
Abstract

HU, RUI. Error Analysis of the Immersed Interface Method for Elliptic Problems with
an Interface. (Under the direction of Zhilin Li.)

The immersed interface method has been applied to a lot of interface problems. Error

analysis of the immersed interface method for some interface problems with Dirichlet

boundary conditions has shown that the immersed interface method gives second-order

accurate numerical solutions. But the error analysis of the immersed interface method for

problems with Neumann boundary conditions is still missing. During my PhD study, we

have worked on error analysis of the immersed interface method for the Poisson interface

problems with a Neumann boundary condition and the Stokes equations with an inter-

face. For the Poisson interface equation with a constant coefficient, we use the method

based on the results from Dr. Beale et al. With the discrete Poincare-Neumann inequal-

ity, we show that the numerical solution is second-order accurate. Next we consider the

Poisson interface problem with a Neumann boundary condition and a piece-wise smooth

coefficient. For this problem, an additional condition is needed to guarantee the problem

well-posed. We use the method from the maximum principle and related theorems. A

comparison function is constructed for the error estimation. From the result of the max-

imum principle and related theorems, it turns out that the immersed interface method

is second-order accurate for the problems in both one-dimensional and two-dimensional

spaces. After that, we consider a general elliptic problem with an interface and Neumann

boundary conditions. But this problem is well-posed such that no additional condition

is needed. We also use the method from the maximum principle and related theorems

to show that the second-order accurate solution can be given by the immersed interface

method. Finally we consider the static Stokes equations with an interface. We use the



three-Poisson-equations approach to decouple velocity and pressure in the Stokes equa-

tions. To preserve divergence-free of velocity, a Neumann boundary condition for pressure

can be derived. Then our problem becomes three Poisson equations with an interface.

We apply the result for the Poisson equation to show that the numerical solution of pres-

sure is second-order accurate. With the result of analysis for pressure, we show that the

numerical solutions of velocities are also second-order accurate.
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Chapter 1

INTRODUCTION

In our daily life, there are many phenomena related to interface problems. When we

have a singular force acting on a string, two different materials such as water and oil,

or the same material at different states like water and ice, we are having an interface

problem. For interface problems with fixed or moving interface, free boundary problems

and problems in irregular domains, analytic solutions are rarely available. The immersed

interface method is first introduced by LeVeque and Li in [17, 18, 19, 22], inspired by

the immersed boundary method [23]. The immersed interface method can be applied on

uniform or adaptive grids or triangulation in Cartesian/polar/spherical coordinates for

many interface problems. Among the finite difference methods, it is one of the most effi-

cient methods for solving one or higher dimensional problems. It modifies the numerical

scheme near or on the interfaces to treat the irregularities and does not increase the

computational cost significantly.

In the following sections, we show some examples of problems with a fixed interface

to help us understand the immersed interface method.
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1.1 Description of a one-dimensional problem

In this section, we start with a string with a singular force acting at a point, which is a

one-dimensional interface problem. The system is shown in Figure 1.1. We can describe

this system with the equations

uxx = f(x), 0 < x < 1, (1.1)

u(0) = 0, u(1) = 0, (1.2)

where u(x) is continuous, f(x) is a source force

f(x) = vδ1(x− α), 0 < α < 1. (1.3)

Here δ1 is a one-dimensional Dirac delta function and x = α is the point which we can

treat as the interface.

x = 0 x = 1
αΩ− Ω+

[u] = 0,

[
du

dx

]
= v

Figure 1.1 A diagram of a one-dimensional interface problem in domain Ω = [0, 1] with an
immersed interface x = α. [u] and [du/dx] are jump conditions at interface x = α.

2



At x = α, we have jump conditions

[u]|x=α = 0,

[
du

dx

] ∣∣∣∣
x=α

= v, (1.4)

which are defined as

[u](α) = u+(α)− u−(α)
def
= lim

x→α,x∈Ω+
u(x)− lim

x→α,x∈Ω−
u(x), (1.5)[

β
du

dx

]
(α)

def
= β+ lim

x→α,x∈Ω+

du

dx
(x)− β− lim

x→α,x∈Ω−

du

dx
(x), (1.6)

For this one-dimensional problem, we have the analytic solution:

u(x) =


−(1− α)x, 0 ≤ x < α,

−α(1− x), α ≤ x ≤ 1.

(1.7)

To compute the numerical solution, we generate a Cartesian grid with step size h on

the interval [0, 1], with points xi = ih. To compute numerical solution for our simple

problem (1.1), (1.2), we can give a difference scheme at regular points xi, i 6= j, j + 1 on

the Cartesian gird

(Ui+1 − Ui)− (Ui − Ui−1)
h2

= fi, (1.8)

where Ui−1, Ui, Ui+1 are numerical solutions at xi−1, xi and xi+1, with fi = f(xi). Because

of jump conditions at x = α, the finite difference schemes at irregular gird points xj and

xj+1, xj ≤ α ≤ xj+1 are determined from the method of undetermined coefficients

γj,1Uj−1 + γj,2Uj + γj,3Uj+1 = fj + Cj, (1.9)
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γj+1,1Uj + γj+1,2Uj+1 + γj+1,3Uj+2 = fj+1 + Cj+1, (1.10)

where γj,1, γj,2, γj,3, γj+1,1, γj+1,2 and γj+1,3 are coefficients to be determined, and Cj

and Cj+1 are correction terms. We can minimize the truncation errors to determine these

unknowns. The detail of regular and irregular grid points and truncation errors will be

talked in Chapter 2.

1.2 Description of a two-dimensional problem

When we have two different materials which have different properties contacting along

an interface such as water and oil, we have a two-dimensional interface problem. Such a

system is shown in Figure 1.2.

x = a
y = c

y = d

x = b

Ω = Ω+ ∪Ω−

Γ

∂Ω

Ω−

Ω+

Figure 1.2 A diagram of two materials in a domain Ω with an immersed interface Γ with
subdomains Ω− and Ω+.
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The mathematical description of the two-dimensional problem is

(βux)x + (βuy)y = f(x, y), a < x < b, c < y < d, (1.11)

u(a, y) = u1, u(b, y) = u2, u(x, c) = u3, u(x, d) = u4, (1.12)

where β is a constant or piece-wise smooth coefficient, and u is continuous while the flux

of u is not. It implies that the jump conditions are

[u]Γ = 0, (1.13)[
β
∂u

∂n

]
Γ

= v, (1.14)

which are defined as

[u](x∗) = u+(x∗)− u−(x∗)
def
= lim

x→x∗,x∈Ω+
u(x)− lim

x→x∗,x∈Ω−
u(x), (1.15)[

β
∂u

∂n
(x∗)

]
def
= β+ lim

x→x∗,x∈Ω+
∇u(x) · n(x)− β− lim

x→x∗,x∈Ω−
∇u(x) · n(x), (1.16)

where n is the unit normal direction pointing to the Ω+ side.

The different types of β make our problem different. In the later chapters of the

dissertation, we talk about the problems with constant β and piece-wise constant β.

1.3 Description of problems with irregular domain

In our previous interface problems, we briefly discussed problems on a rectangular domain

with still interface. While in the daily life, many interface problems occur on irregular

domains. Figure 1.3 gives such an irregular domain.
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x = a
y = c

y = d

x = b

∂Ω1

Ω2

Ω1

Ω2

Figure 1.3 A diagram of an irregular domain where the regions of Ω2 are voids.

The immersed interface method can be applied to a Poisson equation on such ir-

regular domain in Section 6.2 from [22]. And an application of a fast Poisson solver on

irregular domains, using the immersed interface method for an inversed problem of shape

identification, is shown in Section 11.4 from [22].

1.4 The scope of the dissertation

We will focus on error analysis of elliptic interface problems with a Neumann boundary

condition. We are going to concentrate our attention on problems with following features:

• The coefficients β in later problems may be constant or discontinuous across an

interface.

• The source term at the right hand side of the moment equation may have jump or

a delta function singularity along an interface.
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• We assume that solutions to later problems are unique such that some additional

conditions are needed.

• We only consider the problems with fixed interface and boundaries.

• The problems we consider have only one interface in the domain.

In the rest of the dissertation, we consider the immersed interface method in Cartesian

grids.

1.5 Cartesian grid methods

To solve an interface problem using the immersed interface method, a computational grid

or mesh must be provided. There are many ways to choose a grid such as a body fitted

grid, or a mesh-less method. But in the following content of the dissertation, we will use

fixed and uniform Cartesian grids. The Cartesian grid with step size h in two-dimensional

domain [a, b]× [c, d] can be generated as in Figure 1.4.

One of the advantages of using a fixed and uniform Cartesian grid is that the gener-

ating process does not cost much. Numerical schemes can be used at most of the regular

grid points. At irregular grid points, finite difference schemes can also be derived based

on those standard finite difference schemes. Another advantage is that there are many

software packages available on Cartesian grids such as the fast Poisson solver [29], the

Clawpack [24] and the Amrclawpack [3], the level set method [11, 27, 28], the structured

multigrid solver [1, 34] and many others.

For interface problems, besides the immersed interface method, there are many finite

difference methods. In the following of this section, we discuss some important finite

difference methods.
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x = a
y = c

y = d

x = b

Ω = Ω+ ∪Ω−

Γ

∂Ω

Ω−

Ω+

Figure 1.4 A diagram of a domain Ω with an immersed interface Γ . Cartesian grid is gener-
ated in Ω.

For one-dimensional problems, we assume we have a jump condition [u] 6= 0 for u(x)

at the interface x = α. We can construct a smooth approximating function uε(x) by using

the Heaviside function. This is called the smoothing method for discontinuous coefficients.

The Heaviside function can be constructed in many ways. While it is easy to implement

for one-dimensional problems, the numerical solution computed from the method may not

be very accurate. And for two or higher dimensional problems, the Heaviside functions

are not easy to be constructed and implemented.

Another method to deal with discontinuous coefficients in elliptic interface problems

is harmonic averaging [12, 26, 30]. We consider a discrete scheme of a interface problem

(βux)x = f on a Cartesian grid with step size h, where β is discontinuous

1

h2

(
βi+ 1

2
(ui+1 − ui)− βi− 1

2
(ui − ui−1)

)
= f(xi), (1.17)

8



Because β is discontinuous in (xi−1, xi+1), the harmonic average of β is

βi+ 1
2

=

(
1

h

∫ xi+1

xi

β−1(x)dx

)−1
. (1.18)

This method is more accurate than the smoothing method for discontinuous coeffi-

cients. It can reach second order accuracy for one-dimensional elliptic interface problem

with [u]x=α = 0, [βux]x=α = 0, and [f ]x=α = 0, due primarily to the result of fortuitous

cancellation. While the harmonic averaging is used for two-dimensional problems with

discontinuous coefficients, we need to compute the harmonic averge of β(x, y) over squares

[25]. In this way, the method may not give second order accuracy in general because the

integration around the interface would be inaccurate.

Immersed boundary (IB) method was originally developed by Peskin [4, 5, 6, 7] to

model blood flow in a human heart and has been applied to many other interface prob-

lems. One of important ideas in the immersed boundary (IB) method is using a discrete

delta function to distribute a singular source to nearby grid points. For example, we can

recall a discrete delta function

δε(x) =


1

4ε
(1 + cos(πx/2ε)), |x| < 2ε,

0, |x| ≥ 2ε.

(1.19)

where ε is small enough. And it is easy to verify that the discrete delta function is

continuous.

There are a lot of choices for the discrete delta function such as the hat function.

With the discrete delta function, we can construct the discrete delta function for high

dimensional problems, by taking the product of one dimensional discrete delta functions

9



such as δ2(x, y) = δ1(x)δ1(y). Because of the continuity of the discrete delta function, we

can discretize functions with jumps by using discrete detla function so that the singular

source can be distributed to nearby grid points around interface. The details of the

method can be found in [23]. Because the choice of discrete delta function can affect the

accuracy of the numerical solution. Various studies have been conducted to find out what

the best way to construct a Dirac delta function. For high-order problems, the immersed

boundary method is easy to be implemented. But the work to improve the accuracy of

the IB method is still being researched. Recent research [8, 31, 32] is focusing on the

accuracy of the distribution.

