
ABSTRACT

BERNSTEIN, DANIEL IRVING. Matroids in Algebraic Statistics. (Under the direction
of Seth Sullivant.)

Algebraic statistics is a relatively new field of research, broadly concerned with con-

nections between algebraic geometry and statistics. This dissertation addresses problems

in three subfields of this emerging area: low-rank matrix completion, phylogenetics, and

discrete hierarchical models. The unifying theme among the problems addressed is that

the behavior we aim to understand is governed by a matroid.

In a low-rank matrix completion problem, one observes a subset of entries of a matrix

and wishes to reconstruct the missing entries such that the rank of the completed matrix

is minimized, or equal to some fixed number. In Chapter 2, we lay some theoretical

groundwork for using algebraic geometry to solve these types of problems. In particular,

we characterize the algebraic matroid underlying the variety of m × n matrices of rank

at most two. This characterization is a consequence of a characterization we provide of

the algebraic matroid underlying the variety of n × n skew-symmetric matrices of rank

at most two. To obtain this skew-symmetric characterization, we use tropical geometry

to reduce the problem to a question about tree metrics which we then solve.

A fundamental problem of phylogenetics is to infer the evolutionary history among

a set of species. In the distance-based approach to this problem, the data consists of

some measure of distance between each pair of species and the outputted evolutionary

history may be the tree metric or ultrametric nearest to the dataset according to some

norm. Due to the tropical structure of the sets of tree metrics and ultrametics, the l∞-

norm is a natural choice. However, there can be multiple tree metrics and ultrametrics

l∞-nearest to a given dataset. We study this phenomenon in Chapter 3. Non-uniqueness

of l∞-nearest tree metrics and ultrametrics is partially due to the fact that the point in

a linear subspace L ⊆ Rn which is l∞-nearest to a given x ∈ Rn is not always unique.

Hence we demonstrate how the oriented matroid underlying a linear subspace L ⊆ Rn

can be used to compute the dimension of the subset of L consisting of points l∞-nearest

to a given x ∈ Rn. A consequence is that the point in L ⊆ Rn which is l∞-nearest to a

given x ∈ Rn is unique for all such x if and only if the matroid underlying L is uniform.

The discrete hierarchical models form a class of log-linear models that are indexed by

the pairs (C,d) consisting of a simplicial complex C with vertex weights d. In Chapter 4,



we classify the (C,d) whose corresponding hierarchical model is unimodular. We begin

by classifying the unimodular simplicial complexes, which are the simplicial complexes C
such that the hierarchical model corresponding to (C, (2, . . . , 2)) is unimodular.

Our classification of the unimodular simplicial complexes is given constructively, and

in terms of forbidden minors. We identify a handful of operations that transform a uni-

modular simplicial complex into a larger unimodular simplicial complex. We then identify

three families of simplicial complexes from which all unimodular simplicial complexes can

be constructed via these operations. A minor of a simplicial complex C is a simplicial com-

plex D, obtainable from C via a sequence of vertex links and vertex deletions. We show

that any minor of a unimodular simplicial complex is unimodular, and identify which

minors are forbidden for unimodular simplicial complexes. We extend our classification

of the unimodular C to classify the pairs (C,d) giving rise to unimodular hierarchical

models. We use our constructive characterization of the unimodular hierarchical models

to describe the Graver basis of any unimodular hierarchical model.
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Chapter 1

Introduction

Algebraic statistics is the research area concerned with identifying and exploiting connec-

tions between algebraic geometry and statistics. This is a relatively new research area,

with its first paper [24] being published in 1998. Since its inception, algebraic statistics

has lead not only to new algorithms and research directions in statistics, but in algebraic

geometry and and related areas of mathematics as well. For a current sampling of the

algebraic statistics landscape, see the textbook-in-press [60].

This thesis solves problems coming from low-rank matrix completion, distance-based

phylogenetic reconstruction, and discrete log-linear models. While these applications may

seem disjointed, the problems solved therein are unified by the fact that some important

underlying structure is a matroid.

Low-rank matrix completion

Chapter 2 concerns the low-rank matrix completion problem. The content of this chapter

was published in Linear Algebra and its Applications [6].

The classic low-rank matrix completion problem begins with a matrix where only a

subset of the entries are known and asks for the values that the missing entries should take

if the rank is to be minimized. Perhaps the most famous instance of this is the “Netflix

problem” which is a special instance of collaborative filtering (see e.g. [16]). Variations

exist where one wishes to complete a partial matrix to a given fixed rank r. For example,

by completing a certain partial matrix to rank two or three, one can solve instances of

the global positioning problem [54, 14, 55] and the structure from motion problem [61, 19].

If M is an n× n matrix of rank r satisfying a genericity assumption called “incoher-
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ence,” then with high probability, one can use semidefinite programming to recover M

from just Θ(n1.25r log n) entries chosen uniformly at random [17, 18]. These assumptions

are valid in many applications but another approach is needed for when they are not

valid. This motivated Király, Theran, and Tomioka to develop a new approach using

methods of algebraic geometry and matroid theory in 2015 [41], building on a connec-

tion with rigidity theory noted by Singer and Cucuringu in 2010 [55]. Improving their

approach requires solutions to a slew of interesting mathematical problems, the most

basic of which is to characterize the algebraic matroids underlying certain determinan-

tal varieties. Chapter 2 gives such a characterization for the case of non-symmetric and

skew-symmetric matrices of rank two (Theorems 2.3.2 and 2.3.4). This characterization

is obtained by using tropical geometry to translate our question about characterizing this

algebraic matroid into a question about phylogenetic trees.

Phylogenetics and linear spaces

Chapter 3 concerns distance-based phylogenetic reconstruction in the l∞-norm and a

related problem about linear spaces. The content of this chapter was joint work with

Colby Long and it was published in SIAM Journal on Discrete Mathematics [8].

Distance-based methods for phylogenetic reconstruction aim to infer the evolutionary

relationships among a set of species from the set of all observed “distances” between each

pair. Certain cases admit a geometric interpretation wherein one views their dataset of

observed distances as a point in some high-dimensional space and wishes to find the

“closest” point that lies within a certain polyhedral complex. Of course, one can choose

any metric in which to find this “closest” point. Connections between phylogenetics

and tropical geometry [4, 5, 56] suggest that one should investigate the l∞-metric in

this context. However, a peculiarity that arises here is that the closest point within

this polyhedral complex often fails to be unique. Chapter 3 investigates this failure of

uniqueness with the aim of quantifying what is possible.

To begin this investigation, we consider a simpler mathematical question. Namely,

given a linear subspace L ⊆ Rn and a point x ∈ Rn, what is the dimension of the subset

of L consisting of points l∞-nearest to x? We then use the (oriented) matroid underlying

L to give a polyhedral decomposition of Rn such that any two points in the same cell

have the same dimension of their set of l∞-nearest neighbors in L (Theorem 3.1.7). A

consequence of this decomposition is that every x ∈ Rn has a unique l∞-closest point in
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L if and only if the matroid underlying L is uniform (Theorem 3.1.9).

Unimodular hierarchical models

Chapter 4 concerns the classification of the unimodular hierarchical models. Part of

the content of this chapter was joint work with Seth Sullivant, published in Journal of

Combinatorial Theory, Series B [12] and the rest was joint work with Chris O’Neill,

published in Journal of Algebraic Statistics [10].

The hierarchical models form a family of discrete log-linear models that are useful

for categorical data analysis. In particular, they include the family of discrete graphical

models [63]. Such models are naturally indexed by pairs (C,d) where C is a simplicial

complex whose ground set is in bijection with the random variables in the model, and

d is a vector giving the number of states of each random variable. One can ask: what

useful properties of a hierarchical model can be inferred from the combinatorics of the

pair (C,d)?

Chapter 4 investigates one particular property that such a model may satisfy: unimod-

ularity. The main result here is a complete classification of all unimodular hierarchical

models in terms of the combinatorics of the pairs (C,d) (Theorem 4.9.1). This classifica-

tion enables us to give a combinatorial description of the Graver basis of any unimodular

hierarchical model (Remark 4.10.4). For unimodular hierarchical models, a description

of the Graver basis is equivalent to a description of the oriented matroid underlying a

particular matrix associated to such a model.

Outline

The remaining sections in this chapter provide the elementary background on a number

of concepts that play a prominent role in this thesis. Readers familiar with any of the

concepts therein should feel comfortable skipping the corresponding section.

Section 1.1 reviews some basic concepts from algebraic geometry. Its content is re-

quired for all the later introductory sections aside from Section 1.4. As the title indicates,

matroids, which are introduced in Section 1.2, play an important role in this thesis. How-

ever, the introductory material we provide is only really needed for Chapters 2 and 3.

Oriented matroids play a major role in Chapter 3 and they are introduced in Section

1.3. They are also used in Chapter 4, but only at the end. Tree metrics are introduced in
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Section 1.4 and used in Chapters 2 and 3. Tropical geometry is introduced in Section 1.5

and used in Chapter 2. Toric ideals are introduced in Section 1.6 and used in Chapter 4.

1.1 Ideals and varieties

This section gives the required background on algebraic geometry. We expect that the

reader has seen most, if not all, of the concepts described here so we proceed rather

quickly. All rings in this thesis are assumed to be commutative and unitial. Let K be

a field and let K[x1, . . . , xn] denote the polynomial ring over K in n indeterminates.

We will use the shorthand xu := xu11 · · ·xunn to denote monomials in K[x1, . . . , xn] and

K[x] := K[x1, . . . , xn] for the ring itself. Each polynomial f ∈ K[x] defines a function

f : Kn → K, sending a := (a1, . . . , an) ∈ Kn to f(a) := f(a1, . . . , an).

Definition 1.1.1. Given a polynomial f ∈ K[x1, . . . , xn], the hypersurface defined by f ,

denoted V (f), is defined to be the subset of Kn consisting of points that evaluate to zero

when plugged in to f . That is,

V (f) := {a ∈ Kn : f(a) = 0}.

An affine variety is a (possibly empty) intersection of sets of the form V (f).

We will often drop the qualifier “affine” as all varieties considered will be assumed so

unless otherwise stated. We use the shorthand V (f1, . . . , fr) to denote V (f1)∩· · ·∩V (fr).

Moreover, in cases of a small number of variables, we may substitute different letters for

x1, . . . , xn. For example for n = 3, we may write K[x, y, z] instead of K[x1, x2, x3].

Definition 1.1.2. An ideal in a ring R is a subset I ⊆ R such that

1. if f, g ∈ I than f + g ∈ I, and

2. if f ∈ I and h ∈ R, then hf ∈ I.

Given a subset F of a ring R, we denote by 〈F 〉 the ideal generated by F . That is,

〈F 〉 := {g1f1 + · · ·+ grfr : f1, . . . , fr ∈ F, g1, . . . , gr ∈ R}.

When F = {f1, . . . , fr} is a finite set, we may write 〈f1, . . . , fr〉 := 〈F 〉. For a fixed ideal

I ⊆ K[x], we refer to any subset F ⊆ K[x] such that 〈F 〉 = I as a generating set for I.
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The following theorem says that every ideal I ⊆ K[x] has a finite generating set. A proof

can be found in e.g. [32].

Theorem 1.1.3 (Hilbert Basis Theorem). Every ideal I ⊆ K[x1, . . . , xn] can be expressed

I = 〈f1, . . . , fr〉 for some f1, . . . , fr ∈ I.

Given a subset S ⊆ Kn, the vanishing ideal of S, denoted I(S), is the set of polyno-

mials vanishing on S. That is,

I(S) := {f ∈ K[x1, . . . , xn] : f(a) = 0 for all a ∈ S}.

It is not difficult to see that I(S) is always an ideal. An ideal I in a ring R is said to be

prime if whenever fg ∈ I, then either f ∈ I or g ∈ I.

Example 1.1.4. The ideal 〈x2 + 1〉 is prime as an ideal in R[x]. To see this, note that

x2 + 1 is irreducible as a polynomial in R[x] and so if fg ∈ 〈x2 + 1〉, then either f or g

must be a multiple of x2 +1. In other words, either f ∈ 〈x2 +1〉 or g ∈ 〈x2 +1〉. However,

〈x2 + 1〉 is not prime as an ideal in C[x] since x2 + 1 = (x + i)(x − i) ∈ 〈x2 + 1〉 but

neither x+ i nor x− i is a member of 〈x2 + 1〉.

A variety V ⊆ Kn is said to be irreducible if V cannot be expressed as a nontrivial

union of subvarieties. That is, whenever V = V1 ∪ V2, either V1 = V or V2 = V . If V is

reducible (i.e. not irreducible) then we can express V = V1∪· · ·∪Vk where where each Vi

is irreducible. Up to reindexing, this representation is unique and the irreducible varieties

V1, . . . , Vk are called the irreducible components of V .

It is not hard to see that V is irreducible if and only if I(V ) is prime. Moreover, if

V = V1 ∪ V2, then I(V ) = I(V1) ∩ I(V2) and so if the irreducible components of V are

V1, . . . , Vk, then I(V ) =
⋂
k Vk.

Example 1.1.5. We consider the geometric side of Example 1.1.4. Note that V (x2+1) ⊆
C1 is a reducible variety since V (x2+1) = {−i, i} = V (x+i)∪V (x−i). Moreover, {−i} and

{i} are the irreducible components of V (x2 +1). Also note that 〈x2 +1〉 = 〈x+ i〉∩〈x− i〉
and that I({−i}) = 〈x + i〉 and I({i}) = 〈x − i〉, both of which are prime. Over the

reals however, V (x2 + 1) ⊆ R1 is irreducible since V (x2 + 1) = ∅ which clearly cannot be

expressed as a nontrivial union of subvarieties.
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Many sets whose geometry we wish to study are not varieties. However, one can still

gain insight into such a set by considering its Zariski closure, the smallest variety that

contains it. The precise definition is below.

Definition 1.1.6. Let S ⊆ Kn be a set. Then the Zariski closure of S is the set V (I(S)).

Given a variety V ⊆ Cn and a subset S ⊆ V , if V (I(S)) = V , then we say that S is

Zariski dense in V .

1.1.1 Tangent space and dimension

In this subsection, any unspecified field K will be assumed to be either R or C. Given

a point a ∈ Kn and f ∈ K[x1, . . . , xn] we define Da(f) ∈ K[x1, . . . , xn] to be the linear

form given as

Da(f)(x1, . . . , xn) :=
n∑
i=1

∂f

∂xi
(a)xi.

The affine function La(x1, . . . , xn) := f(a) +Da(f)(x1 − a1, . . . , xn − an) is often known

as the first Taylor approximation to f at a or the linearization of f at a.

Definition 1.1.7. Given an irreducible variety V ⊆ Kn and a point a ∈ V , the tangent

space to V at a is the variety TaV defined as follows

TaV := V ({Da(f) : f ∈ I(V )}).

Recall that V = I(f1, . . . , fr) for some f1, . . . , fr ∈ K[x1, . . . , xn] and so each f ∈ I(V )

can be expressed as f =
∑

i gifi. It follows from this, linearity of the partial derivative

operator, the product rule, and fi(a) = 0 for a ∈ V that

TaV =
r⋂
i=1

V (Da(fi)).

Since each V (Da(fi)) is a hyperplane, TaV is a vector subspace of Kn.

Definition 1.1.8. Let K be either C or R and let V ⊆ Kn be an irreducible variety.

Then the dimension of V , denoted dim(V ), to be the smallest dimension of a tangent

space of V as a vector subspace of Kn. That is,

dim(V ) := min
a∈V

dim(TaV )
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where dim(TaV ) is the dimension of TaV as a vector subspace of Kn. When V is reducible,

we define the dimension of V to be the maximum among the dimensions of the irreducible

components of V . That is, if V = V1 ∪ · · · ∪ Vk with each Vi irreducible, then

dimV := max
i

dimVi.

The dimension of a variety is more commonly defined as the Krull dimension of its

ring of regular functions. This turns out to be equivalent to Definition 1.1.8 - see [28,

Chapters 10 and 16].

Example 1.1.9. We now discuss the intuition behind this definition of the dimension

of an irreducible variety using V := V (x3 − y2) ⊆ C2 as an example (note that it is

irreducible). Let at := (t2, t3) be a point on V and denote f := x3 − y2. Then Dat(f) is

the linear form on C2 corresponding to the following row vector(
3t2 2t3

)
.

Therefore TatV is defined by the vanishing of this linear form. When t 6= 0, the vanishing

of Dat(V ) defines a 1-dimensional subspace of C2 and when t = 0, the vanishing defines

the 2-dimensional subspace. Since 1 < 2, V has dimension one. This of course matches

our intuition about what the dimension of a curve, such as V , should be.

In Example 1.1.13, we will see why in general it is appropriate to define the dimension

of an irreducible variety to be the minimum dimension of any tangent space.

1.1.2 Genericity

In this section, we make repeated use of the following basic fact from linear algebra.

Proposition 1.1.10. Given a matrix A ∈ Km×n, the rank of A is r if and only if all

(r+ 1)× (r+ 1) subdeterminants of A vanish and some r× r subdeterminant is nonzero.

Definition 1.1.11. Given an irreducible variety V ⊆ Kn, a property P is said to hold

for a generic point in V if P is true for all points in V that lie in the complement of a

particular subvariety.
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Example 1.1.12. Let V ⊆ K2×2 be the variety defined by the vanishing of the determi-

nant. That is,

V :=

{(
x11 x12

x21 x22

)
: x11x22 − x12x21 = 0

}
⊆ K2×2.

Given a matrix A ∈ V , the rank of A is either 0 or 1. The rank is 0 if and only if A lies

in the subvariety U defined by the four additional equations x11 = x12 = x21 = x22 = 0.

Hence any matrix in V \U has rank 1 and so we say that a generic point in V is a matrix

of rank 1.

More generally, let V ⊆ Km×n be the variety defined by the vanishing of all (r+ 1)×
(r+ 1) subdeterminants of an m×n matrix of variables. Then the elements of V are the

m×n matrices of rank r or less. A generic point of V is a matrix of rank r since in order

for a point A ∈ V to have rank r − 1 or less, A must lie in the subvariety of V defined

by the vanishing of all r × r subdeterminants of an m× n matrix of variables.

Example 1.1.13. When invoking genericity, one is not usually explicit about the par-

ticular subvariety they are excluding. For example, consider the following statement:

For generic a ∈ V , dimTaV = dimV .

Typically when such a statement is made, the intended audience can easily see that it

is true within the complement of some variety. We walk through the above statement to

illustrate this. Our definition of the dimension of a variety requires that for any a ∈ V ,

dimTaV ≥ dimV . Moreover, we established that if V = V (f1, . . . , fr) then TaV can

be computed by intersecting the hypersurfaces defined by the vanishing of the linear

forms Da(fi). In other words, if Da(f1, . . . , fr) denotes the r×n matrix whose ij entry is

given by the coefficient of xj in Da(fi), then TaV is simply the kernel of Da(f1, . . . , fn).

Denoting d := dimV , we can see that the maximum possible rank of rankDa(f1, . . . , fr)

is n− d and that this upper bound is achieved for some a ∈ V . Moreover, for any a ∈ V
satisfying dimTaV > dimV , we must have rankDa(f1, . . . , fr) < n − d. In other words,

dimTaV > dimV if and only if a lies in the subvariety of V defined by the vanishing of

the (n− d)× (n− d) subdeterminants of Dx(f1, . . . , fr).
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1.2 Matroids

Every chapter in this thesis involves some sort of system that depends on several variables

that are intertwined in some way. We will often seek a concise way to describe which

subsets of variables constrain each other and which subsets are free. The mathematical

object most well-suited for our needs here is the matroid.

Before defining matroids, we give an example demonstrating the type of structure

a matroid captures. Consider the matrices A and B shown below, each with columns

labeled a, b, c, d

A :=

( a b c d

1 2 1 −1

0 0 −1 1

)
B :=

( a b c d

2 4 2 4

−1 −2 3 6

)
.

Not only are these matrices different, their rows span different linear subspaces of R4.

However, they have the same combinatorial structure in the following sense: no columns

are zero and the pairs of column labels corresponding to spanning sets of R2 are ac, ad, bc,

and bd. Equivalently, in the subspace of R4 spanned by the rows of each, the pairs of

coordinates that satisfy a nontrivial linear constraint are those corresponding to the label

pairs ab and cd. This underlying combinatorial structure that these two matrices share

is what is known as a matroid.

Definition 1.2.1. Let E be a finite set and let I be a set of subsets of E. The pair

M := (E, I) is called a matroid if the following three conditions are satisfied:

1. ∅ ∈ I
2. if J ⊂ I and I ∈ I, then J ∈ I
3. if I, J ∈ I with |I| = |J |+1, then there exists some e ∈ I \J such that J ∪{e} ∈ I.

In this case E is called the ground set of M and the elements of I are called the

independent sets of M. Perhaps the simplest matroids are uniform matroids, described

below.

Example 1.2.2. Let Ud,n := (E, I) where E is some finite set and I is the set of all

subsets of E of size d or less. Then Ud,n is a matroid. Matroids of the form Ud,n are called

uniform.
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Every matrix, graph, and irreducible variety has an underlying matroid. This is some-

thing we now explore in detail.

Proposition 1.2.3. Let A ∈ Km×n be a matrix with entries in a field K. Let E =

{a1, . . . , an} be the set of columns of A and let I be the subsets of E that are linearly

independent. Then (E, I) is a matroid.

Proof. It is clear that (E, I) satisfies the first two requirements to be a matroid so we

now show that it satisfies the third. Let I, J ⊆ E be linearly independent sets with

|I| = |J |+ 1. Let L,M be the linear subspaces of Km with bases given by I and J . For a

given e ∈ I \ J , the set J ∪ {e} is dependent if and only if e lies in M . But if every e ∈ I
lies in M , then L ⊆M which cannot happen because dim(L) = dim(M) + 1.

Definition 1.2.4. For a given matrix A, the matroid that arises as in Proposition 1.2.3 is

called the (linear) matroid underlying A, denotedMA. A matroidM satisfyingM =MA

for some K-matrix A is called K-representable, or representable over K.

There do exist matroids that are not representable over any field K (see e.g. [49,

Proposition 2.2.26]) but we will not be concerned with such matroids in this thesis.

Example 1.2.5. Every uniform matroid Ud,n is Q-representable. In particular, if A ∈
Qd×n is a d × n matrix such that no d × d sub-determinant vanishes, then MA = Ud,n.

However, a given Ud,n may not be K-representable for certain finite fields K. For example,

U2,4 is not F2-representable. If it were, then suppose A ∈ Fd×4
2 had MA = U2,4. Then we

could assume d = 2 since the rank of A must be 2. But there are exactly four vectors in

F2
2, so either a column of A gets repeated, or (0, 0) is a column. Either way, the underlying

matroid will not be uniform.

Proposition 1.2.6. Let G = (V,E) be a graph with edge set E. Let I be the subsets of

E that do not have any cycle. Then (E, I) is a matroid.

Proof. Fix a total ordering ≺ on the vertex set V . Let A≺G be the matrix whose rows are

indexed by V , whose columns are indexed by E, and whose (v, e) entry is 0 if e is a loop,

1 if v is the ≺-minimal vertex of e, −1 is the ≺-maximal vertex of v, and 0 otherwise.

We now show that I is the set of independent sets in MA≺G
.

Given S ⊆ E, let AS denote the submatrix of A≺G consisting of the columns indexed

by S. Now let S ∈ I; i.e. let S ⊆ E be a subset of edges with no cycle. There is a row
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of AS that has exactly one non-zero entry corresponding to a vertex s of degree one in

the graph (V, S). This implies that any vector x giving linear dependence ASx = 0 must

satisfy xs = 0. Therefore the columns of AS are linearly dependent if and only if the

columns of AS\{s} are too. However, the columns of AS\{s} are linearly independent by

induction.

It now remains to show that if S ⊆ E has a cycle, then AS has linearly dependent

columns. So assume S contains a cycle C = v1, v2, . . . , vk, v1. Define x ∈ KS so that

xe = 0 if e does not appear in the cycle, xe = 1 if e = {vi, vj} with i < j and vi ≺ vj and

xe = −1 if e = {vi, vj} with i < j but vi � vj. Then ASx = 0.

Definition 1.2.7. For a given graph G, the matroid that arises as in Proposition 1.2.6

is called the (polygon) matroid underlying G, denoted MG. A matroid M satisfying

M =MG for some graph G is called graphic.

It is clear from the proof of Proposition 1.2.6 that each graphic matroid is repre-

sentable over any field K. However, there do exist matroids that are representable, but

not graphic. For example, U2,4 is not graphic and this follows from the fact that it is not

F2-representable.

Example 1.2.8. Let G be the graph shown below and let ≺ order the vertices according

to their integer labels. then the independent sets ofMG are all proper subsets of {b, c, d}.
One can check that these are also the independent sets of MA≺G

.

1 2

3b c

d

a

A≺G =


a b c d

1 0 1 0 1

2 0 0 1 −1

3 0 −1 −1 0

.
The last class of matroids we will encounter come from irreducible varieties. In the

following proposition we use the notation KE to denote the K-vector space whose coor-

dinates are in some natural bijection with E, which will be a finite set.

Proposition 1.2.9. Let K be R or C and let E be a finite set. Let V ⊆ KE be an

irreducible variety and let I be the subsets S ⊆ E such that the projection of V onto KS

is full-dimensional (i.e. |S|-dimensional). Then (E, I) is a matroid.
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Proof. For a given x ∈ V , let TxV denote the tangent space of V at x. For generic x ∈ V ,

the projection of V onto KS is full-dimensional if and only if the projection of TxV onto

KS is full-dimensional. Therefore it suffices to prove the proposition in the case that V

is a linear space. Now let V be the row span of some matrix A ∈ Kn×|E| whose columns

are indexed by E. Then the projection of V onto KS is full-dimensional if and only if

the columns of A corresponding to the elements of S are linearly independent. It then

follows from Proposition 1.2.3 that (E, I) is a matroid.

Definition 1.2.10. For a given irreducible variety V in Rn or Cn, the matroid that arises

as in Proposition 1.2.9 is called the (algebraic) matroid underlying V , denoted MV .

In the proof of Proposition 1.2.9, we saw that the algebraic matroid underlying a real

or complex irreducible variety is the same as the algebraic matroid underlying a generic

tangent space. Moreover, the algebraic matroid underlying a linear space is simply the

column matroid of a certain matrix. HenceM =MV for some irreducible real or complex

variety V if and only if M is R- or C-representable, respectively.

Example 1.2.11. Let E = {a, b, c, d}. If V is the variety in the space with coordinates

labeled by E defined by the two polynomials below, thenMV is the same as the matroid

MG from Example 1.2.8

a− 1 = 0 b2 + 3c3 − d+ 1 = 0.

The algebraic matroid underlying a variety is usually formulated in terms of algebraic

independence in the corresponding function field (see e.g. Section 6.7 in [49]). For varieties

defined over R or C, either definition leads to the same class of matroids, which as we

already remarked, are simply the R- or C-representable matroids. However, in order to

define the algebraic matroid underlying a variety over a finite field, one must use this

definition in terms of algebraic independence in the function field. For finite fields, this

actually leads to a larger class of matroids, but we chose to present the algebraic matroid

in terms of projections because it is more geometrically intuitive, and we will only be

considering R and C as base fields anyway.

In many applications of matroid theory, the independent sets of a given matroid may

not be as interesting as the (minimal) dependent sets. For this reason, the following

definition is made.
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Definition 1.2.12. Let M = (E, I) be a matroid. A circuit of M is a subset C ⊆ E

such that C is not independent in M, but every proper subset is.

Example 1.2.13. Let G = (V,E) be a graph. The circuits in the matroidMG underlying

G are precisely the subsets of E that support a cycle.

By definition, the independent sets of a matroid determine the circuits. The converse

is also true. Namely, given the ground set E of a matroidM and its set C of circuits, the

independent sets are simply the subsets of E that do not contain a circuit. In this way,

the circuits and the independent sets of a matroid carry the same structure. In fact, due

to the following proposition, one can even axiomatize matroid theory in terms of circuits

instead of independent sets.

Proposition 1.2.14. Let E be a finite set and let C ⊆ 2E be a set of subsets of E. Then

C is the set of circuits of a matroid on ground set E if and only if

1. ∅ /∈ C
2. if C1 ⊆ C2 then C1 = C2

3. if C1 6= C2, then for any e ∈ C1 ∩ C2, there exists C3 ∈ C such that

C3 ⊆ (C1 ∪ C2) \ {e}.

For a proof of Proposition 1.2.14, see [49, Chapter 1.1]. We end this section by noting

several other structures one often associates with a matroid. A basis of M is an inde-

pendent set of maximum cardinality. The rank function of M is the function ρ : 2E → N
that sends a given S ⊆ E to the cardinality of the largest independent set contained in

S. For a given S ⊆ E, we often refer to ρ(S) as the rank of S. The rank of M is simply

ρ(E), the rank of the ground set. A spanning set of M is a superset of a basis.

Example 1.2.15. LetM be the matroid shown in Examples 1.2.8 and 1.2.11. The bases

ofM are {b, c}, {b, d} and {c, d}, and the circuits are {a} and {b, c, d}. The sets of rank

zero are ∅ and {a}. The sets of rank one are {b}, {c}, {d}, {a, b}, {a, c}, {a, d}. The other

nine subsets of {a, b, c, d} have rank 2 and are spanning sets.

Just as in the case of circuits, one can infer the independent sets of a matroid M
given only the bases, the rank function, or the spanning sets of M. Moreover, one can

axiomatize matroid theory in terms of bases, rank functions, or spanning sets. The same

is true for several other structures associated with a matroid. This phenomenon is often

known as matroid cryptomorphism.
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1.3 Oriented matroids

Given a matroid coming from a matrix with entries in an ordered field (usually R) or

a graph with directed edges, there is some extra structure that one can add on to the

underlying matroid. A matroid equipped with this extra structure is called an oriented

matroid. We begin with some examples. Consider the two following real matrices

( a b c

1 1 −1

1 −1 0

)
and

( a b c

1 1 1

1 −1 0

)
.

