
ABSTRACT

DAY, JOSHUA THOMAS. Online Algorithms for Statistics. (Under the direction of Dr.
Hua Zhou and Dr. Eric Laber.)

Traditional algorithms for calculating statistics andmodels are often infeasible when
working with big data. A statistician will run into problems of not just scalability, but of
handling data arriving in a continuous stream. Online algorithms, which update esti-
mates one observation at a time, can naturally handle big and streaming data. Many
traditional (offline) algorithms have online counterparts that produce exact estimates,
but this is not always possible. There exists a variety of online (stochastic approxima-
tion) algorithms for approximate solutions, but there is no universally “best” algorithm
and convergence can be sensitive to the choice of learning rate, a decreasing se-
quence of step sizes.

Majorization-minimization (MM) is an optimization concept that has not received
much attention in the stochastic approximation (SA) literature. MM is an intuitive idea
of iteratively solving easier problems that guarantee a decrease in the objective func-
tion that incorporates some second-order information in each iteration. The current
state-of-the-art SA algorithms are based entirely on first-order (gradient) information
and therefore ignore potentially useful information in each update. We derive two new
algorithms for incorporating MM concepts into SA that have strong stability properties.
The first algorithm (OMAP) is similar in spirit to the Stochastic MM Algorithm (Mairal,
2013b), referred to here as OMAS. We analyze OMAP and OMAS in a unified frame-
work and offer stronger convergence results for OMAS than in the original paper. The
second algorithm (MSPI) incorporates theMM concept into Implicit Stochastic Gradient
Descent (Toulis and Airoldi, 2015) and Stochastic Proximal Iteration (Ryu and Boyd,
2014). Compared to the algorithms on which it is based, MSPI can solve a wider class
of problems and in many cases has a cheaper online update. For all three MM-based
algorithms, it is typically straightforward to translate existing offline MM algorithms into
an online counterpart, particularly in the case of quadratic majorizations.

OnlineStats is a Julia package that implements the above algorithms as well as
a large catalog of online algorithms for statistics. Using a unifying representation of
how statistics/models get updated, a small interface is all that is needed for performant
operations that can also be run in parallel. Most software that implements online algo-



rithms typically focus on a small class of problems or specific type of algorithm. To our
knowledge, OnlineStats is unique in the way algorithms are represented, the scope of
problems it can solve, and the ability to easily add new methods.

Stochastic approximation algorithms are notoriously difficult to compare. They react
differently to the type of model, learning rate, etc., and theoretical bounds typically
provide little insight into how an algorithm behaves “on average”. We create a novel
visualization technique based on simulated data that alleviates many of the difficulties
in SA algorithm comparison and use it to examine eight state-of-the-art SA methods,
including the two new algorithms introduced in this dissertation. The comparisons are
calculated under a variety of conditions: four types of models (two differentiable and
two non-differentiable), three learning rates, and different number of parameters in the
model.
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CHAPTER

1

INTRODUCTION

1.1 Preliminaries

The focus of this dissertation is online optimization applied to statistics. An online algo-
rithm is one which accepts input sequentially, in contrast to an offline algorithm where
data is input all at once. However, not every online algorithm has an offline counterpart
(and vice versa). As a trivial example, consider a sample mean of n− 1 observations:

θ
(n−1)
offline =

1

n− 1

n−1∑
i=1

xi. (1.1)

If a single new observation xn is included, an offline calculation revisits all of the pre-
viously seen data, whereas an online update uses only the new observation and the

1



current estimate:

θ
(n)
offline =

1

n

n∑
i=1

xi,

θ
(n)
online =

(
1− 1

n

)
θ
(n−1)
online +

1

n
xn.

(1.2)

As datasets in the age of big data get larger, so do the demands on traditional (of-
fline) algorithms for fitting statistics and models. Online algorithms can naturally handle
several forms of big data, such as files larger than computer memory (out-of-core pro-
cessing) or observations arriving continuously in a stream (a common case in quanti-
tative finance). However, the advantage of scaling to big data comes with drawbacks.
Many model-fitting algorithms are iterative in nature because there does not exist a
closed form solution, e.g. Newton’s method for logistic regression. In this case it is not
possible for an online algorithm to fit a model to data as well as an offline counterpart;
the objective function can be approximately minimized at best. The field of research
involved with approximate objective function minimization is called stochastic approxi-
mation. While there has been increased interest in stochastic approximation in the last
decade, there are still many open research questions and room for improvement over
the state-of-the-art methods.

Contributions

The main contributions of this dissertation are threefold:

1. Several new methods of stochastic approximation that hold favorable properties
over current methods.

2. A unified representation of online algorithms for statistics that can be executed
in parallel, implemented in the OnlineStats.jl package.

3. A discussion of the difficulties in comparing stochastic approximation algorithms
(ignored in the literature) as well as a novel visualization technique for examining
robustness of algorithms to the choice of learning rate.

This introductory chapter will cover the core ideas in statistics, optimization, and
stochastic approximation theory from which our contributions draw inspiration.
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Notation

To fix notation, let θ ∈ Rd represent a parameter vector of interest. For a given iterative
procedure, we denote θ(t) as the estimated value after the t-th iteration. The objective
function we wish to minimize is ℓ(θ) : Rd → R. Denote the gradient (column-vector of
partial derivatives) as ∇ℓ(θ) : Rd → Rd and the Hessian matrix as d2ℓ(θ) : Rd → Rd×d.
When a global minimum of ℓ(θ) exists, denote it as θ∗. LetDℓ be the domain of a function
ℓ(θ). The norm ∥ · ∥ is the L2 norm unless specified otherwise.

1.1.1 Statistical and Optimization Concepts

Types of Convergence

Statistical consistency (convergence to the true population parameter) is an essential
condition for an estimator to be valid. There are multiple notions of convergence for
random variables. Three of them are discussed in this dissertation and are defined as
follows.

Definition 1.1: Almost sure convergence (Xt
a.s.−−→ X)

A random variable Xt converges almost surely (with probability 1) to X if

P
(
lim
t→∞

Xt = X
)
= 1. (1.3)

Definition 1.2: Convergence in probability (Xt
p−→ X)

A random variable Xt converges in probability to X if for every ϵ > 0,

lim
t→∞

P (|Xt −X| > ϵ) = 0. (1.4)

Definition 1.3: Convergence in distribution (Xt
d−→ X)

A random variable Xt converges in distribution to X if for every bounded contin-
uous function h,

lim
t→∞

E[h(Xt)] = E[h(X)]. (1.5)

3



An important method for deriving the asymptotic distribution for a function of a ran-
dom variable is called the Delta Method.

Theorem 1.4: Delta Method

(Casella and Berger, 2002) If a consistent estimator θ̂ converges in probability to
the true value θ∗ such that it has an asymptotic distribution

√
n(θ̂ − θ∗) d−→ N(0,Σ), (1.6)

the delta method implies that for a differentiable function f : Rd → Rk,

√
n[f(θ̂)− f(θ∗)] d−→ N(0,∇f(θ∗)TΣ∇f(θ∗)). (1.7)

Convexity

Convexity is a useful characteristic of a function often used in optimization. Below we
give a mathematical definition of convexity as well as some properties of convex func-
tions.

Definition 1.5: Convex Function
A function f : U → R is called convex if U is a convex set and

f [γθ1 + (1− γ)θ2] ≤ γf(θ1) + (1− γ)f(θ2) (1.8)

for 0 < γ < 1 and for all θ1, θ2 ∈ U . A function is called strictly convex if the above
inequality is strict.

Definition 1.6: Strong Convexity

A function f : U → R is calledM -strongly convex if

f(θ1) ≥ f(θ2) +∇f(θ2)T (θ1 − θ2) +
M

2
∥θ1 − θ2∥22, for all θ1, θ2 ∈ U. (1.9)

Strong convexity implies the existence of a quadratic lower bound.

4



Proposition 1.7: Properties of Convex Functions

• (Supporting Hyperplane Inequality) A function f is convex if and only if

f(θ1) ≥ f(θ2) +∇f(θ2)T (θ1 − θ2), for all θ1, θ2 ∈ Df . (1.10)

• (Second-order condition for convexity) A twice differentiable function f is
convex if and only if d2f(θ) is positive semi-definite for all θ ∈ Df . f is strictly
convex if d2f(θ) is positive definite for all θ ∈ Df .

• (Global optima) For a convex function f on Df :

1. Any stationary point is a global minimum.

2. Any local minimum is a global minimum.

3. The set of global minima is convex.

4. If f is strictly convex, the global minimum is unique.

.

Figure 1.1: Convex Function

The above figure demonstrates a strongly-convex univariate function. Note that the

5



function lies beneath a straight line connecting any two points on the curve and it has
a unique global minimum.

Lipschitz Continuity

A standard regularity condition is Lipschitz Continuity.

Definition 1.8: Lipschitz Continuity

A function f : Rd → R is called L-Lipschitz continuous if

|f(θ1)− f(θ2)| ≤ L∥θ1 − θ2∥2, for all θ1, θ2 ∈ Df . (1.11)

If L = 1, f is called a nonexpansive mapping. If L < 1, f is a contraction. When the
gradient ∇f is L-Lipschitz continuous, then

f(θ1) ≤ f(θ2) +∇f(θ2)T (θ1 − θ2) +
L

2
∥θ1 − θ2∥22, (1.12)

for all θ1, θ2 ∈ Df . This is a common assumption in convergence proofs of optimiza-
tion algorithms, as it implies there exists a quadratic upper bound of f . Therefore, if a
function f isM -strongly convex and has an L-Lipschitz continuous gradient, then f is
bounded between two quadratic functions.

1.2 Review of Offline Optimization

Newton’s Method

Newton’s method is the gold standard in optimization due to its fast (quadratic) con-
vergence. Consider a second-order Taylor expansion around the current iterate θ(t) :

ℓ(θ) ≈ ℓ(θ(t)) +∇ℓ(θ(t))T (θ − θ(t)) + 1

2
(θ − θ(t))Td2ℓ(θ(t))(θ − θ(t)). (1.13)

Setting the gradient of this approximation equal to zero, we get updates of

θ(t+1) = θ(t) −
[
d2ℓ(θ(t))

]−1∇ℓ(θ(t)). (1.14)

6



The quadratic convergence and simplicity make Newton’s method an attractive
candidate for optimization. However, the main drawback is that the calculation and
inversion of the Hessian matrix d2ℓ(θ(t)) may be computationally expensive. Another
shortcoming is that iterations are not guaranteed to decrease the objective ℓ(θ). To
remedy both situations, Newton’s method can be generalized to

θ(t+1) = θ(t) − st
[
A(t)

]−1∇ℓ(θ(t)), (1.15)

where A(t) is a positive definite approximation of d2ℓ(θ(t)) and st is a step length. For
sufficiently small st, iterates are guaranteed to decrease ℓ(θ). Common choices for
the Hessian approximation are A = I (gradient descent) and A = E

[
d2ℓ(θ(t))

]
(Fisher

scoring method). If a numerical approximation of d2ℓ(θ) is used rather than an analytical
one, this is called a Quasi-Newton method.

Expectation - Maximization (EM)

The EM algorithm has many applications in statistics as it provides the machinery for
performing maximum likelihood estimation with unobserved or latent data. The latent
data statistical model provides a unified framework which covers data with noise, miss-
ing data, censored observations, and more (Dempster et al., 1977). EM differs from
other algorithms in this review, since it is used to maximize a likelihood in contrast to
minimizing a more general objective function.

Let Y be observed data and Z be missing or latent data that makes it easy to
maximize the likelihood. Define g(y, z|θ) as the complete data likelihood. The algorithm
proceeds by alternating between an expectation step and a maximization step.

• Expectation Step

Evaluate the expectation (with respect to the latent data) of the complete data
likelihood, conditioned on the parameter being equal to the current estimate:

Q(θ|θ(t+1)) = EZ
[
ln g(Y, Z|θ)

∣∣ Y = y, θ = θ(t)
]

(1.16)

• Maximization Step
θ(t+1) = argmax

θ

Q(θ|θ(t)) (1.17)

7



The EM algorithm is very stable as each iteration is guaranteed to increase the
(observed data) likelihood.

Majorization - Minimization (MM)

The MM algorithm is more of a concept than an actual algorithm. Suppose it is difficult
or costly to minimize an objective ℓ(θ) directly. The MM concept is to iteratively create
majorizing functions and minimize them. MM is extremely stable, as each iteration is
guaranteed to decrease the objective. This is similar to the EM algorithm’s guaran-
teed ascent property, due to the fact that EM is a special case of MM. The advantage
over EM is that a wider class of problems that can be solved; the objective function
does not need to be a likelihood and the majorizing technique does not need to be an
expectation.

• Majorization Step

Construct a function g(θ|θ(t)) such that

g(θ|θ(t)) ≥ ℓ(θ), for all θ (dominance condition),
g(θ(t)|θ(t)) = ℓ(θ(t)) (tangent condition).

(1.18)

• Minimization Step
θ(t+1) = argmin

θ

g(θ|θ(t)) (1.19)
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Figure 1.2: Visualization of One MM Algorithm Iteration

The above figure demonstrates a single MM iteration in one dimension. Beginning
at θ(t−1), the majorizing step creates the red line. Then, the minimization step finds the
red line’s minimizer, which moves θ(t−1) to θ(t). Therefore, the MM iteration moves the
estimate in the correct direction of the global minimizer.

The key to efficient MM algorithms, constructing majorizations, is a bit of an art
form. Hunter and Lange (2004) provide several techniques for creating majorizations:

• Jensen’s Inequality
For a convex function ℓ and random variable X, Jensen’s inequality states that

ℓ [E(X)] ≤ E [ℓ(X)] . (1.20)

For probability densities a(x), b(x), the fact that − ln(x) is convex can be used to
conclude

− ln
{
E
[
a(X)

b(X)

]}
≤ −E

{
ln
[
a(X)

b(X)

]}
. (1.21)

If X has density b(x), the following inequality can be derived:

E{ln[a(x)]} ≤ E{ln[b(x)]}. (1.22)
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It is this fact that shows the minorizing property of the E-step in the EM algorithm.

• Minorization via Supporting Hyperplanes
If ℓ is convex and differentiable,

ℓ(θ) ≥ ℓ(θ(t)) +∇ℓ(θ(t))T (θ − θ(t)), (1.23)

with equality at θ = θ(t). Thus, the right-hand side is a minorization.

• Majorization via the Definition of Convexity
A function ℓ is convex if and only if

f

(∑
i

αiti

)
≤
∑
i

αif(ti) (1.24)

for a finite collection of points ti and nonnegative multipliers αi such that
∑

i αi =

1. When ℓ is composed with a linear function xT θ, substituting ti = xi(θi−θ(t)i )/αi+

xT θ(t) creates the inequality (De Pierro, 1995)

ℓ(xT θ) ≤
∑
i

αiℓ

[
xi
αi

(θi − θ(t)i ) + xT θ(t)
]
. (1.25)

• Majorization via Quadratic Upper Bound
Suppose ℓ is twice differentiable and there exists a matrixM such thatM−d2ℓ(θ)
is positive semi-definite for all θ. Then there exists a quadratic upper bound

ℓ(θ) ≤ ℓ(θ(t)) +∇ℓ(θ(t))T (θ − θ(t)) + 1

2
(θ − θ(t))TM(θ − θ(t)). (1.26)

Minimizing the right-hand side results in Newton-like updates where the Hessian
matrix is replaced withM :

θ(t) = θ(t−1) −M−1∇ℓ(θ(t−1)). (1.27)
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Coordinate Descent

Coordinate descent algorithms minimize the objective function with respect to one el-
ement at a time while keeping the others constant.

θ
(t+1)
j = argmin

θj

ℓ
(
θ
(t+1)
1 , . . . , θ

(t+1)
j−1 , θj, θ

(t)
j+1, . . . , θ

(t)
p

)
(1.28)

for j = 1, . . . , p.

θ2

θ 1

Figure 1.3: Coordinate Descent in Two Dimensions

The figure above demonstrates coordinate descent in two dimensions using a
smooth, strongly convex objective. Coordinate descent also has the descent prop-
erty, but is not guaranteed to converge for a non-differentiable objective. However, it
will converge to a global minimum for an objective ℓ(θ) = f(θ) + g(θ) where f is con-
vex and differentiable and g is convex. This makes coordinate descent well suited to
generalized linear models with regularization (Friedman et al., 2010).

Proximal Gradient Method

The proximal gradient method is a gradient-descent like method with the inclusion of
a proximal mapping.
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Definition 1.9: Prox Operator

The prox operator or proximal mapping of a convex function g with scaling s is

proxsg(θ) = argmin
u

(
g(u) +

1

2s
∥u− θ∥2

)
. (1.29)

Intuitively, the mapping is a compromise between minimizing g and remaining near θ,
where the scaling s controls the amount of tradeoff. Also note that the function being
minimized by the proximal mapping is a majorizing function of g, so a prox step is an
MM update.

Table 1.1: Prox-operator Examples

Function Prox-operator

g(θ) = c proxg(θj) = θj

g(θ) = ∥θ∥1 proxsg(θj) = sign(θj) max(|θj| − s, 0)
g(θ) = ∥θ∥2 proxsg(θ) = θ max

(
1− s

∥θ∥2 , 0
)

g(θ) = ∥θ∥22 proxsg(θj) =
θj
1+s

g(θ) = θTAθ/2 + bT θ + c proxsg(θ) = (I + sA)−1(θ − sb)

The proximal gradient method minimizes a function with two components

ℓ(θ) = f(θ) + g(θ), (1.30)

where f is convex and differentiable and g is a closed convex function with inexpensive
prox operator. Iterates take the form

θ(t+1) = argmin
θ

{
f(θ(t))−∇f(θ(t))T (θ + θ(t)) +

1

2st
∥θ − θ(t)∥2 + g(θ)

}
= proxstg

(
θ(t) − st∇f(θ(t))

)
.

(1.31)
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Thus, the update alternates between a gradient descent step with respect to the
differentiable function f and performing a proximal mapping with respect to g. If st <
1/L and f(θ) has an L-Lipschitz continuous gradient, a proximal gradient step is an
MM step.

Beck and Teboulle (2009) introduced the Fast Iterative Shrinkage-Thresholding Al-
gorithm (FISTA), an accelerated proximal gradient method. The idea is to perform prox-
imal gradient steps on an extrapolated point.

y = θ(t) +
t− 2

t+ 1

(
θ(t) − θ(t−1)

)
,

θ(t+1) = proxsg (y − s∇f(y)) .
(1.32)

1.3 Review of Online Optimization

Online optimization is almost synonymous with stochastic approximation. Consider the
common machine learning objective to minimize an expected loss with respect to an
unknown random variable:

argmin
θ

EY [ℓ(Y, θ)]. (1.33)

An online algorithm will update parameter estimates θ(t) based on the previous iterate
θ(t−1) and a random sample yt ∼ Y , so the updater has access to all information con-
tained in ℓ(yt, θ). Some stochastic algorithms are not online, but take random draws
of observations from a fixed size dataset. Popular examples of this are the algorithms
SAG (Schmidt et al., 2017), SAGA (Defazio et al., 2014), SVRG (Johnson and Zhang,
2013), andMISO (Mairal, 2015). These algorithms follow the form of (1.33) by replacing
Y with the empirical distribution of a sample.

1.3.1 Stochastic Approximation

Robbins-Monro Algorithm

The foundational paper of stochastic approximation is Robbins and Monro (1951),
which presents a stochastic algorithm for finding the root of an unknown function from
which noisy observations can be taken. The interpretation by Lai (2003) is presented
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here. Suppose we wish to use successive approximations θ(t) to find the unique root
θ∗ of a functionM(θ) based on observations

yt =M(θ(t−1)) + ϵt, (1.34)

where ϵt are unobservable random errors with mean 0. The Robbins-Monro algorithm
is

θ(t) = θ(t−1) − γtyt,

= θ(t−1) − γt
[
M(θ(t−1)) + ϵt

] (1.35)

where {γt}∞t=1 is a positive sequence such that
∑
γt =∞,

∑
γ2t <∞. Convergence to

θ∗ is achieved under the assumption M(θ(t)) > 0 when θ(t) > θ∗ andM(θ(t)) < 0 when
θ(t) < θ∗.

Kiefer-Wolfowitz Algorithm

For finding a critical point of a function, the Robbins-Monro algorithm is modified by
Kiefer and Wolfowitz (1952) to use updates of the form

θ(t) = θ(t−1) − γt
[
yt(θ

(t−1) + ct)− yt(θ(t−1) − ct)
2ct

]
, (1.36)

where ct is a positive sequence such that
∑
γtct <∞. In other words, the derivative is

estimated with finite differences.
The approach to prove convergence used by Robbins and Monro (1951) and Kiefer

and Wolfowitz (1952) starts with showing E[(θ(t) − θ∗)2] converges to some limit in L2.
Then, a contradiction is found if θ(t) does not converge to θ∗ in probability. Blum (1954)
proved almost sure convergence for the Robbins-Monro under assumptions

|M(θ(t))| ≤ c(|θ(t) − θ∗|+ 1) for all θ(t) and some c > 0,

inf
ϵ≤|θ(t)−θ|≤1/ϵ

[
M(θ(t))(θ(t) − θ∗)

]
> 0 for all 0 < ϵ < 1,

(1.37)

and almost sure convergence for Kiefer-Wolfowitz after removing the assumption∑
γtct <∞.
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Nonnegative Almost Supermartingale

A concept that appears in convergence proofs of stochastic approximation algorithms
is the idea of a filtration. A filtration can be interpreted as the formal concept of history
or past information.

