
ABSTRACT

STRAIT, MELISSA ELNA. Phase Field Models of Two-Fluid Flow in a Capillary Tube
and Hele-Shaw Cell. (Under the direction of Michael Shearer.)

Two recent phase field models, developed by Cueto-Felgueroso and Juanes, describe

two-fluid flow in a thin capillary tube and in a Hele-Shaw cell, a configuration in which

fluid flows between closely spaced parallel plates. The phase field model for two-fluid flow

in a capillary tube [19] results in a degenerate fourth-order partial differential equation

(PDE) for the fluid saturation. We find traveling wave solutions of the PDE to capture

the injection of a long gas finger into a liquid-filled tube and we determine a bound on

parameters to obtain physically relevant solutions. These traveling waves are undercom-

pressive in the sense of shocks and have finite length, ending at the tip of the gas finger,

due to the degeneracy of the PDE. We observe that the traveling wave height decreases

monotonically with capillary number. Finite difference simulations of the injection of a

gas finger into a liquid-filled tube show a traveling wave advancing ahead of a rarefac-

tion, leaving a plateau region of fluid adjacent to the tube wall. The residual thickness

of this region was measured in experiments by G.I. Taylor in his famous 1961 paper. We

find agreement between the heights of the traveling waves and the plateaus seen in the

PDE simulations, and the results also compare favorably with the residual fluid thickness

observed in the experiments.

The phase field Hele-Shaw model [20] is a two-dimensional extension of the capillary

tube model and results in a system of two PDEs for the fluid saturation and pressure.

We capture the front of a non-wetting fluid when it is injected into a Hele-Shaw cell filled

with wetting-fluid by finding one-dimensional traveling wave solutions of the model that

connect to zero saturation and have finite length for two different constitutive relations.

We determine a bound on parameters so that the saturation remains positive, similar to

the bound found in the analysis of the capillary tube model. We also determine that the

parameters of the Hele-Shaw model must satisfy an additional restriction in order for the

model to admit traveling wave solutions connecting to zero saturation. In the regime in

which this requirement is satisfied, we determine that for a given set of parameters, there

is a unique traveling wave solution connecting to zero saturation whose height corresponds

to a layer of wetting fluid that remains attached to the cell walls during displacement.

We find striking behavior when the parameters for the Hele-Shaw model do not satisfy



the requirement to have traveling wave solutions connecting to zero saturation. In this

regime, numerical simulations show the existence of traveling wave solutions that are

expansive in the sense of shocks, and connect to a small positive value.

We also show that the two-dimensional Hele-Shaw model captures the viscous finger-

ing instability at the interface between the two fluids through a long wave linear stability

analysis of a simplified system of equations. This instability occurs when a less viscous

fluid displaces a more viscous fluid. Two-dimensional finite-difference simulations confirm

this result and we investigate the role of model parameters on the development of this

instability through numerical experiments.
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Chapter 1

Introduction

The displacement of one fluid by another is seen in a wide range of natural and industrial

settings. This includes removal of oil by water in secondary oil recovery, displacement of

air by rainwater in soil, carbon dioxide sequestration in aquifers, and flow through small

scale devices used in manufacturing [69]. While understanding the fluid flow in these

examples is complicated by the solid structure that the fluids are flowing through, we

can gain insights into these complex flows by studying two-fluid flow in simple geometries.

Two basic configurations for studying two-fluid flow are thin circular tubes, which we

will refer to as capillary tubes, and Hele-Shaw cells, in which fluids flow in a thin gap

between parallel plates.

Studying flows in capillary tubes and Hele-Shaw cells allows us to determine how

different fluid properties, such as the fluids’ viscosities, the surface tension between the

two fluids, and the fluids’ densities, affect the flow. Additionally, the tendency of a fluid

to adhere to the solid that it touches, called the wettability of the fluid, may have an

important impact on the flow [11, 57]. In two-fluid flow, the fluid that adheres more to

the solid is referred to as the wetting fluid, and the other the non-wetting fluid. This

property is quantified through the contact angle that the fluid makes with the solid.

Two-fluid flow can be modeled using the mass continuity equation and Navier-Stokes

equations for momentum balance in each fluid phase, coupled through a boundary condi-

tion at the fluid-fluid interface. However, because the boundary location must be solved

as part of the problem, this is very challenging even in simple geometries. In very thin

tubes and in Hele-Shaw cells where there is a very small length scale, models can be

simplified.
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1.1 Two-Fluid Flow in a Capillary Tube

The study of the displacement of one fluid by another in thin circular tubes dates back

to the classical work of Taylor [62] and Bretherton [11]. Bretherton derived a model

to describe the transport of long bubbles through a fluid-filled capillary tube using a

lubrication approach. Through his analysis, Bretherton found that the capillary number

Ca, the non-dimensional quantity describing the balance of viscous forces to surface

tension, governed the behavior of this flow.

In experiments it is observed that when gas was forced into a fluid-filled tube, a

layer of liquid remained attached to the tube walls [26, 62]. In agreement with Brether-

ton, famous experiments by Taylor showed that for very viscous fluids, the thickness of

this remaining layer of fluid depended monotonically on the capillary number Ca. Even

recently, this displacement problem continues to be studied theoretically and experimen-

tally. Investigations have focused on capturing the flow for a larger range of capillary

numbers, understanding inertial effects, and understanding liquid-liquid displacements

[4, 6, 10, 43].

There has also been a great deal of study of more complicated two-fluid flow in

tubes. This has ranged from understanding the effects of gravity on two-fluid flow in

capillary tubes [17, 24], developing models of non-Newtonian flow, and studying non-

circular tubes [22, 63, 67]. The stability of long gas fingers in tubes has also been studied,

where experiments show that the Rayleigh-Plateau instability causes long gas fingers to

break into bubbles [10, 24, 32].

Characterizing the flow in capillary tubes is important for understanding flows in

nature as well as a wide range of applications. Examples include flow through biological

structures such as blood vessels and airways [31, 34], as well as geological flows such as

channels in rocks [2]. This geometry can also be directly applicable to flows in microfluidic

devices [25, 61].

A recent model of two-fluid capillary tube flow was developed by Juanes and Cueto-

Felgueroso. The derivation of the model relies on phase field principles, which we discuss

in more detail later in this chapter. The PDE model in [19] describes the area fraction of

gas in the tube, which we refer to as the saturation u, and takes the form

∂tu+∂x (vTf(u)) = ∂x

(
f(u)λ(u)

1

Ca
∂x

(
C1g(u)− C2

√
κ(u)∂x

(√
κ(u)∂xu

)))
. (1.1.1)

2



The dependent variable u = u(x, t) is a function of x, the distance along the length of

the tube, and time t. Because u describes an area fraction, physically relevant values

of u satisfy 0 ≤ u ≤ 1. The model, constitutive functions, and parameters are fully

defined and described in detail in Chapter 2, but we will first point out several interesting

mathematical features of PDE (1.1.1).

The left hand side of Eq. (1.1.1) has the form of a non-linear conservation law, with

convex-concave flux function f(u) and constant velocity vT . The PDE has both second-

order and fourth-order diffusion, and has degeneracies at u = 0 and u = 1 because the

flux function satisfies f(0) ≡ 0 and function λ(u) vanishes at u = 1. The function g(u)

is a non-monotonic polynomial arising from a free energy functional. This implies that

the second order diffusion coefficient g′(u) changes sign. The functions κ(u) and λ(u) are

non-negative and parameters C1 and C2 are strictly positive. Surface tension is included

in the model through the capillary number Ca and the viscosities of the two fluids are

incorporated through the viscosity ratio M , appearing in λ(u).

We show that the phase field capillary tube model captures the displacement of liquid

by air in a capillary tube by finding traveling wave solutions of (1.1.1). These solutions

correspond to a gas finger propagating along the length of the tube with remaining

liquid sticking to the tube walls, as Taylor saw in experiments. Traveling wave solutions

of (1.1.1) have the form u(x − st); that is, they are solutions whose shape remains

unchanged and move with the speed s. In later chapters we will see that the combination

of non-convex flux f(u) and both second and fourth order diffusion in Eq. (1.1.1) results

in non-classical traveling wave solutions such as those seen for the thin film equation [9].

Because traveling waves are functions of a single variable ξ = x−st, they are solutions of

the resulting ordinary differential equation when a solution of form u(x−st) is substituted

into (1.1.1).

1.2 Two-Fluid Hele-Shaw Flow

Understanding two-fluid flow in a Hele-Shaw cell, an apparatus consisting of two parallel

plates with a thin gap in between them, is another classical problem in fluid mechanics.

The gap of a Hele-Shaw cell is assumed small enough that the flow between the plates

approaches two-dimensional flow, therefore it is a useful geometry to study and visualize

basic flow properties. The classical Hele-Shaw model can be derived from the Navier-
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Figure 1.1 A schematic of a Hele-Shaw cell filled with a wetting fluid, in which a less vis-
cous fluid is injected into one end of the cell. A layer of wetting fluid remains attached to the
cell walls and viscous fingering occurs at the interface between the two fluids.

Stokes equations, where we assume that inertial forces are small compared to viscous

forces and average over the thin gap direction of the cell. The Hele-Shaw equation for

gap-averaged velocity v(x, y, t) is

v = − h2

12µ
∇p, (1.2.1)

with ∇·v = 0 when we have a horizontal Hele-Shaw cell with gap height h, fluid viscosity

µ, and the pressure in the cell is p(x, y, t). For two-fluid Hele-Shaw flow the flow within

each fluid satisfies (1.2.1), with a free boundary between the two fluids [51]. Eq. (1.2.1)

is very similar to Darcy’s law, which describes flow in porous media, making Hele-Shaw

flow a useful analogue to flow in porous media [38, 56].

One aspect of two-fluid Hele-Shaw flow of great interest is the viscous fingering insta-

bility shown in Fig. 1.2, which occurs when a less viscous fluid displaces a more viscous

fluid. The first scientific study of the viscous fingering instability was published by Hill in

1952 [36]. In the late 1950’s this was followed by important contributions from Saffman

and Taylor [55] and Chuoke et. al. [16]. Saffman and Taylor’s famous paper included

an experimental study of the viscous fingering instability in a Hele-Shaw cell as well as
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Figure 1.2 The Saffman-Taylor viscous fingering instability developing in time. Image is
from [55].

a linear stability analysis of the planar interface. For horizontal Hele-Shaw cells, they

showed that the stability is dependent on the viscosity ratio between the two fluids,

while the density contrast between the fluids also plays a role in vertical Hele-Shaw cells,

where gravity has a strong effect. A classical review of the viscous fingering instability is

presented in [38].

Another property of Hele-Shaw flow is that when a non-wetting fluid is displaced

by a wetting fluid, a layer of wetting fluid remains behind on the cell walls, similar to

the behavior seen in thin tubes. This is illustrated in the schematic in Fig. 1.1. This

wetting layer has been shown to have effects on the fingering pattern that develops

[3, 40, 44, 54, 60]. Including wetting effects has improved agreement between experiments

and theoretical results [57].

There has continued to be extensive study of two-fluid Hele-Shaw flow, including

studies of cells of variable depth [30, 63], control of the interface instability [1, 48], and

non-Newtonian flow [27]. While the traditional Hele-Shaw model ignores inertial effects,

updated models have included non-linear terms to investigate the influence of inertia on

viscous fingering [15, 23]. There has also been extensive work on developing computational
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methods to simulate the dynamics of two-phase flows, such as boundary element methods

[39], level set methods [52], and volume of fluid methods [37].

The Hele-Shaw geometry is directly relevant to describing flows in microfluidic devices

[47] as well as flows in rock fractures [2]. Much of the interest in Hele-Shaw flow is due

to its use as an analogue to flow in porous media. The viscous fingering instability is

particularly important for the oil industry. During secondary oil recovery water is forced

into the resevoir, forcing out some of the remaining oil. The instability at the displacement

front impacts the efficiency of this process [18]. Understanding interfacial instabilities for

two-fluid flows in porous media is also important for groundwater infiltration through

soil and filtration problems [69].

In this dissertation we will be considering a recent model of Hele-Shaw flow from

[20]. This model is a two-dimensional extension of the phase field capillary tube model

(1.1.1). Instead of relying on a free boundary to separate the regions of the two fluids,

as in the traditional Hele-Shaw equation (1.2.1), the model tracks the fluid saturations

explicitly. The model has the dependent variables, u(x, y, t) and π(x, y, t), which are the

non-wetting fluid saturation and total pressure respectively, and takes the form

∂tu+∇ · (f(u)vT) = ∇ ·
(
−H(u)

Ca
∇
(
F ′0(u) + CΓ

√
κ(u)∇ · (

√
κ(u)∇u)

))
, (1.2.2)

∇ · vT = 0, (1.2.3)

vT = − M

12Ca

(
K(u)∇π +

1

M
krw(u)∇

(
F ′0(u) + CΓ

√
κ(u)∇ · (

√
κ(u)∇u)

))
. (1.2.4)

The total velocity vT can be substituted directly into the Eqs. (1.2.2) and (1.2.3) so

we have a system of two PDEs for two dependent variables, u and π. Saturation u and

pressure π depend on the distances along the length x and width y of the cell and time

t. We will wait until Chapter 3, where we present a complete derivation of the model, to

fully define all of the functions and parameters in the model.

We include these equations now to emphasize several features of mathematical interest

that will be central to the work in this dissertation. The evolution equation (1.2.2) for

the Hele-Shaw model has a very similar structure to the PDE of the capillary tube model

(1.1.1); the left hand side of (1.2.2) has the form of a non-linear conservation law, with

flux function f(u), and the right hand side of (1.2.2) incorporates both second and fourth

order diffusion with degeneracies at u = 0 and u = 1. However, the flux function f(u)
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for the Hele-Shaw model takes a different form than the flux function in Eq. (1.1.1) and

we determine that in the Hele-Shaw model f(u) is either a convex-concave function or

a strictly concave function for 0 < u ≤ 1, depending on the viscosity ratio M , and

plays an important role in the solution structure. Like the capillary model, the second

order non-linear diffusion coefficient F ′′0 (u) in Eq. (1.2.2) changes signs, which impacts the

stability of solutions. The parameters CΓ, capillary number Ca, and viscosity ratio M are

positive, and the non-linear functions H(u), κ(u), K(u), and krw(u) are non-negative. The

evolution equation (1.2.2) is coupled to the incompressibility equation (1.2.3) through the

pressure π appearing in the velocity vT.

1.3 Phase Field Type Models

The models for two-fluid capillary tube flow, described by Eq. (1.1.1), and two-fluid Hele-

Shaw flow, described by Eqs. (1.2.2)-(1.2.3), are based on phase field principles. Phase

field models have been gaining popularity as a way to model moving interfaces in two-

fluid flows. In phase field models an order parameter defines a smooth transition between

the fluids [41]. These models are based on material science work by Cahn and Hilliard in

the late 1950’s to describe phase-separation in immiscible liquid mixtures [12, 13]. The

Cahn-Hilliard formulation relies on a free energy based on principles of thermodynamics.

There have been several phase field models for two-fluid flow in a Hele-Shaw cell

developed. In [50], Lowengrub and Truskinovsky propose a diffuse interface model of

two-fluid flow that is able to capture the pinch-off and reconnecting of interfaces, which

is important in modeling viscous fingering. Other examples of phase field models for

two-fluid Hele-Shaw flow are described in [28] and [35]. In Chapter 3 we explain the

derivation of the model for two-fluid Hele-Shaw flow from [20]. This derivation relies on

conservation of mass, a generalized Darcy’s law, and phase field principles that are based

on the Cahn-Hilliard formulation. In this derivation, we also explain how the free energy

functional in this type of formulation is constructed.

1.4 Organization of Dissertation

In this dissertation we focus on the analysis and simulation of the two recent phase field

based models from [19] and [20]. In Chapter 2 we analyze the recent phase field model
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from [19] that describes two-fluid flow in a thin capillary tube. This model is represented

through the degenerate fourth order partial differential equation (1.1.1) for the gas satu-

ration. We find traveling wave solutions to the model that physically represent air fingers

propagating through a thin tube. These traveling wave solutions are undercompressive

in the sense of shocks and are of finite extent due to the degeneracy in the PDE [9]. In

this work we also determine a restriction on parameters in order for these solutions to

exist as well as the effect of these parameters on the solution. We compare these trav-

eling wave solutions to the results of finite difference PDE simulations. Additionally, we

explore stationary solutions to the model in the form of spherical cap bubbles attached

to the tube wall and analyze the stability of long gas finger solutions to this model.

In Chapter 3 we present an overview of the derivation of the phase field Hele-Shaw

model from [20], simplified for the case when one of the fluids is completely wetting. We

focus on characterizing one-dimensional solutions to this recent phase field Hele-Shaw

model in Chapter 4. These solutions correspond to the injection of a non-wetting fluid

into a wetting fluid. For one-dimensional solutions, the governing equation simplifies

to a single degenerate fourth order PDE, similar to the capillary tube model. We find

traveling wave solutions to this model for two constitutive relations and determine how

the remaining wetting film height is selected in solutions to the model. We find a critical

difference between one-dimensional solutions of this model and the capillary tube model

that arises because of the shape of the flux function f leads to an additional restriction on

parameters in order to find traveling wave solutions connecting to zero saturation. When

parameters satisfy these requirements PDE simulations show a rarefaction led by a faster

traveling wave connecting to zero, corresponding to the traveling wave solutions found

earlier in the chapter. When this parameter restriction is not satisfied, PDE simulations

indicate the existence of traveling wave solutions connecting to a small positive value.

These traveling waves have the interesting property of being expansive in the sense of

characteristic speeds.

In Chapter 5, we show via two-dimensional PDE finite difference simulations that

the Hele-Shaw phase field model from [20] captures viscous fingering. We expand the

parameter range previously explored in simulations in [20], and find numerical solutions

connecting to zero saturation without using a precursor film. We also investigate the role

of the capillary number in the length scale of the fingers that develop, as well as compare

the wetting effects seen in two-dimensional simulations to that predicted by the traveling
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wave solutions and one-dimensional PDE simulations. We follow an argument similar to

[58] to analyze the linear stability of a simplified model to explain the viscous fingering

seen in simulations.
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Chapter 2

Two-Fluid Capillary Tube Flow

2.1 Capillary Tube

The displacement of a fluid such as water by an injected finger of air in a narrow tube is

a classic problem of fluid mechanics. Since the early experimental and theoretical work

of Bretherton [11] and Taylor [62], there has been much research on the injection of one

fluid into a different fluid resident in a thin tube [6, 10, 22, 24]. Characterizing such

flows is significant for small scale fluid devices, but also for modeling macroscopic two

fluid flow in porous media [10, 56]. In this chapter, we consider a recent model [19] that

incorporates ideas from phase field theory, resulting in a fourth order nonlinear partial

differential equation (PDE) similar to the PDE of thin liquid films [7]. The PDE pos-

sesses a spinodal-type instability at long wavelengths that we associate with the physical

varicose or Plateau instability, in which the cylindrical gas finger, of sufficient length and

for a range of widths, tends to break up into bubbles [24, 32].

We consider an axisymmetric flow of air displacing water in a cylindrical capillary

tube. The dependent variable, which we refer to as the saturation u, is the cross-sectional

area fraction of gas. The PDE model considered in [19] neglects the effect of gravity (which

is reasonable for a thin tube, but can have a significant effect in wider tubes [24]) and

takes the form

∂tu+ ∂x (vTf(u)) = ∂x

(
f(u)λ(u)

1

Ca
∂xψ

)
. (2.1.1)

In this equation, the gas saturation u = u(x, t) depends on x, the distance along the

The work in this chapter is published in [59].
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length of the tube and time t. The flux function f is the fractional flow rate, given by

f(u) =
u

u+ kw(u)
,

and depends on the relative permeability kw(u) of water, which we take as either kw(u) =

(1−u)3, or kw(u) = (1−u)4. The total velocity of the fluids is vT , which we will generally

take to be vT ≡ 1 for analysis of the model dynamics. We write λ(u) = kw(u) 1
M

(1+(M−
1)u), in which the mobility number M = ηw/ηg > 1 is the ratio of the viscosities ηw, ηg

of the two fluids. The capillary number Ca = Uηw/γ is the ratio of viscous and capillary

forces, depending on U, a typical finger tip velocity, and γ, the surface tension between

the two fluids. The function

ψ = C1g(u)− C2

√
κ(u)∂x

(√
κ(u)∂xu

)
,

is the chemical potential, derived as the variational derivative of a total free energy

F (u, ∂xu). This has the form F (u, ∂xu) = C1F0(u) + C2κ(u)(∂xu)2, representing a bulk

free energy plus an interface free energy. For simplicity in this chapter, we take the bulk

free energy to be a double-well quartic function of u, with

g(u) = u(1− u)(1− 2u) = F ′0(u); (2.1.2)

we generally take the coefficient of interfacial energy κ(u), which is quadratic as u→ 0,

to be κ(u) = u2, as in [19]. The parameters C1, C2 are positive, and can be chosen so

that the model accommodates the Young-Laplace law for the contact line at the tube

entrance, where the gas finger attaches to the tube wall. While we do not include the

derivation of the phase-field capillary tube model from [19] in this chapter, we include

a detailed derivation of the two-dimensional extension of this model for flow in a Hele-

Shaw cell in Chapter 3. The derivation of (2.1.1) follows a similar approach and both

models are based on conservation of mass, Darcy’s law generalized to multiphase flows,

and phase-field principles.

