
ABSTRACT

BRADY, RENEÉ JHENEALL. Mathematical Modeling of the Acute Inflammatory Response & Cardiovascular
Dynamics in Young Men. (Under the direction of Mette S. Olufsen.)

The magnitude of the initial reaction of the body to a pathogenic microbial infection or severe

tissue trauma is of critical importance; an uncontrolled acute inflammatory response can cause

further tissue damage, sepsis, and ultimately death, while an insufficient response can result in

inadequate clearance of the pathogens, leading to chronic inflammation. A normal inflammatory

response helps to combat threats posed by pathogens and restore the body to a healthy state. Inflam-

mation caused by surgery or endotoxin increases the vagal activity due to the neuroinflammatory

reflex. The increased vagal tone increases the risk of vasovagal syncope, as seen in 40% of patients

during the early post-surgical phase. To gain insight into the factors associated with this and to

identify those who may be susceptible to problems, a mathematical model of the acute inflam-

matory response (AIR) to an endotoxin challenge has been developed and analyzed in this thesis.

The model incorporates the main components of the AIR: the resting and activated monocytes,

the pro-inflammatory cytokines tumor necrosis factor-↵ (TNF-↵) and interleukins-6 and -8 (IL-6

and IL-8), and the anti-inflammatory cytokine interleukin-10 (IL-10). Our model was calibrated to

experimental data obtained from experiments measuring the circulating cytokines over 8 hours in

20 healthy subjects administered a low dose of lipopolysaccharide. Subject-specific parameters were

estimated and related to changes in heart rate variability (HRV), a measure that can be obtained

non-invasively in real-time.

Conditions such as autonomic dysfunction (nausea, fainting, and dizziness) and chronic fatigue,

which result in response to changes in the autonomic nervous system, can be detrimental for a

patient recovering post-surgery. We hypothesize that blood pressure and heart rate are affected

by changes in the pro-inflammatory mediators via changes in temperature, the production of the

vasodilator nitric oxide (NO), and changes in the pain perception tolerance (PPT). To test this

hypothesis, we have coupled the inflammatory model with a non-pulsatile cardiovascular model.

The non-pulsatile model was derived by integrating a pulsatile cardiovascular model, using the

same parameter values in both formulations. This is the first model of its kind developed in such a

way. While previous studies have formed an understanding of the effect of the cardiovascular system

on the inflammatory response, via a cholinergic anti-inflammatory pathway, limited research has

been done to understand the effect of the inflammatory system on the cardiovascular dynamics.

The coupled model was calibrated to experiment measurements of heart rate and blood pressure.

Model simulations compared well with data and were able to predict both normal and abnormal

responses. Results were cross-validated against second day data. HRV analysis showed that an

enhanced inflammatory response is correlated with attenuated vagal firing. The identified and



modeled associations between inflammatory responses and changes in HRV suggest that HRV data

may be further modeled and used as a non-invasive, real-time monitoring marker of autonomic

dysfunction in response to inflammation.
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CHAPTER

1

INTRODUCTION

Invasion by pathogens or injury triggers an acute inflammatory response (AIR) that is vital in the

repulsion of pathogens and the induction of a repair mechanism in damaged tissues. Inflammation

is characterized by heat, redness, swelling, pain, and can lead to loss of function if not properly

controlled. An insufficient response can cause persistent tissue injury, resulting in conditions such as

autoimmune diseases, cancer, and lifestyle-related disorders [Janeway et al., 2001]. An uncontrolled,

excessive production of pro-inflammatory mediators from immune cells and traumatized tissues

can cause systemic inflammatory response syndromes (SIRS) such as sepsis and, in life-threatening

events, septic shock [Schulte et al., 2013]. The Agency for Healthcare Research and Quality lists sepsis

as the most expensive condition treated in U.S. hospitals, costing more than $23 billion in 2013

[Torio & Moore, 2013]. It has been found that many chronic inflammatory diseases can increase a

person’s risk of cancer. In particular, Crohn’s disease and multiple sclerosis, which have been linked

to colorectal and breast cancer, respectively, the second and third most deadly cancers.

In recent years, it has been suggested that inflammation may be connected to autonomic

dysfunction (nausea, fainting, and dizziness) [Tracey, 2002] and chronic fatigue syndrome (CFS)

[Buchwald et al., 1997], two symptoms that have been found in girls exhibiting side effects to

vaccinations against human papillomavirus (HPV) [Brinth et al., 2015]. Recent studies by Dr. Jesper

Mehlsen’s group (not yet published) suggest that G-protein coupled antibodies with agonistic effects
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on receptors in the autonomic nervous system may be partially responsible for postural orthostatic

tachycardia syndrome (POTS), an autonomic disorder in which a change from the supine position

to an upright position causes an abnormally large increase in heart rate [Grubb, 2008]. It is known

that inflammation is associated with a large number G-protein coupled receptors (GPCRs), which

are crucial to the migration of monocytes and their accumulation at sites of inflammation [Sun &

Ye, 2012]. Increased levels of pro-inflammatory mediators have also been reported in cases of CFS.

There exists a host of diseases and disorders which can be linked to inflammation, many of

which can be fatal if not properly treated. The development of treatment options can be challenging

due to the inability to elicit a large range of endotoxin doses, in some cases much higher than safe,

in humans. Thus, many treatment options are developed from clinical studies in mice. However,

physiological differences between humans and mice, allow for limited confidence in these treatment

options. The development of mathematical models of the inflammatory response that are validated

against human data can aid in the development of treatment options more suitable for humans.

We hypothesize that changes in the inflammatory response affect blood pressure and heart rate,

in particular changes in heart rate variability (HRV). Using HRV as a preoperative marker might

enable physicians to identify patients requiring a different treatment regimen post-surgery. This may

provide a non-invasive, real-time monitoring marker of early sepsis, which can shorten a patient’s

hospital stay, reducing health care costs and improving a patient’s quality of life.

1.1 Overview of Dissertation

There are five aims of this study: (1) develop a mathematical model of the acute inflammatory

response to an endotoxin challenge, (2) render the model patient-specific by conducting sensitivity

analysis, and identifiability analysis. The latter is essential to determine a subset of parameters

that can be estimated, given the model and available data. Estimated parameters will be analyzed

and used to categorize differences between normal and abnormal responders. (3) Develop a non-

pulsatile cardiovascular model that can be used in lieu of the more complex, pulsatile cardiovascular

model, to predict blood pressure using heart rate as an input, (4) couple the inflammatory model with

the the non-pulsatile cardiovascular model, incorporating temperature, nitric oxide and pain, (5)

use sensitivity analysis, identifiability analysis and optimization techniques, to render the coupled

model patient-specific.

The proceeding chapters are organized as follows:

Chapter 2 introduces the immune and cardiovascular systems.

Chapter 3 describes the experimental data used to calibrate and validate the model.
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Chapter 4 introduces sensitivity analysis, identifiability analysis, and the optimization techniques

used to render the models patient-specific. Uncertainty quantification, using both fre-

quentist and Bayesian methods, is also introduced. The implementation of each method

is demonstrated using a modification of the SIRS model.

Chapter 5 describes the inflammatory model.

Chapter 6 presents model predictions for the inflammatory model, as well as parameter variations

between subjects, and uncertainty quantification results.

Chapter 7 develops the non-pulsatile cardiovascular model from the pulsatile model and develops

the coupled cardiovascular inflammatory model.

Chapter 8 presents predictions of the coupled cardiovascular-inflammatory model and compar-

isons of parameter values.

Chapter 9 summarizes the results of the dissertation and discusses future work.
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CHAPTER

2

PHYSIOLOGICAL BACKGROUND

This chapter presents the components of the immune and cardiovascular systems needed to develop

the mathematical model. The inflammatory response to endotoxin is also explained in detail. The

general information presented here are from the physiology book by [Guyton & Hall, 2011]. The

immune system and the inflammatory response are discussed in Section 2.1. The cardiovascular

system is described in Section 2.2. As a motivation for coupling the two systems together, the

inflammatory reflex is discussed in Section 2.3.

2.1 Immune System

The immune system protects the body from pathogens such as bacteria, viruses, parasites, and

antigens. It consists of the white blood cells (WBCs), tissue cells derived from WBCs, the thymus,

lymph nodes, and lymph vessels. The body relies on the immune system to aid in distinguishing

between its own cells and foreign cells/substances and to create a defense mechanism to destroy

the invaders. The body’s ability to resists foreign organisms is called immunity and is either innate

or acquired. Innate immunity is activated immediately or within hours of a pathogen’s appearance

in the body, while adaptive immunity is an antigen-specific immune response that does not develop

until after the body is first attacked by the antigen. Once an antigen has been recognized, the
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adaptive immune system produces immune cells specifically designed to attack that antigen. The

body’s response to an endotoxin results in a short-term response that is innate and for that reason,

for the remainder of the thesis we focus on such a response.

Monocytes & Neutrophils

The immune response is controlled by WBCs. There are six types of WBCs normally present in

the blood: polymorphonuclear neutrophils, polymorphonuclear eosinophils, polymorphonuclear

basophils, monocytes, lymphocytes, and plasma cells. Additionally, there are a large number of

fragments of the megakaryocyte, a cell found in the bone marrow that is similar to WBCs. These

disk-shaped fragments are called platelets.

Polymorphonuclear cells (neutrophils, eosinophils, and basophils) have a granular appearance

and for this reason are sometimes called granulocytes. Mast cells are specific granulocytes containing

granules that are rich in histamine and heparin, which act as vasodilators and anticoagulants,

respectively. Neutrophils are mature phagocytic WBCs; that is, they can attack and destroy bacteria

immediately. Along with monocytes, they are primarily responsible for mediating the inflammatory

response. Both neutrophils and monocytes are stored in the bone marrow until they are needed in

the circulatory system. Monocytes make up about 5.3% of the 7000 WBCs per microliter of blood.

They circulate in the blood for 10 to 20 hours and can migrate outside of the capillary membranes

in response to the detection of a pathogen or other foreign substance. After entering the tissue,

the monocytes swell to become activated monocytes (macrophages), which can either become

attached to the tissue or remain mobile. Lymphocytes include B and T cells, which are responsible

for producing antibodies and scanning for cellular abnormalities, respectively. Plasma cells are

formed in the lymph tissues and are transported to different parts of the body where they are needed.

Platelets are active in the blood clotting mechanism.

As shown in Figure 2.1, in response to the pathogen entering the body, platelets release blood-

clotting proteins at the wound site and mast cells release histamine which cause the blood vessels to

dilate. This enables monocytes and neutrophils to move out of the blood vessel via a process called

diapedesis, in which they squeeze through the pores of the capillary membranes. Once they are

outside of the blood vessel, these immune cells control the inflammatory process via chemotaxis and

phagocytosis. During chemotaxis, in response to the release of chemical substances in the tissues,

neutrophils and activated monocytes move toward the source of the chemical. These chemicals

can be produced by the bacteria themselves or by degenerative products of the inflamed tissues.

Chemotaxis is effective up to 100 micrometers away from an inflamed tissue and since no tissue

is more than 50 micrometers away from a capillary, the chemotaxis system can easily move the
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Figure 2.1 The inflammatory response. In response to bacteria, platelets from the blood release blood-
clotting proteins at the wound site. Mast cells secrete factors that mediate vasodilation and vasoconstric-
tion, as blood continues to flow to the injured area. Neutrophils and activated monocytes (macrophages)
release factors that phagocytize pathogens. Activated monocytes release cytokines that attract immune
cells to the site and activate cells involved in tissue repair. The inflammatory response subsides once the
pathogen is removed. Used with permission from [Resource, 2015].

monocytes and neutrophils into the inflamed area. Once the cells reach the chemical source, they

ingest the offending agent via phagocytosis (or cellular ingestion). Natural structures in the body

have smooth surfaces that can resist phagocytosis, but foreign particles do not. This ensures that

the cells are not destroying each other in the process of eliminating the initial threat.

In the event that the inflammation cannot be controlled by the inflammatory mediators, the in-

flammation can spread to the remaining parts of the body. This will force the mediators and immune

cells in other parts of the body to attempt to reduce the levels of inflammation. An unsuccessful

attempt at this can lead to whole-body inflammation (i.e. sepsis) and eventually, septic shock.
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Figure 2.2 Cytokine network. The immune system is regulated by several cell types including B cells, T cells,
activated monocytes (macrophages), mast cells, neutrophils, basophils, and eosinophils. Each cell type
has a specific role and communicates with each other using cytokines. The components highlighted in red
will be included in the mathematical model. Used with permission from [Zhang & An, 2007].

Cytokines

The monocytes and neutrophils release cytokines, small secreted proteins that mediate the in-

teractions and communications between cells [Zhang & An, 2007]. They affect the activation and

differentiation of the immune response by migrating through the tissues and to the blood ves-

sels where they encourage the activation of the monocytes and chemotaxis through the release of

chemicals into the tissue. Cytokines are released sequentially through the cytokine cascade, as one

cytokine stimulates the immune cells to produce another cytokine. They work synergistically or

antagonistically to mediate the inflammatory response as shown in Figure 2.2.

7



The pro-inflammatory cytokines included in the mathematical model are tumor necrosis factor

↵ (TNF-↵) and interleukins 1� , 6, and 8 (IL-1� , IL-6, and IL-8, respectively) that are involved in

the up-regulation of the inflammatory reactions. TNF-↵ is one of the most extensively studied

cytokines. Accumulation is seen within 90 minutes of a pathogen entering the body. Consequently,

TNF-↵ is characterized as an early regulator of the immune response [Schulte et al., 2013]. It is

primarily responsible for differentiation and activation of immune cells and has been implicated in

the induction of fever. The production of TNF-↵ up-regulates the release of other pro-inflammatory

mediators. When released systemically, TNF-↵ has been shown to cause septic shock and is said

to be responsible for several chronic inflammatory diseases such as rheumatoid arthritis, Crohn’s

disease, and psoriasis [Rossol et al., 2011].
IL-1� is also characterized as an early mediator, with accumulation detected two hours after

pathogen introduction. It is said to be one of the main pyrogens and is involved in coagulation

[Schulte et al., 2013]. IL-6 is involved in the activation of B and T cells, as well as the induction

of fever. It is primarily released in response to TNF-↵ and though considered pro-inflammatory,

it exhibits anti-inflammatory behavior inhibiting the release of TNF-↵ and IL-1� [Schulte et al.,

2013]. IL-8 is a chemotactic activating cytokine, also known as chemokine ligand 8 (CXCL8). It isj

responsible for the activation of neutrophils [Harada et al., 1994]. Its accumulation is seen two hours

after the pathogen is introduced.

The anti-inflammatory cytokine interleukin-10 (IL-10) suppresses the production of the pro-

inflammatory cytokines. It also stimulates the production of IL-1 receptor antagonist (IL-1Ra) and

soluble TNF-↵ receptors (sTNFRs), which are soluble inhibitors of the pro-inflammatory cytokines

IL-1� and TNF-↵, respectively. IL-10 is classified as an endogenous antipyretic, reducing the effects

of TNF-↵, IL-1� , and IL-6 on temperature. IL-10 is a late mediator of the response, as its production

is does not peak until three hours after the pathogen is introduced.

Though it might be useful to model the behavior of additional cytokines, in this study we focus

on the interactions between the pro-inflammatory cytokines TNF-↵, IL-6, and IL-8 and the anti-

inflammatory cytokine IL-10. These four mediators are regarded as the main drivers of the early

pro-inflammatory response (TNF-↵), the intermediate step between pro- and anti-inflammation (IL-

6), neutrophil activation (IL-8), and the late anti-inflammatory response (IL-10). We will primarily

focus on monocytes, as opposed to neutrophils, in the proceeding chapters.

2.2 Cardiovascular System

The cardiovascular system is responsible for maintaining metabolism and cell function by trans-

porting nutrients, oxygen, carbon dioxide, hormones, and blood cells. Nutrients and oxygen are
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Figure 2.3 Heart anatomy. The heart is divided into four chamber: the left and right atria and the left and
right venticles. Blow flow through the heart is regulated via four valves. The tricuspid valve controls blood
flow between the atrium and ventricle in the right heart. The pulmonary valve regulates blood flow be-
tween the right ventricle and the pulmonary artery. Blood flows from the left atrium to the left ventricle via
the mitral valve. Finally, the aortic valve controls blood flow from the left ventricle to the aorta. Used with
permission from [Institute, 2016].

transported to the tissues, while metabolic waste products such as carbon dioxide are removed.

The system is comprised of the heart, blood, and blood vessels and with each heartbeat, blood is

pumped throughout the body via a network of arteries, arterioles, capillaries, venules, and veins.

Blood is transported to the lungs via the pulmonary circuit and to the vascular tissues via the

systemic circuit. The pulmonary circuit operates under a lower pressure than the systemic circulation

(15 versus 100 mmHg). This is due to the systemic circuits need to facilitate blood flow to the furthest

extremities of the body, while the pulmonary circuit is only responsible for blood flow through the

lungs.
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Figure 2.4 The Cardiovascular System The left heart receives oxygen-rich blood from the pulmonary veins
and pumps it into the systemic arteries. In the capillaries, oxygen is removed from the blood and carbon
dioxide is collected. The oxygen-depleted blood enters the systemic venous system. Blood is pumped from
the right ventricle into the pulmonary artery and the pulmonary arterial tree. Blood is transported to the
pulmonary capillaries of the lungs where carbon dioxide is removed from and oxygen enters the blood.
This oxygen-rich blood flows through the pulmonary veins to the left atrium and finally, back to the left
ventricle. Used with permission from Pearson.

2.2.1 The Heart

The heart consists of four chambers. The upper chambers are the left and right atria and the lower

chambers are the left and right ventricles. On each side of the heart (the left heart and the right

heart), the atria fill their respective ventricles. Blood flow through the heart is regulated by four

valves, which under normal conditions, prevents the backflow of blood. The tricuspid valve controls

blood flow between the atrium and ventricle in the right heart. The pulmonary valve regulates blood

flow between the right ventricle and the pulmonary artery, which carries blood to the lungs to collect

oxygen. Blood flows from the left atrium to the left ventricle via the mitral valve. Finally, the aortic

valve controls blood flow from the left ventricle to the aorta. The anatomy of the heart is illustrated

in Figure 2.3.
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Figure 2.5 The cardiac cycle. As diastole begins, the heart relaxes and blood flows into the ventricle from
the atrium, causing the ventricular volume (shown by dashed line) to rise. Systole begins when the heart
begins to contract, increasing the ventricular pressure (solid line). When the ventricular pressure exceeds
the atrial pressure, the atrioventricular valve closes. At this point, all valves are closed and the ventricle
enters its isovolumic contraction phase. Once the ventricular pressure exceeds the arterial pressure, the
outflow valves open. As ejection begins, the ventricular pressure continues to rise, while the volume de-
creases. Systole ends as the heart muscles begin to relax and the ventricular pressure decreases. When
the ventricular pressure is less than the arterial pressure, the outflow valves close and diastole begins. The
period of time at which both the outflow valve and atrioventricular valves are closed is called the isovo-
lumic relaxation. The stroke volume Vstr is defined by the difference between the end-diastole Vdiast and
end-systolic Vsyst volumes. Used with permission from [Batzel et al., 2007].

2.2.2 The Circulation

The left heart receives oxygen-rich blood from the lungs and pumps it into the aorta. This vessel is

the largest artery and is responsible for distributing blood to all regions of the body. The vasculature

bifurcates into the systemic arteries, systemic arterioles, down to the systemic capillaries. The vessels

progressively get smaller as the divisions continue. In the capillaries, oxygen and other substrates

needed for metabolism are removed from the blood and carbon dioxide is collected. The oxygen-

depleted blood enters the systemic venous system going through progressively larger vessels, from

the systemic venules, to the systemic veins, and finally to the superior and inferior vena cava. Once

the blood reaches the right ventricle, it is pumped into the pulmonary artery and the pulmonary

arterial tree. Blood is distributed from the alveolar region of the lungs to the pulmonary capillaries

where carbon dioxide is removed from the blood and oxygen enters the blood. This oxygen-rich

blood flows through the pulmonary veins to the left atrium and finally, back to the left ventricle. The

circulation of blood is shown in Figure 2.4.
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2.2.3 The Cardiac Cycle

Each cardiac cycle consists of a period of relaxation called diastole followed by a period of contraction

called systole. Systole begins with the contraction of the heart which causes the ventricular pressure

to rise. When the ventricular pressure exceeds the arterial pressure, the atrioventricular valves (the

tricuspid valve of the left heart and the mitral valve of the right heart) close. The outflow valves (the

aortic and pulmonary valves) open and ejection begins once the pressure in the pressure in the left

(right) ventricle exceeds the pressure in aortic (pulmonary) artery. This occurs at around 80 mmHg

in the left ventricle and at around 10 mmHg in the right ventricle). The period of time when the both

valves on either side of the ventricle are closed is called the isovolumic contraction reflecting that

the volume is not changing. As ejection begins, the ventricular pressure continues to rise to about

120 mmHg in the left ventricle and to about 25 mmHg in the right ventricle. As systole ends, the

heart muscles begin to relax and the ventricular pressure decreases. When the ventricular pressure

is less than the arterial pressure, the outflow valves close and diastole begins.

The ventricular pressure continues to decrease until it reaches the pressure in the atria (around

5 mmHg in the left ventricle and 8 mmHg in the right ventricle), at which point the atrioventricular

valve opens. The time in which both the outflow valves and the atrioventricular valves are closed is

called the isovolumic relaxation. As diastole continues, the heart continues to relax, the ventricular

pressure continues to decrease, and blood flows into the ventricle from the atrium. Diastole ends

when the heart muscles begin to contract again, increasing the ventricular pressure above the

pressure in the atria so that the atrioventricular valves close. The phases of the cardiac cycle are

illustrated in Figure 2.5.

2.2.4 Cardiovascular Control

The cardiovascular system is controlled by local and global mechanisms. Local mechanisms respond

to changes in pressure and chemicals by altering the flow, thereby affecting the vascular tone. Global

mechanisms control the function of the cardiovascular system via neural, hormonal, and renal

control, as well as influences from respiration. Global control mechanisms maintain blood pressures

and flows by regulating heart rate, cardiac contractility, arterial resistance, venous capacitance, and

blood volume. These actions are necessary to maintain an adequate supply of oxygen and removal

of waste products in metabolism.

The autonomic nervous system consists of involuntary neural activities generated in response

to various stimuli and regulate the smooth muscle cells, glands, and other organs. Afferent pathways

carry information from sensory sites to the central control centers in the brain, while efferent

pathways carry information from the brain to target organs and tissues.
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Figure 2.6 Autonomic nervous system functions. Sympathetic signals are carried through the sympathetic
efferent nerves to the body tissues, while parasympathetic signals are carried through the vagus nerve,
targeting specific organs. The main neurotransmitter of the sympathetic nervous system are adrenaline
and noradrenaline, while acetylcholine is the main neurotransmitter of the parasympathetic nervous
system. Used with permission from [Merck, 2017].
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Figure 2.7 The cholinergic anti-inflammatory pathway. Efferent activity in the vagus nerve causes the
release of acetylcholine (ACh) into the organs of the reticuloendothelial system (liver, heart, spleen, and
gastrointestinal tract). ACh interacts with ↵-bungarotoxin-sensitive nicotinic receptors (Ach receptors) on
tissue monocytes, which inhibit the release of TNF-↵, IL-1� , high mobility group B1 (HMGB1), and other
cytokines. Used with permission from [Tracey, 2002].

In response to a stimuli, such as a change in blood pressure, afferent signals are sent from

the sensory site to the central nervous system and the brain. Efferent signaling from the brain

is carried via sympathetic and parasympathetic pathways that work either in opposition or in

synergy to control involuntary body functions. The main neurotransmitters of the sympathetic

system are adrenaline and noradrenaline, while acetylcholine is the main neurotransmitter of

the parasympathetic system. Sympathetic signals are carried through the sympathetic efferent

nerves to the body tissues, while parasympathetic signals are carried through the vagus nerve,

targeting specific organs. In general, an increase in sympathetic nerve activity increases heart rate,

contractility, arterial resistance, and venous tone, while an increase in vagal activity tends to have

an opposite effect. Due to its more specified function, parasympathetic activity tends to be quicker

than sympathetic activity. The general pathways of the sympathetic and parasympathetic nervous

systems are shown in Figure 2.6. In response to a decrease in blood pressure, the sympathetic activity

increases, while the parasympathetic activity decreases. This causes heart rate to increase, as well

as vasoconstriction of the blood vessels, allowing blood pressure to increase.
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2.3 Inflammatory & Cardiovascular Interaction

Borovikova et al. [2000]discovered a parasympathetic anti-inflammatory pathway by which the brain

modulates the systemic inflammatory response to endotoxin via acetycholine (ACh) (Figure 2.7). In

particular, ACh interacts with ↵-bungarotoxin-sensitive nicotinic receptors on tissue monocytes.

They found that an increase in vagal activity decreased the pro-inflammatory mediators TNF-↵,

IL-6, and IL-1� , but not the anti-inflammatory mediator IL-10. This pathway, called the cholinergic

anti-inflammatory pathway, is responsible for the effective deactivation of endotoxin-stimulated

human monocytes in the presence of ACh. In contrast to the diffusible anti-inflammatory network,

which consists of cytokines, glucocorticoids, and other humoral mediators, the cholinergic anti-

inflammatory pathway is discrete and localized in tissues where invasion and injury typically

originate.

Tracey [2002] found that the production of cytokines in response to inflammation activates

afferent firing to the brain, in particular the nucleus tractus solitarius. Subsequent vagus efferent

activation inhibits cytokine synthesis through the cholinergic anti-inflammatory pathway. Efferent

activity also increases heart rate variability. He named this inflammation-sensing and inflammation-

suppressing network the inflammatory reflex, shown in Figure 2.8. This reflex is a localized, rapid

and discrete regulator of the inflammatory response and shows that the pathway between changes

in vagal activity and the inflammatory response is well-defined. However, as this was validated in

mice, it leaves the question as to how the response is regulated in humans. Particularly, how blood

pressure is controlled during an inflammatory response.

