
Abstract

WAGNER, JESSICA LEIGH. A Parameter Analysis of a Physiologically Based Pharmacokinetic
(PBPK) Model Describing the Movements of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the Mouse.
(Under the direction of Alun Lloyd and Rory Conolly.)

Although its mechanism of action is not completely understood, 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) is an unfortunate environmental contaminant. In order to understand the
effects of TCDD better, we examine a physiologically based pharmacokinetic (PBPK) model
that describes the movement of TCDD around the body of a mouse. The PBPK model examined
in this work contains five tissue compartments: liver tissue, spleen tissue, adipose tissue, richly
perfused tissue, and slowly perfused tissue. Each of these compartments has a subdivision
to distinguish between the actual tissue and the blood contained in the tissue’s vessels. The
TCDD is introduced via the stomach and tracked as it travels around the body. The toxin can
permeate each of the tissue types, but in the liver it also has the potential to bind to one of two
proteins, CYP1A2 and the Ah receptor, or to undergo metabolism. An increased presence of
the TCDD-AhR complex induces the liver tissue to produce more CYP1A2, which then affects
the amount of TCDD molecules that are held in the liver tissue.

Unfortunately, the kinetic parameters that control the rates of binding and separation
are very difficult to determine experimentally. In this work, the estimability of some of the
parameters is analyzed through several different methods. Unfortunately, it is determined
that it would require impossible experimental circumstances to have enough information to
uniquely estimate every parameter in the model. The simulated model output is compared
to an actual data set, but unfortunately they are drastically different. The analysis indicates
that even if the data set were perfect, the values that were measured would only be able to
provide enough information to estimate two out of twelve parameters. The model needs to be
reparameterized or restructured in order for it to increase the scientific understanding of TCDD
behavior. A dialog between the biologist who conducts experiments and the mathematician
who conducts simulations can allow for a more efficient allocation of resources in future
experimentation.
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CHAPTER

1

INTRODUCTION

Dioxins are a class of organic chemicals which have a chemical structure consisting of four

to eight chlorine atoms bound to varying locations on two benzene rings, which are connected

to each other via oxygen atoms [39]. They are known to be highly toxic and cause a wide

variety of health issues, but their exact molecular mechanism of action is still not completely

understood. Unfortunately, this makes it much more difficult to develop any type of treatment.

With most environmental contaminants, it is customary for experiments to be conducted on

animals to determine the agent’s toxicity, and then these values are scaled, typically by body

mass, to assess the levels of human toxicity. This method, known as interspecies extrapolation,

has obvious flaws, but it causes even more issues when the agent of interest is TCDD [23].

The tolerances observed in different species have been quite diverse [18], sometimes differing

by 725 fold between humans and small mammals [23]. The body mass of an organism does

not appear to correlate with the tolerance, considering that the lethal dose for guinea pigs

appears to be approximately 1 µg/kg of body weight, compared to that of hamsters being

approximately 1000 µg/kg [39]. By using PBPK modeling, we can simulate an organism’s
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internal environment using physiological parameter values specific to a species, which can

provide more insight into the behaviors of a toxin.

A persistent organic pollutant (POP) is an organic chemical that remains stable in the

environment for many years. Its resistance to degradation often creates a significant health

risk to the human population, due to biomagnification in the food chain [33, 36]. In 2001,

representatives from countries all over the world attended the Convention of Persistent Organic

Pollutants in Stockholm, Sweden. The group realized the importance of minimizing these

chemicals in the environment and compiled a list of twelve of the most dangerous POPs.

Dioxins were on this list [33]. In the specific case of dioxins, their hydrophobic nature causes

them to be absorbed readily into fat tissue. The combination of the storage in the fat tissue

and the chemical stability causes the dioxins to remain in the body for a very long time [14].

The biological half-life of the most toxic dioxin molecule, 2,3,7,8-tetrachlorodibenzo-p-dioxin

(TCDD), in humans has been estimated to be between seven and eleven years [39].

Dioxins are not produced intentionally or used in any mercantile capacities, but rather

they are an unfortunate waste product of some commercial processes [1, 14, 39]. The incin-

eration of chlorinated compounds, chlorine bleaching of pulp and paper products, chemical

manufacturing of pesticides and herbicides all cause dioxins to be produced and released

into the environment [14, 39]. Minute amounts of dioxin are found in nature due to some

geographical events [39].

Humans are exposed to the dioxins almost entirely through the food chain [36]. All modern

humans have some dioxins in their system, but the populations of more industrialized area

typically have higher levels in their bodies [39]. The tendency of dioxins to be absorbed into fat

tissues likely leads to increased levels of exposure in humans who eat animal products with

high lipid content. Humans that maintain a vegan diet have been shown to have much lower

dioxin levels that their omnivorous counterparts, adding more credence to this theory[36].

Unfortunately, the dioxins can also be transferred into breast milk. Nursing infants have been

shown to be exposed to higher concentrations of dioxins than the rest of the population [36,

40]. This provides a very successful method for stored dioxin to leave the female adult, with

one study estimating a 70% decrease in the TCDD levels of the mother over six months of

lactation. As infants grow, they quickly increase their fat tissue volume, which helps to dilute
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the TCDD concentration over time. By the time that they have reached puberty, the TCDD

levels between breastfed and bottle-fed children are comparable[40]. The findings from these

studies do not add insight into the molecular mechanics of the TCDD, but they do show that

TCDD does not persist between generations.

While humans are not usually exposed to TCDD intentionally, there have been several

events in history that have led to mass exposure. The largest of these is the infamous usage of

the chemical known as Agent Orange during the Vietnam War. Agent Orange was designed

to be an herbicide composed of two chemicals, 2,4-dichlorophenoxyacetic acid and 2,4,5-

trichlorophenoxyacetic acid. The intention of the chemical was to defoliate areas that provided

cover for enemy combatants, as well as to destroy crops [27, 32, 38, 40]. The production process

of Agent Orange was imperfect, resulting in significant amounts of TCDD in the final product,

although the exact amount is not possible to know [27, 32, 37, 38, 40]. Agent Orange was

sprayed through various methods, including hand spraying, aircraft, and water vessels. This

resulted in human exposure to TCDD not only via the food chain, but also directly through

their skin and inhalation [32]. The exposure resulted in a large amount of birth defects [32].

Even many years after the war, Vietnam veterans experienced many different illnesses which

were credited to TCDD, including several types of cancer [16]. The Vietnamese population

living in the sprayed areas were found to have dioxin levels in their tissues much higher

than other populations even after 20 years had passed [27]. This shows the persistence of this

chemical and illustrates just how important it is to properly regulate it.

To provide an easier method to regulate dioxins, the concept of toxic equivalency (TEQ)

was formulated. A TEQ value describes the toxicity of a sample as if it were only made of the

most toxic dioxin, TCDD. TCDD is given a toxic equivalency factor (TEF) value of 1. All other

dioxins are given TEF calculated by multiplying each dioxin’s concentration by its respective

TEF and adding all the resulting values together [36, 39, 40].

1.1 Biology of Dioxin

TCDD is a symmetric molecule (Fig 1.1), which makes it nonpolar and insoluble in water

[2]. Thus, one would expect that it would gather in the adipose tissues almost exclusively.
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However, evidence has shown that the liver can have a higher concentration compared to the

adipose [5]. This is due to the interactions between liver proteins and the TCDD.

Figure 1.1 Molecular structure of TCDD.

When TCDD is introduced to a tissue, it must first travel across the membrane into the cell.

The diffusion process is not entirely understood, but due to the large size of TCDD, it’s unlikely

to be by passive diffusion alone [14]. Once TCDD reaches the cytoplasm, it binds to the aryl

hydrocarbon receptor (AhR). AhR is an important transcription factor in the cell, which has

been found to affect cell cycle regulation, immune responses, and fatty acid metabolism. Also,

the AhR assists in the metabolism and removal of foreign molecules [14].

TCDD binding to AhR triggers the beginning of a series of molecular events in the cell.

The TCDD-AhR complex moves from the cytoplasm into the nucleus, where it impacts the

activation of several genes. Unfortunately, this activity likely induces the carcinogenic effects

of TCDD [19, 20]. While much of the details are still unknown, two of the most notable of

these genes are known as CYP1A1 and CYP1A2, which are cytochrome P450 isozymes [46].

This group of enzymes is crucial to the proper metabolism and excretion of many different

drugs, and is the root of many drug interactions, insensitivities, and dosage requirements

[31]. TCDD binding to these two cytochrome P450 compounds (and probably others as well),

causes more TCDD to be drawn into the liver and may be the reason that TCDD has been

observed in higher levels in the liver tissues than in the adipose tissues, despite its very strong

lipophilic nature [4, 5].
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1.2 Previous modeling work on TCDD

For almost 30 years, scientists have been using PBPK models to describe the movement of

dioxin. Table 1.1 highlights some of the differences between the models over time. The models

differ in what proteins and what tissue types are included, as well as in how they handle the

diffusion process of TCDD. However, they share the common goal of providing more insight

into the molecular movements of dioxin around the body.

In 1988, an early model was designed by Leung with five compartments: blood, liver,

adipose, slowly perfused, and richly perfused tissues (Figure 1.2)[25]. The only input comes

from an injection into the peritoneal cavity, and the only output is via metabolism in the liver.

TCDD in the blood compartment is found in two forms, only one of which could diffuse into

the compartments. In the liver compartment, TCDD has the potential to bind to one of two

different binding sites. In 1988, the knowledge of the molecular mechanics was limited, so

these binding sites were vaguely described as a high affinity/low capacity receptor and a low

affinity/high capacity receptor. Because the model only has a single blood compartment, these

compartments are ‘flow-limited’. In other words, the amount of toxin that gets into the tissues

depends entirely on the rate of the blood flow through the tissues, because it is absorbed so

quickly. Leung’s original model was designed for mice [25], but they expanded the model to

apply to rats in a second publication [26].