Definition 1.10: Filtration
Let (Ω,F , P ) be a probability space with σ-algebra F and probability measure P .
A filtration is an increasing sequence of σ-algebras

F1 ⊂ F2 ⊂ . . . ⊂ F . (1.38)

A sequence of random variables Xt always has the natural filtration where Ft =
σ(X1, . . . , Xt) is the σ-algebra generated by the random sequence up to t. By
property of Ft-measurable random variables, E(Xt|Ft) = Xt. If E(|Xt|) < ∞ for
all t and E[Xt|Fs] = Xs for all s < t, {Xt} is said to be adapted to the filtration
{Ft}.

Definition 1.11: Nonnegative Almost Supermartingale

Suppose there exists nonnegative Ft-measurable random variables
Mt, At, Bt, Ct such that

E(Mt+1|Ft) ≤ (1 + At)Mt −Bt + Ct. (1.39)

If
∑
At <∞ and

∑
Ct <∞ almost surely, thenMt converges to a finite limit and∑

Bt <∞ almost surely. A sequence that satisfies (1.39) is called a nonnegative
almost supermartingale.

Robbins and Siegmund (1985) proved convergence of the Robbins-Monro algo-
rithm using almost supermartingale theory withMt = (θ(t) − θ∗)2.

Connection with Ordinary Differential Equations

The proof techniques in this dissertation are based on martingales. However, another
rather interesting method for proving convergence is based on equating Robbins-
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Monro updates with an ordinary differential equation. Let st =
∑t

i=1 γi be the sum
of weights up until point t. The updates can then be interpreted as a function of “time”.
Define

θ(s) =
θ(t)(st+1 − s) + θ(t+1)(s− st)

st+1 − st
, st ≤ s < st+1. (1.40)

That is, θ(st) = θ(t) and θ(s) is the linear interpolation between θ(t), θ(t+1) when st < s <

st+1. Rearranging the Robbins Monro update (1.35) and rewriting estimates as above,
we get

θ(t) = θ(t−1) − γt[M(θ(t−1)) + ϵt],

θ(t) − θ(t−1)

γt
= −M(θ(t−1))− ϵt,

θ(st)− θ(st−1)

st − st−1

= −M(θ(st−1))− ϵt.

(1.41)

Since st − st−1 = γt → 0, this is strikingly similar to the ordinary differential equation

dθ

ds
= −M [θ(s)]. (1.42)

Under regularity conditions, θ(t) → θ∗ if θ∗ is a global asymptotically stable equilibrium
of the ODE. For technical details, we refer the reader to Kushner and Yin (2003).

Stochastic Gradient Descent (SGD)

Stochastic gradient descent was introduced by Sakrison (1965) and is a straightforward
application of the Robbins-Monro algorithm. It is fairly intuitive and easy to implement
for a wide variety of optimization problems. In recent years, SGD-like algorithms have
been popular for online machine learning problems as it is trivially scalable to big data.

Putting SGD in the Robbins-Monro form, we wish to solveM(θ) = EY [∇ℓ(Y, θ)] = 0.
This expectation cannot be observed, but we can obtainM(θ)+ϵt where ϵt = ∇ℓ(yt, θ)−
M(θ) and yt are random samples from the distribution of Y . The updates are then

θ(t) = θ(t−1) − γt∇ℓ(yt, θ(t−1)). (1.43)
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Asymptotic Normality

Chung (1954) and Sacks (1958) were the first to investigate the asymptotic distri-
bution for the Robbins-Monro algorithm. Under the learning rate γt = (tβ)−1 where
β =M ′(θ∗), the univariate Robbins-Monro iterates satisfy

√
t(θ(t) − θ∗)→ N

(
0,
σ2

β2

)
, (1.44)

where σ2 = limt→∞ E(ϵt|Ft−1). The extension to the multivariate case is given in Fabian
(1968).

More recently, Toulis et al. (2017) derived asymptotic normality for a variety of
stochastic gradient updates of the form

θ(t) = θ(t−1) − γtCt∇ℓt(θ(t−1)), (1.45)

where ℓt(θ) = ℓ(yt, θ), γt > 0 and Ct is a positive definite matrix.

Assumption 1.12: Assumptions for Normality of Stochastic Gradient Update

(a) The step size sequence is γt = η/tr, η > 0, r ∈ (0.5, 1].

(b) The objective ℓ(θ) is convex, L-Lipschitz continuous, twice differentiable, and
minimized at θ∗.

(c) The Hessian matrix for online objectives have positive trace for all t:
trace[d2ℓt(θ)] > 0. The eigenvalues of the expected second derivative are
bounded: 0 < λj <∞ for all eigenvalues λj of E[d2ℓt(θ)].

(d) EachmatrixCt is a positive definite matrix such thatCt = C+O(γt)whereC is
symmetric, positive definite and commutes with E[d2ℓ(θ∗)]. The eigenvalues
of each Ct are bounded: 0 < λtj <∞ for all eigenvalues λtj of Ct.

(e) The Lindeberg conditions for asymptotical normality are satisfied. Let
Ξt = E[∇ℓt(θ∗)∇ℓt(θ∗)T |Ft−1]. Then ∥Ξt−Ξ∥ = O(1) for all t, and ∥Ξt−Ξ∥ → 0

for a symmetric positive definite matrix Ξ. Let σ2
t,s = E[1∥ξt(θ∗)∥2≥s/γt∥ξt(θ∗)∥2].

Then for all s > 0,
∑t

i=1 σ
2
i,s = o(n) if γt = 1 and σ2

t,s = o(1) otherwise.
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Theorem 1.13: Asymptotic Normality of Stochastic Gradient Algorithms

Under the above assumptions where r = 1 and 2ηCd2ℓ(θ∗)−I is positive definite,
the updates θ(t) from (1.45) are asymptotically normal with mean θ∗ and variance

η2[2ηCd2ℓ(θ∗)− I]−1Cd2ℓ(θ∗)C

t
. (1.46)

Polyak-Ruppert Averaging

While not an algorithm itself, averaging techniques (Polyak and Juditsky, 1992; Rup-
pert, 1988) can often accelerate convergence of stochastic approximation methods.
The motivating idea is that averaging the iterates reduces variability. In practice, it is
common to let the algorithm learn for a finite number of samples t0 and then begin
averaging:

θ̄(t) =
1

t− t0

t∑
i=t0

θ(i). (1.47)

Online EM Algorithm

An online version of the EM algorithm in Cappé and Moulines (2009) is based on min-
imizing a stochastic approximation of the expectation step. To ease the transition to
the online case, here we present the (offline) EM algorithm in a slightly different form.
Assume the negative loglikelihood is normalized by n, the number of observations:

ℓ(θ) =
1

n

n∑
i=1

ℓi(θ), (1.48)

so that ℓ(θ) is majorized by

Qt(θ) =
1

n

n∑
i=1

gi(θ|θ(t−1)), (1.49)

where gi(θ|θ(t−1))majorizes ℓi(θ) at θ(t−1) for all i. The E-step and M-step can therefore
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be written as

Qt(θ) =
1

n

n∑
i=1

gi(θ|θ(t−1)),

θ(t) = argmin
θ

Qt(θ).

(1.50)

For the online EM algorithm, we observe a sequence of independent random sam-
ples yt. For each sample, a majorizing expectation is created such that g(yt, θ|θ(t−1))

majorizes ℓ(yt, θ) at θ(t−1). The online EM algorithm then performs the updates

Qt(θ) = (1− γt)Qt−1(θ) + γtg(yt, θ|θ(t−1)),

θ(t) = argmin
θ

Qt(θ),
(1.51)

where {γt}∞t=1 satisfies
∑
γt = ∞,

∑
γ2t < ∞. The proof of consistency in Cappé and

Moulines (2009) relies on assuming the complete data likelihood comes from an expo-
nential family. The stochastic approximation (E) step thus amounts to approximating
the sufficient statistics from the complete data likelihood.

1.4 Discussion

Many of the offline algorithms in this chapter have stochastic approximation counter-
parts. Just as Newton’s method is the gold standard for offline optimization, stochastic
gradient descent (the online counterpart to gradient descent) is the gold standard for
online optimization. Most of the recent developments in online optimization are variants
of SGD. The main drawback to SGD-like algorithms is that there is information “left on
the table” at each update. By only using gradient information, there is no guarantee
of reducing the objective function for even the current observation. The first few iter-
ations of stochastic gradient algorithms often do more harm than good, forcing future
iterations to “undo damage” before converging to the correct solution. One can ensure
stability in finite samples with a careful selection of hyper-parameters (step size se-
quence {γt}), but this adds complexity to already-complex methods. This dissertation
proposes using MM concepts to acquire more stability than that which is offered by
stochastic gradient algorithms. Intuitively, MM algorithms incorporate some second-
order information of the objective into the majorizing function and thus updates are
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less sensitive to step sizes. Little has been done to incorporate the MM algorithm into
the world of stochastic approximation, but this dissertation shows there is much to be
gained by doing so.

The algorithms presented in chapters two and three develop a methodology for us-
ing MM concepts in the stochastic approximation setting. Chapter four describes the
Julia package OnlineStats, which implements the algorithms defined in the preceding
chapters. Chapter five discusses the difficulties in comparing stochastic approximation
algorithms, develops a novel framework that alleviates these difficulties, and compares
the algorithms from chapters two and three alongside state-of-the-art stochastic gra-
dient algorithms.
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CHAPTER

2

ONLINE MM ALGORITHMS

2.1 Introduction

Majorization-minimization (MM) is a common optimization principle with a wide variety
of uses in statistics and machine learning. It is an intuitive process that decreases the
value of the objective function with each iteration, and many existing algorithms can
be interpreted as MM, such as the EM-algorithm (Dempster et al., 1977). Despite its
usefulness, it is often difficult to adapt MM algorithms to large-scale problems. This
problem is not unique to MM algorithms, as any iterative solver that requires the entire
dataset be available faces the same struggles. Offline algorithms such as gradient de-
scent and quasi-Newton methods have online analogues: stochastic gradient descent
(Sakrison, 1965), stochastic quasi-Newton (Schraudolph et al., 2007), and second-
order stochastic gradient descent (Bottou et al., 2017). However, little has been done
to adapt MM algorithms to online optimization.
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In the online learning setting, the goal is to find

argmin
θ

EY [ℓ(Y, θ)], (2.1)

where the expectation cannot be evaluated, but the learner has access to a sequence
of random samples {yt}∞t=1 from Y . A learner updates the estimate θ(t) from the sample
yt and the previous estimate θ(t−1) using the information contained in ℓt(θ) = ℓ(yt, θ).
Many online learning algorithms are variants of stochastic gradient descent (SGD),
which is defined by minimizing a quadratic approximation for a positive step size γt:

θ(t) = argmin
θ

{
ℓt(θ

(t−1)) +∇ℓt(θ(t−1))T (θ − θ(t−1)) +
1

2γt
∥θ − θ(t−1)∥2

}
= θ(t−1) − γt∇ℓt(θ(t−1)).

(2.2)

Since SGD-like algorithms use only the gradient, all other information contained in
ℓt(θ) is ignored. The algorithms introduced in this chapter naturally incorporate more
information through the use of majorizing functions, resulting in more stable updates.

The Majorization-minimization (MM) principle has only recently been used in on-
line learning. One of the two algorithms presented in this paper is the stochastic MM
algorithm from Mairal (2013b) that provides convergence for convex and nonconvex
problems under iterate averaging schemes only. We contribute convergence results
for stochastic MM (which we call OMAS) without averaging. Just as MM algorithms
are a generalization of the EM algorithm, the stochastic MM algorithm is a generaliza-
tion of the online EM algorithm in Cappé and Moulines (2009). Mairal (2015) and Mairal
(2013a) describe an incremental MM scheme called MISO (Minimization by Incremen-
tal Surrogate Optimization), similar in spirit to the SAG (Stochastic Average Gradient)
algorithm of Schmidt et al. (2017). SAG and MISO are hybrid stochastic/deterministic
schemes that are not online algorithms and require the data to be fixed in size. While
theMM principle is not explicitly mentioned, Ryu and Boyd (2014) and Toulis and Airoldi
(2015) use proximal mappings in online updates, which is a specific kind of MM step.

22



MM Algorithms

The MM algorithm is more of a concept than it is an actual algorithm. Suppose it is
difficult or costly to minimize an objective ℓ(θ) directly. The MM concept is to iteratively
create majorizing functions and minimize them. MM is extremely stable, as each itera-
tion is guaranteed to decrease the objective. As a generalization of the EM algorithm,
the objective function does not need to be a likelihood and the majorizing technique
does not need to be an expectation. An introduction to (offline) MM algorithms is given
in Hunter and Lange (2004), with a more thorough treatment in Lange (2016).

• Majorization Step

Construct a surrogate objective function h such that

h(θ|θ(t−1)) ≥ ℓ(θ), with strict equality at θ = θ(t−1). (2.3)

• Minimization Step

Minimize h:
θ(t) = argmin

θ

h(θ|θ(t−1)). (2.4)

Figure 2.1: Visualization of One MM Algorithm Iteration
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The figure above shows the descent property of MM algorithms: By minimizing a
surrogate function h, the estimate moves closer to the optimal value of l. The surrogate
h incorporates some of the second order information of l and therefore guarantees that
the update doesn’t “jump too far”.

Constructing majorizing functions is a bit of an art form. A common method of con-
struction is via a quadratic upper bound (Hunter and Lange, 2004). Let ℓ(θ) be a twice
differentiable objective function and suppose there exists amatrixA such thatA−d2ℓ(θ)
is positive semi-definite. Then, the function

h(θ|θ(t)) = ℓ(θ(t)) +∇ℓ(θ(t))T (θ − θ(t)) + 1

2
(θ − θ(t))TA(θ − θ(t)) (2.5)

majorizes ℓ(θ) at θ(t). Minimizing this surrogate creates updates of the form

θ(t) = θ(t−1) − γtA−1∇ℓ(θ(t−1)). (2.6)

Therefore, quadratic upper bound MM updates look similar to Newton’s method, but
use an approximation of the Hessian matrix that guarantees descent. Note that if A
is diagonal, updates can be performed element by element, and it is not necessary to
solve a linear system at each iteration. Furthermore, if ℓ(θ) has an L-Lipschitz contin-
uous gradient and I is the identity matrix of appropriate size, LI − d2ℓ(θ) is positive
semi-definite and A = LI can be used in the majorization.

The following two propositions are useful in constructing quadratic upper bounds for
models that are linear in the parameters, i.e. the objective has the form ℓt(θ) = ft(x

T
t θ).

In this case, the second derivative is f ′′
t (x

T
t θ)xtx

T
t . Therefore, if f ′′

t (x
T
t θ) is bounded for

all θ for some constant c and A − xtx
T
t is positive semidefinite, then cA − d2ℓt(θ) is

positive semidefinite.
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Proposition 2.1

Let diag(A) denote the diagonal matrix containing the diagonal elements of A.
For a matrix X = (x1, x2, . . . , xp) ∈ Rn×p, p diag(XTX) − XTX is positive semi-
definite.

Proof. Let a ∈ Rp. Let X = (x1, x2, . . . , xp). Then

aT
[
p diag(XTX)−XTX

]
a = p aTdiag(XTX)a− aTXTXa

= p

p∑
j=1

a2jx
T
j xj −

p∑
i=1

p∑
j=1

aiajx
T
i xj

= p

p∑
j=1

∥vj∥2 −
p∑
i=1

p∑
j=1

vTi vj for vi = aixi

= (p− 1)

p∑
j=1

∥vj∥2 − 2

p∑
i=1

∑
j>i

vTi vj

=

p∑
i=1

∑
j>i

[
(∥vi∥ − ∥vj∥)2 + 2∥vi∥∥vj∥

]
− 2

p∑
i=1

∑
j>i

vTi vj

≥
p∑
j=1

∑
i>j

2∥vi∥∥vj∥ − 2vTi vj

≥ 0 by Cauchy-Schwarz inequality.
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Proposition 2.2

For x ∈ Rd, xTxI − xxT is positive semi-definite.

Proof. Let a ∈ Rd. Then

aT (xTxI − xxT )a = aTxTxIa− aTxxTa

= ataxTx− aTxxTa

= ∥a∥2∥x∥2 − (aTx)2

≥ 0 by Cauchy-Schwarz inequality.

(2.7)

Online EM Algorithm

The (offline) EM algorithm, introduced in Dempster et al. (1977), has a wide variety
of uses in statistics, signal processing, and optimization. The EM idea assumes there
is some unobserved or missing data Z that if observed would make the maximum
likelihood estimate (MLE) easy to calculate. Let Y be the observed data and f(Y, Z|θ)
be the complete data probability density function parameterized by θ. As a specific
case of MM, the offline EM algorithm alternates between an expectation (minorization)
step and a maximization step. Note that when the objective is maximizing an objective
function, MM stands for Minorize-Maximize instead of Majorize-Minimize. To keep the
EM algorithm consistent with the algorithms in this chapter (in terms of minimization),
we alter the EM update to use the negative loglikelihood:

Qt(θ) =
1

n

n∑
i=1

EZ
[
− ln f(yi, zi|θ)|θ(t−1)

]
,

θ(t) = argmin
θ

Qt(θ).

(2.8)

The precursor to Stochastic MM is the online EM algorithm in Cappé and Moulines
(2009), based on a stochastic approximation of the expectation:

Qt(θ) = (1− γt)Qt−1(θ) + γtEZ [− ln(yt, zt|θ)|θ(t−1)],

θ(t) = argmin
θ

Qt(θ),
(2.9)
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where γt ∈ (0, 1). Therefore, in translating the EM algorithm to an online update, the
M-step remains the same, but the expectation step must use an approximation since
only a single observation is available.

2.2 Online MM Algorithms

The two presented algorithms will be jointly referred to as online MM algorithms, as
the updates are based on majorizations and behave similarly in both theory and prac-
tice. For each algorithm, the update is defined in terms of step size γt ∈ (0, 1) and
ht(θ) = h(yt, θ|θ(t−1)), a known function of the current iterate and new observation that
majorizes ℓt(θ) = ℓ(yt, θ) at θ(t−1).

2.2.1 Online MM - Averaged Surrogate (OMAS)

Mairal (2013b) introduced the following algorithm as Stochastic MM, in which the online
EM algorithm is extended to MM algorithms by directly replacing the expectation in
equation (2.9) with a more general majorization. The OMAS update is then

Qt(θ) = (1− γt)Qt−1(θ) + γtht(θ)

θ(t) = argmin
θ

Qt(θ).
(2.10)

2.2.2 Online MM - Averaged Parameter (OMAP)

Rather than averaging surrogate functions, OMAP averages the arguments that min-
imize the majorizations. Therefore, OMAP is only well-defined for majorizations that
have a unique minimum:

θ(t) = (1− γt)θ(t−1) + γt argmin
θ

ht(θ). (2.11)
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2.2.3 Online MM via Quadratic Upper Bound

Recall that majorization via a quadratic upper bound is a common method of con-
structing surrogates. If ℓ(θ) is twice differentiable and there exists a matrix A such that
A− d2ℓ(θ) is positive semi-definite for all θ, the function

h(θ|θ(t−1)) = ℓ(θ(t−1)) +∇f(θ(t−1))T (θ − θ(t−1)) +
1

2
(θ − θ(t−1))TA(θ − θ(t−1))

=
1

2
θTHθ + [∇f(θ(t−1))−Hθ(t−1)]T θ + c,

(2.12)

where c includes all the terms that do not depend on θ, majorizes ℓ(θ) at θ(t−1). For-
tunately, closed-form updates can be derived for OMAS and OMAP. This makes it
straightforward to translate existing offline MM algorithms via quadratic upper bound
into online updates. Updates of this form will be referred to as OMAS-Q and OMAP-Q,
respectively.

• OMAS-Q
At = (1− γt)At−1 + γtHt,

bt = (1− γt)bt−1 + γt[Htθ
(t−1) −∇ℓt(θ(t−1))],

θ(t) = A−1
t bt.

(2.13)

• OMAP-Q
θ(t) = θ(t−1) − γtH−1

t ∇ℓt(θ(t−1)). (2.14)

The difference between OMAS and OMAP is clearly seen in the above updates:
OMAS consists of updating “sufficient statistics” while OMAP is directly applied to the
parameter.

2.2.4 Regularization in OMAS-Q and OMAP-Q

In machine learning, the objectives ℓt(θ) often have the form

ℓt(θ) = ft(θ) + λψ(θ), (2.15)

where ft(θ) is a loss function, ψ(θ) is a regularization function which penalizes the
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size of the coefficients θ, and λ ≥ 0 is a tuning parameter that adjusts the amount of
regularization.