The objective of this chapter is to outline a preliminary analysis of gas finger solu-

tions of the PDE (2.1.1). These are traveling waves with the unusual property of being of

finite extent, terminating at the tip of the gas finger in Fig. 2.1. Such traveling waves are

solutions of a third order ordinary differential equation that is singular at the tip, where
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Gas Liquid
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x 

Figure 2.1 Schematic of a gas finger displacing a liquid in a capillary tube.

u = 0. With a change of variables, we transform the singular equation into a system

that has a regular equilibrium at u = 0, and allows the numerical simulation of travel-

ing waves. However, the solutions are not structurally stable, and depend on varying a

parameter, specifically the finger width. Consequently, for each capillary number Ca in

a specified range, there is a unique upstream width corresponding to a traveling wave.

The range for Ca is determined by the nature of the equilibrium at u = 0, to avoid

unphysical oscillations, since the saturation u has to remain non-negative. These prop-

erties are established in Section 4.4. In Section 2.3, we describe PDE simulations using

a finite difference code, and compare the results to the traveling wave calculations and

to experimental results of Taylor [62]. In the short Section 2.4, we describe the varicose

instability by linearizing the PDE about a constant width finger and in Section 2.5, we

calculate the form of the interfacial energy coefficient required to admit stationary bubble

solutions with spherical cap ends. Finally, the results are discussed in Section 2.6.

2.2 Traveling Waves

In experiments, it is observed that the spherical tip of the gas finger travels with con-

stant speed, and as the finger elongates, it leaves behind a nearly uniform layer of fluid

adjacent to the tube wall [62]. To capture this behavior analytically, we seek traveling

wave solutions u(x, t) = u(x− st) of the PDE (2.1.1), where s is the wave speed. Such a

solution has u = 0 at the tip of the gas finger. By translation invariance of the problem,

we take this location to be x = st, without loss of generality. If uL > 0 is the thickness

of the fluid layer behind the tip, mathematically, the saturation should approach uL as
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ξ = x− st→ −∞. In summary, we have boundary conditions

u(−∞) = uL, u(0) = 0. (2.2.1)

Consistent with a smooth tip of the gas finger, we shall also assume that derivatives of

u are bounded as ξ → 0. Moreover, derivatives of u(ξ) are taken to approach zero as

ξ → −∞.
Substituting u = u(ξ), ξ = x − st into (2.1.1) and integrating once, we obtain the

third order ODE

K − su+ f(u) = f(u)λ(u)
1

Ca
ψ′, ψ = C1g(u)− C2

√
κ(u)

(√
κ(u)u′

)′
,

where K is the constant of integration. Enforcing the boundary conditions at ξ = 0, ξ =

−∞, we find that K = 0, and that the speed s is given by the Rankine-Hugoniot condition

s =
f(uL)

uL
.

Incidentally, these conclusions depend on the degeneracy at u = 0, specifically that

f(0) = 0. Now we have the ODE

−su+ f(u) =
1

Ca
C1H(u)g′(u)−C2

1

Ca
H(u)

(√
κ(
√
κu′)′

)′
, H(u) = f(u)λ(u). (2.2.2)

Equation (2.2.2) can be written as a first order system:

√
κu′(ξ) = v
√
κv′(ξ) = w

√
κw′(ξ) =

C1

C2

G(u)v +
Ca
√
κ(u)

C2H(u)
(su− f(u)),

(2.2.3)

where G(u) = g′(u). Since κ(u) ∼ u2 as u→ 0, system (2.2.3) has a singularity at u = 0.

To remove the singularity, we introduce a new independent variable η. If (u(ξ), v(ξ), w(ξ))

is a traveling wave solution of (2.2.3), we set

√
κ(u(ξ))

d

dξ
=

d

dη
,
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and let U(η) = u(ξ), V (η) = v(ξ),W (η) = w(ξ). For convenience, we revert back to the

lower case letters, with u(η), etc. Then, with ′ = d
dη
,

u′(η) = v

v′(η) = w

w′(η) =
C1

C2

G(u)v +
Ca
√
κ(u)

C2H(u)
(su− f(u)).

(2.2.4)

Now H(u) = f(u)λ(u) ∼ 1
M
u, and

√
κ(u) ∼ u, so the vector field represented by the

right hand side of equation (2.2.4) has a regular equilibrium at u = 0. Consequently, we

seek trajectories (u(η), v(η), w(η)) from (uL, 0, 0) (as η → −∞), to (0, 0, 0) (as η → +∞)

with the property that u remains non-negative.

2.2.1 Equilibria

The system (2.2.4) has equilibria when (u′, v′, w′) = (0, 0, 0). Then v = w = 0, and

equilibrium values of u are solutions of su− f(u) = 0, the intersection points of the flux

function graph y = f(u), and the line y = su = f(uL)
uL

u. These curves necessarily intersect

at u = 0 and u = uL. Let u∗ be defined as the value of u for which the tangent to the

graph of f passes through the origin, shown in Fig. 2.2:

f(u∗)

u∗
= f ′(u∗).

A simple calculation shows that u∗ = 1 − 1/
√

3. Let s∗ = (u∗ + (1 − u∗)3)−1 be the

corresponding speed. For u∗ < uL < 1, there is a middle equilibrium uM such that

0 < uM ≤ u∗ < uL. Since f(u) ∼ u near u = 0, we observe that uM → 0 as uL → 1.

2.2.2 A Necessary Condition for Non-negative Traveling Waves

To obtain physically relevant solutions, in which the saturation u remains positive, we

determine a bound on the quantity M ·Ca by analyzing the linearized system at (0, 0, 0).

Recall that near u = 0,

H(u) = f(u)λ(u) =
u(1− u)3

u+ (1− u)3

1

M
(1 + (M − 1)u) ∼ 1

M
u,
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Figure 2.2 Graph of the flux function f(u), showing u∗ and possible equilibrium values u =
uL, uM with the same s = f(uL)/uL.

f ′(0) = 1, and G(0) = 1.

Therefore, system (2.2.4) linearized around u = v = w = 0 has the structure u′

v′

w′

 =

 0 1 0

0 0 1
MCa
C2

(s− 1) C1

C2
0


 u

v

w

 .
The nature of the equilibrium at the origin is determined by the eigenvalues λk, k =

1, 2, 3 of the coefficient matrix. These are the three roots of the function

y(λ) = λ3 − C1

C2

λ− Ca

C2

M(s− 1). (2.2.5)

Note that the λ1λ2λ3 = Ca
C2
M(s − 1) > 0, and λ1 + λ2 + λ3 = 0. Consequently, one

eigenvalue is positive and the other two are either negative, or are complex conjugates

and have negative real parts. The latter eigenvalues correspond to the two-dimensional

stable manifold of the equilibrium at the origin, on which the desired trajectory must
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lie. In order to prevent the gas saturation, u on this manifold from becoming negative,

all three eigenvalues must be real, since otherwise solutions will have oscillations around

u = 0, and u will not remain positive.

To determine the range of parameters for which all three eigenvalues are real, we

analyze the function y(λ) in (2.2.5). The local maximum, y(λm), occurs at λm = −
√

C1

3C2
.

There are three real roots when y(λm) > 0, leading to the following lemma.

Lemma 2.2.1. Suppose there is a traveling wave solution of (2.1.1), satisfying (4.3.1)

with u ≥ 0.

(a) Then

M · Ca < 2

3
√

3(s− 1)

√
C3

1

C2

, (2.2.6)

where s = f(uL)/uL.

(b) Suppose moreover, that s > 1 is defined by

M · Ca =
2

3
√

3(s− 1)

√
C3

1

C2

.

Then s < min(s, s∗).

The implication of part (b) is that if s < s∗, then the possible range of values of the

traveling wave speed s is restricted, and consequently, the possible values of uL are also

restricted. Specifically, let uL be defined by s = f(uL)/uL. Then in order that 1 < s < s,

we must have uL < uL < 1.

2.2.3 The Equilibrium at uL > 0

Since H(uL) > 0, the equilibrium at u = uL is regular, and the Jacobian of F is given by

DF (uL, 0, 0) =

 0 1 0

0 0 1
Ca
√
uL

C2H(uL)
(s− f ′(uL)) C1

C2
G(uL) 0

 .
The characteristic polynomial associated with this system is

y(λ) = λ3 − Aλ−B,
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where A = C1

C2
G(uL), and B = uLCa

C2H(uL)
(s− f ′(uL)). The eigenvalues, given by the zeroes

of y(λ), vary continuously with the coefficients A,B. For A = 0, the three eigenvalues

are (complex) cube roots of B. Consequently, if uL > u∗, then B > 0, and there is one

positive real eigenvalue, and a pair of complex conjugate eigenvalues with negative real

parts.

If an eigenvalue crosses the imaginary axis as A is varied, then for some A, the real

part of the eigenvalue vanishes, so λ = iβ, β ∈ R. Therefore,

y(λ) = −iβ3 − Aiβ −B = 0,

a contradiction. We conclude that, for uL > u∗, two eigenvalues of the equilibrium at uL

have negative real parts, and the third eigenvalue is real and positive. Consequently, the

local dynamics are described by a two-dimensional stable manifold and a one-dimensional

unstable manifold at uL. Similarly, if 0 < uL < u∗, the equilibrium at uL has a two-

dimensional unstable manifold and a one-dimensional stable manifold, since in that case,

we have s < f ′(uL) and B < 0.

Finally, we observe from the structure of DF (u) that right eigenvectors have the form

(1, λ, λ2)T , for each eigenvalue λ of DF (u).

2.2.4 Computing the Traveling Wave Solutions

We seek a solution of system (2.2.4) that connects (uL, 0, 0) to (0, 0, 0) with uL > u∗. Such

a solution corresponds to a trajectory that leaves (uL, 0, 0) on its one-dimensional unsta-

ble manifold WU(uL), and intersects the two-dimensional stable manifold W S(0) of the

equilibrium at u = 0. Then the entire trajectory lies in W S(0). However, this intersection

has to be achieved by varying a parameter, suggesting a shooting method. Geometri-

cally, the intersection is codimension one. In this sense, the corresponding traveling wave

solutions of (2.1.1) are undercompressive, as discussed in [7].

Let the parameters Ca and M be fixed. We use an ODE solver in MATLAB to

approximate the trajectory leaving (uL, 0, 0) along WU(uL), with u(η) decreasing. To

this end, we initiate the ODE solver by taking (u, v, w) a small distance ε > 0 away from

(uL, 0, 0) along the eigenvector −(1, λ, λ2), where λ is the positive eigenvalue associated
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Figure 2.3 Trajectories exhibiting the two behaviors seen when using the bisection method
to solve system (2.2.4).

with the equilibrium at uL :

(u, v, w)(0) = (uL, 0, 0)− ε(1, λ, λ2).

We solve the system (2.2.4) in MATLAB, and track the sign of u(η) and u′(η) for each

choice of uL. In extreme cases, the trajectory exhibits contrasting behavior, corresponding

to missing W S(0) on one side or the other: (a) For uL close to u = 1, u(η) becomes

negative, and (b) for uL close to u∗, u(η) remains positive but has a positive minimum

before exceeding u = uL. These two behaviors are incorporated into an interval division

algorithm (bisection method) to approximate the value of uL for which u(η) remains

positive, while its minimum is pushed off towards η =∞.
Examples of trajectories with the two behaviors are shown in Fig 2.3, and a typical

trajectory u = u(η) is shown in Fig. 2.4(a)

As we vary the capillary number Ca, we find new values of uL = uL(Ca) for which

there is a trajectory from uL to u = 0. A plot of 1− uL against Ca is shown in Fig. 2.6,

together with comparisons to experiment and PDE simulations, as explained below.

2.2.5 Inverting the Transformation

The trajectories in the previous subsection were obtained in the transformed independent

variable η, with a solution ũ(η),−∞ < η <∞. To convert back to the physical variable ξ,

which remains finite, and derive the desired function u(ξ), we first recall that the change
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Figure 2.4 Traveling waves: (a) in the transformed variable η; (b) in the physical variable
ξ.

of variables from ξ to η was predicated on the existence of a solution u(ξ), so that

√
κ(u)

du

dξ
=
dũ

dη
. (2.2.7)

However, if the change of variables is η = η(ξ), we have ũ(η(ξ)) = u(ξ). Inverting, if

ξ = ξ(η) then from the chain rule

dξ

dη
= u(ξ(η)).

Solving this ODE using separation of variables gives

ξ = −
∫ ∞
η

u(η̄)dη̄.

Since we assume our traveling wave solution u(η) ≈ 0 for η ≥ N , for large enough N > 0,

then

ξ = −
∫ N

η

u(η)dη.

The traveling wave solution with the inversion completed is shown in Fig. 2.4(b), where

we have used κ(u) = u2 for both the ODE solver and the transformation.
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2.2.6 Conclusion

For each Ca ∈ [10−3, 1] and for fixed fixed C1, C2, and M satisfying (2.2.6), the method

described in Section 2.2.4 generates a unique traveling wave solution to (2.1.1) subject

to (4.3.1). We conjecture, and find numerically, that for each Ca and fixed C1, C2, and

M there is a unique uL with a traveling wave connecting uL to 0. The numerical method

for finding uL for each value of Ca is robust, but quite sensitive, meaning that uL has

to be calculated to a large number of decimal places (around 12-14) in order to have the

flat portion near u = 0 extend as in Fig. 2.4(a) for example.

2.3 PDE Simulations

The PDE (2.1.1) is solved using an implicit finite difference method to model the injection

of a gas finger into a fluid filled tube. A fixed domain, x ∈ [−L,L], is used with boundary

conditions

u(−L, t) = 1, u(L, t) = 0, u′(−L, t) = 0, u′(L, t) = 0,

L is chosen to be large enough to assume zero gas saturation at x = L.

Finite difference simulations in Fig. 2.5 show a traveling wave advancing ahead of

a rarefaction wave, connected by a plateau region of residual fluid. The height of the

traveling wave from PDE simulations can be compared with the traveling wave height

computed from the ODE (2.2.3) and results from classical experiments by Taylor. The

PDE and ODE simulation data along with experimental data from [62] are shown in

Fig. 2.6. The amount of fluid left behind, between the gas finger and tube wall, 1−uL, is

plotted against the capillary number, Ca. Both simulations and experiments show that

as Ca increases, the amount of fluid left increases. The PDE and ODE simulations closely

agree for Ca ∈ [10−3, 1.5]. Both simulations predict the same trend as the experimental

data [62], but under-predict the amount of fluid remaining for large capillary numbers.

The model (2.1.1) assumes the relative permeability of the water, λw, has the form

λw = (1 − u)3. The agreement between model simulations and experimental data for

larger Ca, in the range [10−1, 1.5], can be improved by changing the form of λw to a

quartic function, λw = (1− u)4. This changes f(u) and λ(u) in (2.1.1) to

f(u) =
u

u+ (1− u)4
, λ(u) = (1− u)4 1

M
(1 + (M − 1)u).
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Figure 2.5 Finite difference simulations of air injection with L = 15, Ca = 0.5, M = 10,
C1 = 0.2, and C2 = 1

7 .

Figure 2.6 Comparison of the residual fluid remaining, 1− uL, in traveling wave ODE simu-
lations, PDE simulations from [19], and experiments [62].

Refining the choice of C1 and C2 can also better fit the simulations to experimental

results.
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2.4 Varicose Instability

The Rayleigh-Plateau instability causes long gas fingers to break into bubbles, as observed

in experiments in [24]. To compare this physical instability to the stability of the PDE we

analyze (2.1.1) linearized about a constant u0. For u(x, t) = u0 + εũ(x, t), with ε << 1,

the linearized PDE is

ũt + f ′(u0)ũx =
H(u0)

Ca

(
C1g

′(u0)ũxx − C2u
2
0ũxxxx

)
. (2.4.1)

To find the dispersion relation between the frequency, ω(ξ), and wave number ξ, we

assume a perturbation of the form ũ(x, t) = ei(ξx+ωt) and substitute into (2.4.1) resulting

in

ω(ξ) = −f ′(u0)ξ + i
H(u0)

Ca

[
C1g

′(u0)ξ2 + C2u
2
0ξ

4
]
. (2.4.2)

The perturbation decays with time if and only if Im ω > 0. This results in the stability

restriction

0 <
H(u0)

Ca

[
C1g

′(u0)ξ2 + C2u
2
0ξ

4
]
. (2.4.3)

In order for perturbations to decay for all wave numbers, ξ, g′(u0) must be positive.

However, for the choice of nonlinearity in this chapter, g′(u) < 0 in the range 0.212 <

u < 0.788. Thus, the solutions can be expected to develop long wave instabilities in this

range.

We can also determine the wavelengths that increase in amplitude in this range of u.

The wavelength, λ, is related to the wave number, ξ, by the

λ =
2π

ξ
.

To find the range of unstable λ, we determine the values of ξ such that (2.4.3) is not

satisfied. At u = 0.5, g′(u) attains its minimum value, g(0.5) = −0.5. For definiteness,

let C1 = 1, C2 = 0.1, values used in the simulations. Then Imω < 0 when |ξ| ≤
√

20.

Therefore the range of unstable wavelengths in this particular case is λ ≥ 2π√
20
≈ 1.4.
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Figure 2.7 Schematic of a stationary gas bubble in a liquid filled capillary tube.

2.5 Stationary Solutions

When there is no flow in the tube, there may be stationary gas bubbles attached to the

tube wall. Fig. 2.7 shows a schematic of a stationary bubble in a capillary tube at zero

contact angle. Interfacial energy coefficient κ(u) plays a role in determining the shape of

bubble solutions to PDE (2.1.1). In this section we determine the form of κ(u) required

so that the phase-field capillary tube model admits stationary bubbles solutions with

spherical caps.

We consider stationary solutions of the PDE (2.1.1). Mathematically we set velocity

vT = 0 and ∂u
∂t

= 0. A stationary solution u(x) of (2.1.1) satisfies the equation

∂x

(
f(u)λ(u)

1

Ca
∂xψ

)
= 0, (2.5.1)

where ψ = C1g(u)− C2

√
κ(u)∂x

(√
κ(u)∂xu

)
. Integrating once we obtain

fλ

Ca
∂xψ = 0, (2.5.2)

where we have used f(0) = 0 to determine the constant of integration must be zero. This

implies that a stationary solution u(x) must satisfy

C1g(u)− C2

√
κ(u)∂x

(√
κ(u)∂xu

)
= K1, (2.5.3)

for some constant K1.

Additionally, the end of a stationary bubble solution attached to the tube walls con-

nects u = 1 to u = 0. We assume the end of the bubble forms a spherical cap. Because

u ∼ r2, u must satisfy u+ x2 = 1 for 0 ≤ x ≤ 1 at the end of the bubble in order to have
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this shape. We can calculate from u(x) = 1 − x2 that ux(x) = −2x and we obtain the

relationship between ux and u

ux = −2
√

1− u. (2.5.4)

Substituting ux into the equation (2.5.3) describing stationary solutions, we obtain the

equation

C1g(u) + 2C2

√
κ(u)

(√
κ(u)(1− u)

)
x

= K1. (2.5.5)

After some manipulation, where we again use (2.5.4), we obtain the following first order

ODE for κ(u), where ′ = d
du

:

C1g(u)− 2C2 (κ(u)(1− u))′ = K1. (2.5.6)

Therefore κ(u) is given by

κ(u) =
1

1− u

∫ (
K1

−2C2

+
C1

2C2

g(u)

)
du+K2, (2.5.7)

where K2 is the constant of integration. In order for κ(u) to be bounded at u = 1, we

find that the constants of integration must satisfy K1 ≡ K2 ≡ 0.

For the specific form of g(u) in (2.1.2) we calculate

κ(u) =
C1

4C2

(1− u)u2. (2.5.8)

For a general constitutive law for g(u) = F ′0(u), where F0(u) has a factor (1−u), we have

the formula

κ(u) =
1

1− u

∫ (
C1

2C2

g(u)

)
du. (2.5.9)

The particular form of κ(u) in (2.5.8) behaves like κ(u) ∼ u2 near u = 0. This is consistent

with the analysis of traveling waves in Section 4.4. In the future, the ODE and PDE

simulations can be updated with constitutive relation (2.5.8).

2.6 Discussion

In this chapter, we have verified that the phase field model of [19] captures the structure of

a gas finger being forced into a capillary tube filled with liquid. The model PDE describes
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the evolution of the gas saturation assuming an axisymmetric cross-section through the

gas and water. It incorporates a bulk free energy and an interfacial energy, with surface

tension incorporated into a capillary number Ca. The structure of the PDE solution is

approximately a spreading rarefaction wave attached to the tube entrance, preceded by

the finger, which is a traveling wave that terminates at the finger tip. To calculate the

traveling wave, we use a change of variables which sends the tip to infinity and makes

the zero saturation limit at the tip a regular equilibrium for the associated ODE system.