For many chemicals, the assumption that the compartments are ‘flow-limited’ is valid.

However, in the case of TCDD, the molecule is relatively large and lipophilic, making it seem

inappropriate in this situation. Andersen revised Leung’s model, dividing each compartment

into the actual tissue and the blood contained within the blood vessels of that tissue [6].

In doing so, the compartments were set up to be ‘diffusion-limited’, which assumes that

instead of the blood flow, the rate of diffusion controls the concentration of the toxin in that

compartment. While adding more biological realism to the mathematical model, this change

also introduces more parameters, most of which are difficult to measure accurately with

experimentation. One of these types of parameters is the permeability cross product, which

considers the surface area in each compartment and will be discussed at length later. This

model also focused on parameter values that were based on rat biology, not that of a mouse.

5



Figure 1.2 Visual representation of an early TCDD model. Reproduced from [25].
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By the time Andersen’s model was being formulated in 1993, more of the biology was

understood. Once the TCDD gets into the liver tissue, it can potentially bind to the aryl

hydrocarbon receptor (AhR). After this complex has formed, it binds to specific sections of

DNA, which induces the cells to produce several different proteins. One of these proteins

is CYP1A2, a cytochrome enzyme which can bind to the free TCDD in the liver. The TCDD

cannot be metabolized while it is bound to either of these proteins [6].

A few years later, Wang modified the TCDD model further [47]. Fecal and urinary elimina-

tion were included, as well as the impact of the lymphatic system. Wang’s work also divided

the entire organism (which was a rat in their study) differently than the other models by

considering the kidneys, lungs, spleen, and skin as separate compartments [47]. This study

obtained its concentration data by using a radioactively tagged TCDD molecule. Unfortunately

this leads to only one overall measurement, with no way to distinguish between free TCDD

and bound TCDD concentrations.

The model and analysis that follow contain elements from each of these publications and

expand on them. The original compartments that Leung’s group described are still present,

with the addition of the spleen, which has been examined separately as it was in Wang’s work.

The sub-compartments for tissue blood that Andersen designed have proven to be a valuable

contribution and are included. Here we also examine the effects of the induction of CYP1A2,

one of the TCDD binding proteins in the liver and scale it for a mouse. The mathematical

predictions are compared to data points that have been obtained via a different experimental

protocol involving mass spectrography instead of radiation level readings. The integrity of the

model is investigated using sensitivity analysis and identifiability techniques.
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Table 1.1 Information from older PBPK models examining TCDD.

Source Speciesa Input(s) Output(s) Compartments Diffusion Hepatic Variables

Leung,
1988 [25]

C57BL/6J
mice

DBA/2J
mice

peritoneal
cavity

metabolism
(via liver)

blood
liver
fat

slowly perfused
richly perfused

flow
limited

• a generalized, non-inducible,
high affinity, low capacity,
cytosolic receptor

• a generalized, inducible,
low affinity, high capacity,
microsomal receptor

Leung,
1990a [26]

Sprague-
Dawley

rats

simulated
oral gavage

metabolism
(via liver)

blood
liver
fat

slowly perfused
richly perfused

flow
limited

• a generalized, non-inducible,
high affinity, low capacity,
cytosolic receptor

• a generalized, inducible,
low affinity, high capacity,
microsomal receptor

Leung,
1990b [24]

C57BL/6J
mice (F)

peritoneal
cavity

metabolismb

(liver)

blood
liver
fat

slowly perfused
richly perfused

skin

flow
limited

• a generalized, non-inducible,
high affinity, low capacity,
cytosolic receptor

• a generalized, inducible,
low affinity, high capacity,
microsomal receptor

a Gender unknown unless specified
b The metabolism process of this model includes an intermediate metabolite.
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Table 1.1 Continued.

Source Speciesa Input(s) Output(s) Compartments Diffusion Hepatic Variables

Andersen,
1993 [6]

Wistar
rats (F)

subcutaneous
injection

metabolism
(via liver)

blood
liverb

fatb

slowly perfusedb

richly perfusedb

diffusion
limited

• CYP1A1
• CYP1A2
• AhR
• DNA

Andersen,
1997a [7]

Sprague-
Dawley
rats (F)

subcutaneous
injection

metabolism
(via liver)

blood
fatb

slowly perfusedb

richly perfusedb

liverc

diffusion
limited

• a generic CYP protein
• a generic receptor protein
• DNA

Andersen,
1997b [5]

Sprague-
Dawley

rats

subcutaneous
injection

metabolism
(via liver)

blood
fatb

slowly perfusedb

richly perfusedb

liverc

flow
limited

• CYP1A1
• CYP1A2
• AhR
• 2 DNA binding sites

a Gender unknown unless specified
b This compartment contains a subcompartment which represents the blood volume contained in the tissue’s blood vessels.
c This compartment contains five subcompartments, which represent different geographical regions of the liver with varied distances from the

main blood source.
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Table 1.1 Continued.

Source Speciesa Input(s) Output(s) Compartments Diffusion Hepatic Variables

Wang,
1997 [47]

Sprague-
Dawley
rats (F)

GI tract

metabolism
(via liver)

urine
(via kidney)

blood
lung

spleen
kidneyb

skinb

fatb

liverb

restb

varies by
tissue
type

• CYP1A2
• AhR
• DNA
• nonspecific proteins
• lipid binding

Wang,
2000 [48]

Sprague-
Dawley

rats
(F & M)

Wistar
rats (F)

C57BL/6J
mice (F)

GI tract

metabolism
(via liver)

urine
(via kidney)

blood
lung

spleen
kidneyb

skinb

fatb

liverb

restb

varies by
tissue
type

• CYP1A2
• AhR
• DNA
• nonspecific binding
• lipid binding

a Gender unknown unless specified
b This compartment contains a subcompartment which represents the blood volume contained in the tissue’s blood vessels.
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CHAPTER

2

MODEL

2.1 Structure

The main structure of the model divides the mouse into five tissue compartments: richly

perfused tissues, slowly perfused tissues, adipose tissue, liver tissue, and spleen tissue, each

with its own sub-compartment representative of the blood contained inside that tissue’s

blood vessels. TCDD molecules have the ability to pass from the tissue blood to the tissue

compartment itself and back again, but the blood flow of the arteries and veins only directly

interacts with these tissue blood compartments. To mimic the natural blood flow through the

portal vein of the liver, the spleen’s output flows directly into the liver compartment instead of

into the venous vessels. It is assumed that the TCDD being absorbed from the stomach enters

into the liver blood before it travels around the body for the same reason (Figure 2.1).

The liver compartment is unique in its complexity. Like the other compartments, TCDD can

travel between the tissue blood and the tissue. But once inside the tissue, the TCDD molecule

can potentially bind to one of two proteins, CYP1A2 or AhR. The total concentration of AhR

does not change over the course of the simulation, but AhR can exist in one of two forms,

free and unbound or bound inside the TCDD-AhR complex. By contrast, the concentration of
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Gas Exchange

Stomach Input

TCDD metabolism

Slowly Perfused Tissue

Slowly Perfused Blood

Richly Perfused Tissue

Richly Perfused Blood

Adipose Tissue

Adipose Blood

Spleen Tissue

Spleen Blood

Liver Tissue

Liver Blood

Figure 2.1 Organism level visualization of the model. Each arrow represents potential movement of
TCDD across between different sections of the body. Red arrows represent freshly oxygenated blood

coming from the lungs, and blue arrows represent venous blood leaving each compartment. The
purple arrow from the spleen to the liver mimics the hepatic portal artery. Since lungs are not explicitly

defined as a compartment and are instead lumped into the richly perfused compartment, the ‘Gas
Exchange’ box is included to assist in the visualization of the model.
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CYP1A2 is dynamic. Although a small amount of the enzyme is initially present, the presence

of the TCDD-AhR complex stimulates the accumulation of more CYP1A2 enzyme in the tissue.

Due to their large size, CYP1A2 and AhR do not travel across the cellular membrane into

the bloodstream. The CYP1A2 enzyme has a first order degradation rate, so its concentration

drops in the absence of the TCDD-AhR complex. The TCDD can be metabolized only in the

liver, and only if the molecule is not bound to either enzyme (Figure 2.2).

2.2 Parameters

This model is based on a mostly closed system, with the only input being through the

stomach and the only output through metabolic clearance in the liver compartment. Each of

the compartments is assumed to be well mixed, with the tissue blood compartment being

representative of blood contained in the tissue’s capillaries and the tissue compartment being

representative of the cells in the tissue. Due to the differences in composition and function

of the different organs, most of these parameters have unique values for each of the tissue

compartments.

2.2.1 Tissue Volumes/Blood Flow Rates

The fractional breakdown of the mouse’s organs was found in literature. Using these

values and the total body weight of the animal, it is possible to estimate the volume of each

tissue type. Note that this also involves an assumption that the approximate density of the

mouse tissue is 1 g/cm3, which is required in order to convert the mass to a volume. This

particular model assumes that the body weight of the animal stays constant over the course of

the experiment.

