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Leibniz algebras were popularized by Jean-Louis Loday in 1993 as a non-commutative

generalization of Lie Algebras. For more than a century, mathematicians have extended

results from Group theory to Lie algebras and more recently to Leibniz algebras. The purpose

of this work is to continue this trend of development by making contributions to the theory

of formations of Leibniz algebras with special consideration given to the formation of

solvable, complemented Leibniz algebras.
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CHAPTER

1

INTRODUCTION

1.1 A Brief History

Although Leibniz algebras are a relatively new field of study within the realm of mathemat-

ics, their origin can be traced back to the late-nineteenth century. In his home country of

Norway, Marius Sophus Lie began developing the theory of continuous transformation

groups with the intention of discovering symmetries within the theory of differential equa-

tions just as Galois had done with polynomial equations nearly fifty years earlier [1]. With

help from Friedrich Engel, Lie published his most famous work Theorie der Transformation-

sgruppen in three volumes from 1888 to 1893. In honor of Lie’s achievements, continuous
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transformation groups were later named Lie groups. Before his death, Lie’s work on the

infinitesimal transformations of Lie groups eventually led him to introduce the theory

of Lie algebras to the world, which monumentally impacted the study of contemporary

mathematics. For more than a century, numerous mathematicians including Killing and

Cartan have devoted their lives toward the development of Lie algebra theory [12].

During the last half of the twentieth century, a trend developed in the study of Lie

algebra generalizations. In 1955, Maltsev first introduced the idea of generalizing Lie alge-

bras, and his work led to the theory of Malcev algebras [15]. One decade later, Bloh began

paving the way for the eventual realization of what is known today as Leibniz algebras

when he published his work on D-algebras [8]. Although the groundwork had been laid by

Bloh during the 1960’s, Leibniz algebras were not popularized until 1993 when Jean-Louis

Loday published his work discussing a non-commutative generalization of Lie algebras

[14]. In this treatise, Loday named his generalization after Gottfried Wilhelm Leibniz; and

the name continues to be used today. Since the introduction of Leibniz algebras, many

mathematicians, including several from North Carolina State University’s Department of

Mathematics, have focused on extending results from Lie algebras to Leibniz algebras. This

work is intended to continue that trend of development by making contributions to the

theory of formations of Leibniz algebras.

1.2 Leibniz Algebras

In this section, we will introduce relevant definitions, properties, and results of Leibniz

algebras in the same fashion as Demir, Misra, and Stitzinger in [10]. These concepts will

provide us with the necessary foundation to investigate the results addressed later in this

work.
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Let L be an algebra over a field F. We will denote the left multiplication operator as La

for a ∈ L where La (x ) = [a , x ] for all x ∈ L . Similarly, the right multiplication operator will

be denoted as Ra for a ∈ L where Ra (x ) = [x , a ] for all x ∈ L .

Definition 1.2.1. A (left) Leibniz algebra L is an F-vector space equipped with a bilinear

map [ , ] : L × L→ L which satisfies the Leibniz identity

[a , [b , c ]] = [[a , b ], c ] + [b , [a , c ]]

for all a , b , c ∈ L .

Definition 1.2.2. A linear operator D : L→ L is a derivation of a Leibniz algebra L if

D (x y ) = (D (x ))y + x (D (y ))

for all x , y ∈ L .

We will denote the collection of all derivations of a Leibniz algebra L as Der(L ). Note

from the definitions above that La is a derivation of L , but Ra is not a derivation of L . On

the other hand, a right Leibniz algebra is defined as an F-vector space equipped with a

bilinear multiplication such that Ra is a derivation. The following example shows a left

Leibniz algebra that is not necessarily a right Leibniz algebra.

Example 1.2.3. Let L be a 2-dimensional algebra with the following multiplications.

[x , x ] = 0, [x , y ] = 0, [y , x ] = x , [y , y ] = x

L is a left Leibniz algebra; however, L is not a right Leibniz algebra since [[y , y ], y ] 6=
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[y , [y , y ]] + [[y , y ], y ], because 0= [x , y ] 6= [y , x ] + [x , y ] = x +0= x .

Although there are slight modifications in convention between left and right Leibniz

algebras, analogous results can be proven for both; therefore, we will use the definition for

left Leibniz algebras throughout the remainder of this work and will refer to them simply as

Leibniz algebras.

It is clear that any Lie algebra is also a Leibniz algebra; however, the converse is not true.

If a Leibniz algebra were to also satisfy the condition that [a , a ] = a 2 = 0 for all a ∈ L , then it

would indeed be a Lie algebra. In this case, the Leibniz identity becomes the Jacobi identity.

It is important to note that since Leibniz algebras may contain at least one element a such

that [a , a ] = a 2 6= 0, then the antisymmetric property associated with Lie algebras is not a

necessary condition for Leibniz algebras. In fact, the absence of antisymmetry is one of the

defining characteristics of Leibniz algebras. An example of a Leibniz algebra that is not a

Lie algebra is given below.

Example 1.2.4. Consider the n-dimensional cyclic Leibniz algebra L generated by a , L =

〈a 〉 = span{a , a 2, ..., a n}, with non-zero products [a , a ] = a 2, [a , a 2] = a 3, ..., [a , a n−1] = a n ,

and [a , a n ] = a n . L is a Leibniz algebra but not a Lie algebra, because a 2 6= 0.

As seen in the cyclic example above, for any element a ∈ L we define a n inductively as

follows: a 1 = a and a k+1 = [a , a k ]. Similarly, we define L n by L 1 = L and L k+1 = [L , L k ].

Definition 1.2.5. A Leibniz algebra L is abelian if L 2 = 0.

Proposition 1.2.6. If L is a Leibniz algebra and a ∈ L, then La n = 0 for n ∈Z>1.

Proof. Let L be a Leibniz algebra, and let a , b ∈ L . First, consider the case when n = 2. By
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the Leibniz identity,

[a 2, b ] = [[a , a ], b ] = [a , [a , b ]]− [a , [a , b ]] = 0.

Next, assume the case when n = k also holds so that [a k , b ] = 0 and consider the case when

n = k +1.

[a k+1, b ] = [[a , a k ], b ] = [a , [a k , b ]]− [a k , [a , b ]] = [a , 0]−0= 0−0= 0

Thus, by mathematical induction, La n = 0 for n ∈Z>1.

Since the antisymmetric property does not hold for Leibniz algebras, the following

definitions and results are needed.

Definition 1.2.7. For a Leibniz algebra L , Leib(L) = span{[a , a ] | a ∈ L}.

Example 1.2.8. For the n-dimensional cyclic Leibniz algebra introduced in Example 1.2.4,

Leib(L ) = span{a 2, ..., a n}= L 2. Here, Leib(L ) can be found by simply considering the general

element β = β1a +β2a 2+ ...+βn a n from L and applying Proposition 1.2.6 to the product

[β ,β ].

Example 1.2.9. Let L = span{a , b , c }be a Leibniz algebra with non-zero products [a , b ] = c

and [b , a ] = c . In this case, Leib(L) = span{c } = L 2.

Definition 1.2.10. Let S be a subspace of a Leibniz algebra L .

1. S is a subalgebra of L if [S ,S ]⊆ S .

2. S is a left ideal of L if [L ,S ]⊆ S and a right ideal of L if [S , L ]⊆ S .

3. S is an ideal of L , S Ã L , if it is both a left and a right ideal of L .
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Definition 1.2.11. Let L be a Leibniz algebra and I Ã L , then L/I = {x + I | x ∈ L} is called

a quotient Leibniz algebra or factor Leibniz algebra of L .

It is clear that Leib(L ) is a right ideal of a Leibniz algebra L from Proposition 1.2.6. Upon

considering the identity

[a , [b , b ]] = [a + [b , b ], a + [b , b ]]− [a , a ]

found in [10], one can also determine that Leib(L) is a left ideal of L ; therefore, Leib(L )Ã L .

Furthermore, it is important to note that Leib(L) is an abelian ideal of L and that Leib(L ) is

the minimal ideal of L such that the quotient algebra L/Leib(L) is a Lie algebra.

As in the case of Lie algebras, the sum and intersection of two ideals of a Leibniz algebra

are also ideals; however, the product of two ideals is not necessarily an ideal as seen in the

following example [10].

Example 1.2.12. Let L = span{x , a , b , c , d } be a Leibniz algebra with non-zero multiplica-

tions [a , b ] = c , [b , a ] = d , [x , a ] = a =−[a , x ], [x , c ] = c , [x , d ] = d , [c , x ] = d , [d , x ] =−d .

In addition, let I = span{a , c , d } and J = span{b , c , d }. Now, I and J are ideals of L ; but

[I , J ] = span{c } is not an ideal of L .

Definition 1.2.13. A Leibniz algebra homomorphism ϕ : L→ L ′ is a linear mapping such

that ϕ([x , y ]) = [ϕ(x ),ϕ(y )] for all x , y ∈ L .

The standard homomorphisms for Lie algebras also hold for Leibniz algebras. Thus,

for any Leibniz algebra homomorphism ϕ : L→ L ′, the kernel of ϕ, ker ϕ, is an ideal of L ;

and the image of ϕ, im ϕ, is a subalgebra of L ′ [2]. Furthermore, for any ideal I of a Leibniz

algebra L , the ideals of the quotient Leibniz algebra L/I are in a one-to-one correspondence

with the ideals of L containing I [10].
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Definition 1.2.14. Let L be a Leibniz algebra.

