
ABSTRACT

GIFFEN, DEENA HANNOUN. Simulating Non-Dilute Transport in Porous Media Using a
Thermodynamically Constrained Averaging Theory-Based Model. (Under the direction of
Ralph C. Smith.)

In this dissertation, we model non-dilute transport in porous media using a

thermodynamically constrained averaging theory-based model. We employ the equations

from [23], reformulate them in a robust form, and add closure relations and boundary and

initial data so that the model can be simulated numerically. We then perform frequentist

parameter estimation using nonlinear least squares to calibrate the model to experimental

data. We construct a cubic spline based surrogate model, which drastically reduces

simulation times and allows us to perform Bayesian parameter estimation. Finally, we use

a simplified version of the model, which is independent of initial concentration, to

perform mixed-effects simulations from both frequentist and Bayesian perspectives.
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CHAPTER

1

INTRODUCTION

In this dissertation, we consider single-fluid phase flow in porous media. While the

traditional model is well-established [6, 22], it has some deficiencies that warrant the

development of alternative formulations. In 2009, Miller and Gray published a paper [23]

outlining a new model based on thermodynamically constrained averaging theory (TCAT).

In this dissertation, we will reformulate the equations presented in Miller and Gray’s 2009

paper, and perform parameter estimation using experimental data and a nonlinear least

squares algorithm. Next, because of prohibitively long run times, we construct a

regression-based surrogate model for TCAT using a cubic spline. We will then utilize the

surrogate model to perform parameter estimation from a Bayesian perspective, which will

allow us to determine a distribution for our parameter of interest. Finally, we will present a

mixed-effects model from both a frequentist and Bayesian perspective with a simplified

form of the TCAT model.
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1.1 Contributions

• We reformulated the TCAT model as a partial differential algebraic equation (PDAE).

This yields an index-1 PDAE consisting of one PDE that describes flow and one

algebraic constraint. After we apply the method of lines to the PDAE, we arrive at an

ordinary DAE. Our robust form allows us to use an available DAE solver to perform

fully-coupled model simulations.

• We used our code to investigate closure relations in the model and determined that

there should be a single unknown parameter c1 in the high concentration model.

This is the first time this model has successfully been simulated in 1-D at high

concentrations.

• We performed parameter estimation for the single parameter model with MATLAB’s

Levenberg-Marquardt code lsqnonlin. Whereas we were able to simulate a wide

range of incoming concentrations, we determined that the lower concentration

experiments provided a better fit to data.

• We constructed a regression-based surrogate model for the TCAT model. The

surrogate model uses cubic splines to emulate the behavior of the TCAT model. The

surrogate reduces run times by 4-5 orders of magnitude, making the computational

demands of Bayesian inference possible for TCAT.

• We used Bayesian inference to further investigate the TCAT model and determine

distributions for our parameter.

• We performed mixed-effects simulations on the simplified TCAT model from both

frequentist and Bayesian perspectives. This allowed us to quantify the fixed and

random effects of the model.

1.2 Problem Description

In this section, we will detail the problem under investigation and provide some background

on single-phase flow in porous media systems.

A porous media system is a domain that is occupied by a persistent solid phase, also

called a solid matrix. The part of the domain that is not occupied by the solid phase is

2



called the pore space. The pore space can be occupied by a single-fluid phase or by several

immiscible fluids [40]. Many porous media systems occur naturally. Some examples of

porous media are soil, sand, bread, kidneys, and lungs [5]. In this work, we consider a single-

fluid phase flow problem, where one fluid displaces another within the porous media

system.

We consider the brine invasion problem, where a calcium bromide solution of known

concentration is pumped into the bottom of a vertical column of porous media–in this

case, sand, and freshwater. The solution is pumped into the column at a controlled inflow

rate and is allowed to move through the column. At the top of the column, one measures

the relative concentration of the exiting brine and records the time. When we consider

concentration, we must also consider the concept of the mass fraction of a solution. The

mass fraction of a solution is the fractional proportion of the mass of a substance, in this

case, calcium bromide. Mass fraction ranges between 0 for fresh water and 1 for a completely

saturated solution. Density times mass fraction yields concentration [5].

Experiments were conducted at the University of North Carolina with different incoming

mass fractions ranging from 10−6 to 0.4. A second set of experiments was also generated

where there is brine in the column at time t = 0 and a higher concentration brine is pumped

into the bottom of the column.

Figure 1.1 illustrates the experimental setup in the lab.

1.2.1 Porous Media Flow and Species Transport

Here, we discuss and model species transport in porous media. We will investigate the mass

fraction distribution of a chemical species αwithin a macroscopic porous media system.

In this system, the chemical species is affected by both advection and diffusion. Advection

describes the movement of a species in a system. Diffusion describes the tendency of

chemical species to move from higher concentration areas to lower concentration areas

[34].

Numerous research has been conducted on the topic of species transport in porous

media. In this dissertation, we consider stable displacement, where a variable density brine

solution is pumped into the bottom of a column packed with porous media [80]. Many

researchers have conducted such experiments, including [32, 67, 76, 77].

We will determine the differences between high concentration species transport and low

concentration species transport. One notable difference between the two types of transport

3



Figure 1.1: Experimental setup for the porous media system.

is hydrodynamic dispersion. Hydrodynamic dispersion is a type of diffusion and is defined

as “the tendency of a fluid to spread out from the path that it would be expected to follow

according to the advective hydraulics of a flow system" [61].

Schotting, Moser, and Hassanizadeh [67] performed high concentration intrusion

experiments and determined that hydrodynamic dispersion is not constant, and instead

depends on the discharge rate of fluid from the column. Later, Watson and Barry [76]

determined that there is a physical difference between hydrodynamic dispersion for low

concentration versus high concentration solutions. They found that there is less dispersion

in high concentration displacement than in low concentration displacement, regardless of

flow rate.

Watson and Barry’s findings [76] show that the physics of the low concentration

displacement problem are different than the physics in a higher concentration system. The

experimental data used in this dissertation also verifies this conclusion. Both high and low

concentration stable displacement experiments were conducted, and the data collected in

the lab includes time and relative concentration at the top of the column. With this data,

we can create a breakthrough curve, which shows the change in relative concentration as

the brine exits the column. Figure 1.2 shows two example breakthrough curves from data

collected in the lab. The plot is fixed in space at the top of the column. The x -axis is time,

and the y -axis is relative concentration. We first note a relative concentration of zero as the

4
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Figure 1.2: Comparison of high and low concentration breakthrough curves.

brine travels to the top of the column. Next, we see a breakthrough curve emerge as the

brine displaces the fluid in the column and reaches the top of the column. Finally, we see

steady state flow with a relative concentration of 1 as the front continues to pass through

the column and the initial fluid has been completely flushed out of the column.

The solid blue breakthrough curve is data collected from a lower concentration

experiment, and the black dashed breakthrough curve is data collected from a much

higher concentration experiment. Both experiments were performed on identical columns,

and we note that there is a stark difference in the pitch of the curves. The high

concentration breakthrough curve is much steeper than its lower concentration

counterpart. These observations lead us to conclude that the physics of high and low

concentration transport are different.

1.2.2 Prior Work

Here, we provide an overview of models that have attempted to solve the species transport

problem. The macroscale partial differential equations for 1-D brine flow are formulated

as [77]
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Here ρ is the density,ω is the mass fraction,φ is the porosity, q is the Darcy velocity, and J

is the dispersive mass flux. We have used simplified notation because these quantities are

not averaged from the microscale as in the TCAT approach.

The traditional way to model density-dependent transport is Fick’s Law. Fick’s Law is a

linear closure for the dispersive mass flux, where

J =−ρφD
∂

∂ z
ω. (1.4)

It is well established that Fick’s Law is inadequate to describe both low and high

concentration displacement [23, 27, 32, 67, 76, 77]. This motivates the development of

alternative models.

In 1988, Hassanizadeh and Leijnse [31] introduced extended forms of Darcy’s Law and

Fick’s Law in an attempt to remedy deficiencies in the model. The updated forms were

given by

q =
−k

µ

�

∂ p

∂ z
+ρg

�

−D f ∂ ω

∂ z
(1.5)

J = −ρφD
∂

∂ z
ω+ωK s

�

∂ p

∂ z
−ρg

�

, (1.6)

where D f and K s are coefficients. However, when these new equations were used to

simulate high concentration experimental data, Hassanizadeh [30] found that they did not

adequately describe the experimental results as varying values of the coefficients were

needed for different incoming concentrations and flow rates.

Later, Hassanizadeh and Leijnse [32] published several alternative formulations of Fick’s

Law. They determined that the nonlinear closure for dispersion,

�

1+β |J |
�

J =−ρφD
∂

∂ z
ω, (1.7)
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more accurately described their experimental data. Here, β is a coefficient that accounts

for the nonlinear effects seen in the lab [32]. When β = 0, (1.7) simplifies to Fick’s Law.

Whereas they found that (1.7) is superior to Fick’s Law for high concentration

displacement experiments, Hassanizadeh and Leijnse acknowledged that more general

validation of their model needed to be conducted [32]. Further, their fitted value of β was

much smaller than the fitted β values for a similar high concentration data set collected by

Moser [76].

Watson and Barry [76] generated high quality data to investigate the findings in [32].

They also concluded that (1.7) is a better approximation for diffusion than Fick’s Law. In

2002, Watson, Barry, Schotting, and Hassanizadeh [77] performed more experiments to

test the validity of Darcy’s Law and Fick’s Law. While they again found that (1.7) describes

high and low concentration displacements better than Fick’s Law, they did report some

variation in β under different experimental conditions, specifically flow rate. Hassanizadeh

and Leijnse [32] claim that one can determine a value of β that provides a good fit to data

based on flow rate for a specific medium. However, other researchers disagree and point

out that experiments of different densities cannot be modeled with a unique value of β

[43]. This means that one would have to fit each experiment separately, and therefore, the

closures for diffusion presented in [32] are not a great improvement over Fick’s Law.

Because of the failure of the model presented in [32], researchers continue to explore

modeling species transport in porous media. One alternative approach, published in 2007

[43], involves using a homogenization method. The homogenization method is an upscaling

technique. Egorov’s model assumes that the porous media is heterogeneous at the Darcy

scale. The alternate approach, proposed by Demidov, starts at the pore scale. Both methods

yield a macroscale balance equation, where dispersion is a function of the density gradient

[43].

While the homogenization approach provides additional insight into the modeling

process, it does have some drawbacks. Egorov’s model was found to yield good results for

nearly homogeneous porous media. Demidov’s model was effective for some heterogeneous

porous media but, as the grain sizes became more widely varied, additional parameters

were needed to fit the model to data [43]. Therefore, there is not a single set of parameters

for either of these models that can describe a wide range of experimental data.

These shortcomings lead us to continue looking for a robust model that can describe a

range of experimental data with a single set of parameters.
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1.2.3 Deficiencies in the Traditional Model and Open Questions

In the previous section, we pointed out a number of examples where the traditional model

fails to match lab data. In addition to these modeling issues, we must also consider how the

traditional model fails to provide consistent physics. Whereas the traditional model for flow

and transport in porous media is widely accepted, it has some physical inconsistencies

that lead us to look at alternative models.

The TCAT model employs macroscale closure relations for advection and diffusion at

all entities, which other models fail to do. The lack of these equations yields a dearth of

rigorous, physics-based closure relations [24, p. 202].

One other issue is that the length scales for different elements within the system can

vary greatly. For example, the grain size of the porous media,which we consider to be at the

microscale, is often much smaller than the length scale of the entire porous media system,

which we would typically model at the macroscale. The traditional model does not take

these discrepancies into account; however, the TCAT model provides a consistent method

for upscaling microscale equations to the macroscale [24, p. 9].

Further, some models neglect thermodynamics. As Gray and Miller point out, this is

detrimental because one cannot then use thermodynamics to inform closure relations.

Other methods use microscale thermodynamics, but this yields physical quantities that

are not rigorously defined at the macroscale [24]. TCAT eliminates these issues by

averaging microscale thermodynamic equations to the macroscale. Consequently, all

physical quantities are well-defined at the macroscale [24, p. 21].

1.3 Motivation for TCAT

Thermodynamically constrained averaging theory (TCAT)-based modeling is a new class

of models that seeks to address and solve the issues associated with the traditional model.

One novel feature of the TCAT approach is that it takes pore-scale physics into account.

However, since the system of interest is at the macroscale, we need a rigorous method

for upscaling. TCAT provides upscaling by using averaging to transition between scales.

Therefore, the result is a macroscale model that includes information from the microscale

[22].

With averaging, TCAT uses information from microscale thermodynamics to close the

system. The traditional model only considers diffusion due to concentration, but TCAT
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takes diffusion from three quantities into account–concentration, pressure, and activity

[23].

Previous research established that there is different physics in high and low

concentration species transport in porous media [32, 77]. This is a very active field of

research with many open questions. For example, is there a single model that can

accurately describe both low and high concentration species transport? Further, how can

we construct a model that describes a macroscale system but takes the physical

phenomena at the pore scale into account? It is these open questions that motivate

continued research on species transport.

1.4 Goals and Objectives

The goal of this research is to investigate a new class of models. Here, we will focus on

thermodynamically constrained averaging theory (TCAT)-based models. The goal of this

class of models is to address some of the open questions in porous media research.

In this dissertation, we begin with the TCAT model from [23]. This is a macroscale model

for species transport in porous media that differs from the traditional model in several

notable ways. We discuss the specific details of the TCAT model in Chapter 2. While the

formulation of the TCAT model was developed by Miller and Gray [23] and is outside the

scope of this dissertation, we will validate and approximate their model. Our main objective

is to find a single species transport model with a unique parameter that can characterize

a wide range of concentrations. While the TCAT model fails to provide an adequate fit

to data in the highest concentration cases, we were able to find a single parameter that

can describe experiments with a mass fraction less than 0.15. We then went beyond the

traditional frequentist parameter fitting and constructed a regression-based surrogate

model for TCAT that allowed us to estimate parameters from a Bayesian perspective. Finally,

we applied simplifying assumptions to the TCAT model to obtain a design-independent

model that we employ to quantify fixed and random effects for a set of experimental data.
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CHAPTER

2

DERIVATION OF THE TCAT MODEL

In the previous chapter, we summarized the physics of how species are transported through

porous media systems. In this chapter, we will derive the microscale conservation equation

and average it to the macroscale to provide a basis for the TCAT model. We then complete

the derivation of the TCAT model and discuss closure relations and initial and boundary

conditions. Finally, we present a linearized version of the TCAT model, which we will later

use when we perform our mixed-effects simulations.

2.1 The Representative Elementary Volume

In a porous media system, we use the term entity to describe the different aspects of the

system. An entity can be a phase (water, solid, gas), an interface, or a common curve [18].

We also must consider the concept of a representative elementary volume. A

representative elementary volume (REV) is a way to define the length scale at which

physical properties are unchanging [79]. Different length scales have different REVs [24].
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Definition 2.1.1. A Representative Elementary Volume (REV), denoted by Ω, is the volume

at which a physical property of a sample becomes independent of the size of the sample [2].

Depending on the length scale under consideration, we will consider different REVs

[24]. As the REV definition implies, when considering a porous media system, the length

scales of different elements within the system are important. Miller and Gray [24] define five

different length scales that can describe a range of natural phenomena. While the actual

measurements for these scales vary depending upon the application one considers, the

length scales are discrete and do not overlap. The five distinct scales, in order from smallest

to largest, are the molecular scale, microscale, resolution scale, macroscale, and megascale.

For purposes of this work, we will focus on the microscale and the macroscale. The

microscale is often referred to as the pore scale. Its REV is the mean distance between

particle collisions. At the microscale, one would use the Navier-Stokes equations to model

the system. Whereas considering the microscale is valuable when modeling species

transport in a porous media system, we ultimately need a larger scale so that we have a

solvable system [24].

At the macroscale, we can differentiate between the wetted and solid phases. This means

that when we consider a single point within the system, we can determine which phase it

is in. While we do lose detail when we go from the microscale to the macroscale, the end

result is a solvable model for a large porous media system. In this context, we refer to a

solvable system as one that uses the correct length scale to describe the phenomena of

interest that has well-defined closure relations while being feasible to simulate numerically

[24].

The identification of these length scales is important for the derivation of the TCAT

model. The TCAT model provides a rigorous method for upscaling from the microscale

to the macroscale. Therefore, the end result is a model that takes pore scale physics into

account but is solvable [24].

2.2 Microscale Conservation Equations

Here, we construct a microscale equation for a general extensive property. In the following

section, we will average this equation to the macroscale.

An extensive property is one whose value depends on the amount of matter being

considered. Alternatively, an intensive property is one that is independent of the amount
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of matter present. For example, mass is an extensive property, but fluid temperature and

density are intensive properties [33].

The goal of a conservation equation is to study how extensive properties change in time.

The conceptual conservation equation is [24]

[Rate of Accumulations]+ [Net Outward Advective Flux]− [Body Sources] (2.1)

−[Non-Advective Boundary Sources]− [Rate of Generation]= 0.

For more details, we direct the reader to [24, 37, 63, 79]. We provide here a very brief

overview of a microscale conservation equation applied to a general extensive property.

We begin at the microscale with the general point form of a species conservation

equation,
∂ (Fiα)
∂ t

+∇· (Fiαviα)−∇· (FB iα)− FN iα− FG iα = 0. (2.2)

Here Fiα is a placeholder for the microscale quantity of interest and viα denotes the

microscale species velocity [24]. The terms from (2.1) and (2.2) have the following

correspondence:

∂ (Fiα)
∂ t

= Rate of Accumulations

∇· (Fiαviα) = Net Outward Advective Flux

∇· (FB iα) = Body Sources

FN iα = Non-Advective Boundary Sources

FG iα = Rate of Generation.

Equation (2.2) states that the rate of accumulation of our extensive property, such

as mass or momentum, comes from five different sources. We must consider advective

transport, nonadvective transport or diffusion, mass transfer, reactions, and sources or

sinks [63].

We now format the equation for microscale species conservation, neglecting body

sources and generation. We substituteραωiα for our placeholder Fiα . The resulting equation

is
∂ ραωiα

∂ t
=−∇·

�

ραωiαviα

�

+ riα. (2.3)
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In (2.3), ρα is the phase density, ωiα is the species mass fraction, and riα is the reaction

term.

2.3 Averaging

We discuss here how we average the TCAT model from the microscale to the macroscale.