Both have the same underlying matroid; in particular, {a, b, c} is the unique circuit

of both. Any linear dependence corresponding to this circuit in the first matrix is in

the subspace spanned by (1, 1, 2), while such a dependence for the second is in that

of (1, 1,−2). In particular, any linear dependence of the first matrix has sign pattern

(+,+,+) or (−,−,−) whereas any linear dependence of the second matrix has sign

pattern (+,+,−) or (−,−,+). The oriented matroids associated to each of these matrices

is what captures this difference.

One can also define an oriented matroid corresponding to a directed graph which cap-

tures information that the underlying matroid misses. For example, consider the following

two directed graphs.

a

c b

a

c b

As in the previous example with matrices, both have the same underlying matroid with

unique circuit {a, b, c}. If we traverse this circuit counterclockwise in the first graph, we

will be going in accordance with the orientation at all three edges. This can be represented

with the sign vector (+,+,+), with the first + indicating that we traversed a according

to its orientation, the second indicating that for b and the third for c. If we traverse it

clockwise, then we will be going against the orientation at all three edges which similarly

will be represented (−,−,−). Traversing the circuit in the second graph counterclockwise

gives us the sign vector (+,+,−) and clockwise gives us (−,−,+). The oriented matroids

associated to each of these directed graphs captures this information about orientation

that the matroid by itself does not.
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We now introduce the formal definitions needed to define an oriented matroid. Let E

be a finite set. A sign vector is an element of the set {0,+,−}E; that is, an assignment

of either 0,+ or − to each element of E. Given u ∈ RE, sign(u) denotes the sign vector

obtained by replacing each entry of u with its sign. We will often assume an ordering

on the elements of E, in which case can write a sign vector as (s1, . . . , s|E|). Given a

sign vector σ = (σ1, . . . , σ|E|), we define −σ := (−σ1, . . . ,−σ|E|) according to the rules

−− = +, −+ = −, and −0 = 0. The composition of two sign vectors σ and τ , denoted

σ ◦ t is defined by

(σ ◦ τ)e =

σe if σe 6= 0

τe otherwise
.

Note that for u, v ∈ Rn, sign(u+ εv) = sign(u) ◦ sign(v) when ε is sufficiently small. The

separation set for sign vectors σ, τ is defined by

S(σ, τ) := {e ∈ E : σe = −τe 6= 0}.

For f ∈ S(σ, τ), we say that ρ eliminates f between σ and τ if

ρf = 0 and ρe = (σ ◦ τ)e for all e /∈ S(σ, τ).

Note that for u, v ∈ RE satisfying ue = 1 and ve = −1, sign(u + v) eliminates i across

sign(u) and sign(v).

Definition 1.3.1. Let V be a set of sign vectors for E. Then the pair O := (E,V) is

said to be an oriented matroid if the following four conditions are satisfied:

1. (0, . . . , 0) ∈ V
2. if σ ∈ V then −σ ∈ V
3. if σ, τ ∈ V then σ ◦ τ ∈ V
4. if σ, τ ∈ V with f ∈ S(σ, τ), there exists ρ ∈ V that eliminates f between σ and τ .

In this case, the set V of sign vectors is called the vectors of O and E is called the

ground set. These four conditions are often called the (co)vector axioms of an oriented

matroid. We will often abuse notation and terminology, identifying the set of vectors of

an oriented matroid with the oriented matroid itself. For example, we will write things

like σ ∈ O to mean that σ is a vector of O. When O and P are oriented matroids on
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the same ground set, we may similarly write O ⊆ P to mean that every vector of the

oriented matroid O is also a vector of the oriented matroid P .

We now detail how one can obtain an oriented matroid from any linear subspace

of Rn. For any real number r ∈ R, sign(r) ∈ {+,−, 0} is the sign of r. For a linear

functional c ∈ (Rm)∗, sign(c) ∈ {+,−, 0}m is defined by sign(c)i = sign(ci). Given a sign

vector σ ∈ {+,−, 0}m, we define |σ| := |supp(σ)|.

Proposition 1.3.2. Let L ⊆ Rm be a linear subspace. Let V be the set of sign vectors

σ ∈ {+,−, 0}m such that σ = sign(c) for some linear functional c ∈ (Rm)∗ vanishing on

L. Then ([m],V) is an oriented matroid.

Proof. It is clear that the first two vector axioms are satisfied. Let cσ and cτ be linear

functionals vanishing on L such that sign(cσ) = σ and sign(cτ ) = τ . For small enough

ε > 0, sign(cσ + εcτ ) = σ ◦ τ thus showing that the third vector axiom is satisfied.

Choose e ∈ S(σ, τ). By scaling appropriately, we can choose cσe = −cτe . Then sign(cσ+cτ )

eliminates e between σ and τ thus showing that the fourth vector axiom is satisfied.

For a linear space L ⊆ Rm we refer to the oriented matroid of Proposition 1.3.2 as

the oriented matroid associated to L, denoted OL. Let A ∈ Rm×n be a matrix. Then we

may refer to OrowA, the oriented matroid underlying the row-span of A, as the oriented

matroid underlying the columns of A. This is reasonable because it consists of all sign

patterns of dependencies among the columns of A. When O = OL for some L, we simplify

notation and write ML instead of MOL
. Note that this is consistent with our notation

for the algebraic matroid underlying an irreducible variety (linear spaces are irreducible

varieties).

Example 1.3.3. Let A =
(

1 1 0
)

and let L = rowA ⊆ R3. Denote the coordinates of

the underlying space R3 as x, y and z. Linear functionals that vanish on L include x− y,

3z, and 2x − 2y − z. It is not hard to see that the vectors in O, the oriented matroid

underlying L (equivalently, the oriented matroid underlying the columns of A), are the

following

(+,−, 0) (+,−,+) (+,−,−)

(−,+, 0) (−,+,+) (−,+,−)

(0, 0, 0) (0, 0,+) (0, 0,−).
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Let ≺∗ be the partial order on {+,−, 0} given by 0 ≺∗ + and 0 ≺∗ − with + and −
incomparable. Then ≺ is the partial order on {+,−, 0}m that is the Cartesian product

of ≺∗ m times. The (signed) circuits of an oriented matroid O are the nonzero vectors

of O that are minimal with respect to ≺. A consequence of the following proposition is

that in order to completely specify an oriented matroid, it suffices to specify its set of

circuits.

Proposition 1.3.4. Let O be an oriented matroid. Given σ ∈ O, there exist signed

circuits τ 1, . . . , τ k such that σ = τ 1 ◦ · · · ◦ τ k.

Proof. Let {τ 1, . . . , τ k} be the set of all signed circuits satisfying τ ≺ σ. For each i =

1, . . . , k and each e ∈ E, either τ ie = σe or τ ie = 0. Therefore τ 1 ◦ · · · ◦ τ k ≺ σ. It now

suffices to show that for each e ∈ supp(σ), there exists some circuit τ ≺ σ satisfying

τe = σe. Let τ ∈ O be the support-minimal vector such that τ ≺ σ and τe = σe. If τ is

not a circuit, then there exists some circuit ρ ≺ τ with ρe = 0. Then let η be a vector that

eliminates some f ∈ S(τ,−ρ) between τ and −ρ. Then ρ ◦ η contradicts the minimality

of τ ; note that (ρ ◦ η)e = ηe 6= 0, ρ ◦ η ≺ τ and ρ ◦ η 6= τ since (ρ ◦ η)f = 0 6= τf .

Example 1.3.5. The oriented matroid OL from Example 1.3.3 has four circuits which

are (0, 0,+), (+,−, 0), and their negatives. Note that we can represent any non-zero non-

circuit as a composition of two circuits. For example, (+,−,+) = (+,−, 0) ◦ (0, 0,+).

The support of a sign vector σ, denoted supp(σ), is defined to be the set {e ∈ E :

σe 6= 0}. Lemma 1.3.6 below will be used to prove Proposition 1.3.7, which justifies the

name “oriented matroid.”

Lemma 1.3.6. Given a sign vector τ ∈ {+,−, 0}E, if there exists some σ ∈ O with

σ 6= ±τ and supp(σ) ⊆ supp(τ), then τ is not a signed circuit.

Proof. If τ /∈ O, then τ is trivially not a signed circuit, so assume τ ∈ O. We proceed

by induction on min |S(±σ, τ)|, which we assume without loss of generality is |S(σ, τ)|.
For the base case, note that since supp(σ) ⊆ supp(τ), S(σ, τ) = ∅ implies that σ ≺ τ ,

thus showing that τ is not a circuit. So assume there exists e ∈ S(σ, τ) and let ρ ∈ O
eliminate e between σ and τ . Then ρ satisfies supp(ρ) ⊆ supp(τ) and S(ρ, τ) ( S(σ, τ).

So by induction on min |S(±σ, τ)|, τ is not a circuit.

Proposition 1.3.7. If O = (E,V) is an oriented matroid with signed circuits C, then

{supp(σ) : σ ∈ C} is the set of circuits of a matroid on ground set E.
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Proof. We proceed by showing that {supp(σ) : σ ∈ C} satisfies the conditions given in

Proposition 1.2.14. That {supp(σ) : σ ∈ C} satisfies the first condition follows from the

fact that circuits are defined to be nonzero. That they satisfy the second condition follows

from Lemma 1.3.6.

We now show the third condition. Let C1 = supp(σ) and C2 = supp(t) and assume

C1 6= C2 with e ∈ C1 ∩ C2. Since supp(σ) = supp(−σ), we may assume that σe = −τe.
Then the fourth axiom of oriented matroids implies that there exists some ρ ∈ V that

eliminates between e between σ and τ . Let η � ρ be a signed circuit. Then supp(η) ⊆
(C1 ∪ C2) \ {e} and so we can take C3 = supp(η).

We call the matroid of Proposition 1.3.7 the matroid underlying O. The rank of any

sign vector σ with respect to O, is the rank of supp(σ) in MO. Note that this is well

defined for any sign vector, not just those in O.

Example 1.3.8. We return once again to the oriented matroid from Example 1.3.3. The

matroid underlying OL has three independent sets, which are ∅, {1} and {2}. The ranks

of the three sign vectors in the bottom row of the table in Example 1.3.3 are all zero,

and the ranks of the other six are all one.

We now describe how one can obtain an oriented matroid from a directed graph. Let

G = (V,A) be a directed graph with vertex set V and arc set A. Let C be a cycle in the

undirected graph underlying G. We will now show how C gives rise to two sign vectors

σC and τC . For each arc a ∈ A whose corresponding undirected edge does not lie in C,

set σa = τa = 0. There are exactly two cyclic orientations of C which we denote C+

and C−. For each arc a ∈ A whose corresponding edge e lies in C, set σa = −τa = + if

the orientation C+ imposes on e agrees with a, and set σa = −τa = − otherwise. Define

CG :=
⋃
C{σC , τC}.

Proposition 1.3.9. For a directed graph G = (V,A), the set CG is the set of circuits of

an oriented matroid OG.

Proof. Let MG be the matrix whose rows are indexed by V , whose columns are indexed

by A, and whose entry corresponding to a pair (v, a) is 1 if a emanates from v, −1 if

a points towards v, and 0 otherwise. Then note that the set of signed circuits of the

oriented matroid underlying the row-span of MG is CG. Therefore CG is the set of circuits

of an oriented matroid by Proposition 1.3.2.
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For a directed graph G, we refer to the oriented matroid OG from Proposition 1.3.9

as the oriented matroid underlying G.

Example 1.3.10. Consider the directed graph G shown below

a

b

c

d

e

Ordering the arcs as (a, b, c, d, e), one can check that the circuits of OG are the following

sign vectors and their negatives:

(+,+, 0, 0,+) (+,+,+,−, 0) (0, 0,+,−,−).

1.3.1 Oriented matroid duality

Definition 1.3.11. Let E be a finite set. Given two sign vectors σ, τ ∈ {+,−, 0}E, we

say that σ, τ are orthogonal and write σ · τ = 0 if one of the following holds

1. for each e ∈ E, σe = 0 or τe = 0, or

2. there exist e, f ∈ E such that σe = τe 6= 0 and σf = −τf 6= 0.

Given a set of sign vectors S ⊆ {+,−, 0}E, we define the orthogonal complement of S as

S⊥ := {τ ∈ {+,−, 0}E : σ · τ = 0 for all σ ∈ S}.

Example 1.3.12. Consider the following two examples

(+, 0, 0,−) · (+, 0,−,+) = 0 but (+, 0, 0,+) · (+, 0,−,+) 6= 0.

For the first case, note that if x = (1, 0, 0,−1) and y = (1, 0,−1, 1), then x · y = 0,

sign(x) = (+, 0, 0,−), and sign(y) = (+, 0,−,+). However, for the second case, note

that if x, y satisfy sign(x) = (+, 0, 0,+) and sign(y) = (+, 0,−,+), then x · y > 0. More

generally, one can see that two sign vectors σ, τ ∈ {+,−, 0}E satisfy σ · τ = 0 if and only

if there exist x, y ∈ RE satisfying x · y = 0, sign(x) = σ, and sign(y) = τ .

Orthogonality of sign vectors gives us a notion of duality for oriented matroids.
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Definition 1.3.13. Let O = (E,V) be an oriented matroid. Then the dual oriented

matroid of O is

O∗ := (E,V⊥).

Example 1.3.14. Consider the oriented matroid O given in Example 1.3.3. Then the

dual oriented matroid O∗ contains exactly two nonzero vectors, both of which are signed

circuits. They are (+,+, 0) and (−,−, 0).

For a proof of the following proposition, see e.g. [15].

Proposition 1.3.15. Given an oriented matroid O = (E,V), the dual oriented matroid

O∗ is an oriented matroid. Moreover, O∗∗ = O.

When an oriented matroid O underlies a linear subspace L ⊆ Rn or a directed graph

G, then the dual oriented matroids O∗L and O∗G can be constructed explicitly. We begin

with linear spaces.

Definition 1.3.16. Let A ∈ Rr×n be a matrix of rank r. A Gale dual of A is a matrix

B ∈ R(n−r)×n of rank n− r such that ABT = 0.

Note that if B is a Gale dual of A, then A is a Gale dual of B. We now show that if

A and B are Gale duals, then O∗A = OB.

Proposition 1.3.17. Let A ∈ Rr×n be a matrix of rank r and let B be a Gale dual of

A. Then O∗A = OB.

Proof. Let σ ∈ OB and let x ∈ Rn such that Bx = 0 and sign(x) = σ. Now let y ∈ Rn

such that Ay = 0. Since the columns of BT are a basis of kerA, y = BT z for some

z ∈ Rn−r. Then xTy = xTBT z = 0 which implies sign(x) · σ = 0. This implies that

σ ∈ O∗A and therefore OB ⊆ O∗A.

By making an analogous argument with the roles of A and B reversed we see that

OA ⊆ O∗B. Note that for any two collections of sign vectors S, T , if S ⊆ T , then T ⊥ ⊆ S⊥.

Therefore we have O∗A ⊆ O∗∗B = OB.

Example 1.3.18. Let A be the matrix from Example 1.3.3. We display A alongside a

Gale dual B below

A =
(

1 1 0
)

B =

(
1 −1 0

0 0 1

)
.
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We saw in Example 1.3.14 that the dual oriented matroid O∗A has exactly two nonzero

vectors which are (+,+, 0) and (−,−, 0). This is exactly the oriented matroid underlying

B, whose kernel is spanned by AT .

We now discuss the combinatorial interpretation of the circuits in oriented matroids

that are dual to those underlying directed graphs. When dealing with oriented matroids

underlying graphs, it tends to be more natural to work with circuits than with vectors

so we begin with the following proposition.

Proposition 1.3.19. Let O = (E,V) be an oriented matroid and let C ⊆ V denote its

set of circuits. Then V⊥ = C⊥.

Proof. It is clear that V⊥ ⊆ C⊥ so we prove the other direction. Let σ ∈ C⊥ and let

τ ∈ V . Assume τ /∈ C so that τ = τ 1 ◦ · · · ◦ τ k. As τ1 ∈ C, σ · τ 1 = 0. There are two cases

to consider. The first case is that σe = 0 whenever τ 1
e 6= 0. From this and the inductive

hypothesis, it follows that (τ 2 ◦ · · · ◦ τ k) · σ = 0, which in turn implies τ · σ = 0. The

second case is that there exist e, f ∈ E such that σe = τ 1
e 6= 0 and σf = −τ 1

f 6= 0. This

immediately implies τ · σ = 0.

Definition 1.3.20. Let G = (V,E) be a graph on vertex set V and edge set E. A cut

of G is a subset C ⊆ E of edges such that the subgraph (V,E \ C) has strictly more

connected components than G. A bond of G is an inclusion-minimal cut.

Note that any bond C of an undirected graph G = (V,E) will separate exactly one

connected component of G into two connected components in (V,E \C). We denote the

subgraphs induced on these connected components by G1 = (V1, E1) and G2 = (V2, E2).

So each edge e ∈ C is incident to exactly one vertex in each Vi. When G is the undirected

graph underlying some directed (V,A), we create a sign vector σ ∈ {+,−, 0}A such that

σe = 0 for all e /∈ C, σe = + if e ∈ C and e is oriented from V1 to V2, and σe = − if

e ∈ C and e is oriented from V2 to V1. Note that changing the roles of V1 and V2 negates

the corresponding sign vector.

Definition 1.3.21. For a directed graph G = (V,A), any sign vector in {+,−, 0}A

obtained as described above is called a signed bond of G.

Proposition 1.3.22. Let G = (V,A) be a directed graph. The set of signed bonds of G

is the set of circuits in O∗G.
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Proof. Let σ be a signed bond of G. Since signed bonds are support-minimal by definition,

it only remains to show that σ ∈ O∗G. By Proposition 1.3.19, it suffices to show that

σ · τ = 0 for every signed circuit τ of G. So let G1 = (V1, E1) and G2 = (V2, E2) be the

new connected components of (V,A \ supp(σ)). Assume σ was specified so that σe = +

whenever e points from V1 into V2. Let τ ∈ OG. Then if σe = τe = + (without loss

of generality), this means that as we traverse the cycle supp(τ) according to τ , we are

moving from V1 into V2 at the edge e, which means we must move back from V2 into V1

at some other edge f . If f points from V1 to V2 we would have τf = − and σf = + and if

f points from V2 into V1, then we would have τf = + and σf = −. Either way, σ · τ = 0.

Now we must show that the circuits of O∗G are signed bonds. So let σ ∈ O∗G. First we

claim that supp(σ) is a cut in the undirected graph underlying G. To see this, note that

for any cycle C of this graph, |supp(σ) ∩C| 6= 1. Now if e ∈ supp(σ) has endpoints v, w,

then every path between v and w in the undirected graph underlying G must have an

edge in supp(σ). Otherwise, if v, x1, x2, . . . , xk, w is a path from v to w with xi /∈ supp(σ),

then the cycle obtained by adding the edge e back to this path is a cycle that intersects

supp(σ) in exactly one element, namely e.

Now since the support of each σ ∈ O∗G is a cut, supp(σ) must contain a bond. We

have already seen that each bond of G is the support of some vector (moreover a circuit)

in O∗G, so if we assume that σ is a circuit, then Lemma 1.3.6 implies that σ is a signed

bond of G.

Example 1.3.23. Let G be the directed graph from Example 1.3.10. Again, ordering

the arcs as (a, b, c, d, e), we see that the signed bonds of G are the vectors shown below,

along with their negatives. Note that these are the circuits of the dual oriented matroid

O∗G.

(+,−, 0, 0, 0) (+, 0,−, 0,−) (0, 0,+,+, 0)

(0,+, 0,+,−) (0,+,−,−, 0) (+, 0, 0,+,−)

1.4 Tree metrics

Tree metrics are a fundamental object in distance-based phylogenetics. They also play an

important role in tropical geometry. The first half of this section collects the basic facts

we will need about tree metrics, and the second half describes the polyhedral geometry
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of the set of all tree metrics.

1.4.1 Basic definitions

Let X be a finite set. A dissimilarity map on X is a function d : X ×X → R such that

d(x, y) = d(y, x) and d(x, x) = 0. We will usually associate each dissimilarity map d on

X with the point d ∈ R([n]
2 ) given by dxy = d(x, y).

Definition 1.4.1. A tree metric on X is a dissimilarity map d ∈ R(X
2 ) satisfying the

following four point condition for all distinct x, y, z, w ∈ X

dxy + dzw ≤ max{dxz + dyw, dxw + dyz}.

This is equivalent to the condition that the maximum of dxy+dzw, dxz+dyw, and dxw+dyz

is attained twice.

Other authors often define tree metrics to be the dissimilarity map satisfying the

four point condition, not just for sets of four distinct points, but additionally in cases

where there is overlap among them. The reason for this is that the four point condition

becomes the triangle inequality when only three of the four points are distinct, and it

ensures non-negativity of each dxy when only two are. Therefore, this more restrictive

definition ensures that tree metrics are indeed metrics. In spite of this, we take this less

restrictive definition because it makes the set of all tree metrics into the tropicalization

of a particular variety, a fact we later exploit. Proposition 1.4.3 justifies the terminology

“tree metric.”

Definition 1.4.2. A tree is a connected graph T = (V,E) with no cycles. A leaf of a

tree is a vertex of degree one and an internal edge is an edge that is not incident to any

leaf. Given a finite set X, an X-tree is a tree with leaf set X that has no vertices of

degree two. A tree is binary if all internal vertices have degree three.

Proposition 1.4.3 ([53, Chapter 7]). Let T = (V,E) be an X-tree and let ω : E → R
be a weighting of the edges of T such that ω(e) ≥ 0 for all internal edges of T . Let

dωT : X ×X → R be the dissimilarity map defined by

dωT (x, y) =
∑
e∈P

ω(e)
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Figure 1.1: An edge-weighted tree with positive internal edge weights whose leaves are
labeled by {1, 2, 3, 4} showing that d = (d12, d13, d14, d23, d24, d34) = (0, 3,−2, 5, 0,−1) is
a tree metric.

where the sum is taken over the edges in the unique path from x to y in T . Then d is a

tree metric. Moreover, for every tree metric d, there is a unique X-tree T = (V,E) and

edge weighting ω satisfying ωe 6= 0 for all e ∈ E such that d = dωT .

When one takes the alternate definition of tree metric that requires the four point

condition for all x, y, z, w ∈ X, and not just those that are distinct, then Proposition 1.4.3

is still true, but all edge weights are required to be nonnegative, not just the internal

ones. The uniqueness of the tree specified in the second part of Proposition 1.4.3 gives

us a combinatorial invariant of a tree metric.

Definition 1.4.4. Let d be a tree metric on X. The unique tree T from Proposition

1.4.3 is called the (tree) topology of d.

Example 1.4.5. Let X = [4] and let d be the dissimilarity map given as

(d12, d13, d14, d23, d24, d34) = (0, 3,−2, 5, 0, 1).

Note that d12 + d34 = 1, and d13 + d24 = d14 + d23 = 3 and so the maximum of the

three sums is attained twice. Hence d satisfies the four point condition and is therefore

a tree metric. Moreover, if T is the tree displayed in Figure 1.1 with the indicated edge

weighting ω, then d = dωT .

In Chapter 3, we will be concerned with a particular subset of tree metrics called

ultrametrics or rooted tree metrics. We defer discussion of ultrametrics until Section

3.2.2.
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1.4.2 Polyhedral geometry of the space of tree metrics

A polyhedral cone is the intersection of finitely many linear half-spaces. That is, an

intersection of finitely many sets of the form {x ∈ Rn : ax ≥ 0}. Note that the intersection

of any two polyhedral cones is also a polyhedral cone. Given a polyhedral cone C ⊆ Rn,

a face is a subset F ⊆ C of the form

F = {x ∈ C : cx = 0}

for some c ∈ (Rn)∗ such that cx ≥ 0 for all x ∈ C. Note that every face of a polyhedral

cone is itself a polyhedral cone. Setting c = 0, we see that the entire cone C is a face

of itself. A proper face of C is any face other than C itself An inclusion-maximal proper

face is called a facet.

Definition 1.4.6. A polyhedral fan is a set C of polyhedral cones in Rn satisfying the

following two conditions

1. if C ∈ C and F is a face of C, then F ∈ C
2. if C,D ∈ C, then C ∩D is a face of both C and D.

The elements of C are called the faces of C and the inclusion maximal faces are called

facets.

Example 1.4.7. For i = 1, 2, 3, 4, let Qi denote the ith quadrant of R2 and let Ai denote

the rotation of the ray {(x, 0) : x ≥ 0} by 90(i− 1) degrees counter-clockwise about the

origin. Define

C := {Q1, Q2, Q3, Q4, A1, A2, A3, A4, {0, 0}}

and

D := {Q1, Q2, Q3 ∪Q4, A1, A2, A3, A1 ∪ A3, {0, 0}}.

Both C and D satisfy the first condition required of a polyhedral fan. Figure 1.2

displays the maximal elements of both C and D. However, only C satisfies the second -

note that (Q3 ∪Q4) ∩Q1 = A1 which is a face of Q1 but not of (Q3 ∩Q4).

The support of a polyhedral fan C is S :=
⋃
C∈C C. In this situation, we say that S

supports C. The polyhedral fan structure supported on a given S ⊆ Rn is in general not

unique. For example, the polyhedral fan C from Example 1.4.7 is supported on R2, but
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Q1Q2

Q3 Q4

Q1Q2

Q3 ∪Q4

Figure 1.2: The figure on the left shows C, which is a polyhedral complex. The figure
on the right shows D, which fails to be a polyhedral complex because Q1 and Q3 ∪ Q4

intersect along a non-face of Q3 ∪Q4.

so is the polyhedral fan {R2}. The set of all tree metrics on [n] naturally supports a

polyhedral fan structure which we now describe.

Definition 1.4.8. Let Tn denote the polyhedral fan structure supported on the set of all

tree metrics on [n] that has a face CT for every [n]-tree T , consisting of all tree metrics

with topology T ′ such that T ′ can be obtained from T via a (possibly empty) sequence

of internal edge contractions.

The facets of Tn are the faces corresponding to the binary [n]-trees. We will often

abuse notation and identify the polyhedral fan Tn with its support.

Example 1.4.9. We consider the polyhedral structure of T4 in detail. A tree metric on

leaf set {1, 2, 3, 4} can have one of four topologies, displayed in Figure 1.3. The binary

tree topologies will be denoted T1, T2, and T3 and the nonbinary tree topology will be

denoted S. Thus T4 has three facets, each consisting of all the tree metrics with topology

S or Ti for some i = 1, 2, 3. The intersection of any two facets is the set of all tree metrics

with topology S.

1.5 Tropical geometry

Tropical geometry gives us a way to transform an irreducible variety V ⊆ Cn into a

polyhedral complex trop(V ) ⊆ Rn, called the tropicalization of V , that encodes many

essential properties of V . One such property is the algebraic matroid.
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Figure 1.3: Possible tree topologies for a tree metric on four leaves.

We consider two equivalent ways one can define the tropicalization of a variety V ⊆ C.

For one of these ways, the first step is to consider V over a certain field extension of C,

called the field of Puiseux series. This field is naturally endowed with a valuation, which

is a particular kind of function into Q. By applying this function coordinate-wise to every

point in V , one obtains a rational subset of Rn, the Euclidean closure of which is trop(V ).

This view of trop(V ) is well-suited for proving certain theorems, and in particular, that

trop(V ) caries the algebraic matroid structure of V . One can equivalently define trop(V )

to be the set of points ω ∈ Rn such that the initial ideal inω(I(V )) contains no monomials.

This definition is well-suited for computing tropical varieties.

1.5.1 Puiseux series

Definition 1.5.1. A Puiseux series is a formal power series with rational exponents

with coefficients in C such that the set of all exponents of the formal variable is bounded

below, and expressible over a common denominator. That is, a Puiseux series is a formal

power series of the form
∑

α∈Jd,k cαt
α where d ∈ N and k ∈ Z and Jd,k = {n/d : n ∈

Z, n ≥ k}. Addition and multiplication of formal power series induces the structure of

an algebraically closed field on the set of Puiseux series [45, Theorem 2.1.5]. We denote

this field by C{{t}}. The valuation map is the function val : C{{t}} → Q that sends a

Puiseux series to its minimum exponent.

Example 1.5.2. Consider the following three formal power series

f :=
∞∑

n=−8

ntn/3 g :=
∞∑
n=1

t−n h :=
∞∑
n=1

t1/n.

Among them, only f is a Puiseux series. Since the smallest exponent of f is −8/3, we
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have that val(f) = −8/3. The issue with g is that its set of exponents is not bounded

below. The issue with h is that its exponents cannot all be expressed over a common

denominator.

Definition 1.5.3. Let V ⊆ Cn be a variety and let (C{{t}} ⊗ V ) ⊆ (C{{t}})n denote

the variety defined by the ideal I(V )C{{t}}[x1, . . . , xn]. Let val : (C{{t}})n → Rn de-

note the map sending each (a1, . . . , an) ∈ (C{{t}})n to (val(a1), . . . , val(an)). Then the

tropicalization of V is

trop(V ) := (−1) · val(C{{t}} ⊗ V ),

the Euclidean closure of the image of C{{t}}⊗V under the negation of the coordinate-wise

valuation map val. Sets of the form trop(V ) are called tropical varieties.

One often defines the tropicalization of a variety in almost the same way, but with-

out taking negatives at the end (see e.g. the introductory text [45]). Both conventions

result in the same theory, modulo some trivial sign and order differences. Our motivation

for choosing the convention that takes negatives is that it makes the connection with

phylogenetics cleaner.

Example 1.5.4. Let f(x, y) = x2 +xy+y−1. Note that the variety C{{t}}⊗V (f(x, y))

contains the points (t−1,−t−1 + 1) and (−1, t2). Applying the coordinate-wise valuation

map val to each point gives us (−1,−1) and (0, 2). Therefore, their negations (1, 1) and

(0,−2) lie in the tropical variety trop(V (f(x, y)). In the next section, we will develop

tools that will enable us to describe the entire set trop(V (f(x, y)).

