
ABSTRACT

MARTIN, KRISTINA MARIE. Optimal Control in Free and Moving Boundary Couplings
of Navier-Stokes and Nonlinear Elasticity. (Under the direction of Lorena Bociu).

Free and moving boundary fluid-structure interactions, physical processes in which a

deformable or movable solid interfaces with a fluid, are ubiquitous in nature and engi-

neering. Due to their highly nonlinear nature (the domain and boundary equations are

nonlinear, and the common boundary is one of the unknowns in the system and has to

be determined as part of the solution), they continue to be one of the most challenging

topics to date. We consider two variations on PDE-constrained optimization problems

governed by a free or moving boundary fluid-elasticity interaction.

The challenge of applying optimization tools to free or moving boundary fluid-structure

interactions is the proper derivation of the adjoint sensitivity information with correct

balancing conditions on the common interface. As the interaction is a coupling of Eulerian

(fluid state) and Lagrangian (motion of the solid) quantities, sensitivity analysis on the

system falls into the framework of shape analysis. We build upon the sensitivity theory

developed in [12, 11, 14] and provide descriptions of the associated adjoint linearized

models.

The adjoint linear models are necessary in the derivation of optimality conditions for

controls, which feed into derivative-based optimization algorithms in free and moving

boundary fluid-structure interactions. We derive the optimality conditions along with

explicit representations of the gradient of the quadratic cost-functional associated with

each problem; the cost function gradient is relevant to subsequent numerical investiga-

tions, as its explicit representation provides directions for descent. In the free boundary,

steady state case, we provide rigorous justification for the characterization of the optimal

control via the cost function gradient, in the form of a comprehensive well-posedness

analysis.
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Chapter 1

Introduction

A fluid-structure interaction (FSI) describes any physical process in which a deformable

or movable solid interfaces with a fluid. Free and moving boundary fluid-structure in-

teractions are ubiquitous in nature, with most known examples coming from industrial

processes, aero-elasticity, and biomechanics (e.g., flutter analysis of airplanes, parachute

FSI, robo-bees [53], blood flow in the cardiovascular system, and heart valve dynamics).

Due to their highly nonlinear nature (the domain and boundary equations are nonlinear,

and the common boundary is one of the unknowns in the system and has to be deter-

mined as part of the solution), they continue to be one of the most challenging topics to

date, even though many publications have appeared focusing on the mathematical solv-

ability [5, 6, 7, 15, 18, 19, 27, 28, 29, 33, 34, 36, 37, 38, 44, 45, 43, 48, 54] and numerical

approximation [21, 23, 24, 25, 32, 46, 47] for these coupled systems. However, in most of

these applications, the ultimate goal is not only the mathematical modeling and numer-

ical simulation of the complex system, but rather the optimization or optimal control of

the considered process, as well as related sensitivity analysis (with respect to relevant

physical parameters) investigations. Regarding control problems in fluid-structure inter-

actions, much of the literature is focused on the assumption of small but rapid oscillations

of the solid body, so that the common interface may be assumed static [9, 39, 40, 41]. Re-

cently, PDE constrained optimization problems governed by free boundary interactions

(in which one works with a steady-state problem, and the position of the boundary is a

spatial unknown) have been considered, with most research studies mainly addressed in

the context of the numerical analysis of the finite element methods [4, 49, 51, 52].
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In this work, we consider two variations on optimization problems involving FSI. The first

is a free boundary problem of optimizing the fluid velocity in a system at steady state;

the second is a moving boundary problem of minimizing flow turbulence in a nonlinear

fluid-structure interaction model in which the domains and interface depend on time.

We rely on the known well-posedness theory [27, 54, 19]. Sensitivity equations associated

are obtained using shape optimization and tangential calculus techniques [12, 11, 14].

In comparison to earlier approaches, like transporting the equations to a fixed reference

configuration, or using transpiration techniques [23, 24], the shape optimization route is

most suited to incorporating the geometry of the problem into the analysis. This refined

description brings up new terms in the matching of the normal stresses and velocities

on the interface (in particular, the matrix of the interface’s curvatures), terms that are

missing if one just considers the coupling of linear Stokes flow and linear elasticity [31].

Sensitivity analysis represents the first step towards an optimization problem. As the

coupled fluid-structure state is the solution of a system of PDEs that are coupled through

continuity relations defined on the interface, itself a geometric unknown, sensitivity of

the fluid state, which is an Eulerian quantity, with respect to the motion of the solid,

which is a Lagrangian quantity, falls into moving shape analysis framework [22, 42].

This work builds upon the theory developed in [12, 11, 14], and we perform adjoint sensi-

tivity analysis for both the free and the moving boundary problems. A central challenge

of applying optimization tools to free or moving boundary FSI is the proper derivation of

the adjoint sensitivity information with correct adjoint balancing conditions on the com-

mon interface. We are directly motivated to derive the necessary optimality conditions

that describe optimal controls, which paves the way for subsequent numerical analysis.

We describe and study the appropriate adjoint linearized models in both the free and

moving boundary FSI, including a treatment of the well-posedness of the system in the

free boundary case.

We note here that most of this work is independent of the choice of cost function, which

encodes the quantity or process to be optimized, associated with the free or moving

boundary interaction. Therefore the results have wide applicability in the field.
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1.1 Notation

Throughout we use the Einstein summation convention as well as the following notation:

• (Df(a))ij = ∂jfi(a) ∈ M3 is the gradient matrix at a ∈ X of any vector field

f = (fi) : X ⊂ R3 → R3.

• div f(a) = ∂ifi(a) ∈ R is the divergence of f : X ⊂ R3 → R3 at a ∈ X.

• DivT (a) = ∂jTij(a)ei ∈ R3 is the divergence of any second-order tensor field T =

(Tij) : X ⊂ R3 →M3 at a ∈ X.

• We will identify the set of all second-order tensors with the set M3 of all square

matrices of order three.

• A∗ = transpose of A, for any A ∈M3.

• A..B = Tr(A∗B) ∈ R is the Frobenius inner product in M3.
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Chapter 2

PDEs of Fluids and Structures

2.1 Reference and Deformed Configurations

Consider a domain Ω̂ ⊂ Rd (d = 2, 3) with smooth boundary. The domain Ω̂ is filled with

a continuum medium; for our purposes Ω̂ will be occupied by either an elastic solid or

an incompressible fluid. We refer to Ω̂ as the reference configuration of the domain. The

domain Ω̂ can be acted on by a map called a deformation, which deforms the domain.

Let ϕ̂ be an injective map such that

ϕ̂ : Ω̂→ Ω,

where Ω ⊂ Rd is the deformed configuration (also referred to as the physical or current

configuration). The deformation mapping ϕ̂ maps coordinates x̂ ∈ Ω̂ to coordinates in

the deformed configuration x ∈ Ω, that is ϕ̂(x̂) = x. The deformation gradient of the

mapping ϕ̂ is a second-order tensor field (identified in the space Md of d × d matrices)

and denoted by F̂ij :=
∂xi
∂x̂j

, i, j = 1, d. The notation Ĵ = det F̂ gives the Jacobian of

the deformation. The deformations we consider are orientation-preserving, and as such

Ĵ > 0.

Depending on the particular continuum medium, a quantity of interest may be the dis-

placement of a coordinate x̂, which will be denoted by η̂(x̂). The displacement is the
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difference between a material point and it’s location under the deformation.

η̂(x̂) = ϕ̂(x̂)− x̂ (2.1.1)

In the (common) case where the situation is dynamic, as opposed to static, we add the

definition of a motion, which is a one-parameter family of deformations. Consider the

smooth map

ϕ̂(t) : Ω̂× R+ → R3

with ϕ̂(t)(x̂) = x. If for each time t ≥ 0 ϕ̂(t) = ϕ̂(·, t) is a deformation then ϕ̂(t) is a

motion. For each time t the current configuration is denoted by Ω(t) = ϕ̂(Ω̂, t). That is,

ϕ(t) : Ω̂→ Ω(t).

In this context the reference configuration is typically considered to be the initial config-

uration, that is Ω̂ = Ω(0).

When the situation is dynamic, the velocity of the motion is a significant kinematic

quantity which will appear in many calculations. The variable u is used to describe the

velocity of the motion, which is given by

û(x̂, t) :=
∂

∂t
η̂(x̂, t). (2.1.2)

Notice that due to the rules governing partial derivatives and the definition of the defor-

mation, it is also true that for each t ≥ 0, û =
∂ϕ̂

∂t
.

When a quantity is described in the reference configuration, this is akin to the classical

Lagrangian framework. The Lagrangian frame of observation entails following each in-

dividual particle (or parcel) x̂ as it moves through space and time. In contrast, when a

quantity is described in the current configuration this is analogous to the classical Eu-

lerian framework. The Eulerian frame of observation entails watching the movement of

particles through a particular location and at a particular time (or interval of time). A

commonly used analogy is that of a swimmer in the river. In the Lagrangian frame of

reference, the observer is floating alongside the swimmer and monitoring her position

and velocity. In the Eulerian frame of reference, the observer is sitting on the shore in a
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fixed spot and watching the swimmer’s position and velocity evolve in time. Using the

motion ϕ̂ and its inverse ϕ̂−1 := ϕ we can write the relationship between a quantity in

the Lagrangian vs. the Eulerian frame by composition with the motion. For example, for

each t ≥ 0,

u(x, t) := û(·, t) ◦ ϕ(x) = û(x̂, t),

η(x, t) := η̂(·, t) ◦ ϕ(x) = η̂(x̂, t).

In order to further expand on the relationship between the referential frames and quan-

tities described within each of them, observe that we can write the inverse of the motion

explicitly. Since for each t, ϕ̂(x̂, t) = x̂+ η̂(x̂, t) is the map that takes a material point to

its Eulerian counterpart, i.e. ϕ̂(x̂, t) = x, then the map that takes an Eulerian coordinate

x back to its Lagrangian counterpart entails just subtracting off the displacement. That

is, for each t,

ϕ(x, t) := x− η(x, t) = x̂.

With this relation we can define F := Dϕ = I−Dη, and since ϕ̂◦ϕ = I we have FF̂ = I.

In other words, F = F̂−1. Consequently, for J := detF , the Jacobian of the inverse of

the deformation, we have J = 1/Ĵ . The relations between the motion and its inverse are

critically useful when casting expressions and equations in their equivalent forms in both

the Eulerian and Lagrangian frames.

Regarding notation, in what follows we will not use boldface to distinguish between scalar

and vectorial quantities, but will in most cases use capital letters to refer to tensorial

quantities. We will typically use the ‘hat’ notation to refer to Lagrangian frame quantities,

and the ‘hatless’ notation to refer to Eulerian frame quantities. Any distinctions not clear

from context will be made explicit when necessary.

2.2 Formulas

We state several classical formulas which will be useful in developing the PDEs that

comprise fluid-structure interaction models, as well as in the subsequent analysis. These

formulas and the corresponding notation are found in, e.g., [25].
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2.2.1 Change of Variables

If ϕ̂(t) is a motion such that Ω(t) = ϕ̂(t)(Ω̂) for each t ≥ 0 we have,∫
Ω(t)

qdx =

∫
Ω̂

Ĵ q̂dx, (2.2.1)

where Ĵ := detDϕ̂.

2.2.2 Material Derivative

For an Eulerian field φ (minor adjustments can be made depending on whether φ is a

scalar, vectorial, or tensorial quantity), define the material time-derivative of φ by

Dφ

Dt
:=

∂φ̂

∂t
◦ ϕ.

Using the multivariable chain-rule we can write a more physically meaningful represen-

tation of the material time derivative

Dφ

Dt
=
∂φ

∂t
+∇φ · u, (2.2.2)

where u is the Eulerian counterpart of the velocity of the motion, as described in Section

2.1.

2.2.3 Derivative of Jacobian

If J(ϕ) is the Jacobian of a deformation (in an Eulerian frame) then the material time-

derivative of J is given by
DJ

Dt
= Jdivu. (2.2.3)

7



2.2.4 Gradient of composition

For an Eulerian field φ:

If φ is a scalar,

∇x̂φ̂ = F−∗∇φ. (2.2.4)

On the other hand if φ is vector-valued then

Dx̂φ̂ = DφF−1. (2.2.5)

2.2.5 Reynold’s Transport Formula

Let V (t) be a domain associated with velocity u (as described in Section 2.1). If f is a

continuously differentiable scalar field, then

d

dt

∫
V (t)

fdx =

∫
V (t)

(
Df

Dt
+ fdivu

)
dx =

∫
V (t)

(
∂f

∂t
+ div (fu)

)
dx. (2.2.6)

If f is a continuously differentiable vector field then

d

dt

∫
V (t)

fdx =

∫
V (t)

(
Df

Dt
+ fdivu

)
dx =

∫
V (t)

(
∂f

∂t
+ Div (f ⊗ u)

)
dx. (2.2.7)

2.3 Conservation Laws

2.3.1 Mass

Fundamental principle: the mass of a body does not change when subjected to a motion.

If ρ is the density of a continuum medium in an arbitrary domain V (t), then the mass

of the domain is given by

Mass of V (t) =

∫
V (t)

ρ dx.
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According to the principle of conservation of mass we have d
dt

(Mass of V (t)) = 0, which

implies

0 =
d

dt

(∫
V (t)

ρ dx

)
(2.3.1)

2.3.2 Momentum

Fundamental principle: the rate of change of momentum in a body is equal to the resultant

of the forces acting on it.

Represent the resultant force on a body by V. The quantity of momentum is given by

the product of density and velocity, so the fundamental principle is translated as

d

dt

∫
V (t)

ρu dx = V,

for an arbitrary domain V (t). In order to represent conservation of momentum classically

we decompose the force V into the force that acts in a distributed fashion throughout

the volume of the body, Vv, as well as the force that acts on the surface of the body, Vs.

The volume force Vv can be written as the accumulation the product of the density and

a specific force v, that is

Vv =

∫
V (t)

ρv dx.

The surface force, on the other hand, can be represented by the surface integral of the

Cauchy stress. According to a principle of Cauchy, the Cauchy stress is computed by

the contraction of the Cauchy stress tensor σ (a second-order symmetric tensor) and the

outer normal to ∂V (t). That is,

Vs =

∫
∂V (t)

σn dx.

Altogether, the principle of conservation of momentum can be written

d

dt

∫
V (t)

ρu dx =

∫
V (t)

ρv dx+

∫
∂V (t)

σn dx =

∫
V (t)

ρv + Divσ dx, (2.3.2)

9



where the last equality entails an application of the divergence theorem.

2.4 PDEs of Fluids and Structures

There are two different ways to proceed in order to use general physical and conservation

principles (2.3.1) and (2.3.2) to recover PDEs describing the evolution/state of fluids or

structures. In order to compute the time derivative of the integrals we can move the

integral to a fixed/reference domain, bring the time derivative under the integral, and

then directly recover a continuity equation (owing to the arbitrariness of the domain).

The result is an equation in the Lagrangian frame. Alternatively, after moving the time

derivative under the integral, we can move the integral back to the Eulerian frame and

then recover a continuity equation. The result is a continuity equation in the Eulerian

frame. The approach that is more appropriate for a particular setting depends on the

continuum medium of interest.

2.4.1 Equations of Solid

In the case of a solid, we are primarily concerned with the displacement of particles (as

opposed to the velocity). As a result, it stands to reason that working in the Lagrangian

framework is more suitable for deriving the equations governing solids; we will move the

integral formulations of mass and momentum conservation to reference, time-independent

domains and then derive the corresponding continuity equations and PDEs. While we

will make use of the abstract quantity û, the velocity of the continuum medium, the phys-

ical quantities of interest are typically η̂ and ϕ̂, the displacement and the deformation,

respectively. Recall that these quantities are related by relations (2.1.1) and (2.1.2).

2.4.1.1 Time-dependent Setting

Using the change of variables ϕ̂ to move (2.3.1) to the reference domain we obtain

10



0 =
d

dt

(∫
V̂

Ĵ ρ̂dx̂

)
=

∫
V̂

∂(Ĵ ρ̂)

∂t
dx̂.

Define ρ̂0 := Ĵ ρ̂. Owing to fact that V̂ is arbitrary, we obtain the continuity equation for

mass conservation in Ω̂
∂ρ̂0

∂t
= 0. (2.4.1)

Note that (2.4.1) implies that the material density is constant in time. In the case where

density is constant in space as well, the definition of ρ̂0 implies that Ĵ = 1 for all t ≥ 0.

According to the same reasoning we turn our attention to (2.3.2). Moving the integral

back to the reference domain we obtain

d

dt

(∫
V̂

Ĵ ρ̂
∂η̂

∂t
dx̂

)
−
∫
V̂

ĴD̂ivσdx̂ =

∫
V̂

ρ̂vdx̂.

The first term on the left-hand side can be simplified as follows:

d

dt

(∫
V̂

Ĵ ρ̂
∂η̂

∂t
dx̂

)
=

∫
V̂

∂

∂t

(
Ĵ ρ̂
∂η̂

∂t

)
dx̂,

=

∫
V̂

∂

∂t

(
ρ̂0
∂η̂

∂t

)
dx̂ by definition of ρ̂0,

=

∫
V̂

ρ̂0
∂2η̂

∂t2
dx̂ by (2.4.1).

Substituting we obtain

ρ̂0
∂2η̂

∂t2
− ĴD̂ivσ = ρ̂0v.

It remains to discuss the term D̂ivσ. Recall that the ‘hat’ notation in this context is

defined as D̂ivσ = Divσ ◦ ϕ̂. In other words, the derivative is still being taken with

respect to the Eulerian frame variables. We can formally carry out the composition in

order to represent the PDE entirely in the Lagrangian frame, such that all derivative

operations are with respect to the Lagrangian variables. The composition is represented

by the Piola transformation. When σ is a two-tensor defined on the Eulerian frame, the
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Piola transform of σ associated to a particular deformation ϕ̂ is defined by

P̂ϕ̂(σ) := Ĵ(x̂)σ
(
ϕ̂(x̂)

)
F̂−T (x̂) = Ĵ σ̂F̂−T . (2.4.2)

We will use the shorthand P̂ and assume that the dependence on both ϕ̂ and σ are

understood.

We have the following further important relationship between σ and P :

Div x̂P̂ = Ĵ(Divσ ◦ ϕ̂). (2.4.3)

Consequently we can write the continuity equation for displacement of a solid. It is now

understood that the divergence is taken with respect to the variables in the Lagrangian

frame.

ρ̂0
∂2η̂

∂t2
−Div P̂ = ρ̂0v.

Note that P̂ is not symmetric; because symmetric tensors are computationally convenient

we will often write equations for solids instead in terms of the second Piola tensor Σ̂ :=

F̂−1P̂ , which is symmetric. Then the equations of elastodynamics in Lagrangian frame

written

ρ̂0
∂2η̂

∂t2
−Div {F̂ Σ̂} = ρ̂0v. (2.4.4)

Further assumptions are on the nature of the specific elastic material are required in

order to write P̂ or Σ̂ explicitly in terms of η̂ or û.

2.4.1.2 Constitutive Equations for Isotropic Elasticity

The Cauchy stress tensor is an abstraction. In order for the PDE to describe a particular

elastic material we require a discussion of the relationship between the abstract Cauchy

stress tensor and the kinematic quantities of the material. That is, we require a consti-

tutive equation. Elastic materials are memoryless; the description of stress on an elastic

12



material is a only function of space (the deformation), and is independent of time. In the

case of homogenous elastic materials, mechanical properties do not vary in space. In the

case of isotropic elastic materials, the material response to deformation is the same in all

directions.

For isotropic elastic materials, we write the dependency of the constitutive equation on

the Green-Lagrange strain tensor

Ê :=
1

2

(
F̂ T F̂ − I).

It is evident that Ê can also be written in terms of the displacement η̂:

Ê =
1

2
(Dη̂ + (Dη̂)∗ + (Dη̂)∗Dη̂).

Writing Ê in this way makes clear that the strain is not affected by rigid body motions,

as Ê is dependent only on the gradient of the displacement.

Constitutive equations for elastic materials whose stress-strain relationship may be non-

linear can be written in terms of a density of elastic energy. In particular, given an energy

functional W : M3 → R+ we set

Σ(Ê) =
∂W

∂Ê
(Ê).

The natural state of an elastic material is a configuration where the Cauchy stress tensor

is identically zero. A straightforward choice for the strain-energy density function for a

homogenous, isotropic material whose reference configuration is the natural state is given

by Saint-Venant Kirchoff model. The strain-energy density functional is

W (Ê) =
λ

2
[tr (Ê)]2 + µtr (E2), (2.4.5)

for the Lamé parameters λ, µ > 0, so the second Piola stress tensor for the Saint-Venant
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Kirchoff model is

Σ(Ê) =
∂

∂Ê

(
λ

2
[tr (Ê)]2 + µtr (E2)

)
= λ(tr Ê)I + 2µÊ. (2.4.6)

Taken together, the equations of elastodynamics describing the deformation of a homoge-

nous, isotropic elastic material areρ̂0
∂2ϕ̂

∂t2
−Div

{
F̂Σ
(
Ê
)}

= ρ̂0v,

û =
∂ϕ̂

∂t

(2.4.7)

for Ê(ϕ̂) := 1
2

(
F̂ T F̂ − I),

Σ(Ê) := λ(tr Ê)I + 2µÊ.
(2.4.8)

2.4.1.3 Elastodynamics in the Eulerian Frame

For fluid-structure interaction problems it can be analytically advantageous to represent

the equations of fluid and structure in the same frame of reference. In order to represent

the equations (2.4.7) in the Eulerian framework we work with the integral transformation

and use (2.2.1) as well as (2.2.2) and (2.2.5). Using the inverse of the deformation, ϕ, we

can write the Eulerian counterparts of the Green-Lagrange strain tensor as well as the

second Piola stress tensor:

E :=
1

2
(F−∗F−1 − I),

Σ(E) := λ(trE)I + 2µE.

Due to (2.2.5), the stress tensor that appears in the equation is the Cauchy stress tensor

σ(Σ(E))) := JF−1Σ(E)F−∗. (2.4.9)
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Altogether, the equations of elastodynamics in the Eulerian frame are
ρ̂0J

(
∂u

∂t
+Du · u

)
−Div {σ(Σ(E))} = ρ̂0Jv,

u =
∂η

∂t
+Dη · u.

(2.4.10)

In order to write the equations more simply we let ρ = ρ̂0J represent the density of the

solid (motivated by the fact that ρ̂0 = Ĵ ρ̂ implies ρ̂ = ρ̂0J). Then we have


ρ

(
∂u

∂t
+Du · u

)
−Div {σ(Σ(E))} = ρv,

u =
∂η

∂t
+Dη · u.

(2.4.11)

2.4.1.4 Steady Setting

The equations of elasticity in the stationary setting can be derived on their own merits,

using the principles of force and moment balance and the theorem of Cauchy that the

Cauchy stress vector field depends linearly on the normal vector. Alternatively, we can

consider the stationary setting to describe the state of the elastic body at equilibrium, in

which case we can extract the steady state elasticity equations by assuming
∂η̂

∂t
= 0. An

elastic body at steady state satisfies the following equations in the Lagrangian frame:

−Div
{
F̂Σ
(
Ê
)}

= ρ̂0v. (2.4.12)

An elastic body at steady state satisfies the following equations in the Eulerian frame:

−Div {σ(Σ(E))} = ρv. (2.4.13)
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2.4.2 Equations of Fluid

It is both conventional and natural to consider evolution of a fluid domain in an Eulerian

framework. The quantities of interest in the evolution of a fluid domain are typically

the fluid velocity and pressure. Considering the displacement of the fluid typically is

not of interest; the displacements are large and not physically relevant. We are typically

interested in snapshots of the velocity field throughout a domain, at particular times.

This corresponds classically with the Eulerian formulation.

2.4.2.1 Time-dependent setting

Using (2.2.7) in (2.3.1), we obtain

0 =
d

dt

(∫
V (t)

ρ dx

)
=

∫
V (t)

∂ρ

∂t
+ div (ρu)dx.

Since V (t) is an arbitrary domain we recover

∂ρ

∂t
+ div (ρu) = 0 (2.4.14)

in Ω(t) for all t > 0. Observe that if the fluid density is constant then
∂ρ

∂t
= 0, which im-

plies div (u) = 0. Constant density fluids are called incompressible, and incompressibility

is marked by this divergence-free condition. In the sequel we will work in the framework

of a constant density fluid, which will be considered as synonymous with incompressible.

On the other hand, when we use (2.2.7) on the lefthand side of (2.3.2) we obtain

d

dt

∫
V (t)

ρu dx =

∫
V (t)

∂(ρu)

∂t
+ Div (ρu⊗ u)dx,

from which we obtain the integral equation∫
V (t)

∂(ρu)

∂t
+ Div (ρu⊗ u)dx =

∫
V (t)

ρv + Divσ dx.
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Since V (t) is arbitrary we obtain

∂(ρu)

∂t
+ Div (ρu⊗ u)−Divσ = ρv.

Under the assumption that the fluid density is constant we have

ρ

(
∂u

∂t
+ Div (u⊗ u)

)
−Divσ = ρv. (2.4.15)

The continuity equation (2.4.15) can be further simplified using the decomposition

Div (u⊗ u) = Du · u+ (divu)u.

Since we are working with divergence-free fluids we have that (2.4.15) simplifies to

ρ

(
∂u

∂t
+Du · u

)
−Divσ = ρv. (2.4.16)

2.4.2.2 Consitutive Equations for Incompressible Navier-Stokes

The quantity of interest for the evolution of a fluid domain is the strain rate tensor

ε(u) :=
1

2

(
Du+ (Du)∗),

as the behavior of interest is the rate at which a fluid adapts to a deformation. The Cauchy

stress tensor for fluids will depend on ε(u). In the case of incompressible, Newtonian fluids

the dependence is linear. We have

σ(p, u) := −pI + 2v1ε(u), (2.4.17)

where p is the pressure and v1 > 0 is the dynamic viscosity of the fluid. Suppose the

viscosity v1 is constant. Then in order to substitute (2.4.17) into (2.4.15) we observe that

Div (pI) = ∇p,
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Div (v1ε(u)) = Div (Du+ (Du)∗) = v1∆u,

where the last equality also utilizes the divergence-free condition on the fluid.

Then the Navier-Stokes equations for Newtonian, constant viscosity, incompressible fluids

are

ρ
(
∂u

∂t
+ (Du)u

)
−Divσ(p, u) = ρv,

divu = 0.

(2.4.18)

Another common way that the Navier-Stokes equations are written (and what we will use

more frequently) is to rescale p by p/ρ (without altering the notation) and let ν := v1/ρ,

the kinematic viscosity of the fluid. We rewrite σ(p, u) := −pI + 2νε(u) and and then

the Navier-Stokes equations are written
∂u

∂t
+ (Du)u−Divσ(p, u) = v,

divu = 0.
(2.4.19)

2.4.2.3 Steady setting

When the fluid medium is at equilibrium, we assume that the fluid velocity is constant in

time, but varies in space, as does the pressure. The velocity and pressure of the incom-

pressible fluid in this state satisfies the following steady state Navier-Stokes equations.

