
ABSTRACT

SKAU, ERIK WEST. Relaxations to Sparse Optimization Problems and Applications. (Under the
direction of Agnes Szanto and Hamid Krim.)

Parsimony is a fundamental property that is applied to many characteristics in a variety of fields.

Of particular interest are optimization problems that apply rank, dimensionality, or support in a

parsimonious manner. In this thesis we study some optimization problems and their relaxations,

and focus on properties and qualities of the solutions of these problems.

The Gramian tensor decomposition problem attempts to decompose a symmetric tensor as a

sum of rank one tensors. We approach the Gramian tensor decomposition problem with a relaxation

to a semidefinite program. We study conditions which ensure that the solution of the relaxed

semidefinite problem gives the minimal Gramian rank decomposition.

Sparse representations with learned dictionaries are one of the leading image modeling tech-

niques for image restoration. When learning these dictionaries from a set of training images, the

sparsity parameter of the dictionary learning algorithm strongly influences the content of the dic-

tionary atoms. We describe geometrically the content of trained dictionaries and how it changes

with the sparsity parameter. We use statistical analysis to characterize how the different content

is used in sparse representations. Finally, a method to control the structure of the dictionaries is

demonstrated, allowing us to learn a dictionary which can later be tailored for specific applications.

Variations of dictionary learning can be broadly applied to a variety of applications. We explore

a pansharpening problem with a triple factorization variant of coupled dictionary learning. Another

application of dictionary learning is computer vision. Computer vision relies heavily on object

detection, which we explore with a hierarchical convolutional dictionary learning model.

Data fusion of disparate modalities is a growing topic of interest. We do a case study to demon-

strate the benefit of using social media data with satellite imagery to estimate hazard extents. In

this case study analysis we apply a maximum entropy model, guided by the social media data,

to estimate the flooded regions during a 2013 flood in Boulder, CO and show that the results are

comparable to those obtained using expert information.
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CHAPTER

1

INTRODUCTION

Parsimony is a concept fundamental to many problems and applications. Parsimonious characteris-

tics can emerge in a wide range of things from order, support, rank, and dimension. In practice one

often formulates optimization problems to encourage parsimony, or strives for sparsity in some

characteristic.

Optimization problems with a sparsity characteristic are notoriously hard to solve. Fortunately,

relaxations of these problems often provide surrogate problems that are much more tractable. These

tractable problem solutions are then taken as approximations to the ideal solutions. This relaxation

procedure brings into question exactly how close the relaxed solution is to the ideal solution.

In this dissertation, we consider varying forms of relaxations to parsimonious optimization

problems and applications. In some instances we consider properties of the original and not re-

laxed problems. In other instances, we consider the effect of sparsity on our models and propose

modifications to the problems to yield a more desirable solution.

1.1 Outline

The rest of the thesis is organized as follows. In Chapter 2 we give an overview of ways to characterize

and use sparsity in optimization problems. We describe a few applicable optimization problems

with parsimonious characteristics. Typical parsimonious properties such as rank or support are

measured with non-convex functions which present barriers for efficient optimization. Through

1



relaxation these non-convex problems can be replaced with convex surrogates. Some of these

relaxations have properties suitable for algorithms to solve efficiently.

In Chapter 3 we look at the Gramian tensor decomposition problem. The tensor decomposition

problem is formulated as a rank minimization optimization problem, which is relaxed to a nuclear

norm minimization problem. Our interest in this research is to find cases where the relaxed nuclear

norm solution is also of minimal rank. We then provide some specific cases where the optimal

nuclear norm solution is also minimal rank and discuss the intricacy of the problem in other cases.

Chapter 4 introduces dictionary learning and some popular methods to solve dictionary learn-

ing problems. Dictionary learning has a range of applications in image restoration problems. We

consider a geometric interpretation of dictionary learning and the role of sparsity in the dictionary

learning model. We present some of these applications, and proposed modifications to dictionary

learning.

Chapter 5 explores two applications using variations of dictionary learning. In this chapter,

coupled dictionary learning is reformulated to include an additional factorization and is applied

to a pansharpening problem. We also develop a proof of concept for a hierarchical convolutional

dictionary learning method to construct more complex dictionary filters.

In Chapter 6 we consider a data fusion problem for hazard extent estimation. We explore the

suitability of using social media data to estimate the extent of inundated areas using a regularized

maximum entropy model. We compare the effectiveness of using social media data against expert

knowledge and discuss the filtering required of the social media.

In Chapter 7 we conclude our discussion and suggest future research.
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CHAPTER

2

SPARSITY AND OPTIMIZATION

BACKGROUND

This chapter provides some of the main concepts and mathematical tools used to understand and

formulate applicable optimization problems.

2.1 Principle of Sparsity

In a variety of fields, data is effectively of low order, support, rank, or dimension. In the last several

decades, optimization problems applying these characteristics have become a widely used tool for

a variety of applications [99, 126, 140]. The underlying principle of parsimony is common to all of

these applications, simply applied to different characteristics. In this chapter we review some of the

mathematical formulations of these notions for their incorporation into optimization problems.

Since these notions are closely related, we concentrate on the notion of support size, or sparsity,

and describe the relation between support and the other notions.

2.1.1 Characterizing Sparsity with Norms

One way to understand the notion of support or sparsity is through the analysis of norms.

3



Definition 2.1.1. Given an n dimensional vector x in Euclidean space, Rn , the p -norm is defined for

p > 0 as

‖x‖p =

�

n
∑

i=1

|xi |p
�

1
p

.

When p = 2, it is called the `2 norm, or Euclidean norm, and simplifies to

‖x‖2 =

√

√

√

n
∑

i=1

x 2
i .

The 2-norm is a convex function. A depiction of the `2 unit ball can be seen in Figure 2.1 (a).

When p = 1 the norm is called the `1 norm, taxicab norm, or Manhattan norm as it is represen-

tative of how a taxi measures distance in city blocks. The `1 norm simplifies to

‖x‖1 =
n
∑

x=1

|xi |

and is a convex function. A depiction of the `1 unit ball can be seen in Figure 2.1 (b).

(a) 2-norm unit level set (b) 1-norm unit level set (c) 0-norm unit level set

Figure 2.1 Level curves for a variety of norm functions.

The limit as p approaches 0 relates to the so called 0-norm which is not actually a norm, but

measures the number of nonzero elements in a vector, or the size of its support. The 0-norm is

denoted

‖x‖0 = lim
p→0
‖x‖p

p = lim
p→0

∑

|xi |p ,

and a depiction of its level sets can be seen Figure 2.1 (c). The 0-norm is a non-convex function.

The sparsity of a vector or matrix is related to the complement of the size of its support. Sparsity is

4



defined as the number of zero-valued elements divided by the total number of elements, or in the

case of our n dimensional vector, n−‖x‖0
n . These mathematical functions can be used to characterize

the fundamental properties that are pervasive in so many fields.

2.2 Optimization and Relaxations

Optimization problems are used to search a space for the best element with regard to some crite-

rion. Within the field of optimization there are two principle categories, convex and non-convex

optimizations. Convex optimization problems, which entail optimizing a convex function over a

convex set, are in many senses much easier than non-convex optimization problems. The tools for

non-convex problems include heuristic local methods that fail to guarantee global optimality such

as gradient descent, and exact methods such as branch-and-bound that take exponential effort.

Convex optimization problems, on the other hand, have the distinct benefit that local solutions are

also globally optimal. This allows for global optimality with relatively quick gradient based methods.

Due to the relative ease of solving convex problems, non-convex problems are often approxi-

mated with a convex surrogate [16, 64, 98]. In applications where some characteristic should be used

parsimoniously, it is natural to integrate this into the optimization problems. For instance, when

sparsity is a desirable characteristic, it makes sense to insert this into the objective function. Though

the 0-norm perfectly characterizes sparsity, the fundamental quality we often wish to promote, its

non-convexity poses significant challenges in optimization. Consider the example minimization

problem

arg min
x

‖x‖0

subject to
�

1 2
�

�

x1

x2

�

= 2
(2.1)

with two optimal solutions of x = [0, 1]T and x = [2, 0]T . To find these solutions we must take a com-

binatorial approach, restricting the support of the vector x and solving the system. In such a small

example this is not problematic, but as the problem size grows this quickly becomes computationally

infeasible.

The convex relaxation of (2.1) to

arg min
x

‖x‖1

subject to
�

1 2
�

�

x1

x2

�

= 2
(2.2)

has a single optimal solution at x = [0, 1]T . The relaxed problem (2.2), is a linear programming

problem that can be solved efficiently using a variety of algorithms. In this case, the solution of the
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relaxation is one of the solutions to the original non-convex problem, while the other solution is lost

in the relaxation. This type of relaxation technique is a powerful tool with both heuristic support

[127, 140, 141] and theoretical merit [48, 49, 51, 143].

Another parsimonious characteristic in a significant number of applications is rank. The rank of

the matrix, A, can be calculated from its singular values and the 0-norm.

Definition 2.2.1. Given an n by m matrix A with singular valuesσ=
�

σ1, . . . ,σmin(m ,n )
�

the rank can

be defined as

rank(A) = ‖σ‖0

In rank minimization problems, one searches the feasible space for the lowest rank solution

which also requires a combinatorial approach. To approximate a solution one can replace rank with

nuclear norm.

Definition 2.2.2. Given an n by m matrix A with singular valuesσ=
�

σ1, . . . ,σmin(m ,n )
�

the nuclear

norm of A, denoted ‖A‖∗, can be defined as

‖A‖∗ = trace(
p

A∗A) = ‖σ‖1

This provides a computationally feasible objective function first introduced in [54] that can be

used to approximate minimal rank solutions in many instances [98].

The relaxations of non-convex problems into convex problems provides a drastic benefit to

computational efficiency at the price of quality of solution. In some instances the solution to the

relaxed problems will also be optimal in the original problem. Characterizing these cases is often a

subject of study. In other instances the solution to the relaxed problem will not be a solution to the

non-convex problem. In these cases it is worthwhile to study and understand the relation between

the solutions to understand the effect of the relaxation.
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CHAPTER

3

GRAMIAN TENSOR DECOMPOSITION

3.1 Introduction

In this chapter we examine a tensor decomposition problem, posed as a rank minimization problem.

We study the relaxation of the problem and consider cases when the relaxed solution is a solution

to the original problem. In some instances of tensor rank and order, we prove generically that

the solution to the relaxation will be optimal in the original. In other cases we present interesting

examples and approaches that demonstrate the complexities of this problem.

3.1.1 Background

LetA ∈F(n+1)×···×(n+1) be a D -way, or order D , symmetric tensor over a fieldFof size (n+1)×· · ·×(n+1)

(D -times). Let R :=F[x1, . . . , xn ] and let RD denote the set of polynomials of degree at most D in R .

Then we can associate toA a polynomial

p =
∑

β∈Nn ,|β |≤D

�

D

D − |β |,β1, . . . ,βn

�

pβ xβ ∈RD (3.1)

by simply multiplyingA by the vector [1, x1, . . . , xn ] from all the D directions. This gives a bijection

between symmetric D -way tensors over F and polynomials in RD .

We define the symmetric rank of the tensorA , and the rank of the polynomial p as follows:
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Definition 3.1.1. We say thatA ∈ F(n+1)×···×(n+1) has symmetric rank r if there exist distinct v1 =

(v1,0, v1,1, . . . , v1,n ), . . . ,vr = (vr,0, vr,1, . . . , vr,n ) ∈F
n+1

with coordinates from the algebraic closure F of

F, and λ1, . . . ,λr ∈F/{0} such that r is minimum and

A =
r
∑

t=1

λt vt
⊗D :=

r
∑

t=1

λt

�

vt ,i1
· · ·vt ,iD

�n

i1,...,iD=0
. (3.2)

Equivalently, we say that p ∈RD has rank r if r is minimal and

p =
r
∑

t=1

λt L D
vt

, (3.3)

where Lvt
(x1, . . . , xn ) := vt ,0+vt ,1 x1+· · ·+vt ,n xn is the linear form associated to vt = (vt ,0, vt ,1, . . . , vt ,n )

for t = 1, . . . , r . The expressions in (3.2) or (3.3) are called the rank r symmetric decompositions ofA
and p , respectively.

There are different, non-equivalent notions of tensor rank in the literature, such as the multilinear

rank or non-symmetric rank, etc. (see [32]). Also, one can define the symmetric rank over non-

algebraically closed fields, which unlike for matrices, may differ from the above defined symmetric

rank for tensors of order > 2. If the field F is the set of real numbers and the order D = 2d is even, we

can define the Gramian rank as follows:

Definition 3.1.2. LetA ∈R(n+1)×···×(n+1) be a real symmetric tensor of order 2d and p ∈ R2d be the

corresponding real polynomial. We say thatA and p is Gramian with Gramian rank r if there exist

distinct v1 = (v1,0, v1,1, . . . , v1,n ), . . . ,vr = (vr,0, vr,1, . . . , vr,n ) ∈ Rn+1 and λ1, . . . ,λr ∈ R>0 positive real

numbers such that r is minimal and (3.2) or (3.3) holds. The decompositions in (3.2) and (3.3) are

called the Gramian decompositions ofA and p , respectively.

In this chapter we consider the problem of finding the Gramian rank and decomposition for a

real symmetric tensor of order 2d , or equivalently, for a polynomial of degree 2d . Note that not all

polynomials of degree 2d are Gramian, in particular, Gramian polynomials are a subset of sum of

square polynomials. Hillar and Lim in [69] proved that deciding whether a tensor/polynomial is

Gramian is NP-hard even for d = 2. Also note that even if a tensor is Gramian, its Gramian rank may

be much higher than its symmetric rank.

We give an algorithm that finds the Gramian decomposition in the case when the Gramian rank

is sufficiently small. Our approach is to use a relaxation of this problem to semidefinite programming

and to show that for sufficiently small Gramian rank r the optimum of the relaxed problem gives a

Gramian decomposition of length r . This work is a first step to attack the more general problem

of finding the symmetric rank and decomposition via semidefinite relaxation. The general case is

subject to future research.
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The main results of this Chapter are as follows:

• We give a meaningful semidefinite relaxation of the problem of finding the Gramian rank and

decomposition of a polynomial p ∈R2d , assuming that its Gramian rank is sufficiently small.

The relaxation becomes a matrix completion problem of moment matrices with minimal

trace.

• We simplify and interpret the condition that a given moment matrix is the optimum of our

relaxed semidefinite program, using special properties of the dual of the semidefinite program.

• We analyze special cases when we can guarantee that a given moment matrix is the optimum of

the relaxed semidefinite program. In these special cases we point to a connection to the theory

of the regularity index of overdetermined polynomial systems. Using this theory we list triples

(n , d , r )where we can prove that the optimum of the semidefinite relaxation corresponds to

the Gramian decomposition of rank r of a polynomial of degree 2d in n variables.

3.1.2 Related Work

Motivation for looking at the tensor decomposition problem comes from its broad application areas.

The earliest results on tensor decomposition were applications in mathematical physics ([70, 71]);

psychometrics ([24, 25, 67, 145, 146]); algebraic complexity theory ([72, 81, 83, 85, 86, 138]); and

in chemometrics ([6, 61, 135]). In higher order statistics, moments and cumulants are intrinsically

tensors (cf. [109]). Symmetric tensor decomposition is proven to be useful in blind source separation

techniques, which are capable of identifying a linear statistical model only from its outputs (cf.

[33]). These blind identification techniques in turn are very popular in numerous applications,

including telecommunication ([2, 66, 130]); radar ([26]); biomedical engineering ([41]); image and

signal processing ([42, 63]) just to name a few. An excellent survey of more recent applications of

tensor methods can be found in [69].

Despite the rich literature on the numerical aspects of the symmetric tensor decomposition

problem, there are relatively small numbers of publications concerned with the symbolic computa-

tional aspects of computing the rank of symmetric and non-symmetric tensors. Even though the

first algorithm solving the problem in the bivariate symmetric case goes back to [139], and several

other symbolic algorithms exist in the literature for finding the rank of symmetric tensors (see for

example [18, 31, 78, 88–90, 115, 122]) and non-symmetric tensors (see for example [2, 10, 11, 43, 44,

87, 115, 137]), they all have strong constrains on the degree d , dimension n and/or on the rank r . A

list of all cases where we know the defining equations for (border)-rank r symmetric tensors can be

found in [89]. Symmetric rank computation is NP-hard [69], and its approximation doesn’t always
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exist as the set of rank r tensors is not closed [132]

As we will see in the preliminaries below there is a close relationship between the so called

truncated moment problem and the Gramian decomposition of tensors. Here we only mention

work that is closest to our problem, namely when representing measures that are finitely atomic.