Blood flow rates are treated in the same fashion as the tissue volumes, because the total

blood flow through the body is divided into similar sections. When the body weight is constant,

the secondary calculations required to determine these values only need to be calculated once

and retained, but they would need to be recalculated on each time step if the body weight

fluctuated over time. These equations and all parameter values can be seen in the appendix.
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TCDD

TCDD

AhR

TCDD

CYP1A2

TCDD

AhRCYP1A2

1

6

2

7

CYP1A2 induction

3 5 TCDD metabolism output4

input from stomach

input from bloodstream output to bloodstream

input from spleen

Liver Tissue

Liver Blood

Figure 2.2 Liver level visualization of the model. As in every other compartment, the TCDD can diffuse between the tissue and its
complementary blood compartment. However once a free TCDD molecule has diffused into the liver tissue, it has several potential fates, each of

which are indicated in the figure: (1) Binding to a free AhR to form the TCDD-AhR complex; (2) Binding to a free CYP1A2 to form the TCDD-CYP
complex; (3) Diffusing into liver blood compartment; (4) Being broken down and metabolized. Free TCDD enter the liver compartment via three

methods: (5) Diffusing into the liver tissue compartment; (6) One of the resulting molecules when the TCDD-CYP complex separates; (7) One of the
resulting molecules when the TCDD-AhR complex separates. Also note that the presence of the TCDD-AhR complex induces the production of

more CYP1A2 enzyme which is simultaneously degrading, designated by φ.
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2.2.2 Partition Coefficients

Partition coefficients are required to describe how the chemical agent in question interacts

with each type of tissue. In this particular model, we assume that these values remain constant

over time, but this is not true for every PBPK model. A partition coefficient represents the

ratio between the tissue concentration and the concentration of the venous output from the

compartment. There are many different methods to determine this value experimentally, but

ideally the number would be measured when the system was at equilibrium. Tissue types that

interact with the chemical agent via binding or metabolizing complicate this measurement

because they prevent this equilibrium from occurring. Some literature also reverses the order

of the ratio, so it is prudent to mention that the partition coefficients used in this model

are tissue to blood partition coefficients [15]. Unlike the permeability coefficients, partition

coefficients are not dependent on the surface area of blood vessels in the tissues or the rate of

blood flow.

2.2.3 Permeability Coefficients

One of the major differences between this model and the one proposed by Leung deals

with the way that diffusion into each tissue is handled. While the partition coefficients measure

the overall tendency of a tissue to absorb TCDD, the permeability coefficients consider how

quickly the blood flows through the tissues and the density of the blood vessels. The rate of

absorption into the cells from the capillaries is dependent on the surface area available to

interact with the tissue. This brings in the need for the permeability coefficient, which is also

sometimes referred to as the diffusional tissue clearance or the permeability cross product

in other literature. A new scaling constant parameter, J, is introduced here. Each individual

blood flow must be scaled by J to calculate the permeability coefficient. For each tissue, the

appropriate permeability coefficient thus equals JQi, where Qi is the tissue specific blood flow

rate. While the blood flow rate changes from one compartment to the next, the value for J

remains equal for the entire system. The idea that J does not vary across tissue types assumes

that subtle differences between the blood vessels of the organs will be accounted for in their

different blood flow rates. While this may seem like a strong assumption, the alternative is
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TCDD AhR
AhR

TCDD

KON TCDDAhR

KOFF TCDDAhR

Figure 2.3 Visualization of the rate constants involved with the association process of the
TCDD-AhR complex. The formation of the TCDD-CYP complex is analogous.

introducing five parameters, for which literature values are scarce or nonexistent, instead of

only one.

2.2.4 Kinetic Parameters

While much of the movement in the model is due to the TCDD diffusing from one

compartment to another, the liver compartment has more complex behavior (Figure 2.2).

TCDD travels into the liver blood and tissue itself in the same manner as in the other

compartments. However, once the free TCDD is in the liver tissue, it has several potential

fates. One possibility is that the TCDD can bind to either the AhR or the CYP1A2 protein. The

kinetic parameters that define the rates of these reactions, as well as their reverse counterparts,

are difficult to measure accurately even experimentally, and there is some disagreement in the

published literature values. To simplify the reaction rates, here we assume that the association

and dissociation of the TCDD-AhR and TCDD-CYP complexes are driven by the law of mass

action. This principle states that the rate of a chemical reaction is directly proportional to the

product of the concentration of the reactants [30]. The rate of the reaction is calculated by using

the concentrations and a proportionality constant (known as a rate constant). Because the

complexes are simultaneously forming and separating, there are two rate constants involved

in the calculations for each of the proteins.

The rate at which the complex forms can thus be described as KON_TCDDAhRCTCDDCAhR,

where Ci represents concentration of i and K represents the relevant rate constant. Similarly,

the rate of dissociation is KOFF_TCDDAhRCTCDD_AhR (Figure 2.3). The setup for the association

and dissociation of the TCDD-CYP complex is analogous.
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Other potential fates for the free TCDD in the liver tissue include traveling back across the

membrane to the liver blood or undergoing metabolism. The chemical reactions involved in

the metabolism are not explored here, but we assume that the TCDD can not be metabolized

if it is bound to either CYP1A2 or AhR.

2.3 Equations

Each differential equation is a summation of inputs and outputs interacting with the

appropriate compartment. The amount of TCDD in the compartment, designated by Ai,

is measured in nanomoles. For clarity in their development, the equations in this section

include concentrations, designated by Ci. In practice, each of these concentrations needs to be

converted to an amount before computation to maintain the proper units. The equations listed

in the appendix reflect this additional step.

The equations for the slowly perfused tissues, richly perfused tissues, adipose, and spleen

compartments are of a similar form, so let us consider a generic tissue compartment, identified

by the subscript ‘T’, and a generic tissue blood compartment, identified by the subscript ‘TB’.

There is an input from the tissue blood compartment, and a corresponding output to the tissue

blood compartment. To simplify the system, we use the J term as a scaling factor to describe

the permeability of the tissue when multiplied by the appropriate tissue’s blood flow rate.

When the TCDD leaves the tissue compartment, the partition coefficient comes into play to

essentially describe how likely the toxin is to leave that tissue. Since the toxin is exiting the

tissue and the partition coefficients in the model are defined as tissue/blood, the partition

coefficient appears in the denominator of the term (Eqn 2.1).

dAT

dt
= JQTCTB −

JQTCT

PaT
(2.1)

These two terms appear again in the generic tissue blood equation, with opposing signs

due to the reverse directionality. The equation also includes a positive term that describes the

input of the toxin from the arterial blood and a negative term that describes the concentration

in the blood flow leaving the capillaries and entering the venous blood. In the case of the

spleen, this blood enters the liver directly to mimic the hepatic artery blood flow (Eqn 2.2).
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dATB

dt
=

JQTCT

PaT
− JQTCTB + QTCAB −QTCTB (2.2)

The liver blood equation is similar to the generic tissue blood equation, but it also includes

terms for the TCDD input from the stomach and the input from the spleen. The liver tissue

equation also contains all of the terms in the generic equation, but it requires the addition of

several more terms due to the chemical reactions taking place in that compartment.

Most of the chemical reactions that take place in the liver are assumed to follow the law

of mass action. This law states that the equation rates are based on the concentrations of the

products of the reaction being multiplied together and then multiplied by a rate constant.

Once rates for the reactions have been established, the differential equations become mass

balance equations (Eqn 2.3). In these equations, the amount of free CYP1A2 and free AhR

are represented by ACYP and AAhR, respectively. When the TCDD is bound to CYP1A2, it is

referred to as the TCDD-CYP complex and appears in the equations as ATCDDCYP. In similar

fashion, AhR proteins which have a bound TCDD ligand are referred to as the TCDD-AhR

complex, and the amount of the complex is ATCDDAhR. Any free, unbound TCDD is accounted

for in the CLT term, which represents the concentration of TCDD in the liver tissue.

dATCDDAhR

dt
= KON TCDDAhRCCYPCLT − KOFF TCDDAhRCTCDDAhR

dAAhR

dt
= − KON TCDDAhRCAhRCLT + KOFF TCDDAhRCTCDDAhR

dATCDDCYP

dt
= KON TCDDCYPCCYPCLT − KOFF TCDDCYPCTCDDCYP

(2.3)

The exception to this assumption is the induction of the CYP1A2 enzyme production,

which is stimulated by the presence of the TCDD-AhR complex (Eqn 2.4).

dACYP

dt
= KCYP BASE − KCYP DEGCCYP . . .

− KON TCDDCYPCCYPCLT + KOFF TCDDCYPCTCDDCYP . . .

+ (KCYP MAX − KCYP BASE)

(
CN

TCDDAhR

KN
CYP D + CN

TCDDAhR

) (2.4)

18



The equation for the amount of CYP1A2 protein in the liver includes a term for basal

production, as well as a first order degradation term. This is required to balance the production

and prevent an infinite production of the enzyme. The concentration of CYP1A2 is lowered by

molecules binding to free TCDD and simultaneously increased by the TCDD-CYP complexes

dissociating. The final term in Equation 2.4 represents the induction of the enzyme in the

presence of the TCDD-AhR complex, used by Andersen in 1997 to describe this induction [5].

It takes the shape of a Hill function, with the N, also known as the Hill coefficient, changing

the shape of the induction curve. The KCYP D parameter is representative of the microscopic

dissociation.

Given the numerous additions and subtractions from the free TCDD concentration in the

liver tissue observed in the above equations, the liver tissue equation requires many terms. One

more term is necessary to describe the metabolism of TCDD. We assume that the metabolism

is a first order reaction dependent on the concentration of free TCDD in the liver tissue (Eqn

2.5). This also assumes that only free, unbound TCDD is available to be metabolized. This

metabolic term is also tracked as its own equation in the system to track the total amount of

TCDD that has been metabolized.

dALT

dt
= JQLCLB −

JQLCLT

PaL
− KMETCLT + . . .

KOFF TCDDCYPCTCDDCYP − KON TCDDCYPCCYPCLT + . . .

KOFF TCDDAhRCTCDDAhR − KON TCDDAhRCAhRCLT

dAMET

dt
= KMETCLT

(2.5)

Now that all the equations for each compartment are defined, the circulatory system

behavior must be considered. The venous blood acquires the blood flowing out of each of

the blood tissue compartments, and then passes it to the arterial blood. The arterial blood

pumps into each of these compartments on the next time step (Eqn 2.6). Note that due to the

blood flow pattern, the rate of the blood flow exiting the liver is the combined rate of the input

rates for both the spleen and the liver. This allows for the system to maintain a blood volume

equilibrium in each compartment.
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dAVB

dt
= QSCSB + QRCRB + QFCFB + (QL + QSP)CLB −QTOTCVB

dAAB

dt
= QTOTCVB −QSCAB −QRCAB −QFCAB −QSPCAB −QLCAB

(2.6)

In order to make any comparisons to real TCDD data values, an additional calculation is

required. There is no evidence to suggest that the laboratory tests can distinguish free TCDD

from the TCDD bound to an enzyme. Therefore the liver concentration value that is observed

in experiments is assumed to be a sum of the concentrations of free TCDD, the TCDD-AhR

complex, and the TCDD-CYP complex (Eqn 2.7).