1.5.2 Initial ideals

Definition 1.5.5. Let f =
∑

α∈J cαx
α be a polynomial in K[x1, . . . , xn] and let ω ∈ Rn.

Define

Jω := {α ∈ J : ω · α is maximized over J }.

The initial form of f with respect to ω is the polynomial

inωf :=
∑
α∈Jω

cαx
α.
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Given ω ∈ Rn and an ideal I ⊆ K[x], the initial ideal of I with respect to ω is

inωI := 〈inωf : f ∈ I〉.

If I = 〈f1, . . . , fr〉, it is clear that 〈inωf1, . . . , inωfr〉 ⊆ inωI. However, the converse is

false in general as the following example shows.

Example 1.5.6. Define f1(x1, x2, x3) := x1 − x2 and f2(x1, x2, x3) := x1 − x3 and let I

denote the ideal they generate in K[x1, x2, x3]. Let ω = (3, 2, 1). Then inωf1 = inωf2 = x1

and so 〈inωf1, inωf2〉 = 〈x1〉. However, this cannot be the whole initial ideal because

x2 ∈ inωI as inω(x2 − x3) = x2 and x2 − x3 ∈ I.

Definition 1.5.7. Let I ⊆ K[x1, . . . , xn] be an ideal and let ω ∈ Rn. A set of polynomials

f1, . . . , fr ∈ I is called a Gröbner basis for ω if

inωI = 〈inωf1, . . . , inωfr〉.

One might be concerned about the fact that Gröbner bases are not required by defi-

nition to generate the ideal they correspond to. However, this property is an easy conse-

quence of the definition. Given an arbitrary generating set of an ideal, one can compute a

Gröbner basis with respect to any ω ∈ Rn using Buchberger’s algorithm. For more details,

see e.g. [32, Chapter 2]. Initial ideals and Gröbner bases are particularly important for

tropical geometry due to the following theorem which gives an alternate characterization

of the tropicalization of a variety.

Theorem 1.5.8 ([45], Theorem 3.2.3). Let V ⊆ Cn be a variety. Then the tropicalization

of V is the set of all ω ∈ Rn such that the corresponding initial ideal of inωI(V ) contains

no monomials. That is,

trop(V ) = {ω ∈ Rn : inωI(V ) contains no monomials}.

Example 1.5.9. Consider the polynomial f(x, y) = x2 + xy + y − 1 from Example

1.5.4. Given ω ∈ R2, the initial ideal inω〈f(x, y)〉 contains no monomials if and only if

inωf(x, y) is itself not a monomial. By way of case analysis over all pairs of monomials

of f(x, y), one can see that inωf(x, y) is not a monomial when ω1 = 0, or ω1 ≥ 0 and

ω2 = ω1, or ω1 ≤ 0. Theorem 1.5.8 then implies that trop(V (f(x, y)) is the union of the

ω2-axis, the ray ω1 = ω2 ≥ 0, and the ray ω1 ≤ 0.
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1.5.3 Algebraic matroids and tropical geometry

As we noted earlier, the tropicalization of an irreducible variety V carries with it the

structure of the algebraic matroid underlying V . This section makes that statement

precise. All unspecified fields K in this subsection are assumed to be R or C.

Definition 1.5.10. Let V ⊆ KE be a set. The independence complex of V , denoted

M(V ), is the set of subsets S ⊆ E such that the coordinate projection of S onto KS is

full-dimensional in KS.

When V ⊆ KE is an irreducible variety, M(V ) is the set of independent sets of MV ,

the algebraic matroid underlying V . When V is an arbitrary set, M(V ) need not be the

independent sets in any matroid.

Proposition 1.5.11 ([64], Lemma 2). Let V ⊆ CE be an irreducible variety. Then S ⊆ E

is independent in the algebraic matroidMV underlying V if and only if S ∈M(trop(V )).

The utility of Proposition 1.5.11 is that computing the dimension of a projection of

a tropical variety may be easier than computing the dimension of the projection of the

variety itself. This is because a tropical variety is a highly structured polyhedral complex.

We will wait until Chapter 2 to make this statement precise. For now, we give an example.

Example 1.5.12. Let E =
(

[4]
2

)
be the set consisting of all pairs of integers 1, 2, 3, 4. Let

V ⊆ CE be the variety defined by the following polynomial

p12p34 − p13p24 + p14p23.

It is not hard to see directly that the algebraic matroid underlying V is simply the

uniform matroid U5,6, but we prove this using Proposition 1.5.11.

Since I(V ) is generated by a single polynomial, an initial ideal inωI(V ) contains a

monomial if and only if inω(p12p34 − p13p24 + p14p23) is a monomial. Moreover, such an

initial form is a monomial if and only if ω satisfies the four point condition. Therefore, the

tropicalization trop(V ) is T4, the set of all tree metrics on leaf set {1, 2, 3, 4}. There are

three distinct binary tree topologies on four leaves and each corresponds to a maximal

cone in T4. The linear hull of each such maximal cone is the linear space spanned by the

rows of one of the following three matrices
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A =



12 13 14 23 24 34

1 1 1 0 0 0

1 0 0 1 1 0

0 1 1 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1


B =



12 13 14 23 24 34

1 1 1 0 0 0

0 1 0 1 0 1

1 0 1 1 0 1

1 0 0 1 1 0

0 0 1 0 1 1



C =



12 13 14 23 24 34

1 1 1 0 0 0

0 0 1 0 1 1

1 1 0 0 1 1

1 0 0 1 1 0

0 1 0 1 0 1


.

Hence by Proposition 1.5.11, a subset S ⊆ E is independent in the algebraic matroid

MV if and only if the projection of the row space of one of these matrices onto S is full-

dimensional. For a particular choice of the matrix M , this is equivalent to the condition

that the column submatrix MS have rank |S|. Since the ranks of A,B,C are all five, it

follows that E is not itself independent in MV . Now let S ⊆ E such that |S| = 5. Then

two of AS, BS, CS have rank five: if 12 /∈ S or 34 /∈ S, then BS and CS do if 13 /∈ S or

24 /∈ S, then AS and CS do, and if 14 /∈ S or 23 /∈ S, then AS and BS do. Hence S is

independent in MV .

1.5.4 Tree metrics and tropical geometry

The Grassmannian Gr(2, n), defined below, is of fundamental importance in many dif-

ferent areas of mathematics since its points naturally parameterize the set of all 2-

dimensional linear subspaces of Cn. Motivated by applications to low-rank matrix com-

pletion, we will characterize the algebraic matroid underlying this variety in Chapter 2.

Theorem 1.5.14 and Proposition 1.5.11 turn out to be key there.
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Definition 1.5.13. For 1 ≤ i < j < k < l ≤ n, define fijkl ∈ C[pab : 1 ≤ a < b ≤ n] to

be

fijkl := pijpkl − pikpjl + pilpjk.

Then Gr(2, n), the Grassmannian of planes in affine n-space, is the variety defined by

the vanishing of all polynomials of the form fijkl.

Theorem 1.5.14 ([56]). The tropicalization of the Grassmannian of planes in affine

n-space is the set of tree metrics on leaf set [n]. That is, trop(Gr(2, n)) = Tn.

We will not prove Theorem 1.5.14 here, but we can easily show trop(Gr(2, n)) ⊆ Tn.

So let ω ∈ trop(Gr(2, n)). Then the condition that inωfijkl is not a monomial is equivalent

to the condition that the maximum of ωij + ωkl, ωik + ωjl, and ωil + ωjl is attained at

least twice. Since this condition must be satisfied for all quadruples ijkl, ω satisfies the

four point condition.

1.6 Toric ideals

Toric varieties, the varieties defined by toric ideals, have been extensively studied by

algebraic geometers as their combinatorial nature makes them useful objects for testing

conjectures and building intuition [22]. As we will see in Section 1.6, many models that

are used in discrete multivariate analysis can be defined in terms of a toric ideal. Because

of this, toric ideals offer a natural bridge between algebraic geometry and statistics. We

now continue with some preliminaries.

Let L be a subgroup of Zn - that is, L is a lattice. Let K be a field. The lattice ideal

of L is the ideal IL in the polynomial ring K[x1, . . . , xn] defined as

IL := 〈xu − xv : u− v ∈ L〉.

Given an integer matrix A ∈ Zm×n, we let kerZA denote the kernel of A as a map from

Zn to Zm.

Proposition 1.6.1. The lattice ideal IL is prime if and only if L = kerZA for some

integer matrix A ∈ Zm×n.

Proof. Theorem 7.4 in [46] implies that IL is prime if and only if Zn/L is free abelian. If

L = kerZA for some A ∈ Zm×n then Zn/L is isomorphic to the lattice generated by the
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columns of A, which is free abelian. Conversely, if Zn/L is free abelian, then we have an

isomorphism Zn/L → Zm for some m. This induces a linear map Zn → Zm with kernel

L. Then any matrix A ∈ Zm×n representing this linear map in the standard bases of Zm

and Zn satisfies the property that kerZA = L.

Prime lattice ideals are called toric ideals. Each integer matrix A ∈ Zm×n gives rise

to the toric ideal IkerZ A which we denote by IA. Thus if two matrices A and B have the

same integer kernel then they define the same toric ideal. The variety defined by the

vanishing of IA is called the toric variety associated to A which we denote by VA ⊆ Cn.

As VA is irreducible, it has an associated algebraic matroid which turns out to be the

linear matroid associated to the columns of A (Proposition 1.6.3).

Example 1.6.2. Let L ⊆ R4 be the one dimensional lattice consisting of all integer

combinations of u := (1,−1,−1, 1). We can construct a matrix A satisfying L = kerZA

as follows

A =

1 0 0 −1

0 1 −1 0

1 1 1 1

 .

Proposition 1.6.1 implies that IL = IA is prime. It is the principal binomial ideal below

IA = 〈x1x4 − x2x3〉.

Proposition 1.6.3. The algebraic matroid underlying a toric variety VA is the linear

matroid underlying the columns of A.

Proof. This follows from the following two facts. First, the dimension of the toric variety

VA is equal to the rank of A [57, Lemma 4.2]. Second, the coordinate projection of a toric

variety onto coordinates corresponding to a subset of columns of A is equal to the toric

variety defined by the corresponding column submatrix.

1.6.1 Toric ideals in algebraic statistics

We now explain the importance of toric ideals for algebraic statistics. Let X be a discrete

random variable with states {1, . . . , n} and let pi denote the probability that X = i. To

set things up geometrically, we view p = (p1, . . . , pn), the probability distribution on X,
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as a point in Rn. Since p is a probability distribution, we know

p ∈ ∆n−1 := {(x1, . . . , xn) : xi ≥ 0 and
n∑
i=1

xi = 1} ⊂ Rn.

The set ∆n−1 is called the probability simplex. Any model (i.e. set of assumptions) we

impose on X restricts p to lie in a subset of ∆n−1. For many widely used statistical

models, such a subset is simply the intersection of ∆n−1 with a toric variety.

Definition 1.6.4. Let A ∈ Zm×n be an integer matrix. The associated log-linear model

MA is the intersection of the probability simplex with the toric variety associated to A.

In symbols,

MA := VA ∩∆n−1.

Understanding the structure of the toric ideal IA corresponding to a log-linear model

MA offers many practical benefits. Perhaps the most salient example of this is detailed

in [27, Section 1.1] where it is shown how one can use a set of binomial generators of IA

to test how well the model MA fits a given dataset. We now give a simple example of a

log-linear model.

Example 1.6.5. Let R be the random variable representing whether or not it rains

tomorrow in Raleigh and let L be the random variable representing whether or not I

pack a lunch. We will denote the two states of R by r and d for “rain” and “dry,” and

the two states of L by l and n for “lunch” and “no lunch.” We will let pr, pd, pl and pn

denote the probabilities of rain, no rain, lunch, and no lunch respectively.

From R and L we can make a new random variable X, called the joint random

variable, which has four states, each corresponding to a possible outcome of the pair

(R,L). We will denote these four states by rl, rn, dl, and dn where ij is the event that

R = i and L = j. So for example, the state rl is the event that it rains and I do pack a

lunch. We will denote the corresponding probabilities as prl, prn, pdl, pdn.

One might assume that whether or not it rains has no effect on whether or not I

pack a lunch, and vice versa. This corresponds to the random variables R and L being

independent which means that the joint probabilities satisfy the polynomial

prlpdn − prnpdl = 0.
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This is equivalent to the condition that the point (prl, prn, pdl, pdn) lies in the variety

defined by the vanishing of the ideal below, which is the toric ideal from Example 1.6.2

〈x1x4 − x2x3〉.

The model of independence, described in Example 1.6.5, is a hierarchical model. Hi-

erarchical models form a large subclass of log-linear models and they are able to capture

many assumptions one might wish to make about categorical data. In particular, this

class subsumes the class of discrete graphical models which are used in many applications

[63]. The hierarchical models are naturally indexed by pairs (C,d) where C is a simplicial

complex on {1, 2, . . . , n} and d = (d1, . . . , dn) is an integer vector satisfying di ≥ 2 for

each i. One of the main results of Chapter 4 is a classification of the pairs (C,d) whose

corresponding hierarchical model has a unimodular toric ideal.

1.6.2 Unimodularity

In this section we discuss unimodularity, which is a property that a toric ideal may satisfy.

One of the main results of Chapter 4 is a classification of all hierarchical models whose

corresponding toric ideals are unimodular. We defer the discussion of unimodularity’s

importance for hierarchical models to Chapter 4.

Let u ∈ Rn be a vector. Then we can write u = u+ − u− where u+ and u− have

nonnegative entries and disjoint support. Define a partial order � on Rn such that u � v

if u+ ≤ v+ and u− ≤ v−. We write u ≺ v if u � v but u 6= v. Let L ⊆ Zn be a lattice.

Definition 1.6.6. Let L be a lattice. The Graver basis of L, denoted Gr(L), is the set

of all u ∈ L that are minimal with respect to ≺.

A sum of vectors v+w is said to be a conformal sum if both v ≺ v+w and v ≺ v+w.

Thus one can equivalently define the Graver basis of a lattice to be the set of u ∈ L such

that u cannot be expressed as a nontrivial conformal sum of v, w ∈ L.

Definition 1.6.7. Let u ∈ L. If u has relatively prime entries and minimal support

among elements of L, then we say that u is a circuit of L. The set of all circuits of L is

denoted C(L).

Note that if L = kerZA for some A ∈ Zm×n, then u ∈ L is a circuit of L if and only

if sign(u) is a signed circuit of the oriented matroid OA. It is easy to see that the set of
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circuits is a subset of the Graver basis. However, the converse is not true in general. When

L = kerZA for a matrix A, we may write A in the place of kerZA. So for example, we

may write Gr(A) instead of Gr(kerZA). We will identify binomials of the form xu
+−xu

−

with the corresponding vector u = u+ − u− and say that xu
+ − xu

−
is a circuit or lies in

the Graver basis if u does.

Definition 1.6.8. A toric ideal IA and its corresponding toric variety VA are said to be

unimodular if the Graver basis of A contains only {0, 1,−1}-vectors.

Example 1.6.9. Consider the 2× 4 matrices A and B shown below

A :=

(
1 −1 0 1

0 0 1 −1

)
B :=

(
1 −1 0 1

1 0 1 −1

)
.

We claim that Gr(A) consists of the six vectors shown below. Since they are all {0, 1,−1}-
vectors, it will follow that the toric ideal IA and the toric variety VA are unimodular.

1

1

0

0

 ,


−1

−1

0

0

 ,


1

0

−1

−1

 ,


−1

0

1

1

 ,


0

1

1

1

 ,


0

−1

−1

−1

 .

It is clear that these six vectors are contained in the Graver basis of A as one can check

by hand that they are ≺-minimal elements of kerZA. To see that they constitute all of

Gr(A), let y = (a, b, c, d)T ∈ Gr(A). Then we must have c = d and a− b+ c = 0. If a > 0,

then b− c = a > 0. In this case, y must be one of the two ≺-minimal vectors satisfying

these two conditions, which are (1, 1, 0, 0) and (1, 0,−1,−1). Similarly, if a < 0 then y

must be (−1,−1, 0, 0) or (−1, 0, 1, 1). If a = 0, then b = c = d so y must be one of the

two ≺-minimal vectors satisfying these conditions, which are (0, 1, 1, 1) and its negative.

The matrix B is not unimodular. To see this it is sufficient to note that the vector

(1, 2, 0, 1)T is in Gr(B).

Our general method for proving that a given matrix A is unimodular will be to

compute its entire Graver basis using the software package 4ti2 [2] and directly verifying

that every element is a {0, 1,−1}-vector. To prove that a given matrix is not unimodular

we will use 4ti2 to identify a single Graver basis element that has an entry with absolute
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value at least two. The following proposition gives us alternative ways to characterize

unimodularity.

Proposition 1.6.10. Let L ⊆ Zn be a lattice. If L = kerZA for some matrix A ∈ Zm×n

then the following are equivalent.

(1) The toric ideal IA = IL is unimodular

(2) Every circuit of L is a {0, 1,−1} vector

(3) For any matrix A′ obtained from r := rankA linearly independent rows of A, there

exists some λ such that each r × r minor of A′is 0 or ±λ
(4) For any b in the affine semigroup generated by the columns of A, the polyhedron

PA,b = {x ∈ Rs : Ax = b, x ≥ 0} has all integral vertices.

Moreover, every element of Gr(L) is a circuit; that is, C(L) = Gr(L).

Proof. See [51], Theorem 19.2 for the equivalence of (3) and (4). We can see that (2)

is equivalent to (3) because the circuits can be computed via a determinantal formula

using Cramer’s rule [57, p. 35]. Given the equivalence of (2) and (3), (2) and (1) are

equivalent by [57], Propositions 4.11 and 8.11. The final remark follows by Proposition

8.11 in [57].

Proposition 1.6.10(4) implies that when A is unimodular, integer programming prob-

lems over polyhedra PA,b can be solved via linear relaxation. In light of this, as a property

of the matrix A, unimodularity can be viewed as a kernel-invariant generalization of total

unimodularity (which requires that every minor is either 0 or ±1). The final statement of

Proposition 1.6.10 and item (2) tell us that classifying the Graver basis of a unimodular

toric ideal IA is equivalent to characterizing the oriented matroid underlying the columns

of A.

Example 1.6.11. Let A and B be the matrices as defined in Example 1.6.9. Not sur-

prisingly, each of the equivalent conditions given in Proposition 1.6.10 are satisfied by

A but not by B. For example, note that each of the six 2 × 2 submatrices of A has

determinant 0, 1, or −1 whereas the submatrix formed by the first and last column of B

has determinant −2.

Proposition 1.6.12. Let A ∈ Zm×n be unimodular. Then the following are also unimod-

ular matrices.
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(1) A matrix obtained by reordering the columns of A

(2) A matrix obtained by multiplying a column of A by −1

(3) Any matrix that has the same rowspace as A

(4) Any matrix formed by a subset of columns of A.

Proof. Let φi denote the map that sends A to the matrix specified in item (i) above. Each

φi induces a map φ∗i : kerZA→ kerZ φ(A). In each case, we will see that φ∗i , and therefore

φi, preserves unimodularity. In particular, φ∗1 permutes coordinates, φ∗2 multiplies a single

coordinate by −1, φ∗3 is the identity, and φ∗4 is a coordinate projection. It is clear that the

first three maps preserve unimodularity. To see that coordinate projections also preserve

unimodularity, let L be a unimodular lattice and let πL be a coordinate projection. If

π(u) ∈ πL lies in the Graver basis of πL but has a coordinate i such that |π(u)i| ≥ 2,

then u cannot lie in the Graver basis of L and so we can express u = a+ b as a conformal

sum with a, b ∈ L. But then πu = πa + πb, and πa, πb ∈ πL and the sum is conformal.

So πu is not in the Graver basis of L.
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Chapter 2

Low-rank matrix completion

The material in this chapter was published in the journal Linear Algebra and its Appli-

cations [6].

Given a matrix where only some of the entries are known, the low-rank matrix com-

pletion problem is to determine the missing entries under the assumption that the matrix

has some low rank r. One can also assume additional structure such as (skew) symme-

try or positive definiteness of the matrix. Practical applications of the low-rank matrix

completion problem abound. A well-known example is the so-called “Netflix Problem”

of predicting an individual’s movie preferences from ratings given by several other users.

A brief survey of other applications appears in [16].

Singer and Cucuringu [55] show how ideas from rigidity theory can be applied to

this problem. Jackson, Jordán, and Tanigawa [35, 36] further develop these ideas. Király,

Theran, and Tomioka [39] incorporate ideas from algebraic geometry into this rigidity-

theoretic framework and Király, Theran and Rosen [40] further develop these ideas. We

add tools from tropical geometry to this picture.

Let V be a determinantal variety over some algebraically closed field K. The results in

this chapter concern the cases where V = Snr (K), the collection of n×n skew-symmetric

K-matrices of rank at most r, or V = Mm×n
r (K), the collection of m × n K-matrices

of rank at most r. A masking operator corresponding to some S ⊆
(

[n]
2

)
in the skew

symmetric case, or S ⊆ [m] × [n] in the rectangular case, is a map ΩS : V → KS that

projects a matrix M onto the entries specified by S. In the case of skew-symmetric n×n
matrices, we view S as the edge set of a graph on vertex set [n], which we denote G(S).

In the case of rectangular matrices, we view S as the edge set of a bipartite graph on
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partite sets of size m and n which we also denote G(S). Context will make the proper

interpretation of G(S) clear.

A low-rank matrix completion problem can now be phrased as: given ΩS(M) can we

recover M if we know M ∈ V ? For generic M the answer to this question only depends

on the observed entries S and not the particular values observed. Namely, given Ω(M)

for generic M ∈ V , M may be recovered up to finitely many choices if and only if S

is a spanning set of the algebraic matroid associated to V . Hence it is useful to find

combinatorial descriptions of the algebraic matroids associated to various determinantal

varieties. We obtain such combinatorial descriptions for the cases where V = Sn2 (C) and

V =Mm×n
2 (C). The most natural way to phrase our characterization is in terms of the

independent sets of V . Note that a subset S of entries is independent in the algebraic

matroid underlying V if and only if ΩS(V ) is Zariski dense in CS. The salient feature for

independent sets is that C \ ΩS(V ) has Lebesgue measure zero. We also note that our

result here answers a question of Kalai, Nevo, and Novik in [38] to find a combinatorial

classification of what they call “minimally (2, 2)-rigid graphs” (posed in the paragraph

after the proof of their Example 5.5). Using our language, these are the maximal inde-

pendent sets in the algebraic matroid underlying Mm×n
2 (C).

We will state the main result of this chapter, but first we must make a definition.

An alternating closed trail in a directed graph is a walk v0, v1, . . . , vk such that each

edge appears at most once, vk = v0, and adjacent edges vi−1vi and vivi+1 have opposite

orientations (indices taken modulo k+1). The main result of this chapter is the following.

Theorems 2.3.2 and 2.3.4. Let V = Sn2 (C) be the variety of skew-symmetric n × n

matrices of rank at most 2, or V = Mm×n
2 (C) be the variety of rectangular m × n

matrices of rank at most 2. A subset of observed entries S ⊆
(

[n]
2

)
(skew symmetric case)

or S ⊆ [m]× [n] (rectangular case) is independent in the algebraic matroid underlying V

if an only if there exists some acyclic orientation of G(S) that has no alternating closed

trail.

Using techniques of [39], one can see that deciding whether a given S ⊆
(

[n]
2

)
or

S ⊆ [m]× [n] is independent in the algebraic matroid underlying Sn2 (C) orMm×n
2 (C) is

in the complexity class RP. Hence both decision problems are also in NP. We provide an

explicit combinatorial certificate of this fact. Existence of a polynomial time algorithm

for solving either decision problem remains open.

The key to our approach is to use tropical geometry to allow us to reduce to the
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following easier question: Which entries of a dissimilarity map may be arbitrarily specified

such that the resulting partial dissimilarity map may be completed to a tree metric? Our

result here is as follows.

Theorem 2.2.5. Let S ⊆
(

[n]
2

)
. Any partial dissimilarity map whose known distances

are given by S can be completed to a tree metric, regardless of what those specified values

are, if and only if there exists some acyclic orientation of G(S) that has no alternating

closed trail.

As in the case of partial matrices, we give an explicit combinatorial certificate show-

ing that the corresponding decision problem is in NP but we do not know whether a

polynomial time algorithm exists.

The problem of deciding whether a particular partial dissimilarity map is completable

to a tree metric was shown to be NP-complete in [29]. Note that this is distinct from our

decision problem here, because we are not setting values of the observed entries. Special

cases that allow a polynomial time algorithm were investigated in [31, 30]. Questions

about whether a partial dissimilarity map can be completed to a tree metric with a par-

ticular topology have been addressed in [25, 26].

The outline of this chapter is as follows. Section 2.1 lays out some general theory

for using tropical geometry to characterize algebraic matroids. Section 2.2 contains our

results relating to completion of tree metrics. Section 2.3 shows how our results on partial

matrices are easily obtained from our results on trees.

2.1 Completion and tropical varieties

We begin with the necessary preliminaries from tropical geometry. For a more leisurely

treatment of this material, see Section 1.5. The most important parts of this section are

Lemmas 2.1.4 and 2.1.5 which enable us to use the polyhedral structure of a tropical

variety to gain insight into the corresponding algebraic matroid.

Denote by C{{t}} the field of complex formal Puiseux series. That is, C{{t}} is the

set of all formal sums
∑

α∈J cαt
α where J ⊂ Q such that J has a smallest element and

the elements of J can be expressed over a common denominator. The valuation map

val(·) : C{{t}} → Q sends
∑

α∈J cαt
α to min{α ∈ J : cα 6= 0}. For any affine variety V
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over C{{t}}, the corresponding tropical variety is

trop(V ) = {(− val(x1), . . . ,− val(xn)) : (x1, . . . , xn) ∈ V } ⊆ Rn

where the overline indicates closure in the Euclidean topology on Rn. We sometimes refer

to trop(V ) as the tropicalization of V .

We can also tropicalize varieties over C by lifting to C{{t}} and tropicalizing there.

More specifically, let V ⊆ Cn be an affine variety over C with ideal I ⊆ C[x1, . . . , xn]. By

lifting this ideal into C{{t}}[x1, . . . , xn] we obtain a variety V ′ ⊆ (C{{t}})n. The tropical

variety trop(V ) corresponding to V is simply trop(V ′).

As we discussed in Section 1.5.3, tropicalizing an irreducible complex variety preserves

the underlying algebraic matroid structure. Before restating this precisely in Lemma 2.1.1,

we review some definitions from the introduction.

Let K be a field and let V ⊂ Kn. We let M(V ) denote the independence complex of S

which we define to be the collection of subsets S of {1, . . . , n} such that the projection of

V onto the coordinates indicated by S is full-dimensional in KS. When V is an irreducible

variety, then M(V ) is called the algebraic matroid underlying V .

Lemma 2.1.1 ([64], Lemma 2). Let V be an irreducible affine variety over either C or

C{{t}}. Then the independence complex of V and trop(V ) are the same.

Many matrix completion problems ask for a combinatorial description of the algebraic

matroid associated to a particular irreducible affine variety. Lemma 2.1.1 says that we

can tackle such problems by looking at the corresponding tropical variety instead. The

advantage in this is that tropical varieties have a useful polyhedral structure which we

now describe.

Definition 2.1.2. Let Σ be a rational fan in Rn of pure dimension d. We say that Σ

is balanced if we can associate a positive integer m(σ), called the multiplicity, to each

top-dimensional cone σ in a way such that for each cone τ ∈ Σ of dimension d− 1,∑
σ)τ

m(σ)vσ ∈ span(τ)

where vσ is the first lattice point on the ray σ/ span(τ). We say that Σ is connected

through codimension one if for any d-dimensional cones σ, ρ ∈ Σ, there exists a sequence

of d-dimensional cones σ = σ0, σ1, . . . , σk = ρ ∈ Σ such that σi∩σi+1 has dimension d−1.
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The well-known structure theorem for tropical varieties applied to the special case

where the defining equations have constant coefficients gives us the following.

Theorem 2.1.3 ([45], Theorem 3.3.5). Let V be an irreducible d-dimensional affine

variety over C. Then trop(V ) is the support of a balanced fan of pure dimension d that

is connected through codimension one.

The following two lemmas give us ways that one can use the polyhedral structure of

trop(V ) to gain insight into the structure of M(V ). When we refer to a cone in trop(V ),

we mean in a polyhedral subdivision of trop(V ) that is balanced and connected through

codimension one.

Lemma 2.1.4. Let V ⊆ Cn be an irreducible affine variety of dimension d. Then S ⊆ [n]

is independent in M(V ) if and only if S is independent in M(span(σ)) for some d-

dimensional cone σ in trop(V ).

Proof. Let S be independent in M(V ). By Lemma 2.1.1, the projection of trop(V ) onto

RS is full dimensional. In particular, the projection of some maximal dimensional cone

σ ∈ trop(V ) onto RS is full dimensional and therefore S is independent in the matroid

M(span(σ)).

Now let S be independent in M(span(σ)) for some maximal cone σ ∈ trop(V ). Then

the projection of span(σ) onto RS is full dimensional. Therefore the same holds for σ

and therefore trop(V ). So S is in the independence complex of trop(V ) and therefore

independent in M(V ) by Lemma 2.1.1.

Lemma 2.1.5. Let V ⊆ Cn be an irreducible d-dimensional affine variety. Let τ be

a d − 1 dimensional cone of trop(V ) and let σ1, . . . , σk be the d-dimensional cones in

trop(V ) containing τ . If B ⊆ [n] is a basis of M(span(σ1)) then B is also a basis of

M(span(σi)) for some i 6= 1.