The ODE solution has to remain positive in order to be physical, and this entails a

maximum capillary number. Below this threshold, we calculate a value of the finger width

(more precisely the saturation uL) in the traveling wave using a shooting method. The

structure of the wave is similar to that observed in driven thin liquid films, also modeled

with a fourth order PDE [7]. The values of uL compare well with those observed in finite

difference simulations of the PDE, and with experimental observations of Taylor [62].

In all of these comparisons, simple constitutive functions have been used, specifically,

g(u) = u(u− 1)(1− 2u), and κ(u) = u2. The varicose instability, generated as a result of

the non-monotonicity of g(u), can be tuned using different functions g(u), and calibrated

against the range of finger widths at which the instability is observed experimentally. The

function κ(u) should admit a spherical cap at the finger tip. It is reasonable to choose

this function so that stationary bubbles attached to the tube wall are solutions of the

PDE. At zero contact angle, this requires κ(u) = cu2(1−u), with c > 0 depending on the

form of g(u). At other contact angles, there is a corresponding formula. For simplicity

we have used κ(u) = u2 in this chapter, but future work can include updates to these

constitutive laws.
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Chapter 3

Hele-Shaw Phase-Field Model

In this chapter we present an overview of the derivation of a recent model of two-fluid

flow in a rectangular Hele-Shaw cell developed by Juanes and Cueto-Felgueroso [20]. The

model is based on conservation of mass, Darcy’s law generalized to multiphase flows,

and phase-field principles. This results in a higher-order system of partial differential

equations (PDEs) which describes the two-dimensional gap-averaged fluid saturations in

the cell. We follow the general derivation described in [20], simplified for the case when

one of the fluids in the cell is completely wetting.

3.1 Derivation of the Model

Consider immiscible two-fluid flow in a Hele-Shaw cell driven by pressure gradients and

capillary forces. Juanes and Cueto-Felgueroso describe this flow using gap-averaged fluid

saturations in the cell, where the saturation is defined to be the length fraction of the gap

occupied by that fluid. Let ug(x, y, t) and uw(x, y, t) represent the saturations of the two

fluids in the cell; for simplicity, we use subscripts g, referring to ‘gas’, and w, ‘water’, to

indicate quantities associated with each of the two general fluids. The fluid saturations

satisfy the conservation of mass equations

∂(bρgug)

∂t
+∇ · (bρgvg) = 0, (3.1.1)

∂(bρwuw)

∂t
+∇ · (bρwvw) = 0. (3.1.2)
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The gap length is b, the densities of the fluids are ρg and ρw, and the volumetric fluxes

of the fluids are vg and vw. These equations ensure the rate of change of mass of a fluid

in a region is equal to the mass flux of that fluid through the boundaries of the region.

The volumetric fluxes are given by a generalized Darcy’s law for multiphase flow

taken from [5]. This states that volumetric flux is proportional to the gradient of the flow

potentials:

vg = − b2

12µg
krg(ug)∇(p+ ψg), (3.1.3)

vw = − b2

12µw
krw(uw)∇(p+ ψw). (3.1.4)

Here µg,w are the fluid viscosities, krw, krg are the relative permeabilities of the fluids, p

is the global pressure, and ψg,w are the capillary potentials. The addition of the capillary

potential terms is necessary to describe capillary forces present in multiphase flows. Dur-

ing single-phase flow the flow potential reduces to the pressure p, recovering Darcy’s law.

The generalized Darcy’s law enforces conservation of momentum in the model. These

expressions for the flux assume a horizontal cell, where gravity is not driving flow.

The variable coefficients, krw, krg, describe how easily the fluid moves through the

cell for different saturation values. In [29], relative permeabilities were calculated for

two-phase flow in a fracture using a proposed model for viscous coupling between the

two fluids. Fourar and Lenormand obtain the following analytic relationship between

permeabilities and saturations,

krw =
1

2
u2
w(3− uw),

krg = u3
g +

3

2M
ug(1− ug)(1 + ug),

(3.1.5)

where we have defined the viscosity ratio between the two fluids to be M = µw
µg

. The

permeabilities (3.1.5) are used in (3.1.3)-(3.1.4). In later chapters we show the form of

the relative permeabilities has important implications for the structure and stability of

solutions of the phase-field Hele-Shaw model.

We assume the cell is completely filled with a combination of the two fluids so we

obtain the constraint ug+uw = 1. Assuming constant densities for the two fluids, constant

gap length b, and applying the constraint ug + uw = 1 to eliminate uw, we obtain the
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system

∂ug
∂t

+∇ · vg = 0, (3.1.6)

−∂ug
∂t

+∇ · vw = 0. (3.1.7)

We combine (3.1.6) and (3.1.7), and substitute in the fluxes (3.1.3), (3.1.4) resulting in

the two equations,

∂ug
∂t

+∇ ·
(
− b2

12µg
krg(ug)∇(p+ ψg)

)
= 0, (3.1.8)

∇ · vT = 0, (3.1.9)

where we have defined the total velocity vT to be the sum of the volumetric fluxes,

vT = vg + vw = − b2

12µg
krg(ug)∇(p+ ψg)−

b2

12µw
krw(uw)∇(p+ ψw). (3.1.10)

We define the total pressure π to be π = p+ψg. With the goal of expressing the evolution

equation (3.1.8) in terms of vT and capillary potentials ψg and ψw, we write (3.1.8) as

∂ug
∂t

+∇ ·

(
− b

2

12

( krg
µg

krg
µg

+ krw
µw

)(
krg
µg

+
krw
µw

)
∇π

)
= 0. (3.1.11)

We define the fractional flow function to be

fg =
krg

krg + 1
M
krw

, (3.1.12)

and manipulate (3.1.11) to obtain the evolution equation,

∂ug
∂t

+∇ ·
(
fg

[
− b

2

12

(
krg
µg

+
krw
µw

)
∇π − b2

12

krw
µw
∇(ψw − ψg)

]
+
b2

12

krw
µw

fg∇(ψw − ψg)
)

= 0.

(3.1.13)

Rewriting (3.1.13) in terms of vT , we get the following system for the dependent
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variables ug and total pressure π:

∂tug +∇ ·
(
fgvT +

b2

12

krw
µw

fg∇(ψw − ψg)
)

= 0, (3.1.14)

vT = − b
2

12

[(
krg
µg

+
krw
µw

)
∇π +

krw
µw
∇(ψw − ψg)

]
, (3.1.15)

∇ · vT = 0. (3.1.16)

To complete the model derivation, Juanes and Cueto-Felgueroso use phase-field prin-

ciples to derive capillary potentials ψg,w from a heuristic free energy functional. This

approach has roots in Cahn-Hilliard type models [12, 21, 19]. Following standard phase-

field techniques, Juanes and Cueto-Felgueroso define the capillary potentials to be the

variational derivative with respect to the fluid saturations of a free energy functional. Let

F be the integrand of the free energy functional, then

ψg,w =
δF

δug,w
=

∂F

∂ug,w
−∇ ·

(
∂F

∂(∇ug,w)

)
. (3.1.17)

F is chosen so that the model captures fluid segregation at steady state and can be

divided into a bulk free energy, F0, and an interfacial free energy, F1. To be consistent

with [20], we let F = −F0 + F1. In the following analysis, we have assumed the ‘w’

phase is completely wetting, while [20] presents a more general form of the free energy

functional depending on the contact angle θ.

Juanes and Cueto-Felgueroso choose a bulk free energy functional that is based on a

double well ω(ug, uw) with minima in the bulk of the two fluids,

ω(ug, uw) = (1− ug)β(1− uw)2. (3.1.18)

The bulk free energy F0 is a scaling of ω. Written in terms of ug, F0 is

F0(ug) =
−2γCw

b
(1− ug)βu2

g, (3.1.19)

where Cw is a normalization constant and β is an integer such that β ≥ 2. This type of

polynomial is a standard choice in Cahn-Hilliard type models, although logarithmic type

functions are also commonly used [12, 21, 68, 45]. In Chapter 4 we show that the choice

of β has stability implications for thin film solutions.
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The second component of free energy F is the interfacial free energy F1. The interfacial

free energy incorporates the effects of surface tension and depends on saturation gradients.

F1 has the standard form

F1 =
Γ

4
κ(ug, uw)(|∇ug|2 + |∇uw|2). (3.1.20)

In Chapter 4 we will examine solutions of the model with two different forms of interfacial

energy coefficient κ. In Chapter 2 we showed that this coefficient plays a role in the shape

of static bubble solutions to phase-field models.

The free energy functional is used to calculate the capillary potentials ψg,w. We cal-

culate the capillary potential difference to be

ψw − ψg = −2
∂F

∂ug
+ 2∇ ·

(
∂F

∂(∇ug)

)
. (3.1.21)

After calculating the variational derivatives we get

ψw − ψg =
−4γCw

b
ug(1− ug)β−1

(
1− β + 2

2
ug

)
+ Γ
√
κ∇ ·

(√
κ∇ug

)
. (3.1.22)

We rewrite the system (3.1.14)- (3.1.15) in dimensionless variables, x̄ = x/L, t̄ = t/T ,

π̄ = π/P , where L is a characteristic length, characteristic time is T = L/U with charac-

teristic velocity U , and characteristic pressure P . Note that the saturation ug is already

dimensionless. Juanes and Cueto-Felgueroso let L ≡ b and P ≡ γ/L. Substituting (3.1.22)

in for the capillary potential difference and dropping the bar notation and subscripts g,

we obtain the following system

∂tu+∇ ·
(
f(u)

vT

U
+
krw(u)f(u)γ

12Uµw
∇
(
F ′0(u) +

Γ

bγ

√
κ(u)∇ · (

√
κ(u)∇u)

))
= 0,

vT = − γ

12µg

((
krg +

µg

µw
krw

)
∇π +

µg

µw
krw(u)∇

(
F ′0(u) +

Γ

bγ

√
κ(u)∇ · (

√
κ(u)∇u)

))
.

(3.1.23)

This results in a slightly different scaling of vT than in [20]. We have rewritten F ′0

in dimensionless form, defined below in Eq. (3.2.4), by factoring out γ/b. From system

(3.1.23), we define several dimensionless quantities. This includes the viscosity ratio, M ,

M =
µw
µg
, (3.1.24)
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the capillary number, Ca, which described the balance between viscous forces and surface

tension,

Ca =
Uµw
γ

, (3.1.25)

and Cahn number, CΓ, which controls the relative strength of the interfacial energy term,

CΓ =
bΓ

γL2
, (3.1.26)

where Γ ∼ γL2

b
. A typical range for the capillary number for this type of model is Ca ≤ 2

[62]. In the following simulations and analysis we will generally be exploring the range of

capillary numbers from 10−3 ≤ Ca ≤ 1.

3.2 Summary of the Phase-Field Hele-Shaw Model

The final form of the phase-field Hele-Shaw model is

∂tu+∇ ·
(
f(u)vT +

H(u)

Ca
∇
(
F ′0(u) + CΓ

√
κ(u)∇ · (

√
κ(u)∇u)

))
= 0, (3.2.1)

∇ · vT = 0, (3.2.2)

vT = − M

12Ca

(
K(u)∇π +

1

M
krw(u)∇

(
F ′0(u) + CΓ

√
κ(u)∇ · (

√
κ(u)∇u)

))
. (3.2.3)

The total velocity vT can be substituted directly into the Eqs. (3.2.1) and (3.2.2) so we

have a system of two PDEs for two dependent variables, u and π. Eqs. (3.2.1) and (3.2.2)

are two-dimensional nonlinear PDEs.

In Eqs. (3.2.1)-(3.2.3), F ′0 is the dimensionless derivative of the bulk free energy, which

has the form

F ′0(u) = −4Cwu(1− u)β−1(2− (β + 2)u). (3.2.4)

In the majority of the analysis in this dissertation we will use exponent β = 8 and scaling

parameter Cw = 2, which gives

F ′0(u) = −16(1− u)7u(1− 5u). (3.2.5)

In Fig. 3.1 we show how the value of β changes the regions of u where the slope of F ′0 is
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Figure 3.1 F ′0 with β = 2, β = 4, β = 8. Normalization constant Cw is chosen so that the
maximum values of the functions are the same for comparison. The interval where F ′′0 (u) > 0
varies with β.

positive or negative. Fig. 3.1 shows that for lower values of β, there is a wider range of

u values for which F ′′0 (u) > 0. We analyze the stability implications of this in depth in

Chapter 4.

We have defined the function K(u) to be a linear combination of the relative perme-

abilities of water krw and gas krg:

K(u) = krg(u) +
1

M
krw(u) (3.2.6)

where we recall

krw(u) =
1

2
(1− u)2(2 + u), krg(u) = u2 +

3

2M
u(1− u)(1 + u). (3.2.7)

The relative permeabilities also determine the shape of the fraction flow function, or flux
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function f . For the given permeabilities f(u) becomes

f(u) =
krg

krg + 1
M
krw

=
u(3 + (2M − 3)u2)

2 + 2(M − 1)u3
. (3.2.8)

We have defined the function H(u) to be

H(u) =
f(u)krw(u)

12
=

(u− 1)2u(u+ 2) ((2M − 3)u2 + 3)

48(M − 1)u3 + 48
. (3.2.9)

The shape of f and H depend on the viscosity ratio M as shown in Fig. 3.2. The fractional

flow function f(u) is a monotonic function from u = 0 to u = 1, where f(0) = 0, f(1) = 1,

and f ′(0) = 3/2. Depending on M , f(u) may be a convex-concave function or concave.

In Chapter 4 we further analyze the dependence of f(u) on M and the effect this has on

solutions.

Another important property of the fourth-order evolution equation (3.2.1) is the de-

generacies at u = 0 and u = 1 because H(0) = H(1) = 0. When vT = 0, (3.2.1) has the

form of a degenerate Cahn-Hilliard type equation [45]. The evolution equation (3.2.1) is

also similar to the thin film equation, while the system (3.2.1)-(3.2.2) shares similarities

with variations of the Buckley-Leverett equation for porous media flow [9, 58].

33



Figure 3.2 The fractional flow function f(u) for M = 100, 20, 5, 1 (left) and H(u) for M =
100, 20, 5, 1 (right).
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Chapter 4

1D Solutions of the Hele-Shaw

Model

4.1 Introduction

In this chapter we analyze the constant injection of non-wetting fluid into a Hele-Shaw cell

filled with a wetting fluid. The non-wetting fluid moves into the cell, displacing the wetting

fluid. As discussed in Section 1.2, experiments show that during this injection a thin film

of wetting fluid remains between the injected fluid and the plates of the Hele-Shaw cell

and there has been considerable study of how this affects the flow [60, 53, 54, 44, 57, 3].

Our objective is to understand the wetting properties of the phase field model described

by Eqs. (3.2.1)-(3.2.3) during fluid displacement.

We find that a novel feature of model (3.2.1) is the existence of traveling wave solutions

for saturation u connecting to u = 0 that are undercompressive in the sense of shocks

and of finite length. The height of these traveling waves is related to the thickness of the

wetting film remaining in the cell shown in Fig. 4.1. We focus on analyzing the role of

parameters M and Ca on these solutions and consider two different constitutive relations

for interfacial free energy coefficient κ(u).

In Sections 4.3 and 4.4 we analyze traveling wave solutions in detail for two choices

of the interfacial energy coefficient κ(u). Based on the analysis in Section 2.5, we choose

one form of κ that is quadratic as u→ 0. For simplicity, we let κ(u) = u2 in this analysis,

which we also used for the analysis of solutions of the capillary tube model in Chapter

2. We consider a second case when κ(u) is a constant. This choice was used in [20]
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for computational convenience for simulations using a non-wetting precursor. We choose

κ(u) = 1 for the analysis and simulations in this case.

When κ(u) = u2, we use a similar dynamical systems approach to that in Chapter

2 to find traveling waves of finite extent that connect to u = 0. This analysis allows us

to find restrictions on the parameter values of the viscosity ratio M , and the capillary

number Ca, for which there are traveling waves connecting to u = 0. We also determine

restrictions on these parameters to ensure the traveling waves remain non-negative. Based

on numerical results and analysis of the dynamical system associated with traveling wave

solutions, we conjecture that there exists a unique traveling wave height associated with

these connections, corresponding to a unique wetting film thickness for a given set of

parameters.

For κ(u) = 1, we analyze the structure of traveling wave solutions connecting to

u = 0 by considering the effective equation near u = 0. Through a scaling argument, we

find that for this choice of κ(u) the structure of the traveling wave is similar to that of

κ(u) = u2 and we have the same parameter restriction for traveling waves connecting to

u = 0.

In Section 4.5 we examine one-dimensional finite difference simulations of (3.2.1) to

simulate the injection of non-wetting fluid into the cell and compare these results to the

traveling wave solutions analyzed in Sections 4.3 and 4.4. The PDE simulations indicate

a one-dimensional solution structure that consists of rarefaction waves and traveling

waves. We find that for parameters satisfying the restrictions found in Section 4.3 the

PDE simulations show traveling waves connecting the unique height found in Section

4.3 to u = 0. We also examine how M and Ca affect the height of the traveling wave

connecting to u = 0.

For parameter values M and Ca that fall outside this range we find that a different

solution structure emerges. In Section 4.5.4 we see that during the simulation of the

injection of a non-wetting fluid into the cell we again see a rarefaction wave led by a

traveling wave, but the leading traveling wave no longer connects directly to u = 0.

Instead the traveling wave connects a left height to a positive right height. A diffusive

wave connects this value to u = 0. In this regime the left height of the traveling wave is

still associated with the wetting film thickness.

In Section 4.6, we analyze the role of bulk free energy function F0 on the stability of

wetting film solutions of system (3.2.1)-(3.2.3). We find that the exponent β in (3.2.4)
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Figure 4.1 Schematic showing the side view of a Hele-Shaw Cell and illustrating the wetting
fluid left behind during displacement.

can be chosen to change the range of unstable wetting film thicknesses.

4.2 PDE Describing One-Dimensional Solutions

To capture the constant-rate injection of a non-wetting fluid into a Hele-Shaw cell we

look for solutions u(x, t), π(x, t) to Eqs. (3.2.1), (3.2.2) that depend only on the length

of the cell x with no variation in the width of the cell y as shown in Fig. 4.1. In order for

u(x, t) and π(x, t) to satisfy incompressibility equation (3.2.2), the total velocity must

be constant in space, vT = (V (t), 0). We assume the non-wetting fluid is injected at a

constant rate, therefore the total velocity is also constant in time, V (t) = V . The gas

saturation satisfies the following degenerate parabolic equation

∂tu+ V ∂xf(u) = ∂x

(
−H(u)

Ca
∂x

(
F ′0(u) + CΓ

√
κ(u)∂x

(√
κ(u)∂xu

)))
, (4.2.1)

where H(u) = f(u)krw(u)/12. In the following analysis we take F ′0(u) = −16u(1−u)7(1−
5u) and CΓ = 1/80, unless otherwise specified. Recall from Chapter 3, the fractional flow

function f is given by f(u) =
u((2M−3)u2+3)

2(M−1)u3+2
and the relative permeability of water is

taken to be krw(u) = 1
2
(1− u)2(2 + u). We will be considering two choices of κ(u) in this

chapter.

PDE (4.2.1) has a similar structure to the phase field model for capillary tube flow and

thin film equation [19, 7]. It is degenerate at u = 0 and u = 1 because H(0) = H(1) = 0.

The degeneracy at u = 0 results in information at u = 0 propagating at finite speed,

essentially creating a free boundary between parts of the solution where u > 0 and u = 0.
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In Eq. (4.2.1) the pressure π is completely decoupled from the gas saturation u, so we

may consider one-dimensional solutions u(x, t) without also solving for π. In the following

analysis we take V ≡ 1 which we show in Chapter 5 is equivalent to choosing a particular

boundary condition for the pressure π. We note that this is also equivalent to a scaling

of t and adjustment to the characteristic velocity in Ca.

4.3 Traveling Waves: κ(u) = u2

We first look for solutions that capture the front of a non-wetting fluid displacing a

wetting fluid in the Hele-Shaw cell. The front of the non-wetting fluid is followed by a

region with constant wetting film thickness as shown in Fig. 4.1. This type of flow may

develop during constant injection of a non-wetting fluid into the cell and can be thought

of as the cross-section along the length of the cell shown in an experiment such as that in

Fig. 1.2. To capture this behavior with the model (4.2.1), we find traveling wave solutions

u(x, t) = u(ξ = x− st) to (4.2.1), where s is the speed of the wave.

In this section we find traveling wave solutions when the interfacial free energy coef-

ficient is taken to be quadratic in u as u→ 0. For simplicity we consider κ(u) = u2 and

follow a similar dynamical systems analysis to that in Chapter 2. Through this analysis

we find an additional limitation on the range of parameters that are associated with

these traveling wave solutions that was not required for traveling wave solutions of the

capillary tube model in Chapter 2.

