
ABSTRACT 

TRAUD, AMANDA LYNN. Animal Social Networks and Movement. (Under the direction 
of Dr. Alun Lloyd and Dr. Robert Dunn). 

Studying animal social systems can provide valuable insight into the mechanisms 

behind animal population behaviors and inform scientists about the evolution of social 

structures in humans.  We use social network analysis to discover whether animal networks 

are capable of serving as a suitable proxy for human contact networks. Finding this 

information has many ramifications for its use, including the spread of pathogens or being 

able to stop such spreading. To this end, we study the interactions of colonial animals, or 

animals that live in colonies such as prairie dogs (Cytomis gunnisoni) and ants (Formica 

subsericea).   

In our study of prairie dog social networks, we examine how social network analysis 

techniques can be used to find important individuals and uncover the macro-structure. This 

then allows for the comparison of current prairie dog study techniques to social network 

analysis findings.  We discover a high correlation between macro-structure found with social 

network analysis and current prairie dog social group classification. The social network 

techniques require far fewer data. Comparing macro-structure to prairie dog behavior, we 

discover no correlation thus groups of prairie dogs contain a mixture of behaviors. Key 

individuals are identified in each prairie dog social network.  These key individuals have 

significant implications for disease spread and communication channels. 

One way we study ant social structure is by examining how the ant queen’s presence 

affects ant social networks.  To ascertain whether the queen affects the structures of ant 

social networks, we compare networks with a queen to networks without, individual network 



measures for queens to individual network measures for workers, individual network 

measures for workers in a network with a queen to those for workers in a network without a 

queen, and then compare the networks with and without queens to standard network models. 

While the queen is highly important to colony survival, the queen does not significantly 

affect global ant network structure.  The queen is found to have a local network that is 

significantly different from that of workers.  Like many human contact networks, both 

networks with queens and networks without are classified as Small-World networks, with 

networks with queens having a higher similarity to Small World networks than the networks 

without.   

We also study ant social structure by examining how ant network structure changes 

over time, i.e. collecting and analyzing dynamic ant social networks.  These data are also 

used to ascertain whether ants have preference to their associations, or friends.  With this 

data, we create and present a method for finding the appropriate network observation 

window. We discover ants have preferred associations and that the accumulation of ant 

interactions approach a stable density. 

As movement affects location and therefore affects the availability of individuals for 

interaction, we model ant movement.  Ant trajectories are collected using the methods 

outlined in Appendix A and analyzed to produce movement models.  Ant movement is 

highly complex: ants are discovered to have multiple ant step length categories, multiple 

states of movement, and different movement behavior based on individual location.  
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CHAPTER 1: Introduction 
Background 
 
 Social network analysis (SNA), the study of individuals and their connections to each 

other, is a dynamic tool applicable to a variety of problems.  In the recent years, it has had 

much advancement in both quantitative methods and study systems (Newman, 2003). The 

branch of mathematical study known as graph theory was established as early as 1736, and it 

is from this that the idea of SNA was born (Biggs, Lloyd, & Wilson, 1986).  SNA was then 

further developed and perfected by sociologists and psychologists who used to study human 

interactions in the first half of the 20th century (Scott & Carrington, 2011).  Since then, 

scientists have used SNA to study many human social networks and gleaned insights to a 

variety of questions otherwise unsolvable.  While SNA was originally developed to study 

human social networks, recently these methods have been extended to investigate animal 

social systems (Krause, Lusseau, & James, 2009). 

Studying animal social systems can provide valuable insight into the mechanisms 

behind animal population behaviors and inform scientists about the evolution of these social 

structures. Colonial animals, such as ants and prairie dogs, live in large populations and rely 

on specific structures of social interaction for survival as each social interaction allows one 

animal to transmit information and/or pathogens to another(Newman, 2003).  Thus, 

understanding how these networks are structured and how they are affected by outside 

stimuli will take us one step closer toward understanding the patterns of information and 

pathogen transmission and how they affect these creatures’ survival. We extend upon recent 
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SNA work by studying both the structure of a prairie dog social network and the effects of 

stimuli on ant social networks.   

Motivations 
 

Understanding animal social networks and how these networks respond to stimuli is 

imperative to understanding how social creatures survive and flourish.  Studying colonial 

species is one of the best ways for understanding these social structures as colonial animals 

rely on these specific structures to transmit communications as well as prevent the 

transmission of disease.  Studying animal social networks allows us to identify key 

individuals, define social groups, and add to the general understanding of social network 

structures (Wey, Blumstein, Shen, & Jordán, 2008).   

Motivation for Chapter 2 
 

Prairie dogs live in various sized colonies, and individuals within each colony are 

further separated into social groups.   Prairie dogs transmit information in complex ways, 

which include both verbal (barking) and tactile (snuggling and greet kissing) modes of 

communication.  Using social network analysis techniques, we can identify these social 

groups with far fewer data than used in current techniques.  Prairie dogs also live in diverse 

habitats and adapt quickly to changes in their environment.  Due to their altruistic nature, 

each prairie dog takes on a different task, like predator watching and food gathering, and 

works together with others in its social group to survive in these habitats. These behaviors are 

easily observable to a potential experimenter.  We can use social network analysis techniques 

to confirm whether groups are made up of a single behavior or mixed behavior types.  Prairie 
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dogs also contract diseases, such as bubonic plague.  We can also use social network analysis 

techniques to identify key individuals that could drastically affect this spread.  

Motivation for Chapters 3, 4, & 5 
 
 Formica subsericea also live in colonies, but in colonies of thousands of individuals. 

They interact with each other to communicate, pass food, and transfer pathogens. Ants have 

individuals already defined as important to survival, like queens (Holldobler & Wilson, 

1990).  We can use social network analysis techniques to discover whether social structures 

are affected by these key individuals and examine whether network measures of importance 

match with environmental importance.  Studying the movement of these ants is important as 

location and availability of individuals to interact with directly affects interactions.  Creating 

models for this movement allows for the synthetic creation of much larger networks. 

Dissertation Outline 
 
 In Chapter 2, in order to study the social structure of three prairie dog colonies, we 

use SNA techniques to find macro-structure in the networks and compare this macro-

structure to social group classification.  Through social network analysis, it’s also possible 

for us to distinguish key individuals.  In Chapter 3, we examine the effects of queen presence 

on ant social networks to answer a couple of questions.  Do network measures differ between 

workers and queens?  What about the conditions of the network between workers, with and 

without a queen’s presence?  We also compare the networks to existing network models to 

better understand the network structure.  In Chapter 4, we take the analysis to another level, 

studying the dynamics on ant networks over time.  We examine the accumulation of ant 
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interactions and model the progression of network structure.  We devise a method for finding 

the observation window that best captures the full network structure and test whether ants 

have “friends”. Finally, in Chapter 5, we study ant path data, fitting stochastic movement 

models to observed data.  These models can then be used to study how movement is affected 

by interaction and to create larger ant interaction networks.  Appendix A contains a method 

chapter on tracking social insect movements. 
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CHAPTER 2: Key players and hierarchical organization of prairie 
dog social networks 
By Jennifer Verdolin; Amanda L Traud; Robert Dunn1 
 

Introduction 
 
In the study of social animals, there is growing interest in complex emergent properties of 

group structure. Social network analysis (SNA) has been increasingly used to study the social 

dynamics of animal systems (Bergmller, Schrch, & Hamilton, 2010; Brent, Lehmann, & 

Ramos-Fernández, 2011; D. Lusseau & Newman, 2004; David Lusseau, 2003; Newman, 

2003). It is a unifying conceptual framework that can be applied comparatively across all 

social taxa—from microbes to humans. Social networks can help to identify features of 

organisms that are indiscernible (or even invisible) based on studies of individuals or 

behaviors alone (Darren P. Croft, Krause, & James, 2004; D. Lusseau & Newman, 2004). In 

other cases, there exists substantial intra-specific variation among networks based, in part, on 

group attributes, individual differences, and ecological factors (Bhadra, Jordan, Sumana, 

Deshpande, & Gadagkar, 2009; Faust & Skvoretz, 2002; Guimares Jr et al., 2007; Madden, 

                                                
1 Note: This chapter has been accepted for publication to Ecological Complexity. Jennifer 

Verdolin and Amanda Traud are co-first authors.  Jennifer Verdolin, a post doc at Nescent, 

collected all prairie dog data.  Amanda Traud used and created code in R for analyzing all 

networks with social network techniques.  Jennifer Verdolin, Amanda Traud, and Rob Dunn 

share equally in the writing of this chapter.  Rob Dunn advised and funded this project. 
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Drewe, Pearce, & Clutton-Brock, 2009). Furthermore, differences in social networks, 

whether among taxa or social groups, almost necessarily lead to differences in the spread of 

diseases, decision making strategies, information or, in some cases, food, through networks 

(Darren P. Croft et al., 2004; Drewe, Madden, & Pearce, 2009; Hamede, Bashford, 

McCallum, & Jones, 2009; A. Jacobs, Sueur, Deneubourg, & Petit, 2011; Kasper & Voelkl, 

2009; Madden et al., 2009).  

A key challenge with SNA is how to relate their results to the much larger literature 

on social interactions that relies on other approaches to distinguish social groups. Before 

social network analysis became popular, literally hundreds of studies considered the social 

interactions and social groups of organisms using approaches based on field observation and 

informal clustering. Our understanding of the social systems of most organisms rests on such 

traditional approaches. Can the results from these earlier studies be related to those of social 

network analysis? This question seems to have not been well-considered, particularly in the 

social mammals where research has tended to divide social groups into hierarchical 

categories, constructed out of the existence of interactions among individuals but also the 

nature of those interactions and whether they are negative, positive, reproductive, relate to 

food sharing, or have some other defining features. The advantages of SNA are frequently 

highlighted (Proulx, Proulx, & Blouin-Demers, 2013; Sueur, Jacobs, Amblard, Petit, & King, 

2011; Wey et al., 2008), but whether SNA builds on, replaces or conflicts with other 

approaches is unclear.  
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Gunnison’s prairie dogs, Cynomys gunnisoni, are large, diurnal, highly social ground 

squirrels whose range is limited to the grasslands of the Colorado Plateau (Hall, 1959). 

Gunnison’s prairie dogs colonies contain a variable number of territories occupied by distinct 

social groups, whose sizes ranging from 3-14 individuals (Travis, Slobodchikoff, & Keim, 

1995; J. L. Verdolin & Slobodchikoff, 2010) akin to small groups of social insects (e.g., 

Temnothorax albipennis: (Dornhaus & Franks, 2006)), primate groups (Chapman & 

Chapman, 2000), or hunter gatherer societies (Hamilton, Milne, Walker, Burger, & Brown, 

2007). Traditionally, ecologists have distinguished prairie dog social groups using behavioral 

and spatial observations of known individuals over time (King, 1955; Slobodchikoff, 1984; 

Travis & Slobodchikoff, 1993; J. L. Verdolin, 2007), with a strong emphasis on negative 

interactions, where negative interactions among individuals imply those individuals are from 

different social groups (Slobodchikoff, 1984; Travis & Slobodchikoff, 1993; J. L. Verdolin, 

2007). The designation of the size of groups and the identity of individuals within also often 

incorporates data on mating behavior, and behavioral time allocation (e.g., time spent being 

vigilant versus feeding), and groups are composed of one or more females, one or more 

males, and juveniles (Slobodchikoff, 1984; Travis & Slobodchikoff, 1993; Travis et al., 

1995; J. L. Verdolin, 2007). The resulting identification of distinct social groups within a 

colony can be robust with regard to individual interactions, but tends to result in a categorical 

classification of groups, in which individuals either are or are not members of groups and any 

patterning in social structure above or below the standard social group is either not described 

or, if described, is in terms of the behavior of individual organisms and their histories. If a 
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network-based approach to exploring the social dynamics of Gunnison’s prairie dog—or any 

other organism—produces social groupings similar to traditional methods, social network 

analysis can add to the insights of traditional approaches in several ways.  

Comparing social network properties among groups may highlight subtle variation in 

social structure not readily observable or quantifiable by conventional behavioral studies 

(Faust & Skvoretz, 2002; Traud, Kelsic, Mucha, & Porter, 2011a; Wolf, Mawdsley, 

Trillmich, & James, 2007). If groups detected using traditional behavioral approaches and 

social network are similar, SNA has the advantage of requiring far fewer data, simply who is 

interacting with whom, not the nature of each interaction. Network analyses can also reveal 

emergent properties of social groups, including identifying individuals with central roles—

such as the dolphin social brokers—and characterizing variability in group cohesion or hubs, 

individuals (Bezanson, Garber, Murphy, & Premo, 2008; D. P. Croft et al., 2005; D. Lusseau 

& Newman, 2004; David Lusseau, 2003) who are connected to an unusually high number of 

other organisms. SNA may provide a method for testing the hypothesis that individuals may 

group together based on similarities, differences, or random associations (Galef & Laland, 

2005; Pedersen, Krieger, Vogel, Giraud, & Keller, 2006; Pepper, 2000; Reader & Biro, 2010; 

Rendell & Whitehead, 2001; Ross, 2001).  

Here, we generated social network matrices using data on positive social interactions 

of Gunnison's prairie dogs (Cynomys gunnisoni). We then used community detection analysis 

to discern social groups from the networks and compared them to social groups identified by 

traditional behavioral approaches (Traud, Kelsic, Mucha, & Porter, 2011b). Next, we used 
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SNA to examine whether there were features of Gunnison prairie dog social behavior 

detectable only through SNA or behavioral studies alone. In addition, we tested whether, as 

in dolphins and other social organisms, individuals serve to connect social groups with no 

other connections (bridges) or disproportionately connect individuals within social groups 

(hubs) (D. P. Croft et al., 2005; Gero, Gordon, & Whitehead, 2013; Madden et al., 2009; 

Naug, 2008), and whether there were biologcial or environmental predictors of who was a 

bridge or a hub. Finally, we used the SNA method to compare the social network groups to 

traits of individual prairie dogs within each network to ask whether social groups differed in 

their behavioral traits.  

Methods 
 
Study area 
 
A detailed description of live-trapping, handling, and marking methods are available in (J. L. 

Verdolin, 2007). A Scientific Collector’s Permit (Arizona Game and Fish Permit no. 

SP742094) was obtained prior to trapping and all procedures were in compliance with Stony 

Brook University IACUC (IACUC no. 2009-1745, Stony Brook University). Individuals 

were trapped with veterinary supervision from mid-February (upon emergence from 

hibernation) through August at two colonies, Country Club (CC) (Figure 1) and Humane 

Society (HS), with two 1 ha-plots delineated per colony and separated by road. These distinct 

plots are referred to as CCI, CCII and HSI, HSII, respectively. For our purposes we consider 

these to be separate populations, as individuals from each plot within a colony did not co-

mingle. AVID® identification microchips were implanted subdermally in all captured 
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animals for permanent identification. Individuals were also marked with black Lady Clairol® 

semi-permanent hair dye for visual identification. Data for the analyses presented here are 

based on data from March-August 2004 and reflects data collected from mutually exclusive 

social groups on HSI, HSII, and CCI.  

 

 

Figure : Map of one of the prairie dog colonies, Country Club I with inset of habitat photo and inset of prairie dog photo 
from the colony.  

 
Data and Analysis 
 
For each population, behavioral observations were made alternately in the morning from 

0700-1000 and afternoon from 1500-1800, during the times when prairie dogs were most 

active (Longhurst, 1944). With the exception of days when trapping occurred, observations 

were made at least every other day at each plot from March 7-August 15, 2004, for a total of 
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396 hours of observation. Prairie dogs that consistently exhibited mutually tolerant behaviors 

with one another, such as greet-kisses and co-feeding, were assigned to the same social group 

(J. L. Verdolin, 2007).  

Social group membership using traditional methods was determined on the basis of a 

dataset that included: 1) the home range overlap of individuals, 2) all occurrences of a 

mutually tolerant positive interactions such as greet-kissing and co-feeding (within 1 meter of 

each other), and 3) all occurrences of aggressive interactions, which was any interaction that 

resulted in fights or chases. Because aggressive interaction are infrequent (e.g., 0.016 

events/hour among males), and rarely occur within a social group (N=5 in 396 hours of 

observation), aggressive interactions are typically used to determine who does not belong to 

the social group (J. L. Verdolin, 2007). This approach is similar to aggression trials used to 

discern, for example, the boundaries of ant colonies (Vásquez & Silverman, 2008) and 

followed common behavioral sampling approaches for social vertebrates (Altmann, 1974; 

Hinde, 1976).  