Proof. Let L = span(τ) and Li = span(σi). By Theorem 2.1.3 there exist vi ∈ σi \L such

that
∑k

i=1 vi ∈ L. Let B be a basis of L1. Then the projection of L1 onto RB is all of RB

and the projection of L onto RB is some hyperplane {x ∈ RB : cTx = 0}. By padding

with extra zeros, we can extend c to an element of Rn. Then L = L1∩{x ∈ Rn : cTx = 0}
and cTvi 6= 0. Since

∑k
i=1 vi ∈ L, we must have

∑k
i=1 c

Tvi = 0. Therefore there must exist

some i 6= 1 such that cTvi 6= 0. Since Li = L + span(vi), the projection of Li onto RB is

all of RB. So B is a basis of Li.
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We end this section by noting a nice feature about projections of tropical varieties

which was noted by Yu in [64].

Proposition 2.1.6. Let K be either C or C{{t}} and let V ⊆ Kn be an irreducible affine

variety. If S is independent in M(V ) then the projection of trop(V ) into RS is all of RS.

2.2 Tree metrics and tree matroids

In this section we determine which entries of a dissimilarity map can be arbitrarily speci-

fied while still allowing completion to a tree metric. We begin by reviewing the necessary

preliminaries on tree metrics. Proposition 2.2.1 describes the tropical and polyhedral

structure on the set of tree metrics. Lemma 2.2.2 reduces our question about comple-

tion to an arbitrary tree metric to the question about completion to a tree metric whose

topology is a caterpillar tree. We answer this simpler question in Proposition 2.2.3 and

give the section’s main result in Theorem 2.2.5.

We now quickly review the background about tree metrics that was given in Section

1.4. Let X be a set. A dissimilarity map on X is a function δ : X × X → R such that

δ(x, x) = 0 and δ(x, y) = δ(y, x) for all x, y ∈ X. If X = {x1, . . . , xn} and [n] = {1, . . . , n}
then there is a natural bijection between dissimilarity maps on X and points in R([n]

2 ).

Namely, denoting the entry of a point d ∈ R([n]
2 ) corresponding to {i, j} by dij or dji, we

associate a dissimilarity map δ on X with the point d ∈ R([n]
2 ) such that dij = δ(xi, xj).

Hence we will often speak of dissimilarity maps as if they were merely points in R([n]
2 ).

A tree with no vertices of degree 2 with leaf set X is called an X-tree. Let T be an

X-tree and let w be an edge-weighting on T such that w(e) > 0 for all internal edges e

of T . Some authors require that w(e) > 0 for any edge e of T , but we do not. The triple

(T,X,w) gives rise to a dissimilarity map d where dij is the sum of the edge weights

given by w along the unique path from xi to xj in T . Any dissimilarity map d that arises

from a triple in this way is called a tree metric. For example, if X = {1, 2, 3, 4}, then

the dissimilarity map d = (d12, d13, d14, d23, d24, d34) = (0, 3,−2, 5, 0,−1) is a tree metric

because it can be displayed on a tree as in Figure 1.1. Given a tree metric d on X, there

is a unique X-tree T that realizes d as such [53, Theorem 7.1.8]. This tree T is called the

topology of d. A tree T is binary if all internal vertices have degree three.

Authors who require that all edge weights be positive in the definition of a tree

metric have a similar four point condition. The only difference is that i, j, k, l need not
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Figure 2.1: The tree on the left has cherries 12 and 56 hence it is a caterpillar. The tree
on the right has cherries 12, 34 and 56 and is therefore not a caterpillar.

be distinct. We denote the set of all tree metrics on a set of size n by Tn.

Let T be a tree with leaf labels [n]. A cherry on a binary [n]-tree T is a pair of leaves

ij such that i and j are adjacent to the same vertex of degree 3. A caterpillar tree on

n ≥ 4 vertices is a binary tree with exactly two cherries. See Figure 2.1 for an illustration.

The following proposition summarizes many known facts about the polyhedral and

tropical structure of Tn (references are given in the proof). In particular, it tells us how to

realize Tn as a tropical variety along with the polyhedral subdivision guaranteed to exist

by Theorem 2.1.3. We note that it would not be true had we taken the more restrictive

definition of tree metric that required all (as opposed to just internal) edge weights to be

positive. Recall that the Grassmannian Gr(k, n) ⊂ K([n]
k ) is the irreducible affine variety

parameterized by the k × k minors of a k × n matrix over K.

Proposition 2.2.1. The space of phylogenetic trees Tn is trop(Gr(2, n)). We can give Tn
a balanced fan structure connected through codimension one as follows. Each open cone

is the collection of tree metrics whose topology is T for a particular tree T . Such a cone

is maximal if and only if T is binary. The cone has codimension one if and only if T

can be obtained from a binary tree by contracting exactly one edge. Given a cone τ of

codimension one corresponding to tree T , the cones containing τ correspond to the three

binary trees that can be contracted to T .

Proof. Let Ln be the set of tree metrics whose topology is a star tree - that is, a tree

with no internal edges. Since an edge-weighting of a leaf-labeled tree gives rise to a tree

metric if and only if all internal edge weights are nonnegative, Ln is the lineality space

of Tn. Theorem 3.4 in [56] implies that Tn/Ln = trop(Gr(2, n))/Ln. But as Ln is also the

lineality space of Gr(2, n) (c.f. remarks following Corollary 3.1 in [56]), this implies that
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

12 13 14 23 24 34

a 1 1 1 0 0 0
b 1 0 0 1 1 0
c 0 1 1 1 1 0
d 0 1 0 1 0 1
e 0 0 1 0 1 1


Figure 2.2: Let T be the tree on the left with leaves {1,2,3,4} and edges labels
{a, b, c, d, e}. The matrix on the right is AT . Its columns are the λT (ij)’s.

Tn = trop(Gr(2, n)).

The polyhedral structure is given in [13]. Connectedness through codimension one

follows from the fact that any two binary trees on the same leaf set can be reached from

one another via a finite sequence of nearest-neighbor-interchanges (see [62, Theorem

2]). We can see that this polyhedral fan is balanced by assigning multiplicity 1 to each

maximal cone (see Remark 4.3.11 and Theorem 3.4.14 in [45]).

Let T be a tree without vertices of degree two whose leaves are labeled by [n]. Denote

its edge set by E and let RE denote the vector space of edge-weightings of T . For each

pair ij ∈
(

[n]
2

)
, define λT (ij) ∈ RE by λT (ij)e = 1 whenever e is on the unique path from

the leaf labeled i to the leaf labeled j and 0 otherwise. We denote the linear matroid

underlying these λT (ij) by M(T ) and call it the matroid associated to T . We will say

that a set S ⊆
(

[n]
2

)
is independent in M(T ) to mean that {λT (ij)}ij∈S is independent

in M(T ). Let AT be the matrix whose columns are the λT (ij)s. An example is given in

Figure 2.2. Note that row(AT ) is the linear span of the cone in Tn containing all tree

metrics with topology T . Moreover, M(T ) is the matroid of this linear space. These

matroids were introduced and studied in [25].

Lemma 2.2.2. A set B ⊆
(

[n]
2

)
is a basis of M(Tn) if and only if B is a basis in the

matroid associated to some caterpillar tree.

Proof. Lemma 2.1.4 implies that S is independent inM(Tn) if and only if S is independent

in M(T ) for some binary tree T . We proceed by showing that if B is a basis of M(T ) for

a non-caterpillar binary tree T , then B is also the basis of M(T ′) for some binary tree

T ′ with one fewer cherry. It will follow by induction that B is a basis of M(C) for some

caterpillar C.
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So let T be a binary tree with three distinct cherries ij, i′j′, i′′j′′ with corresponding

degree-3 vertices p, p′, p′′. There is a single vertex q in the common intersection of the

three paths p to p′, p′ to p′′, and p to p′′. If we delete q from T we get three trees U, V,W

which contain the cherries ij, i′j′, and i′′j′′ respectively.

We now induct on the number of leaves in U . The base case is where U consists of

the two leaves i and j. We can visualize this as in Figure 2.3a letting U ′ be i and U ′′ be

j. Lemma 2.1.5 and Proposition 2.2.1 imply that B must also be a basis of one of the

trees T1 or T2, depicted in Figures 2.3b and 2.3c respectively. Note that T1 and T2 each

have fewer cherries than T .

Now assume U has more than two leaves. Let s be the first node on the path from

q to p. Deleting s from U splits it into two subtrees which we denote U ′ and U ′′. This

is depicted in Figure 2.3a. Assume ij belongs to the subtree U ′. Using Lemma 2.1.5 and

Proposition 2.2.1 as before, we see that B must also be a basis of one of the trees T3 or

T4, depicted in Figures 2.3b and 2.3c respectively.

(a) T (b) T3 (c) T4

Figure 2.3: Breaking T into subtrees.

We can now repeat the process with U ′ taking the place of U . In the case that B is

a basis of T3 we expand V to include U ′′, and in the case of T4 we instead expand W to

contain U ′′. The result has strictly fewer leaves in U and so we induct.

Lemma 2.2.2 reduces the problem of describing the independent sets of M(Tn) to the

simpler problem of describing the independent sets of M(T ) where T is a caterpillar tree.

Luckily, such independent sets have a simple combinatorial description. Given a subset

S ⊆
(

[n]
2

)
, we let G(S) denote the graph with vertex set [n] and edge set S. For each n,

we let Cat(n) denote the caterpillar with cherries 1, 2 and n − 1, n such that the other

leaf labels increase from 3 to n − 2 along the path from the 1, 2 cherry to the n − 1, n
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cherry. This is depicted in Figure 2.4. Recall that a closed trail in a graph is a sequence

of vertices v0, . . . , vk such that each (vi, vi+1) is an edge (indices taken mod k + 1), no

edge is repeated, and v0 = vk.

Figure 2.4: The caterpillar Cat(n).

Proposition 2.2.3. Let S ⊆
(

[n]
2

)
. Then S is independent in M(Cat(n)) if and only if

G(S) contains no closed trail with alternating vertices. That is, S contains no closed trail

of the form v0, v1, . . . , v2k−1 where v2i−1, v2i+1 < v2i for each i = 0, . . . , k−1 where indices

are taken mod 2k.

Proof. Let ACat(n) be the matrix whose columns are given by the λCat(n)(ij)s. We claim

that if x ∈ R([n]
2 ) then x ∈ row(ACat(n)) if and only if xik + xjl − xil − xjk = 0 for all

i < j < k < l. To see this, note that row(ACat(n)) is equal to the linear hull of the collection

of tree metrics with topology Cat(n). If x is a tree metric with topology Cat(n), then

each quartet i < j < k < l must satisfy xij+xkl < xik+xjl = xil+xjk. Since the topology

of a tree metric is determined by its quartets [53] the relations xik + xjl − xil − xjk = 0

define the linear hull of the set of tree metrics with topology Cat(n).

Now let B be the vertex-edge incidence matrix of a complete bipartite graph on n

vertices. That is, the columns of B are indexed by the set [n]× [n], the rows are indexed

by two disjoint copies of [n], and the column corresponding to (i, j) has 1s at the entries

corresponding to i in the first copy of [n] and j in the second copy, and 0s elsewhere.

Then x ∈ row(B) if and only if x(i,k) + x(j,l) − x(i,l) − x(j,k) = 0 for all i, j, k, l.

Notice that any functional vanishing on row(ACat(n)) can be associated to a functional

vanishing on row(B) in a coordinate-wise way. In particular, for i < j we associate

each coordinate ij in row(ACat(n)) with the coordinate (i, j) in row(B). This means that

M(Cat(n)), which is the column matroid of ACat(n), is the restriction of the column

matroid of B to ground set {x(i,j)} where i < j.
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The column matroid of B is the polygon matroid on the complete bipartite graph

on two disjoint copies of [n]. To realize M(Cat(n)) as a submatroid, we restrict to the

collection of edges (i, j) from {1, . . . , n − 1} to {2, . . . , n} such that i < j. Closed trails

supported on such edges in this bipartite graph correspond exactly to alternating closed

trails in the complete graph on vertex set [n].

Remark 2.2.4. We now have a purely combinatorial proof that the problem of deciding

whether a given S ⊆
(

[n]
2

)
is independent in M(Tn) is in the complexity class NP. Namely,

let Hn be the bipartite graph on partite sets A = {1, . . . , n−1} and B = {2, . . . , n} where

(i, j) is an edge from A to B if and only if i < j. By Proposition 2.2.3, S ⊆
(

[n]
2

)
is indepen-

dent in M(Catn) if and only if the corresponding edges in Hn form no cycles. Therefore,

by Lemma 2.2.2, a polynomial-time verifiable certificate that a given S ⊆
(

[n]
2

)
is inde-

pendent in M(Tn) is a permutation σ of [n] such that the edges {(σ(i), σ(j)), (i, j) ∈ S}
of Hn induce no cycles.

Recall that an acyclic orientation of a graph is an assignment of directions to each

edge in a way such that produces no directed cycles. An alternating closed trail in a

directed graph is a closed trail v0, . . . , vk such that each pair of adjacent edges vi−1vi

and vivi+1 have opposite orientations. We remind the reader of Proposition 2.1.6 which

implies that if S ⊆
(

[n]
2

)
is independent in M(Tn), then one may arbitrarily specify the

distances among pairs in S and still be able to extend the result to a tree metric. We

are now ready to prove Theorem 2.2.5 which we restate below using the language of this

section.

Theorem 2.2.5. Let S ⊆
(

[n]
2

)
. Then S is independent in M(Tn) if and only if some

acyclic orientation of G(S) has no alternating closed trails.

Proof. Assume that some acyclic orientation of G(S) has no alternating closed trails.

Fix such an acyclic orientation. Choose a permutation σ : [n] → [n] such that edge ij

is oriented from i to j if and only if σ(i) < σ(j). Then by Proposition 2.2.3, applying σ

to the vertices of G(S) gives an independent set in M(Cat(n)). Since independence in

M(Tn) is invariant under permutation of the leaves, this implies that S is independent

in M(Tn).

Now assume that every acyclic orientation of G(S) has an alternating closed trail.

Then there does not exist any permutation of [n] that produces an independent set of
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M(Cat(n)) when applied to S. Therefore S is not independent in M(T ) for any caterpillar

T . Lemma 2.2.2 then implies that S is not independent in M(Tn).

2.3 Rank two matrices

We show how Theorem 2.2.5 immediately characterizes the algebraic matroid underlying

the set of n× n skew-symmetric matrices of rank at most 2. We then use this to charac-

terize the algebraic matroid underlying the set of general m×n matrices of rank at most

2.

Denote by Snr (K) the collection of n× n skew-symmetric K-matrices of rank at most

r and denote by Mm×n
r (K) the collection of m × n K-matrices of rank at most r. Both

are irreducible algebraic varieties. We will only be concerned with these sets when K is C
or C{{t}}. Lemma 2.1.1 implies that limited to these choices, the algebraic matroid does

not depend on the ground field and so we will suppress K from notation.

Proposition 2.3.1. The tropicalization of the set of n × n skew symmetric C{{t}}-
matrices of rank at most 2 is the set of all tree metrics on n leaves. That is, trop(Sn2 (C)) =

Tn.

Proof. It is shown in [56] that trop(Gr(2, n)) = Tn. Therefore the proposition follows

from the claim that the projection of Sn2 (C) onto the upper-triangular coordinates is

Gr(2, n). This claim seems to be a well-known fact, but it is difficult to find a precise

reference so we give a proof here.

Let {xij : 1 ≤ i < j ≤ n} be indeterminates and let M be the n× n skew-symmetric

matrix whose ij entry is xij whenever i < j. Let I2,n ⊆ C{{t}}[xij : 1 ≤ i < j ≤ n] be

the radical of the ideal generated by the 3 × 3 minors of M . The variety of I2,n is the

projection onto the upper-triangular coordinates of the set of all n × n skew-symmetric

matrices of rank at most 2. Moreover, I2,n contains all principal 4× 4 minors of M , and

these polynomials are the squares of the canonical generating set of Gr(2, n). Therefore

Gr(2, n) contains the variety of I2,n. Since Gr(2, n) is irreducible, as it is parameterized

by the 2 × 2 determinants of a generic 2 × n matrix, it can be seen to be equal to the

variety of I2,n by showing that the variety of n × n skew-symmetric matrices of rank at

most 2 has dimension at least that of Gr(2, n). Since the dimension of Tn is 2n− 3 (see

e.g. [53]), Theorem 2.1.3 implies that Gr(2, n) has dimension 2n− 3 as well. We can see
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that the set of skew-symmetric matrices of rank at most 2 has at least this dimension

because in constructing such a matrix we may arbitrarily specify all but the first entry

of the first row and all but the first and second entries of the second row.

Theorem 2.3.2. Let S ⊆
(

[n]
2

)
. Then S is independent in M(Sn2 ) if and only if some

acyclic orientation of G(S) has no alternating closed trails.

Proof. This follows from Lemma 2.1.1 and Proposition 2.3.1 and Theorem 2.2.5.

Remark 2.3.3. The same combinatorial certificate as in Remark 2.2.4 can be verified in

polynomial time to show that that a given S ⊆
(

[n]
2

)
is independent in M(Sn2 ).

The dimension of Sn2 is 2n − 3. Therefore the rank of the matroid M(Sn2 ) is also

2n− 3. Also note that M(Sk2 ) is a restriction of M(Sn2 ) whenever k < n. It follows that

if S is a basis of M(Sn2 ), then G(S) has 2n − 3 edges and each subgraph of size k has

at most 2k − 3 edges. It is a famous theorem of Laman [42] that graphs satisfying these

constraints are exactly the minimal graphs which are generically infinitesimally rigid in

the plane. These graphs are often called “Laman graphs.” One might wonder whether

all Laman graphs are bases of M(Sn2 ) but this is not the case. A counterexample is K3,3,

the complete bipartite graph on two partite sets of size three (see Figure 2.5). This is a

Laman graph but it is dependent in M(Sn2 (C)) because the coordinates specified by K3,3

are the entries in a 3 × 3 submatrix. Such a submatrix must be singular in a matrix of

rank 2 and so those entries satisfy a polynomial relation. Alternatively, one could appeal

to Theorem 2.3.2 and check that every acyclic orientation of K3,3 induces an alternating

cycle.

Figure 2.5: K3,3, a Laman graph that is not a basis of M(Sn2 ).

As we will see in the proof of the following theorem, Mm×n
2 can be realized as a

coordinate projection of Sk2 for any k ≥ m+n. This implies that the matroid M(Mm×n
2 )
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can be realized as the restriction of such a M(Sk2 ). We can use this fact to give a char-

acterization of the algebraic matroid of M(Mm×n
2 ), whose bases are also the minimally

(2, 2)-rigid graphs in [38]. The ground set of M(Mm×n
2 ) can be associated with the edges

in the complete bipartite graph with partite vertex sets [m] and [n], denoted Km,n.

Theorem 2.3.4. Let S be a collection of edges of Km,n. Then S is independent in

M(Mm×n
2 ) if and only if some acyclic orientation of G(S) has no alternating closed

trails.

Proof. Define k := m + n. We claim that Mm×n
2 is a coordinate projection of Sk2 . To

see this, first let A ∈ Mm×n
2 . Then choose u1, u2 ∈ Cm×1 and v1, v2 ∈ C1×n such that

A = u1v1 − u2v2. Then define the following k × k matrix

B :=

(
u1

vT2

)(
uT2 v1

)
−

(
u2

vT1

)(
uT1 v2

)
.

Note that B is skew-skew symmetric of rank at most 2, and its upper-right block is equal

to A. Thus the claim is proven and therefore M(Mm×n
2 ) is a restriction of M(Sk2 ) The

result then follows from Theorem 2.3.2.

Remark 2.3.5. The content of Remarks 2.2.4 and 2.3.3 can be adapted to give a combi-

natorial polynomial-time verifiable certificate that a given S ⊆ [m] × [n] is independent

in M(Mm×n
2 ). Namely, assuming m > n, we can translate S into a subset T of

(
[m+n]

2

)
by

mapping each (i, j) ∈ S to the pair {i + m, j}. Then the construction given in Remark

2.2.4 can be applied to T .
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Chapter 3

Phylogenetics and linear spaces

The material in this chapter comes from joint work with Colby Long. It was published

in SIAM Journal of Discrete Mathematics [8].

One approach to phylogenetic reconstruction is to use distance-based methods. Given

a distance matrix consisting of the pairwise distances between n species, a distance-based

method returns a tree metric or equidistant tree metric (ultrametric) that best fits the

data. Typically, the distance matrix is constructed from biological data. It has been

shown that both the set of equidistant tree metrics and the set of tree metrics have close

connections to tropical geometry [4, 5, 56]. Because addition in the tropical semiring is

defined as taking the maximum of two elements, the l∞-metric offers an appealing choice

as a measure of best fit for phylogenetic reconstruction.

Computing a closest tree metric to a given distance matrix using the l∞-metric is

NP-hard [3]. However, there exists a polynomial-time algorithm for computing an l∞-

closest equidistant tree metric [21]. Although the algorithm gives us a way to compute

a closest equidistant tree metric to an arbitrary point in R(n
2) quickly, the set of closest

equidistant tree metrics is not in general a singleton. Indeed, it may be of high dimen-

sion or contain points corresponding to trees with entirely different topologies. Thus, for

phylogenetic reconstruction, there may be several different trees that explain the data

equally well from the perspective of the l∞-metric. Recent work has studied the prop-

erties of equidistant tree space with the l∞-metric [4, 43, 44] but to our knowledge the

dimensions and topologies of the sets of l∞-closest equidistant tree metrics have not been

examined. Similarly, one might ask all of the same questions for tree metrics. Thus, we

are motivated by the following problem.
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Problem 3.0.1. Given a dissimilarity map x ∈ R(n
2), describe the set of (equidistant)

tree metrics that are closest to x in the l∞-metric.

For both equidistant tree metrics and tree metrics, we obtain results concerning the

dimensions of these sets as well as the tree topologies involved. Since the set of tree metrics

and the set of equidistant tree metrics on n species are both polyhedral complexes, we

begin by addressing the following problem as a stepping stone. The results obtained may

be of independent interest to those studying combinatorics or optimization.

Problem 3.0.2. Given a point x ∈ Rm and a linear space L ⊆ Rm, describe the subset

of L consisting of points that are closest to x in the l∞-metric.

Just as with tree metrics, the l∞-closest point in a linear space is not unique in general.

We give a polyhedral decomposition of Rm based on the dimension of the set of points

in L that are l∞-closest to x. One particularly nice implication of this decomposition is

Theorem 3.1.9 which says that the l∞-closest point in a linear space L ⊆ Rn to a given

x ∈ Rn is unique for all such x if and only if the matroid underlying L is uniform.

The set of (equidistant) tree metrics on a fixed set of species is a polyhedral fan. Each

open cone in this fan is the set of (equidistant) tree metrics corresponding to a particular

tree topology. For many dissimilarity maps, optimizing to the set of (equidistant) tree

metrics will be equivalent to optimizing to the linear hull of one such maximal cone.

The equations defining the linear hulls of these cones are highly structured and the

corresponding matroids are not uniform. Therefore, Theorem 3.1.9 implies the existence of

dissimilarity maps with a positive-dimensional set of l∞-closest (equidistant) tree metrics.

For example, we show that there is a full-dimensional set of dissimilarity maps in R(n
2) for

which the set of l∞-closest equidistant tree metrics has dimension n−2. Our construction

shows that we can often obtain many l∞-closest equidistant tree metrics to a dissimilarity

map by adjusting branch lengths in an equidistant tree representing one such metric. We

will also see that there are dissimilarity maps for which the set of l∞-closest equidistant

tree metrics contains equidistant tree metrics representing different tree topologies. In

the case of 4-leaf trees, we provide a decomposition of R(4
2) according to the topologies

represented.

We begin in Section 3.1 with our results on l∞-optimization to linear spaces. In

particular, we give a natural way to assign a combinatorial type to each x ∈ Rm with

respect to some linear subspace L ⊆ Rm. We show that this combinatorial type gives a
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polyhedral decomposition of Rm based on the dimension of the set of l∞-closest points in

L, from which Theorem 3.1.9 follows. Section 3.2 applies the results and ideas for linear

spaces to phylogenetics. We investigate questions that would be of practical interest for

phylogenetic reconstruction such as the dimension and corresponding tree topologies in

the set of closest ultrametrics. We conclude by exploring the l∞-metric as a distance-based

method for reconstructing tree metrics.

3.1 l∞-optimization to Linear Spaces

Given a linear space L ⊆ Rm, we demonstrate a way to associate a sign vector in

{+,−, 0}m to each x ∈ Rm. The associated sign vectors are then precisely the elements

of the oriented matroid associated to L. For each x ∈ Rm, this vector will encode infor-

mation about the dimension of the set of l∞-closest points to x in L.

We now quickly recall from Section 1.3 the necessary background on oriented matroids

associated to linear subspaces of Rn. For any real number r ∈ R, sign(r) ∈ {+,−, 0} is

the sign of r. For a linear functional c ∈ (Rm)∗, sign(c) ∈ {+,−, 0}m is defined by

sign(c)i = sign(ci). Given a sign vector σ ∈ {+,−, 0}m, we define |σ| := #{i : σi 6= 0}.
For a linear space L ⊆ Rm the oriented matroid associated to L, denoted OL, is the set of

all sign vectors s in {+,−, 0}m such that s = sign(c) for some linear functional c ∈ (Rm)∗

that vanishes on L. The elements of an oriented matroid O are the signed vectors of O.

Let ≺∗ be the partial order on {+,−, 0} given by 0 ≺∗ + and 0 ≺∗ − with + and −
incomparable. Then ≺ is the partial order on {+,−, 0}m that is the cartesian product

of ≺∗ m times. The signed circuits of an oriented matroid O are the signed vectors of O
that are minimal with respect to ≺.

An oriented matroid can also be derived from a zonotope, the image of a cube under

an affine map. Let Cδ(x) ⊆ Rm denote the cube of side length 2δ centered at x. That is,

Cδ(x) = {y ∈ Rm : |yi − xi| ≤ δ, i = 1, . . . ,m}.
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To each face F of Cδ(x), associate a sign vector sign(F ) ∈ {+,−, 0}m as follows

sign(F )i =


+ if yi = xi + δ for all y ∈ F

− if yi = xi − δ for all y ∈ F

0 otherwise.

Figure 3.1 gives an illustration of the sign vectors associated to a square.

(0, 0)

(+,+)(−,+)

(−,−) (+,−)

(0,+)

(−, 0)

(0,−)

(+, 0)

Figure 3.1: Sign vectors corresponding to faces of a square.

Let V ∈ R(m−d)×m be a matrix of full row rank and let π : Rm → Rm−d be the affine

map given by x 7→ V x. For fixed x ∈ Rm and δ > 0, π(Cδ(x)) ⊂ Rm−d is a polytope

called the zonotope associated to V . The inverse image of each face of the zonotope is

a face of Cδ(x). Thus, for each face G of π(Cδ(x)), we define sign(G) := sign(π−1(G)).

Proposition 3.1.1 below tells us that the collection of all such sign vectors is an oriented

matroid which only depends on the matrix V and so we denote it OV . Recall from Section

1.3 that the oriented matroid OL underlying a linear subspace L ⊆ Rm has as its set of

vectors the set of all sign vectors sign(c) for functionals c ∈ (Rm)∗ that vanish on L.

Proposition 3.1.1 ([65],Corollary 7.17). Let V ∈ R(m−d)×m be a matrix of full row rank.

Then OV = OkerV .

Given a linear space L ⊆ Rm, we demonstrate a way to associate a sign vector in

{+,−, 0}m to each x ∈ Rm. As we let x vary, the associated sign vectors that arise are

then precisely the vectors of the oriented matroid associated to L. For each x ∈ Rm, this

vector will encode information about the dimension of the set of l∞-closest points to x

in L.

In the rest of this section, we will use the language of matroids to state our main
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results for linear spaces. Before we begin, we establish some notation.

Definition 3.1.2. Let S ⊆ Rm be an arbitrary set and let x, z ∈ Rm. We denote the

l∞-distance from x to z by d(x, z), the l∞-distance from x to S by d(x, S) and the set of

all points in S closest to x by C(x, S). That is

d(x, z) := sup
i
|xi−zi| d(x, S) := inf

y∈S
d(x, y) C(x, S) := {y ∈ S : d(x, y) = d(x, S)}.

Note that C(x, S) = Cd(x,S)(x) ∩ S. Furthermore, when S is a linear space, there

exists a unique minimal face F of Cd(x,S)(x) that contains C(x, S). We use the sign

vector sign(F ) to give each x ∈ Rm a combinatorial type as in the following definition.

Definition 3.1.3. Let L be a linear space and F the minimal face of Cd(x,L)(x) containing

C(x, L). The type of x with respect to L is typeL(x) := sign(F ).

Example 3.1.4. Consider linear spaces L1 = {(t, t) ∈ R2 : t ∈ R} and L2 = {(t, 0) ∈
R2 : t ∈ R} and let x = (−3,−1) and y = (5, 3). Then typeL1

(x) = (+,−), typeL1
(y) =

(−,+), typeL2
(x) = (0,+), and typeL2

(y) = (0,−). See Figure 3.2 for an illustration.

Figure 3.2: Types of x and y with respect to L1 and L2.

We will see that the sign vectors that can arise as the type of a point with respect to

L are precisely the elements of the oriented matroid associated to L. To aid in the proof

we introduce the following convention for generating a vector with a given sign signature.
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Definition 3.1.5. For σ ∈ {+,−, 0}m, u(σ) is the vector in Rm with

u(σ)i :=


1 if σi = +

−1 if σi = −
0 if σi = 0

.

Lemma 3.1.6. Let L ⊆ Rm be a linear space. Then the sign vectors that can arise as

the type of a point with respect to L are precisely the elements of the oriented matroid

associated to L. That is,

OL = {typeL(x) : x ∈ Rm}.

Proof. First, we will show that OL ⊆ {typeL(x) : x ∈ Rm}. Let σ ∈ OL, we will show

that the type of −u(σ) with respect to L is equal to σ. Since σ ∈ OL, by the definition of

OL, there must exist a linear functional c ∈ (Rm)∗ that vanishes on L with sign(c) = σ.

Now we claim that d(−u(σ), L) = 1. Since 0 ∈ L and d(−u(σ),0) = 1, d(−u(σ), L) ≤ 1.