CTOT TCDD(t) =CLT(t) + CTCDDAhR(t) + CTCDDCYP(t) (2.7)
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CHAPTER

3

MATHEMATICAL ANALYSIS

A common problem with biologically based mathematical models is that they tend to

be complex. This complexity adds more parameters and more potential uncertainty into the

model’s predictions. Modelers often find themselves unable to determine unique values for

every parameter, and the situation is made even worse in cases where data is sparse. Even in a

situation where a laboratory has the means for extensive data collection, some values cannot be

accurately measured experimentally, such as the concentration of an intermediate metabolite.

The concepts of identifiability and estimability are very similar, but not quite equivalent.

Identifiability aims to answer the question ‘Can different values of model parameters lead

to the same input-output behavior for the model?’. Comparatively, estimability asks ‘Can all

parameter values be estimated uniquely from the available experimental data?’ [29]. Because

the question of identifiability involves a more analytical approach, it becomes substantially

more difficult in large models with complex equations. Almost every PBPK model contains too

many parameters and state variables to make any analysis of structural identifiability practical,

especially a global one. Even in cases where the parameters are shown to be identifiable, there

is a possibility that their values cannot be estimated accurately given the data that is available.
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Consider a general definition of a nonlinear, ordinary differential equation system described

in Equation 3.1.

d~x(t)
dt

= f (~x(t), t,~θ)

~y = g(~x(t), t,~θ)
(3.1)

The model contains m state variables, represented by ~x(t), which vary with time, t. Besides

time, the model requires an input of a vector of n parameters, ~θ. The model’s predictions are

described as ~y, which is also a vector of length m. This system will be referenced throughout

the techniques described in this section.

3.1 Structural Identifiability

A mathematical model is considered globally identifiable if all of its parameter values

can be derived uniquely using a hypothetically perfect data set. Mathematically, this can be

defined by Equation 3.2 holding true for any parameter vectors ~θ1 and ~θ2 in the appropriate

parameter space.

f (~x,~t,~θ1) = f (~x,~t,~θ2)⇐⇒ ~θ1 = ~θ2 (3.2)

It is possible for this relationship to only be true for some subset of the total parameter

space, in which case the model is only locally identifiable [11, 29]. Especially for models that

contain more than ten states and parameters, determining identifiability can prove to be quite

complicated[34]. Many of the methods that have been developed rely on a linearized system,

so the nonlinear nature of this model adds another dimension of difficulty [29]. If the analysis

were successful, there is no guarantee that the identifiable parameters would even be estimable.

However, there are reliable methods to implement that examine the practical identifiability of

the model, also called the estimability, which we focus on in this work.
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3.2 Estimability

Estimability analysis aims to determine if it is possible to uniquely estimate each parameter

value of the model from the data available. If a parameter is found to be inestimable, there

are several potential causes. First, the model may not be sensitive to that parameter. Secondly,

there may be correlations in the model between two or more parameters. Such correlations

can cause any changes made by a modified parameter value to be counteracted by a second

parameter. This prevents any new information from being gleaned. Finally, a lack of sufficient

data can cause parameter(s) to be inestimable. Any of these situations disrupts the ability to

understand the relationships between the inputs and outputs of the model [29]. In this section,

several different techniques were explored in an attempt to determine if the parameters in

this TCDD model are estimable. Each of these methods attempts to estimate the impact that

a small change in some parameter θj has on the ith state variable prediction, yi. This can be

expressed mathematically si,j =
∂gi
∂θj

.

There is a possibility for a model to be only partially estimable. The usual method of action

is to remove inestimable parameters and set them at their literature values. The literature values

that describe the general morphology of the organism, such as relative tissue volumes and

body weight, are reliable. In certain situations, the structure of the model can be reconfigured

in a way that allows for some parameters to be removed from the system entirely.

3.2.1 Qualitative Methods

Three methods are discussed here which estimate each si,j =
∂gi
∂θj

over time in a qualitative

manner. The results are viewed graphically in order to compare relative shapes and relative

peak heights of each function.

3.2.1.1 Finite Difference

The simplest and easiest method to implement is the finite difference approximation.

This method is based on the mathematical definition of a derivative (Eqn 3.3). For a general

function, p(x), the derivative is obtained by moving h units down the curve and comparing

the two points. This stepsize h is decreased until it approaches zero [42].
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dp(x)
dt

= lim
h→0

p(x + h)− p(x)
h

(3.3)

Consider instead a more complicated differential equation system, such as the one de-

scribed in Equation 3.1. The system is solved first with the input parameters at set values, and

then again with a perturbation of size h added to a single parameter of interest identified

as θj. Then the sensitivity information for θj can be estimated by the forward difference

approximation (Eqn 3.4) [10, 28, 43, 44].

d~x(t)
dθj

=
f (~x(t), t, θj + h)− f (~x(t), t, θj)

h
(3.4)

Modifications to this method also include the backward difference approximation (Eqn

3.5), where the perturbation is subtracted, and the central difference approximation (Eqn 3.6),

which combines the two methods in an attempt to avoid bias [43].

d~x(t)
dθj

=
f (~x(t), t, θj)− f (~x(t), t, θj − h)

h
(3.5)

d~x(t)
dθj

=
f (~x(t), t, θj + h)− f (~x(t), t, θj − h)

2h
(3.6)

The finite difference method is the least code intensive, but it often ends up being slower

and less accurate than other methods. At very small perturbation sizes, a significant amount of

computational error occurs from the uncertainty originated from the subtraction operation in

the numerator, but if the perturbation is not small enough, it will also cause inaccuracies [44].

3.2.1.2 Complex Step Method

As mentioned above, the biggest downside to using the finite difference approximation

method is the stepsize limitation. As the value decreases, floating point errors in the computer

calculations become a serious problem, to the point that the estimation is no longer helpful.

The complex step method is a viable alternative.
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Consider a complex number, z = x + iy, where x and y are real numbers. We input this

value into a function with separate real and imaginary pieces (Eqn 3.7).

f (z) =u(x + iy) + iv(x + iy) (3.7)

In this function, u is a function describing the real portion and v is a function describing

the imaginary piece. The developer of this method, Martins, et al, showed that this function is

analytic and therefore differentiable in the complex plane [28]. Because of this, the Cauchy-

Riemann equations are applicable, which means that equation 3.8 holds true.

∂u
∂x

=
∂v
∂y

∂u
∂y

= − ∂v
∂x

(3.8)

Using the definition of a derivative from earlier and combining it with this yields Eqn 3.9.

∂u
∂x

= lim
h→0

v(x + i(y + h))− v(x + iy)
h

(3.9)

Since we are dealing with PBPK models, we assume that the equations that we want

to analyze are in the real plane. As a result, y = 0, u(x) = f (x), and v(x) = 0 are all true

statements, allowing us to simplify to Eqn 3.10.

∂ f
∂x

= lim
h→0

Im[ f (x + ih)]
h

(3.10)

Provided h is a small stepsize, we ultimately arrive at the complex step derivative approxi-

mation (Eqn 3.11).

∂ f
∂x
≈ Im[ f (x + ih)]

h
(3.11)

This concept is applied to the general m-dimensional system described in Equation 3.1

with the notation in Equation 3.12.
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d~x(t)
dθj

≈
Im[ f (~x(t), t, θj + ih)]

h
(3.12)

Thus, if the parameter θj is perturbed on the imaginary plane rather than the real one,

complex mathematics allows for a more precise solution. Note that this equation no longer

contains a subtraction operation. Therefore, this method removes the error generated by

subtractive cancellation typically generated by the finite difference approximation method.

This also means that h can be taken as a much smaller value to increase the accuracy of the

sensitivity analysis without a problem. The complex step method, while an improvement over

the finite difference approximation, still has its own set of flaws. This method can be difficult

to implement in cases where the programming language cannot process complex values, and

it requires a lot of repetitive calculations.

3.2.1.3 Sensitivity Equations

The most complicated of the visual sensitivity methods discussed here involves the

derivation of many differential equations. While the sensitivity equation method is difficult to

implement initially, it provides explicit equations for the sensitivity analysis, preventing the

introduction of more uncertainty through the arbitrary choice of the stepsize variable. This

method is well documented [9, 13, 17, 41, 43, 44].

Considering a general model as described in Eqn 3.1, the goal of the sensitivity analysis is

to examine the effect of different input parameters on the model’s state variable output. As

such, we take the derivative with respect to some parameter θj of both sides of the equation

(Eqn 3.13). In this model, none of the parameters are dependent on time, which makes ∂θj
∂θj

= 1.