2.3.1 Averaging Benefits and Basics

As we detailed in Chapter 1, one problem with the traditional model is that the length

scales for different entities within the system can vary drastically. Unfortunately, the

traditional model fails to take these length scale discrepancies into account. The TCAT

model improves upon the traditional model by providing a consistent method for

upscaling microscale equations to the macroscale. We achieve this upscaling from the

microscale to the macroscale by using the averaging operator [24].

Consequently, our goal is to take (2.3) and average it to the macroscale. To accomplish

this, we will introduce the averaging operator,




f
�

Ω j ,Ωk ,W
=

∫

Ω j

W f dr

∫

Ωk

W dr
. (2.4)

Here f is the quantity we are averaging and W is the weight. Domains are represented by

Ω j and Ωk . In many cases, Ωk =Ω, and the quantity is scaled by the REV.

We will now summarize three common ways in which we will use the averaging operator

to transform (2.3) to the macroscale. First, we have the intrinsic phase average for a general

quantity fα, which is given by



fα
�

Ωα,Ωα
= f α. (2.5)

Note that in (2.5), we assume W = 1 (no weighting), and the third term in the subscript is

consequently omitted. In (2.5), f α is a macroscale intrinsic average for a phase α. Next, we

introduce the general form of an averaging operator




fα
�

Ωα,Ω
=



fα
�

Ωα,Ωα
〈1〉Ωα,Ω = ε

α f α, (2.6)
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when it is scaled by the REV. Here εα denotes the volume fraction of the phase α. Finally,

we have the mass average



fα
�

Ωα,Ωα,ρα
= f α. (2.7)

We will now use these properties to average the microscale conservation equation, given

by (2.3), to the macroscale [24].

2.3.2 Averaging from the Microscale to the Macroscale

We begin by considering an average of the microscale equation scaled by the REV,

­

∂ ραωiα

∂ t

·

Ωα,Ω
=



−∇·
�

ραωiαviα

��

Ωα,Ω
. (2.8)

For purposes of this work, we have dropped the reaction term as no chemical species

are being created or destroyed. We are able to use transport and divergence theorems to

move the derivatives outside of the averaging operators [24]. When we apply the averaging

operator to the term on the left-hand side of (2.8), we obtain




ραωiα

�

Ωα,Ω
= 〈ωiα〉Ωα,Ωα,ρα




ρα
�

Ωα,Ωα
〈1〉Ωα,Ω = ε

αραωi α. (2.9)

Application of the averaging operator to the term on the right-hand side of (2.8) yields




ραωiαviα

�

Ωα,Ω
= 〈viα〉Ωα,Ωα,ραωiα

〈ωiα〉Ωα,Ωα,ρa l p ha




ρα
�

Ωα,Ωα
〈1〉Ωα,Ω = ε

αραωi αviα. (2.10)

Finally, we substitute (2.9) and (2.10) into (2.8) to obtain the macroscale conservation

equation

∂
�

εαραωi α
�

∂ t
=−∇·

�

εαραωi αviα
�

. (2.11)

In practice, it can be difficult to measure viα, so one typically closes (2.11) by splitting viα

into a deviation velocity and a macroscale system velocity as detailed in [24].

We now have an averaged macroscale conservation equation, which will serve as the

basis for our TCAT model.
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2.4 The TCAT Model

The traditional model, as well as recent improvements to the traditional model, have some

deficiencies that lead us to consider an alternative formulation. Gray and Miller [23]outlined

the TCAT model, which solves many of these problems. The 1-D formulation of the model

is given by

εw ∂ ρ
w

∂ t
=−
∂
�

ρwεw v w
�

∂ z
(2.12)

εw
∂
�

ρωA w
�

∂ t
=−
∂
�

ρwωA wεw v w
�

∂ z
+Pz +Ωz + Γz (2.13)

εw v w =
−1

(R̂ w − R̂ d )

�

∂ p w

∂ z
−ρw g w

�

. (2.14)

Equation (2.12) is a flow equation, which we obtain by summing our averaged macroscale

conservation equation over all species. Equation (2.13) is a species conservation of mass

equation. In (2.13), we split viα to obtain different terms for advection and diffusion. In the

TCAT model, we consider diffusion due to pressure Pz , activity Γz , and concentration Ωz .

Equation (2.14) is a modified Darcy velocity. Note that instead of using the traditional q , we

denote the Darcy velocity by εw v w .

The main reference that we will focus on is Miller and Gray’s 2009 publication, [23]. This

paper presents a TCAT-based model for single-phase species transport in porous media.

When [23]was published, several closure relations, such as a closure for R̂ d , had not been

determined. Further, the model had not been solved or simulated numerically.

We will now present an overview of how one derives a TCAT-based model. There are

eight basic steps [22].

1. Formulate an entropy inequality for entire system.

2. Formulate mass, momentum, and energy equations based on pore scale (microscale)

quantities.

3. Average pore scale thermodynamics to desired scale.

4. Augment entropy inequality using Lagrange multipliers.

5. Use Lagrange multipliers to produce constrained entropy inequality.
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6. Eliminate time derivatives in constrained entropy inequality using geometric

identities to write a simplified entropy inequality.

7. Employ closure relations consistent with the second law of thermodynamics.

8. Construct closure relations that are constantly evolving.

Since Gray and Miller have provided a rigorous derivation of the TCAT model, we will

omit the first six steps and instead direct the reader to [23]. We summarize the nomenclature

for the TCAT model in the front matter on pages x and xi. We begin the derivation at step 7,

where we provide a brief outline of the model closure and finally provide the equations we

are solving.

We begin by considering the effect of restrictions and approximations on a species

conservation of momentum equation. The result is equation (152) in [23], which is given by

D w (εwρw vw )
D t

+εwρw vw I : dw −∇·
�

εw tw
�

−
∑

i∈Js

εwρwωi w gα−Tw s→w = 0. (2.15)

To simplify (2.15), Gray and Miller use the simplified entropy inequality (SEI) to guide closure

relations. The SEI is the result of step 6 in the TCAT derivation. From these manipulations,

we will have a modified Darcy velocity, εw v w , which describes the velocity field for the

whole system.

Using knowledge about the system, the SEI, and first-order closures, we arrive at a form

∇p w −ρw gw +εw
�

R̂
w
− R̂

d
�

vw + R̂
p
∇εw , (2.16)

of the momentum equation, which is equation (166) in [23].

We now make the following assumptions to further reduce the model:

1. The system of interest is 1-D, with flow in the vertical (z ) direction.

2. The volume fraction of the wetted phase εw is spatially invariant (∇εw = 0).

With these assumptions, we now reformulate (2.16) as

∂ p w

∂ z
+ρw g w +εw

�

R̂ w − R̂ d
�

v w = 0. (2.17)
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Isolating εw v w yields

εw v w =
−1

�

R̂ w − R̂ d
�

�

∂ p w

∂ z
−ρw g w

�

. (2.18)

This is a modified form of Darcy’s Law, which we use to describe our system flow.

Next, we formulate a species transport equation from our restrictions and

approximations. This is equation (151) in [23] and is given by

D w
�

εwρwωi w
�

D t
+εwρwωi w I : dw +∇·

�

εwρwωi w ui w
�

= 0. (2.19)

We simplify (2.19), which will result in both a 1-D flow equation and a 1-D species

conservation of mass equation. To write our 1-D flow equation, we sum (2.19) over all

species to obtain
D wεwρw

D t
= 0. (2.20)

Using the same assumptions we applied to (2.16), we can rewrite the material derivative as

εw ∂ ρ
w

∂ t
=−
∂
�

ρwεw v w
�

∂ z
, (2.21)

which is our 1-D flow equation. Next, we use (2.19) to write our 1-D species transport

equation.

We simplify the material derivative in the species transport equation (2.19) to obtain

∂
�

εwρwωAw
�

∂ t
+∇·

�

εwρwωAw vw
�

+∇·
�

εwρwωi w ui w
�

= 0. (2.22)

Gray and Miller again use the SEI as well as other physics results to develop a closure

for∇· (εwρwωi w ui w ). Thus, (2.22) becomes

�

εwρwωAw
�

t
+∇·

�

εwρwωAw vw
�

(2.23)

+∇·







−εw

�

x Aw x B w

ωAwωB w

�





�

XAw −ωAw
�

DAB w e ·∇p w +ρw Rθ w
w

M Ww
DAB w e ·∇x Aw

+ρw Rθ w
w

x Aw

M WwγAw
DAB w e ·∇γAw +R p

�

X Aw −ωAw
�

DAB w e ·∇εw











= 0.
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We now apply the following assumptions to (2.23):

1. The system of interest is 1-D, with flow in the vertical (z ) direction.

2. The volume fraction of the wetted phase εw is spatially invariant (∇εw = 0).

3. Because the system is binary, x B w = 1− x Aw andωB w = 1−ωAw .

Consequently, (2.23) becomes

εw ∂ (ρ
wωA w )
∂ t

+
∂ (ρwωA wεw v w )

∂ z
(2.24)

= εw ∂

∂ z





�

x Aw (1− x Aw )
ωA w (1−ωA w )

�

D AB w e

 

(X −ωA w )
∂ p

∂ z
+
ρw Rθ w

M Ww

∂ x Aw

∂ z
+
ρw Rθ w x Aw

M Ww γ̂i w

∂ γ̂i w

∂ z

!





We will now make use of two closure relations

x Aw = ωA w
�

M Ww

M WA

�

(2.25)

∂ x Aw

∂ z
=
∂ ωA w

∂ z

�

M WAM WB

M W w
w

�

, (2.26)

for x Aw andωA w , as well as the fact that

X =ρw VωA w (2.27)

to simplify the right-hand side of (2.24).

We begin by examining the pressure gradient. We note that

εw ∂

∂ z

��

x Aw (1− x Aw )
ωA w (1−ωA w )

�

(X −ωA w )D̂ AB w e ∂ p

∂ z

�

(2.28)

= εw ∂

∂ z

��

1− x Aw

1−ωA w

�

�

M WW

M WA

�

�

ρw V −1
�

ωA w D̂ AB w e ∂ p

∂ z

�

= Pz .

Similarly, for the gradient with respect to mole fraction, we have
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εw ∂

∂ z

��

x Aw (1− x Aw )
ωA w (1−ωA w )

�

ρRθ w

M Ww
D̂ AB w e ∂ x Aw

∂ z

�

(2.29)

= εw ∂

∂ z

��

1− x Aw

1−ωA w

�

�

M W 2
W

M W 2
A M WB

�

ρw Rθ w D̂ AB w e ∂ ω
A w

∂ z

�

=Ωz .

And finally, for the activity gradient, we find that

εw ∂

∂ z

 

�

x Aw (1− x Aw )
ωA w (1−ωA w )

�

ρw Rθ w x Aw

M Ww γ̂i w
D̂ AB w e ∂ γ̂i w

∂ z

!

(2.30)

= εw ∂

∂ z

��

1− x Aw

1−ωA w

�

�

M WW

M W 2
A

�

�

ρw Rθ w

γ̂i w

�

ωA w D̂ AB w e ∂ γ̂i w

∂ z

�

= Γz .

We can now substitute (2.28), (2.29), and (2.30) into (2.24) to obtain

εw
∂
�

ρwωA w
�

∂ t
=−
∂
�

ρwωA wεw v w
�

∂ z
+Pz +Ωz + Γz . (2.31)

This yields the model

εw ∂ ρ
w

∂ t
=−

∂
�

ρwεw v w
�

∂ z
(2.32)

εw
∂
�

ρwωA w
�

∂ t
=−
∂
�

ρwωA wεw v w
�

∂ z
+Pz +Ωz + Γz (2.33)

εw v w =
∂ p w

∂ z −ρw g w

−(R̂ w − R̂ d )
. (2.34)

Equations (2.32), (2.33), and (2.34) represent the model as formulated in [23]. When [23]

was published, several closure relations, such as a closure for R̂ d , had not been determined.

Further, the model had not been simulated and there was no numerical basis for a solution.

Next, we outline the additional mathematical relations so that we have a solvable system.

In Chapter 3, we will discuss our reformulation of the equations and our numerical solution

method.
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2.5 Determination of Closure Relations

It was stated in [23] that some of the terms do not have closed forms, meaning that the exact

formulations of the closure relations had not been determined at the time of publication.

We remedy this by using model simulations compared to experimental data to inform these

closure relations.

We began by considering our formulation of the closure relation R̂ d , which appears

in both our Darcy velocity and our equation for spatially varying diffusion. We found that

when we set R̂ d = c
∂ ρw

∂ z , the Darcy velocity became extremely large. Therefore, we split R̂ d

into two different forms. We created R̂ d
1 = c1

∂ ρw

∂ z , which appears in the Darcy velocity, and

R̂ d
2 = c2

∂ ρw

∂ z , which appears in our closure for spatially varying diffusion.

Next, we performed parameter fits for c1 and c2 using the model output compared to data

generated at the University of North Carolina. We had initially determined that physically,

we needed c1 ≥ 0 and c2 ≤ 0. However, when we ran our code with c2 < 0, our spatially

varying diffusion calculation became unstable and caused solver failure. We changed c2 ≥ 0.

We subsequently had implemented a robust model and could compare the model to data.

We determined that c2 >> c1, so we modified our code to estimate c1 and log(c2).

However, when we performed this parameter estimation, we found that c1 has little effect

on the output and was consequently not identifiable. We then set c1, the deviation term in

the Darcy velocity, equal to zero. This left only one parameter to be fit in the diffusion

closure R̂ d
2 . Therefore, we proceeded with the relations

R̂ d
1 = 0, (2.35)

R̂ d
2 = c1

∂ ρw

∂ z
. (2.36)

Note that we have changed the notation of the parameter in R̂ d
2 from c2 to c1 for clarity.

2.6 Initial and Boundary Conditions

To have a well-posed problem, we need initial and boundary data for our primary

computational variables. For mass fractionωA w , we set
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ωA w (z , 0) =

¨

ωA w
i n , z = 0

ωA w
c o l , else

as our initial condition. HereωA w
i n is the mass fraction of the solution we are pumping

into the bottom of the column andωA w
c o l is the mass fraction of the solution inside of the

column at time t = 0. This states that the incoming brine is at base of the column at time

t = 0.

The bottom boundary condition is

∂ ωA w (0, t )
∂ t

= 0. (2.37)

This says that we are pumping at a constant concentration [62].

To obtain a top boundary condition forωA w , we observe that there is no diffusion at

the boundary, which yields [77]

εw ∂ ω
A w

∂ t
(L , t ) =

∂ ωA w

∂ z
(L , t ). (2.38)

Note that L is the height of the vertical column.

Next, we consider initial and boundary conditions for pressure p w . For our initial

condition, we use the hydrostatic condition since there is no flow in the column at time

t = 0. This is expressed mathematically by

p w (z , 0) =ρw (ωA w (z , 0))g (z − L ), (2.39)

where z is the spatial mesh width [77].

To derive the bottom boundary condition, we set the volumetric flow rate Q
Ac

equal to

our measured velocity,

εw v w (0, t ) =
Q

Ac
. (2.40)

We then reformulate (2.40) to determine

∂ p w

∂ z
(0, t ) =

−Q µ̂w

k̂ Ac

−ρw (ωA w
0)g

w ,
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which is the bottom boundary condition for pressure. In (2.40), k̂ is the intrinsic

permeability and g w is acceleration due to gravity.

Finally, we know that the outgoing pressure of the fluid is zero, so we take the top

boundary condition to be

p w (L , t ) = 0. (2.41)

With initial and boundary data for both of the primary computational variables, the problem

is well-posed.

2.7 Linearized Version of the TCAT Model

In this section, we outline the assumptions we make in order to simplify the TCAT model.

While it is preferable to simulate the high-fidelity TCAT model when possible, the mixed-

effects model, which we develop and analyze in Chapter 7, cannot use the high-fidelity TCAT

model due to the dependence of closure relations on incoming mass fraction. Therefore,

our goal in this section is to arrive at an observation-independent form of the TCAT model

that we can use for our mixed-effects model.

2.7.1 Simplifying Assumptions

The linearized TCAT model sacrifices some of the accuracy and robustness of the full

TCAT model due to the assumptions needed to simplify the model. Namely, we assume

certain quantities are constant in the linearized model, whereas the full model allows these

quantities to be spatially varying.

The most important assumption that we make is that our solution has some dilute

characteristics. This allows us to simulate a breakthrough curve independent of the

incoming concentration of the fluid so that we can run observation-independent

mixed-effects simulations.

We make several assumptions to arrive at the linear model. Because we are neglecting

spatial gradients, we know that both mass fractionωA w and mole fraction x Aw are small.

Thus, we assume that

1− x Aw ≈ 1 (2.42)

1−ωA w ≈ 1. (2.43)
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Next, we consider how the linearization affects the density and viscosity of the system.

Because the viscosity µw and the density ρw are functions of mass fraction, there is little

spatial variation and we therefore assume them to be constant over space. We assume that

its density is equal to the density of water and set

ρw = 1
g

cm3
. (2.44)

We also assume that the viscosity of the solution is equal to the viscosity of water and set

µw = 0.89 cp. (2.45)

For both density and viscosity, the spatial gradients are zero.

