
ABSTRACT

HOUGH, ZACHARY CLARK. µ-bases and Algebraic Moving Frames: Theory and Computation.
(Under the direction of Hoon Hong and Irina A. Kogan.)

We establish new results on the theory and computation ofµ-bases and algebraic moving frames

for a vector of univariate polynomials, along with several related observations. First, we develop a

new algorithm for computing aµ-basis of the syzygy module of n polynomials in one variable over an

arbitrary fieldK. The algorithm is conceptually different from the previously-developed algorithms

by Cox, Sederberg, Chen, Zheng, and Wang for n = 3, and by Song and Goldman for an arbitrary

n . The algorithm involves computing a “partial” reduced row-echelon form of a (2d +1)×n (d +1)

matrix overK, where d is the maximum degree of the input polynomials. The proof of the algorithm

is based on standard linear algebra and is completely self-contained. The proof includes a proof

of the existence of the µ-basis and as a consequence provides an alternative proof of the freeness

of the syzygy module. The theoretical (worst case asymptotic) computational complexity of the

algorithm is O (d 2n +d 3+n 2). We have implemented this algorithm (HHK) and the one developed

by Song and Goldman (SG). Experiments on random inputs indicate that SG is faster than HHK

when d is sufficiently large for a fixed n , and that HHK is faster than SG when n is sufficiently large

for a fixed d . We also develop a generalization of the HHK algorithm to compute minimal bases for

the kernels of m ×n polynomial matrices.

We also characterize a relationship between µ-bases and Gröbner bases for the syzygy module

of a vector of n univariate polynomials. Roughly put, we show that “every µ-basis is a minimal TOP

Gröbner basis” and that “every minimal TOP Gröbner basis is a µ-basis.” Precisely stated, we prove

that, for U ⊂K[s ]n , the following two statements are equivalent:

(A) U is a µ-basis of syz(a)

(B ) U is a minimal TOPB -Gröbner basis of syz(a) for some ordered basis B ofKn

where TOPB stands for the TOP ordering among the monomials defined by B .

Furthermore, we give an example showing that not everyµ-basis is a TOPE -Gröbner basis, where

E stands for the standard basis ofKn . We prove that the µ-basis produced by the HHK algorithm

is the reduced TOPE -Gröbner basis. We also give an example showing that not every minimal

POTB -Gröbner basis is a µ-basis.

We then turn our attention to algebraic moving frames. A moving frame at a rational curve is

a basis of vectors moving along the curve. When the rational curve is given parametrically by a

row vector a of univariate polynomials, a moving frame with important algebraic properties can be

defined by the columns of an invertible polynomial matrix P , such that aP = [gcd(a),0, . . . ,0]. We

call such a matrix an algebraic moving frame. A degree-optimal moving frame has column-wise

minimal degree, where the degree of a column is defined to be the maximum of the degrees of its

components. Algebraic moving frames are closely related to the univariate versions of the celebrated



Quillen-Suslin problem, effective Nullstellensatz problem, and syzygy module problem. The focus

of these problems, however, is not degree optimality. By contrast, we develop the theory of and an

efficient algorithm for constructing a degree-optimal moving frame. We also establish several new

theoretical results concerning the degrees of an optimal moving frame and its components.

We develop a new degree-optimal moving frame (OMF) algorithm for n relatively prime poly-

nomials (i.e. gcd(a) = 1). We develop a modification for the case when gcd(a) 6= 1. In addition, we

show that any deterministic algorithm for computing a degree-optimal algebraic moving frame can

be augmented so that it assigns a degree-optimal moving frame in a G Ln (K)-equivariant manner.

Equivariance is a crucial property of classical geometric moving frames. We then compare our

algorithm with other possible approaches, based on already available algorithms, and show that

it is more efficient. We examine other algorithms for computing algebraic moving frames that are

not-necessarily-optimal. We also develop two new algorithms for computing moving frames based

on Gröbner basis computations. One, using POT ordering, is not optimal, while the other, using

TOP ordering, is degree-optimal. We also generalize the OMF algorithm to handle matrix inputs.
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CHAPTER

1

INTRODUCTION

The concept of a µ-basis for a vector of polynomials first appeared in [Cox98b], along with an algo-

rithm for computing a µ-basis when the length of the input vector is three. Subsequent algorithms,

also for the case when the input length is three, appeared in [ZS01] and [CW02]. The first algorithm

for input vectors of arbitrary length appeared in [SG09]. These algorithms all require that the gcd of

the input vector be 1, and they are described in greater detail in Chapter 2. In this work, one of our

primary focuses is developing a new and alternative algorithm for computing µ-bases for vectors of

arbitrary length and arbitrary gcd. Let us now motivate this development.

Consider a vector a[s ] = [a1(s ), a2(s ), . . . , an (s )] of univariate polynomials over an arbitrary fieldK.

Such a vector will be our primary object of interest. Let n be the length of a, and let d be the degree of

a, by which we mean the maximum of the degrees of the component polynomials ai . It is well-known

that the syzygy module of a, consisting of linear relations overK[s ] among a1(s ), . . . , an (s ):

syz(a) = {h ∈K[s ]n |a1 h1+ · · ·+an hn = 0}

is free.1 This means that the syzygy module has a basis, and, in fact, infinitely many bases. Moreover, if

one views a as a parametric curve, then one can take a basis of syz(a) and use it as a set of moving lines

whose intersections trace out the curve. A µ-basis is a basis with particularly nice properties, which

make the problem of finding a µ-basis an important one to study. Namely, a µ-basis is a minimal-

degree basis of syzygies. Additional nice properties that µ-bases provide include point-wise linear

independence (i.e. linear independence at all s0 in the algebraic closureK) and independence of

1 Freeness of the syzygy module in the one-variable case can be deduced from the Hilbert Syzygy Theorem [Hil90]. In
the multivariable case, the syzygy module of a polynomial vector is not always free (see, for instance, [Cox98a]).
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leading vectors, among others. Furthermore,µ-bases have nice applications in geometric modelling.

In addition to giving one a means to represent a curve as described above, µ-bases also allow one to

classify curves (see [CI15]). Specifically, although a µ-basis is not unique, the degrees of the µ-basis

are unique, so one can partition the collection of µ-bases by degrees, which then induces a partition

on the collection of curves. A µ-basis also can be used to find the implicit equation of a curve, to

determine if and where two curves intersect, and to determine if a point lies on a curve, among

other applications. It is more computationally efficient to use µ-bases in these instances than other

bases of syzygies due to their minimal-degree property.

These applications and properties motivate the development of efficient algorithms for comput-

ing µ-bases. In this work, we develop a new algorithm for computing µ-bases for input vectors of

arbitrary length and arbitrary GCD. We now briefly describe the main ideas behind our algorithm.

It is well-known that the syzygy module of a, syz(a), is generated by the set syzd (a) of syzygies of

degree at most d = deg(a). The set syzd (a) is obviously aK-subspace ofK[s ]n . Using the standard

monomial basis, it is easy to see that syzd (a) is isomorphic to the kernel of a certain linear map

A :Kn (d+1)→K2d+1 (explicitly given by (3.7)). Now we come to the key idea: one can systematically

choose a suitable finite subset of the kernel of A so that the corresponding subset of syzd (a) forms a

µ-basis. We elaborate on how this is done. Recall that a column of a matrix is called non-pivotal

if it is either the first column and zero, or it is a linear combination of the previous columns. Now

we observe and prove a remarkable fact: the set of indices of non-pivotal columns of A splits into

exactly n −1 sets of modulo-n-equivalent integers. By taking the smallest representative in each set,

we obtain n −1 integers, which we call basic non-pivotal indices. The set of non-pivotal indices of A

is equal to the set of non-pivotal indices of its reduced row-echelon form E . From each non-pivotal

column of E , an element of ker(A) can easily be read off, that, in turn, gives rise to an element of

syz(a), which we call a row-echelon syzygy. We prove that the row-echelon syzygies corresponding to

the n −1 basic non-pivotal indices comprise a µ-basis. Thus, a µ-basis can be found by computing

the reduced row-echelon form of a single (2d +1)×n (d +1)matrix A overK. Actually, it is sufficient to

compute only a “partial” reduced row-echelon form containing only the basic non-pivotal columns

and the preceding pivotal columns.

Performance-wise, our algorithm compares favorably to existing approaches. We show that the

new algorithm has theoretical complexity O (d 2n +d 3 +n 2), assuming that the arithmetic takes

constant time (which is the case when the fieldK is finite). We have implemented our algorithm

(HHK), as well as Song and Goldman’s [SG09] algorithm (SG) in Maple [Ber15]. Experiments on

random inputs indicate that SG is faster than HHK when d is sufficiently large for a fixed n and that

HHK is faster than SG when n is sufficiently large for a fixed d .

The problem of computing a µ-basis also can be viewed as a particular case of the problem of

computing optimal-degree bases for the kernels of m ×n polynomial matrices (see for instance

Beelen [Bee87], Antoniou, Vardulakis, and Vologiannidis [Ant05], Zhou, Labahn, and Storjohann

[Zho12] and references therein). Such bases are called minimal bases. By generalizing the HHK

µ-basis algorithm described above, we develop a new algorithm for computing minimal bases.

2



The algorithm works for matrices of arbitrary size and rank, and as a by-product it can be used to

compute the rank of the input matrix.

Let us now turn our attention to algebraic moving frames [Hon18]. As mentioned above, a

nonzero row vector a ∈ K[s ]n defines a parametric curve in Kn . The columns of a matrix P ∈
G Ln (K[s ]) assign a basis of vectors inKn at each point of the curve. Here, G Ln (K[s ]) denotes the

set of invertible n ×n matrices overK[s ], or equivalently, the set of matrices whose columns are

point-wise linearly independent over the algebraic closureK. In other words, the columns of the

matrix P can be viewed as a coordinate system, or a frame, that moves along the curve. To be of

interest, however, such assignment should not be arbitrary, but instead be related to the curve in

a meaningful way. From now on, we require that a P = [gcd(a),0, . . . ,0], where gcd(a) is the monic

greatest common divisor of the components of a. We will call a matrix P with the above property

an algebraic moving frame at a. We observe that for any nonzero monic polynomial λ(s ), a moving

frame at a is also a moving frame at λa. Therefore, we can obtain an equivalent construction in the

projective space PKn−1 by considering only polynomial vectors a such that gcd(a) = 1. Then P can

be thought of as an element of P G Ln (K[s ]) =G Ln (K[s ])/c I , where c 6= 0 ∈K and I is an identity

matrix. A canonical map of a to any of the affine subsetsKn−1 ⊂PKn−1 produces a rational curve in

Kn , and P assigns a projective moving frame at a. We are particularly interested in degree-optimal

algebraic moving frames – frames that column-wise have minimal degrees, where the degree of a

column is defined to be the maximum of the degrees of its components (see Definitions 6 and 63).

The problem of finding a degree-optimal algebraic moving frame is worthwhile to study for

various reasons. First of all, it is clear that the first column of an algebraic moving frame P satisfies

aP∗1 = gcd(a). That is, the first column is a Bézout vector of a, a vector comprised of the coefficients

appearing in the output of the extended Euclidean algorithm. Thus, the first column of a degree-

optimal moving frame is a minimal-degree Bézout vector. Our literature search did not yield any

efficient algorithm for computing a minimal-degree Bézout vector. Of course, one can compute such

a vector by a brute-force method, namely by searching for a Bézout vector of a fixed degree, starting

from degree zero, increasing the degree by one, and terminating the search once a Bézout vector is

found, but this procedure is very inefficient. As such, computing a degree-optimal moving frame

would allow for a more efficient computation of a minimal-degree Bézout vector. Secondly, it is

obvious that the last n−1 columns of an algebraic moving frame P are syzygies of a. In Proposition 68,

we prove that these last n −1 columns of P comprise a point-wise linearly independent basis of the

syzygy module of a. Thus, the last n −1 columns of a degree-optimal moving frame form a basis

of the syzygy module of a of optimal degree, i.e. a µ-basis. As mentioned above, µ-bases have a

long history of applications in geometric modeling, originating with works by Sederberg and Chen

[SC95], Cox, Sederberg and Chen [Cox98b]. Further development of this topic appeared in [Che05;

SG09; JG09; TW14]. Hence, degree-optimal moving frames inherit these important connections

to geometric modeling. Furthermore, degree-optimal moving frames have additional application

aspects as well. A very important area of applications where utilization of degree-optimal moving

frames is beneficial is control theory. In particular, the use of degree-optimal frames can lower

3



differential degrees of “flat outputs” (see, for instance, Polderman and Willems [PW98], Martin,

Murray and Rouchon [Mar01], Fabiańska and Quadrat [FQ07], Antritter and Levine [AL10], Imae,

Akasawa, and Kobayashi [Ima15]). Another interesting application of algebraic frames can be found

in the paper [Elk12] by Elkadi, Galligo and Ba, devoted to the following problem: given a vector of

polynomials with gcd 1, find small degree perturbations so that the perturbed polynomials have a

large-degree gcd. As discussed in Example 3 of [Elk12], the perturbations produced by the algorithm

presented in this paper do not always have minimal degrees. It would be worthwhile to study if the

usage of degree-optimal moving frames can decrease the degrees of the perturbations.

The applications available to degree-optimal moving frames motivate the development of

efficient algorithms for their construction. Algebraic moving frames appeared in a number of

important proofs and constructions under a variety of names. For example, in the constructive

proofs of the celebrated Quillen-Suslin theorem [FG90], [LS92], [Can93], [PW95], [LY05], [FQ07],

given a polynomial unimodular m ×n matrix A, one constructs a unimodular matrix P such that

AP = [Im , 0], where Im is an m ×m identity matrix. In the univariate case with m = 1, the matrix P

is an algebraic moving frame. However, the above works were not concerned with the problem of

finding P of optimal degree for every input A. We describe these approaches in greater detail in

Chapter 2.

In this work, we develop the theory of and a new algorithm for computing a degree-optimal

algebraic moving frame. The advantage of the theory developed here is that it describes how to

simultaneously construct a minimal-degree Bézout vector and a µ-basis. Theorem 89 is crucial

for this construction, because it shows how a minimal-degree Bézout vector can be read off a

Sylvester-type matrix associated with a, the same matrix that is used in Section 3.1 for computing

a µ-basis. This theorem leads to an algorithm for computing a degree-optimal moving frame (see

Section 5.1). We now briefly elaborate on this algorithm, which consists of the following three steps:

(1) build a Sylvester-type (2d +1)× (nd +n )matrix A, associated with a, where d is the maximal

degree of the components of the vector a, and append an additional column to A; (2) run a single

partial row-echelon reduction of the resulting (2d +1)× (nd +n +1)matrix; (3) read off an optimal

moving frame from appropriate columns of the partial reduced row-echelon form. We implemented

the algorithm in the computer algebra system Maple. The codes and examples are available on

the web: http://www.math.ncsu.edu/~zchough/frame.html. As mentioned, the advantage

of the algorithm is that it simultaneously constructs a minimal-degree Bézout vector and a µ-basis.

Performance-wise, our algorithm compares very favorably to existing approaches. As mentioned

above, a degree-optimal moving frame consists of a minimal-degree Bézout vector and a µ-basis.

Hence, one may attempt to construct an optimal moving frame by putting together a minimal-

degree Bézout vector and a µ-basis. Indeed, as previously discussed, algorithms for computing

µ-bases are well-developed. The most straightforward (and computationally inefficient) approach

consists of computing the reduced Gröbner basis of the syzygy module with respect to a term-over-

position monomial ordering (see Section 3.3). More efficient algorithms have been developed by

Cox, Sederberg, and Chen[Cox98b], Zheng and Sederberg [ZS01], Chen and Wang [CW02] for the

4
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n = 3 case, and by Song and Goldman [SG09] and Hong, Hough and Kogan [Hon17] for arbitrary n .

As mentioned previously, the problem of computing aµ-basis also can be viewed as a particular case

of the problem of computing optimal-degree bases for the kernels of m ×n polynomial matrices.

Algorithms for this problem have been developed by Beelen [Bee87], Antoniou, Vardulakis, and

Vologiannidis [Ant05], Zhou, Labahn, and Storjohann [Zho12]. However, these approaches are

insufficient due to the lack of an efficient method for computing minimal-degree Bézout vectors.

Alternatively, one can first construct a non-optimal moving frame by algorithms using, for

instance, a generalized version of Euclid’s extended gcd algorithm, as described by Polderman and

Willems in [PW98], or various algorithms presented in the literature devoted to the constructive

Quillen-Suslin theorem and the related problem of unimodular completion: Fitchas and Galligo

[FG90], Logar and Sturmfels [LS92], Caniglia, Cortiñas, Danón, Heintz, Krick, and Solernó [Can93],

Park and Woodburn [PW95], Lombardi and Yengui [LY05], Fabiańska and Quadrat [FQ07], Zhou-

Labahn [ZL14]. Then a degree-reduction procedure can be performed, for instance, by computing

the Popov normal form of the last n −1 columns of a non-optimal moving frame, as discussed in

[Bec06], and then reducing the degree of its first column. We discuss this approach in Section 5.4,

and demonstrate that it is less efficient than the direct algorithm based on the theory from Sections

4.1 and 4.2 and presented in Section 5.1.

In addition to developing the theory behind an algorithm for computing an optimal moving

frame, we prove new results about the degrees of optimal moving frames and its building blocks.

These degrees play an important role in the classification of rational curves, because although a

degree-optimal moving frame is not unique, its columns have canonical degrees. The list of degrees

of the last n −1 columns (µ-basis columns) is called the µ-type of an input polynomial vector, and

µ-strata analysis was performed in D’Andrea [D’A04], Cox and Iarrobino [CI15]. In Theorem 76,

we show that the degree of the first column (Bézout vector) is bounded by the maximal degree

of the other columns, while Proposition 77 shows that this is the only restriction that the µ-type

imposes on the degree of a minimal Bézout vector. Thus, one can refine the µ-strata analysis to the

(β ,µ)-strata analysis, where β denotes the degree of a minimal-degree Bézout vector. This work

can have potential applications to rational curve classification problems. In Proposition 92 and

Theorem 96, we establish sharp lower and upper bounds for the degree of an optimal moving frame

and show that for a generic vector a, the degree of an optimal moving frame equals to the sharp

lower bound.

We now summarize the contents of the remaining chapters. In Chapter 2, we conduct a more

thorough review of previous approaches for computing µ-bases and algebraic moving frames. In

Chapter 3, we examine the theory and computation of µ-bases. After providing a background on µ-

bases, we develop a new algorithm for computing a µ-basis for a vector of n univariate polynomials.

We also introduce a generalization of the algorithm to compute minimal bases for the kernels

of m ×n polynomial matrices. Additionally, we characterize a relationship between µ-bases and

Gröbner bases for the syzygy module of a vector of n univariate polynomials. In Chapter 4, we

develop the theory of algebraic moving frames. After providing a background on moving frames,
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we develop the framework for an algorithm for computing a degree-optimal moving frame at a

vector of n univariate polynomials. We also establish results on the degrees of optimal moving

frames. In Chapter 5, we examine the computation of algebraic moving frames. We develop a new

algorithm for computing degree-optimal moving frames, based on the theory developed in Chapter

4. We develop a modification for the case when gcd(a) 6= 1, and we introduce an augmentation that

allows for the computation of equivariant degree-optimal moving frames as well. We examine other

possible approaches, and we compare our algorithm with these approaches. We also generalize our

algorithm to handle unimodular matrix inputs.
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CHAPTER

2

REVIEW

In this chapter, we provide a more thorough review of the previous work on µ-bases and algebraic

moving frames. In particular, we examine some of the previous algorithms for their construction,

along with other related observations.

2.1 µ-bases

As mentioned in the Chapter 1, one of the main problems we consider is the problem of computing a

µ-basis for a vector a of univariate polynomials. The concept of a µ-basis first appeared in [Cox98b],

motivated by the search for new, more efficient methods for solving implicitization problems for

rational curves, and as a further development of the method of moving lines (and, more generally,

moving curves) proposed in [SC95]. Since then, a large body of literature on the applications of

µ-bases to various problems involving vectors of univariate polynomials has appeared, such as

[Che05; SG09; JG09; TW14].1 The variety of possible applications motivates the development of

algorithms for computing µ-bases. Although a proof of the existence of a µ-basis for arbitrary n

appeared already in [Cox98b], the algorithms were first developed for the n = 3 case only [Cox98b;

ZS01; CW02]. The first algorithm for arbitrary n appeared in [SG09], as a generalization of [CW02].

We now review some of these approaches.

1A notion of a µ-basis for vectors of polynomials in two variables also has been developed and applied to the study
of rational surfaces in three-dimensional projective space (see, for instance, [Che05; Shi12]). We focus solely on the
one-variable case.
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2.1.1 Original definition

The original definition of a µ-basis appeared on p 824 of a paper by Cox, Sederberg, and Chen

[Cox98b]. Given a vector a ∈K[s ]n with gcd(a) = 1 and deg(a) = d , a µ-basis of a is a generating set

u1, . . . , un−1 of syz(a) satisfying deg(u1) + · · ·+deg(un−1) = d . In the paper, the degrees of u1, . . . , un−1

were denoted µ1, . . . ,µn−1, and the term µ-basis was coined. Also in the paper, the authors prove

that a µ-basis always exists for vectors of arbitrary length. The proof of the existence theorem

(Theorem 1 on p. 824 of [Cox98b]) appeals to the celebrated Hilbert Syzygy Theorem [Hil90] and

utilizes Hilbert polynomials, which first appeared in the same paper [Hil90] under the name of

characteristic functions.

The proof of existence for vectors of arbitrary n is non-constructive. However, the authors of

[Cox98b] do implicitly suggest an algorithm for the n = 3 case. Later, it was explicitly described in

the Introduction of [ZS01]. The algorithm relies on the fact that, in the n = 3 case, there are only

two elements in a µ-basis, and their degrees (denoted as µ1 and µ2) can be determined prior to

computing the basis (see Corollary 2 on p. 811 of [Cox98b] and p. 621 of [ZS01]). Once the degrees

are determined, two syzygies are constructed from null vectors of two linear maps A1 :K3(µ1+1)→
Kµ1+d+1 and A2 :K3(µ2+1)→Kµ2+d+1. Special care is taken to ensure that these syzygies are linearly

independent over K[s ]. These two syzygies comprise a µ-basis. It is not clear, however, how this

method can be generalized to arbitrary n . First, as far as we are aware, there is not yet an efficient

way to determine the degrees of µ-basis members a priori. Second, there is not yet an efficient way

for choosing appropriate null vectors so that the resulting syzygies are linearly independent.

2.1.2 Subsequent developments

The next approach we review is by Zheng and Sederberg [ZS01], who gave a different (more efficient)

algorithm for the n = 3 case, based on Buchberger-type reduction. The algorithm makes use of the

fact that, when gcd(a) = 1, the three obvious syzygies [a2,−a1, 0], [a3, 0,−a1], and [0, a3,−a2] generate

syz(a). Then Buchberger-type reduction is used to reduce the degree of one of the syzygies at a time.

This is done until one of the syzygies reduces to 0, after which the remaining two syzygies comprise

a µ-basis. Here, we provide the details of the algorithm. Note, the notation LT refers to the leading

term of a polynomial vector. A term of a vector inK[s ]n is c s k ei , where c is a constant and ei is the

i -th standard basis vector. The leading term of a vector is the term of highest degree and highest

position, while the constant in the leading term is called the leading coefficient and denoted LC .

Input: a ∈K[s ]3 with gcd(a) = 1

Output: A µ-basis of a

1. u1 = [a2,−a1, 0]T , u2 = [a3, 0,−a1]T , u3 = [0, a3,−a2]T

2. Choose ui , u j so that LT (ui ) and LT (u j ) contain the same basis vector, and deg(ui )≥ deg(u j ).
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3. Replace ui with

ui ←−
LC M (LC (ui ), LC (u j ))

LC (ui )
ui −

LC M (LC (ui ), LC (u j ))

LC (u j )
s deg(ui )−deg(u j )u j

where LC M represents the least common multiple.

4. If ui = 0, output remaining nonzero vectors. Else go to step 2.

Example 1. We demonstrate the update procedure on a=
�

1+ s 2, 2+ s 2, 3+ s 2
�

.

Start with

u1 =







2+ s 2

−1− s 2

0






, u2 =







3+ s 2

0

−1− s 2






, u3 =







0

3+ s 2

−2− s 2






.

1. Since LT (u1) = s 2e1 and LT (u2) = s 2e1, we update

u1 = u1−u2 =







−1

−1− s 2

1+ s 2






.

2. Since LT (u1) =−s 2e2 and LT (u3) = s 2e2, we update

u1 = u1+u3 =







−1

2

−1






.

3. Since LT (u1) =−e1 and LT (u2) = s 2e1, we update

u2 =u2+ s 2u1 =







3

2s 2

−1−2s 2






.

4. Since LT (u2) = 2s 2e2 and LT (u3) = s 2e2, we update

u2 = u2−2u3 =







3

−6

3






.

5. Since LT (u1) =−e1 and LT (u2) = 3e1, we update

u2 = u2+3u1 =







0

0

0






.
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We then output the µ-basis
















−1

2

−1






,







0

3+ s 2

−2− s 2

















.

A more efficient modification of this procedure was proposed by Chen and Wang [CW02], where

instead of reducing based on leading terms, the reduction is done using relationships among

leading vectors. Note, the degree of a polynomial vector h is the maximum of the degrees of its

components, and the leading vector is the vector of deg(h) coefficients. Here, we provide the details

of the algorithm.

Input: a ∈K[s ]3 with gcd(a) = 1

Output: A µ-basis of a

1. u1 = [a2,−a1, 0]T , u2 = [a3, 0,−a1]T , u3 = [0, a3,−a2]T

2. Set mi = LV (ui ) and di = deg(ui ) for i = 1, 2, 3.

3. Sort di so that d1 ≥ d2 ≥ d3 and re-index ui , mi .

4. Find real numbers α1,α2,α3 such that α1m1+α2m2+α3m3 = 0.

5. If α1 6= 0, update u1 by

u1 =α1u1+α2s d1−d2 u2+α3s d1−d3 u3

and update m1 and d1 accordingly. If α1 = 0, update u2 by

u2 =α2u2+α3s d2−d3 u3

and update m2 and d2 accordingly.

6. If one of the vectors is zero, then output the remaining nonzero vectors and stop; otherwise,

go to Step 3.

Example 2. We demonstrate the modified update procedure on a=
�

1+ s 2, 2+ s 2, 3+ s 2
�

.

Start with

u1 =







2+ s 2

−1− s 2

0






, u2 =







3+ s 2

0

−1− s 2






, u3 =







0

3+ s 2

−2− s 2






.

1. Since m1 = LV (u1) = [1,−1,0]T , m2 = LV (u2) = [1,0,−1]T , and m3 = LV (u3) = [0,1,−1]T , we

have α1 = 1, α2 =−1, and α3 = 1, so we update

u1 =u1−u2+u3 =







−1

2

−1







10



and re-index

u1 =







3+ s 2

0

−1− s 2






, u2 =







0

3+ s 2

−2− s 2






, u3 =







−1

2

−1






.

2. Since m1 = [1,0,−1]T , m2 = [0,1,−1]T , and m3 = [−1,2,−1]T , we have α1 = 1, α2 = −2, and

α3 = 1, so we update

u1 = u1−2u2+ s 2u3 =







3

−6

3







and re-index

u1 =







0

3+ s 2

−2− s 2






, u2 =







3

−6

3






, u3 =







−1

2

−1






.

3. Since m1 = [0, 1,−1]T , m2 = [3,−6, 3]T , and m3 = [−1, 2,−1]T , we have α1 = 0, α2 = 1, and α3 = 3,

so we update

u2 = u2+3u3 =







0

0

0






.

We then output the µ-basis
















−1

2

−1






,







0

3+ s 2

−2− s 2

















.

Observe that the modified procedure using leading vectors works in fewer steps than the original

procedure using leading terms. The algorithm in [CW02]was subsequently generalized to arbitrary

n by Song and Goldman [SG09]. The general algorithm starts by observing that the set of the obvious

syzygies {[ −a j ai ] |1≤ i < j ≤ n} generates syz(a), provided gcd(a) = 1. Then Buchberger-type

reduction is used to reduce the degree of one of the syzygies at a time. It is proved that when such

reduction becomes impossible, one is left with exactly n − 1 non-zero syzygies that comprise a

µ-basis. If gcd(a) is non-trivial, then the output is a µ-basis multiplied by gcd(a). The full details of

the algorithm are below.

Input: a ∈K[s ]n with gcd(a) = 1

Output: A µ-basis of a

1. Create the r =C n
2 “obvious" syzygies and label them u1, . . . , ur .

2. Set mi = LV (ui ) and di = deg(ui ) for i = 1, . . . , r .

3. Sort di so that d1 ≥ d2 ≥ . . .≥ dr and re-index ui , mi .
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4. Find real numbers α1,α2, . . . ,αr such that α1m1+α2m2+ · · ·+αr mr = 0.

5. Choose the lowest integer j such that α j 6= 0, and update u j by setting

u j =α j u j +α j+1s d j−d j+1 u j+1+ · · ·+αr s d j−dr ur .

If u j ≡ 0, discard u j and set r = r −1; otherwise set m j = LV (u j ) and d j = deg(u j ).

6. If r = n−1, then output the n−1 non-zero vector polynomials u1, . . . , un−1 and stop; otherwise,

go to Step 3.

2.2 Algebraic moving frames

The other main problem we consider is that of computing a degree-optimal algebraic moving

frame at a vector a of univariate polynomials. An algebraic moving frame at a ∈K[s ]n is a matrix

P ∈G Ln (K[s ]) such that aP = [gcd(a), 0, . . . , 0]. A degree-optimal moving frame has minimal column-

wise degree. The problem of constructing an algebraic moving frame is a particular case of the

well-known problem of providing a constructive proof of the Quillen-Suslin theorem [FG90], [LS92],

[Can93], [PW95], [LY05], [FQ07]. In those papers, the multivariate problem is reduced inductively to

the univariate case, and then an algorithm for the univariate case is proposed. Those univariate

algorithms produce algebraic moving frames. As far as we are aware, the produced moving frames

are usually not degree-optimal. However, the algorithms are very efficient. We now review some of

these approaches.

2.2.1 Fitchas-Galligo algorithm

We start by discussing an algorithm that appeared in [FG90] by Fitchas and Galligo. Before presenting

the algorithm, however, we need the following lemma.

Lemma 3. Let n ≥ 3. Let a = [a1, . . . , an ] ∈ K[s ]n be such that gcd(a1, . . . , an ) = 1. Then there exist

k3, . . . , kn ∈K such that gcd(a1+k3a3+ · · ·+kn an , a2) = 1.

Proof. Let d be the degree of a2. Let β1, . . . ,βd be the roots of a2 in the algebraic closure of K.

Consider the following set

C =Kn−2 \ (S1 ∪ · · · ∪S d )

where

Si =
�

(k3, . . . , kn ) ∈Kn−2 |a1

�

βi

�

+k3 a3

�

βi

�

+ · · ·+kn an

�

βi

�

= 0
	

.

The lemma is immediate from the following claims.

1. dim C = n −2≥ 1.

Proof: Note that Si is aK-affine space. Since gcd(a1, . . . , an ) = 1, for every i ∈ {1, . . . , d } , at least

one of the following is non-zero: a1

�

βi

�

, a3

�

βi

�

, . . . , an

�

β
�

. Thus dim Si ≤ n −3. In turn dim

C = n −2≥ 1.
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2. ∀ (k3, . . . , kn ) ∈C gcd(a1+k3a3+ · · ·+kn an , a2) = 1.

Proof: Let (k3, . . . , kn ) ∈C . Then for every i ∈ {1, . . . , d } , we have

a1

�

βi

�

+k3a3

�

βi

�

+ · · ·+kn an

�

βi

�

6= 0.

Thus

gcd(a1+k3a3+ · · ·+kn an , a2) = 1.

We remark that finding the constants ki as described in the lemma can be completed with a

random search. Moreover, for random inputs, gcd(a1, a2) = 1 and one can take each ki = 0.

Now, [FG90] describes the following general algorithm for the univariate case:

1. Find M ∈K[s ]n×n with |M |= 1 such that aM = a(0).

2. Find T ∈Kn×n with |T |= 1 such that a(0)T = [1, 0, . . . , 0].

3. P =M T .

To find matrix M , they do the following. Assume a1 and a2 are relatively prime (otherwise, find

constants as described in Lemma 3). Then there exist f1, f2 ∈K[s ] such that a1 f1+a2 f2 = 1.

Define

A =

















f1(s ) −a2(s ) f1(s )[a3(0)−a3(s )] · · · f1(s )[an (0)−an (s )]

f2(s ) a1(s ) f2(s )[a3(0)−a3(s )] · · · f2(s )[an (0)−an (s )]

1
...

1

















.

Then aA = [1, 0, a3(0), . . . , an (0)] and |A|= 1. Define

B =

















a1(0) a2(0)

− f2(0) f1(0)

1
...