(Du)u−Divσ(p, u) = v,

divu = 0.
(2.4.20)

2.4.3 Configuration of Domain

Let Ω be a control volume containing both the elastic and fluid domains.
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Ω

Ω̂e

Ω̂f

n̂

Γ̂i

Γf Ω

Ωe

Ωf

n

Γi

Γfϕ̂

ϕ := ϕ̂−1

Figure 2.1 Steady state configuration of the control volume Ω on the reference and physcial
domains.

In the stationary setting, shown in Figure 2.1, the elastic body occupies a domain Ωe ⊂ Rd

(d = 2, 3), and is described according to a map acting in a fixed, reference domain Ω̂e.

The fluid occupies domain Ωf ⊂ Rd, and the interaction between the two media occurs

via the shared interface, denoted by Γi. The external boundary of Ω is denoted by Γf .

The material (or reference) configurations are denoted using the ‘hat’ notation, by Ω̂e,

Ω̂f , Γ̂i. Then the volume Ω is described by the deformation ϕ̂. For any x̂ ∈ Ωe, ϕ̂(x̂) = x

represents the position of the material point x̂. On Ωf , ϕ̂ is defined as an arbitrary

extension of the restriction of ϕ̂ to Γi which preserves the boundary Γf . The quantity n̂

is the outer unit normal vector for Ω̂e along Γ̂i, and n is defined analogously.

In the fully dynamical setting, shown in Figure 2.2, the elastic body occupies a domain

Ωe(t) ⊂ Rd (d = 2, 3), which depends on the parameter t ≥ 0. The elastic domain is

described according to a motion, acting in a fixed, reference domain. The fluid occupies

domain Ωf (t) ⊂ Rd, whose evolution is induced by the structural deformation through

the shared interface, denoted by Γi(t). The external boundary of Ω is denoted by Γf , and

does not depend on time. The material (or reference) configurations are denoted using

the ‘hat’ notation, and defined as the state of the domains at time t = 0, Ω̂e := Ωe(0),

Ω̂f := Ωf (0), Γ̂i := Γi(0). In the dynamical setting the volume Ω is described by the

motion ϕ̂(t). For any x̂ ∈ Ωe, ϕ̂(x̂, t) = x represents the position of the material point x̂
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Ω

Ω̂e

Ω̂f

n̂

Γ̂i

Γf Ω

Ωe(t)

Ωf (t)

n(t)

Γi(t)

Γfϕ̂(t)

ϕ(t) := ϕ̂−1(t)

Figure 2.2 Dynamic state configuration of the control volume Ω on the reference and cur-
rent domains.

at time t. On Ωf (t), ϕ̂(t) is defined as an arbitrary extension of the restriction of ϕ̂(t) to

Γi(t) which preserves the boundary Γf .

In both settings the normal vectors on the reference and physical domains bear the

following relationship to each other.

n ◦ ϕ̂ =
(Dϕ̂)−∗n̂

|(Dϕ̂)−∗n̂|
(2.4.21)

Remark 2.4.1. The interface Γi(t) comprises a moving boundary that moves with the

parameter t. Consequently the fully dynamical case entails a non-cylindrical configuration.

2.5 Fluid-Structure Interaction Models

2.5.1 Steady State Fluid-Structure Interaction Model

The fluid-struction interaction problem entails a coupling of the nonlinear elasticity and

incompressible steady state Navier-Stokes equations.
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The subscripting notation is used to indicate in which domain the variable is acting,

such that e.g. uf = u|Ωf
. When the domain is clear from context the subscript may be

omitted.

For the system in equilibrium we assume a no-slip condition for the fluid velocity on the

entire fluid boundary ∂Ωf = Γi ∪ Γf , as well as a matching of normal stresses on the

interface.

Using these conditions to couple (2.4.13) and (2.4.20), we obtain the steady state PDE

model on the deformed configuration.



(Duf )uf −Divσf (p, uf ) = vf Ωf

divuf = 0 Ωf

−Divσe(ϕ) = ρeve Ωe

uf = 0 Γi

σe(ϕ)n = σf (p, uf )n Γi

uf = 0 Γf

(2.5.1)

where ρe := ρ̂0J(ϕ) is the Eulerian density of the elastic body for ρ̂0 the density in the

reference configuration and the remaining notation is defined as follows:

σf (ψ, φ) := −ψI + 2νε(φ),

ε(φ) :=
1

2
(Dφ+ (Dφ)∗),

σe(φ) := J(φ)(Dφ)−1Σ(E(φ))(Dφ)−∗,

Σ(Φ) := λtr (Φ)I + 2µΦ,

E(φ) :=
1

2
((Dφ)−∗(Dφ)−1 − I),
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2.5.2 Dynamical Fluid-Structure Interaction Model

The fluid-struction interaction problem in the dynamical setting entails a coupling of the

nonlinear elastodynamics and incompressible Navier-Stokes equations. For the coupling

conditions we assume a matching of velocities and of normal stresses on the interface.

We continue to assume a no-slip condition for the fluid velocity on the external boundary

Γf .

Using these conditions to couple (2.4.11) and (2.4.19), we obtain the dynamic PDE model

on the current configuration.



∂uf
∂t

+ (Duf )uf −Divσf (p, uf ) = vf Ωf (t)

divuf = 0 Ωf (t)

ρe

(
∂ue
∂t

+ (Due)ue

)
−Divσe(ϕ) = ρeve Ωe(t)

uf = ue Γi(t)

σf (p, uf )n = σe(ϕ)n Γi(t)

uf = 0 Γf

ϕ̂(·, 0) = ϕ̂0, ϕ̂t(·, 0) = ϕ̂1, uf (·, 0) = u0, p(·, 0) = p0 (Ω̂e)
2 × (Ωf )

2

(2.5.2)
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Chapter 3

Existence of Optimal Control

3.1 Steady State Case

3.1.1 Objective

We consider a cost functional describing the difference between the fluid velocity and a

given desired velocity, denoted by ud. The objective is to reduce this difference; that is,

for the fluid velocity to come as close as possible to matching a specified velocity.

The associated cost functional can be expressed as

JS(v, u) = 1/2‖u− ud‖2
L2(Ωf ) +

1

2
‖v‖2

ES(Ω). (3.1.1)

The target velocity optimization problem can be formulated as

min
v∈QS

ad

JS(v, u(v)), (3.1.2)

for a space of admissable controls QS
ad. The control norm ‖ · ‖ES(Ω) will be formulated

from forthcoming known well-posedness results for the control-to-state map. Note that

the inclusion in the cost functional of the term depending on the control, ‖v‖2
ES(Ω), is not
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physically required but is a mathematical necessity in the subsequent steps. Some physical

justification is provided for including term by considering it as a cost of implementing

the body force.

The goal is to prove the existence of an optimal control for (3.1.2); that is, we wish to show

that the velocity of the fluid can be optimized by applying a force on the domain. We note

that the proof relies on available existence results, which introduces two challenges. First,

we require sufficiently high regularity of the control in order to utilize the existing theory.

Second, the existing literature limits our consideration to the case of distributed control

(control on the domain); while it would be of physical interest to consider boundary

control, well-posedness analysis does not exist in the literature for that case, to the

author’s knowledge.

3.1.2 Lagrangian framework

The well-posedness analysis casts the coupled system (2.5.1) in Lagrangian coordinates

by transporting the Navier-Stokes equation onto the reference domain.

Remark 3.1.1. It is beneficial for the numerical solution of the optimization problem

to express the system in Lagrangian coordinates. Solving the state equation on a refer-

ence domain bypasses the need to update the computational mesh at each step of the

optimization algorithm.

The transformation ϕ̂ is volume-preserving on Ω̂f , and so Ĵ |Ω̂f
= 1 and [cof(Dϕ̂)]∗

∣∣
Ω̂f

=

(Dϕ̂)−1, both facts which are used in the transport.

The PDE model can be written in the Lagrangian framework (ϕ̂, û, p̂) as in [27]:

−νdiv [(Dϕ̂)−1(Dϕ̂)−∗Dûf ] + (Dϕ̂)−∗∇p̂+Dûf (Dϕ̂)−∗ûf = v̂f Ω̂f

div ((Dϕ̂)−1ûf ) = 0 Ω̂f

−Div P̂(ϕ̂) = ρ̂0v̂e Ω̂e

ûf = 0 Γ̂i

P̂n̂ = ν(Dϕ̂)−1(Dϕ̂)−∗Dûf n̂− p̂(Dϕ̂)−∗n̂ Γ̂i

ûf = 0 Γf ,

(3.1.3)
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where recall that P̂(ϕ̂) is the nonlinear Piola-Kirchoff stress tensor,

P̂(ϕ̂) := Dϕ̂Σ
(
Ê
)

(3.1.4)

for Ê(ϕ̂) := 1
2

(
(Dϕ̂)∗Dϕ̂− I),

Σ(Ê) := λ(tr Ê)I + 2µÊ.
(3.1.5)

The first term in the cost functional can also be transported to the reference configuration:

JS(v, û) := 1/2‖û− ûd‖2
L2(Ω̂f )

+ 1/2‖v‖2
ES(Ω), (3.1.6)

where ûd = ud ◦ ϕ̂.

3.1.3 Well-posedness results

To prove the existence of an optimal solution (v̄, ¯̂u, ¯̂ϕ) we follow the strategy of [1],

which requires existence and uniqueness of solutions to (3.1.3). The first major work

analyzing the well-posedness of the steady state free boundary coupling of Navier-Stokes

and nonlinear elasticity is found in [27], in the case of the configuration of a fluid inside

an elastic structure. The work of [54] expands on the well-posedness result of [27] by

generalizing the configuration (to include the configuration of Figure 2.1); additionally,

the authors of [54] show that the solution is differentiable with respect to the control.

We require the following assumptions to be imposed on the control data.

Assumption 3.1.2. Assume the existence of vf ∈ Lp(R3) and v̂e ∈ Lp(Ω̂e), with 3 <

p < ∞. Assume that vf and v̂e are small enough, that is there exists a constant M > 0

such that

C‖v̂e‖Lp(Ω̂e) +Q(‖vf‖Lp(R3)) ≤M,

where Q is a is a polynomial function such that Q(0) = 0 and whose non zero coefficients

are positive. Assume moreover that ‖vf‖H−1(R3) ≤ Cν2.

The following existence and uniqueness result is drawn from [27] and [54]:

Theorem 3.1.3 (Existence and uniqueness of solutions to (2.5.1)). Let Ω ⊂ R3 be an

open smooth, bounded domain and let Ω̂e ⊂ Ω be an open set such that Ω̂e ⊂ Ω. Let
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Ω̂f = Ω ∩ (Ω̂e)
c, and let ν > 0, λ > 0, µ > 0 be given. Under Assumption 3.1.2, there

exists a unique solution (ûf , p̂) of (2.5.1), with the following regularity:

ûf ∈ W 2,p(Ω̂f ) ∩W 1,p
0 (Ω̂f ),

p̂ ∈ W 1,p(Ω̂f ).

Furthermore, the displacement of the structure resides in the space

Bρ = {b ∈ W 2,p(Ω̂e)|‖b‖W 2,p(Ω̂e) ≤M1}, (3.1.7)

where M1 is chosen to justify the transport of the coordinates (specifically the invertibility

of Dϕ̂). The M of Assumption 3.1.2, as applied here, depends on M1. We have ϕ̂ ∈
W 2,p(Ω̂e) ∩W 2,p(Ω̂f ).

Proving existence of optimal control will rely on the underlying PDE system having

solutions of sufficiently high regularity, in order to use Sobolev embedding properties

to show that established weak subsequential limits are in fact strong limits in specific

spaces. To that end we offer the following corollary to Theorem 3.1.3, describing how we

can obtain increased regularity in the solution by increasing regularity on the control.

Corollary 3.1.4 (Additional regularity in solutions to (2.5.1)). For integer m ≥ 1,

given the described domain configuration such that Ω̂e, Ω̂f are Cm+2, if in addition to

Assumption 3.1.2 we also have, v̂f ∈ Wm,p(Ω̂f ) and v̂e ∈ Wm,p(Ω̂e), with 3 < p < ∞,

such that there exists a constant M2 > 0 such that

C‖v̂e‖Wm,p(Ω̂e) +Q(‖vf‖Wm,p(Ωf )) ≤M2, (3.1.8)

then the corresponding solution of (2.5.1) possesses the additional regularity

ûf ∈ Wm+2,p(Ω̂f ),

p̂ ∈ Wm+1,p(Ω̂f ),

ϕ̂ ∈ Wm+2,p(Ω̂e).

Furthermore, the following estimates are satisfied (for C1 > 0):

‖ûf‖Wm+2,p(Ω̂f ) + ‖p̂‖Wm+1,p(Ω̂f ) ≤ Q(‖v̂f‖Wm,p(Ω̂f )), (3.1.9)
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‖ϕ̂‖Wm+2,p(Ω̂e) ≤ C1‖v̂e‖Wm,p(Ω̂e). (3.1.10)

Proof. The dependence of the regularity of solutions to (2.5.1) on the regularity of the

control is governed by the regularity properties of the fluid and structure subproblems [27,

pg. 86, 89]. The needed regularity result and estimate for the Stokes subproblem is given

in [3, Proposition 1], and the analogous result for the nonlinear elasticity subproblem is

given in [17, pg. 298].

3.1.4 Existence of optimal controls

In order to fit the problem within the framework of the well-posedness analysis, we define

the control norm and the space of admissible controls. Define the control norm, in the

context of Corollary 3.1.4, to be

‖v‖2
ES(Ω) := ‖ve‖2

Hm(Ωe) + ‖vf‖2
Hm(Ωf ), (3.1.11)

and we set the set of admissible controls to be

QS
ad :={v̂f ∈ Wm,p(Ω̂f ), v̂e ∈ Wm,p(Ω̂e) |C‖v̂e‖Wm,p(Ω̂e) + k‖vf‖Wm,p(Ωf ) ≤M,

‖vf‖H−1(R3) ≤ Cν2, and ‖vf‖Wm,p(Ωf ) ≤ 1},
(3.1.12)

where k depends on the polynomial Q of (3.1.8), m ≥ 1 is an integer, and 3 < p < ∞.
Let AS : QS

ad → Wm+2,p(Ω̂f ) ∩ W 1,p
0 (Ω̂f ) × Wm+1,p(Ω̂f ) × Wm+2,p(Ω̂e) ∩ W 2,p(Ω̂f ) be

the control-to-state map, which maps an admissible control function to the solution

of the (transported to Lagrangian coordinates) steady state problem (3.1.3). Then the

optimization problem in Lagrangian framework reads: find v ∈ QS
ad such that for the

corresponding velocity û = û(v) and deformation ϕ̂ = ϕ̂(v), the functional JS in (3.1.6)

satisfies

JS

(
v, û, ϕ̂

)
= min

v∈QS
ad

JS (v, û(v), ϕ̂(v)) . (3.1.13)

Theorem 3.1.5 (Optimal control). The optimization problem (3.1.13) has a solution, i.e.

there is v ∈ QS
ad and a solution to (3.1.3), (û, p̂) ∈ Wm+2,p(Ω̂f )∩W 1,p

0 (Ω̂f )×Wm+1,p(Ω̂f )

with the associated deformation map ϕ̂ ∈ Wm+2,p(Ω̂e) ∩W 2,p(Ω̂f ), so that the functional

v 7→ JS(v, û(v), ϕ̂(v)) attains its minimum on QS
ad at v, and (û, p̂) is the solution of
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(3.1.3) with Lagrangian field ϕ̂ and forcing term v.

3.1.5 Proof of Theorem 3.1.5

3.1.5.1 The minimizing sequence

Let {vn} ∈ QS
ad be a minimizing sequence for JS, and set (ûn, p̂n, ϕ̂n) = (û(v̂n), p̂(v̂n), ϕ̂(v̂n))

to be the associated solution of (3.1.3) with right hand side v̂n = vn◦ϕ̂n. By the coercivity

of JS, we know that {vn} is a bounded sequence in ES(Ω) with weak subsequential limits

residing in the closed convex subset QS
ad. Using the estimate (3.1.9),

‖(ûn, p̂n)‖Wm+2,p(Ω̂f )×Wm+1,p(Ω̂f ) ≤ Q(‖v̂f‖Wm,p(Ω̂f )), for all n, (3.1.14)

where Q is a polynomial function such that Q(0) = 0. Hence

(ûn, p̂n) is bounded in Wm+2,p(Ω̂f )×Wm+1,p(Ω̂f ) .

3.1.5.2 Identifying limits

For 3 < p < ∞, the space Wm+2,p(Ω̂f ) is a natural subspace of H2(Ω̂f ) and the

space Wm+1,p(Ω̂f ) is a natural subspace of H1(Ω̂f ). Because (ûn, p̂n) is bounded in

Wm+2,p(Ω̂f ) × Wm+1,p(Ω̂f ), then (ûn, p̂n) is bounded in H2(Ω̂f ) × H1(Ω̂f ), and there

exists (û, p̂) such that on a reindexed subsequence

(ûn, p̂n) converges weakly to (û, p̂) in H2(Ω̂f )×H1(Ω̂f ).

By (3.1.10), we have that ϕ̂n is bounded in Wm+2,p(Ω̂e). Thus there exists ϕ̂ such that

on a reindexed subsequence

ϕ̂n converges weakly to ϕ̂ in H2(Ω̂e).
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3.1.5.3 Strong convergence of {p̂n}, {ûn} and {ϕ̂n}

The following observations will be useful to establish convergence of the minimizing

sequence to the solution of the problem (3.1.3) which also minimizes the cost functional.

For the pressure term, according to the Rellich-Kondrachov Theorem, e.g. [2, pg. 168],

for m ≥ 1 the space Wm+1,p(Ω̂f ) in fact embeds compactly into H1(Ω̂f ). The compact

embedding implies that there exists again a reindexed subsequence such that

p̂n converges strongly to p̂ in H1(Ω̂f ). (3.1.15)

For the velocity term, according to the Rellich-Kondrachov Theorem, for m ≥ 1 the

space Wm+2,p(Ω̂f ), embeds compactly into the space H2(Ω̂f ). The compact embedding

implies that there exists again a reindexed subsequence such that

ûn converges strongly to û in H2(Ω̂f ). (3.1.16)

For the deformation term, the compact embedding for m ≥ 1 of Wm+2,p(Ω̂e) into

H2(Ω̂e) gives that on an again reindexed subsequence we have,

ϕ̂n converges strongly to ϕ̂ in H2(Ω̂e). (3.1.17)

3.1.5.4 Convergence in the system (3.1.3)

It suffices to focus on the convergence of nonlinear terms in the interior and on the

boundary.

Fluid region. On the fluid region Ω̂f we require the terms to converge in L2(Ω̂f ).

Consider the individual summands from the corresponding equation in (3.1.3):

• For the term (Dϕ̂n)−∗∇p̂n it suffices to have the convergence of the product in

H1(Ω̂f ). The necessary convergence follows from (3.1.15) and (3.1.17).

• Next, consider div [(Dϕ̂n)−1(Dϕ̂n)−∗Dûn] in L2(Ω̂f ). The necessary convergence

follows from (3.1.16) and (3.1.17).
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Solid region. On Ω̂e observe that the term Div P̂(ϕ̂n) converges in L2(Ω̂e) by (3.1.17).

Interface. Next, consider the trace identity on the reference interface Γ̂i. For the solutions

of considered regularity, the traces of the limiting problem can be identified in L2(Γ̂i).

For the term (Dϕ̂n)−1(Dϕ̂n)−∗Dûn the desired convergence result follows from the strong

convergence of these products in H1(Ω̂f ) and the continuity of the trace map H1(Ω̂f ) ↪→
H1/2(Γ̂i) ⊂ L2(Γ̂i). The term P̂(ϕ̂n) likewise features convergence inH1(Ω̂e) which suffices

for the traces to converge in L2(Γ̂i). The analogous conclusion holds for the boundary

product (Dϕ̂)−∗∇p̂n using the interior convergence in H1(Ω̂f ).

Finally, since the reference configuration has Γ̂i of class C1, then components n̂j of the

normal vector do not affect the convergence in L2(Γ̂i).

3.1.5.5 Attaining minimal cost

Some subsequence of controls {vn} goes weakly to v̄ in E , with the limit confined to the

closed convex subset QS
ad ⊂ E (3.1.12). By the weak lower-semicontinuity of the norm

‖v̄‖E ≤ lim inf
n→∞

‖vn‖E .

In addition, from the strong convergence of ûn and ϕ̂n, we have,

‖ûn − ûd‖2
L2(Ω̂f )

→ ‖û− ûd‖2
L2(Ω̂f )

Via the definition of the cost functional in (3.1.1) it follows

JS(v, û, ϕ̂) ≤ JS(v, û(v), ϕ̂(v)) for all v ∈ QS
ad .

completing the proof of Theorem 3.1.5.
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3.2 Dynamical Case

3.2.1 Objective

In the dynamical case, the objective is to minimize the turbulence (mathematically, the

vorticity) inside the fluid in the configuration described by (2.5.2). The associated cost

functional is

J(v, u) :=
1

2

∫ T

0

∫
Ωf (t)

| curl(u)|2 dx dt+
1

2
‖v‖2

E(0,T ;Ω). (3.2.1)

Denoting by u = u(v) the flow-field corresponding to the control v, the constrained drag

minimization problem can be formulated as

min
v∈Qad

J(v, u(v)). (3.2.2)

As in the steady state case, the control space Qad will be defined, and the control norm

‖ · ‖E(0,T ;Ω) will be derived from the known well-posedness results for the control-to-state

map. Furthermore, the analysis inherits the same challenges as the steady state case

regarding the use of existing work on well-posedness.

3.2.2 Existence of optimal controls

The analogous result to the previous section for existence of optimal controls in the

dynamical case is given in [10]. The details of the proof bear a great deal of similarity

to the steady state case, so here we only summarize the results on well-posedness for the

nonlinear time-dependent case from the literature and the main result from [10].

We will require the following assumptions to be imposed on the control term v and the

initial data:

Assumption 3.2.1. Suppose that control function v(t) is defined for t ∈ [0, T ], for some

T > 0. Assume

v ∈ E(T ) := {φ ∈ L2(0, T ;H3(Ω)) | ∂nt φ ∈ L2(0, T ;H3−n(Ω)) for n = 1, 2, 3},
(3.2.3)
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v(0) ∈ H4(Ω), vt(0) ∈ H4(Ω).

Then the following existence and uniqueness result is provided in [19]:

Theorem 3.2.2. Let Ω ⊂ R3 be an open bounded domain of class H4, and let Ω̂e ⊂ Ω be

an open set of class H4 such that Ω̂e ⊂ Ω. Suppose u0 ∈ H6(Ω̂f )∩H6(Ω̂e)∩H1
0 (Ω)∩L2

div ,f .

Let Ω̂f = Ω ∩ (Ω̂e)
c, and let ν > 0, λ > 0, µ > 0 be given. Under Assumption 3.2.1 and

necessary compatibility conditions on the initial data (provided in [19, Thm. 1]), there

exists T ∈ (0, T ) depending on u0, v, and Ω̂f , such that there is a unique solution (û, p̂) ∈
WT × ZT of the (transported to Lagrangian coordinates) problem (2.5.2). Furthermore,

ϕ̂ ∈ C([0, T ];H4(Ω̂f ) ∩H4(Ω̂e) ∩H1(Ω)) . (3.2.4)

The functional framework is defined as follows:

V 4
f (T ) :=

{
φ ∈ L2(0, T ;H4(Ω̂f )) | ∂nt φ ∈ L2(0, T ;H4−n(Ω̂f )), n = 1, 2, 3

}
,

V 4
e (T ) :=

{
ψ ∈ L2(0, T ;H4(Ω̂e)) | ∂nt ψ ∈ L2(0, T ;H4−n(Ω̂e)), n = 1, 2, 3

}
,

L2
div ,f (Ω) := {ψ ∈ L2(Ω) | divψ = 0 in Ω̂f , ψ · n̂ = 0 on ∂Ω},

XT :=

{
û ∈ L2(0, T ;H1

0 (Ω)) |
(
ûf ,

∫ (·)

0

ûe
)
∈ V 4

f (T )× V 4
e (T )

}
,

WT :=

{
û ∈ XT | ûttt ∈ L∞(0, T ;L2(Ω)), ∂nt

∫ (·)

0

ûe ∈ L∞(0, T ;H4−n(Ω̂e)),

n = 0, 1, 2, 3

}
,

YT :=
{
p̂ ∈ L2

(
0, T ;H3(Ω̂f )

)
| ∂nt p̂ ∈ L2

(
0, T ;H3−n(Ω̂f )

)
, n = 1, 2

}
,

ZT :=
{
p̂ ∈ YT | p̂tt ∈ L∞

(
0, T ;L2(Ω̂f )

)}
= YT ∩W 2,∞(0, T ;L2(Ω̂f )),

each with its natural norm.

The authors of [10] then obtain the following main result regarding existence of optimal

control for (3.2.1) subject to (2.5.2), following the strategy of [1].

Theorem 3.2.3 (Optimal control). Let u0 ∈ H6(Ω̂f )∩H6(Ω̂e)∩H1
0 (Ω)∩L2

div ,f satisfying

the compatibility conditions as in Theorem 3.2.2. Then the minimization problem (3.2.2)
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has a solution; that is, there is v, residing in a space of admissible controls Qad (defined

explicitly in [10]) and a solution (û, p̂) ∈ WT × ZT with the associated deformation map

ϕ̂ as in (3.2.4), so that the functional v 7→ J(v, û(v), ϕ̂(v)) attains its minimum on Qad

at v, and (û, p̂) minimizes (3.2.1) subject to (2.5.2) with Lagrangian deformation ϕ̂ and

forcing term v.
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Chapter 4

Linearization

4.1 Introduction

With the existence of the optimal control established in both the steady and dynamical

cases, we are interested in deriving the first-order necessary optimality conditions associ-

ated with problems (3.1.13) and (3.2.2), in order to characterize the optimal control. The

typical way to derive the first order optimality conditions would be to apply min-max

theory. That entails formulating the Lagrangian functional, which is the cost function

minus weak form of the system. Then the cost function gradient reduces to the derivative

of the Lagrangian with respect to the control at a saddle point. However, in this case due

to the nonlinearity of the of the state equations, the Lagrangian functional associated

with the coupled system is not convex-concave, and min-max theory does not apply.

Consequently, the optimality conditions must be derived from differentiability arguments

on the cost functional with respect to the control. A challenge stems from the dependence

of the cost integrals in the cost functional on an unknown domain and interface, which

also depend on the control v.