Inspired by the immersed boundary (IB) method, the immersed interface method has

been developed as a sharp interface method. In the immersed interface method intro-

duced in [17], the discontinuity, or the jump conditions are enforced either exactly or

approximately. For some problems, the immersed interface method is more efficient than

a smoothing method. A numerical method called the immersed interface method, has the

following features:

• A uniform or adaptive grid or triangulation in Cartesian, polar, or spherical coor-

dinates is used instead of a body fitted gird. In this dissertation, we are using the

uniform Cartesian grid with step size h.

• A prior knowledge of jump conditions (or internal boundary conditions) are know

either from physical reasoning or from the governing differential equations. More

interface relations often need to be derived from the given jump conditions and

governing PDEs.

• Away from the interface, standard finite difference or finite element methods are

used in the discretization. The numerical methods are modified according to the

10



jump conditions only at grid points or elements near or on the interface. In the

dissertation, we focus on modifying the standard finite difference method by using

jump conditions around the interface.

• We emphasize point-wise convergence. We are more concerned with errors in the

infinity norm L∞. In regular problems without an interface, the immersed interface

method generally has the same global order accuracy, often second order. However,

the immersed interface method gives lower order accuracy for local truncation errors

around the interface. Thus, the global infinity norm of errors is preferable.

• The finite difference method becomes the standard one if the discontinuities in the

coefficients, in the solution, and in the flux, disappear.

1.6 Motivations of the dissertation

Solutions from numerical methods are approximating solutions to problems. Thus, error

appears between numerical solutions and exact solutions. There is always error analy-

sis along with numerical methods. In Section 1.4, when we discuss the finite difference

methods, we have concerned about the accuracy of them. The smoothing method for

discontinuous coefficients does not give very accurate solutions. The harmonic averag-

ing does not guarantee a second order accurate solution, although it can give second

order accurate solutions for specific interface problems. The accuracy of the immersed

boundary (IB) method also depends on the discrete delta function we choose. For the

immersed interface method, the local truncation errors of the finite difference scheme at

regular points are O(h2). Meanwhile, the local truncation errors of the finite difference

scheme at irregular points are O(h). Whether the irregularity affects the global error

11



between numerical solution and exact solution becomes our question. In [2], Beale and

Layton have shown the second order accuracy of immersed interface method for Poisson

equation with an interface and a Dirichlet boundary condition. During the error analysis,

they provide a lemma which split function at irregular points into the sum of terms of

O(h2). We also can apply this lemma on our problem with a Neumann boundary condi-

tion. Moreover, in [9] the error analysis for the Poisson problems with discontinuities and

Dirichlet boundary conditions, is given. Huang and Li give general results from Theorems

(6.1) and (6.2) in [16]. If we want to use the results from Theorems (6.1) and (6.2), our

problem needs to satisfy four conditions:

1. For each point in computational grid Ωh, Lh has the form

Lhu
h(xi) =

∑
k

cku
h(xk)− ciuh(xi), (1.20)

where the coefficients ck and ci are positive, Lh is the operator of finite difference

scheme, uh is numerical solution, and xk are neighbor points of xi. When xi is near

boundary, some values uh(xk) at neighbor points are given by boundary conditions.

2. For each point in computational grid Ωh,

ci ≥
∑
k

ck. (1.21)

3. The domain Ωh is connected. We say that a point xi is connected to each of its

neighbors that occurs in (1.20) with a non-zero coefficient. Then the domain is

connected if any two points xm and xn in Ωh, there is a sequence of points xm =

xm0 , xm1 , . . . , xmn = xn in Ωh. And each xmi
is connected to xmi−1

and xmi+1
.
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4. Dirichlet boundary conditions must be given on at least part of the boundary. This

condition is needed to ensure uniqueness of solution.

With these conditions, in [9], Huang and Li use the maximum principle and related

theorems to show that the immersed interface method for the Poisson equation with

an interface and Dirichlet boundary conditions is second-order accurate. Using the sim-

ilar method, Li and Ito in [22] have already shown that the immersed interface method

reaches second order accuracy for two-dimensional and three-dimensional elliptic prob-

lems with Dirichlet boundary conditions. But the result for elliptic interface problems

with Neumann boundary condition is still missing. For the problems with only Neumann

boundary conditions, most of the solutions are not unique. This means that a solution

can be shifted up and down to achieve different solutions which still satisfy our problem.

Thus, our problem does not satisfy the uniqueness conditions mentioned above. To make

our problem well-posed, additional conditions are needed.

To use the method from the discrete maximum principle, we need to construct a

comparison function Φ. Sometimes it is not easy to construct the comparison function.

Comparing with this method, the approach to show error analysis from [2] has an ad-

vantage that comparison function is not needed. But it does not work for problems with

a variable coefficient β(x).

Motivated by the method from [2] and another from the maximum principle and

related theorems, we are going to show the error analysis of elliptic problems with an

interface and a Neumann boundary condition. In the following dissertation, we will show

that the immersed interface method reaches second-order accuracy for the Poisson inter-

face problem with a Neumann boundary condition in Chapter 2, which is different from

the problem with a Dirichlet boundary condition in [2]. In Chapter 3, we will use the

13



method from the maximum principle and related theorems to show the immersed inter-

face method also reaches second-order accuracy for the Poisson interface problem with

a piece-wise coefficient and a Neumann boundary condition. After it, we will discuss a

more general elliptic problem with an interface and a Neumann boundary condition. For

this Neumann boundary problem, no additional condition is needed to make the problem

well-posed. The comparison function and result will be given in Chapter 4. Lastly, in [20],

the author applies the immersed interface method to the Darcy-Stokes system with an

interface. With refinement analysis, he shows that the numerical solution is second order

accurate. The theoretical proof will be given later in this dissertation. We will consider

the static Stokes equations with an interface and show that the numerical solution from

the immersed interface method is second-order accurate in Chapter 5.

14



Chapter 2

ERROR ANALYSIS OF THE

IMMERSED INTERFACE

METHOD FOR THE POISSON

EQUATIONS WITH AN

INTERFACE
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In this chapter, we consider the Poisson equation with constant coefficients in two-

dimensional space,

∆u = f, x ∈ Ω, (2.1)

∂u

∂n

∣∣∣∣
x∈∂Ω

= 0, (2.2)

where u is the velocity, f is a continuous function in Ω. In [2], it has already shown that

the immersed interface method reaches second-order accuracy for the Poisson equation

with an interface and a Dirichlet boundary condition. But in this chapter, we are going

to show that the immersed interface method also reaches second-order accuracy for the

Poisson equation with an interface and a Neumann boundary condition.

2.1 Review of jump conditions

The interface Γ ∈ C2 divides the domain into two disjoint sub-region Ω+ and Ω−. It is

shown in Figure 2.1.

Because of the interface Γ , we have jump conditions on Γ ,

[u] = g0 on Γ, (2.3)[
∂u

∂n

]
= g1 on Γ. (2.4)
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x = a
y = c

y = d

x = b

Ω = Ω+ ∪Ω−

Γ

∂Ω x∗

Ω−

Ω+
normal direction n

tangential direction τ

Figure 2.1 A diagram of an interface Γ in the domain Ω, with the tangential τ and normal
direction n at a point x∗ on the interface.

A jump quantity, for example, [u] is defined as the difference of the limiting values

from each side of the interface as follows,

[u](x∗) = u+(x∗)− u−(x∗)
def
= lim

x→x∗,x∈Ω+
u(x)− lim

x→x∗,x∈Ω−
u(x), (2.5)[

∂u

∂n
(x∗)

]
def
= lim

x→x∗,x∈Ω+
∇u(x) · n(x)− lim

x→x∗,x∈Ω−
∇u(x) · n(x), (2.6)

where n is the unit normal direction pointing to the Ω+ side.
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2.2 Notations

We follow the notations for discretization in [2]. The rectangular region Ω can be repre-

sented as

Ω = {x ∈ R2 : 0 < x < Nh, 0 < y < Mh}. (2.7)

Then, a grid can be generated on the region. We assume that we have a uniform gird

with step size h. The computation domain is

Ωh = {jh = (j1h, j2h) ∈ hZ2 : 1 ≤ j1 ≤ N − 1, 1 ≤ j2 ≤M − 1}, (2.8)

with boundary

∂Ωh = {jh : 0 ≤ j1 ≤ N, j2 = 0 or M ; 0 ≤ j2 ≤M, j1 = 0 or N}. (2.9)

We use the usual second-order discrete Laplacian, defined for uh on Ωh as

∆hu
h = D−1 D

+
1 u

h +D−2 D
+
2 u

h, (2.10)

where D±k is the forward or backward difference operator in the x and y direction.

On the boundary, we define the first discrete finite difference stencil D+
k as

d1u(0, j2h) =
u(h, j2h)− u(−h, j2h)

2h
, (2.11)

d1u(Nh, j2h) =
u((N + 1)h, j2h)− u((N − 1)h, j2h)

2h
, (2.12)

d2u(j1h, 0) =
u(j1h, h)− u(j1h,−h)

2h
, (2.13)

d2u(j1h,Mh) =
u(j1h, (M + 1)h)− u(j1h, (M − 1)h)

2h
. (2.14)
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We call a grid point regular if all grid points in the standard five-point stencil of the

discrete Laplacian at the point are in the same region. Otherwise it is irregular. Let ue

be the exact solution. At regular grid points we have truncation error

∆hu
e(jh) = f±(jh) + τh(jh), ‖τh(jh)‖ ≤ Ch2, (2.15)

where f± is based on whether jh ∈ Ω+ or Ω−. When we consider the error at irregular

point, we have T h(jh), determined by jumps on Γ

∆hu
e(jh) = f±(jh) + T h(jh) + τh(jh), ‖τh(jh)‖ ≤ Ch. (2.16)

We define fh on Ωh by

fh(jh) =


f±(jh) + T h(jh), jh irregular,

f±(jh), jh regular.

(2.17)

Thus, we have uh as the solution to the following problem

∆hu
h = fh in Ωh, duh = O(h2) on ∂Ωh. (2.18)

Then, the error ph − pe satisfies

∆h(u
h − ue) = −τh in Ωh, d(uh − ue) = −O(h2) on ∂Ωh. (2.19)
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2.3 Main convergence result

We can state our results with a Neumann boundary condition which is different from the

result in [2]. After the theorem and related lemmas, proofs will be given. The theorem

implies that the error in (2.19) is uniformly O(h2):

Theorem 2.3.1. Let ue be the exact solution of the Poisson equation (2.1), (2.2) with

the interface Γ at least C2. Suppose ∆hu
e has the form given by (2.15),(2.16), with

‖τh(jh)‖ ≤ Ch at irregular grid points and ‖τh(jh)‖ ≤ Ch2 at regular grid points. Let uh

be the solution to (2.17),(2.18). Assume that there is a chosen grid point (α, β), where

uh − ue = 0. Then,

‖uh − ue‖Ωh
= O(h2). (2.20)

Theorem 2.3.1 will follow directly from the next three lemmas. The first lemma is

Lemma 2.2 in [2]:

Lemma 2.3.2. Suppose F irr is a function on Ωh which is nonzero only on the set of

irregular points. Assume Γ is C1. Then there exist functions F1 and F2 on Ωh, so that

F1 = F2 = 0 on ∂Ωh,

F irr = D−1 F1 +D−2 F2 in Ωh, (2.21)

and

‖Fk‖Ωh
≤ Ch‖F irr‖Ωh

, k = 1, 2, (2.22)

where C depends on Γ but is independent of h.