To obtain data on the composition of social groups within each study population, 

behavioral observations included focal sampling, scan sampling and all occurrences sampling 

(Altmann, 1974). Focal samples were conducted for 5 min. During the focal sample, the 

location of the focal animal and all occurrences of social interactions were recorded. Four such 

focal samples were taken in sequence, then every 30 min a scan sample was used to record the 

location of each above ground animal within the study plot. Active individuals were chosen at 

random for observation, with the qualification that no individual was observed more than once 
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in a daily time block. During the observation period, each focal sample was recorded using a 

Sony Digital camcorder. Videos were later analyzed by JLV to extract data, with the behavior 

of the focal animal recorded every 5 seconds. We used vigilance, feeding, and moving behavior 

in our analyses. Vigilance behavior included both posting and scanning, where posting is a 

stationary bipedal alert posture and scanning is quadripedal scanning of the environment with 

the head above a 90° angle (Jennifer L. Verdolin & Slobodchikoff, 2002). Feeding was defined 

as actively consuming a food item and moving was measured as movement from one location 

to another. The proportion of time that the focal animal spent engaged in each behavior was 

then calculated. In the case of multiple observations of the same individual, the average time 

spent in each behavior was calculated.  In addition, we calculated trappability, which was the 

proportion of times an individual was trapped given the trapping period.  

A total of 220 focal samples for 80 prairie dogs were collected. In addition, a total of 

5, 5, and 4 social groups were identified using behavioral observations and spatial locations 

for populations HSI, HSII, and CCI, respectively. Given the low rate of agonistic 

interactions, we wanted to assess whether we could determine group membership using SNA 

solely on the basis of greet-kissing (positive interaction) among individuals. We did not 

include CCII in the analyses because an insufficient number of focal samples were made on 

prairie dogs in that colony to include them in the behavioral analysis. Two additional social 

groups on CCI were not included because they were primarily determined by spatial location 

and the number of interactions was insufficient for this analysis.  
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We detected and analyzed social networks using a community detection approach. 

Although, SNA has been used recently for a variety of social organisms, its application has 

focused primarily on individual measurements or full network measurements. When SNA 

methods are used to find intermediate (within network) structure in the full networks, these 

methods are referred to as community detection (Leu, Bashford, Kappeler, & Bull, 2010; D. 

Lusseau & Newman, 2004; David Lusseau, 2003; Maryanski, 1987). The use of community 

detection techniques in the analysis of social networks has recently gained traction (Porter, 

Onnela, & Mucha, 2009). Often network structure is not obvious by simply looking at a list 

of interactions, or a resulting graph of interactions. Community detection permits a 

researcher to identify social groups by discerning which individuals in the network have 

more connections to the other individuals within the group than to individuals outside the 

group.  

We used the number of greet kisses recorded over a period of six months, which is to 

say we considered a subset of the data available from field observations of these prairie dogs, 

excluding all behavioral observations except for data on who greet-kissed with whom and 

how often (see above). Although a fine-scale temporal (e.g., monthly) analysis of social 

network structure would have been desirable, the frequency of positive interactions was too 

sparse to permit this approach. Based on these data, we created a matrix for each site where 

all individuals are listed on both the horizontal and vertical axes and each entry in the matrix 

became the integer corresponding to the number of interactions between each pair of prairie 

dogs. Then, the matrix was fed into R, and using the igraph library we detected social 
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network communities using multilevel community detection (Blondel, Guillaume, Lambiotte, 

& Lefebvre, 2008). This algorithm is a modularity-maximizing algorithm.  Modularity is a 

measure of number of ties within a group minus the expected number of ties within that 

group given the network. This process works in two steps, which are then iterated, where 

each prairie dog is first placed into its own community and each community’s neighbors are 

then checked to see if merging two communities results in a gain in modularity. The second 

step of this algorithm is to treat each community as an individual prairie dog, summing ties 

within the community to make a weighted self-loop and then summing ties between 

communities to make weighted ties. The first step is then repeated with this new network. 

This process is iterated until no gains in modularity can be made. The resulting set of 

communities then has optimal modularity.  

In many studies, once communities are identified through SNA, traits of individuals are then 

compared to those communities to test for non-randomness among communities. For 

example, Traud et al. (2011) tested for communities in the Caltech 2005 Facebook network. 

The traits of users were then compared within and among communities where it was found 

that users are most likely to be in groups of friends by House, or dormitory (Traud et al., 

2011b). We took advantage of this approach to test whether social network communities 

predicted traditional behavioral groups. To compare these two sets of classifications, we first 

calculated the Rand similarity coefficient in Equation 1 for the pair of classifications (Rand, 

1971). 

M
wwr 1100 +=  
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where, M was the total number of pairs of prairie dogs in the colony, , n being the total 

number of prairie dogs in the colony we were testing, was the number of pairs of prairie 

dogs, where both prairie dogs were in different communities and in different social groups, 

was the number of pairs of prairie dogs where both prairie dogs were in the same 

community and both prairie dogs were in the same social group. 

We then compared the Rand coefficient to the distribution of possible Rand coefficients 

using randomization tests (Edgington & Onghena, 2007). This allowed us to empirically 

calculate the p-value corresponding to the degree of matching between communities and 

social groups (Edgington & Onghena, 2007) (Table 1).   

Table 1: The number of identified traditional behavioral social groups was fewer than the number of Social network 
communities based on SNA; most social groups include > 1 communities (see Figure 1). P-values are based on the Rand 
similarity coefficient 

Colony # Traditional behavioral  # Social network  P-value 
      groups       communities   
CCI   4*    8**  P<0.001  
HSI   5    5  P<0.001 
HSII   5    6  P<0.001 
 

Due to the slightly biased nature of the distribution of Rand coefficients for these small 

networks, we used randomization tests as opposed to z-scores, which assume a normal 

distribution of Rand coefficients. P-values were calculated empirically using Monte Carlo 

simulations. To find the p-values for each Rand statistic, we iterated n (10,000) times, 

randomizing the communities and calculating the Rand statistic for the random communities 

paired with the actual social groups.  We then calculated the number of times (r) that we got a 

Rand statistic larger than the Rand statistic for the actual social network communities and the 
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social groups.  The approximate p-value is then calculated as (r+1)/(n+1) (North, Curtis, & 

Sham, 2002).   

To test for differences in behavioral traits among the communities we used the 

proportion of time an individual spent being vigilant (e.g., posting, scanning), feeding, moving 

(Loughry, 1992; Jennifer L. Verdolin & Slobodchikoff, 2002), and trappability. We separated 

the different behavior and trappability scores for each behavior into categorical variables from 

the quartiles for that behavior. We compared communities to prairie dog behavioral traits using 

Rand Similarity coefficients and randomization tests in the same manner as described above, 

see also (Traud et al., 2011b).  

We present a description of degree centrality and betweenness centrality for the 

communities and identify key individuals that act as hubs (individuals who 

disproportionately connect individuals within social groups) and/or bridges (individuals who 

serve to connect social groups with no other connections). Both degree centrality and 

betweenness centrality are measures of the importance of an individual in a given network 

(Opsahl, Agneessens, & Skvoretz, 2010). Degree centrality is the number of interactions each 

individual participates in and we used it to classify hubs, or individuals with a significantly 

higher degree centrality than the rest of the network they were a part of. Prairie dogs with a 

significantly higher degree centrality were classified as hubs. Individuals with a degree 

centrality outside the range of 95% of the degree centralities of the network were regarded as 

hubs. Betweenness centrality is a measure of the number of paths that are required to pass 

through a prairie dog to get from one prairie dog to all other prairie dogs in the network and 
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uncovers individuals that act as bridges between communities that would otherwise be 

unconnected. We measured betweenness centrality to quantify whether or not a prairie dog 

acts as a bridge between networks. Prairie dogs with a significantly higher betweenness 

centrality than the rest of the prairie dogs in the network were considered bridges. We 

calculated significance for betweenness centrality similarly to that of degree centrality: 

individuals with a betweenness centrality outside the range of 95% of the betweenness 

centralities for that network are classified as bridges. We tested whether hubs and bridges 

occurred more than expected at random by simulating random networks with the same 

number of prairie dogs and the same number of interactions and then calculating the number 

of hubs and bridges for this distribution of networks. We then calculated the p-value for the 

empirical number of hubs or bridges. For these p-values, we used a similar process to the one 

described above for the p-values associated with Rand coefficients, only we used a random 

network each iteration instead of the randomized communities. Lastly, we tested whether 

degree centrality and betweenness centrality were correlated with age, sex, and group size 

using a generalized linear model (GLM) in JMP Pro 10 ® (Dryad doi: to be added).  

Results  
 
Network analysis resulted in three different weighted networks, where each connection 

between a pair of prairie dogs was weighted by the number of interactions between the 

prairie dogs in that pair (Figure 1). Overall, CCI, HSI, and HSII, consisted of 46, 32, and 47 

prairie dogs respectively, and had average contacts of 4, 3.56, and 3.57 per prairie dog 

respectively.  
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Figure 1: Interaction networks for the three prairie dog colonies analyzed in this study. Shapes indicate the social group 
and colors indicate the community. Thickness of lines between shapes indicate number of interactions between prairie dog 
pairs (Colors indicate groups based on network analysis, shapes indicate groups based on traditional behavioral 
approaches, color and shape groups are similar indicating a good match between social network communities and 
traditional behavioral groups (numbers identify specific individuals).    
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For each of the three colonies, the Rand coefficient similarity values for community and 

group assignments were significantly different than random (P<0.001), indicating agreement 

between social groups identified using SNA and those identified using traditional methods.  

However, with the exception of HSI, SNA detected additional social groups thereby 

uncovering subgroups (Table 1). 

When testing for similarities in behavioral traits across social groups derived from 

SNA, we found general differences in behavioral traits among social groups within each of 

the plots. The Rand similarity coefficient suggested that, in both CCI and HSI, individuals 

within social groups were more similar to each other in the proportion of time spent feeding, 

however only HSI was significant (P=0.01). No other behavioral trait showed significant 

non-random assortment among communities, although HSII indicated a trend for the 

proportion of time spent being vigilant (Table 2). 

Table 2. P-values for the comparison of social network communities to the observed prairie dog behavioral traits where 
*=P<0.1 and **=P<0.05 

Network Trappability   Vigilance Feeding Moving  
CCI        0.20         0.77     0.09*    0.14 
HSI        0.17         0.18     0.01**    0.91  
HSII        0.62         0.08*     0.95                0.19  
 

 

Across all three plots, we identified key individuals that acted as hubs within the 

network and individuals that were bridges between groups. In CC1, individuals 30, 31, and 

32 were quantified as hubs (having a significantly higher degree centrality than the rest of 

their network), with the numbers of contacts for these individuals being 9, 9, and 8 
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respectively compared to the average of 4 (±1.96 SD). On HS1, only one hub was present, 

individual 11, with 7 contacts compared to the network average of 3.56 (±1.63SD).  Lastly, 

HS2 had 3 hubs, individuals 10, 12, and 14, with contacts numbering 8, 9, and 10 

respectively compared to a network average of 3.57(± 2.12SD). CCI had significantly more 

hubs than expected at random (CCI: P=0.05) while HSII and HSI did not (HSII: P=0.07; 

HSI: P=0.39). 

Another important characteristic found in these networks was the existence of 

bridges. In CC1, prairie dogs 17, 25, 27, and 30 were identified as bridges (Figure 2). The 

average betweenness centrality for this network is 29.37 (±51.57 SD), while the betweenness 

centralities for these prairie dogs are 168, 180, 194.8 and 171.5 respectively. HSI had only 

one bridge, prairie dog 16. The average betweenness was 3.63 (± 5.29SD), while this 

individual’s betweenness was 21.8.  Similarly, on HS2, individuals 10 and 21 were bridges, 

with values of 242.6 and 381.5 respectively, while the average betweenness for the network 

was 52.92(± 76.45SD). Simulation results revealed that CCI had significantly more 

individuals that were bridges than expected by random chance alone (CCI: P=0.009). In 

contrast, the number of bridges on HSI and HSII was not significantly different from random 

(HSI: P=0.14; HSII: P=0.64).  

We found that age, sex, group size, and age*sex interaction were not significant 

predictors of degree centrality (GLM: whole model: R2=0.04, F4, 120=1.21, P=0.31) or 

normalized betweenness centrality (GLM: whole model: R2=0.03, F4, 120=0.89, P=0.47). 

Although there was no clear pattern of relationships between any of these variables and who 
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was a hub (degree centrality) or bridge (betweenness centrality) there was variation among 

individuals across colonies (Figure 3a,b). Interestingly, of the 7 identified hubs, 4 were 

female and 3 were male. In contrast, all 7 individuals identified as bridges were female.  

 

    

Figure 2(a) Betweenness centrality quartiles for all colonies separated by both colony and sex. The betweenness centrality 
plots show very low variability between quartiles of betweenness centrality values for each sex within each colony. CCI had 
four female outliers matching the number of bridges in this network, HSI had three female outliers, only one of these is 
classified as a bridge, and HSII had two female outliers and one male outlier, only the two females were considered bridges. 
(b) Degree centrality quartiles for all colonies separated by colony and then by sex. The degree centrality box plots show a 
high variability in degree centrality values.  In CCI, three individuals were classified as hubs, but only the male one was an 
outlier.  In HSI, none of the prairie dogs are outliers, even though one was classified as a hub, and in HSII two of the three 
classified hubs are outliers, one male and one female.   

 
Discussion and conclusions 
 
We found that the majority of the prairie dogs were placed in social network communities 

that were consistent with their traditional behavioral social group placement (see Figure 1). 

More importantly, the Social Network Analysis (SNA) approach also recovered additional 

structure within those groups; previously undetected cliques within social groups. Within 

(a) (b) 
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network-based social groups, individuals were subdivided into smaller subunits of prairie 

dogs that mostly interact with each other in ways apparent only when using SNA.  

Prairie dog social networks also showed variation within and among populations in 

both colonies. For example, HSI social network communities lacked subgroups, suggesting 

that social groups were more cohesive in this location. Differences in environmental conditions 

and selective pressures impacting organisms often lead to social patterns that are conditional on 

the circumstances experienced by a given population at any point in time (Gadagkar, 2001; 

Jacoby, Busawon, & Sims, 2010; Jetz & Rubenstein, 2011; Lehmann & Dunbar, 2009; J. L. 

Verdolin, 2007). We suspect that variation in ecological and historical processes, coupled with 

group specific social dynamics may contribute to the diversity we see in social networks across 

prairie dogs colonies. In addition, although individuals within social groups were not, on 

average, more closely related to each other than individuals between social groups (J. L. 

Verdolin & Slobodchikoff, 2009), some individuals within social groups were related. 

Community detection may be picking up on these details and suggests many directions for 

further study. This implies that prairie dog social groups within colonies act as societies with 

distinct membership.  

In addition to detecting subgroups, SNA also detected interactions among social 

groups, which in some cases were very complex (Figure 1). These interactions were hidden 

in traditional analyses that simply categorically considered prairie dogs as either in or not in 

groups. Behavioral and social variability in this species has traditionally been under-

emphasized in the search for simplistic universal categorical descriptions and ignores the 

social complexity and variability that is likely driven largely by environmental differences 
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(Hoogland, Cully, Rayor, & Fitzgerald, 2012). In reality, while some social groups really are 

discreet groups in which information (and pathogens) move in a relatively closed system, 

other groups are more connected such that both pathogens and information may be more 

likely to be moving readily both within and among what would be regarded as traditional 

social groups. However, some of these bridges may be temporary in nature. For example, on 

CCI individuals 25 and 25 were identified as bridges, but were actually transitioning from 

one social group to another. Without detailed behavioral observations documenting social 

group transfer SNA might not detect that some bridges are short-lived. 

In Gunnison’s prairie dogs, the origin of social groups remains somewhat mysterious. 

Current research provides convincing evidence that many social systems, including that of 

Gunnison’s prairie dogs, display significant sensitivity to resource availability and 

distribution (Botero & Rubenstein, 2012; Jetz & Rubenstein, 2011; Schradin et al., 2012; J. 

L. Verdolin & Slobodchikoff, 2009). While some individuals in social groups are typically 

related, the variability in social structure and dispersal patterns documented in this species 

(Pizzimenti, 1975, 1981; Robinson, 1989; Slobodchikoff, 1984; Travis & Slobodchikoff, 

1993; Travis et al., 1995; J. L. Verdolin, 2007) may explain differences in the average 

relatedness among individuals, with some populations having social groups composed 

primarily of nonkin (J. L. Verdolin & Slobodchikoff, 2009). Thus, kinship within social 

groups may actually be an artifact of sociality in this species, not the cause. One additional 

hypothesis that has emerged to explain social grouping patterns is that within colonies 

individuals that share social traits tend to group together (one might also imagine the 
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opposite, that individuals whose social traits are complimentary group). Do shared behavioral 

traits explain social group formation and networks in prairie dogs? To address this question, 

we compared the social network groups within colonies to the observed prairie dog 

behavioral traits. We document variation in a suite of behavioral traits (e.g., vigilance, 

feeding) among groups and across colonies. However, with only one colony (HSI) showing 

significant assortment of individuals within groups for feeding, it seems unlikely that 

behavioral similarities and/or differences among individuals are strong enough to drive social 

group formation and network patterns in prairie dogs. Rather, the variation across social 

networks in behavioral traits may be a function of idiosyncratic differences among colonies. 