The foundations of the theory and algorithms to study this truncated moment problem were laid

down in a sequence of work by Curto and Fialkow in [35, 36], including the so called stopping

criteria that we use in this chapter. In a series of papers [91–94] the moment problem is connected to

polynomial optimization and the solution of polynomial systems over the reals, and our approach

is based on this work. The direct relationship between symmetric tensor decomposition and the

truncated moment problem was described in the works [11, 18]; our approach strongly relies on

these results. As we mentioned earlier, in [69] they prove that detecting if a symmetric tensor is

Gramian is NP-hard, and they also discussed the relationship between Gramian, non-negative

definite tensors, and completely positive matrices. Reznick in [123] proved that the cone of tensors

and of Gramian tensors are dual. It is also proved here that the set of Gramian rank r tensors is

closed. In [97] they deduce a computationally feasible condition for uniqueness using the notion of

coherence. In [96] they study nonnegative approximations of nonnegative tensors, where they use a

generalization of the notion of completely positive matrices, which is different from Gramian and

nonnegative-definite tensors.

Relaxations of matrix rank minimization problems using the nuclear norm of matrices was first

introduced in [54, 55]. There is a rich literature on results about the accuracy of the relaxation of a

low rank optimization problem using the nuclear norm. The low rank matrix completion approach

assumes that a linear image of the underlying low rank matrix M is known and attempts to recover

the full matrix M . The motivation and justification for this relaxation is that the nuclear norm of

matrices is the convex envelope of the rank function (cf. [121]). The main results in [19, 20, 121]

give general assumptions which guarantee both the rank minimization problem and its relaxation

to have M as its unique solution (with high probability). One of these assumptions in [19] is the

existence of a bound on the so called coherence of the column and row spaces of the output M .

Another such assumption is given for the input. In [121] they show that if a certain restricted isometry

property holds for the linear transformation defining the constraints, the minimum-rank solution

can be recovered by the nuclear norm relaxation. Similar ideas were explored in [59, 65, 101, 112,

131] to recover low multilinear rank tensors. Here the objective function is the sum of the ranks of

the flattenings of the tensor which is subject to linear constrains. This is relaxed by using the sum

of the nuclear norms of the flattenings instead. Recently, [163] gave a general SDP approximation

scheme with penalty parameters to find the minimal rank solution. They proved that with some

mild restrictions on the constraints the optimum of the relaxations converge to the minimal rank

10



solution as the penalty parameters approach 0. As we mentioned above, our approach is closest to

the one in [128].

3.2 Preliminaries

Before describing our results, let us give a brief summary of the main results in the theory of

flat extensions of moment matrices (see [18] for more details). Assume that we have a Gramian

decomposition as in (3.2) or (3.3) for some v1 = (v1,0, v1,1, . . . , v1,n ), . . . ,vr = (vr,0, vr,1, . . . , vr,n ) ∈Rn+1

and λ1, . . . ,λr ∈R>0. We assume that

v1,0 = 1, . . . , vr,0 = 1

and denote by

zi = (vi ,1, . . . , vi ,n ) ∈Rn for i = 1, . . . , r.

Consider the infinite matrix M and its truncation Mi , j for some i , j ∈N defined by

M :=
�

mβ+β ′
�

β ,β ′∈Nn and Mi , j :=
�

mβ+β ′
�

|β |≤i ,|β ′|≤ j
, (3.4)

where for α ∈Nn

mα =
r
∑

t=1

λt zαi ,

denotes the moments corresponding to the points {z1, . . . , zr }. If i = j we will denote Mi ,i by simply

Mi . These matrices have so called quasi-Hankel structure (see [111]), and called moment matrices,

i.e. they are matrices whose rows and columns are indexed by monomials and the entries depend

only on the product of the indexing monomials.

Let V := [zβi ]i=1,..r,β∈Nn be the Vandermonde matrix with infinitely many columns, its truncation

Vi := [zβi ]i=1,..r,β∈Nn ,|β |≤i , and let Λ := diag(λ1, . . . ,λr ). Then we have

M =V TΛV Mi , j =V T
i ΛVj . (3.5)

When we only know the tensor A or the polynomial p as in (3.1) for D = 2d , but not the

decomposition, from (3.3) it is easy to see that for |β +β ′| ≤ 2d we have

[M ]β ,β ′ =mβ+β ′ =

�

2d

β +β ′

�−1

pβ+β ′ . (3.6)

The truncations Mi , j for i + j ≤ 2d , are called catalecticant matrices, and its theory goes back to
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Sylvester in [139]. Note that for i = j = d , Md is a symmetric matrix of size
�n+d

d

�

= dim Rd .

Next we define the notion of flat extensions of moment matrices:

Definition 3.2.1. Given MD a moment matrix for some degree D ≥ 0 as in (3.4). We call an infinite

moment matrix M an extension of MD if

[M ]β ,β ′ = [MD ]β ,β ′ for |β +β ′| ≤D .

If, in addition,

rank(M ) = rank(MD ),

then we say that M is a flat extension of MD . Furthermore, if M is positive semidefinite, we call M a

Gramian flat extension of MD .

Clearly, if p ∈R2d has symmetric rank r , then there exists at least one infinite moment matrix

M of rank r that extends Md . Similarly, if p has Gramian rank r then there exists some positive

semidefinite moment matrix M of rank r that extends Md . If, in addition, Md also has rank r , then

M is a Gramian flat extension of Md . Note that if the decomposition of p is not unique, then the

flat extensions of Md may not be unique either. The converse is not entirely true: if Md has an

infinite flat extension M of rank r , then p has a so called generalized decomposition, where the

points {zt }rt=1 may be repeated (see [12] for more details). However, for a positive semidefinite flat

extension the corresponding points in the decomposition are always distinct. Thus, these positive

semidefinite flat extensions always correspond to a Gramian decomposition of the tensor [35].

In [11, 18, 37] they give conditions for the existence of a (Gramian) flat extension in terms of

finite truncations of M :

Theorem 3.2.2 (STOPPING CRITERION FOR FLAT EXTENSION). Let Md be a moment matrix as above.

Let M be an infinite extension of Md as above. M has rank r if and only if there exist D ≥ 0 such that

rank(MD ) = rank(MD+1) = r.

If, in addition, MD+1 is positive semidefinite, then M is also positive semidefinite. We call MD+1 a

truncated (Gramian) flat extension of MD .

Note that once the above stopping criterion is satisfied, one can compute a system of multipli-

cation matrices from the kernel of MD+1, and the coordinates of the points zi for i = 1, . . . , r can be

read out from the eigenvalues of these multiplication matrices.

In the present chapter we assume that p ∈R2d has Gramian rank r satisfying

size(Md−1) =

�

n +d −1

n

�

< r ≤
�

n +d

n

�

= size(Md )
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and Md has a truncated Gramian flat extension Md+1 of rank

rank(Md ) = rank(Md+1) = r,

i.e. D = d in the stopping criterion above.

However, given p ∈R2d , we only know the entries of Md , so we want to find a truncated Gramian

flat extension Md+1. Note that if r ≤ size(Md−1) then by the stopping criterion we do not need to

extend the matrix Md to find the Gramian rank. So the truncated Gramian flat extension problem

that we attempt to solve in this chapter is the following:

Definition 3.2.3 (TRUNCATED GRAMIAN FLAT EXTENSION PROBLEM). Given p ∈R2d as in (3.1) with

non-zero constant term. Assume that the corresponding truncated moment matrix Md has rank r

and is positive semidefinite. Find a positive semidefinite moment matrix extension Md+1 of Md which

has rank r , if one exists. Equivalently, find a minimal rank positive semidefinite extension Md+1 of

Md .

Unfortunately, the minimal rank optimization problem is NP-hard, and all known algorithms

which provide exact solutions are double exponential in the dimension of the matrix (cf. [19]).

However, relaxation techniques were successfully applied for “low rank matrix completion” or

“affine rank minimization” problems that are very similar in structure to our problem. Namely, the

constraints on the extension matrix Md+1 are all linear equalities. These relaxation techniques

replace rank minimization by the minimization of the nuclear norm of the matrix. Recall that the

nuclear norm of a matrix M is defined by

‖M ‖∗ :=
r
∑

i=1

σi ,

whereσ1 >σ2 > · · ·>σr > 0 are the non-zero singular values of M . The advantage is that the nuclear

norm is a convex function and can be optimized efficiently using semidefinite programming. Note

that when M is positive semidefinite then

‖M ‖∗ = trace(M ).

Definition 3.2.4 (RELAXATION OF TRUNCATED GRAMIAN FLAT EXTENSION). Given p ∈ R2d with

non-zero constant term, find a positive semidefinite moment matrix Md+1 satisfying [Md+1]β ,β ′ =
� 2d
β+β ′

�−1
pβ+β ′ for |β +β ′| ≤ 2d , and trace(Md+1) is minimal.

The purpose of this chapter is to prove that for sufficiently low Gramian rank r , the optimum of

the relaxation is the minimal rank solution.
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In [19, 20, 121] the goal of the low rank matrix completion and affine rank minimization prob-

lems is to give conditions on the matrix and on the linear constraints so that the optimum of the

minimal rank problem is unique and equal to the optimum of the nuclear norm relaxation. In our

case uniqueness cannot always be expected, since symmetric tensors can have many minimal

decompositions, resulting in different flat extensions of the same rank. For example, if r is the

generic rank as in [4], [110] conjectures that the solution is never unique, except for three cases. The

lack of uniqueness is a significant obstacle for the relaxation to find the minimal rank solution as the

set of minimal rank decompositions may be a non-convex object. For this reason we cannot expect

to find the minimal rank decomposition via semidefinite optimization. To address this obstacle we

constrain ourselves to cases where the minimal decomposition of the symmetric tensor is essentially

unique (up to unimodulus scaling).

For symmetric decompositions rather strong uniqueness results were proved in [30, 78, 110].

Namely, for a decomposition as in (3.3), if d ≥ 2, and

r ≤
�

d +n

d

�

−n +1= dim Rd −n +1 (3.7)

then the decomposition is essentially unique, as long as the points {zi }ri=1 are in general position (cf.

[78, Th.2.6]). Our ultimate goal would be to prove that in the cases of unique decomposition, the

semidefinite relaxation gives the minimal rank solution. At this point we could only prove a small

portion of these cases, however, in the process we uncovered some interesting connections of this

problem to the theory of the regularity index of polynomial systems, which is an active research

area in mathematics.

A difference between our problem and the ones considered in [19, 20, 121] is that the linear

constraints on the extension Md+1 are not given at random, and we cannot expect that the corre-

sponding linear map would satisfy either the restricted isometry conditions of [121] or the injectivity

when restricted to the tangent space of rank r matrices at the optimum as in [19]. Thus to tackle

our problem we needed new ideas. Our approach is closest to the work in [128], where they study

conditions when the semidefinite relaxation solves the minimal rank matrix diagonal completion

problem. They reinterpret the dual of the semidefinite relaxation problem in several different ways

and connect their original problem to other well-studied problems in statistics and geometry. We

follow a similar approach, but leading to very different results.
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3.3 Relaxation and Dual Problem

Given d ∈N, n ≥ 1, and p ∈R2d as in (3.1), and let

Md =
�

mβ+β ′
�

β ,β ′∈Nn

|β+β ′|≤2d

be the corresponding truncated moment matrix as in (3.6) with moments mα =
�2d
α

�−1
pα for |α| ≤ 2d .

Denote by

N :=

�

n +d +1

n

�

= dim Rd+1,

and bySN the space of real symmetric matrices of size N . The truncated Gramian flat extension

problem in Definition 3.2.3 is finding a symmetric matrix X ∈SN , with columns and rows indexed

by α,β ∈Nn , such that

min rank(X )

Subject To















[X ]β ,β ′ =mβ+β ′ for |β +β ′| ≤ 2d

[X ]β ,β ′ − [X ]γ,γ′ = 0 if β +β ′ = γ+γ′

X � 0

Using the bilinear form

< A, B >:= T r (A ·B ),

we choose an orthonormal basis for the space of symmetric matricesSN as specified in Definition

3.3.1.

Definition 3.3.1 (CHOICE OF ORTHOGONAL BASIS FOR SN ). For each α ∈Nn such that |α| ≤ 2d +2,

we define the subspace Sα ⊂ SN of symmetric matrices with support indexed by the set of pairs

{(γ,δ) : γ+δ = α}. Fix Yα ∈ Sα to be the moment matrix which has 1 at each entry in its support.

Then choose an arbitrary orthonormal basis {Zα,i : 1≤ i ≤ dimSα−1} ⊂Sα for the subspace ofSα
orthogonal to Yα.

Example 3.3.1. For example, in the univariate case with a monomial basis of 1, x , x 2 we define an

orthogonal decomposition ofS3:

Y0 =







1





, Y1 =







1

1






, Y2 =







1

1

1






, Y3 =






1

1






, Y4 =







1







One can easily see that this set is a basis for all 3 by 3 Hankel matrices. We also see that with our
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monomial list there are two ways to obtain x 2 = x 2 ·1= x · x so we then define one matrix orthogonal

to Y2 with respect to our inner product and with the same support Z2 =







−1

2

−1






.

Using this notation we rewrite the truncated Gramian flat extension problem as follows:

min rank(X )

Subject To















< Yα, X >=mα |α| ≤ 2d

< Zα,i , X >= 0 |α| ≤ 2d +2, 1≤ i ≤ dim(Sα)−1

X � 0

,

This we relax to a semidefinite program:

min < I , X >

Subject To















< Yα, X >=mα |α| ≤ 2d

< Zα,i , X >= 0 |α| ≤ 2d +2, 1≤ i ≤ dim(Sα)−1

X � 0

,

Thus we get the following primal and dual semidefinite optimization problems (in standard

form):

P r i ma l D ua l

minX < I , X > max(y,z,S )
∑

mαyα

Subject To















< Yα, X >=mα

< Zα,i , X >= 0

X � 0

Subject To







S = I −
∑

yαYα−
∑

zα,i Zα,i

S � 0

,

where the indices of yα and Yα run through |α| ≤ 2d , while the indices of zα,i and Zα,i run through

|α| ≤ 2d +2 and 1≤ i ≤ dim(Sα)−1, using the notation of Definition 3.3.1.
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In the rest of this chapter we will use the following notation for the above semidefinite programs:

(P ) : primal problem in standard form;

(D) : dual problem in standard form;

P : feasible set of problem (P );

D : feasible set of problem (D);

P ∗ : optimal set of problem (P );

D∗ : optimal set of problem (D).

3.4 Certificate of Optimality

Assume that we are given a Gramian decomposition of p ∈R2d

p =
r
∑

i=1

λi (1+ vi ,1 x1+ · · ·+ vi ,n xn )
2d ,

corresponding to the points zi = (vi ,1, . . . , vi ,n ) ∈Rn andλi > 0 for i = 1, . . . , r . Using the Vandermonde

matrix Vd+1 of the points {z1, . . . , zr } and Λ = diag(λ1, . . . ,λr ) as in (3.5), it is clear that Md+1 =

V T
d+1ΛVd+1 is in the feasible set,P . Our goal is to give conditions that guarantee that Md+1 is in the

set of optimal solutions,P ∗. To get such conditions we use both (P ) and (D) defined above.

One can see that (D) is strictly feasible with S = I and its optimum is bounded above by

trace(Md+1) since Md+1 = V T
d+1ΛVd+1 as a feasible solution for (P ). This implies that there is no

duality gap between the optimal values of (P ) and (D), although (D)might not attain its optimum

[147]. However, if we can construct a feasible pair X ∈P and (y , z ,S ) ∈D such that

< X ,S >= 0

then we must have X ∈P ∗ and (y , z ,S ) ∈D∗ since

0=< X ,S >=< I , X >−mT y,

which implies optimum by weak duality. Note that for positive semidefinite matrices X and S we

have

< X ,S >= 0 ⇐⇒ X S = 0.