In this section we will compute the directional derivative of the cost functional in a given

but arbitrary direction. The computation of the directional derivatives of the cost func-

tionals introduces new variables, about which sensitivity information must be derived.

As the interaction is a coupling of Eulerian and Lagrangian quantities, the required sen-
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sitivity analysis on the system falls into the framework of shape analysis. We start with

a summary of shape and tangential calculus provided in [20].

4.2 Shape and Tangential Calculus

4.2.1 Tangential Calculus

In [20], a differential calculus is developed avoiding the use of local bases and coordinates.

The differential calculus relies on the oriented distance function, which is defined as

follows:

Definition 4.2.1. Given Ω ⊂ RN , the distance function from a point x to Ω is

dΩ(x) :=

infy∈Ω |y − x| Ω 6= ∅,

+∞ Ω = ∅.

The oriented distance function from x ∈ RN to Ω ⊂ RN is

bΩ(x) := dΩ(x)− dΩc(x),

where Ωc = RN \ Ω is the complement of Ω.

Observe that the oriented distance function is finite if and only if ∅ 6= Ω 6= RN . Equiva-

lently, the oriented distance function is finite if and only if ∂Ω 6= ∅. This is the framework

in which the fluid structure interaction problems we analyze here are set, since we work

with bounded subsets of RN . In this framework the oriented distance function is exactly

the algebraic distance function to the boundary ∂Ω,

bΩ(x) =


dΩ(x) = d∂Ω(x) x ∈ int Ω′

0 x ∈ ∂Ω

−dΩ′(x) = −d∂Ω′(x) x ∈ int Ω.

Let Ω be an open domain of class C2 in RN with compact boundary Γ. Then there exists
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h > 0 such that b = bΩ ∈ C2(S2h(Γ)). Define the projection of a point x ∈ RN onto Γ by

p(x) := x− b(x)∇b(x),

and the orthogonal projection operator of a vector onto the tangent plane Tp(x)Γ by

P (x) := I −∇b(x)⊗∇b(x).

Remark 4.2.2. The following relationships provide some insight into the connection

between the development of a differential geometry through the use of the oriented distance

function and classical differential geometry.

• P (x) coincides with the first fundamental form of Γ;

• D2b(x) coincides with the second fundamental form of Γ;

• D2b(x)2 coincides with the third fundamental form of Γ;

• Dp(x) = I −∇b⊗∇b− bD2b.

Definition 4.2.3. The tangential gradient of f ∈ C1(Γ) is

∇Γf := ∇F |Γ −
∂F

∂n
n = ∇(f ◦ p)|Γ,

where F ∈ C1(S2h(Γ)) is a C1-extension of f .

We can now state the relationship between the tangential gradient and the oriented

distance function by way of the projection operator.

Theorem 4.2.4. [20] Given Γ compact and h > 0, for a tubular neighborhood S2h :=

{x ∈ RN ||b(x)| < 2h}, such that bΩ ∈ C2(S2h(Γ)) and f ∈ C1(Γ),

(i) ∇Γf = (P∇F )|Γ and n · ∇Γf = ∇b · ∇Γf = 0;

(ii) ∇(f ◦ p) = [I − bD2b]∇Γf ◦ p and ∇(f ◦ p)|Γ = ∇Γf.

With the tangential gradient matrix defined, we can define several other tangential deriva-

tive operators that will appear in the calculations in the sequel.
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Definition 4.2.5. The tangential gradient matrix of v ∈ (C1(Γ))N is

DΓv := D(v ◦ p)|Γ,

= DV |Γ −DV n⊗ n,

where V ∈ C1(S2h(Γ)) is an extension of v.

The tangential divergence of v is

divΓv := div(v ◦ p)|Γ,

= tr[DV |Γ −DV n⊗ n],

= divV |Γ −DV n · n.

The following lemma lays out several facts about the oriented distance function and

the tangential derivative operators, each of which plays a role in the linearization and

derivation of the adjoint sensitivity information.

Lemma 4.2.6.

n =∇b|Γ (4.2.1)

DΓ(n) =D2b|Γ = D∗Γ(n) (4.2.2)

∇Γ〈v, n〉 =(DΓv)∗n+ (D2b)v (4.2.3)

(D2b)n =0 (4.2.4)

4.2.2 Derivatives of Domain and Boundary Integrals

The construction of the differentiability arguments involved in deriving the first order

optimality conditions will require us to take derivatives of domain and boundary integrals

with respect to a parameter on which the domain and boundary also depend.

In order to do so we will utilize formulas presented in [20]. For an arbitrary domain and

its boundary, Ω and Γ = ∂Ω, consider a family of transformations {Ts : 0 ≤ s ≤ s0} such

that Ts : Ω→ Ωs and the associated family of velocity fields

{
V (s) :=

∂Ts
∂s

: 0 ≤ s ≤ s0

}
.

Under certain smoothness conditions on V (s), for a smooth function φ(s) = φ(s, x) we
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have

∂

∂s

(∫
Ω(s)

φ(s)

)∣∣∣∣
s=0

=

∫
Ω

φ′(0) +

∫
Γ

φ(0)〈V (0), n〉 (4.2.5)

∂

∂s

(∫
Γ(s)

φ(s)

)∣∣∣∣
s=0

=

∫
Γ

φ′(0) +

(
∂φ

∂n
+Hφ

)
〈V (0), n〉, (4.2.6)

=

∫
Γ

φ′(0) +Dφ · V (0) + φ(divV (0)−DV (0)n · n), (4.2.7)

where φ′(0) =
∂φ

∂s

∣∣∣∣
s=0

, n is the outer normal to Ω along Γ,
∂φ

∂n
= Dφ(0, x) · n, and

H := ∆b is the additive curvature of the boundary.

The following result from [20] is perhaps the most important for the analysis that follows;

it will be used many times as a method for integrating by parts with tangential derivatives

on the boundary.

Theorem 4.2.7 (Tangential Green’s Formula). For f ∈ C1(Γ) and v ∈ (C1(Γ))n,∫
Γ

fdivΓv + 〈∇Γf, v〉dΓ =

∫
Γ

Hf〈v, n〉dΓ. (4.2.8)

The tangential Green’s formula is easily extended for a vector-valued function and a

matrix.

Corollary 4.2.8. For f ∈ C1(Γ)n and V ∈ (C1(Γ))n×n,∫
Γ

fDivΓV + V..DΓfdΓ =

∫
Γ

H〈V n, f〉dΓ, (4.2.9)

4.3 Steady State Case

4.3.1 Strategy

We model the approach after the techniques in [12] and perturb the system through the

control v. Specifically, suppose that vs = v(s, x) depends linearly on a small parameter

of variation s ∈ [0, s0]. That is vs = v + sv′ for given functions v, v′ ∈ E(Ω) such that

38



div v′ = 0 and v′|Γf = 0. The perturbation can be thought of as a perturbation of the

interface Γsi determined by the family of transformations

{Ts : 0 ≤ s ≤ s0}

Ts : Ωe → Ωs
e

Ts = ϕ̂s ◦ ϕ, (4.3.1)

associated to the family of velocity fields

{V (s) :=
∂ϕ̂s

∂s
◦ ϕs : 0 ≤ s ≤ s0}. (4.3.2)

Then we consider the perturbed functional JS(v + sv′) and calculate the derivative at

s = 0 of the function s→ JS(v + sv′).

∂JS(v; v′) = lim
s→0

JS(v + sv′)− JS(v)

s
=

∂

∂s
JS(v + sv′)

∣∣∣∣
s=0

=
∂

∂s

[
1

2

∫
Ωs

f

|usf − ud|2 +
1

2
‖v + sv′‖2

E(Ω)

]∣∣∣∣∣
s=0

=

∫
Ωf

〈
uf − ud,

∂uf
∂s

∣∣∣∣
s=0

〉
− 1

2

∫
Γi

〈|usf − ud|2n, V (0)〉+ (v, v′)E(Ω), (4.3.3)

using the formula for domain integrals (4.2.5) in the last step.

The calculation of the directional derivative of the cost functional introduces the new

variables
∂usf
∂s

∣∣∣∣
s=0

and V (0) :=
∂ϕ̂s

∂s

∣∣∣∣
s=0

◦ ϕ. The forthcoming linearization of (2.5.1)

entails deriving the system of equations satisfied by these variables.

4.3.1.1 Perturbed System

The result of the perturbation by Ts as described in (4.3.1) is that all of the unknowns

in (2.5.1) become functions of s, (us, ps, ϕ̂s), as do the domains (Ωs
f ,Ω

s
e,Γ

s
i ).

The perturbed system is as follows:
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

(Dusf )u
s
f −Divσf (p

s, usf ) = vsf Ωs
f

divusf = 0 Ωs
f

−Divσe(ϕ
s) = ρsev

s
e Ωs

e

usf = 0 Γsi

σse(ϕ
s)ns = σf (p

s, usf )n
s Γsi

usf = 0 Γf

(4.3.4)

where ns is the unit outer normal vector along Γsi with respect to Ωs
e and ρse = ρ̂0J(ϕs).

The strategy is to differentiate (4.3.4) with respect to s at s = 0 and obtain a linearized

system for the s-derivatives of (us, ps, ϕ̂s). Linearizing in this manner will represent a

total linearization of (4.3.4) around an arbitrary regime.

In this framework, the s-derivatives of (us, ps, ϕ̂s) are essentially shape derivatives with

respect to the speed V . However, in this context V is a vector field which depends on

ϕ̂s and is not given a priori, so the s-derivatives are in a sense pseudo-shape derivatives.

Nonetheless, the standard theory on shape differentiation applies here.

We employ the prime notation to denote the linearized variables.

u′ :=
∂

∂s
us
∣∣∣∣
s=0

, p′ :=
∂

∂s
ps
∣∣∣∣
s=0

, ϕ̂′ :=
∂

∂s
ϕ̂s
∣∣∣∣
s=0

.

When computing the shape derivatives, the speed associated with the flow Ts will appear

only at s = 0. Thus we use the notation V (0) := ϕ̂′ ◦ ϕ.

We also associate the following differentiability assumptions with (4.3.4):

Assumption 4.3.1. For all s ∈ [0, s0) the following weak derivatives with respect to s

exist:

1. ∀φ̂ ∈ H−1(Ω) :

(
s→

∫
Ω

〈ϕ̂s, φ̂〉
)
∈ C1([0, s0))

2. ∀φ ∈ H−1(Ω \ Ωe) :

(
s→

∫
Ω\Ωe

〈usf ◦ Ts, φ〉
)
∈ C1([0, s0))
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3. ∀π ∈ L2(Ω \ Ωe) :

(
s→

∫
Ω\Ωe

〈ps ◦ Ts, π〉
)
∈ C1([0, s0))

Remark 4.3.2. The authors of [54] expand on the work of [27] to show differentiability of

the solution of (2.5.1) with respect the the control in the case of linear elasticity, providing

some justification for Assumption 4.3.1.

4.3.2 Linearized Steady State Model

The following result is obtained using the techniques demonstrated in [12]; in that work,

the authors approach the linearization of a steady-state coupling of homogenous Navier-

Stokes and homogeneous nonlinear elasticity in the case of a fluid flowing through a

channel, with control on the normal velocity of the fluid flowing in.

Theorem 4.3.3 (Linearization of steady-state coupling of Navier-Stokes and Nonlinear

Elasticity). For any s ∈ [0, s0] let (us, ps, ϕ̂s) be a smooth solution of (4.3.4) that satisfies

Assumption 4.3.1, and let the perturbed control, vs, satisfy the criteria in Assumption

3.1.2. Then the following linear system is satisfied by u′ := ∂
∂s
us
∣∣
s=0

, p′ := ∂
∂s
ps
∣∣
s=0

, ϕ̂′ :=
∂
∂s
ϕ̂s
∣∣
s=0

:



(Du′f )uf + (Duf )u
′
f − Divσf (p

′, u′f ) = v′f Ωf

divu′f = 0 Ωf

−Div
{
σ′e(ϕ̂

′ ◦ ϕ)
}

= ρev
′
e Ωe

u′f + (Duf )(ϕ̂
′ ◦ ϕ) = 0 Γi

σ′e(ϕ̂
′ ◦ ϕ)n = σf (p

′, u′f )n+ B(ϕ̂′ ◦ ϕ) Γi

u′f = 0 Γf

(4.3.5)

where

Σ(Φ, φ) :=(Dφ)−1Σ (Φ) (Dφ)−∗,

ε̃(ψ, φ) :=(Dφ)−∗ε(ψ)(Dφ)−1,

σ′e(ϕ̂
′ ◦ ϕ) :=D(ϕ̂′ ◦ ϕ)σe(ϕ) + J(ϕ)Σ(ε̃(ϕ̂′ ◦ ϕ, ϕ)),

B(ϕ̂′ ◦ ϕ) :=[σe(ϕ)− σf (p, uf )] · ∇Γi
〈ϕ̂′ ◦ ϕ, n〉+ (DΓi

σe.(ϕ̂
′ ◦ ϕ))n+ (div Γi

(ϕ̂′ ◦ ϕ))σen
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− σe(DΓi
(ϕ̂′ ◦ ϕ))∗n+ 〈ϕ̂′ ◦ ϕ, n〉

(
Hσf (p, uf )n+

∂σf
∂n

n

)
. (4.3.6)

Observe that the boundary conditions of the linearized system are quite complicated. For

one, there is a double coupling of (u′, ϕ̂′) on Γi, unlike in the nonlinear system. Further,

and more importantly, terms involving the curvatures of the boundary and the boundary

acceleration are present in the linearization. This makes it clear the common interface can

not be neglected while performing sensitivity analysis on the nonlinear coupled system

(2.5.1).

4.3.3 Proof of Theorem 4.3.3

The general approach for proving the linearization in Theorem 4.3.3 is to write the

s−perturbed system (4.3.4) in variational form and apply the formulas (4.2.5), (4.2.6),

(4.2.7), for derivatives of domain and boundary integrals. The underlying mechanics of

this approach utilize the material derivatives of (us, ps, ϕ̂s), which are defined as

(u̇, ṗ, ˙̂ϕ) :=
∂

∂s
(us ◦ Ts, ps ◦ Ts, ϕ̂s).

The material derivatives bare the analogous relationship to (2.2.2) to the shape deriva-

tives,

(u′, p′) = (u̇, ṗ)− (Du · (ϕ̂′ ◦ ϕ),∇p · (ϕ̂′ ◦ ϕ)). (4.3.7)

4.3.3.1 The linearized sticking condition on Γi

Take a test function φ ∈ C1(Ω). Then the sticking condition on Γsi can be written in

weak form as

0 =

∫
Γs
i

〈usf , φ〉.
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We take the derivative with respect to s at s = 0 by applying (4.2.7) and obtain

0 =
∂

∂s

(∫
Γs
i

〈usf , φ〉

)∣∣∣∣∣
s=0

=

∫
Γi

〈u′f + (Duf )(ϕ̂
′ ◦ ϕ) + uf (div (ϕ̂′ ◦ ϕ)− (D(ϕ̂′ ◦ ϕ))n · n), φ〉,

which holds for all φ ∈ C1(Ω), so we extract the boundary condition

u′f + (Duf )(ϕ̂
′ ◦ ϕ) + uf (div (ϕ̂′ ◦ ϕ)− (D(ϕ̂′ ◦ ϕ))n · n) = 0.

Substituting the sticking condition from (2.5.2), we recover the final linearized boundary

condition on Γi:

u′f + (Duf )(ϕ̂
′ ◦ ϕ) = 0

4.3.3.2 Linearized fluid shape derivative on Ωf

Take a test function φ ∈ C1
0(Ωf ), and we can obtain the weak formulation of the perturbed

Navier-Stokes from (4.3.4):∫
Ωs

f

〈(Dusf )usf , φ〉+ σf (p
s, usf )..Dφ =

∫
Ωs

f

〈vsf , φ〉. (4.3.8)

We use (4.2.5) to differentiate with respect to s at s = 0.

∂

∂s

(∫
Ωs

f

〈(Dusf )usf , φ〉+ σf (p
s, usf )..Dφ

)∣∣∣∣∣
s=0

=

∫
Ωf

〈(Duf )u′f + (Du′f )uf , φ〉+ σf (p
′, u′f )..Dφ+ boundary terms

Note that
∂

∂s
(σf (p

s, usf ))

∣∣∣∣
s=0

= σf (p
′, u′f ) because σf is linear.

∂

∂s

(∫
Ωs

f

〈vsf , φ〉

)∣∣∣∣∣
s=0

=

∫
Ωf

〈v′f , φ〉
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We are unconcerned with the boundary terms since we have already recovered the lin-

earized sticking condition on the interface Γi, which is why we take φ to have compact

support on Γi; we recover the linearized Navier-Stokes on Ωf :

(Duf )u
′
f + (Du′f )uf −Divσf (p

′, u′f ) = v′f .

4.3.3.3 Linearized Elasticity on Ωe

Take a test function φ ∈ C1(Ω). Then we have the weak formulation of the s-perturbed

elasticity equation: ∫
Ωs

e

σe(ϕ
s)..Dφ−

∫
Γs
i

〈σe(ϕs)ns, φ〉 =

∫
Ωs

e

〈vse, φ〉. (4.3.9)

Recall that the s-derivative of the elastic deformation is defined as ϕ̂′ =
∂

∂s
ϕ̂s
∣∣∣∣
s=0

, on the

reference configuration Ω̂e. So in order to take the s−derivative of the domain term on

the left-hand side of (4.3.9) we will transport the integral to the reference configuration,

take the derivative, and then transport back to the deformed configuration to recover the

linearized elasticity equation. Let φ̂s = φ ◦ ϕ̂s. According to Lemma 5.1 in [14] we have∫
Ωs

e

σe(ϕ
s)..Dφ =

∫
Ω̂e

P̂s..Dφ̂s,

where P̂ is the s−perturbed Piola transform,

P̂s := Dϕ̂sΣ(Ê(ϕ̂s)),

Ê(φ̂) :=
1

2

(
Dφ̂∗Dφ̂− I

)
.

Then we take the s−derivative of the domain term on the left hand side of (4.3.9). Notice

that the reference configuration Ω̂e is invariant to the perturbation, so the s−derivative

can be brought directly under the integral.

∂

∂s

(∫
Ωs

e

σe(ϕ
s)..Dφ

)∣∣∣∣
s=0

=
∂

∂s

(∫
Ω̂e

P̂s..Dφ̂s
)∣∣∣∣

s=0

,
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=

∫
Ω̂e

∂

∂s

(
P̂s..Dφ̂s

)∣∣∣∣
s=0

,

=

∫
Ω̂e

∂P̂s

∂s

∣∣∣∣∣
s=0

..Dφ̂+ P̂ .. ∂
∂s

(
Dφ̂s

)∣∣∣∣
s=0

,

where φ̂ = φ◦ϕ̂ is the Lagrangian counterpart of the test function φ. For the s−derivative

of the Piola transform we have

∂P̂s

∂s

∣∣∣∣∣
s=0

= Dϕ̂′Σ(Ê(ϕ̂)) +Dϕ̂Σ

(
1

2
((Dϕ̂′)∗Dϕ̂+ (Dϕ̂)∗Dϕ̂′)

)
.

Define Ê ′(ϕ̂′) :=
1

2
((Dϕ̂′)∗Dϕ̂+ (Dϕ̂)∗Dϕ̂′) , then we can define

P̂ ′ := Dϕ̂′Σ(Ê(ϕ̂)) +Dϕ̂Σ
(
Ê ′(ϕ̂′)

)
. (4.3.10)

Regarding the second term, we have

∂φ̂s

∂s

∣∣∣∣∣
s=0

=
∂

∂s
(φ ◦ ϕ̂s)

∣∣∣∣
s=0

= (Dφ ◦ ϕ̂)ϕ̂′,

so

∂

∂s

(∫
Ωs

e

σe(ϕ
s)..Dφ

)∣∣∣∣
s=0

=
∂

∂s

(∫
Ω̂e

P̂s..Dφ̂s
)∣∣∣∣

s=0

,

=

∫
Ω̂e

P̂ ′..Dφ̂+ P̂ ..D [(Dφ ◦ ϕ̂)ϕ̂′] . (4.3.11)

Remark 4.3.4. At this juncture we could integrate by parts in (4.3.11) and obtain the

linearized elasticity equation on the reference configuration Ω̂e. However, it is our goal to

express the linearized system fully on the deformed configuration, so we instead work to

transport (4.3.11) back to the deformed configuration Ωe in order to recover the linearized

elasticity equation.
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We will work term-by-term to transport (4.3.11) to the deformed configuration.∫
Ω̂e

P̂ ′..Dφ̂ =

∫
Ω̂e

P̂ ′(Dϕ̂)∗..Dφ̂(Dϕ̂)−1

=

∫
Ωe

J(ϕ)
(
P̂ ′(Dϕ̂)∗

)
◦ ϕ..

(
Dφ̂(Dϕ̂)−1

)
◦ ϕ,

=

∫
Ωe

J(ϕ)
(
P̂ ′(Dϕ̂)∗

)
◦ ϕ..Dφ.

It remains to compute
(
P̂ ′(Dϕ̂)∗

)
◦ ϕ:

(
P̂ ′(Dϕ̂)∗

)
◦ ϕ =

{(
Dϕ̂′Σ(Ê(ϕ̂)) +Dϕ̂Σ

(
Ê ′(ϕ̂′)

))
(Dϕ̂)∗

}
◦ ϕ,

=
(
D(ϕ̂′ ◦ ϕ)(Dϕ)−1Σ(E(ϕ)) + (Dϕ)−1Σ

(
Ê ′(ϕ̂′) ◦ ϕ

))
(Dϕ)−∗,

=
(
D(ϕ̂′ ◦ ϕ)(Dϕ)−1Σ(E(ϕ))+

(Dϕ)−1Σ

(
1

2

(
(Dϕ)−∗ε(ϕ̂′ ◦ ϕ)(Dϕ)−1

)))
(Dϕ)−∗

We make the following definitions for the sake of exposition:

Σ(Φ, φ) :=(Dφ)−1Σ (Φ) (Dφ)−∗, (4.3.12)

ε̃(ψ, φ) :=(Dφ)−∗ε(ψ)(Dφ)−1. (4.3.13)

With this notation we have

J(ϕ)
(
P̂ ′(Dϕ̂)∗

)
◦ ϕ = D(ϕ̂′ ◦ ϕ)σe(ϕ) + J(ϕ)Σ(ε̃((ϕ̂′ ◦ ϕ), ϕ)).

We let

σ′e(ϕ̂
′ ◦ ϕ) :=J(ϕ)

(
P̂ ′(Dϕ̂)∗

)
◦ ϕ

=D(ϕ̂′ ◦ ϕ)σe(ϕ) + J(ϕ)Σ(ε̃((ϕ̂′ ◦ ϕ), ϕ)), (4.3.14)

which is consistent with the notation used in [11]. Ultimately for the first term in (4.3.11)
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we obtain∫
Ω̂e

P̂ ′..Dφ̂ =

∫
Ωe

〈
−Divσ′e(ϕ̂

′ ◦ ϕ), φ
〉

+

∫
Γi

〈
σ′e(ϕ̂

′ ◦ ϕ)n, φ
〉
. (4.3.15)

Next we work with the second term in (4.3.11). First we integrate by parts and change

variables to move back to the deformed configuration:∫
Ω̂e

P̂ ..D [(Dφ ◦ ϕ̂)ϕ̂′] =

∫
Ω̂e

〈
−Div P̂ , (Dφ ◦ ϕ̂)ϕ̂′

〉
+

∫
Γ̂i

〈
P̂n̂, (Dφ ◦ ϕ̂)ϕ̂′

〉
,

=

∫
Ωe

〈−Divσe(ϕ), (Dφ)(ϕ̂′ ◦ ϕ)〉

+

∫
Γi

〈σe(ϕ)n, (Dφ)(ϕ̂′ ◦ ϕ)〉 . (4.3.16)

For convencience, we state a useful lemma from [14] for integration by parts:

Lemma 4.3.5. Let θ, ξ, ψ ∈ C1(Ω) be vector-valued. Then the following identity is sat-

isfied: ∫
Ω

〈ξ, (Dψ)θ〉 =−
∫

Ω

〈(Dξ)θ + (div θ)ξ, ψ〉+

∫
∂Ω

〈〈θ, n〉ξ, ψ〉

=−
∫

Ω

〈Div (ξ ⊗ θ), ψ〉+

∫
∂Ω

〈〈θ, n〉ξ, ψ〉 (4.3.17)

Additionally, in the case where Dψ · n = 0 on ∂Ω we have∫
∂Ω

〈ξ, (DΓψ)θ〉 = −
∫
∂Ω

〈Div Γ(ξ ⊗ θ), ψ〉, (4.3.18)

which follows from (4.2.9) with V = ξ ⊗ θ.

First we apply (4.3.17) from Lemma 4.3.5 to the domain term in (4.3.16) and obtain∫
Ωe

〈−Divσe(ϕ), (Dφ)(ϕ̂′ ◦ ϕ)〉 =

∫
Ωe

〈Div (Divσe(ϕ)⊗ (ϕ̂′ ◦ ϕ)) , φ〉

−
∫

Γi

〈〈(ϕ̂′ ◦ ϕ), n〉Divσe(ϕ), φ〉 .

For the purposes of the identities we are proving, it suffices to have φ such that Dφ·n = 0.
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Working in that framework we apply (4.3.18) from Lemma 4.3.5 to the boundary term

in (4.3.16) and obtain

∫
Γi

〈σe(ϕ)n, (Dφ)(ϕ̂′ ◦ ϕ)〉 =

∫
Γi

〈−Div Γi
(σe(ϕ)n⊗ (ϕ̂′ ◦ ϕ)), φ〉 .

Together, we obtain∫
Ω̂e

P̂ ..D [(Dφ ◦ ϕ̂)ϕ̂′] =

∫
Ωe

〈Div (Divσe(ϕ)⊗ (ϕ̂′ ◦ ϕ)) , φ〉

−
∫

Γi

〈〈(ϕ̂′ ◦ ϕ), n〉Divσe(ϕ) + Div Γi
(σe(ϕ)n⊗ (ϕ̂′ ◦ ϕ)), φ〉 .