Note that majorizing ℓt(θ) is possible by majorizing the loss component only and
leaving the penalty function as-is. Let ht(θ) majorize ft(θ) at θ(t−1). Then

ht(θ) + λψ(θ) (2.16)

majorizes ℓt(θ) at θ(t−1). Therefore, it is trivial to add a regularization term into a ma-
jorization. The second part of MM, minimization, is also straightforward in the case of
OMAS-Q and OMAP-Q. First consider OMAP-Q where∇ℓ(θ) is L-Lipschitz continuous
and the Hessian matrix approximation is LI for the identity matrix I of appropriate size.
The update is then

θ(t) = (1− γt)θ(t−1) + γt argmin
θ

{
∇ℓt(θ(t−1))T θ +

L

2
∥θ − θ(t−1)∥2 + λψ(θ)

}
= (1− γt)θ(t−1) + γtprox λ

L
ψ

[
θ(t−1) − 1

L
∇ℓt(θ(t−1))

]
,

(2.17)

where the prox operator or proximal mapping is defined as

proxψ(u) = argmin
θ

{
ψ(θ) +

1

2
∥u− θ∥2

}
. (2.18)

Therefore, the second term in (2.17) is using a proximal gradient step (Parikh et al.,
2014) applied to the noisy objective ℓt(θ). Now consider OMAS-Q with the same ma-
jorization:

Qt(θ) = (1− γt)Qt−1(θ) + γtht(θ),

θ(t) = argmin
θ

{Qt(θ) + λψ(θ)}

= argmin
θ

{
LθT θ/2− btθ + λψ(θ)

}
= argmin

θ

{
λψ(θ) +

L

2

∥∥∥∥θ − bt
L

∥∥∥∥2
}

= prox λ
L
ψ

(
bt
L

)
,

(2.19)

29



where bt = (1− γt)bt−1 + γtL[θ
(t−1) −∇ft(θ(t−1))].

Regularized OMAS-Q has an advantage over regularized OMAP-Q in regard to
variable selection. The prox step for certain penalties (such as LASSO) sets small
coefficients equal to zero. OMAP-Q coefficients will only be zero if they are zero in
every iteration, since the prox step occurs before the averaging occurs. In OMAS-Q,
the prox step occurs after averaging and thus coefficients can be set to zero during
any iteration.

2.3 Asymptotic Analysis

Most theoretical guarantees for online learning algorithms are based on convex ob-
jectives only. In this section, we show online MM algorithms are not only consistent in
the convex case, but converge to a critical point for nonconvex objectives. The theory
shows online MM algorithms take steps that are correlated with the stochastic gradi-
ent, but naturally incorporate second order information from the stochastic objective.
As the stochastic gradient is used often in the following analysis, let gt = ∇ℓt(θ(t−1))

with elements gt = (gt1, . . . , gtd). Online MM algorithms will be interpreted to take the
form θ(t) = θ(t−1) − γtδt, where the “direction” vector has elements δt = (δt1, . . . , δtd).

Convergence of online MM algorithms rely on the theory of nonnegative almost
supermartingales, discussed in Robbins and Siegmund (1985). The main result is pre-
sented below as a lemma.

Lemma 2.3: Almost Supermartingale Convergence

Suppose there exists sequences of nonnegative random variables At, Bt, and
Ct, adapted to filtration Ft, such that

E[Mt+1|Ft] ≤ (1 + At)Mt −Bt + Ct. (2.20)

If
∑
At <∞ and

∑
Ct <∞ almost surely, thenMt converges to a finite limit and∑

Bt <∞ almost surely.
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Assumption 2.4: Online MM Algorithm Assumptions

(a) The step size sequence satisfies

γ1 = 1,

0 < γt < 1 if t > 1,∑
γt =∞,∑
γ2t <∞.

(2.21)

(b) For all t, the stochastic majorizing functions ht have an L-Lipschitz continu-
ous gradient and are M -strongly convex. Necessarily, M ≤ L. There exists
a constant B > 0 such that ∥gt∥2 ≤ B for all t.

(c) Each element of the online MM direction vector satisfies sign(δtj) = sign(gtj)
and |δtj| ≥ c|gtj| for some c > 0.

(d) The parameter space is a convex open subset Θ ⊂ Rd. argminθ ht(θ) ∈ Θ

for all t, the data sequence {yt}∞t=1 is independent and identically distributed,
and ℓ(y, θ) is well defined for all (y, θ) ∈ Y ×Θ.

In assumption 2.4, The first two parts of (a) ensure that Q1(θ) = ht(θ) and that
iterates remain inside the parameter space. The second two conditions are standard
assumptions for stochastic approximation. Assumption (b) puts regularity conditions
on the majorizations that are common in practice. Assumption (c) may at first appear
to be a strong condition, but it is satisfied for any majorization that splits parameters
into a separable sum

ht(θ) =
d∑
j=1

htj(θj), (2.22)

where each component htj is M -strongly convex and has an L-Lipschitz continuous
gradient for a sufficiently large L.

An important property of MM algorithms is the guarantee of a lower objective func-
tion value after each iteration (descent property). Online algorithms are unable to claim
the same property due to the randomness involved with using one observation at a
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time, but online MM algorithms do follow a stochastic descent property.

Proposition 2.5: Stochastic Descent Property

Online MM algorithms satisfy the stochastic descent property for all t and any
step size γt ∈ (0, 1) :

ℓ(yt, θ
(t)) ≤ ℓ(yt, θ

(t−1)). (2.23)

Proof. For OMAS,

Qt(θ
(t)) ≤ Qt(θ

(t−1))

(1− γt)Qt−1(θ
(t)) + γtht(θ

(t)) ≤ (1− γt)Qt−1(θ
(t−1)) + γtht(θ

(t−1))

(1− γt)Qt−1(θ
(t)) + γtht(θ

(t)) ≤ (1− γt)Qt−1(θ
(t)) + γtht(θ

(t−1))

ht(θ
(t)) ≤ ht(θ

(t−1))

ℓt(θ
(t)) ≤ ht(θ

(t)) ≤ ht(θ
(t−1)) = ℓt(θ

(t−1)).

(2.24)

For OMAP, by definition of majorization and convexity,

ℓt(θ
(t)) ≤ ht(θ

(t))

= ht[(1− γt)θ(t−1) + γt argmin
θ

ht(θ)]

≤ (1− γt)ht(θ(t−1)) + γtmin h(θ)
≤ (1− γt)ht(θ(t−1)) + γtht(θ

(t−1))

= ht(θ
(t−1))

= ℓt(θ
(t−1)).

(2.25)

The stochastic descent property is rare among online algorithms. Stochastic gradi-
ent algorithms eventually achieve guaranteed descent for a decreasing learning rate
(step size sequence), but they can only claim it holds for all t with a careful selection
of step sizes with respect to a Lipschitz constant. It is often the case that stochastic
gradient algorithms “do harm” (increase the objective value) in the first few iterations,
forcing future iterations do “undo the damage” later on. Alternatively, online MM algo-
rithms have guaranteed stochastic descent with few assumptions and without the need
for a careful selection of learning rate.
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Lemma 2.6: Properties of OMAS Surrogates

Under assumption 2.4 (b), Qt(θ) is M -strongly convex with an L-Lipschitz con-
tinuous gradient for all t. Furthermore,

∇Qt(θ
(t−1)) = γtgt. (2.26)

Proof. The Lipschitz condition and strong convexity are both proven by induction.
Q1(θ) = h1(θ) has an L-Lipschitz continuous gradient. Assume ∇Qt−1 is L-
Lipschitz continuous. Then Qt(θ) has an L-Lipschitz continuous gradient by def-
inition:

∥∇Qt(θ1)−∇Qt(θ2)∥ ≤ (1− γt)∥∇Qt−1(θ1)−∇Qt−1(θ2)∥+ γt∥∇ht(θ1)−∇ht(θ2)∥

≤ (1− γt)L∥θ1 − θ2∥+ γtL∥θ1 − θ2∥

= L∥θ1 − θ2∥,
(2.27)

Q1(θ) = h1(θ) is M -strongly convex. Assume Qt−1(θ) is M -strongly convex, so
by definition Qt−1(θ)− M

2
θT θ is convex. Then

Qt(θ)−
M

2
θT θ = (1− γt)

[
Qt−1(θ)−

M

2
θT θ

]
+ γt

[
ht(θ)−

M

2
θT θ

]
(2.28)

is a weighted average of convex functions and Qt(θ) is convex by definition.

The above lemma states the surrogate objective in OMAS shares some of the same
properties as the stochastic majorizations. As the following lemma shows, this result
makes it possible to analyze OMAS and OMAP under the same framework.
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Lemma 2.7: Online MM Update Bounds

Under assumption 2.4, online MM iterates satisfy

γ2t
L2
∥gt∥2 ≤ ∥θ(t−1) − θ(t)∥2 ≤ γ2t

M2
∥gt∥2, (2.29)

and therefore converge to a finite point almost surely.

Proof. For OMAS,Qt(θ) isM -strongly convex and has anL-Lipschitz continuous
gradient. Therefore,

1

L2
∥∇Qt(θ

(t−1))∥2 ≤ ∥θ(t−1) − θ(t)∥2 ≤ 1

M2
∥∇Qt(θ

(t−1))∥2,
1

L2
∥gt∥2 ≤ ∥θ(t−1) − θ(t)∥2 ≤ 1

M2
∥gt∥2.

(2.30)

For OMAP, ∥θ(t−1)−θ(t)∥2 = γ2t ∥ argminθ ht(θ)−θ(t−1)∥2. Since ht(θ) isM -strongly
convex and has an L-Lipschitz continuous gradient,

γ2t
L2
∥gt∥2 ≤ γ2t ∥ argmin

θ

ht(θ)− θ(t−1)∥2 ≤ γ2t
M2
∥gt∥2. (2.31)

In both cases, limt→∞ ∥θ(t−1) − θ(t)∥2 = 0, so it must be that θ(t) → θ(∞) for some
finite value θ(∞) almost surely.

A result of the above lemma is that by writing online MM iterates as

θ(t) = θ(t−1) − γtδt, (2.32)

the direction vector δt satisfies L−1∥gt∥ ≤ ∥δt∥ ≤ M−1∥gt∥. This direction can be ex-
plicitly derived for both OMAS and OMAP:

δOMAS
t =

θ(t−1) − argminθQt(θ)

γt
,

δOMAP
t = θ(t−1) − argmin

θ

ht(θ).
(2.33)
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Lemma 2.8: Online MM Direction and Stochastic Gradient

The update direction is positively correlated with gt = ∇ℓt(θ(t−1)) for all t. Specif-
ically,

γt
L
∥gt∥2 ≤ gTt (θ

(t−1) − θ(t)) ≤ γt
M
∥gt∥2. (2.34)

In other words,

1

L
∥gt∥2 ≤ gTt δt ≤

1

M
∥gt∥2. (2.35)

Proof. For OMAS,Qt(θ) is convex and has anL-Lipschitz gradient, which implies
co-coercivity of the gradient:

[
∇Qt(θ

(t−1))−∇Qt(θ
(t))
]T

(θ(t−1) − θ(t)) ≥ 1

L
∥∇Qt(θ

(t−1))−∇Qt(θ
(t))∥2

γtg
T
t (θ

(t−1) − θ(t)) ≥ γ2t
L
∥gt∥2.

(2.36)

Similarly for OMAP:

gTt (θ
(t−1) − θ(t)) = γtg

T
t [θ

(t−1) − argmin
θ

ht(θ)]

≥ γt
L
∥gt −∇ht[argmin

θ

ht(θ)]∥2

≥ γt
L
∥gt∥2.

(2.37)

For the upper bound, the Cauchy-Schwarz inequality and lemma 2.7 imply

gTt (θ
(t−1) − θ(t)) ≤ ∥gt∥∥θ(t−1) − θ(t)∥ ≤ γt

M
∥gt∥2. (2.38)
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Lemma 2.9
For some constant c > 0, for all t,

∇ℓ(θ(t−1))TE(δt|Ft−1) ≥ c∥∇ℓ(θ(t−1))∥2. (2.39)

Proof. Directly from assumption 2.4 (c),

∇ℓ(θ(t−1))TE(δt|Ft−1) ≥ c∇ℓ(θ(t−1))TE(gt|Ft−1)

≥ c∥∇ℓ(θ(t−1))∥2.
(2.40)

The above lemmas show online MM updates move the estimate in the direction of
the stochastic gradient and iterates converge to something. The following convergence
theorem shows that the value the iterates converge to is in some sense optimal.
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2.3.1 Convergence of Online MM Algorithms
Theorem 2.10: Convergence for Nonconvex Objective

Let ℓ(θ) be differentiable, bounded below, and have an R-Lipschitz continuous
gradient. Under assumption 2.4, online MM iterates converge to a stationary
point of ℓ(θ) almost surely.

Proof. Let St = ℓ(θ(t)). Without loss of generality, assume ℓ(θ) ≥ 0 for all θ. By
the quadratic upper bound via the Lipschitz continuous gradient of ℓ,

St ≤ St−1 +∇ℓ(θ(t−1))T (θ(t) − θ(t−1)) +
R

2
∥θ(t) − θ(t−1)∥2

≤ St−1 − γt∇ℓ(θ(t−1))T δt +
γ2tRB

2M2
.

(2.41)

Taking expectation with respect to Ft−1,

E(St|Ft−1) ≤ St−1 − γt∇ℓ(θ(t−1))TE(δt|Ft−1) +
γ2tRB

2M2
,

≤ St−1 − γtc∥∇ℓ(θ(t−1))∥2 + γ2tRB

2M2
(by Lemma 2.9).

(2.42)

Then St ≥ 0, the last term is summable (since
∑
γ2t < ∞), and the middle term

is negative. St is by definition a nonnegative almost supermartingale, implying

c
∞∑
t=1

γt∥∇ℓ(θ(t−1))∥2 <∞. (2.43)

Since
∑
γt =∞, it must be that

lim
t→∞
∥∇ℓ(θ(t−1))∥2 = ∥ lim

t→∞
∇ℓ(θ(t−1))∥2

= ∥∇ℓ(θ(∞))∥2

= 0.

(2.44)

37



2.4 Nonasymptotic Analysis

2.4.1 Stability

One of the main reasons to choose online MM algorithms over stochastic gradient
methods is the lack of stability in stochastic gradient descent (SGD), as the lack of the
descent property in SGD is often not fixed in its modern variants. Bach and Moulines
(2011) derive the following error bounds on SGD iterates, presented here as a theorem.

Theorem 2.11: SGD Error Bound
Assume ℓt(θ) is µ-strongly convex with unique minimizer θ∗, ∇ℓ(θ) is R-Lipschitz
continuous for all t, and ∥∇ℓt(θ(t−1))∥2 ≤ B for all t. Define SGD updates as

θ(t) = θ(t−1) − γt∇ℓt(θ(t−1)), γt = 1/tr, r ∈ (.5, 1). (2.45)

LetMt = E(∥θ(t) − θ∗∥2). Then,

E(Mt|Ft−1) ≤ (1− 2µ/tr + 2R2/t2r)Mt−1 +
2B

t2r
. (2.46)

By necessity, R ≥ µ. It is then common for (1 − 2µ/tr + 2R/t2r) ≥ 1 for a finite
number of terms until t gets large enough. This is asymptotically negligible, but the
bound can increase dramatically in the first few operations, resulting in poor finite-
sample performance. Modern advancements to SGD that incorporate adaptive learn-
ing rates, such as ADAGRAD (Duchi et al., 2011), ADAM (Kingma and Ba, 2014), and
RMSProp (Tieleman and Hinton, 2012), do not always correct the temporarily growing
error bound.

The figure below demonstrates the “contraction term” (1−2µ/tr+2R2/t2r) from the
above bound for a specific choice of constants. While it only takes eight iterations for
the bound to start shrinking (term less than 1), the first seven iterations increase the
bound to greater than 63M0. In contrast, online MM algorithms are extremely stable in
the first few iterations because of the stochastic descent property.
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Figure 2.2: “Contraction” term (1 − 2µ/tr + 2R2/t2r) of SGD error bound with r =
.7, R = 2, µ = 1.

2.4.2 Finite Sample Bounds

It is difficult to apply error bounds to online MM algorithms in general, as the class
of functions that could be majorizations is very broad. Here we present finite sample
bounds for a specific form of online MM, OMAP-Q, under a fixed step size.
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Theorem 2.12: Finite Sample Bounds for OMAP-Q, Fixed Step Size

Assume ℓ(θ) is differentiable with unique minimizer θ∗ and each ℓt(θ) is µ-strongly
convex. Recall the OMAP-Q update is

θ(t) = θ(t−1) − γtH−1
t gt, (2.47)

where Ht is a matrix such that Ht − d2ℓt(θ) is positive semi-definite for all θ. As-
sume ∇ℓt(θ) is Lt-Lipschitz continuous and set Ht = LtI. Define L = infLt, L̄ =

supLt. Necessarily, µ < L ≤ L̄. Then under assumption 2.4 and using constant
step size γ < 1/2,

E(∥θ(t) − θ∗∥2|Ft−1) ≤
(
1− 2

γµ

L̄

)t
∥θ(0) − θ∗∥2 + γL̄

2L2µ
B. (2.48)

Proof.
St = ∥θ(t) − θ∗∥2

= ∥θ(t−1) − θ∗ − γtL−1
t gt∥2

= St−1 +
γ2t
L2
t

∥gt∥2 − 2
γt
Lt
gTt (θ

(t−1) − θ∗).

(2.49)

Taking expectation,

E(St|Ft−1) ≤ St−1 +
γ2t
L2
t

B − 2
γt
Lt
∇ℓ(θ(t−1))T (θ(t−1) − θ∗)

≤ St−1 +
γ2t
L2
t

B − 2
γt
Lt
µSt−1 (by strong convexity)

=

(
1− 2

γtµ

Lt

)
St−1 +

γ2t
L2
t

B.

(2.50)

For a constant step size γt = γ,

E(St|Ft−1) ≤
(
1− 2

γµ

L̄

)t
S0 +

γ2

L2B

t−1∑
i=0

(
1− 2

γµ

L̄

)i
≤
(
1− 2

γµ

L̄

)t
S0 +

γ2

L2B
∞∑
i=0

(
1− 2

γµ

L̄

)i
=
(
1− 2

γµ

L̄

)t
S0 +

γ2

L2B
L

2γµ

=
(
1− 2

γµ

L̄

)t
S0 +

γL̄

2L2µ
B.

(2.51)
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2.5 Examples

In this section, we derive online MM algorithms for a variety of statistical learning prob-
lems. The behavior of the following algorithms and comparison to state-of-the-art meth-
ods is provided in chapter 5.

2.5.1 Linear Regression

The loss function (negative log-likelihood) for a single observation in a linear regression
model is

ft(β) =
1

2
(yt − xTt β)2, yt ∈ R, xt ∈ Rd. (2.52)

The second derivative is d2ft(β) = xtx
T
t . By proposition 2.2, OMAS-Q and OMAP-Q

can use the Hessian matrix approximation xTt xtI for an appropriately sized identity
matrix I.

OMAS-Q

a(t) = (1− γt)a(t−1) + γtx
T
t xt

b(t) = (1− γt)b(t−1) + γt[x
T
t xtβ

(t−1) + (yt − xTt β(t−1))xt]

β(t) =
1

a(t)
b(t).

(2.53)

OMAP-Q

β(t) = β(t−1) +
γt
xTt xt

(yt − xTt β(t−1))xt. (2.54)

2.5.2 Logistic Regression

The loss function (negative log-likelihood) for a single observation in a linear regression
model is

ft(β) = ln(1 + eytx
T
t β), yt ∈ [−1, 1], xt ∈ Rd. (2.55)
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The second derivative is

d2ft(β) = p̂t(1− p̂t)xtxTt , (2.56)

where p̂t is the predicted probability that yt = 1. Since p̂t ∈ [0, 1], 0 ≤ p̂t(1− p̂t) ≤ 1/4.
Just as for linear regression, OMAS-Q and OMAP-Q can use proposition 2.2 to derive
the Hessian matrix approximation At = 1

4
xTt xtI.

OMAS-Q

a(t) = (1− γt)a(t−1) + .25γtx
T
t xt

b(t) = (1− γt)b(t−1) + γt

[
.25xTt xtβ

(t−1) +
yt

1 + e−ytx
T
t β

(t−1)
xt

]
β(t) =

1

a(t)
b(t).

(2.57)

OMAP-Q

β(t) = β(t−1) + γt

(
.25

xTt xt

)
yt

1 + e−ytx
T
t β

(t−1)
xt. (2.58)

2.5.3 Generalized Distance Weighted Discrimination (DWD)

An extension of support vector machine’s (SVM) L1-Hinge Loss, the generalized dis-
tance weighted discrimination loss is parameterized by a constant q and converges to
SVM as q →∞. The loss and its derivative are:

vq(u) =

1− u if u ≤ q
q+1

qq

uq(q+1)q+1 if u > q
q+1

,

v′q(u) =

−1 if u ≤ q
q+1[

q
u(q+1)

]q+1

if u > q
q+1

.