To describe this propagating fluid front, we assume the left height of the wave ap-

proaches a positive constant uL and we let u = 0 correspond to the tip of the propagating

front. The degeneracy at u = 0 creates the possibility of having traveling wave solutions

that connect to u = 0 and have finite length. The thickness of a wetting film in the region

where u is constant is given by (1−uL)b
2

, where b is the gap height. The traveling waves are

translation invariant so we can choose ξ = 0 to be the tip of the front. Mathematically,

we have boundary conditions

u(−∞) = uL, u(0) = 0. (4.3.1)

Additionally, we assume that the derivatives of u(ξ) vanish as ξ → −∞ and u′(ξ) remains
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bounded at ξ = 0. Substituting u = u(ξ) into (4.2.1) we obtain

−su′ + (f(u))′ = −
(
H(u)

Ca
(F ′0(u) + CΓu(uu′)′)

′
)′
. (4.3.2)

We integrate once to get the following third order equation

−su+ f(u) = −H(u)

Ca
(F ′0(u) + CΓu(uu′)′)

′
+K. (4.3.3)

To find the constant of integration K, we use the boundary conditions as ξ → −∞ to

obtain K = −suL + f(uL). Additionally, the boundary conditions at ξ = 0 imply K ≡ 0.

Therefore traveling waves are solutions of

−su+ f(u) = −H(u)

Ca
(F ′0(u) + CΓu(uu′)′)

′
, (4.3.4)

with boundary conditions (4.3.1) and speed s given by the Rankine-Hugoniot condition,

s =
f(uL)

uL
. (4.3.5)

To find solutions of the traveling wave ODE (4.3.4), we rewrite it as a system of three

first order equations:

uu′(ξ) = v

uv′(ξ) = w

uw′(ξ) =
uCa

CΓH(u)
(su− f(u))− F ′′0 (u)

CΓ

v.

(4.3.6)

Traveling wave solutions of (4.3.4) are trajectories in the three dimensional vector field

described by (4.3.6) that connect u = uL to u = 0. However, because κ(0) = 0, system

(4.3.6) is singular at u = 0 and we cannot use standard dynamical systems techniques to

find traveling wave solutions. As in Chapter 2, we eliminate the singularity by introducing

a new independent variable η. We let

u
d

dξ
=

d

dη
(4.3.7)
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and let U(η) = u(ξ), V (η) = v(ξ), W (η) = w(ξ). For convenience, we again use lowercase

letters, u(η), etc. and ′ = d
dη

,

u′(η) = v

v′(η) = w

w′(η) =
uCa

CΓH(u)
(su− f(u))− F ′′0 (u)

CΓ

v.

(4.3.8)

The change from ξ to η changes the traveling wave of finite extent to a traveling wave

on R.

4.3.1 Equilibria

Equilibria for system (4.3.8) are points (u, v, w) = (u, 0, 0) such that uCa
CΓH(u)

(su−f(u)) =

0. H(u) has zeros at u = 0 and u = 1. Near u = 0, H(u) = f(u)krw(u)
12

∼ u
8

so the vector

field represented by (4.3.8) has a regular equilibrium at (u, v, w) = (0, 0, 0). The point

(u, v, w) = (1, 0, 0) is a singular point in both variables ξ and η.

In addition to (0, 0, 0), system (4.3.8) has either one or two additional equilibria of the

form (u, 0, 0) that satisfy su − f(u) = 0. Because s = f(uL)/uL, (uL, 0, 0) is necessarily

an equilibrium of (4.3.8). We find that the existence of a third equilibrium depends on

M and uL.

The viscosity ratio M affects the number of equilibria by changing the shape of

the fractional flow function f . We now show several properties of f that are key to

understanding the nature of the equilibria of system (4.3.8). Most importantly, we find the

that M determines whether f is a non-convex function or concave function for 0 < u ≤ 1.

The following two propositions are suggested by the graphs of f(u) in Fig. 4.2.

Proposition 4.3.1. For f(u) given by (3.2.8), f(u) is concave for u ∈ (0, 1] when

0 < M ≤ 3/2.

Proof. We can calculate f ′′(u) explicitly to get a function that depends on u and M and

find the inflection points of f ,

f ′′(u) =
3u (3(M − 1)2u4 − 2(M − 1)(2M − 3)u3 − 6(M − 1)u+ 2M − 3)

((M − 1)u3 + 1)3 . (4.3.9)
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Figure 4.2 Graph of the flux function f(u) for M = 20, M = 10, M = 5, and M = 3/2 (left
to right). Inflection points marked with dots for convex-concave functions.

We note that f(u) has an inflection point at u = 0 for all values of M . For M = 1, f ′′(u)

simplifies to f ′′(u) = −3u. For M > 0, f ′′ is smooth for 0 ≤ u ≤ 1, so we find inflection

points to determine where f ′′ can change concavity. The additional roots of f ′′(u) for

M 6= 1 are given by the roots of the quartic polynomial

h(u) = a+ bu+ cu3 + du4 (4.3.10)

where

a = 2M − 3, b = −6(−1 +M), c = −2(−1 +M)(−3 + 2M), d = 3(−1 +M)2.

(4.3.11)

We may calculate the roots explicitly using the formulas for roots of a quartic, but here

we will argue that f ′′(u) does not have any roots u ∈ (0, 1) when 0 < M < 3/2. We begin

by showing that for M ≤ 3/2, M 6= 1, h(u) has 1 real positive root.

Note first that when M = 3/2, h(u) = u(−3+3/4u3) which has root u = 0 in addition

to two roots with negative real part and root u = 22/3 > 0. For 1 < M < 3/2, a < 0,
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b < 0, c > 0, d > 0. By Descartes’ Sign Rule the maximum number of positive real roots

of a polynomial is given by the number of sign changes in the sequence of coefficients.

Therefore in this case the maximum number of positive roots is one. When M = 0,

h(u) = 3(u− 1)3(1 + u). Since roots depend continuously on the coefficients, for M < 1,

h(u) must have 3 roots with negative real part and 1 positive real root.

Therefore for M ≤ 3/2, M 6= 1, h(u) has 1 real positive root. We see that h(u) is

negative at both u = 0 and u = 1, but approaches +∞ as u→∞. Therefore there is one

positive root for u > 1 and thus no roots for 0 < u ≤ 1. Therefore f ′′(u) has no roots u

such that 0 < u < 1 when M < 3/2 and f ′′(u) < 0 for all u ∈ (0, 1].

Proposition 4.3.2. f(u) has exactly one inflection point for u ∈ (0, 1] when M > 3/2.

Proof. We again analyze the roots of f ′′(u) in Eq. (4.3.9) and use a similar argument to

Proposition 4.3.1. Let M > 3/2. The roots of f ′′(u) for u 6= 0 and M 6= 1 correspond

to the roots of the quartic polynomial h(u) in Eq. (4.3.10). Note that for M > 3/2,

h(0) = a > 0, while h(1) = −M2 < 0 therefore h(u) has at least one root 0 < u < 1.

As u → ∞, h(u) → +∞ therefore there is at least one additional positive root with

u > 1. Analyzing the change in sign of the coefficients a, b, c, d as in Proposition 4.3.1

we find h(u) can have at most two positive roots. Therefore there is exactly one root

of h(u) in (0, 1) and therefore f ′′(u) has exactly one inflection point for u ∈ (0, 1] when

M > 3/2.

In summary, we have two regimes: when M > 3/2, f(u) has a non-convex structure

similar to the fractional flow function in Chapter 2, and when M ≤ 3/2, f(u) is concave.

For concave-convex f(u) we expect a solution structure similar to that found in Chapter

2.

Proposition 4.3.3. For system (4.3.8) to have three equilibria, it is necessary that

s > f ′(0) =
3

2
and M >

3

2
. (4.3.12)

Additionally, if s > 3/2 and f ′(uL) 6= s then system (4.3.8) has three equilibria.

This is apparent from the graphs of f(u) in Fig. 4.3. In the left plot of Fig. 4.3,

M > 3/2 so f(u) has a single inflection point in (0, 1]. A line of slope s from u = 0 to

u = uL is shown in the plots and the equilibria are the intersection points of the line and
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Figure 4.3 Graph of the flux function f(u), when (left) M = 20, showing u∗ and possible
equilibrium values u = uL, uM with the same s = f(uL)/uL, and (right) when M = 1,
showing possible equilibrium value u = uL with s = f(uL)/uL.

the graph of f . For non-convex f(u) there exists a value u∗, shown in Fig. 4.3, such that

f(u∗)

u∗
= f ′(u∗). (4.3.13)

This value u∗ is a function of M that can be calculated by solving (4.3.13). If the slope

s of the line connecting u = 0 and u = uL is greater than f ′(0) and uL 6= u∗, the line

necessarily intersects f(u) at an additional point 0 < uM < 1. If uL > u∗, the three

equilibria satisfy 0 < uM < u∗ < uL, while if uL < u∗, the three equilibria satisfy

0 < uL < u∗ < uM . For non-convex f(u), system (4.3.8) has two equilibria when uL = u∗

or when s < 3/2.

We see that when f is concave, there can be only two intersection points of the line

and the graph of f and thus there are always only two equilibria. In this case the speed

s is necessarily less than 3/2. The two intersection points are associated with the two

equilibria u = 0 and u = uL. Fig. 4.4 shows the values uL, M when system (4.3.8) has

two versus three equilibria.
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3 Equilibria: uL > uM > 0

2 Equilibria: uL > 0

3 Equilibria: uM > uL > 0

Figure 4.4 The values of uL and M associated with two or three equilibria of system (4.3.8).
The top curve relates M and uL when s = 3

2 . The bottom curve shows u∗ satisfying (4.3.13)
as a function of M .

We focus on the equilibria at u = 0 and u = uL because we seek trajectories

(u(η), v(η), w(η)) connecting (uL, 0, 0) to (0, 0, 0) as η ranges from −∞ to +∞. We study

the equilibria at (uL, 0, 0) and (0, 0, 0) to determine when there is a heteroclinic orbit

between them corresponding to the traveling wave solution.

4.3.1.1 Equilibrium at u = uL > 0

Because H(uL) > 0, (4.3.8) has a regular equilibrium at (uL, 0, 0). The linearized system

around (uL, 0, 0) is u′

v′

w′

 =

 0 1 0

0 0 1
uLCa(s−f ′(uL))

CΓH(uL)

−F ′′
0 (uL)

CΓ
0


 u

v

w

+

 uL

0

0

 .
The characteristic polynomial associated with this system is

y(λ) = λ3 − Aλ−B, (4.3.14)
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where A =
−F ′′

0 (uL)

CΓ
, and B = uLCa(s−f ′(uL))

CΓH(uL)
. The eigenvalues, given by the zeroes of y(λ),

vary continuously with the coefficients A,B. We consider the cases when M > 3/2 and

M ≤ 3/2.

For M > 3/2, f(u) is non-convex and there exists a u∗ > 0 such that s = f(u∗)/u∗ =

f ′(u∗). For A = 0, the three eigenvalues are (complex) cube roots of B. Consequently,

if uL > u∗, then B > 0, and there is one positive real eigenvalue, and a pair of complex

conjugate eigenvalues with negative real parts.

If an eigenvalue crosses the imaginary axis as A is varied, then for some A, the real

part of the eigenvalue vanishes, so λ = iβ, β ∈ R. Therefore,

y(λ) = −iβ3 − Aiβ −B = 0,

a contradiction. We conclude that, for uL > u∗, two eigenvalues of the equilibrium at uL

have negative real parts, and the third eigenvalue is real and positive. Consequently, the

local dynamics are described by a two-dimensional stable manifold W S(uL) and a one-

dimensional unstable manifold WU(uL) at uL. Similarly, if 0 < uL < u∗, the equilibrium

at uL has a two-dimensional unstable manifold and a one-dimensional stable manifold,

since in that case, we have s < f ′(uL) and B < 0.

For 0 ≤ M ≤ 3/2, f(u) is concave and s > f ′(uL) for all uL > 0. Therefore this case

is the same as when we have M > 3/2, uL > u∗. For concave f(u), the dynamics are

described by a two-dimensional stable manifold and a one-dimensional unstable manifold

at uL.

Finally, we observe from the structure of the linearization that right eigenvectors have

the form (1, λ, λ2)T , for each eigenvalue λ given by characteristic equation (4.4.5).

4.3.1.2 Equilibrium at u = 0

We can analyze the linearized system at (u, v, w) = (0, 0, 0) in order to understand how

a trajectory connects uL to 0. The system (4.3.8) linearized around u = v = w = 0 is u′

v′

w′

 =

 0 1 0

0 0 1
4Ca(2s−3)

CΓ

−F ′′
0 (0)

CΓ
0


 u

v

w

 . (4.3.15)

45



The nature of the equilibrium at the origin is determined by the eigenvalues λk, k = 1, 2, 3

of the coefficient matrix. These are the three roots of the polynomial

y(λ) = λ3 − αλ− β, (4.3.16)

where α =
−F ′′

0 (0)

CΓ
and β = 4Ca(2s−3)

CΓ
. Note that α > 0, but the sign of β depends on

s = f(uL)/uL. Note that λ1λ2λ3 = β and λ1 + λ2 + λ3 = 0.

When s > 3/2, β < 0. Consequently, one eigenvalue is positive and the other two

are either negative, or are complex conjugates and have negative real parts. The latter

eigenvalues correspond to the two-dimensional stable manifold of equilibrium (0, 0, 0),

W S(0). When s < 3/2, β > 0, so there must be two roots with negative real part and

one real positive root in order for their product to be positive. In this case the stable

manifold W S(0) is one-dimensional.

Therefore the sign of s− 3/2 determines the dimension of the stable manifold at the

equilibrium, W S(0). The trajectory connecting the equilibrium uL to the origin must lie

on W S(0), therefore the dimension of this manifold is critical to determining the existence

of this connection.

4.3.2 Necessary Condition for Traveling Waves Connecting to

u = 0

In the preceding sections we have found that the nature of the equilibria of system (4.3.8)

depends on uL and M , though s and f(u). This leads to a restriction on M and uL to

admit traveling wave solutions connecting to u = 0. Specifically, the dimension of the

stable manifold associated with the equilibrium at the origin, W S(0), is determined by

the speed s of the traveling wave. When s > 3/2, we found the equilibrium at (u, v, w) =

(0, 0, 0) has two eigenvalues with negative real part associated with a two-dimensional

stable manifold and one positive real eigenvalue. In contrast, we found that for s < 3/2,

W S(0) is one-dimensional.

For W S(0) to be two-dimensional, we require

s =
f(uL)

uL
<

3

2
. (4.3.17)
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This is satisfied when
(2M − 3)u2 + 3

2(M − 1)u3 + 2
<

3

2
. (4.3.18)

Solving for uL yields the following restriction.

Proposition 4.3.4. In order for a traveling wave solution of (2.1.1), satisfying (4.3.1)

to connect WU(uL) to a two-dimensional manifold W S(0), uL must satisfy

uL <
2M − 3

3(M − 1)
. (4.3.19)

We note that there are no values of uL that satisfy (4.3.19) for M ≤ 3/2, which

coincides with the values of M when f(u) is concave. As M becomes large, restriction

(4.3.19) increases monotonically and 2M−3
3(M−1)

→ 2
3
. For M � 1, restriction (4.3.19) can be

approximated by uL < 2/3. The parameter restriction (4.3.19) is equivalent to the region

shown in Fig. 4.4 for which system (4.3.8) has three equilibria.

There is no equivalent restriction for the capillary tube model presented in Chapter

2 because the fractional flow function f has a different form in (2.1.1). This parameter

restriction for the Hele-Shaw model arises because f(u) becomes concave for M ≤ 3/2

and because f ′(0) = 3
2
> 1. In Section 4.5 we use PDE simulations to indicate that

while outside of this parameter range there are not traveling wave solutions that connect

directly to u = 0, for small M there are traveling waves that connect to a small value

uR > 0. This value of uR then connects to 0.

4.3.3 Non-negative Traveling Waves

To ensure the gas saturation u remains non-negative, we use the analysis of the equilib-

rium at (0,0,0) to determine a necessary bound on Ca. The nature of the equilibrium at

the origin is determined by the eigenvalues λk, k = 1, 2, 3 of system (4.3.15).

Assume (4.3.19) is satisfied so s > 3/2. Therefore one eigenvalue is positive and

the other two are either negative, or are complex conjugates and have negative real

parts. The latter eigenvalues correspond to the two-dimensional stable manifold of the

equilibrium at the origin, on which the desired trajectory must lie. In order to prevent the

gas saturation, u, on this manifold from becoming negative, all three eigenvalues must be

real, since otherwise solutions will have oscillations around u = 0, and u will not remain

positive.
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To determine the range of parameters for which all three eigenvalues are real, we

analyze the function y(λ) in (4.3.16). In order for all three roots of (4.3.16) to be real,

the local maximum of (4.3.16), y(λmax), must be greater than 0, and the local minimum

of (4.3.16), y(λmin), must be less than 0. We find the critical point of (4.3.16) which gives

λmax = −
√
α/3 and λmin =

√
α/3. Note that y(λmax/min) exist because α > 0.

There are three real roots when

y(λmax) = −
2

(
18Ca(2s− 3) +

√
3F ′′0 (0)

√
−F ′′

0 (0)

CΓ

)
9CΓ

> 0.

This leads to the following proposition.

Proposition 4.3.5. Suppose there is a traveling wave solution of (4.2.1), satisfying

(4.3.1) with u ≥ 0.

Then

Ca <
−F ′′0 (0)

√
−F ′′

0 (0)

Cg

6
√

3(2s− 3)
, (4.3.20)

where s = f(uL)/uL.

Because we are assuming CΓ = 1/80 and F ′′0 (0) = −16 are fixed we can calculate the

bound on Ca(s− 3/2) numerically,

Ca(s− 3/2) <
−F ′′0 (0)

√
−F ′′

0 (0)

Cg

6
√

3
≈ 27.54. (4.3.21)

where s depends on both Ca and M .

4.3.4 Computing Traveling Waves

We seek a solution of system (4.3.8) that connects (uL, 0, 0) to (0, 0, 0). This corresponds

to a trajectory that leaves (uL, 0, 0) on its one-dimensional unstable manifold WU(uL),

and intersects the stable manifold of the equilibrium at u = 0. If s = f(uL)/uL > 3/2,

the stable manifold of the equilibrium at u = 0 is two-dimensional. This intersection can
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be achieved by varying a parameter. We fix M and Ca, satisfying parameter restrictions

(4.3.19), (4.3.20), and use an ODE solver in MATLAB to compute the trajectory leaving

(uL, 0, 0) along the unstable manifold as u(η) decreases. This is accomplished by using

the initial condition (u, v, w)(0) = (uL, 0, 0)− ε(1, λ, λ2) and solving system (4.3.8) for a

choice of uL.

We vary uL to find the trajectory that connects (uL, 0, 0) to (0, 0, 0). This is done

using a bisection method. If uL is chosen too large, the trajectory misses W S(0) on one

side and u(η) becomes negative. If uL is chosen too small, the trajectory misses W S(0)

on the other side and u′(η) becomes positive while u(η) is positive. I.e. u(η) has a local

minimum.

When s < 3/2, the stable manifold of the equilibrium at u = 0, W S(0), is one-

dimensional. As expected, in this regime we do not generally find connections between

WU(uL) and W S(0). Section 2.2.4 describes the algorithm we developed to compute

traveling waves in more detail. Several computed traveling waves u(η) are shown in Fig.

4.5 for different parameter values. As we vary capillary number Ca, we find new values

of uL = uL(Ca) for which there is a solution connecting uL to u = 0. A plot of uL vs Ca

is shown in Fig. 4.7, together with comparisons to PDE simulations, discussed in Section

4.5. The numerical method for finding uL for each value of Ca is able to approximate uL

reliably regardless of the initialization of the bisection algorithm. However, in order to

calculate a traveling wave solution that has a flat portion that extends as in Fig. 4.5, uL

must be computed to a large number of decimal points.

The traveling waves u(η) are inverted to functions of ξ using relationship (4.3.7)

between η and ξ. The method to transform the solution back to the physical variable was

previously described in detail in Section 2.2.5 to obtain u(ξ). Fig. 4.6 shows a traveling

wave solution in the transformed variable η and after inverting the transformation back

to ξ. We note that the height of the traveling wave uL is the same in both variables.

4.3.5 Conclusions

For κ(u) = u2 we found traveling wave solutions of (4.2.1) connecting to u = 0 when the

requirements (4.3.19), (4.3.20) were satisfied. Requirement (4.3.19) ensures that s > f ′(0)

and f(u) must be non-convex. Additionally, because uL > u∗ the traveling waves satisfy

s > f ′(uL). Therefore these traveling waves connecting to u = 0 are undercompressive in
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Figure 4.5 Traveling waves u(η) with M = 20, κ(u) = u2, and (left to right) Ca = 0.025,
Ca = 0.1, Ca = 0.5. The traveling wave associated with each fixed set of parameters has a
corresponding unique height uL with monotonic dependence on Ca.
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Figure 4.6 Traveling waves with Ca = 0.1, M = 20, κ(u) = u2 in (a) transformed variable η,
u(η) and (b) physical variable ξ, u(ξ) with uL = 0.58.

the sense of shocks and violate the Lax condition

f(uR) < s < f(uL). (4.3.22)

This is similar to behavior seen in solutions of the thin-film equation [9]. The fourth-order

diffusion combined with the non-convex flux produces undercompressive traveling waves.