1. The left center of L is Z l (L ) = {x ∈ L | [x , a ] = 0 for all a ∈ L}.

2. The right center of L is Z r (L ) = {x ∈ L | [a , x ] = 0 for all a ∈ L}.

3. The center of L is Z (L ) = Z l (L )∩Z r (L ).

Clearly, for both Lie and Leibniz algebras, the center is an abelian ideal.

Definition 1.2.15. Let S be a subset of a Leibniz algebra L .

1. The left centralizer of S in L is C l
L (S ) = {x ∈ L | [x , s ] = 0 for all s ∈ S}.

2. The right centralizer of S in L is C r
L (S ) = {x ∈ L | [s , x ] = 0 for all s ∈ S}.

3. The centralizer of S in L is CL (S ) =C l
L (S )∩C r

L (S ).

Using the Leibniz identity, one can easily determine that the centralizer of a subset S in

a Leibniz algebra L is a subalgebra of L . Moreover, if S Ã L , then CL (S )Ã L [9].

Definition 1.2.16. Let H be a subalgebra of a Leibniz algebra L .

1. The left normalizer of H in L is N l
L (H ) = {x ∈ L | [x , h ] ∈H for all h ∈H }.

2. The right normalizer of H is N r
L (H ) = {x ∈ L | [h , x ] ∈H for all h ∈H }.

3. The normalizer of H is NL (H ) =N l
L (H )∩N r

L (H ).

Obviously, the normalizer of a subalgebra H in a Leibniz algebra L is also a subalgebra

of L ; and, as seen earlier with centralizers, if H Ã L , then NL (H )Ã L .

Definition 1.2.17. For a Leibniz algebra L , the series of ideals

L = L (0) ⊇ L (1) ⊇ L (2) ⊇ ... where L (1) = [L , L ], L (2) = [L (1), L (1)], and L (i+1) = [L (i ), L (i )]

is called the derived series of L .

Definition 1.2.18. A Leibniz algebra L is solvable if L (m ) = 0 for some m ∈Z≥0.
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As in the case of Lie algebras, the sum and intersection of two solvable ideals of a Leibniz

algebra are also solvable; thus, any Leibniz algebra L contains a unique maximal solvable

ideal, rad (L ), called the radical of L which contains all the solvable ideals of L [10].

The following theorem and corollary from [21] further describe the relationship between

a solvable Leibniz algebra and its ideals.

Proposition 1.2.19. Let L be a Leibniz algebra and I Ã L such that I is solvable. If L/I is

solvable, then L is solvable.

Proof. Since I and L/I are solvable, then I (n ) = (L/I )(m ) = 0 for some n and m . Consider the

canonical homomorphism π : L→ L/I . Then π(L (m )) =π(L )(m ) = (L/I )(m ) = 0. Thus, L (m ) ⊆

ker π= I . Hence, L (m+n ) = (L (m ))(n ) ⊆ I (n ) = 0. Therefore, L is solvable.

Corollary 1.2.20. Let L be a Leibniz algebra. If the Lie algebra L/Leib(L) is solvable, then L

is solvable.

Proof. Since Leib(L) is an abelian ideal of L , then the result follows from Proposition

1.2.19.

Definition 1.2.21. For a Leibniz algebra L , the series of ideals

L = L 1 ⊇ L 2 ⊇ L 3 ⊇ ... where L i+1 = [L , L i ]

is called the lower central series of L .

Definition 1.2.22. A Leibniz algebra L is nilpotent of class c if L c+1 = 0 but L c 6= 0 for some

c ∈Z≥1.

It is clear that if L is a nilpotent Leibniz algebra L of class c , then L c ⊆ Z r (L ). Using

induction and repeated application of the Leibniz identity, one can also determine that
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L c ⊆ Z l (L ). Therefore, L c ⊆ Z (L ) and Z (L ) 6= 0. As in the case of Lie algebras, the sum

and intersection of two nilpotent ideals of a Leibniz algebra are also nilpotent; hence, any

Leibniz algebra L contains a unique maximal nilpotent ideal, nil (L ), called the nilradical

of L which contains all the nilpotent ideals of L [10].

In [11], Gorbatsevich proved the following proposition which shows an interesting

connection between L and L 2 for Leibniz algebras.

Proposition 1.2.23. A Leibniz algebra L is solvable if and only if L 2 is nilpotent.

Definition 1.2.24. A Leibniz algebra L is supersolvable if there exists a chain

0= L0 ⊂ L1 ⊂ ...⊂ Ln−1 ⊂ Ln = L

where L i is an i -dimensional ideal of L .

Example 1.2.25. Once again, we consider the n-dimensional cyclic Leibniz algebra

L = span{a , a 2, ..., a n} introduced in Example 1.2.4. Here, L (1) = [L , L ] = span{a 2, ..., a n} and

L (2) = [L (1), L (1)] = 0; thus, L is solvable. Furthermore, L 2 = span{a 2, ..., a n}, L 3 = [L , L 2] =

span{a 3, ..., a n}, and L k = [L , L k−1] = span{a n} for all k ∈Z≥n ; therefore, L is supersolvable

but not nilpotent.

Example 1.2.26. If we were to slightly alter the n-dimensional cyclic Leibniz algebra above

to have the product [a , a n ] = 0, then L would be nilpotent (of class n), because L k = 0

for all k ∈Z>n . Moreover, L would be supersolvable; because L = L 1 = Ln , L 2 = Ln−1, L 3 =

Ln−2, ..., L n−1 = L2, L n = L1, and L n+1 = L0 = 0.

Example 1.2.27. Recall the Leibniz algebra from Example 1.2.9 where L = span{a , b , c }

with non-zero products [a , b ] = c = [b , a ]. Here, we have L (1) = [L , L ] = span{c } and L (2) = 0.

Also, L 2 = span{c } and L 3 = [L , L 2] = 0. Finally, let I be the ideal I = span{a , c } so that
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0= L0 ⊂ L1 = span{c } ⊂ L2 = I ⊂ L3 = L . Therefore, L is solvable, nilpotent (of class 2), and

supersolvable.

Example 1.2.28. Let L = span{x , y } with its only non-zero product as [x , y ] = y . Here,

L (1) = span{y } and L (2) = 0; thus, L is solvable. However, L n = span{y } for all n ∈Z>1; thus,

L is not nilpotent. Since I = span{y } is an ideal of L , then L is supersolvable.

1.3 Overview

We begin our discussion of formations in Chapter 2 by examining several classes of Leibniz

algebras that were introduced in Chapter 1. Through our investigation, we determine that

the class of Lie algebras are a formation within the Leibniz algebras. In addition, the Frattini

subalgebra and the Frattini ideal are also defined in order to classify formations as either

saturated or non-saturated.

In Chapter 3, we narrow our focus to the class of solvable, complemented Leibniz

algebras. Here, we continue the work done by Yaemsiri in [23] by extending results from Lie

algebras to Leibniz algebras. In [18], Towers proves that over a field of characteristic 0, a

solvable Lie algebra is complemented if and only if its Frattini ideal is 0. We expand this

result to Leibniz algebras. We also introduce the Cartan subalgebras of a Leibniz algebra

and prove that they are the complements of the last term of the lower central series for any

solvable, complemented Leibniz algebra. Furthermore, we prove that each member of the

derived series of a solvable, complemented Leibniz algebra L is complemented by a Cartan

subalgebra of L .

In Chapter 4, we show that the class of solvable, complemented Leibniz algebras is a for-

mation that exhibits certain properties unlike those examined in Chapter 2. We define this

type of formation to be "totally non-saturated." Moreover, we introduce formation residuals
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as well as C (F ), the collection of all Leibniz algebras whose formation residuals contain

only complemented chief factors. We then prove that ifF is any formation, then C (F ) is a

totally non-saturated formation. Ultimately, our discussion leads us to consider several

types of totally non-saturated formations from which we determine that the formation

of solvable, complemented Leibniz algebras is the unique smallest totally non-saturated

formation of Leibniz algebras.

11



CHAPTER

2

FORMATIONS

2.1 Introduction

In this chapter, we lay the foundation for the remainder of the work. First, we define what it

means for a class of Leibniz algebras to be a formation. Then, we present several classical

examples of formations, many of which were introduced in Chapter 1. Next, we define the

Frattini subalgebra and the Frattini ideal for a given Leibniz algebra, which will enable

us to introduce the classification categories of saturated and non-saturated formations.

Finally, we will revisit the classical formations to determine whether they are saturated or

non-saturated. Any Leibniz algebras discussed in this chapter will be finite dimensional
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over a field F.

Definition 2.1.1. A formation F is a class of Leibniz algebras satisfying the following

conditions:

1. If a Leibniz algebra L ∈F , then f (L ) ∈F for each homomorphism f of L .

2. If H , K Ã L such that L/H , L/K ∈F , then L/(H ∩K ) ∈F .

Example 2.1.2. The following familiar classes of Leibniz algebras, which were introduced

in Chapter 1, are classical examples of formations. For each of the examples below, the

verification of the formation conditions should be clear.

A = the formation of abelian Leibniz algebras

N = the formation of nilpotent Leibniz algebras

U = the formation of supersolvable Leibniz algebras

S = the formation of solvable Leibniz algebras

Example 2.1.3. The trivial Leibniz algebra {0} is a formation.

Recall nil (L ), the nilradical of a Leibniz algebra L , from Chapter 1. Using the notation

below, we can define a series of consecutive nilradicals for a Leibniz algebra L [20]:

nil0(L ) = 0, nili (L ) =nil (L/nili−1(L )) for i = 1, 2, ...

