1,k )

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

+α j+ 1
2 ,k

�

(ρu )Wj+1,k − (ρu )Ej ,k −δ(ρu ) j+ 1
2 ,k

�

,

F (3)
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
ρE

j ,k u E
j ,k v E

j ,k −a−
j+ 1

2 ,k
ρW

j+1,k u W
j+1,k v W

j+1,k

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

+α j+ 1
2 ,k

�

(ρv )Wj+1,k − (ρv )Ej ,k −δ(ρv ) j+ 1
2 ,k

�

,

F (4)
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
u E

j ,k (E
E
j ,k +p E

j ,k )−a−
j+ 1

2 ,k
u W

j+1,k (E
W
j+1,k +p W

j+1,k )

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

+α j+ 1
2 ,k

�

E W
j+1,k −E E

j ,k −δE j+ 1
2 ,k

�

,

G (1)
j ,k+ 1

2
=

b +
j ,k+ 1

2
(ρv )Nj ,k − b −

j ,k+ 1
2
(ρv )Sj ,k+1

b +
j ,k+ 1

2
− b −

j ,k+ 1
2

+β j ,k+ 1
2
H

�

|L j ,k+1− L j ,k |
∆y

·
ykR+

1
2
− ykL− 1

2

max j ,k{L j ,k , L j ,k+1}

�

·
�

ρS
j ,k+1−ρ

N
j ,k −δρ j ,k+ 1

2

�

,

G (2)
j ,k+ 1

2
=

b +
j ,k+ 1

2
ρN

j ,k u N
j ,k v N

j ,k − b −
j ,k+ 1

2
ρS

j ,k+1u S
j ,k+1v S

j ,k+1

b +
j ,k+ 1

2
− b −

j ,k+ 1
2

+β j ,k+ 1
2

�

(ρu )Sj ,k+1− (ρu )Nj ,k −δ(ρu ) j ,k+ 1
2

�

,

G (3)
j ,k+ 1

2
=

b +
j ,k+ 1

2

�

ρN
j ,k (v

N
j ,k )

2+ L N
j ,k

�

− b −
j ,k+ 1

2

�

ρS
j ,k+1(v

S
j ,k+1)

2+ L S
j ,k+1

�

b +
j ,k+ 1

2
− b −

j ,k+ 1
2

+β j ,k+ 1
2

�

(ρv )Sj ,k+1− (ρv )Nj ,k −δ(ρv ) j ,k+ 1
2

�

,

G (4)
j ,k+ 1

2
=

b +
j ,k+ 1

2
v N

j ,k (E
N
j ,k +p N

j ,k )− b −
j ,k+ 1

2
v S

j ,k+1(E
S
j ,k+1+p S

j ,k+1)

b +
j ,k+ 1

2
− b −

j ,k+ 1
2

+β j ,k+ 1
2

�

E S
j ,k+1−E N

j ,k −δE j ,k+ 1
2

�

,
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where the function H in the first components of the x - and y -numerical fluxes is defined,

as before, in (2.63). As mentioned earlier, the local speeds are obtained from the smallest

and largest eigenvalues of Jacobians ∂ F /∂ q and ∂G/∂ q, which are given explicitly as

follows:

a+
j+ 1

2 ,k
=max

�

u E
j ,k + c E

j ,k , u W
j+1,k + c W

j+1,k , 0
�

, a−
j+ 1

2 ,k
=min

�

u E
j ,k − c E

j ,k , u W
j+1,k − c W

j+1,k , 0
�

,

b +
j ,k+ 1

2
=max

�

v N
j ,k + c N

j ,k , v S
j ,k+1+ c S

j ,k+1, 0
�

, b −
j ,k+ 1

2
=min

�

v N
j ,k − c N

j ,k , v S
j ,k+1− c S

j ,k+1, 0
�

,
(2.80)

where the velocities u E
j ,k , u W

j+1,k , v N
j ,k and v S

j ,k+1 are obtained from the identities u ≡ (ρu )/ρ

and v ≡ (ρv )/ρ and the speeds of sound c E
j ,k , c W

j+1,k , c N
j ,k and c S

j ,k+1 are computed from the

definition c 2 = γp/ρ.

The cell averages of the source term in (2.79) are approximated using the midpoint rule

as follows:

S j ,k =
�

0, 0, 0,−(ρu ) j ,k (φx ) j ,k − (ρv ) j ,k (φy ) j ,k

�T
. (2.81)

Finally, we state the following well-balanced property of the proposed 2-D CU scheme.

Theorem 2.4.1 The 2-D semi-discrete CU scheme described in Section 2.4.1.1 and Section

2.4.1.2 above is well-balanced in the sense that it exactly preserves the steady state (2.76).

Proof: We assume that the following equilibriums hold at certain time level t = t n :

u E
j ,k ≡ u j ,k ≡ u W

j ,k ≡ 0, v N
j ,k ≡ v j ,k ≡ v S

j ,k ≡ 0, (2.82)

K E
j ,k ≡ K j ,k ≡ K W

j ,k ≡ ÒK , L N
j ,k ≡ L j ,k ≡ L S

j ,k ≡ bL , (2.83)

where ÒK and bL are constants. Similarly to the 1-D case, to prove the well-balanced property

of the scheme, the right hand side of the equation (2.79) should vanish. By considering

(2.82), the source termS j ,k given in (2.81) is equal to zero. Thus, we only need to show that

the numerical fluxes in both both x - and y - directions are constant.

The equalities in (2.82) and (2.83) result inF (1)
j+ 1

2 ,k
= 0, where (2.83) yields

H
�

|K j+1,k−K j ,k |
∆x ·

x
kR +

1
2
−x

kL−
1
2

max j ,k {K j ,k ,K j+1,k }

�

= H (0) = 0. The second term of F (2)
j+ 1

2 ,k
also vanishes since

u E
j ,k ≡ u j ,k ≡ u W

j ,k ≡ 0 and then we have F (2)
j+ 1

2 ,k
= ÒK resulting in F (2)

j+ 1
2 ,k
−F (2)

j− 1
2 ,k
= 0. The

third component of the numerical fluxes in the x -direction,F (3)
j+ 1

2 ,k
, is immediately equal
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to zero by (2.82). Finally, the first term ofF (4)
j+ 1

2 ,k
becomes zero and the rest ofF (4)

j+ 1
2 ,k

can be

computed as follows:

F (4)
j+ 1

2 ,k
=α j+ 1

2 ,k

�

E W
j+1,k −E E

j ,k −δE j+ 1
2 ,k

�

=α j+ 1
2 ,k

�

p W
j+1,k

γ−1
−

p E
j ,k

γ−1
−minmod(a+

j+ 1
2 ,k

, −a−
j+ 1

2 ,k
)

�

p W
j+1,k

γ−1
−

p E
j ,k

γ−1

��

=α j+ 1
2 ,k

�

�

1−minmod(a+
j+ 1

2 ,k
, −a−

j+ 1
2 ,k
)
�

�

K W
j+1,k −Q j+ 1

2 ,k

γ−1
−

K E
j ,k −Q j+ 1

2 ,k

γ−1

��

= 0,

since p E
j ,k = K E

j ,k −Q j+ 1
2 ,k and p W

j+1,k = K W
j+1,k −Q j+ 1

2 ,k from (2.78).

Similarly to the x -direction, the first and second components of the numerical fluxes

in the y -direction, G (1)
j ,k+ 1

2
and G (2)

j ,k+ 1
2

are equal to zero according to the equations in (2.82)

and (2.83). The third one is G (3)
j ,k+ 1

2
= bL , which gives G (3)

j ,k+ 1
2
−G (3)

j ,k− 1
2
= 0. Lastly, by following

(2.78), (2.82) and (2.83), G (4)
j ,k+ 1

2
also yields to zero.

Hence, the right hand side of (2.79) vanishes and the scheme preserves the state-states

(2.76).

�

2.4.2 Numerical Examples

In this section, we present a number of 2-D numerical examples, in which we demonstrate

the performance of the proposed well-balanced semi-discrete CU scheme.

In all of the examples below, we have used the three-stage third-order strong stability

preserving Runge-Kutta method (see, e.g., [58, 60, 144] and Appendix A.1) to solve the ODE

system (2.79). The CFL number in (2.22) has been set to κ = 0.4. Also, we have used the

following constant values: the minmod parameter θ = 1.3 and the specific heat ratio γ= 1.4.
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Example 2.7—Isothermal equilibrium solution.