The method described in Section 4.3.4 generates a unique traveling wave solution to

(4.2.1) subject to (4.3.1). This leads to the following conjecture.

Conjecture 4.3.6. We conjecture that for each set of parameters M,Ca satisfying

(4.3.19), (4.3.20) there is a unique uL such that there exists a traveling wave solution

to (4.2.1) from uL to 0.
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Figure 4.7 Traveling wave height uL computed using the algorithm in Section 4.3 and using
PDE simulations for different Ca values (M = 20, κ(u) = u2).

4.4 Traveling Waves: κ(u) = 1

In the second part of this chapter we find solutions that capture the front of the injected

non-wetting fluid in the case when κ(u) is constant. This form of κ is more computation-

ally convenient than using κ(u) = u2 and we use this form of κ for the simulations and

analysis of two-dimensional solutions in Chapter 5. In [20], Juanes and Cueto-Felgueroso

chose constant κ(u) for their simulations connecting to a small precursor value. We will

find solutions connecting to u = 0 that do not assume a non-physical precursor. We let

κ(u) = 1 in this section. PDE (4.2.1) simplifies to

∂tu+ ∂xf(u) = ∂x

(
−H(u)

Ca
∂x (F ′0(u) + CΓ∂xxu)

)
. (4.4.1)

We note that (4.4.1) remains degenerate at u = 0 because H(0) = 0; however, the nature

of the degeneracy has changed because κ(0) 6= 0.

We seek traveling wave solutions of PDE (4.2.1) connecting u = uL > 0 to u = 0

for κ(u) = 1. We let u(x, t) = u(ξ = x − st) where s is the speed of the traveling wave.

We again let ξ = 0 be the tip of the injected fluid front so we have boundary conditions

u(−∞) = uL and u(0) = 0. We assume derivatives of u(ξ) as ξ → −∞ are zero and u′(ξ)

is bounded as ξ → 0. This sharp boundary between the injected fluid and the wetting

fluid at u = 0 is possible due to the degeneracy in PDE (4.4.1) at u = 0. We substitute
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u(ξ) into PDE (4.4.1) and integrate once with boundary conditions to obtain

−su+ f(u) = −H(u)

Ca
(F ′0(u) + CΓu

′′)
′
. (4.4.2)

To understand traveling wave solutions of (4.4.2) we first rewrite the ODE as a system

of first order equations,

u′(ξ) = v

v′(ξ) = w

w′(ξ) =
(su− f(u))Ca

CΓH(u)
− F ′′0 (u)

CΓ

v.

(4.4.3)

We note that (u, v, w) = (uL, 0, 0) is an equilibrium of the system for 0 < uL < 1.

Because we are looking for traveling waves of finite extent such that u(0) = 0 and u′(ξ)

is bounded as u(ξ)→ 0 but non-zero, we are not looking for a heteroclinic orbit between

two equilibria.

Although system (4.4.3) has a similar structure to (4.3.8), it does not generally have

an equilibrium at (0, 0, 0) because H(u) ∼ 1
8
u, as u → 0+, so that (su − f(u)) Ca

H(u)
∼

8Ca(s − f ′(0)). The exception is that when s = f ′(0) = 3/2, (0, 0, 0) is an equilibrium.

For s 6= f ′(0) we want to find a value uL such that there is a connection between

(uL, 0, 0) and u = 0. We note that uξ < 0 for ξ < 0 and uξ = 0 for ξ > 0, therefore there

is a discontinuity in uξ when u connects to u = 0. This behavior is similar to solutions

in [64], where van Duijn, et al. found traveling waves connecting degenerate values. In

the following analysis we provide an argument for how this connection between a value

u = uL and u = 0 occurs and in what parameter range it exists.

4.4.1 Equilibrium at uL: κ(u) = 1

We analyze the nature of the equilibrium at uL when κ(u) = 1. The linearized system

around (uL, 0, 0) is now u′

v′

w′

 =

 0 1 0

0 0 1
(s−f ′(uL)Ca
CΓH(uL)

−F ′′
0 (uL)

CΓ
0


 u

v

w

+

 uL

0

0

 . (4.4.4)
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The characteristic polynomial associated with this system is

y(λ) = λ3 − Aλ−B, (4.4.5)

where A =
−F ′′

0 (uL)

CΓ
, and B = Ca(s−f ′(uL))

CΓH(uL)
. The same argument as in Section 4.3 gives us

the signs of the eigenvalues of the coefficient matrix in (4.4.4).

(a) ForM > 3/2, f(u) is non-convex and there exists a u∗ > 0 such that s = f(u∗)/u∗ =

f ′(u∗). For uL > u∗, s > f ′(uL) and the two eigenvalues of the equilibrium at

uL have negative real parts. The dynamics are described by a two-dimensional

stable manifold W S(uL) and a one-dimensional unstable manifold W S(uL) at uL.

Similarly, if 0 < uL < u∗, the equilibrium at uL has a two-dimensional unstable

manifold and a one-dimensional stable manifold. In the regime where M > 3/2, we

will look for connections between uL > u∗ and u = 0.

(b) For 0 ≤M ≤ 3/2, f(u) is concave and s > f ′(uL) for all uL > 0. The equilibrium uL

has an associated two-dimensional stable manifold and a one-dimensional unstable

manifold WU(uL). This is the same structure at uL for κ(u) = u2. A traveling wave

solution to (4.2.1) with κ(u) = 1 is still a trajectory leaving uL on WU(uL) and

connecting to u = 0.

4.4.2 Solution Near u = 0: κ(u) = 1

We analyze the behavior of a traveling wave solution to (4.4.2) as it connects to u = 0 by
expanding u in powers of ε such that 0 < ε� 1 and u(ξ) = u0(ξ)+ εu1(ξ)+ ε2u2(ξ)+ · · · .
We are interested in the behavior near u = 0 so we let u0 = 0. Substituting this form of
u(ξ) into (4.4.2) we obtain

− s(εu1(ξ) + ε2u2(ξ) + · · · ) + f(εu1(ξ) + ε2u2(ξ) + · · · ) =

− H(εu1(ξ) + ε2u2(ξ) + · · · )
Ca

(
F ′0(εu1(ξ) + ε2u2(ξ) + · · · ) + CΓ(εu1(ξ) + ε2u2(ξ) + · · · )′′

)′
.

Dropping terms ε2 and higher and using notation u1 = u, we get

−su+ f ′(0)u = ε

(
−(HF ′′0 )′(0)

12Ca
uu′ − H ′(0)

12Ca
CΓuu

′′′
)
. (4.4.6)
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Substituting in the known function values we obtain

−su+
3

2
u =

2ε

Ca
uu′ − ε

8Ca
CΓuu

′′′. (4.4.7)

The ODE (4.4.7) is satisfied when either u = 0 or when u > 0 is a solution of

−s+
3

2
=

2ε

Ca
u′ − CΓε

8Ca
u′′′. (4.4.8)

Using an integrating factor (4.4.8) is solved exactly with

u(ξ) = Aξ + C1e
−αξ + C2e

αξ + C3, (4.4.9)

where A = Ca
2ε

(
−s+ 3

2

)
, α =

√
16C−1

Γ , and C1, C2, C3 are unknown constants of integra-

tion.

This implies that a traveling wave solution to Eq. (4.4.2) must connect the one-

dimensional manifold WU(uL) to u = 0 through a solution of this approximate form near

u = 0. In the following, we argue that C2 ≈ 0 in (4.4.9). Additionally, we show how

changing the relative balance of the terms through Ca and s changes the behavior of u

near 0. Finally, we use the form of this solution to conclude that (4.3.19) must still be

satisfied when κ(u) = 1.

To argue that C2 ≈ 0 in (4.4.9), we write the simplified traveling wave equation (4.4.8)

near u = 0 as

−a = bu′ − u′′′ (4.4.10)

where a = Ca(s−3/2)
H′(0)CΓ

and b =
−F ′′

0 (0)

CΓ
. For this work we use fixed F ′′0 (0) = −16, CΓ = 1/80,

H ′(0) = 1
8
. Note that b = 1080� 1. Quantity a varies with Ca and M . From simulations

we see a can be as large as O(100). The sign of s − 3/2 determines the sign of a: when

s < 3/2, a is negative and when s > 3/2, a is positive. In the following, we assume a > 0.

To balance terms we will scale ξ in addition to u. Recall u ≈ εu1 and let ξ = δξ̄. We let

d/dξ̄ =′ and drop subscript and bar notation. The scaled ODE is

−a =
bε

δ
u′ − ε

δ3
u′′′. (4.4.11)
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We let ε =
√
a
b
� 1 so

−a =
a1/2

δ
u′ −

√
a

bδ3
u′′′, (4.4.12)

and we will consider the three possible balances of terms.

• Balance of first and second terms: We rewrite (4.4.11) as

−1 =
1

δ
√
a
u′ − 1

bδ3
√
a
u′′′. (4.4.13)

We let δ = a−1/2 so we get

−1 = u′ − a

b
u′′′. (4.4.14)

Note that a � b. This leads to a balance between first and second terms of O(1)

and a higher order third term.

• Balance of second and third terms: We rewrite (4.4.11) as

a1/2δ = u′ −
√
a

bδ2
u′′′. (4.4.15)

We let δ2 = a/b, so δ = (a/b)1/2. Then the second and third terms are O(1), while

the first term is a/b1/2 which is higher order. Therefore this is a balance.

• Balance of first and third terms: We again consider (4.4.11)

1 =
1

δ
√
a
u′ − 1

bδ3
√
a
u′′′. (4.4.16)

Then for the third term to balance the first term, δ−3 = b
√
a so δ = b−1/3a−1/6.

Then the second term is b1/3

a1/3 , but b > a so this term is not higher order and the

first and third terms do not balance.

From this analysis we find that we have two regions for ξ: region 1, where the length of

the region is O(a−1/2), and region 2, where the length of the region is O((a/b)1/2). Note

that the relative size of the regions depends on a. For smaller a, region 1 increases in size

and region 2 decreases, while for larger a region 2 increases in size and region 1 decreases.

• Region 1: O(a−1/2).
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In region 1, u1(ξ1) satisfies

−1 = u′1 (4.4.17)

to leading order. Then

u1(ξ1) = ξ1 + C1 (4.4.18)

where u = −
√
a
b
u1 and ξ = a−1/2ξ1. In the original variables the slope of the

solution u is given by − a√
b
. Since we require u′ < 0, this is only valid for a > 0 and

consequently s > 3/2. This leads to the same restriction as (4.3.19).

• Region 2: O((a/b)1/2) In this region , u2(ξ2) satisfies

0 = u′ −
√
a

bδ2
u′′′. (4.4.19)

to leading order. Then

u2(ξ2) = C2e
−ξ2 + C3e

ξ2 + C4 (4.4.20)

where u =
√
a
b
u2 and ξ = (a/b)1/2 ξ2.

Finally we match these two regions so that they satisfy the boundary conditions.

• As ξ2 → −∞, u2(ξ2) connects to the W S(uL). Therefore we require

u2(−∞) =∞.

• As ξ2 →∞, u2(ξ2) connects to the solution in region 1. At ξ1 = ξ̃1, u1 connects to

the solution in region 2. Therefore we require

u2(∞) = u1(ξ̃1)

which implies C3 = 0 and

C4 = ξ̃1 + C1.

• At ξ1 = ξ̃0, u1(ξ̃1) = 0. Therefore

0 = ξ̃1 + C1. (4.4.21)
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Therefore after matching and rewriting the solution in the original unscaled variables u,

ξ, we get a solution of the form

u(ξ) =
a

b
ξ + c1e

−(a/b)1/2ξ + c2. (4.4.22)

This defines a two-parameter family of solutions near u = 0. Traveling wave solutions

of (4.2.1) with κ(u) = 1 connect WU(uL) to the two parameter family solutions of

form (4.4.22) with parameters c1 and c2. This is analogous to the connection to the

two-dimensional manifold W S(0) when κ(u) = u2.

4.4.3 Examples of Traveling Waves: κ(u) = 1

We consider two examples of traveling waves when κ(u) = 1. These solutions are com-

puted using PDE simulations discussed later in Section 4.5. The aim of the examples is to

show that the behavior of the traveling wave solution near u = 0 is accurately captured by

the approximate solution (4.4.22). The examples are chosen so that a = Ca(s−3/2)
H′(0)CΓ

varies

in size. This allows us to investigate how the connection to u = 0 varies as we change

Ca and M . We examine how the approximate length of the exponential dominated and

linear dominated regions changes with a. We find that the behavior of the traveling waves

near u = 0 supports the scaling found in Section 4.4.2.

Example 4.1 In the first example we use Ca = 0.01, M = 200, and κ(u) = 1. We

calculate the traveling wave in Fig. 4.8 using PDE simulations described below. From the

calculated traveling wave we find uL = 0.6261 and s = 1.591. We compare the predicted

solution structure structure from (4.4.22) near u = 0 to the computed traveling wave

in Fig. 4.8. We use fminsearch in MATLAB to find parameters that best fit the PDE

simulation data near u = 0 to the two parameter family of solutions described by Eq.

(4.4.22). If we write the approximate solution near u = 0 as

u(ξ) ≈ a

b
ξ + q1e

−(a/b)1/2ξ + q2 (4.4.23)

then we find q1 = 1.42× 10−3 and q2 = 8.501× 10−4. We show the resulting fit (4.4.23)

in Fig. 4.8 which is indistinguishable from the PDE simulation data.

We calculate a = 0.581 in Eqn. (4.4.11). As expected the slope of the linear part

of the foot is −a/b. From the scaling, we predicted that the linear part of the foot,
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Figure 4.8 (left) PDE simulation capturing traveling wave when Ca = 0.01, M = 200,
κ(u) = 1. (right) Zoomed in plot of boxed area of the PDE simulation showing traveling wave
data with two-parameter fit.

ξ is O(a−1/2) ≈ 1.3 for the given parameters, which is supported by Fig. 4.8. In the

exponential dominated region ξ is O((a/b)1/2) ≈ 0.023. In the next example we can

compare how the slope of the linear part of the foot changes and how the relative size of

these regions changes as a varies.

Example 4.2 In this example we let Ca = 0.1, M = 20, κ(u) = 1. The computed

traveling wave is plotted in Fig. 4.9 and has uL = 0.541 and s = 1.72. For a solution of

the form (4.4.23) near u = 0, we calculate q1 = 3.35 × 10−2 and q2 = 3.46 × 10−3. The

resulting fit is shown in Fig. 4.9, and again there appears to be good agreement between

the form of (4.4.22) and the simulated traveling wave data near u = 0.

We compute the scaling parameter a = 14.36. From the scaling we predict the length

of the linear foot region connecting to u = 0 to be order a−1/2 ≈ 0.26, so shorter than

in Example 4.1. This is supported by Fig. 4.9. As expected the slope of the linear part

of the foot is −a/b and because a has increased from Example 4.1, we see the slope is

steeper in this case. The exponential dominated region ξ is O((a/b)1/2) ≈ 0.11, so the

length of this region is similar to the linear region in this example.
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Figure 4.9 (left) PDE simulation capturing traveling wave when Ca = 0.1, M = 20, κ(u) =
1. (right) zoomed in of boxed area of the PDE simulation showing traveling wave data with
two-parameter fit.

4.4.4 Conclusions

When κ(u) = 1, traveling wave solutions of (4.2.1) subject to (4.3.1) connect traveling

wave height uL to u = 0. This trajectory lies on the intersection of WU(uL) with the

two parameter family of solutions near u = 0 defined by (4.4.22). Examples of travel-

ing waves discussed above show that numerics support this approximate solution near

u = 0. Because the two-parameter family of solutions for κ(u) = 1 is analogous to the

two-dimensional stable manifold W S(0) when κ(u) = u2, we expect a similar selection

mechanism for uL. In later sections we verify numerically through PDE simulations that

there appears to be a unique height uL = uL(Ca) when κ(u) = 1.

In order for the two-parameter family of solutions, (4.4.22), to remain positive with

u′ < 0, (4.3.19) must be satisfied so f(u) must be non-convex. Similar to the case when

κ(u) = u2, the traveling waves connecting to u = 0 are undercompressive in the sense of

shocks.

4.5 PDE Simulations of One-Dimensional Solutions

In this section we use finite difference simulations to calculate approximate solutions

u(x, t) to Eq. (4.2.1) and simulate the injection of non-wetting fluid into a Hele-Shaw cell.
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Through these simulations we verify the existence of traveling wave solutions connecting

to u = 0 that we analyzed in Sections 4.3 and 4.4. In general we find that the solution

structure consists of combinations of rarefaction waves and traveling waves in the PDE

simulations. We also explore the parameter regime where M and Ca do not satisfy the

requirement (4.3.19) for which there are traveling wave solutions connecting to u = 0. In

this section we primarily focus on PDE simulations with κ(u) = 1. For simulations with

κ(u) = u2 we use a modification of the fully implicit scheme described in Chapter 2.

4.5.1 Numerical Scheme

To discretize PDE 4.2.1 when κ(u) = 1, we rewrite the equation as

ut + (f(u))x = −
(
H(u)F ′′0 (u)

Ca
ux +

H(u)CΓ

Ca
uxxx

)
x

(4.5.1)

Let uni ≈ u(i∆x, n∆t), where ∆x = L
N
, and N + 1 is the number of grid points,

excluding ghost points outside of the physical domain.

We use the forward Euler time discretization for the advection term and implicit Euler

for the higher order terms as in [14]:

un+1
i − uni

∆t
+ f(uni )x = −

(
H(uni )F ′′0 (uni )

Ca

(
un+1
i

)
x

+
H(uni )CΓ

Ca

(
un+1
i

)
xxx

)
x

. (4.5.2)

This allows us to avoid the very restrictive stability requirement for fully explicit schemes,

which would require ∆t ∼ (∆x)4 for a fourth order PDE. Unlike the fully implicit scheme

used in Chapter 2, we avoid the need to solve a system of non-linear equations for un+1

at each time step.

We use central differences to discretize (4.5.5) in space,

un+1
i − uni

∆t
+Dxf

n
i = −Dx

(
(HF ′′0 )ni
Ca

Dxu
n+1
i +

Hn
i CΓ

Ca
Dxxxu

n+1
i

)
, (4.5.3)

where we have defined the discrete operators

Dxh
n
i =

hni+1 − hni−1

2∆x
, Dxxxh

n
i =
−1

2
hni−2 + hni−1 − hni+1 + 1

2
hni+2

(∆x)3
. (4.5.4)
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Table 4.1 Self-convergence test of scheme (4.5.3) to solve (4.2.1) with initial data (4.5.7),
boundary conditions (4.5.8), and M = 20, Ca = 0.1, ∆t = ∆x

10 , tf = 0.5, L = 5. ||∆u||2 is
the norm of the difference between u calculated with subsequent ∆x values. Observed order is
log(Ratio)/ log 2

∆x ||∆u||2 Ratio Observed Order
0.008 1.589 ×10−4 N/A N/A
0.004 8.013 ×10−5 1.98 0.99
0.002 4.024 ×10−5 1.99 0.99
0.001 2.016 ×10−5 2.00 1.00
0.0005 N/A N/A N/A

The updated saturation value un+1
i satisfies

un+1
i + ∆tDx

(
(HF ′′0 )ni
Ca

Dxu
n+1
i +

Hn
i CΓ

Ca
Dxxxu

n+1
i

)
= uni −∆tDxf

n
i (4.5.5)

for 1 ≤ i ≤ N − 1. This results in a system of N − 1 linear equations for un+1 with

coefficients that depend on un. We solve the sparse banded system in MATLAB at each

time step to calculate un+1.

We choose ∆t so that it satisfies the CFL condition

∆t <
∆x

max0≤u≤1 f ′(u)
. (4.5.6)

For the simulations in this chapter we use ∆t = ∆x
10

. The initial condition is taken to be

a smoothed jump from 1 to 0,

u0
j = −1

2
tanh

(
xj − x0

δ

)
+

1

2
. (4.5.7)

We verify the implementation of the scheme is self-convergent in Table 4.1 through grid

refinement. This scheme relies on a basic finite difference discretization which converges

for the range of parameters used in this chapter. In [33], Hayes and LeFloch discuss

challenges associated with computing undercompressive shocks and traveling waves and

study finite difference schemes designed to capture these solutions. Higher-order schemes

to calculate solutions of degenerate parabolic PDEs are discussed in [49] and [42].
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4.5.2 Structure of Solutions of PDE (4.2.1)

We use the scheme described in (4.5.3) to perform finite difference simulations of PDE

(4.2.1). We assume a fixed domain of length L, where L is long enough to ensure the

saturation u remains 0 at the right boundary. Depending on the final time tf of the

simulation we generally choose L ≥ 15. The non-wetting fluid is injected at a constant

rate through the left boundary so at x = 0 we have u = 1. In summary, we have boundary

conditions

u(0) = 1, u′(0) = 0, u(L) = 0, u′(L) = 0. (4.5.8)

From these simulations, we make the following observations about the solutions. Finite

difference simulations in Fig. 4.10 for fixed M and Ca show a traveling wave advancing

ahead of a spreading rarefaction wave, with a plateau region connecting these two struc-

tures. Below we discuss the connection between this plateau height and the traveling

wave heights found in Sections 4.3 and 4.4.