Alternatively, differences in personality, along a bold-shy axis, may contribute to network 

attributes (Darren P. Croft et al., 2009), and is an important direction for future inquiry in this 

system. 

We also detected non-random variation among individual in their connectedness 

(degree). In a subset of social groups/communities in each population, some individual 

prairie dogs were more well-connected than would be expected by chance, so-called hub 

individuals. For others, their betweenness centrality significantly greater than expected, and 

these individuals act as bridges between networks. Central individuals (hubs) play a critical 

role in maintaining group cohesiveness and their removal can sometimes alter group 

dynamics substantially (Flack, de Waal, & Krakauer, 2005; Kanngiesser, Sueur, Riedl, 

Grossmann, & Call, 2011; Manno, 2008). In some species, males and females differ in their 

role in social networks, particularly with regard to their likelihood of being hubs or bridges. 
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For example, in meerkats, the dominant female will act aggressively towards a subset of 

females, while other subordinate females are involved in initiating fewer aggressive acts 

(Madden et al., 2009). Similarly, in many female bonded primates, dominant females have 

disproportionally higher degree centrality than subordinates (Lehmann & Dunbar, 2009; 

Ramos-Fernandez, Boyer, Aureli, & Vick, 2009). Network attributes of individuals in 

Gunnison’s prairie dogs do not, however, appear to be determined primarily by sex. The lack 

of dominance hierarchies in both male and female Gunnison’s prairie dogs (J. L. Verdolin, 

2007), may explain why sex and age were not significant predictors of degree centrality.  

As in dolphins (D. Lusseau & Newman, 2004; David Lusseau, 2007) and primates 

(Lehmann, Andrews, & Dunbar, 2010), some individuals acted as bridges across 

communities, yet age and sex were not significantly statistically correlated with betweenness 

centrality. Interestingly, however, these individuals were all female, suggesting that in 

Gunnison’s prairie dogs it is females who connect different social groups, even though the 

individuals who serve as hubs within social groups can be both female and male. As pointed 

out earlier two of the females identified as bridges actually were dispersing to neighboring 

groups. In Gunnison’s prairie dogs both males and females disperse, but males tend to 

disperse between populations while females disperse within populations (Robinson, 1989). 

This difference in dispersal patterns may explain why all the bridges were females and also 

suggests that some females may act as temporary bridges while others are permanent one. 

What is unclear is why these individuals are more connected and what factors influence the 

stability of bridges in these populations. Unlike in other species, where network centrality 
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measures are correlated with group size (Drewe et al., 2009; Lehmann & Dunbar, 2009; 

Wittig et al., 2008), there was no relationship between degree and betweenness centrality 

measures and group size in our populations.  

Here, we demonstrate considerable variation in the structure of prairie dog social 

groups. Previous observational and experimental work has linked this variability to 

ecological factors (Pizzimenti, 1975; Slobodchikoff, 1984; Travis & Slobodchikoff, 1993; 

Travis et al., 1995; J. L. Verdolin, 2007; J. L. Verdolin & Slobodchikoff, 2009). The results 

of this study suggest that fine-scale network interactions may be a consequence of the 

particular set of individuals that comprise a given social group. While age, sex, group size, 

did not significantly predict key individuals within networks, the presence of individuals that 

act as hubs or bridges highlights the potential importance of some individuals to act as 

strategic players in prairie dog social dynamics. Statistically, these connected individuals 

almost certainly have a disproportionate effect on the movement of information, food, and 

disease through the network, but using traditional approaches their uniqueness was invisible. 

It would be interesting to investigate whether the removal of such individuals substantially 

alters the social network properties of a given group. We also detected similarities in 

behavioral traits within social network communities, although the traits varied among 

colonies. While grouping may have non-random features, the rules that govern such non-

randomness are far from clear. In the future it would be interesting to explore what role 

individual variation in personality (e.g., behavioral syndromes) plays in social network 

structure. Is there an optimum distribution of personality types? Are there fitness differences 
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among social networks depending on the particular types of individuals that make up a given 

social group? Our results show that SNA analysis can be used in lieu of traditional behavioral 

observation methods. Not only does SNA detect statistically similar group structure, but also 

identifies important sub-structuring not readily apparent. More importantly, the structure of 

social networks can be determined on relatively short time-scales, such that they are adapted 

to the immediate internal and external needs of the group (Bhadra et al., 2009).  However, 

one potential drawback to using SNA to the exclusion of more detailed behavioral 

observations is the potential to misidentify dispersing individuals as bridges. More generally, 

our work suggests that at least in this system, and we suspect others, social network 

approaches can build upon rather than compete with more traditional approaches of 

identifying and studying social groups.    
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CHAPTER 3: Testing Queen Presence on Formica Subsericea Social 
Networks 
 
Introduction 
 

Many studies analyze the social structure of animals using social networks, 

particularly the hierarchies within animal social networks.  Network studies of animal social 

network hierarchies have studied, for example, the rank of individual crayfish in crayfish 

social networks (Goessmann, Hemelrijk, & Huber, 2000); the identification of leaders and 

followers in pigeon social networks (Nagy, Ákos, Biro, & Vicsek, 2010); the ranks of 

individual rhesus macaques in a rhesus macaque society (Fushing, McAssey, Beisner, & 

McCowan, 2011); and the hidden leaders in human inter-organizational social networks 

(Leblebici & Whetten, 1984).  Perhaps the systems in which social network hierarchies are 

best studied and most permanently established are those of the societies of social insects, 

such as ants, bees, wasps, and termites (Choe & Crespi, 1997).  In ant, bee, and wasp social 

networks, a single queen may exert dominance over hundreds of other individuals (or in a 

few cases, such as with army ants, over millions of other individuals).  In some social insects, 

this dominance takes the form of physical interactions (e.g., (Penick, Brent, Dolezal, & 

Liebig, 2014)).  More often, queens repress the reproduction of workers through chemical 

communication.  Yet, few studies have explored the effect that queens have on social 

network structure.  Here, we explore the interorganizational influence on social network 

structure exerted by queens in one social insect species, the ant Formica subsericea. 

A challenge in studying the influence of particular individuals in human social 

networks is that removing individuals from human social networks (or experimenting on 
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human social networks more generally) raises many serious ethical concerns (Kramer et al. 

2014).  Experiments on insect social networks, on the other hand, suffer from fewer ethical 

concerns.  But apart from serving as useful experimental models for biological networks, 

insect social networks are interesting intrinsically.  Among insects, one finds tens of 

thousands of unique societies (Jandt et al., 2014).  During the more than hundred million 

years of evolution of insect societies, natural selection likely has favored a balance of certain 

behaviors, which may affect social network structure.  For example, natural selection may 

have resulted in social networks that balance the relative advantages of communicating food 

and information rapidly while simultaneously mitigating the spread of pathogens.  Given the 

clear internal organization present within many insect societies (e.g., division of labor, 

demography), key individuals might have a disproportionate effect on social network 

structure.  The disproportionate effect may be because those key individuals need to stay 

better connected or, conversely, because of the costs of connectedness for such individuals.  

For instance, in paper wasp societies, newly established queens have highly central 

(eventually perfectly central) positions, while older queens may be less central, or even leave 

the main component of the network (Bhadra et al., 2009).  The central positions of new 

queens ensure rapid and efficient communication to the other individuals in the network.  We 

might speculate that the less central position of older queens minimizes their threat from 

pathogens, though without a better understanding of the generality of the pattern seen in 

these queens, any such speculation is premature.  
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Like with paper wasps, termites, and other social insects, ant colonies include 

reproductive individuals (queens and drones) and non-reproductive individuals (Gordon, 

1999; Lach, Parr, & Abbott, 2010).  In the “classic” ant colony, the queen ant is the only 

reproductive female and suppresses the reproductive capacities of the workers.  She also, to 

varying extents, triggers other behavioral changes within the colony (Brunner, Kroiss, & 

Heinze, 2009; Helanterä & Sundström, 2007; Holldobler & Wilson, 1990; Monnin, Ratnieks, 

Jones, & Beard, 2002; Sousa-Souto & Souza, 2006).  Given this queen-centric internal 

colony organization, Jeanson (2012) predicted that removal of the queen (or queens) would 

have a disproportionate effect on the structure of the colony’s social network compared to the  

removal of any other individual. Jeanson’s prediction is in line with what one might expect 

from Bharda et al.’s (2009) work on young wasps, in which the wasp queen was better 

connected than other individuals (and hence her absence more likely to be of consequence).  

Jeanson (2012) tested this hypothesis with the behaviorally primitive trapjaw ant species 

Odontomachus hastatus.  Specifically, Jeanson predicted that the number of interactions and 

other centrality measures would be significantly higher for the queen than for the workers.  

Jeanson also predicted that the overall network structure would change significantly when the 

queen was removed (Jeanson, 2012).  In testing his hypotheses, Jeanson studied over a time 

period of approximately four weeks proximity networks—networks created by connecting 

two individuals who come within a certain distance of each other.Jeanson found that while 

the queen had significantly more interactions than workers, her removal did not significantly 

change the network structure (Jeanson, 2012).   
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In this study, we, like Jeanson, investigate whether significant differences exist 

between groups of ants including a queen and groups of ants not including a queen.  

However, the ant species we study, Formica subsericea, is one in which the behavioral and 

morphological differences between workers and queens are extreme.  In the species studied 

in Jeanson (2012), queens and workers are very similar morphologically, and workers retain 

some reproductive ability.  A F. subsericea queen, in contrast, is twice as large as the 

workers and has extremely high fecundity, and F. subsericea workers are completely unable 

to reproduce (Choe & Crespi, 1997).  With F. subsericea, we considered antennation 

networks—networks created by connecting two individuals who antennate with each other.  

Antennation is the act of two individuals coming face-to-face and rubbing antennae (Mc 

Cabe, Farina, & Josens, 2006).  While many different things can be communicated through 

antennation (and the associated trophallaxis that often goes along with it), antennation 

nonetheless demonstrates a physical connection between individuals through which 

information, pathogens, and food can pass.  

F. subsericea ants live in nest structures composed of chambers connected by tunnels 

(similar to other Formica species), (e.g. (Mikheyev & Tschinkel, 2004)). For our 

experimental unit, we focused on simulating chambers in as much as actual nests include 

both chambers with queens (the minority) and those without.  In field colonies, chambers 

also vary in ant density, so we also varied the ant density in our experimental chambers.  We 

observed F. subsericea social networks by recording, over a period of 4.5 minutes, all 

antennation interactions between ants in ant groups of three different sizes, wherein each 
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group size was studied with and without a queen.  The experimental design is a factorial 

design with two treatments, one with two levels (queen/no queen) and the other with three 

(ant density).  Within this experimental framework, we considered the network attributes of 

individuals of different types, and the attributes of the entire networks themselves.  In 

considering individuals, we compared the network statistics of queens, workers in a queen’s 

presence, and workers outside of a queen’s presence in chambers of different sizes.  In 

considering whole networks, we considered the network structure of chambers with and 

without queens (hereinafter “queenright” and “queenless,” respectively) in chambers of 

different ant densities using network statistics to discover whether queens affected the entire 

network structure.  Finally, we compared the networks to two known network models to 

ascertain how the network structure of the ant networks compared to other social networks.    

Methods 
 
Data Collection 
 

The observed ants of the species F. subsericea were collected from a lab colony 

including over five thousand workers, which were as many as could be collected from the 

nest site.  The lab colony was kept in a large, rectangular plastic box like those used for 

storage (hereinafter, the “colony box”).  The bottom of the colony box was lined with porous 

plaster to keep the humidity in the box high, and the top edges of the colony box was lined 

with Fluon® (Bioquip Products, Rancho Dominguez, CA) to prevent ant escape (Chen, 

2007).  Fluon® is a fluoropolymer resin that prevents the ants from climbing out because the 

ants are unable to obtain a foothold on the surfaces coated with Fluon®.  To mitigate age and 
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location effects, a random sample of workers was collected from the colony box.  Then, each 

ant was numbered by gluing a paper number onto the ant abdomen using non-toxic acrylic 

white paint (FolkArt, PLAID®, Indicator, GA).  For each trial, 11, 20, or 39 individuals were 

chosen randomly from the pool of the 60 numbered ants to mitigate size effects (larger ants 

tended to receive larger numbers because more digits would fit on a larger gaster) and put 

into the prepared observation container.   

The observation container was an eight ounce plastic circular container (Ziploc®, SC 

Johnson, Racine, WI) with all vertical edges lined in Fluon® (Chen, 2007).  Larger numbers 

of ants were not tested due to the observation container size.  For example, if more than 39 

ants were placed in the observation container, antennation events were hard to distinguish 

from mere proximity.  Ants were placed in the observation container and allowed to 

acclimate to the new environment for a period of 20 minutes.  An acclimation period was 

provided so that antennation events were not a result of panicked ants and instead more 

accurately reflected normal social interaction.  Time trials indicated ant behavior in the 

observation container mimicked ant behavior in the colony box after a 20 minute acclimation 

period.   

After the acclimation period, ants were observed for 4.5 minutes, and the participants 

in each antennation event were carefully recorded in real time.  During the recording process, 

an observer watched the ants and called out the participants in the antennation events and a 

recorder transcribed the participants.  After each observation, ants were placed back into the 
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colony box such that each random draw of ants for an observation was random with 

replacement.   

For the queenless observations, five queenless groups of each size were created and 

observed for 4.5 minutes each, resulting in a total of 15 queenless groups.  Four queenright 

groups of each size were also created and observed, resulting in a total of twelve queenright 

groups.  In the queenright groups, one of the workers was replaced with a queen.  Fewer 

queenright networks were collected due to the number of queens available.  The colony was 

collected in early spring and had four queens, potentially getting ready to bud off into three 

more colonies like many other Formica species (Holldobler & Wilson, 1990).  Each queen 

was used once per group size.  The list of ant pairs’ antennation events was used to create a 

weighted network for each sample, where connections between ant individuals were 

weighted by the number of interactions that occurred between that specific pair.   

Individual and Network Measures 
 

We compared queenright networks and queenless networks using three individual 

measures (number of interactions, shortest path length, betweenness) and five network level 

measures (average number of interactions, number of bridges, number of hubs, largest clique 

size, and clustering coefficient). The number of interactions, path length, and betweenness 

were calculated for each ant in each network (Opsahl et al., 2010).  The per ant number of 

interactions provides a metric of how interactive each individual ant was.  We calculated 

average shortest path length for each ant by finding the average number of hops over 

interactions required for each ant to communicate information to all other ants in the network 
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neglecting infinite path lengths (Opsahl et al., 2010).  The calculation of shortest paths takes 

weighting into account by giving interactions with a higher weight a shorter length.  Ants that 

interacted more were more likely to pass information along, but interacting with the most 

connected ants also had a similar effect.  As in Opsahl et al. (2010), we measured an 

individual’s betweenness as the number of shortest paths that passed through the ant divided 

by the total number of shortest paths (Opsahl et al., 2010).  Using ANOVA, we compared the 

effect of group size and individual type (Queens or Workers) on number of interactions, path 

length, and betweeness.  Using multiple Welch t-tests (Welch, 1947), we compared for each 

respective group size, the number of interactions, path length, and betweenness of workers 

with a queen present to workers without a queen present using a t-test.  We used the 

Bonferroni correction to mitigate the p-value multiplicity caused by multiple t-tests 

(Bonferroni, 1936). 

In addition to calculating number of interactions, path length, and betweenness for 

each individual, we also calculated the average number of interactions, average path length, 

average betweenness, number of bridges, number of hubs, largest clique size, and clustering 

coefficient, for each network.  The average number of interactions for each network provides 

a measure of how social each ant group was.  Average path length is a measure of a 

network’s efficiency, or how quickly a phenomena can spread through a network.  A 

network’s average betweenness gives a measure of the network’s information processing 

capability (Gulyas, Horváth, Cséri, Szakolczy, & Kampis, 2010).   
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We regarded individuals as bridges if they had a betweenness score greater than two 

standard deviations above the mean betweenness of their particular network (Girvan & 

Newman, 2002; Pinney & Westhead, 2006; J. Verdolin, Traud, & Dunn, 2014).  The number 

of bridges in a network is used as a measure of how modular a network is.  In our study, 

some ants were more connected to each other than to the rest of the respective network.  As 

in chapter 2, we characterized as hubs those individuals who had a number of interactions 

greater than two standard deviations above the mean number of interactions for the 

respective network.  Hubs facilitate the rapid spread of information (Waters & Fewell, 2012), 

food (Girvan & Newman, 2002), and/or disease (Kurvers et al., 2013).  The existence of hubs 

and bridges in a network is indicative of a heterogeneous distribution of interactions, which 

is characterized by most individuals having few interactions and few individuals having 

many interactions.   