In response to inflammation, we hypothesize that temperature has an effect on changes in heart

rate, while blood pressure is primarily regulated by changes in pain perception and the vasodilator

nitric oxide (NO). An increased presence of inflammatory mediators causes increased afferent firing to

the brain, resulting in a fever [Hansen et al., 2001; Netea et al., 2000]. Subsequently, we hypothesize

that this causes a decrease in efferent vagal activity, which increases heart rate. In addition, Janum et al.

[2016] found that pain perception threshold decreases during an endotoxin challenge, increasing

sympathetic activity, leading to an increase in blood pressure. In response to the inflammatory

mediator production, NO is released 2-4 hours after the endotoxin administration [Chowdhary et al.,

2000]. As a vasodilator, NO causes blood pressure to decrease. These findings are summarized in

Figure 2.9. Further details can be found in Chapter 7.
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Figure 2.8 The inflammatory reflex. In response to a pathogen, ischemia (inadequate blood supply), or
injury, cytokine production is activated. Afferent signals carried to the brain activate efferent signals that
inhibit cytokine production via the cholinergic anti-inflammatory pathway. Efferent activity also increases
instantaneous heart rate variability. Used with permission from [Tracey, 2007].

2.4 Mice versus Humans

To quantify the differences in the inflammatory responses between mice and humans, Copeland

et al. [2005] conducted an experiment in which mice and humans were given equivalent doses of

endotoxin and the levels of circulating inflammatory mediators, including TNF-↵ and IL-6 were

measured and compared. This study found that humans experienced a rapid physiological response,

consisting of fever, tachycardia, and slight hypotension, which was not evident in mice, as shown in

Figure 2.10. Thus, it was concluded that the autonomic control system is affected by the inflammatory

response in humans, but likely not in mice. This strengthens our hypothesize that it is indeed

temperature controlling heart rate in response to an inflammatory event.
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Figure 2.9 Effect of inflammation on cardiovascular dynamics. (a) Endotoxin causes release of inflamma-
tory mediators and reduction of pain perception threshold (PPT). (b) Afferent firing in the brain, as a result
of IL-1� , TNF-↵, and IL-6 increases temperature. (c) In response to the fever, a decrease in parasympa-
thetic activity (Tp ) causes an increase in HR. (d) PPT reduction increases sympathetic activity (Ts ), which
increases blood pressure. (e) Between 2 and 4 hours after the administration of endotoxin, nitric oxide is
released, decreasing BP.
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Figure 2.10 Physiological changes in response to an endotoxin challenge in mice and humans. Physiological
changes in (A) heart rate, (B) systolic blood pressure, and (C) temperature in mice (Ñ) and humans (Œ) in
response to equivalent doses of endotoxin. Mice and humans experience opposite affects on heart rate in
response to an endotoxin. Blood pressure is initially increased in humans and eventually returns to base-
line, while mice experience a slight increase later in the response. In (C), circles (•) show data from mice
injected with saline demonstrating that the changes in body temperature are not due to the endotoxin but
to normal diurnal variations. However, humans experience a large increase in temperature as a result of
the endotoxin. Used with permission from [Copeland et al., 2005].

18



CHAPTER

3

DATA

The experimental data used throughout this thesis were made available by Dr. Jesper Mehlsen

at the Coordinating Research Center at Frederiksberg Hospital in Copenhagen, Denmark. This

chapter describes the experiment, the data acquired, and how the data were prepared for use in the

mathematical models.

3.1 Experiment

3.1.1 Experimental Protocol

The study was an open-label, randomized cross-over study with two separate study days (trial A

and B, respectively), in which an identical dose of lipopolysaccharide (LPS – also referred to as

endotoxin) was injected. On each day, participants received a bolus of LPS at a dose of 2 ng/kg

of body weight two hours after the start of the experiment. Blood samples for the analysis of the

inflammatory mediator levels in plasma were collected before endotoxin infusion (at t =�2) and

then at t = 0, 1, 1.5, 2h followed by one hour increments for the next 4 hours.

Trial B was preceded by the application of a nicotine patch, applied 10h before and removed

6h after the LPS challenge. Pain perception was recorded using a pressure algometry and heat

stimulation at t = �2,2 and t = 6h. A sequence of four tonic heat stimulations were delivered
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Figure 3.1 Experimental Protocol. Participants received a low-dose of LPS at t = 0. Red lines denote blood
samples, collected at t =�2,0,1,1.5,2h followed by one hour increments for the next 4 hours. Participants
performed the Valsalva maneuver at t = 0.25 and t = 3.75h (blue arrows). Pain perception was recorded at
t =�2, 2, and 6h (gray arrows). Temperature was recorded periodically (black arrows).

with a duration of 5s each, separated by 30s, with temperatures ranging from 45� to 48�C . Body

temperature was also recorded periodically throughout the experiment. Changes in autonomic

nervous system activity were observed by having the participants perform the Valsalva maneuver at

t = 0.25 and t = 3.75h. The experimental protocol is summarized in Figure 3.1.

Trials A and B were randomized. To minimize the risk of tolerance, a minimum interval of 4

weeks was required between study days. To avoid any effects of recent infection, experiments were

cancelled if the patient had experienced fever or malaise within the last 2 weeks before the trial days.

The patients were instructed to remain physically inactive for 24h prior to each trial day.

Twenty healthy, young male volunteers, between the age of 20 and 33 years (median 24.3

years) participated in the study. They were divided into two groups: well trained (VO2 max� 60 ml

O2/kg/min) and untrained (VO2 max 47 ml O2/kg/min). Three participants left the study during

the interval between study days — one due to a joint infection not related to the study and the other

two chose not to return for the second day. Further experimental procedure details can be found in

[Janum et al., 2016].

3.1.2 Instrumentation

Blood samples were collected in EDTA tubes (Greiner bio-one, Germany). The samples were kept

on ice until centrifuged at 4�C and 1233g for 10min, and the supernatant was stored at 80�C until

analysis. Concentrations of the pro-inflammatory mediators TNF-↵, IL-6, and IL-8, and the anti-

inflammatory mediator IL-10 were analyzed using ELISA (Meso Scale Discovery, Rockville, Maryland,
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USA). These particular mediators were analyzed as they are regarded as main drivers of the early

pro-inflammatory response (TNF-↵), the intermediate step between pro- and anti-inflammation

(IL-6), neutrophil activation (IL-8), and the late anti-inflammatory response (IL-10).

Pressure algometry was performed by a hand-held device with a tip area of 1cm2 applied per-

pendicularly on the non-dominant lateral vastus muscle of the thigh with a gradual increase in

pressure until the participant indicated pain. Participants rated the pain sensation from zero to

ten with zero meaning no pain and ten meaning unbearable pain. Electrocardiogram (ECG) was

recorded continuously using a five-electrode system. Blood pressure (BP) was measured continu-

ously using a photoplethysmography (Finapres Medical Systems B.V.) attached to the index finger

on the non-dominant hand, which was placed at the level of the heart, secured with a sling around

the neck.

3.2 Inflammatory Mediators

Day A experimental data from all 20 subjects are shown in Figure 3.2. Literature shows that in

humans, the inflammatory mediators take between 6 and 8 hours to return to baseline levels after

the introduction of a pathogenic agent [Copeland et al., 2005]. Thus, pseudodata was added at t = 7

and 8h (shown in blue), to ensure that the cytokines decayed appropriately. As explained in [Janum

et al., 2016], neither nicotine administration nor training status affected the inflammatory response.

Therefore, all subjects were placed in to one study population.

The population median and the data set that most closely resembles the average response are

shown by the black and red lines in Figure 3.2. Box-and-whisker plots [Chambers, 1983], shown in

Figure 3.3, were used to identify subjects displaying an abnormal response. Box-and-whisker plots

use the median and lower and upper quartiles to identify outliers, observations that lie an abnormal

distance from the other values. The interquartile range is defined as

IQR=Q 3�Q 1,

where Q 3 and Q 1 are the 25th and 75th percentiles, respectively. The upper and lower quartiles are

represented by the black error bars of Figure 3.2. In Figure 3.3, each box is comprised of the median,

denoted by the red line, and the lower and upper quartiles, denoted by the bottom and top of the

box. The upper and lower inner fences are used to identify the outliers and are defined as

Upper Inner Fence: Q 3+1.5IQR and Lower Inner Fence: Q 1�1.5IQR.
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Figure 3.2 Day A inflammatory mediator data. Plasma cytokine responses to intravenous (i.v.) endotoxin
administration in 20 healthy young men. Median (black circle), interquartile range (error bars), and the
subject most in line with data mean (red) are shown. Abnormal response (identified via Box-and-Whisker
plots shown in Figure 3.3) are denoted by dashed lines. Pro-inflammatory mediators, TNF-↵, IL-6, and
IL-8, and the anti-inflammatory mediator IL-10 levels were measured at t = �2,0,1,1.5,2h followed by
one hour increments for the next 4 hours. Pseudodata was added at t = 7 and 8h to ensure that mediators
decayed to baseline levels (blue). Endotoxin was administered at t = 0h.

Any point above the upper inner fence or below the lower inner fence is considered a mild outlier.

Upper and lower outer fences are defined by

Upper Outer Fence: Q 3+3IQR and Lower Outer Fence: Q 1�3IQR,

and any value outside of these fences is considered an extreme value. The whiskers represent the

highest and lowest values that are not outliers.

For the inflammatory data, all outliers were considered, whether mild or extreme. The outliers

are represented by the red crosses in Figure 3.3. Box-and-whisker plots identified six abnormal

responses, which are indicated by the dashed lines in Figure 3.2. Outliers were first identified on an
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Figure 3.3 Box-and-whisker plots of experimental data. Twenty healthy young men were administered
intravenous (i.v.) endotoxin. Data for pro-inflammatory mediators TNF-↵, IL-6, and IL-8, and the anti-
inflammatory mediator IL-10, collected at t = �2,0,1,1.5,2h and in one hour increments for the next 4
hours, were analyzed to identify outliers. For each time step, median inflammatory mediator levels are
shown by red horizontal lines and the outliers are shown by the red cross.

individual basis for each inflammatory mediator. Those subjects with outliers for more than one

mediator were denoted as abnormal.

3.3 Blood Pressure & Heart Rate

LabChart®[ADInstruments Inc. Colorado Springs, USA]was used to record the ECG data, which

is comprised of deflections in the QRS waveforms. Heart rate (HR) is computed by dividing 60 by

the duration between two consecutive QRS waveforms. Since the R wave is normally the easiest

waveform to detect on the ECG, heart rate is computed from the distance between successive R

waves (the RR interval). The LabChart software has built-in algorithms that detects the R waves and

then computes HR. Figure 3.4 shows a zoom of the ECG recording, shown in red, and LabChart’s

detection of the peaks of the QRS-complex. Heart rate data for two individuals are shown in Figure

3.5. The discontinuity in the response is due to the sensitivity of the ECG to movements of the chest,
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Figure 3.4 Zoom of electrocardiogram recording. Heart rate is computed by dividing 60 by the length be-
tween two consecutive QRS waveforms. LabChart has built-in algorithms that can identify the peak of
each waveform and then compute HR.

causing measurement noise. Movements can also be caused by motion artifacts, as shown in the

top zoomed portion of Figure 3.5. Additionally premature heart beats, called ectopic beats, can also

cause great fluctuations in HR. This is shown in the bottom zoomed portion of Figure 3.5.

Heart rate variability (HRV) was studied by analyzing the distance between successive RR-

intervals. Five-minute intervals of ECG data were extracted to form a tachogram, where the distance

between each RR-interval is plotted against time. HRV parameters including 1) the standard de-

viation of the average beat-to-beat intervals (SDANN), 2) the percentage of interval differences

of successive interbeat intervals greater than 50 ms (pNN50), 3) the high frequency variability

(HF), and 4) the low frequency/high frequency ratio (LF/HF), were analyzed. These values were

obtained using LabChart’s built-in HRV Toolbox and are shown in Figure 3.6 for a representative

subject. Each of these parameters give a measure of the total heart rate variability and the amount

of parasympathetic and sympathetic activity present.

The finapres used to record BP is very sensitive to movement. Thus, the experimentalists were

unable to obtain continuous measurements of BP throughout the entirety of the experiment. Figure

3.7 on page 27 shows the mean arterial blood pressure data for two individuals.

3.4 Data Preprocessing

The objective of this thesis is to understand the interaction between the inflammatory response

and the cardiovascular dynamics. As will be shown in Chapter 7, temperature is used as an input to

predict heart rate. From Figure 3.8, it is clear that the temperature data is sparse compared to the
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Figure 3.5 Heart rate data for two individuals. (Top) Heart rate computed from the ECG data, collected
continuously throughout the experiment. Zoom on right shows ectopic beats and motion artifacts in the
data.

heart rate data shown in Figure 3.5. Thus, the mean heart rate will be predicted.

To obtain the mean heart rate from the HR data, we used the Savitzky-Golay smoothing filter.

This method is based on a local least-squares polynomial approximation to each window of data by

a polynomial of fixed degree n . Savitzky-Golay filters are typically used to smooth data that even

without noise, span a large range of frequencies. In comparison to standard averaging filters such as

the moving average filter, which smooths data by replacing each data point with an average of its

neighbors, Savitzky-Golay filters perform much better. One caveat to that is its inability to reject

large levels of noise [Orfanidis, 1995]. Due to the change observed in the HR over the course of the

experiment and minimal amount of noise, Savitzky-Golay was the most appropriate smoothing

filter to use.

The Savitzky-Golay filter acts on a vector of input samples x1, . . . , x j to produce a smoothed

vector y1, . . . , yj . For a particular point x`, a window of N = 2M +1 samples is created with x` = x (0)
at the center. Given the samples x (�M ), . . . , x (0), . . . , x (M ), the best least-squares fit is determined by

an n-degree polynomial p . The smoothed output y (0) = y` is given by the center of the polynomial
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Figure 3.6 Heart rate variability measures obtained from ECG data for one representative subject. HRV mea-
sures were collected from 5-minute intervals of ECG data extracted from the tachogram. 1) The standard
deviation of the average beat-to-beat intervals (SDANN), 2) the percentage of interval differences of suc-
cessive interbeat intervals greater than 50 ms (pNN50), 3) the high frequency variability (HF), and 4) the
low frequency/high frequency ratio (LF/HF). Each value was recorded using LabChart’s ®built-in HRV
Toolbox.

p (0). Shifting the window by k time steps creates another set of samples x (k �M ), . . . , x (k +M ). An

n-degree polynomial is fitted to the samples and the smoothed output y (k ) is given by the center of

the polynomial p (k ). Near the endpoints, where the window extends beyond the beginning or end

of the input samples, a symmetric extension of the signal can be used [Persson & Strang, 2003].
The built-in smooth function in MATLAB was used to smooth the HR data. Figure 3.9 shows the

smoothed data. Each segment of data was smoothed using a 2-degree polynomial and a 5-degree

polynomial. Linear splines were used to connect the data between segments. While the 5-degree

polynomial is able to capture the transient behavior of the segment from t = �2 to t = �1.3, it is

more sensitive to the apparent noise around t = 2, when compared to the 2-degree polynomial fit.

Thus, choosing an appropriate degree polynomial to approximate the data is greatly dependent

upon the behavior of the data. Each segment can be estimated by polynomials of varying degrees.

Note that too much smoothing the data removes the heart rate variability as shown in the zoomed
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Figure 3.7 Arterial and mean arterial blood pressure for two individuals. Arterial blood pressure (blue)
recorded using a finapres for two individuals (zoom on right). Mean arterial blood pressure is shown in
red. Due to the sensitivity of the finapres to the participants’ movements due to the events of the experi-
ment, BP data could not be continuously recorded. Events are denoted by dashed lines (black–pain, green–
Valsalva, red-LPS). Temperature was also recorded at discrete time points throughout. See Figure 3.1 for
protocol. Black circles represent the mean blood pressure over all normal data sets.

portions in Figure 3.9.

Mean arterial blood pressure was also measured using a blood pressure cuff at t = 0, 1, 2, 2.5, 3,

3.25,3.5,3,75, and 4hr and then every 30 minutes for the remainder of the experiment. This cuff

pressure was used to calibrate the arterial blood pressure obtained by the finapres. Pressure mea-

surements during experimental events were removed since these events will not be modeled here.
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Figure 3.8 Temperature data for two individuals. Temperature was collected periodically throughout the
experiment, using an oral thermometer.

Figure 3.9 Smoothed HR data, using a Savitzky-Golay smoothing filter. Smoothing with 5-degree and a
2-degree polynomial are shown by the red and blue lines, respectively (zoom on right). Each segment of
data was connected by linear splines. Data was smoothed using the smooth function in MATLAB.
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CHAPTER

4

SENSITIVITY ANALYSIS,

IDENTIFIABILITY, & PARAMETER

ESTIMATION

To develop a mathematical model that can accurately fit experimental data, it is typical to utilize

optimization methods to find a parameter set that minimizes the least squares error between the

model output and the data. The first step in finding an optimal parameter set is analyzing the model

and data to determine a subset of the parameters to be optimized. To do so, we use sensitivity and

identifiability analysis. Subsequently, parameters can be estimated to solve the inverse problem.

This chapter introduces these concepts, using a mathematical model of the spread of disease

by contact with an infected person. The model is discussed in Section 4.1. Sensitivity analysis and

identifiability analysis are introduced in Sections 4.3 and 4.4. In Section 4.5, parameter estimation

techniques, including simplex methods and gradient-based methods, are described. Finally, Sections

4.6 discusses the frequentist and Bayesian methods used to quantify the amount of uncertainty

in the model. All methods described in this chapter can be implemented using the MATLAB code,

discussed in detail in Appendix A. The chapter will conclude with a discussion of the methods used

and the results obtained.
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Figure 4.1 Modified SIRS model (mSIRS). The total population N is subdivided into susceptible (S ), infec-
tious (I ), and recovered (R ). � describes how the infection is transmitted between S and I , k denotes the
degree of the interaction between S and I , r is the recovery rate, and � is the rate at which an individual
rejoins the susceptible population; note � is independent of the infection.

4.1 Introduction

Infections caused by viruses and bacteria reproduce within their host and are transmitted directly

from one host to another. To model the interactions between the infected and uninfected popula-

tions, its members can be subdivided into distinct classes, depending on the health of the individuals.

Most commonly, the population is divided into the susceptible population S , infectious popula-

tion I , and recovered population R . Depending on whether the recovered population have full or

temporary immunity to the virus or bacteria, the model is either an SIR or SIRS model, respectively

[Edelstein-Keshet, 2005].
The most common SIR model contains two transition rates: � denotes how the infection is trans-

mitted between S and I , and r denotes the recovery of the infectious population. As an extension of

the SIR model, the SIRS model includes a constant�, denoting the rate at which an individual rejoins

the susceptible population after recovery. The example presented in this chapter is a modification

of the SIRS model, in that it takes into account the movement of the infectious population back

to the susceptible population, at the same rate �. The diagram shown in Figure 4.1 summarizes

the transition between the three populations. The model is motivated by the SIR model by [Smith,

2016].
Mathematically, these interactions can be modeled by the ordinary differential equations (ODEs)

of the form

d S
d t
=�I +�R ��kS I

d I
d t
= �kS I � r I ��I ,

d R
d t
= r I ��R ,

(4.1)
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Figure 4.2 mSIRS model output y = I (black line) with simulated data (red dots) using varying levels of�2.

where k denotes the degree of the interaction between S and I . The rate of transmission of the

virus or bacteria is proportional to the rate of encounter of susceptible and infectious individuals,

modeled by �kS I . The sum of the three ODEs is zero, thus the total population N = S + I +R must

be a constant and one variable, say R , can be eliminated, reducing (4.1) to two ODEs given by

d S
d t
=�(N �S )��kS I

d I
d t
= �kS I � r I ��I .

(4.2)

Synthetic Data

For the modified SIRS model, hereafter referred to as the mSIRS model, we assume that the true

parameters (�,�, k , r, N ) and the initial conditions [S0, I0] are known to be (0.15, 0.2, 0.1, 0.6, 1000) and

[900, 100], respectively. To illustrate the concepts of sensitivity analysis, identifiability, and parameter

estimation, synthetic data is generated for the population of infected individuals by simulating the

model forward and then adding independent and identically distributed (i.i.d.) noise from a normal

distribution with variance �2. The synthetic data, as well as the model output, for the infected

individuals are shown in Figure 4.2, for (a)�2 = 0, (b)�2 = 25, and (c)�2 = 200.

Generalized Model Formulation

In general, an ordinary differential equation (ODE) model of the form (4.2) can be written as a

system of nonlinear differential equations of the form

d x
d t

= f (t , x ,✓ ), x (t0) = x0, (4.3)

y = g (t , x ,✓ ), (4.4)
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where x 2Rn denotes the state vector, t 2RT denotes time, ✓ 2Rq denotes the parameter vector,

x0 2Rn is the associated initial conditions, and y 2Rm is the model output. For the mSIRS model

shown in equation (4.2), x = [S , I ], ✓ = (�,�, k , r, N ) 2R5, and the model output is y = I .

For the analysis done here, we assume that given N observations of the model output at times

t0, t1, . . . , tN , the data can be expressed as

Yi = g (ti , x (ti ),✓ ) +✏i , i = 1, 2, . . . , N , where ✏i ⇠N (0,�2) (4.5)

for some unknown variance�2 [Banks et al., 2009]. The data shown in Figure (4.2) can be expressed

in this form, where�2 is known to be either 0, 25, or 200.

4.2 Least Squares Formulation

To fit the mathematical model to the data, an inverse least squares formulation is used to find a

parameter set that minimizes the least squares error between the model output and the data. The

residual vector is given by R = (r1, r2, . . . , rN )T , where ri = g (ti , x (ti )� Yi ,✓ ), i = 1,2, . . . , N and the

least squares error J is defined as

J (✓ ) =R T R . (4.6)

Then the optimal parameter set is given by

✓̂ = arg min
✓

J (✓ ). (4.7)

Sensitivity and identifiability analysis are used to lessen the complexity of the optimization problem

by determining a subset of sensitive and uncorrelated parameters.

4.3 Sensitivity Analysis

Sensitivity analysis can be used to assess the variation of the model output in response to small

perturbations in the parameter values. Sensitivities can be computed on either a local or global

level. Local sensitivity analysis quantifies how a model changes in response to small perturbations of

the model parameters, while global sensitivity analysis describes how a model changes in response

to varying the parameters over a subspace of the parameter space [Kiparissides et al., 2009]. The

methods described here will focus on local sensitivities.
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Assuming a model output y = I , given by solving (4.2), the sensitivity matrix � is defined by

� =
@ y
@ ✓
=

2
66666666664

@ y1(t1)
@ ✓1

· · · @ y1(t1)
@ ✓q

...
...

...
@ y1(tN )
@ ✓1

· · · @ y1(tN )
@ ✓q

@ y2(t1)
@ ✓1

· · · @ y2(t1)
@ ✓q

...
...

...
@ ym (tN )
@ ✓1

· · · @ ym (tN )
@ ✓q

3
77777777775

, (4.8)

where yi (t j ) is the i t h model output evaluated at time t j . For simple problems where an analytical

solution of the ODEs can be obtained, the sensitivities can be computed analytically [Banks &

Tran, 2009; Ellwein, 2008; Valdez-Jasso et al., 2008], while more complex models require numerical

evaluation. The latter can be done using numerical methods, including automatic differentiation

[Griewank, 1989] and finite differencing.

From (4.3), sensitivities of the model output to the parameters @ x
@ ✓ can be computed from the

sensitivity equations
d

d t

✓
@ x
@ ✓

◆
=
@

@ ✓

✓
d x
d t

◆
=

d f
d x
@ x
@ ✓
+

d f
d✓

.

The parameter Jacobian d f
d✓ and the model Jacobian d f

d x can be computed analytically, using auto-

matic differentiation, or via finite differences. From this, the sensitivity matrix � can be computed

using the chain rule on the output function y = g (t , x (t ,✓ ),✓ ).
For the mSIRS model, the model output is y = I and the sensitivity matrix is given by

� =

0
B@

I�(t1) I�(t1) Ik (t1) Ir (t1)
...

...
...

...

I�(tN ) I�(tN ) Ik (tN ) Ir (tN )

1
CA ,

where I✓i
= @ I
@ ✓i

, for ✓i 2 (�,�, k , r ). This can be computed analytically by finding solutions to the
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system of ODEs given in (4.2), along with the sensitivity equations given by

d S�
d t
=��S� ��kS I� ��kS�I + (N �S )

d S�
d t
=��S���kS I���kS�I �kS I

d Sk

d t
=��Sk ��kS Ik ��kSk I ��S I

d Sr

d t
=��Sr ��kS Ir ��kSr I

d I�
d t
= �kS I� +�kS�I � (r +�)I� � I

d I�
d t
= �kS I� +�kS�I � (r +�)I�+kS I

d Ik

d t
= �kS Ik +�kSk I � (r +�)Ik +�S I

d Ir

d t
= �kS Ir +�kSr I � (r +�)Ir � I ,

where S✓i
= @ S
@ ✓i

for ✓i 2 (�,�, k , r ).
The simplest, but least accurate way, to compute sensitivities numerically is via forward dif-

ferences, where the solutions are first order accurate and are computed from the first term in the

Taylor series expansion as

�✓ j
(ti ) =

g (ti , x (ti ),✓ +he j )� g (ti , x (ti ),✓ )
h

, (4.9)

where h is a step based on the precision of the model output; if the relative error tolerance of the

ordinary differential equation (ODE) is', then h =p'. The variable e j represents the unit vector in

the j t h direction [Pope et al., 2009]. The advantage of forward differences is that they are easy to

compute, requiring q +1 evaluations of the model output. On the other hand, sensitivities computed

using a central difference scheme given by

�✓ j
(ti ) =

g (ti , x (ti ),✓ +he j )� g (ti , x (ti ),✓ �he j )
2h

(4.10)

are 2nd order accurate, yet they require 2q evaluations of the model.