In the dilute case, the Darcy velocity simplifies to a constant. Recall that the Darcy

velocity is given by

εw v w =
−k̂

µw

�

∂ p w

∂ z
+ρw g

�

. (2.46)

The pressure p w is close to constant and therefore its spatial gradient is negligible. Intrinsic

permeability k̂ and gravity g are both model constants, and we have already determined

that the density and viscosity are constant. Thus, the Darcy velocity is a known constant

and is given by

εw v w = 5.77×10−3 m/s. (2.47)

We also assume that diffusion is spatially invariant. Mathematically, this is equivalent

to stating that

D̂ AB w e = D̂ AB . (2.48)

Next, we assume that the pressure and activity gradients have negligible contributions to

the model and set

Γz = Pz = 0. (2.49)

Finally, we can simplify our weighted molecular weight M Ww , which is given by

M WW =M WA x Aw +M WB (1− x Aw ). (2.50)
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Because of assumption (2.43), we can assume that

M WW ≈M WB . (2.51)

2.7.2 Applying Simplifying Assumptions to TCAT

We now take the assumptions and apply them to the TCAT model. Recall that the 1-D flow

equation is given by

εw ∂ ρ
w

∂ t
=−

∂

∂ z

�

ρwεw v w
�

(2.52)

and the 1-D species conservation of mass equation is given by

εw
∂
�

ρwωA w
�

∂ t
=−

∂

∂ z

�

ρwωA wεw v w
�

+Pz + Γz +Ωz . (2.53)

We begin by simplifying (2.52) with our dilute assumptions. Because εw is a model

constant and εw v w is constant in space, we can rewrite (2.52) as

∂ ρw

∂ t
=
−εw v w

εw

∂ ρw

∂ z
. (2.54)

Next, we simplify (2.53). We again assume that εw v w is constant in space, as well as

making the substitution determined in (2.49). Therefore, (2.53) becomes

εw
∂
�

ρwωA w
�

∂ t
=−εw v w ∂

∂ z

�

ρwωA w
�

+Ωz . (2.55)

Recall that

Ωz =
∂

∂ z

�

εw

�

1− x Aw

1−ωA w

�

�

M W 2
W

M W 2
A M WB

�

ρw Rθ w D̂ AB w e ∂ ω
A w

∂ z

�

. (2.56)

We can substitute (2.42) and (2.43) to obtain

Ωz = ε
w Rθ w ∂

∂ z

��

M W 2
W

M W 2
A M WB

�

D̂ AB w e ∂ ω
A w

∂ z

�

. (2.57)
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We can further simplify (2.57) by considering (2.51) and (2.48) so that

Ωz =
εw Rθ w D̂ AB M WB

M W 2
A

∂

∂ z

�

ρw ∂ ω
A w

∂ z

�

. (2.58)

We next substitute (2.58) into (2.55) to obtain

εw
∂
�

ρwωA w
�

∂ t
=−εw v w ∂

∂ z

�

ρwωA w
�

+
εw Rθ w D̂ AB M WB

M W 2
A

∂

∂ z

�

ρw ∂ ω
A w

∂ z

�

(2.59)

and perform a change of variables such that

C =ρwωA w , (2.60)

where C is the concentration of the solution.

The second term on the right-hand side of (2.59) must be analyzed before we can make

the change of variables. We note that

∂ 2C

∂ z 2
=

∂ 2

∂ z 2

�

ρwωA w
�

(2.61)

=
∂

∂ z

�

ρw
z ω

A w +ρw ∂ ω
A w

∂ z

�

(2.62)

and therefore
∂

∂ z

�

ρw ∂ ω
A w

∂ z

�

=
∂ 2C

∂ z 2
−
∂

∂ z

�

ρw
z ω

A w
�

. (2.63)

We have already determined that ∂
∂ zρ

w = 0 so that (2.63) becomes

∂ 2C

∂ z 2
=
∂

∂ z

�

ρw ∂ ω
A w

∂ z

�

. (2.64)

After making the substitution in (2.64), our species conservation of mass equation

simplifies to the linear form

εw ∂ C

∂ t
=−εw v w ∂ C

∂ z
+D

∂ 2C

∂ z 2
, (2.65)
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where

D =
εw Rθ w D̂ AB M WB

M W 2
A

. (2.66)

2.7.3 Analytic Solution

A nearly complete set of solutions to the one-dimensional advection-diffusion problem

were published by Javandel [35] given (2.65) with an inlet boundary condition of

C (0, t ) =C0, (2.67)

an outlet boundary condition of
∂ C

∂ z
(L , t ) = 0, (2.68)

and an initial condition of

C (z , 0) = 0. (2.69)

Javandel found the analytic solution to be [35]

C

C0
(L , t ) =

1

2
erfc

�

L −εw v w t

2(D t )1/2

�

+
1

2
exp

�

εw v w L

D

�

erfc

�

L +εw v w t

2(D t )1/2

�

. (2.70)

One problem, however, is that when we attempt to evaluate the solution (2.70), we

encounter a problem with the term 1
2 exp

�

εw v w L
D

�

erfc
�

L+εw v w t
2(D t )1/2

�

. Specifically, as D → 0, the

exponentiation term tends to infinity, whereas the erfc term tends to zero. To determine

the behavior of the term when D is sufficiently small, we analyze the limit of this term as

D → 0.

To determine the limit of the term 1
2 exp

�

εw v w L
D

�

erfc
�

L+εw v w t
2(D t )1/2

�

, we will use L’Hospital’s

rule. We rewrite the term as

lim
D→0

1

2

erfc
�

L+εw v w t
2(D t )1/2

�

�

exp
�

εw v w L
D

��−1 . (2.71)

Taking the derivative of the top and bottom of (2.71) yields

lim
D→0

(D t )1/2(L +εw v w t )

4
p
πεw v w L t

exp

�

−(L −εw v w t )2

4D t

�

. (2.72)
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We begin by addressing the quantity
(D t )1/2(L+εw v w t )

2
p
πεw v w L t

in front of the exponential. We note that

the quantity D only appears in the numerator within a square root; therefore

lim
D→0

(D t )1/2(L +εw v w t )

4
p
πεw v w L t

−−→
D→0

0. (2.73)

Next, we consider the exponential term. The numerator is always negative or zero as

it is the negative of the squared quantity (L − εw v w t )2 and the denominator is always

positive with 4D t > 0 since time and diffusion must always be positive. Therefore, the

entire quantity to be exponentiated is nonpositive for this problem.

There are two cases we must consider when determining the behavior of the numerator

for this problem. The first is when L 6= εw v w t , and the quantity
�

−(L−εw v w t )2

4D t

�

is negative.

This means that exp
�

−(L−εw v w t )2

4D t

�

is a negative exponential which tends to zero as D → 0.

We have thus shown

lim
D→0

1

2

erfc
�

L+εw v w t
2(D t )1/2

�

�

exp
�

εw v w L
D

��−1 = 0 (2.74)

when L 6= εw v w t .

We next consider the case where L = εw v w t . This yields exp
�

−(L−εw v w t )2

4D t

�

= exp0 = 1.

Then, we evaluate

lim
D→0

(D t )1/2(L +εw v w t )

4
p
πεw v w L t

, (2.75)

which we have shown tends to zero as D → 0. We have thus shown

lim
D→0

1

2

erfc
�

L+εw v w t
2(D t )1/2

�

�

exp
�

εw v w L
D

��−1 = 0 (2.76)

for all admissible parameter values.

The exact solution for small D then becomes

lim
D→0

C

C0
(L , t ) = lim

D→0

�

1

2
erfc

�

L −εw v w t

2(D t )1/2

�

+
1

2
exp

�

εw v w L

D

�

erfc

�

L +εw v w t

2(D t )1/2

��
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=
1

2
erfc

�

L −εw v w t

2(D t )1/2

�

. (2.77)

This formulation allows us to solve for C
C0

.

The analytic solution presented by Javandel is independent of incoming concentration—

consequently, we can use this analytic solution as the basis for our mixed-effects model in

Chapter 7.

2.8 Mathematical Challenges

Here, we summarize challenges we have encountered in this component of the investigation.

We will also detail the mathematical contribution for this problem. In the next chapters, we

will further discuss these mathematical challenges.

• We first determined how to reformulate (2.32), (2.33), and (2.34). Watson and Barry

[76] used a Crank Nicholson method to discretize the derivatives and then wrote

the equations in matrix form and performed a direct solve. Others used an operator

splitting scheme [67]. We wanted a robust form of the model that we could solve with

a packaged solver. Therefore, we chose to reformulate (2.32) and (2.33) as a partial

differential algebraic equation (PDAE) in Section 3.3.

• Once we had the model in a form we could solve, we modified the inner workings

of the codes. To reformulate the PDAE as an ordinary DAE, we used finite difference

schemes to approximate the spatial derivatives, as shown in Section 3.4. We chose

certain schemes to accurately model physical phenomena–for example, we used

upwinding to approximate mass fraction, which allows the speed of our front to

correctly move forward in time [48]. This yielded a large system of ordinary DAEs.

• After we reformulated the TCAT model as a large system of DAEs, we had to show that

the system is index-1. Many DAE codes, such as ode15s, IDA, DASSL, and SPRINT, are

only equipped to solve index-1 problems [8]. To numerically show the DAE is index-1,

we showed that the Jacobian with respect to the algebraic variables is nonsingular [3]

in Section 3.5.1. Because we showed that we have an index-1 DAE, our stable form

allows us to run simulations for a variety of incoming concentrations and parameter

values.
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• After we finished updating the model with closure relations and boundary conditions,

we estimated parameters with the Levenberg-Marquardt algorithm. Our goal was to

have a single parameter that describes all data collected at the University of North

Carolina. While we were not able to find a unique parameter that provided a good

fit to data for all experiments, we show in Section 4.3 that we were able to find a

parameter that could describe data with an incoming mass fractions less than 0.15.

• In Chapter 5, we constructed a a regression-based surrogate model for TCAT using

cubic splines to emulate the parameter-dependent response of the TCAT model. This

surrogate model significantly decreases run times and makes Bayesian parameter

estimation possible.

• We applied Bayesian inference to the TCAT model and determined distributions for

our parameter with respect to different experimental scenarios in Chapter 6.

• In Chapter 7, we created and implemented a mixed-effects model for a simplified

version of the TCAT model to quantify the contributions of the fixed and random

parameter effects.
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CHAPTER

3

MATHEMATICAL SIMULATION OF THE

TCAT MODEL

In this chapter, we present the necessary mathematics required to simulate the TCAT model.

3.1 The TCAT Model

In Chapter 2, we derived the TCAT model,

εw ∂

∂ t
ρw =−

∂

∂ z

�

ρwεw vw
�

(3.1)

εw ∂

∂ t

�

ρwωA w
�

=−
∂

∂ z

�

ρwωA wεw vw
�

+Pz + Γz +Ωz (3.2)

εw vw =−
1

R̂ w − R̂ d
1

�

∂ p w

∂ z
−ρw g

�

. (3.3)
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The closure relations are

Pz =
∂

∂ z

�

εw

�

1− x Aw

1−ωA w

�

�

M WW

M WA

�

�

ρw V −1
�

ωA w D̂ AB w e ∂ p w

∂ z

�

(3.4)

Γz =
∂

∂ z

�

εw

�

1− x Aw

1−ωA w

�

�

M WW

M W 2
A

�

�

ρw Rθ w

γ̂i w

�

ωA w D̂ AB w e ∂ γ̂i w

∂ z

�

(3.5)

Ωz =
∂

∂ z

�

εw

�

1− x Aw

1−ωA w

�

�

M W 2
W

M W 2
A M WB

�

ρw Rθ w D̂ AB w e ∂ ω
A w

∂ z

�

(3.6)

R̂ w =
µ̂w

k̂
(3.7)

R̂ d
1 = 0 (3.8)

x Aw =
M WBω

A w

M WBωA w +M WA(1−ωA w )
(3.9)

M Ww =M WA x Aw +M WB (1− x Aw ) (3.10)

V =
1

ρw
+ (1−ωA w )

∂

∂ ωA w

�

1

ρw

�

(3.11)

m =
1000ωA w

M WA(1−ωA w )
(3.12)

D̂ AB w e =

�

1−

�

εw R̂ d
2

ρw

��

1− x Aw

1−ωA w

�

�

M Ww

M WA

�

D̂ AB

�−1

D̂ AB (3.13)

R̂ d
2 = c1

∂ ρw

∂ z
. (3.14)

We have experimentally determined relations for density ρw and viscosity µ̂w as a

function of mass fraction, where

ρw (ωA w ) = .8250
�

ωA w
�3
+ .5038

�

ωA w
�2
+ .8411ωA w + .9982 (3.15)

µ̂w (ωA w ) = .01× e 17.18(ωA w )3−6.262(ωA w )2+1.861ωA w−.03221. (3.16)

We determine the activity, γ̂i w , by applying an extended form of the Debye-Huckel equation.

This relates mole fraction m to activity through an intermediate ionic strength I via the

relations [60]
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I = 3m (3.17)

γ̂i w = exp

�

−a1

p
I

1+a2

p
I
+a3m +a4m 2+a5m 3+a6m 4+a7m 5+a8m 6

�

, (3.18)

where a1, . . . a8 are coefficients determined by parameter fitting.

Finally, we have the initial and boundary conditions

ωA w (z , 0) =

¨

ωA w
i n , z = 0

ωA w
c o l , else

(3.19)

∂ ωA w (0, t )
∂ t

= 0 (3.20)

εw ∂ ω
A w

∂ t
(L , t ) =

∂ ωA w

∂ z
(L , t ) (3.21)

p w (z , 0) =ρw (ωA w (z , 0))g (z − L ) (3.22)

∂ p w

∂ z
(0, t ) =

−Q µ̂w

k̂ Ac

−ρw (ωA w
0)g

w (3.23)

p w (L , t ) = 0 (3.24)

so that the model is well-posed.

In the remainder of this chapter, we show how we transform the PDEs (3.1) and (3.2)

into a form that we can solve easily in a prepackaged ODE solver. We will first introduce the

concept of a differential-algebraic equation and will then transform the PDEs into a system

of partial differential-algebraic equations. Next, we show how we used the method of lines

to solve the transformed equations in MATLAB’s ODE solver ode15s. We will then discuss

how ode15s yields a numerical solution to the problem through time integration of the

differential-algebraic equations. We next present the Jacobian pattern we provided to the

solver and discuss solver settings as well as modifications we made to ode15s. Finally, we

will discuss the adaptive gridding method and perform a spatial grid refinement study to

show our simulations are grid independent.
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3.2 Differential-Algebraic Equations

In this section, we introduce some of the terminology pertaining to differential-algebraic

equations (DAEs), including the concept of index.

A DAE is a mixture of both ODEs and algebraic constraints. The general form of a DAE is

F (t , y , y ′) = 0. (3.25)

The reformulated TCAT model is a semi-explicit PDAE, which means that it can be

written as a set of differential equations and a set of algebraic constraints. The general form

is

x ′ = f (t , x , z ) (3.26)

0 = g (t , x , z ). (3.27)

In a semi-explicit DAE, we distinguish between the differential variables x and the algebraic

variables z . Here (3.26) are the differential equations and (3.27) are the algebraic constraints.

When we consider DAEs, we must also consider the concept of index.

Definition 3.2.1. The index of a DAE is the number of differentiations with respect to t

needed to transform the DAE into an explicit ODE system [3, 8].

A semi-explicit DAE will be index-1 if the Jacobian of the algebraic constraint with

respect to the algebraic variables, generally given by ∂ g
∂ z , is nonsingular [3]. In our model,

ωA w is the differential variable and p w is the algebraic variable. While showing analytically

that the Jacobian ∂ g
∂ p w is nonsingular is difficult, we will later numerically verify the index of

the DAE by computing the rank of the Jacobian during simulations.

We next show how we transform the TCAT model into a semi-explicit DAE.

3.3 Transforming the TCAT Model

We start with the two PDEs (3.1) and (3.2). We expand the time derivatives on the left-hand

side and isolate εw ∂
∂ tω

A w on the left-hand side to obtain
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εw ∂

∂ t
ωA w =−

1

(ρw )′
∂

∂ z

�

ρwεw v w
�

= F1 (3.28)

εw ∂

∂ t
ωA w =

−1

ρw + (ρw )′ωA w

∂

∂ z

�

ρwωA wεw v w +P + Γ +Ω
�

= F2. (3.29)

Finally, we subtract (3.29) from (3.28) to obtain

�

εw

0

��

ωA w

p w

�′

=

�

F1

F1− F2

�

. (3.30)

In (3.30), the prime denotes the time derivative, and the goal is to solve for our primary

computational variables p w andωA w . Because the mass matrix is singular, we now have a

coupled system that consists of one PDE and one algebraic constraint. This is a semi-explicit

partial differential-algebraic equation.

Whereas it is tempting to use substitution to rewrite (3.30) as a single ODE, this

approach has several drawbacks. First, we must remember that a DAE is a collection of

relations between variables. Reformulating this DAE can create variables with less physical

significance, and it can cause us to lose valuable information about the system [8, 38].

Further, rewriting the DAE can destroy inherent sparsity patterns, which can lead to

unnecessarily performing a dense solve, thus wasting valuable computation time. We

instead solve the DAE directly to explore changes to the model and variations in

parameters [8].

Next, we use the method of lines to reformulate the partial differential-algebraic

equation as a large system of ordinary DAEs. To accomplish this, we use finite difference

approximations to estimate the spatial derivatives on the right-hand side of (3.30). This

yields a large system of ordinary DAEs [38, 44]. Reformulating the TCAT equations as a

large system of ordinary DAEs has the advantage of allowing us to use an advanced ODE

solver to perform our simulations.

3.4 The Method of Lines

In this section, we show how we use the method of lines to transform the PDAEs into a large

system of ordinary DAEs. Generally, the method of lines involves using approximations for
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the spatial derivatives to transform a system of PDEs into a large system of ODEs. From

there, one uses a temporal integrator to solve for the time derivative and arrive at a solution

to the PDE that preserves its spatial and temporal characteristics. For the TCAT model,

we take the spatial derivatives on the left-hand side of (3.30) and replace them with finite

difference approximations to obtain the large system of ordinary DAEs. Next, we outline

the finite difference approximations we use when considering the method of lines.

3.4.1 Finite Difference Schemes

When choosing our finite difference scheme with respect to the spatial mesh forωA w , we

consider upwinding. This allows us to accurately simulate advection. When we consider

a front that is moving in time, the PDE that describes flow is asymmetric because the

equations model transport at a given speed. Therefore, it is advantageous to use a one-

sided difference instead of a symmetric centered difference.

Upwinding involves using a one-sided, first-order finite difference approximation for

the spatial mesh. In our case, we know that the transport speed is u > 0. To preserve stability,

we use the backward method

∂ ωA w

∂ z
≈
ωA w

i −ωA w
i−1

h
. (3.31)

This allows us to accurately track our front [44, 48, 65, 81].

To accurately approximate ∂ p w

∂ z , we use a first-order forward difference equation

∂ p w

∂ z
≈

p w
i+1−p w

i

h
. (3.32)

Finally, we must also take a spatial derivative of our activity, γ̂i w . We simply taken an

analytic derivative of the Debye-Huckel equation and multiply it by ∂ ωA w

∂ z to obtain ∂ γ̂i w
∂ z .

As a future direction for this project, one could investigate the effect of a second-order

spatial discretization. A second order method could lead to more accurate solutions and

could potentially resolve some of the difficulties we encountered simulating the highest

concentration experiments.
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3.4.2 Conservation Form

There are several quantities in our model that need to be evaluated in conservation form.

First, the derivatives ∂
∂ z

�

ρwεw vw
�

and ∂
∂ z

�

ωA wρwεw vw
�

are products of spatially varying

quantities. The fluxes Pz , Ωz , and Γz are also the derivative of products of terms that vary in

space.