The first 2-D example was studied in [154]. We consider the system (2.73) with g = 1 subject

to the initial data that are in isothermal equilibrium:

ρ(x , y , 0) =ρ0e −
ρ0g y

p0 , p (x , y , 0) = p0e −
ρ0g y

p0 , u (x , y , 0)≡ v (x , y , 0)≡ 0, (2.84)

where ρ0 = 1.21 and p0 = 1, and the solid wall boundary conditions imposed at the edges of

the unit square [0, 1]× [0, 1].

We compute the solution until the final time T = 1 using the proposed well-balanced

CU scheme on 50×50, 100×100 and 200×200 uniform cells. On all of these grids, the initial

data are preserved within the machine accuracy. On contrary, the non-well-balanced CU

scheme preserves the initial equilibrium within the accuracy of the scheme only, as can be

seen in Table 2.9, where we present the L 1-errors for both ρ, ρu , ρv and E components of

the non-well-balanced solution.

Table 2.9 Example 2.7: L 1-errors for the non-well-balanced CU scheme.

N ×N ρ ρu ρv E u v p

50 × 50 2.54E-03 0.00E+00 1.02E-04 1.16E-03 0.00E+00 1.72E-04 4.64E-04

100 × 100 1.07E-03 0.00E+00 1.54E-04 7.93E-04 0.00E+00 1.93E-04 3.17E-04

200 × 200 3.96E-04 0.00E+00 5.04E-05 2.66E-04 0.00E+00 6.39E-05 1.06E-04

Next, we add a small perturbation to the initial pressure (compare with (2.84)):

p (x , y , 0) = p0e −
ρ0g y

p0 +ηe −
100ρ0g

p0 ((x−0.3)2+(y−0.3)2), η= 10−3.

In Figures 2.9 and 2.10 (upper row), we plot the pressure computed by both the well-

balanced and non-well-balanced CU schemes at time T = 0.15 using 50× 50 uniform

cells. As one can clearly see, the well-balanced CU scheme can capture the small pressure

perturbation much more accurately than the non-well-balanced one. When the mesh is

refined to 200×200 uniform cells, the non-well-balanced solution becomes better, but still
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less accurate than the well-balanced one, see Figure 2.10 (lower row).

Figure 2.9 Example 2.7: Pressure perturbation computed by the well-balanced (left) and non-
well-balanced (right) CU schemes using 50×50 uniform cells.

Example 2.8—Explosion.

In the second 2-D example, we compare the performance of well-balanced and non-well-

balanced CU schemes in an explosion setting and demonstrate nonphysical shock waves

generated by non-well-balanced scheme.

We solve the system (2.73) with g = 0.118 in the computational domain [0,3]× [0,3],

subject to the following initial data:

ρ(x , y , 0)≡ 1, u (x , y , 0)≡ 0, p (x , y , 0) = 1− g y +

(

0.005, (x −1.5)2+ (y −1.5)2 < 0.01,

0, otherwise.

Zero-order extrapolation is used as the boundary conditions in all of the directions.

We use a uniform grid with 101×101 cells and compute the solution by both the well-

balanced and non-well-balanced CU schemes until the final time T = 2.4. At first, a circular
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Figure 2.10 Example 2.7: Contour plot of the pressure perturbation computed by well-balanced
(left column) and non-well-balanced (right column) CU schemes using 50×50 (upper row) and
200×200 (lower row) uniform cells.
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shock wave is developed and later on it transmits through the boundary. Due to the heat gen-

erated by the explosion, the gas at the center expands and its density decreases generating

a positive vertical momentum at the center of the domain. In Figures 2.11 and 2.12, we plot

the solution (ρ and
p

u 2+ v 2 at times t = 1.2, 1.8 and 2.4) computed by the well-balanced

and non-well-balanced schemes, respectively. As one can see, the well-balanced scheme

accurately captures the behavior of the solution at all stages, while the non-well-balanced

scheme produces significant oscillations at the smaller time t = 1.2, which totally dominate

the solution, especially its velocity field, by the final time T = 2.4.

Figure 2.11 Example 2.8: Density (ρ) and velocity (
p

u 2+ v 2) computed by the well-balanced CU
scheme.

2.5 Conclusions

In this chapter, we developed a well-balanced second-order central-upwind scheme for

various types of balance laws. Particularly, we first considered 2×2 systems of balance laws,
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Figure 2.12 Example 2.8: Density (ρ) and velocity (
p

u 2+ v 2) computed by the non-well-
balanced CU scheme.

which is used to model, for instance, gas flow in high-pressure transmission pipelines and

traffic flow with relaxation. We presented the results of one-dimensional model, in which,

steady states are captured exactly by the proposed well-balanced scheme. As an ongoing

study, several physical models including the two-dimensional systems will be examined.

Furthermore, we considered one- and two-dimensional Euler equations of gas dynamics

under gravitational field. We applied the developed well-balanced central-upwind scheme

to numerous systems including both linear and nonlinear gravitational potentials and

proved that steady state solutions and their small perturbations are preserved by the new

well-balanced scheme. As a consecutive work, non-smooth steady-states with the strong

shock formation will be worth to test the performance of the well-balanced scheme.
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Part II

Kinetic Chemotaxis Models
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CHAPTER 3

An Asymptotic Preserving Scheme for Kinetic Chemotaxis Models

in Two Space Dimensions

The contents of this chapter have been submitted to Kinetic and Related Models, [32].

3.1 Introduction

Chemotaxis is the movement of cells along the chemical gradient in a medium and it is often

modeled by systems of PDEs. The classical PDE chemotaxis model is the Patlak-Keller-Segel

(PKS) system [87–89, 134], which is derived at the macroscopic level in terms of the cell

density and chemoattractant concentration. In the 2-D case, this model reads as

ρt =∇· (D∇ρ−χρ∇S ), (3.1)

τSt =α∆S −βS +γρ, (3.2)

where x= (x , y ) ∈Ω⊂R2 are spatial variables and t is time, ρ(x, t ) is the cell density and

S (x, t ) is the chemoattractant concentration, D and α are positive diffusion constants, χ

is the chemotactic sensitivity constant, and the positive constants γ and β stand for the
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production and degradation rates of the chemoattractant, respectively. The constant τ

determines the type of the system: It is parabolic-parabolic if τ= 1 and parabolic-elliptic

for τ= 0. In recent years, several modifications of the PKS system have also been studied;

see, e.g., [22, 33, 70–72, 94, 135] and references therein.

In order to describe the chemotaxis at the cellular (microscopic) level, a class of Boltzmann-

type kinetic equations has been developed. A stochastic approach based on the velocity-

jump process was introduced in [147] and was later used in the framework of kinetic

chemotaxis models in [3, 129, 145]. The velocity-jump process characterizes the movement

in two phases, namely, run and tumble. During the run phase, cells move (almost) linearly

with constant speed and in the tumble phase, they reorient their motion with a new velocity

and direction. The Boltzmann-type kinetic model reads as

ft +v ·∇x f =

∫

V

�

T [S ] f ′−T ∗[S ] f
�

dv′, (3.3)

where f := f (x, t ,v) is the probability density function (pdf) of cells at the position x with

the velocity v = (u , v ) ∈ V ⊂R2 at a given time t , and f ′ := f (x, t ,v′). In (3.3), T [S ] is the

turning kernel operator, which describes the velocity change from v′ to v at (x, t ), that

is, T [S ] := T [S ](x, t ,v,v′) and T ∗[S ] := T [S ](x, t ,v′,v). Specifying the turning kernel T is a

crucial point in the kinetic chemotaxis modeling, which will be discussed in the §3.2. Notice

that the microscopic pdf f is related to the macroscopic cell density ρ in the following way:

ρ(x, t ) :=

∫

V

f (x, t ,v)dv. (3.4)

Applying the parabolic scaling to (3.3) yields the following non-dimensionalized kinetic

equation (see, e.g., [25, 68, 130]):

ε ft +v ·∇x f =
1

ε

∫

V

�

Tε[S ] f
′−T ∗ε [S ] f

�

dv′ (3.5)

with the non-dimensional scaling parameter (mean-free path) ε and the new notations:

f := fε(x, t ,v), f ′ := fε(x, t ,v′), Tε[S ] := Tε[S ](x, t ,v,v′) and T ∗ε [S ] := Tε[S ](x, t ,v′,v).
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The question of convergence (in the singular limit as ε→ 0) of the kinetic model (3.5) to

the PKS system (3.1), (3.2) has been extensively studied. More precisely, the global in time

convergence was proven in the parabolic-elliptic case in [25]. In the parabolic-parabolic

case, only local convergence results were established; see [76]. We also refer the reader

to [130] for more results on the limiting process.