A clique is a complete sub-network, or a group of ants in which each ant is connected 

to each other ant (VanderWaal, Wang, McCowan, Fushing, & Isbell, 2013).  In other words, 

a clique of size three makes a triangle shape in the network.  The clustering coefficient is the 

number of cliques of size three in a network divided by the number of paths of length two 

(Opsahl & Panzarasa 2009).  The clustering coefficient gives a measure of how many ants 

antennate with “friends of their friends.”  All of the network measures were calculated using 

functions in the igraph library in R (Csardi & Nepusz 2006; R Core Team 2014). 

 
Other Statistical Methods Used 
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Ward’s Method 
 

Ward’s method, also known as Ward’s minimum variance method, is a hierarchical 

grouping procedure (J. H. Ward Jr., 1963).  Here, we used Ward’s method to formally split 

the set of networks in our study into two groups as a function of their network measures.  In 

Ward’s method, the within-group variance of input variables is used to group items, creating 

multidimensional ellipsoids where each dimension’s diameter is the variance of one variable.  

Ward’s method minimizes the multidimensional volume of the ellipsoids for the number of 

groups decided on by the researcher.  The procedure begins with every item in its own group; 

then, at each iteration, a pair of groups is selected for merging.  The pair of groups selected to 

be merged is the pair that leads to the least increase in within-group variance over all 

dimensions.  Iteration continues until the total number of groups is equal to a number 

previously chosen by the researcher.  Here, we used Ward’s method to split the collection of 

networks into two groups using the number of hubs, number of bridges, and largest clique 

size simultaneously to distinguish whether queen status significantly changed these network 

measures.  These three are network-level measures that were found to be uncorrelated with 

each other.  Ward’s method was implemented using the hclust command in R (R Core Team, 

2014). 

Rand Coefficient 
 

The Rand similarity coefficient was used to compare the Ward’s Method grouping to 

queen classification in order to show whether queen presence significantly affected network 

structure (Traud et al., 2011b).  The Rand similarity coefficient is a statistic used to compare 
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two groupings of the same data (Rand, 1971).  The formula for the Rand similarity 

coefficient is (w00+w11)/M, where w00 is the number of pairs of networks in which the two 

networks in each pair are in different Ward’s Method groups and also have different queen 

presence values; w11 is the number of pairs of networks in which the two networks in each 

pair are in the same Ward’s Method grouping and also have the same queen presence value; 

and M is the total number of pairs of networks.  The Rand coefficient was also implemented 

in R (R Core Team, 2014).    

 

Comparing Queenright to Queenless Networks  
 

To compare the queenright and queenless networks, ANOVA, partitioning, and 

similarity coefficients were used.  ANOVA was used to test whether network size and queen 

status had significant effects on each of the network measures:  betweenness, path length, 

clustering, and average number of interactions.  ANOVA takes advantage of the factorial 

design of this study (Quinn & Keough, 2002).  We use ANOVA to test whether network size 

and queen status has a significant effect on network measures.  Of the seven network 

measures, betweenness, path length, clustering, and average number of interactions do not 

violate the assumptions for ANOVA: normality and homogeneity of variance.   

To use partitioning, networks of different sizes were analyzed separately.  Ward’s 

Method, as described above, was used to split the sets of networks into two groups.  The 

groups obtained from Ward’s Method were compared to their queenright/queenless 
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classification using the Rand similarity coefficient, computing the p-value of the match using 

a posthoc distribution (Traud, Mucha, & Porter, 2012; J. H. Ward Jr., 1963).   

Comparing Networks to Models 
 

All the networks were compared to networks created using two known graph models, 

the Erdos-Renyi random graph and the Watts-Strogatz Small-World graph (Erdős & Rényi, 

1959; Watts & Strogatz, 1998).  The Erdos-Renyi random graph model assumes each pair of 

individuals is, independently, equally likely to interact and thus is characterized by two 

parameters:  N and p.  N is the number of individuals in the network, in this case the number 

of ants, and p is the probability that two individuals will interact (Erdős & Rényi, 1959).  The 

Erdos-Renyi model characteristically has an average path length that is very short and a low 

clustering coefficient.  The Erdos-Renyi graph model is compared to the ant networks by 

producing 1000 Erdos-Renyi graphs with the same number of individuals and the same 

average number of interactions as each collected network.  The other network statistics for 

the empirical data were compared to the matching Erdos-Renyi model network statistics, and 

statistical significance was calculated using this ad-hoc distribution of networks.    

The Watts-Strogatz Small-World model refers to a network model that is a cross 

between a regular lattice and an Erdos-Renyi random graph (Newman, 2003).  A regular 

lattice (a network where all individuals have exactly k connections) has high clustering and 

long path lengths, while the Erdos-Renyi random graph has short path lengths and low 

clustering (Newman, 2003).  The Small-World model is described by a large clustering 

coefficient and a short average path length.  Path length in a Small-World network is slightly 
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larger than or equal to that of corresponding Erdos-Renyi random graphs, but the clustering 

coefficient of the Small Word network is much larger than the corresponding Erdos-Renyi 

model (Watts & Strogatz, 1998).  To classify a network as Small-World, we calculate the 

Small-World-ness.  To measure whether the Small-World model fits a given network, the 

Small-World-ness property of the network is tested.  The Small-World property is tested by 

calculating the “Small-World-ness” in the manner described by Humphries and Gurney 

(Humphries & Gurney, 2008).  The Small-World-ness is described by the following formula: 

𝑆 =
𝛾
𝜆 

where 𝛾 is the ratio of each empirical network’s clustering coefficient to the matching Erdos-

Renyi random network’s clustering coefficient, and 𝜆 is the ratio of each empirical network’s 

unweighted path length to the matching Erdos-Renyi random network’s path length.  If 𝑆 <

1, then the network is considered Small-World. 

A chi-squared test is used to test whether this Small-World property is correlated with 

queen status.  To test whether the Small-World property is randomly distributed among 

networks, we created 1000 Erdos-Renyi networks for each observed network and calculated 

the Small-World-ness value for each of these networks.  The fraction of Erdos-Renyi 

networks for each network size and queen classification that is classified as Small-World is 

compared to the fraction of observed networks of the corresponding size and classification 

that are classified as Small-World.    

Results 
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Comparing Ant Individuals 
 

To test whether queens and workers differ in their network characteristics we 

calculated the number of interactions, betweenness, and path length for each individual ant in 

all networks.  The results of the ANOVA are shown in Table 3.  Approximate 95% 

confidence intervals, based on the t-distribution, for the means of these individual measures 

are shown in Table 4.   

Table 3: ANOVA results for the effects of Individual Type (Worker/Queen), Group Size(11,20,39) and the interaction of 
Individual Type and Group Size on number of interactions, betweenness, and path length.  Significant results are bolded.  
Group size has a significant affect on these network statistics, but not Individual Type or the interaction of Individual Type 
and Group Size.  

 Sum of Squares Degrees of 
Freedom 

F – value Pr(>F) 

Individual Type 535 1 1.431 0.23 
Group Size 6819 2 9.123 0.0001 
Individual 
Type*Group Size 

449 2 0.6 0.55 

 

Table 4:  95% confidence intervals about the mean of numbers of interactions, betweenness, and path length.  Workers (W) 
compared to queens (Q).  *For queens in 39 ant networks and 20 ant networks, the betweenness for all queens was zero 
because queens were either isolates or had only one connection.  Worker sample size for each interval is represented by 
WSS.  Queens sample sizes are all 4. 

 Interactions Betweenness Path Length 

11 Ants 

(WSS=95) 

W: (1.67,2.41) 

Q: (0.727,3.774) 

W: (1.59,3.58) 

Q: (-3.768,12.768)  

W: (1.353,1.748) 

Q: (1.553,2.272) 

20 Ants 

(WSS=176) 

W: (1.23,1.76) 

Q: (-0.046,1.546) 

W: (3.19,5.95) 

Q: (0)*  

W: (1.391,1.730) 

Q: (-0.999,4.395) 

39 Ants 

(WSS=348) 

W: (1.33,1.71) 

Q: (-0.546,1.046) 

W: (8.24,12.99) 

Q: (0)* 

W: (1.705,2.018) 

Q: (-1.773,3.398) 
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Generally speaking, queens tended to be less social and less central than were workers, but 

Individual Type did not have a significant effect on number of interactions, path length and 

betweenness as shown in Table 3.  Group size, however, did have a significant effect on 

number of interactions, path length and betweenness.  For the networks with 11 individuals, 

path length was longer for queens than for workers (Table 4 & Table 5).  For the networks 

containing 20 or 39 individuals, both the number of interactions and the betweenness values 

were significantly lower (mean = 0.75, 0 for 20 ant networks interactions and betweenness, 

respectively, and mean = 0.25, 0 for 39 ant networks interactions and betweenness, 

respectively) for queens than for all workers (mean = 1.49,4.57 for 20 ant networks 

interactions and betweenness, respectively, and mean = 1.52, 10.62 for 39 ant networks 

interactions and betweenness, respectively), as shown in Figure 3.  The number of 

interactions and the betweenness values were also significantly smaller for queens than for 

workers without a queen present for networks with 20 and 39 individuals.  Queenright and 

queenless workers are significantly different in all measures in 20 ant networks, and 

significantly different in number of interactions in 39 ant networks.  Due to the low values of 

betweenness and interactions for queens, queens are not classified as hubs or bridges. 
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Table 5:  Comparing Queens and Workers.  Using a two-sample t test, number of interactions, betweenness and path length 
are compared between queens and queenless workers, between queenright workers and queenless workers, and between 
queens and all workers.  The table below lists the corrected p-values for each test and degrees of freedom; p-values less 
than 0.05 are considered significant (i.e. the two groups are significantly different from each other) and are emphasized.  In 
eleven ant networks, none of the comparisons exhibit significant results.  Queens differ significantly from all workers in the 
twenty ant and thirty-nine ant network groups in both betweenness and number of interactions. Degrees of freedom are 
adjusted for unequal variances. 

 Queens  
vs.  
Queenless Workers 
(intp, betp, pathp)(df) 

Queenright Workers  
vs.  
Queenless Workers 
(intp, betp, pathp)(df) 

Queens  
vs.  
All Workers  
(intp, betp, pathp)(df) 

11 Ants (.96,.57,.29) (5,4,23) (.23,.59,.31) (92, 92, 87) (.69, .52, .08)(4,3,13) 

20 Ants (.29,<.001,.53) (6,99,3) (<.001,.03,.007)(147,125,158) (.047, <.001, .69)(5,175,3) 

39 Ants (.015,<.001,.43) (5,194,3) (.02,.45,.17)(300,340,323) (.009, <.001, .38)(4,346,3) 
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Figure 3:  Comparing Workers to Queens.  These plots compare the three individual measures (interactions, betweenness, 
and path length) for queens to all workers.  Error bars exhibit the 95% confidence interval of the mean for each measure.  
Betweenness scores and number of interactions are significantly larger for workers than for queens in both 20 ant networks 
and 39 ant networks 

. 

Comparing Queenright to Queenless Networks 
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To test whether the presence of a queen has a significant impact on the network 

structure within chambers, we first compare the network measures (average betweenness, 

clustering, average path length, and average number of interactions) for queenless networks 

to the same measures for queenright networks using a two factor ANOVA design, with 

number of individuals in a chamber and queen presence as independent variables.  Average 

path length varied as a function of network size, but no network features varied as a function 

of queen presence(Table 3).  

Table 6:  Looking at size and queen status effects, we analyzed betweenness, clustering, path length, and the average 
number of interactions using ANOVA.  These are the p-values obtained from each test.   

 Network Size 
(df=2) 

Queen Status 
(df=1) 

Network Size x Queen 
Status 
(df=2) 

Betweenness 0.695002 0.75351 0.57268 

Clustering 0.64796 0.53735 0.23640 

Path Lengths <0.001 0.85 0.82 

Average Number of 
Interactions 

0.09 0.41357 0.615.32 

 

 

 

Comparing Networks to Network Models 
 
We compared each of the networks to a set of one thousand Erdos-Renyi random graphs with 

the same number of nodes and the same probability of connection using clustering 
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coefficient, path length, number of hubs, and number of bridges:  see Figure 2.  The 

clustering coefficients for the observed networks (regardless of the presence of a queen) were 

significantly higher than the clustering coefficients for the simulated networks (p<.05).  

Other network measures were not found to be significantly different for Erdos-Renyi 

networks.  Most networks were found to include both hubs and bridges indicating the 

existence of a heterogeneous degree distribution, though not significantly more than their 

Erdos-Renyi distribution.   

 

 

Figure 4:  Network measures for all the Queenless/Queenright networks compared to distributions of network measures of 
Erdos-Renyi random graphs of the same size and average number of interactions.  Observed networks are displayed as dots 
above each distribution.  Left half:  All Queenless networks compared to their Erdos-Renyi counterparts, the clustering 
coefficients for the empirical networks are larger than the average clustering coefficient for their Erdos-Renyi counterparts.  
Right half:  All Queenright networks compared to their Erdos-Renyi counterparts, the clustering coefficients for the 
Queenright networks were also larger than the average clustering coefficient for their Erdos-Renyi counterparts. 

 

Queenless Queenright 
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To understand whether these networks might show more similarity to Small-World networks 

than Erdos-Renyi networks, Small-World-ness was calculated for each network using the 

corresponding set of Erdos-Renyi networks.  A value greater than one indicated that the 

network displayed the Small-World property:  see Figure 5. Generally speaking, the more 

ants in a chamber, the greater the Small-World-ness of their network, independent of the 

presence or absence of a queen (Figure 3, Table 7). Both classifications of 20 ant networks 

and 39 ant networks had significantly more Small-World networks than would be expected 

for same-sized Erdos Renyi networks.   

 



49 
 
 

 

 

 

Figure 5:  Small-World-ness values for the Queenless (blue on the left) and Queenright (red on the right) networks.  Most of 
the networks have S values larger than 1 (dashed line), implying that these networks have the Small-World property.  The 
few networks that do not have this property are in one of the two smaller groups. 

 

Table 7:  Chi-Square p-values:  For each network size and classification, a chi-square test was performed testing whether 
the fraction of networks classified as Small-World is larger than the fraction expected at random.  The Queenright 
classification of 20 ant networks and both classifications of 39 ant networks had significantly larger fractions of Small-
World networks than expected at random. 

 Queenless Queenright 

11 ants 0.99 0.341 

20 ants 0.13 0.016 

39 ants <0.001 0.025 
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We used a chi-square test to test whether the number of Queenright networks that are Small-

World was significantly different from the number of Queenless networks that were Small-

World both by size and in aggregate.  As illustrated in Table 7, the largest size networks of 

both classifications have a significantly higher fraction of networks classified as Small-

World, and the smallest networks do not have a significantly higher fraction classified as 

Small-World in either group, but in the 20 ant networks the queenright networks have a 

significantly higher fraction classified as Small-World and the queenless networks do not.    

In aggregate, we obtained a p-value of 0.02(df=1); therefore, we reject the null hypothesis 

meaning that the fraction of Queenright networks classified as Small-World is significantly 

larger than the fraction of Queenless networks classified so. 

 

 

 
Discussion 
 

In our study, queens and workers of the ant species F. subsericea differed in their 

position in the social networks of their colonies.  Queens interacted with fewer individuals 

than workers and were significantly less likely to bridge together groups than workers.  

These findings contrast with those of Jeanson, who found that Odontomachus hastus queens 

had significantly more interactions than workers, to the extent that queens were regarded as 

social hubs (Jeanson, 2012).  A possible explanation for the discrepancy in our results is the 
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types of networks collected in each study.  In our study, antennation networks were collected 

for small random groups of ants over 4.5 minutes, while Jeanson (2012) collected proximity 

networks for full colonies over 4 weeks.    This finding suggests network collection 

techniques may significantly affect results.         

Ant networks generally have interaction distributions that are heterogeneous, meaning 

most individuals have few interactions while a few have many (Blonder & Dornhaus, 2011; 

Pinter-Wollman, Wollman, Guetz, Holmes, & Gordon, 2011; Waters & Fewell, 2012).  

When few individuals have significantly more interactions than the rest of the network, these 

individuals are classified as hubs.  We did not find F. subsericea queens to be hubs, unlike in 

Jeanson et al (2012, which found Odontomachus hastus queens to be hubs.  But the 

distributions of interactions for the F. subsericiea networks were found to be heterogeneous, 

indicated by the existence of hubs and bridges in most networks.  This finding is consistent 

with Pinter-Wollman et al (Pinter-Wollman et al., 2011) Blonder et al (2011), and Waters et 

al (2012).  This finding is also consistent with the interaction distributions found in many 

other species, including dolphins, pigeons, and humans (D. Lusseau & Newman, 2004; Nagy 

et al., 2010; Yang, Jiang, Wang, Wang, & Fang, 2012). 