All together we obtain the following expression for the shape derivative of the left hand

side of the elasticity domain integral on the deformed configuration:

∂

∂s

(∫
Ωs

e

σe(ϕ
s)..Dφ

)∣∣∣∣
s=0

=

∫
Ωe

〈
−Div

{
σ′e(ϕ̂

′ ◦ ϕ)−Divσe(ϕ)⊗ (ϕ̂′ ◦ ϕ)
}
, φ
〉

+

∫
Γi

〈
σ′e(ϕ̂

′ ◦ ϕ)n− 〈(ϕ̂′ ◦ ϕ), n〉Divσe(ϕ), φ
〉

−
∫

Γi

〈Div Γi
(σe(ϕ)n⊗ (ϕ̂′ ◦ ϕ)), φ〉 . (4.3.19)

Now we deal with the right hand side of (4.3.9). Recall that v̂e := ve ◦ ϕ̂ and v̂′e := v′e ◦ ϕ̂
are the Lagrangian counterparts of the perturbed control that φ̂s = φ ◦ ϕ̂s. Then we

obtain,

∂

∂s

(∫
Ωs

e

〈ρsevse, φ〉
)∣∣∣∣

s=0

=
∂

∂s

(∫
Ωs

e

〈ρ̂0J(ϕs)(ve + sv′e), φ〉
)∣∣∣∣

s=0

,

=
∂

∂s

(∫
Ω̂e

〈ρ̂0(v̂e + sv̂′e), φ̂
s〉
)∣∣∣∣

s=0

,

=

∫
Ω̂e

〈
ρ̂0

∂

∂s
(v̂e + sv̂′e)

∣∣∣∣
s=0

, φ̂

〉
+

〈
ρ̂0v̂e,

∂φ̂s

∂s

∣∣∣∣∣
s=0

〉
,

=

∫
Ω̂e

〈
ρ̂0v̂
′
e, φ̂
〉

+ 〈ρ̂0v̂e, (Dφ ◦ ϕ̂)ϕ̂′〉 ,
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=

∫
Ωe

〈ρ̂0J(ϕ)v′e, φ〉+ 〈ρ̂0J(ϕ)ve, (Dφ)(ϕ̂′ ◦ ϕ)〉 ,

=

∫
Ωe

〈ρev′e, φ〉+ 〈ρeve, (Dφ)(ϕ̂′ ◦ ϕ)〉 .

We substitute the nonlinear elasticity domain equation and apply (4.3.17) to the second

term in the sum.∫
Ωe

〈ρeve, (Dφ)(ϕ̂′ ◦ ϕ)〉 =

∫
Ωe

〈−Divσe(ϕ), (Dφ)(ϕ̂′ ◦ ϕ)〉 ,

=

∫
Ωe

〈Div (Divσe(ϕ)⊗ (ϕ̂′ ◦ ϕ)), φ〉

−
∫

Γi

〈〈(ϕ̂′ ◦ ϕ), n〉Divσe(ϕ), φ〉 .

All together we obtain,

∂

∂s

(∫
Ωs

e

〈ρsevse, φ〉
)∣∣∣∣

s=0

=

∫
Ωe

〈ρev′e + Div (Divσe(ϕ)⊗ (ϕ̂′ ◦ ϕ)), φ〉

−
∫

Γi

〈〈(ϕ̂′ ◦ ϕ), n〉Divσe(ϕ), φ〉 (4.3.20)

Setting (4.3.19) and (4.3.20) equal to each other and allowing φ to have compact support

on Ωe we obtain the linearized elasticity domain equation on Ωe:

−Div
{
σ′e(ϕ̂

′ ◦ ϕ)
}

= ρev
′
e.

4.3.3.4 The stress matching condition on Γi

By substituting the linearized elasticity domain equation and (4.3.20) in to (4.3.9) we

retain the boundary terms:∫
Γi

〈
σ′e(ϕ̂

′ ◦ ϕ)n−Div Γi
(σe(ϕ)n⊗ (ϕ̂′ ◦ ϕ)), φ

〉
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=
∂

∂s

(∫
Γs
i

〈σe(ϕs)ns, φ〉

)∣∣∣∣∣
s=0

. (4.3.21)

Consequently the next step is to compute the s−derivative of the RHS of (4.3.21). The

first step is to substitute the stress-matching boundary condition from (4.3.4),

∂

∂s

(∫
Γs
i

〈σe(ϕs)ns, φ〉

)∣∣∣∣∣
s=0

=
∂

∂s

(∫
Γs
i

〈σf (ps, usf )ns, φ〉

)∣∣∣∣∣
s=0

.

Then using the divergence theorem (with ns = −nsf ) and (4.2.5) we obtain

∂

∂s

(∫
Γs
i

〈σf (ps, usf )ns, φ〉

)∣∣∣∣∣
s=0

=
∂

∂s

(∫
Ωs

f

−div (σf (p
s, usf )φ)

)∣∣∣∣∣
s=0

,

=

∫
Ωf

−div (σf (p
′, u′f )φ) +

∫
Γi

div (σf (p, uf )φ)〈(ϕ̂′ ◦ ϕ), n〉,

=

∫
Γi

〈σf (p′, u′f )n, φ〉+ div (σf (p, uf )φ)〈(ϕ̂′ ◦ ϕ), n〉. (4.3.22)

We apply (4.2.8) to (4.3.22) and obtain∫
Γi

〈σf (p′, u′f )n, φ〉+ div (σf (p, uf )φ)〈(ϕ̂′ ◦ ϕ), n〉

=

∫
Γi

〈σf (p′, u′f )n, φ〉+ {div Γi
(σf (p, uf )φ) + 〈D[σf (p, uf )φ]n, n〉} 〈(ϕ̂′ ◦ ϕ), n〉

=

∫
Γi

〈σf (p′, u′f )n+ 〈(ϕ̂′ ◦ ϕ), n〉Hσf (p, uf )n− σf (p, uf ) · ∇Γi
〈(ϕ̂′ ◦ ϕ), n〉, φ〉

+

∫
Γi

〈D[σf (p, uf )φ]n, n〉〈(ϕ̂′ ◦ ϕ), n〉. (4.3.23)

We can simplify the last term in (4.3.23) by choosing a test function such that Dφ ·n = 0

on Γi. In that case we have D[σf (p, uf )φ]n =
∂σf
∂n

n. Substituting the simplification in to

50



(4.3.23) we obtain the final expression for the shape derivative of the boundary integral:

∂

∂s

(∫
Γs
i

〈σf (ps, usf )ns, φ〉

)∣∣∣∣∣
s=0

=

∫
Γi

〈σf (p′, u′f )n+ 〈(ϕ̂′ ◦ ϕ), n〉Hσf (p, uf )n, φ〉

+

∫
Γi

〈
〈(ϕ̂′ ◦ ϕ), n〉∂σf

∂n
n− σf (p, uf ) · ∇Γi

〈(ϕ̂′ ◦ ϕ), n〉, φ
〉
. (4.3.24)

Substituting (4.3.24) back in to (4.3.21) we obtain∫
Γi

〈
σ′e(ϕ̂

′ ◦ ϕ)n−Div Γi
(σe(ϕ)n⊗ (ϕ̂′ ◦ ϕ)), φ

〉
=

∫
Γi

〈σf (p′, u′f )n+ 〈(ϕ̂′ ◦ ϕ), n〉Hσf (p, uf )n, φ〉

+

∫
Γi

〈
〈(ϕ̂′ ◦ ϕ), n〉∂σf

∂n
n− σf (p, uf ) · ∇Γi

〈(ϕ̂′ ◦ ϕ), n〉, φ
〉
. (4.3.25)

Then we recover the boundary condition on Γi:

σ′e(ϕ̂
′ ◦ ϕ)n = σf (p

′, u′f )n+ 〈(ϕ̂′ ◦ ϕ), n〉
(
Hσf (p, uf )n+

∂σf
∂n

n

)
− σf (p, uf ) · ∇Γi

〈(ϕ̂′ ◦ ϕ), n〉+ Div Γi
(σe(ϕ)n⊗ (ϕ̂′ ◦ ϕ)). (4.3.26)

We can make some substitutions so that the representation of the boundary condition

(4.3.26) is more consistent with [11]. We have the identity, for a suitably regular matrix

A and vectors c and d,

Div (Ac⊗ d) = (DA.d)c+ A(Dc)d+ (div d)Ac,

and its tangential counterpart,

Div Γ(Ac⊗ d) = (DΓA.d)c+ A(DΓc)d+ (div Γd)Ac,
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So we can expand the term Div Γi
(σe(ϕ)n⊗ (ϕ̂′ ◦ ϕ)):

Div Γi
(σe(ϕ)n⊗ (ϕ̂′ ◦ ϕ))

= (DΓi
σe.(ϕ̂

′ ◦ ϕ))n+ σe(DΓi
n)(ϕ̂′ ◦ ϕ) + (div Γi

(ϕ̂′ ◦ ϕ))σen,

= (DΓi
σe.(ϕ̂

′ ◦ ϕ))n+ σe(D
2bΩe)(ϕ̂

′ ◦ ϕ) + (div Γi
(ϕ̂′ ◦ ϕ))σen

= (DΓi
σe.(ϕ̂

′ ◦ ϕ))n+ σe(D
2bΩe)(ϕ̂

′ ◦ ϕ)Γi
+ (div Γi

(ϕ̂′ ◦ ϕ))σen,

since (ϕ̂′ ◦ ϕ) = (ϕ̂′ ◦ ϕ)Γi
+ 〈(ϕ̂′ ◦ ϕ), n〉n and D2bΩen = D2bΩe∇b = 0.

Substituting the expansion in to (4.3.26) and adding/subtracting the quantity σe(DΓi
(ϕ̂′◦

ϕ))∗n we obtain the equivalent form of the boundary condition:

σ′e(ϕ̂
′ ◦ ϕ)n = σf (p

′, u′f )n+ [σe(ϕ)− σf (p, uf )] · ∇Γi
〈(ϕ̂′ ◦ ϕ), n〉

+ 〈(ϕ̂′ ◦ ϕ), n〉
(
Hσf (p, uf )n+

∂σf
∂n

n

)
+ (DΓi

σe.(ϕ̂
′ ◦ ϕ))n+ (div Γi

(ϕ̂′ ◦ ϕ))σen− σe(DΓi
(ϕ̂′ ◦ ϕ))∗n, (4.3.27)

since ∇Γi
〈(ϕ̂′ ◦ ϕ), n〉 = (D2bΩe)(ϕ̂

′ ◦ ϕ)Γi
+ (DΓi

(ϕ̂′ ◦ ϕ))∗n

In order to write the boundary condition concisely we define,

B(ϕ̂′ ◦ ϕ) :=[σe(ϕ)− σf (p, uf )] · ∇Γi
〈ϕ̂′ ◦ ϕ, n〉+ (DΓi

σe.(ϕ̂
′ ◦ ϕ))n

+ (div Γi
(ϕ̂′ ◦ ϕ))σen− σe(DΓi

(ϕ̂′ ◦ ϕ))∗n

+ 〈ϕ̂′ ◦ ϕ, n〉
(
Hσf (p, uf )n+

∂σf
∂n

n

)
, (4.3.28)

in which case we can write

σ′e(ϕ̂
′ ◦ ϕ)n = σf (p

′, u′f )n+ B(ϕ̂′ ◦ ϕ)

on Γi.

This completes the proof of Theorem 4.3.3.
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4.4 Dynamical Case

In the linearization of time dependent case we will work with the following alternative

formulation of (2.5.2):



∂uf
∂t

+ (Duf )uf −Divσf (p, uf ) = vf Ωf (t)

divuf = 0 Ωf (t)

ρe

(
∂2ϕ̂

∂t2

)
◦ ϕ−Divσe(ϕ) = ρeve Ωe(t)

uf = ue Γi(t)

σf (p, uf )n = σe(ϕ)n Γi(t)

uf = 0 Γf

ϕ̂(·, 0) = ϕ̂0, ϕ̂t(·, 0) = ϕ̂1, uf (·, 0) = u0, p(·, 0) = p0 (Ω̂e)
2 × (Ωf )

2

(4.4.1)

Recall that ρe =

(
ρ̂0

Ĵ

)
◦ ϕ, where ρ̂0 is the reference elastic density, and σe(ϕ) =(

P̂(Dϕ̂)∗

Ĵe

)
◦ ϕ is the transformation of Piola tensor to Cauchy tensor.

The specific difference is that the time derivative in the elasticity equation is not trans-

ported to the current domain, but is left in terms of the deformation on the reference

domain. As a result (4.4.1) can be considered an Arbitrary Lagrangian-Eulerian (ALE)

system, although we take the ALE map to be exactly the deformation ϕ as opposed to

introducing an auxiliary map. This ALE formulation is possibly less elegant than the

Eulerian-Eulerian formulation of (2.5.2), obtained by transporting all terms on to the

moving domain, but it is more convenient to compute the linearized elasticity domain

equation in this framework.

4.4.1 Strategy

The strategy to linearize the time-dependent case, (4.4.1), is similar to that used for the

steady-state case, with adaptations made for the dependence of both the variables and
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the domains on time. We model the approach after the techniques used in [14], in which

the authors consider the same coupling of nonlinear elasticity and Navier-Stokes, but

with control only on the fluid domain, and homogenous elastodynamics equations.

We take a small parameter of variation s ∈ [0, s0] and perturb the system through the

body force on the fluid domain vf . We assume linear dependence on s; that is

vsf = vf + sv′

for given vf , v
′ of suitable regularity for well-posedness purposes, and such that div v′ = 0

and v′Γf
= 0. Consequently, all of the unknowns in (4.4.1) become functions of s as well as

the geometric domains. The result is a moving boundary that moves with the parameter

s. More precisely, for each t the perturbation Γsi (t) of Γi(t) is built by the family of

transformations

Ts(t) := ϕ̂s(t) ◦ ϕ, (4.4.2)

associated with the family of speeds

V (s) = V (s, t, x) :=
∂T s

∂s
◦ (T s)−1 =

∂ϕ̂s

∂s
◦ (ϕ̂s)−1 =

∂ϕ̂s

∂s
◦ ϕs. (4.4.3)

For example, T se = T s|Ωs
e

and

T se (t) : Ωe(t)
ϕ→ Ω̂e

ϕ̂s

→ Ωs
e(t).

For each t we have Γsi (t) = T s(Γi(t)).

Then we consider the perturbed functional J(v + sv′), where J is defined in (3.2.1), and

calculate the derivative at s = 0 of the function s→ J(v + sv′).

∂J(v; v′) = lim
s→0

J(v + sv′)− J(v)

s
=

∂

∂s
J(v + sv′)

∣∣∣∣
s=0

=
∂

∂s

[
1

2

∫ T

0

∫
Ωs

f (t)

| curl(usf )|2 +
1

2
‖v + sv′‖2

E(0,T ;Ω)

]∣∣∣∣∣
s=0

=
1

2

∫ T

0

∫
Ωf (t)

∂

∂s
| curl(usf )|2

∣∣∣∣
s=0
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+

∫ T

0

∫
Γi(t)

1

2
| curl(uf )|2〈V (0), nf〉+ (v, v′)E(0,T ;Ω),

=

∫ T

0

∫
Ωf (t)

〈
curl(uf ), curl

(
∂usf
∂s

∣∣∣∣
s=0

)〉
−
∫ T

0

∫
Γi(t)

1

2
| curl(uf )|2〈V (0), n〉+ (v, v′)E(0,T ;Ω), (4.4.4)

which requires the use of the formula for shape derivatives of domain integrals (4.2.5).

As in the steady state case, the calculation of the directional derivative of the cost

functional introduces the new variables
∂uf
∂s

∣∣∣∣
s=0

and V (0) :=
∂ϕ̂s

∂s

∣∣∣∣
s=0

◦ ϕ. As in the

previous section, the linearization of (4.4.1) entails deriving the system of equations

satisfied by these variables.

4.4.2 Perturbed PDE System

The result of the perturbation by Ts(t) as described in (4.4.2) is that all of the unknowns

(4.4.1) become functions of s, (us, ps, ϕ̂s), as do the domains (Ωs
f (t),Ω

s
e(t),Γ

s
i (t)). The

resulting perturbed PDE system is:



∂usf
∂t

+ (Dusf )u
s
f −Divσf (p

s, usf ) = vsf Ωs
f (t)

divusf = 0 Ωs
f (t)

ρse

(
∂2ϕ̂s

∂t2

)
◦ ϕs −Divσe(ϕ

s) = ρsev
s
e Ωs

e(t)

usf = use Γsi (t)

σsf (p
s, usf )n

s = σe(ϕ
s)ns Γsi (t)

usf = 0 Γf

ϕ̂s(·, 0) = ϕ̂0, ϕ̂st(·, 0) = ϕ̂1, usf (·, 0) = u0, ps(·, 0) = p0 (Ω̂e)
2 × (Ωf )

2

(4.4.5)

In the s-system ns is the unit outer normal vector along Γsi (t) with respect to Ωs
e(t).

As in the previous section, strategy is to differentiate (4.4.5) with respect to s at s = 0
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and obtain a linearized system for the s-derivatives of (us, ps, ϕ̂s), in order to compute a

total linearization of (4.4.5) around an arbitrary regime.

We again employ the prime notation to denote the linearized variables.

u′ :=
∂

∂s
us
∣∣∣∣
s=0

, p′ :=
∂

∂s
ps
∣∣∣∣
s=0

, ϕ̂′ :=
∂

∂s
ϕ̂s
∣∣∣∣
s=0

.

When computing the shape derivatives, the vector field associated with the flow Ts(t)

will appear only at s = 0. Thus we use the notation V (0) := V (0, t, x) = ϕ̂′ ◦ ϕ.

We also associate the following differentiability assumptions with the (4.4.5):

Assumption 4.4.1. For all s ∈ [0, s0) the following weak derivatives with respect to s

exist:

1. ∀φ̂ ∈ L2(0, T,H−1(Ω)) :

(
s→

∫ T

0

∫
Ω

〈ϕ̂s, φ̂〉
)
∈ C1([0, s0))

2. ∀φ ∈ L2(0, T,H−1(Ω \ Ωe)) :

(
s→

∫ T

0

∫
Ω\Ωe(t)

〈usf ◦ Ts, φ〉
)
∈ C1([0, s0))

3. ∀π ∈ L2(0, T, L2(Ω \ Ωe)) :

(
s→

∫ T

0

∫
Ω\Ωe(t)

〈ps ◦ Ts, π〉
)
∈ C1([0, s0))

4.5 Linearized dynamical case model

Theorem 4.5.1 (Linearization of time-dependent coupling of Navier-Stokes and Non-

linear Elasticity). For any s ∈ [0, s0], assume that the initial condition (ϕ̂0, ϕ̂1, u0, p
0)

associated with (4.4.5) solves (4.4.1). Further, let (us, ps, ϕ̂s) be a smooth solution of

(4.4.5) on [0, T ] satisfying Assumption 4.4.1. Finally let vs(x, t) ∈ E(0, T ; Ω). Then
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u′ =
∂

∂s
us
∣∣∣∣
s=0

, p′ =
∂

∂s
ps
∣∣∣∣
s=0

, ϕ̂′ :=
∂

∂s
ϕ̂s
∣∣∣∣
s=0

satisfy the following linear system:



∂u′f
∂t

+ (Du′f )uf + (Duf )u
′
f − Divσf (p

′, u′f ) = v′f Ωf (t)

divu′f = 0 Ωf (t)

ρe

(
∂2ϕ̂′

∂t2

)
◦ ϕ− Div

{
σ′e(ϕ̂

′ ◦ ϕ)
}

= ρev
′
e Ωe(t)

u′f = u′e + (Due −Duf )(ϕ̂′ ◦ ϕ) Γi(t)

σ′e(ϕ̂
′ ◦ ϕ)n = σf (p

′, u′f )n+ B(ϕ̂′ ◦ ϕ) Γi(t)

u′f = 0 Γf

ϕ̂′(0) = 0;
∂ϕ̂′

∂t
(0) = 0;u′f (0) = 0 (Ω̂e)

2 × (Ωf )
2

(4.5.1)

where

σ′e(ϕ̂
′ ◦ ϕ) :=D(ϕ̂′ ◦ ϕ)σe(ϕ) + J(ϕ)Σ(ε̃(ϕ̂′ ◦ ϕ, ϕ)) for

Σ(Φ, φ) :=(Dφ)−1Σ (Φ) (Dφ)−∗,

ε̃(ψ, φ) :=(Dφ)−∗ε(ψ)(Dφ)−1, and

B(ξ) := (σe(ϕ)− σf (p, uf )) · ∇Γi(t)〈ξ, n〉+ 〈ξ, n〉
(
Hσf (p, uf )n+

∂σf
∂n

n

)
+ (DΓi

σe.ξ)n+ (div Γi
ξ)σen− σe(ϕ)(DΓi

ξ)∗n,

as in Theorem 4.3.3, and (ϕ̂, u, p) is a smooth solution of (4.4.1).

As in the steady state case of the previous section, the boundary conditions are quite

complicated, and contain terms referring to the acceleration and curvature of the common

interface Γi(t).

4.5.1 Proof of Linearization

In order to prove Theorem 4.5.1 we employ a similar strategy as in the steady state

case and apply results obtained in that case when possible. The relationship between

the shape and material derivatives, as stated in (4.3.7), remains the case in the time-
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dependent setting.

4.5.1.1 Linearized Sticking Condition on Γi(t)

In the s-perturbed model we have the velocity matching condition usf = use on Γsi (t). We

take a test function φ = φ(x, t) ∈ C1(0, T,Ω) and obtain the weak formulation of the

boundary condition

0 =

∫ T

0

∫
Γs
i (t)

〈usf − use, φ〉. (4.5.2)

We use (4.2.7) to obtain

0 =
∂

∂s

(∫ T

0

∫
Γs
i (t)

〈usf − use, φ〉

)∣∣∣∣∣
s=0

,

=

∫ T

0

∫
Γi(t)

〈u′f − u′e + (Duf −Due) · V (0) + (uf − ue)(divV (0)−DV (0)n · n), φ〉.

Substituting the velocity-matching boundary condition from (4.4.1) we obtain:

0 =

∫ T

0

∫
Γi(t)

〈u′f − u′e + (Duf −Due) · (ϕ̂′ ◦ ϕ), φ〉

Owing to the arbitrariness of the test function φ we obtain the linearized boundary

condition on Γi(t)

u′f = u′e + (Due −Duf )(ϕ̂′ ◦ ϕ). (4.5.3)

Remark 4.5.2. Observe that due to (4.3.7) boundary condition (4.5.3) can equivalently

be written

u′f + (Duf )(ϕ̂
′ ◦ ϕ) =

(
∂ϕ̂′

∂t

)
◦ ϕ. (4.5.4)

This formulation proves more convenient when recovering the adjoint sensitivity infor-

mation in the following section, while the formulation (4.5.3) better highlights the role of

the variable of interest, ϕ̂′ ◦ ϕ.
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4.5.1.2 Fluid shape derivative on Ωf (t)

The s-perturbed Navier-Stokes equation on Ωs
f (t) is

∂usf
∂t

+ (Dusf )u
s
f −Divσf (p

s, usf ) = vsf . (4.5.5)

We take inner product with a smooth test function φ = φ(x, t) ∈ C1
0(0, T ; Ωf ) and

integrate in time and space to obtain a variational formulation:∫ T

0

∫
Ωs

f (t)

〈
∂usf
∂t

+ (Dusf )u
s
f −Divσf (p

s, usf ), φ

〉
=

∫ T

0

∫
Ωs

f (t)

〈vsf , φ〉. (4.5.6)

By applying formula (4.2.5) we obtain for the left hand side of (4.5.6)

∂

∂s

(∫ T

0

∫
Ωs

f (t)

〈
∂usf
∂t

+ (Dusf )u
s
f −Divσf (p

s, usf ), φ

〉)∣∣∣∣∣
s=0

=

∫ T

0

∫
Ωf (t)

〈
∂u′f
∂t

+ (Du′f )uf + (Duf )u
′
f −Divσf (p

′, u′f ), φ

〉
+ boundary terms.

We are unconcerned with the boundary terms since we already recovered the linearized

velocity matching boundary condition on Γi(t). We likewise apply (4.2.5) to the right

hand side of (4.5.6) and recover the linearized Navier-Stokes equation on Ωf (t),

∂u′f
∂t

+ (Du′f )uf + (Duf )u
′
f −Divσf (p

′, u′f ) = v′f . (4.5.7)

4.5.1.3 Elasticity shape derivative on Ωe(t)

The s-perturbed elastodynamics equations on Ωs
e(t) are

ρse

(
∂2ϕ̂s

∂t2

)
◦ ϕs −Divσe(ϕ

s) = ρsev
s
e, (4.5.8)
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which for a smooth test function φ = φ(x, t) ∈ C1(0, T,Ω) admits the variational formu-

lation ∫ T

0

∫
Ωs

e(t)

〈
ρse

(
∂2ϕ̂s

∂t2

)
◦ ϕs, φ

〉
+ σe(ϕ

s)..Dφ

=

∫ T

0

∫
Ωs

e(t)

〈ρsevse, φ〉+

∫ T

0

∫
Γs
i (t)

〈σe(ϕs)ns, φ〉. (4.5.9)

We will first take the s-derivative of the left hand side. From (4.3.19) we have

∂

∂s

(∫ T

0

∫
Ωs

e(t)

σe(ϕ
s)..Dφ

)∣∣∣∣
s=0

=

∫ T

0

∫
Ωe(t)

〈
−Div

{
σ′e(ϕ̂

′ ◦ ϕ)−Divσe(ϕ)⊗ (ϕ̂′ ◦ ϕ)
}
, φ
〉

+

∫ T

0

∫
Γi(t)

〈
σ′e(ϕ̂

′ ◦ ϕ)n− 〈ϕ̂′ ◦ ϕ, n〉Divσe(ϕ), φ
〉

−
∫ T

0

∫
Γi(t)

〈Div Γi
(σe(ϕ)n⊗ (ϕ̂′ ◦ ϕ)), φ〉 (4.5.10)

matching the notation in (4.3.12), (4.3.13), and (4.3.14).

It remains to compute

∂

∂s

(∫ T

0

∫
Ωs

e(t)

〈
ρse

(
∂2ϕ̂s

∂t2

)
◦ ϕs, φ

〉)∣∣∣∣
s=0

(which of course is the term not present in the steady state problem). We will compute

the derivative in the same fashion as in the steady state case, by transporting the inte-

gral to the fixed domain, taking the s-derivative, and then moving back to the current

configuration.

∂

∂s

(∫ T

0

∫
Ωs

e(t)

〈
ρse

(
∂2ϕ̂s

∂t2

)
◦ ϕs, φ

〉)∣∣∣∣
s=0

=
∂

∂s

(∫ T

0

∫
Ω̂e

〈
ρ̂0
∂2ϕ̂s

∂t2
, φ̂s
〉)∣∣∣∣

s=0

,

=

∫ T

0

∫
Ω̂e

〈
ρ̂0
∂2ϕ̂′

∂t2
, φ̂

〉
+

〈
ρ̂0
∂2ϕ̂

∂t2
, (Dφ ◦ ϕ̂)ϕ̂′

〉
,
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=

∫ T

0

∫
Ωe(t)

〈
ρe

(
∂2ϕ̂′

∂t2

)
◦ ϕ, φ

〉
+

〈
ρe

(
∂2ϕ̂

∂t2

)
◦ ϕ, (Dφ)(ϕ̂′ ◦ ϕ)

〉
,

=

∫ T

0

∫
Ωe(t)

〈
ρe

(
∂2ϕ̂′

∂t2

)
◦ ϕ, φ

〉
+

〈
ρe

(
∂2ϕ̂

∂t2

)
◦ ϕ, (Dφ)(ϕ̂′ ◦ ϕ)

〉
.