(2.59)
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Figure 2.3: DWD Losses compared with Hinge Loss (SVM)

First we present an offline MM algorithm, originally described in Wang and Zou
(2015). Let y ∈ [−1, 1]n be a response vector and let X = (x1, . . . , xn)

T ∈ Rn×p be a
matrix of predictor variables with observations in rows. The DWD loss is often penalized
with an L2-penalty and nonnegative tuning parameters λj, j = 1, . . . , p, providing an
objective of the form

ℓ(β) = f(β) + ψ(β), (2.60)

where f(β) = 1
n

∑n
i=1 vq(yix

T
i β) and ψ(β) = 1

2

∑p
j=1 λjβ

2
j .

The offline MM algorithm inWang and Zou (2015) relies on a quadratic upper bound
and is easily translated into online versions. First, we extend the offline MM algorithm to
incorporate elementwise regularization parameters. For each q > 0, vq has a Lipschitz
continuous gradient with constant mq = (q + 1)2/q. Thus, the loss in equation (2.59) is
majorized at u(t) by

gq(u) = vq(u
(t)) + v′q(θ

(t))(u− u(t)) + mq

2
(u− u(t))2. (2.61)
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Thus, the objective function ℓ(β) in (2.60) is majorized at β(t) by the quadratic:

g(β|β(t)) = f(β(t)) +∇f(β(t))T (β − β(t)) +
mq

2n

∥∥yTX(β − β(t))
∥∥2
2
+

1

2
βTΛβ

= f(β(t)) +∇f(β(t))T (β − β(t)) +
mq

2n

∥∥X(β − β(t))
∥∥2
2
+

1

2
βTΛβ,

(2.62)

where Λ = diag(λ1, . . . , λp). Going from the first line to the second in (2.62) is possible
because the vector y consists of only positive and negative 1. Taking the derivative of
(2.62) respect to β returns

∇g(β|β(t)) = ∇f(β(t)) +
mq

n
XTX(β − β(t)) + Λβ, (2.63)

which by setting equal to zero returns the update rule:

β(t) = β(t−1) −
(
mqX

TX

n
+ Λ

)−1 [
∇f(β(t)) + Λβ(t)

]
(2.64)

Unfortunately, the constantmq increases quadratically with q and thus the majoriza-
tion gets “worse” as q increases. As a result, the MM algorithm has slower convergence
as the objective function becomes more similar to an L1-Hinge loss.
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Figure 2.4: Quadratic Upper Bound for DWD Loss
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OMAS-Q

Qt(β) =
1

2
βT (At + Λ)β + bTt β + ct,

β(t) = (At + Λ)−1bt,
(2.65)

where
At = (1− γt)At−1 + γtmqx

T
t xtI,

bt = (1− γt)bt−1 + γt[mqx
T
t xtβ

(t−1) − v′(ytxTt β(t−1))ytxt].
(2.66)

OMAS-Q

β(t) = β(t−1) − γt
mq

(xTt xtI + Λ)−1[v′q(ytx
T
t β

(t−1))ytxt + Λβ(t−1)]. (2.67)

2.5.4 Dirichlet-Multinomial MLE

Some offline algorithms can be updated in an online fashion. In these cases, it makes
more sense to analytically update the sufficient values than to stochastically approxi-
mate them. This is similar in spirit to OMAS, but uses an exact analytical update. Con-
sider the probability density function of a d-category Dirichlet-Multinomial distribution
with parameter α = (α1, . . . , αd) taking values x = (x1, . . . xd):

f(x|α) =

(
m

x

)
Γ(
∑

j αj)

Γ(m+
∑

j αj)

d∏
j=1

Γ(αj + xj)

Γ(αj)

=

(
m

x

) ∏d
j=1(aj)xj
|α|m

,

(2.68)

where ay = a(a+ 1) . . . (a+ y− 1) denotes the rising factorial, |α| =
∑
αj and m = |x|.

The loglikelihood for n observations with observation weights wi is then

ℓ(α) = −
m∗−1∑
k=1

rk ln(
∑

αj + k) +
d∑
j=1

x∗−1∑
k=0

sjk ln(αj + k) +
n∑
i=1

ln
(
mi

xi

)
, (2.69)

where rk =
∑

iwi1{mi>k}, sjk =
∑

iwi1{xij>k}, m∗ = max(m1, . . . ,mn), x∗ = max(xij).
By majorizing the first term via supporting hyperplane inequality and the second term
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by Jensen’s inequality, a majorizing function for ℓ(α) is

h(α|α(t)) =
1

n

{
−

m∗∑
k=0

rk

|α(t)
j |+ k

|α|+
d∑
j=1

x∗−1∑
k=0

sjkα
(t)
j

α
(t)
j + k

lnαj + ct

}
, (2.70)

where ct contains all terms independent of the parameter α. Note that rk and sjk can
be updated analytically. Updates to the parameter then take the form

α
(t)
j =

(
x∗−1∑
k=0

sjkα
(t−1)
j

α
(t−1)
j + k

)/(m∗−1∑
k=0

rk
|α(t−1)|+ k

)
. (2.71)

However, if we want online updates to be exactly the same as the offline MM algorithm
with t observations, an update to the sufficient values must be followed by several of
the iterations in (2.71).

2.5.5 Quantile Regression

Quantile regression is a technique which models the conditional quantile of a distribu-
tion, rather than (as with linear regression) the conditional expectation. The offline MM
approach in Hunter and Lange (2000) is to majorize a function that closely approxi-
mates the quantile loss function ρτ (u) = u(τ−1{u<0}). Let ρϵτ (u) = ρτ (u)+

ϵ
2
log(ϵ+ |u|).

The perturbed objective function is to avoid the possibility of dividing by zero in the
majorizer. For a residual r(t)i = yi − xTi β(t), ρϵτ is majorized at ±r(t)i by

h(r|r(t)i ) =
1

4

{
r2

ϵ+ |r(t)i |
+ (4τ − 2)r + c

}
. (2.72)

For ℓϵ(β) = 1
n

∑n
i=1 ρ

ϵ
τ (yi − xTi β), the quadratic majorizing function is

Qϵ(β|β(t)) =
1

4n

n∑
i=1

{
(yi − xTi β)2

ϵ+ |r(t)i |
+ (4τ − 2)(yi − xTi β) + ci

}
=

1

4n

[
(y −Xβ)TW (y −Xβ) + (4τ − 2)1T (y −Xβ)

]
+ ct

∝ 1

2
βTXTWXβ − [yTWX + (2τ − 1)1TX]β + ct,

(2.73)
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where W = diag[(ϵ + |r(t)1 |)−1, . . . , (ϵ + |r(t)n |)−1] and ct is a constant containing terms
that do not depend on β. The gradient is

∇Qϵ(β|β(t)) ∝ XTWXβ −XTWy − (2τ − 1)XT1, (2.74)

and the update is therefore

β(t+1) = (XTWX)−1
[
XTWy + (2τ − 1)XT1

]
. (2.75)

In translating the above update to the online setting, we write the single-observation
majorizing function as

ht(β) =

{
1

2
βT
xtx

T
t

2wt
β − (yt/(2wt) + τ − .5)xTt β + ct

}
, (2.76)

where wt = ϵ+ |yt − xTt β(t−1)|. The OMAS update is then derived as

At = (1− γt)At−1 + γt
xtx

T
t

2wt
,

bt = (1− γt)bt−1 + γt

(
yt
2wt

+ τ − .5
)
xt,

β(t) = A−1
t bt.

(2.77)

Since the majorizing function does not have a unique minimum, OMAP cannot be
used.

2.6 Conclusion

In this chapter, we presented two algorithms under the heading online MM algorithms.
While different, they are based on the same conceptual idea of majorizing functions.
OMAS and OMAP are trivially scalable to handle big data, produce favorable finite
sample error bounds, and are stable due to the stochastic descent property. Among the
desirable properties of online MM algorithms is the fact that it is often straightforward
to adapt existing MM algorithms into an online counterpart, specifically in the case of
quadratic majorization.
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CHAPTER

3

MAJORIZED STOCHASTIC PROXIMAL
ITERATION

3.1 Introduction

The proximal mapping is a popular tool in optimization and machine learning. Just as
Newton’s method is the gold standard for smooth unconstrained problems, proximal
algorithms can be viewed similarly for non-smooth constrained problems (Parikh et al.,
2014). For a convex function ℓ : Rd → R and positive step size γ, the proximal mapping
(or prox operator ) is defined as

proxγℓ(θ(t)) = argmin
θ

{
ℓ(θ) +

1

2γ
∥θ − θ(t)∥22

}
. (3.1)

The underlying intuition is that the parameter gets mapped toward the minimum of f ,
but the movement is penalized by a squared L2-norm, resulting in a tradeoff between
minimization and remaining near the current estimate. Note that the term being min-
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imized in (3.1) is a majorizing function so therefore a prox step is an MM step. One
popular proximal algorithm is the proximal gradient method that is designed for mini-
mizing objective functions of the form

ℓ(θ) = f(θ) + g(θ), (3.2)

where f is convex and differentiable and g is convex. The proximal gradient method
update alters the objective with a quadratic approximation of the first component f
around the current iterate θ(t−1):

θ(t) = argmin
θ

{
f(θ(t−1)) +∇f(θ(t−1))T (θ(t−1) − θ) + 1

γt
∥θ − θ(t−1)∥2 + g(θ)

}
= proxγtg[θ(t−1) − γt∇f(θ(t−1))].

(3.3)

Recall the online learning setup of the previous chapter in which the objective takes
the form

argmin
θ

EY [ℓ(Y, θ)], (3.4)

where the expectation cannot be evaluated, but the learner has access to a sequence
of random samples {yt}∞t=1 from the random variable Y . A learner creates a new es-
timate θ(t) from the sample yt and the previous estimate θ(t−1) using the information
contained in ℓt(θ) = ℓ(yt, θ).

In the last several years there has been several developments in adapting the proxi-
mal gradient method to stochastic approximation (Duchi and Singer, 2009; Duchi et al.,
2011; Bertsekas, 2011; Atchade et al., 2014; Nitanda, 2014; Rosasco et al., 2014).
A proximal algorithm that has received less attention in the stochastic approximation
setting is the proximal iteration, or proximal point algorithm (Rockafellar, 1976). For a
convex function ℓ, the proximal iteration is

θ(t) = proxγtℓ(θ(t−1)). (3.5)

The stochastic version of the update above substitutes noisy objectives ℓt for ℓ. As the
step size γt decreases, theL2 penalty of the prox operator increases and themovement
of the update becomes more restricted.
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Ryu and Boyd (2014) and Toulis and Airoldi (2015) both study the stochastic prox-
imal iteration (SPI), referred to by the latter as implicit stochastic gradient descent.
The name implicit comes from the fact the update can be interpreted as a variant of
stochastic gradient descent (SGD) where θ(t) appears on both sides of the update
equation:

θ(t) = proxγtℓt(θ(t−1))

= θ(t−1) − γt∇ℓt(θ(t)).
(3.6)

Therefore the SPI update does not necessarily have a closed form but it defines an
equation to be solved. The main advantage of SPI over SGD is stability (Ryu and Boyd,
2014; Toulis and Airoldi, 2015). SPI updates are more robust to the step size sequence
{γt}∞t=1, as SGD error bounds can grow exponentially for a finite number of updates
(Bach and Moulines, 2011).

SPI has two major limitations that prevent its use in many cases. The first is that
it is limited to convex problems and only certain classes of nonconvex problems (Ka-
plan and Tichatschke, 1998) for which the proximal mapping is defined. The second
limitation is that the proximal mapping for a given objective may be expensive to eval-
uate. If a prox step does not have a closed form, an iterative procedure is unfortunately
necessary inside each update.

In this chapter, we present an algorithm that maintains the stability properties of SPI,
yet does not suffer the same limitations. Our method, MSPI, works for both convex and
nonconvex problems and offers efficient closed-form updates in many of the cases for
which SPI requires an iterative procedure. For example, if the objective is a function
of a linear predictor, ℓt(θ) = ft(x

T
t β), Toulis and Airoldi (2015) derive updates where a

root finding method is required inside of each iteration. We show that MSPI has efficient
closed-form updates for many models of this form, including linear regression, logistic
regression, distance weighted discrimination, and quantile regression.

3.2 Majorized Stochastic Proximal Iteration

Let ht(θ) = h(yt, θ|θ(t−1)) majorize ℓt(θ) = ℓ(yt, θ) at θ(t−1). The Majorized Stochastic
Proximal Iteration (MSPI, pronounced “M-Spy”) is defined as a proximal iteration on a
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stochastic majorizing function ht:

θ(t) = proxγtht(θ(t−1))

= θ(t−1) − γt∇ht(θ(t)).
(3.7)

MSPI shares the stability properties of SPI but can be applied to a wider class of prob-
lems due to the fact that only the majorizer needs a defined proximal mapping; MSPI
can readily be applied to non-convex problems as long as the majorizing functions are
convex. Also, If the objective function has an expensive proximal mapping, the objec-
tive can be swapped out for a majorizing function with a cheap mapping. Rather than
deriving an iterative method for calculating a costly prox step, one should instead focus
on deriving a majorizing function that makes the prox step trivial.

MSPI via Quadratic Upper Bound

Since ht can be any kind of majorizing function, the general update does not have a
closed form. However, a closed form can be derived in the case of a quadratic upper
bound, a popular form of majorization (Hunter and Lange, 2004). Let ℓt be twice differ-
entiable and suppose there exists a positive definite matrix At such that At− d2ℓt(θ) is
positive semi-definite for all t. We then get the majorization

ℓt(θ) ≤ ℓt(θ
(t−1)) +∇ℓt(θ(t−1))T (θ − θ(t−1)) +

1

2
(θ − θ(t−1))Tat(θ − θ(t−1))

=
1

2
θTAtθ + [∇ℓt(θ(t−1))− Atθ(t−1)]T θ + ct,

(3.8)

where ct contains terms which do not include θ. The MSPI update is to perform a
proximal mapping on the right hand side of the above equation. General quadratic
functions have a closed-form proximal mapping:

ℓ(θ) =
1

2
θTAθ + bT θ + c,

proxγℓ(θ) = (I + γA)−1(θ − γb).
(3.9)

Applying the proximal mapping to the quadratic upper bound, henceforth referred to
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as MSPI-Q, we get the update

θ(t) = proxγtht(θ(t−1))

= (I + γtAt)
−1[θ(t−1) − γt∇ℓt(θ(t−1)) + γtAtθ

(t−1)]

= (I + γtAt)
−1[(I + γtAt)θ

(t−1) − γt∇ℓt(θ(t−1))]

= θ(t−1) − γt(I + γtAt)
−1∇ℓt(θ(t−1)).

(3.10)

Note that MSPI-Q looks very similar to SGD, but scales the gradient by an inverted
matrix which converges to the identity. A matrix inverse is not an appealing attribute
of an online algorithm. However, if At is diagonal for all t, MSPI-Q is essentially an
element-wise adaptive learning rate algorithm with step size of the form

γtj =
γt

1 + γt(At)jj
.

Algorithms such as AdaGrad (Duchi et al., 2011) also incorporate the inverse of a
diagonal matrix, but require the addition of a small constant to ensure that the denom-
inator is nonzero. In contrast, the MSPI-Q “adaptive learning rate” will be well-defined
without any such addition.

3.2.1 Regularization

In machine learning problems, regularization methods are used to prevent overfitting
the data. Thus, the objectives ℓt(θ) have the form

ℓt(θ) = ft(θ) + λψ(θ), (3.11)

where λ > 0 is a tuning parameter that controls the amount of regularization and ψ(θ)
is a penalty or regularization term. Some examples of regularization functions are:

ψ(θ) = ∥θ∥1 (Lasso),
ψ(θ) = ∥θ∥22 (Ridge),
ψ(θ) = (1− α)∥θ∥22 + α∥θ∥1, α ∈ (0, 1) (Elastic Net).

(3.12)

Composite objectives like (3.11) are easily handled by MSPI, as majorizing func-
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tions are often used to split parameters into a separable sum. When parameters are
separated as such, deriving the prox operator becomes a univariate problem. As an
example, consider a regularized quadratic majorization where At − d2ft(θ) is positive
semi-definite for all t:

ht(θ) = ft(θ
(t−1)) + gTtj(θ − θ(t−1)) + (θ − θ(t−1))TAt(θ − θ(t−1)) + λψ(θ). (3.13)

Themajorization ht splits the parameters ifAt is a diagonal matrix. In this case, MSPI-Q
can be interpreted as a stochastic proximal gradient method with element-wise learning
rates. This result is provided by the following theorem.
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Theorem 3.1: MSPI-Q with Diagonal Hessian Approximation

The regularized MSPI-Q update with matrixAt = diag(at1, . . . atd), separable reg-
ularization function ψ(θ) =

∑d
j=1 ψj(θj) where each component has a defined

proximal mapping, and tuning parameter λ > 0 is

θ
(t)
j = proxγtjλψj

[
θ
(t−1)
j − γtj∇ℓt(θ(t−1))j

]
, (3.14)

for γtj = γt/(1 + γtatj).

Proof. Let gtj = [∇ft(θ(t−1))]j and u = θ(t−1). Then

proxγtht(θ(t−1))j

= argmin
θj

{
gtj(θj − u) +

atj
2
(θj − u)2 + λψj(θj) +

1

2γt
(θj − u)2

}
= argmin

θj

{
gtjθj + λψj(θj) +

(
1

2γt
+
atj
2

)
(θj − u)2

}
= argmin

θj

{
gtjθj + λψj(θj) +

1 + γtatj
2γt

(θj − u)2
}

= argmin
θj

{
λψj(θj) +

1 + γtatj
2γt

(
θj − u+

γt
1 + γtatj

gtj

)2
}

= argmin
θj

{
ψj(θj) +

1

2λγtj
(θj − u+ γtjgtj)

2

}
= proxγtjλψj

(u− γtjgtj) .

(3.15)

3.3 Asymptotic Analysis

In this section we provide proof of convergence to a critical point for a smooth noncon-
vex objective along with asymptotic normality results for MSPI-Q. Before discussing
the asymptotic properties of MSPI, we first list some of the properties of proximal map-
pings.

54



Proposition 3.2: Prox Operator Properties

(a) The proximal mapping for a convex function f is nonexpansive:

∥proxf (θ1)− proxf (θ2)∥ ≤ ∥θ1 − θ2∥. (3.16)

(b) If f is µ-strongly convex, the proximal mapping is a contraction:

∥proxf (θ1)− proxf (θ2)∥ ≤
1

1 + µ
∥θ1 − θ2∥. (3.17)

(c) If θ2 = proxf (θ1), then θ2−θ1 ∈ ∂f(θ2), where ∂f(θ2) is the set of subgradients
at θ2. If f is continous and differentiable, then θ2 = θ1 −∇f(θ2).

(d) If f is separable, f(θ) =
∑d

j=1 fj(θj), then

[proxf (θ)]j = proxfj(θj), j = 1, . . . , d. (3.18)

Assumption 3.3: MSPI Assumptions

(a) The step size sequence {γt}∞t=1 satisfies
∑∞

t=1 γt =∞,
∑∞

t=1 γ
2
t <∞.

(b) ht(θ) is M -strongly convex and has an L-Lipschitz continuous gradient. Let
gt = ∇ht(θ(t−1)), δt = ∇ht(θ(t)). There exists a constant B > 0 such that
∥gt∥2 ≤ B.

(c) The objective ℓ(θ) is differentiable, bounded below, and has an R-Lipschitz
continuous gradient.

(d) The parameter space is a convex open subset Θ ⊂ Rd. argminθ ht(θ) ∈ Θ

for all t, data sequence {yt}∞t=1 is independent and identically distributed, and
ℓ(y, θ) is well defined for all (y, θ) ∈ Y ×Θ.

Assumption 3.3 (a) is the standard condition on learning rates that step sizes shrink
to zero but at not too fast a rate. The conditions in (b) are regularity assumptions about
themajorizing function and stochastic gradients that are commonly satisfied in practice.
Assumptions (c) and (d) put regularity conditions on the objective function and ensure
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the iterations always remain inside the parameter space.
Similar to OMAS and OMAP in the previous chapter, convergence of MSPI relies

on nonnegative almost supermartingale theory, as discussed in Robbins and Sieg-
mund (1985). Themain result used for MSPI convergence is presented as the following
lemma.

Lemma 3.4: Almost Supermartingale Convergence

Suppose there exists sequences of nonnegative random variables At, Bt, and
Ct, adapted to filtration Ft, such that for all t,

E[Mt+1|Ft] ≤ (1 + At)Mt −Bt + Ct. (3.19)

If
∑
At <∞ and

∑
Ct <∞ almost surely, thenMt converges to a finite limit and∑

Bt <∞ almost surely.