After observing that ∂t
∂θj

= 0, the equation is simplified. Also, the order of differentiation on

the left hand side is modified.
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d~x(t)
dt

= f (~x(t), t,~θ)

d

dt
∂~x
∂θj

=
∂~f
∂~x

∂~x
∂θj

+
∂~f
∂θj

∂θj

∂θj
+

∂~f
∂t

∂t
∂θj

d

dt
∂~x
∂θj

=
∂~f
∂~x

∂~x
∂θj

+
∂~f
∂θj

~̇Sj = J~S + ~Fj

(3.13)

In this setup, recall that ~x describes the state variables at time t, and ~f describes the

differential equations of the state variables. The derivative of ∂~f
∂~x is usually referred to as

the Jacobian matrix. The Jacobian matrix is a square matrix containing the derivative of the

system equations with respect to each of the state variables and is defined as matrix J. The

term ∂~f
∂θj

is called the parametric Jacobian, and defined as ~Fj. Rather than a matrix, it is a

column vector that contains the derivative of the system equations with respect to θj. After

manipulation, ~̇Sj contains a set of m differential equations. These equations only represent

the impact of one specific θj on each state variable xi, so this process needs to be repeated

n times, once for each θj. Fortunately, the Jacobian matrix, the most difficult piece to derive,

will not change between different parameter examinations as long as the structure of the

original system is not modified. This ultimately results in a collection of m original ODEs,

plus mn sensitivity equations, for a total of n(m + 1) equations. An ODE solver inputs these

equations with the original system to create a numerical simulation. Several methods exist

for the actual generation of the sensitivity equations. Even a simple PBPK model can lead

to very unpleasant partial derivatives, and manual derivation is rarely reasonable. In this

work, the computing program Matlab, specifically the Symbolic Math Toolbox, was utilized to

manipulate the symbolic expressions.

This method of deriving sensitivity equations, just like any other method, naturally has its

drawbacks. The initial computation of the system, especially the Jacobian matrix, can be quite

complicated and time consuming. Furthermore, in the case of this model, it will result in a stiff

system, which not all ODE solvers are capable of manipulating. Running all of the sensitivity
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equations and the original system concurrently is necessary, which is often computationally

expensive and time consuming.

On the other hand, there are several benefits to this method. It requires a lot of initial

effort, but once the system is established, the parameter space is much easier to modify in this

method. Both the finite difference method and the complex step method require the system

to be solved over and over again after each small parameter perturbation. Since there is no

dependence between the equations generated with respect to θj and those generated with

respect to θk, it is not necessary to include every single parameter in the system. Parameters

with well established literature values can be fixed and not included in the analysis, with no ill

effects. We took advantage of that in this work, in order to minimize the number of parameters

in the analysis.

3.2.2 Quantitative Methods

While qualitative methods do provide insight into the model, it is important to also consider

more stringent, quantitative methods. The ultimate goal of estimability analysis is to determine

if there is adequate data available to uniquely estimate values for the parameters. Rather than

the traditional route of comparing the model to one specific data set, here we explore the

estimability of several hypothetical data sets. This approach allows for the experimental design

of future research to be better structured, so that it contributes new information that can help

make the model more concise.

In order to analyze different hypothetical data sets, we introduce several scenarios. Each

scenario consists of two pieces of information: a set that contains the indexes of the state

variables that were experimentally measured, SV, and a set that contains time points for

which the data points are available, ST. The largest possible set for SV would contain every

state variable, while the minimum set is a single state variable. Similarly, ST must contain

at least one time point but at most contains every time point. A list of scenarios examined

in this analysis is discussed at length in Chapter 4. It would be simple to expand this idea

to consider a subset of parameters in each scenario as well, but since we have already fixed

reliable parameters to literature values, this is not done here.
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3.2.2.1 Full Sensitivity Matrix Development

The methods described here require the use of the sensitivity matrix, which is described in

Equation 3.14.

S
(
~x(t), t,~θ

)
=



S1

(
~x(t), t,~θ

)
S2

(
~x(t), t,~θ

)
...

Sm

(
~x(t), t,~θ

)


,

Si

(
~x(t), t,~θ

)
=



si,1

(
~x(t1), t1,~θ

)
si,2

(
~x(t1), t1,~θ

)
· · · si,n

(
~x(t1), t1,~θ

)
si,1

(
~x(t2), t2,~θ

)
si,2

(
~x(t2), t2,~θ

)
· · · si,n

(
~x(t2), t2,~θ

)
...

...
. . .

...

si,1

(
~x(tp), tp,~θ

)
si,2

(
~x(tp), tp,~θ

)
· · · si,n

(
~x(tp), tp,~θ

)


,

si,j

(
~x(tk), tk,~θ

)
=

∂yi(tk)

∂θj

θj

max
t∈{t1,...,tp}

yi
,

i ∈ {1, 2, ..., m}

j ∈ {1, 2, ...n}

k ∈ {1, 2, ...p}

(3.14)

The full sensitivity matrix, S
(
~x(t), t,~θ

)
, consists of a vertical stack of smaller sensitivity

matrices, each one of which corresponds to a different state variable in the model. These

smaller matrices, Si

(
~x(t), t,~θ

)
, are dimension p × n, where p is the number of time points

and n is the number of parameters being examined. As such, the S
(
~x(t), t,~θ

)
matrix has

dimensions mp × n. In order to normalize the matrix, each entry of the smaller matrices are

scaled by a factor of θj
maxyi

. Along with preventing division by zero, this choice of scaling has

the added benefit of nondimensionalizing the matrix [8, 22, 35].

3.2.2.2 Normalized Sensitivity Coefficients

First, a relatively simple quantitative comparison can be accomplished by calculating a

normalized sensitivity coefficient for each parameter,
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Cj =
∥∥si,j

∥∥
2 =

 1
tp

∫ tp

0

∂yi(t)
∂θj

θj

max
t

yi

2

∂t


1
2

. (3.15)

This equation essentially takes the mathematical norm of each column of the sensitivity

matrix, and it allows for a relative ranking of the parameters’ sensitivities [8, 22]. However, this

calculation has no dependence on the type or amount of data that is available. Interpretation

of these results is left to Chapter 4, while we explore other methods of estimability in this

section.

3.2.2.3 Composing the Fisher Information Matrix

For each scenario, a customized sensitivity matrix must be fashioned, which excludes

any information that does not pertain to the state variables and time points that the scenario

specifies. As an example, let us consider the hypothetical experiment where the TCDD

concentration levels were measured in both fat tissue and liver tissue over time. Measurements

were recorded at one hour, two hours, and four hours after exposure. Its customized sensitivity

matrix, which is designated S∗
(
~x(t), t,~θ

)
, would look like Equation 3.16.

S∗
(
~x(t), t,~θ

)
=

S∗6

(
~x(t), t,~θ

)
S∗10

(
~x(t), t,~θ

)


=



s6,1

(
~x(1), 1,~θ

)
s6,2

(
~x(1), 1,~θ

)
. . . s6,n∗

(
~x(1), 1,~θ

)
s6,1

(
~x(2), 2,~θ

)
s6,2

(
~x(2), 2,~θ

)
. . . s6,n∗

(
~x(2), 2,~θ

)
s6,1

(
~x(4), 4,~θ

)
s6,2

(
~x(4), 4,~θ

)
. . . s6,n∗

(
~x(4), 4,~θ

)
s10,1

(
~x(1), 1,~θ

)
s10,2

(
~x(1), 1,~θ

)
. . . s10,n∗

(
~x(1), 1,~θ

)
s10,1

(
~x(2), 2,~θ

)
s10,2

(
~x(2), 2,~θ

)
. . . s10,n∗

(
~x(2), 2,~θ

)
s10,1

(
~x(4), 4,~θ

)
s10,2

(
~x(4), 4,~θ

)
. . . s10,n∗

(
~x(4), 4,~θ

)



(3.16)
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The dimensions of S∗ are p∗m∗× n∗, where p∗ is the modified number of time points, m∗

is the modified number of state variables, and n∗ is the modified number of parameters being

analyzed. Several methods can be used to obtain the entries of S∗, but in this work we use the

differential algebra method from section 3.2.1.3.

In general, larger entries in this matrix are indicative of a strong influence of θj on the

behavior of the system, but this is not always true. Similarly, small matrix entries imply that

that θj may be inestimable. If any obvious linear dependencies are observed between the

matrix columns, there may be a combination of parameters that are highly correlated. In such

a case it is likely that only one of the group can be uniquely estimated unless the model is

reparameterized.

Once the modified sensitivity matrix has been established, it is used to calculate the Fisher

Information Matrix (FIM), via the formula

FIM∗ =
(
S∗
)T (

S∗
)

, (3.17)

which has the dimensions n∗× n∗. At this point, the rank of the FIM can provide some insight

into the estimability of the system. If the rank is not equal to n∗, then at least one parameter

in the set is not estimable. Depending on computational accuracy and model complexity, the

rank may be difficult to determine, and it does not provide any insight into which of the

parameters are contributing to the inestimable nature of the model. One option at this point

is to reform the modified sensitivity matrix and recalculate the FIM for some subset of the

original parameters examined. If the resulting FIM is nonsingular, then this may provide some

insight into the model’s estimability [34]. However, depending on the number of parameters

that are being studied, the number of potential combinations to compare could escalate quickly.

3.2.2.4 Eigenvalue method

As with most algorithms, the eigenvalue method has been modified and adjusted often

since its conception in 1989 [45]. Because it requires manual inspection of the eigenvalues and

eigenvectors, the original algorithm does not lend itself for use with large PBPK models that

contain many parameters. Here we use a modified version of the method, published in [34],

which adds some automation into the procedure.
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Before this algorithm can be implemented, the modified sensitivity matrix must be formu-

lated as specified in the previous section. The eigenvalues and eigenvectors of the resulting

FIM are calculated. The variable λj represents the jth eigenvalue of these calculations, and

its corresponding eigenvector is ~γj. We assume that the eigenvectors are organized so that

|λ1| ≤ |λ2| ≤ . . . ≤ |λn∗ | and that the eigenvectors have been normalized. At the beginning of

the procedure, we assume that all of the parameters are identifiable.

This algorithm is based on the concept that a singular FIM indicates a nonidentifiable

model, because a singular matrix does not have full rank. One of the properties of a singular

matrix is a determinant that equals zero, which guarantees at least one eigenvalue to also be

zero. However, many computer calculations have taken place between the point of the original

model simulation and the determination of the eigenvalues and eigenvectors. This may have

potentially added floating point errors to a model that already contains some uncertainty from

estimated parameter values. As such, the likelihood of |λ1| equaling precisely zero is very

low. The algorithm introduces a variable, ε, which is a small and positive value. The value

assigned to this variable is somewhat arbitrary and does require some manual inspection. Any

eigenvalues
∣∣λj
∣∣ < ε are assumed to be essentially equal to zero and treated as such in the rest

of the algorithm (Table 3.1).
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Table 3.1 Steps involved with the eigenvalue method, as described by [29].