Next we apply (4.3.17) to the last line and obtain

∂

∂s

(∫ T

0

∫
Ωs

e(t)

〈
ρse

(
∂2ϕ̂s

∂t2

)
◦ ϕs, φ

〉)∣∣∣∣
s=0

=

∫ T

0

∫
Ωe(t)

〈
ρe

(
∂2ϕ̂′

∂t2

)
◦ ϕ−Div

{
ρe

(
∂2ϕ̂

∂t2

)
◦ ϕ⊗ (ϕ̂′ ◦ ϕ)

}
, φ

〉
+

∫ T

0

∫
Γi(t)

〈
〈ϕ̂′ ◦ ϕ, n〉ρe

(
∂2ϕ̂

∂t2

)
◦ ϕ, φ

〉
(4.5.11)

Taking (4.3.19) and (4.5.11) together we have an expression for the s-derivative of the

left hand side of (4.5.9):

∂

∂s

(∫ T

0

∫
Ωs

e(t)

〈
ρse

(
∂2ϕ̂s

∂t2

)
◦ ϕs, φ

〉
+ σe(ϕ

s)..Dφ

)∣∣∣∣
s=0

=

∫ T

0

∫
Ωe(t)

〈
ρe

(
∂2ϕ̂′

∂t2

)
◦ ϕ−Div

{
σ′e(ϕ̂

′ ◦ ϕ)
}
, φ

〉
−
∫ T

0

∫
Ωe(t)

〈
Div

{[
ρe

(
∂2ϕ̂

∂t2

)
◦ ϕ−Divσe(ϕ)

]
⊗ (ϕ̂′ ◦ ϕ)

}
, φ

〉
+

∫ T

0

∫
Γi(t)

〈
σ′e(ϕ̂

′ ◦ ϕ)n−Div Γi
(σe(ϕ)n⊗ (ϕ̂′ ◦ ϕ)), φ

〉
+

∫ T

0

∫
Γi(t)

〈
〈ϕ̂′ ◦ ϕ, n〉

(
ρe

(
∂2ϕ̂

∂t2

)
◦ ϕ−Divσe(ϕ)

)
, φ

〉
. (4.5.12)

Some of the particularly complicated terms will cancel in the next step.

Next we will work with the domain term on the right hand side of (4.5.9). As in the steady

state case, the density ρe implicitly depends on ϕ̂ so we will transport the integral back

to the fixed (wrt s) elastic domain in order to compute the derivative. As a consequence
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of (4.3.20) we have,

∂

∂s

(∫ T

0

∫
Ωs

e(t)

〈ρsevse, φ〉
)∣∣∣∣

s=0

=

∫ T

0

∫
Ωe(t)

〈ρev′e, φ〉+ 〈ρeve, (Dφ)(ϕ̂′ ◦ ϕ)〉,

and by substituting the elasticity domain equation from (4.4.1) we obtain,

∂

∂s

(∫ T

0

∫
Ωs

e(t)

〈ρsevse, φ〉
)∣∣∣∣

s=0

=

∫ T

0

∫
Ωe(t)

〈ρev′e, φ〉

+

∫ T

0

∫
Ωe(t)

〈
ρe

(
∂2ϕ̂

∂t2

)
◦ ϕ−Divσe(ϕ), (Dφ)(ϕ̂′ ◦ ϕ)

〉
.

An application of (4.3.17) yields

∂

∂s

(∫ T

0

∫
Ωs

e(t)

〈ρsevse, φ〉
)∣∣∣∣

s=0

=

∫ T

0

∫
Ωe(t)

〈ρev′e, φ〉 ,

−
∫ T

0

∫
Ωe(t)

〈
−Div

{[
ρe

(
∂2ϕ̂

∂t2

)
◦ ϕ−Divσe(ϕ)

]
⊗ (ϕ̂′ ◦ ϕ)

}
, φ

〉
+

∫ T

0

∫
Γi(t)

〈
〈ϕ̂′ ◦ ϕ, n〉

(
ρe

(
∂2ϕ̂

∂t2

)
◦ ϕ−Divσe(ϕ)

)
, φ

〉
. (4.5.13)

We take (4.5.12) and (4.5.13) together and substitute back in to (4.5.9) to obtain the

following: ∫ T

0

∫
Ωe(t)

〈
ρe

(
∂2ϕ̂′

∂t2

)
◦ ϕ−Div

{
σ′e(ϕ̂

′ ◦ ϕ)
}
, φ

〉
−
∫ T

0

∫
Ωe(t)

〈
Div

{[
ρe

(
∂2ϕ̂

∂t2

)
◦ ϕ−Divσe(ϕ)

]
⊗ (ϕ̂′ ◦ ϕ)

}
, φ

〉
+

∫ T

0

∫
Γi(t)

〈
σ′e(ϕ̂

′ ◦ ϕ)n−Div Γi
(σe(ϕ)n⊗ (ϕ̂′ ◦ ϕ)), φ

〉
+

∫ T

0

∫
Γi(t)

〈
〈ϕ̂′ ◦ ϕ, n〉

(
ρe

(
∂2ϕ̂

∂t2

)
◦ ϕ−Divσe(ϕ)

)
, φ

〉
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=

∫ T

0

∫
Ωe(t)

〈ρev′e, φ〉

−
∫ T

0

∫
Ωe(t)

〈
Div

{[
ρe

(
∂2ϕ̂

∂t2

)
◦ ϕ−Divσe(ϕ)

]
⊗ (ϕ̂′ ◦ ϕ)

}
, φ

〉
+

∫ T

0

∫
Γi(t)

〈
〈ϕ̂′ ◦ ϕ, n〉

(
ρe

(
∂2ϕ̂

∂t2

)
◦ ϕ−Divσe(ϕ)

)
, φ

〉
+

∂

∂s

(∫ T

0

∫
Γs
i (t)

〈σe(ϕs)ns, φ〉

)∣∣∣∣∣
s=0

.

After cancellation we have,∫ T

0

∫
Ωe(t)

〈
ρe

(
∂2ϕ̂′

∂t2

)
◦ ϕ−Div

{
σ′e(ϕ̂

′ ◦ ϕ)
}
, φ

〉
+

∫ T

0

∫
Γi(t)

〈
σ′e(ϕ̂

′ ◦ ϕ)n−Div Γi
(σe(ϕ)n⊗ (ϕ̂′ ◦ ϕ)), φ

〉
=

∫ T

0

∫
Ωe(t)

〈ρev′e, φ〉+
∂

∂s

(∫ T

0

∫
Γs
i (t)

〈σe(ϕs)ns, φ〉

)∣∣∣∣∣
s=0

. (4.5.14)

Letting φ have compact support we recover the linearized domain equation on Ωe(t):

ρe

(
∂2ϕ̂′

∂t2

)
◦ ϕ−Div

{
σ′e(ϕ̂

′ ◦ ϕ)
}

= ρev
′
e (4.5.15)

4.5.1.4 Linearized Stress Matching Condition on Γi(t)

Substituting (4.5.15) in to (4.5.14), we are left with the following equation on the interface

Γi(t): ∫ T

0

∫
Γi(t)

〈
σ′e(ϕ̂

′ ◦ ϕ)n−Div Γi
(σe(ϕ)n⊗ (ϕ̂′ ◦ ϕ)), φ

〉
=

∂

∂s

(∫ T

0

∫
Γs
i (t)

〈σe(ϕs)ns, φ〉

)∣∣∣∣∣
s=0

. (4.5.16)

This is precisely the scenario found in the steady state case, (4.3.21), with the exception
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of the integral in time and that the domains depend on t. The same analysis carries

through, however, and we have the boundary condition for the dynamical case:

σ′e(ϕ̂
′ ◦ ϕ)n = σf (p

′, u′f )n+ B(ϕ̂′ ◦ ϕ), (4.5.17)

where B is defined as in (4.3.6).

This completes the proof of Theorem 4.5.1.
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Chapter 5

Linear Adjoint

5.1 Introduction

In the previous chapter we found the sensitivity equations for the steady state case,

(4.3.5), and the time-dependent case, (4.5.1). These sensitivity equations provide the

needed characterization for the s-derivatives ((u′f , p
′), ϕ̂′ ◦ ϕ) that appear in the formu-

las (4.3.3) of the directional derivative of the cost functional ∂JS(v; v′) and (4.4.4) for

∂J(v; v′). However, in both cases the directional derivative expression does not actually

represent the gradient of the cost functional, since it is not explicitly linear in v′. In fact,

in both cases v′ does not even appear in the chain rule computation, since it is hidden

in the sensitivity equations, (4.3.5) and (4.5.1), for the s-derivatives u′f , p
′, and ϕ̂′ ◦ ϕ.

This dependence can be fleshed out by the introduction of a suitable adjoint problem

that eliminates the s-derivatives and provides an explicit representation of the gradient

of the cost functional. In this chapter we will derive the linear adjoint equations for the

steady state case, in which the gradient of JS at v is denoted by J ′S(v; v′), and for the

time-dependent case, in which the gradient of J at v is denoted by J ′(v; v′). With the

development of the appropriate linear adjoint systems we can also (formally) write the

first-order necessary optimality conditions for the optimal control problems (3.1.13) and

(3.2.2).
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5.2 Steady State Case

5.2.1 Goal and strategy

The goal is to emulate the proof of Lemma 1.2.2 in [1] in order to make precise the

dependence of the linearized variables ((u′f , p
′), ϕ̂′ ◦ ϕ) on the control v′. The strategy is

to derive a bilinear form based on a variational form of (4.3.5), and to use the bilinear

form to extract the adjoint equations.

5.2.2 Variational Form

The first step is to write (4.3.5) in a variational form. Using test functions Q, P , and R,

we obtain a weak formulation for (4.3.5).∫
Ωf

〈(Du′f )uf + (Duf )u
′
f −Divσf (u

′
f , p
′), Q〉 −

∫
Ωf

Pdivu′f

−
∫

Ωe

〈Divσ′e(ϕ̂
′ ◦ ϕ), R〉 =

∫
Ωf

〈v′|Ωf
, Q〉+

∫
Ωe

〈v′|Ωe , R〉 (5.2.1)

We integrate by parts in the first term of the lefthand side of (5.2.1).

By (4.3.17) we have∫
Ωf

〈(Du′f )uf , Q〉 = −
∫

Ωf

〈(DQ)uf + (divuf )Q, u
′
f〉+

∫
∂Ωf

〈〈uf , n∂Ωf
〉Q, u′f〉,

and using the facts that uf = 0 on ∂Ωf and divu′f = 0 on Ωf we obtain

∫
Ωf

〈(Du′f )uf , Q〉 = −
∫

Ωf

〈(DQ)uf , u
′
f〉 (5.2.2)

In order to integrate the fluid stress tensor we require an adaptation of Green’s first

identity for a suitably regular matrix-valued function B and vector-valued function a
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(which will be useful elsewhere as well):∫
Ω

B..Da+ 〈DivB, a〉 =

∫
Γ

〈Bn, a〉 (5.2.3)

An application of (5.2.3), as well as the definition of matrix inner product, defined in

Section 1.1, and the property of the trace that it is invariant under cyclic permutations,

yields ∫
Ωf

〈−Divσf (u
′
f , p
′), Q〉 =

∫
Ωf

σf (u
′
f , p
′)..DQ−

∫
∂Ωf

〈σf (u′f , p′)n∂Ωf
, Q〉,

=

∫
Ωf

2νε(u′f )..DQ− p′div (Q)

−
∫
∂Ωf

〈σf (u′f , p′)n∂Ωf
, Q〉,

=

∫
Ωf

Du′f ..2νε(Q)− p′div (Q)

−
∫
∂Ωf

〈σf (u′f , p′)n∂Ωf
, Q〉,

=

∫
Ωf

〈u′f ,−Div (2νε(Q))− p′div (Q)

+

∫
∂Ωf

〈u′f , 2νε(Q)n∂Ωf
〉 − 〈σf (u′f , p′)n∂Ωf

, Q〉,

=

∫
Ωf

〈u′f ,−Div (2νε(Q))− p′div (Q)

+

∫
Γi

〈σf (u′f , p′)n,Q〉 − 〈u′f , 2νε(Q)n〉

−
∫

Γf

〈σf (u′f , p′)nΓf
, Q〉.

where in the last step we used the fact that u′f = 0 on Γf and that n = −nf on Γi.

Together we have∫
Ωf

〈(Du′f )uf + (Duf )u
′
f −Divσf (u

′
f , p
′), Q〉 =

=

∫
Ωf

〈u′f , (Duf )∗Q− (DQ)uf −Div (2νε(Q))〉 − p′(divQ)
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+

∫
Γi

〈σf (u′f , p′)n,Q〉 − 〈u′f , 2νε(Q)n〉

−
∫

Γf

〈σf (u′f , p′)nΓf
, Q〉. (5.2.4)

We integrate by parts in the second term of the lefthand side of (5.2.1) and use the fact

that u′f = 0 on Γf , We obtain

−
∫

Ωf

Pdivu′f =−
∫
∂Ωf

P 〈u′f , n∂Ωf
〉+

∫
Ωf

〈u′f ,∇P 〉

=

∫
Γi

P 〈u′f , n〉+

∫
Ωf

〈u′f ,∇P 〉. (5.2.5)

Next, the following lemma for integration by parts on the linearized elasticity stress tensor

will be useful:

Lemma 5.2.1. Consider a smooth test function R. Then the following integration by

parts formula is valid for σ′e (as defined in (4.3.14)):

−
∫

Ωe

〈
Divσ′e(ϕ̂

′ ◦ ϕ), R
〉

= −
∫

Ωe

〈
ϕ̂′ ◦ ϕ,Divσ′e(R)

〉
+

∫
Γi

〈
ϕ̂′ ◦ ϕ, σ′e(R)n

〉
−
〈
σ′e(ϕ̂

′ ◦ ϕ)n,R
〉
. (5.2.6)

Proof. We apply (5.2.3) to the righthand side of (5.2.6) and then substitute the definition

of the linearized stress tensor σ′e(ϕ̂
′ ◦ ϕ):

−
∫

Ωe

〈Divσ′e(ϕ̂
′ ◦ ϕ), R〉 =

∫
Ωe

σ′e(ϕ̂
′ ◦ ϕ)..DR−

∫
Γi

〈σ′e(ϕ̂′ ◦ ϕ)n,R〉

=

∫
Ωe

[(Dϕ̂′ ◦ ϕ)σe]..DR +

∫
Ωe

J(ϕ)Σ(ε̃((ϕ̂′ ◦ ϕ), ϕ))..DR

−
∫

Γi

〈σ′e(ϕ̂′ ◦ ϕ)n,R〉 (5.2.7)

In the subsequent steps we again use the definition of matrix inner product and the

invariance under cyclic permutations of the trace. For the first term on the righthand
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side of (5.2.7) we recall that σe is symmetric and use (5.2.3) to obtain∫
Ωe

[(Dϕ̂′ ◦ ϕ)σe]..DR =

∫
Ωe

Dϕ̂′ ◦ ϕ..[(DR)σe]

= −
∫

Ωe

〈ϕ̂′ ◦ ϕ,Div [(DR)σe]〉+

∫
Γi

〈ϕ̂′ ◦ ϕ, [(DR)σe]n〉 (5.2.8)

For the second domain term on the righthand side of (5.2.7), we first note that

J(ϕ)Σ(ε̃(ϕ̂′ ◦ ϕ, ϕ))..DR = Σ(ε̃(ϕ̂′ ◦ ϕ, ϕ))..
[
JDR

]
where DR := (Dϕ)−∗DR(Dϕ)−1 and Σ(ϕ̂′ ◦ ϕ) is defined according to (2.4.6). Using

properties of the trace we obtain∫
Ωe

[λTr (Dϕ̂′ ◦ ϕ)I]..
[
JDR

]
=

∫
Ωe

Dϕ̂′ ◦ ϕ..
[
Jλ(Dϕ)−1{Tr (DR)I}(Dϕ)−∗

]
= −

∫
Ωe

〈
ϕ̂′ ◦ ϕ,Div

[
Jλ(Dϕ)−1{Tr (DR)I}(Dϕ)−∗

]〉
+

∫
Γi

〈
ϕ̂′ ◦ ϕ,

[
Jλ(Dϕ)−1{Tr (DR)I}(Dϕ)−∗

]
n
〉

(5.2.9)

Similarly, we have ∫
Ωe

µ[Dϕ̂′ ◦ ϕ+ (Dϕ̂′ ◦ ϕ)∗]..
[
JDR

]
= −

∫
Ωe

〈
ϕ̂′ ◦ ϕ,Div

{
Jµ(Dϕ)−1[DR + (DR)∗](Dϕ)−∗

}〉
+

∫
Γi

〈
ϕ̂′ ◦ ϕ,

{
Jµ(Dϕ)−1[DR + (DR)∗](Dϕ)−∗

}
n
〉

(5.2.10)

Combining (5.2.9) with (5.2.10) we obtain∫
Ωe

J(ϕ)Σ(ε̃(ϕ̂′ ◦ ϕ, ϕ))..DR = −
∫

Ωe

〈
ϕ̂′ ◦ ϕ,Div

[
JΣ(ε̃(R,ϕ))

]〉
+

∫
Γi

〈
ϕ̂′ ◦ ϕ,

[
JΣ(ε̃(R,ϕ))

]
n
〉

Using (5.2.8) and (5.2.11) back into (5.2.7), we obtain the integration by parts formula
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for the linearized elastic stress tensor:

−
∫

Ωe

〈
Divσ′e(ϕ̂

′ ◦ ϕ), R
〉

=−
∫

Ωe

〈
ϕ̂′ ◦ ϕ,Divσ′e(R)

〉
+

∫
Γi

〈
ϕ̂′ ◦ ϕ, σ′e(R)n

〉
−
〈
σ′e(ϕ̂

′ ◦ ϕ)n,R
〉
. (5.2.11)

Taking (5.2.4), (5.2.5), together, applying Lemma 5.2.1, and substituting the boundary

condition from (4.3.5), we obtain that (5.2.1) is equivalent to∫
Ωf

〈u′f , (Duf )∗Q− (DQ)uf −Divσf (Q,P )〉 − p′(divQ)

+

∫
Γi

〈σf (u′f , p′)n,Q〉

−
∫

Ωe

〈
ϕ̂′ ◦ ϕ,Divσ′e(R)

〉
+

∫
Γi

〈
ϕ̂′ ◦ ϕ, σ′e(R)n+ (Duf )

∗σf (P,Q)n
〉

−
∫

Γi

〈
σf (u

′
f , p
′)n+ B(ϕ̂′ ◦ ϕ), R

〉
−
∫

Γf

〈σf (u′f , p′)nΓf
, Q〉

=

∫
Ωf

〈v′|Ωf
, Q〉+

∫
Ωe

〈v′|Ωe , R〉 (5.2.12)

This weak formulation of the state equations, (5.2.12), motivates the introduction of the

bilinear form from which we will recover the adjoint system for (Q,P,R).

Definition 5.2.2 (Steady State Linear Adjoint Bilinear Form).

a((α, β), γ; (Q,P ), R) :=∫
Ωf

〈α, (Duf )∗Q− (DQ)uf − Divσf (Q,P )〉 − β(divQ)

+

∫
Γi

〈σf (α, β)n,Q〉

−
∫

Ωe

〈
γ,Divσ′e(R)

〉
+

∫
Γi

〈
γ, σ′e(R)n+ (Duf )

∗σf (P,Q)n
〉

−
∫

Γi

〈σf (α, β)n+ B(γ), R〉 −
∫

Γf

〈σf (α, β)nΓf
, Q〉
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=

∫
Ωf

〈v′|Ωf
, Q〉+

∫
Ωe

〈v′|Ωe , R〉 (5.2.13)

5.2.3 Adjoint Derivation

For smooth test functions α, β, γ, we set,

a((α, β), γ; (Q,P ), R) =

∫
Ωf

〈uf − ud, α〉 −
1

2

∫
Γi

〈|uf − ud|2n, γ〉+ (v, v′)E(Ω), (5.2.14)

where the righthand side comes from (4.3.3). We proceed to consider cases in order to

recover the system for the adjoint variables ((Q,P ), R).

5.2.3.1 Case 1: α = γ = 0

Consider α = γ = 0. Then for all β we have

0 = −
∫

Ωf

β(divQ) +

∫
Γi

β〈n,R−Q〉 −
∫

Γf

β〈nΓf
, Q〉. (5.2.15)

Take β to have compact support on ∂Ωf . Then (5.2.15) reduces to

0 = −
∫

Ωf

β(divQ),

from which we recover divQ = 0 in Ωf .

Next, we take β such that β|Γf
= 0. For all such β we have

0 =

∫
Γi

β 〈n,R−Q〉 ,

Which implies that 〈R, n〉 = 〈Q, n〉 on Γi. Substituting this condition back in to (5.2.15)

we recover 〈Q, nΓf
〉 = 0 on Γf .

In the sequel we will enforce the following stronger boundary conditions, in order to
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recover the remaining equations in the adjoint sensitivity system:

Q = R on Γi, (5.2.16)

Q = 0 on Γf . (5.2.17)

5.2.3.2 Case 2: β = γ = 0

Next, we consider the case that β = γ = 0. Then, from (5.2.13) and (5.2.14), for all α we

have, ∫
Ωf

〈uf − ud, α〉 =

∫
Ωf

〈α, (Duf )∗Q− (DQ)uf −Divσf (Q,P )〉

+

∫
Γi

〈2νε(α)n,Q−R〉 −
∫

Γf

〈2νε(α)nΓf
, Q〉,

=

∫
Ωf

〈α, (Duf )∗Q− (DQ)uf −Divσf (Q,P )〉, (5.2.18)

after substituting (5.2.16) and (5.2.17). Since (5.2.18) is true for all α, we recover the

domain equation for Q and P ,

(Duf )
∗Q− (DQ)uf −Divσf (Q,P ) = uf − ud in Ωf . (5.2.19)

5.2.3.3 Case 3: α = β = 0

Finally, we consider the case that α = β = 0. Then, from (5.2.13) and (5.2.14), we have,

1

2

∫
Γi

〈|uf − ud|2nf , γ〉 = −
∫

Ωe

〈
γ,Divσ′e(R)

〉
+

∫
Γi

〈
γ, σ′e(R)n+ (Duf )

∗σf (P,Q)n
〉

−
∫

Γi

〈B(ϕ̂′ ◦ ϕ), R〉 . (5.2.20)

As previously, we first consider the case where γ has compact support on Ωe. Then γ|Γi
=

0. Moreover, B(γ)|Γi
= 0 because B : H1/2(Γi) → H−1/2(Γi) is tangential, according to
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Proposition 6.2 in [11]. Then for all γ we have

0 = −
∫

Ωe

〈
γ,Divσ′e(R)

〉
,

from which we recover the domain equation

Divσ′e(R) = 0 on Ωe. (5.2.21)

Substituting (5.2.21) back in to (5.2.18) we have,

1

2

∫
Γi

〈|uf − ud|2nf , γ〉 =

∫
Γi

〈
γ, σ′e(R)n+ (Duf )

∗σf (P,Q)n
〉

−
∫

Γi

〈B(γ), R〉 . (5.2.22)

In order to recover the corresponding adjoint boundary equation the following lemma

will be useful (and will be helpful in the following section as well).

Lemma 5.2.3 (Integration by parts of linearized boundary terms.). For R, γ ∈ H1/2(Γi)

we have the following integration by parts formula:

−
∫

Γi

〈B(γ), R〉 =

∫
Γi

〈γ,BA(R)〉. (5.2.23)

where B(γ) is defined in (4.3.6) and

BA(R) :=div Γi
[(σe(ϕ)− σf (p, uf ))R]n−

〈
Hσf (p, uf )n+

∂σf
∂n

n,R

〉
n

− (Dσ∆
e .n)∗R− Div Γi

(n⊗ σeR) +∇Γi
〈σen,R〉. (5.2.24)

Proof. We recall the definition of B(γ):

B(γ) :=[σe(ϕ)− σf (p, uf )] · ∇Γi
〈ϕ̂′ ◦ ϕ, n〉+ 〈γ, n〉

(
Hσf (p, uf )n+

∂σf
∂n

n

)
− σe(DΓi

γ)∗n+ (div Γi
γ)σen+ (DΓi

σe.γ)n. (5.2.25)
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For simplicity of exposition, we define

B1 := σe(ϕ)− σf (p, uf ), (5.2.26)

B2 = Hσf (p, uf )n+
∂σf
∂n

n. (5.2.27)

Observe that B1 is a symmetric matrix such that B1n = 0 (from (2.5.1)), and B2 is a

vector. Both depend only on the solution to the nonlinear coupled system (2.5.1) and

not on γ.

We substitute the definition of B, defined in terms of B1 and B2, and carry out the proof

term-by-term. We have,∫
Γi

〈−B(γ), R〉

=

∫
Γi

〈−B1 · ∇Γi
〈γ, n〉 − 〈γ, n〉B2 + σe(DΓi

γ)∗n,R〉

−
∫

Γi

〈(div Γi
γ)σen+ (DΓi

σe.γ)n,R〉, (5.2.28)

By arithmetic with B2 we obtain,∫
Γi

〈−〈γ, n〉B2, R〉 =

∫
Γi

−〈γ, 〈B2, R〉n〉. (5.2.29)

Next we use the symmetry of B1 and (4.2.8) to obtain,∫
Γi

〈−B1 · ∇Γi
〈γ, n〉, R〉 =

∫
Γi

−〈∇Γi
〈γ, n〉, B1 ·R〉,

=

∫
Γi

〈γ, div Γi
(B1R)n−H〈B1R, n〉n〉,

=

∫
Γi

〈γ, div Γi
(B1R)n〉, (5.2.30)

where in the last step we use the aforementioned fact for the symmetric B1 that B1n = 0.