If x ∈ Rm such that d(−u(σ), x) < 1, then for each index i with σi 6= 0, sign(xi) = −σi.
Therefore, cx < 0 which implies x /∈ L. Thus, d(x, L) = 1.

Next, we claim that typeL(−u(σ)) = σ. Observe that

F = {y ∈ C1(−u(σ)) : yi = 0 whenever σi 6= 0}

is a face of C1(−u(σ)) and that sign(F ) = σ. Therefore, it will suffice to show that F is

the minimal face of C1(−u(σ)) containing C(−u(σ), L). So let x ∈ C(−u(σ), L). We have

already shown that this implies that x ∈ C1(−u(σ)). Moreover, for all i, either xi = 0

or sign(xi) = sign(−u(σ)i) = −σi. It must be the case then that if σi 6= 0 then xi = 0.

Otherwise, cx < 0, which is impossible, since c vanishes on L. Therefore, x ∈ F , and so F

contains C(−u(σ), L). Finally, all that remains to show is that F is the minimal face of

C1(−u(σ)) containing C(−u(σ), L). If not, then there must exist j with σj = 0 such that

C(−u(σ), L) is contained in a facet of C1(−u(σ)) of the form {y ∈ C1(−u(σ)) : yj = 1}
or {y ∈ C1(−u(σ)) : yj = −1}. But this is impossible, since we have already shown that

0 ∈ C(−u(σ), L). Hence, typeL(−u(σ)) = σ.

We now show {typeL(x) : x ∈ Rm} ⊆ OL. Let x ∈ Rm. We will show that typeL(x) ∈
OL. Assume L has dimension d and let V ∈ R(m−d)×m be a matrix whose rows form a basis

for L⊥. Let π : Rm → Rm−d be the map x 7→ V x. Let F be the minimal face of Cd(x,L)(x)

that contains C(x, L) so that typeL(x) = sign(F ). The image of Cd(x,L)(x) under π is the
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zonotope associated to V in Rm−d. Our goal will be to show that F is the inverse image

of one of the faces of this zonotope. By the definition of the oriented matroid associated

to a zonotope, this implies that sign(F ) is an element of OV . Proposition 3.1.1 shows

that the oriented matroids OV and OkerV are equal. Since V is specifically constructed

so that kerV = L, this will also imply that typeL(x) = sign(F ) ∈ OL.

By the hyperplane separation theorem, there exists a hyperplane separating L and

the interior of Cd(x,L)(x). Observe that any such hyperplane must contain L and intersect

F in its interior. Therefore, we may choose c ∈ (Rm)∗ in the row-span of V such that the

hyperplane Hc = {y ∈ Rm : cy = 0} is a face-defining hyperplane for F and write c = bV

for some b ∈ (Rm−d)∗.

Since Hc is a face defining hyperplane of Cd(x,L)(x), Hb = {z ∈ Rm−d : bz = 0} must

be a face-defining hyperplane of π(Cd(x,L)(x)). Clearly, π(F ) is contained in the face of

π(Cd(x,L)(x)) defined by Hb. In fact, we have equality. If z ∈ π(Cd(x,L)(x)) then z = V y

for some y ∈ Cd(x,L)(x). So if bz = 0, then bz = (bV )y = cy = 0. This implies that y ∈ F
and so z ∈ π(F ). Similarly, if π(y) ∈ π(F ) then 0 = b(π(y)) = b(V y) = (bV )(y) = cy,

which implies y ∈ F . Thus, we have just shown that π(F ) is a face of the zonotope and

that π−1(π(F )) = F . Therefore, π(F ) inherits its sign from F , and so sign(F ) ∈ OV . As

noted, this implies that typeL(x) = sign(F ) ∈ OL.

As we show in the following theorem, the dimension of C(x, L) depends entirely on

typeL(x). Recall from Section 1.3 that for any σ ∈ OL, the rank of σ in OL, denoted

rank(σ), is the rank of the support of σ in the matroid underlying OL. So rank(σ) is the

smallest number k such that there exists indices i1, . . . , ik with σij 6= 0 such that for all

y ∈ L, if yi1 = · · · = yik = 0, then yj = 0 for σj 6= 0.

Theorem 3.1.7. Let L ⊂ Rm be a linear space of dimension d and let σ ∈ OL be a sign

vector in the oriented matroid associated to L. If x ∈ Rm has typeL(x) = σ, then the

collection of l∞-closest points to x in L has dimension d− rank(σ).

Proof. Let L(σ) denote the linear space obtained by intersecting L and the |σ| hyper-

planes {x ∈ Rm : xi = 0} for σi 6= 0. We claim that if x ∈ Rm with typeL(x) = σ, then

dimC(x, L) = dimL(σ).

Suppose typeL(x) = σ, and let F be the minimal face of Cd(x,L)(x) containing C(x, L).

Let y be a point in C(x, L) that is also in the interior of F . Then given any point

z ∈ L(σ), it is possible to choose ε so that y + εz ∈ F and hence in C(x, L). Therefore,
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dimC(x, L) ≥ dimL(σ). Moreover, any two points in C(x, L) are contained in F ∩L and

so differ only by an element of L(σ). Therefore, dimC(x, L) ≤ dimL(σ).

We now show that dim(L(σ)) = d − rank(σ). Let k := rank(σ) and let i1, . . . , ik be

indices such that for all y ∈ L, yi1 = · · · = yik = 0 implies yj = 0 when σj 6= 0. So L(σ)

can be expressed as the intersection of L with the hyperplanes {x ∈ Rm : xij = 0},
and by minimality of rank, this is not true of any subset of these hyperplanes. So

dim(L(σ)) = d− rank(σ).

Example 3.1.8. Let L := {(t, t, 0) ∈ R3 : t ∈ R}. Consider the points x = (0, 0,−1) and

y = (6, 4, 0). Then typeL(x) = (0, 0,+) and typeL(y) = (−,+, 0). Since rank(0, 0,−) = 0

and d = 1, Theorem 3.1.7 tells us that dim(C(x, L)) = 1. Since rank(+,−, 0) = 1,

Theorem 3.1.7 tells us that dim(C(y, L)) = 0. Figure 3.3 shows x and y each surrounded

by a cube of side length 2 (colored red and light blue, respectively). The intersections

with L are C(x, L) and C(y, L).

Figure 3.3: L and cubes around (0, 0,−1) and (6, 4, 0).

We can use the structure of the matroid ML to glean information about possible

values of dim(C(x, L)). Let Ud,m denote the uniform matroid of rank d on ground set
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{1, . . . ,m}; that is, the circuits of Ud,m are all d+ 1-element subsets of {1, . . . ,m}.

Theorem 3.1.9. Let L ⊆ Rm be a linear space. Then the l∞-closest point to x in L is

unique for all x ∈ Rm if and only if the matroid underlying L is uniform.

Proof. Let d be the dimension of L. If ML is not uniform, then OL has a circuit σ with

|σ| ≤ d, so rank(σ) ≤ d − 1. Then Lemma 3.1.6 and Theorem 3.1.7 imply that there

exists a point x ∈ Rm such that dimC(x, L) = d− rank(σ) ≥ 1.

If ML = Ud,m then rank(σ) = d for all σ ∈ OL. Theorem 3.1.7 implies that

dim(C(x, L)) = 0 for all x ∈ Rm.

Lemma 3.1.6 enables us to give a partition of Rm by type with respect to L.

Proposition 3.1.10. Let L ⊆ Rm be a linear space and let σ ∈ OL be a sign vector in

the oriented matroid associated to L. The set of all points in Rm with type σ with respect

to L is the Minkowski sum of L and the interior of the conical hull of {−u(τ) : σ � τ}.
That is,

{x ∈ Rm : typeL(x) = σ} = L+ int(cone({−u(τ) : σ � τ})).

Proof. Let σ ∈ OL. Define Vσ := {−u(τ) : σ � τ}. First, we will show that everything in

L + int(cone(Vσ)) has type σ. Since adding an element of L to a point does not change

its type with respect to L, it will suffice to show everything in int(cone(Vσ)) has type σ.

Let x ∈ int(cone(Vσ)). Then there exists α > 0 such that if σi = + or σi = −, then

|xi| = α and |xi| < α otherwise. By Lemma 3.1.6, there exists c ∈ (Rm)∗ such that

sign(c) = σ and cy = 0 for all y ∈ L. Let Hc := {y ∈ Rm : cy = 0} be the hyperplane

defined by c. It is clear that d(x,Hc) = α, and any y ∈ C(x,Hc) must have yi = 0 if

|xi| = α. Since L ⊆ Hc, the same is true for each y ∈ C(x, L). Therefore, if σi = + or

σi = −, then σi = typeL(x)i.

Sine d(x,Hc) = α and L ⊆ Hc, d(x, L) ≥ α. Since d(x,0) = α and 0 ∈ L, this implies

d(x, L) = α and 0 ∈ C(x, L). If σi = 0 then |xi − 0| = |xi| < α, which implies that if

σi = 0, typeL(x)i = 0. Thus, typeL(x) = σ.

To see that everything of type σ is contained in L+ int(cone(Vσ)), let x be such that

typeL(x) = σ. By definition of type, this means that σ is the unique sign vector such that

if F is the face of the unit cube C1(0) with type σ, then there exists some y ∈ int(F )

such that x+λy ∈ L for some λ > 0. So there exists some l ∈ L such that x = l+λ(−y)

thus showing that x ∈ L+ int(cone(Vσ)).
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Modulo the lineality space L, the closures of the cones in Proposition 3.1.10 form the

face fan of the zonotope obtained by projecting the cube Cd(x,L)(x) onto L⊥.

Corollary 3.1.11. Let x ∈ Rm and let V be a matrix whose rows span L⊥. Then typeL(x)

is equal to the sign of the unique face F of Z(V ) such that the conic hull of the interior

of F contains V x.

The signs of the facets of Z(V ) correspond to circuits of OL [65, Corollary 7.17]. This

implies that the full dimensional cones of the partition correspond to circuits. Hence

typeL(x) is generically a circuit of OL.

3.2 Applications to Phylogenetics

In this section, we will consider how the results from Section 3.1 can be applied to phylo-

genetic reconstruction using the l∞-metric. We will address Problem 3.0.1, concerning the

structure of the set of l∞-closest points to the set of equidistant tree metrics. In particu-

lar, we show that there can be many (equidistant) tree metrics that are equally close to

a given dissimilarity map, and they can represent many different tree topologies. We also

decompose the space of dissimilarity maps on 3 elements and on 4 elements according to

the tree topologies represented in the set of l∞-closest equidistant tree metrics. Finally,

we investigate optimizing to the set of tree metrics and show how many of the results for

equidistant tree metrics carry over.

3.2.1 Rooted trees and ultrametrics

We begin by giving the necessary definitions related to ultrametrics. As we will see,

there is a relationship between ultrametrics and rooted leaf-labeled trees that is similar

to the relationship between tree metrics and non-rooted leaf-labeled trees, discussed in

Sections 1.4 and 2.2. Let RP (n) be the set of all n-leaf rooted trees with leaves labeled

by [n] := {1, . . . , n}. Following the convention of [52, Section 2.2], we call the elements

of RP (n) rooted phylogenetic [n]-trees. We will also consider the set of rooted binary

phylogenetic [n]-trees which we will denote RB(n). A polytomy of a non-binary tree is a

vertex with degree greater than three - that is, a witness to the property of being non-

binary. To represent the topology of T ∈ RP (n) we use the notation (S1(S2)) to indicate

that the leaves labeled by the set S1 and S2 are on opposite sides of the root in T . We
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apply this notation recursively to give the topology of the rooted subtree in T induced

by the labels in S1 and S2. Thus, for example, we can express the topology of the the

rooted tree in Figure 3.4 by (D(C(AB))).

Let T ∈ RP (n) and assign a positive weighting to the edges of T . This naturally

induces a metric δ on the leaves of T where δ(i, j) is the sum of the edge weights on

the unique path between i and j. If we further assume that the distance from each leaf

vertex to the root is the same then δ is an ultrametric.

Definition 3.2.1. [52, Definition 7.2.1] A dissimilarity map δ : X ×X → R is called an

ultrametric on X if for every three distinct elements i, j, k ∈ X,

δ(i, j) ≤ max{δ(i, k), δ(j, k)}.

An equidistant edge weighting of a rooted tree is a weighting of the edges where the

distance from each leaf to the root is the same and where the weight of every internal

edge is positive. Note that this allows the possibility of nonpositive weights on leaf edges.

Given any ultrametric u on [n], there exists a unique T ∈ RP (n) and an equidistant

weighting w such that the ultrametric induced by (T : w) is equal to u [52, Theorem

7.2.8]. We call (T : w) an equidistant representation of u and say that T (u) := T is the

topology of u.

We can also convert an equidistant edge weighting of a tree into a vertex weighting

of that same tree [52, Theorem 7.2.8]. Given any internal vertex v in an equidistant

representation of an ultrametric u, u(i, j) is constant over all pairs of leaves i, j hav-

ing v as their most recent common ancestor. We obtain a vertex weighting from an

edge weighting by labeling each internal vertex by this constant value. For what fol-

lows, we will represent dissimilarity maps on n elements as points in R(n
2) by letting

δij = δ(i, j) and use Un ⊆ R(n
2) to denote the set of all ultrametrics on n elements.

Many of our examples will involve dissimilarity maps on 4 elements, in which case we let

(xAB, xAC , xAD, xBC , xBD, xCD) be the coordinates of an arbitrary point in R(4
2). We will

also use the notation eij to denote the standard basis vector with xij = 1 and all other

entries equal to zero.

Example 3.2.2. Consider the ultrametric u = (5, 7, 9, 7, 9, 9) ∈ R6. Figure 3.4 shows two

equivalent ways of representing u: with a vertex weighting on the left and an equidistant
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edge weighting on the right.

Figure 3.4: Two different representations of u = (5, 7, 9, 7, 9, 9).

3.2.2 l∞-optimization to the set of Ultrametrics

Given a dissimilarity map δ, we let δU be the unique coordinate-wise maximum ultra-

metric which is coordinate-wise less than δ. This is called the subdominant ultrametric

of δ. For a proof of the existence and uniqueness of the subdominant ultrametric, and a

polynomial-time algorithm for computing it, see [52, Chapter 7].

Our interest in the subdominant ultrametric is that it gives us a way to determine an

l∞-closest ultrametric to a dissimilarity map δ [21]. We first compute the subdominant

ultrametric δU and then use that

d(δ, Un) =
1

2
d(δ, δU).

We define δc, the canonical closest ultrametric to δ, by δc(i, j) = δU(i, j) + 1
2
d(δ, δU).

As noted in the introduction, the set of l∞-closest ultrametrics is in general not a single

point. Moreover, in many instances, the set of l∞-closest ultrametrics to δ, C(δ, Un), will

contain ultrametrics representing different topologies. Thus, there may be several different

trees that explain the data equally well from the perspective of the l∞-metric.

Example 3.2.3. Figure 3.5 depicts three ultrametrics in the set of closest ultrametrics to

δ = (2, 4, 6, 8, 10, 12). The subdominant ultrametric is δU = (2, 4, 6, 4, 6, 6), d(δ, U4) = 3,

and the canonical closest ultrametric (pictured far left) is δc = (5, 7, 9, 7, 9, 9).
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Figure 3.5: Three ultrametrics in C(δ, U4) for δ = (2, 4, 6, 8, 10, 12).

One can easily verify that the canonical closest ultrametric inherits dominance from

the subdominant ultrametric. That is, for any δ ∈ R(n
2), every ultrametric in C(δ, Un)

is coordinate-wise less than δc. Thus, we can construct closest ultrametrics by “sliding

down” vertices of δc so long as the l∞-distance between δ and the new ultrametric does

not exceed d(δ, δc). In Figure 3.5, we obtain u1 from δc by sliding the middle internal

vertex until it reaches the lowest one. We obtain u2 by continuing to slide this vertex

until we can do so no more. Observe that in this case, the root vertex must remain fixed.

Example 3.2.3 shows that it is possible for the set of l∞-closest ultrametrics to a point

to contain different topologies. Below, we consider what sets of topologies are represented

in C(δ, Un) for an arbitrary point δ ∈ R(n
2). The idea behind most of these proofs is to

find a linear space that contains the ultrametrics for many different tree topologies and

apply the constructions for linear spaces developed in Section 3.1.

Definition 3.2.4. Let δ ∈ R(n
2) and u ∈ Un. Define

Top(δ) := {T (u) : u ∈ C(δ, Un)}.

In [23], the authors study the geometry of the set of dissimilarity maps around a

polytomy with respect to the Euclidean norm. They showed that locally this space could

be partitioned according to the closest tree topology. Proposition 3.2.5 shows the contrast

between that situation and using the l∞-metric.

Proposition 3.2.5. Let T be a rooted phylogenetic [n]-tree with a polytomy. Assume that

T is not the star tree. Then there exists δ ∈ R(n
2) such that Top(δ) contains T and all of

its resolutions.
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Proof. Let u be an ultrametric with T (u) = T . Since T is not the star tree, there

exist three leaves {i, j, k} such that uij < uik = ujk. Define δ := u + ε(eik − ejk) for

some 0 < ε < uik − uij. Then u is in C(δ, Un) and so are all possible resolutions of the

polytomy.

Example 3.2.6. Let (xAB, xAC , xAD, xBC , xBD, xCD) be the coordinates of a point in

R(4
2) and consider u = (5, 5, 10, 5, 10, 10) ∈ R(4

2). The topology of the ultrametric u is the

rooted tree (D(ABC)) with an unresolved tritomy.

Note that uBC < uBD = uCD. Choose ε = 1 and let

δ = u+ ε(eCD − eBD) = (5, 5, 10, 5, 9, 11).

The canonical closest ultrametric δc = (6, 6, 10, 6, 10, 10) also has an unresolved trit-

omy and C(δ, U4) contains ultrametrics corresponding to each different resolution. For

example, (4, 6, 10, 6, 10, 10), (6, 4, 10, 6, 10, 10), and (6, 6, 10, 4, 10, 10) are all elements of

C(δ, U4).

We obtain the following corollary by choosing a tree with a single resolved triple in

the proof of Proposition 3.2.5.

Corollary 3.2.7. There exist points in R(n
2) for which Top(δ) ∩ RB(n) contains (2n −

3)!!/3 different tree topologies.

We will also see from our decomposition of R(4
2) that there are actually 6-dimensional

polyhedral cones in which every point in the interior has five l∞-closest binary tree

topologies.

Even when all l∞-closest ultrametrics to some given δ ∈ R(n
2) have the same topology,

the dimension of the set of l∞-closest ultrametrics can be high. The affine hull of each

maximal cone of Un is a linear space defined by relations of the form xik−xjk = 0 where

(k(ij)) is a triple compatible with the corresponding tree. As before, we can find points

where optimizing to Un is equivalent to optimizing to such a linear space and so our

results from Section 3.1 can be applied.

Proposition 3.2.8. Let T ∈ RB(n). There exists δ ∈ R(n
2) such that dim(C(δ, Un)) =

n− 2 and every ultrametric in C(δ, Un) has topology T .

Proof. Let u be an ultrametric and (k(ij)) a triple compatible with T (u). For ε > 0, let

δ = u+ ε(eik− ejk). If ε is sufficiently small, C(δ, Un) = C(δ, L) where L is the affine hull
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of the maximal cone of Un containing u. The type of x relative to L is the sign vector σ

where σij = +, σik = −, and all other entries are zero. The rank of σ in OL is one, and

thus by Theorem 3.1.7, dim(C(δ, Un)) = (n− 1)− 1 = n− 2.

Example 3.2.9. Let (xAB, xAC , xAD, xBC , xBD, xCD) be the coordinates of a point in

R(4
2). Choose u = (5, 7, 9, 7, 9, 9), the ultrametric corresponding to the tree at far left in

Figure 3.4. We will perturb u to construct a dissimilarity map δ where the set of l∞-

closest points to δ has dimension two. The triple (C(AB)) is compatible with T (u) and

so we let

δ = (5, 7, 9, 7, 9, 9) + (eAC − eBC) = (5, 8, 9, 6, 9, 9).

The subdominant ultrametric δU = (5, 6, 9, 6, 9, 9) and the canonical ultrametric δc =

(6, 7, 10, 7, 10, 10). We have two degrees of freedom that come from adjusting the values

of {(δc)AD, (δc)BD, (δc)CD} (sliding down the root) or {(δc)AB} (sliding down the most

recent common ancestor of A and B).

3.2.3 The Decomposition for 3-Leaf and 4-Leaf Trees

The following definition makes formal the idea of partitioning the points in R(n
2) according

to their sets of l∞-closest trees.

Definition 3.2.10. Let {T1, . . . , Tk} ⊆ RP (n). The district of {T1, . . . , Tk} is the set

D({T1, . . . , Tk}) := {δ ∈ R(n
2) : Top(δ) = {T1, . . . , Tk}}.

We can represent a dissimilarity map on three elements as a point (x12, x13, x23) ∈ R3.

There are three maximal cones of U3 corresponding to the three elements of RB(3).

Modulo the common lineality space of each of these cones, span{(1, 1, 1)}, we can fix the

first coordinate at zero and represent the space of dissimilarity maps on three elements

in the plane.

Figure 3.6 depicts a polyhedral subdivision of R3 according to districts. There are

seven cones in this subdivision. The labels (1(23)), (3(12)), and (2(13)) label the image

of the set of ultrametrics for each topology. These labels also label the areas between

the dashed lines which are the 2-dimensional images of the three 3-dimensional districts

D{(1(23))}, D{(2(13))}, and D{(3(12))}. The dotted lines themselves are the images

of the 2-dimensional cones whose interiors form the districts D{(123), (1(23)), (2(13))},
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Figure 3.6: A 2-dimensional representation of the polyhedral subdivision of R3 according
to district.

D{(123), (1(23)), (3(12))}, and D{(123), (2(13)), (3(12))}. The origin represents the im-

age of span{(1, 1, 1)} which is the district of the 3-leaf claw tree, D{(123)}.

Example 3.2.11. The image of the dissimilarity map δ = (1, 1, 3) after modding out by

U3’s lineality space is pictured in Figure 3.6. Note that d(δ, U3) = 1. The hexagon sur-

rounding it is the zonotope that is the image of the cube C1(δ). The filled vertices of the

zonotope correspond to the fully resolved l∞-closest ultrametrics (2, 1, 2) and (1, 2, 2). The

origin corresponds to the l∞-closest ultrametric (2, 2, 2) and δ ∈ D{(123), (2(13)), (3(12))}.

The decomposition for 4-leaf trees is much more complicated. The supplemental ma-

terials, located at [9] contain a Maple [1] file for computing a polyhedral subdivision of

R(4
2) into a fan consisting of 723 maximal polyhedral cones labeling 37 different districts.

Each maximal cone is labeled by a set {T1, . . . , Tk} ⊆ RP (n), meaning that each point

in the interior of the cone is in D({T1, . . . , Tk}).
The computations rely heavily on the functionality of the package PolyhedralSets

(available in Maple2015 and later versions). The fan is computed by first considering each

of the fifteen different trees in RB(4) individually. For each T ∈ RB(4), we construct a

fan with support R(4
2), where all of the points in the interior of each maximal cone in the

fan satisfy either T ∈ Top(δ) or T 6∈ Top(δ). The resulting polyhedral subdivision is the

common refinement of these fifteen fans. Note that there are far more than 37 districts
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since our construction only labels the 6-dimensional districts.

Based on the 3-leaf case, one might hope that districts are easily described or possess

some nice properties. For example, the 3-leaf districts are all convex and tropically convex.

However, the 4-leaf case shows that many of these properties do not hold in general. For

the rest of this section, we let (x12, x13, x14, x23, x24, x34) denote an arbitrary point in R(4
2).

We include some results for those familiar with tropical geometry and its connections to

phylogenetics without the requisite background that would take us too far afield.

Proposition 3.2.12. Districts are not necessarily convex nor tropically convex.

Proof. We offer the following counterexample in R(4
2). Let δ1 = (10, 20, 21, 23, 25, 27) and

δ2 = (10, 23, 21, 20, 25, 27). Not only is Top(δ1) = Top(δ2) = {(4(3(12)))}, but in fact

δ1
U = δ2

U = (10, 20, 21, 20, 21, 21). The point δ3 = 1
2
δ1 + 1

2
δ2 lies on the line between these

two points but Top(δ3) = {(3(4(12)))}.
Similarly, using the operations of the max-plus algebra, the point δ4 = (0�δ1)⊕(−3

2
�

δ2) lies on the tropical line between these two points but Top(δ4) = {(3(4(12)))}.

Let δ and δ′ be dissimilarity maps in R(n
2). From the algorithm for computing the

subdominant ultrametric, it is clear that δ and δ′ will have the same subdominant ultra-

metric topology if they have the same relative ordering of coordinates - that is, δij ≤ δkl

if and only if δ′ij ≤ δ′kl and δij < δkl if and only if δ′ij < δ′kl. For 3-leaf trees, relative

ordering also completely determines district. The example below demonstrates that for

trees with more than three leaves this is not the case.

Example 3.2.13. Let δ1 = (4, 8, 12, 9, 21, 22) and δ2 = (4, 8, 12, 9, 13, 14). Both dissim-

ilarity maps satisfy δi12 < δi13 < δi23 < δi14 < δi24 < δi34. However, Top(δ1) = {(4(3(12)))}
and Top(δ2) = {(4(3(12))), (4(2(13))), (4(1(23)))}.

It does not appear possible to simplify the given subdivision of R(4
2) much further

by combining cones. Consider for example the forty maximal cones that constitute the

district D({(4(3(12)))}). Any five element subset of these cones contains a pair whose

convex hull has full dimensional intersection with the interior of a maximal cone from

another district. Therefore, by combining these cones the best we could hope for is to

represent this district as the union of ten maximal convex cones. While a few can be

patched together the final description does not appear any simpler.

This polyhedral subdivision was constructed by examining each possible 4-leaf sub-

dominant ultrametric topology and writing out inequalities to determine when we could
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obtain a new topology. It is certainly possible, though likely much more difficult, to do

the same thing for trees with any fixed number of leaves. It is unclear how to generalize

our approach to an arbitrary number of leaves and so the following problem remains

open.

Problem 3.2.14. Give a polyhedral decomposition of R(n
2) according to districts.

3.2.4 Tree Metrics

We end with a note about l∞-optimization to the set of tree metrics. A tree metric δ on

[n] is a metric induced by a positive edge weighting of an n-leaf tree (no longer rooted nor

equidistant). Note that this is a slight modification from the definition of a tree metric

given in Sections 1.4 and 2.2 in that here we require all edges weights to be positive

(not just internal). The pair (T : w) that realizes this metric is called a tree metric

representation of δ. A metric δ is a tree metric if and only if it satisfies the four-point

condition [52, Theorem 7.2.6] .

Definition 3.2.15. [52, Definition 7.2.1] A dissimilarity map δ : X×X → R satisfies the

four-point condition if for every four (not necessarily distinct) elements w, x, y, z ∈ X,

δ(w, x) + δ(y, z) ≤ max{δ(w, y) + δ(x, z), δ(w, z) + δ(x, y)}.

We use the notation Tn ⊂ R(n
2) to denote the set of all tree metrics on [n]. If we

insist that the points in Definition 3.2.15 are distinct, then the set of metrics satisfying

the distinct 4-point condition is the tropical Grassmannian [56]. Thus, the problem of

finding the closest tree metric is closely related to the problem of l∞-optimization to this

tropical variety.

Although there is no subdominant tree metric, we can still compute the l∞-distance

from an arbitrary point to the set of tree metrics. The set of binary phylogenetic trees

with label set [n] is B(n). For each T ∈ B(n), the distance to the set of tree metrics

with topology T can be found by solving a linear program. Taking the minimum of

these (2n − 5)!! individually computed distances gives us the distance to the set of tree

metrics. Proposition 3.2 in [7] show that C(δ, Un) is always a tropical polytope and thus

connected. This is a nice property from the perspective of phylogenetic reconstruction, as

it means we have a set of closest ultrametrics any of which can be obtained from another
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by shrinking and growing branch lengths without ever leaving the set C(δ, Un). The same

does not hold for tree metrics.

Proposition 3.2.16. There exists δ ∈ R(6
2) such that C(δ, T6) and C(δ,G2,6) are not

connected.

Proof. Let

δ = (35, 22, 32, 49, 42, 26, 34, 23, 32, 39, 41, 34, 46, 49, 32)

be the metric in R(6
2) with coordinates (δ12, δ13, δ14, . . . , δ45, δ46, δ56). Then d(δ, T6) =

d(δ,G2,6) = 5. The set C(δ, T6) is the union of two disjoint polyhedra. One is four-

dimensional and corresponds to the 6-leaf tree with nontrivial splits 13|2456, 134|256 and

25|1346 and the other is six-dimensional and corresponds to the 6-leaf tree with nontrivial

splits 14|2356, 134|256 and 56|1234. In this instance, C(δ, T6) = C(δ,G2,6).

Unfortunately, many of the less than desirable properties exhibited in the ultrametric

case hold for tree metrics. Simple modifications to the constructions for ultrametics give

analogous results for tree metrics and unrooted trees to the results in Propositions 3.2.5

and 3.2.8, and Corollary 3.2.7. We conclude with one such example about the possible

dimension of the set of l∞-closest tree metrics to a point.

Proposition 3.2.17. Let T ∈ B(n). There exists δ ∈ R(n
2) such that dim(C(δ, Tn)) =

2n− 6 and every tree metric in C(δ, Tn) has T as a tree metric representation.

Proof. Let z be a tree metric with tree metric representation T . Let L be the affine hull

of the cone of tree metrics corresponding to T . This is the linear space of dimension

2n− 3 defined by all of the equalities of the form xik + xjl − xil − xkj = 0 where ij|kl is

an induced quartet of T .