Prior to beginning the algorithm:

Obtain |λ1| ≤ |λ2| ≤ . . . ≤ |λn∗ |, (the ordered list of eigenvalues of the FIM).

Obtain ~γj, j ∈ {1, ..., n∗}, (the corresponding eigenvectors of the FIM).

Set I = {1, ..., n∗}, (the indexes of the parameters that are identifiable).

Set U = {∅}, (the indexes of the parameters that are not identifiable).

Choose ε value

Set np = n∗.

1. If |λ1| < ε, this indicates that there is an unidentifiable parameter in I.

2. The component of ~γj which has the largest absolute magnitude indicates
the least identifiable parameter in the model. Select k such that {|γ1(1, k)| =
max(|γ1(1, 1)|, |γ1(1, 2)|, ...,

∣∣γ1(1, np)
∣∣}. Remove k from I, and add it to U. Set np

equal to the updated length of I.

3. Modify S∗ to remove the information corresponding to the kth parameter. 4. Repeat
until |λ1| ≥ ε. Any elements that are removed from I are done so in order from least
to most identifiable.
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CHAPTER

4

INTERPRETATION

In order to simplify the analysis of this model, parameters with reliable literature values

were not included. This leaves twelve parameters, mostly related to the kinetics of the chemical

reactions in the liver tissue compartment, which make up

~θ =[J, KMET, KABS, KOFF TCDDCYP, KD CYP, KOFF TCDDAhR, ...

KD AhR, KCYP BASE, KCYP DEG, KCYP MAX, N, KCYP D].
(4.1)

4.1 Visual Inspection

The qualitative method we examine is the differential sensitivity equations, detailed in

section 3.2.1.3. This method results in a large system of equations, each which represent ∂xi
∂θj

,

for j ∈ {1, ..., n} and i ∈ {1, ..., m}. In the case of this model, which contains 18 state variables

and 12 parameters, 216 sensitivity equations are produced. For clarity, they are divided into 18

graphs, each one representing the impact of the parameters on a single state variable. Several

of the graphs have sharp peaks, which are a product of the time scale of the integration.
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Figure 4.1 Differential sensitivity equations over time. These equations represent ∂xi
∂θj

,

for j ∈ {1, ..., 12} and i ∈ {2, ..., 9}. The ~θ = [J, KMET , KABS, KOFF TCDDCYP,
KD CYP, KOFF TCDDAhR, KD AhR, KCYP BASE, KCYP DEG, KCYP MAX , N, KCYP D]. The

x-axis has been truncated to assist in readability.
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The less complex compartments produce very similar results to each other (Figure 4.1).

Each of the tissue compartments shows a high impact of θ1 and θ3, but all other sensitivities

are approximately zero. The shape of each curve differs slightly, most likely because of the

differences in partition coefficients. The corresponding tissue blood compartments also only

show sensitivity to these two parameters. Since θ1 represents J, its impact is not unexpected.

This parameter is involved in the rate of permeability for each tissue compartment. The other

important parameter, θ3, represents KABS, the absorption rate of the TCDD from the stomach

into the bloodstream. The value of KABS has a large impact on the concentration in the blood

compartments, which in turn impacts the tissue concentrations. None of these compartments

appear to be sensitive to any other parameters, given the very small sensitivity equation

values.

Figure 4.2 Differential sensitivity equations over time. These equations represent ∂xi
∂θj

,

for j ∈ {1, ..., 12} and i ∈ {1, 16, 17}. The ~θ = [J, KMET , KABS, KOFF TCDDCYP,
KD CYP, KOFF TCDDAhR, KD AhR, KCYP BASE, KCYP DEG, KCYP MAX , N, KCYP D]. The

x-axis has been truncated to assist in readability.
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The state variables which demonstrate the introduction of the TCDD into the system are

the amount left in the stomach, the amount in the arterial blood, and the amount in the

venous blood (Figure 4.2). The strong impact that θ3 has on the stomach is expected, given

that this parameter represents the absorption rate. That same parameter also makes a strong

appearance in both of the blood compartments. The θ1 parameter, which controls the rate of

permeability of the dioxin into the tissue compartments, has influence on the bloodstream

concentration.

Next we examine the sensitivities for the state variables that are located in the liver (Figure

4.3). The sensitivities of the liver tissue compartment behave similarly to those of the other

tissue compartments, with a strong influence by θ1 and θ3. In the liver, there is also an

influence by θ2, which represents the metabolic clearance rate of the TCDD. The sensitivities

that appear to have the largest magnitudes are those that impact the ACYP and ATCDDCYP

variables, but these also level out the most quickly. Recall that the differential equation for

ACYP is the most intricate, and it contains most of the parameters which are being examined

in this identifiability analysis. The other enzyme pair, AAhR and ATCDDAhR, does not undergo

induction and is thus less complicated. These state variables are impacted by θ1 and θ3, which

is a common theme throughout the system, but in this case, θ7 also has a strong influence.

This parameter represents the dissociation constant of the AhR enzyme, and it only appears in

the two corresponding state variable equations. Finally, it can be seen that θ1 and θ3 have a

strong impact on the amount of TCDD that has been metabolized. This finding is unexpected,

because the only parameter that appears in this state variable’s differential equation is θ2,

the rate of metabolic clearance. This sensitivity graph seems to indicate that the ability of

the TCDD to permeate each of the tissues and the rate at which it enters the system is more

important than the actual rate of clearance.

The other method that we examine here is the ranking of the normalized sensitivity

coefficients, described in section 3.2.2.2. Unfortunately, it can be seen in Figure 4.4 that uniquely

estimating the different parameters will be difficult for this model. Large vertical gaps in

this graph indicate the potential for division between the identifiable and nonidentifiable

parameters. Seven of the parameters appear to have almost identical sensitivity coefficients,

with a large gap above and below them. Upon closer inspection, five of these parameters are
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Figure 4.3 Differential sensitivity equations over time. These equations represent ∂xi
∂θj

,

for j ∈ {1, ..., 12} and i ∈ {10, .., 15, 18}. The ~θ = [J, KMET , KABS, KOFF TCDDCYP,
KD CYP, KOFF TCDDAhR, KD AhR, KCYP BASE, KCYP DEG, KCYP MAX , N, KCYP D]. The

x-axis has been truncated to assist in readability.
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involved only in the differential equation for ACYP, so it logically follows that they would have

similar sensitivity coefficients.

Figure 4.4 Normalized sensitivity coefficients. These values are calculated as in Equation 3.15, and
arranged from largest to smallest. Each coefficient is labeled with its corresponding parameter. Note

that the y-axis is on the natural log scale. The ~θ = [J, KMET , KABS, KOFF TCDDCYP,
KD CYP, KOFF TCDDAhR, KD AhR, KCYP BASE, KCYP DEG, KCYP MAX , N, KCYP D].

Recall that these methods have not taken into consideration the data that is available.

Even before considering the more involved eigenvalue method, the chances that all of the

parameters in this model are estimable appears to be low.

4.2 Eigenvalue Method

The eigenvalue method, described in section 3.2.2.4, takes a different approach than the

other methods examined in this work, because it considers the amount and type of data points

that are available.

4.2.1 Scenarios

As a modeler trying to calibrate a PBPK model, more data is not always helpful unless it

answers different questions. One of the ways that PBPK models can help to provide scientific
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insight is by aiding in the design of an experiment (Table 4.1). In this analysis, we explore

whether eight different, hypothetical experimental designs would be able to provide enough

information to accurately estimate the parameters of this model, using the techniques outlined

in the previous chapter.

There are potentially an infinite number of experimental designs, but any laboratory work

inevitably faces constraints. This model is considering the toxin as it flows around the body of

the mouse, which contains a very small amount of tissue. The experimental protocol which

measures the concentration of the TCDD requires at least a volume of tissue similar to that

of the mouse’s spleen. Since the liver and spleen are both explicitly defined in the model

and large enough for measurement, they are good candidates for a helpful experimental

design. Although more complicated to measure, adipose tissue also has the potential to add

information. The compartments in the model which represent the richly and slowly perfused

tissues are more abstract and thus are more difficult to measure concretely in the lab. With

the current technology, the concentration of TCDD in the blood cannot be tested, which is

an unfortunate limitation. There is also no way to distinguish the TCDD that is free from

the TCDD that is bound to another molecule. The hypothetical experimental scenarios were

designed with these restrictions in mind.

The simulation from this model is compared to a set of data in section 4.3. That experiment

provided data was available for the eleven time points in scenario (a), and they were only

available for the liver tissue. Scenario (b) illustrates an experiment that was similarly designed,

but which measured the concentrations in each of the tissues. The experimental procedure

which measures the concentration of TCDD unfortunately cannot be performed with blood.

Rather than focus on more of the body, scenario (c) takes the opposite approach and examines

more of the detail in the liver tissue. At this point, there is no process to distinguish between

the bound and free concentrations of TCDD in the liver. Thus, both scenarios (b) and (c) are

not practical for real experimentation, but they are included for comparison. Scenarios (d)

and (e) explore the merits of including measurements from one other tissue type, adipose or

spleen respectively, along with those for the liver.

The timing of the experimental data could also have an effect on how much information

that it can provide to the mathematical model. To determine the effect of more data points,
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Table 4.1 List of the hypothetical experimental scenarios explored.
SV represents the set of state variables which are measured, and ST represents the time
points at which data are available. Scenario (a) represents a documented experiment
[12, 21]. Scenarios (b) and (c) are not possible, but they are provided for comparison.
Scenarios (d) and (e) involve multiple tissues. Scenarios (f) and (g) involve different

time lines. Scenario (h) combines scenario (e) and (f).