When considering these quantities, we take the derivatives in conservation form, which

allows us to better approximate them [41]. This means that we multiply all of the internal

terms together and use a finite difference approximation of the product to take the derivative

with respect to z . For example, consider Pz , which is given by

Pz =
∂

∂ z

�

εw

�

1− x Aw

1−ωA w

�

�

M WW

M WA

�

�

ρw V Aw −1
�

ωA w D̂ AB w e ∂ p w

∂ z

�

. (3.33)

To illustrate how we take the derivative with respect to z , we rewrite

ξ(z ) = εw

�

1− x Aw

1−ωA w

�

�

M WW

M WA

�

�

ρw V Aw −1
�

ωA w D̂ AB w e (3.34)

and thus (3.33) becomes

Pz =
∂

∂ z

�

ξ(z )
∂ p w

∂ z

�

. (3.35)

Taking the finite difference approximation of (3.35) yields

Pz ≈

�

ξ(z ) ∂ p w

∂ z

�

i
−
�

ξ(z ) ∂ p w

∂ z

�

i−1

h
. (3.36)

The remaining diffusion terms Ωz and Γz , as well as the products ∂
∂ z

�

ρwεw vw
�

and
∂
∂ z

�

ωA wρwεw vw
�

, are treated similarly. Note that we have used a first-order backward

difference approximation. This approximation allows us to add diffusion to the model and

maintain the correct speed of the front.

3.5 Time Integration in MATLAB

Now that we have reformulated our PDAEs as a large system of ordinary DAEs, we next

consider how to solve for the temporal derivative. We use MATLAB’s ode15s, which is an
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advanced ODE solver for stiff problems. The ode15s code also solves DAEs, but they must

be index-1. In the next section, we present numerical verification that the transformed

TCAT model is index-1.

3.5.1 Numerical Verification of Index

Recall that the reformulated TCAT equations are given by

εw ∂ ω
A w

∂ t
= F1 (3.37)

0= F1− F2. (3.38)

This is a semi-explicit DAE with an algebraic constraint of F1− F2.

Our goal is to show that the Jacobian of the algebraic constraints, with respect to the

algebraic variables p w , given by
∂ (F1− F2)
∂ p w

(3.39)

is nonsingular. This will verify that our system of DAEs is index-1 [3].

Since the temporal integrator ode15s does not distinguish between an ODE and an

index-1 DAE [68], it uses the same direct approach for solving index-1 DAEs that is presented

in the codes DASSL, LSODI, IDA, and SPRINT [70]. DASSL, and consequently ode15s,

cannot solve systems with a greater index than 1 without changes to several components

in the code [8, 10]. For a DAE of higher index, the error estimates utilized in DASSL and

ode15s do not move towards zero as the step size is decreased. The code attempts to reduce

the step size until the iteration matrix is drastically ill-conditioned, and this causes the

Newton solver to fail [8]. Therefore, it is important to verify that we are solving an index-1

DAE.

To verify numerically that (3.39) is nonsingular, we determined that the Jacobian with

respect to the algebraic variables was full rank, and therefore, we have shown that our DAE

is index-1.

3.5.2 The Methodology of ode15s

First, we derived a TCAT-based PDE model to simulate concentrated flow through porous

media. Then, we rewrote the model as a system of PDAEs. Next, we used the method of
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lines to reformulate the model as a large system of semi-explicit ordinary DAEs. Finally, we

verified that the system of DAEs is index-1. The next step in this process is to solve for the

time derivate y ′. We accomplish this by integrating over time.

We run simulations in MATLAB, which has a suite of ODE solvers that solve the initial

value problem

M (t )y ′ = F (t , y ) (3.40)

along the time interval [t0, t f ]with initial condition y (t0) = y0. In (3.40), M (t ) is the mass

matrix [70]. The mass matrix can be singular, which occurs if we are solving a DAE.

Backward differentiation formulas (BDFs) are a well-known method for solving stiff

problems. The formula for the k t h order BDF, also referred to as BDFk, is given by

k
∑

m=1

1

m
∇m yn+1−h F (tn+1, yn+1) = 0, (3.41)

where 1
m∇m are optimally chosen coefficients that allow the solver to use the maximum

order m [69] and F is the right-hand side of the DAE. One solves the implicit equation

(3.41) with a simplified Newton method and arrives at a new approximation yn+1. The use

of BDF methods to solve DAEs was initially proposed by Gear [17] and has been analyzed by

numerous researchers [8, 9, 16, 45]. Many of the classic codes, such as LSODI and DASSL,

use BDFs [8] and vary the order of the BDF method so that the problem can be solved most

efficiently [69]. However, the drawback to BDFs is that as the order increases, the stability

decreases. Therefore, that MATLAB ODE suite uses a similar approach to the BDF method,

but improves stability.

The MATLAB ODE suite uses numerical differentiation formulas (NDFs) instead of BDFs.

The NDFs were derived by Gregory in 1957 [25] and later derived explicitly by Spitzbart and

Macon [73]. The developers of the MATLAB ODE suite chose NDFs because they are more

stable than BDFs [69].

A method of the form

k
∑

m=1

1

m
∇m yn+1−h F (tn+1, yn+1)−κγk (yn+1− y (0)n+1) = 0 (3.42)
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is called a numerical differentiation formula. In (3.42),κ is a scalar and theγk ’s are computed

with

γk =
k
∑

j=1

1

j
. (3.43)

The NDFs are more stable than the BDFs; however, the developers of the MATLAB ODE

suite have determined optimal κ to take advantage of the accuracy of BDFs while exploiting

the stability of NDFs [69].

The ode15s solver implements backward NDFs in order to integrate over time. The

code performs a Newton iteration

y (i+1)
n+1 = y (i )n+1+∆

(i ). (3.44)

The code finds the correction∆(i ) by solving

�

M −
h

(1−κ)γk
J
�

∆(i ) =
h

(1−κ)γk
F
�

tn+1, y (i )n+1

�

−ψ−
�

y (i )n+1− y (0)n+1

�

. (3.45)

In (3.45), M is the mass matrix, J is a finite-difference approximation to the Jacobian of F ,

andψ is given by [69]

ψ=
1

(1−κ)γk

k
∑

m=1

γm∇m yn . (3.46)

In our model, the mass matrix M , as well as the Jacobian J are sparse. By taking

advantage of the sparse structure of a matrix, we are able to avoid computations on zero

entries. This saves us both computation time and memory [12, 19, 64]. We are able to use

the MATLAB sparse command to indicate to the solver that our matrices are sparse [4].

Because we declare M and J to be sparse, the iteration matrix in (3.45), given by

�

M −
h

(1−κ)γk
J
�

(3.47)

is also sparse. Further, instead of storing a full matrix, MATLAB is able to store the matrix as

three vectors. The first vector is the entries of the iteration matrix. The second and third

vectors are the corresponding row and column, respectively, of the location of the nonzero

entry [64]. Thus, exploiting the inherent sparsity pattern in this problem saves computation

time and memory [12, 19, 64, 69].
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Once we have stored the sparse iteration matrix, ode15s computes a sparse LU

factorization [12]. From there, the solver performs a sparse direct solve to determine the

step size ∆(i ). The solver continues until it finds a value of the step that passes its error

checking routine, then continues moving forward in time until it either reaches the

user-specified end time or fails.

3.5.3 Differential-Algebraic Equation Consistency

There is one remaining condition we need to satisfy before we can solve DAEs numerically,

which is that the user-provided initial conditions must be consistent with the equation

being solved. The formal definition of consistency is outlined below.

Definition 3.5.1. A DAE has consistent initial conditions if the vector of initial conditions y0

has the slope y ′0 that satisfies [68]

M y ′0 = F (t0, y0). (3.48)

In ode15s, the user has the option of supplying consistent initial conditions. However,

if the user-provided initial conditions are inconsistent, the solver will attempt to find a

vector y that is both close to the user input and consistent [68]. The consistency condition

is important, as a DAE with inconsistent initial conditions will not be able to initialize the

simulation [70].

3.6 Sparse Jacobian Pattern

Here, we will derive the sparsity pattern for our Jacobian J that we use to determine our

iteration matrix in (3.47). We know that we have a sparse Jacobian pattern, and we will

exploit this in order to compute our solution more quickly.

For efficiency purposes, we have ordered our unknowns as

y =
�

(ωA w )1, (p w )1, (ωA w )2, (p w )2, ..., (ωA w )N+1, (p w )N+1

�T
. (3.49)

This means that, in our code, we organize F as

F =
�

ωA w (0, t ), p w (0, t ), (F1)2, (F1− F2)2, ..., (F1)N , (F1− F2)N , ...
�T

. (3.50)
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We want to determine our Jacobian J such that

Ji j =
∂ Fi

∂ yj
. (3.51)

To determine our Jacobian pattern, we will first consider the case when i is odd in (3.51).

Then, Fi = (F1) i+1
2

and yi = (ωA w ) i+1
2

. For simplicity, we shall let î = i+1
2 . From Section 3.4, we

established that we write F1 in the discrete form

(F1)î =−
1

(ρw
î
)′

 

ρw
î
εw v w

î
−ρw

î−1
εw v w

î−1

h

!

. (3.52)

Further, based on the difference schemes we used in Section 3.4, we know that

ρw
î
= ρw

î

�

ωA w
î

�

(3.53)

εw v w
î
= εw v w

î

�

ωA w
î , p w

î+1
, p w

î

�

. (3.54)

This means that

ρw
î
εw v w

î
=ρw

î
εw v w

î

�

ωA w
î ,ωA w

î−1, p w
î+1

, p w
î

�

(3.55)

and

ρw
î−1
εw v w

î−1
=ρw

î−1
εw v w

î−1

�

ωA w
î−1, p w

î
, p w

î−1

�

. (3.56)

Consequently, it follows that

(F1)î = (F1)î
�

ωA w
î ,ωA w

î−1, p w
î+1

, p w
î

, p w
î−1

�

. (3.57)

We note that (F1)î is a function of five discrete variables. However, because of how we have

chosen to order our unknowns, we will need to include a bandwidth of six.

The nonzero entries in the î t h column of the Jacobian

J (î , :) =
�

0, ..., 0,ωA w
î−1, p w

î−1
,ωA w

î , p w
î

,ωA w
î+1, p w

î+1
, 0, ..., 0

�

(3.58)

are denoted by their respective variable. Note that ωA w
î corresponds with the diagonal

entry of the Jacobian. Therefore, we need to indicate to our solver that we have a bandwidth

of six with two subdiagonals and three superdiagonals.
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To finish determining our bandwidth, we again consider the Jacobian

Ji j =
∂ Fi

∂ yj
(3.59)

and determine what our bandwidth must be when i is even. When i is even, our Jacobian

entry becomes

Ji j =
∂ (F1− F2)
∂ yj

. (3.60)

We repeat a similar process as we did when i was odd to find that

(F1− F2)î = (F1− F2)î
�

ωA w
î ,ωA w

î−1,ωA w
î−2, p w

î+1
, p w

î
, p w

î−1
, p w

î−2

�

. (3.61)

Note that in (3.61), we have more terms than we had in (3.57). This is because we are

differentiating the diffusion closure relations in conservative form, as discussed in

Section 3.4.2.

The nonzero entries in the î t h column of the Jacobian

J (î , :) =
�

0, ...,ωA w
î−2, p w

î−2
,ωA w

î−1, p w
î−1

,ωA w
î , p w

î
,ωA w

î+1, p w
î+1

, 0, ...,
�

(3.62)

are denoted by their respective variables. Our bandwidth has now increased to eight, with

nonzero entries on the diagonal, four subdiagionals, and three superdiagonals. Therefore,

we specify to ode15s that there are nonzero entries on the diagonal, four subdiagonals,

and three superdiagonals.

3.7 Solver Settings

The ode15s code provides users with several options that they can set before they initialize

the solver [51]. We consider the initial step size. To initialize our code properly, we find that

we must set the initial time step to a small value. Since we are solving a DAE, we need to

have consistent initial conditions. Recall that this means

M y ′0 = f (t0, y0) (3.63)
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for our initial conditions y0. The DAE capabilities within ode15s allow the user to input an

initial estimate for y0, and from there the code computes a consistent initial condition [68].

The initialization scheme within ode15s is well-defined only for a small initial step [70],

therefore, setting a small initial step size allows our solver to compute consistent initial

conditions and consequently allows the solver to move forward in time [68].

3.8 Modifications to ode15s

We made two changes to ode15s. The first change was to increase the number of Newton

iterations the solver performs before deciding to reject the new predicted value yn+1. The

default in ode15s is 4 iterations; however, we found that we had solver failure with such

a small number of iterations. We increased the number of Newton iterations to 20. This

allows the solver time to adjust the rate of convergence and accept a viable step in lieu of

rejecting the step too early.

The second change was to alter a norm. Deep within the file, the code calculates the

norm of the∆(i ), which is the difference between the predicted value yn+1 at time tn and

yn+1 at time tn+1. It appears in (3.44).

The default, which is hard coded, is to compute the infinity norm of∆(i ). However, when

we are tracking a sharp front that moves forward in time, this is not the preferred choice of

norm. In ode15s, the weighted infinity norm of a the step size vector∆(i ) is given by

‖invwt ∗∆(i )‖∞ =max
j
|invwt ∗∆(i )|. (3.64)

In (3.64), the norm of the step size is weighted by a quantity called invwt, which is defined

as

invwt = 1 ./ max(max(abs(y),abs(ynew)),threshold).

Here y is the old value of the solution, ynew is the update value of the solution (y +∆(i )),

and threshold is the absolute tolerance divided by the relative tolerance.

When we are tracking a sharp front, we see large changes at the location of the front,

whereas at other locations, the derivatives are much smaller, or in many cases, zero. Thus,

the infinity norm is not a good choice for our specific problem. We instead replaced the
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infinity norm with the scaled 2-norm, which is given by

‖invwt ∗∆(i )‖2 =

�

N
∑

i=1

|invwt ∗∆(i )|2
�

1
2

. (3.65)

The 2-norm allows us to take information from all of the Newton steps.

3.9 Adaptive Gridding Technique and Grid Convergence

To obtain grid independent solutions, we must use a very fine grid to resolve the front in

the TCAT model. However, using a very fine fixed grid means that simulation times for

the model can be up to 1 day. To have a grid independent solution that runs in a realistic

amount of time, we use the spatially adaptive method of lines (SAMOL) to resolve the spatial

mesh.

3.9.1 Spatially Adaptive Method of Lines

The SAMOL method uses an adaptive grid in space. Grid point placement is determined

based on ∂ ω
∂ z , the spatial gradient of mass fraction [78]. When ‖ ∂ ω∂ z ‖ is large, it shows us

where the location of the front is, and where we need to place the most grid points. This

algorithm was implemented in the TCAT model by Timothy Weigand at the University of

North Carolina. The general steps are summarized in Algorithm 1.

The new grid is a function of the spatial gradient of the mass fraction. At the grid points

where the front is located, the grid points are placed using∆z = .005
‖ ∂ ω∂ z ‖∞

. In the code, this is

called zfine, and it accounts for the fine portion of the grid. The coarse grids on either side

of the front are determined by using a slightly finer transition region to the left and right of

the front and using a very coarse set approximation of∆z = 0.5 away from the front.

This adaptive gridding technique has built-in checks to ensure that the location of the

front is within the computational domain. The code also utilizes transition regions to the

left and right of the front. If the transition region goes outside the domain, it is parsed to

keep all grid points within the computational domain.

The old solution is projected onto the new grid using a cubic pchip spline, which is

a piecewise cubic Hermite spline. This is a built-in function in MATLAB. The time step is

fixed as the amount of time that has elapsed in Step 2(d) of Algorithm 1. However, as we are
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Algorithm 1 SAMOL Algorithm

1. Resolveω and p on a reasonable grid.

2. While t < te nd

(a) Use previous value ofω to determine location of the front and generate the new
grid.

(b) Manually move the location of the front based on Darcy velocity.

(c) Project solution onto new grid using a cubic spline.

(d) Integrate (use ode15s) to advance to the next time step.

endwhile

using ode15s, the solver will optimally determine the number of time steps needed within

the prescribed interval.

Users can modify the simulation grid in a number of ways. First, one can change the

initial starting grid. The prescribed time step in Step 2(d) of Algorithm 1 can be changed,

but theoretically this should not affect the output as ode15s is a variable step solver. There

is a safety factor, which can be set to keep the transition region from becoming too small.

We can also set the minimum and maximum step sizes for the fine and coarse grids.

Now that we have discussed our adaptive gridding technique, we will perform a grid

refinement study to show that the solutions are grid independent.

3.9.2 Grid Refinement Study

Our goal is to establish that our simulation grid converges to a solution as we increase the

number of spatial grid points. To do this, we perform a grid refinement study. The general

concept of a grid refinement study involves running simulations on grids that are designed

to be progressively finer. From there, we look at the ratios of the norm of the error and

determine whether the error terms are converging to the appropriate ratio.

Performing a grid refinement study for the TCAT model is challenging for two reasons.

First, we do not have an exact solution to compare the output to. Second, the grid is

nonuniform, so we need to use a method that accounts for noninteger grid refinement.
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There are two methods that we can use to account for the fact that we do not have

an exact solution. The first method is self-estimation, where the error is measured across

successive grids. Consider a computed solution with step size h , denoted U (h ), and the

exact solution û . Self-estimation states that

U (h )− û =U (h )−U
�

h

2

�

+U
�

h

2

�

− û . (3.66)

However, if U (h ) is a good approximation, then U
�

h
2

�

− û is very small and is negligible.

Thus, we can discard U
�

h
2

�

− û in equation (3.66) and write the error with spatial step size

h as

E (h ) =U (h )−U
�

h

2

�

. (3.67)

We repeat this process with a number of different grids, then compute the ratio of the errors.

The error ratio should converge to

R =
‖E (h )‖`
‖E

�

h
2

�

‖`
≈ 2p , (3.68)

where p is the order of the method. Since our spatial discretization for the derivative of

mass fraction is first-order, we expect that p = 1 and the ratio of the errors should converge

to 2.

The other method that we can use to account for a lack of an analytic solution is to use

a fine-grid reference solution. Here, we run a solution on the finest grid computationally

possible, and treat that value, denoted by ũ , as our exact solution. From there, we compute

E (h ) =U (h )− ũ . (3.69)

We again repeat this process with a number of different grids, and calculate an error ratio

R . We should again have that p = 1 and expect R to converge to 2.