Definition 2.1.4. The nilpotent length of a solvable Leibniz algebra L is the smallest n ∈N

such that niln (L ) = L .

Example 2.1.5. The class of Leibniz algebras with nilpotent length ≤ k is a formation

for each k ≥ 1. We will denote these classes of Leibniz algebras asN (≤ k ) for each k ≥ 1,

respectively.

Proposition 2.1.6. The class of Lie algebras is a formation within the Leibniz algebras.

13



Proof. Let L be a Lie algebra within the class of Leibniz algebras and let A Ã L . Since L is a

Lie algebra, then L/A is also a Lie algebra; because any subalgebra of a Lie algebra is also a

Lie algebra. Now, let B Ã L and suppose that both L/A and L/B are Lie algebras. Consider

the mapping γ : L→ L/A×L/B where γ(x ) = (x +A, x +B ). Since both L/A and L/B are Lie

algebras, then L/A× L/B must be a Lie algebra. Furthermore, since A ∩B = ker γ, then we

have im γ∼= L/(A ∩B ) by the 1st Isomorphism Theorem. Since L/A× L/B is a Lie algebra,

then any subalgebra of L/A× L/B must also be a Lie algebra. Therefore, L/(A ∩B ) is a Lie

algebra.

The format of the proof of Proposition 2.1.6 may be viewed as a general template for

proving that a specific class of Leibniz algebras is, indeed, a formation.

2.2 Saturated Formations

Definition 2.2.1. The Frattini subalgebra, F (L ), of a Leibniz algebra L is the intersection

of the maximal subalgebras of L .

Definition 2.2.2. The Frattini ideal, Φ(L ), of a Leibniz algebra L is the largest ideal of L

contained in F (L ).

In Chapter 3, we examine the relationship between the Frattini subalgebra and the Frat-

tini ideal of a Leibniz algebra. At this time, however, our primary purpose in introducing the

Frattini ideal is to define and discuss saturated formations. Before we begin that discussion,

we briefly introduce two interesting properties associated with the Frattini ideal of a Leibniz

algebra which will become useful later.

Proposition 2.2.3. If L is a nilpotent Leibniz algebra over a field F with characteristic 0,

then L 2 =Φ(L ).
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Proposition 2.2.4. If L is a Leibniz algebra, then Φ(L ) is nilpotent.

Definition 2.2.5. LetF be a formation of Leibniz algebras and consider any ideal M of a

Leibniz algebra L such that M ⊆ Φ(L ). The formationF is saturated if L/M ∈F implies

L ∈F .

Rather than considering any general ideal M ⊆Φ(L ), one may simply let M be a minimal

ideal of L or let M = Φ(L ) to determine whether or not a formation is saturated. The

proposition below, which was proved in [5], offers an equivalent statement to the definition

above.

Proposition 2.2.6. A formationF is saturated if for a Leibniz algebra L, L/Φ(L ) ∈F implies

L ∈F .

The following proposition allows us to characterize several of the classical formations

from Example 2.1.2 and Example 2.1.3 as saturated. Although it was proved for Lie algebras

in [5], we provide a proof for Leibniz algebras here.

Proposition 2.2.7. The following classes of Leibniz algebras are saturated formations:

1. The trivial Leibniz algebra {0}.

2. N = the formation of nilpotent Leibniz algebras.

3. U = the formation of supersolvable Leibniz algebras.

4. S = the formation of solvable Leibniz algebras.

Proof. The formation {0} is trivially saturated. ForN andU , one may use Theorem 5.5

of [4] and Theorem 6 of [9], respectively. Finally, by Proposition 2.2.4, Φ(L ) is nilpotent for

any Leibniz algebra L ; thus, Φ(L ) is also solvable. If L/Φ(L ) is solvable, then L is solvable by

Proposition 1.2.19. Therefore,S is saturated.
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Proposition 2.2.8. The classN (≤ k ) is a saturated formation for each k ≥ 1.

Proof. It has already been shown in Proposition 2.2.7 thatN (1) is a saturated formation.

Now, suppose that it holds for k = r so thatN (≤ r ) is a saturated formation. Clearly, if a

Leibniz algebra L ∈ N (≤ r + 1), then f (L ) ∈ N (≤ r + 1) for each homomorphism f of L .

Now, let A Ã L and B Ã L and suppose that L/A, L/B ∈N (≤ r +1). Furthermore, let S/A =

nil (L/A) and T /B = nil (L/B ). Hence, L/S , L/T ∈N (≤ r ); and, thus, L/(S ∩T ) ∈N (≤ r ).

Because S/A and T /B are nilpotent ideals of L/A and L/B , respectively, there exist m , n ∈N

such that S m ⊆ A and T n ⊆ B . Thus, (S ∩T )m+n ⊆ A ∩B . Hence, L/(A ∩B ) ∈N (≤ r +1), and

N (≤ r +1) is a formation.

Now, suppose that L/Φ(L ) ∈ N (≤ r + 1). From Theorem 5.5 of [4], we can determine

that nil (L/Φ(L )) = nil (L )/Φ(L ). Therefore, L/nil (L ) ∈N (≤ r ) and L ∈N (≤ r +1). Hence,

N (≤ r +1) is saturated; and the result holds by induction.

As we shall see in the next two examples, not all of the formations considered in this

chapter are saturated.

Example 2.2.9. Recall the n-dimensional nilpotent cyclic Leibniz algebra seen in Example

1.2.26 where L = span{a , a 2, ..., a n}. Earlier, we determined that L 2 = span{a 2, ..., a n}. Since

L is nilpotent over a field of characteristic 0, then L 2 = Φ(L ) by Proposition 2.2.3. Also,

L/L 2 = L/Φ(L ) is abelian. Since L is not also abelian, thenA , the formation of abelian

Leibniz algebras, is non-saturated.

Example 2.2.10. Let L be the n-dimensional nilpotent cyclic Leibniz algebra from Example

2.2.9. Now, L/L 2 = L/Φ(L ) = L/Leib(L ), which is a Lie algebra. Since L is not also a Lie

algebra, then the class of Lie algebras is a non-saturated formation within the Leibniz

algebras.
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CHAPTER

3

COMPLEMENTED LEIBNIZ ALGEBRAS

3.1 Introduction

In this chapter, we will assume that all Leibniz algebras discussed are solvable and finite

dimensional over a field F. Recall the Frattini subalgebra F (L ) and the Frattini ideal Φ(L ) for

a Leibniz algebra L which were introduced in Chapter 2. For general Leibniz algebras, the

Frattini subalgebra is not always an ideal as seen in the following Lie algebra example [16].

Example 3.1.1. Consider the 3-dimensional Lie algebra L = 〈x , y , z 〉= span{x , y , z } over

the field F2 = {0, 1}with multiplications [x , y ] = z , [y , z ] = x , and [z , x ] = y . Here, we have
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F (L ) = 〈x + y + z 〉. Consider [x , x + y + z ] = [x , x ] + [x , y ] + [x , z ] = z − y 6∈ F (L ). Hence,

Φ(L ) = 0.

In the next example, we consider a basic 2-dimensional cyclic Leibniz algebra with

different results [7].

Example 3.1.2. Let L = span{a , a 2} be the 2-dimensional cyclic Leibniz algebra over a

field of characteristic 0 with non-zero multiplications [a , a ] = a 2 and [a , a 2] = a 2. In this

case, we find that there are two maximal subalgebras: 〈a −a 2〉 and 〈a 2〉. This implies that

F (L ) = 0; thus, Φ(L ) = 0.

Since most of our results in this chapter will involve a field of characteristic 0, we will

assume for the remainder of the chapter that a field F has characteristic 0 unless it has been

specifically stated otherwise. With this constraint on F, the following lemma, which was

proved in [6], will be important for our results in the next section and beyond.

Lemma 3.1.3. If L is a Leibniz algebra over a field of characteristics 0, then F (L ) is an ideal

of L. Therefore, F (L ) =Φ(L ).

3.2 Complemented Leibniz Algebras

Definition 3.2.1. A Leibniz algebra L is complemented if its subalgebra lattice is comple-

mented; that is, given any subalgebra H in L , there exists a subalgebra K in L such that

L = 〈H , K 〉 and H ∩K = 0.

Definition 3.2.2. A Leibniz algebra L is Φ-free if Φ(L ) = 0.

Definition 3.2.3. A Leibniz algebra L is elementary if every subalgebra of L (including L

itself) is Φ-free.
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Since we are working in the context of solvable Leibniz algebras, we can weave the three

definitions above together with the following theorem [7].

Theorem 3.2.4. Let L be a solvable Leibniz algebra over a field F of characteristic 0.

The following statements are equivalent:

1. L is complemented.

2. L is Φ-free.

3. L is elementary.

Proof.

1⇒ 2. Let L be a complemented Leibniz algebra and assume that Φ(L ) 6= 0. Since Φ(L ) is

an ideal of L and thus a subalgebra of L , then there exists a complement subalgebra H of

L such that 〈Φ(L ), H 〉= L and Φ(L )∩H = 0. Since H is a subalgebra, then H ⊆M for some

maximal subalgebra M of L . Therefore, L = 〈Φ(L ), M 〉; but Φ(L )⊆M . Thus, M = L , which is

a contradiction. Hence, Φ(L ) = 0.