Since the parameter values and model output may have different units, it may be beneficial to

instead compute the relative sensitivity matrix, given by

�̃ =
@ y
@ ✓

✓

ȳ
, (4.11)

where ȳ is the mean, max, or another characteristic value for y . Given that sensitivities are evaluated

at a fixed parameter value, typically the nominal or the optimal parameter values, the sensitivities

are valid locally in a region near the parameter values. A global sensitivity may be more beneficial if

the parameters exhibit a high level of uncertainty [Kiparissides et al., 2009] or if the model is highly

nonlinear.
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Figure 4.3 Sensitivities of the mSIRS model. (a) Sensitivity of each parameter with respect to time and (b)
ranked sensitivities.

To compare the sensitivities between the parameters, the ranked sensitivities can be computed

by, for instance, taking the norm of the sensitivity matrix (k�k1,k�k2), or finding the area under the

curve. The method chosen depends on the behavior of the sensitivity curves. For the mSIRS model,

sensitivities are ranked using the two-norm, k�k2. If ' is the integration tolerance in numerically

solving the differential equations and the sensitivities are computed using finite differences, then

the error of the sensitivities are O (p') [Pope et al., 2009]. Since the error of the sensitivities is an

approximation, the cutoff is set at� = 10
p
'. This cutoff separates the parameters into the p sensitive

and q � p insensitive parameters. The parameters of the mSIRS model have been ranked using

the two-norm after computing the relative sensitivities with the forward difference approximation.

Based on the results of this analysis, shown in Figure 4.3, and using a cutoff of� = 10
p

10�8 it can

be concluded that all four parameters are sensitive.

4.4 Identifiability Analysis & Subset Selection

A parameter is identifiable if it can be uniquely determined. Two types of identifiability will be

discussed here: practical and structural identifiability.

4.4.1 Structural Identifiability

Definition 1. Structurally Identifiable. The system given by (4.3) and (4.4) is structurally identifiable

if a meromorphic function

�=�(✓ , y , ẏ , . . . , y (k )),� 2Rq ,
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can be constructed after a finite number of steps of algebraic calculation or differentiation such that

�= 0 and det @ �@ ✓ 6= 0 hold on the interval [t0, t1] for any (✓ , x0) in an open and dense subset of ⇥⇥M ,

where k is any positive integer and ẏ , . . . , y (k ) are the derivatives of y .

This definition states that a system is structurally identifiable if and only if it is possible to

uniquely determine the parameter values given the model output for all possible input functions.

Structural identifiability considers the structure of the mathematical model, not the data.

Input-Output Equation

For the mSIRS model, structural identifiability can be determined by computing the input-output

equation [Bearup et al., 2013]; that is, the equation of the model output y as a function of the

parameters ✓ . Since y = I , the system in (4.2) can be rewritten as

Ṡ = �(N �S )��kS y (4.12)

ẏ = �kS y � (r +�)y , (4.13)

where Ṡ = d S
d t and ẏ = d y

d t . Solving ẏ for S yields

S =
ẏ + y (r +�)
�k y

.

Differentiating this and substituting it back into (4.12) gives

�N �
✓
� ẏ +�(r +�)y

�k y

◆
� ẏ � (r +�)y = y ÿ � ( ẏ )2

�k y 2

=) (�N �k ��r ��2)y 2� (�k r +��k )y 3��y ẏ ��k y 2 ẏ + ẏ 2� y ÿ = 0. (4.14)

Now suppose there is an alternative parameter set ✓ = (�,�, k , r ) satisfying (4.14). Then

�N �k ��r ��2 = �N �k ��r ��2

�k r +��k = �k r +��k

� = �

�k = �k .

Solving these equations for the ✓ gives

�=�, r = r , �k = �k .
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Thus, � and r are structurally identifiable and � and k are structurally unidentifiable. By definition,

a model is structurally unidentifiable if any parameter is unidentifiable, so the mSIRS model is

structurally unidentifiable. Thus, either � or k can be set to its nominal value, while the other is

analyzed for practical identifiability. The decision between the two parameters is dependent upon

the structure of the model, as well as the available data. For this study, the least sensitive parameter,

�, is fixed at its nominal value, while the other parameters are analyzed further.

4.4.2 Practical Identifiability

Definition 2. Practically Identifiable. The system given by equations (4.3) and (4.4) is practically

identifiable if ✓ can be uniquely determined from the measurable system output y (t ) [Miao et al.,

2011].

Unlike structural identifiability, practical identifiability depends on both the structure of the

mathematical model and the data. Structurally identifiability is a necessary but not sufficient

condition for practical identifiability so the mSIRS model is not practically identifiability [Miao

et al., 2011; Olufsen & Ottesen, 2013]. In a biological sense, it may be important to determine what

parameters can be included in this subset. To demonstrate the importance of practical identifiability,

we will include all four parameters in the analysis and show that the model is also not practically

identifiable.

Two methods for practical identifiability analysis will be presented here: the structural corre-

lation method (SCM) [Olufsen & Ottesen, 2013] and singular value decomposition followed by QR

factorization [Pope et al., 2009]. The structural correlation method is based on the structured analysis

of parameter correlations from the covariance matrix. Using singular value decomposition (SVD)

on the sensitivity matrix followed by QR decomposition identifies a set of identifiable parameters

that are sensitive as a group, rather than individually. Other methods for subset selection include

the orthogonal method and the eigenvalue method, which is closely related to the method of SVD

followed by QR factorization. For a full description of these methods, please see the review by Miao

et al. [2011].
The methods presented here are local methods that will find an identifiable parameter subset in

a given neighborhood of the parameter values. Global methods, such as the sampling method used

by the Delayed Rejective Adaptive Metropolis (DRAM) algorithm, which will be discussed in section

4.6.2, are able to identify pairwise parameter correlations, both linear and nonlinear. However, these

methods are far more computationally expensive than the local methods.
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Structural Correlation Method

The structural correlation method examines pairwise linear correlations between parameters by

analyzing the model covariance matrix C = F �1, where F is the Fisher information matrix (FIM), a

non-negative symmetric matrix defined by

F =�T� , where � =
@ y
@ ✓

.

The methodology is developed by considering the first order Taylor expansion of the system output

given in (4.4) at a point ✓ ⇤ near the nominal parameter vector ✓

yi (✓ ⇤) = g (ti , x (ti ),✓ ⇤)⇡ y (ti , x (ti ),✓ ) +
@ y (ti , x (ti ),✓ )

@ ✓ )
(✓ ⇤ �✓ ), (4.15)

where i = 1, 2, . . . k . By definition, y (ti , x (ti ),✓ ) is the measurement at ti without error. Letting

�✓ = ✓ ⇤ �✓ , the residual sum of squares between the exact measurement and the linear approxi-

mation is

J (✓ ) =
dX

i=1

î
y (ti , x (ti ),✓ )� y (ti , x (ti ),✓ )� @ y (ti , x (ti ),✓ )

@ ✓ )
(✓ ⇤ �✓ )ó2

=
dX

i=1

î� @ y (ti , x (ti ),✓ )
@ ✓ )

(✓ ⇤ �✓ )ó2

= (��✓ )T��✓ , (4.16)

The minimum of J (✓ ) is reached when F�✓ = 0. If F has full rank, then the unique solution of

F�✓ = 0 is ✓̂ = ✓ . This implies that the model parameters ✓ ⇤ are locally identifiable at ✓ . If F is

singular, then there exists at least one non-trivial solution ✓̂ 6= ✓ . Thus, the model parameters are

unidentifiable [Miao et al., 2011]. It should be noted that global identifiability cannot be inferred

from this analysis since the linear approximation is used in (4.15).

If F is not of full rank, then two or more parameters are related. Correlations can be computed

from the covariance matrix as

ci j =
Ci j∆

Ci i C j j
. (4.17)

If a parameter pair shows a strong correlation, that is if |ci j |> ⇣ for ⇣! 1, then it is not feasible to

estimate both parameters. Thus, one parameter, can be removed from the subset and the correlations

recalculated for the new subset. For the analysis presented here, the least sensitive parameter will be

removed from the subset. Unfortunately, no theoretical predictions exists to define an appropriate
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value for ⇣; it is generally chosen to be relatively close to 1.

NOTE: The covariance matrix cannot be computed if �T� 2Rq is singular or close to singular.

The condition number of �T� gives a measure of how close the matrix is to singular. The condition

number is defined as

(�T� ) =
�1

�q
,

where�1 and�q are the largest and smallest singular values of � , respectively. The smallest singular

value is given by �q (�) =
∆
�q (�T� ), where �q is the smallest eigenvalue of � . If the condition

number is large, then the matrix is ill-conditioned and thus, close to singular. If�q is small, then (� )
will be large. If this is the case, then correlations will have to be manually removed by analyzing the

relationships between the parameters of the model and then removing the columns of the sensitivity

matrix � corresponding to the correlations.

Algorithm 1. Structured Correlation Method Algorithm

1. Check that �T� is nonsingular.

2. Compute c using (4.17) and identify all correlated parameters. That is, determine all parameter

pairs for which |ci j |> ⇣.

3. For the parameter pair with the largest |ci j |, remove the least sensitive parameter.

4. Continue from 1 until |ci j |< ⇣,8i , j .

The parameters of the mSIRS model have been analyzed for pairwise correlations using the

correlation coefficients defined above. The correlation cutoff ⇣ was chosen to be on the interval

[0.90, 1). As shown in Figure 4.3, the ranked sensitivities (from most to least sensitive) are

✓ = (k ,�, r,�). If the parameter � is included in the SCM analysis, the correlation matrix

c =

� k r �
2
664

3
775

0 �1 0.0251 0.0212 �

0 �0.0251 �0.0212 k

0 0.8216 r

0 �

, (4.18)

reveals that k and � are correlated. Fixing � and recomputing the correlation matrix results in no

correlations between the remaining three parameters k ,�, and r . The condition number of the

Fisher information matrix, prior to removing �, was (�T�) = 3.23⇥ 107, making it evident that
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�T� is close to singular. Thus, it is not surprising that � and k have a correlation coefficient exactly

equaled to 1. After removing �, the condition number of �T� became (�T� ) = 16.72.

SVD Decomposition Followed by QR Factorization

While the SCM determines the identifiable parameters among a subset of sensitive parameters,

singular value decomposition followed by QR factorization can be used on the nominal set to

determine parameters that are both sensitive and identifiable. It does so by using singular value

decomposition to obtain a numerical rank of the sensitivity matrix S . This numeral rank is then

used to determine ⇢, the number of identifiable parameters.

Algorithm 2. Singular Value Decomposition Followed by QR Factorization

1. Compute the singular value decomposition� =U⌃V T , where⌃ is a diagonal matrix containing

the singular values of � in decreasing order and V is an orthogonal matrix of right singular

vectors.

2. Determine `, the smallest allowable singular value by analyzing the relative error tolerance of

the ODE, '. To guarantee consistency with the cutoff used for the sensitivity analysis, a cutoff of

10
p
' will suffice.

3. Partition V = [V` Vq�`] , where q is the total number of parameters.

4. Determine a permutation matrix P by constructing a Q R factorization with column pivoting

for V T
` . That is, determine P such that

V T
` P =Q R ,

where Q is an orthogonal matrix and the first ` columns of R form an upper triangular matrix

with diagonal elements in non-increasing order.

5. Use P to reorder the parameters ✓ according to ✓̃ = P T ✓ .

6. Partition ✓̃ =
î
✓̃` ✓̃q�`
ó

, where ✓̃l contains the first ` elements of ✓̃ . Fix ✓̃q�` at the a priori

values. Estimate ✓̃`.

Using this method on the mSIRS model resulted in the subset (k , r,�), validating the results

obtained using the SCM. Generally, the subset obtained after SVD with QR factorization is not

guaranteed to be the same as that obtained via the SCM. The subset obtained via the SVD-QR
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method may contain correlated parameters so it may be beneficial to use the SCM on the new subset

to guarantee the best results.

Additionally, the resulting subset depends upon which parameter is removed once correlations

are identified. Each time a parameter is fixed, the solution is biased by that parameter. Since the

least sensitive parameter affects the model output the least, it is usually fixed if it is correlated. It

may be beneficial to generate a correlation tree, as done in [Olufsen & Ottesen, 2013], to identify all

of the possible parameter subsets.

4.5 Optimization

The local sensitivity analysis and subset selection methods previously described identify a set of pa-

rameters that are sensitive and linearly uncorrelated. There are numerous optimization techniques

available, both local and global, that can be used to find a parameter set that accurately models the

data. For example, the DIRECT Method [Kelley, 1999], genetic algorithms [Gen & Cheng, 2000] and

Monte Carlo sampling methods [Haario et al., 2006] are global optimization techniques that are

effective when the nominal set is not close to the true parameter set. For this study, we compare two

local methods: the Nelder-Mead simplex method [Seber & Wild, 2003] and the Levenberg-Marquardt

algorithm [Kelley, 1999; Madsen et al., 2004; Marquardt, 1963]. Each of these methods is computa-

tionally inexpensive, when compared to the global methods, and produce accurate results, given

that the nominal parameter set is close to the true set.

4.5.1 Nelder-Mead

The Nelder-Mead simplex method aims to minimize the least squares cost, shown in (4.6), through

a direct search. A simplex, a triangle in ` dimensions, is formed using the initial guess for the `

parameters that are to be optimized. The algorithm is a pattern search that compares the values

of the objective (cost) function f at the vertices of the simplex. The worst vertex, that is where the

objective function is the largest, is rejected and replaced with a new vertex [Mathews & Fink, 1998].
This process continues until the difference between the function value at the current and previous

iteration is small or the user-specified maximum number of iterations has been reached.

Algorithm 3. Nelder Mead
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1. Define the vertices of the simplex S as the columns of the matrix V , where

V =

x1 x2 x3 x4 · · · x`+12
666664

3
777775

✓1 ✓1+�✓1 ✓1 ✓1 · · · ✓1

✓2 ✓2 ✓2+�✓2 ✓2 · · · ✓2

✓3 ✓3 ✓3 ✓3+�✓3 · · · ✓3
...

...
...

...
...

...

✓` ✓` ✓` ✓` · · · ✓`+�✓`

2. Evaluate f at the vertices of S and sort the vertices of S such that

f (x1) f (x2) · · · f (x`+1).

3. Let

x (µ) = (1+µ)x �µx`+1, where x =
1

`

X̀

i=1

xi .

4. Let fc o un t = `+1.

5. While f (x`+1)� f (x1)> ⌧

(a) REFLECT

Let x (µr ) = 2x � x`+1. Then

fr = f (x (µr )) = f (2x � x`+1)

= 2 fm � f (x`+1)

fc o un t = fc o un t +1.

(b) If fc o un t = kma x , then exit.

Otherwise, if f (x1) fr < f (x`), then let x`+1 = x (µr ). Go to step 5f.

(c) EXPAND

If fc o un t = kma x , then exit.

Otherwise, if fr < f (x1), then let x (µe ) = 3x �2x`+1. Then

fe = f (x (µe )) = 3 fm �2 f (x`+1)

= 2 fr � fm
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fc o un t = fc o un t +1.

If fe < fr , then let x`+1 = x (µe ) and go to step 5f. Otherwise, let x`+1 = x (µr ) and go to step

5f.

(d) OUTSIDE CONTRACTION

If fc o un t = kma x , then exit.

Otherwise, if f (xl ) fr < f (x`+1), then let x (µo c ) = 1.5x �0.5x`+1. Then

fo c = 1.5 fm �0.5 f (x`+1)

fc o un t = fc o un t +1.

If fo c  f (xr ), then let x`+1 = x (µo c ) and go to step 3f. Otherwise go to step 3f.

(e) INSIDE CONTRACTION

If fc o un t = kma x , then exit.

Otherwise, if fr � f (x`+1), then let x (µi c ) = 0.5x +0.5x`+1. Then

fi c = 0.5 fm +0.5 f (x`+1)

fc o un t = fc o un t +1.

If fi c < f (x`+1), then let x`+1 = x (µi c ) and go to step 3f. Otherwise go to step 3e.

(f) SHRINK

If fc o un t � kma x � `, then exit.

Otherwise, for 2 i  `+1, let xi = x1� (xi � x1)/2. Compute f (xi ).
(g) Sort the vertices of S so that (2) holds.

The Nelder-Mead method typically only requires one or two function evaluations per iteration,

except in the case of a shrink transformation, which rarely occurs. In addition, it is relatively simple

to understand and implement. One of the disadvantages of this method is that it may not be able

to move beyond a non-optimal parameter value. That is, it can take a large number of iterations

with negligible improvements in the cost, despite being no where near the minimum. Thus, it is not

guaranteed to converge to an optimal value.

The parameters for the mSIRS model were estimated using MATLAB’s built-in optimization

function fminsearch, a multidimensional unconstrained optimizer that uses the Nelder-Mead

direct search method. The optimal parameter values for the mSIRS model are shown in Table 4.1 on

page 46.
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4.5.2 Levenberg-Marquardt

The Levenberg-Marquardt method uses a combination of the gradient descent method and the

Gauss-Newton method [Bjorcl, 1996]. Its objective is to find a perturbation h to the parameters ✓

that will reduce J . The gradient descent method updates the parameters in the direction of steepest

descent, while the Gauss-Newton Method assumes that the least squares function is locally quadratic

and then finds the minimum of the quadratic. To ensure that the optimal parameter value is local,

compared to the nominal, bounds can be given to the optimizer.

For gradient descent method, the parameter update h that moves the parameters in the direction

of steepest descent is given by

hg d =↵�T (Y � y ), (4.19)

where � is the sensitivity matrix defined in (4.8) and ↵> 0 determines the length of the step in the

steepest-descent direction. The value wi is a measure of the error in measurement Y (ti ).
For the Gauss-Newton method, the parameter update h is given by solving

î
�T�
ó
hg n =�T (Y � y ). (4.20)

The Levenberg-Marquardt method adaptively varies the parameter updates between the gradient

descent update and the Gauss-Newton update. Mathematically, its found by solving

î
�T� +�I
ó
hl m =�T (Y � y ), (4.21)

where small values of� result in a Gauss-Newton update and large values result in a gradient descent

update. Initially,� is set to be large, resulting in a gradient descent update. If a new iteration is a worse

approximation, then � is increased. As the solution improves, the Levenberg-Marquardt method

approaches the Gauss-Newton method, and the solution typically moves to the local minimum.

Given an initial �0 and initial parameter set ✓0, the Levenberg-Marquardt method is executed

by the functions levmar and trtestlm, summarized in Algorithm 4.

Algorithm 4. ✓̂ = levmar (✓ , f , tol, kma x )

1. For k = 1, . . . , kma x

(a) Compute

y = g (t , x ,✓ ), R = Y � y , J (✓ ) =R T R , � =
@ y
@ ✓

, r(✓ ) =�T R (4.22)

(b) Let �= kr(✓ )k2.
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(c) While �> tol

i. Let h = (�T� +�I )�1r(✓ ) and ✓t = ✓ +h.

ii. Solve [✓ ,�] = trtestlm (✓ ,✓t , J (✓ ),� ,r(✓ ),�,�0).

iii. Compute y , R , J (✓ ),� , andr(✓ ) as defined in (4.22).

2. Let ✓̂ = ✓ .

Given the trust region parameters 0<!d o w n < 1<!up and µ0 µl o w <µhi g h , the trtestlm
algorithm is summarized next.

Algorithm 5. [✓ ,�] = trtestlm (✓ ,✓t , J (✓ ),� ,r(✓ ),�,�0).

1. Let z = ✓ .

2. While z = ✓

(a) Compute J (✓t ) and let

s = ✓t �✓ , ared= J (✓ )� J (✓t ), pred=�1

2
(r(✓ )s ).

Then define � = ared/pred.

i. If � <µ0, then let

�=max(�!up ,�0), h = (�T� +�I )�1r(✓t ), and ✓t = ✓ +h .

Otherwise, if � <µl o w , then let z = ✓t and �=max(�!up ,�0).
If neither of these conditions are satisfied, then let z = ✓t and if � > µhi , then let

�=!d o w n�. If �<�0, then let �= 0.

3. Let ✓ = z .

Due to the gradient descent portion of the Levenberg-Marquardt method, ther(✓ )will decrease

at every iteration, increasing the likelihood that R will be minimized. Additionally, the algorithm

allows for bounds to be on imposed on the parameter values, thus preventing the parameters from

becoming unrealistic. However, if the nominal parameter value is far from the true parameter, then

the algorithm may not converge. If convergence is achieved, the process will be slow and in some

cases, it will converge to the bounds preset by the user. If this happens, it is likely that the optimal

parameter set will have large parameter confidence intervals (discussed in section 4.6.1. Further

details on the Levenberg-Marquardt method, as well as the trust region parameters, can be found in

[Kelley, 1999].
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Table 4.1 Optimal parameters for the mSIRS model. Sensitivity and correlation analysis identified � as
sensitive, but correlated. Thus, it was fixed at its nominal value. The remaining three parameters k ,�, and
r were estimated using the Nelder-Mead and Levenberg-Marquardt methods using different variances,
�2 = 25 and�2 = 200.

Parameter True
�2 = 25 �2 = 200

✓̂N M ✓̂LM ✓̂N M ✓̂LM

k 0.10 0.108 0.108 0.117 0.117
� 0.15 0.156 0.156 0.173 0.173
r 0.60 0.611 0.611 0.682 0.682

4.5.2.1 Optimization Results

To the accuracy of the mSIRS model, the optimal parameters produced using the Nelder-Mead

method and the Levenberg-Marquardt methods are the same for each value of �2, as shown in

Table 4.1. This may be due to the fact that the data was created using the true parameter set. In the

typical inverse problem, experimental data is given and the inverse problem is solved to find the

parameter values that characterize the system. The Nelder-Mead optimization took 1.1270 seconds

to find the optimal values, while the optimization using Levenberg-Marquardt took 1.1507 seconds

using MATLAB version R2016a. The optimized model results are shown in Figure 4.5 on page 50 for

�= 25 and�= 200.

The residuals as a function of the model output, shown in the middle panel of Figure 4.4, show

that the model is able to predict the data well for both�= 25 and�= 200. Had there been a clear

relationship between the model output and the residuals, then it could be concluded that there

are underlying factors of the data that the model is failing to capture. The right panels of Figure 4.4

show the effect of generating the data directly from the model. Due to how the synthetic data was

generated, the model is almost completely aligned with the data. Generally, this will not be the case

and the regression line, shown in blue, will differ from the line y = x , shown in red.

4.6 Uncertainty Quantification

Uncertainty quantification involves determining parameter output uncertainties from uncertainties

in the model formulation and experimental measurements. There are two approaches to accomplish

this, namely frequentist methods and Bayesian methods. In the frequentist framework, parameters

are described by an estimate of the true value. It is assumed that the errors of the model are normally

distributed, though this is usually not the case. Thus, the frequentist approach may not be as useful
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Figure 4.4 Residuals plots for the mSIRS model. Residuals are computed using the optimal values shown in
Table 4.1 for� = 25 (top panels) and� = 200 (bottom panels). The line y = x is shown by the red line and
the regression line ymodel =m ydata is shown by the blue line.

in the estimation of the uncertainty in the model output [Smith, 2014]. More precise, yet more

computationally expensive, results can be achieved through Bayesian sampling methods, such

as Delayed Metropolis Adaptive Rejection (DRAM) [Haario et al., 2006]. These methods are more

adaptive in how the parameter distributions can vary across different data sets and are able to

identify pairwise parameter correlations that identifiability analysis fails to identify.

4.6.1 Frequentist Methods

The parameter confidence interval provides information on the extent of uncertainty involved in

estimating the true, but typically unknown, parameter set [Banks & Tran, 2009]. The uncertainty

in the predicted parameter values can be propagated through the model to obtain uncertainty

measurements in the form of prediction and confidence intervals. The prediction interval provides

information about the distribution of the model output values, while the confidence interval is used

to measure the precision of the model in predicting the mean response.

Parameter Confidence Intervals

To compute the parameter confidence interval, recall that the covariance matrix is defined as

C = (�T�)�1, where � is defined in (4.8). From (4.5) it is assumed that ✏i are i.i.d.N (0,�2). Then

✓̂ ⇠Nq (✓̄ ,�2(�T� )�1), where ✓̄ is the unknown true parameter set and ✓̂ is the (optimal) estimator
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Table 4.2 Parameter confidence intervals for the mSIRS model. Intervals are shown using varying levels
of�2. Sensitivity and correlation analysis identified � as sensitive, but correlated. Parameter confidence
intervals are shown for the remaining 3 parameters.

Parameter True
�2 = 25 �2 = 100
✓̂ ±�✓ ✓̂ ±�✓

k 0.10 0.108±0.0147 0.117±0.0340
� 0.15 0.156±0.0321 0.173±0.0697
r 0.60 0.611±0.0470 0.682±0.1116

of ✓̄ . The confidence interval for the j t h element of ✓̂ is given by

✓̂ ± t ↵/2N�`s
∆

C j j = ✓̂ ±�✓ ,

where N is the total number of data points, ` is the total number of parameters estimated, t ↵/2N�q is

the t -value for the 1�↵/2 quartile with N � ` degrees of freedom, and

s 2 =
1

N �q
J (✓̂ )

is an estimator of the variance�2. The parameter confidence intervals for the optimal parameter

values ✓̂ are given in Table 4.2. As the variance in the data increases, the widths of the parameter

confidence intervals also increases. Thus, the closer the optimal parameters are to the true parameter

values, the thinner the parameter confidence intervals will be.