To overcome the difficulties due to noninteger grid refinement, we can use an estimate

for p given by [47]

p ≈
log(‖E (h1)‖`/‖E (h2)‖`)

log(h1/h2)
, (3.70)

where h1 and h2 are any two grid spacings. We also must perform interpolation to ensure

that the error is evaluated at consistent points. We chose to interpolate to the coarsest grid

h1 to minimize interpolation error.
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Here, we perform noninteger grid refinement using both self-estimation and a fine-grid

reference solution. We will present results for three different norms in (3.70), `= 1, 2,∞.

First, we present results from self-estimation. We start at the coarsest grid h1 and run

simulations all the way to the finest grid h8. Results are presented in Table 3.1. We expect

p → 1 as the grid becomes finer.

We note that the order p appears to converge but stagnates around 0.78 in all three

norms. This result could be for a number of reasons. First, in nonlinear problems, we often

do not see convergence to exact integer values due to the nonlinear nature of the problem.

Second, the interpolation can introduce error that prevents us from seeing convergence to

the exact order of the method. Figure 3.1 is a plot of the number of grid points versus the

logarithm of the error. As we observed in Table 3.1, we see convergence that is sublinear at

first, then becomes linear as the grid becomes finer.

Next, we will investigate grid convergence using a reference solution. We ran our

reference solution on the finest grid that we could reasonably simulate, given by

N ≈ 5.5×104 grid points. Results of the reference solution grid refinement study are shown

in Table 3.2. We can see that as we approach the h7 and h8 grids, the results have slightly

overshot the target of p = 1, indicating that the reference solution grid refinement study

has converged. Figure 3.2 shows the number of grid points versus the error. We again see

that the error decreases rapidly at the beginning, then appears to become linear as the grid

becomes very large.

Table 3.1: Grid refinement study results from self-estimation.

Grid p (1-norm) p (2-norm) p (∞-norm)
h1 0.68203 0.58938 0.48790
h2 0.71313 0.65058 0.57986
h3 0.73847 0.70168 0.65205
h4 0.76426 0.73993 0.71035
h5 0.78492 0.76604 0.74923
h6 0.79651 0.78098 0.77222
h7 0.78467 0.78467 0.78132
h8 0.78501 0.77838 0.78157
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Figure 3.1: Results of the self-estimation grid study in three different norms.

Table 3.2: Grid refinement study results from the reference solution.

Grid p (1-norm) p (2-norm) p (∞-norm)
h1 0.72596 0.65809 0.58168
h2 0.75541 0.71141 0.65788
h3 0.78526 0.75824 0.72522
h4 0.820116 0.80172 0.78178
h5 0.86427 0.85051 0.84128
h6 0.93284 0.92249 0.91717
h7 1.0691 1.0623 1.0612
h8 1.0602 1.0561 1.0590
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Figure 3.2: Results of the reference solution grid study in three different norms.
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Here, we have shown that our solution converges via both self-estimation and the

reference solution. While we found that p stagnated around 0.78 for self-estimation, we

believe the grid has converged and this is an artifact of interpolation error or the challenging,

nonlinear nature of the problem. We were able to show that p approaches 1 using the

reference solution, and therefore we have achieved grid convergence.

49



CHAPTER

4

PARAMETER ESTIMATION

In Chapter 3, we discussed the numerical issues associated with simulating the TCAT

model. Our goal in this chapter is to calibrate the model to experimental data by

estimating parameters using the nonlinear least squares algorithm Levenberg-Marquardt.

To implement the Levenberg-Marquardt algorithm, we use MATLAB’s routine lsqnonlin.

4.1 The Levenberg-Marquardt Algorithm

Our objective is to employ the Levenberg-Marquardt algorithm to estimate model

parameters so that the TCAT model fits experimental data. To achieve this, we consider the

nonlinear least squares problem

f (x ) =
1

2

N
∑

i=1

|ri (x )|2 =
1

2
R (x )T R (x ), (4.1)

where R (x ) = (r1(x ), ..., rN (x )) is the residual and ri (x ) = fi (x )− di , where fi is the model

output and di is the experimental data.

50



The function f (x ) has a fixed but unknown value x ∗ that minimizes the residual
1
2 R (x )T R (x ). We find x ∗ using an iterative method where we calculate a new estimate x+ at

each iteration. The formula for the new iterate x+ is

x+ = xc + s , (4.2)

where xc is the current iterate and s is the step size. The iteration terminates when f (x+)<

tol, where tol is a user-specified termination tolerance. Once the iteration has successfully

terminated, x ∗ = x+.

We now discuss how we calculate the step size s . Since we want f (x ) to decrease, we

search for our new iterate along a ray from xc in a descent direction where f is locally

decreasing as formally defined here.

Definition 4.1.1. A vector d ∈RN is a descent direction for f at x if [39]

d f (x + t d )
d t

|t=0 =∇ f (x )T d < 0. (4.3)

The Newton descent direction is

− (R ′(x )T R ′(x ))−1R ′(x )R (x ), (4.4)

where

∇ f =R ′(x )T R (x ). (4.5)

The condition (4.4) is only a descent direction if R ′(x ) is full rank. This yields the Gauss-

Newton iteration

x+ = xc − (R ′(x )T R ′(x ))−1R ′(x )R (x ). (4.6)

A damped Gauss-Newton method includes the addition of the Armijo rule [39]. The Armijo

rule is a line search, where one searches along the proper descent direction, but reduces

the step size s until there is sufficient decrease in the norm of the gradient.

Whereas (4.6) can be very good for some problems, the convergence analysis shows

that the Jacobians R ′(x ) and R ′(x )T must be uniformly bounded and well-conditioned for

the algorithm to terminate successfully [39].
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The Levenberg-Marquardt method [46, 50] addresses these issues by adding a parameter

ν> 0 to R ′(x )T R ′(x ), so that (4.6) becomes

x+ = xc − (νI +R ′(x )T R ′(x ))−1R ′(x )R (x ). (4.7)

Here ν is called the Levenberg-Marquardt parameter [39, 58].

We consider the two parameters in the TCAT model that will be estimated based on

the incoming concentration of the brine. The first parameter is D̂ AB , which quantifies the

effective dispersion in the experimental column. This parameter is estimated for each of

the three tracer experiments. For the higher concentration simulations, which are defined

as having an incoming concentration greater than 10−6, we estimate the parameter log(c1).

This parameter also appears in our spatially varying diffusion calculation. For these higher

concentration simulations, we consider two types of experiments. In the first, which we

denote as Case One, a brine of known concentration is pumped into a column consisting

of sand and fresh water. In the second, which we denote as Case Two, a brine of known

concentration is pumped into a column that contains sand and a resident brine of a lower

concentration.

4.2 Tracer Parameter Estimation

All three tracer experiments have an incoming concentration of 10−6 and are run through

the column prior to any higher concentration solution entering the column. The quantity

D̂ AB is used in our spatially varying diffusion relation (3.14). Once the tracer breakthrough

curve is generated for a specific column, we use lsqnonlin to determine the optimal value

of D̂ AB . After that, D̂ AB is treated as a constant value in (3.14) and the value used in each

simulation depends which column and tracer were used to generate the high concentration

breakthrough curve.

Optimal values for D̂ AB for different experiments are tabulated in Table 4.1. We estimate

the logarithm of D̂ AB because the numerical value of D̂ AB is very small, e.g., on the order

of 10−11. In Table 4.1, the first column denotes the number of the laboratory column that

holds the porous media. The second column indicates the tracer number. Both of these

columns are used to organize the data. The third column is the value of log(D̂ AB ), which is

what we explicitly estimate with the Levenberg-Marquardt algorithm. The fourth column

is simply the third column, exponentiated, so that we can see the true value of D̂ AB .
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Table 4.1: Effective dispersion estimations for the three different tracers.

Column Tracer log(D̂ AB ) D̂ AB

11 1 -23.3650 7.1238×10−11

11 2 -23.2710 7.8259×10−11

12 1 -23.4290 6.6821×10−11
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Figure 4.1: Model and experimental breakthrough curves for a tracer experiment.

Figure 4.1 shows the fit to lab data for a selected tracer experiment–Column 11, Tracer 1.

We see that the model provides an accurate estimation of the tracer data.

Now that we have determined values of D̂ AB to use for each column and tracer, we can

estimate parameters for the higher concentration experiments.

4.3 High Concentration Parameter Estimation

Recall that any experiment that is not a tracer and has an incoming mass fraction greater

than 10−6 is deemed a high concentration experiment. The available high concentration

experimental data ranges in incoming mass fractions fromωA w
i n ∈ [.0125, .4]. Our first goal

is to choose three experiments along the lower to middle range of this interval with which

we can estimate a single value of log(c1). We then perform forward simulations with this

global value of log(c1) and investigate the robustness of our model. Finally, we present a

local parameter estimation where we estimate one experiment at a time and compare the
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optimal values of log(c1) as well as residual norms. Note that because of the large magnitude

of c1, we estimated log(c1) in all cases.

4.3.1 Global Estimation for log(c1)

From earlier work with the TCAT model, as discussed in Section 2.5, we determined it was

reasonable to estimate a single parameter for a set of three experiments that are on the low to

middle end of available data, with incoming mass fractions ranging from 0.01254 to 0.1508.

We made the decision to choose these experiments due to the difficulty we experienced

fitting some of the highest concentration experiments. As the incoming concentration

increases, the problem becomes more stiff and the experimental data is consequently more

difficult to fit to the model. We will demonstrate this rigorously in Sections 4.3.2 and 4.3.3.

The experiments included in the parameter estimation are tabulated in Table 4.2. Here,

ωA w
i n is the incoming mass fraction andωA w

c o l is the resident mass fraction in the column

at t = 0. Note that for this investigation, we used only experiments from Case One, where

ωA w
c o l = 0.

We ran lsqnonlin for log(c1) and found that the value of

log(c1) = 32.785 (4.8)

yields the smallest residual across our three selected experiments. Residual norms are

listed in Table 4.2. We can see that with the sharp increase in concentration from

experiment B7 to experiment B14, the residual norm also greatly increases. This indicates

that the global choice of log(c1) does not yield model results that are as close to data as the

incoming concentration increases. The model breakthrough curves fit to data are provided

Table 4.2: Experiments considered for the global parameter estimation.

Column Tracer
Experiment

Number

Incoming
Mass Fraction

ωA w
i n

Column
Mass Fraction
ωA w

c o l

Residual
Norm

11 2 B11 0.01254 0 4.3042×10−3

11 2 B7 0.02541 0 3.97864×10−3

11 2 B14 0.1508 0 1.7443×10−1
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(a) B11
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(b) B7
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(c) B14

Figure 4.2: Breakthrough curves for the three selected experiments, B11, B7, and B14.

in Figure 4.2. We again see that the two lower concentration simulations appear to closely

match the data, whereas B14 fails to capture the initial behavior as the front enters the

column.

4.3.2 Forward Simulations for Global log(c1)

Next, we employed the optimal value of log(c1) = 32.785 and ran forward simulations for

other high concentration experiments. The experiments considered as well as the residual

norms for the forward simulations are listed in Table 4.3.

Table 4.3: Selected experiments for the forward simulations.

Column Tracer
Experiment

Number

Incoming
Mass Fraction

ωA w
i n

Column
Mass Fraction
ωA w

c o l

Residual
Norm

11 2 B8 0.1003 0 7.8486×10−2

11 1 B6 0.2009 0 1.7680×10−1

11 2 B9 0.4012 0 4.3386×10−1

12 1 B2 0.2716 0.1508 7.7533×10−2

12 1 B3 0.3706 0.2716 8.8850×10−2

12 1 B4 0.4547 0.3706 1.3689×10−1

11 2 B19 0.5267 0.4550 1.8850×10−1
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(a) B8
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(b) B6
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(c) B9

Figure 4.3: Forward simulations of breakthrough curves for Case One, where there is fresh
water in the column at the start of the experiment.

Figure 4.3 shows the forward simulations compared to experimental data for the

experiments in Case One, where there is fresh water in the column at the start of the

experiment. We see that as the incoming concentration increases, the curves generated

with the global value of log(c1) become sharper. While the curve generated for B8 is only

moderately sharper than the data, the curve for B9 is far too sharp to replicate data

behavior. This observation, along with the fact that the residual norms increase as the

incoming concentration increases, shows that log(c1) is a sharpening parameter that has

more pronounced effects on the curve as the incoming concentration increases. Therefore,

this investigation seems to indicate that smaller values of log(c1) need to be used to

accurately simulate the highest concentration experiments.

Figure 4.4 shows the forward simulations compared to model data for the selected

experiments in Case Two, where there is a lower concentration resident brine in the column

at the start of the experiment. Here, we again see that the residual norms increase with an

increase in incoming concentration; however, for experiments in Case Two, the increase in

log(c1) has as opposite effect and tends to smooth the curve as its value increases. From the

tabulated values in Table 4.4, we determine that the optimal value of log(c1) increases as

the incoming concentration increases, whereas the residual norms are close in value. This

smoothing phenomena appears to be due to the fact that the difference betweenωA w
i n

andωA w
c o l decreases as the incoming concentration increases. Therefore, a higher value of

log(c1) is needed to replicate the behavior of the data as incoming concentration increases.
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(b) B3
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(c) B4
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(d) B19

Figure 4.4: Forward simulations of breakthrough curves for Case Two, where there is a
resident brine in the column at the start of the experiment.

This again shows that a single value of log(c1) is not adequate to estimate all experimental

data.

4.3.3 Individual Parameter Estimation

To investigate how the parameters change with incoming concentration, we next

estimated individual parameters for the experiments considered in Sections 4.3.1 and 4.3.2.

The experiments used for the individual least squares simulations are listed in Table 4.4,

along with the optimal values of log(c1) and the residual norms. From Table 4.4, we see that

for the first four experiments in Case One, which are also the first four experiments listed

in Table 4.4, the optimal value of log(c1) decreases as the incoming concentration increases.

For the remaining two experiments in Case One, we observe that because the incoming

concentrations of B6 and B9 are so high, the model has difficulty replicating the
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Table 4.4: Optimized parameter values for selected experiments.

Column Tracer
Experiment

Number

Incoming
Mass Fraction

ωA w
i n

Column
Mass Fraction
ωA w

c o l

log(c1)
Residual

Norm

11 2 B11 0.01254 0 33.312 1.2303×10−3

11 2 B7 0.02541 0 32.854 3.6947×10−3

11 1 B8 0.1002 0 31.921 3.9206×10−2

11 2 B14 0.1508 0 31.790 8.7852×10−2

11 1 B6 0.2009 0 31.955 1.4479×10−1

11 2 B9 0.4012 0 33.280 4.1103×10−1

12 1 B2 0.2716 0.1508 32.564 7.3970×10−2

12 1 B3 0.3706 0.2716 33.206 7.6935×10−2

12 1 B4 0.4547 0.3706 33.816 7.7136×10−2

11 2 B19 0.5267 0.4550 34.177 7.4622×10−2

experimental behavior and tends towards oversharpening to minimize the residual norm.

We also see that the residual norm increases as the incoming concentration increases,

indicating the higher concentration experiments are more difficult to estimate.

The experiments from Case Two in Table 4.4 show that the optimal value of log(c1)

increases as the incoming concentration increases. This verifies what we saw in Section 4.3.2

for Case Two, where the decrease in difference between the incoming and resident brine

concentrations means that log(c1)must increase with incoming concentration in order to

best fit the data. The residual norms are close in value, indicating that all of the experiments

are moderately difficult to estimate.

Figure 4.5 shows the model and experimental breakthrough curves for Case One. We can

visually verify that the residual norms increase as the incoming concentrations increase, as

quantified in Table 4.4.

Figure 4.6 shows the model and experimental breakthrough curves for Case Two. We

again notice that as the incoming concentration increases, the model seems to become

sharper than the data as the optimizer selects larger optimal values of log(c1).
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(b) B7
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(e) B6
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(f) B9

Figure 4.5: Individually estimated breakthrough curves for Case One.

4.4 Conclusions

These investigations show that a single value of log(c1) is not adequate to describe all

available experimental data. As incoming mass fractions increase from 0.01254 to 0.4012 for

Case One, we see that we need varying values of log(c1) to describe the experimental data.

For incoming mass fractions from 0.01254 to 0.1508, the optimal value of log(c1) decreases;

however, it begins to increase as incoming mass fractions become greater than 0.20. For

Case Two, the optimal value of log(c1) increases from 32.564 to 34.177 as the incoming mass

fractions increase from 0.2716 to 0.4550. The modeled breakthrough curves become more

smooth as incoming concentration increases for Case Two. Therefore, a larger value of

log(c1) is needed to replicate experimental behavior as incoming mass fraction increases.

In Chapter 5, we will select four experiments from Case One and develop a surrogate

model used for Bayesian inference.
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(b) B3
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(c) B4

1 1.2 1.4 1.6 1.8 2
Time (s) 104

0

0.2

0.4

0.6

0.8

1

1.2

C
i/C

Model
Lab Data

(d) B19

Figure 4.6: Individually estimated breakthrough curves for Case Two.
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CHAPTER

5

SURROGATE MODELING

In this chapter, we construct a surrogate model for TCAT, which we will later use for Bayesian

parameter estimation.

5.1 Justification for Constructing a Surrogate Model

The numerical techniques used for parameter estimation in the previous chapter require

costly function evaluations, typically on the order of 15-20 minutes for a single evaluation.

Despite the fact that we are implementing a 1-D model, the fine grid that we must use to

achieve grid independence, as well as the stiffness of the problem, present a challenge to our

numerical solver. Our goal in this chapter is to develop a surrogate model to overcome long

run times so that we can implement parameter estimation and uncertainty quantification

for the TCAT model using Bayesian inference.

As we will discuss in Chapter 6, Bayesian inference involves determining a posterior

distribution for the parameters. For most problems, this distribution cannot be

determined analytically; therefore, we will use a Delayed Rejection Adaptive Metropolis
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(DRAM) algorithm to simulate the posterior distribution. To obtain chain convergence,

DRAM typically requires tens of thousands of function evaluations.

For problems and models with long run times, DRAM simulations could potentially

take weeks or months, therefore rendering Bayesian inference techniques infeasible [71].

To address this problem, we construct and verify a surrogate model for TCAT. The purpose

of a surrogate model is to replicate the response of a computationally expensive numerical

model in a computationally more efficient manner. This surrogate model will allow us to

perform uncertainty quantification on the TCAT model by providing reasonable simulation

times.

In many cases, the first step in creating a surrogate model is to eliminate parameters

that are not identifiable or influential [66].

Definition 5.1.1. A parameter q is identifiable at value q ∗ if, given the mapping y = f (q ),

q = [q1, · · · , qp ], f (q ) = f (q ∗) implies that q = q ∗ for all q ∈ Q, where Q is the space of

admissible parameters. If q is identifiable only in a subset of the parameter space denoted

I (q ), then I (q ) is called the identifiable subspace.