1

















.

Then [1, 0, a3(0), . . . , an (0)]B = [a1(0), a2(0), a3(0), . . . , an (0)] and |B |= 1.

Let M = AB . Then aM = a(0) and |M |= 1.

The authors of [FG90] do not explicitly describe how to find matrix T with |T | = 1 such that

a(0)T = [1,0, . . . ,0]. However, this is relatively straightforward, and we present one such method

here.
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Lemma 4. Let i be any such that a (0)i 6= 0. Let j be any such that 1≤ j ≤ n and j 6= i . Let

êk =

¨

ek if k 6= j
(−1)1+i

a(0)i
ek if k = j

where ek is the k -th standard unit (row) vector. Finally let

T =





























a (0)

ê1
...

êi−1

êi+1
...

ên





























−1

.

Then a (0)T =
�

1 0 · · · 0
�

and
�

�

�T
�

�

�= 1.

Proof. For the first claim, we observe that

a (0)T =





























�

1 0 · · · 0
�





























a (0)

ê1
...

êi−1

êi+1
...

ên

























































T

=
��

1 0 · · · 0
�

T −1
�

T =
�

1 0 · · · 0
�

T −1T =
�

1 0 · · · 0
�

.

To show the second claim, consider

�

�

�T −1
�

�

�=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�





























a (0)

ê1
...

êi−1

êi+1
...

ên





























�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

=
(−1)1+i

a(0)i

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�





























a (0)

e1
...

ei−1

ei+1
...

en





























�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

.

By subtracting from the first row appropriate multiples of the other rows, and then using basic
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properties of the determinant, we get

�

�

�T −1
�

�

�=
(−1)1+i

a(0)i

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�





























a (0)i ei

e1
...

ei−1

ei+1
...

en





























�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�





























e1
...

ei−1

ei

ei+1
...

en





























�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= 1.

Therefore
�

�

�T
�

�

�= 1.

We now present the Fitchas-Galligo algorithm.

Input: a 6= 0 ∈K[s ]n with gcd(a) = 1

Output: A moving frame at a

1. Find constants k3, . . . , kn such that gcd(a1+k3a3+ · · ·+kn an , a2) = 1.

2. Find f1, f2 ∈K[s ] such that (a1+k3a3+ · · ·+kn an ) f1+a2 f2 = 1. This can be done by using the

Extended Euclidean Algorithm.

3. M ←− K AB , where

K =

















1

1

k3 1
...

...

kn 1

















A =

















f1 −a2 f1[a3(0)−a3] · · · f1[an (0)−an ]

f2 a ′1 f2[a3(0)−a3] · · · f2[an (0)−an ]

1
...

1

















B =

















a ′1(0) a2(0)

− f2(0) f1(0)

1
...

1

















,

and a ′1 = a1+k3a3+ · · ·+kn an .

15



4. Find matrix T such that a′(0)T = [1, 0, . . . , 0] (where a′ = [a ′1, a2, . . . , an ]).

(a) i ←− such that a′(0)i 6= 0

(b) j ←− such that 1≤ j ≤ n and j 6= i

(c) êk =

¨

ek if k 6= j

(−1)1+i /a′(0)i ek if k = j
where ek is the k -th standard unit (row) vector

(d) T ←−





























a′(0)

ê1
...

êi−1

êi+1
...

ên





























−1

5. P ←−M T

The proof of the algorithm is immediate from the fact that aP = aM T = a′(0)T = [1, 0, . . . , 0] and

|P |= |M T |= |M ||T |= 1.

2.2.2 Algorithm based on Euclidean division

Another simple and elegant algorithm for constructing not-necessarily-optimal moving frames,

based on a generalized version of Euclid’s extended gcd algorithm, was first mentioned in [LS92] and

[PW95]. The authors did not explicitly describe the algorithm, though. However, it can be extracted

from Theorem B.1.16 of the book “Introduction to the Mathematical Theory of Systems and Control”

by Polderman and Willems [PW98], and it later appeared in [Elk12] as well. We present it here, and

we denote it MF_GE (for Moving Frame by Generalized Euclid’s algorithm).

Input: a ∈K[s ]n , a 6= 0

Output: P , a moving frame at a

1. Let k be such that a=
�

a1 · · · ak 0 · · · 0
�

where ak 6= 0.

2. If k = 1 then set

P =













1
lc(a1)

1
...

1













and return P . (Here, lc(a1) denotes the leading coefficient of a1.)

3. (Find q2, . . . , qk , r ∈K[s ]n such that a1 = q2a2+ . . .+qk ak + r .)
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(a) r ← a1

(b) For i = 2, . . . , k do

qi ← quo(r, ai )

r ← rem(r, ai )

4. a′←
�

a2 · · · ak r 0 · · · 0
�

.

5. T ←





























1

1 −q2

...
...

1 −qk

1
...

1





























∈K[s ]n×n ,

where the q ’s are placed in the k -th column

6. P ′←MF_GE(a′).

7. P ← T P ′.

8. Return P .

The proof of the algorithm is immediate from the fact that, at each step of the algorithm, aT = a′

and |T |= 1.

2.2.3 Fabianska-Quadrat algorithm

Another very efficient algorithm for constructing not-necessarily-optimal algebraic moving frames

appeared in [FQ07]. We present it here.

Input: a 6= 0 ∈K[s ]n with gcd(a) = 1

Output: A moving frame at a

1. Find constants k3, . . . , kn such that gcd(a1+k3a3+ · · ·+kn an , a2) = 1.

2. Find f1, f2 ∈K[s ] such that (a1+k3a3+ · · ·+kn an ) f1+a2 f2 = 1. This can be done by using the

Extended Euclidean Algorithm.

3. P ←−

















1

1

k3 1
...

...

kn 1

































f1 −a2

f2 a ′1
1

...

1

































1 0 −a3 · · · −an

0 1

1
...

1

















,

where a ′1 = a1+k3a3+ · · ·+kn an .

The proof of the algorithm is immediate from the fact that aP = [1, 0, . . . , 0] and |P |= 1.
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CHAPTER

3

µ-BASES

This chapter examines both the theory and computation ofµ-bases. In Section 3.1, we present a new

and alternative algorithm for computing a µ-basis for vectors of arbitrary length n . The proof of the

algorithm does not rely on previously established theorems about the freeness of the syzygy module

or the existence of a µ-basis, and, therefore, as a by-product, provides an alternative, self-contained,

constructive proof of these facts. Before presenting the algorithm, we give a rigorous definition of a

µ-basis, describe its characteristic properties, and formulate the problem of computing a µ-basis.

We prove several lemmas about the vector space of syzygies of degree at most d , and the role they

play in generating the syzygy module. We define the notion of row-echelon syzygies and explain how

they can be computed. We then present our main theoretical result, Theorem 31, which explicitly

identifies a subset of row-echelon syzygies that comprise a µ-basis. We present an algorithm for

computing a µ-basis, we analyze the theoretical (worst case asymptotic) computational complexity

of this algorithm, we discuss implementation and experiments, and we compare the performance

of the algorithm presented here with the one described in [SG09].

In Section 3.2, we consider a natural generalization of the µ-basis problem. Namely, that of

considering kernels, or nullspaces, of m ×n polynomial matrices. An optimal degree basis of the

nullspace is called a minimal basis. We show that the µ-basis algorithm presented in this chapter

can be generalized to compute minimal bases of the kernels of m ×n polynomial matrices.

In Section 3.3, we characterize an interesting relationship between µ-bases and Gröbner bases

of the syzygy module. We define monomial orderings onK[s ]n and highlight two in particular, TOP

and POT. We provide a background on Gröbner bases for a submodule in K[s ]n . We then show

that every µ-basis is a minimal TOP Gröbner basis and that every minimal TOP Gröbner basis is a
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µ-basis. We also show that the µ-basis algorithm presented in this chapter produces a µ-basis that

is the reduced TOP Gröbner basis of the syzygy module relative to the standard basis ofKn . We also

give an example showing that not every minimal POT Gröbner basis is a µ-basis.

3.1 An algorithm for computing µ-bases

In this section, we provide a background on µ-bases, develop the theory of a new µ-basis algorithm,

present a new algorithm for computing aµ-basis, analyze the theoretical complexity of the algorithm,

and compare the algorithm with the one described in [SG09].

3.1.1 Definitions and problem statement

As mentioned previously,K denotes a field andK[s ] denotes a ring of polynomials in one indetermi-

nate s . The symbol n will be reserved for the length of the polynomial vector a, whose syzygy module

we are considering, and from now on we assume n > 1, because for the n = 1 case the problem

is trivial. The symbol d is reserved for the degree of a. We also will assume that a is a non-zero

vector. All vectors are implicitly assumed to be column vectors, unless specifically stated otherwise.

Superscript T denotes transposition.

Definition 5 (Syzygy). Let a= [a1, . . . , an ] ∈K[s ]n be a row n-vector of polynomials. The syzygy set of

a is

syz(a) = {h ∈K[s ]n |a h= 0}.

We emphasize that h is by default a column vector and a is explicitly defined to be a row vector,

so that the product a h is well-defined. It is easy to check that syz(a) is aK[s ]-module. To define a

µ-basis, we need the following terminology:

Definition 6 (Leading vector). For h ∈ K[s ]n we define the degree and the leading vector of h as

follows:

• deg(h) = max
i=1,...,n

deg(hi ).

• LV (h) = [coeff(h1, t ), . . . , coeff(hn , t )]T ∈ Kn , where t = deg(h) and coeff(hi , t ) denotes the

coefficient of s t in hi .

Example 7. Let h=







1−2s −2s 2− s 3

2+2s + s 2+ s 3

−3






. Then deg(h) = 3 and LV (h) =







−1

1

0






.

Before giving the definition of a µ-basis, we state a proposition that asserts the equivalence of

several statements, each of which can be taken as a definition of a µ-basis.

Proposition 8. For a subset u = {u1, . . . , un−1} ⊂ syz(a), ordered so that deg(u1)≤ · · · ≤ deg(un−1), the

following properties are equivalent:
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1. [independence of the leading vectors] The set u generates syz(a), and the leading vectors

LV (u1), . . . , LV (un−1) are independent overK.

2. [minimality of the degrees] The set u generates syz(a), and if h1, . . . , hn−1 is any generating set

of syz(a), such that deg(h1)≤ · · · ≤ deg(hn−1), then deg(ui )≤ deg(hi ) for i = 1, . . . , n −1.

3. [sum of the degrees]The set u generates syz(a), and deg(u1)+· · ·+deg(un−1) = deg(a)−deg(gcd(a)).

4. [reduced representation] For every h ∈ syz(a), there exist g1, . . . , gn−1 ∈K[s ] such that deg(g i )≤
deg(h)−deg(ui ) and

h=
n−1
∑

i=1

g i ui . (3.1)

5. [outer product]There exists a non-zero constantα ∈K such that the outer product of u1, . . . , un−1

is equal to αa/gcd(a).

Here and below gcd(a) denotes the greatest common monic devisor of the polynomials a1, . . . , an .

The above proposition is a slight rephrasing of Theorem 2 in [SG09]. The only notable difference

is that we drop the assumption that gcd(a) = 1 and modify Statements 3 and 5 accordingly. After

making an observation that syz(a) = syz
�

a/gcd(a)
�

, one can easily check that a proof of Proposition 8

can follow the same lines as the proof of Theorem 2 in [SG09]. We do not use Proposition 8 to derive

and justify our algorithm for computing a µ-basis, and therefore we are not including its proof.

However, we do prove some of these properties in Section 4.2.4. We include this proposition to

underscore several important properties of a µ-basis and to facilitate comparison with the previous

work on the subject.

Following [SG09], we base our definition of a µ-basis on Statement 1 of Proposition 8. We are

making this choice, because in the process of proving the existence of a µ-basis, we explicitly

construct a set of n −1 syzygies for which Statement 1 can be easily verified, while verification of the

other statements of Proposition 8 is not immediate. The original definition of a µ-basis (p. 824 of

[Cox98b]) is based on the sum of the degrees property (Statement 2 of Proposition 8). In Section 3.1.9,

we discuss the advantages of the original definition.

Definition 9 (µ-basis). For a non-zero row vector a ∈K[s ]n , a subset u ⊂K[s ]n of polynomial vectors

is called a µ-basis of a, or, equivalently, a µ-basis of syz(a), if the following three properties hold:

1. u has exactly n −1 elements.

2. LV (u1), . . . , LV (un−1) are independent overK.

3. u is a basis of syz(a), the syzygy module of a.

As we show in Lemma 30 below, the K-linear independence of leading vectors of any set of

polynomial vectors immediately implies theK[s ]-linear independence of the polynomial vectors

themselves. Therefore, a set u satisfying Statement 1 of Proposition 8 is a basis of syz(a). Thus, the

apparently stronger Definition 9 is, in fact, equivalent to Statement 1 of Proposition 8.
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In the next two sections, through a series of lemmas culminating in Theorem 31, we give a

self-contained constructive proof of the existence of a µ-basis. This, in turn, leads to an algorithm,

presented in Section 3.1.4, for solving the following problem:

Problem:

Input: a 6= 0 ∈K[s ]n , row vector, where n > 1 andK is a computable field1

Output: M ∈K[s ]n×(n−1), such that the columns of M form a µ-basis of a

Example 10 (Running example). We will be using the following simple example throughout this

section to illustrate the theoretical ideas/findings and the resulting algorithm.

Input: a=
�

1+ s 2+ s 4 1+ s 3+ s 4 1+ s 4
�

∈Q[s ]3

Output: M =







−s 1−2s −2s 2− s 3

1 2+2s + s 2+ s 3

−1+ s −3







In contrast to the algorithm developed by Song and Goldman in [SG09], the algorithm presented

in this section produces a µ-basis even when the input vector a has a non-trivial greatest common

divisor (see Section 3.1.9 for more details).

It is worthwhile emphasizing that not every basis of syz(a) is a µ-basis. Indeed, let u1 and u2 be

the columns of matrix M in Example 10. Then u1+u2 and u2 is a basis of syz(a), but not a µ-basis,

because LV (u1+u2) = LV (u2). A µ-basis is not canonical: for instance, u1 and u1+u2 will provide

another µ-basis for syz(a) in Example 10. However, Statement 2 of Proposition 8 implies that the

degrees of the members of a µ-basis are canonical. In [Cox98b], these degrees were denoted by

µ1, . . . ,µn−1 and the term “µ-basis” was coined. A more in-depth comparison with previous works

on µ-bases and discussion of some related problems can be found in Section 3.1.9.

3.1.2 Syzygies of bounded degree.

From now on, let 〈�〉K[s ] stand for theK[s ]-module generated by�. It is known that syz(a) is generated

by polynomial vectors of degree at most d = deg(a). To keep our presentation self-contained, we

provide a proof of this fact (adapted from Lemma 2 of [SG09]).

Lemma 11. Let a ∈K[s ]n be of degree d . Then syz(a) is generated by polynomial vectors of degree at

most d .

Proof. Let ã= a/g c d (a) = [ã1, . . . , ãn ]. For all i < j , let

ui j = [ −ã j ãi ]T ,

1 A field is computable if there are algorithms for carrying out the arithmetic (+,−,×,/) operations among the field
elements.
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with −ã j in i -th position, ãi in j -th position, and all the other elements equal to zero. We claim that

the ui j ’s are the desired polynomial vectors. First note that

max
1≤i< j≤n

deg(ui j ) = max
1≤i≤n

ãi ≤ deg a= d .

It remains to show that syz(a) =



ui j |1≤ i < j ≤ n
�

K[s ] . Obviously we have

syz(a) = syz(ã). (3.2)

Since ui j belongs to syz(ã), we have

syz(ã)⊃



ui j |1≤ i < j ≤ n
�

K[s ] . (3.3)

Since gcd(ã) = 1, there exists a polynomial vector f= [ f1, . . . , fn ]T such that

ã1 f1+ · · ·+ ãn fn = 1.

For any h= [h1, . . . , hn ]T ∈ syz(ã), by definition

ã1h1+ · · ·+ ãn hn = 0.

Therefore, for each hi ,

hi = (ã1 f1+ · · ·+ ãn fn )hi

= ã1 f1hi + · · ·+ ãi−1 fi−1hi + ãi fi hi + ãi+1 fi+1hi + · · ·+ ãn fn hi

= ã1 f1hi + · · ·+ ãi−1 fi−1 hi − fi

n
∑

k 6=i ,k=1

ãk hk + ãi+1 fi+1hi + · · ·+ ãn fn hi

= ã1( f1hi − fi h1) + · · ·+ ãn ( fn hi − fi hn ) =
n
∑

k 6=i ,k=1

[k , i ] ãk ,

where we denote fk hi − fi hk by [k , i ]. Since [k , i ] =−[i , k ], it follows that

h= [h1, . . . , hn ]
T =

∑

1≤i< j≤n

[i , j ][ −ã j ãi ]T .

That is,

h =
∑

1≤i< j≤n

( fi h j − f j hi )ui j .

Therefore

syz(ã)⊂



ui j |1≤ i < j ≤ n
�

K[s ] . (3.4)
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Putting (3.2), (3.3) and (3.4) together, we have

syz(a) =



ui j |1≤ i < j ≤ n
�

K[s ] .

LetK[s ]d denote the set of polynomials of degree at most d , letK[s ]nd denote the set of polynomial

vectors of degree at most d , and let

syzd (a) = {h ∈K[s ]
n
d |a h= 0}

be the set of all syzygies of degree at most d .

It is obvious thatK[s ]d is a (d +1)-dimensional vector space overK. Therefore, the setK[s ]nd is

an n (d +1)-dimensional vector space overK. It is straightforward to check that syzd (a) is a vector

subspace of K[s ]nd over K and, therefore, is finite-dimensional. The following lemma states that

a K-basis of the vector space syzd (a) generates the K[s ]-module syz(a). The proof of this lemma

follows from Lemma 11 in a few trivial steps and is included for the sake of completeness.

Lemma 12. Let a ∈K[s ]n be of degree d and h1, . . . hl be a basis of theK-vector space syzd (a). Then

syz(a) = 〈h1, . . . , hl 〉K[s ].

Proof. From Lemma 11, it follows that there exist u1, . . . , ur ∈ syzd (a) that generate theK[s ]-module

syz(a). Therefore, for any f ∈ syz(a), there exist g1, . . . , g r ∈K[s ], such that

f=
r
∑

i=1

g i ui . (3.5)

Since h1, . . . hl is a basis of theK-vector space syzd (a), there exist αi j ∈K such that

ui =
l
∑

j=1

αi j h j . (3.6)

Combining (3.5) and (3.6) we get:

f=
r
∑

i=1

g i

l
∑

j=1

αi j h j =
l
∑

j=1

�

r
∑

i=1

αi j g j

�

h j .

The next step is to show that the vector space syzd (a) is isomorphic to the kernel of a linear map

A :Kn (d+1)→K2d+1 defined as follows: for a=
∑

0≤ j≤d

c j s j ∈Kn
d [s ], where c j = [c1 j , . . . , cn j ] ∈Kn are
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row vectors, define

A =



















c0
...

...

cd
... c0

...
...

cd



















∈K(2d+1)×n (d+1), (3.7)

with the blank spaces filled by zeros.

For this purpose, we define an explicit isomorphism between vector spacesK[s ]mt andKm (t+1),

where t and m are arbitrary natural numbers. Any polynomial m-vector h of degree at most t can

be written as h=w0+ s w1+ · · ·+ s t wt where wi = [w1i , . . . , wmi ]T ∈Km . It is clear that the map

]mt :K[s ]mt →K
m (t+1)

h→h]
m
t =







w0
...

wt






(3.8)

is linear. It is easy to check that the inverse of this map

[mt :Km (t+1)→K[s ]mt

is given by a linear map:

v → v [
m
t = S m

t v (3.9)

where

S m
t =

�

Im s Im · · · s t Im

�

∈K[s ]m×m (t+1).

Here Im denotes the m ×m identity matrix. For the sake of notational simplicity, we will often write

], [ and S instead of ]mt , [mt and S m
t when the values of m and t are clear from the context.

Example 13. For

h=







1−2s −2s 2− s 3

2+2s + s 2+ s 3

−3






=







1

2

−3






+ s







−2

2

0






+ s 2







−2

1

0






+ s 3







−1

1

0






,

we have

h] = [1, 2, −3, −2, 2, 0, −2, 1, 0, −1, 1, 0]T .

Note that

h= (h])[ = S h] =
�

I3 s I3 s 2I3 s 3I3

�

h].

With respect to the isomorphisms ] and [, theK-linear map a:K[s ]nd →K[s ]2d corresponds to
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theK linear map A :Kn (d+1)→K2d+1 in the following sense:

Lemma 14. Let a =
∑

0≤ j≤d

c j s j ∈ Kn
d [s ] and A ∈ K(2d+1)×n (d+1) defined as in (3.7). Then for any v ∈

Kn (d+1):

av [ = (Av )[. (3.10)

Proof. A vector v ∈Kn (d+1) can be split into (d +1) blocks







w0
...

wd






,

where wi ∈ Kn are column vectors. For j < 0 and j > d , let us define c j = 0 ∈ Kn . Then Av is a

(2d +1)-vector with (k +1)-th entry

(Av )k+1 = ck w0+ ck−1w1+ · · ·+ ck−d wd =
∑

0≤i≤d

ck−i wi ,

where k = 0, . . . , 2d . Then

av [ = aS n
d v =

 

∑

0≤ j≤d

c j s j

!

�

∑

0≤i≤d

wi s i

�

=
∑

0≤i , j≤d

c j wi s i+ j

=
∑

0≤k≤2d

s k

�

∑

0≤i≤d

ck−i wi

�

=
∑

0≤k≤2d

s k (Av )k+1 = S 1
2d (Av ) = (Av )[.

Example 15. For the row vector a in the running example (Example 10), we have n = 3, d = 4,

c0 = [1, 1, 1], c1 = [0, 0, 0], c2 = [1, 0, 0], c3 = [0, 1, 0], c4 = [1, 1, 1]

and

A =



































1 1 1

0 0 0 1 1 1

1 0 0 0 0 0 1 1 1

0 1 0 1 0 0 0 0 0 1 1 1

1 1 1 0 1 0 1 0 0 0 0 0 1 1 1

1 1 1 0 1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1



































.
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Let v = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]T . Then

Av = [6, 15, 25, 39, 60, 33, 48, 47, 42]T

and so

(Av )[ = S 1
2d (Av ) = S 1

8 (Av ) = 6+15s +25s 2+39s 3+60s 4+33s 5+48s 6+47s 7+42s 8.

On the other hand, since

v [ = S n
d v = S 3

4 v =







1+4s +7s 2+10s 3+13s 4

2+5s +8s 2+11s 3+14s 4

3+6s +9s 2+12s 3+15s 4






,

we have

av [ =
�

1+ s 2+ s 4 1+ s 3+ s 4 1+ s 4
�







1+4s +7s 2+10s 3+13s 4

2+5s +8s 2+11s 3+14s 4

3+6s +9s 2+12s 3+15s 4







= 42s 8+47s 7+48s 6+33s 5+60s 4+39s 3+25s 2+15s +6.

We observe that

av [ = (Av )[.

Lemma 16. v ∈ ker(A) if and only if v [ ∈ syzd (a).

Proof. Follows immediately from (3.10).

We conclude this section by describing an explicit generating set for the syzygy module.

Lemma 17. Let b1, . . . bl comprise a basis of ker(A), then

syz(a) =



b [1, . . . , b [l
�

K[s ] .

Proof. Lemma 16 shows that the isomorphism (3.9) between vector spacesKn (d+1) andK(s )nd in-

duces an isomorphism between their respective subspaces ker(A) and syzd (a). Therefore, b [1, . . . , b [l
is a basis of syzd (a). The conclusion then follows from Lemma 12.

3.1.3 “Row-echelon” generators and µ-bases.

In the previous section, we proved that any basis of ker(A) gives rise to a generating set of syz(a).

In this section, we show that a particular basis of ker(A), which can be “read off” the reduced row-

echelon form of A, contains n−1 vectors that give rise to aµ-basis of syz(a). In this and the following

sections, quo(i , j ) denotes the quotient and rem(i , j ) denotes the remainder generated by dividing

of an integer i by an integer j .
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We start with the following important definition:

Definition 18. A column of any matrix N is called pivotal if it is either the first column and is non-

zero or it is linearly independent of all previous columns. The rest of the columns of N are called

non-pivotal. The index of a pivotal (non-pivotal) column is called a pivotal (non-pivotal) index.

From this definition, using induction, it follows that every non-pivotal column can be written as

a linear combination of the preceding pivotal columns.

We denote the set of pivotal indices of A as p and the set of its non-pivotal indices as q . In the

following two lemmas, we show how the specific structure of the matrix A is reflected in the structure

of the set of non-pivotal indices q .

Lemma 19 (periodicity). If j ∈ q then j +k n ∈ q for 0≤ k ≤
�

n (d+1)− j
n

�

. Moreover,

A∗ j =
∑

r< j

αr A∗r =⇒ A∗ j+k n =
∑

r< j

αr A∗r+k n , (3.11)

where A∗ j denotes the j -th column of A.

Proof. To prove the statement, we need to examine the structure of the (2d +1)×n (d +1)matrix A:































c01 · · · c0n
... · · ·

... c01 · · · c0n
... · · ·

...
... · · ·

...
...

cd 1 · · · cd n
... · · ·

...
... c01 · · · c0n

cd 1 · · · cd n
...

... · · ·
...

...
... · · ·

...

cd 1 · · · cd n































. (3.12)

The j -th column of A has the first quo( j − 1, n ) and the last (d − quo( j − 1, n )) entries zero. For

1≤ j ≤ nd the (n + j )-th column is obtained by shifting all entries of the j -th column down by 1

and then putting an extra zero on the top. We consider two cases:

1. Integer j = 1 is in q if and only if the first column of A is zero. From the structure of A it follows

that any column indexed by 1+k n is zero and therefore, (1+k n ) ∈ q for
�

n (d+1)−1
n

�

= d ≥ k ≥ 0.

2. Let us embed A in an infinite matrix indexed by integers. By inspection of the structure of A

given by (3.12), we see immediately

Ai ,r+k n = Ai−k ,r . (3.13)
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Then, for a non pivotal index j > 1 and 0≤ k ≤
�

n (d+1)− j
n

�

we have:

A∗ j =
∑

r< j

αr A∗r

⇐⇒ ∀
i∈Z

Ai , j =
j−1
∑

r=1

αr Ai ,r

⇐⇒ ∀
i∈Z

Ai−k , j =
j−1
∑

r=1

αr Ai−k ,r (by reindexing the row)

⇐⇒ ∀
i∈Z

Ai , j+k n =
j−1
∑

r=1

αr Ai ,r+k n (from (3.13))

=⇒ A∗ j+k n =
∑

r< j

αr A∗r+k n .

Therefore ( j +k n ) ∈ q for
�

n (d+1)− j
n

�

≥ k ≥ 0 and equation (3.11) holds.

Definition 20. Let q be the set of non-pivotal indices. Let q/(n ) denote the set of equivalence classes

of q modulo n . Then the set q̃ = {min% |% ∈ q/(n )}will be called the set of basic non-pivotal indices.

Example 21. For the matrix A in Example 15, we have n = 3 and q = {6,9,11,12,14,15}. Then

q/(n ) =
�

{6, 9, 12, 15}, {11, 14}}
	

and q̃ = {6, 11}.

Lemma 22. There are exactly n −1 basic non-pivotal indices: |q̃ |= n −1.

Proof. We prove this lemma by showing that |q̃ |< n and |q̃ |> n −2.

1. Since there are at most n equivalence classes in q modulo n , it follows from the definition of

q̃ that |q̃ | ≤ n . Moreover, the (2d + 1)-th row of the last block of n-columns of A is given by

the row vector cd = (c1d , . . . , cnd ) = LV (a ), which is non-zero. Thus, there exists r ∈ {1, . . . , n},
such that cr d 6= 0. Suppose r is minimal such that cr d 6= 0. Then the (nd + r )-th column of A

is independent from the first nd + r −1 columns (since each of these columns has a zero in

the (2d +1)-th position). Hence, there exists r ∈ {1, . . . , n} such that nd + r is a pivotal index.

From the periodicity Lemma 19, it follows that for every k = 0, . . . d , index r +k n is pivotal

and therefore no integer from the class r modulo n belongs to q̃ . Thus |q̃ |< n .

2. Assume |q̃ | ≤ n−2. From the periodicity Lemma 19, it follows that the set of non-pivotal indices

is the union of the sets { j +k n | j ∈ q̃ , 0≤ k ≤ l j }, where l j ≤ d is some integer. Therefore

|q | ≤ |q̃ | (d +1)≤ (n −2)(d +1) = nd +n −2d −2.

On the other hand, |q |= n (d +1)− |p |. It is well-known (and easy to check) that |p |= rank(A).
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Since rank(A) cannot exceed the number of rows of A, |p | ≤ 2d +1. Therefore

|q | ≥ n (d +1)− (2d +1) = nd +n −2d −1.

Contradiction. Hence |q̃ |> n −2.

From the matrix A we will now construct a square n (d +1)×n (d +1)matrix V in the following

way. For i ∈ p , the i -th column of V has 1 in the i -th row and 0’s in all other rows. For i ∈ q we define

the i -th column from the linear relationship

A∗i =
∑

{ j∈p | j<i }
α j A∗ j (3.14)

as follows: for j ∈ p such that j < i we set Vj i =α j . All the remaining elements of the column V∗i are

zero. For simplicity we will denote the i -th column of V as vi . We note two important properties of

V :

1. Matrix V has the same linear relationships among its columns as A.

2. Vectors {bi = ei − vi | i ∈ q }, where by ei we denote a column vector that has 1 in the i -th

position and 0’s in all others, comprise a basis of ker(A).

The corresponding syzygies {b [i | i ∈ q }will be called row-echelon syzygies because theα’s appearing

in (3.14) can be read off the reduced row-echelon form E of A. (We remind the reader that the

(2d + 1)×n (d + 1)matrix E has the following property: for all i ∈ q , the non-zero entries of the

i -th column consist of {α j | j ∈ p , j < i } and α j is located in the row that corresponds to the place

of j in the increasingly ordered list p .) The reduced row-echelon form can be computed using

Gauss-Jordan elimination or some other methods.
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Example 23. For the matrix A in Example 15, we have n = 3, d = 4, and

V =

































































1 0 0 0 0 0 0 0 0 0 −1 0 0 1 1

0 1 0 0 0 −1 0 0 −1 0 −2 −1 0 −1 1

0 0 1 0 0 1 0 0 1 0 3 1 0 0 −2

0 0 0 1 0 1 0 0 1 0 2 1 0 0 −1

0 0 0 0 1 0 0 0 −1 0 −2 −1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 2 1 0 0 −1

0 0 0 0 0 0 0 1 0 0 −1 −1 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

































































.

The non-pivotal indices are q = {6, 9, 11, 12, 14, 15}. We have

b6 = e6− v6 = [0, 1,−1,−1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

b9 = e9− v9 = [0, 1,−1,−1, 1, 0,−1, 0, 1, 0, 0, 0, 0, 0, 0]T

b11 = e11− v11 = [1, 2,−3,−2, 2, 0,−2, 1, 0,−1, 1, 0, 0, 0, 0]T

b12 = e12− v12 = [0, 1,−1,−1, 1, 0,−1, 1, 0,−1, 0, 1, 0, 0, 0]T

b14 = e14− v14 = [−1, 1, 0, 0, 0, 0, 0, 1, 0,−1, 0, 0,−1, 1, 0]T

b15 = e15− v15 = [−1,−1, 2, 1,−1, 0, 1, 0, 0, 0, 0, 0,−1, 0, 1]T

and the corresponding row-echelon syzygies are

b [6 =







−s

1

−1+ s






b [9 =







−s − s 2

1+ s

−1+ s 2







b [11 =







1−2s −2s 2− s 3

2+2s + s 2+ s 3

−3






b [12 =







−s − s 2− s 3

1+ s + s 2

−1+ s 3







b [14 =







−1− s 3− s 4

1+ s 2+ s 4

0






b [15 =







−1+ s + s 2− s 4

−1− s

2+ s 4






.
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The following lemma shows a crucial relationship between the row-echelon syzygies. Note that, in

this lemma, we use i to denote a non-pivotal index and ι to denote a basic non-pivotal index.

Lemma 24. Let vr , r ∈ {1, . . . , n (d +1)} denote columns of the matrix V . For i ∈ q , let

bi = ei − vi . (3.15)

Then for any ι ∈ q̃ and any integer k such that 0≤ k ≤
�

n (d+1)−ι
n

�

b [ι+k n = s k b [ι +
∑

{ j∈p | j<ι, j+k n∈q }
α j b [j+k n , (3.16)

where constants α j appear in the expression of the ι-th column of A as a linear combination of the

previous pivotal columns:

A∗ι =
∑

{ j∈p | j<ι}
α j A∗ j .