For the next term in (5.2.28) we use the symmetry of σe and the identity for a matrix A
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and vectors b, c: 〈A · b, c〉 = c⊗ b..A. We can then apply (4.2.9) and obtain,∫
Γi

〈σe(DΓi
γ)∗n,R〉 =

∫
Γi

〈n, (DΓi
γ)σeR〉,

=

∫
Γi

n⊗ σeR..DΓi
γ,

=

∫
Γi

〈γ,H(n⊗ σeR)n−Div Γi
(n⊗ σeR)〉. (5.2.31)

We apply (4.2.8) to the next term in (5.2.28) to obtain,

−
∫

Γi

〈(div Γi
γ)σen,R〉 =

∫
Γi

〈γ,∇Γi
〈σen,R〉 −H〈σen,R〉n〉. (5.2.32)

Finally, we consider the term −
∫

Γi

〈(DΓi
σe.γ)n,R〉. Recall that the term Dσe is a three

entries tensor representing the gradient matrix of σe, which arose in the derivation of the

s-derivative of the Cauchy stress tensor σse. In particular, since

∀i, j, ((σse)ij ◦ ϕs)′ = (σ′e)ij ◦ ϕ+ 〈(∇(σe)ij) ◦ ϕ, ϕ′〉 = (σ′e)ij ◦ ϕ+ [(∂k(σe)ij) ◦ ϕ]ϕ′k,

Dσe is defined as (Dσe.f)ij = (∂k(σe)ij)fk. We introduce the following notation,

(Dσ∆
e .f)ik := ∂k(σe)ijfj,

and then we can integrate by parts in components.∫
Γi

〈(Dσe.γ) · n,R〉 =

∫
Γi

(∂k(σe)ijγk)(n)jRi

=

∫
Γi

γk(∂k(σe)ij(n)jRi) =

∫
Γi

〈γ, (Dσ∆
e .n)∗R〉. (5.2.33)

Substituting (5.2.29), (5.2.30), (5.2.31), (5.2.32), and (5.2.33) back in to (5.2.28) and

cancelling where possible, we obtain,∫
Γi

〈−B(γ), R〉 =

∫
Γi

〈γ, div Γi
(B1R)n− 〈B2, R〉n− (Dσ∆

e .n)∗R〉,
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+

∫
Γi

〈γ,−Div Γi
(n⊗ σeR) +∇Γi

〈σen,R〉〉. (5.2.34)

The definition

BA(R) := div Γi
(B1R)n−〈B2, R〉n−(Dσ∆

e .n)∗R−Div Γi
(n⊗σeR)+∇Γi

〈σen,R〉, (5.2.35)

and this completes the proof.

Substituting the result of Lemma 5.2.3 in to (5.2.22) we obtain,∫
Γi

〈
1

2
|uf − ud|2nf , γ

〉
=

∫
Γi

〈
γ, σ′e(R)n+ (Duf )

∗σf (P,Q)n
〉

+

∫
Γi

〈γ,BA(R)〉 , (5.2.36)

which is true for all test functions γ and thus implies the boundary condition

−1

2
|uf − ud|2n = σ′e(R)n+ (Duf )

∗σf (P,Q)n+ BA(R) on Γi. (5.2.37)

5.2.4 First Order Optimality Conditions and Gradient Recov-

ery

With the adjoint equations derived we state the lemma which will allow us to state our

main result:

Lemma 5.2.4. Let v1 be given in ES(Ω) and let

((u′f (v1), p′(v1)), ϕ̂′(v1)) := (((Duf/Dv,Dp/Dv),Dϕ̂/Dv) · v1)

be the Gâteaux derivative of the mapping v 7→ ((uf , p), ϕ̂) in the direction v1, which solves

(4.3.5); then for every admissable v2, we have∫
Ωf

〈
v2|Ωf

, (u′f (v1), p′(v1))
〉

+

∫
Γi

〈v2|Γi
, (ϕ̂′ ◦ ϕ)(v1)〉
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=

∫
Ωf

〈
(Q(v2), P (v2)), v1|Ωf

〉
+

∫
Ωe

〈R(v2), v1|Ωe〉 (5.2.38)

where ((Q(v2), P (v2)), R(v2)) is the solution of the linearized adjoint problem



(Duf )
∗Q− (DQ)uf − Divσf (P,Q) = v2|Ωf

Ωf

div (Q) = 0 Ωf

−Divσ′e(R) = 0 Ωe

Q = R Γi

σ′e(R)n+ (Duf )
∗σf (P,Q)n+ BA(R) = v2|Γi

Γi

Q = 0 Γf

(5.2.39)

with

BA(R) := div Γi
(B1R)n− 〈B2, R〉n− (Dσ∆

e .n)∗R− Div Γi
(n⊗ σeR) +∇Γi

〈σen,R〉.

Proof. We start with the first term on the lefthand side of the (5.3.11) (suppressing the

dependence on v1 and v2 for the moment).∫
Ωf

〈
v2|Ωf

, (u′f , p
′)
〉

=

∫
Ωf

〈
(Duf )

∗Q− (DQ)uf −Divσf (P,Q), u′f
〉
− p′divQ (5.2.40)

Working term-by-term, or the first term we use a matrix transpose property and obtain∫
Ωf

〈
(Duf )

∗Q, u′f
〉

=

∫
Ωf

〈
Q, (Duf )u

′
f

〉
(5.2.41)

In the next term we use (4.3.17) and the facts that uf = 0 on ∂Ωf and divuf = 0 in Ωf

from the original nonlinear coupled system (2.5.1) to obtain,∫
Ωf

−
〈
(DQ)uf , u

′
f

〉
=

∫
Ωf

〈Q, (Du′f )uf + (divuf )u
′
f〉 −

∫
∂Ωf

〈Q, (uf · n∂Ωf
)u′f〉,
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=

∫
Ωf

〈Q, (Du′f )uf〉. (5.2.42)

Next, we apply the matrix formulation of Green’s identity, (5.2.3), as well as divuf = 0

in Ωf , and simplify to obtain,∫
Ωf

〈
−Divσf (P,Q), u′f

〉
=

∫
Ωf

σf (P,Q)..Duf −
∫

Γi

〈σf (P,Q)nf , u
′
f〉,

=

∫
Ωf

−Pdivu′f + 2νε(Q)..Du′f +

∫
Γi

〈σf (P,Q)n, u′f〉

=

∫
Ωf

−Pdivu′f + 2νε(uf )..DQ+

∫
Γi

〈σf (P,Q)n, u′f〉

=

∫
Ωf

−Pdivu′f − 〈Div 2νε(uf ), Q〉+

∫
Γi

〈σf (P,Q)n, u′f〉

+

∫
Γi

〈2νε(u′f )nf , Q〉,

=

∫
Ωf

−〈Div 2νε(uf ), Q〉+

∫
Γi

〈σf (P,Q)n, u′f〉 − 〈2νε(u′f )n,Q〉.

(5.2.43)

Finally, we use Green’s identity and the boundary condition in (5.2.39), Q = 0 on Γf , to

obtain,

−
∫

Ωf

p′divQ = −
∫
∂Ωf

p′(Q · n∂Ωf
) +

∫
Ωf

〈Q,∇p′〉

= −
∫

Γi

p′(Q · nf ) +

∫
Ωf

〈Q,∇p′〉

=

∫
Γi

〈Q, pn〉+

∫
Ωf

〈Q,∇p′〉. (5.2.44)

Taking (5.2.41), (5.2.42), (5.2.43), and (5.2.44), together and substituting back in to

(5.2.40), we have,
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∫
Ωf

〈
v2|Ωf

, (u′f , p
′)
〉

=

∫
Ωf

〈
Q, (Du′f )uf + (Duf )u

′
f −Divσf (p

′, u′f )
〉

+

∫
Γi

〈σf (P,Q)n, u′f〉 − 〈σf (p′, u′f )n,Q〉,

and by substituting the linearized Navier-Stokes domain equation from (4.3.5) we obtain,∫
Ωf

〈
v2|Ωf

, (u′f , p
′)
〉

=

∫
Ωf

〈
Q, v1|Ωf

〉
+

∫
Γi

〈σf (P,Q)n, u′f〉 − 〈σf (p′, u′f )n,Q〉. (5.2.45)

The remaining extra terms will cancel in the last step.

We then work with the second term on the lefthand side of the integral in the (5.3.11):∫
Γi

〈v2|Γi
, ϕ̂′ ◦ ϕ〉 =

∫
Γi

〈[
σ′e(R) + (Duf )

∗σf (P,Q)
]
n+ BA(R), ϕ̂′ ◦ ϕ

〉
, (5.2.46)

and consider each term in turn. For the first term, we use Lemma 5.2.1 and obtain,∫
Γi

〈
σ′e(R)n, ϕ̂′ ◦ ϕ

〉
=

∫
Γi

〈
R, σ′e(ϕ̂

′ ◦ ϕ)n
〉

+

∫
Ωe

〈
R,Divσ′e(ϕ̂

′ ◦ ϕ)
〉
−
〈

Divσ′e(R), ϕ̂′ ◦ ϕ
〉
. (5.2.47)

We then substitute the elasticity domain equations from the linear coupled system (4.3.5)

and the adjoint system (5.2.39) to obtain,∫
Γi

〈
σ′e(R)n, ϕ̂′ ◦ ϕ

〉
=

∫
Γi

〈
R, σ′e(ϕ̂

′ ◦ ϕ)n
〉

+

∫
Ωe

〈R, v1|Ωe〉 . (5.2.48)

For the next term substitute the linearized velocity matching boundary condition from

(4.3.5) to obtain,∫
Γi

〈(Duf )∗σf (P,Q)n, ϕ̂′ ◦ ϕ〉 =

∫
Γi

〈σf (P,Q), (Duf )(ϕ̂
′ ◦ ϕ)〉 ,
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=

∫
Γi

〈
σf (P,Q)n,−u′f

〉
. (5.2.49)

For the final term in (5.2.46) we apply Lemma 5.2.3.∫
Γi

〈ϕ̂′ ◦ ϕ,BA(R)〉 =

∫
Γi

〈−B(ϕ̂′ ◦ ϕ), R〉 . (5.2.50)

Substituting (5.2.48), (5.2.49), and (5.2.50) in to (5.2.46) we obtain,∫
Γi

〈v2|Γi
, ϕ̂′ ◦ ϕ〉 =

∫
Ωe

〈R, v1|Ωe〉+

∫
Γi

〈
R, σ′e(ϕ̂

′ ◦ ϕ)n− B(ϕ̂′ ◦ ϕ)
〉

−
∫

Γi

〈
σf (P,Q)n, u′f

〉
(5.2.51)

Finally we add (5.2.45) and (5.2.51).∫
Ωf

〈
v2|Ωf

, (u′f , p
′)
〉

+

∫
Γi

〈v2|Γi
, ϕ̂′ ◦ ϕ〉

=

∫
Ωe

〈R, v1|Ωe〉+

∫
Ωf

〈
(Q,P ), v1|Ωf

〉
+

∫
Γi

〈
R, σ′e(ϕ̂

′ ◦ ϕ)n− B(ϕ̂′ ◦ ϕ)
〉
− 〈σf (p′, u′f )n,Q〉

−
∫

Γi

〈
σf (P,Q)n, u′f

〉
+

∫
Γi

〈σf (P,Q)n, u′f〉.

We cancel terms and substitute the linearized stress matching boundary condition from

(4.3.5) and the boundary condition Q = R from (5.2.39) to complete the proof.

Lemma 5.2.4 allows us to state our main result.

Theorem 5.2.5. [First Order Optimality Conditions for Steady State Optimal Control

Problem] Let (v; (u, p), ϕ̂) be an optimal pair for the optimal control problem:

min JS(uf , v) = 1/2‖u− uf‖2
L2(Ωf ) + 1/2‖v‖2

ES(Ω),
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subject to (2.5.1). Then v satisfies the following system for m = 1 in Definition 3.1.11:

vf −∆vf + (Q,P )(uf − ud) = 0 Ωf

ve −∆ve +R
(
−1

2
|uf − ud|2n

)
= 0 Ωe

(Dve)n = (Dvf )n Γi

(Dvf )n = 0 Γf ,

(5.2.52)

where ((Q,P )(uf − ud), R(−1/2|uf − ud|2n)) is the adjoint state that is the solution of

the linearized adjoint

(Duf )
∗Q− (DQ)uf − Divσf (P,Q) = uf − ud Ωf

div (Q) = 0 Ωf

−Divσ′e(R) = 0 Ωe

Q = R Γi

σ′e(R)n+ (Duf )
∗σf (P,Q)n+ BA(R) = −1

2
|uf − ud|2n Γi

Q = 0 Γf .

(5.2.53)

Proof. Let Let (v; (u, p), ϕ̂) be an optimal pair. Recall the computation of the directional

derivative of JS in the direction v′, (4.3.3). We have,

∂JS(v; v′) =

∫
Ωf

〈
u− ud, u′f

〉
− 1

2

∫
Γi

〈|uf − ud|2n, ϕ̂′ ◦ ϕ〉+ (v, v′)ES(Ω),

=

∫
Ωf

〈
(Q,P )(u− ud)), v′|Ωf

〉
+

∫
Ωe

〈
R

(
−1

2
|uf − ud|2n

)
, v′|Ωe

〉
+ (v, v′)ES(Ω),

by Lemma 5.2.4. We expand the term (v, v′)ES(Ω) (by definition for m = 1) and use

(5.2.3):

(v, v′)ES(Ω) =

∫
Ωf

〈vf , v′〉+Dvf ..Dv
′ +

∫
Ωe

〈ve, v′〉+Dve..Dv
′,

=

∫
Ωf

〈vf −∆vf , v
′〉+

∫
Ωe

〈ve −∆ve, v
′〉

81



+

∫
∂Ωf

〈(Dvf )n∂Ωf
, v′〉+

∫
Γi

〈(Dve)n, v′〉.

Since JS attains it’s minimum at v, we have that ∂JS(v; v′) = 0 for all v′ ∈ ES(Ω), so by

considering cases for v′ we recover the system (5.2.52).

The derivation of the adjoint system and Theorem 5.2.5 also yields the following corollary

which is relevant to subsequent numerical investigations, as the explicit representation of

the gradient of the cost functional provides directions for descent.

Corollary 5.2.6. For the target velocity optimization problem, the gradient of cost func-

tional JS is given by

J ′S(v; v′) = (v′, v)ES(Ω) + (v′|Ωf
, (Q,P )) + (v′|Ωe , R), (5.2.54)

where ((Q,P ), R) solve the linear adjoint problem (5.2.53).

5.3 Dynamical Case

5.3.1 Goal and strategy

The goal is again to emulate the proof of Lemma 1.2.2 in [1] in order to make precise

the dependence of the linearized variables ((u′f , p
′), ϕ̂′ ◦ ϕ) on the control v′, this time in

the context of the time-dependent case where ((u′f , p
′), ϕ̂′ ◦ϕ) solve (4.5.1). The strategy

is again to derive a bilinear form based on a variational from of (4.5.1), and to use the

bilinear form to extract the adjoint equations, while attempting to make use of the results

from the steady state case wherever possible.

82



5.3.2 Variational Form

The first step is to write (4.5.1) in a variational form. Using test functions Q, P , and R,

we obtain a weak formulation for (4.5.1).

∫ T

0

∫
Ωf (t)

〈
∂u′f
∂t
I

+(Du′f )uf + (Duf )u
′
f −Divσf (u

′
f , p
′), Q

〉

−
∫ T

0

∫
Ωf (t)

Pdivu′f +

∫ T

0

∫
Ωe(t)

〈
ρe

(
∂2ϕ̂′e
∂t2

)
◦ ϕ

II

−Divσ′e(ϕ̂
′ ◦ ϕ), R

〉

=

∫ T

0

∫
Ωf

〈v′|Ωf
, Q〉+

∫ T

0

∫
Ωe

〈v′|Ωe , R〉 (5.3.1)

Highlighted in the variational form (5.3.1) are the terms present in the dynamical case

which were absent in the steady state case, so we consider those terms in the development

of the bilinear form from which we will obtain the adjoint system.

For term I, it is helpful to adapt the formula for derivatives of domain integrals in [20]:

Lemma 5.3.1. [Integration by Parts in Time over a Time-Dependent Domain] For φ, ξ ∈
L2(0, T ;L2(Ω)), the following integration by parts formula holds:∫ T

0

∫
Ω(t)

〈
∂φ

∂t
, ξ

〉
=

∫
Ω(T )

〈φ, ξ〉 −
∫

Ω(0)

〈φ, ξ〉

−
∫ T

0

∫
Ω(t)

〈
φ,
∂ξ

∂t

〉
−
∫ T

0

∫
∂Ω(t)

〈φ, ξ〉〈V (Ω(t)), nΩ〉,

where V (Ω(t)) is the velocity which builds the boundary ∂Ω(t) and nΩ is the unit outer

normal with respect to ∂Ω.

Using Lemma 5.3.1 we obtain,∫ T

0

∫
Ωf (t)

〈
∂u′f
∂t

,Q

〉
=

∫
Ωf (T )

〈u′f , Q〉 −
∫

Ωf (0)

〈u′f , Q〉 −
∫ T

0

∫
Ωf (t)

〈
u′f ,

∂Q

∂t

〉
−
∫ T

0

∫
∂Ωf (t)

〈u′f , Q〉
〈
V (Ωf (t)), n∂Ωf (t)

〉
.

83



We recall that u′f = 0 on Γf , and substitute u′f (0) = 0 and n = −nf . Further,we have that

since ϕ̂ : Ω̂f → Ωf (t), the speed which builds the boundary Γi(t) is V (Ωf (t)) =
∂ϕ̂

∂t
◦ ϕ.

So we obtain, ∫ T

0

∫
Ωf (t)

〈
∂u′f
∂t

,Q

〉
=

∫
Ωf (T )

〈u′f , Q〉 −
∫ T

0

∫
Ωf (t)

〈
u′f ,

∂Q

∂t

〉
+

∫ T

0

∫
Γi(t)

〈u′f , Q〉
〈
∂ϕ̂

∂t
◦ ϕ, n

〉
. (5.3.2)

In the case of term II in (5.3.1), there is a time derivative of ϕ̂′, which is defined on

the Lagrangian frame. Consequently we take the approach of transporting the term to

the reference configuration, integrating by parts, and transporting back to the current

configuration. Define R̂ := R ◦ ϕ̂ and we obtain,∫ T

0

∫
Ωe(t)

〈
ρe

(
∂2ϕ̂′e
∂t2

)
◦ ϕ,R

〉
=

∫ T

0

∫
Ω̂e

〈
ρ̂0
∂2ϕ̂′e
∂t2

, R ◦ ϕ̂
〉

=

∫
Ω̂e

〈
ρ̂0
∂ϕ̂′e
∂t

, R̂

〉∣∣∣∣T
0

−
∫ T

0

∫
Ω̂e

〈
ρ̂0
∂ϕ̂′e
∂t

,
∂R̂

∂t

〉
,

=

∫
Ω̂e

〈
ρ̂0
∂ϕ̂′e
∂t

, R̂

〉∣∣∣∣T
0

−
∫

Ω̂e

〈
ρ̂0ϕ̂

′,
∂R̂

∂t

〉∣∣∣∣∣
T

0

+

∫ T

0

∫
Ω̂e

〈
ϕ̂′e, ρ̂0

∂2R̂

∂t2

〉
,

=

∫
Ω̂e

〈
ρ̂0
∂ϕ̂′e
∂t

(T ), R̂(T )

〉
−
∫

Ω̂e

〈
ρ̂0ϕ̂

′(T ),
∂R̂

∂t
(T )

〉

+

∫ T

0

∫
Ωe(t)

〈
ϕ̂′e ◦ ϕ, ρe

(
∂2R̂

∂t2

)
◦ ϕ

〉
, (5.3.3)

where we have applied that ϕ̂′e(0) =
∂ϕ̂′

∂t
(0) = 0.

For the remaining terms in (5.3.1), the following relations on domain integrals follow

readily from the steady state derivation:∫ T

0

∫
Ωf (t)

〈
(Du′f )uf + (Duf )u

′
f , Q

〉
+ σf (p

′, u′f )..DQ− (divu′f )P
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=

∫ T

0

∫
Ωf (t)

〈u′f ,−(DQ)uf + (Duf )
∗Q−Div (σf (P,Q))〉 − p′div (Q)

+

∫ T

0

∫
Γi(t)

〈u′f ,−σf (P,Q)n〉, (5.3.4)

which uses the facts that u′f |Γf
= 0 and n = −nf , and

∫ T

0

∫
Ωe(t)

σ′e(ϕ̂
′ ◦ ϕ)..DR

=

∫ T

0

∫
Ωe(t)

〈ϕ̂′ ◦ ϕ,−Divσ′e(R)〉+

∫ T

0

∫
Γi(t)

〈ϕ̂′ ◦ ϕ, σ′e(R)n〉, (5.3.5)

from Lemma 5.2.1.

We substitute (5.3.2), (5.3.3), (5.3.4), and (5.3.5), in to (5.3.1):∫ T

0

∫
Ωf (t)

〈
v′f , (Q,P )

〉
+

∫ T

0

∫
Ωe(t)

〈ρev′e, R〉

=

∫ T

0

∫
Ωf (t)

〈
u′f ,−

∂Q

∂t
− (DQ)uf + (Duf )

∗Q−Div (σf (P,Q))

〉
− p′div (Q)

+

∫ T

0

∫
Ωe(t)

〈
ϕ̂ ◦ ϕ, ρe

(
∂2R̂

∂t2

)
◦ ϕ−Divσ′e(R)

〉

+

∫ T

0

∫
Γi(t)

〈σf (u′f , p′)n,Q〉 − 〈σ′e(ϕ̂′ ◦ ϕ)n,R〉+ 〈ϕ̂′ ◦ ϕ, σ′e(R)n〉

+

∫ T

0

∫
Γi(t)

〈
u′f ,

〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q− σf (P,Q)n

〉
+

∫
Ωf (T )

〈u′f , Q〉+

∫
Ω̂e

〈
ρ̂0
∂ϕ̂′e
∂t

(T ), R̂(T )

〉
−

〈
ρ̂0ϕ̂

′(T ),
∂R̂

∂t
(T )

〉
. (5.3.6)

Next we substitute the boundary conditions from (4.5.1) into (5.3.6) and obtain the

following weak formulation of (4.5.1):∫ T

0

∫
Ωf (t)

〈
v′f , (Q,P )

〉
+

∫ T

0

∫
Ωe(t)

〈ρev′e, R〉

=

∫ T

0

∫
Ωf (t)

〈
u′f ,−

∂Q

∂t
− (DQ)uf + (Duf )

∗Q−Div (σf (P,Q))

〉
− p′div (Q)
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+

∫ T

0

∫
Ωe(t)

〈
ϕ̂ ◦ ϕ, ρe

(
∂2R̂

∂t2

)
◦ ϕ−Divσ′e(R)

〉

+

∫ T

0

∫
Γi(t)

〈σf (u′f , p′)n,Q〉 − 〈σf (u′f , p′)n− B(ϕ̂′ ◦ ϕ), R〉

+

∫ T

0

∫
Γi(t)

〈ϕ̂′ ◦ ϕ, σ′e(R)n〉

+

∫ T

0

∫
Γi(t)

〈(
∂ϕ̂′

∂t

)
◦ ϕ− (Duf )(ϕ̂

′ ◦ ϕ),

〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q− σf (P,Q)n

〉
+

∫
Ωf (T )

〈u′f , Q〉+

∫
Ω̂e

〈
ρ̂0
∂ϕ̂′e
∂t

(T ), R̂(T )

〉
−

〈
ρ̂0ϕ̂

′(T ),
∂R̂

∂t
(T )

〉
,

=

∫ T

0

∫
Ωf (t)

〈
u′f ,−

∂Q

∂t
− (DQ)uf + (Duf )

∗Q−Div (σf (P,Q))

〉
− p′div (Q)

+

∫ T

0

∫
Ωe(t)

〈
ϕ̂ ◦ ϕ, ρe

(
∂2R̂

∂t2

)
◦ ϕ−Divσ′e(R)

〉

+

∫ T

0

∫
Γi(t)

〈σf (u′f , p′)n,Q〉 − 〈σf (u′f , p′)n+ B(ϕ̂′ ◦ ϕ), R〉

+

∫ T

0

∫
Γi(t)

〈
ϕ̂′ ◦ ϕ, σ′e(R)n+ (Duf )

∗σf (P,Q)n−
〈
∂ϕ̂

∂t
◦ ϕ, n

〉
(Duf )

∗Q

〉
+

∫ T

0

∫
Γi(t)

〈(
∂ϕ̂′

∂t

)
◦ ϕ,

〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q− σf (P,Q)n

〉
+

∫
Ωf (T )

〈u′f , Q〉+

∫
Ω̂e

〈
ρ̂0
∂ϕ̂′e
∂t

(T ), R̂(T )

〉
−

〈
ρ̂0ϕ̂

′(T ),
∂R̂

∂t
(T )

〉
. (5.3.7)

To complete the weak formulation and derive the adjoint equations, we must consider

the term

∫ T

0

∫
Γi(t)

〈(
∂ϕ̂′

∂t

)
◦ ϕ,

〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q− σf (P,Q)n

〉
. We require a formula for

integration by parts in time on the boundary. First, for simplicity of exposition, define

the operator

KΓ(t)[ψ] :=
∂ψ

∂t
+ (Dψ)V + ψdiv Γ(t)V, (5.3.8)

where V is the speed that builds the boundary Γ(t).

Lemma 5.3.2. [Integration by Parts in Time on a Time-Dependent Boundary] For
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ξ, ψ ∈ L2(0, T ;L2(∂Ω)), the following integration by parts formula holds:

∫ T

0

∫
Γ(t)

〈
∂ξ̂

∂t
◦ ϕ, ψ

〉

=

∫
Γ(T )

−
∫

Γ(0)

〈
ξ̂ ◦ ϕ, ψ

〉
−
∫ T

0

∫
Γ(t)

〈
ξ̂ ◦ ϕ,KΓ(t)[ψ]

〉
.

The formula is obtained by transporting the boundary integral to the fixed (in time) ref-

erence configuration, performing the IBP, and transporting back to the moving boundary

and carrying out the composition with φ.