A parameter that fails to be identifiable is termed unidentifiable. Moreover, we consider

noninfluential parameters that do not significantly impact model output. We define the

space N I (q ) of noninfluential parameters as | f (q )− f (q ∗)|<ε for all q and q ∗ contained in

N I (q ) [66].

Parameters that are nonidentifiable or noninfluential cannot be uniquely determined

by either the least squares parameter selection techniques of Chapter 4 or the Bayesian

inference techniques we will discuss in Chapter 6 that utilize a noninformative prior.

Therefore, before constructing a surrogate model, one must determine which subset of

model parameters are identifiable. There are both local and global sensitivity methods to

determine whether a parameter is identifiable. Local sensitivity methods perturb

parameters about a fixed value and measure the change in model response. Global

sensitivity methods determine the effect of parameters over the entire range of admissible

parameter values, and include Sobol analysis and Morris screening [66].

Active subspace methods consist of algorithms that determine parameters that most

strongly influence the model response. For linear problems, active subspace methods

involve the singular value decomposition (SVD) as well as randomized algorithms.

Nonlinear active subspace methods are more challenging and include variance analysis

and model linearization. For more details on these methods, see [71]. Unlike active
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subspace methods, parameter subset selection ranks the most influential np ≤ p

parameters but does not determine which parameters are more influential than others

within the subset [66].

Recall that in Section 2.5, we gave a discussion of the history and evolution of the

TCAT model. The model presented in Chapter 3, and considered in this dissertation, was

reduced from two parameters to one parameter, c1. In the previous chapter, we showed that

log(c1) is identifiable. Therefore, we have shown that we have a model with one identifiable

parameter, and we can create a surrogate model for TCAT.

5.2 Surrogate Model Classification

There are different types of surrogate models, including regression-based models,

interpolation-based models, projection-based models, and hierarchical models.

Regression and interpolation-based models are also generally called response surface

models, which indicate that they are based upon fits to model response data [71].

We consider the statistical model

Υi = fi (q ) +εi , i = 1, . . . , n , (5.1)

where Υi are random variables with realizations vi . The parameter-dependent model f (q )

yields a model response based on input parameters q . Random variables εi describe

observative errors between the model response and measurements. We assume εi are

independently and identically distributed (iid) with εi ∼ N (0,σ2). There errors are

generally associated with the high-fidelity model and not the surrogate approximate. The

model (5.1) allows us to construct surrogates while accounting for observative error.

The goal of a response surface model is to use model responses vi associated with model

input q to construct an approximation or emulator f̃ (q ) of the original model f (q ). The

emulator f̃ (q ) allows us to construct model responses for values of q not directly simulated

by the original model.

Both regression and interpolation-based models treat the original model as a black box,

where the user calls the model repeatedly, often with randomly determined inputs in a

prescribed interval. Regression-based models emulate the trends in the model output as a

regression relationship between a simple model with a set of fixed but unknown

coefficients. In many applications, polynomial surrogates are used, and the linear
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coefficients are determined by least squares parameter estimation between the surrogate

output and the output from the full model [1]. In this dissertation, we will use a

regression-based model to construct the surrogate.

When constructing an interpolation-based model, one constructs a relationship

between the input and the output by interpolating the responses from the code using

appropriate weights [1, 49].

To construct projection-based models, also called reduced order models, one projects

responses and parameters onto a lower-order subspace, using techniques such as proper

orthogonal decomposition or high-dimensional model representation. More information

on reduced order models can be found in Chapter 13 of [71]. Finally, to construct hierarchical

models, one typically modifies the model in a way that reduces simulation times, including

coarsening grids or simplifying physical assumptions. For more information on hierarchical

models, see [13].

5.3 Regression-Based Model Construction

In this section, we summarize the construction of a regression-based model.

The general regression-based model is given by

f (q ) = f̃ (q ) +ε, (5.2)

where f (q ) is the expensive simulation output, f̃ (q ) is the surrogate model output, which is

efficient to evaluate, and ε is the error in the surrogate model response. In regression-based

surrogate models, f̃ (q ) is often taken to be a polynomial or spline-based model [59].

The example we will give in the next section utilizes polynomial regression where

coefficients are fit to model responses using a least squares algorithm. We begin by

considering linear, quadratic, and cubic polynomial surrogate models. The linear model is

f̃ (q ) =β0+
n
∑

i=1

βi qi +ε, (5.3)

whereas quadratic polynomials have the form

f̃ (q ) =β0+
n
∑

i=1

βi qi +
n
∑

i=1

n
∑

j≥i

βi j qi q j +ε. (5.4)
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The cubic model is

f̃ (q ) =β0+
n
∑

i=1

βi qi +
n
∑

i=1

n
∑

j≥i

βi j qi q j +
n
∑

i=1

n
∑

j≥i

∑

k≥ j

βi j k qi q j qk +ε. (5.5)

Here, f̃ (q ) is the response of the polynomial model plus an iid error model response with

εi ∼N (0,σ2). The terms β0, βi , βi j , and βi j k are the unknown polynomial coefficients. The

qi , q j , and qk terms are components of the input parameter values. We use ordinary least

squares to compute the unknown values of β0, βi , βi j , and βi j k [1].

In addition to using polynomials to construct a regression-based model, one can also

consider other forms of the surrogate model. When we construct the surrogate model for

TCAT, we use a piecewise cubic spline. To construct our spline, we use the MATLAB function

spline. The function spline automatically breaks up the model response into intervals,

then uses a cubic polynomial whose intercept is the realization of the left boundary of the

spline interval to approximate the surrogate model. The coefficients of the polynomial are

again fit using least squares [56].

When building the surrogate model for TCAT, a potential future direction for this project

includes investigating the use of logistic regression as the relative concentration is bounded

between 0 and 1 and is increasing. One could attempt to fit the shape parameters for

different experiments and determine if the logistic model is able to outperform the cubic

spline surrogate model.

5.4 Surrogate Example

To illustrate a regression-based surrogate model, we consider the function

f (q ) = exp(0.7q1+0.3q2). (5.6)

We will construct a polynomial regression-based model, f̃ (q ) to approximate this function

of two variables.

In many cases, a quadratic polynomial can quantify the physical response and is a

natural choice for optimization. To avoid overfitting, one should check the Bayesian

information criterion (BIC)

BIC= k log(n )−2 log(L ) (5.7)
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or the Akaike information criterion (AIC)

AIC= 2k −2 log(L ). (5.8)

In both of these equations, k is the order of the polynomial, n is the number of observations,

and L is the sum of squares likelihood. The goal is to choose the order k that yields the

smallest AIC and BIC [49].

For data, we will generate synthetic responses for q1 and q2 sampled from the interval

[−1,1] with εi ∼ N (0,0.12). To generate the training points, we use the rand function in

MATLAB. We then use the AIC and BIC to determine the optimal order of the response

surface model. For this case, the AIC and BIC results for polynomials of order 1 to 5 are

compiled in Table 5.1. Note that both criteria show that the optimal order of the polynomial

is 2 since this produces the lowest AIC and BIC scores.

Since the optimal surrogate model is second-order, it will have six coefficients and takes

the form

f̃ (q ,β ) =β0+β1q1+β2q2+β12q1q2+β11q 2
1 +β22q 2

2 . (5.9)

The optimal coefficients as determined by polyfitn are computed in Table 5.2.

Next, we generate another set of 300 test points with a known variance of σ = 0.1 to

verify the accuracy of the response surface model. The fit of the response surface versus the

test points is shown in Figure 5.1. The root mean square error takes on a value of 0.09567,

indicating a good fit between the response surface model and the test points.

Table 5.1: Information criterion comparison for the (5.6).

Polynomial
Order

Akaike
Information Criterion

Bayesian
Information Criterion

1 −1.14×102 −1.07×102

2 −1.82×102 −1.67×102

3 −1.76×102 −1.50×102

4 −1.67×102 −1.28×102

5 −1.61×102 −1.06×102
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Table 5.2: Coefficients of the second-order response surface model for (5.6).

Coefficient Value
β0 0.3081
β1 0.2311
β2 0.7399
β12 0.05248
β11 0.3414
β22 0.9746
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Figure 5.1: Response surface model and test points for (5.6).

5.5 Constructing a Surrogate Model for TCAT

Here, we illustrate the construction of a regression-based surrogate model for the TCAT

model. We construct the surrogate by generating sets of training and test points. Two sets

of 300 values of log(c1)were randomly selected from the interval [0, 35], which is the range

of feasible inputs for the model. Note that as in Chapter 4, we used the natural logarithm of

c1 due to its large magnitude.

After the test and training points were selected, we ran the model for each value of log(c1)

and stored the output—in this case, a breakthrough curve giving the relative concentration

over time at the top of the column. Whereas this was a computationally intensive effort, we
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utilized high-performance computing resources, including MATLAB’s parallel computing

toolbox, to reduce simulation times.

Once the test and training points were stored with appropriate model responses, we

use the set of training points to determine the surrogate model response. A surrogate for

the lowest concentration non-tracer experiment, Column 11, B11, was first generated to

reduce simulation time. This simulation yields the relative concentration at n = 525 output

times. As some of the behavior of the breakthrough curve is less interesting, for instance,

before the front reaches the top of the column or at steady state flow when the relative

concentration is 1, we chose to begin to investigate our regression-based model during

breakthrough so that we could see variability between the responses.

We constructed a response surface model using a polynomial approximation. In the

case of the TCAT model, we found that k = 2 minimizes these criteria. The results of the

AIC and BIC are tabulated in Table 5.3.

Since the TCAT model has only one parameter (p = 1), the quadratic response surface

model is

f̃ (q ,β ) =β0+β1q +β11q 2, (5.10)

where q = log(c1) is the parameter of interest. The values of β0,β1,β11 were determined

using polyfit in MATLAB [52] and are shown in Table 5.4. From Table 5.4, we determine

that both β0 and β1 are small and the polynomial is dominated by the quadratic term.

Despite being the optimal choice from the AIC and BIC, we determined that a quadratic

polynomial did not have the correct characteristics to accurately emulate the TCAT model.

As illustrated in Figure 5.2, the surrogate does not correctly approximate the behavior of

the TCAT model.

Table 5.3: Information criterion comparison for the TCAT model.

Polynomial
Order

Akaike
Information Criterion

Bayesian
Information Criterion

1 -1.81 5.60
2 -2.05 1.09
3 1.28 1.60
4 2.64 2.11
5 3.90 2.61
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Table 5.4: Coefficients of the second-order response surface model for TCAT.

Coefficient Value
β0 1.0137×10−14

β1 −2.6803×10−13

β2 1.2540×10−2
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Figure 5.2: Polynomial response surface model and test points for TCAT.

Based on the shape of the data, a polynomial of any order cannot accurately represent

the dynamics of the TCAT model response as log(c1) increases. The model response is

almost constant until it has a sharp logarithmic-like decline towards the end of the range

of identifiable log(c1). Due to this behavior in the model response, we instead fit a cubic

spline to the model response, using spline in MATLAB. Utilizing a spline in place of the

typical polynomial is increasingly popular in the surrogate literature, including [28, 74].

In Figure 5.3, we illustrate the response surface model fit with a cubic spline surrogate

versus the test points for t = 1.32×104 seconds, which is during breakthrough. We observe

that the cubic spline generates a much better fit to data for the response surface model

applied to TCAT. The root mean square error is much improved at a value of 8.56×10−7, as

compared to 0.136 for the quadratic model (5.10).
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Figure 5.3: Cubic spline response surface model and test points for TCAT.

5.6 Evaluating the Surrogate Model Over Time

For our investigation in the previous section, we purposefully chose one of the more

challenging time points in our model, given by breakthrough, or the brine front reaching

the top of the column. For verification purposes, we fit the model at several other time

points, which are quantified in Table 5.5. We note that all of the root mean square errors

are small, indicating that the surrogate is a good approximation of the high-fidelity model.

We then wrote a script that creates an output of relative concentration for each of our

n = 525 time points. The response surface model now outputs a breakthrough curve, with

steepness controlled by log(c1).

Breakthrough curves for selected values of log(c1) are shown in Figure 5.4. We see that the

curves sharpen as log(c1) increases; however, there is not much change in output between

log(c1) ∈ [0, 28].

The norm of the root mean square error for the time-dependent surrogate model is

4.56×10−9 and the error bound is 1.14×10−7. Recall that the model output Ci
C is bounded

between 0 and 1; therefore, a root mean square error on the order of 10−9 indicates that the

errors in the surrogate model are small in comparison to the high-fidelity model output.

The error bound is also small in comparison to the high-fidelity model, indicating that the

surrogate model is an appropriate emulator for the high-fidelity model for all admissible
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Table 5.5: Root mean square errors for different time .

Time (s)
Root Mean

Square Error
7.52×103 7.60×10−19

1.32×104 8.56×10−8

1.47×104 1.53×10−5

1.56×104 3.43×10−6

1.62×104 1.58×10−6

1.77×104 6.03×10−8

2.07×104 6.11×10−8
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Figure 5.4: Surrogate breakthrough curves for varying log(c1).

values of log(c1) over time. Consequently, we have constructed a surrogate model that is an

accurate emulator of the high-fidelity model.

5.7 Surrogate Models for Additional Experiments

In the previous two sections, we considered a surrogate model for the experiment in

Column 11, B11, which has an incoming concentration of 0.01254. Next, we construct

response surface models over time using a spline for three additional experiments.

Experiments considered are listed in Table 5.6, and ωA w
i n represents the incoming

concentration for each experiment. We also tabulate the norm of the root mean square

error and the error bound over time for each experiment. We note that while error
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Table 5.6: Errors from surrogate modeling.

Experiment
Number

ωA w
i n

Norm of
Root Mean

Square Error

Error
Bound

B11 0.01254 4.56×10−9 1.14×10−7

B7 0.02541 7.73×10−9 1.09×10−6

B8 0.1002 7.90×10−9 9.19×10−7

B14 0.1508 1.46×10−8 4.96×10−7

increases as the incoming concentration increases, all of these values indicate a good fit to

the high-fidelity model.

Next, we visualize the output of the surrogate model compared to test points at

breakthrough for values of log(c1). These investigations are again performed as

breakthrough occurs to qualify the behavior of the model. Figure 5.5 shows that the

surrogate provides an accurate and robust emulator of the full TCAT model at

breakthrough.
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Figure 5.5: Surrogate models compared to test points at breakthrough.
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5.8 Surrogate Model and Bayesian Inference

The surrogate models take approximately 0.01 seconds per function evaluation, compared

to 15-20 minutes for the high-fidelity TCAT model. These computational savings allow

us to run our Bayesian inference parameter estimation in less than 20 minutes, which is

approximately the elapsed time for one high-fidelity TCAT simulation.

Now that we have a surrogate that emulates the response of the TCAT model, we can

perform uncertainty quantification using Bayesian inference, as detailed in Chapter 6.
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CHAPTER

6

BAYESIAN INFERENCE

In Chapter 4, we estimated parameters using experimental data and the

Levenberg-Marquadt algorithm. Here, we perform statistical analysis of our model using

Bayesian inference [71, 72].

Unlike frequentist inference, which is based on the tenet that parameters have unknown

but fixed values, parameters are assumed to be random variables in the Bayesian framework.

Hence, they have associated probability density functions (pdfs) that are quantified using

Bayes’ relation.

6.1 Statistical Modeling

In the previous chapter, we considered the statistical model

Υi = f (ti , q ) +εi , i = 1, . . . , n . (6.1)

Recall that Υi are random variables with realizations vi . The model f (ti , q ) yields a response

based on input parameters q . We denote observative error by the random variables εi ,
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which we assume are independent and identically distributed (iid) with mean 0 and variance

σ2. We begin by plotting the kernel density estimates of the errors in Figure 6.1 to validate

that εi
i i d∼ N (0,σ2). The distributions are approximately normal with means close to zero.

6.2 Frequentist and Bayesian Approaches

There are two contrasting approaches to inference that differ in how they consider

probabilities. The first is the frequentist approach, where probability is defined as the

frequency with which an event occurs if it is repeated many times. The goal of the

frequentist approach is to determine parameters q such that they minimize the residual

between the model response and data. In this framework, q is considered a fixed but

unknown value. Once we have determined optimal q , we can construct confidence
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Figure 6.1: Error distributions for the four considered experiments.
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intervals and sampling distributions. While this analysis can be useful for applications, the

frequentist approach does not directly provide a distribution for parameters [71].

The other inference technique, which is utilized in this chapter, is the Bayesian approach.

Unlike frequentist inference, which is based on the tenet that parameters have fixed but

unknown values, Bayesian inference considers parameters as as random variables. Thus,

they have associated probability densities that are quantified using Bayes’ relation [71]. The

Bayesian approach can be advantageous for problems where there is uncertainty in the

model [72].

6.3 Bayes’ Relation

Parameter estimation within the Bayesian framework allows us to consider our parameters

as random variables with distributions. Bayes’ relation,

π(q |v ) =
π(v |q )π0(q )
π(v )

, (6.2)

quantifies these distributions. Here π(v |q ) is the likelihood function, which incorporates

information from the model and data. Specifically, it tells us the probability of obtaining

observations v given input q [71].

The prior is denoted by π0(q ), and it incorporates any prior knowledge about the

parameters or data [72]. If the prior information is uncertain, we employ a flat prior [71].

When possible, it is preferred to use a conjugate prior so that one can obtain a closed-

form solution of the posterior distribution. A conjugate prior has the same parametric form

as the posterior distribution and allows us to determine a closed-form expression for the

posterior. In this dissertation, we consider normally distributed observative errors, and

therefore the likelihood function is in the inverse-gamma family. Thus, the conjugate prior

is also in the inverse-gamma family [71]. More detailed information on priors can be found

in [7, 36, 71].

The denominator in (6.2), π(v ), is the marginal density [71]. Mathematically, it is the

integral over the parameter space of the numerator, and is given by

π(v ) =

∫

IRp
π(v |q )π0(q ) dq , (6.3)

76



where p is the number of parameters [71].

The goal of using Bayesian inference is to determine the posterior pdf π(q |v ). Recall

that we assume our statistical model has the form

v = f (q ) +ε. (6.4)

In this dissertation, we use the assumption that the error is iid and normally distributed

with mean 0 and varianceσ2,

εi
i i d∼ N (0,σ2). (6.5)

In this case, the likelihood function is

π(v |q ) =
1

(2πσ2)n/2
e −SSq /2σ

2
, (6.6)

where SSq is the sum of squares error

SSq =
n
∑

i=1

(vi − fi (q ))
2. (6.7)

In practice, it is typically impossible to evaluate Bayes’ relation directly. Markov Chain

Monte Carlo (MCMC) methods solve this problem by allowing us to sample from the

posterior [72].