Proof. We start by stating identities, which we use in the proof. By definition of V , we have for any

j ∈ p :

v j = e j (3.17)

and for any ι ∈ q̃ :

vι =
∑

{ j∈p | j<ι}
α j v j =

∑

{ j∈p | j<ι}
α j e j . (3.18)

Since V has the same linear relationships among its columns as A, it inherits periodicity property

(3.11). Therefore, for any ι ∈ q̃ and any integer k such that 0≤ k ≤
�

n (d+1)−ι
n

�

:

vι+k n =
∑

{ j∈p | j<ι}
α j v j+k n . (3.19)

We also will use an obvious relationship for any r ∈ {1, . . . , n (d +1)} and 0≤ k ≤
�

n (d+1)−r
n

�

:

e [r+k n = s k e [r (3.20)
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and the fact that the set {1, . . . , n (d +1)} is a disjoint union of the sets p and q . Then

b [ι+k n = (eι+k n − vι+k n )
[ = s k e [ι −

∑

{ j∈p | j<ι}
α j v [j+k n by (3.15), (3.20) and (3.19)

= s k e [ι −
∑

{ j∈p | j<ι, j+k n∈p}
α j v [j+k n −

∑

{ j∈p | j<ι, j+k n∈q }
α j v [j+k n (disjoint union)

= s k e [ι −
∑

{ j∈p | j<ι, j+k n∈p}
α j e [j+k n −

∑

{ j∈p | j<ι, j+k n∈q }
α j v [j+k n by (3.17)

= s k e [ι −
∑

{ j∈p | j<ι}
α j e [j+k n +

∑

{ j∈p | j<ι, j+k n∈q }
α j

�

e [j+k n − v [j+k n

�

(disjoint union)

= s k e [ι −
∑

{ j∈p | j<ι}
s k α j e [j +

∑

{ j∈p | j<ι, j+k n∈q }
α j b [j+k n by (3.20) and (3.15)

= s k

 

eι −
∑

{ j∈p | j<ι}
α j e j

![

+
∑

{ j∈p | j<ι, j+k n∈q }
α j b [j+k n

= s k b [ι +
∑

{ j∈p | j<ι, j+k n∈q }
α j b [j+k n . (3.18) and (3.15)

Example 25. Continuing with Example 23, where q = {6,9,11,12,14,15} and q̃ = {6,11} and p =

{1, 2, 3, 4, 5, 7, 8, 10, 13}, we have:

b [9 = s b [6+1 b [6,

b [12 = s 2 b [6+1 b [9+0 b [11, (3.21)

b [14 = s b [11+3 b [6+ (−1)b [11

b [15 = s 3 b [6+ (−1)b [11+1 b [12+0 b [14.

In the next lemma, we show that the subset of row-echelon syzygies indexed by the n −1 basic

non-pivotal indices is sufficient to generate syz(a).

Lemma 26. Let q̃ denote the set of basic non-pivotal indices of A. Then

syz(a) =



b [r | r ∈ q̃
�

K[s ] .

Proof. Since {bi | i ∈ q } comprise a basis of ker(A), we know from Lemma 17 that syz(a) =



b [i | i ∈ q
�

K[s ] .

Equation (3.16) implies that for all i ∈ q , there exist constant β ’s such that

b [i = s k b [ι +
∑

{r∈q | r<i }
βr b [r , (3.22)

where ι ∈ q̃ is equal to i modulo n . It follows that inductively we can express b [i as a K[s ]-linear

combination of {br |r ∈ q̃ } and the conclusion of the lemma follows.

32



Example 27. Continuing with Example 23, we have from (3.21):

b [9 = (s +1)b [6,

b [12 = (s 2+ s +1)b [6+0 b [11,

b [14 = 3 b [6+ (s −1)b [11,

b [15 = (s 3+ s 2+ s +1)b [6+ (−1)b [11.

We next establish linear independence of the corresponding leading vectors:

Lemma 28. The leading vectors LV (b [r ), r ∈ q̃ are linearly independent overK.

Proof. The leading vector LV (b [r ) is equal to the last non-zero n-block in the n (d +1)-vector br . By

construction, the last non-zero element of br is equal to 1 and occurs in the r -th position. Then

LV (b [r ) has 1 in r̄ = (r mod n ) (the reminder of division of r by n) position. All elements of LV (b [r )

positioned after r̄ are zero. Since all integers in q̃ are distinct (modulo n), LV (b [r ), r ∈ q̃ are linearly

independent overK.

Example 29. The basic non-pivotal columns of the matrix V in Example (23) are columns 6 and 11.

We previously computed

b6 = e6− v6 = [0, 1,−1,−1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

b11 = e11− v11 = [1, 2,−3,−2, 2, 0,−2, 1, 0,−1, 1, 0, 0, 0, 0]T .

The last non-zero n-blocks of b6 and b11 are [−1, 0, 1] and [−1, 1, 0], respectively. These blocks coin-

cide with LV (b [6) and LV (b [11) computed in Example 23. We observe that these vectors are linearly

independent, as expected.

Lemma 30. Let polynomial vectors h1, . . . , hl ∈K[s ]n be such that LV (h1), . . . , LV (hl ) are independent

overK. Then h1, . . . , hl are independent overK[s ].

Proof. Assume that h1, . . . , hl are linearly dependent overK[s ], i.e. there exist polynomials g1, . . . , g l ∈
K[s ], not all zero, such that

l
∑

i=1

g i hi = 0. (3.23)

Let m = max
i=1,...,l

�

deg(g i ) +deg(hi )
�

and letI be the set of indices on which this maximum is achieved.

Then (3.23) implies
∑

i∈I
LC (g i )LV (hi ) = 0,

where LC (g i ) is the leading coefficient of g i and is non-zero for i ∈I . This identity contradicts our

assumption that LV (h1), . . . , LV (hl ) are linearly independent overK.
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Theorem 31 (Main). The set u = {b [r | r ∈ q̃ } is a µ-basis of a.

Proof. We will check that u satisfies the three conditions of a µ-basis in Definition 9.

1. From Lemma 22, there are exactly n −1 elements in q̃ . Since br1
6= br2

for r1 6= r2 ∈ q̃ and since

[ is an isomorphism, the set u contains exactly n −1 elements.

2. From Lemma 28, we know that the leading vectors LV (b [r ), r ∈ q̃ are linearly independent

overK.

3. Lemma 26 asserts that the set u generates syz(a ). By combining Lemmas 28 and 30, we see

that the elements of this set are independent overK[s ]. Therefore u is a basis of syz(a).

Remark 32. We note that by construction the last non-zero entry of vector br is in the r -th position,

and therefore

deg(b [r ) =
�

r /n
�

−1.

Thus we can determine the degrees of the µ-basis elements prior to computing the µ-basis from the

set of basic non-pivotal indices.

Example 33. For the row vector a given in the running example (Example 10), we determined that

q̃ = {6, 11}. Therefore, prior to computing a µ-basis, we can determine the degrees of its members:

µ1 =
�

6/3
�

−1= 1 and µ2 =
�

11/3
�

−1= 3. We now can apply Theorem 31 and the computation we

performed in Example 23 to write down a µ-basis:

b [6 =







−s

1

−1+ s






and b [11 =







1−2s −2s 2− s 3

2+2s + s 2+ s 3

−3






.

We observe that our degree prediction is correct.

3.1.4 Algorithm

We now describe an algorithm for computing µ-bases of univariate polynomials. We assume that

the reader is familiar with Gauss-Jordan elimination (for computing reduced row-echelon forms

and in turn null vectors), which can be found in any standard linear algebra textbook. The theory

developed in the previous sections can be recast into the following computational steps:

1. Construct a matrix A ∈K(2d+1)×n (d+1) whose null space corresponds to syzd (a).

2. Compute the reduced row-echelon form E of A.

3. Construct a matrix M ∈K[s ]n×(n−1) whose columns form a µ-basis of a, as follows:
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(a) Construct the matrix B ∈Kn (d+1)×(n−1) whose columns are the null vectors of E corre-

sponding to its basic non-pivot columns:

• Bq̃ j , j = 1

• Bpr , j =−Er,q̃ j
for all r

• All other entries are zero

where p is the list of the pivotal indices and q̃ is the list of the basic non-pivotal indices

of E .

(b) Translate the columns of B into polynomials.

However, steps 2 and 3 do some wasteful operations and they can be improved, as follows:

• Note that step 2 constructs the entire reduced row-echelon form of A, even though we only

need n − 1 null vectors corresponding to its basic non-pivot columns. Hence, it is natural

to optimize this step so that only the n − 1 null vectors are constructed: instead of using

Gauss-Jordan elimination to compute the entire reduced row-echelon form, one performs

operations column by column only on the pivot columns and basic non-pivot columns. One

aborts the elimination process as soon as n −1 basic non-pivot columns are found, resulting

in a partial reduced row-echelon form of A.

• Note that step 3 constructs the entire matrix B even though many entries are zero. Hence,

it is natural to optimize this step so that we bypass constructing the matrix B , but instead

construct the matrix M directly from the matrix E . This is possible because the matrix E

contains all the information about the matrix B .

Below, we describe the resulting algorithm in more detail and illustrate its operation on our running

example (Example 10).

µ-Basis Algorithm

Input: a 6= 0 ∈K[s ]n , row vector, where n > 1 andK is a computable field

Output: M ∈K[s ]n×(n−1) such that its columns form a µ-basis of a

1. Construct a matrix A ∈K(2d+1)×n (d+1) whose null space corresponds to syzd (a).

(a) d ←− deg(a)

(b) Identify the row vectors c0, . . . , cd ∈Kn such that a= c0+ c1s + · · ·+ cd s d .

(c) A←−



















c0
...

...

cd
... c0

...
...

cd


















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2. Construct the “partial” reduced row-echelon form E of A.

This can be done by using Gauss-Jordan elimination (forward elimination, backward elimina-

tion, and normalization), with the following optimizations:

• Stop the forward elimination as soon as n −1 basic non-pivot columns are detected.

• Skip over periodic non-pivot columns.

• Carry out the row operations only on the required columns.

3. Construct a matrix M ∈K[s ]n×(n−1) whose columns form a µ-basis of a.

Let p be the list of the pivotal indices and let q̃ be the list of the basic non-pivotal indices of E .

(a) Initialize an n ×n −1 matrix M with 0 in every entry.

(b) For j = 1, . . . , n −1

r ← rem
�

q̃ j −1, n
�

+1

k ← quo
�

q̃ j −1, n
�

Mr, j ←Mr, j + s k

(c) For i = 1, . . . , |p |

r ← rem
�

pi −1, n
�

+1

k ← quo
�

pi −1, n
�

For j = 1, . . . , n −1

Mr, j ←Mr, j −Ei ,q̃ j
s k

Theorem 34. Let M be the output of the µ-Basis Algorithm on the input a ∈K[s ]n . Then the columns

of M form a µ-basis for a.

Proof. In step 1, we construct the matrix A whose null space corresponds to syzd (a) as has been

shown in Lemma 16. In step 2, we perform partial Gauss-Jordan operations on A to identify the n−1

basic non-pivot columns of its reduced row-echelon form E . In Lemma 22, we showed that there are

exactly n −1 such columns. In step 3, we convert the basic non-pivot columns of E into polynomial

vectors, using the [-isomorphism described in Section 3.1.2, and return these polynomial vectors as

columns of the matrix M . From Theorem 31 it follows that the columns of M indeed form a µ-basis

of a, because they satisfy the generating, leading vector, and linear independence conditions of

Definition 9 of a µ-basis.

Example 35. We trace the algorithm (with partial Gauss-Jordan) on the input vector from Example 10:

a=
�

1+ s 2+ s 4 1+ s 3+ s 4 1+ s 4
�

∈Q[s ]3.

1. Construct a matrix A ∈K(2d+1)×n (d+1) whose null space corresponds to syzd (a):
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(a) d ←− 4

(b) c0, c1, c2, c3, c4←− [ 1 1 1 ] , [ 0 0 0 ] , [ 1 0 0 ] , [ 0 1 0 ] , [ 1 1 1 ]

(c) A←−































1 1 1

0 0 0 1 1 1

1 0 0 0 0 0 1 1 1

0 1 0 1 0 0 0 0 0 1 1 1

1 1 1 0 1 0 1 0 0 0 0 0 1 1 1

1 1 1 0 1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































A blank indicates that the entry is zero due to structural reasons.

2. Construct the “partial” reduced row-echelon form E of A:

For this step, we will maintain/update the following data structures.

• E : the matrix initialized with A and updated by the Gauss-Jordan process.

• p : the set of the pivotal indices found.

• q̃ : the set of the basic non-pivotal indices found.

• O : the list of the row operations, represented as follows.

(i , i ′) : swap Ei , j with Ei ′, j

(i , w , i ′) : Ei , j ←− Ei , j +w ·Ei ′, j

where j is the current column index.

We will also indicate the update status of the columns of E using the following color codings.

gray : not yet updated

blue : pivot

red : basic non-pivot

brown : periodic non-pivot

Now we show the trace.

(a) Initialize.

p ←−{ }

q̃ ←−{ }
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E ←−































1 1 1

0 0 0 1 1 1

1 0 0 0 0 0 1 1 1

0 1 0 1 0 0 0 0 0 1 1 1

1 1 1 0 1 0 1 0 0 0 0 0 1 1 1

1 1 1 0 1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































O ←− [ ]

(b) j ←− 1

Carry out the row operations in O on column 1. (Nothing to do.)

E ←−































1 1 1

0 0 0 1 1 1

1 0 0 0 0 0 1 1 1

0 1 0 1 0 0 0 0 0 1 1 1

1 1 1 0 1 0 1 0 0 0 0 0 1 1 1

1 1 1 0 1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Identify column 1 as a pivot.

p ←−{1}

q̃ ←−{ }

Carry out the row operations (3,−1, 1), (5,−1, 1) on column 1.

E ←−































1 1 1

0 0 1 1 1

0 0 0 0 0 1 1 1

1 0 1 0 0 0 0 0 1 1 1

1 1 0 1 0 1 0 0 0 0 0 1 1 1

1 1 1 0 1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Append (3,−1, 1), (5,−1, 1) to O .

O ←− [(3,−1, 1), (5,−1, 1)]

(c) j ←− 2

Carry out the row operations in O on column 2.
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E ←−































1 1 1

0 0 1 1 1

−1 0 0 0 0 1 1 1

1 0 1 0 0 0 0 0 1 1 1

0 1 0 1 0 1 0 0 0 0 0 1 1 1

1 1 1 0 1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Identify column 2 as a pivot.

p ←−{1, 2}

q̃ ←−{}

Carry out the row operations (3, 2), (4, 1, 2) on column 2.

E ←−































1 1 1

−1 0 1 1 1

0 0 0 0 1 1 1

0 1 0 0 0 0 0 1 1 1

1 0 1 0 1 0 0 0 0 0 1 1 1

1 1 1 0 1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Append (3, 2), (4, 1, 2) to O .

O ←− [(3,−1, 1), (5,−1, 1), (3, 2), (4, 1, 2)]

(d) j ←− 3

Carry out the row operations in O on column 3.

E ←−































1 1 1

−1 −1 1 1 1

0 0 0 0 1 1 1

−1 1 0 0 0 0 0 1 1 1

0 0 1 0 1 0 0 0 0 0 1 1 1

1 1 1 0 1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Identify column 3 as a pivot.

p ←−{1, 2, 3}

q̃ ←−{ }

Carry out the row operation (4, 3) on column 3.
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E ←−































1 1 1

−1 −1 1 1 1

−1 0 0 0 1 1 1

1 0 0 0 0 0 1 1 1

0 1 0 1 0 0 0 0 0 1 1 1

1 1 1 0 1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Append (4, 3) to O .

O ←− [(3,−1, 1), (5,−1, 1), (3, 2), (4, 1, 2), (4, 3)]

(e) j ←− 4

Carry out the row operations in O on column 4.

E ←−































1 1 1

−1 −1 0 1 1

−1 1 0 0 1 1 1

1 0 0 0 0 0 1 1 1

0 1 0 1 0 0 0 0 0 1 1 1

1 1 1 0 1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Identify column 4 as a pivot.

p ←−{1, 2, 3, 4}

q̃ ←−{ }

Carry out the row operation (6,−1, 4) on column 4.

E ←−































1 1 1

−1 −1 0 1 1

−1 1 0 0 1 1 1

1 0 0 0 0 0 1 1 1

1 0 1 0 0 0 0 0 1 1 1

1 1 0 1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Append (6,−1, 4) to O .

O ←− [(3,−1, 1), (5,−1, 1), (3, 2), (4, 1, 2), (4, 3), (6,−1, 4)]

(f) j ←− 5

Carry out the row operations in O on column 5.
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E ←−































1 1 1

−1 −1 0 0 1

−1 1 0 0 1 1 1

1 1 0 0 0 0 1 1 1

1 0 1 0 0 0 0 0 1 1 1

0 1 0 1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Identify column 5 as a pivot.

p ←−{1, 2, 3, 4, 5}

q̃ ←−{ }

No row operations needed on column 5.

E ←−































1 1 1

−1 −1 0 0 1

−1 1 0 0 1 1 1

1 1 0 0 0 0 1 1 1

1 0 1 0 0 0 0 0 1 1 1

1 0 1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Nothing to append to O .

O ←− [(3,−1, 1), (5,−1, 1), (3, 2), (4, 1, 2), (4, 3), (6,−1, 4)]

(g) j ←− 6

Carry out the row operations in O on column 6.

E ←−































1 1 1

−1 −1 0 0 0

−1 1 0 0 1 1 1

1 1 1 0 0 0 1 1 1

1 0 1 0 0 0 0 0 1 1 1

0 0 1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Identify column 6 as a basic non-pivot: column 6 is non-pivotal because it does not have

non-zero entries below the 5-th row and therefore it is a linear combination of the five

previous pivotal columns: E∗6 =−E∗2+E∗3+E∗4. Column 6 is basic because its index is

minimal in its equivalence class q/(3).

p ←−{1, 2, 3, 4, 5}
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q̃ ←−{6}

No row operations needed on column 6.

E ←−































1 1 1

−1 −1 0 0 0

−1 1 0 0 1 1 1

1 1 1 0 0 0 1 1 1

1 0 1 0 0 0 0 0 1 1 1

0 1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Nothing to append to O .

O ←− [(3,−1, 1), (5,−1, 1), (3, 2), (4, 1, 2), (4, 3), (6,−1, 4)]

(h) j ←− 7

Carry out the row operations in O on column 7.

E ←−































1 1 1

−1 −1 0 0 0 1

−1 1 0 0 1 1 1

1 1 1 0 0 0 1 1 1 0 0 0

1 0 1 0 0 0 0 0 1 1 1

0 1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Identify column 7 as a pivot.

p ←−{1, 2, 3, 4, 5, 7}

q̃ ←−{6}

Carry out the row operations (7, 6) on column 7.

E ←−































1 1 1

−1 −1 0 0 0 1

−1 1 0 0 1 1 1

1 1 1 0 0 0 1 1 1

1 0 1 0 0 0 0 0 1 1 1

1 1 0 1 0 0 0 0 0

1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Append (7, 6) to O .

O ←− [(3,−1, 1), (5,−1, 1), (3, 2), (4, 1, 2), (4, 3), (6,−1, 4), (7, 6)]

(i) j ←− 8
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Carry out the row operations in O on column 8.

E ←−































1 1 1

−1 −1 0 0 0 1 1

−1 1 0 0 1 1 1

1 1 1 0 0 0 1 1 1

1 0 1 0 0 0 0 0 1 1 1

1 1 0 1 0 0 0 0 0

1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Identify column 8 as a pivot.

p ←−{1, 2, 3, 4, 5, 7, 8}

q̃ ←−{6}

No row operations needed on column 8.

E ←−































1 1 1

−1 −1 0 0 0 1 1

−1 1 0 0 1 1 1

1 1 1 0 0 0 1 1 1

1 0 1 0 0 0 0 0 1 1 1

1 1 0 1 0 0 0 0 0

1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Nothing to append to O .

O ←− [(3,−1, 1), (5,−1, 1), (3, 2), (4, 1, 2), (4, 3), (6,−1, 4), (7, 6)]

(j) j ←− 9

Identify column 9 as periodic non-pivot.

E ←−































1 1 1

−1 −1 0 0 0 1 1

−1 1 0 0 1 1 1

1 1 1 0 0 0 1 1 1

1 0 1 0 0 0 0 0 1 1 1

1 1 0 1 0 0 0 0 0

1 1 0 1 0 1 0 0

1 1 1 0 1 0

1 1 1































(k) j ←− 10

Carry out the row operations in O on column 10.
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E ←−































1 1 1

−1 −1 0 0 0 1 1 0

−1 1 0 0 1 1 1 1

1 1 1 0 0 0 0 1 1

1 0 1 0 0 0 0 0 1 1 1

1 1 0 0 0 0 0 0 0

1 1 1 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Identify column 10 as a pivot.

p ←−{1, 2, 3, 4, 5, 7, 8, 10}

q̃ ←−{6}

No row operations needed on column 10.

E ←−































1 1 1

−1 −1 0 0 0 1 1 0

−1 1 0 0 1 1 1 1

1 1 1 0 0 0 0 1 1

1 0 1 0 0 0 0 0 1 1 1

1 1 0 0 0 0 0 0 0

1 1 1 1 0 1 0 0

1 1 1 0 1 0

1 1 1































Nothing to append to O .

O ←− [(3,−1, 1), (5,−1, 1), (3, 2), (4, 1, 2), (4, 3), (6,−1, 4), (7, 6)]

(l) j ←− 11

Carry out the row operations in O on column 11.

E ←−































1 1 1

−1 −1 0 0 0 1 1 0 0

−1 1 0 0 1 1 1 1 1

1 1 1 0 0 0 0 0 1

1 0 1 0 0 0 0 0 1 1 1

1 1 0 0 1 0 0 0 0

1 1 1 0 0 1 0 0

1 1 1 0 1 0

1 1 1































Identify column 11 as a basic non-pivot.

p ←−{1, 2, 3, 4, 5, 7, 8, 10}

q̃ ←−{6, 11}

No row operations needed on column 11.
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E ←−































1 1 1

−1 −1 0 0 0 1 1 0 0

−1 1 0 0 1 1 1 1 1

1 1 1 0 0 0 0 0 1

1 0 1 0 0 0 0 0 1 1 1

1 1 0 0 1 0 0 0 0

1 1 1 0 0 1 0 0

1 1 1 0 1 0

1 1 1































Nothing to append to O .

O ←− [(3,−1, 1), (5,−1, 1), (3, 2), (4, 1, 2), (4, 3), (6,−1, 4), (7, 6)]

We have identified n −1 basic non-pivot columns, so we abort forward elimination.

(m) Perform backward elimination on the pivot columns and basic non-pivot columns.

E ←−































1 0 −1

−1 1 2

−1 −1 1 −3

1 1 0 2 1

1 0 0 −2 0 1 1 1

1 0 2 0 0 0 0

1 1 −1 0 1 0 0

1 1 1 0 1 0

1 1 1































(n) Perform normalization on the pivot columns and basic non-pivot columns.

E ←−































1 0 −1

1 −1 −2

1 1 1 3

1 1 0 2 1

1 0 0 −2 0 1 1 1

1 0 2 0 0 0 0

1 1 −1 0 1 0 0

1 1 1 0 1 0

1 1 1































3. Construct a matrix M ∈K[s ]n×(n−1) whose columns form a µ-basis of a:

(a) M ←−







0 0

0 0

0 0







(b) M ←−







0 0

0 s 3

s 0






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(c) M ←−







−s 1−2s −2s 2− s 3

1 2+2s + s 2+ s 3

−1+ s −3







3.1.5 Theoretical Complexity Analysis

In this subsection, we analyze the theoretical (asymptotic worst case) complexity of the µ-basis

algorithm given in the previous subsection. We will do so under the assumption that the time for

any arithmetic operation is constant.

Theorem 36. The complexity of the µ-basis algorithm given in the previous section is

O (d 2n +d 3+n 2).

Proof. We will trace the theoretical complexity for each step of the algorithm.

1. (a) To determine d , we scan through each of the n polynomials in a to identify the highest

degree term, which is always ≤ d . Thus, the complexity for this step is O (d n ).

(b) We identify n (d + 1) values to make up c0, . . . , cd . Thus, the complexity for this step is

O (d n ).

(c) We construct a matrix with (2d +1)n (d +1) entries. Thus, the complexity for this step is

O (d 2n ).

2. With the partial Gauss-Jordan elimination, we perform row operations only on the (at most)

2d +1 pivot columns of A and the n−1 basic non-pivot columns of A. Thus, we perform Gauss-

Jordan elimination on a (2d +1)× (2d +n )matrix. In general, for a k × l matrix, Gauss-Jordan

elimination has complexity O (k 2l ). Thus, the complexity for this step is O (d 2(d +n )).

3. (a) We fill 0 into the entries of an n × (n −1)matrix M . Thus, the complexity of this step is

O (n 2).

(b) We update entries of the matrix n −1 times. Thus, the complexity of this step is O (n ).

(c) We update entries of the matrix |p | × (n −1) times. Note that |p |= rank(A)≤ 2d +1. Thus

the complexity of this step is O (d n ).

By summing up, we have

O
�

d n +d n +d 2n +d 2(d +n ) +n 2+n +d n
�

=O
�

d 2n +d 3+n 2
�

.

Remark 37. Note that the n 2 term in the above complexity is solely due to step 3(a), where the

matrix M is initialized with zeros. If one uses a sparse representation of the matrix (storing only
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non-zero elements), then one can skip the initialization of the matrix M . As a result, the complexity

can be improved to O
�

d 2n +d 3
�

.

Remark 38. [Comparison with Song-Goldman Algorithm] As far as we are aware, the theoretical

complexity of the algorithm by Song and Goldman [SG09] has not yet been published. Here we

roughly estimate the complexity of this algorithm to be O (d n 5+d 2n 4). It will require a more rigorous

analysis to prove/refute this apparent complexity, which is beyond the scope of this section. For

the readers’ convenience, we reproduce the algorithm published in [SG09] on pp. 220 – 221 in our

notation, before analyzing its complexity.

Input: a ∈K[s ]n with gcd(a) = 1

Output: A µ-basis of a

1. Create the r =C n
2 “obvious" syzygies as described in Lemma 11 and label them u1, . . . , ur .

2. Set mi = LV (ui ) and di = deg(ui ) for i = 1, . . . , r .

3. Sort di so that d1 ≥ d2 ≥ . . .≥ dr and re-index ui , mi .

4. Find real numbers α1,α2, . . . ,αr such that α1m1+α2m2+ · · ·+αr mr = 0.

5. Choose the lowest integer j such that α j 6= 0, and update u j by setting

u j =α j u j +α j+1s d j−d j+1 u j+1+ · · ·+αr s d j−dr ur .

If u j ≡ 0, discard u j and set r = r −1; otherwise set m j = LV (u j ) and d j = deg(u j ).

6. If r = n−1, then output the n−1 non-zero vector polynomials u1, . . . , un−1 and stop; otherwise,

go to Step 3.

Finding a null vector in step 4 by partial Gauss-Jordan elimination requires performing row oper-

ations on (at most) n + 1 columns. Since each column contains n entries, we conclude that this

step has complexity O (n 3). Performing the “update" operation in step 5 of the algorithm has com-

plexity O (d n 2). Step 6 implies that, in the worst case, the algorithm repeats steps 4 and 5 at most
�

d n (n−1)
2 −d

�

times. The reason is as follows. Since the algorithm starts with the C n
2 =

n (n−1)
2 obvious

syzygies and each has degree ≤ d , the (worst case) total degree of the syzygies at the beginning of

the algorithm is d n (n−1)
2 . The algorithm ends only when the total degree is d . If each repetition of

steps 4 and 5 reduces the total degree by 1, then the steps are repeated
�

d n (n−1)
2 −d

�

times. Thus,

the total computational complexity appears to be O (d n 5+d 2n 4).

3.1.6 Implementation

We implemented the µ-basis algorithm presented in this section and the one described in Song-

Goldman [SG09]. For the sake of simplicity, from now on, we will call these two algorithms HHK and
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SG. We now discuss our implementation. We implemented both algorithms (HHK and SG) in the

computer algebra system Maple [Ber15]. The codes and examples are available on the web:

http://www.math.ncsu.edu/~zchough/mubasis.html.

We post two versions of the code:

program_rf : over rational number fieldQ.

program_ff : over finite field Fp where p is an arbitrary prime number.

Now we explain how the two algorithms (HHK and SG) have been implemented.

• Although both algorithms could be written in a non-interpreted language such as the C-

language, making the running time significantly shorter, we implemented both algorithms in

Maple [Ber15] for the following reasons.

1. Maple allows fast prototyping of the algorithms, making it easier to write and read the

programs written in Maple.

2. It is expected that potential applications of µ-bases will often be written in computer

algebra systems such as Maple.

• Both algorithms contain a step in which null vectors are computed (step 2 of HHK and step 4

of SG). Although Maple has a built-in routine for computing a basis of the null space for the

input matrix, we did not use this built-in routine because we do not need the entire null basis,

but only a certain subset of basis vectors with desired properties, consisting of n −1 vectors

for HHK and a single vector for SG. For this reason, we implemented partial Gauss-Jordan

elimination.

• For the rational field implementation of the SG algorithm, we produced the null vector in step

4 with integer entries in order to avoid rational number arithmetic (which is expensive due to

integer gcd computations) in the subsequent steps of the algorithm.

• Dense representations of matrices were used for both algorithms. As shown in Remark 37,

it is easy to exploit sparse representations for HHK, but it was not clear how one could ex-

ploit sparse representations for SG. Thus, in order to ensure fair comparison, we used dense

representations for both algorithms.

3.1.7 Experiments, timing, and fitting

We now describe the experimental performance of both algorithms. We explain the setup for our

experiments so that the timings reported here can be reproduced independently.

• The programs were executed using Maple 2015 version running on Apple iMac (Intel i 7-2600,

3.4 GHz, 16GB).
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• The inputs were randomly-generated: for various values of d and n , the coefficients were

taken randomly from F5, with a uniform distribution.

• In order to get reliable timings, especially when the computing time is small relative to the

clock resolution, we ran each program several times on the same input and computed the

average of the computing times.

• The execution of a program on an input was cut off if its computing time exceeded 120 seconds.

Figure 3.1 HHK algorithm timing Figure 3.2 SG algorithm timing

Figure 3.1 shows the experimental timing for the HHK algorithm, while Figure 3.2 shows the experi-

mental timing for the SG algorithm. An experimental timing corresponds to a point (d , n , t ), where

d is the degree, n is the length of the input polynomial vector, and t is the time in seconds it took for

our codes to produce the output. The algorithms were run on randomly-generated examples with

specified d and n , and they ran in time t . For each figure, the axes represent the range of values

d = 3, . . . , 200, n = 3, . . . , 200, and t = 0, . . . , 120, where t is the timing in seconds. Each dot (d , n , t )

represents an experimental timing.

For each algorithm, we fit a surface through the experimental data points. The background

gray surfaces are fitted to the experimental data. Our fitting models are based on the theoretical

complexities obtained in Section 3.1.5. The fitting was computed using least squares. For HHK,

based on Theorem 36, we chose a model for the timing, t = α1d 2n +α2d 3 +α3n 2, where α’s are

unknown constants to be determined. After substituting the experimental values (d , n , t ), we obtain

an over-determined system of linear equations in the α’s. We find α’s that minimize the sum of

squares of errors. For SG, we used the same procedure with the timing model t =β1d n 5+β2d 2n 4

based on Remark 38.
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We generated the following functions:

tH H K ≈ 10−6 · (7.4 d 2n +1.2 d 3+1.2 n 2) (3.24)

tSG ≈ 10−7 · (2.6 d n 5+0.6 d 2n 4). (3.25)

For our experimental data, the residual standard deviation for the HHK-timing model (3.24) is 0.686

seconds, while the residual standard deviation for the SG-timing model (3.25) is 11.886 seconds.

We observe from Figures 3.1 and 3.2 that for a fixed d , the HHK algorithm’s dependence on n is

almost linear, while the SG algorithm’s dependence on n is highly nonlinear. In fact, for the latter,

the dependence is so steep that the algorithm was unable to terminate in under 120 seconds for

most values of n , thus explaining the large amount of blank space in Figure 3.2. For a fixed n , the

HHK algorithm’s dependence on d is nonlinear, while the SG algorithm’s dependence on d is almost

linear.

3.1.8 Comparison

We now compare the performance of the two algorithms. Two pictures below represent performance

comparisons.

Figure 3.3 HHK (red) and SG (blue). Figure 3.4 Tradeoff graph

• Figure 3.3 shows the fitted surfaces from Figures 3.1 and 3.2 on the same graph. The axes

represent the range of values n = 3, . . . ,200, d = 3, . . . ,200, and t = 0, . . . ,120, where t is the

timing of the algorithms in seconds.