Prediction Interval

To obtain a prediction interval for y at t = t1, t2, . . . , tN , let

yi = g (ti , x (ti ), ✓̄ ) +✏i , ✏i ⇠N (0,�2).

Then an obvious estimator of yi is ŷi = g (ti , x (ti ), ✓̂ ). For large N , ✓̂ is close to the true value ✓̄ , so

we can use the Taylor series expansion

g (ti , x (ti ), ✓̄ )⇡ g (ti , x (ti ), ✓̂ ) + g T
i (✓̂ � ✓̄ ),

where

g T
i =
⇣
@ g (ti ,x (ti ),✓̂ )

@ ✓̂1
, @ g (ti ,x (ti ),✓̂ )

@ ✓̂2
, . . . , @ g (ti ,x (ti ),✓̂ )

@ ✓̂q

⌘
.
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Thus,

yi � ŷi ⇡ yi � �g (ti , x (ti ), ✓̄ )� g T
i (✓̂ � ✓̄ )
�
= ✏i + g T

i (✓̂ � ✓̄ ).
This implies that

E[yi � ŷi ]⇡E[✏i ] + g T
i E(✓̂ � ✓̄ )⇡ 0.

Moreover,

var[yi � ŷi ]⇡ var[✏i ] + var(g T
i (✓̂ � ✓̄ ))

⇡�2+�2g T
i (�

T� )�1gi

=�2(1+ v0),

where v0 = g T
i (�

T�)�1gi . Thus, yi � ŷi is asymptoticallyN (0,�2(1+ v0)). s 2 is independent of yi

and is asymptotically independent of ✓̂ , so that s 2 is asymptotically independent of yi � ŷi by the

Central Limit Theorem. Hence, asymptotically

yi � ŷi

s
p

1+ v0

⇠ tN�`

has a t -distribution with N � ` degrees of freedom. So the prediction interval for y at t = ti is given

by

ŷi ± t ↵/2N�q s (1+ g T
i (�

T� )�1gi )1/2. (4.23)

Confidence Interval

To obtain a confidence interval for the mean response, note that

ŷi = g (ti , x (ti ), ✓̂ )

is an estimation of the mean response. Then

E[ ŷi ] = ȳi ,

where ȳi is the mean response, and

var[ ŷi ] =�2g T
i (�

T� )�1gi .
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Figure 4.5 Model predictions with frequentist confidence and prediction intervals. Frequentist prediction
(red dashed line) and confidence intervals (blue dashed line) for the mSIRS model output y = I (black line)
with varying levels of�2.

This implies that
ŷi � ȳi

s
p

v0
⇠ tN�`

has a t -distribution with N � ` degrees of freedom. So the confidence interval for y at t = ti is given

by

ŷi ± t ↵/2N�q s (g T
i (�

T� )�1gi )1/2. (4.24)

For further details of the derivation, please see [Seber & Wild, 2003; Smith, 2014]. The prediction

and confidence intervals for the mSIRS model are shown in Figure 4.5. Similar to the parameter

confidence intervals, increasing the amount of variance from the model output attained with the

true parameter values results in larger confidence and prediction intervals.

4.6.2 Bayesian Methods

Using synthetic data ensures that the assumption of normally distributed errors holds. However,

when experimental data is used, this assumption does not always hold. Bayesian methods allow

the parameter distributions to vary according to the given data set. The Bayesian credible and

prediction intervals are calculated using a sampling method. The prerequisite condition to using a

sampling method is to have defined uncertainty distributions for the model inputs (parameters).

The parameter chains built from Delayed Metropolis Adaptive Rejection (DRAM) provide these

distributions. Frequentist methodology is fundamentally rooted in quantifying uncertainty in terms

of repeating the data generating procedure. However, in a Bayesian context, inference is conditioned

on the single data set that is observed; this allows for uncertainty about parameters to be expressed
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with probability distributions. Thus in the Bayesian framework, ✓̂ refers to a vector of random

variables and rather than searching for a point estimate, it is desired to estimate the distribution

associated with the random variables. Given the observations Y = [Y1, Y2, . . . , YN ], Bayes formula

⇡(✓̂ |Y ) = ⇡(Y |✓̂ )⇡(✓̂ )
⇡(Y )

(4.25)

is used to describe the relationship between the prior parameter density ⇡(✓̂ ), the posterior den-

sity ⇡(✓̂ |Y ), and the likelihoood ⇡(Y |✓̂ ) of observing the data Y for the model given ✓̂ . ⇡(Y ) is

the marginal density of the data but in practice functions as a normalization factor and can be

determined by
R
⇡(Y |✓̂ )⇡(✓̂ )d✓̂ .

Assuming the statistical hypothesis in equation (4.5), it follows that

⇡(Y |✓̂ ) = e �J (✓̂ )/2�2

(2⇡�2)d /2
,

where J (✓̂ ) is typically defined as the least squares error, however it can be replaced with any cost

function. With the likelihood function given, it is possible to estimate the posterior density ⇡(✓̂ |Y ).
While this route is theoretically possible for some low-dimensional problems, the evaluation of

high-dimensional integrals is a difficult and expensive task and is currently an active research area

(see sparse grids [Heiss & Winschel, 2008] and quasi-Monte Carlo methods [Dick et al., 2013]).

Delayed Rejection Adaptive Metropolis (DRAM)

A practical alternative is to randomly sample directly from the density ⇡(Y |✓̂ ) through the use of the

DRAM, which combines two methods for improving efficiency of Metropolis-Hastings type Markov

chain Monte Carlo (MCMC) algorithms: Delayed Rejection and Adaptive Metropolis. Metropolis

algorithms are acceptance-rejection algorithms that accept new parameter samples only if the

likelihood of the new candidate is higher than the current sample. Delayed rejection allows the

algorithm to try additional proposals per step if the initially proposed step is not accepted. This

increases the acceptance rate and thereby mixing of the chain, which results in better estimates of the

posterior densities. Adaptive metropolis allows the metropolis algorithm to update the covariance

matrix based on the history of the chain. This helps the algorithm make better proposals, and move

to the correct posterior distribution faster; reducing what is called the “burn-in" period.

Note that updating the proposal function using history of the chain breaks the Markov property,

and other properties need to be established for guaranteed sampling from the posterior distribution

[Haario et al., 2006; Smith, 2014]. Results from Bayesian sampling methods such as DRAM are able
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to identify pairwise relationships among the parameter distributions and capture the entirety of

the nonlinear interactions between parameters by representing them as a joint density of random

variables.

The plot shown in Figure 4.6c shows an exponential correlation between � and k , as well as

a linear correlation between � and r for the mSIRS model. While correlation analysis is far less

computationally expensive than DRAM, it only provides a first-order linearization of parameter

interactions. Thus correlation analysis may fail to capture the nuance of parameter interactions in

models with complicated nonlinear parameterizations, as well as less obvious linear correlations.
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Figure 1: DRAM results for the mSIRS model with ✓ = (�, �, k, r). (a)Parameter chains, (b) parameter distributions, and (c)

correlations for �2
= 25. While r and � have converged to their optimal values, the correlated parameters � and k are unable

to due to the exponential relationship between k and �. Simulations were ran with 200,000 samples with a burn-in period of

40,000.
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The differences between the parameter chains with and without the least sensitive parameter

�, shown in Figures 4.6a and 4.7a respectively, show that removing � results in better convergence

of the chains towards the optimal parameter values. However, DRAM continued to identify a

correlation between r and �, as shown in Figure 4.7b. The structural correlation method failed to

recognize this correlation, leading to doubt in the accuracy of the optimal parameter set. Revisiting

the correlation matrix shown in (4.18), the correlation coefficient between r and � is 0.82. Thus,

had the cutoff been set between 0.80 and 1, rather than between 0.90 and 1, r would have been

omitted from the set of parameters to be estimated.

Comparing the parameter probability distributions shown in Figure 4.6 and 4.7 shows the effect

of including correlated parameters in the set to be estimate. Not accounting for the exponential

correlation between � and k resulted in skewed distributions for each of them. The long tails in

the distributions for � and k may be evidence of the correlation between these parameters. Based

on the structure of the model, a large value of � should require a lower value for k and vice versa.

Once � is removed, the parameter samples were able to stay around the mean values of 0.1,0.6,

and 0.15 for k , r, and �, respectively, as expected based on the parameter confidence intervals

shown in Table 4.2. It is interesting to note that the possible correlation between r and � did not

affect the resulting parameter distributions. This solidifies the argument for the cutoff for the

structured correlation method to be between 0.90 and 1. Removing r may have resulted in optimal

parameter values that did not fully capture the characteristics of the system.

Though DRAM may be more effective in identifying nonlinear pairwise correlations, running

DRAM typically requires performing some form of frequentist parameter estimation to set a good

starting point of the sampling to prevent the algorithm from getting stuck in an undesirable local

minimum of the predefined cost function J (✓ ). This is to say that tools such as correlation analysis

might be a better option over DRAM in the early stages of model calibration. The real benefit and

power of using Bayesian MCMC algorithms like DRAM comes from the ease in propagating the

parameter densities through the model the calculate Bayesian credible and prediction intervals to

quantify the uncertainty of our model predictions. The prediction and credible intervals for the

mSIRS model produced by DRAM are shown in Figure 4.8. As expected, the intervals are almost

identical to those obtained using frequentist methods, shown in Figure 4.5 on page 50. This may

be due to the fact that the parameters were optimized from the nominal set used to generate the

data. In general, this will not be the case.
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More about the nuances of these sampling methods can be found in [Haario et al., 2006; Smith,

2014]. Furthermore, the MCMC MATLAB toolbox by Haario et al. [2006] contains code that performs

Bayesian uncertainty propagation.
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Figure 1: DRAM results for the mSIRS model with ✓ = (�, k, r). (a) Parameter chains, (b) parameter distributions, and (c)

correlations, and subsequent distributions when �2
= 25 after excluding the least sensitive and correlated parameter �. After

removing �, all three parameters were able to converge to their optimal values. Simulations were ran with 200,000 samples

with a burn-in period of 40,000.
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Figure 4.8 Credible and prediction intervals for the mSIRS model using DRAM. Credible intervals are
shown in light gray and prediction intervals are in dark gray.

4.7 Discussion

The concepts of sensitivity and identifiability analysis have been introduced. Though global

methods exist [Cacuci, 2003; Haario et al., 2006], the methods for quantifying the sensitivity of the

model to changes in the parameter values were focused on the the local sensitivities. Two methods

for practical identifiability analysis were discussed, namely the structural correlation method

and SVD followed by QR factorization. These methods were tested and analyzed using the mSIRS

model, with comparable results. The structural correlation method provides more reliable results

than the SVD followed by QR factorization method. However, the lack of a concrete cutoff value

for the correlation coefficient can result in linear correlations being included in the parameter

estimation.

Parameter estimation techniques were also discussed, in particular, the local Levenberg-

Marquart and Nelder-Mead algorithms. The Nelder-Mead algorithm tends to be more computa-

tionally expensive than the Levenberg-Marquardt algorithm, as it finds an absolute minimum.

However, since it does not depend on numerical or analytic gradients, it does return the sen-

sitivity matrix, covariance matrix, or mean squared error, thus making Levenberg-Marquardt

more attractive. Levenberg-Marquardt finds a local minimum which can produce parameters that

accurately describe the system if the nominal parameters are close to the true values. However, if

they are not, the optimizer may stall and produce model output that do not accurately predict the

behavior of the system. Uncertainty quantification was used to quantify the amount of uncertainty
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in estimating parameters for the model. Both frequentist and Bayesian methods were discussed.

The Bayesian methods also provided a global practical identifiability analysis, unlike the methods

previously discussed. DRAM was able to identify nonlinear pairwise correlations that the linear

methods could not.
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CHAPTER

5

MODELING THE INFLAMMATORY

RESPONSE

Generalized mathematical models of the acute inflammatory response have been used to under-

stand how to regulate the response and to maintain homeostasis. However, a large number of

those models address the response in mice [Chow et al., 2005; Copeland et al., 2005], as well as

in swine [Nieman et al., 2012], and cannot be effectively used to model the response in humans.

Simple models of the response in humans [Day et al., 2006; Kumar et al., 2004; Reynolds et al.,

2006] have been developed, allowing for rigorous mathematical analysis and simplified biological

assumptions. However, very few of these models include the analysis of experimental data and

have been tailored specifically for individual patients.

This chapter presents the development of the mathematical model of the acute inflammatory

response to an endotoxin challenge. The components of the model and their corresponding

equations are presented in Section 5.1. The parameterization is explained in Section 5.2, including
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the parameterization of Hill functions and details on parameter scaling, creating a patient-specific

parameter set.

5.1 Mathematical Model

The mathematical model developed here incorporates several key components of the acute

inflammatory response, including the endotoxin P , resting and activated monocytes MR and MA

and circulating inflammatory mediators (TNF-↵, IL-6, IL-8, and IL-10). The model is formulated

as a system of seven ordinary differential equations describing the dynamics of the endotoxin,

blood monocytes, and circulating mediators and 43 parameters quantifying their interactions,

illustrated in Figure 5.1.

Endotoxin

Upon endotoxin injection, the pathogenic ligand is bound to the toll-like receptor 4 (TLR4) [24,

25] on resting circulating monocytes that will mediate its clearance from the body. This process is

modeled using exponential decay with an initial value of P (0) = 2 ng/kg with an equation of the

form
d P
d t
=�kP P, (5.1)

where kP is the decay rate. This is similar to the equation used in the model by [Chow et al., 2005;

Copeland et al., 2005; Reynolds et al., 2006]. An alternative model of the pathogen is given by

d P
d t
=�kP P MA ,

i.e. the decay of the pathogen depends explicitly on the number of resting monocytes present,

which was used to model the interaction between the monocytes and pathogen in the model by

Reynolds et al. [2006]. However, the initial decay of the P is rapid in comparison to the transition

between the resting and activated phases. Thus, we chose to use an exponential decay function

for P .
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Monocytes

The resting monocytes are formed in the bone marrow, and are released into the circulation

as a means of the ongoing immune activation. The circulating monocytes are activated by en-

dotoxin via TLR4 signaling. The circulating activated monocytes trigger the production of pro-

inflammatory mediators such as TNF-↵ and also leads to the production of IL-6, IL-8, as well

as the anti-inflammatory mediator IL-10. Moreover, via autocrine loops TNF-↵ amplifies the

inflammatory response by further activating monocytes to release the IL-6 and IL-8. TNF-↵ also

stimulates the activated monocytes to produce IL-10, which exert negative feedback on the system,

due to its anti-inflammatory properties.

The interactions between the components acting on the resting monocytes are described by

the equation

d MR

d t
=�H U

M (P )
Ä
kM +kM TNFH U

M (TNF)
ä
H D

M (IL10)MR +kM R MR

Ä
1� MR

M1
ä

(5.2)

where kM is the rate of decrease in the number of resting monocytes as a result of the pathogen,

in the absence of TNF-↵. Once TNF-↵ is produced, the number of resting monocytes decreases

further as a result of both the pathogen and TNF-↵. The up- and down-regulation of the monocytes

are represented by increasing and decreasing Hill functions,

H U
M (X ) =

X h

⌘h
Y X +X h

and H D
M (X ) =

⌘h
Y X

⌘h
Y X +X h

, (5.3)

respectively; as shown in Figure 5.2 each Hill function ranges between zero and one. Unlike

proportional or inversely proportional relations, modeling these interactions with equations of this

form allow for the rate of increase/decrease to vary, depending on the magnitude of the regulatory

component. For small values of X , H U
Y (X ) is approaching zero, while H D

Y (X ) is approaching one.

This restricts the effect of the regulatory component to the portion where the magnitude of X is

changing significantly.

The resting monocytes are up-regulated by TNF-↵ and down-regulated by IL-10. The positive

feedback of the resting monocytes on themselves is accounted for by the additional MR in the first

term of the equation. The final term in (5.2) is the natural recruitment and decay of the resting
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monocytes modeled with a logistic growth term. The k ’s are rate constants describing activation

or elimination rates and M1 is the maximum number of monocytes present. In the absence of a

pathogen, as the number of resting monocytes approaches the carrying capacity M1, the rate

of increase will decrease, forcing the number of resting monocytes to M1. The logistic growth

imposes a limit on the total number of monocytes circulating.

The activated monocytes are represented by

d MA

d t
=H U

M (P )
Ä
kM +kM TNFH U

M (TNF)
ä
H D

M (IL10)MR �kM AMA (5.4)

which is almost identical to equation (5.2), however the first term is positive and the last term is

the natural decay of the activated monocytes. The activated monocytes come from the resting

phase so its equation does not include a natural growth term. The change from negative to positive

in the first term represents the monocytes going from the resting phase to the activated phase.

Mediators

The rate of change of the mediators is described as a combination of the number of active mono-

cytes present and the influence from the pro- and anti-inflammatory mediators. For the pro-

inflammatory mediators, these interactions are described by the equations

d TNF

d t
= kTNFM H D

TNF(IL6)H D
TNF(IL10)MA �kTNF(TNF�qTNF), (5.5)

d IL6

d t
=
Ä
k6M +k6TNFH U

IL6(TNF)
ä
H D

IL6(IL6)H D
IL6(IL10)MA �k6(IL6�qIL6), (5.6)

d IL8

d t
=
Ä
k8M +k8TNFH U

IL8(TNF)
ä
H D

IL8(IL10)MA �k8(IL8�qIL8), (5.7)

where the Hill functions model the up- and down-regulation and the k ’s are the rate constants.

Down-regulation by the anti-inflammatory cytokine IL-10 is modeled by a decreasing Hill function

H D
Y (IL10). Though categorized as a pro-inflammatory mediator, IL-6 exhibits an anti-inflammatory

effect on TNF-↵, as well as on itself [Schulte et al., 2013; Starkie et al., 2003]. The down-regulation by

both IL-6 and IL-10 is modeled by a product of decreasing Hill functions, namely H D
Y (I L6)H D

Y (I L10).
The net growth of each mediator, that is, the behavior of the mediator without the presence of

an endotoxin, is represented by the last term �k (X �q ), where the source term q represents the
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amount of mediator present in the absence of an endotoxin.

The anti-inflammatory mediator IL-10 is modeled by the equation

d IL10

d t
=
Ä
k10M +k106H U

IL10(IL6)
ä
MA �k10(IL10�qIL10). (5.8)

Note that IL-10 is not down-regulated by any other mediator. Thus, (5.8) only consists of the initial

production by the activated monocytes and the up-regulation by IL-6. As before, �k10(IL10�q10)
represents the natural source and decay of IL-10.

5.2 Parameterization

To parameterize the model, we 1) consider the behavior of the monocytes and inflammatory

mediators in the absence of a pathogen. Next we 2) consider the three-state subsystem comprised

of the monocytes and the pathogen, and then 3) combine the two subsystems. Once each of the

model components has been included, parameter scaling is used to ensure that the model output

attains the proper magnitude.

5.2.1 The Monocyte-Mediator Subsystem

In the absence of a pathogen, the net growth of the monocytes can be modeled as

d MR

d t
= kM R MR

Ä
1� MR

M1
ä
,

d MA

d t
=�kM AMA ,

MR (0) = 28200,

MA(0) = 0,

where the initial condition for MR and carrying capacity, M1, are obtained from literature [Deven-

ter et al., 1990]. Since we are not modeling an intermediate step between the resting and activated

phases, the growth of the activated monocytes is completely dependent upon the number of

resting monocytes. Without activation by the pathogen, the activated monocytes will remain at

zero due to the exponential decay.
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The net growth of the inflammatory mediators are determined by equations of the form

d X
d t
=�k (X �q ), where X (0) = q .

The intrinsic level of each mediator, q , is extracted from the experimental data. That is, the value

of each mediator prior to the introduction of the pathogen. From the equation, it is clear that

X = q is an equilibrium point so if the mediators start at q , then they will remain at q .

5.2.2 The Monocyte-Pathogen Subsystem

When the pathogen is introduced at t = 0, the monocytes begin their transition from resting to

activated. This is represented by

d MR

d t
=�kM H U

M (P )MR +kM R MR

Ä
1� MR

M1
ä

and
d MA

d t
= kM H U

M (P )MR �kM AMA .

The value for kM is chosen such that the number of activated monocytes increases relative to the

amount of pathogen present. The parameterization of the Hill function H U
M (P ) and all of the Hill

functions to follow are explained in Section 5.2.4.

5.2.3 The Monocyte-Pathogen-Mediator System

The activation of the monocytes triggers the production of TNF-↵. This is modeled by

d TNF

d t
= kTNFM MA �kTNF(TNF�qTNF).

The values for kTNFM and kTNF are adjusted to control the rate of growth and decay in the presence

of the monocytes. This production encourages the activation of the monocytes, modeled by

d MR

d t
= �H U

M (P )
Ä
kM +kM TNFH U

M (TNF)
ä
MR +kM R MR

Ä
1� MR

M1
ä
,

d MA

d t
= H U

M (P )
Ä
kM +kM TNFH U

M (TNF)
ä
MR �kM AMA .
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The value for kM TNF is chosen such that the growth of the activated monocytes is larger than the

growth found in literature [Deventer et al., 1990] since the down-regulation from IL-10 has not been

incorporated. In response to TNF-↵’s growth, IL-6 and IL-8 are produced and their production is

up-regulated by TNF-↵. Thus, we have

d IL6

d t
=
Ä
k6M +k6TNFH U

IL6(TNF)
ä
MA �k6(IL6�qIL6),

d IL8

d t
=
Ä
k8M +k8TNFH U

IL8(TNF)
ä
MA �k8(IL8�qIL8).

The values of k6TNF and k8TNF are chosen such that the observed increase in IL-6 and IL-8 is more

than the amounts in the experimental data since the down-regulation from IL-10 has not been

incorporated.

About an hour after the pathogen is injected, the anti-inflammatory mediator IL-10 is produced

by the activated monocytes and is up-regulated by IL-6. These interactions are modeled by

d IL10

d t
=
Ä
k10M +k106H U

IL10(IL6)
ä
MA �k10(IL10�qIL10).

Finally, the down-regulation from IL-10 on the pro-inflammatory cytokines and monocytes, as

well as the down-regulation of TNF-↵ and IL-6 by IL-6, are incorporated into the model giving

d MR

d t
= �H U

M (P )
Ä
kM +kM TNFH U

M (TNF)
ä
H D

M (IL10)MR +kM R MR

Ä
1� MR

M1
ä
,

d MA

d t
= H U

M (P )
Ä
kM +kM TNFH U

M (TNF)
ä
H D

M (IL10)MR �kM AMA ,

d TNF

d t
= kTNFM H D

TNF(IL6)H D
TNF(IL10)MA �kTNF(TNF�qTNF),

d IL6

d t
=
Ä
k6M +k6TNFH U

IL6(TNF)
ä
H D

IL6(IL6)H D
IL6(IL10)MA �k6(IL6�qIL6),

d IL8

d t
=
Ä
k8M +k8TNFH U

IL8(TNF)
ä
H D

IL8(IL10)MA �k8(IL8�qIL8).
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5.2.4 Parameterization of Hill Functions

Ideally, the values for the half-maximum constants and exponents should be chosen by fitting

a Hill function to a curve representing the interaction between X and Y . However, available

experimental data fails to isolate these relationships. Thus, the parameters of the Hill function were

parameterized using the relationships found in previous literature [Chow et al., 2005; Clermont

et al., 2004b], as well as by studying the behavior of the model output in response to changes in

the parameter values.

Since our overall goal is to fit the model to data, it is beneficial to reduce the number of

parameters, if possible. To do so, if mediator A is up-regulating mediators B and C , then the same

half-maximum value is chosen to represent this interaction in the corresponding equation. That

is, if the interaction between mediators (A, B ) and between mediators (A, C ) are represented by

AhB

⌘hB
B A +AhB

and
AhC

⌘hC
C A +AhC

, (5.9)

respectively, then ⌘B A = ⌘C A . This half-maximum value is initially chosen to be approximately

50% of the maximal value of mediator A, and subsequently increased/decreased to attain the

necessary increase or decrease in the state. A similar approach is used to find the half-maximum

values for the down-regulatory interactions. Note that the exponents in each sigmoidal equation

are able to vary between interactions; that is, hB 6= hC . This approach is similar to the one used by

Clermont et al. [2004].
Recall that for ⌘Y X � X , where ⌘Y X is the half-maximum value, H U

Y approaches zero, while

H D
Y approaches one. Conversely, for ⌘Y X ⌧ X , H U

Y approaches one, while H D
Y approaches zero.

An illustration of this effect is shown in Figure 5.3. Thus, while the half-maximum values and

exponents need to ensure the the necessary increase or decrease, its also necessary to verify that

they are not primarily approaching zero or one. This can be done by analyzing the plots of H

versus time and of H versus X .

5.2.5 Parameter Scaling

The parameter values chosen produce relative increases/decreases in the state variables. However,

the magnitude of these dynamics are not guaranteed to agree with the experimental data. This can
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be rectified by scaling the model output and then incorporating this scaling into the parameter

values. That is, state X can be scaled by a factor ⌫, which in turn causes all of the parameters

associated with X to be scaled by ⌫.

For example, when TNF-↵ is incorporated into the equation for IL-6, parameters are changed

until a relative increase in IL-6 is observed. If the output for IL-6 needs to be scaled by a factor of ⌫

in order to get the model output to have the same magnitude as the mean response, then

›IL6= ⌫IL6 ) IL6=
1

⌫
›IL6.

Differentiating›IL6 gives

d›IL6

d t
= ⌫
Ä
(k6M +k6T N F H U

IL6(TNF))H D
IL6(IL6)H D

IL6(IL10)MA

ä�⌫k6(IL6�qIL6)

= ⌫
Ä
(k6M +k6T N F H U

IL6(TNF))H D
IL6(IL6)H D

IL6(IL10)MA

ä�k6(›IL6�⌫qIL6).