From the analysis in Sections 4.3, 4.4, we expect similar traveling wave solution struc-

ture when κ(u) = 1 and κ(u) = u2. The plots in Fig. 4.11, which show the numerical

solution at various times t for two choices of κ(u), support this. In both the case when

κ(u) = u2 and when κ(u) = 1, we see the same rarefaction and traveling wave structure

develop, with a slightly different plateau height uL being picked out in the simulations.

We can separate solutions into two regimes based on the parameters M and Ca: the

first regime is when parameter requirement (4.3.19) is satisfied and the second regime

includes values of M and Ca that do not satisfy (4.3.19). When (4.3.19) is satisfied along

with (4.3.20) we have traveling wave solutions that connect to u = 0. In the regime where

(4.3.19) is not satisfied, PDE simulations indicate that while there are not traveling wave

solutions connecting directly to u = 0, there exist traveling waves that connect to a small

height uR > 0. We will discuss both regimes of traveling wave solutions below and also

verify that the solution structure seen in solutions is a rarefaction wave connected to a

traveling wave.

4.5.3 Traveling Waves Connecting uL to u = 0

When parameter bound (4.3.19) is satisfied, PDE simulations show a leading traveling

wave connecting height uL, 0 < uL < 1, to u = 0. These traveling waves are associated

with the fluid front during injection of a non-wetting fluid into a Hele-Shaw cell and the
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Figure 4.10 PDE simulation of (4.2.1) showing solution structure with M = 20, Ca = 0.5,
κ(u) = 1, tf = 14. Initial condition (4.5.7) shown with dashed line.
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Figure 4.11 PDE simulations of (4.2.1) with M = 20, Ca = 0.5 and κ(u) = 1 (left), κ(u) =
u2 (right).
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Figure 4.12 PDE simulations of (4.2.1) with M = 200, Ca = 0.01, κ(u) = 1 plotted in a
frame moving with speed s = f(uL)/uL.

height of the wave is related to the thickness of the remaining wetting film. In Sections

4.3 and 4.4 we analyzed the structure of such solutions by considering the traveling

wave ODE. We can verify that the structure found in PDE simulations is a traveling

wave by plotting the solutions at various times t in a frame moving with speed s, where

s = f(uL)/uL is given by the Rankine-Hugoniot condition. This is shown in Fig. 4.12.

With this scaling the portion of the solution connecting to u = 0 collapses, indicating

that this part of the solution is a traveling wave moving with speed s.

For fixed Ca, M , the height of the traveling wave connecting to u = 0 appears to be

uniquely selected in the solutions of the PDE. This is supported numerically by modifying

the initial condition to approximate a jump between a value u < 1 and u = 0. The plots

in Fig. 4.13 show that for different initial conditions the structure of the PDE solution

is a combination of rarefaction waves and traveling waves. For all initial conditions and

fixed M and Ca the same leading traveling wave height uL ≈ 0.522 is selected in the

simulations.

For κ(u) = u2, we verified that our algorithm in Section 4.3 to compute traveling

waves and the PDE simulations calculate the same values of uL for a fixed set of param-

eters. In Fig. 4.7 we plot uL = uL(Ca) for a range of Ca and fixed M = 20 for both the
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Figure 4.13 PDE simulations of (4.2.1) with M = 50, Ca = 0.1, κ(u) = 1, tf = 12 with
different initial conditions (dashed). (top left) rarefaction from u = 1 to uL ≈ 0.522, traveling
wave from uL to 0, (top right) lax traveling wave from u = 0.35 to uL ≈ 0.522, traveling wave
from uL to 0 (bottom left) traveling wave from uL ≈ 0.522 to 0, (bottom right) rarefaction
from u = 0.65 to uL ≈ 0.522, traveling wave from uL to 0.
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ODE and PDE simulations as well as a plot of the differences of the uL values computed

using the method in Section 4.3 versus the plateau height that appears in PDE simu-

lations. To calculate uL using the PDE simulations, for a given Ca we choose tf such

that the traveling wave has time to fully develop. The results show that the algorithm

described in Section 4.3 successfully picks out the height of the traveling wave appearing

in PDE simulations. We also confirm the monotonic relationship between uL and Ca.

The difference between the calculated uL values is on the order of 10−3 for all Ca.

As the capillary number Ca increases in Fig. 4.7 the calculated uL value decreases

monotonically. Fig. 4.7 and Fig. 4.14 show this trend is seen regardless of the choice of

κ(u). This is in agreement with experiments that show increasing Ca leads to thicker

wetting films remaining attached to the cell walls [62, 6]. This trend is also in agreement

with the relationship seen in Chapter 2 for the capillary tube model. As Ca increases,

uL appears to approach u∗, where f(u∗)/u∗ = f ′(u∗), although Ca is limited by the

parameter bound (4.3.20).

Using PDE simulations we also examine the effect of M on the solution structure. Fig.

4.15 shows the solution to (4.2.1) computed with several values of M . For M > 3/2 there

exists a traveling wave solution connecting to u = 0. While it appears that the solution

with M = 0.75 in Fig. 4.15 also has a leading traveling wave connecting to u = 0, we

will show in the section below that the traveling wave is actually connecting to a small

value uR > 0 for M ≤ 3/2. The simulations in Fig. 4.15 indicate that uL also changes

with M . For M > 3/2 we find that uL decreases monotonically as M increases. In later

sections we will also discuss how M changes the appearance of the rarefaction portion of

the solution.

4.5.4 Expansion Waves Connecting uL to uR > 0

When (4.3.19) is not satisfied, there are not traveling wave solutions connecting directly

to zero saturation. However, numerics suggest that there are traveling wave solutions that

connect to a small value uR > 0. These traveling waves have the striking feature of being

expansive in the sense of shocks, a property we will discuss more later in the section. We

find these expansion waves when M ≤ 3/2 because f(u) is concave and (4.3.19) cannot

be satisfied in this range. Additionally, these solutions exist when the capillary number

Ca is small enough so that (4.3.19) will not be satisfied for a given value of M , where

M > 3/2.
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Figure 4.14 PDE simulations of (4.2.1) showing dependence on parameter Ca. (left) Simu-
lations with M = 50, tf = 5, κ(u) = 1, (right) uL = uL(Ca) for fixed M = 10.
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Figure 4.15 PDE simulations of (4.2.1) showing dependence on parameter M using Ca =
0.1, tf = 5, κ(u) = 1. For M > 3/2 the leading traveling wave connects to u = 0. For
M ≤ 3/2, the traveling wave connects to a small value uR > 0.
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An example of a traveling wave solution arising from solving (4.2.1) with initial con-

dition (4.5.7) is shown in Fig. 4.16. It is apparent from the zoomed in plot of the traveling

wave portion of the solution in Fig. 4.16 that the traveling wave connects to a flat region

at uR > 0 and then this flat region connects to u = 0. This structure is fundamentally

different than the ‘foot’ of the traveling wave shown in Figs. 4.8, 4.9. This can be shown

by plotting the solution in a frame moving with speed s, where s = f(uL)−f(ur)
uL−uR

from the

Rankine-Hugoniot condition, which we have done in Fig. 4.17. The solution connecting

uL to uR collapses with this scaling, but the solution connecting uR to u = 0 does not,

so it is not part of the traveling wave. In fact, this part of the solution is spreading out

with time.

In Fig. 4.18 we see a plot of a zoomed in portion of the solution connecting uR to u = 0.

The solution is plotted against similarity variable ξ = x−3/2t√
t

and we see that under this

scaling the solutions at different times collapse onto a single curve. Because this portion

of the solution appears to be a function of ξ = x−3/2t√
t

, it cannot be an approximation of

a rarefaction solution. To understand the structure of this ‘foot’ we consider the effective

equation governing u for 0 < u � 1. The non-monotonicity of F ′0(u) is captured in the

governing equation by expanding F ′′0 (u) about one of its zeros, u = 1/15. The function

F ′′0 (u) can be approximated by F ′′0 (u) ∼ 127(u− 1/15) near u = 1/15. The behaviors of

H(u) and f(u) for 0 < u � 1 can be approximated by H(u) ∼ u/8 and f(u) ∼ 3/2 for

all M . This leads to the following approximate equation for u in the region of the foot:

ut +
3

2
ux =

127

8Ca

(
u

(
1

15
− u
)
x

)
x

. (4.5.9)

Working in a moving frame with speed s = 3/2, the effective equation can be written as

ut =
127

8Ca

(
u

(
1

15
− u
)
x̄

)
x̄

, (4.5.10)

where x̄ = x − 3/2t. To leading order this equation has the form of a heat equation,

which has solutions with erf((x−3/2t)/
√
t), explaining the scaling seen in Fig. 4.18. The

non-linear correction, however, is needed to obtain the shape of the diffusive wave shown

in the plot.

The traveling wave solutions connecting uL to this foot necessarily have speed s < 3/2

because they do not satisfy (4.3.19). An interesting observation is that these traveling
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Figure 4.16 PDE simulation of (4.2.1) with M = 1, Ca = 1, κ(u) = 1, tf = 10 (left).
Zoomed in view of traveling wave connecting uL to uR > 0 (right).

waves are fully expansive in the sense of shocks. This means that the characteristics be-

hind the traveling wave travel slower than the traveling wave, s > f ′(uL), and the charac-

teristics in front of the wave travel faster, s < f ′(uR). By performing a similar dynamical

systems analysis to that in section 4.3, we see that this traveling wave corresponds to the

connection of a one-dimensional unstable manifold WU(uL) to a one-dimensional stable

manifold W S(uR) in three-dimensional phase-space. In general this requires varying two

parameters; these could be uL and uR, however, the selection mechanism for uL and uR

is not clearly understood in this case.

4.5.5 Rarefaction Waves from u = 1 to u = uL

We find that the solutions calculated from PDE simulations of (4.2.1) are a combination

of traveling waves and approximations of spreading rarefaction waves. Rarefaction waves

are a type of continuous weak solution to conservation laws. In one-dimension a scalar

conservation law can be written as

ut + f(u)x = 0. (4.5.11)
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Figure 4.17 PDE simulation of (4.2.1) with M = 1, Ca = 1, κ(u) = 1, plotted for times t =
18 to t = 25. Final time is shown with a thicker line (left). Zoomed in view of foot connecting
uR to u = 0 in a frame moving with speed s ≈ 1.398, given by Rankine-Hugoniot condition
(right). Traveling wave connecting to u = uR collapses in the moving frame, while the foot
does not.
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Figure 4.18 PDE simulation of (4.2.1) with M = 1, Ca = 1, κ(u) = 1, plotted for times

t = 18 to t = 25 against similarity variable ξ = x−3/2t√
t

. Zoomed in view of foot connecting uR
to u = 0.
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Rarefaction solutions of (4.5.11) have the form

u(x, t) =


uD if x < f ′(uD)t

r(x
t
) if f ′(uD)t < x < f ′(uU)t

uU if x > f ′(uU)t

,

where uD,U are the initial downstream and upstream heights. For a rarefaction wave we

must have upstream and downstream heights so that f ′(u) is increasing from f ′(uD) to

f ′(uU). Therefore for uD > uU , f(u) must be concave on that interval.

For finite difference solutions of (4.2.1) we provide evidence that the solution structure

connecting u = 1 to u = uL is a rarefaction solution to leading order. We note that

rarefaction solutions from f ′(uD)t < x < f ′(uU)t are functions of similarity variable

ξ = x
t
. We can scale simulated solutions by ξ = x−x0

t−t0 to show that the top part of the

solution from u = 1 to u = uL is a function of a single variable ξ. We find in Fig. 4.19,

the top part of the solutions at different times collapse onto each other indicating that

this part of the solution is a function of similarity variable x−x0

t−t0 . The constants x0 and t0

are the time and location of the initial development of the rarefaction.

The rarefaction solution at a given value of u moves with the speed of the character-

istics f ′(u). At u = 1, f ′(1) = 0, therefore after the initial development of the rarefaction

type solution we expect this part of the solution to be stationary, which we see in Fig.

4.19. The form of f(u) determines the shape of the rarefaction solution. In Fig. 4.15 we

see that the rarefaction solution changes as M changes. This is because M determines

the shape of f(u).

Example: Rarefaction Wave, M = 1

When M = 1, f(u) is concave for 0 < u ≤ 1 so there is a rarefaction solution uR

to conservation law (4.5.11) connecting u = 1 to u = 0. In the limit of vanishing higher

order terms in PDE (4.2.1) we obtain the conservation law (4.5.11) with the relatively

simple concave flux function (for 0 ≤ u ≤ 1) ,

f(u) =
1

2
u(3− u2). (4.5.12)

We look for a self-similar solution uR(ξ), where ξ = (x − x0)/(t − t0), that satisfies Eq.
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Figure 4.19 PDE simulations of (4.2.1) when M = 20, Ca = 0.1, κ(u) = 1 for t = 18 to
t = 25 plotted against physical variable x (left), similarity variable ξ = (x − x0)/(t − t0)
(right). The wave speed is zero at x = x0.

(4.5.11). Substituting uR(ξ) into (4.5.11) we obtain the ODE

−(x− x0)(uR)′

(t− t0)2
+

f ′(u)

(t− t0)
(uR)′ = 0, (4.5.13)

where

f ′(u) =
−3

2

(
u2 − 1

)
. (4.5.14)

Assuming
(
uR
)′ 6= 0, we get the equation

f ′(u) =
x− x0

t− t0
. (4.5.15)

Substituting in (4.5.15) for f ′(u) when M = 1 we get

−3

2

(
u2 − 1

)
=
x− x0

t− t0
. (4.5.16)

Solving for u gives

uR(ξ) =

√
−2

3
ξ + 1. (4.5.17)

In Fig. 4.20 we compare this analytic solution for the rarefaction with the numerically

computed solution for the fourth order equation (4.2.1). We see that the top part of the

solution is an approximation of this rarefaction and is connected to a traveling wave.
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Figure 4.20 PDE simulations of (4.2.1) (solid lines) with exact rarefaction solution uR

(4.5.17) (dashed) at several times t when M = 1, Ca = 1, κ(u) = 1.

4.6 Stability of Wetting Films

In [20], the non-dimensionalized bulk free energy F0 has the form

F0(u) = −4Cwu
2(1− u)β, (4.6.1)

where β is an integer, β ≥ 2. In this section we show that the choice of exponent β

determines the thickness range of stable wetting films. Recall that a constant saturation

u(x, t) = u0 is associated with a wetting film of thickness (1−u0)b
2

. To analyze the stability

of a wetting film associated with constant saturation u0, we analyze (4.2.1) linearized

about u0 with 0 < u0 < 1. Let u(x, t) = u0 + εũ(x, t) with 0 < ε � 1. The linearized

PDE is

ũt + f ′(u0)ũx = −H(u0)

Ca

(
F ′′0 (u0)ũxx + CΓ (κ(u0))2 ũxxxx

)
. (4.6.2)

The stability of the solution u0 can be determined through the dispersion relation

between the frequency, ω(k), and wave number k. To find the dispersion relation we

assume a perturbation of the form ũ(x, t) = ei(kx+ωt) and substitute into Eq. (4.6.2)

leading to the relation

ω(k) = −f ′(u0)k − iH(u0)

Ca

(
F ′′0 (u0)k2 − CΓ (κ(u0))2 k4

)
. (4.6.3)
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The perturbation decays in time iff Im ω > 0, leading to the stability condition

0 <
−H(u0)

Ca

(
F ′′0 (u0)k2 − CΓ (κ(u0))2 k4

)
. (4.6.4)

The term with k4 is stabilizing for large wave numbers, therefore perturbations with small

wavelengths decay, while long wavelengths grow. The range of unstable wavelengths λ

can be determined by the wave number k through

λ =
2π

k
.

In this dissertation we have generally used β = 8. Then

F ′′0 (u) = −16(u− 1)6
(
45u2 − 18u+ 1

)
. (4.6.5)

F ′′0 (u) has zeroes at u = 1
15

, u = 1
3
, and u = 0. The unstable region is associated with

F ′′0 (u) > 0, therefore wetting films with 1
15
< u < 1

3
develop a long wave instability.

For example, F ′′0 achieves its maximum value when u0 ≈ 0.147, F ′′0 (0.147) ≈ 4.15.

Then if we take κ(u) = 1, CΓ = 1/80, we have unstable wave numbers |k| ≤
√
F ′′0 (u0)/CΓ ≈

18.22. In this case the range of unstable wave numbers is λ > 2π
18.22
≈ 0.344.

More generally we see that the sign of F ′′0 (u) as u varies determines the range of stable

wetting film thicknesses. For general β we have

F ′′0 (u) = (u− 1)β−2(−8(β + 1)u((β + 2)u− 4)− 16). (4.6.6)

which has three roots u1, u2, u3 at

u1 =
−
√

2
√
β2 + β + 2β + 2

β2 + 3β + 2
, u2 =

√
2
√
β2 + β + 2β + 2

β2 + 3β + 2
, u3 = 1. (4.6.7)

The region of unstable wetting films is associated with u such that u1 ≤ u ≤ u2. We see

that

u2 − u1 =
2
√

2
√
β(β + 1)

β2 + 3β + 2
(4.6.8)

gives the width of this unstable region. Therefore to decrease the width of this unstable

region we increase β. The choice of F0 can also be used to calibrate the mathematical

instability of the PDE with physical instability of wetting films, as discussed in Chapter
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2 for long gas fingers.

4.7 Discussion

We have analyzed one-dimensional solutions of the phase-field Hele-Shaw model described

by (3.2.1)-(3.2.3). The degenerate PDE (4.2.1) that describes one-dimensional solutions

of the model shares many properties with the capillary tube model (2.1.1). One of the

main differences with (4.2.1) is that the concavity of flux function f(u) depends on the

mobility number M . This difference fundamentally changes the nature of the solution in

the parameter regime where f(u) is concave.

We have discovered novel behavior of solutions with a smoothed step initial data that

capture the injection of a non-wetting fluid into a fluid-filled Hele-Shaw cell. We have

found that the front of the injected fluid is described by non-classical traveling wave

solutions of the model and we find that the behavior of these traveling waves can be

divided into two regimes.

When parameters satisfy the restriction (4.3.19), we find that there are undercom-

pressive traveling wave solutions of the model that connect directly to zero saturation.

Because of the degeneracy at zero saturation, we show that these traveling waves have

finite length. We analyze these traveling wave solutions for two different forms of the in-

terfacial energy coefficient κ(u). When κ(u) = u2 we use a dynamical systems approach

to find traveling wave solutions and develop an algorithm to calculate these solutions.

This is complicated by the degeneracy at u = 0, which requires a change of variables

to find traveling wave solutions that are trajectories connecting two equilibria. When

κ(u) = 1 we consider the effective equation near u = 0 to find a traveling wave connec-

tion from a positive height uL to u = 0. We find that an important property of these

undercompressive traveling waves is that there is a unique left height uL that connects

to zero saturation for fixed parameters Ca, M . This corresponds to the thickness of the

layer of wetting fluid remaining attached to the cell plates during injection and we find

that the dependence of uL on Ca is in agreement with experiments.

In the parameter regime where restriction (4.3.19) is not satisfied, PDE simulations

suggest there exist traveling wave solutions of (4.2.1) connecting a left height uL to a

small positive value uR. A surprising feature of the traveling waves in this regime is that

they are fully expansive and move with a speed slower than the characteristics on either

75



side of the wave. In this case, there appears to be a unique set of values uL and uR for

fixed M and Ca for which this expansion wave exists. The right height of the expansion

wave is connected to zero saturation with a diffusive wave that is a function of similarity

variable
(
x− 3

2
t
)
/
√
t. This implies that in the regime where (4.3.19) is not satisfied,

the phase-field Hele-Shaw model does not appear to capture non-spreading fluid fronts

connecting to zero saturation. This appears to be a artifact of the model structure and

to our knowledge does not have roots in physical properties of the flow.

In both parameter regimes the PDE solution structure is approximately a rarefaction

wave preceded by a leading non-classical traveling wave. This rarefaction solution cap-

tures the spreading region between the injection site and region of constant wetting film

height. We verify this structure by scaling PDE simulations and also finding an exact

rarefaction solution for a particular set of parameters.