Lemma 2.3.3. Suppose

∆hv = F reg +D−1 F1 +D−2 F2 in Ωh, dv = −O(h2) on ∂Ωh. (2.23)
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Then

‖∇+
h v‖

2
Ωh
≤ ‖F reg‖Ωh

‖v‖Ωh
+ (‖F1‖Ωh

+O(h4))‖D+
1 v‖Ωh

+ (‖F2‖Ωh
+O(h4))‖D+

2 v‖Ωh
+ 4O(h3)‖v‖Ωh

,

(2.24)

where F reg is a function on the set of regular points.

Next lemma is called Discrete Neumann-Poincare inequality:

Lemma 2.3.4. If v is C1 on Ωh, we define

A = v(c1, c2), (2.25)

where (c1, c2) is a point on Ωh.

Then,

‖v − A‖Ωh
≤ C‖∇+

h v‖Ωh
. (2.26)

With these lemmas, to derive Theorem 2.3.1, we set F irr equal to the restriction of

τh at those irregular points and use Lemma 2.3.2. We apply Lemma 2.3.3 to v = uh−ue,

using (2.19) with F reg equal to the regular part of τh. To make the Poisson equation

compatible, give a chosen point (α, β) where v = 0. We can set A in Lemma 2.3.4 as the

error at point (α, β). Combing (2.24) with Lemma 2.3.4, the result of the Theorem 2.3.1

can be derived.

In next section, we are going to show the proofs of lemmas and theorem.
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2.4 Proof of convergence

Proof of Lemma 2.3.3. To show the inequality (2.24), we multiply by v in (2.23) over

Ωh. We have the usual discrete inner product,

(v, w)Ωh
=
∑

jh∈Ωh

v(jh)w(jh)h2. (2.27)

With discrete inner product, we have

‖v‖2
Ωh

= (v, v)Ωh
. (2.28)

And then sum by parts on the left, using the Neumann boundary condition for v

(∆hv, v)Ωh
=
∑

jh∈Ωh

(D−1 D
+
1 v +D−2 D

+
2 v)vh2

=
∑

jh∈Ωh

D−1 D
+
1 v · vh2 +

∑
jh∈Ωh

D−2 D
+
2 v · vh2

= −
∑

jh∈Ωh

[(D+
1 v)2 + (D+

2 v)2)]h2

+
M∑
j2=0

[D+
1 v(Nh, j2h)]2 · h2 +

N∑
j1=0

[D+
2 v(j1h,Mh)]2 · h2 (2.29)

−
M∑
j2=0

D+
1 v(0, j2h) · v(0, j2h) · h

−
N∑
j1=0

D+
2 v(j1h, 0) · v(j1h, 0) · h

+
M∑
j2=0

D+
1 v(Nh, j2h) · v(Nh, j2h) · h
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+
N∑
j1=0

D+
2 v(j1h,Mh) · v(j1h,Mh) · h.

From the discrete inner product

(∇+
h v,∇

+
h v)Ωh

=
∑

jh∈Ωh

[(D+
1 v)2 + (D+

2 v)2)]h2, (2.30)

we have

(∆hv, v)Ωh
= −(∇+

h v,∇
+
h v)Ωh

+
M∑
j2=0

[D+
1 v(Nh, j2h)]2 · h2 +

N∑
j1=0

[D+
2 v(j1h,Mh)]2 · h2

−
M∑
j2=0

D+
1 v(0, j2h) · v(0, j2h) · h (2.31)

−
N∑
j1=0

D+
2 v(j1h, 0) · v(j1h, 0) · h

+
M∑
j2=0

D+
1 v(Nh, j2h) · v(Nh, j2h) · h

+
N∑
j1=0

D+
2 v(j1h,Mh) · v(j1h,Mh) · h.

On the right hand side, we have

(F reg +D−1 F1 +D−2 F2, v)Ωh
= (F reg, v)Ωh

(2.32)

+ (D−1 F1, v)Ωh
+ (D−2 F2, v)Ωh

.
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Consider (D−1 F1, v) and use summation by parts with F1 = 0 on the boundary,

(D−1 F1, v)Ωh
=
∑

jh∈Ωh

D−1 F1(j1h, j2h)v(j1h, j2h)h2

=
∑

jh∈Ωh

[F1(j1h, j2h)− F ((j1 − 1)h, j2h)]v(j1h, j2h)h

= −(F1, D
+
1 v) +

M∑
j2=0

F1(Nh, j2h)D+
1 v(Nh, j2h)h2

−
M∑
j2=0

F1(0, j2h)v(0, j2h)h+
M∑
j2=0

F1(Nh, j2h)v(Nh, j2h)h

= −(F1, D
+
1 v)Ωh

.

(2.33)

Similarly, we have

(D−2 F2, v)Ωh
= −(F2, D

+
2 v)Ωh

. (2.34)

Thus,

(F reg +D−1 F1 +D−2 F2, v)Ωh
= (F reg, v)Ωh

− (F1, D
+
1 v)Ωh

− (F2, D
+
2 v)Ωh

.

(2.35)

Combining (∆hv, v)Ωh
with (F reg +D−1 F1 +D−2 F2, v)Ωh

, we have

(F reg, v)Ωh
− (F1, D

+
1 v)Ωh

− (F2, D
+
2 v)Ωh

= −(∇+
h v,∇

+
h v)Ωh

+
M∑
j2=0

[D+
1 v(Nh, j2h)]2 · h2 +

N∑
j1=0

[D+
2 v(j1h,Mh)]2 · h2

−
M∑
j2=0

D+
1 v(0, j2h) · v(0, j2h) · h (2.36)
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−
N∑
j1=0

D+
2 v(j1h, 0) · v(j1h, 0) · h

+
M∑
j2=0

D+
1 v(Nh, j2h) · v(Nh, j2h) · h

+
N∑
j1=0

D+
2 v(j1h,Mh) · v(j1h,Mh) · h.

As we know, we defined D+
1 and D+

2 as central difference stencil on the boundary. We

have

D+
1 v = −O(h2), D+

2 v = −O(h2) on the boundary. (2.37)

Thus, using Cauchy-Schwarz inequality we have inequality

‖∇+
h v‖

2
Ωh
≤ ‖F reg‖Ωh

‖v‖Ωh
+ (‖F1‖Ωh

+O(h4))‖D+
1 v‖Ωh

+ (‖F2‖Ωh
+O(h4))‖D+

2 v‖Ωh
+ 4O(h3)‖v‖Ωh

.

(2.38)

Proof of Lemma 2.3.4. For simplicity we consider the inequality in two dimensional s-

pace. We assume that there is a point (c1, c2) ∈ Ω such that

A = v(c1, c2). (2.39)

For any grid point (x, y) on Ωh

v(x, y) = v(c1, c2) +
x∑

x̂=c1

D+
1 v(x̂, c2)h+

y∑
ŷ=c2

D+
2 v(c1, ŷ)h (2.40)
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Taking the norm on Ωh

‖v − A‖Ωh
≤

Nh∑
x=0

‖D+
1 v(x, c2)‖Ωh

+
Mh∑
y=0

‖D+
2 v(x, y)‖Ωh

≤ (M +N)‖∇+
h v‖Ωh

= C‖∇+
h v‖Ωh

(2.41)

Proof of Theorem 2.3.1. Let

v(x, y) = uh(x, y)− ue(x, y). (2.42)

To make the Poisson equation (2.1),(2.2) with an interface compatible, we have

v(α, β) = uh(α, β)− ue(α, β) = 0. Then the Neumann-Poincare inequality becomes

‖v‖Ωh
≤ C‖∇+

h v‖Ωh
. (2.43)

Back to the inequality (2.24) in Lemma 2.3.3, we have

‖∇+
h v‖

2
Ωh
≤ ‖F reg‖Ωh

‖v‖Ωh
+ (‖F1‖Ωh

+O(h4))‖D+
1 v‖Ωh

+ (‖F2‖Ωh
+O(h4))‖D+

2 v‖Ωh
+ 4O(h3)‖v‖Ωh

.

(2.44)

With the discrete Neumann-Poincare inequality,

‖∇+
h v‖

2
Ωh
≤ C‖F reg‖Ωh

‖∇+
h v‖Ωh

+ (‖F1‖Ωh
+O(h4))‖∇+

h v‖Ωh

+ (‖F2‖Ωh
+O(h4))‖∇+

h v‖Ωh
+ 4CO(h3)‖∇+

h v‖Ωh
.

(2.45)
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Divided by ‖∇+
h v‖Ωh

on both sides

‖v‖Ωh
≤ C‖∇+

h v‖Ωh
≤ C2‖F reg‖Ωh

+ C(‖F1‖Ωh
+O(h4))

+ C(‖F2‖Ωh
+O(h4)) + 4C2O(h3).

(2.46)

According to the Lemma 2.3.2, we have

‖Fk‖Ωh
= O(h2), ‖F reg‖Ωh

= O(h2), (2.47)

‖v‖Ωh
≤ (C2 + 2C)O(h2) + 2O(h4) + 4C2O(h3). (2.48)

This implies that

‖uh(jh)− ue(jh)‖Ωh
= O(h2) for jh ∈ Ωh. (2.49)

Thus the proof of Theorem 2.3.1 is done.

2.5 Conclusion

In this chapter, we have error analysis of immersed interface method for the Poisson

equation (2.1),(2.2) with an interface. Theorem 2.3.1 shows that the immersed interface

method gives a second-order accurate numerical solution when the problem has a unique

solution. Combining with the result from [2], we conclude that the immersed interface

method gives a second-order accurate solution for the Poisson equation (2.1) with an in-

terface, no matter whether the problem has a Dirichlet boundary condition or a Neumann
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boundary condition.
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In this chapter, we discuss the Poisson equations with an interface, a variable coeffi-

cient and Neuman boundary conditions.

∇ · (β∇u) = f, x ∈ Ω, (3.1)

where u is velocity, β(x) is a piece-wise smooth function which may have a finite jump

at closed smooth interface Γ ∈ Ω and f is continuous. There are jump conditions along

Γ :

[u] = g0,

[
β
∂u

∂n

]
= g1 on Γ. (3.2)

In [9, 22], they have already showed that the immersed interface method reaches

second-order accuracy for the Poisson equation with an interface, a variable coefficient

and Dirichlet boundary conditions. They use the method from the maximum principle

and related theorems (6.1) and (6.2) in [16] to prove it. What if the boundary condition is

a Neumann boundary condition? In this chapter, we extend the result from the maximum

principle and related theorems to the interface problem with a Neumann boundary con-

dition. Then we show that the immersed interface method gives a second-order accurate

numerical solution for the interface problem with a Neumann boundary condition.

3.1 The one-dimensional problem

First of all, we start with a 1D two point boundary value problem with a Dirichlet bound-

ary condition at an endpoint and a Neumann boundary condition at another endpoint.
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3.1.1 A 1D two point boundary value problem with an interface

and a Neumann boundary condition at one of endpoints

Consider a 1D two point boundary value problem with a Neumann boundary condition

at one of the endpoints.

(β(x)ux)x = f(x), 0 < x < 1, (3.3)

∂u

∂x

∣∣∣
x=0

= u1, u|x=1 = u2, (3.4)

where β(x) is a piece-wise smooth function. For simplicity, we assume

β(x) =


β−, if x ≤ α,

β+, if x > α,

(3.5)

where x = α is the interface in the one-dimensional problem. At the interface x = α, we

have jump conditions as defined in Chapter 2

[u] = g0,

[
β
∂u

∂x

]
= g1. (3.6)

It is easy to verify that the one-dimensional problem (3.3),(3.4) has a unique solution

u(x). Next, we review the finite difference scheme by using IIM from [22].
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3.1.2 Reivew of the IIM for the 1D two point boundary value

problem with an interface

According to the immersed interface method (IIM), we have a uniform grid xi = ih,

i = 0, 1, . . . , n with step size h =
1

n
. Assuming that xj ≤ α ≤ xj+1, we have general finite

difference scheme

Lhu = γi,1u
h(xi−1) + γi,2u

h(xi) + γi,3u
h(xi+1) = f(xi), (3.7)

with boundary conditions
∂u

∂x

∣∣∣
x=0

= u1 and u|x=1 = u2.