Thus we get the following theorem:
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Theorem 3.4.1. The moment matrix Md+1 = V T
d+1ΛVd+1 is optimal for (P ), or Md+1 ∈P ∗, if there

exists S ∈SN such that:

Md+1S = 0,

S = I −
∑

|α|≤2d

yαYα−
∑

|α|≤2d+2,
1≤i≤dim(Sα)−1

zα,i Zα,i ,

S � 0

Using Theorem 3.4.1 we study when the optimal solution of (P ) is unique andP ∗ = {Md+1}.
We are only concerned with cases where the rank r symmetric decomposition of the associated

polynomial p is unique, and it is Gramian. In this case Proposition 3.4.2 gives sufficient conditions

to showP ∗ = {Md+1}:

Proposition 3.4.2. Assume that p has Gramian rank r and the rank r symmetric decomposition of

p is unique. If ∃S satisfying Theorem 3.4.1 of rank N − r , thenP ∗ = {Md+1}.

Proof. Suppose p has a unique Gramian rank r decomposition and let S be a matrix satisfying

Theorem 3.4.1 of rank N − r . Let M ∈P ∗. Since M S = 0 and rank(S ) =N − r , we have rank(M )≤ r .

But by the stopping criteria in Theorem 3.2.2, M defines a rank ≤ r symmetric decomposition for p ,

so the uniqueness of the symmetric decomposition implies that M =Md+1.

Additionally we note the following about the set of matrices satisfying Theorem 3.4.1.

Proposition 3.4.3. If ∃S satisfying Theorem 3.4.1, then ∃S̄ satisfying Theorem 3.4.1 with rank(S̄ )≤
�n+d

d+1

�

.

Proof. Suppose ∃S satisfying Theorem 3.4.1. By zeroing the Schur compliment of the submatrix

indexed by degree d +1 monomials, we can produce S̄ with rank(S̄ )≤
�n+d

d+1

�

.

To better aid our analysis of the problem we reformulate Theorem 3.4.1 into a sum of squares

decomposition problem. Corollary 3.4.4 gives an alternative formulation of Theorem 3.4.1 by notic-

ing that the polynomial xT S x do not depend on the zα,i variables and interpreting the problem as a

sum of squares decomposition.

Corollary 3.4.4. The moment matrix Md+1 =V T
d+1ΛVd+1 ∈P ∗ corresponding to the points z1, . . . , zr
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is optimal if there exists q ∈R2d+2 and qα ∈Rd+1 for |α|= d +1 such that:

q =
∑

|α|=d+1

q 2
α

qα(zi ) = 0, for all 1≤ i ≤ r, |α|= d +1

coeff(q , xβ ) =δ2|β for |β |= 2d +1, 2d +2,

where

δ2|β =







1 if ∃γ ∈Nn such that 2γ=β

0 otherwise.

Proof. We prove the equivalence of the criteria of Theorem 3.4.1 and Corollary 3.4.4. First we prove

the conditions of Theorem 3.4.1 implies the condition of Corollary 3.4.4. Assume there exists S

such that Md+1S = 0, S = I −
∑

yαYα −
∑

zα,i Zα,i , and S � 0 as in Theorem 3.4.1. Without loss of

generality from Proposition 3.4.3 we assume rank(S )≤
�n+d

d+1

�

with Cholesky factorization S = L L T .

With x= [xβ ]|β |≤d+1, we let q = xT S x and let the collection qα consist of the polynomials L T x. Then

q = xT S x = xT L L T x =
∑

αq 2
α , and each qα vanishes on zi since Md+1S = 0 =⇒ V T

d+1ΛVd+1L L T =

0 =⇒ Vd+1L = 0. Using the observations that

< xxT , I >= xT x, < xxT , Yα >= xα, < xxT , Zα,i >= 0,

we conclude that for |β |= 2d +1, 2d +2, we have,

coeff(q , xβ ) = coeff(xT (I −
∑

|α|≤2d

yαYα+
∑

|α|≤2d+2,
1≤i≤dim(Sα)−1

zα,i Zα,i )x, xβ )

= coeff(xT I x, xβ )

=δ2|β .

Now we prove the conditions of Corollary 3.4.4 implies the conditions of Theorem 3.4.1. Assume

there exists q and qα as in Corollary 3.4.4. Then we form a coefficient matrix, L , from the coefficient

vectors of qα and let S = L L T so S � 0. Also qα(zi ) = 0 for 1≤ i ≤ r =⇒ Vd+1L = 0 =⇒ Md+1S = 0. To

conclude, it is sufficient to show that the two sets

�

S ∈SN :< Yβ ,S >=δ2|β for |β |= 2d +1, 2d +2
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and










S ∈SN : S = I −
∑

|α|≤2d

yαYα−
∑

|α|≤2d+2,
1≤i≤dim(Sα)−1

zα,i Zα,i , yα, zα,i ∈R











are equal. Above we proved the “⊇" direction. Since both of these sets are affine spaces, it is enough

to prove that the vector spaces

{S ∈SN :< Yβ ,S >= 0 for |β |= 2d +1, 2d +2}

and










S ∈SN : S =
∑

|α|≤2d

yαYα+
∑

|α|≤2d+2,
1≤i≤dim(Sα)−1

zα,i Zα,i , yα, zα,i ∈R











have the same dimension. By construction, we have that {Yα, Yβ , Zγ,i : |α| ≤ 2d , |β |= 2d +1,2d +

2, |γ| ≤ 2d +2, 1≤ i ≤ dim(Sγ)−1} is a basis forSN , which proves the claim.

3.5 Sufficient Conditions for Optimality

In this section we demonstrate that in some special cases Md+1 will generically be optimal in (P ) by

imposing an assumption on the polynomials qα in Corollary 3.4.4.

Corollary 3.5.1. The moment matrix Md+1 =V T
d+1ΛVd+1 ∈P ∗ corresponding to the points z1, . . . , zr

is optimal if there exists q ∈R2d+2 and qα = xα+ l .d .t . ∈Rd+1 for |α|= d +1 such that:

q =
∑

|α|=d+1

q 2
α

qα(zi ) = 0, for all 1≤ i ≤ r, |α|= d +1

coeff(q , xβ ) = 0 for |β |= 2d +1.

Proof. Suppose there exists q and qα = xα+ l .d .t . satisfying Corollary 3.5.1, then coeff(q , xβ ) =δ2|β

for |β |= 2d +2 because degree 2d +2 terms only depend on the squares of the degree d +1 terms in

qα.

The assumption on qα simplifies the criteria sufficient to prove optimality of Md+1 into the

solvability of a linear system. We note here that Ker(Vd+1) = Ker(Md+1), so we can use the two

interchangeably.

Proposition 3.5.2. Let Vd , Vd+1 be the Vandermonde matrices of r points. Let Kd be a matrix with

columns that form a basis for Ker(Vd ), and let F be the matrix of coefficients of the normal forms
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of monomials of degree d + 1 modulo the vanishing ideal of our r points. If rank(Vd ) = r then the

columns of the matrix Kd+1 =

�

Kd −F

0 I

�

form a basis for Ker(Vd+1).

Using Kd+1 we can look at a matrix existence formulation of Corollary 3.5.1.

Corollary 3.5.3. The moment matrix Md+1 =V T
d+1ΛVd+1 ∈P ∗ if there exists G ∈SN−r such that:

G =

�

g g T g

g T I

�

coeff(xT Kd+1G K T
d+1x, xβ ) = 0 for |β |= 2d +1.

where g is a real matrix of size

�

n +d

n

�

− r by

�

n +d

d +1

�

and I is the identity matrix of size

�

n +d

d +1

�

.

Proof. G is clearly positive semidefinite with the decomposition G =

�

g

I

�

�

g T I
�

. Using G we let

q = xT Kd+1G K T
d+1x and associate each qα with the corresponding element of the vector xT Kd+1

�

g

I

�

.

Then q =
∑

αq 2
α by construction. Since Kd+1 is in the null space of Vd+1 we also conclude that

qα(zi ) = 0, for all 1 ≤ i ≤ r, |α| = d + 1. Lastly, coeff(xT Kd+1G K T
d+1x, xβ ) = 0 for |β | = 2d + 1 =⇒

coeff(q , xβ ) = 0 for |β |= 2d +1.

Proposition 3.5.4. The values of g satisfying Corollary 3.5.3 are the solution of an inhomogeneous

linear system of equations.

Proof. Let q = xT

�

Kd g − F

I

�

�

g T K T
d − F T I

�

x and consider the degree d+1 polynomials in the row

vector, xT

�

Kd g − F

I

�

. The degree d+1 components of these polynomials consist of a single monomial

that is independent of g i , j . The degree d coefficients of these polynomials are inhomogeneous but

linear in g i , j . Because degree 2d +1 coefficients of q rely only on the product of degree d and degree

d +1 coefficients of the polynomials the values of g satisfy an inhomogeneous linear system.

In order for the inhomogeneous linear system of Proposition 3.5.4 to have a solution, it is

sufficient that the corresponding homogeneous equations are linearly independent. Thus we should

try to understand what is the coefficient matrix of this linear system and determine when it is full

row rank. For this we first define a subresultant matrix.
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Definition 3.5.5. The degree∆ subresultant matrix of t homogeneous polynomials h1, . . . , ht of degree

d ≤∆ in n variables is the matrix whose columns are the coefficient vectors of the multiples of each

hi with all monomials of degree∆−d . For example, if∆−d = d +1 and the monomials of degree

d +1 are {xαi }si=1 as above, then

Sres∆(h1, . . . , ht ) :=
xα1 h1 . . . xαs h1 · · · xα1 ht . . . xαs ht .

Subresultant matrices play an important role in studying the homogeneous parts of the ideal 〈h1, . . . , ht 〉.

Theorem 3.5.6. Let G be a matrix satisfying Corollary 3.5.3 and denote the entries of Kd by ki ,β for

i = 1, . . . , t and |β | ≤ d . We define the homogeneous degree d polynomials:

hi :=
∑

|β |=d

ki ,β xβ i = 1, . . . , t .

Then the coefficient matrix of the linear system in Proposition (3.5.4) in the variables {g i , j } is Sres2d+1(h1, . . . , ht ).

Proof. First note that the normal form coefficients only appear in the constant terms, so do not

appear in the coefficient matrix. The rows of the coefficient matrix correspond to monomials xβ of

degree |β |= 2d +1. For each j ∈ {1, . . . ,
�n+d

d+1

�

} associate with it a unique monomial of degree d +1,

α j . For fixed i ∈ {1, . . . , t } and j ∈ {1, . . . ,
�n+d

d+1

�

}, the column corresponding to the variable g i , j has

zero entry in the row corresponding to xβ unless xα j divides xβ . If xα j |xβ then the entry is ki ,β−α j
,

which shows that the column of g i , j is the coefficient vector of xα j hi .

Corollary 3.5.7. Let Md+1 =Vd+1ΛV T
d+1, with Vd+1 the Vandermonde matrix, and V T

d has full column

rank. Define the homogeneous degree d polynomials h1, . . . , ht from Ker(V T
d ) as in Theorem 3.5.6.

Then the matrix Md+1 ∈P ∗ if S r e s2d+1(h1, . . . , ht ) has full row rank.

In the rest of this subsection we study when the rows of the subresultant matrix are independent.

Note that the rows are independent if and only if

〈h1, . . . , ht 〉2d+1 =R=2d+1, (3.8)

where the left hand side denotes the homogeneous part of degree 2d +1 of the ideal generated by

h1, . . . , ht , and the right hand side denotes the space of homogeneous polynomials of degree 2d +1.

Thus (3.8) is satisfied only if 2d +1 is greater or equal than the regularity index of 〈h1, . . . , ht 〉, i.e. the
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smallest degree where the Hilbert function of the ideal agrees with its Hilbert polynomial. Note that

if h1, . . . , ht has common roots in the projective space overC then (3.8) can never be satisfied, which

implies that we need to have t ≥ n .

For the rest of the section we assume that h1, . . . , ht is a system such that the dimension of

〈h1, . . . , ht 〉2d+1 is the maximum possible. In the results below we give specific constructions of

particular real systems h∗1 , . . . , h∗t and study when we have 〈h∗1 , . . . , h∗t 〉2d+1 =R=2d+1. Therefore, if we

assume that our 〈h1, . . . , ht 〉2d+1 is maximal, then it will also imply that 〈h∗1 , . . . , h∗t 〉2d+1 =R=2d+1.

Remark 3.5.8. We cannot prove that the assumption on h1, . . . , ht will ever be satisfied in our case. In

fact, our polynomials h1, . . . , ht are not generic, they are real, and they are the highest degree parts

of degree d polynomials vanishing on some generic real points. In [117] it was shown that systems

h1, . . . , ht for which 〈h1, . . . , ht 〉2d+1 is not maximal are defined by non-trivial polynomial equations, so

overC they form a Zariski closed subset. Furthermore, even for the "generic" case overC the behavior of

〈h1, . . . , ht 〉2d+1 is not well understood. In [57] they give a conjecture about the Hilbert series of generic

systems over C.

The regularity index of n ×n homogeneous systems were widely studied in the literature, but

for highly overdetermined systems that has Hilbert series as in Fröberg’s conjecture in [57] only the

asymptotic behavior of the regularity index is known as n→∞ (c.f. [7, 8]).

The next theorem gives all values of d and n when (3.8) is satisfied in the cases when t = n and

t = n+1. The analysis of the cases when t > n+1 is still ongoing. Since r =

�

n +d

n

�

− t , we can easily

translate these results in terms of the Gramian rank r . Finally, we want to note that on the other end

of the spectrum, when t =

�

n +d

n −1

�

= dim R=d and h1, . . . , ht are generic, then the coefficient vectors

of h1, . . . , ht form a square full rank matrix, thus (3.8) is satisfied for all n and d . However in this case

r =

�

n +d −1

n

�

= dim Rd−1, and the matrices Md−1 and Md already satisfy the stopping criterion

for flat extension, so we do not need an extension to Md+1.

Proposition 3.5.9. Let h1, . . . , ht be homogeneous polynomials of degree d in n variables, and assume

that 〈h1, . . . , ht 〉2d+1 is maximal. Then 〈h1, . . . , ht 〉2d+1 =R=2d+1 if

1. in the case of t = n

n = 2 for arbitrary d ,

n = 3 and d ≤ 3,

n = 4 and d ≤ 2,

n ≥ 5 and d = 1.
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2. in the case of t = n +1

n = 2 or 3 for arbitrary d ,

n = 4 and d ≤ 6,

n = 5 and d ≤ 3,

n = 6, 7, 8 and d ≤ 2,

n ≥ 9 and d = 1.

Proof. First note that if we find a particular system h∗1 , . . . , h∗t of degree d that satisfy 〈h∗1 , . . . , h∗t 〉2d+1 =

R=2d+1, then any generic h1, . . . , ht will also satisfy it. For t = n the standard theory of subresultants

uses the system

h∗1 := x d
1 , . . . , h∗n := x d

n .

Then one can define

δ := n (d −1),

and it is easy to see that if∆≥δ+1 then the matrix Sres∆(h∗1 , . . . , h∗n ) has more columns than rows

and contains the identity matrix, so it has full row rank. Thus we need that 2d +1≥δ+1 and that is

only satisfied in the cases listed in the claim.

For t = n +1 we will use the system

h∗1 := x d
1 , . . . , h∗n := x d

n , h∗n+1 := (x1+ . . .+ xn )
d .

Let

Hd (ν) := span{x γ : |γ|= ν, ∀i γi < d }

and denote by Hd (ν) := dim Hd (ν). Clearly, the monomials not in Hd (ν) generate 〈x d
1 , . . . , x d

n 〉ν.

Define the linear map

ψh∗n+1
: Hd (d +1) → Hd (2d +1)

xα 7→ xα ·h∗n+1 mod 〈x d
1 , . . . , x d

n 〉2d+1.