Applying Lemma 5.3.2 to (5.3.7), we obtain the following equivalent weak formulation

of (4.5.1):∫ T

0

∫
Ωf (t)

〈
v′f , (Q,P )

〉
+

∫ T

0

∫
Ωe(t)

〈ρev′e, R〉

=

∫ T

0

∫
Ωf (t)

〈
u′f ,−

∂Q

∂t
− (DQ)uf + (Duf )

∗Q−Div (σf (P,Q))

〉
− p′div (Q)

+

∫ T

0

∫
Ωe(t)

〈
ϕ̂ ◦ ϕ, ρe

(
∂2R̂

∂t2

)
◦ ϕ−Divσ′e(R)

〉

+

∫ T

0

∫
Γi(t)

〈σf (u′f , p′)n,Q〉 − 〈σf (u′f , p′)n+ B(ϕ̂′ ◦ ϕ), R〉

+

∫ T

0

∫
Γi(t)

〈
ϕ̂′ ◦ ϕ, σ′e(R)n+ (Duf )

∗σf (P,Q)n−
〈
∂ϕ̂

∂t
◦ ϕ, n

〉
(Duf )

∗Q

〉
+

∫ T

0

∫
Γi(t)

〈
ϕ̂′ ◦ ϕ,−KΓi(t)

[〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q− σf (P,Q)n

]〉
+

∫
Ωf (T )

〈u′f , Q〉+

∫
Ω̂e

〈
ρ̂0
∂ϕ̂′e
∂t

(T ), R̂(T )

〉
−

〈
ρ̂0ϕ̂

′(T ),
∂R̂

∂t
(T )

〉

−
∫

Γi(T )

〈
ϕ̂′ ◦ ϕ,

〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q− σf (P,Q)n

〉
. (5.3.9)

The weak formulation of the state equations (5.3.9) motivates the introduction of the

bilinear form from which we will recover the adjoint system for (Q,P,R).
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Definition 5.3.3 (Time Dependent Case Linear Adjoint Variational Form).

a((α, β), γ; (Q,P ), R) :=

=

∫ T

0

∫
Ωf (t)

〈
u′f ,−

∂Q

∂t
− (DQ)uf + (Duf )

∗Q− Div (σf (P,Q))

〉
− βdiv (Q)

+

∫ T

0

∫
Ωe(t)

〈
ϕ̂ ◦ ϕ, ρe

(
∂2R̂

∂t2

)
◦ ϕ− Divσ′e(R)

〉

+

∫ T

0

∫
Γi(t)

〈σf (α, β)n,Q〉 − 〈σf (α, β)n+ B(γ), R〉

+

∫ T

0

∫
Γi(t)

〈
γ, σ′e(R)n+ (Duf )

∗σf (P,Q)n−
〈
∂ϕ̂

∂t
◦ ϕ, n

〉
(Duf )

∗Q

〉
+

∫ T

0

∫
Γi(t)

〈
γ,−KΓi(t)

[〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q− σf (P,Q)n

]〉
+

∫
Ωf (T )

〈α,Q〉+

∫
Ω̂e

〈
ρ̂0
∂ϕ̂′e
∂t

(T ), R̂(T )

〉
−

〈
ρ̂0ϕ̂

′(T ),
∂R̂

∂t
(T )

〉

−
∫

Γi(T )

〈
γ,

〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q− σf (P,Q)n

〉
. (5.3.10)

Subsequently, the adjoint equations can be found according to a similar process as was

carried out for the steady state case.

5.3.3 Gradient Recovery and First Order Optimality Condi-

tions

We can now state and prove the following result, analogous to Lemma 5.2.4.

Lemma 5.3.4. Let v1 be given in E(Ω) and let

((u′f (v1), p′(v1)), ϕ̂′(v1)) := (((Duf/Dv,Dp/Dv),Dϕ̂/Dv) · v1)

be the Gâteaux derivative of the mapping v 7→ ((uf , p), ϕ̂) in the direction v1, which solves
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(4.5.1); then for every admissable v2, we have∫ T

0

∫
Ωf (t)

〈
v2|Ωf (t), (u

′
f (v1), p′(v1))

〉
+

∫ T

0

∫
Γi(t)

〈v2|Γi
, (ϕ̂′ ◦ ϕ)(v1)〉

=

∫ T

0

∫
Ωf (t)

〈
(Q(v2), P (v2)), v1|Ωf (t)

〉
+

∫ T

0

∫
Ωe(t)

〈
R(v2), v1|Ωe(t)

〉
(5.3.11)

where ((Q(v2), P (v2)), R(v2)) is the solution of the linearized adjoint problem



−∂Q
∂t
− (DQ)uf + (Duf )

∗Q− Div (σf (P,Q)) = v2|Ωf (t) Ωf (t)

div (Q) = 0 Ωf (t)

ρe

(
∂2R̂

∂t2

)
◦ ϕ− Divσ′e(R) = 0 Ωe(t)

Q = R Γi(t)

σ′e(R)n+ (Duf )
∗σf (P,Q)n

−
〈
∂ϕ̂

∂t
◦ ϕ, n

〉
(Duf )

∗Q+ BA(R)

−KΓi(t)

[〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q− σf (P,Q)n

]
= v2|Γi

Γi(t)

Q = 0 Γf

R̂(T ) = 0;
∂R̂

∂t
(T ) = 0;Q(T ) = 0;P (T ) = 0 (Ω̂e)

2 × (Ωf )
2

(5.3.12)

with

BA(R) := div Γi
(B1R)n− 〈B2, R〉n− (Dσ∆

e .n)∗R

− Div Γi
(n⊗ σeR) +∇Γi

〈σen,R〉,

KΓi(t)[W ] :=
∂W

∂t
+ (DW )

(
∂ϕ̂

∂t
◦ ϕ
)

+Wdiv Γi(t)

(
∂ϕ̂

∂t
◦ ϕ
)
.

Proof. We start with the first term on the LHS of (5.3.11).∫ T

0

∫
Ωf (t)

〈
v2|Ωf (t), (u

′
f (v1), p′(v1))

〉

89



=

∫ T

0

∫
Ωf (t)

〈
−∂Q
∂t
, uf

〉
+

∫ T

0

∫
Ωf (t)

〈
(Duf )

∗Q− (DQ)uf −Divσf (P,Q), u′f
〉

+ p′divQ. (5.3.13)

We apply Lemma 5.3.1 to the first term in (5.3.13).

∫ T

0

∫
Ωf (t)

〈
−∂Q
∂t
, uf

〉
=

∫ T

0

∫
Ωf (t)

〈
∂u′f
∂t

,Q

〉
+

∫
Ωf (T )

〈u′f , Q〉 −
∫

Ωf (0)

〈u′f , Q〉

+

∫ T

0

∫
∂Ωf (t)

〈u′f , Q〉
〈
V (Ωf (t)), n∂Ωf (t)

〉
. (5.3.14)

By substituting the initial conditions from (4.5.1) and (5.3.12), and the boundary con-

dition u′f |Γf
= 0 we obtain,

∫ T

0

∫
Ωf (t)

〈
−∂Q
∂t
, uf

〉
=

∫ T

0

∫
Ωf (t)

〈
∂u′f
∂t

,Q

〉
−
∫ T

0

∫
Γi(t)

〈u′f , Q〉 〈V (Ωf (t)), n〉 . (5.3.15)

For the remaining terms in (5.3.13) we apply (5.3.4) and obtain,∫ T

0

∫
Ωf (t)

〈u′f ,−(DQ)uf + (Duf )
∗Q−Div (σf (P,Q))〉 − p′div (Q)

=

∫ T

0

∫
Ωf (t)

〈
(Du′f )uf + (Duf )u

′
f , Q

〉
+ σf (p

′, u′f )..DQ− (divu′f )P

+

∫ T

0

∫
Γi(t)

〈u′f , σf (P,Q)n〉. (5.3.16)

Taking (5.3.15) and (5.3.16) together, and recalling that the speed which builds the
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boundary Γi(t) is V (Ωf (t)) =
∂ϕ̂

∂t
◦ ϕ, we obtain,

∫ T

0

∫
Ωf (t)

〈
v2|Ωf (t), (u

′
f (v1), p′(v1))

〉
=

∫ T

0

∫
Ωf (t)

〈
∂u′f
∂t

,Q

〉
− (divu′f )P

+

∫ T

0

∫
Ωf (t)

〈
(Du′f )uf + (Duf )u

′
f , Q

〉
+ σf (p

′, u′f )..DQ

+

∫ T

0

∫
Γi(t)

〈
u′f , σf (P,Q)n−

〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q

〉
=

∫ T

0

∫
Ωf (t)

〈
∂u′f
∂t
−Div (σf (p

′, u′f )), Q

〉
− (divu′f )P

+

∫ T

0

∫
Ωf (t)

〈
(Du′f )uf + (Duf )u

′
f , Q

〉
+

∫ T

0

∫
Γi(t)

〈
u′f , σf (P,Q)n−

〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q

〉
−
∫ T

0

∫
Γi(t)

〈
Q, σf (p

′, u′f )n
〉
. (5.3.17)

Next we work with the second term on the lefthand side of (5.3.11).∫ T

0

∫
Γi(t)

〈
v2|Γi(t), (ϕ̂

′ ◦ ϕ)(v1)
〉

=

∫ T

0

∫
Γi(t)

〈
σ′e(R)n+ (Duf )

∗σf (P,Q)n−
〈
∂ϕ̂

∂t
◦ ϕ, n

〉
(Duf )

∗Q, ϕ̂′ ◦ ϕ
〉

+

∫ T

0

∫
Γi(t)

〈
BA(R)−KΓi(t)

[〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q− σf (P,Q)n

]
, ϕ̂′ ◦ ϕ

〉
. (5.3.18)

We integrate by parts using (5.2.1) and obtain that (5.3.18) is equivalent to∫ T

0

∫
Ωe(t)

〈
Divσ′e(R), ϕ̂′ ◦ ϕ

〉
−
〈
R,Divσ′e(ϕ̂

′ ◦ ϕ)
〉

+

∫ T

0

∫
Γi(t)

〈
R, σ′e(ϕ̂

′ ◦ ϕ)n
〉

+

〈
(Duf )

∗σf (P,Q)n−
〈
∂ϕ̂

∂t
◦ ϕ, n

〉
(Duf )

∗Q, ϕ̂′ ◦ ϕ
〉
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+

∫ T

0

∫
Γi(t)

〈
BA(R)−KΓi(t)

[〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q− σf (P,Q)n

]
, ϕ̂′ ◦ ϕ

〉
. (5.3.19)

Next, we substitute the structure domain equation from (5.3.12). We also apply (5.3.3)

and initial conditions from (4.5.1) and (5.3.12) to obtain that (5.3.19) is equivalent to

∫ T

0

∫
Ωe(t)

〈
ρe

(
∂2R̂

∂t2

)
◦ ϕ, ϕ̂′ ◦ ϕ

〉
−
〈
R,Divσ′e(ϕ̂

′ ◦ ϕ)
〉

+

∫ T

0

∫
Γi(t)

〈
R, σ′e(ϕ̂

′ ◦ ϕ)n
〉

+

〈
(Duf )

∗σf (P,Q)n−
〈
∂ϕ̂

∂t
◦ ϕ, n

〉
(Duf )

∗Q, ϕ̂′ ◦ ϕ
〉

+

∫ T

0

∫
Γi(t)

〈
BA(R)−KΓi(t)

[〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q− σf (P,Q)n

]
, ϕ̂′ ◦ ϕ

〉
,

=

∫ T

0

∫
Ωe(t)

〈
R, ρe

(
∂2ϕ̂′e
∂t2

)
◦ ϕ−Divσ′e(ϕ̂

′ ◦ ϕ)

〉
+

∫ T

0

∫
Γi(t)

〈
R, σ′e(ϕ̂

′ ◦ ϕ)n
〉

+

〈
(Duf )

∗σf (P,Q)n−
〈
∂ϕ̂

∂t
◦ ϕ, n

〉
(Duf )

∗Q, ϕ̂′ ◦ ϕ
〉

+

∫ T

0

∫
Γi(t)

〈
BA(R)−KΓi(t)

[〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q− σf (P,Q)n

]
, ϕ̂′ ◦ ϕ

〉
. (5.3.20)

Next, we apply Lemma 5.2.3 and Lemma 5.3.2 and initial conditions from (4.5.1) and

(5.3.12) to obtain that 5.3.20 is equivalent to,∫ T

0

∫
Ωe(t)

〈
R, ρe

(
∂2ϕ̂′e
∂t2

)
◦ ϕ−Divσ′e(ϕ̂

′ ◦ ϕ)

〉
+

∫ T

0

∫
Γi(t)

〈
R, σ′e(ϕ̂

′ ◦ ϕ)n− B(ϕ̂′ ◦ ϕ)
〉

+

∫ T

0

∫
Γi(t)

〈〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q− σf (P,Q)n,

∂ϕ̂′

∂t
◦ ϕ− (Duf )(ϕ̂

′ ◦ ϕ)

〉
. (5.3.21)

Finally, we substitute the linearized sticking condition from (4.5.1) and obtain,∫ T

0

∫
Γi(t)

〈
v2|Γi(t), (ϕ̂

′ ◦ ϕ)(v1)
〉

=

∫ T

0

∫
Ωe(t)

〈
R, ρe

(
∂2ϕ̂′e
∂t2

)
◦ ϕ−Divσ′e(ϕ̂

′ ◦ ϕ)

〉
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+

∫ T

0

∫
Γi(t)

〈
R, σ′e(ϕ̂

′ ◦ ϕ)n− B(ϕ̂′ ◦ ϕ)
〉

+

∫ T

0

∫
Γi(t)

〈〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q− σf (P,Q)n, u′f

〉
. (5.3.22)

The final step is to add (5.3.17) and (5.3.22). We substitute the domain equations from

(4.5.1) (including the divergence free condition) and we obtain∫ T

0

∫
Ωf (t)

〈
v2|Ωf (t), (u

′
f (v1), p′(v1))

〉
+

∫ T

0

∫
Γi(t)

〈
v2|Γi(t), (ϕ̂

′ ◦ ϕ)(v1)
〉

=

∫ T

0

∫
Ωf (t)

〈
Q, v1|Ωf (t)

〉 ∫ T

0

∫
Ωe(t)

+
〈
R, v1|Ωe(t)

〉
+

∫ T

0

∫
Γi(t)

〈
R, σ′e(ϕ̂

′ ◦ ϕ)n− B(ϕ̂′ ◦ ϕ)
〉
− 〈σf (p′, u′f )n,Q〉

=

∫ T

0

∫
Ωf (t)

〈
Q, v1|Ωf (t)

〉 ∫ T

0

∫
Ωe(t)

+
〈
R, v1|Ωe(t)

〉
,

where the last step entails substituting the linearized stress matching boundary condition

from (4.5.1) and the matching boundary condition R = Q on Γi(t) from (5.3.12). This

completes the proof.

With Lemma 5.3.4, we can derive a set of first order optimality conditions for the dy-

namical case. As in Theorem 5.2.5, deriving the set of first order optimality conditions

will require integration by parts on the inner product (v, v′)E(0,T ;Ω), which comes from the

control norm. For simplicity of computation, we consider a relaxation of the regularity

requirements of Theorem 3.2.2, and derive first order optimality conditions using the

following control norm:

Ẽ(0, T ; Ω) :=
3∑

n=0

‖∂nt v‖2
L2(0,T ;H1(Ω)).

Theorem 5.3.5. [First Order Optimality Conditions for Dynamic Optimal Control Prob-
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lem] Let (v; (u, p), ϕ̂) be an optimal pair for the optimal control problem:

min J(v, uf ) =
1

2

∫ T

0

∫
Ωf (t)

|∇ × uf |2 +
1

2
‖v‖2

Ẽ(0,T ;Ω)
. (5.3.23)

subject to (2.5.2). Then the following system is satisfied:



∑3
k=0(−1)k∂2k

t (v −∆v)
∣∣
Ωf

+ (Q,P )(∇×∇× uf ) = 0 Ωf (t),∑3
k=0(−1)k∂2k

t (v −∆v)
∣∣
Ωe

+R
(
−1

2
|∇ × uf |2n+ {(Duf )∗ +KΓi(t)}[n×∇× uf ]

)
= 0 Ωe(t),

[Dv −D(∂2
t v) +D(∂4

t v)−D(∂6
t v)]nΓf

= 0 Γf ,

∂kt v(0) = ∂kt v(T ) = 0, k = 1, 5,

(5.3.24)

where
(
(Q,P )(∇×∇× uf ), R

(
−1

2
|∇ × uf |2n+ {(Duf )∗ +KΓi(t)}[n×∇× uf ]

))
is the

adjoint state that is the solution of the linearized adjoint

−∂Q
∂t
− (DQ)uf + (Duf )

∗Q− Div (σf (P,Q))

= ∇×∇× uf Ωf (t)

div (Q) = 0 Ωf (t)

ρe

(
∂2R̂

∂t2

)
◦ ϕ− Divσ′e(R) = 0 Ωe(t)

Q = R Γi(t)

σ′e(R)n+ (Duf )
∗σf (P,Q)n

−
〈
∂ϕ̂

∂t
◦ ϕ, n

〉
(Duf )

∗Q+ BA(R)

−KΓi(t)

[〈
∂ϕ̂

∂t
◦ ϕ, n

〉
Q− σf (P,Q)n

]
= −1

2
|∇ × uf |2n+ {(Duf )∗ +KΓi(t)}[n×∇× uf ] Γi(t)

Q = 0 Γf

R̂(T ) = 0;
∂R̂

∂t
(T ) = 0;Q(T ) = 0;P (T ) = 0 (Ω̂e)

2 × (Ωf )
2

(5.3.25)
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with

BA(R) =− div Γi
(B1R)n− 〈B2, R〉n− (Dσ∆

e .n)∗R

− Div Γi
(n⊗ σeR) +∇Γi

〈σen,R〉,

KΓi(t)[n×∇× uf ] =
∂(n×∇× uf )

∂t
+ (D(n×∇× uf ))

(
∂ϕ̂

∂t
◦ ϕ
)

+ (n×∇× uf )div Γi(t)

(
∂ϕ̂

∂t
◦ ϕ
)
.

Proof. Let Let (v; (u, p), ϕ̂) be an optimal pair. Recall the computation of Gâteaux deriva-

tive of J in the direction v′, (4.4.4). We have,

∂J(v; v′) =

∫ T

0

∫
Ωf (t)

〈
∇× uf ,∇× u′f

〉
−
∫ T

0

∫
Γi(t)

〈
ϕ̂′ ◦ ϕ, 1

2
|∇ × uf |2n

〉
+ (v, v′)Ẽ(0,T ;Ω). (5.3.26)

The goal is to use Lemma (5.3.4) which requires further integration by parts in the first

term of (5.3.26).∫ T

0

∫
Ωf (t)

〈
∇× uf ,∇× u′f

〉
=

∫ T

0

∫
Ωf (t)

〈
∇×∇× uf , u′f

〉
+

∫ T

0

∫
∂Ωf (t)

〈∇ × uf , u′f × n∂Ωf
〉

=

∫ T

0

∫
Ωf (t)

〈
∇×∇× uf , u′f

〉
−
∫ T

0

∫
Γi(t)

〈∇ × uf , u′f × n〉

=

∫ T

0

∫
Ωf (t)

〈
∇×∇× uf , u′f

〉
−
∫ T

0

∫
Γi(t)

〈n×∇× uf , u′f〉, (5.3.27)

where the last step involves taking advantage of the symmetries of the triple scalar prod-

uct. Substituting the linearized sticking boundary condition from (4.5.1) and applying

Lemma 5.3.1 we obtain,

−
∫ T

0

∫
Γi(t)

〈n×∇× uf , u′f〉
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= −
∫ T

0

∫
Γi(t)

〈
n×∇× uf ,

(
∂ϕ̂′

∂t

)
◦ ϕ− (Duf )

∗(ϕ̂′ ◦ ϕ)

〉
,

=

∫ T

0

∫
Γi(t)

〈(Duf )∗[n×∇× uf ], ϕ̂′ ◦ ϕ〉 −
〈
n×∇× uf ,

(
∂ϕ̂′

∂t

)
◦ ϕ
〉
,

=

∫ T

0

∫
Γi(t)

〈
{(Duf )∗ +KΓi(t)}[n×∇× uf ], ϕ̂′ ◦ ϕ

〉
−
∫

Γi(T )

〈n×∇× uf , ϕ̂′ ◦ ϕ〉 . (5.3.28)

Now we can apply Lemma 5.3.4 and obtain,

∂J(v; v′) =

∫ T

0

∫
Ωf (t)

〈
∇× uf ,∇× u′f

〉
−
∫ T

0

∫
Γi(t)

〈
ϕ̂′ ◦ ϕ, 1

2
|∇ × uf |2n

〉
+ (v, v′)Ẽ(0,T ;Ω),

=

∫ T

0

∫
Ωf (t)

〈
∇×∇× uf , u′f

〉
−
∫ T

0

∫
Γi(t)

〈n×∇× uf , u′f〉

−
∫ T

0

∫
Γi(t)

〈
ϕ̂′ ◦ ϕ, 1

2
|∇ × uf |2n

〉
+ (v, v′)Ẽ(0,T ;Ω),

=

∫ T

0

∫
Ωf (t)

〈
∇×∇× uf , u′f

〉
+

∫ T

0

∫
Γi(t)

〈
ϕ̂′ ◦ ϕ, {(Duf )∗ +KΓi(t)}[n×∇× uf ]

〉
−
∫ T

0

∫
Γi(t)

〈
ϕ̂′ ◦ ϕ, 1

2
|∇ × uf |2n

〉
−
∫

Γi(T )

〈n×∇× uf , ϕ̂′ ◦ ϕ〉+ (v, v′)Ẽ(0,T ;Ω),

=

∫ T

0

∫
Ωf (t)

〈
(Q,P )(∇×∇× uf ), v′|Ωf (t)

〉
+

∫ T

0

∫
Ωe(t)

〈
R

(
−1

2
|∇ × uf |2n+ {(Duf )∗ +KΓi(t)}[n×∇× uf ]

)
, v′|Ωe(t)

〉
+ (v, v′)Ẽ(0,T ;Ω),

where we have also used the initial condition R̂(T ) = R(T ) = 0.
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Next, we expand the term (v, v′)Ẽ(0,T ;Ω). We have,

(v, v′)Ẽ(0,T ;Ω) :=
3∑

n=0

∫ T

0

∫
Ω

〈∂nt v, ∂nt v′〉+D(∂nt v)..D(∂nt v
′). (5.3.29)

Integrating by parts in time we obtain,

(v, v′)Ẽ(0,T ;Ω) =

∫
Ω

[〈∂3
t v, ∂

2
t v
′〉+D(∂3

t v)..D(∂2
t v
′)− 〈∂4

t v, ∂tv
′〉 −D(∂4

t v)..D(∂tv
′)

+ 〈∂5
t v, v

′〉+D(∂5
t v)..Dv′ + 〈∂2

t v, ∂tv
′〉+D(∂2

t v)..D(∂tv
′)− 〈∂3

t v, v
′〉

−D(∂3
t v)..Dv′ + 〈∂tv, v′〉+D(∂tv)..Dv′]T0

+

∫ T

0

∫
Ω

〈v − ∂2
t v + ∂4

t v − ∂6
t v, v

′〉+D(v − ∂2
t v + ∂4

t v − ∂6
t v)..Dv′.

Then an application of (5.2.3) yields,

(v, v′)Ẽ(0,T ;Ω) =

∫
Ω

[〈∂3
t v, ∂

2
t v
′〉+D(∂3

t v)..D(∂2
t v
′)− 〈∂4

t v, ∂tv
′〉 −D(∂4

t v)..D(∂tv
′)

+ 〈∂5
t v, v

′〉+D(∂5
t v)..Dv′ + 〈∂2

t v, ∂tv
′〉+D(∂2

t v)..D(∂tv
′)− 〈∂3

t v, v
′〉

−D(∂3
t v)..Dv′ + 〈∂tv, v′〉+D(∂tv)..Dv′]T0

+

∫ T

0

3∑
k=0

(−1)k
[∫

Ω

〈∂2k
t (v −∆v), v′〉+

∫
∂Ω

〈D(∂2k
t v)nΩ, v

′〉
]
. (5.3.30)

Since J attains it’s minimum at v, we have that ∂J(v; v′) = 0 for all v′ ∈ Ẽ(0, T ; Ω), and

by varying spaces for v′ we recover the system (5.3.24).

The derivation of the adjoint system and Theorem 5.3.5 also yields the following corollary

which is relevant to subsequent numerical investigations, as the explicit representation of

the gradient of the cost functional provides directions for descent.

Corollary 5.3.6. For the vorticity minimization problem, the gradient of cost functional
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J is given by

J ′(v; v′) = (v′, v)E(0,T ;Ω) + (v′|Ωf (t), (Q,P )) + (v′|Ωe(t), R), (5.3.31)

where ((Q,P ), R) solve the linear adjoint problem (5.3.25).

Corollary 5.3.6 is formal, in the sense that it is subject to a well-posedness investigation

of the adjoint system (5.3.12).
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Chapter 6

Well Posedness

6.1 Introduction

We turn our attention to the question of existence and uniqueness of solutions to the

linearized and linear adjoint systems. The derivation of the linear adjoint equations is

a formal process; we assumed that the functions under consideration possessed the nec-

essary regularity to justify integration by parts and other operations. In this section

we provide the technical justification in the form of well-posedness analysis. We focus

here on the steady state framework, in which we have access to powerful results such as

Lax-Milgram and Babuška-Brezzi Theorems for existence and uniqueness of solutions to

linear PDE systems. We start by considering the steady state system ‘at rest’ and use

the results obtained there to deal with with the more general steady state case.

6.2 Steady State Around ‘Rest’

6.2.1 Linearization around ‘rest’

We start with a consideration of the homogeneous, linearized steady state model ‘around

rest’, which is to say let uf = 0 in Ωf . The resulting linearization is as follows:
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

−Divσf (p
′, u′f ) = 0 Ωf

divu′f = 0 Ωf

−Div
{
σ′e(ϕ̂

′ ◦ ϕ)
}

= 0 Ωe

u′f = 0 Γi

σ′e(ϕ̂
′ ◦ ϕ)n = σf (p

′, u′f )n+ Brest(ϕ̂′ ◦ ϕ) Γi

u′f = 0 Γf

(6.2.1)

where

Brest(ϕ̂′ ◦ ϕ) :=[σe(ϕ) + pI] · ∇Γi
〈ϕ̂′ ◦ ϕ, n〉+ (DΓi

σe.(ϕ̂
′ ◦ ϕ))n+ (div Γi

(ϕ̂′ ◦ ϕ))σen

− σe(DΓi
(ϕ̂′ ◦ ϕ))∗n+ 〈(ϕ̂′ ◦ ϕ), n〉 (Hpn+ 〈∇p, n〉n) .

Remark 6.2.1. Observe that the in the fluid domain the equations are exactly the in-

compressible Stokes equations −∆u′f +∇p′ = v′f , divu′f = 0 in Ωf .

The idea is to model the argumentation after that given in [13] to show existence and

uniqueness of solution for (6.2.1), and then to carry that argumentation over to the more

general case.

Before presenting our main result we observe that there is readily a simplification of the

boundary operator Brest. Recall the identity from [20, Ch. 9 (5.23)] : ∇Γi
〈ϕ̂′ ◦ ϕ, n〉 =

(DΓi
(ϕ̂′ ◦ ϕ))∗n+D2bΩe(ϕ̂

′ ◦ ϕ)Γi
, so

[σe(ϕ) + pI] · ∇Γi
〈ϕ̂′ ◦ ϕ, n〉 − σe(DΓi

(ϕ̂′ ◦ ϕ))∗n

=[σe(ϕ) + pI]D2bΩe(ϕ̂
′ ◦ ϕ)Γi

+ p(DΓi
(ϕ̂′ ◦ ϕ))∗n.