To set notation for the convergence results, define the natural filtration Ft−1 as the
σ-field generated by θ(0), y1, y2, . . . , yt−1. Also, let gt = ∇ht(θ(t−1)) ∈ ∂ℓt(θ(t−1)) denote
the stochastic subgradients. Note that if ℓt(θ) is differentiable, ∇ℓt(θ(t−1)) = ∇ht(θ(t−1))

even though ∇ℓt(θ) ̸= ∇ht(θ) in general. Let δt = ∇ht(θ(t)), so that MSPI updates can
be written as

θ(t) = θ(t−1) − γtδt. (3.20)
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Lemma 3.5: Bound on MSPI Iterates
MSPI iterates satisfy

∥θ(t) − θ(t−1)∥2 ≤ γ2t ∥gt∥2, (3.21)

and therefore θ(t) converges to some finite value θ(∞) almost surely.

Proof. By definition of the proximal mapping,

θ(t) = θ(t−1) − γt∇ht(θ(t)) = θ(t−1) − γtδt. (3.22)

A slight rearrangement reveals the identity

δt =
θ(t−1) − θ(t)

γt
. (3.23)

Since ht(θ) is convex, ∇ht(θ) is a monotone mapping which satisfies

0 ≤ [gt − δt]T (θ(t−1) − θ(t))

≤
[
gt −

(
θ(t−1) − θ(t)

γt

)]T
(θ(t−1) − θ(t))

= gTt (θ
(t−1) − θ(t))− 1

γt
∥θ(t−1) − θ(t)∥2

≤ ∥gt∥∥θ(t−1) − θ(t)∥ − 1

γt
∥θ(t−1) − θ(t)∥2 (Cauchy-Schwarz Inequality).

(3.24)
A few steps of basic algebra results in the inequality

γt∥δt∥ = ∥θ(t−1) − θ(t)∥ ≤ γt∥gt∥. (3.25)

Since
∑
γ2t ∥gt∥2 ≤

∑
γ2tB <∞, then∑

∥θ(t−1) − θ(t)∥2 <∞.

Therefore θ(t) → θ(∞) as t→∞.
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Lemma 3.6: Asymptotic Equivalence to SGD

∥∇ht(θ(t))−∇ℓt(θ(t−1))∥ = ∥δt − gt∥ → 0 as t→∞ almost surely.

Proof. ht has an L-Lipschitz continuous gradient. By definition,

∥gt − δt∥ ≤ L∥θ(t−1) − θ(t)∥ ≤ γtL∥gt∥. (3.26)

The above lemmas show that MSPI updates are asymptotically equivalent to SGD
and that iterates converge to something. The following theorem states the value con-
verged to is in some sense optimal.
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3.3.1 Convergence for Smooth Nonconvex Objective
Theorem 3.7: Convergence for Smooth Nonconvex Objective

Under assumption 3.3, MSPI iterates converge to a critical point of ℓ(θ) almost
surely.

Proof. LetMt = ℓ(θ(t)). Without loss of generality, assume ℓ(θ) ≥ 0 for all θ. Then

Mt = ℓ(θ(t))

≤ ℓ(θ(t−1)) +∇ℓ(θ(t−1))T (θ(t) − θ(t−1)) +
R

2
∥θ(t) − θ(t−1)∥2

=Mt−1 − γt∇ℓ(θ(t−1))Tgt − γt∇ℓ(θ(t−1))T (δt − gt) +
γ2tR

2
∥δt∥2

≤Mt−1 − γt∇ℓ(θ(t−1))Tgt + γt∥∇ℓ(θ(t−1))∥∥δt − gt∥+
γ2tRB

2

≤Mt−1 − γt∇ℓ(θ(t−1))Tgt + γ2tL∥∇ℓ(θ(t−1))∥∥gt∥+
γ2tRB

2

≤Mt−1 − γt∇ℓ(θ(t−1))Tgt + γ2tLB +
γ2tRB

2
,

(3.27)

where the last two inequalities use the assumption that ∥gt∥ is bounded by
√
B

and lemma 3.6, respectively. Taking expectation with respect to natural filtration
Ft−1, we get

E(Mt|Ft−1) ≤Mt−1 − γt∇ℓ(θ(t−1))TE(gt|Ft−1) + γ2tL
√
B +

γ2tRB

2

≤Mt−1 − γt∇ℓ(θ(t−1))T ℓ(θ(t−1)) + γ2tL
√
B +

γ2tRB

2
.

(3.28)

ThenMt ≥ 0, the second term is negative , and the last two terms are summable.
By lemma 3.4,

∑∞
t=1 γt∥∇ℓ(θ(t−1))∥2 <∞. Since

∑
γt =∞, it must be that

lim
t→∞
∥∇ℓ(θ(t−1))∥2 = ∥∇ℓ(θ(∞))∥2 = 0. (3.29)
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3.4 Nonasymptotic Analysis

3.4.1 Stability

In their discussion of the stability of SPI, Ryu and Boyd (2014) examine the process of
minimizing a deterministic function ft(x) = x2/2, for which MSPI can use the majorizing
function

ht(x) = ft(x) + 1/2∥x− x(t−1)∥2. (3.30)

Updates for SGD, SPI, and MSPI can then be derived as

θ
(t)
SGD = θ

(t−1)
SGD − γtθ

(t−1)
SGD ,

θ
(t)
SPI =

1

1 + γt
θ
(t−1)
SPI ,

θ
(t)
MSPI =

1 + γt
1 + 2γt

θ
(t−1)
MSPI .

(3.31)

It is clear that SGD (gradient descent in the deterministic case) iterates are not guar-
anteed to decrease the objective; θ(t)SGD = 1 and γt > 2 will move further away from the
minimizer 0. In contrast, SPI and MSPI updates are guaranteed to move the parameter
towards the optimal value for any γt > 0. SPI updates converge faster than MSPI in
this deterministic case, intuitively due to the “extra curvature” in the majorizing function
that MSPI is based on.

In the stochastic setting, SPI and MSPI satisfy the stochastic descent property. In
other words, updates will always decrease the value of the objective function evalu-
ated on the current observation. The result is trivial by definition of proximal mappings
and the proof is omitted from the following proposition. In contrast, stochastic gradient
algorithms can only claim that for a decreasing step size γt and an objective with an
L-Lipschitz continuous gradient, there exists some T such that for all t ≥ T , updates
will decrease the objective value (as discussed in chapter 2).
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Proposition 3.8: Stochastic Descent Property

SPI/MSPI iterates satisfy the stochastic descent property for any positive step
size γt ∈ (0, 1):

ℓ(yt, θ
(t)) ≤ ℓ(yt, θ

(t−1)). (3.32)

3.4.2 Finite Sample Bounds

The following two theorems show that, after redefining a constant, the SPI error bounds
are identical to those of MSPI.

Theorem 3.9: SPI Finite Sample Bound with Fixed Step Size

(Ryu and Boyd, 2014). Let ℓt beM -strongly convex with unique minimizer θ∗ and
define

σt = ∥proxγtℓt(θ∗)− θ∗∥. (3.33)

Then SPI iterates satisfy

∥θ(t) − θ∗∥ ≤
(

1

1 + γM

)t
∥θ(0) − θ∗∥+ sup

i≤t
(σi)

(
1 + γM

γM

)
. (3.34)
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Theorem 3.10: MSPI Finite Sample Bound with Fixed Step Size

Let ℓt beM -strongly convex with unique minimizer θ∗ and define

σt = ∥proxγtht(θ∗)− θ∗∥. (3.35)

Under assumption 3.3 (b), SPI updates satisfy

∥θ(t) − θ∗∥2 ≤
(

1

1 + γM

)t
∥θ(0) − θ∗∥+ sup

i≤t
(σi)

(
1 + γM

γM

)
. (3.36)

Proof.
St = ∥θ(t) − θ∗∥

= ∥proxγht(θ(t−1))− proxγht(θ∗) + proxγht(θ∗)− θ∗∥

≤
(

1

1 + γM

)
St−1 + ∥proxγht(θ∗)− θ∗∥

=

(
1

1 + γM

)t
S0 +

t∑
i=1

(
1

1 + γM

)i−1

σi

≤
(

1

1 + γM

)t
S0 + sup

i≤t
(σi)

∞∑
i=0

(
1

1 + γM

)i
≤
(

1

1 + γM

)t
S0 + sup

i≤t
(σi)

(
1 + γM

γM

)
,

(3.37)

where the last inequality comes from properties of geometric series:

∞∑
i=0

(
1

1 + γM

)i
=

1 + γM

γM
. (3.38)

Finite Sample Bounds for MSPI-Q

Since MSPI-Q can be expressed in closed form, several useful properties can be de-
rived.
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Proposition 3.11: Properties of MSPI-Q

1. Mapping for arbitrary θ

proxγtht(θ) = (I + γtAt)
−1[θ + γtAtθ

(t−1) − γt∇ℓt(θ(t−1))]. (3.39)

2. Difference between mappings

proxγtht(θ1)− proxγtht(θ2) = (I + γtAt)
−1(θ1 − θ2). (3.40)

3. L2-Norm of difference between mappings

∥proxγtht(θ1)− proxγtht(θ2)∥2 = (θ1 − θ2)T (I + γtAt)
−2(θ1 − θ2). (3.41)

4. Difference between parameter and its mapping.

proxγtht(θ)− θ = (I + γtAt)
−1[θ + γtAtθ

(t−1) − γt∇ℓt(θ(t−1))]− θ

= (I + γtAt)
−1[θ − (I + γtAt)θ + γtAtθ

(t−1) − γt∇ℓt(θ(t−1))]

= (I + γtAt)
−1[−γtAtθ + γtAtθ

(t−1) − γt∇ℓt(θ(t−1))]

= γt(I + γtAt)
−1[At(θ

(t−1) − θ)−∇ℓt(θ(t−1))].

(3.42)
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Lemma 3.12: Bounded Norm of PSD Matrix-Vector Product

For a symmetric positive semi-definite matrix A ∈ Rd×d and vector x ∈ Rd,

σ2
min∥x∥22 ≤ ∥Ax∥22 ≤ σ2

max∥x∥22,

where σmin, σmax are the minimum and maximum singular values of A, respec-
tively.

Proof. A has singular value decomposition A = UDV T where U, V are orthogo-
nal matrices and D is a diagonal matrix of singular values. Then

∥Ax∥ = ∥UDV Tx∥

= ∥DV Tx∥

= ∥V DV (V Tx)∥

= ∥Dx∥

=
d∑
i=1

σ2
i x

2
i .

(3.43)

where each line to the next is from properties of orthogonal matrices. It is then
clear that

σmin

d∑
i=1

x2i ≤
d∑
i=1

σ2
i x

2
i ≤ σ2

max

d∑
i=1

x2i .
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Lemma 3.13: Bounded Singular Values

For positive semi-definite A ∈ Rd×d, all singular values of (I +A)−1 are less than
or equal to 1.

Proof. The symmetric matrixA has eigenvalue decompositionA = QΛQT where
Q is orthogonal and Λ is diagonal where values are eigenvalues of A. Then

I + A = I +QΛQT

= Q(QTQ+ Λ)QT

= Q(I + Λ)QT .

(3.44)

Thus, the eigenvalues of I + A are 1 + λ1, . . . , 1 + λd, where the λjs are the
eigenvalues of A. The singular values of I + A are the eigenvalues of

(I + A)T (I + A) = Q(I + Λ)QTQ(I + Λ)QT = Q(I + Λ)2QT .

Thus, the singular values of I+A are (1+λ1)
2, . . . , (1+λd)

2. The singular values
of (I + A)−1 are equal to the inverse of singular values of I + A, which are all
greater than or equal to 1.

Lemma 3.14: Bounded Norm

For positive semi-definite matrix A ∈ Rd×d and vector x,

∥(I + A)−1x∥ ≤ ∥x∥. (3.45)

Proof. Combine the above two lemmas.
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Theorem 3.15: MSPI-Q Finite Sample Bound with Fixed Step Size

Let ℓt(θ) be strongly convex with unique minimizer θ∗ and assume the singu-
lar values of the hessian approximations At used by the MSPI-Q update are
bounded for all t. That is, 0 < σmin < σtj < σmax <∞, where σtj ’s are the singular
values of At. Furthermore, assume the distance between the optimal value and
the following quasi-newton update is bounded in expectation:

E(∥θ(t−1) − A−1
t gt − θ∗∥|Ft−1) ≤ C. (3.46)

Then MSPI-Q iterates satisfy

E(∥θ(t) − θ∗∥|Ft−1) ≤
(

1

1 + γσmin

)t
∥θ(0) − θ∗∥+ σmax

σmin
C. (3.47)

Proof. Let Htθ = proxγtht(θ) andMt = ∥θ(t) − θ∗∥. Then

Mt = ∥θ(t) − θ∗∥

= ∥Htθ
(t−1) −Htθ

∗ +Htθ
∗ − θ∗∥

≤ ∥Htθ
(t−1) −Htθ

∗∥+ ∥Htθ
∗ − θ∗∥

≤
(

1

1 + γtσmin

)
Mt−1 + γt∥(I + γtAt)

−1[At(θ
(t−1) − θ∗)− gt]∥

≤
(

1

1 + γtσmin

)
Mt−1 +

γt
1 + γtσmin

∥At[θ(t−1) − θ∗ − A−1
t gt]∥

≤
(

1

1 + γtσmin

)
Mt−1 +

γtσmax
1 + γtσmin

∥θ(t−1) − A−1
t gt − θ∗∥.

(3.48)

Taking expectation and using constant step size γt = γ,

E(Mt|Ft−1) ≤
(

1

1 + γσmin

)
Mt−1 +

γσmax
1 + γσmin

C

≤
(

1

1 + γσmin

)t
M0 +

∞∑
t=1

(
1

1 + γσmin

)t−1
γσmax

1 + γσmin
C

≤
(

1

1 + γσmin

)t
M0 +

σmax
σmin

C.

(3.49)
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3.5 Examples

Note on Quadratic Upper Bound for Linear Models

For linear models, the loss takes the form ℓt(x
T
t β) = ℓ(yt, x

T
t β), where yt is the response

variable and xt is a vector of predictor variables. The hessian matrix takes the form

d2ℓt(x
T
t β)xtx

T
t . (3.50)

Since the second derivative takes this form, MSPI-Q updates are often easy to
derive due to the following proposition.

Proposition 3.16

For x ∈ Rd and a d× d identity matrix I, xTxI − xxT is positive semi-definite.

Suppose d2ℓt(xTt β) is bounded by a constant ct(xt, yt) for all β. Then a quadratic
majorization can use At = ctx

T
t xtI as the hessian approximation.

3.5.1 Linear Regression

The linear regression loss function for a single observation is

ℓt(β) =
1

2
(yt − xTt β)2, (3.51)

where yt ∈ R is the response and xt ∈ Rd is a vector of predictor variables. This loss
is a quadratic function, so the SPI update is straightforward to derive as

β(t) =
(
I + γtxtx

T
t

)−1
(β(t−1) + γtytxt). (3.52)

One possible MSPI update is a quadratic majorization with At = xTt xtI:

β(t) = β(t−1) +
γt

1 + γtxTt xt
(yt − xTt β(t−1))xt. (3.53)

By using the Sherman-Morrison identity

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + uTA−1v
, (3.54)
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the SPI update can be shown to be the same as the MSPI update, although MSPI
makes it clearer that a linear system does not need to be solved.

3.5.2 Logistic Regression

The logistic regression negative loglikelihood, gradient, and hessian for a single ob-
servation yt ∈ {−1, 1}, xt ∈ Rd are

ℓt(β) = ln(1 + eytx
T
t β), yt ∈ {−1, 1},

∇ℓt(β) =
ytxt

1 + e−ytx
T
t β
,

d2ℓt(β) = p̂t(β)[1− p̂t(β)]xtxTt , p̂t(β) =
1

1 + e−x
T
t β
.

(3.55)

The predicted probability that yt = 1, p̂t(β), is bounded between 0 and 1. Therefore
p̂(1−p̂) ≤ 1/4 and 1

4
xtx

T
t −d2ℓt(β) is positive semi-definite. Similarly to the quadratic up-

per bound for linear regression, we also have that xtxTt /4−xTt xt/4I is positive semidef-
inite and an MSPI-Q algorithm using At = xTt xt/4I is

β(t) = β(t−1) − γt
1 + γtxTt xt/4

(
yt

1 + e−ytx
T
t β

(t−1)

)
xt. (3.56)

3.5.3 Distance Weighted Discrimination

An extension of support vector machine’s (SVM) L1-Hinge Loss, the generalized dis-
tance weighted discrimination loss is parameterized by a positive constant q and con-
verges to SVM as q →∞. The loss and its derivative are:

vq(u) =

1− u if u ≤ q
q+1

qq

uq(q+1)q+1 if u > q
q+1

,

v′q(u) =

−1 if u ≤ q
q+1[

q
u(q+1)

]q+1

if u > q
q+1

.

(3.57)
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Figure 3.1: DWD Losses compared with Hinge Loss (SVM)

The quadratic majorization discussed in chapter 2 can be used to derive the MSPI-
Q update

β(t) = β(t−1) − γt
1 + γtmqxTt xt

v′q(x
T
t β)xt, (3.58)

where mq = (q + 1)2/q.

3.5.4 Quantile Regression

The majorizing function for quantile regression described in the previous chapter can
be readily applied to MSPI. The quadratic upper bound from Hunter and Lange (2000)
can be written for a single observation as

ht(β) =
1

2
βT
xtx

T
t

2wt
β − (yt/(2wt) + τ − .5)xTt β + ct (3.59)

where wt = ϵ+ |yt−xTt β(t−1)| for a small positive constant ϵ. Note that even though this
is a quadratic upper bound, it is not derived in the same way as MSPI-Q. Applying the
proximal mapping to the above majorization results in MSPI updates

β(t) =

(
I +

γt
2wt

xtxt

)−1{
β(t−1) + γt

[
yt
2wt

+ τ − .5)
]
xt

}
. (3.60)
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The Sherman-Morrison identity can be applied to remove the need to solve a linear
system: (

I +
γt
2wt

xtxt

)−1

=

(
I − γt

2wt + γtxTt xt
xtx

T
t

)
. (3.61)

3.6 Conclusion

In this chapter, we presented the MSPI algorithm to extend stochastic proximal iteration
to a wider class of problems through the use of majorizing functions. MSPI achieves
the same robustness as SPI, but works for more objectives and can be implemented
more efficiently for linear-in-the-parameter models. Also, existing MM algorithms via
a quadratic upper bound can be trivially adapted for MSPI. MSPI achieves the same
asymptotic variance of SGD, but has the same stability guarantees of SPI (stochas-
tic descent property). Therefore, in any case where the proximal mapping is readily
available, MSPI should be preferred over stochastic gradient methods.
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CHAPTER

4

ONLINESTATS.JL: STATISTICS FOR
STREAMING AND BIG DATA

4.1 Introduction

The OnlineStats package for Julia provides methods for calculating statistics and fit-
ting models using online algorithms. An online algorithm accepts input serially so that
parameter estimates are updated using only the information from a single observation
(or minibatch of observations). Algorithms of this type can naturally handle stream-
ing data and out-of-core (data larger than computer memory) processing. Therefore,
where traditional (offline) algorithms are infeasible, online counterparts can be substi-
tuted to perform the same statistical analysis. In this chapter we describe a unifying
representation of online statistical algorithms that allows OnlineStats to rely on the
generic programming facilities of Julia.

As a trivial example, consider updating a sample mean after adding one new ob-
servation xt. An offline calculation needs to revisit all of the previously observed data,
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whereas an online update uses only the new observation and the current estimate:

θ
(t)
offline =

1

t

t∑
i=1

xi,

θ
(t)
online =

(
1− 1

t

)
θ
(t−1)
online +

1

t
xt.

(4.1)

The complexity of the online update is therefore O(1) compared to O(t) for offline.
However, the advantage of being computationally cheap comes at a price. Not every
statistic or model can be updated analytically like the mean above and exact solutions
may be impossible. In cases like this, OnlineStats relies on state-of-the-art stochastic
approximation algorithms described in section 4.3.

The goals of OnlineStats are broad but few:

1. OnlineStats should handle each class of statistical analysis, from summary
statistics to generalized linear models.

2. Algorithms should follow an interface that makes it straightforward to add meth-
ods.

3. Algorithms should use O(1) memory and be easily adopted to parallel and dis-
tributed computing.

At present, there is no direct alternative to OnlineStats. While many packages ex-
ist for working with big and streaming data, they are typically focused on a small class
of problems or type of algorithm. To the author’s knowledge, OnlineStats is entirely
unique in the scope of problems it can solve. For example, packages such as theBoost
Statistical Accumulators Library 1 and runstats 2 provide online updates for vari-
ous summary statistics, but neither can run a logistic regression. Other packages like
Scikit-Learn (Pedregosa et al., 2011), sgd (Tran and Toulis, 2016), and gradDescent
(Handian et al., 2017) can run an online logistic regression algorithm, but cannot in-
crementally calculate a mean or variance. A related package is biglm (Lumley, 2013)
that implements out-of-core computation of generalized linear models for big data, but
through (offline) iterative algorithms.