Choose i, j, k and l so that ij|kl is a quartet of T . For ε > 0, let δ = z + ε(eik +

ejl − eil − ekj). Since T is binary, if ε is sufficiently small, C(δ, Tn) = C(δ, L). The type

of z relative to L is the signed vector σ where σil = +, σkj = +, σik = −, σjl = −, and

all other entries are zero. The rank of σ in OL is three, and thus by Theorem 3.1.7,

dim(C(δ, Un)) = (2n− 3)− 3 = 2n− 6.
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Chapter 4

Unimodular Hierarchical Models

Part of the material in this chapter comes from joint work with Seth Sullivant that was

published in Journal of Combinatorial Theory, Series B [12]. The remaining material

comes from joint work with Chris O’Neill that was published in Journal of Algebraic

Statistics [10].

This chapter studies a particular subclass of the discrete log-linear models called hier-

archical models. Such models are naturally indexed by pairs (C,d) where C is a simplicial

complex on ground set {1, . . . , n} and d = (d1, . . . , dn) is an integer vector satisfying

di ≥ 2 for each i. The main results of this chapter are Theorem 4.9.1 and Remark 4.10.4.

Theorem 4.9.1 gives a complete classification of the pairs (C,d) such that the correspond-

ing hierarchical model has a unimodular toric ideal. Remark 4.10.4 gives a combinatorial

classification of all the elements in the Graver basis of any unimodular toric ideal coming

from a hierarchical model.

4.1 Preliminaries

Definition 4.1.1. A (abstract) simplicial complex C is a pair (V,F) where V is a finite

set and F is a set of subsets of V such that if G ⊂ F and F ∈ F , then G ∈ F .

Given a simplicial complex (V,F), the set V is called the ground set of C and each

F ∈ F is called a face of C. Inclusion-wise maximal faces of C are called facets. We

will use the notation ground(C) and facet(C) to denote the ground set and facets of a

simplicial complex C, respectively.
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Let X1, . . . , Xn be discrete random variables such that Xi has di states. Their joint

distribution is a d1 × · · · × dn tensor P . Let C be a simplicial complex on ground set [n].

Each F ∈ C corresponds to the tensor giving the marginal distribution on {Xi : i ∈ F}.
Denote d := (d1, . . . , dn) and let LC,d ⊂ Rd1 ⊗ · · · ⊗ Rdn be the lattice consisting of

d1 × · · · × dn-way integer tables whose marginals indexed by C are all zero. We will

soon see that the lattice LC,d can be realized as the kernel of a matrix AC,d and so

ILC,d = IAC,d is toric (see Section 1.6 for the necessary background on toric ideals). The

hierarchical model corresponding to (C,d) is the set of joint probability tensors P such

that log(P ) ∈ VAC,d Such models are used in categorical data analysis [63, Sections 1.2

and 7.2]. Each pair (C,d) consisting of a simplicial complex and an integer weighting of

its ground set will be called an HM pair. Definition 4.1.2 gives a construction of a matrix

AC,d such that kerZAC,d = LC,d.

Definition 4.1.2. Fix an HM pair (C,d). Define dF := [di1 ] × · · · × [dik ] for each facet

F = {i1, . . . , ik} of C. We write RdF for the vector space with coordinates indexed by

j ∈ dF (whose coordinates are in turn indexed by the vertices of F ). For i ∈ [d1]×· · ·×[dn],

define ai ∈
⊕

F∈facet(C) RdF such that

aiF, j =

{
1 whenever ik = jk for each k ∈ F
0 otherwise

and let AC,d denote the matrix with columns ai as i ranges over [d1]× · · · × [dn].

This matrix AC,d can be seen as the representation in standard bases of the linear

map that takes a d1 × · · · × dn-way table to its marginals indexed by C. It then follows

easily from the definition of LC,d that kerZAC,d = LC,d. We give an example of this

construction.

Example 4.1.3. Consider the simplicial complex C with ground set [3] and facets {1, 2}
and {2, 3}. The matrixAC,d for d = (3, 2, 2) as in Definition 4.1.2 is displayed in Figure 4.1

with row and column labels.

We remind the reader of some terms and notation introduced in 1.6.2. Given a vector

u ∈ Rn, we can write u = u+−u− where u+ and u− have disjoint support and nonnegative

entries. Define a partial order ≺ on Rn such that u ≺ v if u+ ≤ u− and v+ ≤ v−.
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2
2

{1, 2} (1, 1) 1 1 0 0 0 0 0 0 0 0 0 0
(1, 2) 0 0 1 1 0 0 0 0 0 0 0 0
(2, 1) 0 0 0 0 1 1 0 0 0 0 0 0
(2, 2) 0 0 0 0 0 0 1 1 0 0 0 0
(3, 1) 0 0 0 0 0 0 0 0 1 1 0 0
(3, 2) 0 0 0 0 0 0 0 0 0 0 1 1

{2, 3} (1, 1) 1 0 0 0 1 0 0 0 1 0 0 0
(1, 2) 0 1 0 0 0 1 0 0 0 1 0 0
(2, 1) 0 0 1 0 0 0 1 0 0 0 1 0
(2, 2) 0 0 0 1 0 0 0 1 0 0 0 1



Figure 4.1: AC,d for the HM pair (C,d) in Example 4.1.3.

Definition 4.1.4. The Graver basis of an integer matrix A ∈ Zm×n, denoted Gr(A), is

the set of ≺-minimal elements of kerZA.

Definition 4.1.5. An integer matrix A ∈ Zm×n and its corresponding toric ideal IA

and toric variety VA are said to be unimodular if any/all of the following four equivalent

conditions (c.f. Proposition 1.6.10) hold:

(1) every element of the Graver basis of A is a {0, 1,−1} vector

(2) every circuit of A is a {0, 1,−1} vector

(3) For any matrix A′ obtained from r := rankA linearly independent rows of A, there

exists some λ such that each r × r minor of A′is 0 or ±λ
(4) For any b in the affine semigroup generated by the columns of A, the polyhedron

PA,b = {x ∈ Rs : Ax = b, x ≥ 0} has all integral vertices.

4.1.1 Problem statements, motivation, and outline

We say that an HM pair (C,d) is unimodular to mean that the toric ideal IAC,d is

unimodular (c.f. Definition 1.6.8). This chapter solves the following problem.

Problem 4.1.6. Classify the unimodular HM pairs (C,d).
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From the perspective of hypothesis testing, unimodularity is perhaps the most desir-

able property a hierarchical model could satisfy. In particular, the integer programming

problems that arise in sequential importance sampling are easy to solve for unimodu-

lar models [20]. If a hierarchical model is unimodular, then it also satisfies a property

called normality which was identified by Rauh and Sullivant in [50] as helpful when one

uses toric fiber products to construct Markov bases of hierarchical models. Moreover,

classifying the unimodular hierarchical models is a good first step towards the problem

of classifying the normal hierarchical models since these families coincide for HM pairs

(C, (2, . . . , 2)) when C has a facet containing all but one vertex. See [11] for more about

the normality question. This chapter also solves the following problem.

Problem 4.1.7. Combinatorially describe the Graver bases of all unimodular hierarchi-

cal models.

The motivation for solving Problem 4.1.7 is that the algorithm described in [24] can

be used to perform hypothesis tests on a hierarchical model, but only if a Markov basis

of the corresponding toric ideal is known. Since Graver bases are Markov bases [57], the

solution to Problem 4.1.7 has algorithmic consequences. Moreover, efficient generation of

random elements of such a Markov basis is also necessary, and having a combinatorial

description of the Markov basis can be leveraged for this purpose. Knowing the Graver

basis of unimodular hierarchical models can also be used to generate Markov bases of

more general hierarchical models via the toric fiber product construction [59].

We solve Problem 4.1.6 in two major steps. The first step is to classify the simplicial

complexes C such that (C, (2, . . . , 2)) is unimodular. This is done in Sections 4.2 through

4.5. The remaining sections solve the general problem. Our solution to Problem 4.1.7 is

almost an immediate consequence of our solution to Problem 4.1.6.

4.2 Constructions of Unimodular Complexes

Given a simplicial complex C, we say that C is unimodular if the HM pair (C, (2, . . . , 2))

is unimodular. In this section we describe some operations on simplicial complexes that

preserve unimodularity. In particular we show that unimodularity is preserved when

passing to induced subcomplexes, to the Alexander dual of a simplicial complex, and to

the link of a face of a simplicial complex. We can also build new unimodular complexes
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from old ones by adding cone vertices, ghost vertices, or taking a Lawrence lifting. We

also construct the basic examples of unimodular complexes. These tools together go in

to our constructive description of unimodular complexes.

Proposition 4.2.1. All induced sub-complexes of a unimodular complex are unimodular.

Proof. Let C ′ be the induced subcomplex of C obtained by restricting to some vertex set

F ⊆ [n]. Let B be the matrix obtained by taking the columns of AC corresponding to

the elements i = (i1, . . . , in) ∈
∏

j∈[n][dj] such that ij = 1 for all j ∈ [n] \ F . Let B′ be

the matrix obtained from B by removing rows of all zeros. Then B′ = AC′ . So AC′ and B

have the same Graver basis, which is a subset of the Graver basis of AC. So unimodularity

of AC implies unimodularity of AC′ .

Next we will show that unimodularity is preserved under the Alexander duality op-

eration.

Definition 4.2.2. Let C be a simplicial complex on [n]. The Alexander dual of C, denoted

C∗ is defined as:

C∗ = {S ⊆ [n] : [n] \ S /∈ C}.

Note that if C has d faces, then C∗ has 2n − d faces and that the facets of C∗ are the

complements of the minimal non-faces of C.
Since we are now restricting attention to the binary case, where di = 2 for each

i ∈ [n], entries of vectors in Rd are indexed by elements of {1, 2}n and entries of vectors

in
⊕

f∈facet(C) RdF are indexed by pairs (S, j) where S ∈ facet(C) and j ∈ {1, 2}S. However,

the statement and proof of Proposition 4.2.6 become cleaner if we replace {1, 2}n and

{1, 2}S by {0, 1}n and {0, 1}S, respectively. So we adapt this convention for the remainder

of this section. We now introduce some notation that we use in Propositions 4.2.4 and

4.2.6.

Definition 4.2.3. Let S ⊆ [n] and j ∈ {0, 1}S and i ∈ {0, 1}[n]\S. Then ei,j denotes the

element v ∈ R{0,1}n such that vk = 1 if kt = jt when t ∈ S and kt = it when t ∈ [n] \ S,

and vk = 0 otherwise.

We are now ready to give an explicit description of AC∗ .
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Proposition 4.2.4. Let C be a simplicial complex on [n]. Let M be a matrix with the

following set of columns: ∑
j∈{0,1}S

ei,j : S is a minimal non-face of C, i ∈ {0, 1}[n]\S

 .

Then AC∗ = MT .

Proof. We index the columns of M by pairs (S, i) where S is a minimal non-face of C,
and i ∈ {0, 1}[n]\S. The rows of M are indexed by elements of {0, 1}n. By construc-

tion, M(k, (S, i)) = 1 if and only if k|[n]\S = i. Similarly, when F is a facet of C∗,
AC∗((F, i),k) = 1 if and only k|F = i. The result follows since S is a minimal non-face of

C if and only if [n] \ S is a facet of C∗.

In order to relate the unimodularity of AC and AC∗ , we need two propositions. The

first is a standard result from the theory of matroid duality, though we could not find a

precise reference.

Proposition 4.2.5. Let A ∈ Kr×n have rank r. Let B ∈ K(n−r)×n have rank n− r such

that ABT = 0. Then there exists a non-zero scalar λ ∈ K∗ such that for all S ⊆ [n] with

#S = r,

det(AS) = ±λ det(B[n]\S).

Proof. Note that ABT = 0 if and only if CABTDT = 0 for all C ∈ GLr(K) and D ∈
GLn−r(K). Moreover, the r×r minors of A and CA are constant scalar multiples of each

other as are the (n−r)× (n−r) minors of B and DB. Therefore, after multiplying by an

element of GLr(K) and permuting columns, we can assume A has the form A = (Ir M)

where Ir is an r × r identity matrix. Similarly, we can also suppose B has the form

B = (−MT In−r). Then any det(AS) is a minor of M with row indices [r]\S and column

indices S \ [r]. The determinant det(B[n]\S) is the same minor of M , up to a sign.

Proposition 4.2.6. Let C be a simplicial complex on [n]. Then the following set of vectors

spans ker(AC):

K =

 ∑
j∈{0,1}S

(−1)‖j‖1ei,j : S is a minimal non-face of C, i ∈ {0, 1}[n]\S

 .
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Furthermore, if we view the entries of K as the columns of a matrix M ′, then we can

multiply some set of rows and columns of M ′ by −1 and get M , as defined in Proposition

4.2.4.

Proof. First, note that for any x ∈ K, ACx = 0, so K ⊂ ker(AC). If we view the entries of

K as the columns of a matrix M ′, we are done if we show that rank(M ′) = dim(ker(AC)).
We proceed by proving the second statement of the lemma. The first statement will

follow since Proposition 4.2.4 implies rank(M) = rank(AC∗) and we know rank(AC∗) =

2n −#C = dim(ker(AC)) ([33, Thm 2.6]).

As before, we index the columns of M ′ by pairs (S, i) where S is a minimal non-face

of C, and we index the rows of M ′ by the binary n-tuples. Let M ′
(S,i) be a column of M ′.

For any k ∈ {0, 1}n, the entry M ′
(S,i),k is nonzero if and only if k|[n]\S = i - i.e. for each

column, the k for each nonzero entry has fixed k|[n]\S = i. Now in this case, recall that

M ′
(S,i),k = +1 if ‖j‖1 is even, and M ′

(S,i),k = −1 if ‖j‖1 is odd. Therefore, when ‖i‖1 is

even, M ′
(S,i),k = +1 if ‖k‖1 is even and M ′

(S,i),k = −1 when ‖k‖1 is odd. And when ‖i‖1

is odd, M ′
(S,i),k = +1 when ‖k‖1 is odd and M ′

(S,i),k = −1 when ‖k‖1 is even. So for a

fixed column M ′
(S,i), the sign of a nonzero entry M ′

(S,i),k depends only on the parity of

k. So if we multiply all the rows M ′
·,k such that ‖k‖1 is odd by −1, the entries in each

column will all have the same sign. Then we can multiply all the negative columns by

−1, to arrive at the matrix from Proposition 4.2.4.

Now we are ready to show that Alexander duality preserves unimodularity.

Proposition 4.2.7. Let C be a simplicial complex on ground set [n]. Then C is unimod-

ular if and only if C∗ is unimodular.

Proof. Consider the set K from Proposition 4.2.6 as a matrix of column vectors. Since

K spans the kernel of AC, Proposition 4.2.5 implies that KT is unimodular if and only

if AC is unimodular. Then we can multiply the appropriate rows and columns of K by

−1 to get M as in Proposition 4.2.4. Since these operations preserve the absolute values

of full rank determinants, KT is unimodular if and only if MT is. Proposition 4.2.4 says

that AC∗ = MT .

Taking Alexander duals and induced complexes gives rise to another unimodularity

preserving operation which we now define.
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Definition 4.2.8. Let S ∈ C be a face of C. Then the link of S in C is the new simplicial

complex

linkS(C) = {F \ S : F ∈ C and S ⊆ F} .

When S = {v}, we simply write linkv(C) := link{v}(C).

Note that we can obtain linkS(C) by repeatedly taking links with respect to vertices.

That is if S is a face of C and #S ≥ 2 and v ∈ S, then

linkS(C) = linkv(linkS\{v}(C)).

Proposition 4.2.9. If C is a simplicial complex and S is a face of C, then linkS(C) =

(C∗ \ S)∗.

Proof. By definition, we have:

(C∗ \ S)∗ = {R ⊆ [n] \ S : ([n] \ S) \R /∈ C∗ \ S} .

Then we have the following chain of equivalences on some R ⊆ [n] \ S:

([n] \ S) \R /∈ C∗ \ S

⇐⇒ ([n] \ S) \R /∈ C∗

⇐⇒ [n] \ (([n] \ S) \R) ∈ C

and since [n] \ (([n] \ S) \R) = R ∪ S, we have R ∪ S ∈ C.

Corollary 4.2.10. Let C be a unimodular simplicial complex on ground set [n]. Then for

any face S of C, linkS(C) is unimodular.

Proof. Proposition 4.2.9 implies that linkS(C) can be obtained via Alexander duality and

passing to an induced subcomplex. Unimodularity then follows from Propositions 4.2.1

and 4.2.7.

Now we turn to operations for taking a complex that is unimodular and constructing

larger unimodular complexes. If C has a vertex v that lies in each facet of C, we say that

v is a cone vertex of C. The following proposition tells us that unimodularity is invariant

under adding or removing a cone vertex.
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Proposition 4.2.11. Let C be a simplicial complex on [n]. We define C ′ on [n+ 1] to be

the simplicial complex with the following facets:

{F ∪ {n+ 1} : F is a facet of C}.

Then AC is unimodular if and only if AC′ is.

Proof. We will index the columns of AC′ by the binary n+ 1 tuples such that those with

the n+ 1 coordinate equal to 1 come before those with n+ 1 coordinate equal to 2. Then

we get the following block form:

AC′ =

(
AC 0

0 AC

)
.

The Graver basis of AC′ is therefore {(u, 0), (0, u) : u ∈ GrA}. Hence the Graver basis

of AC′ consists of 0,±1 elements if and only if the Graver basis of AC consists of 0,±1

elements.

By induction, adding or removing multiple cone vertices from a simplicial complex

does not affect unimodularity. We introduce the following notation to denote this.

Definition 4.2.12. Let C be a simplicial complex on vertex set [n]. Then we define

conep(C) to be the simplicial complex on [n] ∪ {u1, . . . , up} with the following facets

{F ∪ {u1, . . . , up} : F is a facet of C}.

When p = 0, we define conep(C) = C.

Definition 4.2.13. For any matrix A ∈ Rs×t, we define the Lawrence lifting of A to be

the matrix

Λ(A) =

A 0

0 A

1 1

 ∈ R(2s+t)×2t

where 0 denotes the s× t matrix of all zeroes and 1 denotes a t× t identity matrix.

By Theorem 7.1 in [57], Λ(A) is unimodular if and only if A is unimodular. This gives

rise to another unimodularity-preserving operation on simplicial complexes.
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Definition 4.2.14. Let C be a simplicial complex on [n]. We define the Lawrence lifting

of C to be the simplicial complex Λ(C) on [n+ 1] that has the following set of facets:

{[n]} ∪ {F ∪ {n+ 1} : F is a facet of C}.

In this case, we refer to the facet [n] as a big facet.

If a complex C on [n + 1] has big facet [n], then C = Λ(linkn+1(C)). In particular,

C = Λ(D) for some complex D if and only if C has a big facet.

Proposition 4.2.15. The simplicial complex C is unimodular if and only if Λ(C) is

unimodular.

Proof. Note that by construction Λ(AC) = AΛ(C). Hence Theorem 7.1 in [57] implies the

proposition.

If a simplicial complex C can be expressed as Λ(C ′), then we say that C is of Lawrence

type. A simplicial complex on n vertices is of Lawrence type if and only if it has a facet

containing n− 1 vertices. We will refer to any facet of C that has n− 1 elements as a big

facet.

We now give our final unimodularity preserving operation.

Definition 4.2.16. Let C be a simplicial complex on ground set [n]. Let Gp(C) denote the

same simplicial complex but on ground set [n+p]. Note that the vertices n+ 1, . . . , n+p

are not contained in any face of Gp(C). In this case we say that n+ 1, . . . , n+ p are ghost

vertices. When p = 1 we drop the superscript; i.e. we just write G(C).

Proposition 4.2.17. A simplicial complex C is unimodular if and only if Gp(C) is uni-

modular.

Proof. This is true because

AGp(C) =
(
AC . . . AC

)
.

Note that adding a ghost vertex to a complex is Alexander dual to taking the Lawrence

lifting of a simplicial complex, that is G(C)∗ = Λ(C∗).
We now state a useful fact about the interaction of these operations.
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Proposition 4.2.18. The operation conep(·) commutes with the operations of taking

links, duals, induced sub-complexes and adding ghost vertices.

For any vertex v of C, we let C \ v denote the induced subcomplex on C \ {v}. Then

for vertices v 6= u of C, the operations · \v and linku(·) commute. So if D can be obtained

from C by applying a series of deletions, and taking links, then we can write

D = linkR(C \ S)

where F ∈ C and S,R are a subset of vertices of C such that S ∩ R = ∅. This gives rise

to the following definition:

Definition 4.2.19. Let C be a simplicial complex. Then D is a minor of C if D =

linkR(C \ S) where S and R are subsets of vertices of C such that S ∩R = ∅, and R is a

face of C.

We warn the reader that although it is natural to view simplicial complexes as a

generalization of graphs, our definition of simplicial complex minor does not generalize

the usual notion of graph minor. Alternatively, a simplicial complex can be seen as a

generalization of a matroid, and our definition of minor is a generalization of the usual

notion of a matroid minor [37]. This definition of simplicial complex minor is useful for

our purposes because of Proposition 4.2.20.

Proposition 4.2.20. If C is a unimodular simplicial complex, then every minor of C is

unimodular.

Proof. This follows immediately from Propositions 4.2.1 and 4.2.10.

The fundamental example of a unimodular simplicial complex is the disjoint union

of two simplices. Here a simplex ∆n is the simplicial complex on an n + 1 element set

with a single facet consisting of all the elements. We denote the irrelevant complex {∅}
by ∆−1 and the void complex {} by ∆−2.

Proposition 4.2.21. Let C = ∆m t ∆n be the disjoint union of two simplices, for

m,n ≥ 0. Then C is unimodular.

Proof. The matrix AC in this case is the vertex-edge incidence matrix of a complete

bipartite graph with 2m+1 and 2n+1 vertices in the two parts of the partition. Such
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vertex-edge incidence matrices are examples of network matrices and are hence totally

unimodular [51, Ch. 19].

A second family of fundamental examples comes from taking the duals of the disjoint

union of two simplices. We use Dm,n to denote the dual of a disjoint union of an m-simplex

and an n-simplex, i.e.

Dm,n := (∆m t∆n)∗.

We close this section by giving a workable description of Dm,n. We can divide the vertices

of Dm,n into disjoint sets M,N such that M contains the vertices of the ∆m in D∗m,n and

N contains the vertices of the ∆n in D∗m,n. Then, the facets of Dm,n are precisely the

subsets of M tN that leave out exactly one element of M and one element of N . Notice

that the complexes induced on M , N are ∂∆m and ∂∆n respectively. Also, note that for

any v ∈M , linkv(Dm,n) = Dm−1,n and for any v ∈ N , linkv(Dm,n) = Dm,n−1.

4.3 β-avoiding Simplicial Complexes

Part of our main result is a forbidden minor classification of unimodular simplicial com-

plexes. In this section, we identify these forbidden minors and prove various properties

about the complexes that avoid them.

Proposition 4.3.1. The following simplicial complexes are minimal nonunimodular sim-

plicial complexes:

1. P4, the path on 4 vertices

2. O6, the boundary of the octahedron or its dual O∗6

3. J1, the complex on {1, 2, 3, 4, 5} with facets 12, 15, 234, 345 or its dual J∗1 , with facets

134, 235, 245.

4. J2, complex on {1, 2, 3, 4, 5} with facets 12, 235, 34, 145

5. For n ≥ 1, ∂∆n t {v}, the disjoint union of the boundary of an n-simplex and a

single vertex.

Note that P4, J2 and ∂∆n t {v} are isomorphic to their own duals.

Proof. We can check that the complexes P4, O6, O
∗
6, J1, J

∗
1 , and J2 are not unimodular by

using the software 4ti2 [2] to compute the Graver basis and looking for entries that are not
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Figure 4.2: The complexes P4 (top), J1 (center), J∗1 (left), and J2 (right).

0,±1. In the case of O6 and O6∗, these are too large to compute the entire Graver basis.

However, selecting sufficiently large random subsets of the columns produced Graver

basis elements of the desired form. A Macaulay2 script for doing these computations can

be found on my website [9]. For the infinite family ∂∆n t {v} where n ≥ 1, examples

of a non-squarefree Graver basis element appear in [58]. These results show that these

examples are not unimodular. To see that they are minimal, note that every subcomplex

obtained by deleting a single vertex or taking the link at a vertex produced a unimodular

complex in all cases.

Definition 4.3.2. A simplicial complex C is β-avoiding if it does not contain any of the

complexes from Proposition 4.3.1 as minors.

Since none of the complexes from Proposition 4.3.1 is unimodular, Proposition 4.2.20

implies that if C is unimodular, then C is β-avoiding. The converse of this is our forbidden

minor classification of unimodular complexes which we prove in Theorem 4.5.3.

We now give some technical results about β-avoiding complexes. Before beginning,

we remind the reader that ∂∆1 t {v} is an independent set on 3 vertices, and so no

β-avoiding complex can have an independent set of size 3.

Proposition 4.3.3. Let C be a β-avoiding simplicial complex. Then C∗ is also β-avoiding.

Proof. The list of prohibited minors of β-avoiding complexes is closed under taking duals.

The proposition follows when we note that if D is a minor of C, then D∗ is a minor of

C∗. This is true because if D∗ = linkS(C∗ \R), then two applications of Proposition 4.2.9

give

D∗ = ((C∗ \R)∗ \ S)∗

= (linkR(C) \ S)∗
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and therefore D = linkR(C) \ S. So D is a minor of C.

Proposition 4.3.4. Let C be a β-avoiding simplicial complex that has C4 induced. Then

the complex induced on the non-ghost vertices of C is conep(C4) for some p.

Proof. Assume C has no ghost vertices. Let u1, . . . , u4 be the vertices that induce C4

in C. If these are the only vertices, we are done, so let v be another vertex in C. Let

D denote the complex induced on v, u1, . . . , u4. Any minor of D is a minor of C, so D
must also be β-avoiding. Vertex v cannot be disconnected from u1, . . . , u4 since otherwise

D has an independent set of size 3. Furthermore, v must connect to u1, . . . , u4 with a

triangle. Otherwise if v connected to ui with an edge, then ui has edge degree 3 and so

linkv(D) is an independent set on 3 vertices. There are 4 possible triangles that v can

join with u1, . . . , u4 in D so that u1, . . . , u4 induce C4. If v is only in one such triangle,

wlog {v, u1, u2}, then {v, u1, u3, u4} is an induced P4. The two non-isomorphic complexes

on 5 vertices that have two triangles and an induced C4 are J1 and J2. If D has 3 of the

possible triangles, then linkv(D) is P4. So D must have all four - i.e. it must be cone1(C4).

Any vertices v, v′ /∈ {u1, u2, u3, u4}must connect to each other. Otherwise, the induced

complex on v, v′, u1, . . . , u4 is O6 which is not unimodular. Now we denote the vertices

of C that are not any of the uis as v1, . . . , vk. Since vk is a cone point over the C4

on u1, . . . , u4 and since vk connects to all vj, j < k, linkvk(C) is a β-avoiding complex on

v1, . . . , vk−1, u1, . . . , u4 that has C4 induced on u1, . . . , u4. So, by induction on the number

of vertices, linkvk(C) is an iterated cone over C4, conek−1(C4). But also the induced

complex on v1, . . . , vk−1, u1, . . . , u4 is conek−1(C4) by induction. This implies that C =

conek(C4).

The following Proposition generalizes Proposition 4.3.4. Its proof is an induction

argument that uses Proposition 4.3.4 as a base case.

Proposition 4.3.5. Let C be a β-avoiding complex that has Dm,n induced for some

m,n ≥ 1. Then the complex induced on the non-ghost vertices of C is conep(Dm,n) for

some p.

Proof. Assume C has no ghost vertices. Just as in the remarks at the end of section 4.2,

we divide the vertices of Dm,n into disjoint sets M,N such that M contains the vertices

of the ∆m in D∗m,n and N contains the vertices of the ∆n in D∗m,n. Now, we proceed by

induction on m and n. Note that D1,1 = C4, so the base case is handled by Proposition

4.3.4. Assume m ≥ 2 without loss of generality.
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Let v ∈ C \ Dm,n. The vertex v must connect to some u ∈ M to avoid inducing

∂∆m t {v}. Then, linku(C) contains v and Dm−1,n, and so by induction, the complex

induced on v and the vertices of Dm−1,n in linku(C) is a cone over Dm−1,n with v as

a cone vertex. This means that v is in every facet that contains u. Since m ≥ 2, u is

connected to every other vertex in Dm,n and thus v is attached to every vertex in Dm,n.

Now we apply the same argument to each of the vertices in the set M to see that v is in

every facet that contains any vertex in set M . Every facet of Dm,n contains some element

of M . So this implies that the induced complex on v and Dm,n must be the cone over

Dm,n.

Now assume v, v′ are both vertices in C \Dm,n. If they were not connected by an edge,

then the induced complex on v, v′ and Dm,n contains a minor which is isomorphic to

O6. This means that v, v′ are connected by an edge. Taking the link linkv(C) produces a

smaller complex with an inducedDm,n hence it must be a cone by induction on the number

of vertices not in the Dm,n. This reduces us the case where linkv(C) is conep−1(Dm,n) and

C \ v is conep−1(Dm,n) which implies that C is conep(Dm,n).

Proposition 4.3.6. Let C be a β-avoiding simplicial complex on vertices u1, . . . , uk+1, v

such that the complex induced on {u1, . . . , uk+1} is ∂∆k. Then v must be in a k-simplex

with some subset of the ui’s.

Proof. We proceed by induction on k. For the base case k = 1, note that ∂∆1 is two

isolated points. In this case, v must connect to u1 or u2 as a 1-simplex (an edge) to avoid

inducing ∂∆1 t {v}.
Now assume k > 1. The vertex v must attach to some ui to avoid inducing ∂∆k t

{v}. Then, link(ui) has v and ∂∆k−1, so by induction, v must form a k − 1 simplex

with some collection u1, . . . , ûi, . . . , ûj, . . . , uk+1. So in C, v must be in a k simplex with

u1, . . . , ûj, . . . , uk+1.

Proposition 4.3.7. Let C be a β-avoiding simplicial complex on m+ n+ 2 vertices that

does not have a facet of dimension m+ n. Assume Dm,n ⊆ C. Then C = Dm,n.