It is well-known that if the total number of cells is sufficiently large, a concentration

phenomenon may occur and can be modeled by both the PKS (3.1), (3.2) and kinetic-

chemotaxis (3.5), (3.2) systems. It should be observed that under the assumption that

no-flux conditions are imposed at the boundary of the domain Ω, the total mass

M :=

∫

Ω

ρ(x, t )dx (3.6)

is conserved for both models, but the solution behavior depends on the value of M . For

instance, the solution of the 2-D PKS system (3.1), (3.2) may develop δ-type singularities in

finite time if M is larger than some critical value Mc ; see, e.g., [21, 34, 52, 65–67, 69, 78, 124].

Otherwise, the solution of (3.1), (3.2) exists globally in time. In the parabolic-elliptic case

(τ = 0), the critical mass values are explicitly available, while this is not the case for the

parabolic-parabolic system (τ = 1); see, e.g., [135]. The kinetic-chemotaxis system (3.5),

(3.2) exhibits a similar behavior, which depends, however, not only on the value of the initial

mass M , but also on the choice of the specific kernel Tε; see, e.g., [15, 25]. At the same time,

the kinetic-chemotaxis system provides a more detailed description of the underlying cell

dynamics and thus may be advantageous in a variety of applications.

In this chapter, we develop an efficient and accurate numerical method for the kinetic-

chemotaxis system (3.5), (3.2). As it was discussed before, one of the difficulties in achieving

this goal is related to the fact that the studied system is stiff when 0 < ε << 1. If a naïve

numerical discretization is used, then one may need to take both spatial and temporal

discretization parameters to be proportional to O (ε) or even O (ε2) due to stability restric-

tions, which may become unaffordable for small ε. To overcome this difficulty, we develop

an asymptotic-preserving (AP) scheme, which yields a consistent approximation of the

limiting macroscopic PKS system as ε→ 0 and is stable on a coarse spatio-temporal grid

with the mesh parameters being independent of ε. The AP methods were first introduced
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in [82] to solve kinetic equations in diffusive regimes and were later generalized for a variety

of kinetic models; see, e.g., [39, 40, 44, 47, 74, 75, 79, 84, 107].

The AP property of our numerical approach is achieved by implementing an operator

splitting technique combined with an idea of the even-odd formulation; see, e.g., [23, 85].

We split the system (3.5), (3.2) into the following two parts: a stiff nonlinear relaxation

equations for the pdf and a non-stiff linear transport system coupled with the macroscopic

equation (3.2) for the chemoattractant concentration. The nonlinear system is solved

exactly, while the linear transport part is then solved by a second-order upwind method

and the chemoattractant equation is treated by the spectral method.

3.2 Local Turning Kernel

In this section, we select a specific turning kernel Tε, which models the reorientation process

of the cells and will be used in the kinetic equation (3.5). To this end, we first write the

formal asymptotic expansion (see, e.g., [23, 25, 48, 68, 130]):

Tε[S ] = T0[S ] + εT1[S ] +O (ε2). (3.7)

Here, the leading term T0[S ] = F (v)> 0 is the bounded velocity distribution at the equilib-

rium, which satisfies the following assumptions:

∫

V

F (v)dv = 1 and F (v) = F (|v|). (3.8)

The coefficient of the second term in (3.7), T1[S ], describes the new favorable direction of

the cells and we consider the positive taxis towards the chemoattractant.

Throughout this chapter, we employ the turning kernel operator introduced in [15],

which represents a small perturbation of the equilibrium state:

Tε[S ](x, t ,v,v′) = F (v) + ε(v ·∇S (x, t ))+, (3.9)
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where a+ :=max(a , 0). Consequently, the kinetic equation (3.5) becomes:

ε ft +v ·∇x f =
ρ

ε
[F (v) + ε(v ·∇S )+]−

1

ε
(1+ εJ |∇S |) f , J :=

∫

V

�

v ·∇S

|∇S |

�

+
dv. (3.10)

We note that alternative turning kernels have also been studied; see, e.g., [25, 76, 77]. It

should be observed that the solution properties depend on the choice of the kernel. For

instance, it was shown in [25] that the kinetic model (3.5), (3.2) with certain global kernel

operators has a global solution for any initial mass. On the other hand, if the local kernel

operator (3.9) is used, the solution may blow up. Indeed, as it has been proven in [15] for the

parabolic-elliptic case, if the total mass M >Mc =
16π

|V |
, then the solution blows up, while

if M <mc =
0.806π

|V |
, then a classical solution exists globally in time. We also note that in

the parabolic-parabolic case, the criteria for blow up or global existence are not explicitly

known. In this chapter we develop an AP numerical method for the kinetic chemotaxis

model (3.10), (3.2) and then use it to numerically investigate possible blowup scenarios in

the parabolic-parabolic case.

3.3 Numerical Method

In this section, we present an AP scheme for the kinetic equation (3.10) coupled with the

chemoattractant concentration equation (3.2). To this end, in §3.3.1, we first rewrite the

system (3.5), (3.2) in the form convenient for numerical simulations using an even-odd

formulation; see, e.g. [23, 85]. Then, in §3.3.2, we implement the Strang splitting approach,

[146], by separating stiff and non-stiff parts of the system. In this setup, the stiff subsystem

is solved exactly as described in §3.3.2.1, while the non-stiff subsystem becomes a system

of linear transport equations, which is solved by a second-order upwind method presented

in §3.3.2.2.

3.3.1 Even-Odd Formulation

In this section, we follow [23,85] and introduce new variables r1, j1, r2 and j2 by considering

the so-called even-odd formulation. We assume that v ∈V := {v | |v|= v0} and denote by
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V + := {v = (u , v ) ∈ V |u > 0, v > 0}. From now on, we consider v ∈ V + only and rewrite

equation (3.10) as the system of four equations obtained by substituting (u , v ), (−u ,−v ),

(u ,−v ), and (−u , v ) into (3.10):

ε ft (u , v ) +u fx (u , v ) + v fy (u , v )

=
ρ

ε

�

F (u , v ) + ε(uSx + v Sy )+
�

−
1

ε
(1+ εJ |∇S |) f (u , v ),

ε ft (−u ,−v )−u fx (−u ,−v )− v fy (−u ,−v )

=
ρ

ε

�

F (−u ,−v )− ε(uSx + v Sy )+
�

−
1

ε
(1+ εJ |∇S |) f (−u ,−v ),

ε ft (u ,−v ) +u fx (u ,−v )− v fy (u ,−v )

=
ρ

ε

�

F (u ,−v ) + ε(uSx − v Sy )+
�

−
1

ε
(1+ εJ |∇S |) f (u ,−v ),

ε ft (−u , v )−u fx (−u , v ) + v fy (−u , v )

=
ρ

ε

�

F (−u , v )− ε(uSx − v Sy )+
�

−
1

ε
(1+ εJ |∇S |) f (−u , v ),

(3.11)

where f (±u ,±v ) is used instead of f (x, t ,±u ,±v ) for the sake of simplicity. We then define

the new variables

r1(u , v ) :=
1

2
[ f (u ,−v ) + f (−u , v )], r2(u , v ) :=

1

2
[ f (u , v ) + f (−u ,−v )],

j1(u , v ) :=
1

2ε
[ f (u ,−v )− f (−u , v )], j2(u , v ) :=

1

2ε
[ f (u , v )− f (−u ,−v )],

(3.12)

with a one-to-one correspondence between them and f :

f (u , v ) =























r2+ ε j2, u > 0, v > 0,

r2− ε j2, u < 0, v < 0,

r1+ ε j1, u > 0, v < 0,

r1− ε j1, u < 0, v > 0.

(3.13)
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It is instructive to point out that the macroscopic cell density ρ can be obtained from (3.4)

and (3.12) in terms of the new variables r1 and r2:

ρ(x, t ) = 2

∫

V +

[r1(x, t ,v) + r2(x, t ,v)]dv. (3.14)

Substituting (3.13) into (3.11), yields the following system:

(r1)t +u ( j1)x − v ( j1)x =
ρ

2ε2

�

2F (u , v ) + ε|uSx − v Sy |
�

−
1

ε2
(1+ εJ |∇S |) r1,

( j1)t +
1

ε2
u (r1)x −

1

ε2
v (r1)y =

ρ

2ε2
(uSx − v Sy )−

1

ε2
(1+ εJ |∇S |) j1,

(r2)t +u ( j2)x + v ( j2)y =
ρ

2ε2
[2F (u , v ) + ε|uSx + v Sy |]−

1

ε2
(1+ εJ |∇S |)r2,

( j2)t +
1

ε2
u (r2)x +

1

ε2
v (r2)y =

ρ

2ε2
(uSx + v Sy )−

1

ε2
(1+ εJ |∇S |) j2.