We next discuss the Metropolis algorithm, which is a practical implementation of

MCMC.

6.4 Markov Chain Monte Carlo (MCMC) and the Metropolis

Algorithm

The marginal density in Bayes’ relation, given by (6.3), can be a high-dimensional integral

which is difficult or impossible to evaluate analytically. Markov Chain Monte Carlo (MCMC)

methods allow us to address this issue by sampling from the posterior [72]. Using MCMC,

we can explore the parameter space to determine the distribution of parameters. MCMC

methods create a Markov Chain whose stationary distribution is the posterior distribution.

Further, we can use realizations of our Markov chain to sample from the posterior and
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determine marginal densities for the parameters [71]. Next, we will introduce the Metropolis

algorithm, which allows us to implement MCMC.

The Metropolis algorithm allows us to generate a Markov Chain whose stationary

distribution is that of the posterior [11, 26, 72]. The Metropolis algorithm uses an

accept-reject criteria, where a new candidate point q ∗ is determined from a proposal

distribution J (q k |q k−1) [72]. We use the proposal distribution

J (q ∗|q k−1) =N (q k−1, V ), (6.8)

where V is the covariance matrix, to construct our candidate q ∗. The explicit formula for

the candidate q ∗ is then

q ∗ = q k−1+R z , (6.9)

where R is the Cholesky factorization of V and z ∼ N (0,1). Our proposal distribution

J (q ∗|q k−1) is symmetric, which means J (q ∗|q k−1) = J (q k−1|q ∗).
Next, we consider the probability of accepting the candidate q ∗. We consider the ratio

of posterior densities

r (q ∗|q k−1) =
π(q ∗|v )
π(q k−1|v )

=
π(v |q ∗)π0(q ∗)

π(v |q k−1)π0(q k−1)
. (6.10)

We can eliminate the normalization constants since π0(q ∗)
π0(q k−1) = 1 so that (6.10) becomes a

ratio of likelihoods where

r (q ∗|q k−1) =
π(v |q ∗)
π(v |q k−1)

. (6.11)

We assume that the errors are iid and normally distributed with mean 0 and varianceσ2 so

that (6.11) becomes

r (q ∗|q k−1) = e −
�

SSq∗−SSq k−1

�

/2s 2
k−1 , (6.12)

where s 2
k−1 is an estimate forσ2.

We accept the candidate with probability

α(q ∗|q k−1) =min
�

1, r (q ∗|q k−1)
�

. (6.13)

If we accept the candidate q ∗, we set q k = q ∗ and also update the sum of squares error such

that SSq k = SSq ∗ . If we reject the candidate q ∗, we revert to the previous value of q such
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that q k = q k−1 and SSq k = SSq k−1 . We update sk by sampling sk ∼ Inv-gamma(av a l , bv a l ).

For details on how to derive these shape parameters, see [71]. The result of the Metropolis

algorithm is a chain whose stationary distribution is the posterior. The Metropolis algorithm,

taken directly from [71], is summarized in Algorithm 2.

The Metropolis Hastings (MH) algorithm is a variation of the Metropolis algorithm

where we allow the proposal distribution J (q ∗|q k−1) to be asymmetric [71, 72]. We do not

further consider the MH algorithm in this dissertation.

Once we have constructed a chain [q 1, . . . , q N ], we must show that q converges to the

posterior distributionπ(q |v ). In the next section, we show how we determine that the chain

has converged to the posterior distribution.

Algorithm 2 Metropolis Algorithm

1. Set input parameters.

2. Determine q 0 by performing a least squares optimization.

3. Determine the initial error, SSq 0 =
∑n

i=1(vi − fi (q 0))2.

4. Determine the initial variance estimate, s 2
0 =

SSq 0

n−p .

5. Construct and compute the Cholesky factorization R of a covariance estimate V .

6. Loop over M , the number of chain iterates.

(Continued on the next page)
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Algorithm 2 Metropolis Algorithm (continued)

7. For i = 2, . . . , M

(a) Sample zk ∼N (0, 1).

(b) Choose a new candidate q ∗ = q k−1+R zk .

(c) Sample uα ∼U (0, 1).

(d) Compute SSq ∗ =
∑n

i=1

�

vi − fi (q ∗)
�2

.

(e) Determine r (q ∗|q k−1) = e −
�

SSq∗−SSq k−1

�

/2s 2
k−1 .

(f ) Determine α(q ∗|q k−1) =min
�

1, r (q ∗|q k−1)
�

.

(g) If uα <α(q ∗|q k−1),

q k = q ∗ and SSq k = SSq ∗ .

else

q k = q k−1 and SSq k = SSq k−1 .

endif

(h) Update sk ∼ Inv-gamma(av a l , bv a l ), where av a l = 1
2 (ns +n ), bv a l =

1
2

�

ns s 2
k−1+SSq k

�

.

6.5 Convergence

With enough iterations, chains will converge to the posterior [71]. For the first several

MCMC iterations, runs typically experience a burn-in period. This is a certain number of

chain iterations before the algorithm converges to the posterior distribution. Depending

on the problem and q 0, the burn-in period can vary significantly. To qualitatively establish

convergence, one starts with a large number of chain iterations and plots the chain for each

parameter. We can visually observe when the chain has converged to the correct distribution

[72], although we will also use statistical tests to prove the chains have converged. One

metric τ is the integrated autocorrelation time, which is the estimated number of steps

needed to draw independent samples from the posterior distribution. Smaller values of
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Figure 6.2: (a) Burn-in period for the chain and (b) chain that has converged.

τ indicate that the chain converges more quickly [14]. A second convergence metric is

a parameter geweke, which splits the chain into pieces and tests the resulting pieces for

similarity. Typically, the chain is split into the first half and final ten percent, and the means

are compared. A value of geweke close to 1 indicates that the first and last elements are

from the same distribution. Whereas it is tempting to interpret this as indicating evidence,

the chain may be stuck in a local minima. Hence, while these statistical tests can establish

non-convergence, they may not establish convergence. A more rigorous test of convergence

is to run multiple chains and compute the Rubin-Gelman statistic [72].

The Rubin-Gelman statistic R is computed from m ≥ 2 independent chains with length

2n and different initial starting values across the admissible parameter space. We use the

last n entries of each chain and compute a target variance R , which quantifies a comparison

of the mean of each chain to the mean of the m independent chains and also measures the

scaled total variance of the chains. We expect R → 1, which proves that the chains converge

across the admissible parameter space and the chain is not stuck in a local minima [21].

Figure 6.2 shows two Markov chains. Figure 6.1(a) shows the first 200 iterations of the

Markov chain while burn in is occurring. Figure 6.1(b) shows a Markov chain that has

burned in and has converged. While these plots do not show that the chain has converged

over the admissible parameter space, we can infer that the chain has converged to a local

minima.
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In the next section, we will discuss Delayed Rejection Adaptive Metropolis (DRAM),

which is an improvement on Algorithm 2. We used DRAM to determine our posterior

distributions of parameters that we present in Section 6.7.

6.6 Implementation: DRAM

The implementation of MCMC that we use is Delayed Rejection Adaptive Metropolis

(DRAM) [29]. Delayed rejection (DR) is an altered form of the Metropolis algorithm [29, 75].

The goal of DR is to improve the efficiency of the estimators. DR accomplishes this goal by

altering how the Metropolis algorithm addresses rejected candidates q ∗ [29]. In the

Metropolis algorithm, when we reject q ∗, we revert to q k−1 in the chain. However, DR

provides an alternative candidate q ∗2 if q ∗ is rejected. Our second-stage candidate is

proposed from the distribution

q ∗2 = q k−1+γ2Rk zk . (6.14)

Here, zk ∼N (0, 1), Rk is the Cholesky factorization of the covariance matrix V , and γ2 =
1
5 is

a design parameter that narrows the second-stage proposal function and increases mixing

in the now smaller region. The code that we use employs a second-stage candidate [71]. We

explicitly outline the construction of q ∗2 in Algorithm 4.

Adaptive Metropolis (AM) allows us to better choose the proposal distribution while

utilizing past samples of the chain [29]. If we consider step 5 in Algorithm 2, we see that our

proposal distribution J depends on the initial covariance estimate V . However, AM takes

this one step further by instead allowing J to be updated using the previous chain samples.

To determine our distribution, we take the covariance matrix at the k t h step, which is given

by [71]

Vk = sp cov(q 0, ..., q k−1) + εIp . (6.15)

Here, sp is a scaling parameter that is set to 2.4
p 2 , where p is the number of parameters

in the model [29], ε is a parameter that guarantees that Vk is positive definite, and Ip

is the p × p identity matrix. In most practical applications, we set ε = 0 [29, 71]. In the

code that we use, the covariance matrix is updated every 100 iterations. We perform a

Cholesky decomposition where Vk =Rk R T
k . Next, we take the candidate from the proposal
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distribution to be

q ∗ = q k−1+Rk zk , (6.16)

where zk ∼N (0, 1). This is step 6(i) in Algorithm 3.

The advantage of AM is that by allowing the proposal distributions to be updated as

we update the chain, we can incorporate past information and arrive at a more plausible

candidate from the proposal distribution [71]. However, because we are considering past

time states, the process is no longer Markovian. Haario et al [29] showed that the chain

generated by DRAM converges uniquely to the posterior distribution.

We use the implementation of DRAM in MATLAB written by Marko Laine. This open-

source software is publicly available; for more details see [42]. The algorithm used in [42]

for a flat prior is provided in [71], and is given in Algorithm 3.

Algorithm 3 DRAM Algorithm

1. Set input parameters.

2. Determine q 0 by performing a least squares optimization.

3. Determine the initial error, SSq 0 =
∑n

i=1(vi − fi (q 0))2.

4. Determine the initial variance estimate, s 2
0 =

SSq 0

n−p .

5. Construct and compute the Cholesky factorization R of a covariance estimate V .

(Continued on the next page)
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Algorithm 3 DRAM Algorithm (continued)
6. For k = 1, . . . , M

(a) Sample zk ∼N (0, 1).

(b) Construct a candidate q ∗ = q k−1+R zk .

(c) Compute SSq ∗ =
∑n

i=1

�

vi − fi (q ∗)
�2

.

(d) Sample uα ∼U (0, 1).

(e) Determine r (q ∗|q k−1) = e −
�

SSq∗−SSq k−1

�

/2s 2
k−1 .

(f ) Determine α(q ∗|q k−1) =min
�

1, r (q ∗|q k−1)
�

.

(g) If uα <α,

q k = q ∗ and SSq k = SSq ∗ .

else

enter DR Algorithm 3.

endif

(h) Update sk ∼ Inv-gamma(av a l , bv a l ), where av a l =
1
2 (ns +n ), bv a l =

1
2

�

ns s 2
k−1+SSq k

�

.

(i) If mod(k , 100) = 1,

Update Vk = sp cov(q 0, ..., q k ), Vk =Vk−1.

else

Update R =chol(Vk ).

endif
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Algorithm 4 DR Algorithm

1. Set design parameter γ2 =
1
5 .

2. Sample zk ∼N (0, 1).

3. Construct a second-stage candidate q ∗2 = q k−1+γ2Rk zk .

4. Sample uα ∼U (0, 1).

5. Compute SSq ∗2 =
∑n

i=1(vi − fi (q ∗2))2.

6. Compute α2(q ∗2|q k−1, q ∗) =min
�

1, π(q ∗2|v )J (q ∗|q ∗2)(1−α(q ∗|q ∗2))
π(q k−1|v )J (q ∗|q k−1)(1−α(q ∗|q k−1))

�

.

7. If uα <α2,

– q k = q ∗2 and SSq k = SSq ∗2 .

else

q k = q k−1 and SSq k = SSq k−1 .

endif

For details on how we compute α2(q ∗2|q k−1, q ∗) for the second-stage candidate, see

[71]. We use the DRAM algorithm to generate a chain whose stationary distribution is the

posterior [29]. In the next section, we will discuss the application of DRAM to the TCAT

model.

6.7 DRAM Applied to the TCAT Model

Recall that in the previous chapter, we constructed time-dependent surrogate models for

four selected experiments. Here, we use DRAM to construct the posterior distribution for

these experiments: B11, B7, B8, and B14. Table 6.1 lists the experiments simulated along

with the associated incoming concentrationωA w
i n .
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Table 6.1: Experiments considered for DRAM simulations.

Experiment Number ωA w
i n

B11 0.01254
B7 0.02541
B8 0.1002
B14 0.1508

These simulations were performed with a burn-in period of 104 iterations. The final 105

function evaluations are shown in Figure 6.3. Both visual inspection and statistical tests

show that the chains have converged. Further, we see that the mean of log(c1) decreases

with the increase in concentration.

We plot kernel density estimates (KDEs) for the parameter distributions for the four

experiments in Figure 6.4. We see thatσ2 decreases across the first three experiments, then

increases for experiment B14. This phenomena is due to the complex closure relation for

diffusion employed by TCAT that causes the DAEs to become more stiff as incoming

concentration increases. We performed worst-case estimates of the spatially varying

diffusion calculation and found that the value of D AB w e is markedly smaller for B14 than

for the other three experiments. The value of D AB w e is on the order of 10−20 for B14 at the

location of the front. This means that when simulating experiment B14, the ode15s
algorithm may fail and produce results with prohibitively large errors. This consequently

leads the surrogate to emulate a breakthrough curve that may be inaccurate. Therefore,

this anomaly in the variance is most likely due to the failure of the ode15s solver for higher

concentration problems.

In Table 6.2, we summarize the summary statistics from DRAM. Note again that the

mean value of log(c1) decreases with an increase in incoming concentration. The standard

deviation also decreases as the incoming concentration becomes larger, with the exception

of B14, as discussed earlier. These results verify what we noted visually with the chain and

KDE plots.

Further, in Table 6.2, we note that the MCMC error is relatively small for all four cases,

indicating that the batch standard deviations are close to one another. The final two columns

in Table 6.2 are the convergence metrics τ and geweke that we presented in Section 6.5. We

see that all values of τ remain small, indicating that our DRAM simulation is efficient and
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Figure 6.3: MCMC chains for the four considered experiments.

converges quickly. In all four cases, we see that our value of geweke is close to 1. Further,

the Rubin-Gelman statistic R is close or equal to 1 for all cases, indicating that the chains

have converged across the admissible parameter space.

In the next chapter, we will use both frequentist and Bayesian techniques to investigate

mixed-effects models for a simplified version of the TCAT model.
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Figure 6.4: Kernel density estimates for the four considered experiments.

Table 6.2: Summary statistics from DRAM for the four considered experiments.

Experiment
Number ωi n

Mean
(log(c1)) σ2 MC Error τ geweke R

B11 0.01254 33.312 2.8384×10−2 2.5086×10−4 3.93 0.999 1.000
B7 0.02541 32.852 2.5061×10−2 1.1397×10−4 3.86 0.999 0.999
B8 0.1002 31.921 1.4450×10−2 7.8285×10−5 3.80 0.999 0.999

B14 0.1508 31.794 5.5299×10−2 2.4870×10−4 3.90 0.999 0.999
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CHAPTER

7

MIXED-EFFECTS MODELING

In this chapter, we will discuss mixed-effects modeling and show how it can be applied to

the TCAT model.

7.1 Motivation

Consider a problem from [20]where the heights of 26 boys are measured on nine occasions

over time. A plot of the measurement time versus data is pictured in Figure 7.1.

Visual inspection of Figure 7.1 yields two basic ideas; first, it is clear that the initial

height of the boys varies. Second, the data corresponding to growth over time appear to be

linear with little variation in the slope across different subjects.

Our goal is to formulate a model that quantifies how individual effects arise across

repeated measurements over time. These effects can be from individual variation across a

population or from variations in experimental conditions [66].
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Figure 7.1: Measurement heights (cm) for 26 boys on 9 occasions [20].

Mixed-effects models present a way to quantify variations from individual responses

within a population. Instead of considering a parameter θ as a single quantity, we consider

θi =β + ri . (7.1)

Here β are the fixed effects from the model, which are parameters that are consistent across

a population or set of experimental data. The random effects ri are sample-dependent and

will be determined for each experiment or observation [55]. Note that we have changed

notation for a parameter from q in the previous chapters to θ . This change of notation

indicates the parameter contains both a fixed and a random effect.

The statistical mixed-effects model is given by

yi j = f
�

xi j ;β , ri

�

+εi j . (7.2)

In this model, i denotes each individual and j denotes the number of measurements. The

model f is evaluated dependent on the independent variables x , the fixed effects β , and

the random effects ri . Random variables εi j represent the measurement error. Here yi j is

90



the j th observation for individual i [66]. We assume that the random effects and error are

independent and normally distributed such that

ri ∼ N (0,ψ) (7.3)

εi j ∼ N (0,σ2), (7.4)

whereψ is the covariance of random effects and σ2 is the variance of the measurement

errors. In this model, the unknowns are the fixed effects β , the random effects ri , the

variance of the errorσ2, and the covarianceψ [66].

7.2 Linear Mixed-Effects Models

A linear mixed-effects model has the standard form

y = X β +Z b +ε. (7.5)

Here X β represent the fixed effects, Z b represent the random effects, and ε represents

the measurement error. The n × 1 response vector is given by y , where n is the number

of observations, and X is the n ×p fixed effects design matrix. Here p is the number of

fixed effects, Z is the n ×q random effects design matrix, where q is the number of random

effects, b is the q ×1 random effects vector, and ε is the n ×1 vector of observation errors

[57].

We assume that b and ε have normal prior distributions given by

b ∼ N (0,σ2D (θ )) (7.6)

εi j ∼ N (0,σ2I ). (7.7)

Here I is the n × n identity matrix and D is a symmetric positive semidefinite matrix

parameterized by a variance component vector θ [57].

A classic example of the linear mixed-effects model was introduced in the previous

section [20, 82] where researchers measured the heights of 26 boys on 9 occasions as

illustrated in Figure 7.1. The model is given by

yi j =β0+ r0i +β1 xi j +εi j . (7.8)
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Here yi j represents the measured heights of the boys, β0 represents the average starting

height for the population, r0i represents the variation in starting height, β1 represents the

change in height over time, xi j represents the j th vector of independent variables, in this

case, time, for the i th subject, and εi j is the measurement error. Here, it is assumed that

ri ∼ N (0,ψ) (7.9)

εi j ∼ N (0,σ2). (7.10)

Note that in this model, only β0 has an associated random effect, whereas β1 does not. This

is because treating β1 as a fixed effect leads to an issue of parameter non-identifiability as

the slope of the boys’ growth is fairly constant across different subjects [66].