2⇒ 3. Assume that Φ(L ) = 0. Since L is solvable, then L 2 is nilpotent by Proposition

1.2.23. Therefore, by Theorem 3.4 of [6], we know that L is elementary.

3⇒ 1. Assume that L is elementary; thus, Φ(L ) = 0. Let H be a subalgebra of L . Since

Φ(L ) = 0, then there exists a proper subalgebra K of L such that L = 〈H , K 〉. If H ∩K 6= 0,

then there exists a proper subalgebra K1 ⊂ K such that K = 〈H ∩K , K1〉. This implies that

L = 〈H , H ∩K , K1〉= 〈H , K1〉 and dim(K1) < dim(K ). If H ∩K1 6= 0, then there exists a proper

subalgebra K2 ⊂ K1 such that K1 = 〈H ∩K1, K2〉. This implies that L = 〈H , H ∩K1, K2〉= 〈H , K2〉

and dim(K2)< dim(K1). We may continue this process until we arrive at a proper subalgebra

Kn such that L = 〈H , Kn 〉 and H ∩Kn = 0. Therefore, L is complemented.

Proposition 3.2.5. A nilpotent Leibniz algebra is complemented if and only if it is abelian.
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Proof. Let L be a nilpotent complemented Leibniz algebra; thus, Φ(L ) = 0 by Theorem 3.2.4.

Since L is nilpotent, then L 2 =Φ(L ) = 0 by Proposition 2.2.3. Therefore, L is abelian.

Conversely, let L be abelian and let H be a subalgebra of L . We now select K to be any

complementary subspace of H so that H ∩K = 0. K must be a subalgebra of L , because

[K , K ] = 0⊆ K ; therefore, K complements H in L and L is complemented.

A result similar to the following lemma was proved by Towers in [19] for Lie algebras,

but the proof is also valid for Leibniz algebras. We take a slightly different approach to the

proof here by appealing to Theorem 3.2.4.

Lemma 3.2.6. L is a complemented Leibniz algebra if and only if every subalgebra of L is

also a complemented Leibniz algebra.

Proof. L is a complemented Leibniz algebra⇐⇒ L is elementary⇐⇒ every subalgebra of

L is Φ-free⇐⇒ every subalgebra of L is a complemented Leibniz algebra.

Theorem 3.2.7. Every homomorphic image of a complemented Leibniz algebra is also a

complemented Leibniz algebra.

Proof. Since every subalgebra of a Leibniz algebra can be viewed as the image of a Leibniz

algebra homomorphism, then the result is clear by Lemma 3.2.6.

Lemma 3.2.8. If L is a complemented Leibniz algebra, then every ideal of L is complemented

by a subalgebra of L.

Proof. Since L is a complemented Leibniz algebra, the result is clear; because an ideal of L

is also a subalgebra of L .

Theorem 3.2.9. Any ideal of a complemented Leibniz algebra is also a complemented

Leibniz algebra.
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Proof. Let I be an ideal of a Leibniz algebra L . Certainly, I is also a subalgebra of L . Thus,

by Lemma 3.2.6, I is a complemented Leibniz algebra.

3.3 Cartan Subalgebras

In this section, we introduce Cartan subalgebras in order to show how they relate to com-

plemented Leibniz algebras. As a reminder, all Leibniz algebras discussed in this section

are solvable and finite dimensional over a field Fwith characteristic 0.

Definition 3.3.1. A Cartan subalgebra of a Leibniz algebra L is a nilpotent subalgebra of

L which is self-normalizing (i.e. NL (C ) =C for a nilpotent subalgebra C in L).

Unlike Lie algebras, the left and right normalizers, N l
L (C ) and N r

L (C ), of a subalgebra

C do not necessarily coincide in Leibniz algebras due to the lack of antisymmetry. The

example below provides such a case [7].

Example 3.3.2. Let L = span{x , y , z } be a Leibniz algebra with the following non-zero

products: [z , x ] = x , [z , y ] =−y , [y , z ] = y , and [z , z ] = x . Here, C = span{x − z } is a Cartan

subalgebra of L ; however, N r
L (C ) = span{x , z }.

In [3], Barnes proves the existence of a Cartan subalgebra within a solvable Leibniz

algebra. We will do the same, but we must first address a few important preliminary items.

Lemma 3.3.3. If C is a Cartan subalgebra of a Leibniz algebra L and A Ã L, then (C +A)/A

is a Cartan subalgebra of L/A.

Proof. Let C be a Cartan subalgebra of a Leibniz algebra L and let A Ã L . Now, (C +A)/A

is nilpotent; because (C + A)/A ∼= C /(C ∩ A). Suppose that x + A ∈ NL/A((C + A)/A); thus,
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(x + A)(C + A) ⊆ (C + A) and (C + A)(x + A) ⊆ (C + A). Therefore, x (C + A) ⊆ (C + A) and

(C +A)x ⊆ (C +A); thus, x ∈NL (C +A) =C +A. Hence, (C +A)/A is a Cartan subalgebra of

L/A.

Lemma 3.3.4. For a Leibniz algebra L, let H be a subalgebra of L and A Ã L such that

A ⊆H ⊆ L. If H /A is a Cartan subalgebra of L/A and C is a Cartan subalgebra of H , then C

is a Cartan subalgebra of L .

Proof. Let L be a Leibniz algebra with subalgebra H and A Ã L such that A ⊆H ⊆ L . Also,

let H /A be a Cartan subalgebra of L/A and C be a Cartan subalgebra of H . Since C is a

Cartan subalgebra of H , then C is certainly nilpotent. Now, suppose that x ∈NL (C ); thus,

x +A ∈NL/A((C +A)/A). By Lemma 3.3.3, (C +A)/A is a Cartan subalgebra of H /A. Also, H /A

is nilpotent; because H /A is a Cartan subalgebra of L/A. Then, H /A is a Cartan subalgebra

of itself; therefore, C +A =H and x +A ∈NL/A(H /A) =H /A. Hence, x ∈H . Furthermore,

x ∈NH (C ) = C ; because x ∈NL (C ), and C is a Cartan subalgebra of H . Thus, NL (C ) = C ;

and C is a Cartan subalgebra of L .

Theorem 3.3.5. If L is a solvable Leibniz algebra, then there exists a Cartan subalgebra of L .

Proof. Let L be a solvable Leibniz algebra and let A be a minimal ideal of L . Suppose that

L is a minimal counterexample. Thus, there exists a Cartan subalgebra H /A of L/A. Now, if

H ⊂ L , then there exists a Cartan subalgebra C of H . By Lemma 3.3.4, C is also a Cartan

subalgebra of L , which is a contradiction. Therefore, H = L ; and L/A is nilpotent.

Let M be a maximal subalgebra of L . If A ⊆M , then M /A is a maximal subalgebra of

the nilpotent Leibniz algebra L/A. By Theorem 4.16 of [10], M /A is an ideal of L/A; thus,

M is an ideal of L . Since M is a general maximal subalgebra of L , then by Theorem 4.16

of [10] once again, L is nilpotent, which is a contradiction. Hence, L contains a maximal
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subalgebra K which is not an ideal of L . For this K , we have NL (K ) = K and A 6⊆ K . Since

A is abelian and L = K + A, then K ∩ A is an ideal of L . Because A is minimal, K ∩ A = 0.

Therefore, K ∼= L/A, which is nilpotent; and K is a Cartan subalgebra of L .

For our purposes in this section and beyond, we will denote the last term of the lower

central series of a Leibniz algebra L as Lω. Furthermore, for the remainder of this section,

we will assume that L is a solvable, complemented Leibniz algebra and that N is a non-zero

ideal of L such that N is nilpotent and L/N is nilpotent. Since L is solvable, then L 2 is

nilpotent by Proposition 1.2.23. Thus Lω is nilpotent and, by definition, L/Lω is nilpotent.

Therefore, we may hereafter replace N with Lω.

Lemma 3.3.6. If L is a complemented Leibniz algebra, then Lω is abelian and L/Lω is

abelian.

Proof. Let L be a complemented Leibniz algebra. As a member of the lower central series of

L , Lω is clearly an ideal of L . By Theorem 3.2.9, Lω is also a complemented Leibniz algebra.

Since Lω is nilpotent, then Lω must also be abelian by Proposition 3.2.5.

L/Lω is a homomorphic image of L ; thus, it is a complemented Leibniz algebra by

Theorem 3.2.7. Since L/Lω is nilpotent, then it is also abelian by Proposition 3.2.5.

Proposition 3.3.7. If L is a complemented Leibniz algebra, then L 2 = Lω.

Proof. Let L be a complemented Leibniz algebra. By definition, Lω ⊆ L 2; and since L/Lω is

abelian, then L 2 ⊆ Lω. Therefore, L 2 = Lω.

In order to fully lay the groundwork for Theorem 3.3.9, we must first discuss the Fitting

one-component and the Fitting null-component of a vector space with respect to a linear

operator. Consider the finite dimensional vector space V and let T : V → V be a linear
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operator on V . Then V can be represented as V = (V0)T ⊕ (V1)T where T ((V0)T ) ⊆ (V0)T ,

T ((V1)T )⊆ (V1)T , (V0)T = {v ∈V |T i (V ) = 0 for some i ∈N}, and (V1)T =
⋂∞

i=1 T i (V ) as seen in

[13].

Definition 3.3.8. The spaces (V0)T and (V1)T are called the Fitting null-component and

the Fitting one-component, respectively, of the vector space V with respect to the linear

operator T .

Theorem 3.3.9. If L is a complemented Leibniz algebra, then Lω is complemented in L

by a Cartan subalgebra of L. Furthermore, the complements of Lω are precisely the Cartan

subalgebras of L; and all complements of Lω are conjugate under automorphisms of L of the

form I + La for some a ∈ L .