Thus, k6M , k6T N F , and qIL6 need to be scaled by ⌫. Each of the Hill functions with IL6 as its in-

dependent variable also needs to be rewritten in terms of›IL6. That is, H D
IL6(IL6), H D

TNF(IL6) and

H U
IL10(IL6) need to be rewritten in terms of›IL6. For H D

Y (IL6), we have

H D
Y (IL6) =

⌘h

⌘h + IL6h

=
⌘h

⌘h +
Ä

1
⌫
›IL6
äh

=
(⌫⌘)h

(⌫⌘)h +›IL6

= H D
Y (›IL6),

where Y 2 {TNF-↵, IL-6} and the nominal half-maximum value ⌘=⌘Y IL6 is scaled to become ⌫⌘.

Thus, each of the half-maximum values associated with IL-6 down-regulating another component

of the model will need to be scaled by ⌫. A similar calculation for H U
IL10(IL6), can be used to find

that the half-maximum value associated with IL-6 up-regulating IL-10 needs to also be scaled by
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⌫.

After incorporating the scaling into the initial parameterization, each parameter value was

verified to be physiologically sound by removing pathways and verifying that the dynamics were

as expected. For example, removing the pathogen prevented the activation of the monocytes (i.e.

MA = 0,8t ) and the mediators remained at steady state. Similarly, removing TNF-↵ caused a de-

crease in each of the remaining mediators since their production depends on the concentration of

TNF-↵. The half-maximum values were also compared against those found in literature [Copeland

et al., 2005; Deventer et al., 1990; Martich et al., 1991; Pajkrt et al., 1997b; Poll et al., 1997]. The

nominal parameter values are given in Table 5.1.
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LPS	(P)

MR

MA

TNF-α

IL-8

IL-10
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Up-regulate
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Figure 5.1 Interactions between the main components of the inflammatory response to endotoxin. Intra-
venous injection of LPS activates circulating monocytes MR , changing them into activated monocytes
MA . This initiates the production of TNF-↵. At the same time, monocytes are activated to produce IL-6
and IL-8. All three mediators work in a positive feedback loop, amplifying the inflammatory response by
activating more monocytes to stimulate production of IL-6, IL-8, and TNF-↵. The production of the anti-
inflammatory mediator IL-10 is stimulated by LPS and the elevated levels of the pro-inflammatory medi-
ators; this protects against an excessive inflammatory response. The solid lines represent up-regulation,
while the dashed lines represent down-regulation.

69



Figure 5.2 Up- and down-regulation Hill functions. The up-regulatory function is shown on the left,
while the down-regulatory function is shown on the right. The reaction rate, H , is a function of the half-
maximum value ⌘, the exponent h , and the substrate concentration X .

Figure 5.3 Comparison of Hill functions using varying levels of the half-maximum value. For each plot,
the exponent remains constant, while the half-maximum value is allowed to vary, where X 2 [0,10] and
h = 3.
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Table 5.1 Inflammatory model nominal parameter values and units.

No. Parameter Value Unit No. Parameter Value Unit

1 k10 0.8 hr�1 23 h106 3.68 -

2 k10M 0.0191 pg
mL·hr·noc 24 ht 6TNF 2 -

3 k6 0.66 hr�1 25 h66 1 -

4 k6M 0.81 pg
mL·hr·noc 26 h610 4 -

5 k8 0.66 hr�1 27 h8TNF 3 -

6 k8M 0.56 pg
mL·hr·noc 28 h810 1.5 -

7 kTNF 1 hr�1 29 hTNF10 3 -

8 kTNFM 0.6 pg
mL·hr·noc 30 hTNF6 2 -

9 kM A 2.51 hr�1 31 hM 10 0.3 -

10 kM R 0.006 hr�1 32 hM TNF 3.16 -

11 kP 1.01 hr�1 33 hM P 1 -

12 ⌘610 34.8 pg/mL 34 qTNF 1.08 pg/mL

13 ⌘66 560 pg/mL 35 qIL10 0.248 pg/mL

14 ⌘6TNF 185 pg/mL 36 qIL8 1.42 pg/mL

15 ⌘810 17.4 pg/mL 37 qIL6 0.317 pg/mL

16 ⌘8TNF 185 pg/mL 38 kM 0.0414 hr�1

17 ⌘106 560 pg/mL 39 M1 30000 # of cells

18 ⌘TNF10 17.4 pg/mL 40 k6TNF 0.81 pg
mL·hr·noc

19 ⌘TNF6 560 pg/mL 41 k8TNF 0.56 pg
mL·hr·noc

20 ⌘M P 3.3 ng/kg 42 k106 0.0191 pg
mL·hr·noc

21 ⌘M 10 4.35 pg/mL 43 kM TNF 4.14E-06 hr�1

22 ⌘M TNF 100 pg/mL

The abbreviation noc is the number of cells present.

71



CHAPTER

6

INFLAMMATORY MODEL ANALYSIS &

RESULTS

The sensitivity analysis, identifiability analysis, and optimization techniques presented in Chapter

4 have been applied to the inflammatory model and the results are presented in Sections 6.2, 6.3,

and 6.5, respectively. Uncertainty quantification was used to verify the results of the local methods.

These results are shown and discussed in Section 6.6.

6.1 Least Squares Formulation

To personalize the mathematical model of the inflammatory response, discussed in Chapter 5, we

aim to find a parameter set ✓̂ that minimizes the square of the error between the computed and
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measured values of the inflammatory mediators, TNF-↵, IL-10, IL-6, and IL-8. That is,

✓̂ = arg min
✓

J (✓ ), where J (✓ ) =R T R . (6.1)

The model output y and data Y given by

y = [TNF-↵C
1 , . . . , TNF-↵C

N , IL-10C
1 , . . . , IL-10C

N , IL-6C
1 , . . . , IL-6C

N , IL-8C
1 , . . . IL-8C

N ],

Y = [TNF-↵D
1 , . . . , TNF-↵D

N , IL-10D
1 , . . . , IL-10D

N , IL-6D
1 , . . . , IL-6D

N , IL-8D
1 , . . . IL-8D

N ]

respectively, are used to define the residual R 2R4N between the model output and the data. Due

to differences in the magnitudes of the mediators, it is necessary to divide by the mean of the data

so that the residual R is defined as

R =
1p
N


TNF-↵C �TNF-↵D

TNF-↵D
,

IL-10C � IL-10D

IL-10D
,

IL-6C � IL-6D

IL-6D
,

IL-8C � IL-8D

IL-8D

�T
.

Prior to finding ✓̂ , sensitivity and identifiability analysis are used to reduce the parameter set into

the sensitive and uncorrelated parameters.

6.2 Sensitivity Analysis

Recall from Chapter 4 that the sensitivity of the model to changes in the parameters can be

computed from the sensitivity matrix defined by � = @ y
@ ✓ . For the inflammatory model, we use

� =
@ R
@ ✓
=

2
66666666664

@ y1(t1)
@ ✓1

· · · @ y1(t1)
@ ✓q

...
...

...
@ y1(tN )
@ ✓1

· · · @ y1(tN )
@ ✓q

@ y2(t1)
@ ✓1

· · · @ y2(t1)
@ ✓q

...
...

...
@ ym (tN )
@ ✓1

· · · @ ym (tN )
@ ✓q

3
77777777775

. (6.2)
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Figure 6.1 Sensitivities of the inflammatory model. Relative parameter sensitivities ranked the most
to the least sensitive. The black line shows the cutoff between sensitive and insensitive parameters.
The cutoff� was chosen to be 10

p
', where ' = 10�8 is the integration tolerance. Red squares and

parameters listed in red denote sensitive parameters that are considered for optimization.

To ensure that the parameter values remain positive during the optimization, we use ✓̃ = log✓ .

Then

� =
@ R

@ ✓̃
=
@ R
@ log✓

=
@ R
@ ✓
✓ .

Thus, � is actually a relative sensitivity matrix �̃ . The ranked sensitivities, computed by taking

the two-norm of the sensitivity matrix, are shown in Figure 6.1. Using a cutoff of� = 10
p
', the

parameters are divided into 39 sensitive and 4 insensitive parameters.

6.3 Identifiability Analysis & Subset Selection

Among the 39 sensitive parameters, identifiability analysis and subset selection are used to iden-

tify parameters that cannot be uniquely estimated due to the structure of the model and linear

correlations.
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Due to the complexity of the inflammatory model, the input-output method used for the

mSIRS model in Chapter 4 cannot be replicated for the inflammatory model. However, additional

insight can be obtained by analyzing the equations and parameters of the model, particularly the

Hill functions and rate constants.

Hill Functions

Recall that the Hill functions, shown in Figure 5.3 of Chapter 5, as well as their respective equations

H U
Y (X ) =

X h

⌘h
Y X +X h

and H D
Y (X ) =

⌘h
Y X

⌘H
Y X +X h

,

show that for ⌘Y X � X , H U
Y approaches 0, while H D

Y approaches 1. Conversely, for ⌘Y X ⌧ X ,

H U
Y approaches 1, while H D

Y approaches 0. Without proper bounds on ⌘Y X , attempting to fit

the model to the experimental data can force these values to become either very large or very

small, depending on the equation. Thus, we have chosen to fix the half-maximum values and their

respective exponents at their nominal values.

Rate Constants

Although both kM and kM TNF are sensitive, as shown in Figure 6.1, prior attempts at optimizing

both parameters have resulted in kM being very large and kM TNF being very small. If that is the

case, then from

d MR

d t
=�H U

M (P )(kM +kM TNFH U
M (TNF))H D

M (IL10)MR +kM R MR

Ä
1�MR/M1
ä
,

that means that the pathway between TNF-↵ and the monocytes becomes nonexistent. Literature

shows that this an essential pathway in the activation of the monocytes and further production of

the inflammatory mediators [Chow et al., 2005; Rossol et al., 2011; Schulte et al., 2013]. Thus, both

parameters cannot be accurately estimated so one will have to remain fixed, while the other is

estimated. The same condition is necessary for the pairs (k6M , k6TNF), (k8M , k8TNF), and (k10M , k106).
As mentioned in Chapter 5, the carrying capacity M1 of the monocytes and the source term

qi for each inflammatory mediator are also fixed at its nominal value, as their values are based on
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the values found in literature [Deventer et al., 1990] and the experimental data. The time-varying

sensitivities for the remaining 15 sensitive parameters are shown in Figure 6.2.

Practical Identifiability

The structural correlation method (SCM) [Olufsen & Ottesen, 2013], described in Chapter 4, is

used on the remaining 15 parameters to test for linear pairwise correlations. Using a correlation

tree, similar to that found in [Olufsen & Ottesen, 2013], three parameter subsets are identified.

Subsequently, Delayed Rejection Adaptive Metropolis (DRAM) is used to verify the results of this

analysis, explained in Section 6.6.2.

Subset 1

Subset 1 is found by first fixing kM , k6M , k8M , and k10M . Following the algorithm given in Chapter

4, the relative sensitivity matrix, �̃ , is recomputed using the new subset and the parameters are

ranked from most to least sensitive. Computing the correlation coefficients, ci j , defined in (4.17) of

Chapter 4, removing the least sensitive correlated parameter and repeating this process produces

a subset with 10 parameters,

Subset 1: {k10, k6, k8, kTNF, kTNFM , kM A , kP , k8TNF, k106, kM TNF}. (6.3)

Subset 2

For Subset 2, kM T N F , k6T N F , k8T N F , and k106 are fixed and the SCM produces a second subset,

containing 8 parameters given by

Subset 2: {k10, k10M , k6, k8, kTNF, kTNFM, kP , k8M }. (6.4)

Subset 3

Notice that for Subset 2, at least two parameters are being included for each inflammatory mediator,

except for IL-6. For instance kTNFM and kTNF for TNF-↵ and k10 and k10M for IL10. Appending k6M

to Subset 2 does not produce any additional pairwise linear correlations, creating another subset,
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Figure 6.2 Time-varying sensitivities for the sensitive parameters considered for optimization (evaluated
at times where data was available). The columns on the left include the seven most sensitive parameters
and the columns on the right include the final eight parameters.
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namely

Subset 3: {k10, k10M , k6, k6M , k8, kTNF, kTNFM , kP , k8M }. (6.5)

6.4 Parameter Estimation

To render the model patient-specific, the parameters are optimized using a combination of the

Nelder-Mead and Levenberg-Marquardt algorithms for the three subsets defined above. The

lower and upper bounds for Levenberg-Marquardt are set to be one-quarter of and four times the

nominal parameter values, respectively. Imposing these bounds ensures that the optimization

results are physiologically sound.

The scaling technique explained in Section 5.2.5 of Chapter 5 is used to create a patient-specific

nominal parameter set for each data set. This allows for a better approximation of the optimal

parameter set and provides an efficient way to determine the half-maximum values of a function

without optimization. It is important to verify that the scaling has not caused the Hill function to

go toward zero or one and in the case of terms of the form k1+k2H U
Y (X ), it is important to verify

that k1 and k2 remain individually identifiable.

Figure 6.3 shows the effect of scaling the half-maximum values ⌘Y 6, as well as k6M , k6TNF, and

q6 by ⌫1 < 1. In the Hill function

H U
IL10(IL6) =

IL6h

⌘h
106+ IL6h

,

⌘106 is multiplied by ⌫1, causing the Hill function to increase. This scaling results in a decrease

in IL-6, without changing IL-10. This scaling is further incorporated into all terms involving the

remaining mediators so that they remain unchanged as well. Notice that this scaling does not

cause the Hill function to be flat (i.e. primarily close to 0 or 1).

In Figure 6.4, each of the half-maximum values associated with IL-10, ⌘Y 10, as well as the k106

and k10M terms are scaled by ⌫2 > 1. For these parameters, the Hill function (shown in the top left)

does not change since the half-maximum value associated with this equation is ⌘Y IL6. However,

when combined with the scalings of k10M and k106, IL-10 decreases. Combining the scalings used

for IL-6 and IL-10 results in a decrease in both IL-6 and IL-10, shown in Figure 6.5.

After incorporating the appropriate scaling, each parameter subset, (6.3), (6.4) and (6.5), is
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Figure 6.3 Effects of scaling parameters associated with IL-6. Changes in the Hill function H U
IL10(IL6) and

model output in response to scaling the IL-6 model output (scaled ⌘Y 6, k6M , k6TNF, and q6 by ⌫1 < 1). Blue
lines are with nominal parameter set and red lines are with scaled parameter set. Top left panel shows
k106H U

IL10(IL6) (solid line) and k10M (dashed line) versus time. Bottom left panel shows H U
IL10(IL6) versus

IL-6. Inflammatory mediator outputs (right).

Figure 6.4 Effects of scaling parameters associated with IL-10. Changes in the Hill function H U
IL10(IL6) and

model output in response to scaling the IL-10 model output (scaled ⌘Y 10, k106 and k10M by ⌫2 > 1). Blue
lines are with nominal parameter set and red lines are with scaled parameter set. Top left panel shows
k106H U

IL10(IL6) (solid line) and k10M (dashed line) versus time. Bottom left panel showsH U
IL10(IL6) versus

IL-6. Inflammatory mediator outputs (right).
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Figure 6.5 Effects of scaling parameters associated with IL-6 and IL-10.Changes in the Hill function
H U

IL10(IL6) and model output in response to scaling both the IL-6 & IL-10 model outputs (scaled
⌘Y 6, k6M , k6TNF, q6,⌘Y 10, k106 and k10M ). Blue lines are with nominal parameter set and red lines are with
scaled parameter set. k106H U

IL10(IL6) versus time (solid line) and k10M (dashed line) (top left). H U
IL10(IL6)

versus IL6 (bottom left). Inflammatory mediator outputs (right).

optimized. Recall from Chapter 4 that the Levenberg-Marquardt algorithm is a gradient based

method, which requires a "good" nominal set in order to find the local minimum of the cost

function, J . Due to its ability to find an absolute, rather than local, minimum of J , the parameters

are first optimized using Nelder-Mead. These subsequent parameters define a new nominal set that

is then optimized using Levenberg-Marquardt. Alternatively, assuming that the scaled parameter

values constitute a "good" nominal set, Levenberg-Marquardt can used without using Nelder-

Mead first. Consequently, three separate results are obtained for each subset: (1) Nelder-Mead

only, (2) Levenberg-Marquardt only, and (3) Nelder-Mead followed by Levenberg-Marquardt.

6.5 Results

The R 2 statistic was used to quantify the accuracy of the model. It provides a measure of how well

the data are replicated by the model, computed by taking the ratio of the sum of squares explained
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by the regression model and the total sum of squares error around the mean. That is,

R 2 = 1� SS E
SST

,

where

SS E =
NX

i

(yi � Yi )2 and SST =
NX

i

(Yi � Y )2.

Between the three optimal parameter sets (Levenberg-Marquardt only, Nelder-Mead only, and

Nelder-Mead followed by Levenberg Marquardt), the set with the largest R 2 values is accepted as

the optimal set.

Figure 3.2 of Chapter 3 depicts the data set that most resembles the mean response. Subsequent

results will be shown against this data set, unless stated otherwise. The optimal parameter values

using Subsets 1 through 3 for this data set are shown in Table 6.1 and the fits to the data are shown

in Figure 6.6. Table 6.1 also includes the mean plus/minus the standard deviation, excluding these

abnormal responses, which were identified using box-and-whisker plots (discussed in Chapter 3).

Subset 1

For Subset 1, Figure 6.6 and Table 6.1 show that the R 2 values are significantly higher than for

other other subsets and the model fits the data well. However, to obtain these fits, the optimized

values obtained using Levenberg-Marquardt were forced to their upper and lower bounds. Using

the imposed bounds of ✓ /4 and 4✓ , where ✓ was the nominal scaled parameter set, the optimizer

forced kP , k106, and/or kM TNF to touch the lower bound in 16 out of the 20 datasets. Expanding

those bounds to be ✓ /8 and 8✓ resulted in the same issue. Thus, Subset 1 actually provides worse

results than the other two subsets.

Subsets 2 & 3

The model fits and R 2 values for Subsets 2 and 3 are shown n Figure 6.6. Although the R 2 values

are lower than those of Subset 1, the Levenberg-Marquardt optimizer did not force the parameters

to their upper or lower bounds. Table 6.2 shows that Subset 3 outperforms Subset 2 in accurately

modeling the response over all of the data sets; particularly, in modeling the IL-6 response, which
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Table 6.1 Nominal parameter values and optimal parameter values for Subsets 1 through 3. Nominal and
optimal parameter values are for a particular subject after scaling and then optimizing using Nelder-
Mead and Levenberg-Marquardt. The mean plus/minus the standard deviation for each subset is also
included. The final two rows show the minimum and maximum R 2 over all mediators for all data sets.

Parameter Nominal Subset 1 Subset 2 Subset 3
✓ ✓̂ Mean ± Std ✓̂ Mean ± Std ✓̂ Mean ± Std

k10 0.800 0.866 0.776 ± 0.199 0.883 0.826 ± 0.191 0.976 0.870 ± 0.281
k10M 0.019 0.009 0.011 ± 0.007 0.008 0.009 ± 0.004

k6 0.660 0.870 0.885 ± 0.209 0.775 0.897 ± 0.319 0.669 0.751± 0.198
k6M 0.810 0.271 0.343 ± 0.178
k8 0.660 0.846 0.776 ± 0.115 0.705 0.710 ± 0.109 0.691 0.663 ± 0.095

k8M 0.560 0.539 0.671 ± 0.191 0.338 0.278 ± 0.126
kTNF 1.000 1.708 1.579 ± 0.195 1.402 0.788 ± 0.489 1.611 1.710 ± 0.370

kTNFM 0.600 0.781 0.898 ± 0.517 0.661 0.788 ± 0.386 0.620 0.721 ± 0.442
kM A 2.510 2.946 3.659 ± 1.653
kP 1.010 0.236 0.267 ± 0.042 1.006 1.062 ± 0.088 0.795 0.769 ± 0.229

k8TNF 0.560 0.608 0.680 ± 0.255

k106 0.019 2.87E-03
9.90E-03
± 7.82E-03

kM TNF 4.14E-06 1.74E-06
5.48E-05
± 1.87E-04

R 2
min 0.8 0.71 0.71

R 2
max 1 0.99 1

may be attributed to estimating k6M in Subset 3, but not in Subset 2. Subset 3 also predicts the

maximum of the response better than the remaining subsets, as shown in Figure 6.6. Additionally

the regression line for Subset 3, shown by the black lines in Figure 6.7, align with y = x better than

for Subset 2. Thus, all subsequent results will be shown using optimal parameters from Subset 3.

DRAM was also used to identify correlations between parameters globally. The results, shown

in Section 6.6.2, support the argument that Subset 3 is the best.

6.5.1 Normal versus Abnormal Responses

As previously mentioned, the data was separated into a set of normal and abnormal responders,

using Box-and-Whisker plots. To understand what is causing one type of response versus another,
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Figure 6.6 Comparison of model predictions of Subsets 1 through 3. Data (black circles) and model fits for
mean data set (shown in red in Figure 3.2) after intravenous administration of endotoxin. Optimization
using Subsets 1,2, and 3 are denoted by the blue dashed, red dashed line, and black solid lines, respec-
tively. The participant was given 2 ng/kg body weight of endotoxin at t = 0h , and inflammatory mediator
levels were measured at t = �2,0,1,1.5,2h and hourly for the next 4 hours. Pseudodata was added at
t = 7 and 8h to ensure that mediators had appropriate time to decay.

we compared the response between a normal responder (the subject depicted in Figure 6.6) and

an abnormal responder, shown in Figure 6.8.

The differences in the observed responses caused noteworthy contrasts in the parameter

values. Major differences include kTNFM , the rate responsible for the production of TNF-↵ by

the activated monocytes, was almost two times larger in the normal response (normal: 0.620,

abnormal: 0.383). In contrast, k10M , the rate responsible for the production of IL-10 by the activated

monocytes, was half as large in the normal response (normal: 0.008, abnormal: 0.018). Additionally,

k6M was significantly larger in the abnormal response (normal: 0.271, abnormal: 1.220). The decay

rate of IL-6, k6, was almost two times larger in the abnormal response (normal: 0.669, abnormal:
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Table 6.2 Comparison of the average, minimum, and maximum R 2 values for Subsets 1 through 3. R 2

average, minimum, and maximum over all data sets after scaling and then optimizing using Nelder-
Mead and Levenberg-Marquardt.

Mediator R 2 S1 S2 S3 Mediator R 2 S1 S2 S3

TNF-↵
Av 0.94 0.92 0.93

IL-6
Av 0.94 0.93 0.94

Min 0.84 0.71 0.71 Min 0.86 0.71 0.73
Max 0.99 0.98 0.99 Max 1.00 0.99 1.00

IL-10
Av 0.90 0.89 0.89

IL-8
Av 0.94 0.94 0.94

Min 0.80 0.79 0.78 Min 0.88 0.88 0.87
Max 0.97 0.96 0.96 Max 0.98 0.97 0.99

1.217).

The abnormal response shown in Figure 6.8 demonstrates a particular type of response. In

classifying the abnormal responders, three individuals exhibited a low level of TNF-↵ accompanied

by high levels of IL-10, two individuals had high levels of both TNF-↵ and IL-10, and one individual

had an increased level of IL-6 and IL-8.

6.5.2 Model Validation

As mentioned in Chapter 3, the analysis of the inflammatory model was developed using the Day

A data only. The model was validated by running the model with the optimal parameters for Day

A against the data for Day B. It should be noted that the initial conditions and source terms q

were set based on the data for Day B. A comparison of the results for a particular subject for Day A

versus Day B is shown in Figure 6.9. For this individual, the R 2 values changed by 0.11 or less. The

average change in the R 2 values over the subjects classified as normal for both days was between

0.03 and 0.12. For those classified as abnormal for both study days, the average change in the R 2

values was between 0.02 and 0.17.

6.6 Uncertainty Quantification

Recall from Chapter 4 that frequentist and Bayesian methods can be used to quantify the uncer-

tainty in a model. The global Bayesian method DRAM, as well as frequentist parameter confidence

intervals, were used to verify the local identifiability analysis results presented above. Prediction,
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Figure 6.7 Comparison of the residual plots for Subsets 1 through 3. Residuals of Subsets 1 through 3
versus the data. The regression lines ymodel =m ydata are shown by the vertical lines and y = x is shown by
the red line.

confidence, and credible intervals were used to quantify the accuracy of the model in predicting

the response.

6.6.1 Frequentist Methods

The parameter confidence intervals, given in Table 6.3 verify that Subset 3 is the best. For Subset 1,

the parameter confidence intervals for kM A , kP , k8TNF, k106, and kM TNF show that there is a high

level of uncertainty in estimating these parameters. Comparing the parameter confidence intervals

between each subset for kP show that it can be estimated with confidence once the unidentifiable

rate constants are removed. The parameter confidence intervals changed by less than 4% between

Subsets 2 and 3 after k6M was included. Thus, the parameters of Subset 3 were the best to optimize.
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Figure 6.8 Comparison of model fits between a normal and an abnormal responder. Model fits for a nor-
mal data set (blue line) against the data (blue circles) and for an abnormal data set (red dashed line)
against data (red unfilled circles) are shown. Participants were given 2 ng/kg body weight of endotoxin at
t = 0h , and inflammatory mediator levels were measured at t =�2,0,1,1.5,2 h and hourly for the next 4
hours. Pseudodata was added at t = 7 and 8h to ensure that mediators had appropriate time to decay.

Subsets 2 and 3 after k6M was included. Thus, the parameters of Subset 3 were the best to optimize.

The confidence and prediction intervals for the mean data set are shown in Figure 6.10. The

width of the intervals show that the model accurately depicts the mean response and that the

optimized parameter values provide a reasonable prediction of the data.

6.6.2 Delayed Rejection Adaptive Metropolis

As demonstrated in Chapter 4, DRAM can be used to determine parameter distributions. Figure 6.11

shows the DRAM simulations using the 15 sensitive parameters, previously identified in Figure 6.1.