By [153, Corollary 3.5 and Theorem 3.8.(0)], the matrix of the mapψh∗n+1
has full rank. So if

Hd (2d +1)≤Hd (d +1) (3.9)

thenψh∗n+1
is surjective, and Sres∆(h∗1 , . . . , h∗n ) has full row rank. Using the fact thatHd (ν) =Hd (δ−ν)

and thatHd (ν) is monotonically decreasing in [dδ2 e,δ], we get that (3.9) is satisfied when either

dδ2 e ≤ d +1≤ 2d +1 or dδ2 e ≤δ− (d +1)≤ 2d +1. This is always satisfied if n ≤ 3 and for n ≥ 4 it reduces
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to d ≤ n+2
n−3 , resulting in the values in the claim.

A different approach was presented in [58, Theorem 6], where they studied the minimal number

t such that a generic homogeneous form in n variables of degree k d is a sum of the k -th powers of

t forms of degree d over C. For the case of k = 2 they prove that for

t = 2n−1

and generic h1, . . . , ht ∈R=d we have

〈h1, . . . , ht 〉2d =R=2d ,

which is slightly stronger than what we need in (3.8). Moreover, their construction for k = 2 works

over the reals, in particular, they show that the following 2n−1 real polynomials

h∗I :=

 

x1+
∑

i∈I

xi −
∑

j 6∈I

x j

!d

for all I ⊆ {2, . . . , n}

will generate R=2d in degree 2d . Moreover, they show that there is an open subset of all real polyno-

mials of degree 2d where the "typical rank" is 2n−1, but there might be other "typical ranks" too (see

also [34] on typical ranks overR). They also show that for large enough d the t = 2n−1 upper bound

is sharp, but for small d this bound is not always sharp.

3.6 Cases When Md+1 is Never Optimal

In the previous section we explored cases of triplets (n , d , r )where we can generically prove that

Md+1 is optimal for (P ) and list these cases. In this section we describe cases where we expect not

to be able to find any S satisfying Theorem 3.4.1 by counting the degrees of freedom and number of

linear constraints in Corollary 3.4.4.

The linear constraints can be indexed by the monomials of degree 2d + 1. So the number of

linear constraints is
�n+2d

2d+1

�

. In these linear constraints there are
�

�n+d
d

�

− r
�

�n+d
d+1

�

, g i , j variables and
((n+d

d+1))((n+d
d+1))

2 −
�n+2d+1

2d+2

�

, zα,i variables. The linear system is overdetermined if

�

n +2d

2d +1

�

>

��

n +d

d

�

− r

��

n +d

d +1

�

+
(
�n+d

d+1

�

)(
�n+d

d+1

�

)

2
−
�

n +2d +1

2d +2

�

or identically,

r >

((n+d
d+1))((n+d

d+1))
2 −

�n+2d+1
2d+2

�

−
�n+2d

2d+1

�

�n+d
d+1

� +

�

n +d

d

�
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.

Asymptotically, these bounds are not applicable due to the limitation that r is less than the size

of Md , but there are instances where this bound is applicable.

One instance is when n = 2 and d = 3, the bound indicates that Md+1 will generally not be

optimal when r = 10 as the linear system is overdetermined. This triplet of (n , d , r ) is a case where

the corresponding decompositions are unique, and rank(Md ) = r , but Md+1 will generically not be

optimal forP .

3.7 Uncertain Cases

Outside of the cases listed in Sections 3.5 and 3.6, the possibility of Md+1 being optimal in P may

depend on more than just the triplet (n , d , r ). Instances may depend fundamentally on the sets of

points {zi }. To demonstrate this we present two examples in the same triplet (n , d , r ) where one

example has Md+1 optimal, and one does not.

Let us consider the case when n = 2, d = 3. In this case, size(Md ) = 10, and size(Md+1) = 15. A

discussion of the extreme rays in this case can be found in [13]. Gramian rank 10 decompositions

will generally not be optimal solutions in (P ) as the linear system in Corollary 3.4.4 is overcom-

plete. Gramian rank 8 decompositions will generically be optimal in (P ) from Corollary 3.5.7 and

Proposition 3.5.9. Between these two ranks we wish to understand what happens. Here we present

two examples of Gramian rank 9 decompositions, one where ∃S satisfying Theorem 3.4.1, and one

where >S satisfying Theorem 3.4.1.

Example 3.7.1. Let {zi }= {(78, 87), (−45, 78), (−38, 32), (91,−76), (−18, 94), (−22,−22), (27, 99), (52,−16),

(−58,−87)} be the set of r = 9 points, and let λi = 1 for i = {1, . . . , 9}. In this case ∃S satisfying Theorem

3.4.1 and Md+1 is optimal in (P ).

Example 3.7.2. Let {zi }= {(−43,−34), (−18,−10), (−19, 23), (52, 72), (−66,−76), (48,−15), (35, 45),

(−83,−72), (51, 22)} be the set of r = 9 points, and let λi = 1 for i = {1, . . . , 9}. In this case >S satisfying

Theorem 3.4.1 and Md+1 is not optimal in (P ). In this instance, the optimal solution is rank 11.

These examples demonstrate the complexity of the cases where Proposition 3.5.9 does not

hold, as the solution to the relaxed problem may or may not be optimal in the original problem. In

these cases the triplet (n , d , r ) is not sufficient to determine if Md+1 is optimal in (P ) and specific

information of the points is necessary.

3.7.1 Future Work

Some of the methods used to search for certificates of optimality also suggest future research

avenues. Given an instance of a specific (n , d , r ) and {zi } the standard approach to search for a
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certificate of optimality using Theorem 3.4.1 involves two steps. First, we solve the under-determined

linear system coeff(xT S x, xβ ) = 0 for |β |= 2d +1. With the resulting affine solution, we look for an

intersection with the positive semidefinite cone.

Let us consider for a moment the set T = {A | A � 0, A = I −
∑

|α|=2d+2,
1≤i≤dim(Sα)−1

zα,i Z̃α,i }. We know

that I ∈ T with zα,i = 0 for |α|= 2d +2 and 1≤ i ≤ dim(Sα)−1, so the set is nonempty and has an

interior. Another interesting observation is that this set is bounded.

Theorem 3.7.1. Fix n and d and an orthonormal basis {Ỹα} ∪ {Z̃α,i } for |α| = 2d + 2 and 1 ≤ i ≤
dim(Sα)−1. Then the set

I −
∑

|α|=2d+2,
1≤i≤dim(Sα)−1

zα,i Z̃α,i � 0

is bounded.

Proof. Choose Y =
∑

|α|=2d+2 yαỸα � 0 to be a full rank positive definite matrix. A generic collection of
�n+d+1

d+1

�

points will produce such a matrix. Suppose that there exists a matrix Z =−
∑

|α|=2d+2,
1≤i≤dim(Sα)−1

zα,i Z̃α,i

such that I + s Z � 0 for s > 0, then Z � 0. But < Y , Z >= 0 by construction, therefore Z = 0 and the

set is bounded.

Using these observations of T , we can make some conclusions from the solution of our linear

system. For instance, if the solution to the linear system can be solved independent of the zα,i , then

Corollary 3.5.3 applies and Md+1 is optimal. Alternatively if the zα,i variables are necessary, but yield

a solution such that
∑

z 2
α,i < 1, then Md+1 will be optimal since I −

∑

|α|=2d+2,
1≤i≤dim(Sα)−1

zα,i Z̃α,i � 0. Lastly,

if the diameter of the set in Theorem 3.7.1 is diam(n , d ), then if the solution of the linear system

closest to the origin has
∑

z 2
α,i > diam(n , d )2 then Theorem 3.4.1 cannot apply.

Studying the sets of {zi } that provide instances of each of these cases will be a topic for future

exploration. Future research may also extend the idea further with a linear programming relaxation.

The additional constraint
∑

|zα,i |< 1 is linear and such a solution also guarantees the optimality of

Md+1 in (P ).
Additionally, we are interested in the rank of the optimal solutions in the cases when Md+1 is

not optimal in the minimal nuclear norm problem. One approach to address this question may be

to examine the extremal rays in the feasible set ofP . This may provide a meaningful upper bound

for the rank of the optimal solution, asP ∗ must contain an extremal ray.

3.8 Conclusion

In this Chapter we study the Gramian decomposition of tensors and polynomials by posing a

rank optimization problem. Through relaxation of the optimization problem, we pose a convex
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optimization problem to approximate the minimal rank solution. Our analysis of the relaxed problem

reveals a relation between the Gramian decomposition problem and the theory of subresultants.

Our research further provides specific cases where the optimal solution to our relaxation is also

minimum rank. Lastly we provide some interesting cases demonstrating the complexity of the

problem and discuss future work.
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CHAPTER

4

GEOMETRIC ANALYSIS OF SPARSITY

PARAMETER SELECTION IN

DICTIONARY LEARNING

4.1 Introduction

Image restoration is one of the fundamental problems in image processing. Numerous perspectives

on this problem have led to a variety of proposed approaches, including Bayesian filtering [124],

total variation minimization [125], level sets [149], and block matching filtering [38], each with rich

associated literature. Sparse representation and dictionary learning, which is of central interest

here, is one such approach [105]. In this approach, one seeks to sparsely represent a broad class

of signals with an overcomplete dictionary. The properties of dictionaries and their use in sparse

representation are the subject of this chapter.

4.1.1 Sparse Representation and Dictionary Learning Background

One interpretation of the sparse coding problem is a change of basis problem, where the signal

representation in the new basis is sparse. Given a signal s , a dictionary D , and tolerance ε, solve:
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arg min
x

‖x‖0

subject to ||D x − s ||2 ≤ ε,
(4.1)

where ||x ||0 is the number of nonzero elements of a vector x . This is a combinatorial problem in the

subset selection of the columns of the dictionary, or the atoms, to use in the sparse representation

of the signal. The sparse coding problem fits the data to a sparse linear subspace model where each

signal lies in a relatively low dimensional subspace of ambient space.

Wavelets have been heavily invoked as a good dictionary D in image processing for their sparse

representation properties [107]. Later improvements have led to sparse coding by optimizing over a

class of dictionaries. Given a matrix of signals S , and tolerance ε, to find a dictionary of n atoms

solve:

arg min
D ,X

||X ||0

subject to







||D X −S ||2 ≤ ε,

||Di ||22 ≤ 1, for i = 1, . . . , n ,

(4.2)

where Di is the i th column of D . This allows the dictionary to adapt to signals of interest, thus

allowing for sparser representations.

Computationally, problem 4.2 is an NP-hard minimization problem [142]. The problem is non-

convex for two reasons, the product, D X , as well as the `0 norm. There are two common approaches

to approximate solutions to the problem, both of which use an iterative alternating update procedure

to handle the non-convexity of D X . To handle the `0 minimization one approach uses a greedy

algorithm, the other uses a relaxation.

A greedy algorithm to approximate (4.2) pairs Orthogonal Matching Pursuit (OMP) [119]with

K-SVD [1]. OMP is an algorithm that iteratively calculates a sparse representation. Each iteration

incorporates an additional dictionary atom into the representation to minimize the residual. The

K-SVD algorithm uses the support from the sparse representations to update individual atoms with

a rank one singular value approximation. Algorithm 1 summarizes the steps of using OMP with

K-SVD to learn a dictionary.
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Data: matrix of signals: S ∈Rm×N

sparsity parameter: ε> 0

Result: dictionary: D ∈Rm×n

sparse representation: X ∈Rn×N

Initialize D to an arbitrary matrix

while not converged do
Approximate

X =arg min
X

‖X ‖0

subject to ||D X −S ||2 ≤ ε,

using OMP

for i = 1 to n do
Define the set of signals that use Di ,ωi = { j |X i , j 6= 0}

Compute the representation error matrix, Ei = S −
∑

j 6=i Dj X j

Restrict Ei toωi and obtain E R
i

Compute the rank one truncated SVD decomposition, u s v T = E R
i

Update Di = u and (X T
i )

R = s v

end

end

Algorithm 1: Dictionary learning algorithm using OMP with K-SVD

A different approach relaxes ‖x‖0 to ‖x‖1 and solves the relaxed problem (4.3). In this relaxation

one alternates solving the minimization problem for X and D until convergence is achieved. The

minimization over X is a convex problem called Basis Pursuit DeNoising (BPDN) in signal pro-

cessing [29] and Least Absolute Shrinkage and Selection Operator (lasso) [141] in statistics. This

problem can be efficiently solved with the Alternating Direction Method of Multipliers (ADMM)

algorithm [17]. The minimization over D is also convex and can be efficiently solved with the Method

of Optimal Direction (MOD) algorithm [53]which entails solving an over-complete linear system

and a projection. Algorithm 2 summarizes the steps of using lasso with MOD to perform dictionary

learning.

arg min
D ,X

||D X −S ||2F +λ ||X ||1

subject to ||Di ||22 = 1, for i ∈ {1, . . . , n}.
(4.3)
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Data: matrix of signals: S ∈Rm×N

sparsity parameter: λ> 0

Result: dictionary: D ∈Rm×m

sparse representation: X ∈Rm×N

Initialize D to an arbitrary matrix

while not converged do
Solve

X =arg min
X

||D X −S ||2F +λ ||X ||1

using ADMM

Solve
D =arg min

D
||D X −S ||2F

subject to ||Di ||22 = 1, for i = 1, . . . , n .

using MOD

end

Algorithm 2: Dictionary learning algorithm using lasso with MOD

The two dictionary learning algorithms have different sparsity parameters, ε and λ, but with a

known relation. In practice, the ε sparsity parameter is best seen as a tolerance parameter, indicating

the required fidelity in the optimization. The λ sparsity parameter is a regularization coefficient,

this parameter will also correlate with the fidelity term in the optimization, but does not directly

guarantee any tolerance bounds. Both sparsity parameters share the trend that, the larger the

parameter, the sparser the optimal solution.

4.1.2 Image Restoration

Image restoration is fundamentally an inverse problem that attempts to recover an unknown signal

s0, from a corrupted observation s [50]. There are numerous types of corruption in images, each

with unique sources, properties, and corresponding solutions. We focus here on two common types

of noise, additive white noise, and salt and pepper impulse noise.

Classicly additive noise models the observed signal as a sum of an unknown uncorrupted

signal and noise or, s = s0+η. For white noise, η is zero mean homogeneous Gaussian noise. This

noise model implies an inter-pixel independence of the corruption and an independence of the

signal intensity. Common sources of white noise are thermal variations and signal transmission.

Additive white noise is one of the most well studied with a range of potential solutions, some notable
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approaches to white noise denoising are linear filtering [80] and block matching [38].

Salt and pepper noise is impulsive noise where a random subset of pixels are corrupted to

assume either a minimum or maximum value. Similarly to additive white noise, salt and pepper

corruption is spatially independent as well as independent of signal intensity. Common sources

of salt and pepper noise include artifacts in analog to digital conversions as well as bit errors [14].

Approaches well suited to handle salt and pepper noise include interpolation methods [144], median

filtering [76], and total variation denoising [156].

Dictionary learning is one technique that can be used to solve image restoration problems. In

recent years different adaptations of dictionary learning have incorporated dictionary learning into

the target application for online task-driven dictionary learning [73, 106]. For our experiments we

break the process of image restoration into several steps. The first step is to train a dictionary on an

uncorrupted set of image patches. With the resulting dictionary, the second step is to solve a form of

the sparse coding problem on corrupted image patches. The final step is to restore the image from

the sparse representation. In both denoising applications, the ideal sparsity parameter generally

correlates with the sparsity level. It is rationalized that the noisier the signal, the more regularization

is required to return the corrupted signal to the image patch manifold.

The main results of this Chapter are as follows:

• We observe the effect of sparsity parameters in dictionary learning and interpret their geo-

metric use in a manifold model and their efficacy in image reconstruction.

• We analyze statistical properties of dictionary atoms and interpret the results geometrically.

• We propose a modification to dictionary learning thatexploits the statistical properties to

make dictionaries that are structured and more can be tailored to application after training.

4.2 Sparsity Parameter: Effect and Analysis

We may intuitively expect that when denoising with a dictionary the best regularization would

correlate with both the noise level as well as the regularization used during training. To test this

premise, we train two dictionaries on a set of natural image patches using Algorithm 2 with two

different regularizations. Given the resulting dictionaries, we proceed to solve image denoising

problems, with a variety of regularizations.

Figure 4.1 depicts two dictionaries initialized randomly and trained on the same noiseless image

patches. It is visually evident that the two different dictionaries contain different information. The

dictionary trained with λ= 0.1 displays appealing atoms with stronger natural image features such

as lines. The dictionary trained with λ = 0.01 has on the other hand, numerous small oscillatory

components that are not visually dominant in natural images.
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(a) λ= 0.1 (b) λ= 0.01

Figure 4.1 Dictionaries trained on natural image patches data using lasso with MOD.