A-priori we predict that the presence and absence of queens in F. subsericea networks 

would affect network structure.  If such an effect is present in insect societies at all, we 

would expect to see it in colonies like those of F. subsericea in which the behaviors and role 

of queens are very different from those of workers.  Yet, just as in Jeanson (2012), 

queenright and queenless networks did not differ in terms of hubs, bridges, and largest clique 
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size.  The only distinction between queenright and queenless networks in this study was that 

the fraction of queenright networks found to be Small-World was significantly larger than the 

fraction of queenless networks found to be Small-World.  Since Small-World networks are 

found to be more efficient (Amaral, Scala, Barthélémy, & Stanley, 2000), the queen’s 

presence in a given network may make it slightly more efficient.  In our findings, the queen 

has few interactions and does not bridge groups, implying the network would be robust to her 

removal (Callaway, Newman, Strogatz, & Watts, 2000), therefore the workers may organize 

themselves slightly differently in the presence of a queen.  Iyer et al (2013) found that 

removal of the individuals having the most interactions changes the network structure more 

than the removal of individuals having fewer interactions.    The removal of the individuals 

with the most interactions leaves the network vulnerable, i.e. susceptible to invasion by 

outside individuals due to the loss (Iyer, Killingback, Sundaram, & Wang, 2013).  If the 

queen does not participate in the most interactions, her removal will not leave the network 

vulnerable.  This may be a safety mechanism for both the colony and the queen.   

Like many other species’ networks, including human sexual networks (Amaral et al., 

2000; Watts & Strogatz, 1998) and neuronal networks (Latora & Marchiori, 2001; Watts & 

Strogatz, 1998), most of the networks in this study fit the Small-World network model.  The 

fraction of networks that were classified as Small-World increased as the network size 

increased, and the Small-World-ness for all network types in this study increased as network 

size increased.  Small-World-ness gives a measure of how quickly information will permeate 

the network (Latora & Marchiori, 2001).  Due to the increase in Small-World-ness, the ant 



53 
 
 

 

 

networks in this study are more efficient at information spread as the number of ants in the 

network is increased.   

As eusocial organisms, ants in the Formicidae family have engaged in social 

networks for approximately 100 million years (P. S. Ward, 2007).  Over long evolutionary 

time scales, ants have had the time to adapt their social networks to potentially form ideal 

social networks.  Ants can thus inform the development of social networks in other species, 

including humans.  An ideal network would optimize the rate of information flow and limit 

the transfer of parasites to important individuals (Newman, 2003).  Should an ideal network 

structure exist in one situation, one can explore to see whether that network is observed in 

other social networks.  Due to the Small-World property and the individual measures of the 

queens, the social networks exhibited by the ants in this study are close to ideal and 

information can spread rapidly through the network to the workers (however not to the 

queen). Moreover, due to her lack of interactions, the queen is protected from parasite 

transfer.   

There are multiple limitations to this study.  We studied a single species of ants, all 

collected in the same location.  Both species and environmental factors may affect the social 

structures collected. Formica subsericea live in colonies with thousands of individuals, thus 

groups of 39 are small compared to the size of groups found in nature and the group sizes 

may affect social structure as well.  As with any lab study, lab conditions could also affect 

the data collected.  Finally, the data collection relied on human observation.   
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CHAPTER 4: Dynamic Formica subsericea Social Networks 
Introduction 
 

Research in the field of social networks have found, perhaps not surprisingly, that the 

structure of social networks influences the movement of food, information and disease 

through them. However, for practical reasons these networks tend to be a set of observations 

from a single time window, be it long or short (Newman, 2003). It is possible that the 

network structure can differ greatly from these networks observed in a single time window in 

ways that impact many features of their dynamics. For example, if interactions in networks 

accumulate with no specified structure through time, more and more individuals will be 

connected until all individuals have the chance to be exposed to whatever comes with 

interactions (Bignami-Van Assche, 2005; Blonder, Wey, Dornhaus, James, & Sih, 2012; 

Christakis & Fowler, 2013; Jeanson, 2012), be it a deadly pathogen or necessary food. 

However, if interaction networks approach a stable structure after a certain amount of time, 

finding the right observation window is extremely important for both capturing the stable 

network structure and making the most of limited researcher time (Kossinets & Watts, 2006; 

Pinter-Wollman et al., 2013; Waters & Fewell, 2012). The few recent studies of social 

networks through time suggest that this appropriate observation window depends on the 

percentage of individuals connected in the network (Waters & Fewell, 2012) or the 

progression of average individual measures to limiting values (Kossinets & Watts, 2006). In 

this study, I report a novel method for identifying the appropriate time windows for data 

collection for use in network models. This approach will increase our ability to properly 

describe networks and simulate dynamics on them across a broad range of applications. 
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Ants provide an ideal study system for assessing social network models and the role 

of temporal dynamics on network structure.  Ants live in large social communities making 

them an ideal candidate for social network study. Although little is known about how their 

social interactions change over time, ant social systems are easily observable, even in 

laboratory settings (Blonder & Dornhaus, 2011; Blonder et al., 2012; Charbonneau, Blonder, 

& Dornhaus, 2013; Pinter-Wollman et al., 2013, 2011; Waters & Fewell, 2012). Different 

species of ants and social insects more generally are best suited to addressing different 

questions with regard to social networks, since ant species vary in colony size from a dozen 

individuals to millions and in social structure from those in which interactions are mediated 

by physical dominance (Penick et al., 2014) to those in which most communication is 

chemical (Brunner et al., 2009). Our model species, Formica subsericea, lives in colonies 

with over 10,000 individuals (Helanterä & Sundström, 2007) and communicates through 

chemical pheromones, tropholaxis (oral food sharing) and antennation, which is when two 

ants face each other and rub antennae (Jackson & Ratnieks, 2006; Mc Cabe et al., 2006). Our 

focus, in terms of the study of networks of these ants is on antennation in as much as it is 

readily observable and represents one important network type in these ants. Information is 

communicated during antennation and the proximity of ants during antennation also allows 

the transfer of parasites and other host dependent taxa (Blonder & Dornhaus, 2011; Waters & 

Fewell, 2012).  

In this study, we observed episodes of antennnation in order to construct social 

networks over an hour.  We compared the accumulated set of antennations for each group of 
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ants to sets of random antennations to find pairs of ants that prefer each other’s company, or 

ants that have friends.  We also studied how the accumulation of antennations and network 

structure progress over time.  We report the results of studying antennation patterns and 

network structure.  In addition, the methods undertaken in this study represent a new 

procedure for finding an observation time window that captures the full network structure.     

Methods 
 
Data Collection 
 
The observed ants, which were all of the species Formica subsericea, were collected from 

two distinct lab colonies with more than five thousand workers each.  The lab colonies were 

kept in rectangular plastic boxes (66 qt. volume) (of the type usually used for storage).  The 

bottoms of the boxes were lined with porous plaster to keep the humidity in the boxes high, 

and the top edges of the boxes were lined with Fluon®(Bioquip Products, Rancho Domiguez, 

CA) to prevent ant escape (Chen, 2007).  A Fluon® coating keeps ants from climbing out by 

not allowing them to grip the areas coated in Fluon® (Chen, 2007). To create each 

experimental sample, a random sample of 60 workers was collected from one of the lab 

colony boxes, labelled, and sampled for the group put into the observation container. 

Sampling twice serves to prevent location bias, and ant size bias.  To mark each ant, a small 

dot of Shiny Wicker White non-toxic acrylic paint (FolkArt, PLAID®,Indicator, GA) 

purchased at a local craft store, acrylic paint (as in (Hagler & Jackson, 2001)) was placed on 

the gaster of each ant using the flat end of a cylindrical pointed toothpick.  A paper number 

was then put in the wet paint, using the paint as glue.  From the group of 60 labelled workers, 
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a random sample of 11 or 20 individuals was chosen randomly to prevent ant size bias and 

put into the prepared observation container, which was a 48 ounce cylindrical plastic 

container (Gladware®, Clorox Company, Oakland, CA) that has a 16.51cm bottom diameter 

with all vertical edges lined in Fluon®.  Ants not chosen were cleaned and returned to the lab 

colony.  The bottom of this container was lined with black felt for both contrast and to allow 

the ants to walk normally.   

 

 

Figure 6: Experimental setup: The camera was placed on a tripod 48.26 cm above the top edge of the observation container 
which had a diameter of 16.51 cm.  A light source was hung above the camera to prevent shadow and glare in recordings. 
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The ants in each container were video recorded for 60 minutes.  Videos were observed at half 

speed, and the participants in each antennation event were recorded along with time stamp.  

An antennation event was defined as when two ants faced each other and rubbed antennae for 

more than one second (Jackson & Ratnieks, 2006).  Ants were then placed in vials of ethanol 

for future study.  Three one hour videos were collected for each group size.  The list of 

antennation events and participants was used to create 12 five minute weighted networks for 

each sample.  The weights in each network were the number of interactions that occurred 

between specific pairs of ants during the five minute period.   One aggregated network was 

created for each sample at each of 12 time steps, the first five minutes of interactions, first 10 

minutes of interactions, first 15 minutes of interactions, and so on. 

Edge Accumulation 
 

To study the accumulation of interactions, or aggregation of edges, in F. subsericea 

antennation networks, we calculated the density for each network aggregate where density is 

the number of unique connections divided by the number of possible unique connections 

(Wasserman, 1994).  We then examined the change in density over time.  The density for all 

samples appeared to approach a limiting value as longer time windows were observed.  To 

find this limiting value for each ant group, we fit an exponential model, in Equation 1, to 

each one hour sample’s density progression due to the rapid initial growth in each of the 

densities using the command nls in R (R Core Team, 2014). If ants do not have friends, the 

expectation would be that the limiting density would be one (i.e., all possible interactions 

observed) and if ants do have friends the stable density would be less than one.  
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   𝐶 𝑡 = 𝛼 + 𝛽𝑒./0      ( 1 )  

    We also calculated the number of hubs and number of bridges for each of these 

network aggregates.  A hub is an individual with a number of interactions that is more than 

two standard deviations away from the mean for the network (Newman, 2003).  A bridge is 

an individual who brings together through interaction two groups who would not have been 

previously connected (Pinney & Westhead, 2006).  A bridge is calculated by finding 

individuals with betweenness values greater than two standard deviations away from the 

mean betweenness for the network.  Betweenness is a measure of the number of paths that 

need to pass through an individual to get to the rest of the network (Pinney & Westhead, 

2006).  Betweenness and number of interactions are calculated using the igraph package in 

R (Csardi & Nepusz, 2006; R Core Team, 2014).  The number of bridges and the number of 

hubs did not progress towards a limiting value.   

Friendship 
 
For accumulated networks to be stable through time, the same pairs of individuals must 

interact persistently. If individuals continually interact with new individuals, accumulated 

networks will ultimately fill in, even if the features of a network at any particular time point 

(density, hubs, or bridges) are similar to each other in another time point. In the network 

literature, individuals who persistently interact with each other are referred to as “friends” 

and the relationships are designated “friendships” (S. M. A. Z. Jacobs, Mason, & Clauset, 

2013). To understand whether friendships influenced accumulative ant networks, we 

calculated the friendship levels of ants where ant friendship is defined as the occurrence of a 

number of interactions between a pair of ants that is significantly higher than expected given 
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random interactions among individuals (at empirical frequencies of interaction).  To make 

these comparisons, we first created an empty network with the correct number of ants, and 

then randomly added interactions between pairs of ants until the total number of interactions 

matched the total number of interactions in the one hour aggregate.  We created a distribution 

of 10,000 of these random networks and compared the number of interactions in the observed 

one hour aggregate for each pair of ants to the distribution of interactions for that pair of ants 

using the igraph package in R (Csardi & Nepusz, 2006; R Core Team, 2014).  We used this 

distribution to calculate the probability of getting a number of interactions for that pair of 

ants larger than the number observed in the one hour aggregate.  If this probability was 

sufficiently small (i.e. observing this number of repeated interactions, or higher, was unlikely 

under the assumption of random interaction) then the two ants were determined to be friends. 

Given that a large number of ant pairs were examined (more so for the larger network size), 

we made a Bonferoni-type correction when determining the friendship probability threshold 

(0.024 for 11 ants and 0.009 for 20 ants) (Bonferroni, 1936).   

Results 
 
Edge Accumulation 
 
The network density for each network aggregate approaches a limiting value for almost all 

replicates.  To find the density limiting value, we fit a model to each network aggregate’s 

density matching the form in Equation 1.  Only one model was a poor fit for the data, the 

model for the second twenty ant network aggregate.  We show the fitted values for α, β, and γ 
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in Table 1.  A linear model was also fit to the network density for each network aggregate, 

but residuals indicated linear models were a poor model choice. 

 

Table 1: Exponential models fit to density data.  The standard error for each estimated coefficient is in parentheses.  Only th 
model for 20b has fit coefficients that are not significantly different from zero for the data.  The density for each network 
aggregate is approaching the α value.  All models except the model for 20b required very few iterations to reach a model 
with a convergence tolerance of less than 0.000005. 

Network α Β γ 
11a 0.309*** (0.01) -0.245*** (0.02) 0.047*** (0.01) 
11b 0.368*** (0.03) -0.303*** (0.03) 0.022** (0.01) 
11c 0.248*** (0.04) -0.221*** (0.03) 0.025* (0.01) 
20a 0.303*** (0.01) -0.283*** (0.01) 0.037*** (0.003) 
20b 0.915 (0.71) -0.861 (0.71) 0.004 (0.004) 
20c 0.336*** (0.04) -0.325*** (0.03) 0.018*** (0.003) 
All Data Model 0.311*** (0.06) -0.268*** (0.05) 0.025* (0.01) 
 
Of these fitted values, the α value tells us how dense each network is likely to become 

through time. Again, if these networks were random, α would always equal one. For the 

models that have a significant fit, the α value ranges from 0.248 to 0.368.  The ants are far 

from random in terms of their interactions with other ants. Using all the data, we created an 

average model because the average density over time for the two network sizes were 

extremely close.  The α value for this model is 0.311; on average the networks are 

approaching 31% connected (Figure 1). Neither the fraction of hubs nor the fraction of 

bridges seem to approach a limiting value (Figure 2).  If the betweenness and interaction 

distributions for all networks were approaching normal distributions, each network would 

approach having one or no hubs or bridges, or network fractions of 0.091 for 11 ants and 0.05 
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for 20 ants.  If networks were approaching a density of one, hubs and bridges would 

disappear altogether.     

 

    

Figure 7: Network Density: A) Network density of 11 ant network aggregates, triangles represent data and lines represent 
the model.  B) Network density of 20 ant network aggregates, circles data and lines represent best fit models.  The black line 
in both panels is the best fit model for all data. 

 
 
 

A) B) 
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Figure 8: Hubs and Bridges over Time:  The fraction of hubs and the fraction of bridges are not approaching a limiting 
value.  If the betweenness and interaction distributions for all networks were approaching normal distributions, each 
network would approach having one or no hubs or bridges, or fractions of 0.091 for 11 ants and 0.05 for 20 ants.       

 
Friendship 
 
The number of friendships varied among ant networks. However, in each one hour aggregate 

network, at least two pairs of ants were found to prefer each other’s company more than 

would be expected with a random network.  All one-hour aggregates are shown in Figure 3.  

In Figure 3Ref386818310, each one hour aggregate network is shown with edges that have 

significantly larger weights highlighted in red.  Each network had at least two edges with a 

significantly higher weight than expected at random.  For example, in a), ant two and ant five 

participate in two of these friendships, though they are not friends with each other.  As might 

be expected, not all ants that have a high number of interactions participate in friendships, 

and conversely not all ants that have low numbers of interactions are excluded from 
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friendships.  There were five, two, seven, six, seven, and ten pairs of ants that are friends in 

networks a-f respectively.   

 

 

Figure 9: One Hour Aggregate Networks.  For each aggregate, the edges with significantly higher weights than expected at 
random are highlighted in red.  Each network had at least two edges with significantly higher weights than expected.. 

 

Discussion 
 
Most network studies to date have been focused on a single time window (Krause et al., 

2009; Newman, 2003; Pinter-Wollman et al., 2013), with little understanding of the role of 

temporal dynamics in the structure and stability of social networks. In this study, we used the 

accumulation of interactions over time to examine network structure stability.  We found 

a) b) c) 

d) e) f) 
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evidence that ant networks approach a stable density of interactions, which in turn, points to 

a technique for finding that stable density. 