(3.15)

Since the left-hand sides of the second and fourth equations in (3.15) include stiff terms

with the
1

ε2
coefficients, we add and subtract u (r1)x − v (r1)y and u (r2)x + v (r2)y from the

second and fourth equations, respectively, so that we finally obtain the following system

for r1, j1, r2 and j2:

(r1)t +u ( j1)x − v ( j1)y

=
ρ

2ε2
(2F (u , v ) + ε|uSx − v Sy |)−

1

ε2
(1+ εJ |∇S |)r1,

( j1)t +u (r1)x − v (r1)y

=
ρ

2ε2
(uSx − v Sy )−

1

ε2

�

(1+ εJ |∇S |) j1+ (1− ε2)u (r1)x − (1− ε2)v (r1)y
�

,

(r2)t +u ( j2)x + v ( j2)y

=
ρ

2ε2
(2F (u , v ) + ε|uSx + v Sy |)−

1

ε2
(1+ εJ |∇S |)r2,

( j2)t +u (r2)x + v (r2)y

=
ρ

2ε2
(uSx + v Sy )−

1

ε2

�

(1+ εJ |∇S |) j2+ (1− ε2)u (r2)x + (1− ε2)v (r2)y
�

,

(3.16)

in which, all of the stiff terms are moved to the right-hand side.
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3.3.2 Operator Splitting

In order to develop an efficient numerical method, we implement the operator splitting, in

which the left-hand (non-stiff) and right-hand (stiff) sides of the system (3.16) are treated

separately. To this end, we first introduce the vector q := (r1, j1, r2, j2)T and write the system

(3.16), (3.2) in the following form:

¨

qt +A1qx +A2qy =R ,

τSt =α∆S −βS +γρ,
(3.17)

where

A1 =











0 u 0 0

u 0 0 0

0 0 0 u

0 0 u 0











, A2 =











0 −v 0 0

−v 0 0 0

0 0 0 v

0 0 v 0











, (3.18)

and

R =











ρ
2ε2 (2F (u , v ) + ε|uSx − v Sy |)− 1

ε2 (1+ εJ |∇S |)r1
ρ

2ε2 (uSx − v Sy )− 1
ε2

�

(1+ εJ |∇S |) j1+ (1− ε2)u (r1)x − (1− ε2)v (r1)y
�

ρ
2ε2 (2F (u , v ) + ε|uSx + v Sy |)− 1

ε2 (1+ εJ |∇S |)r2
ρ

2ε2 (uSx + v Sy )− 1
ε2

�

(1+ εJ |∇S |) j2+ (1− ε2)u (r2)x + (1− ε2)v (r2)y
�











.

We then implement the splitting approach by considering the following two subsystems:

¨

qt =R ,

τSt = 0,
(3.19)

¨

qt +A1qx +A2qy = 0,

τSt =α∆S −βS +γρ.
(3.20)

We note that in the subsystem (3.19), only the q variable is evolved in time while S remains

unchanged there.

Assuming that the solution at time t is available, we evolve it to the next time level using

an operator splitting algorithm, [122, 123, 146], of either the first order:
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�

q(x, t +∆t ,v)

S (x, t +∆t )

�

≈L2(∆t )L1(∆t )

�

q(x, t ,v)

S (x, t )

�

, (3.21)

or the second-order:

�

q(x, t +∆t ,v)

S (x, t +∆t )

�

≈L1(∆t /2)L2(∆t )L1(∆t /2)

�

q(x, t ,v)

S (x, t )

�

. (3.22)

Here,L1 andL2 stand for numerical solution operators for the stiff, (3.19), and non-stiff ,

(3.20), subsystems, respectively.

Remark 3.3.1 It should be observed that the order of the operators in (3.21) and (3.22) is

interchangeable.

Remark 3.3.2 For simplicity of presentation, we will describe the numerical schemes used

to solve each one of the subsystems (3.19) and (3.20) in the context of the first-order operator

splitting (3.21). We also use the first-order splitting in the proof of the AP property of

the proposed scheme. However, in all of the numerical experiments reported in §3.5, we

implement the second-order operator splitting (3.22) to decrease the effect of splitting

errors on the computed solutions.

Before proceeding with the description of numerical methods for the subsystems (3.19)

and (3.20), we consider a computational domain, Ω×V +, where Ω= [−L x , L x ]× [−L y , L y ]

and V + was introduced in the beginning of §3.3.1. The spatial domain Ω is partitioned into

uniform Cartesian cells Ci , j := [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
] of size∆x∆y with the cell centers

(xi , yj ) = (xi− 1
2
+∆x/2, yj− 1

2
+∆y /2); i = 1, . . . , Nx , j = 1, . . . , Ny . We also introduce a uniform

grid in the velocity domain V + consisting of Nθ grid points:

vk = (v0 cosθk , v0 sinθk ), θk = (k −1/2)∆θ , ∆θ =
π/2

Nθ
, k = 1, . . . , Nθ . (3.23)

We also denote by ρn
i , j ≈ ρ(xi , yj , t n ), S n

i , j ≈ S (xi , yj , t n ), qn
i , j ,k ≈ q(xi , yj , t n ,vk ), and Fk :=

F (vk ).
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3.3.2.1 L1: Numerical Solution of the Stiff Subsystem (3.19)

In this section, we present a numerical scheme for the stiff subsystem (3.19). We start by

solving the equations for r1 and r2,

(r1)t =
ρ

2ε2
(2F (u , v ) + ε|uSx − v Sy |)−

1

ε2
(1+ εJ |∇S |)r1,

(r2)t =
ρ

2ε2
(2F (u , v ) + ε|uSx + v Sy |)−

1

ε2
(1+ εJ |∇S |)r2,

(3.24)

keeping in mind that the chemoattractant concentration S satisfies τSt = 0.

It is instructive to point out that not only S , but also the macroscopic cell densityρ does

not change in time during this substep. Indeed, from (3.14) and (3.24) we obtain

ρt = 2

∫

V +

[r1+ r2]dv =
ρ

ε2

�

∫

V +

4F (v)dv+ ε

∫

V +

�

|uSx − v Sy |+ |uSx + v Sy |
�

dv

�

−
2

ε2
(1+ εJ |∇S |)

∫

V +

[r1+ r2]dv = 0,

which follows directly from (3.8) and the definition ofJ in (3.10).

We assume that the numerical solution is available at time level t = t n and denote by

�

q∗i , j ,k

S ∗i , j

�

:=L1(∆t )

�

qn
i , j ,k

S n
i , j

�

. (3.25)

Taking into account that ρ∗i , j = ρ
n
i , j and S ∗i , j = S n

i , j , we obtain the following semi-discrete

approximations for (r1)∗i , j ,k and (r2)∗i , j ,k from (3.24):

d

d t
(r1)

∗
i , j ,k +

1

ε2
(1+ εJ |∇S n

i , j |)(r1)
∗
i , j ,k =

ρn
i , j

2ε2
(2Fk + ε|uk (Sx )

n
i , j − vk (Sy )

n
i , j |),

d

d t
(r2)

∗
i , j ,k +

1

ε2
(1+ εJ |∇S n

i , j |)(r2)
∗
i , j ,k =

ρn
i , j

2ε2
(2Fk + ε|uk (Sx )

n
i , j + vk (Sy )

n
i , j |).

(3.26)
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Here, we approximate the derivatives (Sx )ni , j and (Sy )ni , j with the central differences,

(Sx )
n
i , j =

S n
i+1, j −S n

i−1, j

2∆x
, (Sy )

n
i , j =

S n
i , j+1−S n

i , j−1

2∆y
,

and compute |∇S n
i , j |=

Æ

((Sx )ni , j )2+ ((Sy )ni , j )2.

The linear ODEs in (3.26) are then solved exactly in time to obtain

(r1)
∗
i , j ,k =ηi , j (r1)

n
i , j ,k +

1−ηi , j

1+ εJ |∇S n
i , j |

�

Fk +
ε

2
|uk (Sx )

n
i , j − vk (Sy )

n
i , j |
�

ρn
i , j ,

(r2)
∗
i , j ,k =ηi , j (r2)

n
i , j ,k +

1−ηi , j

1+ εJ |∇S n
i , j |

�

Fk +
ε

2
|uk (Sx )

n
i , j + vk (Sy )

n
i , j |
�

ρn
i , j ,

(3.27)

where

ηi , j = exp
¦

−
∆t

ε2
(1+ εJ |∇S n

i , j |)
©

.