Figure 4.2 displays the denoising performance comparisons of the two dictionaries for additive

white noise and salt and pepper noise. For the denoising experiments a testing image was corrupted,

broken into blocks and denoised with the lasso problem, and restored as an image which was used

to calculate the peak signal to noise ratio.

In analyzing the white noise denoising case one may observe that the dictionaries are perhaps

best used with a similar regularization with which they were trained. The peak performance when

σ= 25 occurs when the dictionary trained with λ= 0.1 is also used with λ= 0.1 regularization. In

theσ= 5 case, the peak performance occurs when the dictionary trained with λ= 0.01 is used with

λ= 0.01 regularization.

The salt and pepper denoising results are a little different. The dictionary trained with λ= 0.01

regularization level is consistently outperformed when denoising salt and pepper. This result is

not surprising, as a significant number of atoms in the dictionary have a relatively small support

and may be delta function-like. The dictionary trained with λ= 0.1 has fewer of these atoms, and

generally appear to have larger supports.

These experiments point to a certain relative dependence of the performance of dictionaries

on both the type of noise and the noise level. Neither dictionary is consistently better at denoising,

indicating that the two dictionaries contain different information that may or may not be desirable

depending on the noise. This experiment demonstrates that what information is desirable depends

on both the properties and magnitude of the noise. Our goal is to provide a geometric explanation
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(a) White Noiseσ= 25 (b) Salt and Pepper 20% Corrupted

(c) White Noiseσ= 5 (d) Salt and Pepper 4% Corrupted

Figure 4.2 Denoising performance of two dictionaries at a variety of noise levels and regularizations.

of the different types of information, as well as propose a method that improves control over the

information.

4.2.1 Geometric Interpretation

The assumptions of sparse representation theory typically are that each signal lies in a low dimen-

sional subspace of the ambient space. The sparse coding problem picks the basis that minimizes

the dimensionality of the subspace. We consider an alternative perspective, one where each signal

lies on a low dimensional manifold. Previous research on the natural image manifold suggests that

3 by 3 image patches belong on a topological Klein bottle [23]. Other groups have considered the

statistics of natural image patches without the imposition of a sparse representation model [95]. We

develop a manifold interpretation of sparse representation and dictionary learning by describing
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geometrically the relationship between the dictionary atoms and the manifold and show statistically

the different usage patterns of different information.

(a) Principal Atoms (b) Principal and Tangential Atoms

Figure 4.3 Example dictionaries to represent a 2-dimensional affine region.

Geometrically there are several different ways that a dictionary can be used to represent a

manifold. To represent a k dimensional locally affine region of a manifold at least k + 1 atoms

are required. The distribution and orientation of the atoms relative to the manifold is the matter

of interest. Figure 4.3 depicts two different ways to represent a two dimensional affine region in

three dimensions. One potential distribution holds k +1 non-degenerate dictionary atoms pointing

directly to the affine region. Linear combinations of these atoms can represent all other points on

the affine plane, but not necessarily with a small `1 norm. An alternative distribution admits a single

atom to be the affine offset, while k atoms span the tangent space. Throughout our discussion we

will refer to atoms pointing directly to the manifold as principal atoms, and atoms lying in tangent

spaces as tangential atoms.

4.2.2 Geometric Effect of Sparsity Parameter on Synthetic Data

To study how the sparsity parameters affect the atoms’ distributions in the geometric interpretation,

we first turn to synthetic data. Consider a one dimensional manifold consisting of two parallel line

segments lying on an affine plane. The objective is to learn three atoms to represent this manifold

and study how the optimal dictionaries change with sparsity parameters. Figure 4.4 depicts the

manifold as well as the optimal dictionaries trained with different sparsity parameters using lasso

with MOD.
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(a) λ= 0.1 (b) λ= 0.01

Figure 4.4 Dictionaries trained on synthetic data using lasso with MOD.

With the higher sparsity parameters, all three atoms are principal atoms, pointing approximately

to the manifold. Each of these atoms acts as primary contributor of the data and has little tangential

information. A significant number of signals use just two of the three atoms in their sparse represen-

tations. Such a dictionary achieves a good denoising performance, as each atom does point to the

manifold.

With a lower sparsity parameter, two atoms function as principal atoms. The remaining atom

points in between the two segments, but is not parallel to the line segments. The third atom does

not fit into either role of principal or tangential. With this sparsity parameter the vast majority of the

signals require use of all three atoms in their sparse representation. The atom that does not lie on

the manifold, nor in the tangent space is an amalgamation of principal and tangential information.

The cross contamination makes the denoising performance of this dictionary unsatisfactory.

To observe the effect of the sparsity parameter on dictionary learning when using OMP with

K-SVD, a similar experiment was executed. Figure 4.5 depicts the manifold as well as the optimal

dictionaries trained with different sparsity parameters using OMP with K-SVD. The sparsity parame-

ters ε= 0.5 and ε= 0.1 were chosen to give a similar average fidelity as that obtained with λ= 0.1

and λ= 0.01.

With the higher sparsity parameter, all three atoms are principal atoms, almost identical to the

dictionary learned with λ= 0.1. With the lower sparsity parameter, the dictionary is significantly

different. None of the atoms point to the manifold, nor are they tangential. With the lower parameter,

all three atoms are used in the representation of virtually all of the signals. As neither OMP nor

K-SVD penalize large coefficients in the sparse representation, almost any basis is equally good with

the sparsity parameter ε= 0.1.
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(a) ε= 0.5 (b) ε= 0.1

Figure 4.5 Dictionaries trained on synthetic data using OMP with K-SVD.

4.2.3 Geometric Effect of Sparsity Parameter on Image Patches

Figure 4.6 again depicts the effect of different sparsity parameters when training dictionaries us-

ing lasso with MOD. One approach to understand the different types of atoms in natural image

dictionaries is to analyze some statistics of the dictionary atoms trained in Figure 4.6 (b). Visual

inspection of the dictionary atoms suggest there are two types of atoms, one class consisting of

lines and gradientes, another of checkboards and spots. We will call the two groups "Class One" and

"Class Two". Manual classification of these atoms into these two groups is depicted in Figure 4.7.

To understand the differences between these two classes of atoms, we consider a few measures

to characterize how the atoms are used in training. Let D , X be the optimal solution using Algorithm

2 trained on a collection of N signals, S . Then (X T )i is the i th row of X corresponding to the use of

the i th dictionary atom, Di . Let

θ (i ) =
N

min
j=1

arccos

�

Di ·Sj

Sj ·Sj

�

be the minimal angle between the i th atom and all N signals. The probability that the i th atom is

used in any given sparse representation can be calculated

p (i ) =
||xi ||0

N
.

When the i th atom is used,

m (i ) =
||xi ||1
||xi ||0
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(a) λ= 0.1 (b) λ= 0.01

Figure 4.6 Dictionaries trained on natural image patches data using lasso with MOD.

Table 4.1 Usage statistics of two different classes of atoms trained using lasso with MOD.

Class
θ (i ) p (i ) m (i )

Mean S.D. Mean S.D. Mean S.D.
One 0.4919 0.2085 0.1411 0.0225 0.0466 0.0199
Two 0.9198 0.1727 0.1917 0.0295 0.0244 0.0075

is the average magnitude of use. Table 4.1 shows the means and standard deviations of these values

over the two classes.

The average minimal angles between the two classes, approximately 25 degrees for class one

and 45 degrees for class two, suggest that the class one atoms are much more similar to principal

atoms than class two. With the average angle being approximately 20 degrees closer to that of

signals than class two, the class one atoms appear to point more directly to the manifold. From

p (i ) and m (i ) there are two important observations from Table 4.1. First, the atoms in class one

are approximately 5% less likely to be used in sparse representations than the atoms in class two.

Second, when the atoms in class one are used, they are used with significantly higher magnitudes

than those in class two. In other words, tangential atoms are used more often, but with a smaller

magnitude, as modifiers rather than principal contributors. The geometric interpretation of this

suggests that the radius of curvature is small relative to the affine offset.

Figure 4.8 depicts the effect of training a dictionary using OMP with K-SVD on the same set of

signals and with analogous sparsity parameters. The sparsity parameters ε= 0.17 and ε= 0.02 were
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(a) Class One (b) Class Two

Figure 4.7 Dictionary atoms trained with λ = .01 regularization using lasso with MOD and visually split
into two classes.

Table 4.2 Usage statistics of two different classes of atoms trained using OMP with K-SVD.

Class
θ (i ) p (i ) m (i )

Mean S.D. Mean S.D. Mean S.D.
One 0.3317 0.1474 0.0418 0.0602 0.3198 0.1607
Two 0.5977 0.1143 0.1169 0.0782 0.1618 0.0323

chosen to give a similar average fidelity as that obtained with λ= 0.1 and λ= 0.01.

All of the atoms in the dictionary with theε= 0.17 sparsity parameter are representative of natural

image patches. These atoms consist of lines, gradients, and other visually appealing structures.

Relative to its counterpart trained with lasso with MOD, the lines in the dictionary appear to be

more like step functions than ridges.

The dictionary trained with the lower regularization also has several visually appealing atoms

that have counterparts in the dictionary trained with ε= 0.17, but in addition has several atoms

that appear noisy. Visual classification of these atoms is depicted in Figure 4.9. The Class Two atoms

trained using OMP with K-SVD appear very different from their lasso with MOD counterparts. These

atoms do not have a small support and appear to be much closer to white noise. The statistics of

minimal angle, probability of use, and magnitude of use for these classes can be seen in Table 4.2.

The relative trends of class one and two are identical to those classified from the dictionary
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(a) ε= 0.15 (b) ε= 0.008

Figure 4.8 Dictionaries trained on natural image patches data using OMP with K-SVD.

trained using lasso with MOD. The class one atoms have a much smaller angle than class two. Also,

the class one atoms are used less often, but with higher magnitudes than class two atoms.

Comparing the lasso with MOD and OMP with K-SVD counterparts also provides some interest-

ing insights. The OMP with K-SVD atoms have much smaller minimal angles with the signals than

those trained with lasso and MOD, suggesting that in some ways they are much more like principal

atoms. The probability of use for the OMP with K-SVD is also significantly lower than their lasso

with MOD counterparts. Intuitively this can be attributed to the minimal angles, since the atoms

are much more aligned with the signals, fewer atoms are needed to point to the manifold. This also

explains the differences in average magnitude between lasso with MOD and OMP with K-SVD.

In both the lasso with MOD and OMP with K-SVD formulations there is no structure separating

atoms into different roles. Despite all atoms being treated identically in their respective formulations,

we see that atoms take on specialized roles. The different roles result in different usage patterns

both in the `0 and `1 sense.

4.2.4 Single Step Update

Another method to probe the differences in dictionaries trained with different sparsity parameters

is to alter the regularization during training and observe the effect. To this end, we train a dictionary

until convergence with one regularization, then adjust the regularization and do a single interleaved

cycle to update D(i ),
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(a) Class One (b) Class Two

Figure 4.9 Dictionary atoms trained with λ= .01 regularization using OMP with K-SVD, visually split into
two classes.

X (i+1) = arg minX

�

�

�

�D(i )X −S
�

�

�

�

2

F
+λ ||X ||1

D(i+1) = arg minD

�

�

�

�D X (i+1)−S
�

�

�

�

2

F

subject to
�

�

�

�Dj

�

�

�

�

2

2
≤ 1, for j = 1, . . . , n .

For a controlled comparison we also consider the result of a single interleaved cycle without changing

the regularization.

Using our trained dictionary shown in Figure 4.1 (a), we can observe what a single update step

looks like with sparsity parameters λ= 0.1 and λ= 0.01. Figure 4.10 shows the updated dictionaries

with two different regularizations as well as their change from the initializing dictionary.

Visually we observe that the two different dictionaries are essentially indistinguishable. The

differences with the original dictionary provide more insight into what effect different regularizations

have on a single step update. Considering the differences to the original dictionary, we can see that

the dictionary learning continued with λ= 0.1 seems to be reinforcing the structure already present.

On the other hand, the dictionary learning with λ= 0.01 seems to be fundamentally changing their

structure.

To numerically measure the effect of the update, we measure the minimal angle between each
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(a) D(i+1), λ= 0.1 (b) D(i+1), λ= 0.01

(c) D(i+1)−D(i ), λ= 0.1 (d) D(i+1)−D(i ), λ= 0.01

Figure 4.10 Single update step from learned dictionary with different regularizations, and the differences
in steps.
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Table 4.3 Statistics of minimal angles after a single X and D update.

Minimal Angle Original λ= 0.1 λ= 0.01
Mean 0.3904 0.3902 0.3925
S.D. 0.1868 0.1860 0.1877

atom and all of the signals, and calculate the averages and standard deviations over the atoms.

These results are tabulated in Table 4.3. Interestingly the average minimal angle between atoms

and signals goes slightly down when updating with λ= .1, but goes up when updating with λ= 0.01.

This indicates that as the regularization is lowered, a significant portion of the atoms are deviating

from the role of primary contributor to a signal. When updating with λ= 0.01 the atoms are being

adjusted to leave the manifold and to lie in the tangent space.

4.3 Proposed Modification

Despite no design being built into the dictionary learning formulations to encourage atoms to fill

specific roles, they split into a variety of roles from principal to tangential atoms. These different

classes of atoms have different statistical characteristics in their sparse representations. We propose

to employ the statistical differences to encourage atoms to fill specific roles in the lasso with MOD

formulation. By introducing the product with a diagonal weight matrix into the `1 regularization,

we can encourage specific properties in different atoms.

argminD ,X
1

2
||D X −S ||22+λ

�

�

�

�diag(w )X
�

�

�

�

1
,

Subject To ||Di ||2 ≤ 1 for 1≤ i ≤ k .
(4.4)

In natural image patch dictionaries, the atoms with the lowest weights will be encouraged to be

used more in the `1 sense. Since the principal atoms are used more in the `1 sense relative to the tan-

gential atoms, the atoms with the lowest weights will become principal atoms. Using regularization

to segment the atoms within the dictionary will reduce the cross contamination of principal and

tangential information potentially resulting in better denoising properties. An additional advantage

of encouraging atoms to fill specific roles is versatility. When solving problems where some informa-

tion is less desirable, the corresponding atoms can be weighed more heavily or removed completely

from the optimization. Overall, having a variety of weights for different atoms will produce higher

quality and more flexible dictionaries. A geometric interpretation of the weights in formulation (4.4)

effectively changes the lengths of the atoms. Weights smaller than 1.0 correspond to an effective

lengthening of the corresponding atoms while atoms with lengths greater than 1.0, of an effective

shortening. The longer effective atoms are more effective in representing information where a
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significant component is necessary, encouraging their use to represent some information.

4.3.1 Proposed Modification on Synthetic Data

Consider the synthetic data with our proposed solution. We designate two of the atoms to represent

principal information, and the third to represent the tangent space. Figure 4.11 depicts dictionaries

trained where this structure was encouraged with weights using the formulation in (4.4).

Figure 4.11 Dictionary trained on synthetic data by (4.4) with effective regularizations of 0.009, 0.009, and
0.012.

In this dictionary, the two atoms with the lower effective regularization lie approximately on the

manifold, one on each line segment. The third atom, with the higher effective regularization, lies

parallel to the tangent space of the manifold. This atom is used in almost every sparse representation,

but with a much smaller magnitude. The diversity in the effective regularizations encourages specific
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Table 4.4 Usage statistics of a dictionary trained with a variety of effective regularizations.

Weight Parameter
θ (i ) p (i ) m (i )

Mean S.D. Mean S.D. Mean S.D.
0.9 0.5173 0.2668 0.1930 0.0362 0.0471 0.0214
1.0 0.7614 0.2359 0.1594 0.0272 0.0266 0.0088
1.2 1.0111 0.1770 0.0930 0.0122 0.0170 0.0035

atoms to play certain roles. Through this diversity we help eliminate cross-contamination of different

classes of information in dictionary atoms, resulting in a higher quality dictionary for denoising.