Future work includes calibration of the model with experiments and validating model

results. The thickness of the wetting film predicted by the traveling wave heights can

be compared with experimental data. The model could also be tested for different forms

of the free energy. This would allow the range of stable wetting film thicknesses to be

tuned. In addition to changing the exponent β, other forms of F0 could be used. Another

standard choice in phase-field models is a logarithmic type function [21]. Other forms of

relative permeabilities krw and krg could also be investigated. These functions determine

the shape of flux function f(u) and are therefore important in determining solution

structure.
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Chapter 5

Stability of Plane Wave Solutions of

the Hele-Shaw Model

In this chapter we investigate two-dimensional solutions of the phase-field Hele-Shaw

model, described by Eqs. (3.2.1)-(3.2.2), that capture the injection of a non-wetting

fluid into a fluid-filled Hele-Shaw cell. Experiments have shown that for a horizontal

Hele-Shaw cell the stability of the interface between the two fluids is determined by the

viscosity ratio of the fluids. The well-known ‘viscous fingering’ instability occurs when a

less viscous fluid is injected into a more viscous fluid, while the interface is stable when

a more viscous fluid is injected into a less viscous fluid [55, 38, 16]. In the unstable case,

fingering patterns form at the interface as in Fig. 1.2. We are interested in determining

the stability of the fluid-fluid interface for solutions of the phase-field Hele-Shaw model.

In Chapter 4 we showed that model (3.2.1) has traveling wave solutions that cap-

ture the constant injection of fluid into a fluid-filled Hele-Shaw cell. In two-dimensions

these solutions are plane waves. The stability of the plane wave solutions to transverse

perturbations corresponds to the stability of the interface between the two fluids when

a non-wetting fluid displaces a wetting fluid. We first investigate the stability of the

plane wave solutions by performing two-dimensional finite difference simulations of Eqs.

(3.2.1)-(3.2.2). In the second part of the chapter we perform a linear stability analysis

of plane wave solutions of a simplified model (5.3.2) to confirm the stability results from

simulations.

Juanes and Cueto-Felgueroso presented two-dimensional simulation results of the

phase-field Hele-Shaw model for values of the viscosity ratio M ≥ 1 [20]. In these simu-
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lations they assume a thin precursor fluid film is present ahead of the interface in order

to avoid the degeneracy at zero saturation. The simulations in [20] suggest that model

(3.2.1) captures viscous fingering effects. In this chapter we confirm this result for solu-

tions connecting saturation values u = 1 to u = 0, i.e., without the approximation of a

thin precursor film. This corresponds to the injection of a non-wetting fluid into a Hele-

Shaw cell that is completely filled with a wetting fluid. We also investigate the effects

of a wider range of viscosity ratios, including M satisfying 0 < M < 1. The numerical

results show that the interface is stable for M ≤ 1 and unstable for M > 1, in agreement

with experiments [55]. We also perform numerical simulations for different values of the

capillary number Ca, to determine its effect on the interface.

In Section 5.3, we perform a linear stability analysis to support our numerical results

in Section 5.2. We follow a similar analysis to [58], where we consider the stability of

sharp plane wave solutions of a reduced system in which the capillary potential differ-

ence in the Hele-Shaw model (3.2.1) is ignored. We calculate the long-wave growth rate

of perturbations to the planar front using the linearized system and linearized jump con-

ditions across the interface. This stability analysis supports the numerical results and

shows that transverse perturbations to the sharp plane waves are unstable for M > 1.

5.1 Preliminaries

During the injection of a non-wetting fluid into a Hele-Shaw cell filled with a wetting

fluid, the non-wetting fluid displaces the wetting fluid, but a film of wetting fluid remains

attached to the cell walls as in Fig. 4.1. In Chapter 4 we showed that one-dimensional

solutions of (4.2.1) consisting of a traveling wave attached to a rarefaction wave capture

this injection. In two-dimensions, traveling wave solutions u(x − st) can be visualized

as plane waves. We recall that for these solutions, (3.2.2) implies the total velocity V

is constant and therefore the saturation u was decoupled from the pressure π. In this

brief section we consider the pressure solutions π(x, t) associated with one-dimensional

saturation solutions u(x, t). We show that the velocity V is determined by the pressure

boundary condition, which will be useful in the two-dimensional finite difference simula-

tions.

The constant velocity V is related to the pressure π through Eq. (3.2.2), which in one
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dimension becomes

V = − M

12Ca

(
K(u)∂xπ +

1

M
krw∂x

(
F ′0(u) + CΓ

(√
κ(u)∂x

(√
κ(u)∂xu

))))
. (5.1.1)

Therefore one-dimensional solutions u(x, t) satisfying (4.2.1), have corresponding pressure

π(x, t) which is a solution of

∂xπ =
1

K(u)

(
−12Ca

M
V − 1

M
krw∂x

(
F ′0(u) + CΓ

(√
κ(u)∂x

(√
κ(u)∂xu

))))
. (5.1.2)

For the analysis of one-dimensional solutions in Chapter 4 we set V ≡ 1 for conve-

nience. In the following two-dimensional PDE simulations we use (5.1.2) to determine an

appropriate boundary condition for π at the left boundary of the cell. If we assume that

at the left boundary saturation is a constant u(0, t) = uB, and derivatives of u vanish at

the boundaries, the constant injection velocity V is related to the boundary condition

for π through

∂xπ

∣∣∣∣x=0 =
−12Ca

MK(uB)
V. (5.1.3)

The pressure π(x, t) is only defined up to a constant.

5.2 Two-Dimensional PDE Simulations

In this section we compute solutions of the two-dimensional Hele-Shaw model described

by Eqs. (3.2.1)-(3.2.2) in order to capture the constant injection of non-wetting fluid

into a Hele-Shaw cell. We previously showed that if the initial condition used in model

(3.2.1)-(3.2.2) is a one-dimensional smoothed jump from u = 1 to u = 0, then the

solution structure is a combination of rarefaction and plane waves. In the simulations

in this chapter we will consider the two-dimensional solutions u(x, y, t) that result from

an initial interface that has been transversally perturbed to more realistically capture a

physical flow. Performing simulations of this flow allows us to investigate how the viscosity

ratio, M , and capillary number, Ca, affect the interface stability of the solutions of the

phase-field Hele-Shaw model.
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5.2.1 Numerical Method

We write the phase-field Hele-Shaw model described by Eqs. (3.2.1)-(3.2.2) as

∂tu+∇ · (f(u)vT) = −∇ ·
(
H(u)

Ca
(F ′′0 (u)∇u+ CΓ∇∆u)

)
= 0,

∇ · vT = 0,

vT = − M

12Ca

(
K(u)∇π +

1

M
krw(u) (F ′′0 (u)∇u+ CΓ∇∆u)

)
,

(5.2.1)

where we have set κ(u) = 1. We use a semi-implicit finite difference method and an

iterative approach to solve system (5.2.1). First, the evolution equation in system (5.2.1)

is updated using the semi-implicit time stepping described in (5.2.2). We then use the

updated saturation values to solve for the updated pressure values. To discretize in space

we use a rectangular grid in x and y with uniform spacing in each direction and assume

a domain of length L in the x-direction, and width W in the y-direction.

Let uni,j ≈ u(i∆x, j∆j, n∆t) and πni,j ≈ π(i∆x, j∆j, n∆t) where ∆x = L
Nx
, ∆y = W

Ny

and Nx + 1 and Ny + 1 are the number of grid points in the x and y directions, excluding

ghost points outside of the physical domain. Following the approach in [14], we discretize

the equations in time using semi-implicit time stepping to calculate u at the new time

step n+ 1:

un+1
i,j − uni,j

∆t
+∇ · (fvT )ni,j = ∇ ·

(−(HF ′′0 )ni,j
Ca

∇un+1
i,j +

−(H)ni,jCΓ

Ca
∇∆un+1

i,j

)
, (5.2.2)

where 1 ≤ i ≤ Nx + 1, 1 ≤ j ≤ Ny + 1 and n ≥ 0. This time discretization is key to the

scheme because it results in equations linear in un+1
i,j with coefficients that depend only

on solution values at the previous time step.
To express the spatial discretization we define the following notation for the central
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difference operators:

Dxh
n
i,j =

hni+1,j − hni−1,j

2∆x
, Dyh

n
i,j =

hni,j+1 − hni,j−1

2∆y

Dxxh
n
i,j =

hni+1,j − 2hni,j + hni−1,j

(∆x)2
, Dyyh

n
i,j =

hni,j+1 − 2hni,j + hni,j−1

(∆y)2
,

Dxxxh
n
i,j =

−1/2hni−2,j + hni−1,j − hni+1,j + 1/2hni+2,j

(∆x)3
,

Dyyyh
n
i,j =

−1/2hni,j−2 + hni,j−1 − hni,j+1 + 1/2hni,j+2

(∆y)3
.

We also define

Dyxxh
n
i,j = Dy

(
Dxxh

n
i,j

)
, Dxyyh

n
i,j = Dx

(
Dyyh

n
i,j

)
. (5.2.3)

We discretize (5.2.2) in space using central differences

un+1
i,j − uni,j

∆t
+Dx (fv1)

n
i,j +Dy (fv2)

n
i,j = Dx

(−(HF ′′0 )ni,j
Ca

Dxu
n+1
i,j +

−CΓ(H)ni,j
Ca

Dxxxu
n+1
i,j

+
−CΓ(H)ni,j

Ca
Dxyyu

n+1
i,j

)
+Dy

(−(HF ′′0 )ni,j
Ca

Dyu
n+1
i,j +

−CΓ(H)ni,j
Ca

Dyyyu
n+1
i,j

+
−CΓ(H)ni,j

Ca
Dyxxu

n+1
i,j

)
where vT = (v1, v2).

We discretize elliptic equation (5.2.1) in space using central differences to calculate
πn+1.

Dx(Kn+1
i,j Dxπ

n+1
i,j ) +

(krw)n+1
i,j

M
Dx

(
Dx(F ′0)n+1

i,j + CΓ

(
Dxxxu

n+1
i,j +Dyxxu

n+1
i,j

))
+Dy(Kn+1

i,j Dyπ
n+1
i,j ) +

(krw)n+1
i,j

M
Dy

(
Dy(F ′0)n+1

i,j + CΓ

(
Dyyyu

n+1
i,j +Dxyyu

n+1
i,j

))
.

At each time step we have to solve two linear systems. The structure of the corre-

sponding matrix is a sparse banded matrix with 21 diagonals, when un is written as a

(Nx + 1)(Ny + 1) vector with standard row ordering [46]. We use sparse storage in MAT-

LAB and the corresponding ‘backslash’ solver to solve the linear systems, which utilizes a

banded solver for this type of system. After each time step is complete, the total velocity

vT must be computed using (3.2.3). Again, central differences are used to approximate
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the derivatives and we approximate vT = (v1, v2) as

(v1)n+1
i,j = − M

12Ca

(
K(un+1)Dxπ

n+1
i,j +

ε

M

(
(krw(u)F ′′0 (u))n+1

i,j Dxu
n+1
i,j

+CΓ(krw(u)))n+1
i,j (Dxxxu

n+1
i,j +Dxyyu

n+1
i,j )

))
(v2)n+1

i,j = − M

12Ca

(
K(un+1)Dyπ

n+1
i,j +

ε

M

(
(krw(u)F ′′0 (u))n+1

i,j Dyu
n+1
i,j

+CΓ(krw(u)))n+1
i,j (Dyyyu

n+1
i,j +Dyxxu

n+1
i,j )

))
.

(5.2.4)

We choose the time step ∆t small enough for convergence. To satisfy the CFL con-

dition we let ∆t ∼ min(∆x,∆y). In the simulations presented in this chapter we let

∆y = ∆x and use ∆t = ∆x
10

. As discussed in Chapter 4, implicit time stepping of the

diffusive terms is necessary in order to avoid the highly restrictive stability constraint

∆t ∼ (min(∆x,∆y))4 for explicit methods. Note that in the discretization (5.2.4) we

have included a regularization parameter 0 < ε ≤ 1, so we are not solving the exact

system (5.2.1). This is included to regularize a sharp jump in the pressure near the inter-

face occurring for some parameter values that our basic finite difference scheme cannot

capture.

We assume that we inject the cell with the non-wetting fluid at a constant velocity

in the x-direction and that the cell is long enough so that we have boundary conditions

u(0, y, t) = 1, u′(0, y, t) = 0, u(L, y, t) = 1, u′(L, y, t) = 1, (5.2.5)

and at the far end of the cell vT(0, y, t) = vT(L, y, t) = (V, 0). From Eq. (5.1.2), we have

the boundary condition for π(x, y, t)

∂xπ(0, y, t) = −12V Ca

M
. (5.2.6)

Only πx determines the solution u(x, y, t) so we can set the numerical boundary condition

at the right of the cell to be π(L, y, t) = 0.

We assume periodic boundary conditions at y = 0 and y = W because we are primar-

ily interested in the stability of the fluid front and will not be considering side boundary

effects. These are given by

u(x, 0, t) = u(x,W, t), u′(x, 0, t) = u′(x,W, t), π(x, 0, t) = π(x,W, t). (5.2.7)
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We choose an initial condition to represent a cell initially completely filled with wet-

ting fluid for x > x0 and completely filled with non-wetting fluid for x ≤ x0. This is done

through a smoothed jump from u = 1 to u = 0, which in one-dimension was given by Eq.

(4.5.7). We modify the initial condition (4.5.7) to investigate the stability of the solutions

of system (5.2.1), subject to transverse perturbations. This perturbed initial condition

has the form:

u(x, y, 0) = −1

2
tanh

(
x− x0 − β(x, y)

δ

)
+

1

2
, (5.2.8)

where β(x, y) is the perturbation. The perturbation β(x, y) is taken to be a linear com-

bination of perturbations with different frequencies fk and random phase shift φk. Addi-

tional random numbers η(x, y) satisfying |η(x, y)| ≤ α are added on so the perturbation

has the form

β(x, y) = η(x, y) + α
∑
k

sin(2πfk + φk). (5.2.9)

In these simulations we choose α = 0.01. The frequencies fk are chosen according to

the width W of the cell and an example perturbed initial condition is shown in Fig.

5.1. The coloring in the plot now represents the gas saturation value u(x, y, t). These

small perturbations are consistent with a physical fluid interface which will have small

imperfections rather than being completely flat. We include a grid refinement in Table 5.1

to show self-convergence of our numerics. The IMEX time stepping we used is first order

in time. As mentioned in Chapter 4, issues regarding the computation of non-classical

shocks and traveling waves are discussed in [33] and higher-order schemes to calculate

solutions of degenerate parabolic PDEs are discussed in [49] and [42]. More complicated

multi-grid schemes may also provide a more efficient and accurate method to compute

two-dimensional solutions, but the implementation is significantly more complex [66].

5.2.2 Numerical Solutions

We perform two-dimensional PDE simulations of (5.2.1) with initial condition (5.2.8)

using the finite difference scheme described in the previous section. The goal is to verify

that the phase-field Hele-Shaw model captures the viscous fingering seen in experiments.

We examine the effect the viscosity ratio M has on solutions modeling the injection of a

fluid into a Hele-Shaw cell. Additionally, we investigate the effect the capillary number

Ca has on the interface between the two fluids.
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Figure 5.1 Numerical simulation of initial condition u(x, y, 0) given by (5.2.8).

Table 5.1 Self-convergence test of scheme (5.2.2) to solve (5.2.1) with initial data (5.2.8) and
M = 20, Ca = 0.1, ∆t = ∆x

10 , tf = 0.05, L = 2, W = 1. ||∆u||2 is the norm of the difference
between u calculated with subsequent ∆x values. Observed order is log(Ratio)/ log 2.

∆x = ∆y ||∆u||2 Ratio Observed Order
0.04 9.334 ×10−4 N/A N/A
0.02 4.735 ×10−4 1.97 0.98
0.01 2.37 ×10−4 1.99 0.99
0.005 1.19 ×10−4 2.00 1.00
0.0025 N/A N/A N/A

Viscous fingering occurs when the viscosity ratio M > 1, while we expect a stable

interface for M ≤ 1. To illustrate the solution behavior in these two regimes, we present

an example of a numerical solution of (5.2.1) in Fig. 5.2 when M = 0.5 and an example of

a numerical solution of (5.2.1) when M = 100 in Fig. 5.3. When M = 0.5, a more viscous

fluid is injected into a less viscous fluid. In this case we see that the perturbations of the

interface quickly decay and a flat interface forms and propagates along the length of the

cell as a plane wave. The numerical solutions of system (5.2.1) in Fig. 5.2 are equivalent

to the one-dimensional solutions found in Chapter 4 after the initial perturbations decay.

Plots of the corresponding one-dimensional numerical solutions are shown next to the two-

dimensional results for comparison. The same rarefaction and traveling wave structure

emerges, with traveling wave height uL ≈ 0.58 picked out in the simulations. Because

the requirement (4.3.19) to have traveling waves connecting to u = 0 is not satisfied, the
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emerging traveling wave in Fig. 5.2 connects to a small value uR ≈ 5 × 10−3 satisfying

0 < uR < uL.

In the example of a fluid injection into a Hele-Shaw cell with M = 100 and Ca = 0.1

in Fig. 5.3, the short wave perturbations of the interface quickly decay, but a long wave

instability is apparent by time t = 1. As the rarefaction, plane wave structure begins

to develop, this instability grows with time, forming two fingers that propagate into the

cell. At later times we see the fingers split and a bubble break off from one of the fingers.

In the following sections we examine the stability of the interface in more depth and

consider how changing Ca affects the solutions.

5.2.2.1 Interface Stability

The examples in Fig. 5.2 and Fig. 5.3 suggest that solutions of the phase-field Hele-Shaw

model capture viscous fingering. We perform more numerical experiments for fixed capil-

lary number Ca, while varying M . We test values of M = [0.5, 1, 1.5, 2, 5, 10, 20, 50, 100]

for Ca in the range 0.01 ≤ Ca ≤ 1 and verify that M = 1 appears to divide the solutions

into two regimes: for M > 1 solutions have an unstable interface and for M ≤ 1 solutions

have a stable interface. As M decreases within the unstable region, it takes a longer

time for the instability to develop. For M = 1.5, we perform numerical experiments with

tf = 16 in order to see the instability.

In Fig. 5.4 and Fig. 5.5 several solutions of the system (3.2.1) are plotted for fixed

time and Ca as M is varied from 0.5 to 100. For M > 1, the interface is unstable and

we see that the instability appears to develop more quickly for larger values of M . At

time t = 2 shown in Fig. 5.4 the solution when M = 100 has already formed two long

fingers. For solutions with M = 20 and M = 10 the formation of two fingers is beginning

to form by time t = 2, while for M = 5 the instability is less clear at this time. In Fig.

5.5 solutions of the system (3.2.1) are shown at later time t = 7. By this time there are

no longer clear fingers apparent for M = 10 and M = 20 and a more complex pattern

has formed at the interface. The interface for M = 5 is still developing the fingers at the

interface at t = 7. These simulations indicate that while M has an effect on both the

sign and magnitude of the growth rate of perturbations, it does not have a large effect on

the fastest growing mode since in each case we see the initial development of two fingers

when W = 3.
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5.2.2.2 Effect of Capillary Number, Ca

Our numerical experiments indicate that the viscosity ratio M determines whether or

not the interface between the two fluids is stable; however, the capillary number Ca also

appears to have an effect on the instability that develops. In Fig. 5.6 and Fig. 5.7 we show

several simulations of the system (5.2.1) with varying Ca. Fig. 5.6 shows that at time t = 1

we see the development of the fingering instability for all values of Ca for fixed M = 50.

As Ca increases the number of fingers that appear increases. This should be explained by

the effect of Ca on the fastest growing wave number of the perturbations to the interface.

The linear stability analysis of the traditional Hele-Shaw model (1.2.1) including surface

tension shows that the wavelength of maximum growth scales like Ca−1/2 for small Ca

which would mean that thicker fingers form when Ca is small in agreement with these

simulations [16, 38] . This can be explained by surface tension tending to damp the effects

of short waves and has been seen in experiments [65]. Further study of the phase-field

model (5.2.1) is needed to determine a quantitative relationship between Ca and the

selected finger width and compare this result with experiments.

5.3 Stability of Sharp Plane Waves

In this section we analyze the stability of sharp plane wave solutions of a simplified system

that approximates the system (5.2.1). We follow the approach in [58] and linearize the

equations about the planar front, including jump conditions across the sharp interface.

This allows us to calculate the growth rate of long wave perturbations to the interface.

This analysis is related to the stability of the smooth traveling waves we analyzed in

Chapter 4. We use this stability analysis to support the numerical results found in Section

5.2, which showed that displacement is unstable for M > 1 and stable for M ≤ 1.

5.3.1 Reduced Equations and Sharp Plane Waves

In Chapter 4 we found one-dimensional undercompressive traveling wave solutions of

system (5.2.1) connecting uL > 0 to uR = 0 when M , Ca satisfy (4.3.19). Additionally,

when M , Ca are outside of this region, PDE simulations suggest that there exists values

uL > uR > 0 such that there is an expansive traveling wave connecting uL to uR. The

traveling wave solutions capture the displacement front of one fluid by another in the
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Hele-Shaw cell, where there is a wetting film remaining on the plates after the interior

fluid is displaced.