Scenario Description

(a)
only liver tissue

SV = {x10}
ST = {2, 4, 8, 12, 18, 24, 72, 168, 672, 2016, 4032}

(b)
all of the tissues, no blood

SV = {x2, x4, x6, x8, x10}
ST = {2, 4, 8, 12, 18, 24, 72, 168, 672, 2016, 4032}

(c)
three liver enzyme measurements

SV = {x10, x13, x15}
ST = {2, 4, 8, 12, 18, 24, 72, 168, 672, 2016, 4032}

(d)
liver and fat tissues

SV = {x6, x10}
ST = {2, 4, 8, 12, 18, 24, 72, 168, 672, 2016, 4032}

(e)
liver and spleen tissues

SV = {x8, x10}
ST = {2, 4, 8, 12, 18, 24, 72, 168, 672, 2016, 4032}

(f)

twice as many data points
SV = {x10}

ST = {1, 2, 3, 4, 8, 12, 16, 18, 24, 48, 72, 120, 168, 240, ...
...336, 504, 672, 1344, 2016, 2688, 3360, 4032}

(g)
same number of data points, but earlier

SV = {x10}
ST = {1, 2, 3, 4, 8, 12, 16, 18, 24, 48, 72}

(h)

spleen, liver, and twice the data points
SV = {x8, x10}

ST = {1, 2, 3, 4, 8, 12, 16, 18, 24, 48, 72, 120, 168, 240, ...
...336, 504, 672, 1344, 2016, 2688, 3360, 4032}
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scenario (f) contains twice as many time points as the other data sets. Because this system

seems to approach equilibrium quickly, the system appears to be much more dynamic at the

beginning of the experiment. Scenario (g) takes this into account, because it still contains

eleven data points, but they all take place closer to the beginning of the experiment. Finally,

scenario (h) represents a combined effort of twice as many data points along with both spleen

and tissue measurements.

4.2.2 Results

The results of the eigenvalue method are observed in Table 4.2. The method’s findings are

also expressed visually in Figure 4.5. Each ε value was calculated by examining the largest

vertical gap in the graph.

There are variations among the findings, but all except scenario (c) have a very similar

outcome. Only a couple of the parameters in each of the scenarios are deemed to be estimable

by the algorithm. The parameters θ1 and θ3 are seen in several of these cases, which is to be

expected after their strong presence in the sensitivity equations of section 4.1. However, θ2

also appears frequently, which is somewhat surprising. This parameter only appears in the

equation of the liver tissue compartment, and there is so much activity in that compartment

that it was unexpected for the parameter to be estimable.

Note that scenario (c) has more parameters that are estimable, but still several that are

not. Scenario (c) consists of a hypothetical set of data that will likely never exist, given the

technological difficulties of distinguishing between bound and free TCDD. Yet even in that

‘’perfect” scenario, the data would not allow for a completely estimable model.

Even though this calculation of ε is somewhat arbitrary, the rank of the FIM is a firm

calculation. It is evident that none of the scenarios generate a FIM that is anywhere near

full rank, although the idealized scenario (c) comes the closest. Examining the values of the

eigenvalues in Figure 4.5 strengthens the idea that estimability is a problem. Even the largest

eigenvalues for each scenario are incredibly small, often below 10−10. For scenarios (b), (c),

and (d), the rank of the FIM matches the number of parameters that were determined to be

identifiable by the eigenvalue method. For the other scenarios, the length of I is less than the
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Table 4.2 Results from the eigenvalue method.
Scenario lettering corresponds to full descriptions found in Table 4.1. For each scenario, the U and I
sets are displayed. The elements of U are ordered from less to more estimable, but the elements of I

have no specific ordering. The parameter vector is defined in Equation 4.1.

Scenario rank(FIM*) U (non identifiable) I (identifiable)

(a) 4 {θ6, θ4, θ9, θ10, θ8, θ5, θ11, θ12, θ7, θ1} {θ2, θ3}

(b) 3 {θ4, θ6, θ8, θ10, θ9, θ5, θ11, θ12, θ7} {θ1, θ2, θ3}

(c) 7 {θ4, θ9, θ10, θ8, θ6} {θ1, θ2, θ3, θ5, θ7, θ11, θ12}

(d) 3 {θ6, θ9, θ4, θ10, θ8, θ5, θ11, θ12, θ7} {θ1, θ2, θ3}

(e) 4 {θ6, θ8, θ4, θ5, θ10, θ9, θ11, θ12, θ7} {θ1, θ2, θ3}

(f) 5 {θ6, θ4, θ9, θ10, θ8, θ5, θ11, θ7, θ12, θ1} {θ2, θ3}

(g) 5 {θ4, θ6, θ8, θ5, θ9, θ10, θ11, θ7, θ12, θ1} {θ2, θ3}

(h) 5 {θ6, θ4, θ8, θ5, θ10, θ9, θ11, θ7, θ12} {θ1, θ2, θ3}

rank. This is not surprising, recalling the similarity of the normalized sensitivity coefficients of

seven of the parameters.

Although their positioning changes slightly between scenarios, it is common for θ4 and

θ6 to be quickly removed as the least identifiable parameter. This is an unfortunate finding,

because these parameter represent the rate at which the liver enzymes release the TCDD

ligand, and it is a value that is likely impossible to determine experimentally.

4.3 Comparison to Available Data

Data points were obtained from [12, 21] for comparison to the output of this model (Table

4.3). In these experiments, female C57BL/6 mice were given a bolus dose of dioxin at time 0.

At each of the time points indicated, mice were sacrificed, and the concentration of TCDD in

the liver was recorded.

Unfortunately, these data points are orders of magnitude different than the simulated

results of this mathematical model (Figure 4.6). The maximum value of TCDD measured in the

experiment was 664 nM, observed after 3 days. The model simulation peaks at approximately
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.5 Visualization of the eigenvalues associated with the modified FIM during the eigenvalue method
analysis. Each of the subplots corresponds to a unique scenario, identified in Table 4.1. The parameter which was
deemed non identifiable and removed in that step of the algorithm is indicated about the eigenvalue. The ε cutoff

value is displayed with a dotted horizontal line. Note that the vertical axis is log scaled.
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Table 4.3 TCDD concentration data from [12, 21]. These
concentrations were measured in liver tissue of female,
C57BL/J mice, using mass spectrography techniques.

Time (hours) Concentration (nM)

2 193.37

4 322.46

8 477.23

12 419.46

18 520.70

24 593.17

72 663.56

168 271.84

672 41.532

2016 1.7184

4032 0.041304
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(a)

(b)

(c)

Figure 4.6 Simulated liver tissue concentration of TCDD over time. Multiple timelines are shown for
easier visual interpretation.
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0.04 nM, and the system has completely cleared the TCDD in less than 12 hours. These

differences illustrate that drastic errors exist in the parameter space that was used. However,

as the mathematical analysis in this work illustrates, it is not possible to uniquely estimate all

of the parameters.

4.4 Concluding Thoughts

TCDD is potentially a very dangerous chemical, but its behavior inside the organism is far

from being understood. Mathematical models are often very helpful in providing scientific

insight, but unfortunately the model that we analyze in this work cannot provide extra

information.

Approximately 12 of the parameters in the model do not have reliable literature values. The

results in this work illustrate that it is not possible to uniquely estimate these parameters given

the current structure of the model and the current scientific capabilities to measure TCDD.

Five of these parameters are involved solely in the equation that describes the concentration

of the CYP1A2 enzyme. It is likely that this equation could be reparameterized, but it would

be difficult to do so in such a way that still allowed for each parameter to have a biological

representation. Another option would be to simplify the model structure by removing one

or more terms from the equation. However, this model was specifically formulated with the

intention of a more complex CYP1A2 enzyme in mind, so this would defeat its purpose.

These findings are specific to the exact model described in this work, but it is possible that

similar PBPK models based on TCDD have made errors in this area as well. Before the findings

from such a model can be truly accepted, it would be prudent for a similar identifiability

analysis to be conducted on its model structure to ensure that the results are valid. Otherwise,

a model may be fit with a set of parameters that closely resemble a data set, without being

sure that it in fact the only set of parameters that would generate that outcome.
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APPENDIX

A

FULL MODEL DETAILS

This section provides the minute details of the mathematical model that was explored in

this work. The equations for each of the state variables (Table A.1) are detailed in Equation

A.1. This system contains many parameters of different types. The information in Table A.3

relates to the overall morphology of the mouse’s body and its tissue makeup. Some of these

parameters need to undergo secondary calculations before they are helpful for the model,

which are detailed in Table A.2. Table A.6 includes the parameters which are kinetic in nature.

These variables also make up the ~θ vector used in the analysis of this model’s identifiability

and estimability. The partition coefficients are listed separately in Table A.4, and the initial

conditions for the system are in Table A.5.
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Table A.1 Descriptions of each state variable, along with their position in the ~x vector.

Index Symbol Description

x1 ASTOM amount of TCDD left in the stomach

x2 AST amount of TCDD in the slowly perfused tissue

x3 ASB amount of TCDD in the blood of the slowly perfused tissue

x4 ART amount of TCDD in the richly perfused tissue

x5 ARB amount of TCDD in the blood of the richly perfused tissue

x6 AFT amount of TCDD in the adipose tissue

x7 AFB amount of TCDD in the blood of the adipose tissue

x8 ASPT amount of TCDD in the spleen tissue

x9 ASPB amount of TCDD in blood of the the spleen tissue

x10 ALT amount of TCDD in the liver tissue

x11 ALB amount of TCDD in the blood of the liver tissue

x12 ACYP amount of unbound CYP1A2 enzyme in the liver tissue

x13 ATCDDCYP amount of TCDD bound to the CYP1A2 (in the liver tissue)

x14 AAhR amount of unbound Ah receptor in the liver tissue

x15 ATCDDAhR amount of TCDD bound to the Ah receptor (in the liver tissue)

x16 AVB amount of TCDD in the venous blood

x17 AAB amount of TCDD in the arterial blood

x18 AMET amount of TCDD that has been metabolized
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The full system of differential equations are listed here in Equation A.1. Note that these

equations differ slightly from those described earlier in the text. Each concentration was

replaced by the corresponding amount divided by the volume of the compartment. This

substitution allows for the state variables to be directly observable in the equations.