In this study, ant individuals interacted repeatedly with the same individuals, leading 

us to the conclusion that ants have friends.   While ant interactions are a spatially mediated 

process, i.e. ants have to be close to interact, ants were observed to traverse the entire 

observation arena many times during the one hour of observation, which would lead to a 

well-mixed network if ants simply interacted with individuals in close proximity.  Ant 

workers may all look the same, but they behave differently, whether as a function of their 

genetic background, experiences or personalities (Jandt et al., 2014; Kralj-Fišer & Schuett, 

2014).  These differences may lead to better compatibility between certain pairs of ants, i.e. 

friendships.  Other non-human animals have also been shown to have friends: elephants, 

giraffes, bats, dolphins, and primates (Kerth, Perony, & Schweitzer, 2011; D. Lusseau & 

Newman, 2004; VanderWaal et al., 2013) though we believe this to be the first report of 

friendship in insects.   Elephants, giraffes, bats, dolphins, and primates have been shown to 

retain relationships with certain individuals even through group fusion and fission.  Though 

the ants in this study are not forcibly separated like the elephants, bats, and dolphins, ants are 

given enough space to refrain from any interaction and still demonstrate clear companion 

choices.   

 Instead of continually encountering and interacting with new ants in the observation 

arena, ants interact with the same individuals over and over.  These relationships lead to a 

stable network structure, most recognizable by its density (the actual interactions/all possible 
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interactions).  If each individual were interacting at random, eventually all possible 

interactions would be evident in the network, revealing a network density of one.  Such 

networks are common and have been observed, for example, in human networks (Bhat & 

Abulaish, 2013) and even another ant species (Jeanson, 2012). These networks with density 

one are most often proximity networks, or networks in which the connections between 

individuals are approximated by how close two individuals come to each other.  Ant 

individuals in our study were observed to traverse the entire observation arena many times 

during observation.  Yet, only a third of the possible interactions occurred in our experiment.  

The network density for other animals approaches other values over time as shown in Figure 

10, e.g. elephant interaction network density approaches a value of three quarters after the 

elephants were observed for over 20 months (de Silva, Ranjeewa, & Kryazhimskiy, 2011) 

and bottlenose dolphin networks approach a density of .04 after being observed for 6 years 

(D. Lusseau & Newman, 2004).   
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Figure 10: Network Densities for Many Species.  Network densities for Temnothorax regulatus (1), Elephas maximus (2), 
Pogonomyrmex barbatus (3), Tursiops spp.  (4), and Cynomis gunnisoni (5).(Blonder & Dornhaus, 2011; de Silva et al., 

2011; D. Lusseau & Newman, 2004; Pinter-Wollman et al., 2011; J. Verdolin et al., 2014)  

 

 Other ant studies that used antennation interactions found the network density for 

observation windows of 5 minutes (Pinter-Wollman et al., 2011) to be approximately .24 and 

30 minutes (Blonder & Dornhaus, 2011) to be approximately .6, both less than one (Blonder 

& Dornhaus, 2011; Pinter-Wollman et al., 2011).  This finding suggests that perhaps network 

density approaches different values for different species, different experimental setups, and 

different ways of measuring the network, therefore the appropriate observation window 

needs to be tested for each combination.  

We suggest using network density to obtain the appropriate observation window for a 

species.  To find the appropriate observation window for species x, a longitudinal interaction 

assay, like the one implemented in this study, should be undertaken and the participants, and 

time stamps, for each interaction should be recorded.    The progression of structural 
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characteristics of the network (e.g. density) should be examined.  The progression of 

structural characteristics can inform the researcher of the amount of time needed to observe 

interactions to capture the full network structure and can point to a limiting value for these 

characteristics.  Network structure dictates the movement of information and pathogens, and 

capturing the full network structure is important for making predictions of this spread 

(Bignami-Van Assche, 2005; Christakis & Fowler, 2013; Kossinets & Watts, 2006).        

There are many limitations to this study.  We studied a single species of ants, all 

collected in the same location.  Both species and environment may affect the social structures 

collected. Formica subsericea live in colonies with thousands of individuals, thus groups of 

11 and 20 are small compared to the size of groups found in nature and these group sizes may 

affect social structure as well.  As with any lab study, lab conditions could also affect the 

data collected.  Finally, the data collection relied on human observation of video recordings. 
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CHAPTER 5: Modeling Formica subsericea Movement 
 
 
Introduction 
 
 Many studies explore movement data; however, recent studies focus on using location 

data to create proxies for interaction networks such as cell phone location networks for 

humans (Oloritun, Madan, Pentland, & Khayal, 2013), RFID location networks for ants 

(Jeanson, 2012), and GPS collar location networks for cows (Boyland, James, Mlynski, 

Madden, & Croft, 2013).  While the ability to collect large sets of location data has become 

more pronounced as technology has advanced, collecting this data for all individuals in a 

certain population can still be very costly (Thomas, Holland, & Minot, 2011). One way to 

mitigate this cost is to use location data for a small sample of individuals to create 

mathematical models of movement (Fronhofer, Hovestadt, & Poethke, 2013).  We can then 

use these movement models along with interaction rules to create interaction networks of 

varying sizes (Blonder & Dornhaus, 2011).   

Determining movement patterns is especially important for species that live in large 

populations, like ants.   The movement of many individuals can influence the spread of 

information, populations, and pathogens (Avgar, Mosser, Brown, & Fryxell, 2013).  Crist 

and Macmahon (1991) gathered individual movement data for harvester ant foragers 

(Pogonomyrmex occidentalis) and fit a correlated random walk (CRW) model (Turchin, 

1998) to two different movement behaviors, namely, running and searching (Crist & 

MacMahon, 1991). CRW models (Turchin, 1998) are frequently used to model movement 

because they assume directional persistence (Fronhofer et al., 2013), i.e. individuals are most 
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likely to move from one time step to the next with slight variation in direction, but high 

variability in turning angle. The model for forager searching was reported to fit the data well, 

but the model for forager running was not a good match, implying that while a CRW model 

might be a good model for forager searching, a different model type would be better for 

describing forager running movement data (Crist & MacMahon, 1991).   

Movement models have been created for other insects as well.  Like the harvester ant 

foragers, cockroach (Blattella germanica) and butterfly (Proclossiana eunomia) movement 

also exhibited two components. For butterflies, a CRW model fit movement between 

resource patches well; however, within each resource patch, individuals exhibited random 

walk behavior, i.e. individual direction has high variability (Schtickzelle, Joiris, Van Dyck, & 

Baguette, 2007).  Jeanson and colleagues found that a CRW model described the cockroach 

movement data (collected in bounded arenas) within the interior of the arena, but another 

model needed to be used to describe the movement at the boundary: the cockroaches spent 

more time near the arena boundary than in the interior of the arena, thus exhibiting wall-

following behavior (Jeanson et al., 2003).   

Ants have also been shown to exhibit wall-following behavior (Pratt, Brooks, & 

Franks, 2001).  Leptothorax albipennis workers were found to use walls for navigation and 

would keep the wall at a constant retinal position (Pratt et al., 2001).  Leptothorax niger 

workers have been shown to choose paths with walls (Dussutour, Deneubourg, & Fourcassie, 

2005).  Workers were given the choice of two paths, one with a wall and one without, and 

workers chose the path with a wall significantly more often than the path without. 
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We propose the movement of our ants would be best modeled by splitting the 

movement into two components: interior and peripheral movement.  In field and lab 

observations, F. subsericea path directionality was observed to be highly persistent away 

from boundaries; we, therefore, suggest a CRW model captures the dynamics of ant 

movement in the interior of the arena (Fronhofer et al., 2013; Klotz, 1987).  F. subsericea 

also exhibited wall following behavior, and thus we use a second model type that exhibits 

wall-following behavior for the peripheral section of the container.  We collect individual 

movement data for F. subsericea individuals in a bounded arena and fit a two stage model to 

this collected data.  We reveal differences in ant movement based on environmental and 

individual characteristics for these ants. 

 

Methods 
 
Study Species 
 
F. subsericea, also known as the field ant, is one of the United States’ largest and most 

common species of ant (Rice & Dunn, 2014).  This species is abundant on the east coast of 

the US and ranges from southern Maine to northern Florida.  These ants build large shallow 

mounds in open areas or fields as their name suggests.  This species’ defining characteristics 

are black bodies with stripes of gold hairs on their abdomens, and a thorax that has two 

humps as shown in Figure 11.  Each individual is approximately .5cm from abdomen to head 

with approximately .1cm antennae.    The individuals in this study were from two lab 
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colonies collected in Raleigh, NC in May of 2013.  Two workers are depicted in Figure 11.  

F. subsericea workers are not known to be polymorphic species (Rice & Dunn, 2014).   

 

 

Figure 11:Two F. subsericea workers, photo by Benoit Guenard, part of the Dunn Lab Group. 

 

Data Collection 
 
Ant individuals were marked using the methods outlined in Appendix A and placed in an 8-

ounce cylindrical plastic container (Ziploc®, SC Johnson, Racine, WI) with a 3.82 cm radius.  

Each container was prepared by gluing black felt to the circular bottom of the inside and 

coating the vertical inner sides of the container with Fluon® (Bioquip Products, Rancho 
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Dominguez, CA).  The felt ensured that ants were able to walk normally across the bottom of 

the container and that there was high contrast between ant markings and the container.  The 

Fluon® coating ensured that ants could not climb the container sides.  Fluon® has been used 

with many different ant species to prevent escape (Chen, 2007).  This container size and 

these preparation methods are known to work well with the video analysis techniques we 

chose for ant observations (See Appendix A).     

 

Video analysis was conducted to extract ant movement data from each video using the 

methods in Appendix A.  Only six individual ants from two different colonies were recorded, 

for 6300 frames at 24 frames per second (i.e. 4.375 minutes), due to the observer time needed 

to collect data from each video.  Ants were recorded from directly above the container as 

depicted in Figure 12 (left).  We used image analysis techniques in ImageJ paired with the 

AntTrackLib library in R to retrieve ant movement data from the video recordings using 

methods described in Appendix A (R Core Team, 2014; Schneider, Rasband, & Eliceiri, 

2012).  Figure 12 depicts the observation setup and a single ant trail in this data set.  
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Modeling Approach 
 
Data Analysis 
 
Prior to fitting a movement model to the movement data, the data were thoroughly analyzed.    

From observation and data analysis, ant individuals did not move continually but each ant 

had multiple periods of movement followed by periods of inactivity; hence, the trails were 

divided into moving and still states. Even when an ant individual was observed to be 

unmoving, the camera and setup were vibrated by airflow, thus the distance between time 

steps was not zero for an unmoving individual.  To mitigate the camera and setup movement, 

the still state definition was found by video-recording a non-moving ant using the same 

methods, tracking its positions, and calculating the maximum distance between consecutive 

tracked points for this still ant.  This maximum distance was used as the cutoff for minimum 

Figure 12: Experimental setup and data collected.  Left: Observation setup. A camera on a tripod 
is placed directly 48.26cm above the observation container which is 7.64cm in diameter.  Right: 
Trail data was collected for each ant over 4.375 minutes.  The black line is the track a single ant 
walked.  The center of the container is located at (0,0).  The red circle indicates the container edge. 
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distance moved between time steps.  If an ant did not move this minimum distance or greater 

between two time steps, the ant was classified as being in the still state for the first of the two 

time steps.  In this study, we input the progression of observed states for each empirical ant 

trail into the model. 

After separating out moving and still states, ant individuals were found to have 

multiple speeds or step lengths.  Aggregating many step length distributions for individuals 

with varying behaviors can result in a “fat-tailed” distribution and can lead to choosing a step 

length distribution for the model that produces a significantly lower mean squared 

displacement (Petrovskii, Mashanova, & Jansen, 2011).  Within this data set, three of the six 

ants moved with significantly larger average step lengths per frame than the remaining ants 

as shown in Figure 13.  The step lengths were compared using a t-test, performed in R (R 

Core Team, 2014), obtaining a very small p-value (p<.001), showing that there were two 

significantly different average step lengths.  Due to only two significantly different step 

length ranges, ant step length is split into two categories for this model, fast and slow.   
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Figure 13: 95% confidence intervals around the mean step length for each ant measured in cm.  Each ant’s id number is 
listed on the x-axis 

. 

Model Dependent Data Analysis 
 

In a correlated random walk, direction angle has low variability and high correlation 

but turning angles are assumed to have no significant serial autocorrelations (Turchin, 1998).  

To eliminate some significant serial autocorrelations in turning angles in the raw data, the 

data were resampled at a coarser level as is standard practice (Jeanson et al., 2003; Turchin, 

1998).  This new level was determined by iterating over coarser and coarser levels of the data 

and using a Box-Pierce test (Box & Pierce, 1970) which was conducted in the R 

programming language (R Core Team, 2014).  A Box-Pierce test identifies serial 

autocorrelations for various numbers of lags and produces a p-value for the significance of 

the autocorrelations (Box & Pierce, 1970).  The resample level chosen was the level that 

produced a p-value greater than .05 in the Box-Pierce test.  It was found that taking every 
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seventh frame eliminates significant autocorrelations between turning angles for this data set 

changing the number of frames for each sample from 6300 to 900 or approximately 3.43 

frames per second.  

If ants were indifferent to all parts of the container, we would expect ants to follow a 

random walk.  If ants followed a random walk, ant position frequency, or the occupation 

distribution, would increase linearly with distance from the center of the container due to the 

area of an annulus of the observation container at radius 𝑟 and of width 𝛿𝑟 is approximately 

2𝜋 ∗ 𝑟 ∗ 𝛿𝑟 up to a point between the boundary and the center as shown in  dependent on the 

boundary condition. 

 

  

Figure 14: Left: Distribution of ant positions relative to the circle center given ants move with a random walk that is 
bounded in a container with radius of 3.82cm and ants are placed in a random position in the container upon exiting the 
boundary.  Step size is same as average for all ants in this analysis, .32cm.  Positions exhibit linear frequency up to ~1.91cm 
and then the frequency decreases linearly as ants approach the edge.  Right: Distribution of ant positions relative to the 
circle center given ants move with a random walk that is bounded in a container with radius of 3.82cm and ants are 
reflected off the boundary.  Step size is same as average for all ants in this analysis, .32cm. Positions exhibit linear 
frequency up to ~3.5cm. If random walk was boundless, linear relationship would continue infinitely. 
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For the empirical data, a linear relationship seems to apply up to 2.3 cm from the container 

center with a much smaller rate than either of the random walk models, and then observed 

ants spent a larger percentage of their time within 1.52 cm of the edge of the observation 

container than expected per this linear relationship or either random walk model (as shown in 

the left half of Figure 15). We chose to segregate ant trail data into two sections because of 

the occupation distribution: peripheral (the area contained within 1.52 cm of the edge of the 

observation container) and interior (the remaining portion of the observation container).    

 

          

Figure 15: Empirical Occupation Distribution and diagram of container bottom.  Left: Occupation distribution shows the 

frequency of ant positions at different distances from the center of the observation container.  Blue represents the interior 

area and yellow represents the peripheral area.  The solid line illustrates the expected relationship between occupation and 

distance from center for a correlated random walk.  Right: Observation arena is a circle with a radius of 3.82 cm. The blue 

circle represents the divide between interior and peripheral areas of the container.   

 
This splitting produced 38 interior trail sections and 42 peripheral (edge) trail sections.  

3.82cm 

2.3cm 
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Interior trail sections and peripheral trail sections were analyzed separately.     Figure 16 

shows examples of both an interior trail section and an edge trail section. 

 

 

 

 

Model Description 
 
Interior Model 
 
At each time step in the interior movement model, each moving ant is given a new turning 

angle and step length from distributions dependent on the speed category of the individual 

ant. The new position for the ant is calculated given the previous direction angle and 

position. The progression of still states and moving states for each model ant are taken 

directly from empirical ant trails. A program flow chart for this portion of the model is 

   Figure 16: Example of one interior trail section and one edge trail section from the empirical data.  The container has a 
radius of 3.82cm with the center at (0,0).    
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depicted in Figure 17.   