• Figure 3.4 shows a tradeoff graph for the two algorithms. The curve in the figure represents

values of d and n for which the two algorithms run with the same timing. Below the curve,
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the SG algorithm runs faster, while above the curve, the HHK algorithm runs faster. The ratio

of the dominant terms in the fitted formulae is d : n 4. This ratio manifests itself in the shape

of the tradeoff curve presented in Figure 3.4.

Figure 3.5 n = 7 Figure 3.6 d = 50

From Figure 3.3, we observe that for a fixed d , as n increases the HHK algorithm vastly out-

performs the SG algorithm. In contrast, for a fixed value of n , as d increases the SG algorithm

outperforms the HHK algorithm. The order by which SG runs faster is less than the order by which

HHK runs faster for fixed d and increasing n . We underscore this observation by displaying two-

dimensional slices of Figure 3.3. Figure 3.5 represents the slice in the d -direction with n = 7, while

Figure 3.6 represents the slice in the n-direction with d = 50. As before, HHK is represented by red

and SG by blue.

3.1.9 Original definition, homogeneous version, and gcd

We now elaborate on a few additional topics related to µ-bases. Namely, the original definition

of a µ-basis from [Cox98b], the homogeneous version of the µ-basis problem, and how µ-basis

computations relate to gcd.

The original definition and proof of existence: The original definition of a µ-basis appeared on p 824

of a paper by Cox, Sederberg, and Chen [Cox98b] and is based on the “sum of the degrees” property

(Statement 2 of Proposition 8). The definition also mentions an equivalent “reduced representation”

(Statement 4 of Proposition 8). The proof of the existence theorem (Theorem 1 on p. 824 of [Cox98b])

appeals to the celebrated Hilbert Syzygy Theorem [Hil90] and utilizes Hilbert polynomials, which

first appeared in the same paper [Hil90] under the name of characteristic functions. The definition

of µ-basis in terms of the degrees, given in [Cox98b], is compatible with the tools that have been

chosen to show its existence.

The homogeneous version of the problem: It is instructive to compare the inhomogeneous and

homogenous versions of the problem. In fact, in order to invoke the Hilbert Syzygy Theorem in
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the proof of the existence of a µ-basis, Cox, Sederberg, and Chen restated the problem in the

homogeneous setting (see pp. 824-825 of [Cox98b]).

Let â= [ ˆa1(x , y ), . . . , ˆan (x , y )] be a row vector of n homogeneous polynomials over a fieldK, each

of which has the same degree. As before, a syzygy of â is a column vector h= [h1(x , y ), . . . , hn (x , y )]T

of polynomials (not necessarily homogeneous), such that â h= 0. The set syz(â) is a module over

K[x , y ], and the Hilbert Syzygy Theorem implies that it is a free module of rank n −1 possessing a

homogeneous basis. Let n −1 homogeneous polynomial vectors ˆu1(x , y ), . . . , ˆun−1(x , y ) comprise

an arbitrary homogeneous basis of syz(â). Define dehomogenizations: a(s ) = [a1(s ), . . . , an (s )], where

ai (s ) = âi (s , 1) ∈K[s ], i = 1, . . . , n and u j (s ) = û j (s , 1) ∈K[s ]n , j = 1, . . . , n −1. An argument, involving

Hilbert polynomials on p. 825 of [Cox98b], shows that u1, . . . , un−1 is a µ-basis of syz(a).

Let us now start with a polynomial vector a(s ) = [a1(s ), . . . , an (s )] ∈ K[s ]n of degree d in the

sense of Definition 6, and consider its homogenization â= [â1(x , y ), . . . , ân (x , y )], where âi (x , y ) =

y d ai

�

x
y

�

, i = 1, . . . , n . It is not true that homogenezation of an arbitrary basis of syz(a) produces

a basis of syz(â). Indeed, let u1 and u2 be the columns of matrix M in Example 10. Then u1 +u2

and u2 is a basis of syz(a), with each vector having degree 3. Their homogenizations Úu1+u2 and cu2

are homogeneous polynomial vectors of degree 3, and, therefore, they can not possibly generate

a homogeneous vector û1(x , y ) = y u1

�

x
y

�

= [−x , y , x − y ]T of degree 1, which clearly belongs to

syz(â). A rather simple argument that utilizes the “reduced representation” property (Statement 4 of

Proposition 8) can be used to show that for an arbitrary non-zero vector a ∈K[s ]n , homogenization

of any µ-basis of syz(a) produces a homogeneous basis of syz(â).

The above discussion can be summarized in the following statement: the set of homogeneous

bases of syz(â) is in one-to-one correspondence with the set of µ-bases of syz(a), where a ∈K[s ]n is

the dehomogenization of â ∈K[x , y ]n . Therefore, the algorithm developed in Section 3.1.4 can be

used to compute homogeneous bases of syz(â).

µ-basis algorithms and gcd computation: In contrast to the algorithm developed by Song and

Goldman in [SG09], the algorithm presented in this section produces a µ-basis even when the input

vector a has a non-trivial greatest common divisor. Moreover, once a µ-basis is computed, one can

immediately find gcd(a) using Statement 5 of Proposition 8. Indeed, let h denote the outer product

of a µ-basis u1, . . . , un−1. If M is the matrix generated by the algorithm, then hi = (−1)i |Mi |, where

Mi is an (n −1)× (n −1) submatrix of M constructed by removing the i -th row. By Statement 5 of

Proposition 8, there exists a non-zero α ∈K such that

a=α gcd(a)h.

Let i ∈ {1, . . . , n} be such that ai is a non-zero polynomial. Then gcd(a) is computed by long division

of ai by hi and then dividing the quotient by its leading coefficient to make it monic. In comparison,

the algorithm developed in [SG09] produces a µ-basis of a multiplied by gcd(a). From the output of

this algorithm and Statement 5 of Proposition 8, one finds gcd(a)n−2. Song and Goldman discuss

how to recover gcd(a) itself by repeatedly running their algorithm.
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3.2 Matrix generalization: minimal bases

A natural generalization of the µ-basis problem is obtained by considering kernels, or nullspaces,

of m ×n polynomial matrices. A basis of the nullspace is called minimal if the “minimal degree”

Statement 2 of Proposition 8 is satisfied (with n − 1 replaced by n − r , where r is the rank of the

polynomial matrix). One can easily adapt the argument in the proof of Theorem 2 in [SG09] to

show that, in this more general setting, Statement 2 is equivalent to the “independence of the

leading vectors” Statement 1 and to the “reduced representation” Statement 4 of Proposition 8. One

can also show with an example that the “sum of the degrees” Statement 3 (with the degree of a

polynomial matrix defined to be the maximum of the degrees of its entries) is no longer equivalent

to Statements 1 and 4. There is a large body of work on computing minimal bases (see for instance

[Bee87], [Ant05], [Zho12] and references therein). This research direction seems to be developing

independently of the body of work devoted to µ-bases. The algorithm presented in Section 3.1.4

can be generalized to compute minimal bases of the kernels of m ×n polynomial matrices. We now

provide the details of this generalization.

Consider the matrix

A=







− a1 −
...

...
...

− am −






∈K[s ]m×n

with rank r and degree at most d . Here, we define the degree of a matrix to be the maximum of the

degrees of its entries. Recall that in the case when m = 1, we look for syzygies of degree at most d

by considering nullspace vectors of a matrix A in which the block of coefficients is repeated d +1

times. For arbitrary m , we look for kernel vectors of degree at most md (see [Zho12] and [SV05]).

Thus, for each ai , we form its corresponding matrix Ai in which the block of coefficients for ai is

repeated md +1 times. That is, for each i , we have the matrix

Ai =



















c i
0
...

...

c i
d

... c i
0

...
...

c i
d



















∈K(md+d+1)×n (md+1).

Then, to find the desired kernel vectors of A, we look for vectors in Kn (md+1) that appear in the

nullspace of each Ai , and then translate them into polynomials. In other words, we look for nullspace

vectors of the stacked matrix

A =







A1
...

Am






∈Km (md+d+1)×n (md+1).
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All of the results in Section 3.1 can now be readily adapted to show that a minimal nullspace basis for

A can be constructed by computing the nullspace vectors of A corresponding to its basic non-pivotal

columns, and then translating these into polynomial vectors. The only difference is that there are

now n − r basic non-pivotal indices. We provide the details of this fact. To do so, we will use the

following notation. Let F ∈Km (md+d+1)×nmd be the matrix consisting of the first nmd columns of

A, and let G ∈Km (md+d+1)×n be the matrix consisting of the last n columns of A. Note that A = [F,G ].

Let S ∈K[s ]m×m (md+d+1) be the matrix such that A= SG . Note that such S exists because G contains

all of the coefficients for the polynomials in A.

We will denote the column space, or range, of a matrix M by col(M ). Then rank(M ) = dim(col(M )).

Observe that for any y ∈ col(F )∩ col(G ), there exists z ∈Knmd and x ∈Kn such that y = F z and

y =G x . It follows that

A

�

z

−x

�

= [F,G ]

�

z

−x

�

= F z −G x = y − y = 0.

That is, the vector v = [z ,−x ]T ∈Kn (md+1) is in the nullspace of A. Applying the flat isomorphism, it

follows that v [ ∈ ker(A) i.e. Av [ = 0. Therefore,

S (G v [) = (SG )v [ =Av [ = 0.

That is, the vector G v [ is in ker(S ) and thus G v [ ∈ ker(S )∩col(G ). Hence, for every vector in col(F )∩
col(G ), there is a corresponding vector in ker(S )∩ col(G ), from which it follows that

dim(col(F )∩ col(G ))≤ dim(ker(S )∩ col(G )). (3.26)

We are now ready to show that A contains exactly n − r basic non-pivotal columns. We will make

use of the following property of matrix rank: for matrices M and N such that the product M N is

defined, we have rank(M N ) = rank(N )−dim(ker(M )∩ col(N )). It follows that

r = rank(A) = rank(SG ) = rank(G )−dim(ker(S )∩ col(G )). (3.27)

Lemma 39. The matrix A has exactly n − r basic non-pivotal columns: |q̃ |= n − r .

Proof. We will show that |q̃ | ≥ n − r and |q̃ | ≤ n − r .

To show the former, let ai1
, . . . , air

be r independent rows of A, and let A′ ∈Kr (md+d+1)×n (md+1) be

the stacked matrix consisting of the coefficient matrices for these rows. Suppose for this matrix A′

that |q̃ | ≤ n − r −1. Then by periodicity

|q | ≤ |q̃ |(md +1)≤ (n − r −1)(md +1) = nmd +n − r md −m −md −1.

Also, |q |= n (md +1)− rank(A). Since rank cannot exceed the number of rows in a matrix, rank(A)≤
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r (md +d +1). Thus,

|q | ≥ n (md+1)−r (md+d+1) = nmd+n−r md−r d−r ≥ nmd+n−r md−md−m (since r ≤m).

Contradiction. Thus, |q̃ | ≥ n − r for the matrix A′. Note, however, that by inserting the remaining

m − r coefficient matrices to form the full matrix A, we do not change the number of pivotal or non-

pivotal columns because the rows in these matrices will be linear combinations of the coefficient

matrices in A′. Therefore, |q̃ | ≥ n − r for the matrix A.

To show the latter, we observe that

rank(A) = rank([F,G ]) = dim(col(F )∪ col(G ))

= dim(col(F ))+dim(col(G ))−dim(col(F )∩ col(G ))

= rank(F ) + rank(G )−dim(col(F )∩ col(G ))

≥ rank(F ) + rank(G )−dim(ker(S )∩ col(G )) by 3.26

= rank(F ) + r by 3.27.

Thus, appending the last n-block of columns to A increases the rank by at least r . Thus, there are at

least r pivotal columns in the last block of A. By periodicity, these columns will be pivotal in each

preceding block of A, from which it follows that |q̃ | ≤ n − r .

We thus have the following algorithm.

Minimal Basis Algorithm

Input: A 6= 0 ∈K[s ]m×n of rank r , where n > 1 andK is a computable field

Output: M ∈K[s ]n×(n−r ) such that its columns form a minimal nullspace basis of A

1. Construct stacked Sylvester-type matrix A ∈ Km (md+d+1)×n (md+1) whose null space corre-

sponds to kermd (A).

(a) d ←− deg(A)

(b) For each i = 1, . . . , m , identify the row vectors c i
0 , . . . , c i

d ∈K
n such that ai = c i

0 + c i
1 s + · · ·+

c i
d s d .
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(c) A←−



























































c 1
0
...

...

c 1
d

... c 1
0

...
...

c 1
d

...
...

...
...

...
...

c m
0
...

...

c m
d

... c m
0

...
...

c m
d



























































2. Construct the “partial” reduced row-echelon form E of A.

This can be done by using Gauss-Jordan elimination (forward elimination, backward elimina-

tion, and normalization), with the following optimizations:

• Skip over periodic non-pivot columns.

• Carry out the row operations only on the required columns.

Note, in the case where the input matrix is known to have full row rank m , we can further

optimize this step by stopping the forward elimination as soon as n −m basic non-pivot

columns are detected.

3. Construct a matrix M ∈K[s ]n×(n−r ) whose columns form a minimal nullspace basis of A.

Let p be the list of the pivotal indices and let q̃ be the list of the basic non-pivotal indices of E .

(a) Initialize an n × |q̃ |matrix M with 0 in every entry.

(b) For j = 1, . . . , |q̃ |

l ← rem
�

q̃ j −1, n
�

+1

k ← quo
�

q̃ j −1, n
�

Ml , j ←Ml , j + s k

(c) For i = 1, . . . , |p |

l ← rem
�

pi −1, n
�

+1

k ← quo
�

pi −1, n
�

For j = 1, . . . , |q̃ |

Ml , j ←Ml , j −Ei ,q̃ j
s k
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Note that we do not need to know the value of r prior to running the algorithm. In fact, as a by-

product of this algorithm, we can determine the rank of the matrix A, since rank(A) = n − |q̃ |.

Example 40. We trace the algorithm on the input matrix

A=





s 3+ s +1 s 3+ s 2+1 s 3+1 s 3+ s 2+ s +1

−2 s 3+ s +1 −2 s 3+ s 2+1 −s 3+1 s 3+1



 ∈Q2×4.

1. Construct stacked Sylvester-type matrix A ∈ Km (md+d+1)×n (md+1) whose null space corre-

sponds to kermd (A).

(a) d ←− 3

(b) c 1
0 , c 1

1 , c 1
2 , c 1

3 ←−
�

1 1 1 1
�

,
�

1 0 0 1
�

,
�

0 1 0 1
�

,
�

1 1 1 1
�

c 2
0 , c 2

1 , c 2
2 , c 2

3 ←−
�

1 1 1 1
�

,
�

1 0 0 0
�

,
�

0 1 0 0
�

,
�

−2 −2 −1 1
�

(c) A←−












































































1 1 1 1

1 0 0 1 1 1 1 1

0 1 0 1 1 0 0 1 1 1 1 1

1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1

1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1

1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1

1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1

1 1 1 1 0 1 0 1 1 0 0 1

1 1 1 1 0 1 0 1

1 1 1 1

1 1 1 1

1 0 0 0 1 1 1 1

0 1 0 0 1 0 0 0 1 1 1 1

-2 -2 -1 1 0 1 0 0 1 0 0 0 1 1 1 1

-2 -2 -1 1 0 1 0 0 1 0 0 0 1 1 1 1

-2 -2 -1 1 0 1 0 0 1 0 0 0 1 1 1 1

-2 -2 -1 1 0 1 0 0 1 0 0 0 1 1 1 1

-2 -2 -1 1 0 1 0 0 1 0 0 0

-2 -2 -1 1 0 1 0 0

-2 -2 -1 1













































































2. Construct the “partial" reduced row-echelon form E of A

E ←−
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











































































1 −1 −2

1 1 1

1 0 1

1 0 1 0

1 −1 0 −2 1 1 1 1

1 −1 1 −2 1 0 0 1 1 1 1 1

1 3 1 6 0 1 0 1 1 0 0 1 1 1 1 1

1 0 0 1 1 1 1 0 1 0 1 1 0 0 1

1 1 1 1 1 1 1 0 1 0 1

1 −1 1 1 1 1

1 1

1 −2

1 3

1

0 1 1 1 1

1 1 0 0 0 1 1 1 1

−2 0 1 0 0 1 0 0 0 1 1 1 1

−2 −2 −1 1 0 1 0 0 1 0 0 0

−2 −2 −1 1 0 1 0 0

−2 −2 −1 1













































































Here, blue denotes pivotal columns, red denotes basic non-pivotal columns, brown denotes

periodic non-pivotal columns, and gray denotes unused columns.

3. Construct matrix M ∈K[s ]n×(n−m ) whose columns form a minimal nullspace basis of A.

(a) M ←−











0 0

0 0

0 0

0 0











(b) M ←−











0 0

s 2 0

0 0

0 s 3











(c) M ←−











1+ s − s 2 2+2s − s 2+2s 3

−1+ s + s 2 −1+2s

−3s −1−6s + s 2−3s 3

0 −s 2+ s 3











3.3 Relationship between µ-bases and Gröbner bases

As in previous sections,K is a field andK[s ] is the ring of univariate polynomials overK. This section

discusses an interesting relationship between µ-bases and Gröbner bases of the syzygy module of a
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polynomial vector inK[s ]n . For details on Gröbner bases see [Buc65; Cox98a] and for µ-bases see

[Cox98b; SG09; Hon17]. We, however, point out that we allow non-standard choices of monomials

(see Definition 41). This will be crucial for characterizing the relationship between µ-bases and

Gröbner bases.

3.3.1 Definitions

To define Gröbner bases of a submodule ofK[s ]n , one needs the notions of monomials and mono-

mial ordering.

Definition 41 (Monomials). Let b1, . . . , bn be a basis of Kn . Then the set of monomials consists of

elements s k b j ofK[s ]n , where k ≥ 0 and 1≤ j ≤ n are integers.

Usually the standard basis e1, . . . , en ofKn is chosen, where ei has 1 in the i -th position and zero

everywhere else. However, in this section, other bases ofKn also will be used. Once we have fixed a

basis ofKn (and in turn, the set of monomials), then we can impose an ordering on the monomials.

Definition 42 (Monomial ordering). A monomial ordering is a total ordering < on the set of mono-

mials, such that for all pairs of monomials m1 and m2 and k > 0 the following holds

m1 <m2 =⇒m1 < s k m1 < s k m2. (3.28)

For n > 1, there is a variety of monomial orderings. To define an ordering, we start by ordering

the chosen basis vectors b1, . . . , bn ofKn , by imposing bπ1
< · · ·< bπn

for a permutationπ of (1, . . . , n ).

Let B denote such an ordered basis. Then two of the most popular monomial orderings are term

over position ordering defined as:

TOPB : s k bi < s l b j if and only if k < l or (k = l and bi < b j )

and position over term ordering defined as:

POTB : s k bi < s l b j if and only if bi < b j or (i = j and k < l ).

Once we have fixed a monomial ordering, we can define the leading term/coefficient of any

a ∈K[s ]n as follows.

Definition 43 (Leading term/coefficient). Let a ∈K[s ]n and < be a monomial ordering on K[s ]n .

Then we can write a as a linear combination of monomials

a=
k
∑

i=i

ci mi

with m1 <m2 <m3 < · · ·<mk . Then the leading term of a, denoted LT (a), is ck mk . The coefficient ck

is called the leading coefficient of a, denoted LC (a).
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We are now ready to define a Gröbner basis of a submodule ofK[s ]n .

Definition 44 (Gröbner basis). Let H be a submodule ofK[s ]n and < a monomial ordering. Denote

by 〈LT (H )〉 the submodule generated by the leading terms of all h ∈H with respect to <. Then a finite

set U = {u1, . . . , ut } ⊂H is a <-Gröbner basis of H if 〈LT (H )〉= 〈LT (u1), . . . , LT (ut )〉.

Various criteria exist for testing whether a set U is a Gröbner basis. We would like to highlight

one particular criterion. First, we need the following terminology.

Definition 45. Fix a basis b1, . . . , bn forKn .

• A monomial s k bi divides another monomial s l b j if and only if i = j and k ≤ l , in which case

the quotient is s l−k .

• The least common multiple of a pair of monomials s k bi and s l b j , which we shall denote

lcm(s k bi , s l b j ), is defined by

lcm(s k bi , s l b j ) =

¨

s max{k ,l }bi if i = j

0 if i 6= j
.

• The S-vector for a pair of vectors ui and u j inK[s ]n , which we shall denote S (ui , u j ), is defined

by

S (ui , u j ) =
lcm(LT (ui ), LT (u j ))

LT (ui )
ui −

lcm(LT (ui ), LT (u j ))

LT (u j )
u j .

Definition 46. Let F = (f1, . . . , fk ) be an ordered list, where fk ∈K[s ]n , and < be a monomial ordering

on K[s ]n Then the normal form of f ∈ K with respect to F and <, denoted f
F

, is the remainder of

division of the vector f by the list of vectors in F (in the specified order).

Lemma 47. A set U = {u1, . . . , ut } ⊂K[s ]n is a Gröbner basis of the submodule it generates if and only

if S (ui , u j )
(u1,...,ut ) = 0 for all i 6= j .

Lastly, we define the notions of minimal and reduced Gröbner bases.

Definition 48 (minimal Gröbner basis). A Gröbner basis U is minimal if:

1. LC (u) = 1 for all u ∈U .

2. LT (u) is not divisible by LT (u′) for all u ∈U and u′ ∈U \{u}.

Definition 49 (reduced Gröbner basis). A Gröbner basis U is reduced if:

1. U is minimal.

2. No monomial in u is divisible by LT (u′) for all u ∈U and u′ ∈U \{u}.

For a given monomial order, every submodule has a unique reduced Gröbner basis.
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3.3.2 Main result

We now state the main result on a relationship between µ-bases and Gröbner bases.

Theorem 50 (Main). Let a ∈K[s ]n\{0} and U⊂K[s ]n . Then the following two statements are equiva-

lent.

(A) U is a µ-basis of syz(a).

(B ) U is a minimal TOPB -Gröbner basis of syz(a) for some ordered basis B ofKn .

Each direction of the equivalence in the main theorem can be “informally” stated as follows.

• (A) =⇒ (B ): “Every µ-basis is a minimal TOP Gröbner basis.”

• (B ) =⇒ (A): “Every minimal TOP Gröbner basis is a µ-basis.”

In the following, we will prove the main theorem. We will prove the two directions one by one

(Theorems 51 and 58). Furthermore, we will provide several related results/observations.

3.3.3 Every µ-basis is a minimal TOP Gröbner basis

Theorem 51. Let a ∈K[s ]n\{0} and U⊂K[s ]n . Let

(A) U is a µ-basis of syz(a).

(B ) U is a minimal TOPB -Gröbner basis of syz(a) for some ordered basis B ofKn .

Then (A) =⇒ (B ).

Proof. Let a ∈K[s ]n\{0} and U⊂K[s ]n . Assume (A), that is, U is a µ-basis of syz(a). We need to show

(B ), that is, U is a minimal TOPB -Gröbner basis of syz(a) for some ordered basis B ofKn .

Let U = {u1, . . . , un−1}. An ordered basis B ofKn will be chosen in the following way. By definition

of a µ-basis, the leading vectors LV (u1), . . . , LV (un−1) are linearly independent over K. We can,

therefore, extend them to an ordered basis B ofKn by choosing a vector bn ∈Kn that is not in the

span of {LV (u1), . . . , LV (un−1)}, resulting in

B = (LV (u1), . . . , LV (un−1), bn ) .

We can choose an arbitrary order for vectors in B and show that U is a minimal TOPB -Gröbner

basis of syz(a). By definition of µ-basis, u1, . . . , un−1 generate syz(a). With respect to TOPB , we have

LT (ui ) = sµi LV (ui ), where µi = deg(ui ), and, in particular, LC (ui ) = 1. Since LV (ui ) 6= LV (u j ) for

every pair i 6= j , we have lcm(LT (ui ), LT (u j )) = 0 for all i 6= j , and, therefore, S (ui , u j ) = 0 for all i 6= j .

Then from Lemma 47 and Definition 48, it follows that U is a minimal TOPB -Gröbner basis of syz(a).
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Example 52. For a= [1+ s , 1+ s 2+ s 3, 1+ s 4] ∈Q[s ]3, we computed a µ-basis:

u1 =







−3s 2

s 2+ s +2

−s −2






, u2 =







s 2− s +2

s 2−1

−s −1







by an implementation of the Song-Goldman algorithm [SG09]. We need to show that {u1, u2} is a

minimal TOPB -Gröbner basis of syz(a) for some ordered basis B ofQ3.

For this, we will chose an ordered basis ofQ3. Consider

LV (u1) =







−3

1

0






and LV (u2) =







1

1

0






.

We can extend these two vectors to a basis forQ3 by choosing

b3 =







0

0

1






,

resulting in the following ordered basis ofQ3:

B =













−3

1

0






,







1

1

0






,







0

0

1












.

With respect to TOPB , we have LT (u1) = s 2LV (u1) and LT (u2) = s 2LV (u2). Since the basis vectors

in these two monomials are distinct, lcm(LT (u1), LT (u2)) = 0. Clearly, {u1, u2} satisfies the conditions

of a minimal TOPB -Gröbner basis.

Using the same example, however, we can show that not every µ-basis is a TOPE -Gröbner basis,

where E stands for the standard basis ofKn (or its permutations).

Example 53. As in Example 52, we consider an input vector a= [1+ s , 1+ s 2+ s 3, 1+ s 4] and a µ-basis

computed by an implementation of the Song-Goldman algorithm [SG09]:

u1 =







−3s 2

s 2+ s +2

−s −2






, u2 =







s 2− s +2

s 2−1

−s −1






.

We will show that {u1, u2} is not a T O P Gröbner basis for all six possible choices of ordering of

the standard basis e1, e2, e3:
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1. For TOPe1<e2<e3
, LT (u1) = [0, s 2, 0]T and LT (u2) = [0, s 2, 0]T . The S-vector of u1 and u2 is

S (u1, u2) = u1−u2 =







−4s 2+ s −2

s +3

−1






.

With respect to the given ordering, the normal form of S (u1, u2), relative to {u1, u2} equals to

S (u1, u2), and, therefore, we conclude, using Lemma 47, that {u1, u2} is not a Gröbner basis.

2. For TOPe1<e3<e2
and TOPe3<e1<e2

, we again have LT (u1) = [0, s 2,0]T and LT (u2) = [0, s 2,0]T

and the same argument as in Case 1 shows that {u1, u2} is not a Gröbner basis with respect to

either of these two orderings.

3. For TOPe2<e1<e3
, we have LT (u1) = [−3s 2, 0, 0]T and LT (u2) = [s 2, 0, 0]T . The S-vector of u1 and

u2 is

S (u1, u2) = u1+3 u2 =







−3s +6

4s 2+ s −1

−4s −5






.

With respect to the given ordering, the normal form of S (u1, u2), relative to {u1, u2} equals to

S (u1, u2), and, therefore, we conclude, using Lemma 47, that {u1, u2} is not a Gröbner basis.

4. For TOPe2<e3<e1
and TOPe3<e2<e1

, we again have LT (u1) = [−3s 2, 0, 0]T and LT (u2) = [s 2, 0, 0]T

and the same argument as in Case 3, shows that {u1, u2} is not a Gröbner basis with respect to

either of these two orderings.

In contrast, we can show that the µ-basis produced by the HHK algorithm, given in Section 3.1,

is the reduced TOPe1<...<en
-Gröbner basis of syz(a).

Proposition 54. For every a ∈K[s ]n\{0}, the µ-basis produced by the HHK algorithm is the reduced

TOPe1<···<en
-Gröbner basis of syz(a).

Proof. Let d = deg(a). It is known that deg(ui )≤ d for i = 1, . . . , n−1. Relative to TOPe1<...<en
ordering,

the monomials up to degree d are ordered as follows:

e1 < · · ·< en < s e1 < · · ·< s en < · · ·< s d e1 · · ·< s d en . (3.29)

Theorem 27 of [Hon17] and the results preceding this theorem assert that, for each i = 1, . . . n −1,

the coefficients of monomials (3.29) of the vector ui appear, in the same order, as the entries of the

vector bq̃i
described on page 855 of [Hon17]. Indices q̃i are such that 1≤ q̃1 < · · ·< q̃n−1 ≤ (d +1)n .

These indices are all distinct modulo n . For each i , the vector bq̃i
has 1 in the q̃i -th component,

and all components with larger indices are zero. Moreover, for each j > i , vector bq̃ j
has zeros in all

components with indices k , such that k ≥ q̃i and k = q̃i mod n .

Let µi =
�

r /n
�

− 1, where
� �

denotes ceiling function, and let the integer ri , between 1 and n ,

be such that ri = q̃i mod n . Then LT (ui ) = sµi eri
. The monomials reducible by LT (ui )must be
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equal to s t eri
, where t ≥µi . However, for any j 6= i , it follows from the structure of the coefficient

vectors bq̃ j
that all such monomials in the polynomial vector u j have zero coefficients. Thus U is

the reduced TOPe1<...<en
-Gröbner basis of syz(a).

Example 55. Consider the input vector a =
�

1+ s 2+ s 4, 1+ s 3+ s 4, 1+ s 4
�

∈ Q[s ]3. The HHK algo-

rithm produces a µ-basis for a consisting of:

u1 =







−s

1

−1+ s






, u2 =







1−2s −2s 2− s 3

2+2s + s 2+ s 3

−3






.

With respect to TOPe1<e2<e3
ordering, we have

LT (u1) =







0

0

s






= s e3 and LT (u2) =







0

s 3

0






= s 3 e2.

Since the basis vectors in these two monomials are distinct, lcm(LT (u1), LT (u2)) = 0 and so S (u1, u2) =

0. Then, from Lemma 47 and Definition 48, it follows that {u1, u2} is a minimal Gröbner basis of

syz(a). To show it is reduced, we expand out u1 and u2 into their monomials:

u1 = s e3− s e1−e3+e2

u2 = s 3 e2− s 3 e1+ s 2e2−2s 2 e1+2s e2−2s e1−3 e3+2 e2+e1.

Notice that LT (u1) = s e3 does not divide any monomial in u2, and LT (u2) = s 3 e2 does not divide any

monomial in u1. Thus, {u1, u2} is reduced.

Remark 56. Using permutations, it is easy to show that the HHK µ-basis algorithm can be used

to produced a µ-basis for a that is the reduced TOP-Gröbner basis of syz(a) for any ordering of the

standard basis vectors inKn .

Example 57. Consider the same input vector a =
�

1+ s 2+ s 4, 1+ s 3+ s 4, 1+ s 4
�

∈ Q[s ]3 as in Ex-

ample 55. We previously used the HHK algorithm to compute a µ-basis for a that is the reduced

TOPe1<e2<e3
-Gröbner basis of syz(a). We will now use the HHK algorithm to compute a µ-basis for a

that is the reduced TOPe3<e2<e1
-Gröbner basis of syz(a). Applying the permutation (3, 2, 1) to a yields

a′ =
�

1+ s 4, 1+ s 3+ s 4, 1+ s 2+ s 4
�

. The HHK algorithm produces a µ-basis for a′ consisting of:

u′1 =







1− s

−1

s






, u′2 =







−1− s 2− s 3

s 3

1






.

The inverse of the permutation (3,2,1) is (3,2,1). Applying this inverse permatutation to u′1 and u′2
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yields a µ-basis for a:

u1 =







s

−1

1− s






, u2 =







1

s 3

−1− s 2− s 3






.

With respect to TOPe3<e2<e1
ordering, we have

LT (u1) =







s

0

0






= s e1 and LT (u2) =







0

s 3

0






= s 3e2.

Since the basis vectors in these two monomials are distinct, lcm(LT (u1), LT (u2)) = 0 and so S (u1, u2) =

0. Then, from Lemma 47 and Definition 48, it follows that {u1, u2} is a minimal Gröbner basis of

syz(a). To show it is reduced, we expand out u1 and u2 into their monomials:

u1 = s e1− s e3−e2+e3

u2 = s 3e2− s 3e3− s 2e3+e1−e3.

Notice that LT (u1) = s e1 does not divide any monomial in u2, and LT (u2) = s 3e2 does not divide any

monomial in u1. Thus, {u1, u2} is reduced.

3.3.4 Every minimal TOP Gröbner basis is a µ-basis

Theorem 58. Let a ∈K[s ]n\{0} and U⊂K[s ]n . Let

(A) U is a µ-basis of syz(a).

(B ) U is a minimal TOPB -Gröbner basis of syz(a) for some ordered basis B ofKn .

Then (B ) =⇒ (A). 2

Proof. Let a ∈ K[s ]n\{0} and U={u1, . . . , ur }⊂K[s ]n . Assume (B ), that is, U is a minimal TOPB -

Gröbner basis of syz(a) for some ordered basis B = (b1 < · · ·< bn ) ofKn . We need to show (A), that is,

U is a µ-basis of syz(a). For this, we check the three conditions for µ-basis in Definition 9.

1. u1, . . . , ur generate syz(a).