Proof. Note that C∗ ⊆ ∆m t ∆n because Dm,n ⊆ C. Since C does not have a facet of

dimension m+n, C∗ has no ghost vertices. Since C∗ has no ghost vertices, if C∗ ( ∆mt∆n,

then C∗ would have an induced {v} t ∂∆k for some k ≥ 1. In this case C∗ would not be

β-avoiding and so by Proposition 4.3.3, neither would C.

86



4.4 The 1-Skeleton of a β-avoiding Complex

In this section we prove Lemma 4.4.3 which gives a complete characterization of the

1-skeleton of a β-avoiding simplicial complex. This is a crucial technical lemma in the

proof of Theorem 4.5.3. We start with a technical proposition about graphs.

Proposition 4.4.1. Let H be a connected graph that avoids K3 and P4 as induced sub-

graphs. Then H is a complete bipartite graph.

Proof. Let u ∈ V (H), let N(u) denote the neighbors of u, and let M(u) denote the non-

neighbors of u (this set includes u). The bipartition of the vertices of H will be M(u) and

N(u). Let v ∈M(u)\{u}. SinceH is connected, there exists a path u = u1, u2, . . . , uk = v.

Assume k is minimal. Since v 6= u, k > 1. We cannot have k = 2 since u, v are non-

neighbors. We cannot have k = 4, since in order to avoid an induced P4, we would

need an edge (ui, ui+2) inducing a K3, or an edge (u, v) contradicting that u, v are non-

neighbors. If k ≥ 5, there must exist an edge (u1, u4) to avoid an induced P4, contradicting

minimality of k. So we have k = 3. So for any v ∈M(u) \ {u}, there exists a path u, a, v.

Now we show that H is bipartite with bipartition M(u) and N(u). It is clear that

N(u) is an independent set of vertices, for if v, w ∈ N(u) had an edge between them,

there would be a K3 on u, v, w. Now we show that M(u) is an independent set of vertices.

Assume w, v ∈ M(u). If either w, v is u, there is no edge between them by definition of

M(u), so assume w, v 6= u. Then by the above, we have paths u, a, v and u, b, w. So an

edge (v, w) would induce the 5-cycle u, a, v, w, b, u. This 5-cycle must have a chord to

avoid inducing P4, but any chord in a 5-cycle induces a K3.

Now we show that H is complete bipartite. Let x ∈ M(u) and y ∈ N(u). Since H is

connected, there is a path x = u1, ..., uk = y. We may without loss of generality assume

k ≤ 3 since otherwise we could shorten the path using the edge (u1, u4) required to avoid

a P4. The sets M(u) and N(u) are disjoint, so k 6= 1. If k = 3, then there is an induced

P4 x, u2, y, u. So k = 2, and so (x, y) is an edge.

For a graph G we define the complement graph Gc on the same set of vertices such

that (u, v) is an edge of Gc if and only if (u, v) is not an edge in G. Now we can use

Proposition 4.4.1 to give a strong restriction on the structure of Gc whenever G is the

1-skeleton of a β-avoiding complex.

Proposition 4.4.2. If G is the 1-skeleton of a β-avoiding simplicial complex C, then

each connected component of Gc is complete bipartite.
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Proof. Note that {v}t∂∆1 consists of three disconnected vertices, its complement graph

is K3. The path P4 is its own complement. Since C is β-avoiding, G avoids P4 and an

independent set of size three as induced subgraphs. So each connected component of Gc

avoids P4 and K3 as induced subgraphs. Proposition 4.4.1 therefore implies that each

connected component of Gc is complete bipartite.

Now we are ready to characterize the 1-skeleton of a β-avoiding simplicial complex.

Lemma 4.4.3. Let C be a β-avoiding simplicial complex and let G denote its 1-skeleton.

Then G is one of the following

1. KN

2. Two complete graphs glued along a (possibly empty) common clique

3. The iterated cone over a 4-cycle.

Proof. By Proposition 4.4.2, we know that each connected component of Gc is complete

bipartite. Let H denote the induced subgraph of Gc that removes all isolated vertices. If

H is empty, then Gc is an independent set of vertices and therefore G = KN . So assume

H is nonempty. We claim that if H is neither Km,n nor K2 tK2 for m,n ≥ 1, then H

induces either K2 tK2 tK2 or P3 tK2. To prove the claim, first assume that H avoids

K2 tK2 tK2. Since H is not Km,n and has no isolated vertices, this implies that H has

exactly two components. Since H is not K2 tK2, some connected component of H has

at least three vertices. So we have a P3 induced by this component, and K2 induced by

the other component and so the claim is proven.

The complement graphs of K2 tK2 tK2 or P3 tK2 are shown in Figure 4.3. Both

graphs have C4 induced, but neither is the 1-skeleton for an iterated cone over C4 since

neither graph has a suspension vertex. Proposition 4.3.4 therefore implies that neither

is the 1-skeleton of a β-avoiding simplicial complex and so G may not induce either. So

Gc may not induce K2 tK2 tK2 nor P3 tK2 and therefore neither may H. The claim

then implies that H must be either Km,n or K2 tK2. Assume Gc has p isolated vertices.

If H = Km,n then G is a Km+p and a Kn+p glued along a common Kp. If H = K2 tK2

then G is an iterated cone over a 4-cycle.

As we see in the following proposition, the 1-skeleton of C completely determines C
when it is obtained by gluing two complete graphs along an empty clique.
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Figure 4.3: The complement graphs of P3 tK2 and K2 tK2 tK2.

Proposition 4.4.4. Let C be a β-avoiding simplicial complex such that the 1-skeleton of

C is the disjoint union of cliques Km and Kn. Then C = ∆m t∆n.

Proof. Let v1, . . . , vk be vertices of the Km. If {v1, . . . , vk} is a minimal non-face of C, then

if we let u be a vertex in the Kn, then the complex indued on v1, . . . , vk, u is ∂∆kt{u}.

4.5 The Main Theorem

The goal of this section is to give a proof of Theorem 4.5.3 which gives a complete

characterization of the unimodular binary hierarchical models.

We begin this section by defining a nuclear complex. A nuclear complex is a complex

that can be obtained from a disjoint union of two simplices by adding cone vertices, adding

ghost vertices, taking Lawrence liftings and taking Alexander duals. Since ∆m t ∆n

is unimodular and these operations all preserve unimodularity, nuclear complexes are

unimodular. Part of our main result is the converse - unimodular complexes are nuclear.

Definition 4.5.1. A simplicial complex C is nuclear if one of the following is true

(1) C = Λ(D) where D is nuclear

(2) C = G(D) where D is nuclear

(3) C = conep(∆m t∆n) for p,m, n ≥ 0

(4) C = conep(Dm,n) for p ≥ 0 and m,n ≥ 1

(5) C = ∆k for k ≥ −2.

Every nuclear complex C can be constructed by applying the operations conep(·), G(·),
and Λ(·) to a complex D where D is of the form ∆m t∆n, Dm,n, or ∆k. We refer to D
as the nucleus of C.

89



Note that Dm,0 has a ghost vertex for all m. This is why we have m,n ≥ 1 in ((4)).

We note that the collection of nuclear complexes is closed under Alexander duality.

Proposition 4.5.2. If C is nuclear then so is C∗.

Proof. Possibilities (1) and (2) are dual to each other, as are (3) and (4). On k vertices,

∆k and ∆−2 are dual to each other.

We now state our main result.

Theorem 4.5.3. Let C be a simplicial complex. Then the following are equivalent

(1) C is unimodular

(2) C is β-avoiding

(3) C is nuclear.

We defer the proof of Theorem 4.5.3 until the end of the section, but we give a

roadmap here. It is immediate from results in previous sections that nuclear complexes

are unimodular and that unimodular complexes are β-avoiding.

We show that any β-avoiding complex C is nuclear by choosing a particular vertex v

of C and using induction on the number of vertices to conclude that linkv(C) is nuclear.

From here, we have five cases to consider - one for each of the ways that linkv(C) can

be nuclear. In four of these cases, it is relatively easy to show that C is nuclear. The

difficulty lies in the case where linkv(C) = Dm,n, which is handled in Lemma 4.5.8. The

proof of Lemma 4.5.8 is split into two main parts and the second part is further split into

six cases. Proposition 4.5.4 helps with the first part. Propositions 4.5.5, 4.5.6, and 4.5.7

handle the hard cases in the second part.

Proposition 4.5.4. Let C be a β-avoiding simplicial complex. Assume that all proper

minors of C are nuclear. Assume C has a vertex v such that C \ v = conep(∆m t ∆n)

with m,n ≥ 1 and p ≥ 1. Assume C is C4-free. Then C = conep+1(∆m t ∆n), C =

conep(∆m+1 t∆n), or C = conep(∆m t∆n+1).

Proof. We induct on p. For the base case, take p = 1. If we let u denote the cone vertex

in C \ v then v must connect to one of the simplices in the ∆m t∆n ⊂ C \ u. Otherwise

we have an independent set with three vertices induced in C \ u and this complex is not

nuclear. If v connects to only one such simplex, then v must also connect to u to avoid

inducing P4 which is not nuclear. If v connects to both such simplices, and v does not
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connect to u, then C has C4 induced which contradicts our hypothesis. So assume v

connects to u and to at least one simplex. Since u is a cone vertex in C \ v, linku(C) has

no ghost vertices and by hypothesis, it is nuclear. Furthermore, linku(C \ v) = ∆m t∆n

and so linku(C) is either ∆m+1 t ∆n or cone1(∆m t ∆n) (note that these are the only

nuclear complexes that become disconnected upon removing a vertex). In the first case,

C = cone1(∆m+1 t∆n) and in the second case C = cone2(∆m t∆n).

Now assume p ≥ 2. Let u1, . . . , up denote the cone vertices of C \ v. Let M,N denote

the vertex sets of the ∆m,∆n respectively. Then v must connect to at least one of M and

N to avoid inducing an independent set on three vertices. Furthermore, v must connect

to each ui - if v only connects to one of M or N , then this is required to avoid P4, and

if v connects to both then we need this to ensure that C is C4-free. Furthermore, the set

{u1, . . . , up, v} is a facet of C. This is clear when p = 1 since otherwise v doesn’t connect

to u1. Induction on p gives that {u1, . . . , up−1, v} is a facet of linkup(C) and therefore

{u1, . . . , up, v} is a facet of C.
Now, we can see that linkup(C) has no ghost vertices and is C4-free. Furthermore,

linkup(C) \ v and C \ {up, v} are both equal to conep−1(∆m t∆n). So by induction on p,

each of linkup(C) and (C \ up) can either be conep(∆m t∆n) or conep−1(∆m+1 t∆n). If

linkup(C) = C \ up, then up is a cone vertex in C. So if both equal conep(∆m t∆n) then

C = conep+1(∆m t∆n). If both equal conep−1(∆m+1 t∆n) then C = conep(∆m+1 t∆n).

Since linkup(C) ⊆ C \ up, it is impossible to have linkup(C) = conep(∆m t ∆n) and

C \ up = conep−1(∆m+1 t ∆n). It is also impossible to have C \ up = conep(∆m t ∆n)

and linkup(C) = conep−1(∆m+1 t ∆n). For if this were the case, then v would be a

cone vertex in C \ up and it would be part of the ∆m+1 in linkup(C). Since n ≥ 1,

#N ≥ 2, so given b1, b2 ∈ N and a ∈M the complex induced on a, b1, b2, up, v has facets

{v, a, up}, {v, b1, b2}, {up, b1, b2}. This is J∗1 , and so C is not β-avoiding.

Proposition 4.5.5. Let C be the simplicial complex on q vertices with a vertex v such that

linkv(C) = Dm,n with m,n ≥ 1 and (C \ v)∗ = Gm+n−m′−n′(∆m′ t∆n) with −1 ≤ m′ < m

and 0 ≤ n′ ≤ n. Unless m′ = −1 and n′ = n, C has a proper minor that is not nuclear.

Proof. Let M,N denote the sets of vertices such that in (linkv(C))∗, the complex induced

on M is ∆m and the complex induced on N is ∆n. Then some vertex x ∈ N is a non-ghost

in (C \ v)∗. We show that linkx(C) is not nuclear.

First we describe the facets of linkx(C). We claim that the facets of linkx(C) are

precisely the sets containing N − 1− 2 vertices, where the omitted vertex pair is one of
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the following

1. some a ∈M and some b ∈ N \ {x} or

2. v and some vertex g that is a ghost in (C \ v)∗.

We now prove the claim. The facets of linkx(C) that contain v are the sets whose com-

plements are pairs of the first type since linkv(C) = Dm,n. The facets of linkx(C) that do

not contain v are the sets whose complements are minimal non-faces of (C \ v)∗ that do

not become faces of linkx(C) upon adding v. These minimal non-faces of (C \ v)∗ are the

ghost vertices. Therefore the facets of linkx(C) that do not contain v are the sets of the

second type.

We now show that linkx(C) is not nuclear. The complex linkx(C) cannot be Λ(D) for

any complex D since no facet lacks fewer than two vertices. Nor can linkx(C) have any

ghost vertices - m ≥ 1 implies #M ≥ 2 and so every vertex in M is in a facet of the first

type, every vertex of N is in a facet of the second type, and v is in every facet of the first

type. It is clear that no vertex is in every facet, so linkx(C) cannot be conep(Dk,l) nor

conep(∆k t∆l) for any p ≥ 1. It is clear that linkx(C) has more than 2 facets, so linkx(C)
cannot be ∆k t∆l, nor ∆k.

The only case left to check is linkx(C) = Dk,l. If this is the case then we can partition

the vertices of linkx(C) into disjoint sets C1, C2 such that the facets of linkx(C) are pre-

cisely the subsets of C1 ∪ C2 that omit exactly one from each C1 and C2.

Assume n′ = n and m′ ≥ 0. Let g ∈ M be a ghost vertex and without loss of gener-

ality assume g ∈ C1. Facets of the first type imply M ⊆ C1. Facets of the second type

imply v ∈ C2. Since m′ ≥ 0, there exists some a ∈M that is not a ghost in (C \ v)∗. Snd

so (C1 ∪C2) \ {a, v} is a facet of linkx(C). But this does not fit our earlier description of

the facets of linkx(C).
Now assume −1 ≤ m′ < m and 0 ≤ n′ < n. Then there exist g′ ∈ M and g′′ ∈ N

that are ghosts in (C \ v)∗. But this contradicts our earlier description of the facets of

linkx(C) - facets of the first kind imply that g′, g′′ are in different Cis and facets of the

second kind imply that they are in the same Ci.

Proposition 4.5.6. Let C be a simplicial complex on q vertices. Let v be a vertex in C
such that linkv(C) = Dm,n with m,n ≥ 1. Assume (C\v)∗ = Gm+1(∆n). Then C = Dm,n+1.

Proof. Let M,N denote the sets of vertices such that in (linkv(C))∗, the complex induced

on M is ∆m and the complex induced on N is ∆n. Then all the vertices of M and none
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of the vertices of N are ghosts in (C \ v)∗. We claim that each facet of C contains N − 2

vertices, and the omitted pair is one of the following

1. some a ∈M and some b ∈ N
2. v and some a ∈M .

To see this, note that if a facet contains v, then it must be of the first form since

linkv(C) = Dm,n. If a facet does not contain v, then its complement must be v, along

with a minimal non-face of (C \ v)∗. These minimal non faces are precisely the vertices in

M . So C = Dm,n+1 where M and N ∪ {v} are the sets of vertices for the ∆m and ∆n+1

in C∗ respectively.

Proposition 4.5.7. Let C be a simplicial complex on q vertices. Let v be a vertex in C
such that linkv(C) = Dm,n with m,n ≥ 1 and has no ghost vertices. Let M,N denote

the sets of vertices such that in (linkv(C))∗, the complex induced on M is ∆m and the

complex induced on N is ∆n. Assume (C \ v)∗ = Gm+1(D) where D is a nuclear complex

on vertex set N with more than one facet. Then C has a proper minor that is not nuclear.

Proof. Let x ∈ M . We show that linkx(C) is not nuclear. We start by showing it is not

Lawrence type. Let F be a facet of linkx(C) that does not contain v. Then F ∪ {x} is

a facet of C \ v so it must also lack some a ∈ M \ {x}. If F is a facet of linkx(C) that

contains v, then F ∪ {x} \ {v} is a facet of linkv(C) and therefore lacks some a ∈M and

b ∈ N . So linkx(C) is not Λ(F) for any complex F .

We can see that linkx(C) has more than two facets - since m,n ≥ 1, there are at least

two that include v and since (C \ v)∗ = Gm+1(D), there is at least one that does not.

linkx(C) cannot be conep(∆k t∆l) for any p ≥ 0.

All of the vertices of M are ghost vertices in (C \ v)∗, and (C \ v)∗ has a minimal non-

face S ⊆ N with at least two vertices. This implies that C contains a facet F such that

M ⊆ F , there exist b1, b2 ∈ N such that b1, b2 /∈ F and v /∈ F (since linkv(C) = Dm,n).

Facets in linkx(C) that contain v have N − 1− 2 vertices - they lack some a ∈ M \ {x}
and some b ∈ N . Furthermore, F \{x} is a facet of linkx(C) containing at most N −1−3

vertices. This means that linkx(C) is not pure, and therefore not conep(Dk,l) for any p ≥ 0.

So linkx(C) is a proper minor of C that is not nuclear.

Lemma 4.5.8. Let C be a β-avoiding simplicial complex on q vertices. Assume all proper

minors of C are nuclear. If there exists a vertex v of C such that linkv(C) = conep(Dm,n)

for p ≥ 0 and m,n ≥ 1, then C is nuclear.
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Proof. We split this into two cases. For the first case, assume p ≥ 1. Here, Propositions

4.2.9 and 4.2.18 give C∗ \ v = conep(∆m t ∆n). By Proposition 4.3.3, C∗ is β-avoiding

so in C∗, v must connect to one of the simplices in the ∆m t∆n ⊂ C∗ to avoid inducing

an independent set on three vertices. Now let u be a cone vertex. If v connects to only

one such simplex, then v must also connect to u to avoid inducing P4. If v connects to

both such simplices, and v does not connect to u, then C∗ has C4 induced. In this case

Proposition 4.3.4 implies C∗ = conek(C4) and so C = conek(∆1 t∆1). So we can assume

v connects to at least one simplex, and to all cone vertices in C∗ \ v. From this we can

see that C∗ has no induced C4. Since every proper minor of C∗ is nuclear, Proposition

4.5.4 implies C∗ = conep+1(∆m t∆n) or C∗ = conep(∆m+1 t∆n). Proposition 4.5.2 then

implies that C is nuclear.

For the second case, assume p = 0. So linkv(C) = Dm,n with m,n ≥ 1. Then Dm,n ⊆
C \ v and so (C \ v)∗ ⊆ ∆m t ∆n. Let M,N denote the sets of vertices of C such that

in (linkv(C))∗, the vertices of the ∆m are M , and the vertices of the ∆n are N . The

non-ghost vertices of (C \ v)∗ must form a nuclear complex, and the only disconnected

nuclear complexes are of the form ∆s t∆t. From this it follows that (C \ v)∗ must be one

of the following forms (without loss of generality)

1. ∆m t∆n

2. Gm+n−m′−n′(∆m′ t∆n′) with −1 ≤ m′ < m and 0 ≤ n′ ≤ n, but not both m′ = −1

and n′ = n

3. Gm+1(∆n)

4. Gm+1(D) where D is a nuclear complex on N with more than one facet

5. Gm+n+2({∅})
6. Gm+n+2({}).

We handle each possibility separately.

Case 1. Assume (C \ v)∗ = ∆mt∆n. Then (C \ v)∗ has no ghost vertices, and so C \ v
is not of Lawrence type. So, by Lemma 4.3.7, C \ v = Dm,n and so C = cone1(Dm,n) with

v as the cone point.

Case 2. Assume (C\v)∗ = Gm+n−m′−n′(∆m′t∆n′) with −1 ≤ m′ < m and 0 ≤ n′ ≤ n

but not both m′ = −1 and n′ = n. By Proposition 4.5.5, C has a proper minor M that

is not nuclear. By induction, M is not β-avoiding and so neither is C.
Case 3. Assume (C \ v)∗ = Gm+1(∆n). Then Proposition 4.5.6 implies that C =

Dm,n+1.
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Case 4. Assume (C \ v)∗ = Gm+1(D) where D is a nuclear complex on N with more

than one facet. By Proposition 4.5.7, C has a proper minor M that is not nuclear. By

induction, M is not β-avoiding and so neither is C.
Case 5. Assume (C \v)∗ = Gm+n+2({∅}). Then C \v = ∂∆m+n+1. But linkv C = Dm,n

and so v is not in any m+ n− 1 simplex with the vertices of M and N . By Proposition

4.3.6, C is not β-avoiding.

Case 6. Assume (C \ v)∗ = Gm+n+2({}). Then C \ v = ∆m+n+1 and so C = Λ(Dm,n)

with v as the added vertex.

Now we have all the necessary tools to prove Theorem 4.5.3.

Proof of Theorem 4.5.3. By Proposition 4.2.20, (1) implies (2). Each nuclear complex

can be obtained by applying the unimodularity-preserving operations from Section 4.2

to ∆n t ∆m, which is unimodular by Proposition 4.2.21. Therefore (3) implies (1). We

now show (2) implies (3).

Let C be a β-avoiding complex on q vertices. We show that C is nuclear by induction

on q. For the base case, note that all simplicial complexes on 2 or fewer vertices are both

β-avoiding and nuclear. We may assume that C has no ghost vertices since adding and

removing ghost vertices does not affect the properties of being nuclear nor β-avoiding.

In light of Propositions 4.3.4 and 4.4.4 and Lemma 4.4.3, we only need to consider the

cases where the 1-skeleton of C is Kq, or the union of two complete graphs, glued along

a common nonempty clique. Therefore, we can choose a vertex v of C that is in a facet

with every other vertex. Since C is β-avoiding, so is linkv(C). By induction, linkv(C) is

also nuclear. There are five main cases.

Case 1. This is the case where linkv(C) = Λ(D) for a nuclear D. Let F denote the

big facet of C and let u be the vertex of C that is not in F . Then C = Λ(C \ u), and C \ u
is nuclear by induction.

Case 2. This is the case where linkv(C) has ghost vertices. Since v connects to all

other vertices, this is impossible.

Case 3. This is the case where linkv(C) = conep(∆mt∆n) with p,m, n ≥ 0. We split

this into the sub cases, the first where m,n ≥ 1 and the second where m = 0.

Case 3.1 This is the sub case where m,n ≥ 1. Proposition 4.2.9 gives C∗ \ v =

conep(Dm,n) and so C∗ has Dm,n induced. Proposition 4.3.5 then implies that C∗ is ei-

ther conep+1(Dm,n), or conep(Dm,n) with v as a ghost vertex. In the first case, C =

conep+1(∆m t∆n). In the second case, C = Λ(conep(∆m t∆n)).
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Case 3.2 This is the sub case where m = 0. Proposition 4.2.9 gives C∗ \ v =

conep(D0,n) which has a ghost vertex u. Then C∗ \ u is nuclear by induction and since u

is still a ghost vertex in C∗, this implies C∗ is nuclear. Proposition 4.5.2 implies that C is

nuclear.

Case 4. This is the case where linkv(C) = conep(Dm,n) with p ≥ 0 and m,n ≥ 1.

By induction, all proper minors of C are nuclear. Then Lemma 4.5.8 implies that C is

nuclear.

Case 5. This is the case where linkv(C) = ∆k with k ≥ −2. Since linkv(C) has no

ghost vertices k = q − 2. So C = ∆q−1.

4.6 Operations on non-binary HM pairs

Proposition 4.6.1. Assume (C,d) is unimodular. Then for all d′ such that d′ ≤ d

componentwise, (C,d′) is unimodular.

Proof. Note that AC,d′ can be realized as a subset of columns of AC,d.

The special case where d′ = 2 gives us the following useful corollary.

Corollary 4.6.2. If AC,d is unimodular, then C is nuclear.

So in order to classify all unimodular hierarchical models we only need to consider nu-

clear complexes. Therefore we can approach the general classification problem by looking

at each nuclear C and identifying the minimal values of d that give rise to non-unimodular

(C,d). Before proceeding with this, we show that the class of unimodular (C,d) is still

closed under taking minors of C. However Corollary 4.2.7 fails in the non-binary case;

we cannot freely take the Alexander dual of C. Because of this, our proof of Corollary

4.2.10 is not valid in the non-binary case. We will give an alternate proof that the class

of unimodular (C,d) is closed under taking links in C. We start with a useful proposition.

Proposition 4.6.3. Let A ∈ Rr×n be a unimodular matrix with columns {ai}ni=1. Assume

an is nonzero. Let A′ be the matrix that results when we project A onto the hyperplane

orthogonal to an. Then A′ is unimodular.

Proof. We may assume A has rank r since otherwise we can delete unnecessary rows. Let

B ∈ Rn×(n−r) have rank n− r such that ABT = 0. Denote the columns of B as {bi}ni=1.
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By Proposition 4.2.5, B is also unimodular. Denote the columns of A′ as {a′i}n−1
i=1 . Then

a′i = ai −
〈ai, an〉
‖an‖2

an.

Let B′ be the matrix with columns {bi}n−1
i=1 . Then B′ has rank n − r or n − r − 1. The

second case implies that bn is a coloop in the matroid underlying B. Since the matroids

underlying A and B are duals, this would imply that an = 0. But then A′ = A which we

assumed to be unimodular. So we can assume that rank(B′) = rank(B) = n− r and that

an 6= 0. Therefore rank(A′) = r − 1 and so the dimension of its kernel is n − r, which

is the rank of B′. We claim that A′(B′)T = 0. From this it follows by Proposition 4.2.5

that A′ is unimodular.

Now we prove the claim. Let bi be a column of B′ (so 1 ≤ i ≤ n − 1). Letting bji

denote the jth entry of bi, we have

A′bTi =
n−1∑
j=1

bji

(
aj −

〈ai, an〉
‖an‖2

an

)
.

Note that bjn

(
an − 〈an,an〉

‖an‖2 an

)
= 0, so we can add the nth term to the above sum. This

enables us to break it up as follows

n∑
j=1

bjiaj −
1

‖an‖2

n∑
j=1

bji〈aj, an〉an.

The first term is AbTi = 0. The second term is
(

1
‖an‖2 a

T
nAbTi

)
· an = 0. So the claim is

proven.

Corollary 4.6.4. Assume (C,d) is unimodular. Let v be a vertex of C and let d′ denote

the vector obtained by deleting the entry for v from d. Then (linkv C,d′) is unimodular.

Proof. Let A = Alinkv C,d′ and let B = AC\v,d′ . By the remark following Lemma 2.2 in
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[34] and the lemma itself, we can write

AC,d =



A 0 . . . 0

0 A . . . 0
...

...
. . .

...

0 0 . . . A

B B . . . B


.

Assume A ∈ Rm×n and B ∈ Rl×n and so AC,d ∈ Rdm+l,dn. By Proposition 1.6.12((3)),

we may remove rows from A to make A,B,A all have full row rank. So assume that

they do. Let A′ denote the matrix that results when we project AC,d onto the subspace

orthogonal to the last (d − 1)n columns. Then if 1 ≤ i ≤ n, the ith column of A′ can

be expressed as the ith column of AC,d minus a linear combination of the last (d − 1)n

columns of AC,d, all of which are 0 in the top m rows. So this means that the top m rows

of A′ are (
A 0 . . . 0

)
.

Furthermore, since A and AC,d both have full row rank, the final (d − 1)n columns of

AC,d have rank (d− 1)m+ l. Therefore A′ has rank m. Since A also has rank m, we may

delete the bottom (d− 1)m + l rows of A′ without affecting the rowspace and therefore

unimodularity. So the matrix
(
A 0 . . . 0

)
, and therefore A, is unimodular.

Our proof of Proposition 4.2.1 is still valid in the non-binary case. Therefore, we have

the following.

Proposition 4.6.5. Assume C ′ is a minor of C. If (C,d) is unimodular, then so is (C ′,d′)
where d′ is the restriction of d to the vertices that are in C ′.

An HM pair (D,d′) is a minor of (C,d) if D can be obtained from C via a (possibly

empty) sequence of vertex deletions and vertex links and d′v ≤ dv for every vertex of D.

The pair (C,d) is said to be unimodular if the matrix AC,d is unimodular, and binary

if d = 2. In view of Proposition 4.6.6 below, we say that an HM pair is minimally

nonunimodular if it is not unimodular but every minor is.

Proposition 4.6.6. Minors of unimodular HM pairs are unimodular.

Proof. This follows from Propositions 4.6.1 and 4.6.5.
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Proposition 4.6.6 tells us how we can create a “smaller” unimodular HM pair from a

larger one. We now discuss how to go the other way. Given a simplicial complex C, we

say v ∈ ground(C) is

• a cone vertex if it appears in every facet of C,
• a ghost vertex if it does not appear in any facet of C, and

• and a Lawrence vertex if its complement in the ground set of C is a facet.

We denote by cone(C) and GC the complex obtained by adding a cone vertex and ghost

vertex to C, respectively, and we denote by ΛC the complex obtained by adding a Lawrence

vertex v to C such that linkv(C) = C. Iterated application of each aforementioned opera-

tion will be denoted by superscript. For example, G5C denotes the complex obtained by

adding five ghost vertices to C. The proofs of Propositions 4.2.11, 4.2.17 generalize to the

non-binary setting and so we have the following.

Proposition 4.6.7. If the pair (C,d) gives rise to unimodular AC,d, so do (conep(C),d′)
and (G(C),d′′) where d′ =

(
d c1 . . . cp

)
and d′′ =

(
d c

)
for any c, c1, . . . , cp ≥ 2.

Proof. In the case of a cone, the matrix Aconep(C),d′ is a block diagonal matrix:

Aconep(C),d′ =


AC,d 0 · · · 0

0 AC,d · · · 0
...

...
. . .

...

0 0 · · · AC,d

 ,

with c1c2 · · · cp blocks down the diagonal. In the case of adding a ghost vertex, the matrix

AG(C),d′ has repeated columns:

AG(C),d′′ =
(
AC,d AC,d · · · AC,d

)
with c blocks.