 

 

 

Prior to fitting distributions to the turning angle data for the interior model, synthetic 

data were used to validate that the model includes all relevant characteristics.  The simplest 

way to model movement would be use the empirically observed distributions for both turning 

angle and step size, but due to the autocorrelations in the step size distributions, we need to 

preserve more of the structure.  Surrogate data creation is a method for creating a synthetic 

data set from an empirical data set, maintaining a chosen set of statistics—in our case, the 

mean, standard deviation, and the complete autocorrelation spectrum (Theiler, Galdrikian, 

Longtin, Eubank, & Farmer, 1991).  To keep the complete autocorrelation spectrum 

consistent with the empirical data set, the Fourier transform of the data was taken and the 

phases were randomized.  The synthetic data were synthesized using the surrogate function 

No 

Yes 

Walking 
Record the coordinates 

from last time step 

1. 	Choose	step	length	from	the	correct	
distribution	

2. 	Choose	a	turning	angle	from	the	
turning	angle	distribution	

3. 	Record	new	ant	coordinates	

Figure 17: Interior Model Flow chart.  At each time step, this process is run for each ant 
within the interior section of the container.  
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in the tseries package in R (R Core Team, 2014; Trapletti & Hornik, 2013), and allowed for 

testing the model framework without the added possibility of fitting error.  Surrogate data 

creation was used for both the step size distributions and the turning angle distributions 

separately.  Due to the lack of autocorrelations in turning angles, surrogate data creation for 

these distributions equates to using the empirical turning angle distribution.   

The interior model framework was verified by comparing distance travelled by model 

ants and distance travelled by observed ants (Turchin, 1998).  Model verification ensures 

code is running correctly and parameters are calculated correctly.  Distance travelled is 

defined to be a cumulative sum of the step lengths over time for each individual.  Distance 

travelled for the model ants would not match the observed trail data if the positions or step 

sizes were incorrectly calculated.  Distance travelled was calculated for both the model ants 

and the observed ants, and the mean distance travelled for model ants and the mean distance 

travelled by observed ants were compared both graphically and with a t-test at each time step.  

The model framework was validated by comparing mean squared displacement between the 

model ants and the observed ants (Turchin, 1998).  Model validation ensures that the model 

is producing results comparable to the empirical data.  Mean squared displacement is a 

measure of how far an ant travels over time in a single trail, or squared distance from starting 

point, giving a measure of how appropriate the model framework is for this data.  Mean 

squared displacement progresses differently given the underlying model, e. g. for an 

uncorrelated unbounded random walk mean squared displacement would increase linearly 

with time (Turchin, 1998). The mean squared displacement was calculated using code written 
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in R and then the mean squared displacement for the data set was compared to the mean 

squared displacement of the model ants.  This comparison is done using a t-test for each time 

step.  Because of the boundary of the arena, using the mean squared displacement is not a 

good validation method for the trails along the boundary, therefore for the peripheral 

sections, the model was validated using the occupation distribution.  

Once the interior model framework was verified and validated, the synthetic datasets 

for the turning angle distributions were replaced with distributions.  Turning angles are 

measured in radians and wrapped distributions have support [-𝜋, 𝜋), so wrapped distributions 

are a good choice for the turning angle distributions.  

 

  

Figure 18: Ant turning angle distributions.  Left: The observed turning angle distribution for fast ants. Right: The observed 
turning angle distribution for slow ants.     

Ants were classified into fast and slow, therefore the turning angle distributions were made 

separately for the two classifications.  Both ant turning angle distributions are shown in 
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Figure 18.  Due to the location and scale parameters of the turning distributions (Figure 7), a 

wrapped Cauchy distribution (WCD) was fit to each distribution using the wrpcauchy.ml 

function in the CircStats package in R, which uses maximum likelihood methods to 

numerically find estimates for the location and scale parameters using the turning angle data 

(Jammalamadaka & Sengupta, 2001; Kent & Tyler, 1988; Lund & Agostinelli, 2012; R Core 

Team, 2014). The new turning angle at time step n+1 is defined as: 

𝜑9:; = 𝜀9:;       ( 1 ) 

where 

 

𝜀9:;~𝑊𝐶𝐷(𝑎, 𝑏)     ( 2 ) 

where a WCD is the wrapped Cauchy distribution. Due to the use of the CRW model for 

interior movement, the location parameter (𝑎) for this WCD is assumed to be zero. 

The interior model was then verified with the new turning angle distributions 

comparing distance travelled for observed ants to distance travelled for model ants using a t-

test on the model and the data at each time point.  The interior model was validated with the 

new distributions for turning angles, while keeping surrogate data for step lengths due to 

autocorrelations, by comparing mean squared displacement for model ants and observed ants 

using a t-test at each time step.  

Peripheral Model 

 

For the peripheral trail sections, ants no longer exhibited the behavior indicative of a 
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correlated random walk, thus a different type of movement model was used, a biased random 

walk .  A biased random walk is a random walk where directions are chosen from a non-

uniform distribution.  The peripheral trails were split into sections based on distance from 

center of arena, section 1 (2.3, 𝛾cm), section 2 (𝛾cm, 𝜌cm), and section 3 (𝜌cm, 3.82cm).  

Between 2.3cm and  𝛾, ants were observed to move towards the edge of the arena. Once ants 

crossed the threshold of 2.3cm from the center of the arena, model ants were then given an 

angle at each time step chosen from a wrapped Cauchy distribution with parameters 𝛼; and 

𝛽. 

𝜃;~𝑊𝐶𝐷(𝛼;, 𝛽)     ( 2) 

Beyond this second boundary, ants exhibited wall-following behavior. Once ants crossed that 

second threshold, 𝛾, they were then given an angle at each time step chosen from a 

distribution from a wrapped Cauchy distribution with parameters 𝛼E and 𝛽.   

𝜃E~𝑊𝐶𝐷(𝛼E, 𝛽)     ( 3 ) 

If ants crossed a third boundary, 𝜌, they were given an angle chosen from a wrapped Cauchy 

distribution with parameters 𝛼F and 𝛽.   

𝜃F~𝑊𝐶𝐷(𝛼F, 𝛽)     ( 4 ) 

All of the angle distributions in the peripheral model were wrapped Cauchy distributions due 

to their shape and support.  All step sizes were chosen from the empirical step length 

distribution for each ant, which were created using the same surrogate data methods 

described above due to the correlations in those distributions.  The amount of time spent in 

the peripheral section of the container before exiting, or the peripheral time window, is well 

described by an exponential distribution.  The amount of time, 𝜏, that an ant spends in the 



85 
 
 

 

 

peripheral section is therefore chosen from an exponential distribution with mean λ, which 

was found using the peripheral time window values from the data. 	 

 

 

Once the peripheral time window value taken from this distribution is reached, ants return to 

the interior section of the container.   

The peripheral model is illustrated in Figure 19.   
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Figure 19: Peripheral Model Flow Chart:  Flow chart of the decisions made in the peripheral model. First check whether 
the ant is in the walking state, then whether the ant is within the peripheral time window, then the location of the ant.  The 
next movement is then chosen accordingly.   
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The peripheral model was validated with the new distributions for turning angles by 

comparing occupation distributions as in Figure 15.  To compare the occupation distribution 

of the data to the occupation distribution of the model, we used a Kolmogorov-Smirnoff (KS) 

test.  The null hypothesis for the KS test is that two data sets come from the same 

distribution.  To compare the peripheral occupation distribution, we look for a distribution 

when compared to the data that produces a p-value larger than .05.  When the p-value is 

greater than .05, the two distributions are not from two significantly different distributions. 

 

Results 

Interior Model 
 
The maximum distance a still ant was tracked to move was 0.034cm.  For each interior trail, 

each time step was classified into a moving state if the ant moved more than 0.034cm and a 

still state if the ant moved .034cm or less.  The moving state and still state classifications for 

each ant were utilized in the model.  Ants spent an average of 30.43% of the time recorded in 

the still state.   
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Figure 20: Distance Travelled.  Left: Distance travelled compared over 15 steps for both the model framework (blue) and 

the observed data (red).  Right: Distance Travelled compared over 30 steps for both the model framework (blue) and the 

observed interior trail data (red).  The gray envelope around the empirical distance travelled is the 95% confidence interval 

around the mean of the empirical data.  The 95% confidence interval around the mean for the model is represented with 

blue dashed lines.  

 

Interior Model 
 
To verify this model framework for interior trails, synthetic data sets were first used in lieu of 

turning angle and step length distributions.  This distance travelled is shown in Figure 20.  

The distance travelled for the model is not significantly different from the distance travelled 

for the observed data for any time steps. 
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Figure 21: Net Squared Displacement for Model Framework.  Left: Net Squared Displacement compared between the model 

framework (blue) and the observed data (red) for 15 steps.  Right: Net Squared Displacement compared between the model 

framework (blue) and the observed data (red) for 30 steps.  The gray envelope around the empirical net squared 

displacement is the 95% confidence interval around the mean of the empirical data.   The 95% confidence interval for the 

model is represented with blue dashed lines.  

 

The net squared displacement for the model compared to the observed data is shown in 

Figure 21.    Along with the visual comparison, t-tests were performed from which p-values 

of greater than .05 for every time step were obtained, meaning the model mean squared 

displacement and the observed ant mean squared displacement were not significantly 

different for any time steps. 

After using synthetic data to verify and validate the model framework for the interior 

sections, the synthetic data sets for the turning angle distributions for fast and slow ants were 

exchanged with fit turning angle distributions.     

For fast ants, the turning angle distribution parameters were found to be 0 for the location 
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and 0.799 for the concentration parameters (Jammalamadaka & Sengupta, 2001). Equations 5 

and 6 define the new turning angle choice for fast ants. 

𝜑9 = 𝜀9       ( 5 ) 

where 

 

𝜀9~𝑊𝐶𝐷 0,0.7987052 .     ( 6 ) 

The fitted fast ant turning angle distribution shape is similar to the turning angle distribution 

shape in the observed ants as shown in Figure 22.  

 

 

Figure 22: Comparing Fast Ant Turning Angle Distributions: Left: Model fast ant turning angle distribution.  Right: 

Observed fast ant turning angle distribution.  

 
For the slow ant turning angle distribution, the fitted parameters were found to be location 
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parameter 0 and concentration parameter 0.7695.  Figure 23 depicts the comparison between 

the fitted slow ant turning angle distribution and the observed slow ant turning angles.   

 

 

Figure 23: Comparing Slow Ant Turning Angles distributions. Left: Model slow ant turning angle distribution.  Right: 

Observed slow ant turning angle distribution. 

 

As with the model using synthetic data, the model with the fit distributions are validated in 

Figure 24 and verified in Figure 25 respectively using distance travelled and net squared 

displacement.  A t-test is used to test whether the model and the data are significantly 

different from each other in mean squared displacement at each time step; the model and data 

are not significantly different from each other.     
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Figure 24: Distance Travelled.  Left: Distance travelled for fitted model (blue) compared to observed data (red) for 15 

steps.  Right: Distance Travelled for fitted model (blue) compared to the observed data (red) for 30 steps.  

 

 

Figure 25: Net Squared Displacement.  Left: Comparing fitted model (blue) Net Squared Displacement to observed data 

(red) Net Squared Displacement for 15 steps.  Right: Comparing fitted model (blue) Net Squared Displacement to observed 

data (red) Net Squared Displacement for 30 steps. 
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Peripheral Model 
 
To fit a model to the peripheral behavior, the periphery is split into three distinct areas: the 

area between 2.3cm and 𝛾cm from the container center, the area between 𝛾cm and 𝜌cm from 

the container center, and the area between 𝜌cm and 3.82cm (the boundary) from the 

container center.  In each of these sections, ants are given an angle from a different wrapped 

Cauchy distribution with location parameters 𝛼;, 𝛼E, 𝛼F respectively and concentration 𝛽.  To 

define these parameters, we studied the occupation distribution between 2.3cm and 3.82cm 

from the container center.  We then split this section of the distribution into the three distinct 

areas of the periphery.  Observed ant behavior suggested ant individuals were attracted to a 

section of the container near the wall, so 𝛼; was chosen to be the angle towards the closest 

point on the container boundary with respect to an ant’s current position.  Wall-following 

behavior was observed when ants were closer to the container boundary; therefore we 

propose 𝛼E to be the angle tangent to the closest point on container boundary to an ant’s 

current position.  We find 𝜌 = 3.82cm and 𝛼F to be the angle towards the container center 

due to the occupation distribution shape observed and observed ant behavior.  We then use 

the KS test to test whether parameter values for 𝛾 and 𝛽 for create an occupation distribution 

fit for the section of the occupation distribution between 2.3cm and 3.82cm.  We find that for 

𝛾 = 2.8115 and 𝛽 = 0.758, we obtain an average p-value of .18, meaning that the 

occupation distribution for the data and the occupation distribution for the model with these 

parameters are not significantly different from one another.   
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The last step in fitting this model is connecting the peripheral and interior models.  

Once an ant that begins in the interior reaches a distance of 2.3cm from the container center, 

the peripheral model is used to decide future movements.  However, model constraints would 

imply that ants would then stay in the periphery for the rest of the simulation, which would 

not match observed behavior.  To compensate, once ants reach the periphery, a time limit, 𝜏, 

is drawn from an exponential distribution with 𝜆 = 144.74, the average number of time steps 

spent in the periphery from the observed data.  Once that time limit is reached, ants return to 

the interior section of the container.  The model occupation distribution and the actual 

occupation distribution are shown in Figure 26.   

 

       
Figure 26: Observed occupation distribution (Left) compared to Model occupation distribution (Right).  The interior 
occupation distribution is in blue and the peripheral occupation distribution is in yellow. 

 
The KS test indicates that they do not come from two significantly different distributions.  

An observed trail and a model trail are show in Figure 27. 
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Figure 27: Observed ant trail (Left) compared to Model ant trail (Right).  The large black circle represents the container 
boundary, the red circle divides the interior and the periphery, and the blue circle indicates 𝛾.  Small black circles indicate 
ant positions, while lines indicate paths.   

Both observed and model ants spent a large amount of time near but not touching the 

container boundary.  Both trails show wall-following behavior when ants reach the area 

between the red circle and the blue circle.   

  

Discussion 
 
Edge effects 
 
The edge of the container is affecting ant behavior, which is why we were unable to fit the 

same framework as was used for the interior trail sections.  The edge behavior was fit using a 

combination of three models, one of which was wall-following.  The behavior of Leptothorax 

albipennis and L. niger, two other ant species, are known to be affected by walls (Dussutour 

et al., 2005; Pratt et al., 2001).  Wall-following behavior has been shown to be a both a 

foraging behavior and a defensive maneuver (Dussutour et al., 2005).  This wall-following 

Observed Model 
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behavior is also exhibited in other insects like cockroaches and fruit flies (Jeanson et al., 

2003; Soibam et al., 2012).  Perhaps this behavior can be generalized to all insects.   

Fast Ants versus Slow Ants 
 
Half of the ants in this study were found to walk significantly faster than the rest of the ants.  

We expect that with larger sample sizes the number of distinct ant speeds might increase.  

Ant speed could point to different ant personalities.  Measures of activity in other social 

insects have been used to distinguish personalities (Jandt et al., 2014).  Two significantly 

different speeds in the ants in this study, points to two different personality types.  It is very 

possible that these personalities will have a significant effect on their social networks.  These 

different personalities may lead to differences in network statistics.  Other insects have also 

been tested for personality: aphids, crickets, roaches, and flies (Jandt et al., 2014; Kralj-Fišer 

& Schuett, 2014).  Personality is not limited to primates as previously suspected. 

Interior Model Implications 
 
Edges may not be important in F. subsericea searching and foraging behaviors in natural 

settings because of the lack of boundaries that individuals come across in the field. Because 

F. subsericea nests are built in large open areas, individuals do not often come in contact 

with insurmountable boundaries.  The interior model may be the only model necessary to 

model outside the nest, or searching and foraging behavior in this species.  Additionally, 

MacMahon and Crist (1991) found that a CRW model was a good fit for Pogonomyrmex 

(Harvester ant) searching behavior (Crist & MacMahon, 1991).  Searching behavior in other 

ant species may also be well described with a CRW model.  Other insect species’ movements 
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follow a CRW model when boundaries are not detected by the insect, including cockroaches, 

and butterflies (Jeanson et al., 2003; Schtickzelle et al., 2007; Turchin, 1998).  Edges are 

more important when looking at inside the nest behaviors.   

Future Work  
  
Synthetic Data Replacement 
 
Synthetic data for turning angle distributions was replaced with fitted distributions, but 

synthetic data was used for step length distributions due to the high number of significant 

lags in the autocorrelation spectrum.  One possible way to mitigate the significant lags would 

be to adjust the CRW to take in change in step length.  Ant states (moving and still) were 

inserted into the model directly from the observed data.  Future work would require replacing 

the state data with a model predicting ant movement states. 

Network Creation 
 
This study focused on creating a movement model to better understand ant movement and its 

role in ant contact networks.  Creating a movement model for an individual ant was just one 

small step in the overarching goal of creating ant interaction networks.  To continue towards 

this goal, the effect of interactions between ants (if there are any) on movement would have 

to be studied.  Additionally, if interaction affects movement, interaction rules would need to 

be gleaned from observed ant social networks.  We could then use these rules and the 

movement models to create networks.     