Immediate from the assumption that {u1, . . . , ur } is a minimal TOPB -Gröbner basis of syz(a).

2. LV (u1), . . . , LV (ur ) are linearly independent overK.

We will prove it by contradiction, and thus suppose the leading vectors of U are linearly

dependent overK. Since U is a minimal TOPB -Gröbner basis, we have that LT (uk ) = s dk bik
,

2The theorem is equivalent, though looking quite different, to the following claim: Let a ∈K[s ]n and B be an ordered
basis ofKn . Then every TOPB -Gröbner basis of syz(a) is a µ-basis of syz(a).
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where dk = deg(uk ) and all r indices ik , k = 1, . . . , r are distinct. We may assume that U is

ordered so that i1 < · · ·< ir . Then

LV (uk ) = bik
+
∑

i<ik

ck ,i bi , (3.30)

where ck ,i is the coefficient of the monomial s dk bi in uk . Then there exist constants αi ∈K,

not all zero, such that
r
∑

j=1

α j LV (u j ) = 0. (3.31)

Let l =max{ j |α j 6= 0}, then (3.31), together with (3.30), imply thatαl bil
= 0. This is impossible

because αl 6= 0 and bil
6= 0. Contradiction. Thus we conclude that the leading vectors of U are

linearly independent overK.

3. r = n −1.

By Lemma 30, the elements of U are linearly independent overK[s ]. Thus U is a basis of the

syz(a)module. Since syz(a) is a free module of rank n − 1 it follows that U consists of n − 1

elements.

It is worthwhile to point out that a minimal Gröbner basis of syz(a)with respect to other mono-

mial orderings (e.g. POT) is not necessarily a µ-basis for a, as the following example shows.

Example 59. Consider the same vector a =
�

1+ s , 1+ s 2+ s 3, 1+ s 4
�

∈Q[s ]3 as in Example 52. The

reduced (hence minimal) POTe1<e2<e3
-Gröbner basis of syz(a) consists of

u1 =







−s 3− s 2−1

s +1

0






, u2 =







−s 3+3s 2− s +1

−2

1






.

We observe that

LV (u1) =







−1

0

0






and LV (u2) =







−1

0

0






.

Clearly these two vectors are not linearly independent overQ, and therefore {u1, u2} is not a µ-basis

for a.
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CHAPTER

4

ALGEBRAIC MOVING FRAMES: THEORY

This chapter examines the theory of algebraic moving frames and degree-optimal moving frames.

In Section 4.1, we give precise definitions of an algebraic moving frame, degree-optimal moving

frame, a minimal-degree Bézout vector, and a µ-basis. We show the relationships between these

objects. In particular, Theorem 75 states that a minimal-degree Bézout vector and a µ-basis are the

building blocks of any degree-optimal moving frame. This result, although essential to our theory, is

by no means surprising and is easily deducible from known results. Theorem 76 and Proposition

77 establish important relationships between the degrees of a µ-basis and the degree of a minimal

Bézout vector. In Section 4.2, by introducing a modified Sylvester-type matrix A, associated with an

input vector a, we reduce the problem of constructing a degree-optimal moving frame to a linear

algebra problem over K. Theorems 89 and 90 show how a minimal-degree Bézout vector and a

µ-basis, respectively, can be constructed from the matrix A. In Section 4.3, we prove new results

about the degree of an optimal moving frame. In particular, in Proposition 92, we establish the sharp

lower bound
�

d
n−1

�

and the sharp upper bound d for the degree of an optimal moving frame, and in

Theorem 96, we prove that for a generic vector a, the degree of every degree-optimal moving frame

at a equals to the sharp lower bound.

4.1 Moving frames, Bézout vectors, and syzygies

In this section, we give the definitions of moving frame and degree-optimal moving frame, and

explore the relationships between moving frames, syzygies, and Bézout vectors.
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4.1.1 Basic definitions and notation

Throughout the chapter, K is an arbitrary field, K is its algebraic closure, and K[s ] is the ring of

univariate polynomials overK. For arbitrary natural numbers t and m , byK[s ]t×m we denote the set

of t ×m matrices with polynomial entries. The set of n ×n invertible matrices overK[s ] is denoted

as G Ln (K[s ]). It is well-known and easy to show that the determinant of such matrices is a nonzero

element ofK. For a matrix N , we will use notation N∗i to denote its i -th column. For a square matrix,

|N | denotes its determinant.

By K[s ]m we denote the set of vectors of length m with polynomial entries. All vectors are

implicitly assumed to be column vectors, unless specifically stated otherwise. Superscript T denotes

transposition. We remind readers of the definitions of the degree and leading vector of a polynomial

vector:

Definition 60 (Degree and Leading Vector). For h= [h1, . . . , hm ] ∈K[s ]m we define the degree and

the leading vector of h as follows:

• deg(h) = max
i=1,...,m

deg(hi ).

• LV (h) = [coeff(h1, t ), . . . , coeff(hm , t )]T ∈ Kn , where t = deg(h) and coeff(hi , t ) denotes the

coefficient of s t in hi .

• We will say that a set of polynomial vectors h1, . . . , hk is degree-ordered if deg(h1)≤ · · · ≤ deg(hk )

Example 61. Let h=







9−12s − s 2

8+15s

−7−5s + s 2






. Then deg(h) = 2 and LV (h) =







−1

0

1






.

ByK[s ]mt we denote the set of vectors of length m of degree at most t .

Throughout, a ∈K[s ]n is assumed to be a nonzero row vector with n > 1.

4.1.2 Algebraic moving frames and degree optimality

Definition 62 (Algebraic Moving Frame). For a given nonzero row vector a ∈K[s ]n , with n > 1, an

(algebraic) moving frame at a is a matrix P ∈G Ln (K[s ]), such that

a P = [gcd(a), 0, . . . , 0], (4.1)

where gcd(a) denotes the greatest monic common devisor of a.

We clarify that by a zero polynomial we mean a polynomial with all its coefficients equal to zero

(recall that whenK is a finite field, there may exist a polynomial with nonzero coefficients, which

nonetheless is a zero function onK). As we will show below, a moving frame at a always exists and is

not unique. For instance, if P is a moving frame at a, then a matrix obtained from P by permuting

the last n − 1 columns of P is also a moving frame at a. The set of all moving frames at a will be

denoted mf(a). We are interested in constructing a moving frame of optimal degree.
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Definition 63 (Degree-Optimal Algebraic Moving Frame). A moving frame P at a is called degree-

optimal if

1. deg(P∗2)≤ · · · ≤ deg(P∗n ),

2. if P ′ is another moving frame at a, such that deg(P ′∗2)≤ · · · ≤ deg(P ′∗n ), then

deg(P∗i )≤ deg(P ′∗i ) for i = 1, . . . , n .

In other words, we require that the last n −1 columns of P (which are interchangeable) are degree-

ordered, and that all columns of P are degree-optimal.

For simplicity, we will often use the term optimal moving frame or degree-optimal frame instead

of degree-optimal algebraic moving frame. A degree-optimal moving frame also is not unique, but it

is clear from the definition that all optimal moving frames at a have the same column-wise degrees.

Example 64 (Running Example). We will show that P =







2− s 3−3 s − s 2 9−12 s − s 2

1+2 s 2+5 s + s 2 8+15 s

−1− s −2−2 s −7−5 s + s 2






is a

degree-optimal frame at a=
�

2+ s + s 4 3+ s 2+ s 4 6+2s 3+ s 4
�

.

One can immediately notice that the moving frame is closely related to the Bézout identity and

to syzygies of a. We explore and exploit this relationship in the following subsections.

4.1.3 Bézout vectors

Definition 65 (Bézout Vector). A Bézout vector of a row vector a ∈ K[s ]n is a column vector h =

[h1, . . . , hn ]T ∈K[s ]n , such that

a h= gcd(a).

The set of all Bézout vectors of a is denoted by Bez(a) and the set of Bézout vectors of degree at

most d is denoted Bezd (a).

Definition 66 (Minimal Bézout Vector). A Bézout vector h of a= [a1, . . . , an ] ∈K[s ]n is said to be of

minimal degree if

deg(h) = min
h′∈Bez(a)

deg(h′).

The existence of a Bézout vector can be proven using the extended Euclidean algorithm. More-

over, since the set of the degrees of all Bézout vectors is well-ordered, there is a minimal-degree

Bézout vector. It is clear that the first column of a moving frame P at a is a Bézout vector of a, and

therefore, we will end up providing, in particular, a simple linear algebra algorithm to construct a

Bézout vector of minimal degree.
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4.1.4 Syzygies and µ-bases

Definition 67 (Syzygy). A syzygy of a nonzero row vector a= [a1, . . . , an ] ∈K[s ]n , for n > 1, is a column

vector h ∈K[s ]n , such that

a h= 0.

The set of all syzygies of a is denoted by syz(a), and the set of syzygies of degree at most d is

denoted syzd (a). It is easy to see that syz(a) is a module. The next proposition shows that the last

n −1 columns of a moving frame form a basis of syz(a).

Proposition 68 (Basis of Syzygies). Let P ∈mf(a). Then the columns P∗2, . . . , P∗n form a basis of syz(a).

Proof. We need to show that P∗2, . . . , P∗n generate syz(a) and that they are linearly independent over

K[s ].

1. From (4.1), it follows that a P∗2 = · · · = a P∗n = 0. Therefore, P∗2, . . . , P∗n ∈ syz(a). It remains to

show that an arbitrary h ∈ syz(a) can be expressed as a linear combination of P∗2, . . . , P∗n ∈ syz(a)

overK[s ]. Trivially we have

h= P (P −1h). (4.2)

From (4.1), it follows that a=
�

gcd(a) 0 · · · 0
�

P −1 and, therefore, the first row of P −1 is

the vector ã= a/gcd(a).

Hence, since a h= 0, then P −1h= [0, g2(s ), . . . , gn (s )]T for some g i (s ) ∈K[s ], i = 2, . . . , n . Then

(4.2) implies:

h=
n
∑

i=2

g i P∗i .

Thus P∗2, . . . , P∗n generate syz(a).

2. Let f2, . . . , fn ∈K[s ] be such that

f2 P∗2+ · · ·+ fn P∗n = 0. (4.3)

Then P f= 0, where f= [0, f2, ..., fn ]T , and, since P is invertible, it follows that f2 = · · ·= fn = 0.

Remark 69. Note that the proof of Proposition 68 is valid over the ring of polynomials in several

variables. Thus, if a moving frame exists in the multivariable case, it follows that its last n−1 columns

comprise a basis of syz(a). It is well-known that in the multivariable case there exists a for which syz(a)

is not free and then, from Proposition 68, it immediately follows that a moving frame at a does not

exist.

In the univariate case, both the existence of an algebraic moving frames and freeness of the

syzygy module are well-known. We do not, however, use these results, but as a by-product of devel-

oping an algorithm for constructing an optimal-degree moving frame, we produce a self-contained

elementary linear algebra proof of their existence. We remind readers of the definition of a µ-basis.
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Definition 70 (µ-basis). For a nonzero row vector a ∈ K[s ]n , a set of n − 1 polynomial vectors

u1, . . . , un−1 ∈ K[s ]n is called a µ-basis of a, or, equivalently, a µ-basis of syz(a), if the following

two properties hold:

1. LV (u1), . . . , LV (un−1) are linearly independent overK.

2. u1, . . . , un−1 generate syz(a), the syzygy module of a.

Recall that a µ-basis is, indeed, a basis of syz(a) as justified by Lemma 30.

In [Cox98b], Hilbert polynomials and the Hilbert Syzygy Theorem were used to show the existence

of a basis of syz(a) with especially nice properties, called a µ-basis. An alternative proof of the

existence of a µ-basis based on elementary linear algebra was given in Section 3.1.

In Propositions 71 below, we list and prove some properties of µ-bases, which are equivalent to

its definition. These are adapted from Theorems 1 and 2 in [SG09]. For a more comprehensive list of

properties of a µ-basis, see [SG09].

Proposition 71 (Equivalent properties). Let u1, . . . , un−1 be a degree-ordered basis of syz(a), i.e.

deg(u1)≤ · · · ≤ deg(un−1). Then the following statements are equivalent:

1. [independence of the leading vectors] u1, . . . , un−1 is a µ-basis.

2. [reduced representation] For every h ∈ syz(a), there exist polynomials f1, . . . , fn−1 such that

deg( fi ui )≤ deg(h) and

h=
n−1
∑

i=1

fi ui . (4.4)

3. [optimality of the degrees] If h1, . . . , hn−1 is another basis of syz(a), such that deg(h1) ≤ · · · ≤
deg(hn−1), then deg(ui )≤ deg(hi ) for i = 1, . . . , n −1.

Proof.

(1) =⇒ (2) Since u1, . . . , un−1 is a basis of syz(a), then for every h ∈ syz(a) there exist polynomi-

als f1, . . . , fn−1 such that (4.4) holds. Let t = max
i=1,...,l

�

deg( fi ui )
�

and let I be the set of in-

dices on which this maximum is achieved. If t > deg(h), the equation (4.4) implies that
∑

i∈I
LC ( fi )LV (ui ) = 0, where LC ( fi ) is the leading coefficient of fi and is nonzero for i ∈ I .

This identity contradicts our assumption that LV (u1), . . . , LV (un−1) are linearly independent

overK. Thus t ≤ deg(h) as desired.

(2) =⇒ (3) Assume there exists a degree-ordered basis h1, . . . , hn−1 of syz(a) and an integer k ∈
{1, . . . , n − 1} such that deg(hk ) < deg(uk ). Then there exists a matrix H ∈ K[s ](n−1)×(n−1), in-

vertible over K[s ], such that [h1, . . . , hn−1] = [u1, . . . , un−1]H . However, from property (2) it

follows that the upper right k × (n −k ) block has only zero entries. This implies that |H |= 0.

Contradiction.
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(3) =⇒ (1) Assume that LV (u1), . . . , LV (un−1) are dependent. Then there exist α1, . . . ,αn−1 ∈K, not

all zero, such that

α1 LV (u1) + . . . +αn−1 LV (un−1) = 0. (4.5)

Let k be the largest index such that αk is non zero. Since LV (u1) is a nonzero vector, k > 1. Let

di = deg(ui ) and consider a syzygy

h=αk uk −
k−1
∑

i=1

αi s dk−di ui .

Since uk is a linear combination of u1, . . . , uk−1, h, the set

{u1, . . . , uk−1, uk+1, . . . , un−1, h} (4.6)

also is a basis of syz(a). From (4.5) it follows that deg(h)< deg(uk ). If deg(h)< deg(u1), then the

generating set h, u1, . . . , uk−1, uk+1, . . . , un−1 of syz(a) is degree-ordered. This contradicts our

assumption that u1, . . . , un−1 is a degree-optimal basis. If deg(h)≥ deg(u1), let i ∈ {1, . . . , k −1}
be maximal such that deg(h)≥ deg(ui ). Then the set u1, . . . , ui , h, ui+1, . . . , uk−1, uk+1, . . . , un−1 is

degree-ordered. Since deg(ui+1)> deg(h)we again have a contradiction with our assumption

that u1, . . . , un−1 is a degree-optimal basis.

We proceed with proving point-wise linear independence of the vectors in aµ-basis. In Theorem 1

of [SG09], µ-bases of real polynomial vectors were considered, and point-wise independence of

the vectors in a µ-basis was proven for every s in R. This proof can be word-by-word adapted to

µ-bases of polynomial vectors overK to show point-wise independence of vectors in a µ-basis for

every s inK. To prove Theorem 75 below, however, we need a slightly stronger result: point-wise

independence of the vectors in a µ-basis for every s inK. To arrive at this result, we first prove the

following lemma. In this lemma and the following proposition, we use syzK[s ](a) to denote the syzygy

module of a over the polynomial ringK[s ], and syzK[s ](a) to denote the syzygy module of a over the

polynomial ringK[s ]. Elsewhere, we use a shorter notation syz(a) = syzK[s ](a).

Lemma 72. If u1, . . . , un−1 is a µ-basis of syzK[s ](a), then u1, . . . , un−1 is a µ-basis of syzK[s ](a).

Proof. Since LV (u1), . . . , LV (un−1) are independent overK, they also are independent overK. Thus,

it remains to show that u1, . . . , un−1 generate syzK[s ](a). For an arbitrary h= [h1, . . . , hn ]T ∈ syzK[s ](a),

consider the field extensionH ofK generated by all the coefficients of the polynomials h1, . . . , hn .

ThenH is a finite algebraic extension ofK and, therefore, by one of the standard theorems of field

theory (see, for example, the first two theorems in Section 41 of [Wae70]),H is a finite-dimensional

vector space overK. Let γ1, . . . ,γr ∈H⊂K be a vector space basis ofH overK. By expanding each of

the coefficients in h in this basis, we can write h as

h= γ1w1+ · · ·+γr wr , (4.7)
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for some w1, . . . , wr ∈K[s ]n . Multiplying by a on the left, we get

0= γ1a w1+ · · ·+γr a wr . (4.8)

Assume there exists i ∈ {1, . . . , r } such that a wi 6= 0. Let k = deg(a wi ) and let b j ∈K be the coefficient

of the monomial s k in the polynomial a w j for j = 1, . . . , r. Then, from (4.8), we have

0= γ1b1+ · · ·+γr br .

Since bi 6= 0, this contradicts the assumption that γ1, . . . ,γk is a vector space basis ofH overK. Thus,

it must be the case that

awi = 0 for all i = 1, . . . , r

and, therefore, (4.7) implies that the module syzK[s ](a) is generated by syzK[s ](a). Since syzK[s ](a) is

generated by u1, . . . , un−1, this completes the proof.

Proposition 73 (Point-wise independence overK). If u1, . . . , un−1 is a µ-basis of syzK[s ](a), then for

any value s ∈K, the vectors u1(s ), . . . , un−1(s ) are linearly independent overK.

Proof. Suppose there exists s0 ∈K such that u1(s0), . . . , un−1(s0) are linearly dependent overK. Then

there exist constants α1, . . . ,αn−1 ∈K, not all zero, such that

α1 u1(s0) + · · ·+αn−1 un−1(s0) = 0.

Let i =max{ j |α j 6= 0} and let

h=α1 u1+ · · ·+αi ui .

Then h ∈ syzK[s ](a) and is not identically zero, but h(s0) = 0. It follows that gcd(h) 6= 1 in K[s ] and,

therefore, h̃= 1
gcd(h) h belongs to syzK[s ](a) and has degree strictly less than the degree of h.

By Lemma 72, u1, . . . , un−1 is a µ-basis of syzK[s ](a) and, since

ui =
1

αi

�

gcd(h) h̃−α1 u1− · · ·−αi−1 ui−1

�

,

the set of syzygies

{u1, . . . , ui−1, ui+1, . . . , un−1, h̃}

is a basis of syzK[s ](a). Ordering it by degree and observing that deg(h̃)< deg(h) = deg(ui ) leads to a

contradiction with the degree optimality property of a µ-basis.

4.1.5 The building blocks of a degree-optimal moving frame

From the discussions of the last subsection, it does not come as unexpected that a Bézout vector

and a set of point-wise independent syzygies can serve as building blocks for a moving frame.
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Proposition 74 (Building blocks of a moving frame). For a nonzero a ∈ K[s ]n , let h1, . . . , hn−1 be

elements of syz(a) such that, for every s ∈K, vectors h1(s ), . . . , hn−1(s ) are linearly independent overK,

and let h0 be a Bézout vector of a. Then the matrix

P = [h0, h1, . . . , hn−1]

is a moving frame at a.

Proof. Clearly a P = [gcd(a), 0, . . . , 0]. Let ã= 1
gcd(a) a, then

ã P = [1, 0, . . . , 0]. (4.9)

Assume that the determinant of P does not equal to a nonzero constant. Then there exists s0 ∈K
such that |h0(s0), h1(s0), . . . , hn−1(s0)|= 0 and, therefore, there exist constants α0, . . . ,αn ∈K, not all

zero, such that

α0 h0(s0) +α1 h1(s0) + · · ·+αn−1 hn−1(s0) = 0.

Multiplying on the left by ã(s0) and using (4.9), we get α0 = 0. Then

α1 h1(s0) + · · ·+αn−1 hn−1(s0) = 0

for some set of constants α1, . . . ,αn−1 ∈K, not all zero. But this contradicts our assumption that for

every s ∈K, vectors h1(s ), . . . , hn−1(s ) are linearly independent overK. Thus, the determinant of P

equals to a nonzero constant, and therefore P is a moving frame.

Theorem 75. A matrix P is a degree-optimal moving frame at a if and only if P∗1 is a Bézout vector of

a of minimal degree and P∗2, . . . , P∗n is a µ-basis of a.

Proof.

(=⇒) Let P be a degree-optimal moving frame at a. From Definition 63, it immediately follows that

P∗1 is a Bézout vector of a of minimal degree. From Proposition 68, it follows that P∗2, . . . , P∗n
is a basis of syz(a). Assume P∗2, . . . , P∗n is not a µ-basis of a, and let u1, . . . , un−1 be a µ-basis.

From Proposition 73, it follows that the vectors u1(s ), . . . , un−1(s ) are independent for all s ∈K.

By Proposition 74, the matrix P ′ = [P∗1, u1, . . . , un−1] is a moving frame at a. On the other hand,

since P∗2, . . . , P∗n is not a µ-basis, then by Proposition 71, it is not a basis of optimal degree,

and, therefore, there exists k ∈ {1, . . . , n −1}, such that deg(uk )< deg(P∗k+1). This contradicts

our assumption that P is degree-optimal. Therefore, P∗2, . . . , P∗n is a µ-basis.

(⇐=) Assume P∗1 is a Bézout vector of a of minimal degree and P∗2, . . . , P∗n is a µ-basis of a. Then

Proposition 73 implies that the vectors P∗2(s ), . . . , P∗n (s ) are independent for all s ∈K and so P

is a moving frame due to Proposition 74. Assume there exists a moving frame P ′ and an integer

k ∈ {1, . . . , n}, such that deg(P ′∗k ) < deg(P∗k ). If k = 1, then we have a contradiction with the
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assumption that P∗1 is a Bézout vector of minimal degree. If k > 1, we have a contradiction with

the degree optimality property of a µ-basis. Thus P satisfies Definition 63 of a degree-optimal

moving frame.

Theorem 75 implies the following three-step process for constructing a degree-optimal moving

frame at a.

1. Construct a Bézout vector b of a of minimal degree.

2. Construct a µ-basis u1, . . . , un−1 of a.

3. Let P = [b, u1, . . . , un−1].

However, by exploiting the relationship between these building blocks, we develop, in Section 5.1,

an algorithm that simultaneously constructs a Bézout vector of minimal degree and a µ-basis,

avoiding redundancies embedded in the above three-step procedure.

4.1.6 The (β ,µ)-type of a polynomial vector

The degree-optimality property of a µ-basis, stated in Proposition 71, insures that, although a µ-

basis of a is not unique, the ordered list of the degrees of a µ-basis of a is unique. This list is called

the µ-type of a. Thus the set of polynomial vectors can be split into classes according to their µ-type.

An analysis of the µ-strata of the set of polynomial vectors is given by D’Andrea [D’A04], Cox and

Iarrobino [CI15]. Similarly, although a minimal-degree Bézout vector for a is not unique, its degree

is unique. If we denote this degree by β , we can refine the classification of polynomial vectors by

studying their (β ,µ)-strata. In this section, we explore the relationship between the µ-type and the

β-type of a polynomial vector.

We start by showing that the degree of a minimal-degree Bézout vector of a is bounded by the

maximal degree of a µ-basis of a. This result is repeatedly used in this chapter.

Theorem 76. For any nonzero a ∈K[s ]n , and for any minimal-degree Bézout vector b and anyµ-basis

u1, . . . , un−1 of a, we have

1. if deg(a) = deg
�

gcd(a)
�

, then deg(b) = 0 and deg(ui ) = 0 for i = 1, . . . , n −1.

2. otherwise deg(b)<max j {deg(u j )}.

Proof.

1. The condition deg(a) = deg
�

gcd(a)
�

implies that a= gcd(a)v , where v is a constant non-zero

vector. In this case, it is obvious how to construct b and u1, . . . , un−1, each with constant

components.
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2. In this case, deg(a) > deg
�

gcd(a)
�

. The coefficient of a b for s deg(a)+deg(b) is LV (a)LV (b). By

definition of Bézout vector, ab = gcd(a). Therefore, by our assumption, deg(a b) < deg(a).

Thus LV (a)LV (b) = 0 or, in other words, LV (b) ∈ LV (a)⊥. Let u1, . . . , un−1 be a µ-basis of

a. By a similar argument, since a u j = 0, we have LV (u j ) ∈ LV (a)⊥ for j = 1, . . . , n − 1. By

definition of a µ-basis, LV (u j ) are linearly independent, and so they form a basis for LV (a)⊥.

Therefore, there exist constants α1, . . . ,αn−1 such that LV (b) =
n−1
∑

j=1

α j LV (u j ). Suppose that

deg(b)≥max j {deg(u j )}. Define b̃= b−
n−1
∑

j=1

α j u j s deg(b)−deg(u j ). Then ab̃= gcd(a) and deg(b̃)<

deg(b), a contradiction to the minimality of deg(b). Therefore, deg(b)<max j {deg(u j )}.

In the next proposition, we show that, except for the upper bound provided by µn−1−1, no other

additional restrictions on the degree of the minimal Bézout vector are imposed by the µ-type, and

therefore the β-type provides an essentially new characteristic of a polynomial vector.

Proposition 77. Fix n ≥ 2. For all ordered lists of nonnegative integers µ1 ≤ · · · ≤µn−1, with µn−1 6= 0,

and for all j ∈
�

0, . . . ,µn−1−1
	

, there exists a ∈K[s ]n such that gcd(a) = 1 and

1. for any µ-basis u1, . . . , un−1 of a, we have deg(ui ) =µi , i = 1, . . . , n −1.

2. for any minimal-degree Bézout vector b of a, we have deg(b) = j .

Proof. In the case when n = 2, given a non-negative integer µ1 and an integer j ∈ {0, . . . ,µ1 − 1},
take a=

�

sµ1− j , sµ1 +1
�

. Then, obviously gcd(a) = 1, vector b= [−s j , 1]T is a minimal-degree Bézout

vector, and vector u1 =
�

sµ1 +1,−sµ1− j
�T

is the minimal-degree syzygy, which in this case comprises

a µ-basis of a. Thus a has the required properties.

In the case when n ≥ 3, for the set of integers µ1, . . . ,µn−1, j described in the proposition, take

a=
�

sµn−1− j , sµn−1− j+µ1 , sµn−1− j+µ1+µ2 , . . . , sµn−1− j+µ1+···+µn−2 , sµ1+···+µn−1 +1
�

.

Observe that gcd(a) = 1, and consider the matrix

P =



















sµ1 1

−1 sµ2

−1
...

−s j ... sµn−1

1 −sµn−1− j



















.

It is easy to see that aP = [1,0, . . . ,0] and |P | = ±1, so P is a moving frame at a according to Def-

inition 62. Therefore, the first column of P , i.e vector b = P∗1, is a Bézout vector of a, while the
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remaining columns u1 = P∗2, . . . , un−1 = P∗n comprise a basis for the syzygy module of a according to

Proposition 68. Clearly deg(b) = j , while deg ui =µi for i = 1, . . . , n −1.

The leading vectors of u1, . . . , un−1 are linearly independent and, therefore, vectors u1, . . . , un−1

comprise a µ-basis of a. To prove that b is of minimal degree, suppose, for the sake of contradiction,

that there exists a vector f=
�

f1, . . . , fn

�T ∈K[s ]n with deg(f)< j such that

f1(s )a1(s ) + . . .+ fn (s )an (s ) = 1 for all s . (4.10)

We observe that, since µn−1 > 0 and j <µn−1, then ai (0) = 0 for i = 1, . . . , n −1 and an (0) = 1. Then,

by substituting s = 0 in (4.10), we get fn (0) = 1 and, therefore, fn (s ) is not a zero polynomial. This

implies that deg( fn an ) =µ1+ · · ·+µn−1+deg( fn ). Therefore, in order for the Bézout identity (4.10)

to hold, at least one of the remaining fi ai , i = 1, . . . , n − 1, must contain a monomial of degree

µ1+ · · ·+µn−1+deg( fn ) as well. However, we assumed that deg( fi )< j for all i , which implies that

deg( fi ai )<µ1+ · · ·+µn−1 for i = 1, . . . , n−1. Contradiction. We thus conclude that a has the required

properties.

4.2 Reduction to a linear algebra problem overK

In this section, we show that for a vector a ∈K[s ]nd such that gcd(a) = 1, a Bézout vector of a of minimal

degree and a µ-basis of a can be obtained from linear relationships among certain columns of a

(2d +1)× (nd +n +1)matrix overK. Since essentially the same matrix has been used to construct a

µ-basis in Section 3.1, we later use this result to develop a degree-optimal moving frame algorithm

that simultaneously constructs a µ-basis and a minimal-degree Bézout vector.

4.2.1 Sylvester-type matrix A and its properties

For a nonzero polynomial row vector

a=
∑

0≤i≤d

[ci 1, . . . , ci n ]s
i (4.11)

of length n and degree d , we correspond aK(2d+1)×n (d+1) matrix

A =































c01 · · · c0n
... · · ·

... c01 · · · c0n
... · · ·

...
... · · ·

...
...

cd 1 · · · cd n
... · · ·

...
... c01 · · · c0n

cd 1 · · · cd n
...

... · · ·
...

...
... · · ·

...

cd 1 · · · cd n































(4.12)
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with the blank spaces filled by zeros. In other words, matrix A is obtained by taking d +1 copies of a

(d +1)×n block of the coefficients of polynomials in a. The blocks are repeated horizontally from

left to right, and each block is shifted down by one relative to the previous one. Matrix A is related to

the generalized resultant matrix R , appearing on page 333 of [VS78]. Indeed, if one takes the top-left

K2d×nd submatrix of A, transposes this submatrix, and then permutes certain rows, one obtains R .

However, the size and shape of the matrix A turns out to be crucial to our construction.

Example 78. For the row vector a in the running example (Example 64), we have n = 3, d = 4,

c0 = [2, 3, 6], c1 = [1, 0, 0], c2 = [0, 1, 0], c3 = [0, 0, 2], c4 = [1, 1, 1]

and

A =



































2 3 6

1 0 0 2 3 6

0 1 0 1 0 0 2 3 6

0 0 2 0 1 0 1 0 0 2 3 6

1 1 1 0 0 2 0 1 0 1 0 0 2 3 6

1 1 1 0 0 2 0 1 0 1 0 0

1 1 1 0 0 2 0 1 0

1 1 1 0 0 2

1 1 1



































.

A visual periodicity of the matrix A is reflected in the periodicity property of its non-pivotal

columns which we are going to precisely define and exploit below. We remind readers the of the

definition of pivotal and non-pivotal columns.

Definition 79. A column of any matrix N is called pivotal if it is either the first column and is

nonzero or it is linearly independent of all previous columns. The rest of the columns of N are called

non-pivotal. The index of a pivotal (non-pivotal) column is called a pivotal (non-pivotal) index.

From this definition, it follows that every non-pivotal column can be written as a linear combi-

nation of the preceding pivotal columns.

We denote the set of pivotal indices of A as p and the set of its non-pivotal indices as q . We

remind readers of how the specific structure of the matrix A is reflected in the structure of the set of

non-pivotal indices q .

Lemma 80 (Periodicity). If j ∈ q then j +k n ∈ q for 0≤ k ≤
�

n (d+1)− j
n

�

. Moreover,

A∗ j =
∑

r< j

αr A∗r =⇒ A∗ j+k n =
∑

r< j

αr A∗r+k n , (4.13)

where A∗ j denotes the j -th column of A.
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Definition 81. Let q be the set of non-pivotal indices. Let q/(n ) denote the set of equivalence classes

of q modulo n. Then the set q̃ = {min% |% ∈ q/(n )}will be called the set of basic non-pivotal indices.

The remaining indices in q will be called periodic non-pivotal indices.

Example 82. For the matrix A in Example 78, we have n = 3 and q = {8,9,11,12,14,15}. Then

q/(n ) =
�

{8, 11, 14}, {9, 12, 15}}
	

and q̃ = {8, 9}.

4.2.2 Isomorphism betweenK[s ]mt andKm (t+1)

The second ingredient that we use to reduce our problem to a linear algebra problem overK is an

explicit isomorphism between vector spacesK[s ]mt andKm (t+1). This is the same isomorphism used

in Section 3.1, and we reprint it here for convenience. Any polynomial m-vector h of degree at most

t can be written as h = w0 + s w1 + · · ·+ s t wt where wi = [w1i , . . . , wmi ]T ∈Km . It is clear that the

map

]mt :K[s ]mt →K
m (t+1)

h→h]
m
t =







w0
...

wt






(4.14)

is linear. It is easy to check that the inverse of this map

[mt :Km (t+1)→K[s ]mt

is given by a linear map:

v → v [
m
t = S m

t v (4.15)

where

S m
t =

�

Im s Im · · · s t Im

�

∈K[s ]m×m (t+1).