We now solve the equations for j1 and j2:

( j1)t =
ρ

2ε2
(uSx − v Sy )−

1

ε2

�

(1+ εJ |∇S |) j1+ (1− ε2)u (r1)x − (1− ε2)v (r1)y
�

,

( j2)t =
ρ

2ε2
(uSx + v Sy )−

1

ε2

�

(1+ εJ |∇S |) j2+ (1− ε2)u (r2)x + (1− ε2)v (r2)y
�

.
(3.28)

Equipped with the updated values of (r1)∗i , j ,k and (r2)∗i , j ,k , we use the central differences to

compute

((rm )x )
∗
i , j ,k =

(rm )∗i+1, j ,k − (rm )∗i−1, j ,k

2∆x
,

((rm )y )
∗
i , j ,k =

(rm )∗i , j+1,k − (rm )∗i , j−1,k

2∆y
, m = 1, 2,

(3.29)

substitute them into (3.28) and arrive at the following semi-discrete approximations for
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( j1)∗i , j ,k and ( j2)∗i , j ,k :

d

d t
( j1)

∗
i , j ,k +

1

ε2
(1+ εJ |∇S ∗i , j |)( j1)

∗
i , j ,k =

−
1

ε2

�

(1− ε2)uk ((r1)x )
∗
i , j ,k − (1− ε

2)vk ((r1)y )
∗
i , j ,k

�

+
ρn

i , j

2ε2

�

uk (Sx )
n
i , j − vk (Sy )

n
i , j

�

,

d

d t
( j2)

∗
i , j ,k +

1

ε2
(1+ εJ |∇S ∗i , j |)( j2)

∗
i , j ,k =

−
1

ε2

�

(1− ε2)uk ((r2)x )
∗
i , j ,k + (1− ε

2)vk ((r2)y )
∗
i , j ,k

�

+
ρn

i , j

2ε2

�

uk (Sx )
n
i , j + vk (Sy )

n
i , j

�

.

(3.30)

Finally, we solve the linear ODEs (3.30) exactly to obtain ( j1)∗i , j ,k and ( j2)∗i , j ,k (for the sake of

brevity, we omit the precise formulae).

3.3.2.2 L2: Numerical Solution of the Non-Stiff Subsystem (3.20)

In this section, we describe the numerical solution operatorL2 and denote by

�

qn+1
i , j ,k

S n+1
i , j

�

:=L2(∆t )

�

q∗i , j ,k

S ∗i , j

�

=L2(∆t )L1(∆t )

�

qn
i , j ,k

S n
i , j

�

.

As one can see from (3.20), the linear hyperbolic system

qt +A1qx +A2qy = 0 (3.31)

with the constant coefficient matrices A1 and A2 given by (3.18) is, in fact, decoupled from

the chemoattractant concentration equation. The latter is either the Poisson equation

α∆S =βS −γρ, (3.32)

if τ= 0, or the parabolic equation

St =α∆S −βS +γρ. (3.33)

if τ= 1. Therefore, we will first evolve the solution of (3.31) to obtain qn+1
i , j ,k , from which the

values of the macroscopic density ρn+1
i , j will be calculated and used in either (3.32) or (3.33)
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to compute S n+1
i , j .

Upwind method for (3.31).

We begin with the derivation of a second-order semi-discrete upwind approximation for

the system (3.31). To this end, we first introduce the matrix

Q =











−1 1 0 0

1 1 0 0

0 0 −1 1

0 0 1 1











,

which is used to simultaneously diagonalize the matrices A1 and A2. We then define a

change of variables U :=Q−1q and rewrite the system (3.31) in the diagonal form:

Ut +B1Ux +B2Uy = 0, (3.34)

where B1 and B2 are the following diagonal matrices:

B1 :=Q−1A1Q = diag(−u , u ,−u , u ), B2 :=Q−1A2Q = diag(v,−v,−v, v ).

Next, we split B1 and B2 into the sum of non-negative and non-positive definite matrices:

B1 = B+1 +B−1 , B+1 := diag(0, u , 0, u ), B−1 := diag(−u , 0,−u , 0),

B2 = B+2 +B−2 , B+2 := diag(v, 0, 0, v ), B−2 := diag(0,−v,−v, 0),

and rearrange (3.34) in an equivalent form:

Ut +B+1 Ux +B−1 Ux +B+2 Uy +B−2 Uy = 0.

Multiplying the last equation by Q , we recover the original system (3.31):

qt +A+1qx +A−1qx +A+2qy +A−2qy = 0, (3.35)
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where

A+1 :=Q B+1 Q−1 =
1

2











u u 0 0

u u 0 0

0 0 u u

0 0 u u











, A−1 :=Q B−1 Q−1 =
1

2











−u u 0 0

u −u 0 0

0 0 −u u

0 0 u −u











,

A+2 :=Q B+2 Q−1 =
1

2











v −v 0 0

−v v 0 0

0 0 v v

0 0 v v











, A−2 :=Q B−2 Q−1 =
1

2











−v −v 0 0

−v −v 0 0

0 0 −v v

0 0 v −v











.

We note that A+1 and A+2 are non-negative definite, while A−1 and A−2 are non-positive

definite so that and one can easily design upwind finite-difference schemes for the system

(3.35). According to the upwind approach, we introduce the second-order forward and

backward finite-difference approximations for the spatial derivatives in (3.35):

(q+x )i , j ,k =
−qi+2, j ,k +4qi+1, j ,k −3qi , j ,k

2∆x
, (q−x )i , j ,k =

3qi , j ,k −4qi−1, j ,k +qi−2, j ,k

2∆x
,

(q+y )i , j ,k =
−qi , j+2,k +4qi , j+1,k −3qi , j ,k

2∆y
, (q−y )i , j ,k =

3qi , j ,k −4qi , j−1,k +qi , j−2,k

2∆y
,

which are then used to construct the following second-order semi-discrete upwind scheme

for (3.31):
d

d t
qi , j ,k =−A+1 (q

−
x )i , j ,k −A−1 (q

+
x )i , j ,k −A+2 (q

−
y )i , j ,k −A−2 (q

+
y )i , j ,k . (3.36)

The system of time dependent ODEs (3.36) should be numerically integrated in time using

a stable and sufficiently accurate ODE solver. For example, using the first-order forward

Euler method, a fully discretization of (3.36) can be written in the flux form as follows:

qn+1
i , j ,k = q

∗
i , j ,k −

∆t

∆x

�

Hi+ 1
2 , j ,k −Hi− 1

2 , j ,k

�

−
∆t

∆y

�

Gi , j+ 1
2 ,k −Gi , j− 1

2 ,k

�

, (3.37)
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where

Hi+ 1
2 , j ,k = A+1

3q∗i , j ,k −q
∗
i−1, j ,k

2
+A−1

3q∗i+1, j ,k −q
∗
i+2, j ,k

2
,

Gi , j+ 1
2 ,k = A+2

3q∗i , j ,k −q
∗
i , j−1,k

2
+A−2

3q∗i , j+1,k −q
∗
i , j+2,k

2
.

(3.38)

It is important to stress that according to the definitions in (3.12), both r1 and r2 (and

hence ρ, see (3.14)) should be positive, which is not guaranteed unless the scheme (3.37),

(3.38) is used with a very small (possibly impractical) timestep∆t . We therefore implement

a draining timestep technique, which was introduced in [12]. To this end, we denote by

(∆t dr
i , j ,k )

(m ) :=
∆x∆y (rm )∗i , j ,k

∆y
�

(H (m )
i+ 1

2 , j ,k
)++ (−H (m )

i− 1
2 , j ,k
)+
�

+∆x
�

max(G (m )
i , j+ 1

2 ,k
)++ (−G (m )

i , j− 1
2 ,k
)+
�

+δ
,

where m = 1, 2. We then replace the first (m = 1) and third (m = 2) equations in (3.37) with

(rm )
n+1
i , j ,k = (rm )

∗
i , j ,k −

∆t (m )
i+ 1

2 , j ,k
H (m )

i+ 1
2 , j ,k
−∆t (m )

i− 1
2 , j ,k

H (m )
i− 1

2 , j ,k

∆x
−
∆t (m )

i , j+ 1
2 ,k

G (m )
i , j+ 1

2 ,k
−∆t (m )

i , j− 1
2 ,k

G (m )
i , j− 1

2 ,k

∆y
,

where

∆t (m )
i+ 1

2 , j ,k
=min(∆t , (∆t dr

I , j ,k )
(m )), I = i +

1

2
−

sgn
�

H (m )
i+ 1

2 , j ,k

�

2
,

∆t (m )
i , j+ 1

2 ,k
=min(∆t , (∆t dr

i ,J ,k )
(m )), J = j +

1

2
−

sgn
�

G (m )
i , j+ 1

2 ,k

�

2
.