Need for Further Data Collection 
 
In this study, we collected movement data for six ant individuals in a small circular 
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container.  For these six individuals, we found two distinct movement speeds, we expect with 

more data we might find more distinct movement speeds.  We expect in different shaped 

containers the peripheral model would have to be adjusted and the boundaries between 

models will change as well.  We also expect in different sized containers these boundaries 

between models will change.     
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APPENDICES 

Appendix A: Open Source Automated Insect Tracking 
 

Carl Giuffre, Amanda L. Traud, Alun Lloyd, Robert R. Dunn2 

Introduction 
 

There has been recent interest in the study of the movement and interactions of social insects 

(Blonder & Dornhaus, 2011; Jeanson, 2012a; Pinter-Wollman, Wollman, Guetz, Holmes, & 

Gordon, 2011).   Insect social systems and networks are often analogized to those of humans 

(Moffett, 2012).  Social insects are easily experimentally manipulated but actually 

documenting the movement of individual insects has long been a challenge (Pinter-Wollman 

et al., 2011). In this light, we sought to develop an automated method of tracking members of 

insect societies—be they ants, bees, wasps, termites or other taxa—and their interactions.  

     

                                                
2 Note: Amanda Traud helped with experimental setup, data acquisition, wrote three of the 

five .R files used to communicate between programs, and gathered all .R files into a library 

for public consumption. Carl Guiffre helped with experimental setup, did most of the data 

acquisition, wrote two of the five .R files for communicating between software and wrote the 

Java macro to automate MOSAIC. Alun Lloyd advised this project and helped write this 

paper. Robert Dunn advised and supported this project and helped write this paper. 
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There are currently many different techniques of tracking insect movement, each of which 

has its own strengths and weaknesses.  These techniques can be generally categorized as 

visual techniques, electronic sensing, and image analysis techniques.  Visual techniques 

range from tracing an individual insect’s path on paper to marking landing sites of a flying 

insect with flags and can be augmented with insect marking, night vision paraphernalia, and 

GPS recorders (Bell, 1991; Hulbert & French, 2001; Lingren et al., 1995; Rempel & 

Rodgers, 1997; Wiens, Chr, Van Horne, & Ims, 1993; Zalucki, Kitching, Abel, & Pearson, 

1980).  These techniques can be used both in the lab and in the field but are restricted to 

tracking either one insect or one group of insects per observer (Chapman et al., 

2002).  Electronic sensing techniques include acoustic sensing, RFID, X-rays, actographs, 

servospheres, and instrumented habitats  Acoustic sensing, actographs, and X-ray techniques 

are used to detect the location of populations of insects, but cannot detect individual 

movement (BUCHAN & MORETON, 1981; Harrison, Gardner, Tollner, & Kinard, 1993; 

Knoppien, van der Pers, Jan NC, & van Delden, 2000; Mankin, Shuman, & Coffelt, 1997; 

Renou, Berthier, Desbarats, Van der Pers, & Guerrero, 1999; Shuman, Weaver, & Mankin, 

1997; Weaver, Shuman, & Mankin, 1997).  RFID, optical sensors, instrumented habitats, and 

servospheres detect individual movements.  RFID tags are restricted to larger insects, 

including a few large ant species.  Optical sensors can only detect the presence of an insect 

but not which individual.  Instrumented habitats are restricted by the number of readers and 

orientation of insects.  A servosphere can only track the movement of one insect at a time 

(Bell, 1991; Jeanson, 2012b; KRAMER, 1976; Sasaki, 1989; Waddington, Esch, & Burns, 
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1996).  Video analysis can be done both in the lab and in the field with the only restriction 

being the size of the field of vision (David, Kennedy, & Ludlow, 1983; Riley, 1994; Vickers 

& Baker, 1997; Willis, David, Murlis, & Cardé, 1994).   Analyzing video visually, the 

standard approach, can take up a great deal of time, but individual trails can be analyzed at a 

very fine scale (Chapman et al., 2002).  Computer-based video analysis can take up less 

observer time, but software allowing automated approaches is not readily available including 

software created for in-house use (Blonder & Dornhaus, 2011; Dell et al., ; Pinter-Wollman 

et al., 2011), particularly in an open source framework. 

We develop an image analysis framework that combines the advantages of visual analysis 

and image analysis into one approach. Our approach meshes both visual and software 

tracking to simultaneously achieve the time-savings of automated tracking and the ability to 

correct computer errors.  We combine a suite of existing tools that together allow tracking of 

social insects. This approach gives researchers the ability to perform automated tracking 

themselves in a manner that is both free and accessible to anyone with a digital camcorder or 

webcam. Some aspects of our experimental design are specific to the study species Formica 

subsericea, but in principle these techniques could be applied across a wide array of social 

organisms. 

 

Experimental Setup 
 

Here we focus on the ant species, Formica subsericea, a mound-nesting ant species common 

in eastern North America. Ants of the species F. subsericea are a useful model organism for 
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exploring automated tracking methods because they are relatively large and dark-bodied (to 

maximize contrast), maximizing the ability of automatic detection.  Twenty F. subsericea 

workers and a queen, a subset of a lab colony gathered from Yates Mill Park, Raleigh, NC, 

USA, were marked with a small dot of  Shiny Wicker White non-toxic acrylic paint 

(FolkArtTM) purchased at a local craft store, acrylic paint widely used to mark individuals in 

entomology (Hagler & Jackson, 2001). The dot of paint was placed on the abdomen of each 

ant using the flat end of a cylindrical pointed toothpick. A circular plastic 236-mL container, 

with a bottom area of 47 cm2 (ZiplocTM), was prepared by coating the inside of the vertical 

sides of the container with red dyed Fluon® and then hot-glueing black felt to the inside of 

the bottom of the container. Fluon® prevents the ants from climbing the walls of the 

container, and was an integral part of our experimental setup (Chen, 2007). By coloring the 

Fluon® red and using black felt we prevented undesirable, reflective glare off the surface of 

the container. The red dyed Fluon® prevents glare because the arena is illuminated with only 

red light.  In addition, the black felt helps create contrast with the white paint, by blending in 

with the coloration of the ants’ bodies. 



123 
 
 

 

 

 

Figure 28: Setup of camera and container, lamp was clamped above the camera. 

 

We prepared the room by blocking out all but one light source, an 8.5” clamp lamp 

(Intertek). In the lamp we placed a red 25 lumens CFL light bulb (EcobulbTM Partybulb) and 

hung the lamp above the container. We recorded the ant movements using a Canon EOS 7d 

camera with a Macro 100x lens, set at a temporal resolution of 60 frames per second. This 

camera was placed on a tripod and mounted directly above the arena, with the camera lens 

pointing directly down as shown in Figure 28. We then placed the twenty workers and queen 

in the container and let them acclimate to their new environment for 20 minutes to prevent 

recording external vibrations and recording fast movements due to ant anxiety. After the 

acclimation period, we recorded the ant movements for 11 minutes, including one minute of 

buffer time to allow the camera lens to settle from vibrations caused by human interaction. 

The 11-minute window of time allowed us to ensure that we would have 10 minutes of 

trackable data, our goal for this experiment. 

Lamp attached here 

 46.26 cm 

 

7.64cm diameter 
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Software 
To be able to track insects through video, we brought together two different plugins in 

ImageJ using R.  R is an open source mathematical programming language and statistical 

computing environment (Team, 2014), commonly used by biologists (Beckerman, 2012), 

which embraces our accessibility goal for the automated tracking process.  To bring together 

these two plugins, we created a library in R called AntTrackLib.  This library contains 

functions for reformatting files, cleaning artifacts from the data, and analyzing the data in R. 

ImageJ (Schneider, Rasband, & Eliceiri, 2012) is an open-source digital image processing 

suite. Since it is open-source, the suite can be customized to accomplish specific tasks by 

anyone with the ability to read and modify computer code. Such customization is commonly 

implemented by the use of Java plug-ins and macros, many of which are available on the 

ImageJ website (Schneider et al., 2012). MOSAIC (Sbalzarini & Koumoutsakos, 2005) and 

MTrackJ (Meijering, Dzyubachyk, Smal, & van Cappellen, 2009) are the two plug-ins that 

we used. MOSAIC is a plug-in that will automatically track multiple circles with the same 

radius across a landscape for a set number of frames. Each frame must be formatted into an 

8-bit grayscale TIFF file for MOSAIC to work, using the video conversion software like 

Video Mach, regardless of the original video formatting.  

MOSAIC has a graphical user interface that allows a user to input three parameters, radius, 

cutoff, and percentile.  These three parameters have to be fine-tuned by the user to detect the 

highest percentage of individuals and the least amount of noise.  The number of frames 

MOSAIC can preallocate for tracking depends on system RAM, on a laptop with 4gb of 

RAM, 300 frames can be preallocated.  Since our videos are substantially longer than 300 
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frames, a simple Java macro was written to run commands in ImageJ. This way, the process 

could automate through all sets of 300 frames contained in one video. The trail data 

generated by MOSAIC inherits both error generated by the tracking algorithm and noise 

created by environmental factors, such as glare. MOSAIC can also introduce errors in which 

two trails are linked from two different individuals, artifacts in the video are identified as 

individuals, and trails are missing coordinates for some individuals, requiring the need for 

editing capabilities. The trail data generated by MOSAIC last for a maximum of 300 frames 

for each individual, therefore the trails must be stitched together to track each individual 

through an entire video.  

Because MOSAIC does not allow editing of trail data, we use another ImageJ plugin to 

manually edit.  MTrackJ is a manual tracking ImageJ plug-in with no automated component. 

MTrackJ allows a user to import trail data or a set of images and edit trail data or create trail 

data by manually clicking on the object the user wishes to track.  Both MOSAIC and 

MTrackJ save the trail data to text files, unfortunately MOSAIC formatted text files are 

incompatible with MTrackJ formatted text files and cannot be imported without 

modification.  MOSAIC files were formatted to open into MTrackJ using code written in R 

contained in the AntTrackLib library.  MTrackJ is then used to stitch trails together and split 

trails for two unique individuals.  The method described above is illustrated in the flow chart 

in Figure 29 and Figure 30.  We use code written in R contained in the AntTrackLib library 

to deal with missing frames (where certain individuals were not detected) and artifacts in the 

video identified as individuals (where we have not eliminated glare).  
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Figure 29: Flow Chart part 1: The process of tracking the movement of individuals going from a video of marked 
individuals to a Java script that runs MOSAIC to automatically track individuals in each chunk of TIFF files.  From this 

flow chart, proceed to flow chart part 2 in Figure 30. 
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Figure 30: Flow Chart part 2: The process of tracking the movement of individuals going from trails gathered from 
MOSAIC to the unpacked data in R. 

 

Applying Software to Data 
To use our software suite, we first converted the video footage to TIFF files, using the video 

conversion software Video Mach. The converted footage is then analyzed using MOSAIC. 

We then used an R library we created, AntTrackLib, to convert files, get coordinates for trails 

that are missing frames, delete artifacts, and renumber trails after artifacts were deleted.    To 

provide coordinates for trails’ missing frames, we simply fit a line to the points in the trail 

around the missing frames and took the missing coordinates from that line. To merge two or 

more MOSAIC files, we needed to renumber trails so as not to write over previously 

gathered data, using renumber.R and merge.R. We then manually edited and connected 

broken trails using MTrackJ. Manual editing and merging of files can happen as needed.  We 
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finally used an R function, finishing.R, to delete artifacts, renumber the final set of trails, and 

add in any further missing frames through linearization. In Figure 31, we show the time lapse 

of trails for one 10 minute video as well as a screenshot from the video these trails were 

taken from.  We can use another R function, unpackmdf.R,  in the library to import the data 

in to R and plot the data as seen in Figure 31.  For a more detailed description and tutorial on 

using this software, as well as to download the software, please visit our website. 
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Figure 31: Top Left: Screenshot from video. Bottom: Ant trails constructed from the ten minute ant video, each frame 
represents the trails up to that minute, i.e. frame one shows the trails up to minute one.   

 

Conclusions/Limitations 
There are two major roadblocks in digital image processing which exist due to technological 

capabilities. Since one goal of the method outlined in this paper is tracking insects without 

expensive equipment, all tracking was performed on personal computers and laptops. One of 

the challenges to this approach is the ceiling on the number of frames MOSAIC will allocate 

and process at one time. At a grayscale TIFF resolution of 640 x 480 pixels, an upper limit of 

approximately 300 frames could be buffered at one time on a system with 4 gigabytes of 

RAM (on machines with 16gb of RAM, we hit an upper limit of 1000 frames), as indicated 

in the above section. Second, conversion of video footage to TIFF files is incredibly 

demanding for file storage. A single ten minute video, when converted to TIFF at the 

previously stated frame-rate and pixel resolution, needs approximately 9.89 gigabytes of 

available storage.  While we convert chucks of the video into TIFF files, all TIFF files are 

needed to track individuals through the entire video. Physical storage acts as an upper bound 

because while it can be upgraded, using automated tracking on footage recorded over the 

span of days could become financially expensive. That being said, preliminary analysis of the 

data indicates a conversion rate of 60 fps may be higher than necessary to capture the 

movement behavior (Turchin, 1998). The authors suspect a conversion rate of 20 fps will be 

adequate for analysis for this species, which would substantially lower storage requirements. 

However, an exploration of the required conversion rate is left for future work. 
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Overall, F. subsericea proved an excellent model organism for this study, due to their size 

and their inability to climb Fluon-coated walls. Problems occurred with tracking the 

organism when the orientation of individuals’ abdomens shifted away from the camera. This 

happened when ants cleaned their abdomens or gained footing to climb the Fluon. 

Unfortunately, F. subsericea can climb over one another, which results in failure of the 

tracking software, since it cannot distinguish one individual circle passing beneath another.  

In other words, MOSAIC links the trails of two different individuals. These instances of data 

loss all suggest some level of manual editing is required to procure a meaningful data set for 

these insects, if the researcher is interested in differentiating between individuals. 

 

Manual editing of trails can be quite labor-intensive. Since MOSAIC only accepts a single, 

integer radius value measured in pixels, small variations in how the abdomens were dotted 

can cause substantial issues with tracking if the camera lens is incorrectly positioned relative 

to the organism. We estimate approximately 45 labor hours were devoted to refining a ten 

minute video that tracked 21 individuals. This estimate will be significantly lower at a lower 

conversion rate. Much of the manual editing is due to the 300-frame buffer limitation (which 

can be mitigated with a higher amount of RAM), which forces us to manually merge trails 

from one set of 300 frames to the next 300 frames.  If the scientist is not concerned with 

visually verifying individuals, a script could be written in R to merge the trails in two chunks 

of frames based on the locations of individuals at the beginning and end of each chunk.  A 

high performance computer would eliminate the need to verify track mergers manually if the 

number of frames that can be processed in one set is comparable to the number of total 
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frames. Despite this labor intensity, the amount, quality, and timeliness of data gathered is 

exceptional when compared to previous studies (Pinter-Wollman et al., 2011).  To collect the 

trail of one individual manually with MTrackJ, it takes one click per frame.  At a rate of two 

clicks per second, for a 10 minute video with 60 frames per second, manual tracking would 

take five researcher hours for each individual.  For 21 individuals, 105 researcher hours 

would be required just for manually tracking.  This estimate assumes perfect detection by the 

scientist and does not include trail editing, and importing trail data into another program for 

analysis.  As mentioned above, our method took approximately 45 labor hours, which 

included trail cleaning and importing data into R for analysis.   

Next Steps 
By automating the process of data acquisition, we hope to tease apart important components 

of social behavior quickly. The data we have gathered using the methods described in this 

paper can be used in multiple ways. One approach we will take is modelling ant movements 

by parameterizing a correlated random walk. We also plan to spatio-temporally characterize 

interactions between individuals to generate complete networks. We hypothesize these 

networks will fundamentally change under various stressors, such as pathogens, pesticides, 

and parasites. 

Since we wanted this method to work under various laboratory conditions, we used the 

cheapest resources available, including light, paint, arena construction, and camera 

equipment. It is not necessary to use an expensive observation setup in order to obtain 

meaningful data. Different shades and types of paint (such as luminescent paint) may provide 

a better contrast, allowing more accurate tracking of individuals, and less manual editing. 



133 
 
 

 

 

Control over lighting conditions can get quite costly, however such control may be used to 

simulate daytime versus nighttime behaviors in organisms. A larger container would allow 

for more individuals, and custom arenas could be designed to simulate different foraging or 

territorial behaviors. The type of camera used to film the experiment determines the duration, 

quality, and resolution of our footage. The camera used can be easily improved, however this 

particular aspect of the experiment can accrue cost quite quickly.  We believe that the most 

important factors for this method are the camera resolution, the amount of RAM in the 

computer, and the amount of storage.  Without the camera resolution, the markings may not 

be able to be detected, without the RAM, the size of the chunks that can be analyzed can 

increase the number of research hours to a prohibitive amount, and without the physical 

memory the TIFF files cannot be stored.   
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