The traveling waves correspond to shock solutions

u(x, t) =

{
uL, x ≤ st

uR, x > st
(5.3.1)

with speed s = f(uL)−f(uR)
uL−uR

, when the capillary potential difference

ψw − ψg = F ′0(u) + CΓ

(√
κ(u)∂x

(√
κ(u)∂xu

))
≡ 0

in (4.2.1). We are interested in solutions where uR = 0 when parameter requirement

(4.3.19) is satisfied. When (4.3.19) is not satisfied traveling wave solutions exist that

connect a particular left height uL to an associated right height uR > 0. The shock waves

(5.3.1) are sharp plane wave solutions of the following system of equations, where the

terms with higher-order derivatives in system (5.2.1) vanish:

∂tu+∇ · (vTf(u)) = 0, (5.3.2)

∇ · vT = 0, (5.3.3)

vT =
−MK(u)

12Ca
∇π. (5.3.4)

We can rewrite Eq. (5.3.2) using f(u) = krg
K(u)

and substitute vT into both equations,

∂tu+∇ ·
(
−Mkrg(u)

12Ca
∇π
)

= 0, (5.3.5)

∇ · (K(u)∇π) = 0. (5.3.6)

In this section we will discuss the linearized stability of these sharp plane waves subject

to two-dimensional perturbations.

In general, Eqs. (5.3.5), (5.3.6) have shock solutions that consist of a saturation func-

tion u(x, y, t) and continuous pressure function π(x, y, t), where u and ∇π are discontinu-

ous at the interface x = x̂(y, t). The normal vector to the surface formed at this interface,

h(x, y, t) ≡ x− x̂(y, t), is n = (∂xh, ∂yh, ∂th) = (1,−x̂y,−x̂t). From the divergence form
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of Eqs.(5.3.2), (5.3.3) we have the following jump conditions across the sharp interface:

−x̂t[u] +
−M
12Ca

[f(u)K(u)πx] +
M

12Ca
x̂y[f(u)K(u)πy] = 0 (5.3.7)

[K(u)πx]− x̂y[K(u)πy] = 0. (5.3.8)

We consider a planar shock solution of (5.3.5), (5.3.6) of form (5.3.1), with speed

s =
f(uL)− f(uR)

uL − uR

determined by the Rankine-Hugoniot condition, and discontinuity at x = st. The corre-

sponding pressure on either side of the interface, πL,R, must satisfy

−MK(ū)∂xπ

12Ca
= V, (5.3.9)

with total velocity V constant in space. V is constant in time for constant injection of

fluid and we can scale t to make V (t) constant in time. As in Chapter 4, we take V ≡ 1

which corresponds to a scaling of t. We obtain the following equation from Eq. (5.3.9)

and continuity of π at the interface:

πL,R = π̄L,R(x− st). (5.3.10)

The constants π̄L,R are defined as π̄L,R = 1
K(ūL,R)

.

5.3.2 Stability Analysis

We investigate the stability of the sharp plane wave solutions. For wave number α � 1

we determine the sign of σ1 where

σ(α) ∼ σ1α (5.3.11)

as α→ 0.

This is done by linearizing system (5.3.5), (5.3.6) and jump conditions (5.3.7)-(5.3.8)

about the sharp plane wave solution (5.3.1). The long wave stability of the interface is

determined by the growth rate σ(α) of the perturbations to the shock.

We perturb the gas saturation, pressure, and sharp interface about the plane wave
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solution:

u(x, y, t) = ūL,R + εUL,R(x, y, t), (5.3.12)

π(x, y, t) = π̄L,R(x− st) + εQL,R(x, y, t), (5.3.13)

x̂(y, t) = st+ εẑ(y, t). (5.3.14)

The subscript notation L,R is used to denote the values or functions on the left and right

side of the discontinuity at x̂(y, t). We linearize Eqs. (5.3.5), (5.3.6) on both sides of the

shock,

∂U

∂t
− M

12Ca
krg(ū)∆Q− π̄ M

12Ca
k′rg(ū)

∂U

∂x
= 0, (5.3.15)

π̄K ′(ū)
∂U

∂x
+K(ū)∆Q = 0, (5.3.16)

where we have dropped subscripts. This implies ∆Q = −π̄
K(ū)

K ′(ū)∂U
∂x

and we can eliminate

Q in the first equation to get a linear equation for U ,

∂U

∂t
+

Mπ̄

12Ca

(
f(ū)K ′(ū)− k′rg(ū)

) ∂U
∂x

= 0. (5.3.17)

Two-dimensional perturbations U(x, y, t) that solve (5.3.17) have the form UL,R(x, y, t) =

vL,R(x − st)eiαy+σt where the wave number is α ≥ 0, the time response is σ ∈ C, and

the traveling wave eigenfunctions vL,R are bounded. The stability of the perturbation

is determined by σ: Re(σ) > 0 implies the perturbation grows with time and is thus

unstable, while Re(σ) < 0 implies the perturbation decays and is stable. Our goal is to

determine the sign of the real part of σ.

To satisfy Eq. 5.3.17, we obtain the following equation for v

σv =

(
s− π̄M

12Ca

(
f(ū)K ′(ū)− k′rg(ū)

))
v′ (5.3.18)

where v′ = dv/dξ and ξ = x− st. Because −MK(ū)π̄
12Ca

= V ≡ 1 and f(u) = krg(u)

K(u)
, we can

write

f(ū) = − π̄M

12Ca
krg(u).
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Manipulating Eq. (5.3.18) we obtain

σv = (s− f ′(ū)) v′. (5.3.19)

This ODE has solutions

v(ξ) = cL,R exp(βL,Rξ) (5.3.20)

where βL,R = σ/(s − f ′(ūL,R)). For Lax traveling waves where f(ūR) < s < f(ūL), this

relationship would necessitate cL,R ≡ 0 for eigenfunctions associated with unstable per-

turbations because otherwise v(ξ) would be unbounded. This was the case in [58] for

Lax plane wave solutions of a model describing porous media flow. For the phase-field

Hele-Shaw model we showed that the traveling wave solutions of interest are undercom-

pressive when (4.3.19) is satisfied and expansive when (4.3.19) is not satisfied, therefore

the same argument does not hold.

5.3.3 Unstable Plane Waves: M > 1

In this section we show that for M > 1, perturbations associated with eigenfunctions

v(ξ) ≡ 0 are necessarily unstable which is sufficient to show instability of the interface

when M > 1. We let v(ξ) ≡ 0 so U ≡ 0 in (5.3.12).

Using the simplification U = 0, Eqn. (5.3.16) for the pressure perturbation Q becomes

∆Q = 0. (5.3.21)

If we write Q with form Q(x, y, t) = q(x− st)eiαy+σt then q satisfies

q′′ − α2q = 0. (5.3.22)

For α ≥ 0, we obtain

qL,R(ξ) = bL,Re
∓αξ. (5.3.23)

We let the interface perturbation ẑ = aeiαy+σt. We linearize the two jump condi-

tions (5.3.7), (5.3.8) with the perturbed quantities (5.3.13), (5.3.14) assuming U ≡ 0.

Substituting in the perturbed quantities, the first jump condition (5.3.7) is

−s[ū]− ẑt[ū] + [f(ū)] +
−M
12C

[f(ū)K(ū)Qx] + εẑy
M

12C
[f(ū)K(ū)Qy] = 0. (5.3.24)
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Because s = [f(ū)]/[u] and dropping higher order terms in ε, the linearized first jump

condition is

ẑt[ū] +
M

12Ca
[f(ū)K(ū)Qx] = 0. (5.3.25)

To linearize the second jump condition (5.3.8) about the sharp plane wave, we substi-

tute the perturbed quantities (5.3.13), (5.3.14) into (5.3.8). This second jump condition

becomes

[K(ū)Qx]− εẑy[K(ū)Qy] = 0. (5.3.26)

We drop higher order terms to get the second linearized jump equation

[K(ū)Qx] = 0. (5.3.27)

The third equation the solutions must satisfy is continuity of pressure across the

interface:

[π] = 0. (5.3.28)

Linearizing (5.3.28) using (5.3.13) and (5.3.14) gives the third jump condition:

[π̄ẑ +Q] = 0. (5.3.29)

We substitute the forms of perturbations ẑ, QL,R into the three linearized jump con-

ditions and (5.3.25), (5.3.27), (5.3.29) become

aσ[ū] +
M

12Ca
[f(ū)K(ū)q′] = 0 (5.3.30)

[K(ū)q′] = 0 (5.3.31)

[π̄a+ q′] = 0. (5.3.32)

This yields the three linear equations for coefficients a, bL, bR that depends on leading
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order growth rate σ1 where σ ∼ σ1α for α� 1 :

σ1αa(ūL − ūR) + α
M

12Ca
(f(ūL)K(ūR)bL + f(ūR)K(ūR)bR) = 0

K(ūL)bL +K(ūR)bR = 0

(π̄R − π̄L)a− bL + bR = 0.

(5.3.33)

For a, bL, bR to satisfy system (5.3.33) nontrivially, the coefficient matrix must be singular.

Thus, for a 6= 0, we can obtain the following expression for σ1:

σ1 = s
K(ū−)−K(ū+)

K(ū−) +K(ū+)
(5.3.34)

Therefore for K(ūL) > K(ūR), perturbations grow in time implying associated plane

waves are unstable. Recall,

K(u) = krg(u) +
1

M
krw(u) =

1 + (M − 1)u3

M
. (5.3.35)

We can determine when K(ūL) > K(ūR) by considering K ′(u):

K ′(u) =
3(M − 1)u2

M
.

When M > 1, K ′(u) > 0 for u > 0.

Therefore for M > 1, plane waves are unstable when uL > uR. Because we are

considering the case of injecting a non-wetting fluid into a wetting fluid, all plane waves

satisfy uL > uR. Thus for M > 1, plane waves will be transversally unstable regardless

of the type of shock (undercompressive or expansive).

While we have shown that σ1 ≤ 0 for M ≤ 1, this was made under the assumption

that saturation perturbation U ≡ 0. Therefore this analysis is not sufficient to show

stability for plane waves with M ≤ 1 for general U . We discuss this case more in the

section below.

The regions of stability and instability are determined by the form of the relative

permeabilities, krw(u) and krg(u). In the derivation of model (5.2.1), Juanes and Cueto-

Felgueroso chose relative permeabilities derived analytically from [29] and the permeabil-

ity of the wetting/non-wetting fluid depends on the viscosity ratio between the fluid M .

It is clear that if using other forms of relative permeabilities could change the stability
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of the interface.

5.3.4 Stable Plane Waves

The argument to show stability of sharp plane waves when M ≤ 1 is complicated by the

possible existence of unstable perturbations associated with non-zero eigenfunctions v(ξ)

with form (5.3.20). This results in two additional coefficients that arise in solutions of

the linearized system. Therefore to argue stability for M ≤ 1, we require constraints in

addition to the two jump conditions and continuity of pressure across the interface.

In [58], the Lax condition was used to determine the region of stable Lax plane waves.

However, based on the results in Chapter 4, we are interested in sharp plane waves that

are associated with the undercompressive traveling waves connecting uL > 0 to uR = 0

and the traveling waves associated with expansive shocks connecting uL to uR where

uL > uR > 0. We discuss these two cases below.

In Chapter 4 we showed that in order for PDE (4.2.1) to admit undercompressive

traveling wave solutions connecting uL to uR = 0, requirement (4.3.19) must be satisfied.

This requirement can only be satisfied for M > 3/2; therefore, based on the analysis

in Section 5.3.3 all undercompressive plane wave solutions of (5.2.1) connecting uL to

uR = 0 are transversally unstable.

The stability of expansive plane waves solutions of (5.2.1) connecting uL to uR > 0

for M ≤ 1 is unresolved in this linear stability analysis; however, numerical simulations

in Section 5.2 suggest that these waves are stable. In Chapter 4, numerics suggest that for

fixedM , there exists a unique pair of left and right heights (uL, uR) satisfying uL > uR > 0

determined by the Capillary number Ca. This kinetic relation (uL, uR) = F(Ca), may

be useful in providing the additional constraint needed to show stability for M ≤ 1.

5.4 Discussion

In this chapter we verified that the phase-field Hele-Shaw model captures the unstable

displacement of one fluid by another, which occurs when a less viscous fluid is injected into

a Hale-Shaw cell filled with a more viscous fluid. Two-dimensional PDE simulations of

(5.2.1) show solutions of the model capture the growth of fingers at the interface between

the two fluids when the viscosity ratio M > 1. Additionally, through the linear stability

analysis in Section 5.3.3 we concluded that the form of the relative permeabilities krw
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and krg determines the region of unstable plane wave solutions associated with viscous

fingering. This is an important consideration when evaluating alternative constitutive

laws to use in the model. Numerical results indicate that the model (5.2.1) captures the

stable injection of a more viscous fluid into a less viscous fluid when M ≤ 1. There

remain questions regarding the stability of the plane wave solutions when M ≤ 1 and

perturbations to the saturations are not zero.

In future work, the relationship between the growth rate and wave number of pertur-

bations could be investigated numerically. In [8], a power method was used to calculate

stability curves for traveling wave solutions of the thin film equation subject to transverse

perturbations. For the traveling wave solutions of (5.2.1) connecting to u = 0, using this

approach would be complicated by the degeneracy at u = 0 and would involve determin-

ing a way to track the interface. The effects of the capillary number Ca on the pattern

formation at the interface could also be investigated in future work.
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Figure 5.2 On the left the time evolution of u(x, y, t) from two-dimensional simulations of
(5.2.1) is plotted at t = 0, t = 1, t = 4, and t = 7, with M = 0.5, Ca = 0.1, V = 1, W = 3,
L = 20. Plots show region 0 ≤ x ≤ 16. On the right the corresponding one-dimensional
simulations of (4.2.1) are shown for the same values. Simulations calculate traveling wave
height uL ≈ 0.58.
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Figure 5.3 Time evolution of u(x, y, t) from two-dimensional simulations of (5.2.1) at t = 0,
t = 0.25, t = 1, t = 2.5, and t = 4 (top to bottom), with M = 100, Ca = 0.1, V = 1, W = 3,
L = 20. Plots show region 0 ≤ x ≤ 16.
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Figure 5.4 PDE simulations of (5.2.1) showing dependence on M at fixed time tf = 2. Sim-
ulations computed with Ca = 0.1, κ(u) = 1, V = 1, L = 20, W = 3. Plots show region
0 ≤ x ≤ 16. Varying M : (top to bottom) M = 0.5, M = 5, M = 10, M = 20, M = 100.
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Figure 5.5 PDE simulations of (5.2.1) showing dependence on M at fixed time tf = 7. Sim-
ulations computed with Ca = 0.1, κ(u) = 1, V = 1, L = 20, W = 3. Varying M : (top to
bottom) M = 0.5, M = 5, M = 10, M = 20.
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Figure 5.6 PDE simulations of (5.2.1) showing dependence on Ca at fixed time tf = 1.
Simulations computed with M = 50, κ(u) = 1, V = 1, L = 20, W = 6. Plots show region
0 ≤ x ≤ 10. Varying Ca: (top to bottom) Ca = 0.01, Ca = 0.05, Ca = 0.1, Ca = 1.
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Figure 5.7 PDE simulations of (5.2.1) showing dependence on Ca at fixed time tf = 2.
Simulations computed with M = 50, κ(u) = 1, V = 1, L = 20, W = 6. Plots show region
0 ≤ x ≤ 10. Varying Ca: (top to bottom) Ca = 0.01, Ca = 0.05, Ca = 0.1, Ca = 1.
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Chapter 6

Conclusions

The results in this dissertation provide insight into how the phase-field models for two-

fluid flow in a capillary tube [19] and Hele-Shaw cell [20] capture the injection of one

fluid into another. In Chapters 2 and 4 we considered novel solution structures to these

models that describe the fluid displacement. The stability of the fluid-fluid interface for

the Hele-Shaw model was investigated in Chapter 5 using simulations and linear stability

analysis.

In Chapter 2 we verified that the capillary tube model (2.1.1) captures the injection

of a gas finger into a tube filled with fluid. We have found solutions of the model with

a smoothed step initial data in which a spreading rarefaction wave, attached to the

tube entrance, is preceded by a growing plateau region connected to a traveling wave.

An important feature of the leading traveling wave is that it connects directly to zero

saturation and has finite length, terminating at the tip of the gas finger.

Calculating the traveling wave solutions of the capillary tube model is complicated

by the degeneracy of the PDE at zero saturation. We used a change of variables to send

the finger tip to infinity and transform the zero saturation limit at the tip into a regular

equilibrium for the associated dynamical system. This allows us to treat the traveling

wave solutions of the PDE as trajectories in three-dimensional phase-space connecting

two equilibria. We find that in order for the solution of the capillary tube traveling wave

ODE to be physically relevant, the capillary number must be below a threshold value. For

fixed capillary number satisfying this restriction, we use a bisection method to calculate

the height of the traveling wave. These traveling waves are undercompressive in the sense

of shocks and we find that for a fixed capillary number there is a unique left height uL
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associated with a traveling wave solution connecting to zero saturation. We verify these

results by comparing them with PDE simulations and data from the classical experiments

of Taylor [62].

The analysis of the Hele-Shaw model in Chapter 4 builds on our work from Chapter

2. To study the displacement of a wetting fluid by a non-wetting fluid in a Hele-Shaw cell,

we look for one-dimensional solutions of the model. These solutions satisfy the fourth-

order degenerate PDE (4.2.1) that describes the saturation of the non-wetting fluid in the

cell. This equation is similar to the capillary tube model (2.1.1), and PDE simulations

show the solution structure is a rarefaction wave connected to a leading traveling wave,

corresponding to the injected fluid front. We can use a similar approach to that in Chapter

2 to study the traveling wave solutions that capture the front of the injected fluid and

can modify the shooting algorithm from Chapter 2 to calculate traveling wave solutions

of the Hele-Shaw model. We again determine a unique relationship between the traveling

wave height and capillary number. This dynamical systems approach requires that the

interfacial energy coefficient has the form κ(u) ∼ u2 near u = 0.

We show that there are also traveling wave solutions of the Hele-Shaw model connect-

ing to zero saturation when κ(u) is constant by considering the effective equation near

zero saturation. This allows us to analyze how the traveling waves connect to u = 0; we

find that the structure of this connection is analogous to the behavior when κ(u) = u2.

For both cases of κ(u), we determine that the requirement (4.3.19) must be satisfied in

order for PDE (4.2.1) to admit traveling wave solutions connecting to zero saturation.

We discover a striking property of the solutions of the Hele-Shaw model when the

requirement (4.3.19) is not satisfied. PDE simulations confirm that in this regime there

is no longer a leading traveling wave solution connecting to zero saturation. Instead,

the model has traveling wave solutions, connecting to a small positive right height, that

are expansive in the sense of shocks. These waves correspond to a codimension two

intersection of a one-dimensional unstable manifold of one equilibrium with the one-

dimensional stable manifold of another equilibrium and therefore only exist for specific

parameter values in the traveling wave ODE. This may explain how the left and right

height of the expansion wave are being selected in solutions and is an interesting direction

of further study.

In Chapter 5, we studied the two-dimensional stability of plane wave solutions of

the Hele-Shaw model. This allows us to verify that the model captures the well-known
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viscous fingering instability that occurs when a less viscous fluid displaces a more viscous

fluid. We first implemented two-dimensional finite difference simulations to determine

how the interface between the two fluids depends on the viscosity ratio of the fluids.

These simulations confirmed that solutions of the model have a stable interface when a

more viscous fluid is injected into a less viscous fluid, and unstable interface when a less

viscous fluid is injected into a more viscous fluid.

The results from the two-dimensional simulations were confirmed using a long wave

stability analysis that allowed us to determine the sign of the growth rate to leading

order, σ1. The analysis presented in this chapter follows a similar approach to [58]. The

expression for σ1 shows that perturbations grow when the viscosity contrast is greater

than one, in agreement with experimental observations [55]. We have shown that pertur-

bations decay for fluids with viscosity contrast less than one in the case when we assume

only the interface and pressure have been perturbed. We found that when the gas satu-

ration is also perturbed, an additional kinetic relation is required to find an expression

for the leading order growth rate.

Based on the analysis in this dissertation, both the capillary tube model and Hele-

Shaw model could be updated to improve agreement with experimental observations.

For the capillary tube model, we found that the interfacial energy coefficient κ(u) must

have the form (2.5.8) in order for the PDE to have stationary bubble solutions with

spherical cap ends. In the future the ODE and PDE simulations can be updated with this

constitutive relation. Additionally, the varicose instability of long gas fingers, generated

as a result of the non-monotonicity of g(u), can be calibrated to agree with the range of

finger widths at which the instability is observed experimentally.

The Hele-Shaw model can also be calibrated using experimental data. The thickness

of the wetting film predicted by the traveling wave heights can be compared with exper-

imental data and the constitutive functions in the model can be tuned accordingly. We

found that the relative permeabilities krw and krg play an important role in the solution

structure because they determine the shape of flux function f(u), leading to require-

ment (4.3.19), and also determine the region of unstable plane wave solutions associated

with viscous fingering. These are important considerations when evaluating alternative

constitutive functions to use in the model.
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