1http://www.boost.org/
2http://www.grantjenks.com/docs/runstats/
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4.1.1 Why Julia?

The majority of open source statistical software development takes place in R (R Core
Team, 2017). However, we chose Julia (Bezanson et al., 2017) to implementOnlineS-
tats for a variety of (mainly technical) reasons. Julia achieves impressive performance
from a collection of features that work together, such as an expressive type system,
just-in-time compilation, multiple dispatch, and metaprogramming tools. Without these
tools available, the design of OnlineStats would need to be changed dramatically to
achieve the same usability and performance. Software in Julia is becoming less bur-
densome to use for users of other languages with the development of interoperability
tools like RCall 3 for calling R from Julia and XRJulia (Chambers, 2017) for calling
Julia from R. We hope in the near future to have accessible wrapper code available in
R for using OnlineStats.

4.2 Structure of OnlineStats

There are three key types defined in OnlineStats: OnlineStat, Weight, and Series.
These types correspond to statistics, weighting mechanisms, and collections of statis-
tics applied to a data stream.

4.2.1 OnlineStat

Each statistic or model is a subtype of OnlineStat{N}, an abstract type parameter-
ized by the “size” of its input. The three common types of input are scalars, vectors,
and vector/scalar pairs, which respectively correspond to OnlineStat{0}, OnlineS-
tat{1}, and OnlineStat{(1, 0)}. For example, a single observation for a mean is a
scalar, and therefore Mean is a subtype of OnlineStat{0}. Similarly, a single observa-
tion for a covariance matrix is a vector, so CovMatrix is a subtype of OnlineStat{1}.
The interface for working with an OnlineStat is defined by three functions:

1. fit!

2. value
3https://github.com/JuliaInterop/RCall.jl
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3. merge!

This small interface is possible due to Julia’s use of multiple dispatch as well as a
unifying representation of online updates in which a statistic or model is updated as a
function of two things:

1. A new observation.

2. A weight associated with the observation.

Consider the mean example presented in the introduction:

θ(t) =

(
1− 1

t

)
θ(t−1) +

1

t
xt. (4.2)

The new observation is xt and the associated weight is t−1. InOnlineStats, the update
is generalized for an arbitrary weight wt ∈ [0, 1]:

θ(t) = (1− wt)θ(t−1) + wtxt. (4.3)

In terms of the generalized update, we can get an analytical mean by using wt = t−1

or we could calculate an exponentially-weighted mean with wt = w, where w ∈ (0, 1).
Any given OnlineStat implements an arbitrary-weight update with the fit! function
(note that in Julia, a function that ends in ! is a convention that the function mutates
at least one of the arguments). The fit! function always accepts three arguments:

fit!(o::TypeOfOnlineStat, x::TypeOfObservation, w::Float64)

By OnlineStats convention, fit! does not necessarily update the parameter di-
rectly, but only the “sufficient statistics” for estimating the parameter. This is to avoid
unnecessary computations, e.g. updating an OnlineStat with observations in a loop
and intermediate results are not wanted. To return the estimate, an OnlineStat uses
the value function:

value(o::TypeOfOnlineStat)

By default, value will return the first field of the type (efficiently implemented with
Julia’s meta-programming features).
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The last piece of the OnlineStat interface is merge!, which is the basis for parallel
computing in OnlineStats (discussed in 4.2.3). The merge! function is similar to fit!,
but accepts another OnlineStat of the same type instead of a new observation.

merge!(o1::TypeOfOnlineStat, o2::TypeOfOnlineStat, w::Float64)

ExactStat vs. StochasticStat

There is an important distinction between the two abstract subtypes of OnlineStat,
shown below in figure 4.1. As the names suggest, an ExactStat can be updated with
data and merged exactly while a StochasticStat uses approximations for both fit!

and merge!. ExactStat and StochasticStat types also use different default weights,
EqualWeight and LearningRate, which are discussed in section 4.2.2.

Figure 4.1: Abstract OnlineStat Subtypes

OnlineStat{N}

ExactStat{N} StochasticStat{N}

Interface Example

The design of OnlineStats is heavily based on Julia’s use of multiple dispatch.
A new ExactStat or StochasticStat needs only to implement fit!, value (for
which a default is provided), and merge! to be completely functional with all fea-
tures of OnlineStats. To demonstrate the ease of creating a new statistic under
this simple interface, the entire Mean type is defined in Onlinestats as follows:

75



mutable struct Mean <: ExactStat{0}

m::Float64

Mean(m = 0.0) = new(m)

end

fit!(o::Mean, y::Real, w::Float64) = (o.m += w * (y - o.m))

function Base.merge!(o::Mean, o2::Mean, w::Float64)

fit!(o, value(o2), w)

end

4.2.2 Weight

The Weight subtypes are used to control the influence of the next observation.
Since each OnlineStat has updates defined in terms of fit!(o::OnlineStat, x,

w::Float64), different weighting mechanisms can generate the weights w at each
update (section 4.2.3 provides the details of this process). Recall again the mean ex-
ample where wt = t−1 returns an equally-weighted mean and wt = w,w ∈ (0, 1), re-
turns an exponentially-weighted mean. Respectively, OnlineStats has EqualWeight

and ExponentialWeight types to provide these weighting schemes. The flexibility of
different Weight types is designed to handle two situations:

1. Hyper-parameter tuning for stochastic approximation algorithms (see sec-
tion 4.4). The behavior of a given stochastic approximation algorithmmay change
wildly under different step size sequences (learning rates).

2. Non-stationarity (parameter drift). If the true parameter is changing over time,
one can allow a statistic to track to the changes by giving higher weight to new
observations.
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Figure 4.2: Equally-Weighted mean vs. Exponentially-Weighted Mean

Figure 4.2 shows the effect non-stationarity can have on an estimate of the mean.
The equally-weighted mean is not able to track the changing data, whereas the
exponentially-weighted mean puts higher influence on new observations and is able
to track the changes. The phenomenon of the true parameter changing over time can
also occur in more complicated statistics and models. OnlineStats provides a variety
of Weights to handle different scenarios. User-defined weighting schemes can also be
used with the same high performance as those built intoOnlineStats (see section 4.5).
The full list of built-in weight types is provided below.

• EqualWeight()

wt =
1

t
. (4.4)

Each observation has equal influence. If an OnlineStat is capable of an exact
analytical update, using EqualWeight will provide the same result as the corre-
sponding offline algorithm.

• ExponentialWeight(c = 0.1)

wt = c, c ∈ (0, 1). (4.5)
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The next observation is given a weight of c. The effect is that newer observations
have higher influence over the statistic or model than older observations.

• LearningRate(r = 0.6)

wt =
1

tr
, r > 0. (4.6)

Weights decay slower than EqualWeight. For r ∈ (.5, 1], LearningRate weights
satisfy a common assumption in stochastic approximation that∑
wt =∞,

∑
w2
t <∞. As such, LearningRate is designed for use with stochas-

tic approximation algorithms (see section 4.4).

• LearningRate2(a = 0.5)

wt =
1

1 + a(t− 1)
, 0 < a < 1. (4.7)

As another type aimed at stochastic approximation algorithms, weights decay
at a slower rate than EqualWeight and satisfy the stochastic approximation as-
sumption described above.

• HarmonicWeight(a = 10.0)

wt =
a

a+ t− 1
, a > 0. (4.8)

Weights are based on a general harmonic series. Weights decay faster than
EqualWeight for a < 1 and slower for a > 1.

• McclainWeight(c = 0.1)

wt =
wt−1

1 + wt−1 − c
, c ∈ (0, 1). (4.9)

Weights decay slightly slower than EqualWeight and approach c in the limit.
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Table 4.1: Weight Types Summary

Weight Step Size SA Assumption?

EqualWeight wt = 1/t Yes
ExponentialWeight wt = c, c ∈ (0, 1) No
LearningRate wt = t−r, r > 0 If r ∈ (0.5, 1]

LearningRate2 wt = 1/[1 + a(t− 1)], a > 0 Yes
HarmonicWeight wt = a/(a+ t− 1), a > 0 Yes
McclainWeight wt = wt−1/(1 + wt−1 − c), c ∈ (0, 1) No

Table 4.1 above provides a summary of the Weight types in OnlineStats. The “SA
Assumption?” column is whether the step sizes satisfy

∑∞
t=1wt = ∞,

∑∞
t=1w

2
t < ∞.

Figure 4.3 below plots the weight for the first 50 observations.OnlineStats implements
several plot recipes for plotting objects (including Weight types) via the Plots package
4. One can quickly compare weight mechanisms by plotting them together:

using Plots

plot(EqualWeight())

plot!(ExponentialWeight(.1))

plot!(Bounded(EqualWeight(), .2))

...
4https://github.com/JuliaPlots/Plots.jl
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Figure 4.3: Weight Types Visualization

4.2.3 Series

The Series{N} type is the workhorse of OnlineStats, as it represents all of the statis-
tics one wants to apply to a data stream. It keeps track of the number of observations,
Weight, and any number of OnlineStats. The Series type is parameterized in the
same way as an OnlineStat{N}, where N defines the “size” of the observation. There
are two ways to construct a Series (note that in Julia, the syntax for a variable number
of arguments is arg::ArgType...):

1. Start “empty”.

Series(o::OnlineStat...)

Series(w::Weight, o::OnlineStat...)

2. Start with a batch of data

Series(data, o::OnlineStats...)

Series(data, w::Weight, o::OnlineStats...)

Series(w::Weight, data, o::OnlineStats...)

80



The type of data that can be used in the Series constructor depends on the type
of OnlineStat. OnlineStats uses a number of aliases to determine what is allowed:

• ScalarOb = Union{Number, Symbol, AbstractString}

• VectorOb = Union{AbstractVector, Tuple, NamedTuple}

• XYOb = Tuple{VectorOb, ScalarOb}

The N parameter of OnlineStat{N} then determines which types of data are ac-
ceptable inputs:

• For OnlineStat{0}, data can be a:

– ScalarOb (single observation)

– VectorOb (multiple observations)

• OnlineStat{1}, data can be a:

– VectorOb (single observation)

– AbstractMatrix (multiple observations)

• OnlineStat{(1,0)}, data can be a:

– XYOb (single observation)

– Tuple{AbstractMatrix, VectorOb} (multiple observations)

New observations can be given to a Series via the fit! function. When a new
observation is given to a Series, the contained Weight generates a weight value w

which then gets passed to the fit!(o::OnlineStat, y, w)methods of the contained
OnlineStat objects. While there is only one fit! method per OnlineStat, there are
several fit!methods for Series, including updating with a single observation, multiple
observations, and optionally overriding the weight:

• Single observation.

fit!(s::Series, data_i)
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• Single observation and override weight.

fit!(s::Series, data_i, w::Float64)

• Multiple observations.

fit!(s::Series, data)

• Multiple observations and override weight (same weight for all).

fit!(s::Series, data, w::Float64)

• Multiple observations and override weight (different weights).

fit!(s::Series, data, w::AbstractVector{Float64})

Example of Changing State in a Series

The example below shows how the state of objects inside a Series change as they get
updated with observations. The example begins by constructing a Series (notice the
number of observations, nobs, starts at zero) with a Mean, Variance, and Sum. When
observations of 1 and 2 are passed to the Series via fit!, the values of each statistic
are updated.

julia> s = Series(EqualWeight(), Mean(), Variance(), Sum())

▦ Series{0} | EqualWeight | nobs = 0

├── Mean(0.0)

├── Variance(0.0)

└── Sum{Float64}(0.0)

julia> fit!(s, 1)

▦ Series{0} | EqualWeight | nobs = 1

├── Mean(1.0)

├── Variance(0.0)

└── Sum{Float64}(1.0)
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julia> fit!(s, 2)

▦ Series{0} | EqualWeight | nobs = 2

├── Mean(1.5)

├── Variance(0.5)

└── Sum{Float64}(3.0)

Merging Series and Parallel Computing

Recall from section 4.2.1 that OnlineStat objects can be joined together with the
merge! function. Similarly, two Series can be joined if they track the same types of
OnlineStat. For an ExactStat like Mean, fit! and merge! operations can occur in
any order and still return the correct value of the sample mean. This facilitates what is
commonly called an embarrassingly parallel computation, as the problem of calculating
a mean can trivially be split into subproblems that can be worked on simultaneously.
The example below and following visualization demonstrates calculating a mean, vari-
ance, and histogram on 30,000 observations, where three Series each get updated
with a third of the data. The Series objects can then be merged together, creating an
estimate equivalent to a single Series that is updated with all 30,000 observations.

Note that an exact merge is only possible if the OnlineStat is a subtype of
ExactStat. For StochasticStat subtypes, merging may not be a well-defined op-
eration. In these cases, OnlineStats will either print a warning or use a heuristic tech-
nique that works in most cases. In general, merge! is a more expensive operation than
fit!. With StochasticStat types, merge! is also in general a less robust method of
updating and thus fit! should be preferred.

y1 = randn(10_000)

y2 = randn(10_000)

y3 = randn(10_000)

s1 = Series(Mean(), Variance(), IHistogram(50))

s2 = Series(Mean(), Variance(), IHistogram(50))

s3 = Series(Mean(), Variance(), IHistogram(50))

# each series gets one third of the data
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fit!(s1, y1)

fit!(s2, y2)

fit!(s3, y3)

merge!(s1, s2) # merge the information from s2 into s1

merge!(s1, s3) # merge the information from s3 into s1

==

merge!(s1, s3)

merge!(s1, s2)

s1 s2 s3

s1

s1

s1

Figure 4.4: Visualization of embarrassingly parallel computations in OnlineStats using
the merge! function.

The above feature of fitting statistics and models in parallel is what allows On-
lineStats to work with JuliaDB 5 for calculating statistics in a scalable matter on huge
datasets. JuliaDB implements data table and querying operations for everything from
trivial examples to large multiple-file persistent datasets. The integration withOnlineS-
tats gives users the ability to calculate statistics and models out-of-core and in parallel.

5http://juliadb.org
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4.3 Stochastic Approximation Algorithms

For statistics and models that cannot be updated exactly (StochasticStat{N}), On-
lineStats relies on a variety of stochastic approximation algorithms. Each subtype of
StochasticStat implements at least one of the algorithms in this section. Each algo-
rithm appears as its own type (Updater) in OnlineStats so that Julia’s use of multiple
dispatch can create specialized code for each type of update.

The goal in stochastic approximation is to minimize the expected value of a loss
function, with respect to an unknown random variable:

argmin
θ

EY [ℓ(Y, θ)]. (4.10)

The expectation cannot be evaluated directly since the distribution of Y is unknown,
but a learner has access to random samples yt from Y . For a given random sample yt,
we use the information contained in

ℓt(θ) = ℓ(yt, θ) (4.11)

to update our parameter θ(t−1) to θ(t). Many of the algorithms in this section rely solely
on stochastic gradients, which we denote as gt = ∇ℓt(θ(t−1)). Let ϵ be a small positive
constant (occasionally used to avoid dividing by zero, etc.) and letwt > 0 be an arbitrary
weight.

4.3.1 Stochastic Gradient Algorithms

• SGD

Stochastic gradient descent (SGD) is the gold standard of stochastic approxi-
mation algorithms, as it has a long history (Robbins and Monro, 1951; Sakrison,
1965) and is easy to implement. The SGD update is

θ(t) = θ(t−1) − wtgt. (4.12)

• ADAGRAD
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Duchi and Singer (2009) present ADAGRAD as a method for adapting sepa-
rate learning rates for each parameter element. The algorithm uses the sum of
outer product of stochastic gradients to create a matrix that is used to scale the
gradients, resulting in element-wise learning rates. ADAGRAD is represented dif-
ferently in OnlineStats compared to the original paper: the outer product matrix
is considered to be a mean rather than a sum, which reveals an implicit learning
rate of wt = 1/

√
t. By identifying the “built-in” learning rate, OnlineStats is then

able to substitute in any weighting scheme (Weight) with ADAGRAD.

Gt = (1− 1/t)Gt−1 + (1/t)diag(gtgTt + ϵI)

θ(t) = θ(t−1) − wtG−1/2
t gt.

(4.13)

• RMSPROP

One of the critiques of ADAGRAD is that the step size may shrink to zero too
quickly Ruder (2017). RMSProp (Root mean square propagation) is a popular,
yet unpublished idea that first appeared in the Coursera 6 class Neural Networks
for Machine Learning (Tieleman and Hinton, 2012). The main idea is to use the
same mean representation of the outer product matrix used by OnlineStats, but
make it exponentially-weighted. For hyper-parameter ρ ∈ (0, 1), suggested in
Tieleman and Hinton (2012) to be ρ = .9, the RMSProp update is

Gt = ρGt−1 + (1− ρ)diag(gtgTt + ϵI),

θ(t) = θ(t−1) − wtG−1/2
t gt.

(4.14)

• ADADELTA

The idea of ADADELTA, presented in Zeiler (2012), is to calculate the condi-
tioning matrix as an exponentially weighted mean (same as RMSProp) and then
scale the gradient into the same units as the parameter. For hyper-parameter

6https://www.coursera.org
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ρ ∈ (0, 1), the ADADELTA update is

Gt = ρGt−1 + (1− ρ)diag(gtgTt + ϵI)

δt = ∆
1/2
t−1G

−1/2
t gt

∆t = ρ∆t−1 + (1− ρ)diag(δtδTt + ϵI)

θ(t) = θ(t−1) − δt,

(4.15)

Note that ADADELTA truly does not use a learning rate sequence {wt} and in-
stead step sizes are implicitly defined by the update.

• ADAM and ADAMAX

ADAM (adaptive moment estimation) is another method for element-wise learn-
ing rates that aims at slowing ADAGRAD’s aggressively decreasing learning rate
(Kingma and Ba, 2014). The idea is to first calculate an exponentially weighted
mean for the outer product matrix (same as for RMSProp and ADADELTA), sec-
ond to use a gradient with momentum (exponentially weighted gradient estimate),
and third make an adjustment for the means since they are biased towards zero.

The ADAM update is

mtj = β1mt−1,j + (1− β1)gtj
vtj = β2vt−1,j + (1− β2)g2tj
m̂tj = mtj/(1− βt1)

v̂tj = vtj/(1− βt2)

θ
(t)
j = θ

(t−1)
j − wt

m̂tj√
v̂tj + ϵ

.

(4.16)

The ADAMAX variant of ADAM alters the denominator to get updates:

mtj = β1mt−1,j + (1− β1)gtj
utj = max(β2ut−1,j, |gtj|)

θ
(t)
j = θ

(t−1)
j − wt

(1− βt1)utj
mtj.

(4.17)
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4.3.2 Stochastic MM Algorithms

Stochastic MM (Majorization-minimization) algorithms rely on majorizing functions to
inform updates rather than gradients like the algorithms in the previous section. First
we discuss the offline MM algorithm, which is a generalization of the expectation-
maximization (EM) algorithm (Dempster et al., 1977). A function h is said to majorize
ℓ at the point θ′ if h satisfies:

h(θ′|θ′) = ℓ(θ′),

h(θ|θ′) ≥ ℓ(θ) for all θ.
(4.18)

In other words, h(θ) always lies above ℓ(θ), except at θ′ where they are equal. The
traditional (offline) MM algorithm alternates between two steps:

1. Majorization. Generate a function h(θ|θ(t−1)) that majorizes the objective function
at the current iterate θ(t−1).

2. Minimization. Minimize the majorizing function: θ(t) = argminθ h(θ|θ(t−1)).

The figure below demonstrates one MM iteration applied to a univariate function.
The blue line is the objective function and θ(t−1) is the initial value of the estimate. First,
the majorization step creates the red line. Then the minimization step finds the value
of θ that minimizes the red function, moving our estimate to θ(t). This visualization
demonstrates the descent property of MM algorithms; iterations are guaranteed to
decrease the value of the objective function.

Figure 4.5: Visualization of One MM Iteration
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Recall that stochastic approximation algorithms only have access to one observa-
tion at a time. Just as the algorithms of the previous section were based on stochastic
gradients, the following algorithms are based on stochastic majorizations, functions
that majorize the objective evaluated at the current observation yt:

ht(θ) = h(yt, θ|θ(t−1)), (4.19)

where ht(θ) majorizes ℓt(θ) at θ(t−1).
MM is more of a concept than an actual algorithm. OnlineStats allows for three

different “families” of stochastic MM algorithm:

1. Online MM via Averaged Surrogate: OMAS

The idea of OMAS is to approximate the entire majorizing function, which is referred
to here as a “surrogate” objective function. OMAS is introduced under the name
Stochastic Majorization-Minimization in Mairal (2013b) as an extension to the
online EM algorithm in Bach and Moulines (2011). Iterations then minimize the
updated approximation:

Qt(θ) = (1− wt)Qt−1(θ) + wtht(θ)

θ(t) = argmin
θ

Qt(θ)
(4.20)

2. Online MM via Averaged Parameter: OMAP

OMAP is different from OMAS in that the averaging occurs on minimizers to the
stochastic majorizations:

θ(t) = (1− γt)θ(t−1) + γt argmin
θ

ht(θ) (4.21)

3. Majorized Stochastic Proximal Iteration: MSPI

There exists a variant of SGD called implicit stochastic gradient descent (Toulis
et al., 2017), also referred to as a stochastic proximal iteration (SPI) (Ryu and
Boyd, 2014), in which the update to the parameter appears on both sides of the
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update equation (equivalent to a scaled proximal mapping):

θ(t) = θ(t−1) + wt∇ℓt(θ(t))

= proxwtℓt
(θ(t−1)).