As we have defined regular points and irregular points in Chapter 2, at a regular point

xi which means i 6= j, j + 1, the coefficients γi,1, γi,2 and γi,3 are represented as

γi,1 =
β(xi−1/2)

h2
, (3.8)

γi,2 = −(γi,1 + γi,3), (3.9)

γi,3 =
β(xi+1/2)

h2
, (3.10)

where xi−1/2 = (xi + xi−1)/2 and xi+1/2 = (xi + xi+1)/2. At the irregular gird point xj,

γi,1, γi,2 and γi,3 should satisfy the following linear system

γi,1 + γi,2 + γi,3 = 0, (3.11)

(xj−1 − α)γi,1 + (xj − α)γi,2 +
β−

β+
(xj+1 − α)γi,3 = 0, (3.12)

1

2
(α− xj−1)2γi,1 +

1

2
(α− xj)2γi,2 +

β−

2β+
(xj+1 − α)2γi,3 = β−. (3.13)

This linear system is derived in [22]. After solving the linear systems at irregular
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points xj and xj+1, we have the coefficients:



γj,1 = (β− − [β](xj − α)/h)/Dj,

γj,2 = (−2β− + [β](xj−1 − α)/h)/Dj,

γj,3 = β+/Dj,

(3.14)



γj+1,1 = β−/Dj+1,

γj+1,2 = (−2β+ + [β](xj+2 − α)/h)/Dj+1,

γj+1,3 = (β+ − [β](xj+1 − α)/h)/Dj+1,

(3.15)

where

Dj = h2 + [β](xj−1 − α)(xj − α)/2β−, (3.16)

Dj+1 = h2 − [β](xj+2 − α)(xj+1 − α)/2β+. (3.17)

Now we have the finite difference scheme. We are going to use the method from the

maximum principle and related theorems to show that the numerical solution are second-

order accurate. In next subsection, we review the method from the maximum principle

and related theorems.

3.1.3 Review of the maximum principle and related theorems

Before we recall the maximum principle, we need to recall four conditions which are

introduced in [16]:
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1. For each point xi ∈ Ωh, Lh has the form:

Lhu
h(xi) =

∑
k

cku
h(xk)− ciuh(xi), (3.18)

where the coefficients in 3.18 are positive. And xk are neighbor points of xi. When

xi is near boundary, some of values uh(xk) at neighbor points can be given by

boundary conditions.

2. For each point xi ∈ Ωh,

ci ≥
∑
k

ck. (3.19)

3. The domain Ωh is connected. We say that a point xi is connected to each of

its neighbors that occurs in 3.18 with a non-zero coefficient. Then the domain

is connected if any two points xm and xn in Ωh, there is a sequence of points

xm = xm0 , xm1 , . . . , xmn = xn in Ωh. And each xmi
is connected to xmi−1

and xmi+1
.

4. Dirichlet boundary conditions must be given on at least part of the boundary. This

condition is needed to ensure uniqueness of solution to the problem (3.3),(3.4).

With the assumptions for finite difference scheme, we can claim that our problem

(3.3), (3.4) satisfies all above conditions. Next we recall the maximum principle:

Lemma 3.1.1. (Maximum Principle) Suppose that Lh, Ωh and ∂Ωh satisfy all the

above conditions and that a mesh function uh satisfies

Lhu
h(xi) ≥ 0, xi ∈ Ωh. (3.20)
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Then uh cannot attain a nonnegative maximum at an interior point,

max
xi∈Ωh

uh(xi) ≤ max{ max
A∈∂Ωh

uh(A), 0}. (3.21)

With the maximum principle, we have Theorem (6.1), (6.2) from [16].

Theorem 3.1.2. Suppose a nonnegative mesh function Φ is defined on Ωh ∪ ∂Ωh such

that

LhΦ(xi) ≥ 1, xi ∈ Ωh, (3.22)

and that all four conditions are satisfied. Then the error e(xi) = uh(xi)−ue(xi) is bounded

by

|e(xi)| ≤
[

max
A∈∂Ωh

Φ(A)

] [
max
xi∈Ωh

|T (xi)|
]
, (3.23)

where uh is the numerical solution and ue is the exact solution.

Theorem 3.1.3. Suppose that, in the notation of Theorem 3.1.2, the set Ωh is partitioned

into two disjoint sets

Ωh = Ω1 ∪Ω2, Ω1 ∩Ω2 = ∅, (3.24)

the nonnegative mesh function Φ is defined on Ωh ∪ ∂Ωh and satisfies

LhΦ(xi) ≥ C1 > 0, xi ∈ Ω1, (3.25)

LhΦ(xi) ≥ C2 > 0, xi ∈ Ω2, (3.26)

and the truncation error of the approximation Lhu
e(x) = f(x) satisfies

|T (xi)| ≤ T1, xi ∈ Ω1, (3.27)
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|T (xi)| ≤ T2, xi ∈ Ω2. (3.28)

Then the error in the approximation is bounded by

|e(xi)| ≤
[

max
A∈∂Ωh

Φ(A)

]
max

{
T1
C1

,
T2
C2

}
. (3.29)

The proofs of the maximum principle, theorem 3.1.2 and theorem 3.1.3 are provided

in [16]. With the lemma and theorems, we show the result for our problem (3.3), (3.4).

3.1.4 Main convergence result

Because our problem satisfies all conditions we’ve mentioned in subsection 3.1.3. We can

apply Theorem 4 in [9], which is the straightforward result from the maximum principle

and related theorems to our problem :

Theorem 3.1.4. Assume β(x) is piece-wise constant as in (3.5), then the error of the

approximate solution obtained from the IIM is bounded by

‖ue(xi)− uh(xi)‖Ωh
≤ 5γmaxMΦmax

3
h2, (3.30)

where

γmax = max
1≤j≤n−1

max
k=1,2,3

{|γj,kh2|}, (3.31)

Φmax = max(Φ(0), Φ(1)), (3.32)

M = max(Mxxx,Mxxxx). (3.33)
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Here, Mxxx and Mxxxx are:

Mxxx = max
{

max
x<α
|u′′′(x)|,max

x>α
|u′′′(x)|

}
, (3.34)

Mxxxx = max
{

max
x<α
|u′′′′(x)|,max

x>α
|u′′′′(x)|

}
. (3.35)

And Φ(x) is constructed comparison function given by:

Φ(x) =


(x− α)2

2β−
+
E1(1− α)(α− x)

β−
+
E2(α− xj)(xj − x)

γj,1h3
, if x ≤ α,

(x− α)2

2β+
+
E1α(x− α)

β+
+
E2(xj+1 − α)(x− xj+1)

γj+1,3h3
, if x > α,

(3.36)

where E1 and E2 are constants.

According to Theorem 3.1.4, it implies that the immersed interface method reaches

second-order accuracy for our one-dimensional problem (3.3), (3.4). To prove this theo-

rem, in [9], a lemma is provided:

Lemma 3.1.5. Given a difference scheme Lh defined on a discrete set of interior points

Ωh, we assume the following conditions hold:

1. Ωh can be partitioned into a number of disjoint regions

Ωh = Ω1 ∪Ω2 ∪Ω3 ∪ · · · ∪Ωs, Ωi ∩Ωk = ∅, if i 6= k. (3.37)

2. The truncation error of the difference scheme at a grid point p satisfies

|T (x)| ≤ Ti, x ∈ Ωi, i = 1, 2, . . . , s. (3.38)
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3. There exists a nonnegative mesh function Φ defined on
⋃s
i=1Ωi satisfying

LhΦ(x) ≥ Ci > 0, x ∈ Ωi, i = 1, 2, . . . , s. (3.39)

Then the global error of the numerical solution from the difference scheme at mesh points

is bounded by

‖Eh‖Ωh
≤
(

max
A∈∂Ωh

Φ(A)

)
max
1≤i≤s

{
Ti
Ci

}
. (3.40)

The proofs of Theorem 3.1.4 and Lemma 3.1.4 are given in [9]. They can be direct-

ly used on our problem, although we have a Neumann boundary condition at one of

endpoints and a Dirichlet boundary condition at the other one.

However we often have interface problems with Neumann boundary conditions all

along the boundary. In a 1D two point boundary values problem with an interface,

we have Neumann boundary conditions at both endpoints x = 0 and x = 1. In next

subsection, we talk about this problem.

3.1.5 A 1D two point boundary values problem with an inter-

face and Neumann boundary conditions at both of end-

points

In last subsection, we have already shown that the immersed interface method gives

second-order accurate numerical solution for the 1D two point boundary value problem

with an interface, a piece-wise smooth coefficient β(x) and a Neumann boundary con-

dition at one of endpoints of the interval. In this subsection, we talk about result of a

1D two point boundary values problem with an interface, a piece-wise smooth coefficient

and Neumann boundary conditions at both of endpoints of the interval. The problem is
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(β(x)ux)x = f(x), 0 < x < 1, (3.41)

∂u

∂x

∣∣∣
x=0

= u1,
∂u

∂x

∣∣∣
x=1

= u2, (3.42)

with jump conditions at x = α

[u] = g0,

[
β
∂u

∂x

]
= g1. (3.43)

As we know, this problem does not have a unique solution because we can shift a

solution up and down vertically to have many solutions. To make this problem well-

posed, an additional condition is needed. We assume that

u(x0) = u0. (3.44)

Thus, the four conditions we mentioned in subsection 3.1.3 are satisfied. Recall the

comparison function (3.36)

Φ(x) =


(x− α)2

2β−
+
E1(1− α)(α− x)

β−
+
E2(α− xj)(xj − x)

γj,1h3
, if x ≤ α,

(x− α)2

2β+
+
E1α(x− α)

β+
+
E2(xj+1 − α)(x− xj+1)

γj+1,3h3
, if x > α,

(3.45)

On a Cartesian grid with step size h, we suppose that xj < α < xj+1 which x = α

is the interface. We have the finite difference scheme Lh defined by (3.7). We split [0, 1]
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into

Ω0 = {x0, xn}, (3.46)

Ω1 = {x1, x2, . . . , xj−1}, (3.47)

Ω2 = {xj+2, xj+3, . . . , xn−1}, (3.48)

Ω3 = {xj, xj + 1}. (3.49)

According to the results in [9], on Ω1 ∪Ω2,

LhΦ(xi) = 1. (3.50)

On Ω3,

LhΦ(xj) = 1 +
E1γj,3(xj+1 − α)

β+
+
E2(α− xj)

h2
≥ 1

h
, (3.51)

LhΦ(xj+1) = 1 +
E1γj+1,1(α− xj)

β−
+
E2(xj+1 − α)

h2
≥ 1

h
(3.52)

On Ω0,

Φ(x0) =
α2

2β−
+
E1(1− α)α

β−
+
E2(α− xj)xj

γj,1h3
= O(1), (3.53)

Φ(xn) =
(1− α)2

2β+
+
E1α(1− α)

β+
+
E2(xj+1 − α)(1− xj+1)

γj+1,3h3
= O(1). (3.54)

We know that the truncation error |Ti| = O(h2) in Ω1 ∪Ω2 and |Tj| = O(h), |Tj+1| =

O(h) in Ω3. Using the result from Lemma 3.1.5, the global error of the numerical solution
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from the immersed interface method is bounded by

‖uh − ue‖Ωh
≤
(

max
A∈Ω0

Φ(A)

)
max
xi

{
Ti
Ci

}
= O(h2). (3.55)

Thus, we have the result of the 1D two point boundary values problem with an inter-

face, a piece-wise smooth coefficient β(x) and Neumann boundary conditions at both of

endpoints in the domain [0, 1]:

Theorem 3.1.6. For the problem (3.41), (3.42), (3.43), we assume that β(x) is piece-

wise smooth. We have u(x0) = u0 such that the solution of the problem is unique. Then the

error of the numerical solution obtained from the immersed interface method is second-

order accurate

‖uh − uh‖Ωh
= O(h2). (3.56)

The proof can be shown following above analysis with the result from Lemma 3.1.5.