4.3.2 Proposed Modification on Image Patches

Returning to natural image patches, our proposed modification is to train a dictionary with an array

of weights. Consider a dictionary, which we denote D3, trained with sparsity parameter λ= 0.01, and

a weight vector segmented into three groups. The first group of 128 atoms have a weight parameter

of 0.9, and these atoms will be most representative of principal atoms. The second group of 64

atoms have a weight parameter of 1.0, and the last 64 atoms have a weight parameter of 1.2. These

weight values average to 1.0 and were chosen heuristically to produce a slight spread in effective

regularization. Both of these groups of atoms will be more tangential in nature. Figure 4.12 depicts the

dictionary trained with this weight scheme. With these weights, initialization becomes increasingly

important to ensure the use of all dictionary atoms.

The visual difference between the three groups of atoms is quite striking. The first 128 atoms

trained with the the smaller weight are representative of low frequency filters. The second group

of 64 atoms with the middle regularization are visually similar to moderate frequency filters. The

last 64 atoms are most similar to high frequency impulse filters. The statistics in Table 4.4 indicate

how likely and with what magnitude the different groups of atoms are used during training. Notably,

amongst the first two groups of atoms, the atoms with the lower regularization are used less often in

the `0 sense and more often in the `1 sense.

Segmenting the dictionary into groups provides the additional benefit of versatility in sparse

coding problems. In problems where tangential information is ill-suited, the corresponding dictio-

nary atoms can be excluded from the sparse representation. In addition to the full dictionary of 256

atoms, D3, we also consider the dictionaries consisting of only the first group of 128 atoms, denoted

D1, and the first two groups of 192 atoms, D2.

Applying these dictionaries to our image denoising problems we can see how they compare to

our previous dictionaries in Figure 4.13. The dictionary D3 behaves very similarly to the dictionary

trained with λ = 0.01 as they both contain both tangential and primary information, while the

dictionary D1 performs most similarly to the dictionary trained with λ= 0.1 as they both contain
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Figure 4.12 Dictionary, D3, trained on natural image patches with different sparsity weights on different
atoms using formulation 4.4.

mostly primary information.

4.4 Conclusion

This chapter addresses the differences in dictionaries trained with different regularizations and their

subsequent use. Depending on the type and intensity of noise, some dictionary qualities may or may
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(a) White Noiseσ= 25 (b) Salt and Pepper 20% Corrupted

(c) White Noiseσ= 5 (d) Salt and Pepper 4% Corrupted

Figure 4.13 Comparison of dictionaries at a variety of noise levels and regularizations.

not be desirable. Different features are explained in a geometric sense and a method is proposed

and shown to allow for control of feature presence. Dividing dictionaries into groups with different

effective regularizations does two things: it helps prevent the contamination of different types of

information, and it structures the dictionaries making them more versatile.

Future work in this field will include the statistical analysis of how atoms are used in conjunction

with one another. One possible avenue of improvement is the inclusion of a dynamic group norm

that captures the statistical relationship between different types of atoms. Because the tangent

space is different at every point on the manifold, encouraging a group norm such as those in [75,

103, 114, 161]may provide additional control to the geometric structure of dictionary atoms.

Another avenue of research is the possibility of directly encouraging different structures in

the atoms. Notably, additional regularization on the atoms can promote characteristics such as
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smoothness or patterns by different regularizations such as total variation regularization in spatial

domain [126] or sparsity regularization in the frequency domain. Also, alternatives to the unit length

constraint in the dictionary learning and their effect on the geometry of the atoms are of significant

interest.
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CHAPTER

5

VARIATIONS OF DICTIONARY LEARNING

AND APPLICATIONS

5.1 Pansharpening via Triple Factorization Dictionary Learning

5.1.1 Introduction

The research in this section is published and can be seen in [133]. Data fusion methods integrate

different sources of information to construct a single consistent representation. Pansharpening is

a data fusion problem which aims to combine high spatial and high spectral resolution data sets.

Specifically, given a high resolution panchromatic, or black and white, image, the goal is to sharpen

corresponding low resolution multispectral imagery to obtain high resolution multispectral images.

One approach to solving the pansharpening problem is dictionary learning. After training

dictionaries to represent the different bands of a multispectral image, the trained model can be

used to sharpen the low resolution images. The proposed dictionary learning model for data fusion

can be applied to the pansharpening problem. Training and validating the model on real world data

demonstrates the data fusion formulation’s viability for pansharpening.
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5.1.2 Background

Dictionary learning is a method that finds a set of vectors with the goal of sparsely representing a

family of signals. Typically, one wishes to represent a set of signals S , with a dictionary D , whose

columns are called atoms, and sparse assignment vectors X . A classic approach to this is the

minimization problem

arg min
D ,X

1

2
‖D X −S‖2

F +λ‖X ‖1,

subject to ‖D ‖2,∞ ≤ 1,

where λ is referred to as the regularization parameter that controls sparsity, and the constraint on

D keeps the dictionary bounded [1]. More precisely the constraint

‖D ‖2,∞ =max
i

√

√

√

∑

j

|Dj ,i |2 ≤ 1,

keeps the Euclidean norm of each atom bounded above by 1. After learning a dictionary, one can use

that dictionary to sparsely represent signals since D X ≈ S . Dictionary learning has had numerous

uses, of which two notable applications are image denoising and inpainting.

When dictionary learning is applied to images, the signals are constructed by vectorizing over-

lapping patches or subimages of a fixed size. Several preprocessing techniques can be applied to the

vectorized patches such as centering, normalizing, and whitening [77]. If one wishes to reconstruct

the image after sparsely encoding the overlapping patches it is typical to resolve the multivalued

pixels by averaging.

Coupled dictionary learning trains two different dictionaries to represent two different but

related signals. A typical formulation for coupled dictionary learning is

arg min
Di ,X i ,W

σ1

2
‖D1X1−S1‖2

F +
σ2

2
‖D2X2−S2‖2

F+

γ

2
‖W X1−X2‖2

F +λ‖X ‖1,

subject to ‖Di ‖2,∞ ≤ 1 for i = 1, 2.

Coupled dictionary learning has had significant success in image superresolution as well as image

analogies [21, 152].

5.1.3 Related Works and Our Contribution

There are a variety of approaches to the pansharpening problem [5, 102]. Two of the more basic

approaches to pansharpening that we will compare against are Gram-Schmidt (GS) [84] and prin-

cipal component analysis (PCA) [27]. GS and PCA provide a good benchmark for validation of
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Figure 5.1 Sample dictionary atoms transformed to the reference image space.

Figure 5.2 Sample dictionary atoms transformed to the degraded input image space.

problem formulation. There have also been a few previous works using variations of dictionary

learning or sparse coding for pansharpening [28, 100]. Our investigation entails adding an additional

factorization to coupled dictionary learning to solve the pansharpening problem.

We propose a different and novel variation of coupled dictionary learning with the goal of

demonstrating that an additional factorization provides some new flexibility that can be suitable

for pansharpening. Variations of our formulation should be applicable to a variety of problems.

The goal of this section is to demonstrate that this formulation is applicable to the pansharpening

problem.

5.1.4 Problem Formulation

One may observe that in coupled dictionary learning there is often very similar information stored

in the different dictionaries. This is especially true when dealing with multispectral images, as there

is a lot of overlapping information in different spectral bands. Since there is a lot of redundant

information in the different bands, it is natural to construct a model to exploit this. This is the

motivation for our proposed method, to find one dictionary that contains information from all

bands, as well as a set of linear transformations taking the cumulative information to a specific

band. Specifically, our formulation for the pansharpening problem

arg min
Pi ,D ,X

∑

i

σi

2
‖Pi D X −Si ‖2

F +
∑

i

λi ‖Pi ‖1+λ‖X ‖1,

subject to ‖D ‖2,∞ ≤ 1,
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Input image of a
red band

Pansharpened
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image of a red
band via PCA

Pansharpened
image of a red
band via our

proposed method

Reference image of
a green band

Input image of a
green band

Pansharpened
image of a green

band via GS

Pansharpened
image of a green

band via PCA

Pansharpened
image of a green

band via our
proposed method

Figure 5.3 Some sample reference and degraded images to be sharpened from Moffett data set

trains a dictionary containing the information from every band D , as well as a set of sparse linear

transformations Pi ’s from the general dictionary to the space of a particular band. Our proposed

scheme produces an approximate triple factorization of the signal, Si ≈ Pi D X . The sparsity regular-

ization on the linear transformations is appropriate when dealing with images because the value of

any given pixel is most strongly correlated with its neighbors. One can imagine other applications

where different regularization may be more appropriate.

One potential advantage of this formulation can be seen by considering the dimensionality

of our dictionary. In classic dictionary learning, each atom needs to be the dimensionality of the

signal. In coupled dictionary learning there are multiple signals, each signal with its own dictionary

of corresponding dimensionality. In our proposed formulation there is a single dictionary whose

dimensionality is adjustable, so it can be chosen appropriately to be able to hold the cumulative

information from each signal. In addition to the single dictionary in our method, there are several

sparse linear transformation matrices that map the generic dictionary to the space of a specific

signal.
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5.1.5 Algorithm

To perform the optimization, we used a classic alternating minimization algorithm consisting of

fixing all but one variable at a time. For each Pi update and X update we utilized alternating direction

method of multipliers (ADMM) [15], and a variation of method of optimal directions (MOD) was

used for the D update [53].

X ∗ = arg min
X

∑

i

σi

2
‖Pi D X −Si ‖2

F +λ‖X ‖1,

D ∗ = arg min
D

∑

i

σi

2
‖Pi D X −Si ‖2

F ,

subject to ‖D ‖2,∞ ≤ 1,

P ∗i = arg min
Pi

σi

2
‖Pi D X −Si ‖2

F +λi ‖Pi ‖1.

5.1.6 Training Procedure

To train our model we require both reference images for each band as well as the degraded input

images that are to be processed during validation. For each band in the data set, our model trains

one linear transformation to the reference images and one linear transformation to the input images.

Along with the pairs of reference and input images, the single high resolution panchromatic image

is also used during training. One half of the data was used for training the model, the other half was

used as a validation set.

5.1.7 Validation Procedure

To test the trained model we applied it to the validation half of the data set. To compare our method

to others we used three methods to measure the quality of the sharpened image. Cross correlation

(CC) measures the spatial similarity of the sharpened image and the reference image. Spectral angle

mapper (SAM) measures the spectral similarity between hyperspectral images. Root mean squared

error (RMSE) measures the `2 distance between the reference and sharpened image. Numerous

pansharpening methods involve interpolating a low resolution image to a high resolution and use

the interpolated image as an approximation in which to fill in details. Our method is also suitable

for this, but for clarity we skipped this to demonstrate the flexibility of our proposed technique. For

a comparative study, we referred to two of the more basic pansharpening techniques, GS and PCA.

5.1.8 Moffett Dataset Results

The publicly available Moffett data set is a hyperspectral image of 224 bands that contains both

urban and vegetative regions taken by Airborne Visible Infrared Imaging Spectrometer (AVIRIS).
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Table 5.1 Comparison of methods.

GS PCA Proposed Method
CC 0.917 0.906 0.935

SAM 12.95 13.4 10.6
RMSE 420.5 445.1 364.6

Our method was compared using the framework developed in [102]. In summary, the reference

image was degraded using Wald’s protocol by a factor of 5 to construct the low resolution image

to be sharpened [151]. The patches for the high resolution and low resolution images were chosen

to be 15 by 15 and 3 by 3 respectively. The dictionary was chosen to be 225 by 300. The only image

preprocessing steps taken were centering of the signal. Samples of the trained dictionary atoms

transformed to some bands are shown in figure’s 5.1 and 5.2. Applying GS, PCA, and our proposed

method to this data set we obtain the numeric results shown in Table 5.1.

Figure 5.3 depicts the reference images, input images, and results from the different methods.

Visually one can see that the proposed method provides the best fidelity to the relative intensities

of the different bands. Unfortunately our method also shows evidence of blocking artifacts, most

notable around the high contrast areas at the bottom. These artifacts are a known disadvantage to

dictionary learning techniques that originate from centering the data. The artifacts cause the detail

in the GS and PCA methods to be visually more precise. Numerically from the three measures of

image quality, our method is superior to both GS and PCA as shown in the table.

5.1.9 Conclusions

This work demonstrates that a triple factorization in coupled dictionary learning achieves better

results than some of the more basic pansharpening techniques. Other variations of the proposed

data fusion model are suitable to different problems and will be the subject of future work. One

future avenue to explore is different methods of regularization for the linear transformations to

each signal space.

5.2 Hierarchical Convolutional Dictionary Learning

5.2.1 Introduction

Computer vision and object detection is an active developing field with far reaching applications.

There are a variety of object detection approaches including histograms of oriented gradients [39],

scale invariant feature transform [104], and convolutional neural networks [82].

The use of dictionary learning for object detection has also been studied before with varying
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degrees of success, [158]. One particular challenge is that dictionaries trained on sufficiently complex

images are typically comprised of lines, gradients, and very simple patterns. For computer vision

and object detection, dictionaries with more complex objects may be desirable. The inability to

learn complex objects from images in dictionary learning poses a significant challenge that limits

its efficacy for object detection. In this section we explore a hierarchical variation of convolutional

dictionary learning with the objective of learning more complex features for an object bank.

5.2.2 Convolutional Dictionary Learning and Max Pooling Background

Convolutional dictionary learning is a translation-invariant variety of dictionary learning that

finds single valued reconstructions [162]. The convolutional dictionary learning problem can be

formulated as an optimization problem,

min
Di ,X i

‖
∑

i

Di ?X i −S‖2
F +λ

n
∑

i

‖X i ‖1 (5.1)

where {Di } is a set of n matrices, or dictionary filters, ? is the convolution operator, {X i } is a set of

n coefficient maps, and S is a signal. This optimization aims to represent the signal S as a sum of

convolutions of dictionary filters with sparse matrices.

Efficient algorithms for solving the convolutional dictionary learning problem alternatively

update {Di } and {X i } until convergence [155]. To handle the convolution, the problem can be trans-

formed with the Discrete Fourier Transform (DFT) so that the convolution becomes a Hadamard

product in the frequency domain. The problem 5.1 is solved by alternating optimizion of the two

sub problems,

min
X i

‖
∑

i

Di ?X i −S‖2
F +λ

n
∑

i

‖X i ‖1, (5.2)

min
Di

‖
∑

i

D̂i � X̂ i − Ŝ‖2
F (5.3)

where Â =DFT(A) is used to denote the DFT of a variable. For both updates, Alternating Direction

Method of Multipliers (ADMM) can be utilized to solve the optimization, see [155] for details.

Preprocessing for convolutional dictionary learning typically includes applying a high pass filter

to the signal. This step is analogous to centering the signals in patch based dictionary learning to

avoid ringing effects. One technique to accomplish this uses Tikhinov regularization to do a low pass

filtering, which can then be used to find a high pass component. Another challenge in convolutional

dictionary learning is boundary handling. One approach to avoid undesirable boundary effects

pads the images and applies a mask to the fidelity function [154].

Pooling operations are generally nonlinear transformations that down sample an image. Max

pooling segments an image into non-overlapping squares and each segment is represented by the
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value in the segment that is largest in magnitude. In convolutional neural networks max pooling

has been found to outperform other pooling methods [129].

5.2.3 Hierarchical Convolutional Dictionary Learning

In this section we propose using a hierarchy of convolutional dictionary learning with max pooling

to construct successively more complex filters. Though this proposed method easily extends to an

arbitrary number of hierarchies, for simplicity of proof of concept we study the case of just two

hierarchies. The first hierarchy learns a dictionary and sparse representation with the convolutional

dictionary learning formulation applied to the signal,

min
D (1)i ,X (1)i

‖
∑

(i )

D (1)i ?X (1)i −S‖2
F +λ

n
∑

i

‖X (1)i ‖1. (5.4)

A second hierarchy also does convolutional dictionary learning, but is applied to the sparse repre-

sentation found in the first hierarchy, X 1
(i ), after a step of max pooling,

min
D (2)i ,X (2)i

‖
∑

(i )

D (2)i ?X (2)i −maxpool(X (1))‖2
F +λ

n
∑

i

‖X (2)i ‖1. (5.5)

Applying the machine learning technique to the pooled sparse representation, X (1), learns the

relationships between the first hierarchy dictionary filters.