(4.22)

SPI achieves higher stability than many stochastic gradient algorithms, but this
comes at the cost of needing to solve the above equation at each update, for
which there may not be a closed form solution and requires an iterative procedure
to solve. The idea of MSPI is to replace the objective function with a majorization
that has a closed form proximal mapping:

θ(t) = θ(t−1) − wt∇ht(θ(t))

= proxwtht
(θ(t−1)).

(4.23)

The update can thus avoid an iterative solver but maintains the advantageous sta-
bility properties of SPI.

Majorization Via Quadratic Upper Bound

Creating majorizing functions is a bit of an art form. The most common majorization
used in OnlineStats is given in Hunter and Lange (2004): majorization via a quadratic
upper bound. First consider a second-order Taylor series approximation to a function:

ℓ(θ) ≈ ℓ(θ(t)) +∇ℓ(θ(t))T (θ − θ(t)) + 1

2
(θ − θ(t))Td2ℓ(θ(t))(θ − θ(t)), (4.24)

where d2ℓ(θ) is the second derivative (Hessian) matrix evaluated at θ. If there exists a
matrix H such that H − d2ℓ(θ) is positive semi-definite for all θ, then substituting H for
d2ℓ(θ(t)) returns an inequality:

ℓ(θ) ≤ ℓ(θ(t)) +∇ℓ(θ(t))T (θ − θ(t)) + 1

2
(θ − θ(t))TH(θ − θ(t)). (4.25)

Note that the right hand side is a majorization of ℓ(θ) at θ(t). In the stochastic ap-
proximation setting, let Ht be a matrix such that Ht − d2ℓt(θ) is positive semi-definite
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for all θ. Then the OMAS, OMAP, and MSPI updates can be derived as follows (note
that gt denotes the stochastic gradient from the previous section):

1. OMAS
At = (1− wt)At−1 + wtHt,

bt = (1− wt)bt−1 + wt[Htθ
(t−1) − gt],

θ(t) = A−1
t bt.

(4.26)

2. OMAP
θ(t) = θ(t−1) − wtH−1

t gt. (4.27)

3. MSPI
θ(t) = θ(t−1) − wt(I + wtHt)

−1gt. (4.28)

Not that for all three of the above updates, if Ht is a diagonal matrix, updates can
be executed element-wise.

4.4 Algorithm Catalog

This section contains a comprehensive alphabetical list of the current statistic and
model algorithms implemented in OnlineStats. The updates to each statistic or model
is given in terms of an arbitrary weight

wt ∈ [0, 1].

4.4.1 Covariance Matrix (CovMatrix)

The covariance matrix of random variable Y ∈ Rp is defined as the expectation

Σ = E
{
[Y − E(Y )][Y − E(Y )]T

}
. (4.29)

The finite sample estimator for a data matrix X = [y1 y2 . . . yn]
T ∈ Rn×p is

Σ̂ = (n− 1)−1(X −X)T (X −X), (4.30)
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where X is a matrix where each element of column j is equal to the mean of column
j of X. That is, X = n−11n1

T
nX where 1n is a length n vector of ones. With a bit of

algebra, the sample covariance matrix can be shown to be

Σ̂ =
1

n− 1
(X −X)T (X −X)

=
1

n− 1

(
XTX −XTX −XTX −XTX

)
=

1

n− 1

(
XTX −XT1n1

T
nX/n

)
=

n

n− 1
(A− bbT ),

(4.31)

where A = XTX/n and b = XT1n/n (vector of column means). Translating the update
to arbitrary weights, we get:

A(t) = (1− γt)A(t−1) + γtyty
T
t

b(t) = (1− γt)b(t−1) + γtyt

θ(t) =
nt

nt − 1

{
A(t) − b(t)[b(t)]T

}
.

(4.32)

CovMatrix Example

julia> Series(randn(1000, 2), CovMatrix(2))

▦ Series{1} with EqualWeight

├── nobs = 1000

└── CovMatrix([1.04641 0.0271401; 0.0271401 0.937007])

4.4.2 Differences (Diff)

Diff tracks the most recent value and the most recent difference, calculated as

θ(t) = yt − yt−1. (4.33)

Diff is meant to be used in conjunction with other OnlineStats, such as calculat-
ing a mean absolute difference. It is parameterized by the data type to avoid loss of
information, e.g. converting an Int64 into a Float64.
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Diff Example

julia> Series([1, 2], Diff(Int))

▦ Series{0} with EqualWeight

├── nobs = 2

└── Diff{Int64}(1)

julia> Series([1.0, 2.0], Diff(Float64))

▦ Series{0} with EqualWeight

├── nobs = 2

└── Diff{Float64}(1.0)

4.4.3 Extrema (Extrema)

The updates for maximum and minimum are trivially calculated as

θ
(t)
max = max(θ(t−1)

max , yt),

θ
(t)
min = min(θ(t−1)

min , yt).
(4.34)

Extrema Example

julia> Series(randn(1000), Extrema())

▦ Series{0} with EqualWeight

├── nobs = 1000

└── Extrema((-3.76838, 2.67421))

4.4.4 Histograms (Hist)

OnlineStats uses the Hist type to create histograms from data streams. Under the
hood, there are two completely separate fitting algorithms:

1. Hist(b::Integer): incrementally build a histogram of b bins.

The idea is for each new observation yt, create a new bin center/count pair
of (yt, 1), sort all of the bins by the y value, and then merge the two closest
bins (Ben-Haim and Tom-Tov, 2010). For a histogram consisting of bin centers
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and counts, (z1, c1), . . . , (zb, cb), let the first b observations initialize the estimate:
(y1, 1), . . . , (yb, 1). For each following observation yt:

Create pair: (yt, 1)
Sort by first value in pair :(z1, c1), . . . , (yt, 1), . . . , (zb, cb)
Find k that minimizes zk+1 − zk

Replace (zk, ck) with
(
zkck + zk+1ck+1

ck + ck+1

, ck + ck+1

) (4.35)

2. Hist(r::Range): build a histogram over bin edges defined by r.

This algorithm calculates a histogram for bin edges provided by r. For a histogram
of bins ranging from a to b with bin width δ, the update rule for an observation
a ≤ y ≤ b for the vector of counts v = v1, . . . v(b−a)/δ is

k = floor[(yt − a)/δ] + 1,

vk ← vk + 1.
(4.36)

Algorithm 2 is faster, but requires the user to specify endpoints before the data is
observed. Algorithm 1 has the advantage of automatically finding the best bin loca-
tions, but at the disadvantage of performance. Any Hist type can be used to calculate
approximate summary statistics (mean, var, std, quantile) without the need to revisit
the data.

Histogram Example

julia> o1, o2 = Hist(25), Hist(-5:.1:5);

julia> s = Series(randn(100_000), o1, o2);

julia> mean(o1)

-0.002079880278233522

julia> mean(o2)

0.09807099999999999
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4.4.5 K-Means Clustering (KMeans)

K-means clustering is an unsupervised learning technique that assumes each obser-
vation comes from one of K clusters. Since each observation is a vector, a KMeans

object must be constructed with the observation length and number of clusters. As
there is no closed-form solution for an online update, the update rule via SGD is

k∗ = argmin
k

∥yt − θk∥22

θ
(t)
k∗ = (1− wt)θ(t−1)

k∗ + wtyt.
(4.37)

KMeans Example

julia> y = randn(10_000, 3);

julia> y[rand(Bool, 10_000), :] .+= [1 2 3];

julia> Series(y, KMeans(3, 2))

▦ Series{1} | LearningRate(r = 0.6) | nobs = 10000

└── KMeans{SGD}([1.0827 -0.0577; 2.0986 0.0094; 3.086 -0.0371])

4.4.6 Linear Regression (LinReg and LinRegBuilder)

For a matrix X = (x1, x2, . . . xp)
T ∈ Rn×p (observations in rows) and vector y =

(y1, . . . , yn) ∈ Rn, the linear regression model is

y = Xβ + ϵ, (4.38)

where β ∈ Rp is a parameter vector and ϵ ∈ Rn is an uncorrelated error vector with
constant variance and mean 0. The linear regression problem (normalized by n) with
a ridge penalty is to solve

argmin
β

1

2n
(y −Xβ)T (y −Xβ) + 1

2
λβTβ. (4.39)
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Taking the derivative and setting it equal to zero, we find the solution satisfies

(XTX + λI)β = XTy. (4.40)

The matrix XTX + λI and vector XTy can both be updated analytically. Translating
the online update to use arbitrary weights, the update rule is

At = (1− γt)At−1 + γtxtx
T
t ,

bt = (1− γt)bt−1 + ytxt,

β(t) = (At + λI)−1bt.

(4.41)

The “paper solution” above is not the most efficient way to calculate the parameter
in a computer. OnlineStats uses the symmetric sweep operator instead of explicitly
calculating the matrix inverse. Here we give a brief introduction to the sweep opera-
tor and point more interested readers to Lange (2010). Let A be a symmetric matrix.
Sweeping on the k-th diagonal entries maps A to a new symmetric matrix Â such that

Âkk =
−1
Akk

Âik =
Aik
Akk

Âkj =
Akj
Akk

Âij = Aij −
AikAkj
Akk

.

(4.42)

If A is a symmetric block matrix of the form

A =

(
A11 A12

A21 A22

)
, (4.43)

Sweeping over all diagonal entries of A11 results in(
A−1

11 A−1
11 A12

A21A
−1
11 A22 − A21A

−1
11 A12

)
. (4.44)
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Then by letting A11 = XTX + λI, A12 = XTy, and A22 = yTy, sweeping on A11 returns(
(XTX + λI)−1 β̂

β̂T ∥y − ŷ∥22

)
. (4.45)

The LinReg type is for running a linear regression model where it is known which
variables are predictors and which variable is the response. A more exploratory ap-
proach to model building is the LinRegBuilder type, which allows one to use any of
the variables as the response and any subset of variables as predictors. The useful-
ness of LinRegBuilder is that the data does not need to be revisited to fit additional
models or perform variable selection.

LinReg Example

julia> x = randn(1000, 5);

julia> y = x * collect(1.0:5) + randn(1000);

julia> Series((x,y), LinReg(5))

▦ Series{(1, 0)} | EqualWeight | nobs = 1000

└── LinReg: β(0.0) = [0.955116 2.01755 3.01617 3.98708 4.96303]

LinRegBuilder Example

julia> xy = [x y];

julia> o = LinRegBuilder(6);

julia> Series(xy, o)

▦ Series{1} | EqualWeight | nobs = 1000

└── LinRegBuilder of 6 variables

julia> coef(o, y=[6], x=[5,4,3,2,1], bias=false)

5-element Array{Float64,1}:

4.96303
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3.98708

3.01617

2.01755

0.955116

4.4.7 Generalized Linear Models (StatLearn)

Generalized linear models (GLMs) cannot be solved analytically with online algorithms
apart from linear regression. OnlineStats implements stochastic approximation algo-
rithms to handle loss functions from LossFunctions.jl 7 and regularization functions
from PenaltyFunctions.jl 8 via the StatLearn type. The (offline) objective function
that StatLearn approximately minimizes is

1

n

n∑
i=1

fi(β) +

p∑
j=1

λjg(βj), (4.46)

where fi is a loss function evaluated on a single observation, β is the parameter vector,
g is a regularization or penalty function to help avoid over-fitting, and λj is an element-
wise tuning parameter that controls the amount of regularization. This representation of
models incorporates much more than GLMs and is often called empirical risk minimiza-
tion. We begin with an example to show the objective function above is represented
by StatLearn:

julia> StatLearn(10, .5L2DistLoss(), L1Penalty(), .1ones(10), SGD())

StatLearn{SGD,ScaledDistanceLoss{LPDistLoss{2},05},L1Penalty}

> β : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

> λfactor : [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]

> Loss : 0.5 * (L2DistLoss)

> Penalty : L1Penalty

> Updater : SGD

The first argument to the StatLearn constructor is the number of predictors vari-
ables, followed by arguments to set the loss, penalty, tuning parameters, and algorithm.

7https://github.com/JuliaML/LossFunctions.jl
8https://github.com/JuliaML/PenaltyFunctions.jl
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The arguments can be given in any order and StatLearn will use the argument types
to determine how they should be handled. Consider each of the arguments provided
to StatLearn example above:

• .5 * L2DistLoss(). This specifies the loss function as

fi(β) =
1

2
(yi − xTi β)2. (4.47)

• L1Penalty(). This specifies the penalty function as

g(βj) = |βj|. (4.48)

• fill(.1, 10). This specifies the tuning parameters as

λj = .1, j = 1, . . . , 10. (4.49)

• SGD(). This specifies the updater as proximal stochastic gradient descent.

Every updater in section 4.3 is available to use with StatLearn. Penalty function
are handled with proximal mappings. TODO: finish thought.

StatLearn Example

julia> x = randn(1000, 5);

julia> y = x * [1, 2, 3, 4,5] + randn(1000);

julia> Series((x,y), StatLearn(5))

▦ Series{(1, 0)} | LearningRate(r = 0.6) | nobs = 1000

└── StatLearn{SGD,LPDistLoss{2},L2Penalty}

> β : [0.925889, 1.72841, 3.14523, 3.86286, 4.66301]

> λfactor : [0.1, 0.1, 0.1, 0.1, 0.1]

> Loss : L2DistLoss

> Penalty : L2Penalty

> Updater : SGD
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4.4.8 Mean (Mean)

The mean of a random variable Y is the expected value µ = E(y). The sample mean
of a random sample from Y , (y1, . . . , yn), is defined as

µ̂ =
1

n

n∑
i=1

yi.

The online update with arbitrary weight is

θ(t) = (1− wt)θ(t−1) + wtyt. (4.50)

Mean Example

julia> Series(randn(1000), Mean())

▦ Series{0} with EqualWeight

├── nobs = 1000

└── Mean(-0.00590063)

4.4.9 Non-Central Moments (Moments)

The Moments type estimates the first four non-central moments:

µ′
k = E(Y k), k = 1, 2, 3, 4. (4.51)

The first four non-central sample moments of a random sample (y1, . . . , yn) are there-
fore

µ̂′
j =

1

n

n∑
i=1

yji , j = 1, 2, 3, 4,

which can be adjusted for arbitrary weights as

θ
(t)
j = (1− wt)θ(t−1)

j + wty
j
t , j = 1, 2, 3, 4. (4.52)
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The skewness and kurtosis of Y are defined respectively as

θ1 =
E [(y − µ)3]
E [(y − µ)2]3/2

=
µ3

σ3
,

θ2 =
E [(y − µ)4]
E [(y − µ)2]2

=
µ4

σ4
.

(4.53)

Skewness (measure of asymmetry) and kurtosis (measure of amount of curvature
relative to a normal distribution) can use method-of-moments style online updates.
While OnlineStats calculates non-central moments, Pébay (2008) provides formulas
for singleton and minibatch updates to arbitrary order central moments.

Moments Example

julia> Series(randn(1000), Moments())

▦ Series{0} with EqualWeight

├── nobs = 1000

└── Moments([0.0146969, 0.921228, 0.116298, 2.57592])

4.4.10 Order Statistics (OrderStats)

The order statistics (y(1), . . . , y(n)) of a random sample (y1, . . . , yn) are the rearranged
values such that y(1) ≤ y(2) ≤ . . . ≤ y(n).

The OrderStats type is an estimator for the expected value of the order statistics
of a finite sample of size b: E(y(1)), . . .E(y(b)). The parameter updates once for every b
observed values. Let yt = (yt1, . . . , ytb) be the next b observations, so that updates are

θ(t) = (1− wt)θ(t−1) + wtsort(yt1, yt2, . . . , ytb). (4.54)

Trivially, θ(t) is unbiased for E(y(1)), . . .E(y(b)), but the first and last order statistics are
not biased for the minimum and maximum, respectively. It is also not in general true
that the middle order statistic is unbiased for the median.

OrderStats Example

julia> Series(randn(1000), OrderStats(5))

101



▦ Series{0} with EqualWeight

├── nobs = 1000

└── OrderStats([-1.14608, -0.509083, 0.0145675, 0.504255, 1.12706])

4.4.11 Parametric Density Estimation

OnlineStats implements a number of online estimation procedures for parametric
density estimation. The naming of types follows that of Distributions.jl by plac-
ing Fit in front of the type of distribution. For example, to fit a normal distribu-
tion to data, one would use the FitNormal type in OnlineStats. For parametric
densities, the value function in OnlineStats operates similarly to the params func-
tion in Distributions, in that the distribution type can be created through “splatting”:
Normal(value(FitNormal())...).

• Beta Distribution (FitBeta)

For the Beta density

f(y|α, β) = Γ(α + β)

Γ(α)Γ(β)
yα−1(1− y)β−1, y ∈ [0, 1], (4.55)

the method of moments update using online mean and variance µ(t) and v(t) is

α(t) = µ(t) ∗
[
µ(t)(1− µ(t))

v(t)
− 1

]
β(t) = (1− µ(t))

[
µ(t)(1− µ(t))

v(t)
− 1

]
.

(4.56)

FitBeta Example

julia> Series(rand(1000), FitBeta())

▦ Series{0} with EqualWeight

├── nobs = 1000

└── FitBeta((1.03431, 1.01411))

• Categorical Distribution (FitCategorical)
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The FitCategorical type estimates a categorical density

P (Y = s) = ps, s ∈ S (4.57)

where S is a finite set of possible values Y can take. FitCategorical is param-
eterized by the data type, which must be provided to the constructor.

FitCategorical Example

julia> Series(rand(Bool, 1000), FitCategorical(Bool))

▦ Series{0} with EqualWeight

├── nobs = 1000

└── FitCategorical{Bool}([0.475, 0.525])

julia> Series(rand(1:5, 1000), FitCategorical(Int))

▦ Series{0} with EqualWeight

├── nobs = 1000

└── FitCategorical{Int64}([0.196, 0.177, 0.2, 0.215, 0.212])

• Cauchy Distribution (FitCauchy)

For the Cauchy density

f(y|µ, σ) = 1

πσ
[
1 +

(
x−µ
σ

)2] , y ∈ R, (4.58)

OnlineStats uses the estimate

µ(t) = q
(t)
.5

σ(t) =
q
(t)
.75 − q

(t)
.25

2
,

(4.59)

where q(t).25, q
(t)
.5 , q

(t)
.75 are the current online estimates of the 0.25, 0.5, 0.75 quantiles.
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FitCauchy Example

julia> using Distributions

julia> d = Cauchy(2,4)

Distributions.Cauchy{Float64}(μ=2.0, σ=4.0)

julia> Series(rand(d, 100_000), FitCauchy())

▦ Series{0} with LearningRate(r = 0.6)

├── nobs = 100000

└── FitCauchy{SGD}((2.01174, 3.97727))

• Gamma Distribution (FitGamma)

For the Gamma density

f(y|α, θ) = xα−1e−x/θ

Γ(α)θα
, y > 0, (4.60)

the method of moments estimate based on online mean and variance µ(t) and
v(t) is

θ(t) =
v(t)

µ(t)
,

α(t) =
µ(t)

θ(t)
.

(4.61)

FitGamma Example

julia> using Distributions

julia> d = Gamma(5, 1)

Distributions.Gamma{Float64}(α=5.0, θ=1.0)

julia> Series(rand(d, 1000), FitGamma())

▦ Series{0} with EqualWeight
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├── nobs = 1000

└── FitGamma((4.64513, 1.09999))

• Log-Normal Distribution (FitLogNormal)

For the Log-Normal density

f(y|µ, σ) = 1

x
√
2πσ2

exp
(
−(ln(x)− µ)2

2σ2

)
, y > 0, (4.62)

the maximum likelihood estimates for µ and σ2 are the online mean and variance
for ln y:

µ(t) = (1− γt)µ(t−1) + γt ln yt,
v(t) = (1− γt)v(t−1) + (ln yt − µ(t−1))(ln yt − µ(t)).

(4.63)

FitLogNormal Example

julia> using Distributions

julia> d = LogNormal(10, 5)

Distributions.LogNormal{Float64}(μ=10.0, σ=5.0)

julia> Series(rand(d, 1000), FitLogNormal())

▦ Series{0} with EqualWeight

├── nobs = 1000

└── FitLogNormal((9.99955, 5.30363))

• Multinomial Distribution (FitMultinomial)

For the multinomial density

n!

x1!x2! . . . xd!
px11 p

x2
2 . . . ppdd , (4.64)
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where each xj is a positive integer of counts and
∑
pj = 1. In this case, each

observation is yt = (xt1, . . . , xtd), a vector of counts. The parameters of interest
are θ = p1, . . . , pd which are estimated with a multivariate mean µ = (µ1, . . . , µj):

µ
(t)
j = (1− γt)µ(t−1)

j + γtxtj, j = 1, . . . d,

θ(t) =

(
1∑
j µj

)
µ.