Proof. Let L be a complemented Leibniz algebra; thus, Lω is abelian by Lemma 3.3.6. From

Theorem 3.3.5, we know that there exists a Cartan subalgebra C of L . Since Lω is an ideal of

L , then (C +Lω)/Lω is a Cartan subalgebra of L/Lω by Lemma 3.3.3. Now, L/Lω is nilpotent

by definition; thus, L/Lω is a Cartan subalgebra of itself. Hence, L/Lω = (C + Lω)/Lω and

L =C +Lω. Letδ be a mapping such thatδ : C →Der(L ) byδ(c ) = L c , the left multiplication

operator. Now, δ is a homomorphism whose image N = δ(C ) is nilpotent; because C is

nilpotent. Therefore, L = (C0)δõ (C1)δ, where (C0)δ is the Fitting null-component and (C1)δ

is the Fitting one-component of δ acting on N . Thus, (C1)δ = [C , [C , [...[C , L ]]]]⊆ Lω; and

(C1)δ is invariant under C . Furthermore, since Lω is abelian, then (C1)δ Ã L ; and L/(C1)δ ∼=

(C0)δ = C is nilpotent. Suppose that (C1)δ 6= Lω; thus, [C , Lω] ⊂ Lω. Since Lω is abelian,

then [L , Lω] = [C + Lω, Lω] = [C , Lω] + [Lω, Lω] ⊂ Lω, which is a contradiction. Therefore,

(C1)δ = Lω and (C0)δ =C . Hence, all Cartan subalgebras of L are complements of Lω.

Conversely, let K be a complement of Lω in L such that K is not a Cartan subalgebra

of L . Thus, by definition, K is nilpotent and K 6=NL (K ). Hence, NL (K )∩ Lω 6= 0. Now, let
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x ∈NL (K )∩ Lω. Therefore, [x , K ] ⊆ K ∩ Lω = 0 and [K , x ] ⊆ K ∩ Lω = 0. Since x ∈ Lω and

Lω is abelian, then [x , L ] = [x , Lω + K ] = [x , Lω] + [x , K ] = 0 and [L , x ] = [Lω + K , x ] =

[Lω, x ] + [K , x ] = 0. Thus, x ∈ Z (L ), the center of L , and x ∈ NL (C ) = C for the Cartan

subalgebra C earlier. Since x ∈ Lω, then x ∈C ∩Lω = 0. Therefore, NL (K )∩Lω = 0, which is

a contradiction. Hence, K =NL (K ); and K is a Cartan subalgebra of L .

By Theorem 3.2.10 of [22], all complements of Lω are conjugates under automorphisms

of L of the form I + La for some a ∈ L .

Although Theorem 3.3.9 begins with the assumption that L is a complemented Leibniz

algebra, this is not a necessary condition as long as L is solvable and Lω is abelian. A similar

version of the following corollary was proved for Lie algebras by Stitzinger in [17].

Corollary 3.3.10. If L is a solvable Leibniz algebra such that Lω is abelian, then Lω is

complemented in L by a Cartan subalgebra of L. Furthermore, the complements of Lω

are precisely the Cartan subalgebras of L; and all complements of Lω are conjugate under

automorphisms of L of the form I + La for some a ∈ L .

Proof. These results follow directly from the proof of Theorem 3.3.9.

Proposition 3.3.11. If L is a complemented Leibniz algebra and C is a Cartan subalgebra

of L, then Lω = [C , Lω].

Proof. Let L be a complemented Leibniz algebra and C be a Cartan subalgebra of L . By

definition, Lω = [L , Lω]. Since Lω is complemented by a Cartan algebra, for example C , in L

by Theorem 3.3.9, then [L , Lω]⊆ [C , Lω]+[Lω, Lω]. Now, Lω is abelian by Lemma 3.3.6; thus,

[Lω, Lω] = 0. Furthermore, since Lω is an ideal of L , then [C , Lω]⊆ Lω. Thus, the following

progression holds:

Lω = [L , Lω]⊆ [C , Lω] + [Lω, Lω] = [C , Lω]⊆ Lω.
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Therefore, Lω = [C , Lω].

For a solvable, complemented Leibniz algebra L , we now define (Lω) j = ((Lω) j−1)ω for

j ∈Z>1 with (Lω)1 = Lω.

Lemma 3.3.12. If L is a complemented Leibniz algebra, then (Lω) j = L ( j ) for each j ∈N.

Proof. Let L be a complemented Leibniz algebra. By Proposition 3.3.7, we have (Lω)1 =

Lω = L 2 = L (1). Since (Lω)1 is an ideal of L , then (Lω)1 is a complemented Leibniz algebra by

Theorem 3.2.9. Using the information from the previous step along with Proposition 3.3.7

once again, we achieve the following result:

(Lω)2 = ((Lω)1)ω = ((Lω)1)2 = [(Lω)1, (Lω)1] = [L (1), L (1)] = L (2).

Since (Lω)2 = L (2) is an ideal of (Lω)1 = L (1), then (Lω)2 is also a complemented Leibniz

algebra by Theorem 3.2.9. Repeating this procedure allows us to determine that (Lω) j = L ( j )

for each j ∈N.

If a Leibniz algebra L is solvable, then there exists a smallest n ∈N such that (Lω)n = 0.

The lemma below shows that for complemented Leibniz algebras, we have n = 2.

Lemma 3.3.13. If L is a complemented Leibniz algebra, then (Lω)2 = 0.

Proof. Let L be a complemented Leibniz algebra. Then, Lω is abelian by Lemma 3.3.6.

Furthermore, Lω is a complemented Leibniz algebra by Theorem 3.2.9. Using Proposition

3.3.7, the following equation holds:

(Lω)2 = ((Lω)1)ω = ((Lω)1)2 = [(Lω)1, (Lω)1] = [Lω, Lω] = 0.
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Definition 3.3.14. The derived length of a solvable Leibniz algebra L with dimension

n ≥ 1 is the smallest k ∈N such that L (k ) = 0 but L (k−1) 6= 0.

Theorem 3.3.15. If L is a complemented Leibniz algebra, then its derived length is 2.

Proof. This result follows directly from Lemma 3.3.12 and Lemma 3.3.13.

Theorem 3.3.16. If L is a complemented Leibniz algebra, then each non-zero member of

the derived series is complemented by a Cartan subalgebra of L .

Proof. Let L be complemented Leibniz algebra. By Theorem 3.3.15, the only proper non-

zero member of the derived series of L is L (1). Since L (1) = Lω by Lemma 3.3.12, then the

result follows by Theorem 3.3.9.

The converse of Theorem 3.3.16 is not necessarily true as evidenced in Corollary 3.3.10

and shown in the Lie algebra example below.

Example 3.3.17. Let H be the 3-dimensional Heisenberg Lie algebra with basis elements

{x , y , z } over a field F where [x , y ] = z , and [y , z ] = [x , z ] = 0. Also, let D be defined as

the derivation with D (x ) = 0, D (y ) = y , and D (z ) = z . Now, construct the Lie algebra L as

the semi-direct sum of H and 〈D 〉 so that L =H õ 〈D 〉. In this case, Lω = L (1) = 〈y , z 〉 and

L (1) is complemented by the Cartan subalgebra C = 〈x , D 〉. Also, (Lω)2 = L (2) = 0. Now, the

subalgebra 〈z 〉 of H does not have a complement in H ; thus, H is not a complemented Lie

algebra. Therefore, L is not a complemented Lie algebra, despite the fact that each member

of the derived series of L has a complement in L .

Corollary 3.3.18. If L is a complemented Leibniz algebra, then each member of the derived

series of L is a complemented Leibniz algebra.

Proof. This result follows directly from Theorem 3.2.9.
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CHAPTER

4

TOTALLY NON-SATURATED

FORMATIONS

4.1 The Formation of Complemented Leibniz Algebras

Throughout this chapter, we will once again assume that all Leibniz algebras discussed are

solvable and finite dimensional over a field F. In this section, we will show that the class

of all solvable, complemented Leibniz algebras is a formation. This particular formation

will prove to hold some interesting properties which will be examined later in the chapter.

We will denote a general formation asF and the class of solvable, complemented Leibniz
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algebras asC .

Definition 4.1.1. Let L be a Leibniz algebra with subalgebras A, B , C in L . L is modular if

A ⊂C , then 〈A, B 〉∩C = 〈A, B ∩C 〉.

Since all of the Leibniz algebras discussed in this section are modular, the definition

above will be useful in our investigation ofC and particularly in the lemma below. In [18],

Towers proved the following lemma for Lie algebras, but the results also hold for Leibniz

algebras.

Lemma 4.1.2. Let L be a solvable Leibniz algebra. L ∈C if and only if L contains a minimal

ideal M such that M has a complement N inC .

Proof. First, suppose that L ∈C , and let M be a minimal ideal of L . By Lemma 3.2.8, M is

complemented by a subalgebra N in L . Since L is solvable, N must also be solvable; and N

is a complemented Leibniz algebra by Lemma 3.2.6. Therefore, N ∈C .

Conversely, suppose that L contains a minimal ideal M where M is complemented by

a subalgebra N of L and N ∈ C . Let H be a subalgebra of L . We must find a subalgebra

K in L that complements H . For H +M in L , there exists a subalgebra G with M ⊂G ⊂ L

such that L = 〈(H +M ),G 〉 and (H +M )∩G =M , because L/M ∼= N is complemented.