3.2 Analysis for the 2D problem

In the previous section, we show the results of one-dimensional problems with an inter-

face and Neumann boundary conditions. For problems in two-dimensional space, does

the immersed interface method still give the second-order accurate numerical solution as

one-dimensional problems? In [22], Dr. Li et al have shown that the immersed interface

method gives second order accurate numerical solutions for two-dimensional Poisson e-

quations with an interface and Dirichlet boundary conditions. They also use the method

from the maximum principle and related theorems. We talk about the interface problem

with a Neumann boundary condition in this section. We consider the Poisson equation
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with an interface

(βux)x + (βuy)y = f(x, y), (x, y) ∈ Ω = Ω+ ∩Ω−, (3.57)

with Neumann boundary condition

∂u(x, y)

∂n
= u1 <∞, (x, y) ∈ ∂Ω, (3.58)

where n is the normal vector along ∂Ω. β is piece-wise continuous and has finite discon-

tinuities across interface. f(x, y) is continuous on Ω. Two jump conditions are defined

around interface

[u] = u+ − u− = u2, (3.59)[
β
∂u

∂n

]
= β+∂u

+

∂n
− β−∂u

−

∂n
= u3. (3.60)

To make this problem well-posed, an additional condition is needed:

u(a, b) = u0 <∞, (a, b) ∈ Ω. (3.61)

Thus, a solution to the problem exits and is unique. We use a two-dimensional Cartesian

grid with step size h on Ω. From the results in [22], the standard 9-point compact stencil is

preferred because the resulting linear system of equations are block tridiagonal such that

the multigrid solver can be used. The general finite difference stencil in two dimensional

space can be given as follows
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LhUij =
ns∑
k

γkUi+ik,j+jk , (3.62)

where Uij are numerical solutions to u(x, y) at (xi, yj) , ns is the number of gird points

involved in the finite difference stencil and ik, jk take values in the set {0,±1,±2, . . . }.

To guarantee the finite difference scheme satisfies the conditions mentioned in Section

3.1.3, restrictions on coefficients {γk} are given by

γk ≥ 0 if (ik, jk) 6= (0, 0), (3.63)

γk < 0 if (ik, jk) = (0, 0). (3.64)

And an optimization problem for the finite difference scheme at irregular points is

given to determine the coefficients in [22]. Thus, the results of coefficients are given by

∣∣∣∣ γkβ−
∣∣∣∣ ≤ C

h2
, k = 1, . . . , 9. (3.65)

And there exists at least one γk from each side of the interface such that

γr
β−
≥ C1

h2
, (3.66)

and ∑
ξk≥0

γkξk ≥
C2

h
if max

ξ≥0
{ξk} > C3h, (3.67)

where ξk are from local coordinates of points (xk, yk). These results are verified in [22].

Because we have u(a, b) = u0 < ∞ and the Neumann boundary condition
∂u(x, y)

∂n
=
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u1 <∞. The Taylor expansion of u(a, b) at (x, y) can be given as follows

u(a, b) = u(x, y) + (a− x)ux(x, y) + (b− y)uy(x, y) + . . . . (3.68)

We rewrite it into

u(x, y) = u(a, b)− (a− x)ux(x, y)− (b− y)uy(x, y)− . . . . (3.69)

With u(a, b) = u0 <∞, u1 <∞ and continuous f(x, y) on Ω, we can estimate that

u(x, y) <∞, (x, y) ∈ ∂Ω. (3.70)

There is a constant K big enough so that u(x, y) ≤ K on the boundary ∂Ω.

To show result of the problem (3.57)-(3.61), we consider a simplified problem

(βux)x + (βuy)y = 1, (3.71)

[u] = 0,

[
β
∂u

∂n

]
= 1, (3.72)

∂u(x, y)

∂n
= 0, u(a, b) = 1. (3.73)

To use the method from the maximum principle and related theorems, we need to

construct a comparison function. Supposing that Φ is the unique and bounded solution

to the problem, we can construct a comparison function

Φ(x, y) = Φ(x, y) +

∣∣∣∣ min
(x,y)∈Ω

Φ(x, y)

∣∣∣∣ . (3.74)

Then we apply the stencil (3.62) to Φ(x, y) according to [22]. Combining the result of
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coefficients (3.67), we have

LhΦ(xi, yj) ≥


1 +O(h2), (xi, yj) is a regular grid point,∑
ξk≥0

γkξk ≥
C2

h
+O(1), (xi, yj) is an irregular grid point.

(3.75)

We have already known that at regular points, the truncation error of the finite

difference scheme satisfies

‖Tij‖ ≤ C3h
2. (3.76)

And at irregular points, the truncation error of the finite difference scheme satisfies

‖Tij‖ ≤ C4h. (3.77)

From the result of Lemma 3.1.5, at regular points, we have:

‖Tij‖
LhΦ(xi, yj)

≤ K
C3h

2

1
= KC3h

2. (3.78)

At irregular points, we have:

‖Tij‖
LhΦ(xi, yj)

≤ K
C4h

C2/h
=
KC4

C2

h2, (3.79)

where K is the bound of the value of u(x, y) on ∂Ω.

With results above, the global error of the immersed interface method for our problem

is bounded by

‖uh − ue‖ ≤ Ch2, (3.80)

where uh is the numerical solution from the immersed interface method and ue is the
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exact solution to our problem.

Thus, we conclude our result for the Poisson equation with an interface and a Neu-

mann boundary condition:

Theorem 3.2.1. Let ue(x, y) be the exact solution to the Poisson equation (3.57), (3.58),

(3.59), (3.60) and (3.61) where β(x) is piecewise continuous, u ∈ C3(Ω) and f(x, y) is

continuous. On a Cartesian grid with small enough step size h, we use the standard

compact 9-point stencil (3.62) at irregular points such that the coefficients of the scheme

satisfy:

|γk| ≤
C1

h2
and

∑
ξk≥0

γkξk ≥
C2

h
, (3.81)

where ξk is from the local coordinates (ξk, ηk). Assume we have numerical solution uh(x, y)

from the finite difference scheme, the error is bound by:

‖uh − ue‖ ≤ Ch2, (3.82)

where C is a constant.

3.3 Conclusion

In this section, we have shown that the immersed interface method gives a second-order

accurate numerical solution for the Poisson equation with an interface and a Neumann

boundary condition. We use the method from the maximum principle and related theo-

rems in [16]. No matter whether the problem is one-dimensional or two-dimensional, the

method can be applied. This method can also be used on a more complicated elliptic

problem:

(β(x)ux)x − σ2u = f, (3.83)
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with an interface and Neumann boundary conditions. We talk about it in next Chapter.
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Chapter 4

ERROR ANALYSIS OF THE

IMMERSED INTERFACE

METHOD FOR A COMPLICATED

ELLIPTIC PROBLEM

In this chapter, we estimate the error from the immersed interface method for the fol-

lowing elliptic problem

(β(x)ux(x))x − σ2u(x) = f(x), x ∈ Ω = (0, 1), (4.1)

where β(x) is positive piece-wise continuous. For simplicity, we have

β(x) =


β−, x < α,

β+, x ≥ α.

(4.2)
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And around the interface x = α, we have:

[β] = β+ − β− ≥ 0. (4.3)

For simplicity, we assume that 2β− − σ2 > 0. The jump conditions at x = α are

[u] = u1, (4.4)[
β
∂u

∂x

]
= u2. (4.5)

We consider this problem with Neumann boundary condition

∂u

∂x

∣∣∣
x=0

= a,
∂u

∂x

∣∣∣
x=1

= b. (4.6)

In this problem, we only have Neumann boundary conditions. As we know, in the

previous Poisson problems, we need additional conditions to guarantee that the prob-

lems with Neumann boundary conditions have unique solutions. But in this problem, no

additional condition is needed. We start with reviewing the finite difference scheme from

the immersed interface method (IIM).

4.1 Review of the IIM

To apply the finite difference method to this problem, we generate a Cartesian grid with

step size h in the interval [0, 1]. x = α is the interface. We assume that xj < α < xj+1.

Thus, we have the finite difference scheme

LhUi = γi,1Ui−1 + γi,2Ui + γi,3Ui+1 = fi, (4.7)
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where γi,1, γi,2 and γi,3 are coefficients to be determined, Ui is the numerical solution to

the value of u(x) at point x = xi, and fi is the value of f(x) at x = xi.

According to the method to determine the coefficients in [22], we have the coefficients

in the scheme (4.7) at regular points



γi,1 =
β

h2
,

γi,2 = −2β

h2
− σ2,

γi,3 =
β

h2
.

(4.8)

At the irregular point xj, the coefficients are



γj,1 =
β− − [β](xj − α)/h

Dj

,

γj,2 =
−2β− + [β](xj−1 − α)/h

Dj

− σ2,

γj,3 =
β+

Dj

,

(4.9)

where

Dj = h2 +
[β](α− xj−1)(α− xj)

2β−
. (4.10)

And at the irregular point xj+1, the coefficients are



γj+1,1 =
β−

Dj+1

,

γj+1,2 =
−2β+ + [β](xj+2 − α)/h

Dj+1

− σ2,

γj+1,3 =
β+ − [β](xj+1 − α)/h

Dj+1

,

(4.11)
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where

Dj+1 = h2 − [β](xj+2 − α)(xj+1 − α)

2β+
. (4.12)

With these coefficients determined, if we write the linear system of numerical solution

into matrix form. The matrix of coefficients is a tri-diagonal matrix. But the difference

between the matrix of this problem and the matrix of the Poisson equation we mentioned

previously is that the matrix for this problem is more diagonal dominant. This implies

that the matrix of coefficients is invertible. Thus, when we solve the linear system of

numerical solution, the solution is unique. And no additional condition is needed. With

the problem well-posed, in the rest of this chapter, we will use the method from the

maximum principle and related theorems to show our result of the immersed interface

method for the problem. The most important part is finding a comparison function.

4.2 A comparison function

To apply the method from the maximum principle and related theorems in [16], a com-

parison function Φ(x) is needed. The comparison function should satisfy that it is non-

negative and LhΦ(x) ≥ C1 > 0 where Lh is the finite difference scheme (4.7). We claim

the comparison function

Φ(x) =


1

β−
(x− α)2 +

1

β−
(xj − x)2, x ≤ α,

1

β+
(x− α)2 +

1

β+
(x− xj+1)

2, x > α.

(4.13)

Because β(x) is positive. For x ∈ Ω, Φ(x) > 0. When we apply the finite difference

stencil Lh to the comparison function Φ(x).

51



At regular point xi, we assume that xi−1 < xi < xi+1 < α. We have

LhΦ(xi) = γj,1Φ(xi−1) + γj,2Φ(xi) + γj,2Φ(xi+1)

= 4− σ2

β−
(xi − α)2 − σ2

β−
(xi − xj)2

≥ 4− 2σ2

β−
> C1 > 0,

(4.14)

because we have 2β− − σ2 > 0, (xi − α)2 < 1 and (xi − xj)2 < 1.

For α < xi−1 < xi < xi+1, we have

LhΦ(xi) = 4− σ2

β+
(xi − α)2 − σ2

β+
(xi − xj+1)

2

≥ 4− 2σ2

β+
> C1 > 0,

(4.15)

because β+ ≥ β− such that 2β+ − σ2 > 2β− − σ2 > 0.

At irregular point xj, we have xj−1 < xj < α < xj+1. We have already had the

coefficients of scheme from (4.9).