From (7.5), the growth model can be formulated as

yi j =
�

1 xi j

�

�

β0

β1

�

+
�

1 0
�

�

b0

b1

�

+εi j . (7.11)

Recall that we have four unknowns in the mixed-effects model: β , b ,σ2, and θ . We will

use maximum likelihood estimation to determine our unknown parameters as detailed in

[54, 57]. The likelihood function to be optimized is

L (β ,σ2,θ , |y ) =
M
∏

i=1

p (yi |β ,σ2,θ ). (7.12)

Because the random effects for each group are independent, (7.12) can be formulated as

L (β ,σ2,θ , |y ) =
M
∏

i=1

∫

p (yi |β , b`,σ
2,θ )p (b`|σ2,θ ) d b`. (7.13)

The pdf p (y |β , b ,σ2,θ ) is a multivariate normal distribution centered about X β +Z b with

varianceσ2 such that

y |β , b ,σ2,θ ∼N (X β +Z b ,σ2I ). (7.14)

Therefore, it follows that
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p (y |β , b ,σ2,θ ) =
1

(2πσ2)n/2
exp

�

−
∑M

i=1 |y`−X`β −Z b`||
2σ2

�

(7.15)

=
1

(2πσ2)n/2
exp

� |y −X β −Z b |
2σ2

�

.

Because b` ∼N (0,ψ)we can simplify

p (b |θ ,σ2) =
1

(2π)q/2|ψ|1/2
exp

�−1

2
b Tψ−1b

�

(7.16)

=
1

(2π)q/2|D (θ )|1/2
exp

�−1

2
b T D (θ )−1b

�

.

Therefore, our likelihood becomes

L (β ,σ2,θ |y ) =
abs|∆(θ )|
(2πσ2)n/2

∫

exp
�

−
�

|y −X β −Z b |+ |∆(θ )b |
�

/2σ2
�

(2πσ2)q/2
d b . (7.17)

Here∆(θ ) is a non-unique matrix matrix that satisfies the condition D (θ )−1 =∆(θ )T∆(θ )

[66].

Note that b still occurs in the right-hand side of (7.17). To transform (7.17) into the form

that is amenable to MATLAB’s optimization codes, we will first find the conditional modes,

which are the differences between the average response and the response for each individual

[15]. From there, one would construct a profiled likelihood, which is parameterized by θ

only. This yields the likelihood that is used in practice for MATLAB’s codes for maximum

likelihood estimation of mixed-effects models [54, 66].

MATLAB has two options for maximum likelihood estimations of linear mixed-effects

models: fitlme and fitlmematrix. The first, fitlme, accepts a linear mixed-effects

model, specified by a user-provided formula, to the user-provided data table [57]. The

other option, fitlmematrix, accepts design matrices X and Z , user-provided data, and an

optional grouping variable [53]. Both options use a quasi-Newton optimization to determine

optimal values of fixed and random effects [66].

We now apply fitlmematrix to the problem outlined in (7.8). The fixed effects are

β0 = 64.56

β1 = 6.524.
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There are 26 random effects associated with the intercept β0. A scatter plot of the random

effects is provided in Figure 7.2. The covariance of the random effects is given by ψ =

7.9391 and the variance is given by σ2 = 2.9241. We selected 5 of the 26 boys to serve as

a representative sample for comparing the model to measured data. The model fit and

residuals are pictured in Figure 7.3.
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Figure 7.2: Random effects plotted by subject.
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Figure 7.3: Model fit and residuals for the Oxford boys growth model.
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7.3 Mixed-Effects Applied to TCAT

Here, we construct a mixed-effects model for TCAT. Unfortunately, we cannot use the full

TCAT model to construct our mixed-effects model due to the dependence of the diffusion

term on the incoming concentration. The nonlinear mixed-effects software that we will use,

MATLAB’s nlmefit, does not support observation-dependent design [55]. We will instead

use a simplified version of the TCAT model to perform our mixed-effects simulations. This

simplified version of the TCAT model is based on classical work by Javandel, who derived a

set of analytic solutions for simple advection-diffusion problems. In this set of solutions,

the unknown parameter D determines how much diffusion is simulated. The solution is

nonlinear in D and independent of incoming concentration [35]. The simplified version of

the TCAT model is provided only to illustrate the process of constructing a mixed-effects

model for an advection-diffusion problem.

Recall from Section 2.7 that the analytic solution to our simplified TCAT model is [35]

C

C0
(L , t ) =

1

2
erfc

�

L −εw v w t

2(D t )1/2

�

+
1

2
exp

�

εw v w z

D

�

erfc

�

L +εw v w t

2(D t )1/2

�

, (7.18)

and for D sufficiently small, we have the analytic solution

lim
D→0

C

C0
(L , t ) = lim

D→0

�

1

2
erfc

�

L −εw v w t

2(D t )1/2

�

+
1

2
exp

�

εw v w L

D

�

erfc

�

L +εw v w t

2(D t )1/2

��

(7.19)

=
1

2
erfc

�

L −εw v w t

2(D t )1/2

�

.

As we detailed in Chapters 4 and 6, we can view parameters from the frequentist or

Bayesian perspectives. We will estimate the unknown parameter D from a frequentist

perspective as we did in Chapter 4. We will also use Bayesian inference to estimate D and

we will again use DRAM to simulate posteriors for each of our random effects. From there,

we will compare the output of the frequentist and Bayesian approaches.

The linearized TCAT model, which yields a relative concentration C
C0

, provides

a breakthrough curve that is independent of incoming concentration. We use

breakthrough curves generated by the model as a comparison to four different data sets

generated in the lab. Details on the selected experiments are listed in Table 7.1, where
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ωA w
i n is the incoming concentration. The linearized TCAT model has only one unknown

parameter D and the independent variable is time. Therefore, the mixed-effects model in

(7.2) can be formatted as

yj = f
�

t j ;β , ri

�

+ε j , (7.20)

with

ri ∼ N (0,ψ) (7.21)

ε j ∼ N (0,σ2). (7.22)

7.4 Frequentist Mixed-Effects Parameter Estimation

Although we are able to linearize the differential equations presented in the TCAT model,

the analytic solution to the simplified TCAT model is nonlinear in the parameter of interest

D . Recall that in the previous section, we derived a likelihood for the linear mixed-effects

model and discussed how it could be parameterized exclusively by θ . For models that are

nonlinear, this closed-form solution is often not possible because of the integral in (7.13).

Consequently, we use MATLAB’s nlmefit to determine both the fixed and random

effects in the TCAT model. The nlmefit code takes a set of predictors, a set of model

responses, grouping variables 1-4, allowing the model to differentiate between the four

experiments, the model to be evaluated, and an initial estimate β0 as input [55]. Then,

nlmefit approximates the likelihood function using the likelihood for the linear mixed-

effects model for current values ofβ and r and uses fminsearch to optimize this estimated

likelihood.

Table 7.1: Experiments considered for mixed-effects modeling.

Experiment Number ωA w
i n

B11 0.01254
B7 0.02541
B8 0.1003
B14 0.1508
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Figure 7.4: Mixed-effects model breakthrough curves.

Results from the mixed-effects model are listed in Table 7.2. The mean or fixed effect

is given by β = D = 1.7531× 10−4. The variance is given by σ2 = 5.7640× 10−4 and the

covariance between the random effects is given byψ= 7.7211×10−5. For each experiment

listed in Table 7.2, ri is the random effect and Di =D+ri is the mean value of each parameter.

Next, we investigate the breakthrough curves generated by the mixed effects model,

considering both fixed and random effects. Figure 7.4 shows that the curves get steeper as

the data generated provides a sharper breakthrough curve, which is what we expect.

We next present model fits to data from nlmefit. Fits for the four experiments

considered are shown in Figure 7.5. Residual norms from the mixed-effects TCAT model

are listed in Table 7.3. These norms quantitatively indicate a close fit between the model

and experimental data. These results show that the mixed-effects TCAT model is able to

reproduce the behavior of the data well.

Table 7.2: Random effects from nlmefit.

Experiment
Number ωA w

i n Di ri

B11 0.0125 2.7199×10−4 9.6680×10−5

B7 0.02541 2.0195×10−4 2.6648×10−5

B8 0.1003 1.2710×10−4 −4.8210×10−5

B14 0.1508 1.0019×10−4 −7.5117×10−5
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Figure 7.5: Mixed-effects responses compared to data.

7.5 Bayesian Parameter Estimation: DRAM

Here, we use Bayesian inference to gain additional insight into our mixed-effects TCAT

model. As in the previous chapter, we will use Marko Laine’s DRAM code to simulate the

posterior [42]. Laine’s code can be modified to fit a mixed-effects model by introducing

batches of data, where one batch represents one experiment, and treating the set of

parameters
�

β1, . . . ,β4

�

as a set of hyperparameters [66].

Recall from the previous chapter that the likelihood used by DRAM for n observations

y , where the errors are iid, unbiased, and normally distributed with unknown varianceσ2,

is given by [71]

L (β ,σ2|y ) =
1

(πσ2)n/2
exp

 

n
∑

j=1

[yj − f (t j ,β )]2/2σ2

!

. (7.23)
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Table 7.3: The residual norms from nlmefit.

Experiment Number ωA w
i n Residual Norm

B11 0.01254 1.5072×10−3

B7 0.02541 2.9405×10−3

B8 0.1003 9.4464×10−3

B14 0.1508 1.4805×10−2

For the TCAT mixed-effects model with 4 experiments, (7.23) becomes [66]

L ([β1, · · · ,β4],σ
2|y ) =

1

(πσ2)n/2

4
∑

i=1

exp

 

n
∑

j=1

[yj − f (t j ,βi )]
2/2σ2

!

. (7.24)

The DRAM code calculates both the posterior and variance for the average response, as

well as the posterior and variance for each hyperparameter.

Initial estimates for hyperparameters were set equal to their optimal frequentist

counterparts. Hyperparameters were bounded between D ∈ [0, 1]with an initial variance

of σ2 = 10−8. The mean is given by D = 1.7539 × 10−4, with a standard deviation of

σ2 = 6.4746 × 10−5 and a covariance of ψ = 1.0711 × 10−4. Results from the DRAM

mixed-effects simulation are presented in Table 7.4.

Table 7.5 shows the summary statistics from DRAM. We see that the values of τ remain

relatively small. Further, the geweke parameter is close to 1. These two metrics are consistent

with the observations that the chains have converged. We also computed Rubin-Gelman

statistics, as in Chapter 6, to verify that we are not stagnating at a local minimum. Results

Table 7.4: The random effects from DRAM.

Experiment
Number ωA w

i n Di ri

B11 0.01254 2.7199×10−4 9.6600×10−5

B7 0.02541 2.0199×10−4 2.6600×10−5

B8 0.1002 1.2708×10−4 −4.8310×10−5

B14 0.1508 1.0021×10−4 −7.5180×10−5
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Table 7.5: The summary statistics from DRAM applied to the hyperparameters.

Experiment
Number ωA w

i n Di σ2 MC Error τ geweke R
B11 0.01254 2.7199×10−4 1.7827×10−6 2.4895×10−8 12.5 0.999 1.00
B7 0.02541 2.0199×10−4 1.4355×10−6 2.0894×10−8 12.7 0.999 0.999
B8 0.1002 1.2708×10−4 9.9651×10−7 1.4480×10−8 13.7 0.999 0.999

B14 0.1508 1.0021×10−4 8.4078×10−7 1.4261×10−8 12.5 0.999 0.999
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Figure 7.6: DRAM results for hyperparameters.

from all four hyperchains are close to or exactly equal to 1, thus showing that the DRAM

simulation has converged across the range of admissible parameter values. As we saw in

Chapter 6, the mean of the parameter decreases as the incoming concentration increases.

Here, the variance and MC error decrease as incoming concentration increase because our

closure relation for diffusion is not a function of the density gradient.

After a burn-in period of 104 iterations, the final parameter chains of length 105 are

presented in Figure 7.6. In addition to the τ and geweke tests, we can visually observe that

the chains for all four parameters have converged.
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Finally, the hyperchains for D and ψ are presented in Figure 7.7. We again see that

these chains have converged and the results of the final 105 iterations are shown. Next, we

look at model fits to data from DRAM. Fits for the four experiments considered

qualitatively agree with the data and are shown in Figure 7.8. Residual norms from the

mixed-effects TCAT model are listed in Table 7.6.
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Figure 7.7: DRAM results for hyperparameters, continued.

Table 7.6: The residual norms from mixed-effects DRAM.

Experiment Number ωA w
i n Residual Norm

B11 0.01254 1.0572×10−3

B7 0.02541 2.9405×10−3

B8 0.1002 9.4464×10−3

B14 0.1508 1.4805×10−2
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Figure 7.8: Mixed-effects responses compared to data.

7.6 Comparison of Bayesian and Frequentist Parameter

Estimation Results

Table 7.7 lists the results from both the frequentist and Bayesian simulations. We can see

that the results are generally in good agreement, with the hyperparameter estimates being

within approximately 1-2% of one another. The Bayesian mixed-effects model predicts a

larger variance and covariance between the hyperparameters.
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Table 7.7: Estimated parameter values for TCAT from nlmefit and DRAM.

nlmefit DRAM
D 1.7531×10−4 1.7539×10−4

D1 2.7199×10−4 2.7199×10−4

D2 2.0195×10−4 2.0199×10−4

D3 1.2710×10−4 1.2708×10−4

D4 1.0019×10−4 1.0021×10−4

σ2 5.7640×10−4 6.4746×10−4

ψ 7.7211×10−5 1.0711×10−4

7.7 Comparison of Mixed-Effects and Simplified TCAT

Models

In this section, we compare results of the frequentist and Bayesian approaches for the

simplified TCAT model as well as the mixed-effects TCAT model. Results are tabulated in

Table 7.8. For each experiment, we tabulated the optimal value of D , then computed the

residual norm. In all cases, the residual norms were in exact agreement to five figures.

Therefore, we computed the difference between the residual norms in full precision and

listed their respective differences. In all cases, the mixed-effects simulations slightly

outperformed their counterparts. The values of D and residual norms being in close

agreement shows that all methods used to simulate these models are consistently

performing well.
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Table 7.8: Comparison of mixed-effects model to the simplified TCAT model.

Experiment
Number Quantity Frequentist Bayesian

lsqnonlin nlmefit DRAM
Mixed-Effects

DRAM

B11 D
2.7208×

10−4
2.7199×

10−4
2.7233×

10−4
2.7203×

10−4

Residual
Norm

1.5072×
10−3

1.5072×
10−3

1.5072×
10−3

1.5072×
10−3

Difference
in Residuals 1.5328×10−10 3.2061×10−8

B7 D
2.0195×

10−4
2.0195×

10−4
2.0212×

10−4
2.0195×

10−4

Residual
Norm

2.9405×
10−3

2.9405×
10−3

2.9405×
10−3

2.9405×
10−3

Difference
in Residuals 4.1528×10−12 2.9575×10−8

B8 D
1.2709×

10−4
1.2710×

10−4
1.2721×

10−4
1.2708×

10−4

Residual
Norm

9.4464×
10−3

9.4464×
10−3

9.4464×
10−3

9.4464×
10−3

Difference
in Residuals 7.9039×10−10 1.6996×10−7

B14 D
1.0017×

10−4
1.0019×

10−4
1.0029×

10−4
1.0019×

10−4

Residual
Norm

1.4805×
10−2

1.4805×
10−2

1.4805×
10−2

1.4805×
10−2

Difference
in Residuals 1.7610×10−9 2.8722×10−7
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CHAPTER

8

CONCLUSIONS AND FUTURE WORK

This dissertation presents an exploration of a new class of models for single-fluid-phase-

transport in porous media.

We reformulated the TCAT model as a partial differential-algebraic equation and used

the method of lines to rewrite the PDAE as an ordinary DAE. From there, we used an

advanced ODE solver, ode15s, to simulate the TCAT model. Our contributions included

deriving a Jacobian pattern based on our chosen finite difference approximations, making

changes deep within ode15s so that our simulations could run to completion, and

performing a grid refinement study for the adaptive gridding method developed by

Timothy Weigand.

We first used this numerical model to perform parameter estimation from a frequentist

perspective using the Levenberg-Marquardt algorithm. We found that while our model

could not accurately describe the wide range of available data with a single parameter value,

we were able to find a single parameter that could describe the behavior of experiments

with incoming mass fraction less than 0.15. We also performed individual parameter fits for

numerous experiments and found varying optimal values of the parameter as the incoming
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concentration changed. Our next goal was to perform parameter estimation from a Bayesian

perspective; however, we found that the prohibitively long run times for the TCAT model

did not allow us to perform Bayesian parameter estimation within a reasonable amount of

time.

Therefore, we constructed a regression-based surrogate model for the TCAT model. Our

surrogate utilizes a cubic spline to emulate the parameter-dependent response of the TCAT

model over time. Next, we used the surrogate to perform Bayesian parameter estimation.

We found that the mean value of the parameter decreases with an increase in incoming

concentration. We also discovered that the variance decreases with an increase in incoming

concentration for the three lower concentration experiments, then increases for the highest

concentration experiment considered, B14.

Finally, we performed both frequentist and Bayesian mixed-effects parameter

estimation. Because the mixed-effects code that we used, nlmefit, does not support

observation-dependent design, we created a mixed-effects model for the simplified

version of the TCAT model. The simplified version of the TCAT model has an analytic

solution that is independent of initial concentration, and also has an unknown parameter

that describes diffusion in the system. We found that the values of the random effects

decrease as the incoming concentration increases. From the Bayesian approach, we also

found that the variance decreases as the incoming concentration increases.

Future directions for this work include performing repeated brine intrusion experiments

for the same or closely related incoming concentrations. From there, one could quantify

the observative error across repeated measurements and use error bars to illustrate the

standard error within observations. One could also perform Bayesian inference across a set

of repeated measurements, treating the different experiments as batches of data and fitting

hyperparameters. Another potential direction for this project includes nondimesionalizing

the TCAT equations before simulating them numerically. Nondimesionalized equations

present parameters in terms of dimensionless numbers, which can yield further insights

about the underlying physics in the model and also lead to reduced stiffness in the model

being simulated.
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