Thus, M = (H +M )∩G = (H ∩G ) +M , because M ⊂ G . Therefore, H ∩G ⊆ M . Hence,

H ∩G ⊆H ∩M ⊆H ∩G ; and H ∩M =H ∩G . Consequently, since L =M +N and M ⊂G ,

then G = L ∩G = 〈M , N 〉∩G = 〈M , (N ∩G )〉, because L is modular. If H ∩M = 0, then define

K =M + (N ∩G ). Since H ∩G =H ∩M , we have

H ∩K =H ∩ [M + (N ∩G )] =H ∩ [(M +N )∩G ] =H ∩G ∩ (M +N ) =H ∩M ∩ (M +N ) = 0.

Furthermore, because G = 〈M , (N ∩G )〉, we have
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〈H , K 〉= 〈H , M , (N ∩G )〉= 〈H , M ,G 〉= 〈(H +M ),G 〉= L .

If H ∩M 6= 0, then we can define K =N ∩G . Since H ∩G =H ∩M , we have

H ∩K =H ∩ (N ∩G ) = (H ∩G )∩N = (H ∩M )∩N =H ∩ (M ∩N ) = 0.

We claim that L = 〈H , K 〉. Suppose that M 6⊆ 〈H , K 〉. Take a maximal subalgebra S of L such

that 〈H , K 〉 ⊆ S . Now, because G = 〈M , (N ∩G )〉, we have

〈H , K , M 〉= 〈H , (N ∩G ), M 〉= 〈H , M ,G 〉= 〈(H +M ),G 〉= L .

Thus, we know that M 6⊆ S ; otherwise, 〈H , K , M 〉 ⊆ S . Hence, S+M = L and S∩M = 0. Since,

H ⊆ S and H ∩M 6= 0, we have encountered a contradiction. Therefore, M ⊆ 〈H , K 〉 and

〈H , K 〉= 〈H , K , M 〉= 〈H , (N ∩G ), M 〉= 〈H , M ,G 〉= 〈(H +M ),G 〉= L .

Hence, K is the complement of H and L ∈C .

Proposition 4.1.3. Let L be a solvable Leibniz algebra with a minimal ideal M . Either

M ⊆Φ(L ), or M has a complement in L.

Proof. If M has a complement in L , then its complement must be a maximal subalgebra

of L . If M does not have a complement in L , then it must be contained in all maximal

subalgebras of L . Thus, M ⊆Φ(L ).

Definition 4.1.4. A factor algebra A/B is a chief factor of a Leibniz algebra L if B is an

ideal of L and A/B is a minimal ideal of L/B .

Definition 4.1.5. Let L be a Leibniz algebra. A finite increasing chain of ideals of L , from 0

to L , is called a chief series for L if each ideal is maximal in the next.

Theorem 4.1.6. A Leibniz algebra L ∈C if and only if L has a chief series all of whose factors

have a complement in L.
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Proof. Suppose that L ∈ C . By Theorem 3.2.7, every homomorphic image of L is also in

C . Since each chief factor of L is a minimal ideal of a homomorphic image of L , then by

Lemma 3.2.8, each chief factor of L has complement in L .

Conversely, suppose that L has a chief series all of whose factors have a complement

in L . We will consider L to be a minimal counterexample which is not in C . Let M be

a minimal ideal of L ; thus, M is a chief factor of L , and M has a complement N in L .

Therefore, N ∼= L/M . If each chief factor of L has complement in L , then each will also

have a complement in L/M . Also, since N has a smaller dimension than L , then N ∈C by

induction. By Lemma 4.1.2, L ∈C , which is a contradiction. Hence, the result holds.

Theorem 4.1.7. C is a formation.

Proof. By Theorem 3.2.7,C is closed under homomorphic images. Suppose that H , K Ã L

such that L/H , L/K ∈C , but L/(H ∩K ) 6∈ C . Without loss of generality, we may assume that

H ∩K = 0 so that the supposition translates into the following: L/(H ∩K ) = L/0= L 6∈ C ,

where L is being considered as a minimal counterexample. Now, choose a minimal ideal M

of L such that 0⊂M ⊂H . Thus, M =H ∩M = (H ∩M )+ (H ∩K ) =H ∩ (M +K ). Also, since

M ∩K = 0, then L/(M +K ) is a homomorphic image of L/K ; and L/(M +K ) ∈C by Theorem

3.2.7. Therefore, L/M ∈C by induction; because L/M has a smaller dimension than L , and

L was our minimal counterexample. If M does not have a complement in L , then M ⊆Φ(L )

by Proposition 4.1.3. Also, (M +K )/K ⊆Φ(L/K ) = 0, because L/K ∈C . Hence, M ⊆ K and

M ⊆ (H ∩K ) = 0, which is a contradiction. Therefore, M has a complement in L ; and since

L/M ∈C , then L ∈C by Lemma 4.1.2.
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4.2 F -residuals and C (F )

Although we have already discussed several examples of formations, this section will

broaden our understanding of formations by introducing a method that allows us to create

new formations from familiar ones.

Definition 4.2.1. LetF be a formation. TheF -residual, LF , of a Leibniz algebra L is the

minimal ideal of L such that L/LF ∈F .

In the following four examples, we will letF beN , the formation of nilpotent Leibniz

algebras.

Example 4.2.2. Consider the cyclic Leibniz algebra L = span{x , x 2, x 3} generated by x

with non-zero products [x , x ] = x 2, [x , x 2] = x 3, and [x , x 3] = x 3. Then, LN = span{x 3}.

Example 4.2.3. Similarly, let L be the 2-dimensional Leibniz algebra L = span{x , y }with

the non-zero product [x , y ] = y . Then, LN = span{y }.

Example 4.2.4. Let L be a solvable, non-nilpotent Leibniz algebra. Thus, LN = Lω, the last

term of the lower central series of L .

Example 4.2.5. Let L be a nilpotent Leibniz algebra. In this trivial case, LN = 0.

Definition 4.2.6. LetF be a formation. C (F ) is the collection of all Leibniz algebras for

which theF -residual contains only chief factors that have complements in the Leibniz

algebra.

Example 4.2.7. LetF = {0}. Then L{0} = L for every general Leibniz algebra L . In this case,

C ({0}) =C by Theorem 4.1.6.

Proposition 4.2.8. LetF andF ′ be any two formations. IfF ⊆F ′, then C (F )⊆C (F ′).
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Proof. Let L be a Leibniz algebra, and let L ∈C (F ). Then, all chief factors of L below LF

have complements in L . SinceF ⊆F ′, then LF ′ ⊆ LF . Thus, all chief factors of L below

LF ′ have complements in L and L ∈C (F ′). Therefore, C (F )⊆C (F ′).

Proposition 4.2.9. IfF is a formation, thenF ⊆C (F ).

Proof. Let L be a Leibniz algebra. If L ∈ F , then LF = 0. Hence, L ∈ C (F ); and F ⊆

C (F ).

Lemma 4.2.10. Let L be a Leibniz algebra and F be a formation. If L ∈ C (F ), then all

homomorphic images of L are in C (F ).

Proof. Let L ∈ C (F ). Then, all chief factors of L below LF have complements in L . Let

N Ã L , and consider the homomorphic image L/N of L . Since the ideals of L/N are in a

one-to-one correspondence with the ideals of L containing N , then homomorphisms will

preserve theF -residual property and the property of a chief factor having a complement

in L . Thus, L/N ∈C (F ); and the result holds.

Lemma 4.2.11. Let L be a Leibniz algebra andF be a formation. If H , K Ã L; L/H ∈C (F );

and L/K ∈C (F ), then L/(H ∩K ) ∈C (F ).

Proof. Suppose L/(H ∩K ) 6∈C (F ). Without loss of generality, we may assume that H ∩K = 0

so that our supposition translates into L/(H ∩ K ) = L/0 = L 6∈ C (F ) where L is being

considered as a minimal counterexample. We must show that L ∈C (F ), meaning that all

chief factors of L below LF have complements in L . Obviously, if LF = 0, then L ∈C (F );

therefore, let us assume that LF 6= 0.

First, we consider the case when LF ∩H = 0. If this is true, then we may replace K

with LF in the suppositions above; because L/LF ∈F ⊆C (F ) by Proposition 4.2.9. Now,
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there must exist a minimal non-zero ideal M of L such that M ⊆ LF . If M does not have a

complement in L , then M ⊆Φ(L ) by Proposition 4.1.3; thus, M ⊆ (Φ(L )∩ LF ). Hence,

M /H = (M +H )/H ⊆ (Φ(L/H )∩ (L/H )F ) = 0,

because L/H ∈ C (F ) and by Proposition 4.1.3. Since M /H = 0, then M ⊆ H ; thus, M ⊆

(H ∩ LF ) = 0. We have arrived at a contradiction, because M was defined as a minimal

non-zero ideal of L in LF . Therefore, M has a complement in L . Now,

M =M +0=M + (LF ∩H ) = LF ∩ (M +H ).

Since L/(M +H ) is a homomorphic image of L/H and L/H ∈C (F ), then L/(M +H ) ∈C (F )

by Lemma 4.2.10. Thus, L/(LF ∩ (M +H )) = L/M ∈C (F ) by induction, and all chief factors

of L/M below (L/M )F have complements in L/M . Hence, all chief factors in L between M

and LF have a complement in L ; and, thus, L ∈C (F ), which is a contradiction. Therefore,

the result holds for this case.