And Φ(x) at xj−1, xj and xj+1 are

Φ(xj−1) =
1

β−
(xj−1 − α)2 +

1

β−
(xj − xj−1)2, (4.16)

Φ(xj) =
1

β−
(xj − α)2, (4.17)

Φ(xj+1) =
1

β+
(xj+1 − α)2. (4.18)
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Then we plug them into LhΦ(xi) = γj,1Φ(xj−1) + γj,2Φ(xj) + γj,3Φ(xj+1). We have

LhΦ(xi) =
2β−h2

Djβ−
+
β−h2

Djβ−
+

[β](xj − α)(xj−1 − α)

Djβ−
− [β](xj − α)h

Djβ−
− σ2

β−
(xi − α)2

=
2β−h2 + β−h2 + [β](xj − α)(xj−2 − α)

β−
(
h2 +

[β](α− xj−1)(α− xj)
2β−

) − σ2

β−
(xj − α)2

≥
2β−h2 + β−h2 + [β](xj − α)(xj−2 − α)−

(
h2 +

[β](xj−1 − α)(xj − α)

2β−

)
σ2

β−
(
h2 +

[β](α− xj−1)(α− xj)
2β−

)

≥
(2β− − σ2)h2 + β−h2 + [β](xj − α)

(
(xj−2 − α)− σ2(xj−1 − α)

2β−

)
β−
(
h2 +

[β]h2

2β−

)

≥
(2β− − σ2)h2 + β−h2 + [β]

σ2

2β−
(α− xj)h

β−
(
h2 +

[β]h2

2β−

)
≥ O(1) +

C2

h
,

(4.19)

because we have 2β− − σ2 > 0. And C2 is determined by jumps of β(x) and σ.

For irregular points xj+1 > α, we can have the result in the same way

LhΦ(xj+1) ≥ O(1) +
C2

h
. (4.20)
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From above, we conclude

LhΦ(xi)



≥ 4− 2σ2

β−
, 0 < xi < xj,

≥ 4− 2σ2

β+
, xj+1 < xi < 1,

≥ O(1) +
C2

h
, xi = xj or xi = xj+1.

(4.21)

With the comparison function, we have our result for the problem (4.1), (4.4), (4.6).

4.3 Main convergence result

In this section, we claim the result of error analysis:

Theorem 4.3.1. We consider the problem with Neumann boundary condition (4.1),

(4.4), (4.6). And we assume that 2β− − σ2 > 0. We use the finite difference stencil Lh

such that it has a unique solution. Let ue ∈ C3 be the exact solution to this problem. And

uh is the numerical solution. Then the estimation of error of numerical solution obtained

from immersed interface method is bounded as follows

‖uh − ue‖ ≤ Ch2, (4.22)

where C is the constant depend on β(x) and σ.

Proof. To prove this theorem, we use the non-negative comparison function (4.13). Ap-
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plying the finite difference stencil Lh to the comparison function, we have

LhΦ(xi)



≥ 4− 2σ2

β−
, 0 < xi < xj,

≥ 4− 2σ2

β+
, xj+1 < xi < 1,

≥ O(1) +
C2

h
, xi = xj or xi = xj+1.

(4.23)

We also know that at regular points, the truncation error |T (xi)| is bounded by

|T (xi)| < C3h
2, (4.24)

such that

|T (xi)|
LhΦ(xi)

≤ C3h
2

C1

. (4.25)

And at irregular points, the truncation error |T (xi)| is bounded by

|T (xi)| < C4h, (4.26)

such that

|T (xi)|
LhΦ(xi)

≤ C4h

C2/h
=
C4h

2

C2

. (4.27)

At points x = 0 and x = 1, we have the value of Φ(x)

Φ(0) =
1

β−
α2 +

1

β−
x2j , (4.28)

Φ(1) =
1

β+
(1− α)2 +

1

β+
(1− xj+1)

2. (4.29)

The value on the boundary are finite. From the result of Lemma 3.1.5, the global
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error of numerical solution obtained from the immersed interface method is bounded as

follows

‖uh − ue‖ ≤ Ch2, (4.30)

which means that the numerical solution is second-order accurate.

4.4 Conclusion

In this section, we consider the elliptic problem (4.1), (4.4), (4.6) with an interface and

Neumann boundary conditions. But this problem does not need additional conditions to

guarantee the problem well-posed. By constructing a non-negative comparison function,

we estimate the positive low bounds for LhΦ at regular and irregular points such that we

can use the Lemma 3.1.5 from the maximum principle to give Theorem 4.3.1.
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Chapter 5

ERROR ANALYSIS OF THE

IMMERSED INTERFACE

METHOD FOR THE

INCOMPRESSIBLE STOKES

EQUATIONS WITH AN

INTERFACE

In this chapter, we consider the Stokes equations on a rectangular domain Ω with an

interface Γ

∇p = µ∆u+ F + g, x ∈ Ω, (5.1)
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∇ · u = 0, (5.2)

where u is the velocity, p is pressure, g is a body force, and F is a source distribution

along a closed smooth interface Γ ∈ Ω as in Peskin’s immersed boundary (IB) model

[23],

F (x) =

∫
Γ

f(s)δ2(x−X(s))ds, (5.3)

where δ2 is the Dirac delta function in two dimensional space.

We recall the Figure 2.1 in Chapter 2 as illustration.

x = a
y = c

y = d

x = b

Ω = Ω+ ∪Ω−

Γ

∂Ω x∗

Ω−

Ω+
normal direction n

tangential direction τ

Figure 5.1 A diagram of an interface Γ in the domain Ω, with the tangential τ and normal
direction n at a point x∗ on the interface.

Because of the presence of the singular source, the pressure and its normal derivative,

and the normal derivative of the velocity are discontinuous across the interface. The jump
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relations below

[p] = f̂1, (5.4)[
∂p

∂n

]
=

∂

∂τ
f̂2, (5.5)[

∂u

∂n
· τ
]

+

[
∂u

∂τ
· n
]

+ f̂2 = 0, (5.6)

[∇ · u] = 0, (5.7)

are derived in [21], where f̂1 = f ·n and f̂2 = f · τ . The definition of jump condition has

been defined in Chapter 2.

There are variety of numerical methods for solving the Stokes interface problems.

Among them, the immersed interface method using three Poisson equations approach [22]

may be one of the most efficient if the pressure boundary condition can be taken care

of1. In the three Poisson equations approach, assuming that the viscosity is a constant in

the entire domain, then by applying the divergence operator to the momentum equation

(5.1), we get a Poisson equation across the interface for the pressure with the known jump

condition in the normal derivative. After we have computed the pressure, we can solve two

Poisson equations again to get the velocity from the momentum equation. Advantages of

this approach is that we can solve each Poisson equation using a fast Poisson solver such

as the Fishpack [10] which makes the method very efficient and fast. The three Poisson

equations approach is also the basis for the augmented Stokes solver for problems with

discontinuous viscosity in [33].

While the three Poisson equations approach seems to provide second-order accurate

1It is easier to deal with periodic boundary conditions for all the variables which is not discussed
here.
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pressure and velocity. Rigorous proof is still missing up to today. This is the main motiva-

tion of this chapter to provide such convergence proof. Note that, when the IIM is applied

to solve a Poisson equations with known jump conditions in the normal derivative, the

local truncation error is O(h2) at regular grid points and it is O(h) at irregular grid points

where the interface cuts through the standard centered five-point stencil, where h is the

mesh size. Nevertheless, the global error is O(h2) in the infinity norm. In [2], it shows

second order convergence for the solution for the velocity, but not for the pressure. In this

chapter, we provide a proof for the pressure which has a Neumann boundary condition.

To simplify the Neumann boundary condition for pressure, we assume that ∆u = O(h)

at the boundary of Ω.

In the following of this chapter, we are going to review the three Poisson equations

approach and its equivalence to the original formulation in Section 5.1. In Section 5.2, we

show main results for the Stokes equations and recall the lemmas in Chapter 2 to help

prove the results. In Section 5.4, we show the second order convergency for the velocity

Poisson equations. We conclude in the last section.

5.1 Review of the three Poisson equations approach

We consider the Stokes equations with constant viscosity µ. For simplicity we assume

µ = 1. Then (5.1), (5.2) are simplified

∇p = ∆u+ F + g, x ∈ Ω, (5.8)

∇ · u = 0, (5.9)
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where p is piecewise C1, u is piece-wise C2. We assume that p and u = (u, v)ᵀ are s-

mooth in each subdomain Ω− and Ω+. After decoupling the Stokes equations, three Pois-

son equations are provided. To preserve velocity divergence-free, a Neumann boundary

condition of pressure can be claimed. Thus, the Poisson equations for pressure should be

combined with a Neumann boundary condition. We cannot apply the result from [2] to it.

By applying divergence on the equation ∇p = ∆u + F + g, we can decouple the

velocity and pressure. After decoupling, we not only decouple the equations, but also

decouple the jump conditions on interface. Thus, we have three Poisson equations with

jump conditions

∆p = ∇ · (F + g), (5.10)

[p] = f̂1, (5.11)[
∂p

∂n

]
=

∂

∂τ
f̂2, (5.12)

∆u = px − (F1 + g1), (5.13)[
∂u

∂n

]
= f̂2 sin θ, (5.14)

∆v = py − (F2 + g2), (5.15)[
∂v

∂n

]
= −f̂2 cos θ, (5.16)

[u] = 0, [v] = 0, (5.17)

where θ is the angle between normal direction of the interface and horizontal axis,

g = (g1, g2)
ᵀ and F = (F1, F2)

ᵀ.
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For pressure, we have

∆p = ∇ · (F + g), (5.18)

[p] = f̂1, (5.19)[
∂p

∂n

]
=

∂

∂τ
f̂2. (5.20)

Then we apply immersed interface method [17, 22] to these equations to solve pressure.

From [14], when we apply divergence to the Stokes equations for decoupling, we need

to make sure that the velocity u is still divergence-free after decoupling. A Neuman-

n boundary condition for pressure can be derived. In next subsections, we review the

derivation of Neumann boundary condition and prove the divergence-free of velocity. For

simplicity, we call F + g = G.

5.1.1 Neumann boundary condition for the pressure

We claim the following Neumann boundary condition [13, 14] for pressure

∂p

∂n

∣∣∣∣
∂Ω

= [−n · (∇×∇× u) + n ·G]

∣∣∣∣
∂Ω

, (5.21)

where n is a unit normal vector along ∂Ω. A new system equivalent to the original Stokes

equations is given by

∆u = ∇p−G, (5.22)

∂p

∂n

∣∣∣∣
∂Ω

= [−n · (∇×∇× u) + n ·G]
∣∣
∂Ω
, (5.23)

u
∣∣
∂Ω

= 0. (5.24)
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Next, we will prove the equivalence between the given system and the origin system.

5.1.2 Proof of the equivalence and the divergence-free of veloc-

ity

Recall the vector identity

∆u = −∇×∇× u+∇(∇ · u). (5.25)

Along the boundary ∂Ω, take inner product of ∇p = ∆u + G and n. Then replace

∆u by −∇×∇× u+∇(∇ · u),

∂p

∂n

∣∣∣∣
∂Ω

=

[
−n · (∇×∇× u) +

∂(∇ · u)

∂n
+ n ·G

] ∣∣∣∣
∂Ω

. (5.26)

Comparing with

∂p

∂n

∣∣∣∣
∂Ω

= [−n · (∇×∇× u) + n ·G]

∣∣∣∣
∂Ω

, (5.27)

we have

∂(∇ · u)

∂n

∣∣∣∣
∂Ω

= 0. (5.28)

From [14], set φ = ∇ · u. From previous information, we have equations



∆φ = 0,

∂φ

∂n

∣∣∣∣
∂Ω

= 0,

φ(0) = 0.

(5.29)
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Then solve this PDEs using separation of variables [15].