Here Im denotes the m ×m identity matrix. For the sake of notational simplicity, we will often write

], [ and S instead of ]mt , [mt and S m
t when the values of m and t are clear from the context.

Example 83. For h ∈Q3
3[s ] given by

h=







9−12s − s 2

8+15s

−7−5s + s 2






=







9

8

−7






+ s







−12

15

−5






+ s 2







−1

0

1






,

we have

h] = [9, 8, −7, −12, 15, −5, −1, 0, 1]T .

Note that

h= (h])[ = S h] =
�

I3 s I3 s 2I3

�

h].
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With respect to the isomorphisms ] and [, theK-linear map a:K[s ]nd →K[s ]2d corresponds to

theK linear map A :Kn (d+1)→K2d+1 in the following sense:

Lemma 84. Let a =
∑

0≤ j≤d

c j s j ∈ Kn
d [s ] and A ∈ K(2d+1)×n (d+1) defined as in (4.12). Then for any

v ∈Kn (d+1) and any h ∈K[s ]nd :

a v [
n
d = (Av )[

1
2d and (a h)]

1
2d = Ah]

n
d . (4.16)

The proof of Lemma 84 is straightforward. The proof of the first equality is explicitly spelled out

in Section 3.1 (see Lemma 14). The second equality follows from the first and the fact that [mt and ]mt
are mutually inverse maps.

Example 85. Consider the row vector a in the running example (Example 64) and its associated

matrix A (Example 78). Let v = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]T . Then

Av = [26, 60, 98, 143, 194, 57, 62, 63, 42]T

and so

(Av )[
1
2d = S 1

8 (Av ) = 26+60s +98s 2+143s 3+194s 4+57s 5+62s 6+63s 7+42s 8.

On the other hand, since

v [
n
d = S 3

4 v =







1+4s +7s 2+10s 3+13s 4

2+5s +8s 2+11s 3+14s 4

3+6s +9s 2+12s 3+15s 4






,

we have

av [
n
d =

�

2+ s + s 4 3+ s 2+ s 4 6+2s 3+ s 4
�







1+4s +7s 2+10s 3+13s 4

2+5s +8s 2+11s 3+14s 4

3+6s +9s 2+12s 3+15s 4







= 42s 8+63s 7+62s 6+57s 5+194s 4+143s 3+98s 2+60s +26.

We observe that

av [
n
d = (Av )[

1
2d .

We proceed by showing that if gcd(a) = 1, then the matrix A has full rank. This statement can be

deduced from the results about the rank of a different Sylvester-type matrix, R , given in Section 2 of

[VS78]. We, however, give a short independent proof using the following lemma, which also will be

used in other parts of the chapter.

Lemma 86. For all a ∈K[s ]n with gcd(a) = 1 and deg(a) = d and all i = 0, . . . ,2d , there exist vectors

hi ∈K[s ]n such that deg(hi )≤ d and a hi = s i .

80



Proof. Let u1, . . . , un−1 be a µ-basis of a. We will proceed by induction on i .

Induction basis: For i = 0, the statement follows immediately from Theorem 76 and the well-known

fact that syz(a) can be generated by vectors of degree at most d (see, for example, [Hon17] or [SG09]).

Induction step: Assume the statement is true in the i -th case i.e. there exists hi ∈K[s ]n with deg(hi )≤
d such that a hi = s i (i ≤ 2d −1). Then a (s hi ) = s i+1. Let h̃= s hi . Since deg(hi )≤ d , it follows that

deg(h̃) ≤ d + 1. If deg(h̃) ≤ d , let hi+1 = h̃ and we are done. Otherwise, deg(h̃) = d + 1. Following

a similar argument as in Theorem 76, the coefficient of ah̃ for s 2d+1 is LV (a)LV (h̃), and since we

assumed i ≤ 2d −1, it must be that LV (a)LV (h̃) = 0. Thus, there exist constants α1, . . . ,αn−1 such

that LV (h̃) =
∑n−1

j=1 α j LV (u j ). Define

hi+1 = h̃−
n−1
∑

j=1

α j u j s d+1−deg(u j ).

Then a hi+1 = s i+1 and deg(hi+1)< deg(h̃), which means deg(hi+1)≤ d .

Proposition 87 (Full Rank). For a nonzero polynomial vector a of degree d , defined by (4.11), such

that gcd(a) = 1, the corresponding matrix A, defined by (4.12), has rank 2d +1.

Proof. By Lemma 86, for all i = 0, . . . ,2d , there exist vectors hi ∈K[s ]n with deg(hi )≤ d such that

ahi = s i . Observe that (s i )] = ei+1. Since (ahi )] = Ah]i , it follows that there exist vectors h]i ∈K
n (d+1)

such that Ah]i = e j for all j = 1, . . . ,2d +1. This means the range of A isK2d+1 and hence rank(A) =

2d +1.

4.2.3 The minimal Bézout vector theorem

In this section, we construct a Bézout vector of a of minimal degree by finding an appropriate

solution to the linear equation

A v = e1, where e1 = [1, 0, . . . , 0]T ∈K2d+1. (4.17)

The following lemma establishes a one-to-one correspondence between the set Bezd (a) of Bézout

vectors of a of degree at most d and the set of solutions to (4.17).

Lemma 88. Let a ∈K[s ]nd be a nonzero vector such that gcd(a) = 1. Then b ∈K[s ]nd belongs to Bezd (a)

if and only if b] is a solution of (4.17). Also v ∈Kn (d+1) solves (4.17) if and only if v [ belongs to Bezd (a).

Proof. Follows immediately from (4.16) and the observation that e
[12d
1 = 1.

Thus, our goal is to construct a solution v of (4.17), such that v [ is a Bézout vector of a of

minimal degree. To accomplish this, we recall that, when gcd(a) = 1, Proposition 87 asserts that

rank(A) = 2d +1. Therefore, A has exactly 2d +1 pivotal indices, which we can list in the increasing

order p = {p1, . . . , p2d+1}. The corresponding columns of matrix A form a basis ofK2d+1 and, therefore,
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e1 ∈K2d+1 can be expressed as a unique linear combination of the pivotal columns:

e1 =
2d+1
∑

j=1

α j A∗pj
. (4.18)

Define vector v ∈ K2d+1 by setting its pj -th element to be α j and all other elements to be 0. We

prove that b= v [ is a Bézout vector of a of minimal degree.

Theorem 89 (Minimal-Degree Bézout Vector). Let a ∈K[s ]nd be a polynomial vector with gcd(a) = 1,

and let A be the corresponding matrix defined by (4.12). Let p = {p1, . . . , p2d+1} be the pivotal indices

of A, and let α1, . . . ,α2d+1 ∈K be defined by the unique expression (4.18) of the vector e1 ∈K2d+1 as a

linear combination of the pivotal columns of A. Define vector v ∈K2d+1 by setting its pj -th element

to be α j for j = 1, . . . , 2d +1 and all other elements to be 0, and let b= v [. Then

1. b ∈Bezd (a).

2. deg(b) = min
b′∈Bez(a)

deg(b′).

Proof.

1. From (4.18), it follows immediately that Av = e1. Therefore, by Lemma 88, we have that

b= v [ ∈Bezd (a).

2. To show that b is of minimal degree, we rewrite (4.18) as

e1 =
k
∑

j=1

α j A∗pj
, (4.19)

where k is the largest integer between 1 and 2d +1, such that αk 6= 0. Then the last nonzero

entry of v appears in pk -th position and, therefore,

deg(b) = deg(v [) =
�

pk/n
�

−1. (4.20)

Assume that b′ ∈Bez(a) is such that deg(b′)< deg(b). Then b′ ∈Bezd (a) and therefore A v ′ = e1,

for v ′ = b′] = [v ′1, . . . , v ′n (d+1)] ∈K
n (d+1). Then

e1 =
n (d+1)
∑

j=1

v ′j A∗ j =
r
∑

j=1

v ′j A∗ j , (4.21)

where r is the largest integer between 1 and n (d +1), such that v ′r 6= 0. Then

deg(b′) =
�

r /n
�

−1 (4.22)

and since we assumed that deg(b′)< deg(b), we conclude from (4.20) and (4.22) that r < pk .
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On the other hand, since all non-pivotal columns are linear combinations of the preceding

pivotal columns, we can rewrite (4.21) as

e1 =
∑

j∈{1,...,2d |pj≤r<pk }
α′j A∗pj

=
k−1
∑

j=1

α′j A∗pj
. (4.23)

By the uniqueness of the representation of e1 as a linear combination of the A∗pj
, the coeffi-

cients in the expansions (4.19) and (4.23) must be equal, but αk 6= 0 in (4.19). Contradiction.

In the algorithm presented in Section 5.1, we exploit the fact that the coefficients α’s in (4.19)

needed to construct a minimal-degree Bézout vector of a can be read off the reduced row echelon

form [Â|v̂ ] of the augmented matrix [A|e1]. On the other hand, as was shown in Section 3.1 and

reviewed in the next subsection, the coefficients of a µ-basis of a also can be read off the matrix Â.

Therefore, a µ-basis is constructed as a byproduct of our algorithm for constructing a Bézout vector

of minimal degree.

4.2.4 The µ-bases theorem

In Section 3.1, we showed that the coefficients of a µ-basis of a can be read off the basic non-pivotal

columns of matrix A (recall Definition 81). Recall that according to Lemma 22, the matrix A has

exactly n −1 basic non-pivotal columns.

Theorem 90 (µ-Basis). Let a ∈K[s ]nd be a polynomial vector, and let A be the corresponding matrix

defined by (4.12). Let q̃ = [q̃1, . . . , q̃n−1] be the basic non-pivotal indices of A, ordered increasingly.

For i = 1, . . . , n −1, a basic non-pivotal column A∗q̃i
is a linear combination of the previous pivotal

columns:

A∗q̃i
=

∑

{r∈p | r<q̃i }
αi r A∗r , (4.24)

for some αi r ∈K. Define vector bi ∈K2d+1 by setting its q̃i -th element to be 1, its r -th element to be

−αi r for r ∈ p such that pj < q̃i , and all other elements to be 0. Then the set of polynomial vectors

u1 = b [1, . . . , un−1 = b [n−1

is a degree-ordered µ-basis of a.

Proof. The fact that u1 = b [1, . . . , un−1 = b [n−1 is a µ-basis of a is the statement of Theorem

31. By construction, the last nonzero entry of vector bi is in the q̃i -th position, and therefore for

i = 1, . . . , n −1,

deg(ui ) = deg(b [i ) =
�

q̃i /n
�

−1.

Since the indices in q̃ are ordered increasingly, the vectors u1, . . . , un−1 are degree-ordered.
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The algorithm presented in Section 5.1 exploits the fact that the coefficients α’s in (4.24) are

already computed in the process of computing a Bézout vector of a.

4.3 The degree of an optimal moving frame

Similarly to the degree of a polynomial vector (Definition 6), we define the degree of a polynomial

matrix to be the maximum of the degrees of its entries. Obviously, for a given vector a, all degree-

optimal moving frames have the same degree. In this section, we establish the sharp upper and lower

bounds on the degree of optimal moving frames. We also show that, for generic inputs, the degree

of an optimal moving frame equals to the lower bound. An alternative simple proof of the bounds

could be given using the fact that, when gcd(a) = 1, the sum of the degrees of a µ-basis of a equals

to deg(a) (see Theorem 2 in [SG09]), along with the result relating the degree of a minimal-degree

Bézout vector and the maximal degree of a µ-basis in Theorem 76 in this chapter. For the sharpness

of the lower bound and its generality, one could use Proposition 3.3 of [CI15], determining the

dimension of the set of vectors of a given µ-type, again combined with Theorem 76 in this chapter.

Our results on the upper bound differ from what can be deduced from [CI15], because we allow

components of a to be linearly dependent overK. To keep the presentation self-contained, we give

the proofs based on the results of this chapter. We will repeatedly use the following lemma.

Lemma 91. Let a ∈K[s ]n be nonzero and let A be the corresponding matrix (4.12). Furthermore, let

k be the maximum among the basic non-pivotal indices of A. Then the degree of any optimal moving

frame at a equals to
�

k
n

�

−1.

Proof. It is straightforward to check that the maximal degree of the µ-basis, constructed in Theo-

rem 90, has degree
�

k
n

�

−1. From the optimality of the degrees property in Proposition 71, it follows

that for any two degree-ordered µ-bases u1, . . . , un−1 and u′1, . . . , u′n−1 of a and for i = 1, . . . , n −1, we

have deg(ui ) = deg(u′i ). Therefore, the maximum degree of vectors in any µ-basis equals to
�

k
n

�

−1.

Theorem 76 implies that the degree of any optimal moving frame equals to the maximal degree of a

µ-basis.

Proposition 92 (Sharp Degree Bounds.). Let a ∈ K[s ]n with deg(a) = d and gcd(a) = 1. Then for

every degree-optimal moving frame P at a, we have d d
n−1 e ≤ deg(P )≤ d , and these degree bounds are

sharp. By sharp, we mean that for all n > 1 and d > 0, there exists an a ∈K[s ]n with deg(a) = d and

gcd(a) = 1 such that, for every degree-optimal moving frame P at a, we have deg(P ) =
�

d
n−1

�

. Likewise,

for all n > 1 and d > 0, there exists an a ∈K[s ]n with deg(a) = d and gcd(a) = 1 such that, for every

degree-optimal moving frame P at a, we have deg(P ) = d .

Proof.

1. (lower bound): Let P be a degree-optimal moving frame at a. Then aP =
�

1 0 · · · 0
�

. and

so from Cramer’s rule:

ai =
(−1)i+1

|P |
�

�Pi ,1

�

� i = 1, . . . n ,
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where Pi ,1 denotes the submatrix of P obtained by removing the 1-st column and the i -th row.

We remind the reader that |P | is a nonzero constant. Assume for the sake of contradiction that

deg(P )<
�

d
n−1

�

. Then deg(P )< d
n−1 . Since

�

�Pi ,1

�

� is the determinant of an (n−1)×(n−1) submatrix

of P , we have deg (ai ) = deg
��

�Pi ,1

�

�

�

< (n − 1) d
n−1 = d for all i = 1. . . . , n . This contradicts the

assumption that deg(a) = d . Thus, deg(P )≥
�

d
n−1

�

.

We will prove that the lower bound
�

d
n−1

�

is sharp by showing that, for all n > 1 and d > 0, the

following matrix

P =



































1 −s d−k
�

d
n−1

�

...

1

1 −s
�

d
n−1

�

1 −s
�

d
n−1

�

...
...
... −s

�

d
n−1

�

1



































(4.25)

has degree
�

d
n−1

�

and is a degree-optimal moving frame at the vector

a=
�

1, 0, . . . , 0, s d−k ·
�

d
n−1

�

, . . . , s d−2·
�

d
n−1

�

, s d−1·
�

d
n−1

�

, s d−0·
�

d
n−1

��

. (4.26)

Here k ∈N is the maximal such that d > k
�

d
n−1

�

(explicitly k =
¡

d
�

d
n−1

�

¤

−1), the number of zeros

in a is n −k −2, the upper-left block of P is of the size (n −k −1)× (n −k −1), the lower-right

block is of the size (k +1)× (k +1), and the other two blocks are of the appropriate sizes.

First, we show that such a and P actually exist (not just optically). That is, the number of zeros

in a is non-negative, and the upper-left block in P exists; in other words, n−1≥ k +1. Suppose

otherwise. Then we would have

d −k
¡

d

n −1

¤

≤ d − (n −1)
¡

d

n −1

¤

≤ 0

which contradicts the condition d > k
�

d
n−1

�

.

Second, P is a degree-optimal moving frame at a. Namely,

(a) aP = [1, 0, . . . , 0], so P is a moving frame at a.

(b) The first column of P , [1, 0, . . . , 0]T , is a minimal-degree Bézout vector of a.

(c) The last n − 1 columns of P are syzygies of a, and since P ∈mf(a), by Proposition 68,

they form a basis of syz(a). It is easy to see that these columns have linearly independent

leading vectors as well. Thus, they form a µ-basis of a.
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Finally, we show that the degree of P is the lower bound, i.e.
�

d
n−1

�

. From inspection of the

entries of P , we see immediately that

deg(P ) =max
§

d −k
¡

d

n −1

¤

,
¡

d

n −1

¤ª

.

It remains to show that d −k
�

d
n−1

�

≤
�

d
n−1

�

. Suppose not. Then

d > (k +1)
¡

d

n −1

¤

,

a contradiction to the maximality of k . Thus, deg(P ) =
�

d
n−1

�

. Hence, we have proved that the

lower bound is sharp.

2. (upper bound): From Theorems 89 and 90, it follows immediately that d is an upper bound of

a degree-optimal moving frames. We will prove that the upper bound d is sharp by showing

that, for all n > 1 and d > 0, the following matrix of degree d

P =



















1 −s d

...
...

...

1



















(4.27)

is a degree-optimal moving frame at the vector

a= [1, 0, . . . , 0, s d ].

Indeed:

(a) aP = [1, 0, . . . , 0] and so P is a moving frame at a.

(b) The first column of P , [1, 0, . . . , 0]T , is a minimal-degree Bézout vector of a.

(c) The last n − 1 columns of P are syzygies of a, and since P ∈mf(a), by Proposition 68,

they form a basis of syz(a). It is easy to see that these columns have linearly independent

leading vectors as well. Thus, they form a µ-basis of a.

In Theorem 96 below, we show that for generic a ∈K[s ]n with deg(a) = d and gcd(a) = 1, and

for all degree-optimal moving frames P at a, deg(P ) =
�

d
n−1

�

. To prove the theorem, we need the

following lemmas, where we will use notation

k = quo(d , n −1) and r = rem(d , n −1).
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Lemma 93. For arbitrary a ∈K[s ]n with deg(a) = d and gcd(a) = 1, the principal d +k +1 submatrix

of the associated matrix A has the form

C =































c01 · · · · · · c0n
... · · · · · ·

... c01 · · · · · · c0n
... · · · · · ·

...
... · · · · · ·

...
...

cd 1 · · · · · · cd n
... · · · · · ·

...
... c01 · · · c0,r+1

cd 1 · · · · · · cd n
...

... · · ·
...

...
... · · ·

...

cd 1 · · · cd ,r+1































, (4.28)

where C consists of k full (d +1)×n size blocks and 1 partial block of size (d +1)× (r +1).

Proof. If we take k full (d + 1)×n blocks and 1 partial (d + 1)× (r + 1) block, then the number of

columns of C is nk + r +1= (n−1)k + r +k +1= d +k +1, as desired. Furthemore, since the leftmost

block takes up the first d + 1 rows of C , and we shift the block down by 1 a total of k times, the

number of rows of C is d +k +1 as well.

Lemma 94. Let a ∈ K[s ]n with deg(a) = d and gcd(a) = 1, and let C be the principal d + k + 1

submatrix of A given by (4.28). If C is nonsingular, then for any degree-optimal moving frame P at a,

we have deg(P ) =
�

d
n−1

�

.

Proof. If C is nonsingular, then first d +k +1 columns of the matrix A are pivotal columns. Since

rank(A) = 2d +1, there are d −k additional pivotal columns in A and, from the structure of A, each of

the last d −k blocks of A contain exactly one of these additional pivotal columns. All other columns

in A are non-pivotal. We now consider two cases:

1) If n−1 divides d , then r = 0 and k = d
n−1 =

�

d
n−1

�

. Thus, there is one column in the partial block

in C , and so the remaining n −1 columns in this (k +1)-th block of A are basic non-pivotal

columns. Since in total there are n−1 basis non-pivotal columns, the largest basic non-pivotal

index equals to n (k +1), and therefore by Lemma 91, the degree of any optimal moving frame

at a is
�

d
n−1

�

.

2) If n − 1 does not divide d , then r > 0 and k =
�

d
n−1

�

. Thus, there are at least two columns

in the partial block in C , and so there are at most n − 2 basic non-pivotal columns in the

(k +1)-th block of A. Since there are a total of n −1 basis non-pivotal columns, and all but one

of the columns in the (k +2)-th block are non-pivotal, the largest basic non-pivotal column

index will appear in the (k +2)-th block. Therefore, this largest index equals to n (k +1) + j

for some 1 ≤ j ≤ n . By Lemma 91, the degree of any optimal moving frame at a equals to
 

n (k+1)+ j
n

£

−1= k +1=
�

d
n−1

�

+1=
�

d
n−1

�

.
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Lemma 95. For all n > 1 and d > 0, there exists a vector a ∈K[s ]n with deg(a) = d and gcd(a) = 1

such that det(C ) 6= 0.

Proof. Let n > 1 and d > 0. We will find a suitable witness for a. Recalling the relation d = k (n −1)+r ,

we will consider the following three cases:

1) If n −1> d , we claim that the following is a witness:

a=
�

s d , s d−1, . . . , s , 1, . . . , 1
�

.

Note that there is at least one 1 at the end. Thus deg(a) = d and gcd(a) = 1. It remains to show

that |C | 6= 0. Note that k = 0 and r = d . Thus, the matrix C is a (d +1)× (d +1) partial block

that looks like

C =







1

...

1






.

Therefore, |C |=±1.

2) If n −1≤ d and n −1 divides d , we claim that the following is a witness:

a=
�

s d , s d−k , . . . , s d−(n−1)k � .

Note that the last component is s d−(n−1)k = s 0 = 1. Thus deg(a) = d and gcd(a) = 1. It remains

to show that |C | 6= 0. To do this, we examine the shape of C . To get intuition, consider the

instance where n = 3 and d = 6. Note that k = 3 and r = 0. Thus, we have

a =
�

s 6, s 3, s 0
�

C =









































0 0 1

0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0

1









































.

All the empty spaces are zeros. Note that C is a permutation matrix (each row has only one 1

and each column has only one 1). Therefore, |C |=±1. It is easy to see that the same observation

holds in general.
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3) If n −1≤ d and n −1 does not divide d , we claim that the following is a witness:

a=
�

s d , s d−(1k+1), s d−(2k+2) . . . , s d−(r k+r ), s d−((r+1)k+r ), . . . , s d−((n−1)k+r )� .

Note that the last component is s d−((n−1)k+r ) = s 0 = 1. Thus deg(a) = d and gcd(a) = 1. It
remains to show that |C | 6= 0. To do this, we examine the shape of C . To get intuition, consider
the case n = 5 and d = 14. Note that k = 3 and r = 2. Thus, we have

a =
�

s 14, s 14−(1·3+1), s 14−(2·3+2), s 14−(3·3+2), s 14−(4·3+2)
�

=
�

s 14, s 10, s 6, s 3, s 0
�

C =











































































0 0 0 0 1

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0











































































.

All the empty spaces are zeros. Note that C is a permutation matrix (each row has only one 1

and each column has only one 1). Therefore, |C |=±1. It is easy to see that the same observation

holds in general.

Theorem 96 (Generic Degree.). LetK be an infinite field. For generic a ∈K[s ]n with deg(a) = d and

gcd(a) = 1, for every degree-optimal moving frame P at a, we have deg(P ) =
�

d
n−1

�

.

Proof. From Lemma 95, it follows that det(C ) is a nonzero polynomial on the n (d +1)-dimensional

vector spaceK[s ]n overK. Thus, the condition det(C ) 6= 0 defines a proper Zariski open subset of

K[s ]n . Lemma 94 implies that for every a in this Zariski open subset, every degree-optimal moving

frame P at a has degree
�

d
n−1

�

. If we assumeK is an infinite field, then the complement of any proper

Zariski open subset is of measure zero, and we can say that for a generic a, the degree of every

degree-optimal moving frame at a equals the sharp lower bound
�

d
n−1

�

.
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Remark 97. Some simple consequences of the general results about the degrees are worthwhile

recording. From Proposition 92, it follows that, when d ≥ n, the degree of an optimal moving frame

is always strictly greater than 1. From the above theorem and Theorem 76, it follows that when

d < n andK is infinite, then for a generic input, the degree of an optimal moving frame is 1 and the

minimal-degree Bézout vector is a constant vector.
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CHAPTER

5

ALGEBRAIC MOVING FRAMES:

COMPUTATION

Having established, in Chapter 4, the definitions, background, and building blocks of moving frames,

we now turn our attention to computing algebraic moving frames and degree-optimal moving

frames. In particular, in Section 5.1 we present an OMF algorithm built upon the theory described in

Sections 4.1 and 4.2. The algorithm exploits the fact that the construction procedures for a minimal-

degree Bézout vector and for a µ-basis, suggested by Theorems 89 and 90, can be accomplished

simultaneously by a single partial row-echelon reduction of a (2d +1)× (nd +n +1)matrix overK.

In Proposition 101, we prove that the theoretical (worst-case asymptotic) complexity of the OMF

algorithm equals to O (d 2n+d 3+n 2), and we trace the algorithm on our running example. In Section

5.2, we present a slight modification of the OMF algorithm that produces degree-optimal moving

frames for input vectors with non-trivial gcd. In Section 5.3, we show that important algebraic

properties of the frames produced by the OMF algorithm can be enhanced by a group-equivariant

property which plays a crucial role in geometric moving frame theory. We also show that a simple

modification of any deterministic algorithm for producing a degree-optimal algebraic moving frame

leads to an algorithm that produces a G Ln (K)-equivariant degree-optimal moving frame.

We then turn our attention to alternative moving frame algorithms. In Section 5.4, we discuss

other possible approaches for computing degree-optimal moving frames. As mentioned above,

there are no existing algorithms for simultaneously computing a minimal-degree Bézout vector

and a µ-basis. We describe instead a two-step approach that involves performing reduction on

non-optimal moving frames. In Sections 5.5, 5.6, 5.7, and 5.8, we present algorithms for computing
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algebraic moving frames that are not necessarily optimal. In Sections 5.9 and 5.10, we present new

algorithms for computing a degree-optimal moving frame simultaneously, using reduced TOP-

Gröbner basis computations and µ-basis computations, respectively. In Section 5.11, we consider

the natural generalization of the moving frame problem to unimodular matrix inputs A.

5.1 The OMF Algorithm

The theory developed in Chapter 4, namely Sections 4.1 and 4.2, can be recast into an algorithm

for computing a degree-optimal moving frame. After giving its informal outline, we provide an

optimized version of the algorithm, trace it, and analyze its theoretical complexity.

5.1.1 Informal outline

Before stating a rigorous and optimized version of the algorithm, we make an informal outline and

indicate how the optimization is done:

1. For an input vector a ∈ K[s ]nd such that gcd(a) = 1, construct the augmented matrix W =

[A | e1] ∈ K(2d+1)×(nd+n+1), where A ∈ K(2d+1)×n (d+1) is given by (4.12) and e1 = [1,0, . . . ,0]T ∈
K2d+1.

2. Compute the reduced row-echelon form E = [Â | v̂ ] of W .

3. Construct a matrix P ∈K[s ]n×n whose first column is a Bézout vector of a of minimal degree

and whose last n −1 columns form a µ-basis of a, as follows:

(a) Construct the matrix V ∈Kn (d+1)×n whose first column solves Âv = v̂ and whose last

n −1 columns are the null vectors of A corresponding to its basic non-pivotal columns.

Here p = [p1, . . . , p2d+1] is the list of the pivotal indices and q̃ = [q̃1, . . . , q̃n−1] is the list of

the basic non-pivotal indices of A.

• Vpr ,1 = v̂ [r ] for r = 1, . . . , 2d +1

• Vq̃ j−1, j = 1 for j = 2, . . . , n

• Vpr , j =−Er,q̃ j−1
for j = 2, . . . , n and r ∈ {1, . . . , 2d +1 |pr < q̃ j−1}

• All other entries are zero

(b) Use the isomorphism [ to convert matrix V into P = [V [
∗1, . . . , V [

∗n ].

However, steps 2 and 3 do some wasteful operations and they can be improved, as follows:

• Note that step 2 constructs the entire reduced row-echelon form of W , even though we only

need n −1 null vectors corresponding to its basic non-pivot columns and the single solution

vector. Hence, it is natural to optimize this step so that only the n − 1 null vectors and the

single solution vector are constructed: instead of using Gauss-Jordan elimination to compute

the entire reduced row-echelon form, one performs operations column by column only on

the pivot columns, basic non-pivot columns, and augmented column.
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• Note that step 3 constructs the entire matrix V even though many entries are zero. Hence,

it is natural to optimize this step so that we bypass constructing the matrix V , but instead

construct the matrix P directly from the matrix E . This is possible because the matrix E

contains all the information about the matrix V .

5.1.2 Formal algorithm and proof

In this section, quo(i , j ) denotes the quotient and rem(i , j ) denotes the remainder generated by

dividing an integer i by an integer j .

Algorithm 98 (OMF).

Input: a 6= 0 ∈K[s ]n , row vector, where n > 1, gcd(a) = 1, andK a computable field

Output: P ∈K[s ]n×n , a degree-optimal moving frame at a

1. Construct a matrix W ∈K(2d+1)×(nd+n+1), whose left (2d +1)× (nd +n ) block is matrix (4.12)

and whose last column is e1.

(a) d ←− deg(a)

(b) Identify the row vectors c0 = [c01, . . . c0n ], . . . , cd = [cd 1, . . . cd n ] such that a= c0+ c1s + · · ·+
cd s d .

(c) W ←−



















c0
...

...

cd
... c0

...
...

cd

�

�

�

�

�

�

�

�

�

�

�

�

�

1

0

...

0























∈K(2d+1)×(nd+n+1)

2. Construct the “partial” reduced row-echelon form E of W .

This can be done by using Gauss-Jordan elimination (forward elimination, backward elimina-

tion, and normalization), with the following optimizations:

• Skip over periodic non-pivot columns.

• Carry out the row operations only on the required columns.

3. Construct a matrix P ∈K[s ]n×n whose first column is a Bézout vector of a of minimal degree

and whose last n −1 columns form a µ-basis of a.

Let p be the list of the pivotal indices and let q̃ be the list of the basic non-pivotal indices of E .

(a) Initialize an n ×n matrix P with 0 in every entry.
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(b) For j = 2, . . . , n

r ← rem
�

q̃ j−1−1, n
�

+1

k ← quo
�

q̃ j−1−1, n
�

Pr, j ← Pr, j + s k

(c) For i = 1, . . . , 2d +1

r ← rem
�

pi −1, n
�

+1

k ← quo
�

pi −1, n
�

Pr,1← Pr,1+Ei ,nd+n+1s k

For j = 2, . . . , n

Pr, j ← Pr, j −Ei ,q̃ j−1
s k

Theorem 99. The output of the OMF Algorithm is a degree-optimal moving frame at a, where a is the

input vector a ∈K[s ]n such that n > 1 and gcd(a) = 1.

Proof. In step 1, we construct a matrix W = [A | e1] ∈K(2d+1)×(nd+n+1) whose left (2d +1)× (nd +n )

block is matrix (4.12) and whose last column is e1 = [1,0, . . . ,0]T . Under isomorphism [, the null

space of A corresponds to syzd (a), and the solutions to Av = [1,0, . . . ,0]T correspond to Bezd (a).

From Proposition 87, we know that rank(A) = 2d + 1, and thus all pivotal columns of W are the

pivotal columns of A. In step 2, we perform partial Gauss-Jordan operations on W to identify the

coefficients α’s appearing in (4.24) and (4.18), that express the n −1 basic non-pivotal columns of A

and the vector e1, respectively, as linear combinations of pivotal columns of A. These coefficients

will appear in the basic non-pivotal columns and the last column of the partial reduced row-echelon

form E of W . In Step 3, we use these coefficients to construct a minimal-degree Bézout vector of a

and a degree-ordered µ-basis of a, as prescribed by Theorems 89 and 90. We place these vectors

as the columns of matrix P , and the resulting matrix is, indeed, a degree-optimal moving frame

according to Theorem 75.

Example 100. We trace the algorithm on the input vector

a=
�

2+ s + s 4 3+ s 2+ s 4 6+2s 3+ s 4
�

∈Q[s ]3.

1. Construct matrix W :

(a) d ←− 4

(b) c0, c1, c2, c3, c4←− [ 2 3 6 ] , [ 1 0 0 ] , [ 0 1 0 ] , [ 0 0 2 ] , [ 1 1 1 ]
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(c) W ←−































2 3 6 1

1 0 0 2 3 6

0 1 0 1 0 0 2 3 6

0 0 2 0 1 0 1 0 0 2 3 6

1 1 1 0 0 2 0 1 0 1 0 0 2 3 6

1 1 1 0 0 2 0 1 0 1 0 0

1 1 1 0 0 2 0 1 0

1 1 1 0 0 2

1 1 1































2. Construct the “partial” reduced row-echelon form E of W .

E ←−































1 −3 −9 2

1 −2 −8 1

1 2 7 −1

1 3 12 3 6 −1

1 −5 −15 0 0 3 6 2

1 2 5 1 0 0 0 −1

1 1 1 0 2 1 0 0

1 1 1 0 2 0

1 1 1 0































Here, blue denotes pivotal columns, red denotes basic non-pivotal columns, brown denotes

periodic non-pivotal columns, and grey denotes the solution column.