(1)
dASTOM

dt
= −KABS ASTOM

(2)
dAST

dt
=

JQS ASB

VSB
− JQS AST

VSTPaS

(3)
dASB

dt
=

QS AAB

VAB
− QS ASB

VSB
− JQS ASB

VSB
+

JQS AST

VSTPaS

(4)
dART

dt
=

JQR ARB

VRB
− JQR ART

VRTPaR

(5)
dARB

dt
=

QR AAB

VAB
− QR ARB

VRB
− JQR ARB

VRB
+

JQR ART

VRTPaR

(6)
dAFT

dt
=

JQF AFB

VFB
− JQF AFT

VFTPaF

(7)
dAFB

dt
=

QF AAB

VAB
− QF AFB

VFB
− JQF AFB

VFB
+

JQF AFT

VFTPaF

(8)
dASPT

dt
=

JQSP ASPB

VSPB
− JQSP ASPT

VSPTPaSP
(A.1)

(9)
dASPB

dt
=

QSP AAB

VAB
− QSP ASPB

VSPB
− JQSP ASPB

VSPB
+

JQSPT ASPT

VSPTPaSP

(10)
dALT

dt
=

JQL ALB

VLB
− JQL ALT

VLTPaL
− KMET ALT

VLT
...

+
KOFF_TCDDCYP ATCDDCYP

VLT
− KON_TCDDCYP ACYP ALT

V2
LT

...

+
KOFF_TCDDAhR ATCDDAhR

VLT
− KON_TCDDAhR AAhR ALT

V2
LT
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(11)
dALB

dt
=

QL AAB

VAB
+

QSP ASPB

VSPB
+

JQL ALT

VLTPaL
...

− JQL ALB

VLB
− (QL + QSP)ALB

VLB
+ KABS ASTOM

(12)
dACYP

dt
= KCYP_BASE −

KCYP_DEG ACYP

VLT
...

− KON_TCDDCYP ACYP ALT

V2
LT

+
KOFF_TCDDCYP ATCDDCYP

VLT
...

+ (KCYP_MAX − KCYP_BASE)

ATCDDAhR
VLT

N

ATCDDAhR
VLT

N
+ KN

CYP_D

(13)
dATCDDCYP

dt
=

KON_TCDDCYP ACYP ALT

V2
LT

− KOFF_TCDDCYP ATCDDCYP

VLT

(14)
dAAhR

dt
= −KON_TCDDAhR AAhR ALT

V2
LT

+
KOFF_TCDDAhR ATCDDAhR

VLT

(15)
dATCDDAhR

dt
=

KON_TCDDAhR AAhR ALT

V2
LT

− KOFF_TCDDAhR ATCDDAhR

VLT

(16)
dAVB

dt
=

QS ASB

VSB
+

QR ARB

VRB
+

QF AFB

VFB
+

(QL + QSP)ALB

VLB
− QTOT AVB

VVB

(17)
dAAB

dt
= −QS AAB

VAB
− QR AAB

VAB
− QF AAB

VAB
...

− QL AAB

VAB
− QSP AAB

VAB
+

QTOT AVB

VVB

(18)
dAMET

dt
=

KMET ALT

VLT
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Table A.2 Parameters which require extra computation, which is accomplished via these equations.

Symbol Description Units Calculation

QS blood flow rate to slowly perfused
tissues

L/hr QTOT ·QFS

QR blood flow rate to richly perfused
tissues

L/hr QTOT ·QFR

QF blood flow rate to adipose tissues L/hr QTOT ·QFF

QSP blood flow rate to the spleen L/hr QTOT ·QFSP

QL blood flow rate to the liver L/hr QTOT ·QFL

VSB volume of slowly perfused tissue
blood

L BW ·VFS ·VFSB

VST volume of slowly perfused tissue L BW ·VFS

VRB volume of richly perfused tissue
blood

L BW ·VFR ·VFRB

VRT volume of richly perfused tissue L BW ·VFR

VFB volume of adipose tissue blood L BW ·VFF ·VFFB

VFT volume of adipose tissue L BW ·VFF

VSPB volume of spleen tissue blood L BW ·VFSP ·VFSPB

VSPT volume of spleen tissue L BW ·VFSP

VLB volume of liver tissue blood L BW ·VFL ·VFLB

VLT volume of liver tissue L BW ·VFL

VB volume of total blood L BW ·VFB −VSB −VRB...
−VFB −VSPB −VLB

VAB volume of arterial blood L VB ·VFAB

VVB volume of venous blood L VB −VAB
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Table A.3 Parameter values related to animal morphology. Unless otherwise noted, values are
based on estimates for female C57BL/6J mice.

Symbol Description Units Value Source

BW total body weight kg 0.025 [21, 48]

QTOT total blood flow rate L/hr 1.045 [24]

QFS fractional blood flow to slowly perfused tissues unitless 0.17 [24]

QFR fractional blood flow to richly perfused tissues unitless 0.485 [24]

QFF fractional blood flow to adipose tissue unitless 0.07 [24]

QFSP fractional blood flow to spleen unitless 0.025 estimateda

QFL fractional blood flow to liver unitless 0.25 [24]

VFST volume fraction of slowly perfused tissues to
organism

unitless 0.761 [24, 25]

VFRT volume fraction of richly perfused tissues to
organism

unitless 0.035 [24, 25]

VFFT volume fraction of adipose tissue to organism unitless 0.059 [24, 25]

VFSPT volume fraction of spleen tissue to organism unitless 0.005 estimateda

VFLT volume fraction of liver tissue to organism unitless 0.05 [24, 25]

VFSB volume fraction of slowly perfused tissue
blood to slowly perfused tissues

unitless 0.05 [6]b

VFRB volume fraction of richly perfused tissue blood
to richly perfused tissues

unitless 0.01 [6]b

VFFB volume fraction of adipose tissue blood to
adipose tissue

unitless 0.05 [6]b

VFSPB volume fraction of spleen tissue blood to
spleen

unitless 0.01 estimatedc

VFLB volume fraction of liver tissue blood to liver unitless 0.01 [6]b

VFB volume fraction of total blood to organism unitless 0.05 [24]

VFAB volume fraction of arterial blood to total blood unitless 0.3 [3]d

a Due to the mass of the mouse spleen being approximately one tenth of the mass of the liver, the fractional
volume of the spleen and the fractional blood flow to it was assumed to be one tenth the value of the liver.
b These values are based on data from female Wistar rats, not mice.
c Due to the similarities between the liver and spleen organs, it was assumed that the spleen’s blood vessel
density was approximately the same.
d Human estimate.
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Table A.4 List of partition coefficients. All values are based on female C57BL/J mice

Symbol Description Units Value Source

PaS partition coefficient of slowly perfused
tissues/blood

unitless 3 [24]

PaR partition coefficient of richly perfused
tissues/blood

unitless 10 [24]

PaF partition coefficient of adipose
tissue/blood

unitless 300 [24]

PaSP partition coefficient of spleen
tissue/blood

unitless 10 estimateda

PaL partition coefficient of liver
tissue/blood

unitless 10 [24]

a Assumed to have the same chemical attribute as the liver.

Table A.5 Initial conditions for the state variables. Sources are based on female C57BL/J
mice. All other concentrations are equal to zero at the start of the simulation, due to the

assumed lack of any other exposure to TCDD.

Symbol Description Units Value Source

CSTOM(0) initial concentration of TCDD in the
stomach

nmoles/L 2.3292 [21]a

CAhR concentration of AhR nmoles/L 0.35 [48]

CCYP(0) initial concentration of CYP nmoles/L 1.5 [48]
a Value based on the experimental protocol in [21], which calls for a bolus dose of 30µg/kg
of body weight.
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Table A.6 Kinetic parameters involved in the chemical reactions.

Index Symbol Description Units Value Source

θ1 J permeability coefficient
multiplier for all tissues

unitless 0.08 [48]

θ2 KMET first order metabolism rate of
TCDD in liver

L/hr
2.5

BW0.3 [5]

θ3 KABS absorption rate of TCDD
from stomach

L/hr 0.4 [48]

θ4 KOFF TCDDCYP rate constant for separation
of TCDDCYP complex

L/hr 35 estimateda

θ5 KD CYP dissociation constant of
CYP1A2 (KOFF/KON)

nmoles/L 35 [48]

θ6 KOFF TCDDAhR rate constant for separation
of TCDDAhR complex

L/hr 0.1 estimateda

θ7 KD AhR dissociation constant of AhR
(KOFF/KON)

nmoles/L 0.1 [48]

θ8 KCYP BASE basal production rate of
CYP1A2

nmoles/g
of

liver/hr

0.004 [5]

θ9 KCYP DEG degradation rate of CYP1A2 1/hr 0.04 [5]

θ10 KCYP MAX maximum production rate of
CYP1A2

nmoles/g
of

liver/hr

0.4 [5]

θ11 N Hill coefficient for CYP
induction

unitless 4 [5]b

θ12 KCYP D Hill binding constant pmoles/L 50 [6]c

a The dissociation constant of an enzyme has more biological relevance than either KOFF
or KON separately. The values of KON CYP and KON AhR were both set to 1 for simplicity.
This allows the KOFF values for each enzyme to be equal to its corresponding dissociation
constant.
b Value based on Sprague-Dawley rats.
c Value based on Wistar rats.
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