φ = ∇ · u = 0. (5.30)

This means that with the Neumann boundary condition for pressure, the divergence-

free of velocity still holds after decoupling. The Poisson equations for pressure with a

Neumann boundary condition can be written as

∆p = ∇ ·G = F, (5.31)

∂p

∂n

∣∣∣∣
∂Ω

= [−n · (∇×∇× u) + n ·G]
∣∣
∂Ω
, (5.32)

[p] = f̂1, (5.33)[
∂p

∂n

]
=

∂

∂τ
f̂2. (5.34)

With the vector identity (5.25), we can write the Neumann boundary condition into

∂p

∂n

∣∣∣∣
∂Ω

= [n · (∆u) + n ·G]
∣∣
∂Ω
. (5.35)

With the Neumann boundary condition of pressure, in next section, we show results

for the Stokes equations.
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5.2 Main convergence results

In the rest of this chapter, we follow the notations in Chapter 2. For the Poisson problem

of pressure:

∆p = ∇ ·G = F, (5.36)

∂p

∂n

∣∣∣∣
∂Ω

= [n ·∆u+ n ·G]
∣∣
∂Ω
, (5.37)

[p] = f̂1, (5.38)[
∂p

∂n

]
=

∂

∂τ
f̂2. (5.39)

Recall definitions of regular and irregular points in Chapter 2. Let pe be the exact

solution. At regular grid points we have the truncation error

∆hp
e(jh) = F±(jh) + τh(jh), ‖τh(jh)‖ ≤ Ch2, (5.40)

where F± is based on whether jh ∈ Ω+ or Ω−. Then we consider the truncation error at

irregular points, we have T h(jh), determined by jumps on Γ . So that

∆hp
e(jh) = F±(jh) + T h(jh) + τh(jh), ‖τh(jh)‖ ≤ Ch. (5.41)

We define F h on Ωh by

F h(jh) =


F±(jh) + T h(jh), jh irregular,

F±(jh), jh regular.

(5.42)
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Thus, we can have ph as the solution to

∆hp
h = F h in Ωh, D+ph = n ·∆u+ n ·G on ∂Ωh, (5.43)

where D+ph is the central difference stencil which we have defined in Chapter 2 on the

boundary.

Then, with assumption ∆u = O(h) on ∂Ω, the error ph − pe will satisfy

∆h(p
h − pe) = −τh in Ωh, D+(ph − pe) = O(h) on ∂Ωh. (5.44)

After the prepearation above, we can state our results with a Neumann boundary

condition which is different from the result in [2]. After the theorem and related lemmas,

proofs will be given. The theorem implies that the error in (2.19) is uniformly O(h2),

although the local truncation errors are O(h) at irregular grid points in Ω:

Theorem 5.2.1. Let pe be the exact solution of pressure in Stokes equations (5.1), (5.2)

with the interface Γ at least C1. Suppose ∆hp
e has the form given by (5.40),(5.41), with

‖τh(jh)‖ ≤ Ch at irregular grid points and ‖τh(jh)‖ ≤ Ch2 at regular grid points. Let ph

be the solution to (5.42),(5.43). Assume that there is a chosen grid point (α, β), where

ph − pe = 0. Then,

‖ph − pe‖Ωh
= O(h2), (5.45)

and

‖D+
1 (ph − pe)‖Ωh

= O(h2), (5.46)

‖D+
2 (ph − pe)‖Ωh

= O(h2). (5.47)
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Meanwhile, the errors between exact solutions and computational solutions to velocity

u = (u, v)ᵀ are

|uh − ue| = O(h2), (5.48)

|vh − ve| = O(h2). (5.49)

The estimations of ‖D+
1 (ph − pe)‖Ωh

and ‖D+
2 (ph − pe)‖Ωh

will be derived in Section

5.4. And Theorem 5.2.1 can be proved with the next three lemmas, which are proved

in Section 5.3.

To prove the Theorem 5.2.1, we will use the Lemma 2.3.2 in Chapter 2. And we

also need a lemma which is similar to lemma 2.3.3:

Lemma 5.2.2. Suppose

∆hv = F reg +D−1 F1 +D−2 F2 in Ωh, D+v = −O(h) on ∂Ωh. (5.50)

Then

‖∇+
h v‖

2
Ωh
≤ ‖F reg‖Ωh

‖v‖Ωh
+ (‖F1‖Ωh

+O(h3))‖D+
1 v‖Ωh

+ (‖F2‖Ωh
+O(h3))‖D+

2 v‖Ωh
+ 4O(h2)‖v‖Ωh

,

(5.51)

where F reg is a function on the set of regular points.

Recall the discrete Neumann-Poincare inequality (Lemma 2.3.4):

Lemma 5.2.3 (Discrete Neumann-Poincare inequality). If v is C1 on Ωh, we define

A = v(c1, c2), (5.52)
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where (c1, c2) is a point on Ωh.

Then,

‖v − A‖Ωh
≤ C‖∇+

h v‖Ωh
. (5.53)

To derive the Theorem, we set F irr equal to the restriction of τh at those irregular

points and use Lemma 2.3.2 so that F1 = O(h2) and F2 = O(h2). We apply Lemma

5.2.2 to v = ph − pe,2 using (5.44) with F reg equal to the regular part of τh. To make

the Stokes equation compatible, give a chosen point (α, β) where v = 0. We can set A in

Lemma 2.3.4 as the error of pressure at point (α, β). Combing (5.51) with Lemma 2.3.4,

the second order accuracy error can be derived.

In order to derive (5.46) and (5.47) in the Theorem 5.2.1, we will use the result

of Lemma 5.2.2. During the derivation, we need to discuss whether D+
1 (ph − pe) and

D+
2 (ph− pe) are zeros. But the different situations won’t affect the result. The detail will

be explained later.

In next section, we will see the proofs of Theorem 5.2.1 and Lemma 5.2.2.

5.3 Proofs of theorem 5.2.1 and the lemma 5.2.2

Proof of Lemma 5.2.2. Similar to the proof of Lemma 2.3.3, we multiply by v in (5.50),

sum over Ωh and then sum by parts on the left, using the Neumann boundary condition

for v

(∆hv, v)Ωh
=
∑
jh∈Ωh

(D−1 D
+
1 v +D−2 D

+
2 v)vh2

2The v here is not the one in velocity. It represent the error of pressure here.
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=
∑
jh∈Ωh

D−1 D
+
1 v · vh2 +

∑
jh∈Ωh

D−2 D
+
2 v · vh2

= −
∑
jh∈Ωh

[(D+
1 v)2 + (D+

2 v)2)]h2

+
M∑
j2=0

[D+
1 v(Nh, j2h)]2 · h2 +

N∑
j1=0

[D+
2 v(j1h,Mh)]2 · h2 (5.54)

−
M∑
j2=0

D+
1 v(0, j2h) · v(0, j2h) · h

−
N∑
j1=0

D+
2 v(j1h, 0) · v(j1h, 0) · h

+
M∑
j2=0

D+
1 v(Nh, j2h) · v(Nh, j2h) · h

+
N∑
j1=0

D+
2 v(j1h,Mh) · v(j1h,Mh) · h.

(∆hv, v)Ωh
= −(∇+

h v,∇
+
h v)Ωh

+
M∑
j2=0

[D+
1 v(Nh, j2h)]2 · h2 +

N∑
j1=0

[D+
2 v(j1h,Mh)]2 · h2

−
M∑
j2=0

D+
1 v(0, j2h) · v(0, j2h) · h (5.55)

−
N∑
j1=0

D+
2 v(j1h, 0) · v(j1h, 0) · h

+
M∑
j2=0

D+
1 v(Nh, j2h) · v(Nh, j2h) · h
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+
N∑
j1=0

D+
2 v(j1h,Mh) · v(j1h,Mh) · h.

On the right hand side,

(F reg +D−1 F1 +D−2 F2, v)Ωh
= (F reg, v)Ωh

+ (D−1 F1, v)Ωh
+ (D−2 F2, v)Ωh

.

(5.56)

Consider (D−1 F1, v) and use summation by parts with F1 = 0 on the boundary,

(D−1 F1, v)Ωh
=
∑
jh∈Ωh

D−1 F1(j1h, j2h)v(j1h, j2h)h2

=
∑
jh∈Ωh

[F1(j1h, j2h)− F ((j1 − 1)h, j2h)]v(j1h, j2h)h

= −(F1, D
+
1 v) +

M∑
j2=0

F1(Nh, j2h)D+
1 v(Nh, j2h)h2

−
M∑
j2=0

F1(0, j2h)v(0, j2h)h+
M∑
j2=0

F1(Nh, j2h)v(Nh, j2h)h

= −(F1, D
+
1 v)Ωh

.

(5.57)

Similarly, we have

(D−2 F2, v)Ωh
= −(F2, D

+
2 v)Ωh

. (5.58)

Thus,

(F reg +D−1 F1 +D−2 F2, v)Ωh
= (F reg, v)Ωh

− (F1, D
+
1 v)Ωh

− (F2, D
+
2 v)Ωh

.

(5.59)
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Combining (∆hv, v)Ωh
with (F reg +D−1 F1 +D−2 F2, v)Ωh

, we have

(F reg, v)Ωh
− (F1, D

+
1 v)Ωh

− (F2, D
+
2 v)Ωh

= −(∇+
h v,∇

+
h v)Ωh

+
M∑
j2=0

[D+
1 v(Nh, j2h)]2 · h2 +

N∑
j1=0

[D+
2 v(j1h,Mh)]2 · h2

−
M∑
j2=0

D+
1 v(0, j2h) · v(0, j2h) · h

−
N∑
j1=0

D+
2 v(j1h, 0) · v(j1h, 0) · h

+
M∑
j2=0

D+
1 v(Nh, j2h) · v(Nh, j2h) · h

+
N∑
j1=0

D+
2 v(j1h,Mh) · v(j1h,Mh) · h.

(5.60)

As we know, we have defined D+
1 and D+

2 on the boundary. We have

D+
1 v = −O(h), D+

2 v = −O(h) on the boundary. (5.61)

Thus, using Cauchy-Schwarz inequality we can have inequality

‖∇+
h v‖

2
Ωh
≤ ‖F reg‖Ωh

‖v‖Ωh
+ (‖F1‖Ωh

+O(h3))‖D+
1 v‖Ωh

+ (‖F2‖Ωh
+O(h3))‖D+

2 v‖Ωh
+ 4O(h2)‖v‖Ωh

.

(5.62)

With Lemma 5.2.2 and Lemma 2.3.4, we can derive the pressure part of Theorem

5.2.1.

Proof of Theorem 5.2.1. In this proof, we only prove the result of pressure in Theorem
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5.2.1. The proof of the results for velocities will be shown in later section. To make sure

that the boundary value problem of pressure has a unique solution we have v(α, β) = 0.

We set A = v(α, β) = 0. Then the inequality will become

‖v‖Ωh
≤ C‖∇+

h v‖Ωh
. (5.63)

Back to the inequality 5.51 in Lemma 5.2.2

‖∇+
h v‖

2
Ωh
≤ ‖F reg‖Ωh

‖v‖Ωh
+ (‖F1‖Ωh

+O(h3))‖D+
1 v‖Ωh

+ (‖F2‖Ωh
+O(h3))‖D+

2 v‖Ωh
+ 4O(h2)‖v‖Ωh

.

(5.64)

With the discrete Neumann-Poincare inequality, we can have

‖∇+
h v‖

2
Ωh
≤ C‖F reg‖Ωh

‖∇+
h v‖Ωh

+ (‖F1‖Ωh
+O(h3))‖∇+

h v‖Ωh

+ (‖F2‖Ωh
+O(h3))‖∇+

h v‖Ωh
+ 4CO(h2)‖∇+

h v‖Ωh
.

(5.65)

Divided by ‖∇+
h v‖Ωh

on the both sides

‖v‖Ωh
≤ C‖∇+

h v‖Ωh
≤ C2‖F reg‖Ωh

+ C(‖F1‖Ωh
+O(h3))

+ C(‖F2‖Ωh
+O(h3)) + 4C2O(h2).

(5.66)

According to the Lemma 2.3.2, we have

‖Fk‖Ωh
= O(h2), ‖F reg‖Ωh

= O(h2), (5.67)

‖v‖Ωh
≤ (5C2 + 2C)O(h2) + 2O(h3). (5.68)
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This implies that:

‖ph(jh)− pe(jh)‖Ωh
= O(h2) for jh ∈ Ωh. (5.69)

In next section, we prove the results of velocities in Theorem 5.2.1.