(3.39)

It can be easily verified that now (r1)n+1
i , j ,k ≥ 0 and (r3)n+1

i , j ,k ≥ 0, and thus ρn+1
i , j , which is com-

puted from (3.14) using the midpoint rule, is non-negative, namely,

ρn+1
i , j = 2v0

Nθ
∑

k=1

�

(r1)
n+1
i , j ,k + (r2)

n+1
i , j ,k

�

∆θ ≥ 0, ∀i , j . (3.40)

Remark 3.3.3 Even though, we show here only one forward Euler step, in all of our compu-

tations below, we solve the semi-discrete system (3.36) using the three-stage third-order SSP

Runge-Kutta method: see, e.g., [58, 60, 144] and Appendix A.1. Since SSP methods consist of

a convex combination of forward Euler steps, the computed values of (r1)n+1
i , j ,k and (r2)n+1

i , j ,k ,
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as well as ρn+1
i , j , are still guaranteed to be non-negative.

Spectral methods for (3.32) and (3.33).

Equipped with the point values of the macroscopic density, ρn+1
i , j at time level t = t n+1, we

implement the spectral method to update the values of the chemoattractant concentration

S . To this end, we remind the reader that the Neumann boundary conditions are imposed

for both S and ρ. Therefore, the discrete Fourier coefficients bS`,m (t ) and bρ`,m (t ) can be

computed from the available point values Si , j (t ) and ρi , j (t ), respectively, using the fast

cosine Fourier transform and the solution at time t can be approximated by

S (x , y , t )≈
∑

`,m

bS`,m (t )cos
�

π`x

L x

�

cos

�

πm y

L y

�

,

ρ(x , y , t )≈
∑

`,m

bρ`,m (t )cos
�

π`x

L x

�

cos

�

πm y

L y

�

.

(3.41)

Substituting (3.41) into (3.2) yields

τ
d

d t
bS`,m (t ) +ω`,m bS`,m (t ) = γ bρ`,m (t ), ω`,m :=α(`2+m 2) +β . (3.42)

In the elliptic (τ= 0) case, the values bS n+1
`,m are immediately computed from

bS n+1
`,m =

γ

ω`,m
bρn+1
`,m . (3.43)

In the parabolic (τ 6= 0) case, equation (3.42) can be solved exactly on the interval [t n , t n+1]:

bS n+1
`,m = e −ω`,m∆t

bS n
`,m +γ

t n+1
∫

t n

bρ`,m (s )e
−ω`,m (s−t n−∆t )d s .

We then approximate the integral in the last equation using the trapezoidal rule to obtain

bS n+1
`,m = e −ω`,m∆t

bS n
`,m +

γ∆t

2

�

bρn
`,m + e −ω`,m∆t

bρn+1
`,m

�

. (3.44)
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Finally, we use the inverse fast cosine Fourier transform to compute the point values {S n+1
i , j }

out of the set of the discrete Fourier coefficients {bS n+1
`,m }.

3.4 AP Property

As was mentioned in the Introduction §3.1, the solutions of the studied kinetic-chemotaxis

model are expected to converge to the corresponding solutions of PKS system as ε→ 0.

In this section, we show that the proposed numerical scheme for (3.10), (3.2) provides

a consistent discretization of (3.1), (3.2) in the limiting ε → 0 case. In other words, the

numerical method is AP. For the simplicity of the presentation, we prove the AP property for

the first-order splitting (3.21) and note that a straightforward extension to the second-order

splitting (3.22) can be derived.

We first observe that when ε→ 0 the equations in (3.27) reduce to

(r1)
∗
i , j ,k =ρ

n
i , j Fk , (r2)

∗
i , j ,k =ρ

n
i , j Fk . (3.45)

We then substitute (3.45) into (3.30) and derive the following formulae in the ε→ 0 limit:

( j1)
∗
i , j ,k =

ρn
i , j

2

�

uk (Sx )
n
i , j − vk (Sy )

n
i , j

�

−uk Fk (ρx )
n
i , j + vk Fk (ρy )

n
i , j ,

( j2)
∗
i , j ,k =

ρn
i , j

2

�

uk (Sx )
n
i , j + vk (Sy )

n
i , j

�

−uk Fk (ρx )
n
i , j − vk Fk (ρy )

n
i , j ,

(3.46)

where (ρx )ni , j and (ρy )ni , j are obtained from (3.29) and (3.40) and equal to

(ρx )
n
i , j =

ρn
i+1, j −ρ

n
i−1, j

2∆x
, (ρy )

n
i , j =

ρn
i , j+1−ρ

n
i , j−1

2∆y
.

Next, we consider the first and third equations in the semi-discrete upwind scheme
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(3.36), which after the forward Euler time discretization read as

(r1)n+1
i , j ,k − (r1)∗i , j ,k

∆t
=−

1

2

�

uk ((r1)
−
x )
∗
i , j ,k +uk (( j1)

−
x )
∗
i , j ,k −uk ((r1)

+
x )
∗
i , j ,k +uk (( j1)

+
x )
∗
i , j ,k

+ vk ((r1)
−
y )
∗
i , j ,k − vk (( j1)

−
y )
∗
i , j ,k − vk ((r1)

+
y )
∗
i , j ,k − vk (( j1)

+
y )
∗
i , j ,k

�

,

(r2)n+1
i , j ,k − (r2)∗i , j ,k

∆t
=−

1

2

�

uk ((r2)
−
x )
∗
i , j ,k +uk (( j2)

−
x )
∗
i , j ,k )−uk ((r2)

+
x )
∗
i , j ,k +uk (( j2)

+
x )
∗
i , j ,k

+ vk ((r2)
−
y )
∗
i , j ,k + vk (( j2)

−
y )
∗
i , j ,k − vk ((r2)

+
y )
∗
i , j ,k + vk (( j2)

+
y )
∗
i , j ,k

�

.

(3.47)

Substituting (3.45) and (3.46) into (3.47), adding the above two equations and multiplying

by 2 yield

2
�

(r1)
n+1
i , j ,k + (r2)

n+1
i , j ,k

�

= 4ρn
i , j Fk −∆t

�

(∆x )3(ρx x x x )
n
i , j uk Fk + (∆y )3(ρy y y y )

n
i , j vk Fk

+2((ρSx )x )
n
i , j u 2

k +2(ρSy )y )
n
i , j v 2

k −4(ρx x )
n
i , j u 2

k Fk −4(ρy y )
n
i , j v 2

k Fk

�

,
(3.48)

where we have used the following notations:

(ρx x )
n
i , j :=

−ρn
i+3, j +4ρn

i+2, j +ρ
n
i+1, j −8ρn

i , j +ρ
n
i−1, j +4ρn

i−2, j −ρ
n
i−3, j

8(∆x )2
,

(ρy y )
n
i , j :=

−ρn
i , j+3+4ρn

i , j+2+ρ
n
i , j+1−8ρn

i , j +ρ
n
i , j−1+4ρn

i , j−2−ρ
n
i , j−3

8(∆y )2
,

(ρx x x x )
n
i , j :=

ρn
i+2, j −4ρn

i+1, j +6ρn
i , j −4ρn

i−1, j +ρ
n
i−2, j

(∆x )4
,

(ρy y y y )
n
i , j :=

ρn
i , j+2−4ρn

i , j+1+6ρn
i , j −4ρn

i , j−1+ρ
n
i , j−2

(∆y )4
,

((ρSx )x )
n
i , j :=

1

8(∆x )2

�

−ρn
i+2, j (S

n
i+3, j −S n

i+1, j ) +4ρn
i+1, j (S

n
i+2, j −S n

i , j )

−4ρn
i−1, j (S

n
i , j −S n

i−2, j ) +ρ
n
i−2, j (S

n
i−2, j −S n

i−3, j )
�

,

((ρSy )y )
n
i , j :=

1

8(∆y )2

�

−ρn
i , j+2(S

n
i , j+3−S n

i , j+1) +4ρn
i , j+1(S

n
i , j+2−S n

i , j )

−4ρn
i , j−1(S

n
i , j −S n

i , j−2) +ρ
n
i , j−2(S

n
i , j−2−S n

i , j−3)
�

.
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We now multiply (3.48) by v0∆θ , sum it over all k , and use (3.40) to obtain

ρn+1
i , j =ρ

n
i , j v0

Nθ
∑

k=1

4Fk∆θ

− v0∆t
�

(∆x )3(ρx x x x )
n
i , j

Nθ
∑

k=1

uk Fk∆θ + (∆y )3(ρy y y y )
n
i , j

Nθ
∑

k=1

vk Fk∆θ

+2((ρSx )x )
n
i , j

Nθ
∑

k=1

u 2
k∆θ +2((ρSy )y )

n
i , j

Nθ
∑

k=1

v 2
k∆θ

−4(ρx x )
n
i , j

Nθ
∑

k=1

u 2
k Fk∆θ −4(ρy y )

n
i , j

Nθ
∑

k=1

v 2
k Fk∆θ

�

.