Like the Levenberg-Marquardt method, bounds can be imposed on the parameters in DRAM and
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Figure 6.9 Comparison of model fit to Day A and Day B data. Model prediction for individual subject
plotted against data for Day A (red circles) and Day B (blue crosses). The model was initially optimized
against Day A data. Participants were given 2 ng/kg body weight of endotoxin at t = 0h , and inflamma-
tory mediator levels were measured at t =�2, 0, 1, 1.5, 2h and hourly for the next 4 hours. Pseudodata was
added at t = 7 and 8h to ensure that mediators had appropriate time to decay.

parameters are expected to converge to an optimal value. The parameter chains and densities in

Figure 6.11 demonstrate the difficulty in estimating kM A , k6TNF, k8TNF, and k106, as well as k6M , k8M ,

and kP . Figure 6.14 shows an attempt by DRAM to identify any pairwise correlations (i.e. the chains

bounce between the bounds and consequently do not converge). The lack of convergence in the

parameter chains makes it difficult for DRAM to identify these correlations.

To generate the parameter chains and densities, the DRAM toolbox by Haario et al. requires

that an estimator of the variance s 2 is provided. If

s 2 =
1

N �q
J (✓̂ ),
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Table 6.3 Parameter confidence intervals for Subsets 1 through 3. Intervals are for the dataset shown in
red in Figure 3.2. Highlighted rows show parameter confidence intervals that are significantly large,
which is evidence of the uncertainty in estimating said parameter.

Parameter
Subset 1 Subset 2 Subset 3
✓̂ �✓̂ ✓̂ �✓̂ ✓̂ �✓̂

k10 0.866 1.5442 0.883 1.2616 0.976 1.4089
k10M 0.009 0.7576 0.008 0.7846

k6 0.870 1.6901 0.775 0.9162 0.669 0.9199
k6M 0.271 1.3444
k8 0.846 1.3681 0.705 0.8910 0.691 0.8767

k8M 0.539 1.4443 0.338 1.7909
kTNF 1.708 2.8330 1.402 2.0561 1.611 2.8596

kTNFM 0.781 0.9587 0.661 0.4945 0.620 0.5118
kM A 2.946 22.4404
kP 0.236 5.7398 1.006 1.0049 0.795 1.2897

k8TNF 0.608 2.2291
k106 2.87E-03 5.6132

kM TNF 1.74E-06 1.2397

where the cost function J is defined in 6.1, then s 2 will be large for a small N . Bayesian methods

for uncertainty quantification propogate the parameter densities through the model to calculate

the credible and prediction intervals. However, having a low number of data points will cause the

variance estimator s 2 to be large. Generating synthetic data is necessary to guarantee that this is

not the case. To generate the data, the data Yi is interpolated at the times where the model output

is produced. Next, the residual R is computed and using this, we obtain s 2. Thus, the synthetic

data is given by

Ysi
= g (t̃i , x (t̃i ), ✓̂ ) +✏, where ✏⇠N (0, s 2),

where t̃i are the times that the model output is produced.

Though the optimal parameter values were able to fit the model data well for Subset 1 through

3, DRAM simulations confirmed the problem with estimating particular parameters. As shown

in Figure 6.13, the parameter chains produced for Subset 1 hit the pre-set bounds for four out

of the ten parameters being estimated, even after they were widened. As a result, the parameter
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Figure 6.10 Model fits with confidence and prediction intervals. Data and model fits for the mean data set
after intravenous administration of endotoxin (black). Confidence (blue) and prediction (red) intervals
are also shown. The participant was given 2 ng/kg body weight of endotoxin at t = 0h , and inflammatory
mediator levels were measured at t = �2,0,1,1.5,2h and hourly for the next 4 hours. Pseudodata was
added at t = 7 and 8h to ensure that mediators had appropriate time to decay.

densities were wide and inaccurate. Additionally, the parameter chains for kM A , kP , k106, and

kM TNF produced by DRAM did not converge to an optimal parameter value. The parameter chains

and distributions for Subset 3 are shown in Figure 6.13.

For Subset 2, the parameter chains and densities converged well and did not hit the bounds.

Thus, this subset can effectively estimate parameters for the model. Recall that the difference

between Subsets 2 and 3 was the inclusion of k6M . Including k6M resulted in parameter chains that

converged faster than or remained the same as those for Subset 2. Additionally, k6M did not reveal

any parameter correlations, though the SCM has previously identified correlations between k6M

and the parameters kTNFM , kM , kP , k10M and k8M when kM and kM A had previously been included
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Figure 1: DRAM results varying the 15 sensitive parameters (identified in Figure 6.1) of the inflammatory model. (a)

Parameter chains and (b) parameter distributions Simulations were done using 200,000 samples with a burn-in period of

40,000. Black line signifies in (a) end of burn-in period. Black line in (b) signifies optimal parameter values

ˆ✓.
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Figure 1: DRAM parameter correlations for the 15 sensitive parameters (identified in Figure 6.1) of the inflammatory model.

Due to the unidentifiability of parameters such as k6TNF

, k8TNF

, and k106, DRAM simulations are unable to identify the

parameter correlations. Simulations were done using 200,000 samples.
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Figure 1: DRAM parameter correlations for the Subset 1. Parameter correlations for Subset 1 produced by DRAM.

Simulations were ran 200,000 times with a burn-in period of 40,000.
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in the SCM analysis.

Along with the parameter confidence intervals, shown in Table 6.3 and the prediction and

confidence intervals shown in Figure 6.10, the Bayesian prediction and credible intervals were

used to quantify the accuracy of the model. The prediction and credible intervals for the abnormal

and normal responses (shown in Figure 6.8) are shown in Figure 6.15. The differences in the

optimal parameters used to produce the model output for each of these responses is evident in

the parameter chains and distributions, shown in Figure 6.16.

6.7 Discussion

In this study, a personalized model of the inflammatory response based on systemic inflammatory

mediator production after a low dose intravenous endotoxin injection in healthy young men has

been developed. Inter- and intra-individual variations such as those shown in Figures 6.8 and

6.9, demonstrates the importance in modeling individual dynamics. It is clear that the abnormal

response is significantly different than the normal response for TNF-↵, IL-10, and IL-6. This could

be due to the fact that IL-6 has an inhibitory effect on TNF-↵ [Schulte et al., 2013; Starkie et al.,

2003], so a high level of IL-6 can result in lower levels of TNF-↵. Additionally, TNF-↵ and IL-10

have opposing roles in the inflammatory response, which can lead to a high level of IL-10 when

TNF-↵ is low.

The variation in the responses between the two individuals can be explained by differences in

the optimal parameter values. IL-6 is produced in response to the activation of the monocytes

and then up-regulated by TNF-↵. The parameters responsible for these interactions are k6M and

k6TNF, respectively. The increase in k6M in the abnormal response makes k6M significantly higher

than k6TNFH U
IL6(TNF-↵). Thus, the majority of the IL-6 production is in response to the activated

monocytes. When combined with a faster decay in the pathogen, evident by an increase in kP , the

resulting faster activation of the resting monocytes results in a higher concentration of IL-6. Due

to the inhibitory effect of IL-6 on TNF-↵, TNF-↵ decreases prematurely.

The ability of the mathematical model to predict the Day B response using the parameters

optimized for Day A indicates that the model is a useful predictor of the inflammatory response

in both normal and abnormal responses. It should be noted that although the experiment was

performed under the same condition each day, differences among the responses may be due to
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Normal Response

Abnormal Response

Figure 6.15 Comparison of Bayesian prediction and credible intervals between normal and abnormal
responders. Prediction (light gray) and credible (dark gray) intervals produced by DRAM for the normal
and abnormal responses in Figure 6.8. Black dots are synthetic data, while blue (red) dots are experimen-
tal data for normal (abnormal) response.
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Figure 1: Comparison of DRAM parameter chains and densities for a normal and an abnormal responder. DRAM parameter

chains (a) and parameter densities (b) for abnormal (red) and normal (b) responders, shown in Figure 6.8.
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the subject developing a tolerance to the endotoxin, experiencing anxiety on the second day or

preparing for the experiment differently than they did on the first day. Additionally, while responses

classified as abnormal are assumed to be abnormal due to significant differences in their responses

compared to the other subjects, this classification could be as a result of measurement error.
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CHAPTER

7

COUPLED

CARDIOVASCULAR-INFLAMMATORY

MODEL

In 2010, it was estimated that 2.5 million individuals have had a total hip replacement and that 4.7

million individuals have had a total knee replacement by the age of 80 [Maradit Kremers et al.,

2015], in the U.S. alone. Current trends indicate a substantial rise in prevalence over time, with a

shift towards younger people. Those who undergo knee or hip replacement surgery are encouraged

to regain mobilization for a rapid and functional recovery [Guerra et al., 2015; Pearse et al., 2007].
This strategy improves outcomes, yet many patients experience orthostatic intolerance (OI), the

inability to maintain blood pressure and flow in response to postural changes, when attempting

to rise from bed [Cowie et al., 2004; Jans et al., 2012].
It is known that an uncontrolled, excessive production of pro-inflammatory mediators from
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immune cells and traumatized tissues can cause systemic inflammatory response syndromes such

as sepsis. That is, whole-body inflammation accompanied by low blood pressure [Schulte et al.,

2013]. Sepsis is estimated to be one of the ten leading causes of death in the United States and one

of the three leading causes of death in the intensive care unit [Fried et al., 2011]. The production

of inflammatory mediators, in particular TNF-↵, IL-6, and IL-1� , causes afferent neural firing to

the brain, resulting in a fever [Schulte et al., 2013]. Additionally, this type of inflammatory event

(i.e. endotoxin, surgery, trauma, etc.) causes a decrease in the body’s pain perception threshold

(PPT) [Janum et al., 2016; Zhang & An, 2007].
Copeland et al. [2005] conducted an experiment in which mice and humans were given equiv-

alent doses of endotoxin to compare response levels of the pro-inflammatory mediators TNF-↵

and IL-6, as well as the anti-inflammatory mediators TNF soluble receptor I (TNF-SRI) and IL-1

receptor antagonist (IL-1RA) were measured and compared. The level of dosage was chosen to

induce an IL-6 concentration in plasma of 1000 pg/mL. Results showed that the levels of TNF-↵

and IL-6 in plasma peaked 2h after the endotoxin injection and returned to baseline levels by 4 to

6 h. IL-1RA and TNF-SRI were upregulated in both mice and humans, but were upregulated more

in humans. The study found that humans experienced a rapid physiological response, consisting

of fever, tachycardia, and slight hypotension, which was not evident in mice. Thus, it was con-

cluded that the autonomic control system is affected by the inflammatory response in humans,

but likely not in mice. Tracey [2002] proposed the existence of a cholinergic anti-inflammatory

pathway, which inhibits the release of inflammatory mediators from the activated monocytes via

acetylcholine (ACh). That is, the brain recognizes the pathogen and sends efferent signals to the

reticuloendothelial system, including the liver, spleen, heart, and gastrointestinal tract. This leads

to ACh release, which inhibits the production of pro-inflammatory mediators via an ACh receptor

on the activated monocytes. The increased efferent activity along the vagus nerve also increases

heart rate variability.

These findings show that the cardiovascular system has an effect on the inflammatory response

and conversely, the inflammatory response has an effect on the dynamics of the cardiovascular

system. In this chapter, we focus on the effect of inflammation on the cardiovascular system

dynamics in response to endotoxin. We hypothesize that the heart rate increase, observed in

humans and not in mice, is caused by the increase in the temperature set point, while the rise

in blood pressure is caused by the decrease in pain perception tolerance (PPT). This effect is
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combated by a decrease in pressure caused by the vasodilator nitric oxide (NO) several hours

later. These interactions are summarized in Figure 7.4 on page 115. To date, the pathway from

the inflammatory response to changes in cardiovascular dynamics has not been well-defined and

to our knowledge, we are the first to set forth a pathway of this sort. Clearly defining the effect of

inflammation on the cardiovascular dynamics, through the analysis of specific biomarkers, can

aid in the development of preoperative therapy to prevent sepsis propagation.

This chapter begins with a brief review of the inflammatory model in Section 7.1, followed

by a description of the cardiovascular model in Section 7.2. Using the effectors NO, temperature,

and pain perception, the cardiovascular model is coupled with the inflammatory model. This is

discussed in Section 7.3. Finally, the parameterization is explained in Section 7.4.

7.1 Inflammatory Model

Recall from Chapter 5 that the inflammatory response to endotoxin activates the monocytes,

which produce the inflammatory mediators that mediate the response. In particular, the pro-

inflammatory mediators TNF-↵, IL-6, and IL-8 increase the levels of inflammation, while the

anti-inflammatory mediator IL-10 regulates the response by reducing the inflammation. Each

component of the response works with the other to restore homeostasis to the system. Once the

pathogen is cleared, the response subsides and the mediators return to their basal levels.

7.2 Cardiovascular Model

The cardiovascular dynamics determining heart rate and blood pressure are typically analyzed

using either multi-dimensional models, describing fluid dynamics as functions of space and time

or system-level models lumping vessels into compartments. Multi-dimensional models are useful

when determining local behavior in a specific part of the circulation, such as the flow through

a bypass configuration. In contrast, system-level models lump several regions of the body into

compartments and the flow between these are predicted using an analogue to RC-electrical circuits.

In this model type, blood pressure is equivalent to voltage, flow is equivalent to current, volume is

equivalent to charge, capacitance is equivalent to compliance, while resistance is the same in both

formulations. Multidimensional models are almost always pulsatile, while system-level models
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can be either pulsatile or non-pulsatile.

Pulsatile compartmental models account for the dynamics within heart beats, therefore pro-

ducing beat-to-beat changes in arterial blood pressure. In such models, the pumping of the heart

is typically represented by a time-varying elastance function [Heldt et al., 2002; Mukkamala &

Cohen, 2001; Olufsen et al., 2005; Ursino, 1998]. In contrast, non-pulsatile models predict the

average behavior (i.e. mean blood pressure, flow, and volume) by integrating the effect of the

heart [Batzel et al., 2007; Kappel & Peer, 1993]. One of the advantages of non-pulsatile models is

that they are less complex, allowing for easier coupling with more advanced models, since the

opening and closing of the heart valves is not being accounted for. In this study, the inflammatory

model is analyzed over 8 hours and it is more computationally efficient to couple this model

with a non-pulsatile model as computations are significantly faster than with a pulsatile model.

Furthermore, on this timescale, we are not interested in beat-to-beat behavior.

Numerous researchers have used system-level models to investigate events within the cardiac

cycle. Ursino [1998] developed an eight-compartmental pulsatile mathematical model to study

the pulsating heart and its interactions with the carotid baroreflex control system. This model

included both the pulmonary and systemic circulation. To account for the pulsatility of the heart,

the resistance in the left ventricle was modeled as a linear function of the isometric left ventricle

pressure. Olufsen et al. [2005] developed an 11-compartmental model predicting dynamic changes

in beat-to-beat arterial blood pressure during a postural change from sitting to standing. Unlike

the model by Ursino, this model focused solely on the systemic circulation. The resistances in the

left ventricle were modeled as pressure-dependent exponential functions and the resistances in

the large systemic arteries were modeled using nonlinear functions of pressure.

Mukkamala & Cohen [2001] developed a six-compartmental pulsatile model for the analysis of

beat-to-beat fluctuations in non-invasively measured heart rate, blood pressure, and instanta-

neous lung volume. The model included compartments for the systemic and pulmonary veins and

arteries, as well as the left and right ventricles. The aim of this study was to validate a previously

developed cardiovascular system identification method [Mukkamala, 2000]. This identification

method mathematically analyzed hemodynamic signals to provide a dynamical characterization

of the physiological mechanisms responsible for generating them. Heldt et al. [2002] developed a

ten-compartmental pulsatile model of the short-term transient and steady-state hemodynamic

responses to head-up tilt and lower body negative pressure. This was a closed-loop lumped-
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parameter model of the systemic and pulmonary circulations connected to set-point model of the

arterial and cardiopulmonary baroreflexes.

The cardiovascular model described in this chapter is adapted from the pulsatile model by

Williams et al. [2013]. Similar to the model by Olufsen et al. [2005], the resistors of the heart

valves are modeled as time-varying functions of the pressure. Additionally, an elastance function,

initially proposed by Ellwein [2008], is used to model the pumping of the heart. As previously

mentioned, it is advantageous to use a non-pulsatile model to analyze dynamics over longer time-

scales (minutes-hours). Thus, from the pulsatile model, a non-pulsatile model is developed that

can predict blood pressure and heart rate. This non-pulsatile model is interchangeable with the

pulsatile model since it is obtained by integrating the pulsatile model, using the same parameters.

We start by describing the pulsatile model and then showing how to convert it to the non-pulsatile

model by eliminating the left heart compartment, as shown in Figure 7.1b.

7.2.1 Pulsatile Cardiovascular Model

The cardiovascular model, shown in Figure 7.1, predicts flow (q ), pressure (p ), and volume (V )

in the systemic circulation. The compartmental model contains two arterial and two venous

compartments representing the arteries and veins in the upper body and organs beds.

By the conservation of volume, the change in volume in compartment i is given by

d Vi

d t
= qin�qout, (7.1)

where qin and qout denote the volumetric flow coming in and going out of the compartment,

respectively. Using Ohm’s Law, flow can be predicted as

q =
pin�pout

R
, (7.2)

where pin and pout are the pressures on either side of the resistor R .

For each compartment, the pressure and volume are related by

Vi �Vun =Ci (pi �pext), (7.3)
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(a)

(b)

Figure 7.1 Compartmental model predicting cardiovascular dynamics. (a) Each compartment has an
associated blood pressure p (mmHg), volume V (mL), and compliance C (mL/mmHg). The compart-
ments represent the systemic arteries, arteries in the organ bed, veins in the organ bed, veins, and the
left heart (subscripts a , a o , v o , v, and h , respectively). Resistances R (mmHg s/mL) are placed between
all compartments. qa v and qm v represent the aortic and mitral valves, respectively. (b) Note that the left
heart compartment is omitted in the non-pulsatile model.
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where Vun is the unstressed volume, Ci is the compliance, pi is the instantaneous blood pressure,

and pext is the pressure in the surrounding tissue. For the left heart, pressure is predicted using the

pressure-volume relation

ph = Eh (t )(Vh �Vun), (7.4)

where Vh is the left heart volume and Eh (t ) is the time-varying elastance of the left heart (the

reciprocal of its compliance), given by

Eh (t ) =

8
>>>><
>>>>:

EM �Em

2

î
1� cos
Ä⇡t̃

TS

äó
+Em , 0 t̃  TS ,

EM �Em

2

î
cos

✓
⇡(t̃ �TS )
TR �TS

◆
+1
ó
+Em , TS  t̃  TR ,

Em , TR  t̃  T ,

where t̃ is the time within a cardiac cycle T = 1/H [Ellwein, 2008]. The minimum and maximum

elastances are represented by Em and EM , respectively. For each cardiac cycle, elastance is in-

creased during systole for 0< t̃ < TS . During diastole, elastance is decreased for TS < t̃ < TR and

kept constant at its minimum value Em for the remainder of the cardiac cycle. The elastance

function is shown in Figure 7.2.

The volume in each compartment, shown in Figure 7.1a, are obtained by solving the differential

equations
d Vv

d t
= qv �qm v ,

d Vv o

d t
= qo �qv ,

d Va

d t
= qa v �qa ,

d Va o

d t
= qa �qo ,

d Vh

d t
= qm v �qa v ,

(7.5)

where

qa =
pa �pa o

Ra
, qo =

pa o �pv o

Ro
, qv =

pv o �pv

Rv
. (7.6)

The flows through the aortic and mitral valves (qa v and qm v , respectively) each depend on the

difference between the pressure within the heart and the arterial and venous pressures. If the

pressure in the heart is less than the arterial pressure, then qa v = 0. This is the case from the

beginning of the cardiac cycle until the end of the isovolumic contraction and between TS and
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Figure 7.2 Pressure, volume, flow, and elastance changes during the systolic and diastolic phases of the
cardiac cycle. (a) Left ventricular (black) and arterial (blue dashed) pressures. (b) Left ventricular volume.
The horizontal dashed lines represent end-diastolic (VE D ) and end-systolic (VE S ) volumes. (c) Relative
flows qa v and qm v . (d) Time-varying elastance during a cardiac cycle. The maximum elastance is found
at t̃ = TS and the minimal elastance at t̃ = TR , while the length of the cardiac cycle is assumed to be
T = 1s . Adapted from [Smith & Kampine, 1990].

T . This is evident in the pressure and relative aortic flow throughout the cardiac cycle shown

in Figure 7.2. If the pressure in the heart is greater than the venous pressure, then qm v = 0. The

relative flow through the mitral valve is shown by the red line in Figure 7.2c.

105



These relations are represented by the piecewise functions

qa v =

8
<
:

ph �pa

Ra v
, when ph > pa

0, otherwise
and qm v =

8
<
:

pv �ph

Ra v
, when ph < pv

0, otherwise.

Differentiating 7.3, yields

d Vi

d t
=Ci

d pi

d t
=) d pi

d t
=

1

Ci

d Vi

d t
.

Thus, the pressure in each compartment is given by the solution to

d pv

d t
=

qv �qm v

Cv
,

d pv o

d t
=

qo �qv

Cv o
,

d pa

d t
=

qa v �qa

Ca
,

d pa o

d t
=

qa �qo

Ca o

(7.7)

and the pressure in the heart is given by (7.4).

7.2.2 Non-Pulsatile Cardiovascular Model

The inclusion of an elastance function, representing the pumping of the heart, makes the model

described above pulsatile. The left heart compartment can be eliminated by integrating the current

model over the cardiac cycle, creating a non-pulsatile cardiovascular model, without introducing

additional model parameters. To date, this has not been done in previous cardiovascular studies.

The volume in the ventricular compartment is given by solving

d Vh

d t
= qm v �qa v ,

where during filling (from TR to T ) the mitral valve is open and the aortic valve is closed. Thus,

d Vh

d t
= qm v =

8
<
:

pv �ph

Rm v
, when pv > ph

0, otherwise.
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To eliminate the left ventricle compartment, during filling we let the average flow through the

heart, Q , be defined as

Q = q m v =
1

T

Z T

0

d Vh

d t
dt ⇡ 1

T

Z T

TR

d Vh

d t
dt ,

where q m v represents the average flow through the mitral valve. From Figure 7.2c, it is clear that

the mitral valve is closed for 0< t̃ < TR (qm v = 0). Thus, the latter integral holds and integration

gives

Q ⇡ 1

T

Z T

TR

d Vh

d t
dt

=
1

T

î
Vh (T )�Vh (TR )
ó

=
1

T

î
VE D �VE S

ó
,

where VE D and VE S are the end-diastolic and end-systolic volumes, respectively. During ejection,

the aortic valve is open while the mitral valve is closed so

d Vh

d t
=�qa v =

8
<
:
�ph �pa

Rm v
, when ph > pa

0, otherwise.

Again, let the average flow through the heart be defined as Q , giving

Q = q a v =� 1

T

Z T

0

d Vh

d t
dt .

Note that during ejection, the volume in the left ventricle is decreasing, indicated by the minus in

front of the integral. As shown in Figure 7.2, the heart ejects blood from the end of the isovolumic

contraction to the beginning of the isovolumic relaxation. Since the volume is not changing during

the isovolumic contraction, nor from the end of systole (t = TS ) to the beginning of filling (t = TR ),
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we can estimate the average flow during ejection as the change in flow from t = 0 to t = TS as

Q ⇡ � 1

T

Z TS

0

d Vh

d t
dt

= � 1

T

î
Vh (TS )�Vh (0)
ó

=
1

T

î
VE D �VE S

ó
.

Keeping in mind that H = 1/T and defining the stroke volume as

Vstr = VE D �VE S , (7.8)

then the cardiac output can be defined as

Q ⇡H Vstr.

Note that the heart rate can be given as an input to the model or given by a control function

(discussed in Section 7.3.2). The final step of the model development is to solve for VED and VES in

terms of the model parameters. This is achieved via integration.

Solving for VE D During Filling

During filling, the flow entering the left ventricle is given by

qm v =
pv �ph

Rm v
,

so that

V̇h = qm v ���qa v =
pv �ph

Rm v
. (7.9)

Inserting (7.4) in (7.9) gives

V̇h =
1

Rm v
(pv �Eh (Vh �Vun )),

V̇h +
Eh

Rm v
Vh =

pv +Eh Vun

Rm v
.
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We can assume that the venous pressure pv is constant since it does not oscillate much during

filling; that is, pv = p v . Additionally, we can assume that Eh (t ) = Em , so that integration yields

µ(t ) =
Z

Em

Rm v
dt =

Em

Rm v
t (Integrating Factor)

=) e Em t /Rm v Vl h =
Z

e Em t /Rm v
Äp v +Em Vun

Rm v

ä
dt

= e Em t /Rm v
Äp v +Em Vun

���Rm v

äÄ
���Rm v

Eh

ä
+C

= e Em t /Rm v
Ä p v

Em
+Vun

ä
+C .

=) Vh =
p v

Em
+Vun +C e �Em t /Rm v . (7.10)

Assuming Vh (0) = VE S (volume at the beginning of filling, i.e. minimum volume), (7.10) be-

comes

VE S =
p v

Em
+Vun +C e �Em ·0/Rm v

=) C = VE S � p v

Em
�Vun

=) Vh = VE S e �Em t /Rm v +
Ä p v

Em
+Vun

äÄ
1� e �Em t /Rm v
ä
.

Evaluating this at end-diastolic volume V = VE D gives

VE D = VE S e �Em TD /Rm v +
Ä p v

Em
+Vun

äÄ
1� e �Em TD /Rm v
ä
, (7.11)

where TD = T �TR and TR is the time to fill, as shown in Figure 7.2.