To demonstrate this method we apply our dictionary learning and max pooling scheme to

images from the Extended Yale Face Database B [62]. This database includes 28 individuals, each

with several different expressions and lighting angles. For our experiment we chose a collection of

10 images of subjects to apply in our dictionary learning scheme.

5.2.4 Results and Discussion

The first hierarchy of our proposal constructs a dictionary of 8 filters of size 8 by 8. Figure 5.4 depicts

D (1)i , the collection of 16 filters trained on 10 faces from the database. We can see that in the first

hierarchy the atoms are primitive lines and gradients that can be used to sparsely represent the

training images.

A second hierarchy is then learned on the pooled sparse representations corresponding to D (1).

The second hierarchy dictionary captures the relationships of filters used in combination. The

pooling provides flexibility in the spatial use of the filters. Figure 5.5 depicts the convolution of

down-sampled D (1) with D (2).

Visually we can see the emergence of more complex structures than those obtained in just

a single layer of dictionary learning. The formation of these more complex dictionary filters can
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Figure 5.4 Dictionary of 8 by 8 filters trained on faces from the Extended Yale Face Database B.

assist in object recognition and detection. In particular we can see the structure of an eye in the

second hierarchy of dictionary learning. This hierarchical dictionary atom can be used to highlight

corresponding sections in the training images by consideration of the sparse representation. The

contribution of the dictionary atom corresponding to an eye is highlighted in red in Figure 5.6. In

this figure we can see that this atom plays a prominent role in the sparse representation of the eye

features.

This proof of concept demonstrates that a hierarchical variation of dictionary learning can pro-

duce dictionary atoms that can be used directly to sparsely represent more complex objects. Though

the demonstrated hierarchical dictionary learning consisted of just two hierarchies, additional layers

of maxpooling and sparse representation can easily be appended. Each layer of maxpooling shrinks

the sparse representation of the previous sparse coding step, adding slight rotational and scale

flexibility. The subsequent sparse coding and dictionary learning step learns the underlying patterns

in the pooled sparse representation. Each additional layer of maxpooling and sparse representation

will allow for more complex objects. In the future this approach may be extended to constructing a

versatile object bank.

5.2.5 Future Work

One of the difficulties of the proposed method is encountered with different scales and rotations

of objects in the signals. The Extended Yale Face Database B contains similarly cropped, rotated,

and scaled faces. The low scale and rotation variance nature of this database allows for reasonable

representations with relatively few dictionary filters. More complex training signals require more

training data as well as more filters, so computer memory quickly becomes a limitation. Additionally

with more scale and rotation variance in the signals it becomes unclear what objects the hierarchical

dictionary will learn.

To demonstrate the complexity that emerges with scale variance, we construct a synthetic

signal comprised of different sized squares. Our synthetic image is sparsely representable with the

58



Figure 5.5 Convolution of two hierarchies of dictionaries trained on the Extended Yale Face Database B.

perimeters of two squares of different sizes, depicted in Figure 5.7. In this case one would like to learn

two different filters, one filter to represent each size square. Applying the hierarchical dictionary

learning to the synthetic image results in the dictionaries seen in Figure 5.8.

There are a few surprising results in the trained dictionaries. In the first hierarchy we observe

that there is one filter that appears as a cross, this is surprising as the pattern never appears in the

training image. In the second hierarchy we observe that the two different atoms do not represent

the two different sized squares in the training image. Instead it appears that each filter represents

two sides of a single square. These filters are used in conjunction to sparsely represent both size

squares.

The inability of the second hierarchy to learn each square independently in such a simple noise

free case shows that the interaction between different scales of the same object complicates the

dictionary learning. This is because in the first hierarchy some parts of the sparse representations

will be similar, while other parts of the representations will be very different. Additional layers in

the hierarchy may address this problem, allowing for more and more complex features, but at the

cost of computation time. Future study with hierarchical convolutional dictionary learning will

aim to make this method more suitable and computationally feasible on complex databases with

significant scale and rotation variance.

59



Figure 5.6 Reconstruction of the high pass training images where the contribution of the hierarchical
dictionary filter corresponding to an eye is portrayed in red.

5.2.6 Conclusion

The ability to construct complex features useful for object detection in dictionary learning is of

extrordinary interest for applications in computer vision. This work demonstrates the feasibility of a

hierarchy of dictionaries to generate more complex features as the next step towards object detection

with dictionary learning. The emergence of complex features in the hierarchy of dictionaries is a

complex and useful phenomena which we hope to study and expand upon in the future.

Figure 5.7 Synthetic image comprised of square perimeters.
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(a) First layer of a hierarchical dictionary. (b) Convolution of two hierarchies of dictionaries.

Figure 5.8 Hierarchical dictionaries trained on a synthetic image of squares.
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CHAPTER

6

FUSING HETEROGENEOUS DATA: A

CASE STUDY FOR REMOTE SENSING

AND SOCIAL MEDIA

6.1 Introduction

The topic of information fusion is broad and shares a diverse body of disciplines. Interest in fusion

often arises in inference problems with a limited number of features obtained from a single sensor,

hence unable to fully characterize the physical phenomenon at hand. Different types of fusion have

been considered from lower to higher levels, e.g., sensor/data level [160], the feature level [160], and

the knowledge/decision level [47].

The breadth and variety of data fusion problems necessitate different strategies to addressing

different problems at hand. One of the well known data fusion frameworks [40] splits data fusion

up further into five different levels, including Data In-Data Out (DAI-DAO), Data In-Feature Out

(DAI-FEO), Feature In-Feature Out (FEI-FEO),Feature In-Decision Out (FEI-DEO) and Decision

In-Decision Out (DEI-DEO).

The DAI-DAO problems often concentrate on combining multiple sensor readings with the

objective of minimizing the uncertainty of one of those measurements. DAI-DAO level fusion

is applied directly to raw sensor readings and the output should also be thought of as raw data.
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There are a variety of sensor fusion techniques depending on if the sensors are complementary,

redundant, or cooperative. One example of a DAI-DAO fusion problem is image super resolution

[118]. Image super resolution techniques aim to use many low resolution aliases of a scene to

construct a single high resolution image. One common approach to super resolution entails solving

maximum likelihood optimization problems such as those in [22, 113, 134], while other works use

other optimization schemes such as sparse representation [52].

The objective of the FEO levels of data fusion is to combine the input data or features to generate

a desirable feature. There are a variety of objectives that may go with these levels of data fusion,

depending on the specific situation. One problem in the FEO classes is the multi-modal image fusion

problem [136]. This problem aims to synthesize a single clear image containing all the pertinent

information for the specific application from a variety of modalities. There are numerous medical

and military applications for this type of data fusion. One military application solved an entropy

optimization problem to combine infrared and low light sensor data to construct a single image in

[9].

Decision level fusion aims to combine multiple variables to make a new decision, or improve

upon an existing decision. A common guiding principle to these data fusion problems is to maximize

classification performance. An example of a DEO problem is target detection or classification [74].

These problems aim to predict the presence or absence of a specific object in a given image or region.

A common approach for object classification uses parsimony or sparsity as a guiding principle, such

as in the facial recognition work [157].

Our framework is closest to the DAI-FEO fusion in Dasarathy’s classification. But more generally

we would like to consider fusion of heterogeneous data with output for higher level decision making.

Nonetheless, there is not yet a well-received principled fusion scheme requiring feature in and

decision out. This is mainly because of the numerous required tasks including the necessity to

homogenize heterogeneous data, to determine a suitable criterion for fusion, and to design a

principled fusion scheme to target the criterion.

In our case study, we consider the fusion of drastically different data modalities: satellite images

and social media data. Our aim in this particular case is to fuse such diverse modality data through

a well-formulated mathematical framework in order to produce a hazard level estimation, i.e.,

providing guidance for decision making.

Our main contribution is a successful showcase of our information-based optimization fusion

framework. In this framework constraints are given by structured feature maps from remote sensing

imagery and heterogeneous data from social media.

The following sections proceed as described.

Section 6.2 is related work concentrating on the use of social media data.

Section 6.3 describes the available data for our application. We describe the satellite imagery,

the available social media data, and information provided by the city of Boulder, CO. We describe
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the maximum entropy model used in our case study.

Section 6.4 describes an equivalent formulation to the maximum entropy problem followed by

an algorithmic discussion.

Section 6.5 discusses the outcome of various optimization instances. We discuss the necessary

refinements to the social media data and compare the results to those achieved with more structured

data.

Finally we conclude in Section 6.6. Here we discuss the major contributions and results of the

work, as well as discuss potential future developments.

6.2 Related works

A central question to our investigation is the possibility of enhancing common data features with

other modalities such as social media data. Using social media to estimate the extent of natural

disasters or events is a relatively new area of research. In the past several years, several different

approaches have been taken to employ social media data with varying results. Here we survey just a

few of them.

Spatial-temporal analysis of tweets was used to pinpoint the movement of a forest fire that broke

out in France in 2009 in [45]. They employ temporal analysis for comparison with a timeline of

major events in the forest fire. Spatially, they use both textual place names, as well as user locations.

They conclude that for their purpose the Twitter information was temporally quite accurate, but

journalists were often a better source for developing information, especially at the beginning of

the event. Their spatial study leads them to conclude that the mixture of primary and secondary

information coming from Twitter users makes analysis exceedingly difficult.

Another study looking to mine tweets considers both a wildfire and flood event [150]. They do

significant statistical analysis of the tweets, finding relations between geotagged information and

primary tweeters or retweeters. They also look at how likely geographic information is included in

the content of the tweets during the flood event and the wildfire event.

There has also been some research into using tweets to track city activities by police departments,

such as that shown in [68]. They analyze the content of tweets directed to police stations and classify

them into major categories. They conclude that typically information is one directional, from the

police to citizens, and that rarely do citizens alert police to events of interest via Twitter. The Twitter

dialog has significant unused potential in two way communication with police departments.

Another group aiming to combine social media information with other geographic information

studies a flooding event in Germany [3]. They classify tweets into several flood related categories

and demonstrate spatial correlations between some sets of tweets and the flooding event.

When one tries to incorporate information from social media data, the domain adaptation

problem and transfer learning [116] is a subject of relevant interest. In such context, the discrepancy
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between the probability density functions (PDF) of source domain and target domain poses the main

challenge for learning a desirable fusion function. However, most domain adaptation methods are

based upon assumptions of marginal distributions of source and target domain. These assumptions

are hardly met in our case study of flood estimation dealing with the noisy, often unreliable labeling

data from the social media.

6.3 Problem Statement and Formulation

Our primary objective is to propose a principled optimized framework to homogenize heterogeneous

large scale data and provide a quantitative strategy to estimate or predict a scenario. In this case, the

estimate pertains to floods over a geographical region. Our hazard estimation of inundated areas

using multi-modal data with the maximum entropy criterion for estimating the field distribution

of interest. The maximum entropy principle is a well known statistical model dating back to the

1950’s [79]. The rationale of maximum entropy is to seek the most unassuming and hence maximally

random mode. A more recent work related to our research utilizes maximum entropy to estimate

species distribution [120].

6.3.1 Weather-related Data: Boulder Colorado

This work focuses on the 2013 Boulder Colorado Flood, which was declared as a natural disaster

starting in September 2013. From September 9, to September 15, some places in Boulder County saw

up to 17 inches of rainfall, which is comparable to the annual average of approximately 20 inches.

The flood has been attributed to at least eight deaths, with several more missing or unaccounted for.

Financially, the flood has been estimated to cause $2 billion in damage.

Satellite imagery is one of the principal tools to analyze many events, including floods. Landsat

8 is an American satellite, operated by NASA and the USGS, and was launched in Feburary of 2013.

The satellite carries two sensors, an Operational Land Imager (OLI) and a Thermal InfraRed Sensor

(TIRS). The OLI is a multispectral sensor that collects images in 9 shortwave bands. Table 6.1 shows

the spectral information for the OLI sensor. Shortly after the flood, on the 17th of September, the

Landsat 8 satellite passed over Boulder Colorado capturing multispectral images of the aftermath of

the flood. There is also a photo of this region prior to the flood taken on Aug. 25, 2013. The images

from this satellite are freely available to the public. Figure 6.1 (a) is a panchromatic image of the City

of Boulder taken by Landsat on Sept 17, 2013.

Throughout the flooding event, social data was collected from the popular social media service

Twitter. Twitter allows users to send and read short messages called "tweets." Often times users use

hashtags to somewhat contextualize their messages. During the flood, several hashtags emerged to

indicate a connection to the 2013 Boulder Flood, such as "#LongmontFlood,", "#boulderflood,"
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(a) A panchromatic image of the City of Boulder, CO. (b) An overlay of Geotagged Tweets.

(c) An overlay of the SFHA zones. (d) An overlay of the UFE area.

Figure 6.1 Data from the 2013 Boulder, CO flood.
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Table 6.1 Details of the Landsat 8 OLI sensor.

Spectral Band Wavelength Resolution Solar Irrandiace
Band 1 - Coastal/Aerosol 0.433−0.453µm 30m 2031W /(m 2µm )
Band 2 - Blue 0.450−0.515µm 30m 1925W /(m 2µm )
Band 3 - Green 0.525−0.600µm 30m 1826W /(m 2µm )
Band 4 - Red 0.630−0.680µm 30m 1574W /(m 2µm
Band 5 - Near Infrared 0.845−0.885µm 30m 955W /(m 2µm )
Band 6 - Short Wavelength Infrared 1.560−1.660µm 30m 242W /(m 2µm )
Band 7 - Short Wavelength Infrared 2.100−2.300µm 30m 82.5W /(m 2µm )
Band 8 - Panchromatic 0.500−0.680µm 15m 1739W /(m 2µm )
Band 9 - Cirrus 1.360−1.390µm 30m 361W /(m 2µm )

and "#coflood." In addition, depending on the users preferences, several tweets were geotagged

with the metadata of the latitude and longitude of the phone at the time of posting. In Figure 6.1 (b)

we can visualize the distribution of people tweeting about the Boulder flood in a region containing

Boulder City and some of its surroundings.

Special Flood Hazard Areas (SFHAs) are flood hazard areas identified on Flood Insurance Rate

Maps (FIRMs). SFHA regions have a probability of being flooded greater than 1% each year. These

areas can be expected to flood at least once every 100 years. SFHAs consist of several different types

of zones, some of which are: Zone A, Zone AE, Zone AH, and AO. These different zones correspond

to different methods of calculation, or different expected types of flooding events. For instance,

Zone A regions are generally determined using approximate methodologies, while Zone AE regions

are determined with detailed methodologies. AH Zones correspond to areas expected to undergo

shallow pooling with depths less than three feet, while AO Zones correspond to regions expected to

undergo flood sheets on an incline with depths less than three feet. The FIRMs for Boulder Colorodo

as they were defined prior to the flood, are also publicly available and can be seen in Figure 6.1 (c).

In the weeks and months following the flood, the city of Boulder created a map of inundated areas

to better understand the flood as well as to potentially revise the SFHAs. With the help of hand held

GPS devices, workers geotagged high water locations and carefully produced an accurate account

of the inundated areas. With additional information from community provided photo evidence the

extent of the flooding in some regions was also obtained. This information was conglomerated to

construct a Urban Flood Extent map (UFE). The UFE was graciously provided to us by the City of

Boulder. The UFE provides a semblance of ground truth, as it is a reasonable approximation of the

inundated areas. The UFE may be seen in Figure 6.1 (d).

67



6.3.2 Problem Formulation

We would like to consider the fusion of the following feature maps { fi }i=1,...,K with non-homogenized

domains and values:

fi : Di →Vi ,

where Di is the domain associated with feature map fi andVi can be feature values inR, Z, Zp , etc.

Given a fusion domain Df , and transformationsφi : Df →Di , our fusion function is then defined

implicitly as an optimizer of an information-based functional with constraints given by

F ( f1(φ1(x )), . . . , fK (φK (x ))) ∈C (x ) ,

where C (x ) is a constraint set associated with each x in the fusion domain Df .

In our case study of flood estimation, the social media data is fused as labels of geo-locations

of flood, namely, a feature map with values in {0,1} defined on a subset S of the fusion domain

Df ∈R2.