(3.49)

We finally use (3.8), (3.23), and the approximation property of the midpoint rule to establish

the following estimates and identities:

v0

Nθ
∑

k=1

4Fk∆θ = 1+O ((∆θ )2),

v0

Nθ
∑

k=1

uk Fk∆θ ≤
v 2

0

4
+O ((∆θ )2), v0

Nθ
∑

k=1

vk Fk∆θ ≤
v 2

0

4
+O ((∆θ )2),

2v0

Nθ
∑

k=1

u 2
k∆θ = 2v0

Nθ
∑

k=1

v 2
k∆θ = v0

Nθ
∑

k=1

(u 2
k + v 2

k )∆θ =
Nθ
∑

k=1

v 4
0∆θ ≈χ ,

4v0

Nθ
∑

k=1

u 2
k Fk∆θ = 4v0

Nθ
∑

k=1

v 2
k Fk∆θ = 2v0

Nθ
∑

k=1

(u 2
k + v 2

k )Fk∆θ = 2
Nθ
∑

k=1

v 4
0 Fk∆θ ≈D ,

which can be used to show that (3.49) provides a consistent approximation of (3.1).

3.5 Numerical Results

In this section, we test the proposed AP scheme on several numerical examples and also

study the behavior of the solutions of the kinetic-chemotaxis system (3.10), (3.2) in the

ε→ 0 regime. In all of the examples below, we take v0 = 1 and Nθ = 32. The parameter ε = 1

in Example 1 and ε = 10−5 in all other examples.
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Example 3.1—Parabolic-Elliptic System

In this example taken from [23], we consider the system (3.10), (3.2) in the parabolic-elliptic

(τ= 0) and non-stiff (ε = 1) regime with α= γ= 1, β = 0, and F (v)≡ 1/(2π). The system is

solved on the domain Ω = [−2,2]× [−2,2] and subject to the following Gaussian-shaped

initial data:

f (x , y , 0,v) =
1

2π
ρ(x , y , 0), ρ(x , y , 0) =

15M

π
e −15(x 2+y 2),

where M is a total mass.

According to the theoretical results in [15], there are two critical mass thresholds: if

M >Mc = 8, the solution blows up in finite time, while if M <mc = 0.403, a global classical

solution exists. It is still, however, unclear whether the solution remains bounded if mc ≤
M ≤Mc .

We investigate the solution behavior by computing the ratio ||ρ||∞/M for different

values of M . We run the computations on a uniform grid with Nx =Ny = 128 until final time

T = 6. The results are presented in Figure 3.1 for M = 1, 5, 7, 8 and 9. As one can see, when

M = 1 the maximum density decays for all times while for other values of M the solution

exhibits an initial growth. For M = 5 and M = 7, the maximum density decays at later times

and the solution clearly remains bounded. At the same time, for M = 9, which is above

the critical threshold Mc = 8, the maximum density increases and eventually saturates.

In fact, this solution blows up and its maximum saturation phenomenon is attributed to

the fact that the magnitude of finite-difference approximations of δ-type singularities is

always proportional to 1/(∆x∆y ). The blowup is also confirmed by the data presented

in the Figure 3.2 (right), where we plot the time evolution of ||ρ||∞ computed on three

consecutive meshes: as one can see, at time T = 6 the value of ||ρ||∞ increases by a factor of

four as the grid is refined. This behavior of ||ρ||∞ is clearly different from the one observed

in the case of M = 7<Mc shown in Figure 3.2 (left).
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Figure 3.1 Example 3.1: Behavior of ||ρ||∞/M in time for varying values of M ; Nx =Ny = 128.

Figure 3.2 Example 3.1: Behavior of ||ρ||∞ in time for M = 7 (left) and M = 9 (right) on three
consecutive meshes.
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Example 3.2—Parabolic-Parabolic System: Blowup at the Center

In this example, we consider the system (3.10), (3.2) in the parabolic-parabolic (τ= 1) and

stiff (ε � 1) regime with α = β = γ = 1, and F (v) ≡ 1/(2π). The system is solved on the

domain Ω= [−1/2, 1/2]× [−1/2, 1/2] and subject to the following initial data:

f (x , y , 0,v) =
1

2π
ρ(x , y , 0), ρ(x , y , 0) =

100M

π
e −100(x 2+y 2), (3.50)

where M is a total mass.

Example 3.2a.

We first consider the case when the initial chemoattractant concentration is a Gaussian-

shaped function given by

S (x , y , 0) = 500e −50(x 2+y 2). (3.51)

We study the time evolution of maximum density for three different values of the initial

mass, M = 1, 8 and 11. In Figure 3.3, we plot ||ρ||∞ as a function of time for four consecutive

meshes. We conclude that the behavior of the solution depends on the total mass: if M

is large enough, the maximum norm of the cell density grows rapidly and saturates after

blowup due to the finite-difference approximation limitation as discussed in Example 1.

However, for smaller M , the maximum density first increases and then decreases without

blowing up.

The blowup phenomenon is illustrated in Figure 3.4, where we plot the computed

density at the post-blowup time T = 5×10−4 for M = 11 on two different grids with Nx =

Ny = 128 (left) and Nx =Ny = 256 (right).

Example 3.2b.

We then consider the same initial boundary value problem with zero initial chemoattractant:

S (x , y , 0) = 0. (3.52)

In this case, the spiky structure at the center of the computational domain develops
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Figure 3.3 Example 3.2a: Behavior of ||ρ||∞ in time for M = 1 (left), M = 8 (middle) and M = 11
(right) on four consecutive meshes.

Figure 3.4 Example 3.2a: The density ρ(x , y , T = 0.0005) for M = 11 computed on the meshes
with: Nx =Ny = 128 (left) and Nx =Ny = 256 (right).
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much slower that in Example 2a, since S is not concentrated at the center initially. This

seems to affect the value of the critical mass. For instance, when M = 8, the solution does

not blow up in contrast to Example 2a; see Figure 3.5 (left), where we plot ||ρ||∞ as a function

of time for three consecutive meshes. When larger values of M are considered, the solution

blows up as expected; see Figure 3.5. It should be pointed out, however, that one can observe

rapid change in the solution magnitudes for both M = 9.5 and M = 11, but these changes

occur after the blowup times. The latter can be estimated as t = 0.24 (for M = 9.5) and

t = 0.058 (for M = 11), since of these times the ratio of ||ρ||∞ computed on the 256×256

and 128×128 grids becomes 4.

Figure 3.5 Example 3.2b: Behavior of ||ρ||∞ in time for M = 8 (left), M = 9.5 (middle) and M = 11
(right) on three consecutive meshes.

We conclude this example with a self-convergence study. To this end, we take a small

final time T = 0.01 and measure the experimental convergence rate for the density in the

L∞-norm by computing

rate4N = log2

� ||e2N ||∞
||e4N ||∞

�

,

where ||e2N ||∞ := ||ρN −ρ2N ||∞
max{ρ2N } is the estimated relative L∞-error, and ρN is the solution com-

puted on a mesh with N =Nx =Ny .

The results presented in Table 3.1 clearly demonstrate the second order of accuracy of

the proposed AP scheme.
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Table 3.1 Example 3.2b: L∞- errors for M = 8, 9.5 and 11 (from left to right).

M = 8 M = 9.5 M = 11
N ||e2N ||∞ rate4N ||e2N ||∞ rate4N ||e2N ||∞ rate4N

32 1.5680E-02 - 2.9056E-02 - 4.9613E-02 -
64 3.2150E-03 2.2860 8.1861E-03 1.8276 1.6752E-02 1.5663

128 8.4486E-04 1.9280 2.1204E-03 1.9488 4.5867E-03 1.8688
256 2.0985E-04 2.0093 5.3892E-04 1.9761 1.1662E-03 1.9756

Example 3.3—Parabolic-Parabolic System: Blowup at the Corner

In our last example, we study the model (3.10), (3.2) in the parabolic-parabolic (τ= 1) and

stiff (ε << 1) regime with α = β = γ = 1, and F (v) ≡ 1/(2π). The system is solved on the

domain Ω= [−1/2, 1/2]× [−1/2, 1/2] and subject to the same initial data as in Example 2b,

but shifted by (0.25, 0.25) from the center of the domain:

f (x , y , 0,v) =
1

2π
ρ(x , y , 0), ρ(x , y , 0) =

100M

π
e −100((x−0.25)2+(y−0.25)2), S (x , y , 0) = 0,

(3.53)

where M stands for a total mass.