We can also extend Proposition 4.2.21.

Proposition 4.6.8. Let C = ∆mt∆n and d ∈ Zm+n+2
≥2 . Let M,N denote the vertex sets

of C in the ∆m,∆n respectively. Let D be the complex with facets {1, 2} and let e = (e1, e2)

where

e1 =
∏
v∈M

dv e2 =
∏
v∈N

dv.
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Then AC,d = AD,e. This matrix is unimodular.

Proof. We can see that AC,d = AD,e by inspection. The matrix AD,(e1,e2) is the vertex

edge incidence matrix of a complete bipartite graph with e1 and e2 vertices in each set

of the partition. Such vertex-edge incidence matrices are examples of network matrices

and are hence totally unimodular [51, Ch. 19].

We also note that Proposition 4.2.15 holds in a slightly more general setting.

Proposition 4.6.9. Let (C,d) be such that AC,d is unimodular. Then AΛ(C),d′ is also

unimodular if d′ =
(
d 2

)
.

Proof. The proof here is similiar to the proof for Proposition 4.2.15. Note that Λ(AC,d) =

AΛ(C),d′ . Hence Theorem 7.1 in [57] implies the proposition.

4.7 Minimally non-unimodular HM pairs

We say that an HM pair (C,d) is minimally nonunimodular if (C,d) is not unimodular,

but every proper minor is. This section proves that a particular list of HM pairs are

minimally nonunimodular. We will later see that this list is exhaustive. Let us begin with

a useful observation.

Remark 4.7.1. Different HM pairs may yield the same matrix. Let C be a complex on

ground set V . Assume C has a face E such that any for any facet F , E ∩ F 6= ∅ implies

E ⊆ F . Let C ′ denote the complex on ground set V ′ := (V ∪ {v0}) \ E with facets

facet(C ′) = {F ∈ facet(C) : F ∩ E = ∅} ∪ {F ∪ {v0} : E ⊂ F}.

Let d ∈ ZV≥2 and define d′ ∈ ZV ′≥2 such that d′v = dv for all v ∈ V ∩V ′ and d′v0 =
∏

v∈F dv.

Then kerZAC,d = kerZAC′,d′.

We are now ready to list the minimally nonunimodular HM pairs.

Proposition 4.7.2. The following HM pairs are minimally nonunimodular:

(1) any of the complexes listed in Proposition 4.3.1 with d = 2,

(2) Λ(∆0 t∆0) with facets {12, 23, 13} and d = (3, 3, 3),

(3) Λ(∆1 t∆1) with facets {125, 345, 1234} and d = (2, 2, 2, 2, 3),
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(4) Λ(∆1 t∆0) with facets {124, 34, 123} and d = (2, 2, 3, 3),

(5) D1,1 with facets {12, 23, 34, 14} and d = (2, 2, 2, 3),

(6) ΛG(∆0 t∆0) with facets {12, 13, 234} and d = (4, 2, 2, 2),

(7) ΛD1,1 with facets {1234, 125, 235, 345, 145} and d = (2, 2, 2, 2, 3), and

(8) ΛΛG(∆0 t∆0) with facets {1234, 1235, 145, 245} and d = (2, 2, 2, 3, 3).

Proof. All minors of the given HM pairs are easily seen to be unimodular by building them

up from (∆mt∆n, (2, . . . , 2)) via the operations that are known to preserve unimodularity.

Hence it suffices to show that each HM pair is not unimodular.

Proposition 4.3.1 verifies nonunimodularity of the complexes implied by (1). Macaulay2

scripts using 4ti2 [2] to verify nonunimodularity of (5),(7), and (8) can be found on my

website [9]. In light of Remark 4.7.1, we see that the matrix for (3) has the same integer

kernel as the matrix for the HM pair ({12, 23, 13}, (4, 4, 3)) and the matrix for (4) has the

same integer kernel as the matrix for the HM pair ({12, 23, 13), (4, 3, 3)}. Both have (2) as

a minor, the minimal nonunimodularity of which is given in [48, Table 1]. Remark 4.7.1

can also be applied to see that the matrix for (6) has the same integer kernel as the

matrix for (J∗1 , (2, . . . , 2)) where J∗1 is a complex shown to be minimally nonunimodular

in Proposition 4.3.1.

Before we can prove our complete classification, we will need the unimodularity pre-

serving operation given in the next section. However, in the special case that C is nuclear

with nucleus Dm,n, we are ready to classify the unimodular HM pairs (C,d).

Proposition 4.7.3. Let C be a nuclear complex with nucleus Dm,n with m,n ≥ 1. Then

AC,d is unimodular if and only if

1. dv = 2 for all v in the original Dm,n and

2. dv = 2 for all v corresponding to a Lawrence lifting.

Proof. The fact that all such AC,d are unimodular follows from applying Propositions

4.6.7 and 4.6.9. We now show that these are the only unimodular AC,d with this type of

complex C.
Note that since taking cone vertices commutes with adding ghost vertices and Lawrence

liftings and this always preserves unimodularity, we can assume there are no cone ver-

tices. Now if C is a nuclear complex obtained by successively adding ghost vertices and

Lawrence vertices to Dm,n, then the induced subcomplex on just the Dm,n and Lawrence
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vertices is an iterated Lawrence lifting ofDm,n. If any of the vertices of v that are Lawrence

vertices have dv > 2, then by taking suitable links, one obtains (3) in Proposition 4.7.2.

On the other hand, if dv > 2 for some v in the original Dm,n, then by taking suitable

links, one obtains (5) in Proposition 4.7.2.

4.8 A new unimodularity-preserving operation

In this section we describe a new unimodularity-preserving operation that is key in prov-

ing our classification of the unimodular HM pairs. We also describe how this operation

acts on the Graver basis in the case that is relevant to us. The results in this section are

about general integer matrices and do not depend on any specific properties of hierarchi-

cal models.

Given a matrix A ∈ Zd×n, denote by GqA and ΛpA the matrices

GqA =
(
A . . . A

)
and ΛpA =



A 0 . . . 0 0

0 A . . . 0 0
...

...
. . .

...
...

0 0 . . . A 0

I I . . . I I


.

Note that GqAC,d = AGC,(d q) and kerZ(ΛpAC,d) = kerZ(AΛC,(d p)). The operations Λ2

and Gq for q ≥ 1 are unimodularity-preserving, in the sense that applying them to a

unimodular matrix produces a unimodular matrix (for Λ2, this follows from [57, Theo-

rem 7.1]). In this section, we add a new unimodularity preserving operation to the list:

inserting a ghost vertex operation immediately before a Lawrence lift (Proposition 4.8.1).

This operation provides the last crucial step in generalizing Theorem 4.5.3 to arbitrary

unimodular HM pairs.

Proposition 4.8.1. Let A ∈ Zd×n be a matrix and let p ≥ 2 be a fixed integer. Then

ΛpA is unimodular if and only if ΛpGqA is unimodular for all integers q ≥ 2.

Proof. Since unimodularity of A is a property of kerZA, we may assume A has full

row-rank d. It follows that ΛpGqA and ΛpA do as well. So, it suffices to show that any

maximal square submatrix of ΛpGqA has determinant ±1 or 0 whenever any maximal

square submatrix of ΛpA does. We proceed by showing that the possible values of a
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determinant of such a sub-matrix is independent of q. To this effect, we claim that the

absolute value of any such determinant is equal to the absolute value of a determinant

of the form

{1}
...

R

S

T
...

[p− 1]



. . . AR1 0 . . . 0 AS1 0 . . . 0 . . . B1 0 . . . 0

. . . 0 AR2 . . . 0 0 AS2 . . . 0 . . . 0 B2 . . . 0

. . .
...

...
. . .

...
...

...
. . .

... . . .
...

...
. . .

...

. . . 0 0 . . . ARp−1 0 0 . . . ASp−1 . . . 0 0 . . . Bp−1

. . . 0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0

. . . 0 0 . . . 0
...

...
. . .

... . . . 0 0 . . . 0

. . . IR1 IR2 . . . IRp−1 0 0 . . . 0 . . . 0 0 . . . 0

. . . 0 0 . . . 0 IS1 IS2 . . . ISp−1 . . . 0 0 . . . 0

. . . 0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0

. . .
...

...
. . .

...
...

...
. . .

... . . .
...

... . . .
...

. . . 0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0


where in the block corresponding to each S ⊆ [p − 1], if i /∈ S then ASi = ISi is the

unique 0 × 0 matrix, and if i ∈ S, then ASi is some constant matrix AS and ISi is the

identity matrix with the same number of columns as AS. To see this, note that a square

column submatrix of ΛpGqA will have a (possibly empty) submatrix of an identity matrix

for its final columns. We can find the determinant by applying Laplace expansion about

these columns. Each column of the resulting matrix is obtained by padding a column of

A either with all zeros, or all zeros and a single 1. We move all columns of the former

description to the rightmost side of the matrix and rearrange them to match the right

hand part of the block structure shown above. For the rest of the block structure, note

that these remaining columns are naturally partitioned into p − 1 blocks of the form(
0 ATi 0 I

)T
where i = 1, . . . p− 1 and Ai is a column submatrix of A. Each column

aj of A appears in some subset of these blocks which we can index by a subset of [p− 1].

We can then organize the columns of this submatrix according to this subset indexing

and then organize the bottom block of rows to get the desired block structure.

Now if S is a singleton, then every row in the block of rows labeled S has exactly one

1 and all the remaining entries 0. Therefore, we can remove all those blocks using Laplace

expansion along these rows. Using the identity matrices in the bottom half of our matrix,
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we can apply row operations to turn each row-block of the form
(

0 · · · 0 AS
)

into(
−AS · · · −AS 0

)
. This leaves several columns that have a single 1 and all other

entries 0. Applying Laplace expansion along these columns leaves the matrix
· · · AR · · · 0 AS · · · 0 · · · B1 · · · 0 0
...

...
. . .

...
...

. . .
...

...
...

. . .
...

...

· · · 0 · · · AR 0 · · · AS · · · 0 · · · Bp−2 0

· · · −AR · · · −AR −AS · · · −AS · · · 0 · · · 0 Bp−1

 .

Note that each AS is either the 0× 0 matrix, or a column submatrix of A (possibly with

repeated columns). So the set of possible nonzero determinants is independent of q.

We conclude this section by demonstrating how to recover the Graver basis of Λ3GqA

from the Graver basis of Λ3A, for use in Remark 4.10.4.

In what follows, we write each v ∈ ker Λ3GqA in the form v = (a, b, c) with a, b, c ∈
kerGqA. Additionally, we let vi = (ai, bi, ci) ∈ Z3q denote the restriction of v to co-

ordinates corresponding to the i-th column of A (in particular, these columns are not

sequential above).

Proposition 4.8.2. Let A ∈ Zd×n be a matrix and fix q ≥ 1. Assume Λ3GqA is uni-

modular. Then the Graver basis of Λ3GqA consists of vectors v = (a, b, c) obtained in the

following ways (up to scaling by −1 and permutation of a, b and c):

(a) for some i ≤ n and j, k ≤ q, ai,j = bi,k = 1 and ai,k = bi,j = −1 are the only

nonzero entries in v;

(b) for every i ≤ n, each vector ai, bi, and ci has at most 1 nonzero entry, and writing

a′i, b
′
i and c′i for the sum of the entries of ai, bi, and ci respectively, the vector

(a′1, . . . , a
′
n, b
′
1, . . . , b

′
n, c
′
1, . . . , c

′
n) lies in the Graver basis of Λ3A; or

(c) for some i ≤ n and j, k ≤ q, ai,j = 1, ai,k = −1, bi,j = −1, and ci,k = 1, and the

vector v′ = (a′, b′, c′) with all coordinates the same as in v, aside from

a′i,j = a′i,k = 0, c′i,j = 1, and c′i,k = 0

also lies in the Graver basis of Λ3GqA.

We clarify the statement of Proposition 4.8.2 with an example before giving the proof.
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Example 4.8.3. Consider the matrix

A =

(
1 1 0

0 1 1

)
,

whose Graver basis consists of v = e1 − e2 + e3 and its negative. One can compute the

Graver basis of Λ3A using the software 4ti2 [2] to check unimodularity. It follows from

Proposition 4.8.1 that Λ3GqA is unimodular for all q. Up to reordering, every vector in

the Graver basis of Λ3A has the form (v,−v, 0). Using Proposition 4.8.2, we can obtain

Graver basis vectors for Λ3G3A in the following ways.

• Vectors of the form (a,−a, 0) for some a in the Graver basis of G3A, yielding type (i)

vectors such as ((e1,−e1, 0), (−e1, e1, 0), (0, 0, 0)), and type (ii) vectors such as

((e1 + e3,−e2, 0), (−e1 − e3, e2, 0), (0, 0, 0))

obtained by “spreading” the vector v across G3A. Writing the latter vector in the

form (a, b, c) and using the notation introduced above Proposition 4.8.2, we have

a1 = (1, 0, 0), b1 = (−1, 0, 0) and c1 = (0, 0, 0), whose entries correspond to the

columns of Λ3G3A containing the first column of A.

• Vectors obtained from another Graver basis vector (a, b, c) by (up to reordering of

a, b and c) moving a single nonzero entry of a to an unoccupied entry of a corre-

sponding to the same column of A, and then adding a 1 and a -1 to c appropriately.

This yields Graver basis vectors such as

((e1,−e1, 0), (−e1, 0, e1), (0, e1,−e1)) and

((e1 + e3,−e2, 0), (−e3, e2,−e1), (−e1, 0, e1))

obtained from the each of the vectors above. Notice that vectors obtained in this

way are always of type (iii), and that this process applied can be applied to each

type (i) and type (ii) vector at most once for each column of A.

Proof of Proposition 4.8.2. Suppose v lies in the Graver basis of Λ3GqA. Since Λ3GqA is

unimodular, the first qn rows of Λ3GqA ensure that {ai,j, bi,j, ci,j} is {0, 0, 0} or {1, 0,−1}
for all i ≤ n and j ≤ q. We first prove that ai, bi, and ci each have no repeated nonzero

entries for i ≤ n. To this end, suppose after appropriately scaling v and relabeling a, b and
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c that ai,j = ai,k = 1, bi,j = −1, and ci,j = 0 for some j, k ≤ q. Then {bi,k, ci,k} = {0,−1},
and in either case, the vector v′ = (a′, b′, c′) obtained from v by setting

a′i,j = ai,j + ai,k = 2, b′i,j = bi,j + bi,k, c′i,j = ci,j + ci,k, and a′i,k = b′i,k = c′i,k = 0,

is a conformal sum of nonzero vectors in kerZA if and only if v is, which contradicts the

unimodularity of Λ3GqA.

Next, if for all i, the vectors ai, bi, and ci each have at most one nonzero entry, then

we are in case (ii) above. Otherwise, after appropriate scaling of v and relabeling of a, b

and c, we have ai,j = 1, ai,k = −1, bi,j = −1, and ci,j = 0 for some i ≤ n and j, k ≤ q.

If bi,k = 1, then these 4 nonzero entries form a primitive vector in the kernel of Λ3GqA, so

v has no other nonzero entries and we are in case (i) above. In all remaining cases, bi,k = 0

and ci,k = 1, meaning we are in case (iii) above. Note that the vector v′ constructed from

v still yields 0 in the j-th and k-th rows of the identity blocks portion of Λ3GqA, as

well as each row of Λ3GqA consisting of copies of A. As such, v′ still lies in the kernel of

Λ3GqA. This completes the proof.

4.9 The classification

In this section, we present the complete classification of the unimodular HM pairs. Just

as in the characterization of unimodular simplicial complexes in Theorem 4.5.3, this

classification comes in two forms: a recipe for constructing any unimodular HM pair,

and a list of forbidden minors.

Theorem 4.9.1. The following are equivalent:

(a) (C,d) is unimodular;

(b) (C,d) contains no minor isomorphic to any HM pair listed in Proposition 4.7.2;

and

(c) C is nuclear. If C has nucleus Dm,n, then dv = 2 for each Lawrence vertex v and

each vertex v from the nucleus Dm,n. Otherwise, we can choose the vertices of C to

make nucleus ∆m t∆n so that either

(1) dv = 2 for each Lawrence vertex v, or

(2) min{m,n} = 0, dv = 2 for the unique vertex v of ∆0 and dv ≤ 3 for each

Lawrence vertex v with equality attained at most once.

106



Proof. The implication (a) =⇒ (b) follows from Propositions 4.7.2 and 4.6.6. Now, if

(C,d) satisfies (b), then via the minors in (1), Theorem 4.5.3 implies C is nuclear. So (c)

follows once we show that the remaining minors in Proposition 4.7.2 ensure d satisfies

the necessary requirements.

If C has nucleus Dm,n, then minors (5) and (7) ensure that (c) is satisfied, so assume C
has nucleus ∆mt∆n and that C has a Lawrence vertex v such that dv ≥ 3. If dv ≥ 4, then

minor (6) ensures that in the iterative construction of C as a nuclear complex, v must

have been added before any ghost vertices. Therefore C is built up from Λk(∆m t∆m).

Permuting the order in which we add a Lawrence vertex does not change the resulting

vertex-labeled complex so we may assume k = 1. Minor (3) ensures we can assume

without loss of generality that n = 0. So at this point, we know (C,d) has been built

from an HM pair (C ′,d′) where C ′ = Λ(∆m t∆0). Minor (4) ensures that d′u = 2 for the

vertex u from ∆0. However, we can realize this same complex where u is the Lawrence

vertex and v is the unique vertex in ∆0, so we could have chosen a different set of vertices

to play the role of the nucleus that would not require v to be added as a Lawrence vertex.

To complete the proof of (b) =⇒ (c), it remains to consider the case where dv ∈ {2, 3}
for each Lawrence vertex v. Using a similar argument as before, we can see that if all the

Lawrence vertices with dv = 3 are added before any ghost vertices in the construction of C
as a nuclear complex, then by choosing different vertices to play the role of the nucleus

we could have dv = 2 for all Lawrence vertices v. So assume all non-binary Lawrence

vertices are added after a ghost vertex. Minor (8) ensures that at most one Lawrence

vertex v can have dv = 3, and minors (2), (3), and (4) imply the remaining conditions.

It remains to show (c) =⇒ (a) so assume (C,d) satisfies (c). If C has nucleus Dm,n,

then Proposition 4.7.3 implies (C,d) is unimodular if and only if it satisfies (c). Since the

operation cone commutes with Λ and G and unimodularity of (C,d) is independent of

dv for all cone vertices v, we may assume that C can be obtained without using the cone

operation. We may also assume that G is never applied twice in a row, as doing so yields

the same matrix as simply adding a single ghost vertex with a larger vertex label.

If, on the other hand, C has nucleus ∆m, then since ΛG∆m = conem+1(∆0 t ∆0),

we may restrict attention to the final case, namely where C has nucleus ∆m t ∆n. In

particular,

C = Λk0GΛk1GΛk2G · · ·GΛkl(∆m t∆n).

If (C,d) satisfies the first case of (c) then unimodularity of (C,d) follows from uni-
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modularity of (∆m t∆n,d
′) and the fact that adding Lawrence vertices with label 2 and

ghost vertices of any vertex label preserves unimodularity. So it only remains to show

unimodularity of pairs (C,d) that satisfy the second case of (c).

Let (C ′,d′) be a hierarchical model. We claim that if (ΛC ′, (d′, 3)) is unimodular, then

(ΛGC ′, (d′, q, 3)) and (ΛΛC ′, (d′, 2, 3)) are unimodular as well. Indeed, unimodularity of

(ΛGC ′, (d′, q, 3)) follows from Proposition 4.8.1 and kerZ(AΛGC′,(d′,q,3)) = kerZ(Λ3GqAC′,d′)
and kerZ(AΛC′,(d′,3)) = kerZ(Λ3AC′,d′). Additionally, (ΛΛC ′, (d′, 2, 3)) has the same defin-

ing matrix as (ΛΛC ′, (d′, 3, 2)), which is unimodular if and only if (ΛC ′, (d′, 3)) is. At this

point, unimodularity of (C,d) follows by induction if we show unimodularity of the HM

pair (Λ(∆m t∆0), e) where ev = 3 for the Lawrence vertex and ev = 2 for the vertex of

∆0. Letting p be the product of the vertex labels in ∆m, this HM pair has the same matrix

as the HM pair ({12, 13, 23}, (3, 2, p)) which was shown to be unimodular in [47].

As a corollary of Theorem 4.9.1, we obtain a classification of the unimodular discrete

undirected graphical models, that is, hierarchical models whose simplicial complex is the

clique complex of a graph. For a given graph G, we let C(G) denote the clique complex

of G. A suspension vertex of G is a vertex that shares an edge with every other vertex.

Let SkG denote the graph obtained by adding k suspension vertices to G.

Corollary 4.9.2. The matrix AC(G),d is unimodular if and only if one of the following

holds:

(a) G is a complete graph;

(b) G = SkC4, where C4 is the four-cycle and dv = 2 for each vertex from C4; or

(c) G is obtained by gluing two complete graphs along a (possibly empty) common clique.

Proof. The constraints on G follow immediately from [12, Lemma 5.3]. When G = SkC4,

Theorem 4.9.1 implies the constraints on d.

4.10 The Graver basis of a unimodular hierarchical

model

To conclude this section, we present a combinatorial characterization of the Graver ba-

sis of any unimodular hierarchical model’s defining matrix. Following the constructive
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characterization of unimodular hierarchical models in Theorem 4.9.1, our characteriza-

tion comes in two steps: (i) a description of the Graver basis of each nucleus, and (ii) a

description of how to obtain the Graver basis of a matrix produced by one of the uni-

modularity preserving operations allowed by Theorem 4.9.1(c) given the Graver basis of

its input matrix.

Proposition 4.10.1 characterizes the Graver basis of each possible nucleus. We have

already observed that for any unimodular matrix, the Graver basis consists of vectors

with entries in {0, 1,−1} and coincides with the set of circuits (Proposition 1.6.10). As

such, the characterization presented in Proposition 4.10.1 simply describes the signed

circuits of the oriented matroid underlying each given hierarchical model. We remind the

reader how to construct oriented matroids from signed circuits and cuts of a directed

graph; for a more thorough introduction to oriented matroids, see [15].

A signed circuit of a directed graph G is a bipartition of the set of edges in a simple

cycle v1, . . . , vn, v1 of the undirected graph underlying G according to whether or not the

edge vivi+1 agrees with G’s orientation. The edges that agree are called positive while

those that disagree are called negative. A signed bond of G is a bipartition of the set of

edges in a bond (i.e. minimal cut) of G that splits G into connected components A and

B according to whether or not the edge e is directed from A to B. The edges pointing

from A to B are called positive while those pointing from B to A are called negative. The

set of signed circuits and the set of signed bonds of G each are the signed circuits of an

oriented matroid. These two oriented matroids are dual to each other.

Let K2m+1,2n+1 denote the complete bipartite graph on partite sets 2[m+1] and 2[n+1].

Label the vertices in each partite set by the binary (m+1)- and (n+1)-tuples in {1, 2}m+1

and {1, 2}n+1, respectively. Each edge is naturally labeled with the (m + n + 2)-tuple

obtained by concatenating the labels of its vertices. Let Gm,n
1 be the directed graph with

underlying undirected graph K2m+1,2n+1 where all edges are directed from the partite set

2[m+1] to the partite set 2[n+1]. Let Gm,n
2 be the directed graph obtained from Gm,n

1 by

reversing the orientation of the edges whose (m+n+2)-tuple has an odd number of twos.

Proposition 4.10.1. The set of signed circuits of the oriented matroid underlying the

columns of A∆m is empty. The signed circuits of the oriented matroid underlying the

columns of A∆mt∆n,2 are the signed circuits of Gm,n
1 . The signed circuits of the oriented

matroid underlying the columns of ADm,n,2 are the signed bonds of Gm,n
2 .

Proof. For the first statement, note that the matrixA∆m is square with determinant 1 and
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therefore has trivial kernel. For the second statement, recall that row operations do not

affect the underling oriented matroid. Then note that after multiplying the appropriate

rows of A∆mt∆n,2 by −1, we obtain the vertex-arc incidence matrix of Gm,n
1 .

By Proposition 4.2.6 and its proof,ADm,n,2 can be obtained from a particular Gale dual

B of A∆mt∆n,2 by negating the columns of B corresponding to the binary (m + n + 2)-

tuples with an odd number of twos, then negating all negative rows of the resulting

matrix. The oriented matroid underlying the columns of B is dual to the oriented ma-

troid underlying the columns of A∆mt∆n,2. Therefore, the signed circuits of the oriented

matroid underlying the columns of B are the signed bonds of Gm,n
1 . On the oriented ma-

troid level, the process of turning B into ADm,n,2 by negating the appropriate rows and

columns has the effect of reversing the orientation of the edges of Gm,n
1 corresponding to

binary (m+ n+ 2)-tuples with an odd number of twos. This gives us Gm,n
2 .

Example 4.10.2. We illustrate Proposition 4.10.1 in the case m = 1 and n = 0. We

can draw the relevant simplicial complexes as follows. Note that D1,0 has a ghost vertex

which we indicate pictorially with an open circle.

∆1 t∆0 =

1

2

3 D1,0 =

1

2

3

Figure 4.4 depicts A∆1t∆0,2 and AD1,0,2 alongside the directed graphs G1,0
1 and G1,0

2 .

The edges corresponding to the binary 3-tuples 221, 222, 212, 211 form a cycle in

G1,0
1 with 221 and 212 having positive orientation, and 222 and 211 both having negative

orientation. Therefore the vector e221 +e212−e222−e211 is in the Graver basis of A∆1t∆0,2.

The edges corresponding to the binary 3-tuples 221, 211, 121, 111 form a minimal cut in

G1,0
2 , partitioning the vertices into {1} and its complement. Calling these sets A and

B respectively, note that the edges corresponding to 221 and 111 point from A into B

whereas the edges corresponding to 211 and 121 point from B into A. Therefore, the

vector e221 + e111 − e211 − e121 lies in the Graver basis of AD1,0,2.

We now state the obvious extension of Proposition 4.10.1 to the case where C =

∆m t∆n but d = 2 need not hold.
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1
1
1

1
1
2

1
2
1

1
2
2

2
1
1

2
1
2

2
2
1

2
2
2

{1, 2} (1, 1) 1 1 0 0 0 0 0 0
(1, 2) 0 0 1 1 0 0 0 0
(2, 1) 0 0 0 0 1 1 0 0
(2, 2) 0 0 0 0 0 0 1 1

{3} (1) 1 0 1 0 1 0 1 0
(2) 0 1 0 1 0 1 0 1



1
1
1

1
1
2

1
2
1

1
2
2

2
1
1

2
1
2

2
2
1

2
2
2

{1} (1) 1 1 1 1 0 0 0 0
(2) 0 0 0 0 1 1 1 1

{2} (1) 1 1 0 0 1 1 0 0
(2) 0 0 1 1 0 0 1 1



A∆1t∆0,2 AD1,0,2

G1,0
1 = 1 2

11

12

21

22

G1,0
2 = 1 2

11

12

21

22

Figure 4.4: The matrices A∆1t∆0,2 and AD1,0,2, along with their respective graphs G1,0
1

and G1,0
2 , from Example 4.10.2.

Proposition 4.10.3. Let C = ∆m t ∆n with vertex set {1, . . . ,m + n + 2} and facets

{1, . . . ,m+ 1} and {m+ 2, . . . ,m+n+ 2}. Fix d ∈ Zm+n+2 and let Gm,n
d be the complete

bipartite graph with partite vertex sets [d1]×· · ·× [dm+1] and [dm+2]×· · ·× [dm+n+2], with

edges oriented so that they all point towards the same partite set. Label each edge by the

element of [d1]× [dm+n+2] obtained by concatenating its vertices. Then the signed circuits

of the oriented matroid underlying the columns of AC,d are the signed circuits of Gm,n
d .

Having now characterized the Graver basis of each nucleus, it remains to describe how

each of the operations cone(−), G, Λ2 and Λ3 affect the Graver basis of a unimodular

matrix AC,d. Adding ghost vertices changes AC,d by AGC,(d q) = Gq(AC,d). Therefore,

every element in the Graver basis of AGC,(d q) is either of the form

(0 · · · 0 ei 0 · · · 0 − ei 0 · · · 0)
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where ei is the ith standard basis vector, or
(
u1 u2 . . . uq

)
where u1 +u2 + · · ·+uq is

a conformal sum which lies in the Graver basis of AC,d. It is easy to see that the kernel

of Acone(C),(d q) is the same as the kernel of the following matrix
AC,d 0 . . . 0

0 AC,d . . . 0
...

...
. . .

...

0 0 . . . AC,d

 .

The Graver basis of Acone(C),(d,q) consists of elements of the form (0 · · · 0 u 0 · · · 0)

where u is in the Graver basis of AC,d. The kernel of AΛ(C),(d p) is the same as the kernel

of ΛpAC,d. From this it easily follows that the Graver basis of AΛ(C),(d 2) consists of

elements of the form (u − u) where u is in the graver basis of AC,d.

This leaves the operation Λ3. Theorem 4.9.1 tells us that we only need to consider

Λ3 when applied to AC,d where C is nuclear with nucleus ∆m t ∆0 and dv = 2 for the

vertex of the ∆0 and every Lawrence vertex. The operation cone(−) commutes with each

other operation, and Λ2 commutes with Λ3, so it suffices to describe the Graver basis of

complexes of the form

C = Λ3GΛk1Gq1Λ
k2
2 Gq2 · · ·Λ

kl
2 GqlΛ

kl+1

2 (∆m t∆0).

Using Proposition 4.8.2, a Graver basis for the matrix corresponding to C can be obtained

inductively, starting with the Graver basis for the matrix corresponding to the labeled

complex Λ3(∆mt∆0), whose matrix is the same as for the HM pair ({12, 13, 23}, (3, 2, p)).

Remark 4.10.4. The Graver basis of any unimodular HM pair can be obtained by way of

Propositions 4.10.1 and 4.10.3 and the discussion thereafter.
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