5.4 The accuracy of velocity

In this section, we show that velocity can reach second order accuracy when the pressure

reaches second order accuracy. Consider the two velocity Poisson equations

∆u = px − (F1 + g1), (5.70)[
∂u

∂n

]
= f̂2 sin θ, (5.71)

∆v = py − (F2 + g2), (5.72)[
∂v

∂n

]
= f̂2 cos θ, (5.73)

[u] = 0, [v] = 0. (5.74)

where θ is the angle between normal direction of the interface and horizontal axis, g =

(g1, g2)
ᵀ and F = (F1, F2)

ᵀ.

We see that there are px and py on the right hand side of equations for u and v. We

computed pressure from the previous Poisson equations for pressure numerically such

that the error from the immersed interface method for pressure affect the solutions to

velocities.
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In the following subsection, we estimate D+
1 (ph − pe) and D+

2 (ph − pe).

5.4.1 The estimations of D+
1 (ph − pe) and D+

2 (ph − pe)

Let v = ph − pe. We have already estimated ‖∇+
h v‖2Ωh

in Lemma 5.2.2. And we know

∇+
h v = (D+

1 v,D
+
2 v) such that

‖D+
1 v‖ ≤ ‖∇+

h v‖, (5.75)

‖D+
2 v‖ ≤ ‖∇+

h v‖. (5.76)

In Lemma 5.2.2, we have

‖∇+
h v‖

2
Ωh
≤ ‖F reg‖Ωh

‖v‖Ωh
+ (‖F1‖Ωh

+O(h3))‖D+
1 v‖Ωh

+ (‖F2‖Ωh
+O(h3))‖D+

2 v‖Ωh
+ 4O(h2)‖v‖Ωh

.

(5.77)

Combining with the inequalities ‖D+
1 v‖2Ωh

≤ ‖∇+
h v‖2Ωh

, ‖D+
2 v‖2Ωh

≤ ‖∇+
h v‖2Ωh

and

‖v‖Ωh
≤ C‖∇+

h v‖Ωh
,

‖D+
1 v‖2 ≤ ‖∇+

h v‖
2
Ωh
≤ ‖F reg‖Ωh

‖v‖Ωh
+ (‖F1‖Ωh

+O(h3))‖D+
1 v‖Ωh

+ (‖F2‖Ωh
+O(h3))‖D+

2 v‖Ωh
+ 4O(h2)‖v‖Ωh

(5.78)

≤ ‖F reg‖Ωh
‖∇+

h v‖Ωh
+ (‖F1‖Ωh

+O(h3))‖D+
1 v‖Ωh

+ (‖F2‖Ωh
+O(h3))‖D+

2 v‖Ωh
+ 4O(h2)‖∇+

h v‖Ωh
,

‖D+
2 v‖2 ≤ ‖∇+

h v‖
2
Ωh
≤ ‖F reg‖Ωh

‖v‖Ωh
+ (‖F1‖Ωh

+O(h3))‖D+
1 v‖Ωh
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+ (‖F2‖Ωh
+O(h3))‖D+

2 v‖Ωh
+ 4O(h2)‖v‖Ωh

(5.79)

≤ ‖F reg‖Ωh
‖∇+

h v‖Ωh
+ (‖F1‖Ωh

+O(h3))‖D+
1 v‖Ωh

+ (‖F2‖Ωh
+O(h3))‖D+

2 v‖Ωh
+ 4O(h2)‖∇+

h v‖Ωh
.

In the inequalities above, we divide the first inequality by ‖D+
1 v‖ and the second by

‖D+
2 v‖.

‖D+
1 v‖Ωh

≤ ‖F reg‖Ωh

‖∇+
h v‖Ωh

‖D+
1 v‖Ωh

+ (‖F1‖Ωh
+O(h3))

+ (‖F2‖Ωh
+O(h3))

‖D+
2 v‖Ωh

‖D+
1 v‖Ωh

+ 4O(h2)
‖∇+

h v‖Ωh

‖D+
1 v‖Ωh

,

‖D+
2 v‖Ωh

≤ ‖F reg‖Ωh

‖∇+
h v‖Ωh

‖D+
2 v‖Ωh

+ (‖F1‖Ωh
+O(h3))

‖D+
1 v‖Ωh

‖D+
2 v‖Ωh

+ (‖F2‖Ωh
+O(h3)) + 4O(h2)

‖∇+
h v‖Ωh

‖D+
2 v‖Ωh

.

(5.80)

When we do this division, we have to make sure that the dividend is nonzero. So

assume that ‖D+
1 v‖Ωh

6= 0 and ‖D+
2 v‖Ωh

6= 0. With ‖D+
1 v‖Ωh

, ‖D+
2 v‖Ωh

and ‖∇+
h v‖Ωh

finite, there exists K1, K2, K3, and K4 large enough such that

‖∇+
h v‖Ωh

‖D+
1 v‖Ωh

≤ K1,
‖D+

2 v‖Ωh

‖D+
1 v‖Ωh

≤ K2, (5.81)

‖∇+
h v‖Ωh

‖D+
2 v‖Ωh

≤ K3,
‖D+

1 v‖Ωh

‖D+
2 v‖Ωh

≤ K4. (5.82)

With ‖F reg‖Ωh
= O(h2), ‖F1‖Ωh

= O(h2) and ‖F2‖Ωh
= O(h2), we can have that

‖D+
1 v‖Ωh

= O(h2), (5.83)
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‖D+
2 v‖Ωh

= O(h2), (5.84)

which implies

‖D+
1 (ph − pe)‖Ωh

= O(h2), (5.85)

‖D+
2 (ph − pe)‖Ωh

= O(h2). (5.86)

With this result, in next subsection we will talk about the accuracy of velocity.

5.4.2 The accuracy of velocity u and v

In this subsection, we derive the accuracy of velocity. We first consider the situation

when ‖D+
1 (ph − pe)‖Ωh

6= 0 and ‖D+
2 (ph − pe)‖Ωh

6= 0. In the previous subsection, we

have already had

‖D+
1 (ph − pe)‖Ωh

= O(h2), (5.87)

‖D+
2 (ph − pe)‖Ωh

= O(h2), (5.88)

Thus, combining with the Poisson equations for velocities u and v3, we have

∆h(u
h − ue) = O(h2), uh − ue = 0 on ∂Ωh, (5.89)

∆h(v
h − ve) = O(h2), vh − ve = 0 on ∂Ωh, (5.90)

3In this subsection, v represents velocity in vertical direction.

76



with jump conditions. From the result in [2], we can have that

|uh − ue| = O(h2), (5.91)

|vh − ve| = O(h2), (5.92)

on the computation domain Ωh. This means that the numerical solution of velocities

reach second order accuracy.

Next, we consider the situation when ‖D+
1 (ph− pe)‖Ωh

= 0 but ‖D+
2 (ph− pe)‖Ωh

6= 0.

It implies that ‖D+
1 (ph − pe)‖Ωh

= 0 such that D+
1 p

h = D+
1 p

e. In this situation,

∆h(u
h − ue) = O(h2), uh − ue = 0 on ∂Ωh. (5.93)

From the result in [2], |uh − ue| = O(h2) in Ωh.

On the other side for ‖D+
2 (ph − pe)‖Ωh

, ‖∇+
h (ph − pe)‖Ωh

= ‖D+
2 (ph − pe)‖Ωh

. Back

to the inequality of ‖D+
2 (ph − pe)‖Ωh

,

‖D+
2 (ph − pe)‖Ωh

≤ ‖F reg‖Ωh
+ (‖F1‖Ωh

+O(h3))
‖D+

1 (ph − pe)‖Ωh

‖D+
2 (ph − pe)‖Ωh

+ (‖F2‖Ωh
+O(h3)) + 4O(h2).

(5.94)

From the inequality of ‖∇+
h (ph−pe)‖Ωh

, we know that ‖D+
1 (ph−pe)‖Ωh

and ‖D+
2 (ph−

pe)‖Ωh
are finite such that

‖D+
1 (ph − pe)‖Ωh

‖D+
2 (ph − pe)‖Ωh

= 0. (5.95)

77



With ‖F reg‖Ωh
= O(h2), ‖F1‖Ωh

= O(h2) and ‖F2‖Ωh
= O(h2), we have

‖D+
2 (ph − pe)‖Ωh

= O(h2), (5.96)

such that

∆h(v
h − ve) = O(h2), vh − ve = 0 on ∂Ωh, (5.97)

with jump conditions. From the result in [2], we have

|vh − ve| = O(h2). (5.98)

We can show the same result in similar way for situations when ‖D+
2 (ph− pe)‖Ωh

= 0

but ‖D+
1 (ph − pe)‖Ωh

6= 0 and when both of them are zeros. It implies that both of the

velocities on horizontal and vertical direction can reach second order accuracy no matter

whether ‖D+
1 (ph − pe)‖Ωh

and ‖D+
2 (ph − pe)‖Ωh

are zeros.

5.5 Conclusion

In this Chapter, we consider the Stokes equation with an interface. We have the result

that the immersed interface method can give second order accurate solution with three

Poisson equations approach, while most of numerical methods can only reach first order

accuracy for pressure. Additionally, the numerical solution of velocity also reach second

order accuracy with the immersed interface method even though the error generated from

numerical solution of pressure would affect the problems of velocity.

78



Chapter 6

CONCLUSION AND FUTURE

WORK

6.1 Summary

Our work in error analysis of the immersed interface method is completing the theoretical

proof which is missing for the interface problem with a Neumann boundary condition.

We point out the main contributions of our work:

• We showed that the immersed interface method gives second-order accurate solution

for Poisson equation with an interface, constant coefficients and Neumann boundary

conditions.

• We extend the results from the maximum principle and Theorem (6.1) and (6.2)

in [16] for the problems with a Neumann boundary condition.

• We showed that the numerical solution from the immersed interface method reach-

es second-order accuracy for the Poisson equation with an interface, a variable
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coefficient β(x) and Neumann boundary conditions.

• We showed that for a complicated elliptic problem (βux)x − σ2u = f with an

interface and Neumann boundary conditions, the immersed interface method also

gives second-order accurate numerical solution.

• We proved that the immersed interface method with three-Poisson-equations ap-

proach has second-order accurate solution for both pressure and velocity in the

Stokes equations with an interface.

6.2 Future work

During our work, we have talked about the Poisson equations, the equation (βux)x−σ2u =

f and the Stokes equations. However, these are only a little piece of elliptic problems. We

focused on our attention on the problems with Neumann boundary conditions. But for

those interface problems which have mixed boundary conditions, we don’t know whether

the immersed interface method can still give second-order accurate solution.

When we talked about the elliptic problem (βux)x−σ2u = f , we assume that 2β−σ2 >

0. This assumption makes this problem more specific. Actually, from the finite difference

scheme, the problem has unique solution for any coefficient σ. The results from the

maximum principle and related theorems should work on a more general problem. So

finding a better comparison function for this problem should be one part of the future

work such that it can help to extend the error analysis to a general problem regardless

of the value of σ. We have worked on the one-dimensional elliptic problem for this. The

error analysis of higher dimensional problems should be contained in the future work.

We have shown that the immersed interface method is efficient for the Stokes prob-
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lem with an interface. However, the Navier-Stokes equations are the famous system in

computational fluid dynamics. The error analysis of the immersed interface method for

the Navier-Stokes equations is still missing. There is a lot of work can be done in this

part.

We notice that we used two different approaches to prove our result based on the

types of problems. And the approaches work for some specific problems. For other ellip-

tic problems, they may not work. Comparing the two approaches, they have their own

advantages and disadvantages. The biggest difference between these two approaches is

finding comparison functions. If we can find a comparison function for each elliptic prob-

lem, we can show error analysis of every elliptic problem. The approach by using results

from the maximum principle and related theorems seems to be more general. But finding

comparison functions is the most difficult part during error analysis. The way to construct

a good comparison function should be one important part in our future research.
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