The first step to formulating an optimization problem that can use different data modalities

is mapping data from all of the modalities onto a common space. We pick a spatial domain D

containing the region of interest. We segment D into a set of cells in a grid, X , where each x ∈ X is

approximately 30m by 30m . Our objective is to map each data source to a function defined on X ,

and represent the information from the modality.

Using the social media data, we define an empirical distribution to represent the tweets on X .

The empirical distribution is defined as:

p̃ : X → [0, 1]

p (x ) =
|observations originating from x|

|all observations|

.

The defined empirical distribution is a proper probability density function since it integrates to one,

and is nonnegative. Since the observations were a sampling of where people tweet about the flood,

the empirical distribution can be thought of as an approximation of this distribution. In fact, as

the number of observations tend to infinity, the empirical distribution should approach the parent

distribution.

To represent the OLI Landsat images as a function defined on X , we chose the very natural

method of resampling each band on the grid X . For each band provided by the OLI sensor, we

resample the image on our grid to naturally obtain a function fi : X →R, where i is an index for

different bands.

Both the SFHA and UFE data can similarly be mapped to a function on X . For each of these
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regions indexed by the modalities we define the indicator function,

g i : X →{0, 1}

x =







1 if x ∩ regioni 6= ;

0 if x ∩ regioni = ;.

These functions can then also be normalized so that they can be viewed as probability density

functions on X .

6.3.2.1 Maximum Entropy Model

With the above defined, our maximum entropy formulation may be written as,

arg max
q (x )

−
∑

x∈X

q (x ) ln
�

q (x )
�

subject to















Eq (x )
�

fi (x )
�

= Ep̂ (x )
�

fi (x )
�

, i = 1, . . . , m

q (x )≥ 0 ∀x ∈ X
∑

x∈X q (x ) = 1

where Ep (x )[p (x )] =
∑

x∈X p (x ) f (x ) is the expected value of f under the distribution p . This

formulation amounts to seeking the maximum entropy distribution such that the expected val-

ues of our environmental variables fi (x ) under our estimation match the expected values of the

environmental variables under an empirical distribution.

As widely noted [120], such strong constraints may not be reasonable, and should be replaced

with relaxed constraints enforcing that the expected values be close. To that end, we relax the above

formulations to,

arg max
q (x )

−
∑

x∈X

q (x ) ln
�

q (x )
�

subject to















|Eq (x )
�

fi (x )
�

−Ep̂ (x )
�

fi (x )
�

| ≤βi , i = 1, . . . , m ,

q (x )≥ 0 ∀x ∈ X ,
∑

x∈X q (x ) = 1,

(6.1)

with someβi ≥ 0 for 1≤ i ≤m . This relaxation allows the expected values to vary inside of a bounding

box centered at the expected values under the empirical distribution.
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6.4 Algorithmic Fusion Solution

6.4.1 A Maximum Likelihood Equivalence

An equivalent formulation of the maximum entropy model in (6.1), can be shown to be a maximum

likelihood model with a Gibbs distribution [46]. This formulation can be written as

arg min
q (x ),λi

p̂ (x ) ln
�

p̂ (x )
q (x )

�

+
m
∑

i=1

βi |λi |

subject to q (x ) =
e
∑m

i=1λi fi (x )

∑

z∈X e
∑m

i=1λi fi (z )
.

(6.2)

This formulation aims to find the maximum likelihood Gibbs distribution that minimizes the relative

entropy to the empirical distribution. From (6.2), it is evident that the optimal solution takes the form

of a normalized function on X of an affine combination of the environmental features. There are

several options available to solve this constrained convex problem. The advantages and drawbacks

of several different methods are discussed in [108]. For the sake of simplicity in algorithm design,

we follow the work of [120] and use an iterative scaling algorithm to solve this optimization problem.

We next describe the procedure used in solving the maximum entropy problem.

We concentrate on solving the maximum entropy problem,

arg max
x∈P

− x T log(x/x0)

subject to Ax = Ay

by using its equivalent maximum likelihood formulation,

arg max
x ,λ

− y T log(x )

subject to x =
x0e Aλ

‖x0� e Aλ‖1

which can be condensed into

arg max
λ

log(x T
0 e Aλ)− y T log(x0� e Aλ).

To proceed, we take a coordinate descent approach on λ by maximizing the difference in change of

the objective function. If Q (λ) is the objective value then we calculate
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Q (λ+δ)−Q (λ) = log(x T
0 e A(λ+δ))− y T log(x0e A(λ+δ))− log(x T

0 e Aλ)− y T log(x0e Aλ)

=−y T Aδ+ log(
x T

0 e A(λ+δ)

x T
0 e Aλ

=−y T Aδ+ log(
x T

0 e Aλe Aδ)

x T
0 e Aλ

)

≤−y T Aδ+ log(
(x0� e Aλ)T (1+ (e δ j−1)Ae j )

x T
0 e Aλ

)

The last inequality results from Jenson’s inequality on e x with x ∈ [0,1]. The update step is

obtained by differentiating −y T Aδ+ log(
(x0�e Aλ)T (1+(e δ j −1)Ae j )

x T
0 e Aλ )with respect to δ and solving for the

critical point. When working with the bounding box regularization, there are several critical points.

The critical point that maximized the objective value corresponds to the update step.

6.5 Results and Discussion

6.5.1 Fusing Unstructured Data: Tweets

Using all post-flood landsat bands as environmental variables and the Twitter empirical distribution

in the maximum entropy model produces the estimation seen in Figure 6.2 (a). In the resulting

estimation, the regions depicted with lighter cells correspond to higher estimated likelihoods. Unfor-

tunately, visual inspection of the estimation suggest that the produced feature is not representative

of the UFE depicted in Figure 6.1 (d). Instead, it appears that the feature is representative of man

made infrastructure.

Using the UFE as the ground truth, we obtain a performance evaluation of our estimation by

constructing a Receiver Operator Characteristic (ROC) curve. As may be seen in Figure 6.2 (b), this

rudimentary estimation performance is no better than a random guess.

6.5.2 Unstructured Data: Manual Classification

One hypothesis as to why the rudimentary estimation is less than optimal is the positional uncer-

tainty of the collected tweets. To explore this possibility, we undertook manual classification of the

tweets as indicative of flooded or not flooded in the immediate vicinity of the GPS coordinates.

Approximately 25% of the tweets were classified as indicative of flooding close their GPS coordinates,

suggesting that 75% of the tweets have a position uncertainty significantly greater than the 30m

resolution of the satellite imagery. These tweets may contain useful information, but should not be

attributed to the cell of their GPS coordinates as their positional uncertainty is too large. The subset

of tweets manually classified as indicating flooding in the immediate vicinity is depicted in Figure

71



(a) Maximum entropy estimation. (b) ROC curve analysis

Figure 6.2 The results of a maximum entropy estimation using the tweet empirical distribution and the
landsat photos taken after the flood.

6.3.

Using the Landsat features taken after the flood in conjunction with an empirical distribution

generated from the subset of tweets produces the estimation seen in Figure 6.4 (a). From the corre-

sponding ROC curve in Figure 6.4 (b), we conclude that estimation using the manually classified

tweets is better than random. The manual classification of the tweets resolves the positional uncer-

tainty, not by correcting the location of the tweets, but by eliminating positionally uncertain tweets

from the estimation. This result indicates that some information is contained in the social media

data, but additional work is needed to extract it.

6.5.3 Unstructured Data: Location Correction

To improve the geo-location information from the social media data, we make positional corrections

with the use of expert information. The manual classification of the tweets into two groups revealed

that for up to 75% of observations, the tweeter may have been indirectly affected by the flooding,

but are not necessarily at a flooded location. These social media observations should not be applied

to the cell containing the observation, but should be attributed to nearby pixels that are likely to be

flooded. Even the observations indicating flooding in the immediate vicinity may need a positional
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Figure 6.3 An overlay of tweets classified as indicative of flooding.

correction, as being flooded at those precise GPS coordinates would require the observer standing

in or above water.

To address this issue we attribute each social media observation located to the closest cell likely

to be flooded using prior information. For our choice of prior we use the Modified Normalized

Difference Water Index (MNDWI). The Normalized Difference Water Index (NDWI) is a method to

estimate the presence of water from multispectral imagery [60]. The NDWI was then modified a

decade later to the MNDWI [159]. The calculation for the MNDWI relies on two landsat bands, the

green band, and the Short Wavelength InfraRed (SWIR) band. The equation for the MNDWI is a

simple normalized difference,

fM N DW I (x ) =
fg r e e n (x )− fSW I R (x )

fg r e e n (x ) + fSW I R (x )

=
fBand 3(x )− fBand 6(x )
fBand 3(x ) + fBand 6(x )

.

The resulting value gives a water index, or some measure of how much water was contained in that

pixel. Figure 6.5 depicts the MNDWI calculated from the Boulder, CO data.

With the available satellite imagery, the use of the MNDWI to estimate the inundated areas

directly will be undesirable as the flooding took place several days prior to the satellite passing. The
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(a) Maximum entropy estimation. (b) ROC curve analysis

Figure 6.4 The results of a maximum entropy estimation using the manually classified tweets and the
landsat photos taken after the flood.

use of the MNDWI directly may also be problematic as the spectral properties of shadows from

mountains, buildings, and clouds may cause missclassification [56, 148], but it provides a reasonable

prior that will be correlated with the inundated regions.

We use the MNDWI to attribute each tweet, originating in cell x , to the closest cell with a MNDWI

above a threshold. The MNDWI has the advantage of having a intuitive and physical meaning for

choosing the threshold as discussed in [159]. From this physical interpretation we chose a value of

0.0 to threshold the MNDWI into regions likely to have flooded, and not likely to have flooded and

solved the optimization problem,

arg min
y ∈X

dist(x , y )

subject to MNDWI(y )≥ 0.0.

This relocation method uses the MNDWI as a prior of the flooded region to address the positional

uncertainty of the tweets. Figure 6.6 (a) depicts the resulting estimation. The resulting ROC curve of

this estimation can be seen in Figure 6.6 (b) in conjunction with an estimation using a normalized

MNDWI as the guiding distribution for a comparative control.
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Figure 6.5 The calculated MNDWI for Boulder, CO.

We see that this method of attributing the tweets to nearby likely regions of flood drastically

improves the quality of the social media data. Importantly, this method outperforms the prior

distribution based on the MNDWI directly, indicating that the social media data is providing valuable

input into the maximum entropy model.

6.5.4 Structured Data: SFHA

As a control against using social media data, we also consider using the SFHA instead of an empirical

distribution. The SFHA contains expert information of regions with high chances of flooding. There

are a variety of methods used to calculate the SFHA including the use of digital elevation models

(DEM) and computer simulations. The SFHA acts as a normalized indicator function returning

different values depending on if the cell is in a flood zone or not. By using the SFHA instead of

an empirical distribution, we get a comparison of how informative social media information is to

structured data. Figure 6.7 (a) depicts the estimation when using the SFHA to supply our optimization

constraints with all the post flood Landsat bands.

By considering the ROC curve of the resulting estimation in Figure 6.7 (b) we conclude that the

estimation using SFHA is comparable to that using the manually classified or the location corrected

estimations.
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(a) Maximum entropy estimation. (b) ROC curve analysis

Figure 6.6 The results of a maximum entropy estimation using the nearest neighbors relocated tweets and
the landsat photos taken after the flood.

6.5.5 Feature Generation

Generating good and efficient features is central to any estimation problem. One way to potentially

improve the method is by producing new features. Every new feature included in the problem

introduces a new degree of freedom when solving the maximum likelihood formulation.

One idea to generate features is to apply dictionary learning in the spectral domain. This ap-

proach learns a set of atoms that sparsely represent the spectral signatures of different types of

materials, as well as representations for each pixel in this new basis. In our experimental validation,

we learned a complete dictionary and used the sparse representations as our new input features.

Figure 6.8 depicts some of the sparse representations obtained after dictionary learning. Visually

the dictionary seems to work well at segmenting the image into regions of different materials. We

can perceive the roads in some bands, and potentially inundated regions in others. This also seems

to yield a slightly improved estimate to that of using the features that the dictionary was learned on

as may be seen in Figure 6.9.
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(a) Maximum entropy estimation. (b) ROC curve analysis

Figure 6.7 The results of a maximum entropy estimation using the SFHA and the landsat photos taken
after the flood.

6.5.6 Robustness to Malicious Information

Another issue we can explore with this data is the sensitivity of the model to the injection of malicious

information. We can evaluate the robustness of this model to the injection of malicious information

by using the two classified sets of tweets as true signal and malicious signal. Assume that the tweets

indicating flooding in the immediate vicinity comprise the true signal and come from a distribution

p1. The remaining tweets, p2 can be injected into the signal with different quantities to study their

effect on the estimation. We model the injection of malicious information with a mixture distribution.

By considering a mixture distribution we can analyze the impact of such an attack on the maximum

entropy formulation.

Suppose our sampling comes from a convex combination of the two different distributions,

p =αp1+(1−α)p2. Given that the expected values of our features are defined under the distributions

p1 and p2, we can then consider the resulting constraints Eq [ fi ] = Ep [ fi ].
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Figure 6.8 The sparse representations after dictionary learning.

Figure 6.9 ROC curve comparison of dictionary learned estimation and the estimation from the features
the dictionary was trained on.
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Eq [ fi ] = Ep [ fi ]

=
∑

x∈X

fi (x )p (x )

=
∑

x∈X

fi (x )(αp1(x ) + (1−α)p2(x ))

=α
∑

x∈X

fi (x )p1(x ) + (1−α)
∑

x∈X

fi (x )p2(x )

=αEp1
[ fi ] + (1−α)Ep2

[ fi ]

This indicates that the new expected values are a convex combination of the old expected values with

the same weights as that of the mixture. Varying the mixture parameter where p1 is the distribution

of tweets indicating flood and p2 are the remaining tweets, we get the estimations shown in Figure

6.10. The ROC curves from the estimations behave as expected, varying from our ideal estimation

to malicious information as the mixture parameter varies as seen in Figure 6.11.

6.6 Conclusion

Fusing information from social media and satellite imagery for hazard extent estimation is an

interesting problem with many approaches. We demonstrate that maximum entropy is one feasible

approach. Unfortunately additional filtering of any social media data is required for it to be a

suitable information source. Filtered social media information is not as good as structured expert

information.

A mixture model is the ideal tool to consider the effect of malicious information being injected

into the data. By studying the mixture of two different distributions we can see how stable our model

is to attack. Expanding upon these results to make the model more resistant to attack will be pursued

in the future.

There are several potential extensions to this model that can be considered for future work. Fea-

ture generation has shown some promise and there are several other feature generation approaches

that one could pursue. How to incorporate any non-linearity of other methods to add additional

freedom into the problem is of interest for future work.
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α= 0.0 α= 0.2 α= 0.4

α= 0.6 α= 0.8 α= 1.0

Figure 6.10 Maximum entropy estimation with mixture distributions
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Figure 6.11 ROC curves comparing different mixture levels of the empirical tweet and the SFHA distribu-
tions.
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CHAPTER

7

CONCLUSION

In this dissertation we explore the relaxations of sparse optimization problems in a variety of

applications. Relaxation techniques ensure computational feasibility to approximate solutions with

parsimonious characteristics in optimization problems.

We study and use these techniques in a variety of ways. We pose the Gramian tensor decomposi-

tion problem as a rank minimization problem and study the corresponding relaxation. Specifically

of interest are cases where the optimal solutions of the relaxations will generically be optimal in the

original problems, or will never be optimal in the original.

Natural image patches lie on a complex manifold. We use sparse approximation techniques to

represent this manifold and study the adherence of real data to the sparse representation model.

Through a geometric and statistical analysis of the representations we propose a modification that

allows more diverse application of the sparse representation model.

Variations of dictionary learning can be applied to a variety of tasks besides noise reduction and

image restoration. Triple factorization coupled dictionary learning was demonstrated to work well

for pansharpening. Hierarchical convolutional dictionary learning is one approach to use dictionary

learning to generate an object bank that can be used for object detection.

Data fusion is a rapidly growing field with a variety of applications. We explore the feasibility of

using social media data with satellite imagery to estimate the extent of a natural disaster in a case

study. Here parsimony plays a crucial role in avoiding over-fitting of data and allowing for positive

results.

82



Future research will certainly apply the concept of parsimony in a variety of applications, as this

underlying concept is fundamental to so many applications.
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