(4.65)

FitMultinomial Example

julia> d = Multinomial(1, [.2, .3, .5])

Distributions.Multinomial{Float64}(n=1, p=[0.2, 0.3, 0.5])

julia> Series(rand(d, 1000)', FitMultinomial(3))

▦ Series{1} with EqualWeight

├── nobs = 1000

└── FitMultinomial((1, [0.186, 0.305, 0.509]))

• Multivariate Normal Distribution (FitMvNormal)

For the multivariate normal density

f(y|µ,Σ) det(2πΣ)−1/2 exp
[
−1

2
(y − µ)TΣ−1(y − µ)

]
, (4.66)

the maximum likelihood estimates for µ and Σ are the online mean and (biased)
covariance matrix, respectively.

FitMvNormal Example

julia> Series(randn(1000, 2), FitMvNormal(2))

▦ Series{1} with EqualWeight

├── nobs = 1000

└── FitMvNormal(([-0.0248385, -0.0239906],

[0.976219 0.0277406; 0.0277406 1.06761]))
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• Normal Distribution (FitNormal)

For the Normal Density

f(y|µ, σ) = 1√
2πσ

exp
[
(y − µ)2

2σ2

]
, y ∈ R, (4.67)

the maximum likelihood estimates for µ and σ2 are the online mean and (biased)
variance, respectively.

FitNormal Example

julia> Series(randn(1000), FitNormal())

▦ Series{0} with EqualWeight

├── nobs = 1000

└── FitNormal((0.0500511, 1.03526))

4.4.12 Quantiles (Quantiles)

Let Y be a random variable with cumulative distribution function FY (y). The τ -th quan-
tile (0 < τ < 1) is defined as

Qτ (Y ) = inf {y : FY (y) ≥ τ} .

For example, the 0.5 quantile is more commonly known as the median. Define the
quantile loss function (also known as check-loss) for the τ -th quantile as

ρτ (u) = u [τ − I(u < 0)] . (4.68)
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Figure 4.6: Quantile Loss for τ = .7

The τ -th quantile of Y , Qτ (Y ), is known to be argminθ E[ρτ (Y − θ)]. Similarly, the
τ -th sample quantile is

argmin
θ

1

n

n∑
i=1

ρτ (yi − θ). (4.69)

The sample quantile cannot be updated analytically, as quantile algorithms are
based on order statistics (Hyndman and Fan, 1996). Since exact updates are not pos-
sible, Quantile is a subtype of StochasticStat and optionally allows the user to
choose the stochastic approximation algorithm to be used.

SGD

Quantile{SGD} uses stochastic (sub)gradient descent. The quantile loss function is
not differentiable, and therefore uses subgradients, although the only point the sub-
gradient is not unique is at 0.

θ(t) = θ(t−1) − wt[I(θ(t−1) < yt)− τ ] (4.70)
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OMAS

Quantile{OMAS} uses a majorization of the quantile loss function discussed in Hunter
and Lange (2004):

ht(θ) =
1

4

[
(yt − θ)2

vt
+ (4τ − 2)(yt − θ) + vt

]
=

1

4

[
θ2

vt
− (4τ − 2 + 2yt/vt)θ

]
+ ct,

(4.71)

where vt = |yt − θ(t−1)| + ϵ for some small ϵ > 0 and ct contains the terms that do not
depend on θ. The OMAS update can be derived as:

vt =
1

|yt − θ(t−1)|+ ϵ

s
(t)
1 = (1− wt)s(t−1)

1 + wtvtyt

s
(t)
2 = (1− wt)s(t−1)

2 + wtvt

θ(t) =
s
(t)
1 + 2τ − 1

s
(t)
2

(4.72)

MSPI

Quantile{MSPI} is based on the same majorization as Quantile{OMAS} and the up-
date can be derived as

vt =
1

|yt − θ(t−1)|+ ϵ

θ(t) =
θ(t−1) + wt(τ − .5 + wtyt/2)

1 + wtvt/2

(4.73)

Quantile Example

julia> q = [.25, .5, .75]

13-element Array{Float64,1}:

0.25

0.5

0.75
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julia> o1 = Quantile(q, SGD());

julia> o2 = Quantile(q, OMAS());

julia> 03 = Quantile(q, MSPI());

julia> Series(randn(100_000), o1, o2, o3)

▦ Series{0} with LearningRate(r = 0.6)

├── nobs = 100000

├── Quantile{SGD}([-0.68369, 0.00402352, 0.68859])

├── Quantile{OMAS}([-0.676623, 0.0109261, 0.681937])

└── Quantile{MSPI}([-0.682194, 0.00377537, 0.687509])

4.4.13 Reservoir Sample (ReservoirSample)

A reservoir sample is a finite random sample without replacement of an unknown num-
ber of possible values. It is naturally an online algorithm, but it ignores any weighting
mechanism. The update rule is:

j =

t if t ≤ b

random(1, 2, . . . , t) if t > b

θ
(t)
j =

yt if j ≤ b

θ
(t−1)
j otherwise

.

(4.74)

Reservoir Sample Example

julia> Series(randn(1000), ReservoirSample(5))

▦ Series{0} with EqualWeight

├── nobs = 1000

└── ReservoirSample{([-1.183, -1.434, -0.144, -1.070, 1.394])
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4.4.14 Sum (Sum)

The sum up to observation t is trivially calculated as

θ(t) = θ(t−1) + yt. (4.75)

Sum is parameterized by the data type to avoid loss of information, e.g. converting an
Int64 into a Float64.

Sum Example

julia> Series(1:100, Sum(Int))

▦ Series{0} with EqualWeight

├── nobs = 100

└── Sum{Int64}(5050)

julia> Series(randn(1000), Sum(Float64))

▦ Series{0} with EqualWeight

├── nobs = 1000

└── Sum{Float64}(8.74307)

4.4.15 Variance (Variance)

The variance of a random variable Y is σ2 = E[(Y − µ)2]. The variance of a random
sample (y1, . . . , yn) is defined as

σ̂2 =
1

n− 1

n∑
i=1

(yi − µ)2.

By dividing by n − 1 instead of n, the estimator is unbiased for the true value σ2. We
will henceforth refer to the biased variance estimator as the estimator which divides by
n rather than n− 1.

The online algorithm for updating a variance analytically is given in Welford (1962),
with generalizations to minibatch updates of more than one observation by Chan et al.
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(1983). The arbitrary-weight update used by OnlineStats is

µ(t) = (1− wt)µ(t−1) + wtyt,

θ(t) = (1− wt)θ(t−1) + wt(yt − µ(t−1))(yt − µ(t)).
(4.76)

Variance Example

julia> Series(randn(1000), Variance())

▦ Series{0} with EqualWeight

├── nobs = 1000

└── Variance(0.943157)

4.5 Extending OnlineStats

The basic interface of OnlineStats is defined by the lightweight OnlineStatsBase 9.
Julia’s use of multiple dispatch makes it easy to create new objects that work with
OnlineStats with the same high performance as built-in types. Users are able to cre-
ate their own OnlineStat and Weight types that work just as well as those that are
available by loading the package.

4.5.1 User-Defined OnlineStat

An OnlineStat defined using methods from OnlineStatsBase is different than from
OnlineStats. The interface follows similar function-naming conventions, but adds an
underscore if necessary to avoid name conflicts with the imports in OnlineStats. The
OnlineStatsBase interface is made up of _fit!, _value!, and merge!. The methods
necessary for working with OnlineStats are described in section 4.2.1. Below is a
simple example of creating an OnlineStat that counts the number of observations.

Counter Example

mutable struct Counter <: ExactStat{0}

value::Int
9https://github.com/joshday/OnlineStatsBase.jl
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Counter() = new(0)

end

_value(o::Counter) = o.value # this is unnecessary (default)

_fit!(o::Counter, y::Real, w::Float64) = (o.value += 1)

merge!(o::Counter, o2::Counter, w::Float64) = (o.value += o2.value)

4.5.2 User-Defined Weight

A Weight is simply a callable object with a single-argument method myweight(n),
where n is the current number of observations. An example of implementing a Weight

via OnlineStatsBase is shown below.

ExponentialWeight Example

struct ExponentialWeight <: Weight

λ::Float64

ExponentialWeight(λ::Real = .1) = new(λ)

ExponentialWeight(lookback::Integer) = new(2 / (lookback + 1))

end

(w::ExponentialWeight)(n) = n == 1 ? 1.0 : w.λ

4.6 Conclusion

In this chapter we introduced the OnlineStats package for calculating statistics with
online algorithms. The scope of problems it solves is bigger than those of the existing
software and it is easily extendible through Julia’s use of multiple dispatch. OnlineS-
tats uses a novel unifying representation of online algorithms for statistics that allows
new statistics and models to be implemented with a simple and straightforward in-
terface. Since it is written in Julia, OnlineStats is not just fast, but uses the built-in
parallelism features to allow algorithms to run online and in parallel.
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CHAPTER

5

STOCHASTIC APPROXIMATION
BEHAVIOR

5.1 Introduction

Stochastic approximation algorithms have received increased interest recently, as re-
searchers seek scalable algorithms for optimizing objective functions. As they are often
applied to machine learning problems, stochastic approximation and online learning
are nearly synonymous terms. Traditional (offline) iterative algorithms for optimization
such as Newton and quasi-Newton methods become prohibitively expensive as data
gets larger. Therefore, new tools are needed for solving models applied to big data. The
machinery behind stochastic approximation is not new (Robbins and Monro, 1951), but
new algorithms based on this machinery are actively being developed.

It is difficult to compare stochastic approximation algorithms. In the online learning
literature, theoretical error bounds are common, either with respect to the objective
function ℓ(θ) or to the euclidian distance between the current iterate and the true pa-
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rameter (∥θ(t) − θ∗∥). The theoretical guarantees of error bounds do little to inform the
reader on how an algorithm behaves relative to other algorithms. Even if two algorithms
have the same convergence rate, they may not agree on the set of assumptions and
they may behave differently in practice. It is common to make comparisons on a bench-
mark dataset, such as the popular MNIST handwritten digits data. The drawbacks of
a small number of dataset benchmarks are that it is impossible to extrapolate an algo-
rithm’s performance to different datasets, models, and selection of hyper-parameters.
Another difficulty in the literature is that deep neural networks are often the model be-
ing fitted. Deep neural networks do not have a known solution, so algorithms cannot
be evaluated on the merit of finding the “true” solution. Also, local minima often ex-
ist in neural network objectives so that different algorithms may simply be discovering
different local minima.

Stochastic approximation algorithms involve a learning rate {γt}∞t=1 that can have
a dramatic effect on convergence. The learning rate is a positive sequence which ap-
proaches zero, intuitively creating a tradeoff between speed of convergence and vari-
ance of the iterates. However, this tradeoff does not occur uniformly across algorithms,
and an optimal rate for one method may perform poorly with another. Also, theoreti-
cal bounds are often based on a specific choice of learning rate, leaving ambiguity
in how the algorithm behaves under different (yet valid) rates. A standard assump-
tion in stochastic approximation convergence theory is that the learning rate satisfies∑
γt =∞,

∑
γ2t <∞, and is often chosen to be

γt = t−r, r ∈ (0.5, 1]. (5.1)

In practice r = 0.5 is also used even though it does not satisfy this assumption.
The goal of this chapter is to increase understanding of the behavior of online

learning algorithms. We use Monte Carlo simulation to visualize the convergence of
stochastic approximation algorithms over a variety of factors, such as type of model
(with knowable solution) and learning rate hyper-parameter.

5.1.1 Simulations

The visualizations in the following sections demonstrate how algorithms are affected
by different conditions. The factors studied are:
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• Type of Algorithm. We use nine state-of-the-art stochastic approximation algo-
rithms, described in the previous chapter.

• Type of model. We examine two objectives that are continuous (linear regres-
sion, logistic regression) and two that are not (distance weighted discrimination,
quantile regression).

• Learning rate hyper-parameter. We use three learning rates parameterized as
in (5.1) with r ∈ {.5, .7, .9}.

r = 0.5
r = 0.7
r = 0.9

Figure 5.1: Legend for Learning Rate Parameters

• Number of Parameters. We also examine the difference between 10 and 50
predictor variables in each model.

For each combination of algorithm, model, learning rate hyper-parameter, and num-
ber of predictors, 100 replications are performed of:

1. Simulating data. In each case, the coefficient vector β = (−1, . . . , 1) is the lin-
early interpolated range from −1 to 1 and the independent variables are gen-
erated xt iid∼ N(0, Id) for an identity matrix Id of appropriate size. The response
variable yt is generated in accordance with the model.

2. Giving data to the learner. For each observation in the simulated dataset, the
estimate is updated (θ(t)) and then the offline objective value is recorded, relative
to the minimum. We refer to this quantity as the the relative loss:

1

n

n∑
i=1

ℓi(θ
(t))−min

θ

1

n

n∑
i=1

ℓi(θ). (5.2)
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For each replication, we record the relative loss after each update. In the following
plots, the median relative loss across replications is plotted as a line with ribbons rang-
ing from the 0.05 to 0.95 quantiles. Note that as lines approach 0, the online solution
approaches the offline solution. The width of the ribbons therefore represents the vari-
ability of an algorithm’s convergence under identical conditions. When the three bands
are “close” to each other, this represents an algorithm’s robustness towards the choice
of learning rate.

The section for each statistical model begins with a description of the following:

• Loss Function (ℓt): The objective function of a single observation. This deter-
mines the form of the gradient for stochastic gradient algorithms.

• Majorizing Function (ht): The majorizing function of a single observation (ht
majorizes ℓt at θ(t−1)). This determines the updates for majorization-based algo-
rithms: OMAS, OMAP, and MSPI.

• Data Model: The process from which data is simulated.

Fair Comparison

In the interest of fairness, we omit several aspects of online learning that are typically
included. A regularization function (i.e., ridge or LASSO) is usually added to avoid
overfitting the model to data. Stochastic gradient algorithms can trivially include differ-
entiable penalties such as ridge (L2 norm), but some have not demonstrated how to
incorporate a non-differentiable penalty such as LASSO (L1 norm). To keep the algo-
rithms on the same playing field, we omit regularization.

Since the introduction of stochastic gradient algorithms (Robbins andMonro, 1951),
a large variety of techniques have been developed to speed up convergence or add
stability. Some of these techniques are general enough to be used on a variety of
stochastic gradient algorithms, such as the ideas of momentum (Rumelhart et al.,
1988), Nesterov acceleration (Nesterov, 1983), and iterate averaging (Polyak and Ju-
ditsky, 1992). The most “fair” comparison across algorithms, is therefore a comparison
without these techniques, since they can be applied separately to each algorithm.

Several of studied methods use hyper-parameters (beyond learning rate) that af-
fect convergence. We choose the hyper-parameters as suggested by the paper that
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introduced the method. Stochastic gradient algorithms typically multiply the learning
rate by some positive constant. To keep learning rates the same across algorithms, we
set this constant to 1.
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5.2 Visualizations

5.2.1 Linear Regression

Loss Function

ft(β) =
1

2
(yt − xTt β)2, yt ∈ R. (5.3)

Majorizing Function

ht(β) = ft(β
(t−1)) +∇ft(β(t−1))T (β − β(t−1)) +

xTt xt
2
∥β − β(t−1)∥2. (5.4)

Data Model

yt = xTt β + ϵt, ϵt
iid∼ N(0, 1). (5.5)
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Figure 5.2: Linear Regression Simulation of 10 variables

Figure 5.3: Linear Regression Simulation of 50 variables.
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5.2.2 Logistic Regression

Loss Function

ft(β) = ln(1 + eytx
T
t β), yt ∈ {−1, 1}. (5.6)

Majorizing Function

ht(β) = ft(β
(t−1)) +∇ft(β(t−1))T (β − β(t−1)) +

xTt xt
8
∥β − β(t−1)∥2. (5.7)

Data Model

P (yt = 1) =
1

1 + exp(xTt β)
. (5.8)
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Figure 5.4: Logistic Regression Simulation of 10 variables

Figure 5.5: Logistic Regression Simulation of 50 variables
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5.2.3 Distance Weighted Discrimination

The plots for Distance Weighted Discrimination differ from the other models. Rather
than a different number of parameters, we use different values of the loss hyper-
parameter q that demonstrates the adverse effect a larger q has on majorization-based
learners.

Loss Function

ft(β) = vq(ytx
T
t β), yt ∈ {−1, 1}, (5.9)

where

vq(u) =

1− u if u ≤ q
q+1

qq

uq(q+1)q+1 if u > q
q+1

,

v′q(u) =

−1 if u ≤ q
q+1[

q
u(q+1)

]q+1

if u > q
q+1

.

(5.10)

Majorizing Function

ht(β) = ft(β
(t−1)) +∇ft(β(t−1))T (β − β(t−1)) +

(q + t)2xTt xt
2q

∥β − β(t−1)∥2. (5.11)

Data Model

P (yt = 1) =
1

1 + exp(xTt β)
. (5.12)
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Figure 5.6: DWD Simulation for q = .5 of d = 10 variables

Figure 5.7: DWD Simulation for q = 20 of d = 10 variables
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5.2.4 Quantile Regression

For quantile regression, OMAP is not possible with the majorization of choice, as the
stochastic majorizations do not have a unique minimizer. Therefore, OMAP is omitted
from the quantile regression plots.

Loss Function

ft(β) = ρτ (yt − xTt β), yt ∈ R. (5.13)

where

ρτ (u) = u(τ − 1{u<0}). (5.14)

Majorizing Function

ht(β) =
1

2

(xTt β)
2

2wt
− [yt/(2wt) + τ − .5]xTt β + ct, (5.15)

where wt = ϵ+ |yt − xTt β(t−1)| and ct contains terms which do not depend on β.

Data Model

yt = xTt β + ϵt, ϵt
iid∼ N(0, 1). (5.16)
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Figure 5.8: Quantile Regression Simulation with τ = 0.7 of d = 10 variables

Figure 5.9: Quantile Regression Simulation with τ = 0.7 of d = 50 variables
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5.3 Conclusions

We presented visualizations of convergence behavior for several popular online learn-
ing algorithms alongside the algorithms based on majorizing functions (OMAS, OMAP,
and MSPI). Intuitively, the latter are able to incorporate more information into each up-
date, as some of the second order information of ℓt is contained in ht. However, as
seen with DWD, the majorization can slow down convergence if it is “too strongly con-
vex”. The cost of occasional slow convergence for online MM algorithms comes with
the benefit of stability and low variability across learning rates.

The algorithms based on stochastic gradients (ADAGRAD, ADADELTA, RM-
SPROP, ADAM, ADAMAX) are generally considered upgrades to vanilla SGD. How-
ever, the best case learning rate for SGD coincides in nearly every model with the best
case learning rate for the more complicated methods. Also, the worst case SGD often
performs better than the others’ worst cases. For example, looking only at worst cases
for logistic regression, SGD converges faster and with less variability than the others
for both 10 and 50 predictors. However, it may be that the modern developments are
more robust to violated model assumptions and variance of the predictors, which would
not be apparent in these simulations.

ADADELTA is somewhat different than the others as it does not use the learning
rate, but has an effective learning rate which is based on the history of previous gra-
dients. Even though it does not fully converge, ADADELTA very consistently appears
to quickly converge to a neighborhood of the optimal value. A heuristic “search-then-
converge” technique would be to begin learning with ADADELTA and then switch to
another method for which step sizes shrink to zero.

Online MM algorithms (OMAS and OMAP) have very low variance in the error
bounds, but convergence is heavily dependent on the learning rate. In every case,
it appears a learning rate parameterized with r = .5 is the optimal choice. The two
algorithms’s behavior is nearly identical, and therefore in practice the easier of the two
implementations should be used. As discussed in chapter 2, performing variable se-
lection with regularization terms that set coefficients to zero are more effective with
OMAS. Furthermore, as seen with quantile regression, OMAS can be applied even
when the majorizing functions do not have a unique minimizer.

In every case, MSPI is a top contender in terms of both convergence rate and
variability across all three learning rates. MSPI is stable, easy to implement, has the
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same low computational effort as SGD, and can be applied to a wider class of problems
than stochastic proximal iteration/implicit SGD. Using MSPI-Q, it is also straightforward
to translate an existing (offline) MM algorithm via quadratic upper bound into an online
algorithm.

Across all algorithms, there appears to be little benefit of a learning rate which
rapidly approaches zero (r = .9). However, there is no obvious winner between r = .5

and r = .7 even when examining a specific method. Due to the sometimes drastic
effect of learning rate choice, the method which is the most robust to a non-optimal
rate should be preferred as a black box method being applied to a new problem. As
the algorithm least sensitive to the learning rate, we recommend MSPI as the default
choice in the online learning toolbox.
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