Now, we consider the case when LF∩H 6= 0. Let M be a minimal non-zero ideal of L such

that M ⊆ (LF ∩H ). If M does not have a complement in L , then M ⊆Φ(L ) by Proposition

4.1.3; thus, M ⊆ (Φ(L )∩ LF ). Since M ∩K = 0, then

M /K = (M +K )/K ⊆ (Φ(L/K )∩ (L/K )F ) = 0

because L/K ∈ C (F ) and by Proposition 4.1.3. Since M /K = 0, then M ⊆ K ; thus, M ⊆

(H ∩K ) = 0. Once again, we have arrived at a contradiction; because M was defined as a

minimal non-zero ideal of L contained in LF ∩H . Therefore, M has a complement in L .

Furthermore,

M =M +0=M + (H ∩K ) =H ∩ (M +K ).

Since L/(M +K ) is a homomorphic image of L/K and L/K ∈C (F ), then L/(M +K ) ∈C (F )

by Lemma 4.2.10. Thus, L/(H ∩ (M +K )) = L/M ∈C (F ) by induction, and all chief factors
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of L/M below (L/M )F have complements in L/M . Hence, all chief factors in L between

M and LF have a complement in L ; and, thus, L ∈C (F ). Once again, we’ve encountered a

contradiction; and the result also holds for this case.

Theorem 4.2.12. IfF is a formation, then C (F ) is also a formation.

Proof. This result follows directly from Lemma 4.2.10 and Lemma 4.2.11.

Theorem 4.2.13. LetF be a formation. Then, C (F ) =C (C (F )).

Proof. Since C (F ) is a formation by Theorem 4.2.12, then C (F )⊆C (C (F )) by Proposition

4.2.9. Now, let L ∈C (C (F )). Thus, all chief factors below LC (F ) have complements in L and

L/LC (F ) ∈C (F ). SinceF ⊆C (F ) by Proposition 4.2.9, then LC (F ) ⊆ LF . Because L/LC (F ) ∈

C (F ), then, by definition, all chief factors below (L/LC (F ))F have complements in L/LC (F )

and, thus, in L . Hence, all chief factors in L between LC (F ) and LF have complements in L .

Thus, L ∈C (F ). Therefore, C (C (F ))⊆C (F ) and C (F ) =C (C (F )).

4.3 Totally Non-saturated Formations

The following definition, which was introduced in [23], will drive the remainder of our

discussion on formations.

Definition 4.3.1. A formationF is totally non-saturated if either of the following equiva-

lent statements is true:

1. If a solvable Leibniz algebra L 6∈ F and L has a minimal ideal M such that L/M ∈F ,

then M ⊆Φ(L ).

2. Suppose L is a solvable Leibniz algebra and M is any minimal ideal of L that has a

complement in L . If L/M ∈F , then L ∈F .
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The definition above introduces a third classification category for formations of Leibniz

algebras. When operating within the general context of all Leibniz algebras, we may now

classify a formation as either saturated, non-saturated, or totally non-saturated. Ultimately,

as its name suggests, totally non-saturated formations may be considered to be as far from

saturated as possible within the setting of all Leibniz algebras.

It is important to notice the distinguishing features of each formation category as

we contrast the definition above with the saturated formation definition from Chapter 2.

First, note that totally non-saturated formations are comprised of only solvable Leibniz

algebras, whereas saturated and non-saturated formations may include Leibniz algebras

which are not solvable as seen in Example 2.2.10. This restricted environment for totally

non-saturated formations produces some rather interesting results. For example, while

discussing the formation of solvable Leibniz algebrasS in Chapter 2, we determined that

S was a saturated formation; however, we will later discover that this particular formation

of algebras can be given a different classification when the context is limited to only the

solvable Leibniz algebras.

Another important difference can be found in the behavior of the minimal ideal of the

Leibniz algebra being considered. For totally non-saturated formations, the minimal ideal

has a complement in the solvable Leibniz algebra; however, for saturated formations, the

minimal ideal is contained in the Frattini ideal of the Leibniz algebra. This dichotomy was

also encountered in Proposition 4.1.3, which states that for a solvable Leibniz algebra L ,

a minimal ideal of L must either be contained in Φ(L ) or have a complement in L . This

proposition effectively divides formations of Leibniz algebras into either saturated or totally

non-saturated cases when operating exclusively within the context of solvable Leibniz

algebras. Therefore, in this restricted setting, there is no distinction between non-saturated

and totally non-saturated formations.
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Theorem 4.3.2. F is a totally non-saturated formation if and only ifF =C (F ).

Proof. Assume thatF is a totally non-saturated formation and let L ∈C (F ). We need to

show that L ∈F , meaning that LF = 0. Suppose LF 6= 0. Select an ideal B of L such that

LF/B is minimal in L/B ; thus, LF/B is a chief factor of L . Since L ∈C (F ), then LF/B has a

complement in L . By definition, L/LF ∈F ; but L/B 6∈ F . SinceF is totally non-saturated,

then LF/B should be contained in Φ(L ); however, it has a complement in L . By Proposition

4.1.3, we have arrived at a contradiction. Therefore, LF = 0, L ∈ F , and C (F ) ⊆ F . By

Proposition 4.2.9,F ⊆C (F ); thus,F =C (F ).

Now, assume thatF =C (F ). Suppose thatF is not a totally non-saturated formation

and let L be a minimal counterexample where L 6∈ F , but L contains a minimal ideal M

such that L/M ∈F and M has a complement in L . Since LF is the smallest ideal of L such

that L/LF ∈F , then LF =M . Because M was defined to be minimal in L , all chief factors

below M = LF have a complement in L . Thus, L ∈ C (F ) =F , which is a contradiction.

Therefore,F is a totally non-saturated formation.

Theorem 4.3.3. IfF is a formation, then C (F ) is a totally non-saturated formation.

Proof. LetF be a formation and suppose that C (F ) is not a totally non-saturated formation.

Now let L be a minimal counterexample where L 6∈C (F ), but L contains a minimal ideal M

such that L/M ∈C (F ) and M has a complement in L . Since LC (F ) is the smallest ideal of L

such that L/LC (F ) ∈C (F ), then LC (F ) =M . Because M was defined to be minimal in L , all

chief factors below M = LC (F ) have a complement in L . Hence, L ∈C (C (F )). By Theorem

4.2.13, C (F ) = C (C (F )); thus, L ∈ C (F ), which is a contradiction. Therefore, C (F ) is a

totally non-saturation formation.

Definition 4.3.4. The socle of a Leibniz algebra L , Soc(L ), is the union of all minimal ideals

37



of L and the direct sum of some of them.

Definition 4.3.5. The abelian socle of a Leibniz algebra L , Asoc(L), is the union of all

abelian minimal ideals of L and the direct sum of some of them.

The following lemma was proved in [6] using the definitions above.

Lemma 4.3.6. If L is a Leibniz algebra such that Φ(L ) = 0, then Asoc(L) = nil(L).

Theorem 4.3.7. Let L be a Leibniz algebra and F be a formation. F is a totally non-

saturated formation if and only if L/nil (L ) ∈F implies L/Φ(L ) ∈F .

Proof. Assume thatF is a totally non-saturated formation and suppose that L is a minimal

counterexample where L/nil (L ) ∈F but L/Φ(L ) 6∈ F . Without loss of generality, we may let

Φ(L ) = 0 so that we now have L 6∈ F . Since LF is the minimal ideal of L such that L/LF ∈F ,

then LF ⊆ nil (L ). By Lemma 4.3.6, nil (L ) is the direct sum of minimal abelian ideals of L ;

and each of those ideals is a complemented Leibniz algebra by Proposition 3.2.5. Hence,

L ∈C (F ). By Theorem 4.3.2,F =C (F ); thus, L ∈F , which is a contradiction. Therefore,

the result holds.

Conversely, suppose that F is not a totally non-saturated formation and let L be a

minimal counterexample where L 6∈ F , but L contains a minimal ideal M such that L/M ∈

F and M has a complement in L . As in the proof of Theorem 4.3.2, we have LF =M . Since

M is a minimal ideal of a solvable Leibniz algebra, then M is abelian and, thus, nilpotent.

Also, by Proposition 2.2.4, Φ(L ) is nilpotent; hence, M +Φ(L )⊆ nil (L ). Furthermore, since

L/(M +Φ(L )) is a homomorphic image of L/M , then L/(M +Φ(L )) ∈F . We now also have

L/nil (L ) ∈F , which implies that L/Φ(L ) ∈F by assumption. Now, L/(M ∩Φ(L )) ∈F . Since

M has a complement in L , then M ∩Φ(L ) = 0 by Proposition 4.1.3. Therefore, L ∈F , which

is a contradiction; and the result holds.
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Theorem 4.3.8. Let L be a Leibniz algebra andF be a totally non-saturated formation. LF

is nilpotent if and only if LF ⊆Φ(L ).

Proof. Assume thatF is a totally non-saturated formation and suppose that LF ⊆Φ(L ) for

some Leibniz algebra L . Since Φ(L ) is nilpotent by Proposition 2.2.4, then LF is nilpotent;

and the result holds.

Conversely, assume that LF is nilpotent for some Leibniz algebra L ; thus, we have LF ⊆

nil (L ). Now, suppose that LF 6⊆Φ(L ). By definition, L/LF ∈F . Since Φ(L ) is also nilpotent

by Proposition 2.2.4, then Φ(L )⊆ nil (L ). Therefore, LF +Φ(L )⊆ nil (L ). Since L/(LF +Φ(L ))

is a homomorphic image of L/LF , then L/(LF +Φ(L )) ∈ F . Furthermore, L/nil (L ) ∈ F ;

thus, L/Φ(L ) ∈F by Theorem 4.3.7. Since LF is the smallest ideal of L such that L/LF ∈F ,

then LF ⊆Φ(L ), which is a contradiction. Therefore, LF ⊆Φ(L ); and the result holds.