3. Construct a matrix P ∈K[s ]n×n whose first column consists of a minimal-degree Bézout vector

of a and whose last n −1 columns form a µ-basis of a.

(a) P ←−







0 0 0

0 0 0

0 0 0







(b) P ←−







0 0 0

0 s 2 0

0 0 s 2







(c) P ←−







2− s 3−3 s − s 2 9−12 s − s 2

1+2 s 2+5 s + s 2 8+15 s

−1− s −2−2 s −7−5 s + s 2







Proposition 101 (Theoretical Complexity). Under the assumption that the time for any arithmetic

operation is constant, the complexity of the OMF algorithm is O (d 2n +d 3+n 2).

Proof. We will trace the theoretical complexity for each step of the algorithm.

1. (a) To determine d , we scan through each of the n polynomials in a to identify the highest

degree term, which is always ≤ d . Thus, the complexity for this step is O (d n ).
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(b) We identify n (d + 1) values to make up c0, . . . , cd . Thus, the complexity for this step is

O (d n ).

(c) We construct a matrix with (2d +1)(nd +n +1) entries. Thus, the complexity for this step

is O (d 2n ).

2. With the partial Gauss-Jordan elimination, we perform row operations only on the 2d + 1

pivot columns of A, the n −1 basic non-pivot columns of A, and the augmented column e1.

Thus, we perform Gauss-Jordan elimination on a (2d +1)× (2d +n +1)matrix. In general, for

a k × l matrix, Gauss-Jordan elimination has complexity O (k 2l ). Thus, the complexity for this

step is O (d 2(d +n )).

3. (a) We fill 0 into the entries of an n ×n matrix P . Thus, the complexity for this step is O (n 2).

(b) We update entries of the matrix n −1 times. Thus, the complexity for this step is O (n ).

(c) We update entries of the matrix (2d +1)(n −1) times. Thus, the complexity for this step is

O (d n ).

By summing up, we have O
�

d n +d n +d 2n +d 2(d +n ) +n 2+n +d n
�

=O
�

d 2n +d 3+n 2
�

.

Remark 102. Note that the n 2 term in the above complexity is solely due to step 3(a), where the matrix

P is initialized with zeros. If one uses a sparse representation of the matrix (storing only nonzero

elements), then one can skip the initialization of the matrix P . As a result, the complexity can be

improved to O
�

d 2n +d 3
�

.

It turns out that the theoretical complexity of the OMF algorithm is exactly the same as that of

the µ-basis algorithm presented in Section 3.1. This is unsurprising, because the µ-basis algorithm

presented in Section 3.1 is based on partial Gauss-Jordan elimination of matrix A, while the OMF

algorithm is based on partial Gauss-Jordan elimination of the matrix obtained by appending to A a

single column e1.

5.2 Case when gcd 6= 1

In this section, we make a slight modification to the OMF algorithm, so that it produces degree-

optimal moving frames in the case when gcd(a) 6= 1. As before, we accomplish this by reducing to a

linear algebra problem.

Let a =
∑

0≤ j≤d c j s j ∈ K[s ]nd , where c j = [c1 j , . . . , cn j ] ∈ Kn are row vectors, and suppose
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deg(gcd(a)) =D . Define

A′ =





































cD · · · c0
...

...
...

...
...

... cD c0

cd
...

...
...

...
...

... cD

cd
...

...
...

cd





































∈K(2d+1−D )×n (d+1) (5.1)

and observe that A′ is our usual matrix A given in (4.12) with the first D rows removed. We then

have the following.

Lemma 103. For any v ∈Kn (d+1),

av [
n
d = gcd(a)(A′v )[

1
2d−D . (5.2)

Proof. A vector v ∈Kn (d+1) can be split into (d +1) blocks







w0
...

wd






,

where wi ∈ Kn are column vectors. For j < 0 and j > d , let us define c j = 0 ∈ Kn . Then A′v is a

(2d +1−D )-vector with (k +1)-th entry

(A′v )k+1 = ck+D w0+ ck+D−1w1+ · · ·+ ck+D−d wd =
∑

0≤i≤d

ck+D−i wi ,

where k = 0, . . . , 2d −D . Then

av [ = aS n
d v =

 

∑

0≤ j≤d

c j s j

!

�

∑

0≤i≤d

wi s i

�

=
∑

0≤i , j≤d

c j wi s i+ j

=
∑

0≤k≤2d

s k

�

∑

0≤i≤d

ck−i wi

�
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Since deg(gcd(a)) =D , we can factor out gcd(a) to obtain

av [ = gcd(a)
∑

0≤k≤2d−D

s k

�

∑

0≤i≤d

ck+D−i wi

�

= gcd(a)
∑

0≤k≤2d−D

s k (A′v )k+1

= gcd(a)S 1
2d−D (A

′v ) = gcd(a)(A′v )[
1
2d−D .

Lemma 104. v [ ∈ Bezd (a) if and only if v solves the equation A′v = e1, where e1 = [1,0, . . . ,0]T ∈
K2d+1−D .

Proof. Follows immediately from (5.2) and the observation that e
[12d−D
1 = 1.

Thus, we’ve once again reduced our problem to solving a matrix equation, in this case A′v = e1.

To set up this equation, though, we need some way to determine the value of D . This can be done

using the fact (see [VS78]) that the rank deficiency of the original matrix A given by (4.12) is D , or in

other words, the number of pivotal columns of A is 2d +1−D . This suggests the following informal

algorithm:

1. Given a ∈K[s ]nd , form the matrix A ∈K(2d+1)×n (d+1) as given by (4.12).

2. Compute the partial reduced row-echelon form E of A, keeping track of the list p of pivotal

columns and list q̃ of basic non-pivotal columns.

3. Construct the augmented matrix W = [A′ | e1] ∈K(2d+1−D )×(nd+n+1), where D = 2d + 1− |p |
and A′ is given by (5.1).

4. Compute the reduced row-echelon form E ′ = [ÒA′, v̂ ] of W .

5. Construct P ∈K[s ]n×n from v̂ and the columns of E indexed by q̃ .

Recall from Section 3.1 that a µ-basis can be formed from the partial RREF of matrix A (denoted

by E ) even when gcd(a) 6= 1. Moreover, step 3 of the above procedure can be modified by observing

that A and A′ have the same rank and the same pivotal indices. Thus, instead of using the entire

matrix A′, we can simply use the pivotal columns that we determine in step 2 and call the truncated

matrix A′p . We now present the formal algorithm.

Algorithm 105 (GOMF).

Input: a 6= 0 ∈K[s ]n , row vector, where n > 1, andK a computable field

Output: P ∈K[s ]n×n , a degree-optimal moving frame at a

1. Construct matrix A ∈K(2d+1)×n (d+1)

(a) d ←− deg(a)
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(b) Identify the row vectors c0 = [c01, . . . c0n ], . . . , cd = [cd 1, . . . cd n ] such that a= c0+ c1s + · · ·+
cd s d .

(c) A←−



















c0
...

...

cd
... c0

...
...

cd



















∈K(2d+1)×n (d+1)

2. Construct the “partial” reduced row-echelon form E of A.

This can be done by using Gauss-Jordan elimination (forward elimination, backward elimina-

tion, and normalization), with the following optimizations:

• Skip over periodic non-pivot columns.

• Carry out the row operations only on the required columns.

3. Construct augmented matrix W = [A′p | e1] ∈K(2d+1−D )×(2d+1−D+1)

(a) p ←− the list of pivotal indices of E

(b) D ←− 2d +1− |p |

(c) W ←− [A′p | e1], where A′p is the submatrix of





































cD · · · c0
...

...
...

...
...

... cD c0

cd
...

...
...

...
...

... cD

cd
...

...
...

cd





































indexed by p .

4. Construct the reduced row-echelon form E ′ of W

This can be done using regular Gauss-Jordan elimination.

5. Construct a matrix P ∈K[s ]n×n whose first column is a Bézout vector of a of minimal degree

and whose last n −1 columns form a µ-basis of a.

Let p be the list of the pivotal indices and let q̃ be the list of the basic non-pivotal indices of E .

(a) Initialize an n ×n matrix P with 0 in every entry.

(b) For j = 2, . . . , n

r ← rem
�

q̃ j−1−1, n
�

+1
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k ← quo
�

q̃ j−1−1, n
�

Pr, j ← Pr, j + s k

(c) For i = 1, . . . , 2d +1−D

r ← rem
�

pi −1, n
�

+1

k ← quo
�

pi −1, n
�

Pr,1← Pr,1+E ′i ,nd+n+1s k

For j = 2, . . . , n

Pr, j ← Pr, j −Ei ,q̃ j−1
s k

Example 106. We trace the algorithm on the input vector

a=
�

2+3s + s 2+ s 4+ s 5 3+3s + s 2+ s 3+ s 4+ s 5 6+6s +2s 3+3s 4+ s 5
�

= (1+ s )
�

2+ s + s 4 3+ s 2+ s 4 6+2s 3+ s 4
�

∈Q[s ]3.

1. Construct matrix A ∈K(2d+1)×n (d+1)

(a) d ←− 5

(b) c0, c1, c2, c3, c4, c5←− [ 2 3 6 ] , [ 3 3 6 ] , [ 1 1 0 ] , [ 0 1 2 ] , [ 1 1 3 ] , [ 1 1 1 ]

(c) A←−







































2 3 6

3 3 6 2 3 6

1 1 0 3 3 6 2 3 6

0 1 2 1 1 0 3 3 6 2 3 6

1 1 3 0 1 2 1 1 0 3 3 6 2 3 6

1 1 1 1 1 3 0 1 2 1 1 0 3 3 6 2 3 6

1 1 1 1 1 3 0 1 2 1 1 0 3 3 6

1 1 1 1 1 3 0 1 2 1 1 0

1 1 1 1 1 3 0 1 2

1 1 1 1 1 3

1 1 1







































2. Construct the “partial" reduced row-echelon form E of A.

E ←−







































1 −3 −9

1 −2 −8

1 2 7

1 3 12 3 6

1 −5 −15 3 6 3 6

1 2 5 1 0 3 6 3 6

1 1 1 1 2 1 0 3 6

1 1 3 1 2 1 0

1 1 1 1 3 1 2

1 1 1 1 3

1 1






































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Here, blue denotes pivotal columns, red denotes basic non-pivotal columns, and brown

denotes periodic non-pivotal columns.

3. Construct augmented matrix W = [A′p | e1] ∈K(2d+1−D )×(2d+1−D+1)

(a) p ←− [1, 2, 3, 4, 5, 6, 7, 10, 13, 16]

(b) D ←− 1

(c) W ←−



































3 3 6 2 3 6 1

1 1 0 3 3 6 2

0 1 2 1 1 0 3 2

1 1 3 0 1 2 1 3 2

1 1 1 1 1 3 0 1 3 2

1 1 1 1 0 1 3

1 1 0 1

1 1 0

1 1

1



































4. Construct the reduced row-echelon form E ′ of W .

E ′←−



































1 2

1 1

1 −1

1 −1

1 2

1 −1

1 0

1 0

1 0

1 0



































5. Construct a matrix P ∈K[s ]n×n whose first column consists of a minimal-degree Bézout vector

of a and whose last n −1 columns form a µ-basis of a.

(a) P ←−







0 0 0

0 0 0

0 0 0







(b) P ←−







0 0 0

0 s 2 0

0 0 s 2







(c) P ←−







2− s 3−3 s − s 2 9−12 s − s 2

1+2 s 2+5 s + s 2 8+15 s

−1− s −2−2 s −7−5 s + s 2







Unsurprisingly, the matrix P computed in the example above is the same P computed in Example

100. As far as theoretical complexity goes, the complexity of Algorithm 105 is the same as that of
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the original OMF Algorithm 98. This is because the primary new step (step 4) in Algorithm 105 is a

row-echelon reduction of a (2d +1−D )× (2d +1−D +1)matrix, and so the worst-case complexity

of this step is O (d 3). Adding this to the complexity obtained in Proposition 101 yields a complexity

of O (d 2n +d 3+n 2). Of course, we still expect Algorithm 105 to run slower than the original OMF

algorithm 98 in real time due to the extra reduction step.

5.3 Equivariance

In Chapter 4, we justified the term moving frame by picturing it as a coordinate system moving along

a curve. This point of view is reminiscent of classical geometric frames, such as the Frenet-Serret

frame. However, the frames we’ve discussed here were defined by suitable algebraic properties, not

its geometric properties. It is then natural to ask if it is possible to combine algebraic properties of

Definition 63 with some essential geometric properties, in particular with the group-equivariance

property. In this section, we show that any deterministic algorithm for computing an optimal moving

frame can be augmented to obtain an algorithm that computes a G Ln (K)-equivariant moving frame.

The majority of frames in differential geometry have a group-equivariance property. For a

curve in the three dimensional space, the Frenet frame is a classical example of a Euclidean group-

equivariant frame. However, alternative geometric frames, in particular rotation minimizing frames,

appear in applications in computer aided geometric design, geometric modeling, and computer

graphics (see, for instance, [Gug89], [Wan08], [Far14], [Far16] and references therein). A method

for deriving equivariant moving frames for higher-dimensional objects and for non-Euclidean

geometries has been developed by Cartan (such as in [Car35]), who used moving frames to solve

various group-equivalence problems (see [Gug63], [IL16], [Cle17] for modern introduction into

Cartan’s approach). The moving frame method was further developed and generalized by Griffiths

[Gri74], Green [Gre78], Fels and Olver [FO99], and many others. Group-equivariant moving frames

have a wide range of applications to problems in mathematics, science, and engineering (see [Olv15]

for an overview).

The group-equivariance property is essential for the majority of frames arising in differential

geometry. For the Frenet-Serret frame, it is manifested as follows. We recall that for a smooth curve γ

in R3, the Frenet-Serret frame at a point p ∈ γ consists of the unit tangent vector T , the unit normal

vector N and the unit binormal vector B to the curve at p . Consider the action of Euclidean group

E (3) (consisting of rotations, reflections, and translations) on R3. This action induces an action of

the curves in R3 and on the vectors. It is easy to see that, for any g ∈ E (3), the vectors g T , g N and

g B are the unit tangent, the unit normal and the unit binormal, respectively, at the point g p of the

curve g γ. Thus, if we define Fγ(p ) = [T , N , B ], then we can record the equivariance property as:

Fg γ(g p ) = g Fγ(p ) for all γ⊂R3, p ∈ γ and g ∈ E (3). (5.3)

In the case of the algebraic moving frames we consider, we are interested in developing an

algorithm that for a ∈K[s ]n\{0} produces an optimal moving frame Pa (recall Definition 63) with
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the additional G Ln (K)-equivariance property:

Pa g (s ) = g −1 Pa(s ) for all a ∈K[s ]n\{0}, s ∈K and g ∈G Ln (K). (5.4)

We observe that on the right-hand side of (5.3) the frame is multiplied by g , while on the right-

hand side of (5.4) the frame is multiplied by g −1. This means that the columns of P comprise a right

equivariant moving frame, while the Frenet-Serret frame is a left moving frame (see Definition 3.1 in

[FO99] and the subsequent discussion).

To give a precise definition of a G Ln (K)-right-equivariant algebraic moving frame algorithm,

consider the set M =K× (K[s ]n\{0}), and view an algorithm producing an algebraic moving frame

as a map ρ : M →G Ln (K) such that, for a fixed a, the matrix Pa(s ) =ρ(s , a) is polynomial in s and

satisfies Definition 63. Then the G Ln (K)-property (5.4) is equivalent to the commutativity of the

following diagram:

G Ln (K) G Ln (K)

M M

L−1
g

g

ρ ρ .

On the top of the diagram, L−1
g indicates the right action of g ∈ G Ln (K) on G Ln (K) defined by

multiplication from the left by g −1, while on the bottom the right action is defined by g ·(s , a) = (s , a g ).

We observe further that if the columns of P comprise a right equivariant moving frame, then the

rows of P −1 comprise a left frame. The inverse algebraic frame has an easy geometric interpretation:

the first row of P −1
a equals to the position vector a and together with the last n −1 rows forms an

n-dimensional parallelepiped whose volume does not change as the frame moves along the curve.

It is easy to find an instance of g and a to show that Pa =O M F (a), where O M F (a) is produced by

Algorithm 98, does not satisfy (5.4) and, therefore, the OMF algorithm is not a G Ln (K)-equivariant

algorithm. However, for input vectors a= [a1, . . . , an ] such that a1, . . . , an are independent overK,

the OMF algorithm can be augmented into a G Ln (K)-equivariant algorithm as follows:

Algorithm 107 (EOMF).

Input: a = [a1, . . . , an ] 6= 0 ∈ K[s ]n , row vector, where n > 1, gcd(a) = 1, K a computable field, and

components of a are linearly independent overK

Output: P ∈K[s ]n×n , a degree-optimal moving frame at a

1. Construct an n ×n invertible submatrix of the coefficient matrix of a.

(a) d ←− deg(a)

(b) Identify the row vectors c0 = [c01, . . . c0n ], . . . , cd = [cd 1, . . . cd n ] such that a= c0+ c1s + · · ·+
cd s d .

(c) I = [i1, . . . , in ]←− lexicographically smallest vector of integers between 0 and d , such that

vectors ci1
, . . . , cin

are independent overK.
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(d) ÒC ←−







ci1

...

cin







2. Compute an optimal moving frame for a canonical representative of the G Ln (K)-orbit of a.

bP ←−O M F (a ÒC −1)

3. Revise the moving frame bP so that the algorithm has the equivariant property (5.4).

P ←− ÒC −1
bP .

To prove the algorithm we need the following proposition.

Proposition 108. Let P be a degree-optimal moving frame at a nonzero polynomial vector a. Then,

for any g ∈G Ln (K), the matrix g −1P is a degree-optimal moving frame at the vector a g .

Proof. By definition, a P = [gcd(a), 0, . . . , 0] and, therefore, for any g ∈G Ln (K)we have:

(a g )g −1P = [gcd(a), 0, . . . , 0].

From this, we conclude that gcd(a g ) = gcd(a) and that g −1P is a moving frame at a g . We note that

the rows of the matrix g −1P are linear combinations overK of the rows of the matrix P . Therefore,

the degrees of the columns of g −1P are less than or equal to the degrees of the corresponding

columns of P .

Assume that g −1P is not a degree-optimal moving frame at a g . Then there exists a moving frame

P ′ at a g such that at least one of the columns of P ′, say the j -th column, has degree strictly less

than the j -th column of g −1P . Then, from the paragraph above, the j -th column of P ′ has degree

strictly less than the degree of the j -th column of P .

By the same argument, g P ′ is a moving frame at a such that its j -th column has degree less

than or equal to the degree of the j -th column of P ′, which is strictly less than the degree of the j -th

column of P . This contradicts our assumption that P is degree-optimal.

Proof of the Algorithm 107. We first note that, since polynomials a1, . . . , an are linearly indepen-

dent overK, then the coefficient matrix C contains n independent rows and, therefore, Step 1 of the

algorithm can be accomplished. Let ba= a ÒC −1, then a= ba ÒC and P is an optimal moving frame at a

by Proposition 108. To show (5.4), for an arbitrary input a1 and an arbitrary g ∈G Ln (K), let a2 = a1 g .

Then dCa2
=dCa1

g and so

E O M F (a2) =dCa2

−1
O M F (a2

dCa2

−1
) = g −1

dCa1

−1
O M F (a1 g g −1

dCa1

−1
) = g −1 E O M F (a1).
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Remark 109. It is clear from the above proof that if, in Step 2 of Algorithm 107, we replace OMF

with any (not necessarily degree-optimal) algorithm, then (not necessarily degree-optimal) frames

produced by Algorithm 107 will have the G Ln (K)-equivariant property (5.4).

5.4 Other approaches

In Section 4.1, we outlined an informal algorithm for producing a degree-optimal moving frame at a.

Namely, construct a minimal-degree Bézout vector of a, construct a µ-basis of a, and then combine

them in a matrix. However, we are not aware of any algorithms for constructing a minimal-degree

Bézout vector. Using the ideas presented in the proof of Theorem 76, it is possible to reduce the

degree of a Bézout vector of a using a µ-basis of a. However, such a process (construct Bézout vector,

construct µ-basis, reduce) is inefficient, and it still does not guarantee that the Bézout vector after

reduction will be minimal-degree. The advantage of the OMF algorithm is that not only does it

construct a minimal-degree Bézout vector of a and a µ-basis of a, but it does so simultaneously and

with just a single “partial” Gauss-Jordan elimination.

Using Gröbner bases, it is possible to produce a degree-optimal moving frame, as follows:

Input: a ∈K[s ]n , a 6= 0

Output: P , a degree-optimal moving frame at a

1. b←− a Bézout vector of a.

2. {g1, . . . , gn−1}←− a reduced Gröbner basis for syz(a)with respect to TOP ordering.

3. r←− the normal form of b with respect to {g1, . . . , gn−1}.

4. P ←− [r, g1, . . . , gn−1].

5. Return P .

The primary drawback to the above algorithm is that Gröbner basis computations tend to

be quite costly. Moreover, the general process (construct Bézout vector, construct Gröbner basis,

reduce) is inefficient. We would like to compare the OMF algorithm with other approaches that

construct both components of a degree-optimal moving frame (minimal-degree Bézout vector and

µ-basis) simultaneously. Unfortunately, we are not aware of any previously-published algorithm

for such degree-optimal moving frames. Hence, we cannot compare the algorithm OMF with any

existing algorithms. However, there are approaches for constructing both components of a not-

necessarily-optimal moving frame (Bézout vector and pointwise independent basis of syzygies)

simultaneously. So instead, we will compare with a not yet published, but tempting alternative

approach. The approach consists of two steps: (1) Compute a moving frame. (2) Reduce the degree

to obtain a degree-optimal moving frame. We elaborate on this two-step approach.
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(1) Compute a moving frame. The problem of constructing an algebraic moving frame is a partic-

ular case of the well-known problem of providing a constructive proof of the Quillen-Suslin

theorem [FG90], [LS92], [Can93], [PW95], [LY05], [FQ07]. In those papers, the multivariate

problem is reduced inductively to the univariate case, and then an algorithm for the univariate

case is proposed. Those univariate algorithms produce moving frames. As far as we are aware,

the produced moving frames are usually not degree-optimal. However, the algorithms are

very efficient. We discuss some of these algorithms in subsequent sections.

(2) Reduce the degree to obtain a degree-optimal moving frame. The degree reduction can be

carried out using Popov form ([Bec99], [Bec06]) as follows.

(a) Compute the Popov normal form of the last n − 1 columns of a non-optimal moving

frame P .

(b) Reduce the degree of the first column of P (a Bézout vector) by the Popov normal form

of the last n −1 columns.

One might wonder whether Step 2(a) (reducing the last n −1 columns) could be done using

methods other than Popov form, such as column-reduced form [CL07] or matrix GCD [BL00].

Each of these methods would convert the last n −1 columns into a µ-basis. However, in order

to carry out Step 2(b) (reducing the Bézout vector), a stronger result is needed. Namely, the

last n −1 columns need to be a TOP reduced Gröbner basis for the syzygy module relative to

the standard basis ofKn . This is because using the last n −1 columns to reduce the Bézout

vector to minimal degree is equivalent to computing the normal form of the Bézout vector

with respect to the basis of syzygies, and this requires that the syzygies be a TOP reduced

Gröbner basis relative to the standard basis ofKn . The Popov form is the only technique that

produces such a basis.

5.5 Fabianska-Quadrat algorithm

We now discuss some algorithms for computing not-necessarily-optimal algebraic moving frames.

We will start with one such algorithm used by Fabianska and Quadrat in [FQ07], because it has

the least computational complexity among algorithms of which we are aware. Furthermore, the

algorithm has been implemented by the authors in MAPLE, and the package can be obtained from

http://wwwb.math.rwth-aachen.de/QuillenSuslin/. We discussed this algorithm in Sec-

tion 2.2.3. For the readers’ convenience, we outline their algorithm (for univariate case) again below.

Input: a 6= 0 ∈K[s ]n with gcd(a) = 1

Output: A moving frame at a

1. Find constants k3, . . . , kn such that gcd(a1+k3a3+ · · ·+kn an , a2) = 1.
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2. Find f1, f2 ∈K[s ] such that (a1+k3a3+ · · ·+kn an ) f1+a2 f2 = 1. This can be done by using the

Extended Euclidean Algorithm.

3. P ←−

















1

1

k3 1
...

...

kn 1

































f1 −a2

f2 a ′1
1

...

1

































1 0 −a3 · · · −an

0 1

1
...

1

















,

where a ′1 = a1+k3a3+ · · ·+kn an .

The complexity of this algorithm is O (d 2n ), which results from computing 2(n−2)multiplications of

polynomials with degree at most d in Step 3. We note, furthermore, that the output of the Fabianska-

Quadrat algorithm has degree at least d , while the output of the OMF algorithm has degree at most

d and generically
�

d
n−1

�

. The same can be said about the Fitchas-Galligo algorithm, as discussed in

Section 2.2.1.

We compared the computing times of the OMF algorithm and the alternative two-step approach

as described in Section 5.4. Both algorithms are implemented in Maple (2016) and were executed

on Apple iMac (Intel i 7-2600, 3.4 GHz, 16GB). The degree-reduction step was carried out using

the PopovForm command in the LinearAlgebra package in Maple. The input polynomial vectors

were generated as follows. The coefficients were randomly taken from [−10, 10]. The degree d of the

vectors ranged from 3 to 15. The length n of the vectors also ranged from 3 to 15.

Figure 5.1 shows the timings. The horizontal axes correspond to n and d and the vertical axis

Figure 5.1 Timing comparison: OMF vs. Two-step approach

corresponds to computing time t in seconds. Each dot (d , n , t ) represents an experimental timing.

The red dots indicate the experimental timing of the algorithm OMF, while the blue dots indicate

the experimental timing of the two-step approach described in Section 5.4.

As can be seen, the OMF algorithm runs significantly more efficiently. This is due primarily to
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the cost of computing the Popov form of the last n−1 columns of the non-optimal moving frame. As

described in [Bec06], the complexity of this step is O (d 3n 7), which is bigger than O (d 2n +d 3+n 2),

the complexity of the OMF algorithm (Proposition 101). For comparison purposes, we also note

that the complexity of the column-reduced form approach [CL07] is O (d 3n 7), while the complexity

of the matrix GCD approach [BL00] is O (d 4n 5).

Although other algorithms and implementations for Popov form computations may be more

efficient than the one currently implemented in Maple, we still expect OMF to significantly outper-

form any similar two-step procedure, because the degree-reduction step is essentially similar to a

TOP reduced Gröbner basis computation for a module, which is computationally expensive.

5.6 Algorithm based on generalized extended GCD

In Section 2.2.2, we highlighted another simple and elegant algorithm for constructing not-necessarily-

optimal moving frames, based on a generalized version of Euclid’s extended gcd algorithm. Such an

algorithm has been mentioned in [LS92], [PW95], [PW98], and [Elk12]. For the readers’ convenience,

we describe this algorithm again in our notation (as a recursive program for simple presentation).

We will refer to this algorithm as MF_GE (abbreviation of “Moving Frame by Generalized Euclid’s

algorithm”).

Input: a ∈K[s ]n , a 6= 0

Output: P , a moving frame at a

1. Let k be such that a=
�

a1 · · · ak 0 · · · 0
�

where ak 6= 0.

2. If k = 1 then set

P =













1
lc(a1)

1
...

1













and return P . (Here, lc(a1) denotes the leading coefficient of a1.)

3. (Find q2, . . . , qk , r ∈K[s ]n such that a1 = q2a2+ . . .+qk ak + r .)

(a) r ← a1

(b) For i = 2, . . . , k do

qi ← quo(r, ai )

r ← rem(r, ai )

4. a′←
�

a2 · · · ak r 0 · · · 0
�

.
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5. T ←





























1

1 −q2

...
...

1 −qk

1
...

1





























∈K[s ]n×n ,

where the q ’s are placed in the k -th column

6. P ′←MF_GE(a′).

7. P ← T P ′.

8. Return P .

Remark 110. We make a few remarks on the MF_GE algorithm.

• The MF_GE algorithm is elegant and very simple. The correctness is immediate from the fact

that P is a product of uni-modular matrices (up to a sign).

• The MF_GE algorithm works even when gcd(a) 6= 1, unlike our algorithm OMF.

• For n = 2, the MF_GE algorithm always produces a degree-optimal moving frame. This is

unsurprising, since when n = 2, the algorithm returns a matrix whose first column is the output

of the standard extended Euclidean algorithm which, for two polynomials, is known to produce

a minimal-degree Bézout vector. The second column of the output is the obvious lowest degree

syzygy 1
gcd(a) [−a2, a1].

• For n > 2, the MF_GE algorithm does not always produce a degree-optimal moving frame.

For instance, for the example used in Section 5.1, a =
�

2+ s + s 4, 3+ s 2+ s 4, 6+2s 3+ s 4
�

, the

MF_GE output is











1
2 +

1
2 s + 1

2 s 2 − 3
2 s + 1

2 s 2− 1
2 s 3 3

2 −
3
2 s − 1

2 s 2

− 1
2 s − 1

2 s 2 2+ s − 1
2 s 2+ 1

2 s 3 1+ 5
2 s + 1

2 s 2

0 −1 −1− s











and the OMF output is







2− s 3−3 s − s 2 9−12 s − s 2

1+2 s 2+5 s + s 2 8+15 s

−1− s −2−2 s −7−5 s + s 2






.
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Observe that the degree of the Bézout vector column (i.e. the first column) for MF_GE is 2, while

the degree of the Bézout vector column for OMF is 1. Likewise, the degrees of the syzygy columns

for MF_GE are 2 and 3, while the degrees of the syzygy columns for OMF are 2 and 2.

5.7 Unimodular multipliers

In Sections 5.4 and 5.5, we discussed the concept of Popov form and how it can be used to reduce a

non-optimal moving frame to a degree-optimal moving frame. The Popov form of a polynomial

matrix was first introduced in [Pop70] and further developed in [Pop72], [Bec99], [Bec06]. In [Bec99],

algorithms for computing the Popov form (polynomial echelon form) were described. This paper

also included the notion of unimodular multipliers, i.e. unimodular polynomial matrices that bring

a matrix to its Popov form. In the case of a single row vector a ∈ K[s ]n , the Popov form of a is
�

gcd(a), 0, . . . , 0
�

, and the multiplier is an algebraic moving frame. However, the multiplier is not

necessarily degree optimal, as the following example shows.

Example 111. Consider the input vector a=
�

1+ s 2, 1+ s 2+ s 3, 1+ s 4
�

∈Q[s ]3. The multiplier for a is







−s 2− s +1 s 2+2s −1 −s 3− s 2−1

s −2s s 2+1

0 1 0







and the OMF output is






s s 2+2s −1 3s

−s −2s s 2−2s −1

1 1 1− s






.

Observe that the degree of the Bézout vector column (i.e. the first column) for the multiplier is 2, while

the degree of the Bézout vector column for OMF is 1. Likewise, the degree of the syzygy columns for the

multiplier are 2 and 3, while the degrees of the syzygy columns for OMF are 2 and 2.

Using additional column operations, a multiplier can be reduced to a degree-optimal moving

frame (a “minimal multiplier" in the language of [Bec06]). The computations are similar to those

performed when computing a TOP Gröbner basis, and as such this method is less efficient than

methods discussed in previous sections. Faster algorithms for computing multipliers based on these

ideas can be found in [Zho12], although a code is not available for comparison.

5.8 Using POT Gröbner basis computations

In Section 3.3, we presented an important relationship between µ-bases and Gröbner bases for

the syzygy module of a polynomial vector. Since µ-bases form a key component of degree-optimal

moving frames, it is thus reasonable to inquire whether Gröbner basis computations can be used

to compute degree-optimal moving frames. We discussed an informal method to do so in Section
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5.4, but this method does not produce both components of a moving frame simultaneously. In the

next two sections, we show how to use Gröbner basis computations to compute moving frames

simultaneously. The first algorithm is courtesy of David Cox and Thomas Sederberg. They work in the

moduleK[s ]n+1 with the standard basis e0, e1, . . . , en , and they use POT Gröbner basis computations

to construct a non-optimal moving frame. We present the algorithm here and prove its correctness.

In the next section, we present a modified algorithm which will produce a degree-optimal moving

frame.

Algorithm 112 (MF_POT).

Input: a ∈K[s ]n

Output: a moving frame at a and the gcd of a

1. mi ←− ai e0+ei for i = 1, . . . , n.

2. Compute the reduced Gröbner basis for the module M ⊂K[s ]n+1 generated by the m1, . . . , mn

with respect to POTe0>···>en
ordering, obtaining

�

g

b

�

,

�

0

g1

�

,

�

0

g2

�

, . . . ,

�

0

gn−1

�

.

3. Return [b, g1, . . . , gn−1] and g .

Note that the algorithm works even when gcd(a) 6= 1 and can be used to compute gcd(a) as well.