According to the analytical results in [65] and the numerical simulations in [31], the

solution of the PKS model with the corresponding initial and boundary conditions moves

towards the upper right corner of the computational domain and blows up there. In view of

these results, it is interesting to numerically investigate whether the solution of the kinetic

chemotaxis model behaves similarly.

In Figures 3.6 - 3.8, we plot the density computed on the uniform grid with Nx =Ny = 128

for M = 3, 7 and 11. The time evolution is shown on each of these figures (from left to right).

As one can see, in all of the cases, even when M = 3, the solution blows up though the

blowup time is much smaller for larger values of M . One can also clearly see that the

solutions propagate towards the upper corner of the computational domain. However,

when M = 11, the solution blows up much earlier than it would reach the corner. We have

also performed the same numerical experiments with ε = 10−8 and the obtained results

were very similar. This indicated that for larger initial masses the solutions of the kinetic

chemotaxis model may not converge to the corresponding PKS solution.
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Figure 3.6 Example 3.3: The displacement of the density for M = 3.

Figure 3.7 Example 3.3: The displacement of the density for M = 7.

83



Figure 3.8 Example 3.3: The displacement of the density for M = 11.

3.6 Conclusions

In this chapter, we derived and studied a new asymptotic preserving method for the kinetic

chemotaxis model in two space dimensions. For time evolution of the cell distribution

we used the Boltzmann-type kinetic equation with a local turning kernel operator, which

describes the change in cell orientation. For the chemoattractant both the elliptic and

parabolic cases were considered. The Patlak-Keller-Segel model for chemotaxis can be

recovered in the singular limit of the kinetic model, when the mean free path converges

to 0. It is well-known that the solutions of both the kinetic and Patlak-Keller-Segel models

may blow up in finite time, when the initial mass is larger than a critical mass. The critical

values, however, are different for macroscopic and kinetic models.

Computing these blowing up solutions requires a reliable and efficient approximation

of singular functions or distributions. Our numerical method was based on the so-called

even-odd decoupling followed by the Strang splitting and a suitable combination of the

evolution of the chemoattractant, relaxation and transport steps for the evolution of cell

density. Using the splitting allows one to exactly solve the stiff relaxation system whereas
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the transport system is linear and is numerically solved using an upwind approach. The

macroscopic equations for the chemoattractant were treated by the spectral method.

We proved that as far as the global solution exists, our numerical scheme is asymptotic

preserving and yields a consistent approximation of the Patlak-Keller-Segel model when the

mean free path converges to 0. Our numerical experiments indicated that in the blowing

up regime, the solutions of the kinetic chemotaxis and Patlak-Keller-Segel systems may

behave differently. To the best of our knowledge, this does not contradict the theoretical

results since after the blowup time the solutions can only be understood as measure-valued

solutions for which no rigorous analysis is available. Moreover, in the numerical examples,

we considered initial data which is not necessarily spherically symmetric. However, in the

literature, the spherical symmetry is one of the assumptions for the existence of the solution

to the kinetic chemotaxis model, see e.g. [15, 23].

In future work, we intend to study the kinetic model with global turning kernels and to

analyze whether there is a global weak solution for both parabolic and elliptic chemoat-

tractant equation for general two dimensional initial data.
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Galerkin methods for the shallow water equations with dry beds, Commun. Comput.
Phys., 10 (2011), pp. 371–404.

86



[13] N. BOTTA, R. KLEIN, S. LANGENBERG, AND S. LÜTZENKIRCHEN, Well-balanced finite
volume methods for nearly hydrostatic flows, J. Comput. Phys., 196 (2004), pp. 539–
565.

[14] F. BOUCHUT, Nonlinear stability of finite volume methods for hyperbolic conservation
laws and well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser
Verlag, Basel, 2004.

[15] N. BOURNAVEAS AND V. CALVEZ, Critical mass phenomenon for a chemotaxis kinetic
model with spherically symmetric initial data, 26 (2009), pp. 1871–1895.

[16] A. BRESSAN, S. CANIC, M. GARAVELLO, M. HERTY, AND B. PICCOLI, Flow on networks:
recent results and perspectives, European Mathematical Society-Surveys in Mathe-
matical Sciences, 1 (2014), pp. 47–11.

[17] J. BROUWER, I. GASSER, AND M. HERTY, Gas pipeline models revisited: Model hierar-
chies, nonisothermal models, and simulations of networks, Multiscale Model. Simul.,
9 (2011), pp. 601–623.

[18] S. BRYSON, Y. EPSHTEYN, A. KURGANOV, AND G. PETROVA, Well-balanced positivity
preserving central-upwind scheme on triangular grids for the Saint-Venant system,
M2AN Math. Model. Numer. Anal., 45 (2011), pp. 423–446.

[19] S. BRYSON, A. KURGANOV, D. LEVY, AND G. PETROVA, Semi-discrete central-upwind
schemes with reduced dissipation for Hamilton-Jacobi equations, IMA J. Numer.
Anal., 25 (2005), pp. 113–138.

[20] S. BRYSON AND D. LEVY, High-order semi-discrete central-upwind schemes for multi-
dimensional Hamilton-Jacobi equations, J. Comput. Phys., 189 (2003), pp. 63–87.

[21] V. CALVEZ AND J. A. CARRILLO, Volume effects in the Keller–Segel model: energy esti-
mates preventing blow-up, J. Math. Pures Appl. (9), 86 (2006), pp. 155–175.

[22] V. CALVEZ, B. PERTHAME, AND M. SHARIFI TABAR, Modified Keller–Segel system and
critical mass for the log interaction kernel, in Stochastic analysis and partial differen-
tial equations, vol. 429 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2007,
pp. 45–62.

[23] J. A. CARRILLO AND B. YAN, An asymptotic preserving scheme for the diffusive limit of
kinetic systems for chemotaxis, Multiscale Modeling & Simulation, 11 (2013), pp. 336–
361.

87



[24] F. A. CHALUB AND J. F. RODRIGUES, A class of kinetic models for chemotaxis with
threshold to prevent overcrowding, Port. Math. (N.S.), 63 (2006), pp. 227–250.

[25] F. A. C. C. CHALUB, P. A. MARKOWICH, B. PERTHAME, AND C. SCHMEISER, Kinetic models
for chemotaxis and their drift-diffusion limits, Monatsh. Math., 142 (2004), pp. 123–
141.

[26] P. CHANDRASHEKAR AND C. KLINGENBERG, A second order well-balanced finite volume
scheme for Euler equations with gravity, SIAM Journal on Scientific Computing, 37
(2015), pp. B382–B402.

[27] A. CHERTOCK, S. CUI, A. KURGANOV, Ş. N. ÖZCAN, AND E. TADMOR, Well-balanced
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APPENDIX A

Time Integration

A.1 The Third-Order Strong Stability Preserving Runge-Kutta

Methods

We consider the following ODE system:

d

d t
q =L (q), (A.1)

where q is the vector of unknowns andL is the spatial discretization.

To solve the system (A.1) in a highly accurate and stable way, we choose the three-

stage third-order strong stability preserving (SSP) Runge-Kutta method (see for the details,

e.g., [58–60, 142, 144]) which is a convex combination of forward Euler steps:
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q(0) = q
n ,

q(1) = q(0)+∆tL (q(0)),

q(2) =
3

4
q(0)+

1

4
q(1)+

1

4
∆tL (q(1)),

qn+1 =
1

3
q(0)+

2

3
q(2)+

2

3
∆tL (q(2)),

(A.2)

where qn = q(·, t n ).

Remark A.1.1 Recall that the SSP Runge-Kutta method has been used for time integration

of the semi-discrete schemes described in Sections 2.1.1, 2.1.2 and 3.3.2.2.

For instance, in the case of 1-D discretization of the scheme in (2.2), the system (A.1) is

to be replaced by
d

d t
q j =−
F j+ 1

2
−F j− 1

2

∆x
+S j , (A.3)

with the corresponding numerical fluxes and source term for each j = jL , . . . , jR .

Similarly, in the 2-D scheme (2.12), the system (A.1) is given as:

d

d t
q j ,k =−

F j+ 1
2 ,k −F j− 1

2 ,k

∆x
−
G j ,k+ 1

2
−G j ,k− 1

2

∆y
+S j ,k , (A.4)

for j = jL , . . . , jR and k = kL , . . . , kR .

Lastly, the SSP Runge-Kutta method is applied to solve the system (3.36) with the fol-

lowing modification in (A.1):

d

d t
qi , j ,k =−A+1 (q

−
x )i , j ,k −A−1 (q

+
x )i , j ,k −A+2 (q

−
y )i , j ,k −A−2 (q

+
y )i , j ,k , (A.5)

for each i = 1, . . . , Nx , j = 1, . . . , Ny , and k = 1, . . . , Nθ .
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