109



Solving for VE S During Ejection

During ejection, the flow entering the left ventricle is given by

qa v =
ph �pa

Ra v
,

so that

V̇h =���qm v �qa v =�ph �pa

Ra v
. (7.12)

Inserting (7.4) in (7.12) gives

V̇h =� 1

Ra v
(Eh (Vh �Vun )�pa ),

V̇h +
Eh

Ra v
Vh =

Eh Vun +pa

Ra v
.

Assuming the arterial pressure pa is constant (pa = p a ) and Eh (t ) = EM , integrating yields

e EM t /Ra v Vl h =
Z

e EM t /Ra v
ÄEM Vun +p a

Ra v

ä
dt

= e EM t /Ra v
Ä
Vun +

p a

EM

ä
+C

=) Vh =
p a

EM
+Vun +C e �EM t /Ra v . (7.13)

Note that the assumption that pa is constant is a weaker assumption than the one on the venous

side. However, it is necessary in order to evaluate the integral. Arterial pressure might be able to

be approximated with a sinusodail function of the systolic and diastolic pressures.

Assuming Vh (0) = VE D , (7.13) becomes

VE D =
p a

EM
+Vun +C

=) C = VE D � p a

EM
�Vun

=) Vh = e �EM t /Ra v VE D +
Ä p a

EM
+Vun

äÄ
1� e �EM t /Ra v
ä
.
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Evaluating this equation at end-systolic volume V = VE S gives

VE S = e �EM TR /Ra v VE D +
Ä p a

EM
+Vun

äÄ
1� e �EM TM /Ra v
ä

(7.14)

where TR is the time at end-systole.

Stroke Volume

Recall from (7.15) that

Vstr = VE D �VE S .

Letting

k1 = e �EM TR /Ra v and k2 = e �Em TD /Rm v ,

then from (7.11 and (7.14), we have

VE D = VE S k2+
Ä p v

Em
+Vun

äÄ
1�k2

ä

VE S = VE D k1+
Ä p a

EM
+Vun

äÄ
1�k1

ä
.

Multiplying the second equation by k2 and substituting in the first equation gives

VE S k2 = VE D k1k2+
Ä p a

EM
+Vun

äÄ
1�k1

ä
k2

=) VE D = VE D k1k2+
Ä p a

EM
+Vun

äÄ
1�k1

ä
k2+
Ä p v

Em
+Vun

äÄ
1�k2

ä

=) VE D (1�k1k2) =
Ä p a

EM
+Vun

äÄ
1�k1

ä
k2+
Ä p v

Em
+Vun

äÄ
1�k2

ä

=) VE D =
Ä p a

EM
+Vun

ä (1�k1)k2

(1�k1k2)
+
Ä p v

Em
+Vun

ä (1�k2)
(1�k1k2)

.
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Similarly for VE S ,

VE D k1 = VE S k1k2+
Ä p v

Em
+Vun

äÄ
1�k2

ä
k1

=) VE S = VE S k1k2+
Ä p v

Em
+Vun

äÄ
1�k2

ä
k1+
Ä p a

EM
+Vun

äÄ
1�k1

ä

=) VE S (1�k1k2) =
Ä p v

Em
+Vun

äÄ
1�k2

ä
k1+
Ä p a

EM
+Vun

äÄ
1�k1

ä

=) VE S =
Ä p v

Em
+Vun

ä (1�k2)k1

(1�k1k2)
+
Ä p a

EM
+Vun

ä (1�k1)
(1�k1k2)

.

This gives

Vstr = VE D �VE S

=
Ä p a

EM
+Vun

ä (1�k1)k2

(1�k1k2)
+
Ä p v

Em
+Vun

ä (1�k2)
(1�k1k2)

�Ä p v

Em
+Vun

ä (1�k2)k1

(1�k1k2)
� Ä p a

EM
+Vun

ä (1�k1)
(1�k1k2)

=
Ä p a

EM
+Vun

äî�1+k1+k2�k1k2

1�k1k2

ó� Ä p v

Em
+Vun

äî�1+k1+k2�k1k2

1�k1k2

ó

=
Ä�1+k1+k2�k1k2

1�k1k2

äÄ p a

EM
+��Vun � p v

Em
���Vun

ä

=
Ä�1+k1+k2�k1k2

1�k1k2

äÄ p a

EM
� p v

Em

ä
.

Note that since the exponentials k1 and k2 are close to 0 (since the resistances Ra v and Rm v are

small), the stroke volume can be approximated by

Vstr =�
Ä p a

EM
� p v

Em

ä
. (7.15)

Simulations shown in Figure 7.3 comparing the averaged pulsatile pressure (cyan) and the non-

pulsatile pressure (red dashed) show that the two pressures agree.
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Figure 7.3 Predictions of arterial pressure pa , using the pulsatile and non-pulsatile. Pulsatile pressure is
shown by black line, while non-pulsatile pressure is shown by the cyan line.

7.2.3 Non-pulsatile Model

Using (7.15), the non-pulsatile dynamics described in Figure 7.1b can be expressed as

d Vv

d t
= qv �Q ,

d Vv o

d t
= qo �qv ,

d Va

d t
=Q �qa ,

d Va o

d t
= qa �qo ,

(7.16)

where the flows q are defined in (7.5) and

Q =H Vstr.

7.3 Coupled Model

In response to inflammation, pro-inflammatory mediators, in particular IL-1� , TNF-↵, and IL-6,

communicate with the brain via neural firing. This initiates the brain-mediated components of
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host defense, such as fever [Hansen et al., 2001; Netea et al., 2000]. This change in the temperature

set point decreases the vagal firing, leading to an increase in heart rate (HR). The increased

production of nitric oxide (NO) by the inflammatory mediators results in a decrease in resistance

and contractility and an increase in compliance, due to its function as a vasodilator, causing blood

pressure (BP) to decrease [Chowdhary et al., 2000]. This decrease in sympathetic activity sustains

the increase in heart rate, initially induced by the increase in temperature. Experimental data

shows that the onset of inflammation also causes a decrease in the pain perception threshold

(PPT), causing an increase in sympathetic activity [Schobel et al., 1996]. This forces resistance

to increase, in turn increasing BP. The interactions between the cardiovascular system and the

inflammatory response, in particular the effect of the inflammatory response on HR and BP, are

illustrated in Figure 7.4.

7.3.1 Temperature

Fever is one of the most frequent physiological adaptions as a result of infection. It is initiated to

stagnate the growth of bacteria, as most bacteria are unable to proliferate at temperatures above

39� C [Netea et al., 2000]. When a pathogen/bacteria enters the body, monocytes and leuko-

cytes stimulate the release of endogenous pyrogens (EP). These EPs, recently identified as pro-

inflammatory mediators such as IL-1� , TNF-↵, and IL-6, reach the central nervous system (CNS),

where they induce the production of prostaglandins. Through this process, they are able to increase

the temperature set point and cause a fever. IL-10 acts as an endogenous antipyretic, reducing the

fever [Conti et al., 2004; Pajkrt et al., 1997a].
The effect of the EPs, TNF-↵ and IL-6, and the anti-pyretic IL-10 on temperature is modeled by

d Temp

d t
=
�Temp+ F (TNF, IL6, IL10)

⌧1
, (7.17)

where

F (TNF, IL6, IL10) = kT (TM �Tm )
Ä
kT TNFH U

T (TNF�qTNF) +kT 6H U
T (IL6�qIL6)

�kT 10(1�H D
T (IL10�qIL10))

ä
+Tm ,

and ⌧1, kT TNF, kT 6, kT 10, and kT are rate constants. Tm is the baseline temperature and TM is the
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Figure 7.4 Effect of inflammation on cardiovascular dynamics. (a) Endotoxin causes release of inflam-
matory mediators and reduction of pain perception threshold (PPT). (b) Afferent firing in the brain, as
a result of IL-1� , TNF-↵, and IL-6 increases temperature. (c) In response to the fever, a decrease in va-
gal activity (Tp ) causes an increase in HR. (d) PPT reduction increases sympathetic activity (Ts ), which
increases blood pressure. (e) Between 2-4 hours after the administration of endotoxin, nitric oxide is
released, decreasing BP.
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maximum temperature. Note that the Hill functions are functions of each mediator minus its basal

level (the amount of mediator in the absence of the endotoxin). This form is used to ensure that

temperature stays constant before the administration of endotoxin.

7.3.2 Heart Rate

In addition to causing a fever, the activity in the CNS also decreases the vagal firing, causing an

increase in heart rate. Clinical findings show a dose-dependent increase of around 2� C in response

to LPS injection [Andreasen et al., 2008]. The control of HR, stimulated by changes in temperature,

is modeled by
d H
d t
=
�H +G (Temp)

⌧2
, (7.18)

where

G (Temp) = kH (HM �Hm )H U
H (Temp�Tm ) +Hm . (7.19)

Hm and HM represent the minimum and maximum heart rate, respectively. The rate constants

are given by ⌧2 and kH .

7.3.3 Pain Perception Threshold

Past studies [Benson et al., 2012; Janum et al., 2016; Wegner et al., 2014] show a dose-dependent

relationship between pain perception and inflammation. In particular, Janum et al. [2016] found

that endotoxin administration in healthy individuals led to a reduction in PPT and an increase in

pain perception to heat stimuli. The relationship between the endotoxin and the PPT is modeled

by
d PT

d t
=�kPTP P PT+kPT(PTM �PT), (7.20)

where kPTP and kP T are rate constants and PTM is the baseline PPT, prior to the injection of the

endotoxin, when P = 0. Upon injection, P decreases from the initial value of 2 ng/kg of body

weight to zero, causing the PPT to also decrease. Once P = 0, the PPT will return to its baseline

level.
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7.3.4 Nitric Oxide

The vasodilator, nitric oxide, is produced in the endothelium by endothelial, neural, and inducible

nitric oxide synthase (NOS). Neuronal and endothelial NOS (nNOS and eNOS, respectively) pro-

duce a low, constant amount of NO. Inducible NOS (iNOS) synthesizes NO several hours after

endotoxin administration [Chowdhary et al., 2000; Vincent et al., 2000]. Its production is primarily

regulated by TNF-↵ and IL-10. iNOS is expressed and activated in a variety of cells, such as the

vascular endothelial cells, smooth muscle cells, and activated monocytes. Monocytes activated by

endotoxin have iNOS messenger ribonucleic acid (mRNA) present after 2 hours and iNOS protein

after 4 hours [Kirkeboen & Strand, 1999].
Accounting for this, the change in the concentration of NO is modeled by

d N
d t
= kN M MA

✓
TNF(t �)hN TNF

TNF(t �)hN TNF +⌘hN TNF
N TNF

◆✓
⌘hN 10

N 10

IL10(t �)hN 10 +⌘hN 10
N 10

◆
�kN N , (7.21)

where MA are the activated monocytes of the inflammatory model and  represents the delay in

the synthesis of NO after the production of TNF-↵ and IL-10. The rate constants are given by kN M

and kN and the half-maximum value and exponent are given by ⌘N TNF and hN TNF, respectively.

7.3.5 Resistance

The main pressure change in the systemic circulation occurs in the arterioles, where the resistance

against blood flow is high due to the small diameter of the arterioles (30-50 µm). This resistance

can be varied considerably by vasoconstriction and vasodilation because the walls of these vessels

are equipped with a large amount of smooth muscle cells. These can increase wall tension and

thus, reduce the diameter [Batzel et al., 2007]. Therefore, we focus on changing the resistance in

the organ bed. The combined effects of a change in the PPT and NO in response to inflammation

on the resistance in the organ bed are modeled by

d R
d t
= kR PT

✓
� 2

� 2+⌘2
R PT

◆
�kR N N �kR (R�Ro ), (7.22)
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where � = d PT
d t (7.20) and the k terms are rate constants. ⌘R PT is the half-maximum value and Ro is

the baseline resistance in the organ bed (i.e. the resistance in the absence of pain or nitric oxide).

Prior to the injection of the endotoxin, � = 0 and N = 0, ensuring that the resistance remains at

its initial level. Upon injection, the PPT begins to decrease, causing � 2 to increase and thereby

increase the resistance. This causes the initial increase in blood pressure. Two to four hours later, � 2

approaches zero and NO begins to increase, causing the resistance to decrease and consequently

decrease the blood pressure. Once NO has decreased to its baseline level, R returns to Ro .

7.4 Parameterization

Cardiovascular Model

The parameters of the non-pulsatile cardiovascular model are adapted from the model by Williams

et al. [2013] and are shown in Table 7.2. The compliance is computed by rearranging (7.3) to obtain

Ci =
Vstr,i

pi
,

where Vstr,i = Vi �Vun is the stressed volume in compartment i . Values for the stressed volume of

each compartment can be found in Table 7.1.

Temperature

For (7.17), Tm is obtained from the experimental data. As experimental data is from young, healthy

individuals, it can be assumed that the maximum temperature will not exceed 39.5� C (this is

characterized as hyperthermia, which can be life-threatening). Thus, TM is set at 39.5� C. The rate

constants are chosen to modulate the amount of stimulation or dampening from the inflamma-

tory mediators. Since the primary production results from TNF-↵ and IL-6, kT TNF and kT 6 are

significantly higher than kT 10.

Heart Rate

For (7.19), Hm is the mean heart rate prior to the injection of the endotoxin and can be extracted

from the data. Gellish et al. [2007] analyzed the longitudinal relationship between age and maximal
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heart rate and found that HM is related to age by

HM = 207�0.7(Age).

Thus, HM was initialized based on the participant’s age. The rate constant kH controls the rate of

increase in HR from the temperature and was chosen to produce dynamics that best aligned with

the data. ⌧2 controls the overall magnitude of the response and is chosen accordingly.

Pain Perception Threshold

For (7.20), PTM is the baseline PPT in the absence of the endotoxin. The rate constants kPTP and

kPT are chosen such that the magnitude of decrease in the PPT agrees with the data.

Nitric Oxide

Note that the form of (7.21) is very similar to the equations of the inflammatory model. Thus, the

half-maximum values ⌘N TNF are initially set equal to ⌘6TNF. However, due NO’s short half life (1

to 40 seconds) and the extremely small quantities that are produced (picomolars) [Hakim et al.,

1996], it is difficult to measure quantitatively with a high degree of accuracy. Therefore, the rate

constants and half-maximum values are scaled to guarantee a relative concentration of NO in the

presence of the endotoxin. The delay  is chosen to ensure that an increase in N is observed two

to four hours after the endotoxin is injected [Kirkeboen & Strand, 1999].

Resistance

The baseline level of the resistance Ro is computed by rearranging (7.2) to obtain

Ri =
pin�pout

qi
.

The rate constants of (8.11) are estimated to achieve the appropriate change in the resistance and

consequently, the blood pressure.

The half-maximum values of each Hill functions in the control equations are parameterized in

a manner similar to the inflammatory model (see Chapter 5). The nominal parameter values of
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Table 7.1 Patient-specific inputs to the coupled cardiovascular-inflammatory model. Mean values for
pressure and heart rate (pa and Hm ) are taken from experimental data over the first two hours of the
experiment (i.e. prior to endotoxin administration).

Input Equation Unit Input Equation Unit

BSA
p

H W /3600 m 2 Vtot (3.229BSA�1.229) ⇤1000 mL
Vun 10 mL Vtot,sys 0.85Vtot mL

Vtot,art 0.20Vtot,sys mL Vtot,ven 0.80Vtot,sys mL
Vtot,a 0.18Vtot,art mL Vtot,ao 0.15Vtot,art mL
Vtot,v 0.85Vtot,ven mL Vtot,vo 0.15Vtot,ven mL
Vstr,a 0.18Vtot,a mL Vstr,ao 0.18Vtot,ao mL
Vstr,v 0.05Vtot,v mL Vstr,vo 0.05Vtot,vo mL
VED 142�Vun mL VES 47�Vun mL
qtot Vtot mL/min qa qtot mL/min
qo qtot mL/min qv qtot mL/min

pa
1
N

PN
i=1 pa ,data(i ) mmHg pao 0.98pa mmHg

pv 3.5 mmHg pvo 3.75 mmHg

Hm
1
N

PN
i=1 Hdata(i ) bpm Tm Tempdata(1) �C

PTM PTdata(1) -  0.4 hr

the coupled model are given in Table 7.2, with the patient-specific inputs to the model given in

Table 7.1.
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CHAPTER

8

COUPLED MODEL RESULTS & ANALYSIS

The sensitivity analysis, identifiability analysis, and optimization techniques presented in Chapter

4 have been applied to the coupled cardiovascular-inflammatory model. As shown in Figure 8.1

temperature is predicted as a function of the inflammatory mediators and heart rate is predicted

from temperature. The pain perception threshold is modeled as function the pathogen. Finally,

pain perception and nitric oxide, modeled as a function of the inflammatory mediators, combine

to affect blood pressure. Thus, the coupled model can be divided into submodels, which we

analyze separately.

The analysis for the mediator-temperature submodel, temperature-heart rate submodel and

pathogen-pain submodel are presented in Sections 8.2, 8.3, and 8.4, respectively. The coupled

model analysis is presented in Sections 8.5 and 8.6. In addition to optimizing the parameters of

the coupled model, we analyze changes in heart rate variability (HRV) and relate these changes

to the optimized parameters of the model. The results of the model are presented in Section 8.7,

with the analysis of HRV given in Section 8.7.2. The results are discussed in Section 8.8.
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Figure 8.1 Coupled cardiovascular inflammatory model. Mediators are produced in response to the
pathogen. (a) Increase in mediator production causes the temperature to increase. (b) The temperature
increase causes heart rate to increase. (c) The pathogen reduces the pain perception threshold, which
(f) in turn impacts blood pressure. (d) Mediators produce nitric oxide, which lead to (e) vasodilation
(delayed).

8.1 Least Squares Formulation

Recall from Chapter 3 that each participant had their temperature, heart rate, pain perception

threshold, and blood pressure recorded periodically throughout the experiment. Thus for each

submodel, we aim to find a parameter set ✓̂ that minimizes the least squares error between the

computed and measured values. That is,

✓̂ = arg min
✓

J (✓ ), where J (✓ ) =R T R , (8.1)

where

R =
1p
N

Y � y

Y
, (8.2)

where Y is the data, y is the model output, and N is the number of data points. The mediator-

temperature and pathogen-pain submodels are optimized against temperature and pain percep-

tion threshold data. The temperature-heart rate submodel is optimized against the smoothed

mean heart rate data. Finally, the coupled model is optimized against the cuff blood pressure,

as well as the mean blood pressure data, measured with a finapres. Prior to optimization, sen-
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sitivity and identifiability analysis are used to identify those parameters that are sensitive and

uncorrelated.

8.2 Mediator-Temperature Submodel

Recall from Chapter 7, that temperature can be modeled by

d Temp

d t
=
�Temp+ F (TNF, IL6, IL10)

⌧1
, (8.3)

where

F (TNF, IL6, IL10) = kT (TM �Tm )
Ä
kT TNFH U

T (TNF�qTNF) +kT 6H U
T (IL6�qIL6)

�kT 10(1�H D
T (IL10�qIL10))

ä
+Tm . (8.4)

To find a parameter set satisfying (8.1) for the mediator-temperature submodel, sensitivity and

identifiability analysis are used.

Sensitivity Analysis

Recall from Chapter 4 that sensitivities can be computed on either a local or global level. The

proceeding analysis is local. The sensitivity matrix defined by � = @ y
@ ✓ is used to determine the

sensitivity of the model to changes in the parameters. To remain consistent with the inflammatory

model, we define

� =
@ R
@ ✓
=

2
66666666664

@ y1(t1)
@ ✓1

· · · @ y1(t1)
@ ✓q

...
...

...
@ y1(tN )
@ ✓1

· · · @ y1(tN )
@ ✓q

@ y2(t1)
@ ✓1

· · · @ y2(t1)
@ ✓q

...
...

...
@ ym (tN )
@ ✓1

· · · @ ym (tN )
@ ✓q

3
77777777775

, (8.5)

where R is defined in (8.2). Since the inflammatory model is optimized for each data set prior to the

coupling, the sensitivity analysis will focus on the parameters of the model used in the temperature
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equation. That is, ✓ = (⌧1, TM , Tm , kT , kT TNF, kT 6, kT 10,⌘T TNF,⌘T 6, ⌘T 10, hT TNF, hT 6, hT 10).
To ensure that the parameter values remain positive during the optimization, we use ✓̃ = log✓

so that � , like the inflammatory model, is a relative sensitivity matrix given by

� =
@ R

@ ✓̃
=
@ R
@ log✓

=
@ R
@ ✓
✓ . (8.6)

The ranked sensitivities for this submodel are shown in Figure 8.2. The sensitivities are ranked by

taking the two norm of the sensitivity matrix. Using a cutoff of� = 10
p
', where ' = 10�8 is the

integration tolerance, the parameters are divided into 10 sensitive and 3 insensitive parameters.

Identifiability Analysis & Subset Selection

Similar to the inflammatory model, structural identifiability cannot be determine from this sub-

model, due to the complexity. In fact, structural identifiability will not be determined for any of

the proceeding submodels. However, insight can be obtained by analyzing their equations. In the

same fashion as the inflammatory model, the half-maximum values and exponents of the Hill

functions are fixed at their nominal values due to the difficulty in estimating them (see Chapter 5

for further details). In (8.4), it is clear that kT and kT TNF can be combined into one parameter k1.

In the same fashion, kT and kT 6 can be combined into k2. Thus, all three parameters cannot be

estimated together. To account for this, kT is fixed at its nominal value.

By the nature of the experiment, it can be assumed that the temperature will not rise above

39.5�C and the baseline temperature can be extracted from the data. Thus, Tm and TM are also

fixed at their nominal values.

Practical Identifiability

The structural correlation method (SCM) [Olufsen & Ottesen, 2013], described in Chapter 4, is

used to determine if remaining the 3 sensitive parameters are correlated. Analysis of covariance of

these parameters showed that (kT 6,⌧1) can be uniquely determined, using a cutoff of ⇣= 0.90.

125



10
-4

10
-3

10
-2

10
-1

10
0

Ranked Sensitivities

   
   

  T
m

   
   

  T
M

   
   

  k
T

   
  k

T
6

   
k T

T
N
F

   
  τ 1

  
η T

6

η T
T
N
F

   
h T

T
N
F

   
  h

T
6

   
 k T

10

 η T
10

   
 h T

10

Figure 8.2 Relative parameter sensitivities ranked from most to least sensitive for the mediator-
temperature submodel. Black line shows cutoff between sensitive and insensitive parameters. Cutoff�
was chosen to be 10

p
', where ' = 10�8 is the integration tolerance. Red squares and parameters listed

in red denote sensitive parameters that are considered for optimization. Black circles denote parameters
that are optimized.

8.3 Temperature-Heart Rate Submodel

From Chapter 7, we have
d H
d t
=
�H +G (Temp)

⌧2
, (8.7)

where

G (Temp) = kH (HM �Hm )H U
H (Temp�Tm ) +Hm . (8.8)

Sensitivity and identifiability analysis of the parameters ✓ = (⌧2, HM , Hm , kH ,⌘H T , hH T ) is used to

find a subset that can be estimated, given available data.
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Figure 8.3 Relative parameter sensitivities ranked from most to least sensitive for the temperature-heart
rate submodel. Black line shows cutoff between sensitive and insensitive parameters. Cutoff� was cho-
sen to be 10

p
', where ' = 10�8 is the integration tolerance. For this submodel, only two parameters

(shown by red squares and black circles) are considered for optimization and practical identifiability
proves them to be uncorrelated.

Sensitivity and Identifiability Analysis & Subset Selection

Results of the sensitivity analysis (depicted in Figure 8.3), using the same cutoff� = 10
p
', shows

that all 6 parameters are sensitive. However, the half-maximum values and exponents cannot be

uniquely identified. Additionally, the minimum and maximum heart rate values can be determined

from the data. Thus, only ⌧2 and kH remain. Practical identifiability shows that these parameters

are uncorrelated when ⇣= 0.90 and can therefore be uniquely optimized.

8.4 Pathogen-Pain Submodel

The pain perception threshold (PPT) is predicted from the pathogen as

d PT

d t
=�kPTP P PT+kPT(PTM �PT). (8.9)
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For this model, we are concerned with the parameters ✓ = (PTM , kPTP , kPT).

Sensitivity and Identifiability Analysis & Subset Selection

Sensitivity analysis shows that all 3 parameters are sensitive (see Figure 8.4). However, since the

initial threshold PTM is given by the data, it will be fixed at its nominal values. Thus, correlation

analysis is applied to the parameters kPTP and kPT. Results showed that they are uncorrelated.

8.5 Steady-State Coupled Cardiovascular Inflammatory Submodel

In the absence of an endotoxin or any other control factors, heart rate and blood pressure are

expected to remain constant. In order to ensure that the model begins at steady-state, the initial

values for the volumes are computed by setting the change in volume in compartment i , d Vi
d t = 0 for
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each compartment and then solving for Vi in terms of the parameter values for all compartments.

This is done using Maple2018. Note that volume is conserved since
P

i
d Vi
d t = 0, so that one state

variable can be eliminated.

Due to the patient-specific inputs to the model (see Table 7.1 of Chapter 7), the initial conditions

are unique between subjects. To ensure that the model represents the data well during steady-state

(i.e. from t =�2 to t = 0), the parameters are optimized. To accomplish this, we have the submodel

d Vv

d t
= qv �Q ,

d Vv o

d t
= qo �qv ,

d Va

d t
=Q �qa ,

d Va o

d t
= qa �qo ,

(8.10)

where q = pi n�po u t
Ra

and the flow through the heart is modeled by

Q =Hm Vstr,

since the heart rate is constant from t =�2 to t = 0. Thus, we have✓ = (Ra , Rv , Ro , Ca , Ca o , Cv , Cv o , Em ,

EM ).