David Cox provided the proof that g = gcd(a), b is a Bézout vector of a, and g1, . . . , gn−1 is a reduced

POTe1>···>en
Gróbner basis of syz(a). We provide the details here. We also add some explicit details to

show that the output is a moving frame.

ConsiderK[s ]n+1 as the free module with standard basis e0, e1, . . . , en . Consider the submodule

M ⊂K[s ]n+1 generated by m1, . . . , mn , where

mi = ai e0+ei = [ai , 0, . . . , 0, 1, 0, . . . , 0]T .

It is easy to see that m1, . . . , mn are linearly independent and thus they form a basis of M , making

M free with rank n . Lemma 114 below shows that M contains an isomorphic copy of syz(a).

Lemma 113.

�

g

b

�

∈M if and only if g = ab.

Proof. Note

�

g

b

�

∈M ⇐⇒

�

g

b

�

=
∑n

i=1 bi mi ⇐⇒ g = ab.

Lemma 114. M ∩ ({0}×K[s ]n ) = {0}× syz(a).

111



Proof. From Lemma 113, we have

�

0

b

�

∈M ⇐⇒ 0= ab. Thus the lemma follows.

The following lemma provides a key result.

Lemma 115. Let G be the reduced Gröbner basis for the module M ⊂ K[s ]n+1 with respect to

POTe0>···>en
ordering. Then

1. G contains a vector of the form w0 =

�

gcd(a)

b

�

, such that LT w0 = s deg gcd(a) e0, and b is a Bézout

vector of a.

2. Apart from w0, there are n−1 remaining vectors in G , and they all have 0 in the first component.

3. If w1 =

�

0

g1

�

, . . . , wn−1 =

�

0

gn−1

�

are the n −1 vectors described in 2, then {g1, . . . , gn−1} is the

reduced Gröbner basis for syz(a)with respect to POTe1>···>en
ordering.

Proof. Let h = gcd(a). Throughout the proof, we repeatedly use an observation that for any nonzero

vector bh =

�

0

h

�

∈K[s ]n+1 with a zero first component, LTbh relative to POTe0>e1>···>en
monomial

ordering on K[s ]n+1 equals to LT h relative to POTe1>···>en
monomial ordering on K[s ]n . In this

situation, we will simply write LTbh= LT h, without explicitly mentioning that these vectors belong

to two different modules. We will prove each claim one-by-one.

1. We split the first claim into two sub-claims:

(a) There exists t ∈M such that LT t=

�

s deg h

0

�

.

Let b′ be a Bézout vector of a. Then ab′ = h , and so by Lemma 113

�

h

b′

�

∈M .

With respect to POTe0>···>en
ordering, we have

LT

�

h

b′

�

=

�

s deg h

0

�

.

(b) G contains a vector of the form w0 =

�

h

b

�

, such that LT w0 = s deg h e0, and b is a Bézout

vector of a.

The Gröbner basis G must contain a vector w0, whose leading term divides the leading

term of vector t ∈M , described in part (a). Thus w0 =

�

g

b

�

, where g 6= 0, LT w0 = s deg g e0
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and deg g ≤ deg h . On the other hand, by Lemma 113, we have g = ab and, therefore,

since deg ab≥ deg h , we have deg g = deg ab≥ deg h . Thus deg g = deg h . By uniqueness

of gcd, we conclude g = h and so w0 =

�

gcd(a)

b

�

. By Lemma 113, we have gcd(a) = ab,

and so b is a Bézout vector of a.

2. The fact that, apart from w0, the reduced Gröbner basis G contains exactly n−1 vectors follows

immediately from the fact that M is a free module of rank n .

To show that the n − 1 remaining vectors all have 0 in the first component, let q =

�

q

v

�

∈

G \{w0} and assume that q 6= 0. Then, by Lemma 113, we have q = av. Then q contains a

monomial s deg av e0 with a nonzero coefficient. Since deg av≥ deg h , this monomial is divisible

by LT w0. This is in contradiction with our assumption that G is the reduced Gröbner basis.

Thus, q = 0.

3. Let w1 =

�

0

g1

�

, . . . , wn−1 =

�

0

gn−1

�

be the n −1 vectors in G whose first component is zero.

We split the claim into three sub-claims.

(a) g1, . . . , gn−1 generate syz(a).

By Lemma 114, for any nonzero h ∈ syz(a), vector

�

0

h

�

∈ M . Then

�

0

h

�

is a linear

combination overK[s ] of vectors in G . From the previous two parts, we have that, apart

from w1, · · ·wn−1, there is only one vector in G with nonzero first component, and thus
�

0

h

�

has to be a linear combination, overK[s ], of vectors w1, · · ·wn−1. Since, by Lemma

114, {g1, . . . , gn−1} ⊂ syz(a), we conclude that syz(a) =



g1, . . . , gn−1

�

.

(b) LT g1, . . . , LT gn−1 with respect to POTe1>···>en
monomial ordering onK[s ]n , generate the

leading monomial ideal of syz(a).

We need to show that for an arbitrary nonzero h ∈ syz(a), there exists i ∈ 1, . . . , n −1

such that, relative to POTe1>···>en
ordering, LT h is divisible by LT gi . Assume that LT h=

c s t ek , for some constant c ∈ K, non-negative integer t and integer k ∈ {1, . . . , n − 1}.

By Lemma 114, vector bh=

�

0

h

�

∈M . Relative to POTe0>e1>···>en
monomial ordering on

K[s ]n+1, we have LTbh= c s t ek . Since G is a Gröbner basis for M , there exists an element

of G whose leading term divides LTbh. Since, by parts 1 and 2, w1, · · ·wn−1 are the only

elements of G , whose leading terms can involve basis vector ek with k > 0, there exists

i ∈ 1, . . . , n −1 such that LT wi divides LTbh. The argument is concluded by an observation

that LT wi = LT gi and LTbh= LT h.

(c) g1, . . . , gn−1 comprise a reduced Gröbner basis for syz(a). Parts (a) and (b) above imply

that, by definition, g1, . . . , gn−1 comprise a Gröbner basis of syz(a). Since LT gi = LT wi
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and G is reduced, it follows that that for all j 6= i , none of the monomials in g j is divisible

by LT gi . Thus (g1, . . . , gn−1) is a reduced Gröbner basis for syz(a).

We proceed with showing that the output of Algorithm 112 is a moving frame. This requires the

following lemma which shows that g1, . . . , gn−1 are point-wise linearly independent overK.

Lemma 116. Let a ∈K[s ]n , and let g1, . . . , gn−1 be a reduced Gröbner basis for syz(a)with respect to

POTe1>···>en
. Then g1, . . . , gn−1 are point-wise linearly independent overK.

Proof. Assume LT g1 < · · · < LT gn−1. Since the g j form a reduced POTe1>···>en
Gröbner basis, they

have a triangular structure similar to the following
















∗
∗

















,

















∗
∗
∗

















, . . . ,

















∗
∗
∗
∗
∗

















.

Suppose there exists s0 ∈K such that g1(s0), . . . , gn−1(s0) are linearly dependent overK. Then there

exist constants α1, . . . ,αn−1 ∈K, not all zero, such that

α1 g1(s0) + · · ·+αn−1 gn−1(s0) = 0.

Let i =max{ j |α j 6= 0} and let

h=α1 g1+ · · ·+αi gi .

Then, since the g j are reduced with leading terms ordered as above and we are using POTe1>···>en

ordering, LT h=αi LT gi . Moreover, h ∈ syz(a) and is not identically zero, but h(s0) = 0. It follows that

gcd(h) 6= 1 in K[s ] and, therefore, h̃ = 1
gcd(h) h belongs to syz(a) and has leading term with degree

strictly less than LT h. Thus, there exists g j such that LT g j divides LT h̃. However, by the triangular

structure discussed above, the only vector whose leading term depends on the same basis vector

as LT h̃ is gi , and LT gi has degree greater than LT h̃ because deg(gcd(h)) > 0. Hence, division of

LT h̃ by one of the LT g j is not possible. Contradiction implies the g j must be point-wise linearly

independent.

Proof of the correctness of Algorithm 112

In Lemma 115, it is shown that the first column of P is a Bézout vector of a, g = gcd(a), and the

last n −1 columns of P form a reduced Gröbner basis for syz(a)with respect to POTe1>···>en
ordering.

Lemma 116 shows that these last n −1 columns are point-wise linearly independent syzygies, and

thus P is a moving frame by Proposition 74.
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The following example illustrates this algorithm does not necessarily provide a degree-optimal

moving frame:

Example 117. Let a= [2+ s + s 4,3+ s 2+ s 4,6+2s 3+ s 4] ∈Q[s ]3. Then the output of the Algorithm

112 is






0 0 15

−4s 3−9s 2+4s +21 s 4+2s 3+6 3s 3+8s 2+7s −12

4s 3+ s 2−2s −8 −s 4− s 2−3 −3s 3−2s 2−6s +1






,

while the OMF output is






2− s 3−3 s − s 2 9−12 s − s 2

1+2 s 2+5 s + s 2 8+15 s

−1− s −2−2 s −7−5 s + s 2






.

Observe that the Bézout vector (i.e. first column) of the MF_POT algorithm output has degree 3,

compared to 1 for OMF. Likewise, the basis of syz(a) in the MF_POT algorithm has degrees 4 and 3,

compared to 2 and 2 for OMF.

5.9 Using TOP Gröbner basis computations

In this section, we present a modification of the algorithm from Section 5.8 and prove that it outputs

a degree-optimal moving frame. The difference is highlighted in red color.

Algorithm 118 (MF_TOP).

Input: a ∈K[s ]n

Output: a degree-optimal moving frame at a and the gcd of a

1. mi ←− s d ai e0+ei for i = 1, . . . , n, where d is the degree of a.

2. Compute the reduced Gröbner basis for the module M ⊂K[s ]n+1 generated by the m1, . . . , mn

with respect to TOPe0>···>en
ordering, obtaining

�

g

b

�

,

�

0

g1

�

,

�

0

g2

�

, . . . ,

�

0

gn−1

�

.

3. Return [b, g1, . . . , gn−1] and 1
s d g .

Now we will prove the correctness of the above algorithm. We will use the following notations.

ConsiderK[s ]n+1 as the free module with standard basis e0, e1, . . . , en . Let d = deg(a), and consider

the submodule M ⊂K[s ]n+1 generated by m1, . . . , mn , where

mi = s d ai e0+ei = [s
d ai , 0, . . . , 0, 1, 0, . . . , 0]T .
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It is easy to see that m1, . . . , mn are linearly independent and thus they form a basis of M , making

M free with rank n . Lemma 120 below shows that M contains an isomorphic copy of syz(a). This

lemma is similar to Lemma 114. The difference is that each basis vector of the submodule M has s d

multiplied to the first position.

Lemma 119.

�

g

b

�

∈M if and only if g = s d ab.

Proof. Note

�

g

b

�

∈M ⇐⇒

�

g

b

�

=
∑n

i=1 bi mi ⇐⇒ g = s d ab.

Lemma 120. M ∩ ({0}×K[s ]n ) = {0}× syz(a).

Proof. From Lemma 119, we have

�

0

b

�

∈ M ⇐⇒ 0 = s d ab ⇐⇒ 0 = ab. Thus the lemma

follows.

The next lemma plays a key role in the proof of the algorithm:

Lemma 121. Let G be the reduced Gröbner basis for the module M ⊂ K[s ]n+1 with respect to

TOPe0>···>en
ordering. Then

1. G contains a vector of the form w0 =

�

s d gcd(a)

b

�

, such that LT w0 = s d+deg gcd(a) e0.

2. Apart from w0, there are n−1 remaining vectors in G , and they all have 0 in the first component.

3. If w1 =

�

0

g1

�

, . . . , wn−1 =

�

0

gn−1

�

are the n −1 vectors described in 2, then {g1, . . . , gn−1} is the

reduced Gröbner basis for syz(a)with respect to TOPe1>···>en
ordering.

4. Vector b ∈K[s ]n , appearing in part 1, is a minimal-degree Bézout vector of a.

Proof. Let h = gcd(a). Throughout the proof we repeatedly use an observation that for any nonzero

vector bh =

�

0

h

�

∈K[s ]n+1 with a zero first component, LTbh relative to TOPe0>e1>···>en
monomial

ordering on K[s ]n+1 equals to LT h relative to TOPe1>···>en
monomial ordering on K[s ]n . In this

situation, we will simply write LTbh= LT h, without explicitly mentioning that these vectors belong

to two different modules. We will prove each claim one-by-one.

1. We split the first claim into two sub-claims:

(a) There exists t ∈M such that LT t=

�

s d+deg h

0

�

.
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Let b′ be a Bézout vector of a with deg b′ < d (such b′ exists by Theorem 76). Since b′ is a

Bézout vector of a, we have h = ab′ and, in turn, s d h = s d ab′. Then, by Lemma 119:

�

s d h

b′

�

∈M .

Since deg b′ < d and we are using TOP ordering, we have

LT

�

s d h

b′

�

=

�

s d+deg h

0

�

.

(b) G contains a vector of the form w0 =

�

s d h

b

�

, such that LT w0 = s d+deg h e0. The Gröbner

basis G must contain a vector w0, whose leading term divides the leading term of vector

t ∈M , described in part (a). Thus w0 =

�

g

b

�

, where g 6= 0, LT w0 = s deg g e0 and deg g ≤

d +deg h . On the other hand, by Lemma 119, we have g = s d ab and, therefore, since

deg ab≥ deg h , we have deg g = d +deg ab≥ d +deg h . Thus deg g = d +deg h .

2. The fact that, apart from w0, the reduced Gröbner basis G contains exactly n−1 vectors follows

immediately from the fact that M is a free module of rank n .

To show that the n − 1 remaining vectors all have 0 in the first component, let q =

�

q

v

�

∈

G \{w0} and assume that q 6= 0. Then, by Lemma 119, we have q = s d av. Then q contains

a monomial s d+deg av e0 with a nonzero coefficient. Since deg av ≥ deg h , this monomial is

divisible by LT w0. This is in contradiction with our assumption that G is the reduced Gröbner

basis. Thus, q = 0.

3. Let w1 =

�

0

g1

�

, . . . , wn−1 =

�

0

gn−1

�

be the n −1 vectors in G whose first component is zero.

We split the claim into three sub-claims.

(a) g1, . . . , gn−1 generate syz(a).

By Lemma 120, for any nonzero h ∈ syz(a), vector

�

0

h

�

∈ M . Then

�

0

h

�

is a linear

combination overK[s ] of vectors in G . From the previous two parts, we have that, apart

from w1, · · ·wn−1, there is only one vector in G with non-zero first component, and thus
�

0

h

�

has to be a linear combination, overK[s ], of vectors w1, · · ·wn−1. Since, by Lemma

120, {g1, . . . , gn−1} ⊂ syz(a), we conclude that syz(a) =



g1, . . . , gn−1

�

.

(b) LT g1, . . . , LT gn−1 with respect to TOPe1>···>en
monomial ordering onK[s ]n , generate the

leading monomial ideal of syz(a).
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We need to show that for an arbitrary nonzero h ∈ syz(a), there exists i ∈ 1, . . . , n −1

such that, relative to TOPe1>···>en
ordering, LT h is divisible by LT gi . Assume that LT h=

c s t ek , for some constant c ∈ K, non-negative integer t and integer k ∈ {1, . . . , n − 1}.

By Lemma 120, vector bh=

�

0

h

�

∈M . Relative to TOPe0>e1>···>en
monomial ordering on

K[s ]n+1, we have LTbh= c s t ek . Since G is a Gröbner basis for M , there exists an element

of G whose leading term divides LTbh. Since, by parts 1 and 2, w1, · · ·wn−1 are the only

elements of G , whose leading terms can involve basis vector ek with k > 0, there exists

i ∈ 1, . . . , n −1 such that LT wi divides LTbh. The argument is concluded by an observation

that LT wi = LT gi and LTbh= LT h.

(c) g1, . . . , gn−1 comprise a reduced Gröbner basis for syz(a). Parts (a) and (b) above imply

that, by definition, g1, . . . , gn−1 comprise a Gröbner basis of syz(a). Since LT gi = LT wi

and G is reduced, it follows that that for all j 6= i , none of the monomials in g j is divisible

by LT gi . Thus (g1, . . . , gn−1) is a reduced Gröbner basis for syz(a).

4. Let w0 =

�

s d h

b

�

be the vector appearing in part 1. By Lemma 119, we have s d h = s d ab. Thus,

h = ab, and so b is a Bézout vector of a.

To show that b is of minimal degree, assume that there exists another Bézout vector b′ of

a with deg(b′) < deg(b). Then h = b− b′ ∈ syz(a). Since {g1, . . . , gn−1} is a Gröbner basis for

syz(a), there exists i ∈ {1, . . . , n − 1}, such that LT gi divides LT h. Since deg b < deg b′, then

LT h= LT b relative to the TOPe1>···>en
ordering. Recalling that LT wi = LT gi , it follows that for

some i ∈ {1, . . . , n−1}, LT wi divides a nonzero monomial in w0, contradicting our assumption

that G is a reduced basis.

Proof of the correctness of Algorithm 118 By Lemma 121, 1
s d g = gcd(a), the first column of P is

a minimal-degree Bézout vector of a, and the last n −1 columns of P form a reduced TOPe1>···>en

Gröbner basis for syz(a). Theorem 50 implies that a reduced TOPe1>···>en
Gröbner basis for syz(a) is a

µ-basis. Then, by Theorem 75, P is a degree-optimal moving frame.

Example 122. Let a= [2+ s + s 4, 3+ s 2+ s 4, 6+2s 3+ s 4] ∈Q[s ]3. Then the output of Algorithm 118 is







−s +2 9s −6 s 2+12s −9

2s +1 s 2−10s −6 −15s −8

−s −1 −s 2+3s +5 −s 2+5s +7






,

while the OMF output is






2− s 3−3 s − s 2 9−12 s − s 2

1+2 s 2+5 s + s 2 8+15 s

−1− s −2−2 s −7−5 s + s 2






.
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We observe that the degrees for the Bézout vector and the basis of syz(a) are the same for both algo-

rithms.

We compared the computing times of the algorithms OMF and MF_TOP. Both algorithms are

implemented in Maple (2016) and were executed on Apple iMac (Intel i 7-2600, 3.4 GHz, 16GB). The

inputs polynomial vectors were generated as follows. The coefficients were randomly taken from

[−10,10]. The degrees d of the polynomials ranged from 5 to 50. The length n of the vectors also

ranged from 5 to 50.

Figure 5.2 shows the timings. The horizontal axes correspond to n and d and the vertical axis

Figure 5.2 Timing comparison: OMF vs. MF_TOP

corresponds to computing time t in seconds. Each dot (d , n , t ) represents an experimental timing.

The red dots indicate the experimental timing of the algorithm OMF, while the blue dots indicate the

experimental timing of the algorithm MF_TOP. As can be seen, the OMF algorithm runs significantly

more efficiently.

5.10 OMF via µ-basis algorithm

In the previous section, we computed a degree-optimal moving frame by computing a reduced

TOPE -Gröbner basis of the module M generated by mi = s d ai e0+ei , i = 1, . . . , n , where E refers to

the standard basis. It is straightforward to show that the module M is the same as the syzygy module

of the vector [−1, s d a1, . . . , s d an ].

Lemma 123. M = syz([−1, s d a1, . . . , s d an ]).

Proof. Let a′ = [−1, s d a1, . . . , s d an ]. It is easy to see that a′mi = 0 for all i = 1, . . . , n . Thus M ⊂ syz(a′).

Let h= [h0, h1, . . . , hn ]T ∈ syz(a′). Then

−h0+ s d a1h1+ · · ·+ s d an hn = 0,
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from which it follows that h0 = s d a1h1+ · · ·+ s d an hn . Thus,

h=













s d a1h1+ · · ·+ s d an hn

h1
...

hn













= h1m1+ · · ·+hn mn .

Therefore, h ∈M and so syz(a′)⊂M . It follows that M = syz(a′).

By this lemma and the results from the previous section, it follows that a degree-optimal moving

frame can be computed by computing a reduced TOPE -Gröbner basis for the syzygy module of the

vector [−1, s d a1, . . . , s d an ]. Recall from Proposition 54 that the HHK µ-basis algorithm presented in

Section 3.1.4 can be used to compute reduced TOPE -Gröbner bases for syzygy modules. We thus

immediately have the following.

Algorithm 124 (OMF_mu).

Input: a ∈K[s ]n

Output: a degree-optimal moving frame at a and the gcd of a

1. a′←− [−1, s d a] ∈K[s ]n+1, where d is the degree of a.

2. Run the HHK µ-basis algorithm on a′, obtaining

�

g 0 · · · 0

b u1 · · · un−1

�

3. Return [b, u1, . . . , un−1] and 1
s d g .

5.11 Matrix inputs

The algorithm presented in Section 5.1 has a natural generalization to unimodular matrix inputs A.

In the matrix case, partial row echelon reduction is performed on the matrix obtained by stacking

together Sylvester-type matrices corresponding to each row of A. We now provide the details of this

generalization.

Consider the matrix

A=







− a1 −
...

...
...

− am −






∈K[s ]m×n

of degree d , where m < n and A is unimodular. This means that the gcd of the m ×m minors of

A is 1. It is easy to show that this implies A has rank m and gcd(ai ) = 1 for all i = 1, . . . , m . In fact,
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unimodular implies that A has point-wise rank m i.e. rank(A(s0)) =m for all s0 ∈K. We wish to find a

matrix P ∈K[s ]n×n of degree at most md such that

AP =
�

Im×m 0m×(n−m )

�

. (5.5)

Just as in Section 3.2, we do this by considering appropriate solutions to matrix equations involving

the stacked matrix

A =







A1
...

Am






∈Km (md+d+1)×n (md+1),

where each Ai ∈K(md+d+1)×n (md+1) is the block coefficient matrix corresponding to ai .

Clearly, the last n −m columns of P are in the kernel of A, and they can be computed using the

minimal basis algorithm presented in Section 3.2. For i = 1, . . . , m , the i -th column of P satisfies

ai P∗i = 1 and a j P∗i = 0 for j 6= i . In terms of the matrix A and the flat isomorphism (recall Sections

3.1.2 and 4.2), this means P∗i = v [i , where vi ∈ Kn (md+1) satisfies Ai vi = e1 and A j vi = 0 for j 6= i .

Thus, for the first m columns of P , we are solving a linear system of equations with augmented

matrix

W =





























































































c 1
0 1
...

...

c 1
d

... c 1
0

...
...

c 1
d

c 2
0 1
...

...

c 2
d

... c 2
0

...
...

c 2
d

...
...

...
...

...
...

...
...

...
...

c m
0 1
...

...

c m
d

... c m
0

...
...

c m
d





























































































∈Km (md+d+1)×(nmd+n+m ).

All of the results in Sections 4.1 and 4.2 can now be readily adapted to show that a minimal-
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degree solution P to (5.5) can be constructed by computing the partial reduced row-echelon form

[E | v̂1, . . . , v̂m ] of W . The first m columns of P are formed from v̂1, . . . , v̂m and the last n−m columns

of P are formed from the basic non-pivotal columns of E . We thus have the following algorithm.

Algorithm 125.

Input: A 6= 0 ∈K[s ]m×n , unimodular where n > 1, m < n, andK a computable field

Output: P ∈K[s ]n×n , unimodular, such that AP =
�

Im×m 0m×(n−m )

�

1. Construct stacked augmented matrix W ∈Km (md+d+1)×(nmd+n+m ).

(a) d ←− deg(a)

(b) For each i = 1, . . . , m, identify the row vectors c i
0 , . . . , c i

d ∈K
n such that ai = c i

0 + c i
1 s + · · ·+

c i
d s d .

(c) W ←−





























































































c 1
0 1
...

...

c 1
d

... c 1
0

...
...

c 1
d

c 2
0 1
...

...

c 2
d

... c 2
0

...
...

c 2
d

...
...

...
...

...
...

...
...

...
...

c m
0 1
...

...

c m
d

... c m
0

...
...

c m
d





























































































∈Km (md+d+1)×(nmd+n+m )

2. Construct the “partial” reduced row-echelon form E of W .

This can be done by using Gauss-Jordan elimination (forward elimination, backward elimina-

tion, and normalization), with the following optimizations:

• Skip over periodic non-pivot columns.
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• Carry out the row operations only on the required columns.

3. Construct a matrix P ∈K[s ]n×n , unimodular, of minimal-degree that satisfies (5.5).

Let p be the list of the pivotal indices and let q̃ be the list of the basic non-pivotal indices of E .

(a) Initialize an n ×n matrix P with 0 in every entry.

(b) For j =m +1, . . . , n

r ← rem
�

q̃ j−m −1, n
�

+1

k ← quo
�

q̃ j−m −1, n
�

Pr, j ← Pr, j + s k

(c) For i = 1, . . . , |p |

r ← rem
�

pi −1, n
�

+1

k ← quo
�

pi −1, n
�

For l = 1, . . . , m

Pr,l ← Pr,l +Ei ,nmd+n+l s k

For j =m +1, . . . , n

Pr, j ← Pr, j −Ei ,q̃ j−m
s k

Example 126. We trace the algorithm on the input matrix

A=





s 3+ s +4 s 3+ s 2+3 s 3+4 s 3+ s 2+ s +4

s 3+ s +3 s 3+ s 2+2 s 3+3 s 3+6



 ∈Q2×4.

1. Construct stacked augmented matrix W ∈Km (md+d+1)×(nmd+n+m ).

(a) d ←− 3

(b) c 1
0 , c 1

1 , c 1
2 , c 1

3 ←−
�

4 3 4 4
�

,
�

1 0 0 1
�

,
�

0 1 0 1
�

,
�

1 1 1 1
�

c 2
0 , c 2

1 , c 2
2 , c 2

3 ←−
�

3 2 3 6
�

,
�

1 0 0 0
�

,
�

0 1 0 0
�

,
�

1 1 1 1
�

(c) W ←−
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











































































4 3 4 4 1

1 0 0 1 4 3 4 4

0 1 0 1 1 0 0 1 4 3 4 4

1 1 1 1 0 1 0 1 1 0 0 1 4 3 4 4

1 1 1 1 0 1 0 1 1 0 0 1 4 3 4 4

1 1 1 1 0 1 0 1 1 0 0 1 4 3 4 4

1 1 1 1 0 1 0 1 1 0 0 1 4 3 4 4

1 1 1 1 0 1 0 1 1 0 0 1

1 1 1 1 0 1 0 1

1 1 1 1

3 2 3 6 1

1 0 0 0 3 2 3 6

0 1 0 0 1 0 0 0 3 2 3 6

1 1 1 1 0 1 0 0 1 0 0 0 3 2 3 6

1 1 1 1 0 1 0 0 1 0 0 0 3 2 3 6

1 1 1 1 0 1 0 0 1 0 0 0 3 2 3 6

1 1 1 1 0 1 0 0 1 0 0 0 3 2 3 6

1 1 1 1 0 1 0 0 1 0 0 0

1 1 1 1 0 1 0 0

1 1 1 1













































































2. Construct the “partial" reduced row-echelon form E of A

E ←−












































































1 −1 −4 −1 1

1 0 −12 3 −4

1 1 14 −1 2

1 0 −1 4 0 0

1 0 7 0 3 4 −3 4

1 −1 −1 0 0 0 3 4 −1 1

1 1 −5 1 1 0 0 0 3 4 4 −5

1 0 0 1 1 1 0 0 0

1 1 3 1 1 1 0

1 0 −2 1 1

1 0

1 1

1

3 1

0 2 3 1

0 0 0 1 2 3

1 1 0 0 0 1 2 3

1 1 1 0 1 0 0

1 1 1 0 1

1 1













































































Here, blue denotes pivotal columns, red denotes basic non-pivotal columns, brown denotes

periodic non-pivotal columns, and gray denotes the augmented columns.
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3. Construct matrix P ∈K[s ]n×n , unimodular, of minimal-degree that satisfies (5.5).

(a) P ←−











0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0











(b) P ←−











0 0 0 0

0 0 0 s 3

0 0 s 2 0

0 0 0 0











(c) P ←−

















−1−3 s 1+4 s 1− s 2 4−7s −3s 2− s 3

3− s −4+ s s 12+ s +2s 2+ s 3

−1+4 s 2−5 s −1− s + s 2 −14+5 s

0 0 0 1

















Proposition 127. Let A ∈K[s ]m×n be unimodular with deg(A) = d . Then for every minimal-degree

unimodular solution P to AP = [Im ,0n−m ], we have d d
n−1 e ≤ deg(P )≤md , and these degree bounds

are sharp. By sharp, we mean that for all n >m ≥ 1 and d > 0, there exists a unimodular A ∈K[s ]m×n

with deg(A) = d such that, for every minimal-degree unimodular solution P to AP = [Im , 0n−m ], we

have deg(P ) =
�

d
n−1

�

. Likewise, for all n >m ≥ 1 and d > 0, there exists a unimodular A ∈K[s ]m×n

with deg(A) = d such that, for every minimal-degree unimodular solution P to AP = [Im , 0n−m ], we

have deg(P ) =md .

Proof.

1. (lower bound): Let P be a minimal-degree unimodular solution to AP = [Im , 0n−m ]. Then for

i = 1, . . . , m the i -th row of A satisfies

Ai∗P = ei

and so from Cramer’s rule:

Ai j =
(−1) j+1

|P |
�

�Pj ,i

�

� j = 1, . . . n ,

where Pj ,i denotes the submatrix of P obtained by removing the i -th column and the j -th row.

We remind the reader that |P | is a nonzero constant. Assume for the sake of contradiction that

deg(P )<
�

d
n−1

�

. Then deg(P )< d
n−1 . Since

�

�Pj ,i

�

� is the determinant of an (n−1)×(n−1) submatrix

of P , we have deg
�

Ai j

�

= deg
��

�Pj ,i

�

�

�

< (n −1) d
n−1 = d for all i = 1. . . , m and j = 1, . . . , n . This

contradicts the assumption that deg(A) = d . Thus, deg(P )≥
�

d
n−1

�

.

We will prove that the lower bound
�

d
n−1

�

is sharp by showing that, for all n >m ≥ 1 and d > 0,
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the following matrix

P =



































1 −s d−k
�

d
n−1

�

...

1

1 −s
�

d
n−1

�

1 −s
�

d
n−1

�

...
...
... −s

�

d
n−1

�

1



































has degree
�

d
n−1

�

and is a minimal-degree unimodular solution to AP = [Im ,0n−m ] for the

matrix

A=





























1 s d−k ·
�

d
n−1

�

s d−(k−1)·
�

d
n−1

�

· · · s d−2·
�

d
n−1

�

s d−1·
�

d
n−1

�

s d−0·
�

d
n−1

�

1
...

1

1 s d−k ·
�

d
n−1

�

· · · · · · s d−2·
�

d
n−1

�

s d−1·
�

d
n−1

�

...
... · · · · · ·

...

1 s d−k ·
�

d
n−1

�

· · · s d−(m−1)·
�

d
n−1

�





























.

Here,

• k ∈N is the maximal such that d > k
�

d
n−1

�

(explicitly k =
¡

d
�

d
n−1

�

¤

−1).

• the number of zeros in the first row of A is n −k −2.

• the number of rows of A containing just a single 1 is min{n − k − 2, m − 1}, and there

are an appropriate number of remaining rows (so that the total number of rows is m),

explicitly max{m − (n −k −2)−1, 0}.

• the upper-left block of P is of the size (n −k −1)× (n −k −1), the lower-right block is of

the size (k +1)× (k +1), and the other two blocks are of the appropriate sizes.

The proof now proceeds as in the first part of Proposition 92 to show that such P and A always

exist, P is a minimal-degree unimodular solution to AP = [Im , 0n−m ], and deg(P ) =
�

d
n−1

�

.

2. (upper bound): Clearly, md is an upper bound on matrix P . We will prove that the upper
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bound md is sharp by showing that, for all n >m ≥ 1 and d > 0, the following matrix

P =







































1 −s d s 2d · · · (−1)m−1s (m−1)d 0 · · · 0 (−1)m s md

1 −s d · · · (−1)m−2s (m−2)d 0 · · · 0 (−1)m−1s (m−1)d

...
...

...
...

...
...

...

1 −s d

1

1
...

1







































has degree md and is a minimal-degree unimodular solution to AP = [Im , 0n−m ] for the matrix

A=







1 s d

...
...

1 s d






.

Clearly, deg(P ) =md , |P | = ±1, and AP = [Im ,0n−m ]. Moreover, the first m columns form a

minimal-degree solution to AB = Im . Lastly, it is easy to see that the last n −m columns of

P have linearly independent leading vectors as well, so they form a minimal basis for ker(A).

Thus, P is a minimal-degree unimodular solution to AP = [Im , 0n−m ].

Experiments on random inputs indicate that for generic unimodular A ∈Km×n with deg(A) = d ,

and for all minimal-degree unimodular solutions P to AP = [Im , 0n−m ], deg(P ) =
�

md
n−m

�

.
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