At this point, we have only considered totally non-saturated formations in a general

sense. We will now narrow our focus to examine and compare specific cases of totally

non-saturated formations. Our investigation will begin and end withC , the formation of

solvable, complemented Leibniz algebras.

Theorem 4.3.9. C is a totally non-saturated formation.

Proof. SupposeC is not a totally non-saturated formation. Let L be a minimal counterex-

ample where L 6∈ C , but L contains a minimal ideal M such that L/M ∈ C and M has a

complement in L . Thus, there exists a subalgebra N ∈ L such that L/M ∼=N and N ∈C . By

Lemma 4.1.2, we have arrived at a contradiction. Therefore,C is a totally non-saturated

formation.

Lemma 4.3.10. The intersection of totally non-saturated formations is also a totally non-

saturated formation.
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Proof. Let {Fi } be a collection of totally non-saturated formations withF =∩Fi and let L

be a Leibniz algebra. If L ∈F and M is a homomorphic image of L , then L ∈Fi forces M ∈

Fi for all i . Hence, M ∈F . Next, consider H , K Ã L such that L/H , L/K ∈F . This forces

L/H , L/K ∈Fi for all i . Therefore, L/(H ∩K ) ∈Fi for all i , and L/(H ∩K ) ∈F . We have

shown thatF is a formation, but we must still show thatF is totally non-saturated. Since

eachFi is totally non-saturated, thenFi =C (Fi ) for each i by Theorem 4.3.2. Furthermore,

∩Fi =∩C (Fi ). Also, sinceF ⊆Fi for each i , then C (F )⊆C (Fi ) for each i by Proposition

4.2.8. Now, C (F )⊆∩C (Fi ) =∩Fi =F ⊆C (F ) by Proposition 4.2.9. Therefore,F =C (F );

andF is a totally non-saturated formation by Theorem 4.3.2.

Lemma 4.3.11. Each formationF is contained in a unique minimal totally non-saturated

formation, C (F ).

Proof. We already know that F ⊆ C (F ) by Proposition 4.2.9 and that C (F ) is a totally

non-saturated formation by Theorem 4.3.3. Now, suppose thatF is contained in a minimal

totally non-saturated formationM . SinceF ⊆M , then C (F )⊆C (M ) by Proposition 4.2.8.

Also,M ⊆C (F ), becauseM is minimal. Moreover, sinceM is totally non-saturated, then

C (M ) =M by Theorem 4.3.2. Therefore,F ⊆M ⊆C (F )⊆C (M ) =M andM =C (F ).

In order to prove uniqueness, allow F to be contained in another minimal totally

non-saturated formationM ′. Following the same line of reasoning given above, we have

F ⊆M ′ ⊆C (F )⊆C (M ′) =M ′. Therefore,M ′ =C (F ) =M ; and the result holds.

Example 4.3.12. Recall the following symbols used for the classical formations of Leibniz

algebras discussed in Chapter 2.

A = the formation of abelian Leibniz algebras

N = the formation of nilpotent Leibniz algebras
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U = the formation of supersolvable Leibniz algebras

S = the formation of solvable Leibniz algebras

Also, recall Example 4.2.7 whereF = {0}. Because L{0} = L for every Leibniz algebra L , we

determined that C ({0}) =C . Using Proposition 4.2.8 and Lemma 4.3.11, we can order the to-

tally non-saturated formations associated with each of the classical formations listed above.

Since {0} ⊆A ⊆N ⊆U ⊆S , thenC = C ({0}) ⊆ C (A ) ⊆ C (N ) ⊆ C (U ) ⊆ C (S ). Further-

more, we know that {0} ⊂A ⊂N ⊂U ⊂S . The following examples investigate whether or

not proper subsets may be used when ordering the totally non-saturated formations above.

Example 4.3.13. LetF =S , the formation of solvable Leibniz algebras. By Proposition

4.2.9,S ⊆C (S ); and by Theorem 4.3.3, C (S ) is a totally non-saturated formation. Since,

by definition, totally non-saturated formations are comprised of only solvable Leibniz

algebras, then C (S )⊆S and, thus, C (S ) =S . Hence,S is trivially a totally non-saturated

formation. Under these circumstances, we have LS = 0 for each L considered. Furthermore,

C ⊂S =C (S ).

It is fascinating to note that in Chapter 2,S was classified as a saturated formation while

operating within the general context of all Leibniz algebras; however, within the restricted

setting of only the solvable Leibniz algebras,S may be classified as a totally non-saturated

formation.

Example 4.3.14. LetF =A , the formation of abelian Leibniz algebras. By Proposition

3.2.5,A ⊆ C . Also, by Proposition 4.2.8, we have C ({0} = C ⊆ C (A ). Since C (A ) is the

unique minimal totally non-saturated formation containingA by Lemma 4.3.11, then

C (A )⊆C . Therefore,A ⊆C ⊆C (A )⊆C . Hence, we have shown thatC =C (A ).
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Example 4.3.15. LetF =N , the formation of all nilpotent Leibniz algebras, and consider

the following set of circumstances. Let V be a vector space with p basis elements e1, ..., ep

over a field F of characteristic p where p is prime. Also, let H be a 3-dimensional Lie

algebra of linear transformations on V with basis elements {x , y , z } and the following left

multiplications:

x (e j ) = e j+1 with subscripts mod p ,

y (e j ) = ( j +1)e j−1 with subscripts mod p ,

z (e j ) = e j .

Within this context, we also have the following:

[y , x ](e j ) = (y x − x y )(e j ) = y x (e j )− x y (e j ) = e j ,

[y , z ](e j ) = (y z − z y )(e j ) = y z (e j )− z y (e j ) = 0,

[z , x ](e j ) = (z x − x z )(e j ) = z x (e j )− x z (e j ) = 0.

Thus, [y , x ] = z . Also, let all right multiplications V H = 0. Now, we define L = V õH

with [h , v ] = h (v ). Here, we have LN = V . Since V is a minimal ideal of L , and V has a

complement H in L , then L ∈ C (N ). Now, consider the ideal 〈z 〉õV of L . Since 〈z 〉õV

doesn’t have a complement in L , then L 6∈ C by Lemma 3.2.8. Therefore, we have shown

thatC ⊂C (N ).

Example 4.3.16. Once again, let F = N . Now, consider the solvable Leibniz algebra

L = 〈x , y , z 〉with non-zero products [x , y ] = y + z and [x , z ] = z . Here, we have LN = 〈y , z 〉.

Now, the subalgebra 〈y + z 〉 does not have a complement in L ; thus, L 6∈C (N ). Therefore,

we have shown that C (N )⊂C (S ) =S .

Based on the results from the examples above, we can conclude the following:
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C =C (A )⊂C (N )⊆C (U )⊆C (S ) =S .

Although we have shown that the formation of solvable, complemented Leibniz algebras

C is the smallest of the totally non-saturated formations considered above, its position

among all totally non-saturated formations is much more remarkable.

Theorem 4.3.17. C is the unique smallest totally non-saturated formation.

Proof. Lemma 4.3.10 and Lemma 4.3.11 together confirm the existence of a unique smallest

totally non-saturated formation. In order to show that this formation is necessarily C ,

we must recall the trivial formation F = {0} from Example 4.2.7. Here, we found that

C (F ) = C ({0}) =C . Now, letF ′ be a general totally non-saturated formation. Of course,

{0} = F ⊆ F ′; thus, C (F ) ⊆ C (F ′) by Proposition 4.2.8. Also, since F ′ is totally non-

saturated, then C (F ′) =F ′. Hence,C =C (F )⊆C (F ′) =F ′; thus,C is contained in every

totally non-saturated formation. Therefore, C is contained in the intersection of every

totally non-saturated formation. SinceC itself is also a totally non-saturated formation by

Theorem 4.3.9, thenC is the unique smallest totally non-saturated formation.
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[16] A.R. McAlister. Frattini Properties of Leibniz Algebras, PhD Dissertation, North Carolina
State University (2015).

44



[17] E.L. Stitzinger. Theorems on Cartan Subalgebras Like Some on Carter Subgroups,
Transactions of the American Mathematical Society, 159, 307-315 (1971).

[18] D.A. Towers. On Complemented Lie Algebras, Journal of the London Mathematical
Society, 22(2), 63-65 (1980).

[19] ———. Elementary Lie Algebras, Journal of the London Mathematical Society, 7(2),
295-302 (1973).

[20] ———. Lie Algebras With Nilpotent Length Greater Than That of Each of Their Subal-
gebras, Algebras and Representation Theory, 20(3), 735-750 (2017).

[21] B.M. Turner. Some Criteria for Solvable and Supersolvable Leibniz Algebras, PhD
Dissertation, North Carolina State University (2016).

[22] A.W. White. Conjugacy and Other Results in Leibniz Algebras, PhD Dissertation, North
Carolina State University (2017).

[23] N. Yaemsiri. The Structure of Solvable K-Lie Algebras, PhD Dissertation, North Carolina
State University (1988).

45


	Introduction
	A Brief History
	Leibniz Algebras
	Overview

	Formations
	Introduction
	Saturated Formations

	Complemented Leibniz Algebras
	Introduction
	Complemented Leibniz Algebras
	Cartan Subalgebras

	Totally Non-saturated Formations
	The Formation of Complemented Leibniz Algebras
	F-residuals and C(F)
	Totally Non-saturated Formations

	References