Sensitivity and Identifiability Analysis & Subset Selection

Sensitivity analysis reveals that all 9 parameters are sensitive, using the same cutoff � = 10
p
'.

Keeping in mind that we cannot optimize more than one resistance and more than one capacitor

due to the resistors being in series and the capacitors being in parallel, we perform subset selection

using the SCM. Figure 8.5 shows that two parameters, Ca and Ro , can be estimated.

8.6 Dynamic Coupled Cardiovascular Inflammatory Submodel

The effects of nitric oxide (NO) and pain perception on blood pressure after the endotoxin admin-

istration (from t = 0 to t = 6) are modeled by changing the resistance in the organ bed as

d R
d t
= kR PT

✓
� 2

� 2+⌘2
R PT

◆
�kR N N �kR (R�R0), (8.11)
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Figure 8.5 Relative parameter sensitivities ranked from most to least sensitive for the steady-state coupled
model. Black line shows cutoff between sensitive and insensitive parameters. Cutoff� was chosen to
be 10
p
', where ' = 10�8 is the integration tolerance. Red squares and parameters listed in red denote

sensitive parameters that are considered for optimization. Black circles denote parameters that are
optimized.

where � = d PT
d t (8.9) and NO is modeled by

d N
d t
= kN M MA

✓
TNF(t �)hN TNF

TNF(t �)hN TNF +⌘hN TNF
N TNF

◆✓
⌘hN 10

N 10

IL10(t �)hN 10 +⌘hN 10
N 10

◆
�kN N . (8.12)

It should be noted that due to the short half-life of NO, we did not have NO data available and

therefore are using a relative amount of NO produced by the inflammatory mediators to predict

the resistance. For this reason, the parameters of the NO equation will be fixed at their nominal

levels and the analysis will be done on the remaining parameters ✓ = (kR PT, kR N , kR ,⌘R PT, hR PT).

Sensitivity and Identifiability Analysis & Subset Selection

As shown in Figure 8.6, sensitivity analysis reveals that all 5 parameters are sensitive. Following the

methods of the inflammatory model, the half-maximum values and exponents are fixed at their
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model. Black line shows cutoff between sensitive and insensitive parameters. Cutoff� was chosen to
be 10
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nominal values, and we test for correlations among the remaining 3 parameters. Subset selection

shows that no correlations exist between the remaining parameters so they will all be optimized.

8.7 Results

For each submodel, the parameters were optimized against the Day A data for each of the data sets

using a combination of the Nelder-Mead and Levenberg-Marquardt algorithms. Temperature data

was available for all 20 data sets, however the heart rate and blood pressure data was either noisy

or unavailable. We focused our analysis on the 18 available data sets. To remain consistent with

the inflammatory model and unless otherwise stated, the upper and lower bounds for Levenberg-

Marquardt are set to be approximately one-quarter of and four times the nominal parameter

values, respectively. All submodels, excluding the steady-state coupled submodel, were optimized
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from t = 0 to t = 6. That is, after the endotoxin was given at t = 0.

8.7.1 Parameter Optimization

The optimal parameters for the submodels are given in Table 8.1. The R 2 statistic was used to

quantify the accuracy of the mediator-temperature submodel. Due to the scarcity of available

data points for the pain perception threshold (3 available data points), the R 2 value could not be

used as a useful statistic for the model. The large variation in the mean blood pressure and heart

rate data were not captured by this model and therefore, the linear regression model used for the

R 2 is not useful for these submodels either. For the mediator-temperature submodel, R 2 � 0.87.

The upper and lower bounds of the Levenerg-Marquardt algorithm had to be expanded to range

between 1E-04 and 3 for ⌧2 in order to ensure that the optimizer did not force the parameters to

the bounds and that physiologically feasible results were obtained. The bounds for the steady-state

and dynamic coupled models were also extended to one-sixteenth and sixteen times the nominal

value. For seven data sets, optimizing the dynamic model resulted in poorer fits than using the

nominal dynamic parameters. This was due to the scarcity of data during the times when the

majority of the dynamics are observed (i.e. the peaks). In those cases, the nominal set was used

instead. To remain consistent with the results of the inflammatory model, the optimal results

shown in Table 8.1 are for the same individual as the results shown in Table 6.1 of Chapter 6.

8.7.1.1 Normal versus Abnormal Responses

As discussed in Chapter 3, the participants were divided into abnormal and normal responders.

To further understand differences between the two response types, we compared the changes in

blood pressure and heart rate between a normal and an abnormal responder, shown in Figure 8.7.

The top two panels of Figure 8.7 and Figure 8.8(a) show that the model is able to capture both the

normal and abnormal responses well.

The differences in the blood pressure responses between the normal and abnormal responders

are reflected in the optimal parameter values. The rate responsible for the increase in resistance

as a result of a decrease in PPT kR PT was significantly larger in the abnormal responder (normal:

0.893, abnormal: 8). Additionally kR N , the rate at which the resistance decreases in response to

nitric oxide, was larger in the abnormal responder (normal: 0.430, abnormal: 0.750). Similar results
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Table 8.1 Nominal and optimal parameter values for a particular subject. Parameters were optimized
using a combination of the Nelder-Mead and Levenberg-Marquardt algorithms for the mediator-
temperature, temperature-heart rate, pathogen-PPT, steady-state (SS) coupled, and dynamic coupled
submodels. The mean plus/minus the standard deviation for each parameter is also included.

Submodel Parameter Nominal ✓ Optimal ✓̂ Mean ± Std

Med-Temp
⌧1 1 2.243 1.794 ± 0.814

kT 6 1.5 4.426 3.242 ± 1.689

Temp-HR
⌧2 0.25 0.003 0.439 ± 0.559
kH 0.25 0.353 0.312 ± 0.086

Path-PPT
kPTP 0.115 0.080 0.142 ± 0.075
kPT 0.005 0.011 0.086 ± 0.165

SS Coupled
Ro 1.065 1.034 0.915 ± 0.152
Ca 1.369 1.452 1.524 ± 0.327

Dynamic
Coupled

kR PT 8 0.893 5.784 ± 3.120
kR N 0.750 0.430 0.948 ± 0.635
kR 1 0.642 1.303 ± 0.692

were found in the heart rate response, shown in Figure 8.8. The rate constant ⌧2 was smaller in the

normal responder (normal: 0.413, abnormal: 0.900). The resistance and compliance parameters

were of the same magnitude between response types (Ro normal: 1.034, Ro abnormal: 0.969 and

Ca normal 1.452 and Ca abnormal: 1.533).

8.7.1.2 Model Validation

To validate the coupled model, the model was ran using the optimal parameters for Day A against

the data for Day B. Since the initial conditions for the temperature, pain perception threshold,

blood pressure, and heart rate are derived from the data, these values were changed for the Day

B data. A comparison of the results for a particular subject for Day A versus Day B is shown in

Figure 8.9. Though the initial value for the heart rate was lower than the mean heart rate data, the

predictions of heart rate and subsequently blood pressure fit well to the data.
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8.7.2 Heart Rate Variability Analysis

Heart rate variability is a measure of how much the heart rate varies from beat to beat. Variations in

time differences between successive heart beats can be analyzed using time or frequency domain

analysis [Huston & Tracey, 2011]. Using time domain analysis, statistical measurements of the RR-

intervals provides information about the inter-beat variability. Parameters including the standard

deviation of the average beat-to-beat intervals (SDANN) and the percentage of interval differences

of successive inter-beat intervals greater than 50ms (pNN50) provide quantitative information

about the variability from beat to beat. Frequency domain analysis uses spectral methods, in

particular power spectral density analysis (PSD), to understand the RR-interval variation. PSD

explains how power is distributed as a function of frequency. The high frequency (HF) variability

and low frequency/high frequency ratio (LF/HF) is believed to provide a measure of vagal and

sympathetic activity.

To analyze HRV, we follow the approach proposed by Jan et al. [2010], who used HRV to

study the influence of gender to an in vivo endotoxin challenge in healthy humans. Following

their approach, we examine predictions of 1) SDANN, 2) pNN50, 3) HF variability, and 4) the

LF/HF ratio by analyzing the average beat-to-beat intervals hourly, over three 5-minute periods

computed using built-in HRV toolbox in Labchart ®[ADInstruments Inc. Colorado Springs, USA].
To understand how the differences between normal and abnormal responses correlated with

changes in HRV, we compared HRV predictions for the subjects shown in Figures 8.7 and 8.8.

HRV predictions (Figure 8.10) showed that the SDANN, the pNN50 and the HF components were

significantly larger in subjects with abnormal responses, reflecting a higher vagal firing rate and

greater variability between heart beats. Similar results were found in the other two subjects with

similar abnormal responses.

8.8 Discussion

In this chapter, we presented the results of the coupled model of the inflammatory response and

the associated cardiovascular dynamics in response to endotoxin. The intra- and inter-individual

variations in the cardiovascular response to intravenous endotoxin, shown in Figures 8.7-8.10,

demonstrate the importance of coupling the inflammatory response with the cardiovascular
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dynamics.

The differences in the blood pressure responses are primarily as a result of nitric oxide and

changes in the pain perception threshold. To account for the large increase in blood pressure in

the abnormal response, kR PT must be significantly larger since the change in PPT are the same

between the responders. The amount of NO produced by the inflammatory mediators is lower in

the abnormal response, which implies a slower increase in blood pressure. This results in a larger

value for kR N in the abnormal responder. As shown in (8.8), heart rate is primarily regulated by

temperature. While the temperatures appear to increase at the same rates, heart rate increases

faster in the normal responder in Figure 8.8. This is responsible for the smaller ⌧2 and by the form

of the equation (8.8), a smaller ⌧2 causes a faster increase in heart rate.

In agreement with the findings by Marsland et al. [2007], HRV analysis suggested that greater

basal vagal activity, given by the HF parameter, correlated with an attenuated release of TNF-

↵. This high basal vagal activity was also associated with an increase in the production of the

anti-inflammatory mediator IL-10. In general, the abnormal responders were found to have a

higher level of vagal activity, accompanied by greater variability in heart rate from beat to beat.

Additionally, the noted differences discussed above produced similar results in the other abnormal

responses, regardless of classification (i.e. high levels of both TNF-↵ and IL-10 or an increased

level of IL-6 and IL-8.

In the absence of a fever, increase vagal activity causes a decrease in heart rate. An increase in

body temperature in response to the endotoxin is said to be associated with adrenergic stimulation

[Evans et al., 2015] igniting a flight-or-fight mode. The results shown in Figures 8.8 give way to

the possibility that temperature overrides the increased vagal response and allows heart rate to

increase. The smaller increase in heart rate in the abnormal responder can be explained by the

higher basal level of vagal activity and the smaller increase in temperature. This contrasts the

normal responder who exhibited lower baseline vagal activity and a larger increase in temperature,

which explains the large increase in heart rate.

It should be noted that the cardiovascular responses presented here and not the only pathways

regulating this response. The increase in heart rate in response to the fever can cause vasocon-

striction of the skin in an effort to retain heat. This vasoconstriction will cause blood pressure to

increase. Additionally, the injection of the endotoxin increases the sensitivity to pain, resulting in

sympathetic stimulation which affects heart rate. For the coupled model presented here, we have
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focused on the main components of the response but plan to incorporate these other factors into

the model. We will also use DRAM to confirm the results of the subset selection in future work.

The discussion above makes it clear that HRV parameters and temperature can provide impor-

tant information about the inflammatory and cardiovascular response. As information about the

inflammatory response, as well as levels of the pain perception threshold, provide insight into

the blood pressure response, each of these factors can be combined to allow for real-time and

non-invasive analysis of the inflammatory and cardiovascular response. Our model revealed a

distinct relationship between the magnitude of the inflammatory response and vagal response, as

well as temperature. Though the participants in the experiment were all young, healthy individuals,

we were able to identify particular markers for abnormal responses, correlating with changes in

HRV. Therefore, improved future modeling of HRV, temperature, and the perception of pain may

eventually allow physicians to perform simple real-time monitoring and enable them to intervene

prior to sepsis propagation.
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(a) (b)

(c) (d)

(e) (f )

Figure 8.7 Comparison of normal and abnormal responders to endotoxin challenge. (a-b) Model fits to
mean blood pressure data for normal (left) and abnormal (right) responder. (c) Relative changes in mean
arterial blood pressure. (d) Changes in organ bed resistance. (e) Changes in nitric oxide. (f) Model fits to
pain perception tolerance data. Normal responses and abnormal responses are shown in blue and red,
respectively. Participants were given 2 ng/kg body weight of endotoxin at t = 0 h. Blood pressure signal
was recorded from t =�2 to t = 6 h.
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(a) (b)

Figure 8.8 Comparison of heart rate and temperature responses in normal and abnormal responders.
(a) Model fits to mean heart rate data. (b) Model fits to temperature. Normal responses and abnormal
responses are shown in blue and red, respectively. Participants were given 2 ng/kg body weight of endo-
toxin at t = 0 h.Body temperature and ECG signals were recorded from t =�2 to t = 6 h.
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Day A

Day B

Figure 8.9 Day A versus Day B Model Predictions. Blood pressure and heart rate model predictions for
one individual plotted against data for Day A (top panels) and Day B (bottom panels). The model was
initially optimized against Day A data. Participants were given 2 ng/kg body weight of endotoxin at t = 0
h. Blood pressure and ECG signals were recorded from t =�2 to t = 6 h.
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Figure 8.10 Frequency domain measures of HRV for normal and abnormal responders. SDANN, pNN50,
HF, and the LF/HF Ratio. Participants were given 2 ng/kg body weight of endotoxin at t = 0 h and HRV
parameters were obtained by analyzing the average beat-to-beat intervals hourly, over three 5-minute
periods.
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Figure 8.11 Inflammatory Model Predictions. A normal model fit (blue line) against data (blue circles)
and an abnormal model fit (red line) against data (red unfilled circles) are shown. Participants were
given 2 ng/kg body weight of endotoxin at t = 0 h, and inflammatory mediator levels were measured at
t = 2,0,1,1.5,2 h and hourly for the next 4 hours. Pseudodata was added at t = 7 and 8 h to ensure that
mediators had appropriate time to decay.
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CHAPTER

9

CONCLUDING REMARKS

In this study, a mathematical model of the acute inflammatory response to an endotoxin challenge

has been developed. The model is based on the biological interactions between the primary com-

ponents of the immune system, including the resting and activated monocytes, pro-inflammatory

mediators TNF-↵, IL-6, and IL-8, and the anti-inflammatory mediator IL-10. The model analyzed

in this thesis was developed to balance the complexity between simple models [Kumar et al., 2004;

Reynolds et al., 2006] and more rigorous models [Chow et al., 2005; Clermont et al., 2004a]. Specific

attention was paid to develop a model that allows for a complete physiological understanding

of each pathway and parameter value. The model was rendered patient-specific through the use

of sensitivity analysis, identifiability analysis, and parameter optimization. Model predictions fit

well against the experimental data. Analysis of parameters differences allowed us to distinguish

between normal and abnormal responders.

The inflammatory response was coupled with a non-pulsatile cardiovascular model allowing

us to study changes in heart rate and blood pressure in response to an endotoxin. The non-pulsatile
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model is the first model created by integrating the more complex pulsatile model, using the same

parameters as the pulsatile model. We have used this coupled model to study our hypothesize that

temperature, nitric oxide, and pain are the effectors that connect the immune and cardiovascular

responses. This hypothesis may explain the observed differences between mice and humans. Like

the inflammatory model, the coupled cardiovascular-inflammatory model has been made patient-

specific through the use of sensitivity analysis, identifiability analysis, and parameter estimation.

This is the first model of this type, as the coupling of the two responses has primarily been focused

on the effect of the cardiovascular system on the inflammatory response. Estimated parameters

were subsequently related to changes in heart rate variability, allowing for us to investigate how

changes in HRV are associated with changes in inflammatory mediators.

The key difference between our mathematical model and previously published models of the

inflammatory response is the analysis and modeling of in vivo human data, as opposed to mice or

swine data. Key differences in their responses, as presented in [Seok et al., 2013] raise question as

to the validity in modeling the human inflammatory response based on animal data. Furthermore,

while previous models predict a mean acute inflammatory response, our model parameters have

been optimized on an individual basis, making for a subject-specific model. The identified and

modeled associations between inflammatory responses and changes in HRV suggest that HRV

data may be further analyzed and used as a non-invasive real-time monitoring marker of early

sepsis onset.

One of the limitations of the current model was the sparseness of the available data points.

The majority of the changes in the dynamics of the system occur between 1 and 3 hours after

endotoxin administration. Thus, having more data points available during those times, perhaps

every 15 minutes, may have provided more accurate results. For example, we expect TNF-↵ to peak

1.5 to 2 hours after the subject is given the endotoxin. However, due to the time points at which the

data was collected, we cannot predict exactly when the cytokine level peaks. Additionally, having

data for the numbers of circulating resting and activated monocytes may have provided insight

as to why a particular subject has a specific response to the endotoxin versus another since the

monocytes are responsible for the measured mediator cascade. Similar issues were found with the

pain perception data, which were only measured at three time points throughout the experiment.

Noise within the blood pressure response made it difficult to accurately predict the response in

several individuals.
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9.1 Future Work

Although we chose to study TNF-, IL-6, IL-8, and IL-10, there are many other important inflamma-

tory mediators and factors involved in the inflammatory process. For example, as discussed in

Chapter 2, IL-1� is considered one of the most important pro-inflammatory mediators released

from monocytes upon endotoxin-induced activation and in addition to being a vasodilator, nitric

oxide promotes inflammation and tissue injury [Chow et al., 2005; Tracey, 2002]. In fact, the ex-

perimentalist did attempt to measure IL-1� . However, improper handling of the blood samples

produced undetectable data. Additionally, the endotoxin-signaling pathway has been shown to

involve lipopolysaccharide-binding protein (LBP), and the co-activators myeloid differentiation-2

(MD-2), and CD14, as well as TLR4. Each signaling pathway has a specific reaction time that may

be dependent on the dose of endotoxin, the availability of co-activators as well as the specific

mediator being activated. For instance, Blomkalns et al. [2011] found that the release of IL-8 by

freshly isolated human peripheral blood mononuclear cells given a low dose of endotoxin was

dependent on both membrane-associated CD14 and TLR4. In addition, it has been found that

recognition by a specific receptor cluster is associated with the strain of bacteria [Hirschfeld et al.,

2001]. To increase the accuracy of our model, we need to identify the specific pathways activated

and the time necessary for production of the specific mediator, and then incorporate these factors

into our model for future optimization.

In an effort to study the inflammatory response to higher doses, we attempted to raise to initial

condition for P and analyze the model predictions. Unfortunately, we did not achieve a significant

change in the dynamics, as seen in [Chow et al., 2005]. We would like to gather more insight

into this area and make the necessary changes to the model to predict the expected response. In

addition, we would like to develop a corresponding model appropriate for mice, with the necessary

pathways, that we can use to further test our hypothesize that temperature and nitric oxide are

the driving force behind the cardiovascular response to endotoxin.

Finally, findings suggest that in addition to affecting heart rate, an increase in temperature

also affects blood pressure via vasoconstriction and vasodilation, which the body does in an effort

to retain and expel heat. Additionally, the decreased pain perception may cause an increase in

heart rate. Incorporating these interactions into the current coupled model may help explain the

variations in responses between the normal and abnormal responders, as well as variations in the
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HRV responses.
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APPENDIX

A

MATLAB SOURCE CODES

As mentioned in Chapter 4, the sensitivity analysis, identifiability analysis, and optimization methods

were implemented using MATLAB. This Appendix introduces the code used to obtain the results in

Chapters 4, 6 , and 8. The full code can be found on the Cardiovascular Dynamics Group website. The

optimization and uncertainty quantification code has been adapted from code developed by Dr. C.

Tim Kelley [1999] and the Research Training Group tutorial by Dr. Ralph C. Smith [2014], respectively.

Bayesian uncertainty quantification is done using the MCMC MATLAB toolbox developed by Dr.

Heikki Haario [2006].

mSIRS Model

Solves the differential equations ((4.2) of Chapter 4) predicting states within the mSIRS model. This

code returns plots of model predictions for S , I , and R .

Executable DriverBasic.m

Calls load_global.m sets parameters and initial conditions.

modelBasic.m right hand side of ODEs.

Output Model states S , I , and R as a function of time.
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Sensitivity Analysis

Computes the sensitivity matrix � defined in (4.8) of Chapter 4. From this, ranked sensitivities are

computed as described in Section 4.3. Returns plot of ranked and time-varying sensitivities, as well

as the sensitivity ranking.

Executable DriverBasic_sens.m

Calls load_global.m sets parameters and initial conditions.

senseq.m Solves ODEs by calling modelBasic.m; computes

sensitivities using forward/central difference.

Output sens.mat (MAT-file containing sensitivity matrix � and ranked sensitivities).

Identifiability Analysis

Identifies pairwise parameter correlations using the structured correlation method (explained in

Section 4.4.2 of Chapter 4).

Executable covariance.m

Input sens.mat, ⇣ (identifiability cutoff).

Output INDMAP (indices of uncorrelated parameters after running iteratively).

Optimization

Optimizes the parameters of INDMAP using either the Nelder-Mead or Levenberg-Marquardt algo-

rithms.

Nelder-Mead

The Nelder-Mead simplex algorithm, described in Section 4.5.1, is implemented using the built-in

MATLAB function fminsearch.m.

Executable DriverBasic_NM.m

Input data, INDMAP

155



Calls load_global.m sets parameters and initial conditions.

fminsearch.m optimizes parameters of INDMAP using the Nelder-

Mead algorithm; built-in MATLAB optimizer.

! Calls model_fmin.m returns the model solution, residual

R = ymodel� ydata, and cost J (✓ ) =R T R .

��! Calls model_wrap.m wraps parameters of INDMAP into ALLPARS (all

remaining parameters).

���! Calls model_sol.m returns the model solution by calling

modelBasic.m.

Output parsopt (optimal parameters of INDMAP).

Levenberg-Marquardt

The Levenberg-Marquardt algorithm, which uses a combination of the gradient-descent and Gauss-

Newton methods, as described in Section 4.5.2 of Chapter 4, can be implemented using the op-

timization code developed by Dr. Tim Kelley [Kelley, 1999] or via the built-in MATLAB function

nlinfit.m.

Executable DriverBasic_LM_TK.m

Input data, INDMAP

Calls load_global.m sets parameters, initial conditions, and upper and

lower bounds for optimizer.

newlsq_v2.m optimizes parameters of INDMAP using the

Levenberg-Marquardt algorithm; adapted from

Dr. Tim Kelley’s optimization code.

! Calls opt_wrap.m returns the residual R = ymodel� ydata, the cost

J (✓ ) =R T R , and the sensitivity matrix � .

��! Calls model_res.m returns the model solution, R , and J (✓ ).
���! Calls model_wrap.m wraps parameters of INDMAP into ALLPARS (all

remaining parameters) and returns the model

solution.

����! Calls model_sol.m returns the model solution by calling

modelBasic.m.
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Output parsopt (optimal parameters of INDMAP).

An advantage of the optimization code developed by Dr. C. Tim Kelley is that upper and lower

bounds are placed on the parameter values to ensure that they converge to feasible values. The

Levenberg-Marquardt algorithm in MATLAB does not have this option.

Executable DriverBasic_LM_nlinfit.m

Input data, INDMAP

Calls load_global.m sets parameters and initial conditions.

nlinfit.m optimizes parameters using MATLAB’s built-in

Levenberg-Marquardt algorithm.

! Calls model_wrap_nl.m wraps parameters of INDMAP into ALLPARS (all

remaining parameters) and returns the model

solution.

��! Calls model_sol.m returns the model solution by calling

modelBasic.m.

Output parsopt (optimal parameters of INDMAP), the residual R = ymodel� ydata, cost

J (✓ ) =R T R , and mean squared error s 2 = J (✓ )/(N �p ), where N is the number of data

points and p is the number of parameters being optimized, and covariance matrix

defined by (�T� )�1s 2.

Uncertainty Quantification

Computes the confidence, prediction, and credible intervals for the mSIRS model. Also computes

the parameter confidence intervals. Parameter confidence intervals and confidence intervals are

computed using frequentist methods [Smith, 2014]. Credible intervals are computed using Bayesian

methods [Haario et al., 2006]. Prediction intervals are computed using either frequentist or Bayesian

methods.

Frequentist Intervals

Frequentist intervals code is adapted from the Research Training Group tutorial by Dr. Ralph C.

Smith [2014].

Executable DriverBasic_intervals.m
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Input data, parsopt, INDMAP, � , s 2

Calls modelBasic.m right hand side of ODEs.

nlparci.m built-in MATLAB function used to compute

parameter confidence intervals.

! Calls model_wrap_nl.m wraps parameters of INDMAP into ALLPARS (all

remaining parameters) and returns the model

solution.

��! Calls model_sol.m returns the model solution by calling

modelBasic.m.

Output Parameter confidence intervals, plots of model solution with frequentist prediction

and confidence intervals.

Bayesian Intervals

Bayesian methods are adapted from the MCMC MATLAB toolbox by Dr. Hiekki Haario 2006.

Executable DriverBasic_DRAM.m

Input data, parsopt, INDMAP, s 2

Calls mcmcrun.m returns parameter chains used to obtain posterior

distributions using MCMC algorithm.

! Calls model_res.m returns the model solution, the residual

R = ymodel� ydata, and the cost J (✓ ) =R T R .

��! Calls model_wrap.m wraps parameters of INDMAP into ALLPARS (all

remaining parameters) and returns the model

solution.

���! Calls model_sol.m returns the model

solution by calling modelBasic.m.

mcmcplot.m plots parameter chains, probability densities, and

parameter pairs.

mcmcpred.m computes credible and prediction intervals using

Bayesian MCMC algorithm.

Output Plots of model solution, credible and prediction intervals.
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