Consequently we will write

Brest(ϕ̂′ ◦ ϕ) :=[σe(ϕ) + pI]D2bΩe(ϕ̂
′ ◦ ϕ)Γi

+ p(DΓi
(ϕ̂′ ◦ ϕ))∗n

+ (DΓi
σe.(ϕ̂

′ ◦ ϕ))n+ (div Γi
(ϕ̂′ ◦ ϕ))σen+ 〈ϕ̂′ ◦ ϕ, n〉 (Hpn+ 〈∇p, n〉n) ,

= Brest
1 (ϕ, p)D2bΩe(ϕ̂

′ ◦ ϕ)Γi
+ p(DΓi

(ϕ̂′ ◦ ϕ))∗n

+ (DΓi
σe.(ϕ̂

′ ◦ ϕ))n+ (div Γi
(ϕ̂′ ◦ ϕ))σen+ 〈ϕ̂′ ◦ ϕ, n〉Brest

2 (p),
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where Brest
1 (ϕ, p) := σe(ϕ) + pI is a symmetric matrix such that Brest

1 (ϕ, p)n = 0 (owing

to the original nonlinear system taken “at rest”), and Brest
2 := Hpn+ 〈∇p, n〉n.

We now state our main result.

Theorem 6.2.2. There exists ρ∗ such that ∀ρ < ρ∗ and (ϕ̂, p) ∈ Bρ = {(ϕ̂, p) ∈ C2(Ω̂e)×
C1(Ωf )|‖ϕ̂‖C2(Ω̂e)

≤ ρ, ‖p̂‖C1(Ωf ) ≤ ρ} the solution to (2.5.1) with uf = 0, there exists a

unique solution (u′f , p
′, ϕ̂′ ◦ ϕ) ∈ H1(Ωf )× L2(Ωf )×H1(Ωe) to (6.2.1).

Proof of Theorem 6.2.2. The key observation for the proof is that the linearized system

(6.2.1) is only weakly coupled. Therefore we will first consider the Stokes system, and

pass that solution as boundary data to the elasticity system.

The Stokes System

We consider the component 
−Divσf (p

′, u′f ) = 0 Ωf

divu′f = 0 Ωf

u′f = 0 ∂Ωf .

(6.2.2)

The fluid subsystem is precisely the linear Stokes system with homogenous Dirichlet

boundary conditions. Existence of a unique solution (u′f , p
′) ∈ H1(Ωf ) × L2(Ωf ) is well

established, for example in [50, Theorem 2.1].

We require a discussion of the traces of components of H1(Ωf ) to the interface Γi. We

introduce the space

HΓf
(Ωf ) = {θ ∈ H1(Ωf )|θ = 0 on Γf}. (6.2.3)

Observe that the linearized fluid velocity u′f ∈ HΓf
(Ωf ). This motivates the following

lemma.

Lemma 6.2.3. The traces of elements of H1
Γf

(Ωf ) describe the linear space H1/2(Γi),

and there exists a linear mapping

TΓi
∈ L(H1/2(Γi), H

1
Γf

(Ωf )) s.t. ∀θ ∈ H1/2(Γi) , (TΓi
θ)|∂Ωf

= θ.
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Proof. Let θ ∈ H1/2(Γi), and define ζ = TΓi
θ as the solution of the Laplace problem with

Dirichlet boundary condition: −∆ζ = 0 Ωf

ζ = θ̃ ∂Ωf ,
(6.2.4)

where θ̃ ∈ H1/2(∂Ωf ) is the extension of θ outside of Γi by zero.

Lemma 6.2.3 then offers a weak characterization of this boundary element −2ε(u′f )n +

p′n ∈ H1/2(Γi)
′:

〈−2ε(u′f )n+ p′n, θ〉H1/2(Γi)′×H1/2(Γi) =

∫
Ωf

2ε(u′f )..ε(TΓi
θ)− p′div (TΓi

θ). (6.2.5)

The Elasticity System

We turn our attention to the elasticity subsystem. What remains is to show existence

of a unique solution ϕ̂′ ◦ ϕ ∈ H1(Ωe) for the elastic component of (6.2.1). We have the

following system: −Div
{
σ′e(ϕ̂

′ ◦ ϕ)
}

= 0 Ωe

σ′e(ϕ̂
′ ◦ ϕ)n+ Brest(ϕ̂′ ◦ ϕ) = σf (p

′, u′f )n Γi
(6.2.6)

We observe that the system is linear-elliptic and has a Fourier-type boundary conditions.

The goal is to cast the system in the framework of the Lax-Millgram Theorem in order

to show existence and uniqueness of solution. There are four main steps in the proof.

1. Build a bilinear form Aϕ,p on H1(Ωe) in order to write (6.2.6) in variational form.

2. Transport the bilinear form Aϕ,p to the fixed-domain. I.e. find aϕ̂,p̂ = Aϕ,p ◦ ϕ̂, a

nonsymmetric, bilinear form on H1(Ω̂e) .

3. Show that the mapping (ϕ̂, p̂)→ aϕ̂,p̂(·, ·) is equicontinuous.

4. Show aϕ̂,p̂(ϕ̂
′, ϕ̂′) is coercive.
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Step 1:

Define the following bilinear forms ∀ϕ̂′ ◦ ϕ,Θ ∈ H1(Ωe):

A0
ϕ,p(ϕ̂

′ ◦ ϕ,Θ) :=

∫
Ωe

〈
−Div

{
σ′e(ϕ̂

′ ◦ ϕ)
}
,Θ
〉

+

∫
Γi

〈σ′e(ϕ̂′ ◦ ϕ)n,Θ〉 (6.2.7)

and

Aϕ,p(ϕ̂
′ ◦ ϕ,Θ) :=A0

ϕ,p(ϕ̂
′ ◦ ϕ,Θ)−

∫
Γi

〈Brest(ϕ̂′ ◦ ϕ),Θ〉,

:=A0
ϕ,p(ϕ̂

′ ◦ ϕ,Θ)

−
∫

Γi

〈Brest
1 (ϕ, p)D2bΩe(ϕ̂

′ ◦ ϕ)Γi
+ p(DΓi

(ϕ̂′ ◦ ϕ))∗n,Θ〉

+

∫
Γi

〈−(DΓi
σe.(ϕ̂

′ ◦ ϕ))n− (div Γi
(ϕ̂′ ◦ ϕ))σen,Θ〉

−
∫

Γi

〈〈ϕ̂′ ◦ ϕ, n〉Brest
2 (p),Θ〉. (6.2.8)

Then we can reframe the elasticity subproblem (6.2.6) as the variational problem to find

ϕ̂′ ◦ ϕ ∈ H1(Ωe) that solves

Aϕ,p(ϕ̂
′ ◦ ϕ,Θ) =

∫
Γi

〈G,Θ〉 (6.2.9)

for all Θ ∈ H1(Ωe), where G = σf (p
′, u′f )n on Γi.

Using Lemma 6.2.3 and (6.2.5), we have that (6.2.9) is equivalent to the problem of

finding ϕ̂′ ◦ ϕ ∈ H1(Ωe) such that for all Θ ∈ H1(Ωe) we have

Aϕ,p(ϕ̂
′ ◦ ϕ,Θ) =

∫
Ωf

2ε(u′f )..ε(TΓi
Θ)− p′div (TΓi

Θ) (6.2.10)

The spaces associated to the family of bilinear forms Aϕ,p depends on ϕ, so the next step

is to transport Aϕ,p to the fixed elastic geometry, Ω̂e with ∂Ω̂e = Γ̂i.

Step 2:

First we will consider a0
ϕ̂,p̂(ϕ̂

′, Θ̂) := A0
ϕ,p(ϕ̂

′◦ϕ,Θ)◦ϕ̂. Recall the identity (4.3.15) obtained

103



in the linearization of the general steady state system (2.5.1):∫
Ω̂e

P̂ ′..DΘ̂ =

∫
Ωe

〈
−Div

{
σ′e(ϕ̂

′ ◦ ϕ)
}
,Θ
〉

+

∫
Γi

〈σ′e(ϕ̂′ ◦ ϕ)n,Θ〉.

This directly implies that a representation of A0
ϕ,p on the fixed elastic geometry is

a0
ϕ̂,p̂(ϕ̂

′, Θ̂) =

∫
Ω̂e

P̂ ′..DΘ̂, (6.2.11)

where recall that P̂ ′ = (Dϕ̂′)Σ(Ê(ϕ̂)) +Dϕ̂Σ(Ê ′(ϕ̂)) is the linearized Piola stress tensor.

The two remaining terms in Aϕ,p which require some attention when transporting to Ω̂e

are
∫

Γi
〈p(DΓi

(ϕ̂′◦ϕ))∗,Θ〉 and
∫

Γi
〈−(div Γi

(ϕ̂′◦ϕ))σen,Θ〉 because they involve tangential

derivatives of ϕ̂′ ◦ ϕ; we need formulas for how the composition with ϕ̂ acts on the

tangential derivatives.

From [20, (5.25)] we have DΓ(v ◦ g) = DΓv ◦ gDΓg and n ◦ ϕ̂ =
(Dϕ̂)−∗n̂

|(Dϕ̂)−∗n̂|
, where n̂ is

the outer normal to Ω̂e.

So by changing variables on the boundary we obtain,∫
Γi

〈p(DΓi
(ϕ̂′ ◦ ϕ))∗n,Θ〉 =

∫
Γ̂i

p̂Ĵ〈(DΓ̂i
ϕ̂)−∗DΓ̂i

ϕ̂′(Dϕ̂)−∗n̂, Θ̂〉 (6.2.12)

For the tangential divergence we have the following lemma from [13, eq. (3.4)]:

Lemma 6.2.4.

div Γφ ◦ ϕ̂ =
1

Ĵ
div Γ

(
Ĵ(DΓϕ̂)−1φ̂

)

So, ∫
Γi

〈−(div Γi
(ϕ̂′ ◦ ϕ))σen,Θ〉 =

∫
Γ̂i

〈
−(1/Ĵ)div Γ̂i

[Ĵ(DΓ̂i
ϕ̂)−1ϕ̂′]P̂n̂, Θ̂

〉
(6.2.13)

Substituting these identities we have,
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aϕ̂,p̂(ϕ̂
′, Θ̂) =

∫
Ω̂e

P̂ ′..DΘ̂

−
∫

Γi

ω(ϕ̂)〈Brest
1 (ϕ, p) ◦ ϕ̂(D2bΩe ◦ ϕ̂)ϕ̂′Γi

, Θ̂〉

+

∫
Γi

〈p̂Ĵ〈(DΓ̂i
ϕ̂)−∗DΓ̂i

ϕ̂′(Dϕ̂)−∗n̂− Ĵ [(DΓi
σe ◦ ϕ̂).ϕ̂′](Dϕ̂)−∗n̂, Θ̂〉

+

∫
Γi

〈−(1/Ĵ)div Γ̂i
[Ĵ(DΓ̂i

ϕ̂)−1ϕ̂′]P̂n̂, Θ̂〉

−
∫

Γi

Ĵ〈〈ϕ̂′, (Dϕ̂)−∗n̂〉(Brest
2 (p) ◦ ϕ̂), Θ̂〉. (6.2.14)

Step 3:

The next step is to show that the bilinear form aϕ̂,p̂(·, ·) is continuous for all suitable

(ϕ̂, p). We offer the following proposition:

Proposition 6.2.5. The mapping (ϕ̂, p)→ aϕ̂,p̂(ϕ̂
′, Θ̂) is equicontinuous from Bρ into R

with respect to ϕ̂′, Θ̂ ∈ S1 = {u ∈ H1(Ωe)|‖u‖H1(Ωe) = 1}.

Proof. We state several estimates to establish the equicontinuity.

∀ϕ̂ ∈ Bρ, ‖ϕ̂‖C2(Ω̂e) ≤ ρ, ‖ϕ‖C2(Ωe) ≤ ρ

We also have control on the norm of the trace operator via the continuity of the trace,

∃K > 0s.t. ∀ϕ̂ ∈ Bρ, ‖γΓ̂i
‖L(H1(Ω̂e),H1/2(Γ̂i))

≤ K.

So for any θ̂ ∈ S1 we have

‖θ̂‖H1/2(Γ̂i)
≤ K, (6.2.15)

and

‖DΓ̂i
θ̂‖H−1/2(Γ̂i)

≤ cK. (6.2.16)

With these estimates established, we observe that the integrands in aϕ̂,p̂(ϕ̂
′, Θ̂) depend
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on two types of terms. The terms which depend on ϕ̂ and p̂ are continuous given the

definition of Bρ. Then there are terms depending on ϕ̂′ and Θ̂, which are continuous via

the established bounds above. Therefore (ϕ̂, p̂)→ aϕ̂,p̂(ϕ̂
′, Θ̂) is uniformly equicontinuous

with respect to ϕ̂′, Θ̂ ∈ S1.

Step 4:

The last step is to establish that the bilinear form aϕ̂,p̂(ϕ̂
′, ϕ̂′) is coercive. First we consider

a0,0(ϕ̂′, ϕ̂′), that is the bilinear form when p = ϕ̂ = 0. The only terms in a0,0(ϕ̂′, ϕ̂′) which

are nonzero come from a0
ϕ̂,p̂(ϕ̂

′, ϕ̂′).

We have

a0,0(ϕ̂′, ϕ̂′) =a0
0,0(ϕ̂′, ϕ̂′),

=

∫
Ω̂e

C(λ, µ)Dϕ̂′..Dϕ̂′,

where C(λ, µ) > 0 depends on the Lamé constants. As a consequence of Korn’s inequality

[16], there exists C0 > 0 such that a0,0(ϕ̂′, ϕ̂′) ≥ C0‖ϕ̂′‖2
H1(Ω̂e)

. With the coercivity at

(ϕ̂, p̂) = (0, 0) established, we define the following mapping.

πϕ̂,p̂(ϕ̂
′) :=

aϕ̂,p̂(ϕ̂
′, ϕ̂)

‖ϕ̂′‖2
H1(Ω̂e)

In the last step we showed that the mapping (ϕ̂, p̂) → aϕ̂,p̂(ϕ̂
′, ϕ̂′) is equicontinuous in

Bρ for ϕ̂′ in the H1(Ωe)-unit sphere. It follows that the mapping (ϕ̂, p̂) → πϕ̂,p̂(ϕ̂
′) is

equicontinuous in Bρ for ϕ̂ ∈ H1(Ω̂). Thus inf
ϕ̂′∈S1

πϕ̂,p̂(ϕ̂
′) is continuous on Bρ, which is to

say there exists ρ∗ such that for (ϕ̂, p̂) ∈ Bρ with ρ ≤ ρ∗, we have that inf ϕ̂′∈S1 πϕ̂,p̂(ϕ̂
′) ≥

C0/2, which is exactly coercivity of aϕ̂,p̂(ϕ̂
′, ϕ̂′) for ρ∗ small.

We have met the parameters of the Lax-Milgram theorem, so there exists a unique so-

lution ϕ̂′ to (6.2.6), transported to the fixed geometry Ω̂e, Γ̂i. The element ϕ̂′ ◦ ϕ is the

unique solution in H1(Ωe) to (6.2.6).
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6.2.2 Linear adjoint ‘around rest’

Next, we consider the homogenous linear adjoint ‘at rest’ associated to (6.2.1).



−Divσf (P,Q) = 0 Ωf

divQ = 0 Ωf

−Divσ′e(R) = 0 Ωe

Q = R Γi

σ′e(R)n+ Brest
A (R) = 0 Γi

Q = 0 Γf

(6.2.17)

where

Brest
A (R) := −(DΓi

n)σeR + 〈∇Γi
p,R〉n+ p(div Γi

R)n

− [DΓi
σ∆
e .n]∗R +∇Γi

〈σen,R〉 − 〈〈∇p, n〉n,R〉n.

We have an analogous result for Theorem 6.2.2 for (6.2.17):

Theorem 6.2.6. There exists ρ∗ such that ∀ρ < ρ∗ and (ϕ̂, p) ∈ Bρ = {(ϕ̂, p) ∈ C2(Ω̂e)×
C1(Ωf )|‖ϕ̂‖C2(Ω̂e)

≤ ρ, ‖p̂‖C1(Ωf ) ≤ ρ} the solution to (2.5.1) with uf = 0, there exists a

unique solution (Q,P,R) ∈ H1(Ωf )× L2(Ωf )×H1(Ωe) to (6.2.17).

The proof of Theorem 6.2.6 bears a great deal of similarity to its analogue in the previous

section. The idea is to treat the system as weakly coupled since the second boundary

condition depends only on R. So we decouple into the R- and (Q,P )-subsystems:


−Divσ′e(R) = 0 Ωe

Q = R Γi

σ′e(R)n+ Brest
A (R) = 0 Γi

(6.2.18)
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

−Divσf (P,Q) = Ωf

divQ = 0 Ωf

Q = R Γi

Q = 0 Γf

(6.2.19)

First we will solve the R-subsystem (6.2.18) using a similar argument as for the lineariza-

tion (perturbation of Lax-Milgram). Next we will solve the (Q,P )-subsystem (6.2.19),

passing in the solution for R as data.

The R-subsystem

We will carry out the following steps to solve the R-subsystem (where R̂ := R ◦ ϕ̂):

Steps:

1. Build a bilinear form Aadj
ϕ,p on H1(Ωe) in order to write (6.2.18) in variational form.

2. Transport the bilinear form Aadj
ϕ,p to the fixed-domain. That is, we will find aadj

ϕ̂,p̂ =

Aadj
ϕ,p ◦ ϕ̂, a nonsymmetric, bilinear form on H1(Ω̂e) .

3. Show (ϕ̂, p̂)→ aadj
ϕ̂,p̂(·, ·) is equicontinuous.

4. Show aadj
ϕ̂,p̂(R̂, R̂) is coercive.

Step 1:

Define the following bilinear form ∀(R,Θ) ∈ H2(Ωe)
2:

Aadj
ϕ,p(R,Θ) :=A0

ϕ,p(R,Θ) +

∫
Γi

〈Brest
A (R),Θ〉

:=A0
ϕ,p(R,Θ) +

∫
Γi

〈−(DΓi
n)σeR + 〈∇Γi

p,R〉n+ p(div Γi
R)n

− [DΓi
σ∆
e .n]∗R +∇Γi

〈σen,R〉 − 〈〈∇p, n〉n,R〉n,Θ〉, (6.2.20)

where A0
ϕ,p(R,Θ) is given by (6.2.7).

Because the spaces on which Aadj
ϕ,p(R,Θ) depends themselves depend on the deformation,

we will transport Aadj
ϕ,p(R,Θ) to the fixed domain and boundary, Ω̂e and Γ̂i.
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Step 2:

Finding the composition aadj
ϕ̂,p̂(R̂, Θ̂) := Aadj

ϕ,p(R,Θ) ◦ ϕ̂ again involves Lemma 6.2.4. We

can define the bilinear form aϕ̂,p̂(R̂, Θ̂).

aadj
ϕ̂,p̂(R̂, Θ̂) := Aadj

ϕ,p(R,Θ) ◦ ϕ̂

=A0
ϕ,p(R,Θ) ◦ p̂+

∫
Γ̂i

〈Brest
A (R) ◦ ϕ̂, Θ̂〉ω(ϕ̂)

=

∫
Ω̂e

P ′(R̂)..DΘ̂ +

∫
Γi

〈−(DΓi
n ◦ ϕ̂)(σe ◦ ϕ̂)R̂ + 〈∇Γi

p ◦ ϕ̂, R̂〉(n ◦ ϕ̂)

+

∫
Γi

p̂(div Γi
R)(n ◦ ϕ̂)− ([DΓi

σ∆
e .n]∗ ◦ ϕ̂)R̂ + (DΓ̂i

ϕ̂)−∗∇Γ̂i
〈σen ◦ ϕ̂, R̂〉

+

∫
Γi

−〈〈∇p, n〉 ◦ ϕ̂(n ◦ ϕ̂), R̂〉(nϕ̂), Θ̂〉ω(ϕ̂).

Step 3:

Proposition 6.2.7. The mapping (ϕ̂, p)→ aϕ̂,p̂(R̂, Θ̂) is equicontinuous from Bρ into R
with respect to R̂, Θ̂ ∈ S1, where S1 is defined in Proposition (6.2.5).

Proof. We have the estimates on ‖ϕ̂‖C2(Ω̂e), ‖ϕ‖C2(Ωe), and the trace operator from the

proof of Proposition (6.2.5).

Then, we observe that the integrands in aadj
ϕ̂,p̂(R̂, Θ̂) depend on two types of terms. The

terms which depend on ϕ̂ and p̂ are continuous given the definition of Bρ. Then there

are terms depending on R̂, which are continuous via (6.2.15) and (6.2.16). Therefore

(ϕ̂, p̂)→ aadj
ϕ̂,p̂(R̂, Θ̂) is uniformly continuous with respect to R̂, Θ̂ ∈ S1.

Step 4:

Proposition 6.2.8. There exists ρ∗ such that the bilinear form aadjϕ̂,p̂(R̂, R̂) is coercive on

H1(Ω̂e) for (ϕ̂, p̂) ∈ Bρ with ρ ≤ ρ∗.

Proof. For the coercivity, observe that aadj
0,0(R̂, R̂) = a0,0(R̂, R̂). Thus, following a similar
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line of reasoning as for the linearization, we define the following mapping:

πadj
ϕ̂,p̂(R̂) :=

aadj
ϕ̂,p̂(R̂, R̂)

‖R̂‖2
H1(Ω̂e)

.

In the last step we showed that the mapping aadj
ϕ̂,p̂(R̂, R̂) is equicontinuous in Bρ for R̂ in

the H1(Ωe)-unit sphere. It follows that the mapping (ϕ̂, p̂) → πadj
ϕ̂,p̂(R̂) is equicontinuous

in Bρ for R̂ ∈ H1(Ω̂e). Thus inf
R̂∈S1

πadj
ϕ̂,p̂(R̂) is continuous on Bρ, which is to say there exists

ρ∗ such that for (ϕ̂, p̂) ∈ Bρ with ρ ≤ ρ∗, we have that inf
R̂∈S1

πadj
ϕ̂,p̂(R̂) ≥ C0/2, which is

exactly coercivity of aadj
ϕ̂,p̂(R̂, R̂) for ρ∗ small.

We have met the conditions of the Lax-Milgram theorem, so there exists a unique solution

R̂ to (6.2.18), transported to the fixed geometry Ω̂e, Γ̂i. The element R := R̂ ◦ ϕ is the

unique solution in H1(Ωe) to (6.2.18).

The (Q,P )-subsystem

We are left with the (Q,P )-subsystem, (6.2.19), which exactly the linear Stokes system in

variables Q and P , with homogenous data on the domain equation and outer boundary

Γf , and R on the boundary Γi. The known solution to the nonhomogenous Stokes system

is given by, e.g., [50, Theorem 2.4], and is satisfied by R ∈ H1/2(Γi).

6.3 Steady State around Arbitrary Solution

We now generalize the well-posedness analysis to a consideration of the steady state

linearization (4.3.5) and adjoint systems (5.2.39) around an arbitrary (albeit with forth-

coming conditions imposed) solution to the original nonlinear system (2.5.1) . In both

cases, the idea is to adapt the machinery developed in [11] to analyze the elastic com-

ponent from the perspective of elliptic theory, and to subsequently cast the system in

the Babuška-Brezzi framework in order to obtain existence and uniqueness of a weak
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solution. We will utilize the work from the ‘at rest’ cases, particularly in establishing the

coercivity of the elastic component.

We define the state space:

H := H1(Ωe)× L2(Ωf )×Hf , (6.3.1)

where Hf is the closure in L2(Ωf ) of divergence-free functions vanishing on the outer

boundary Γf :

Hf :=
{
V ∈ L2(Ωf )|divV = 0, 〈V, n〉|Γf

= 0
}
.

We will also again make use of the space H1
Γf

(Ωf ) := {V ∈ H1(Ωf )|V |Γf
= 0}.

6.3.1 Assumptions on the nonlinear steady regime

There are coefficients in (4.3.5) and (5.2.39) which depend on the solution (uf , p, ϕ) to

the nonlinear system (2.5.1). In order to develop the well-posedness, we need a short

list of sufficient conditions on the regularity and size of (uf , p, ϕ). The assertion of these

conditions is justified by the smoothness of solutions to (2.5.1), as indicated in [27].

Assumption 6.3.1. [Sufficient Conditions on the Nonlinear Steady Regime] Assume

that (uf , p, ϕ), the solution to (2.5.1), meets the following criteria.

(a) Regularity conditions.

(i) uf has an extension to Ω:

uf ∈ C1(Ω) and uf = uf in Ωf . (6.3.2)

(ii) The coefficients of the first-order terms in the definition of B(V ), (4.3.6), and

BA(V ), (5.2.24), are multipliers in H1/2(Γi):

(σe)jk, p, and ∂xi(uf )k are multipliers on H1/2(Γi). (6.3.3)

Additionally, the coefficients of the zero-order terms in B and BA(V ) must be
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in L∞(Γi).

∂xp and ∂xi∂xj(uf )k belong to L∞(Γi). (6.3.4)

To elaborate on the preceding conditions, note that to be a multiplier on H1/2(Γi)

it suffices to be a member of W
1
2
,4(Γi) ∩ L∞(Γi). Also note that W

1
2

+ε,4(Γi) ⊂
L∞(Γi) for all ε > 0. The interior regularity associated to W

1
2

+ε,4(Γi) is

W
3
4

+ε,4(Ωf or Ωe). These facts motivate the following regularity assumptions:

• uf is a W
11
4

+ε,4 diffeomorphism,

• p ∈ W 7
4

+ε,4(Ωf ),

• ϕ is a W
11
4

+ε,4(Ωe) diffeomorphism.

(iii) Assume that D2bΩe ∈ L∞(Γi) and that n is a multiplier for H1/2(Γi). It suffices

to assume that ∂Ωf = Γi ∪ Γf is of class C2, and is locally on one side of the

fluid domain.

(b) Smallness conditions.

Let R denote the regularity space W
11
4

+ε,4(Ωf ) × W
7
4

+ε,4(Ωf ) × W
11
4

+ε,4(Ωe). Take

r := ‖(uf , p, ϕ)‖R, and assume that r is small enough that there exist constants

0 < c1, c2 (depending on r) such that any τ̃ ∈ H1
Γf

(Ωf ) satisfies:

(i)

∣∣∣∣∣
∫

Ωf

〈(Duf )∗τ̃ − (Dτ̃)uf , τ̃〉

∣∣∣∣∣ ≤ c1‖τ̃‖2
H1

Γf
(Ωf ),

(ii)

∣∣∣∣∣
∫

Ωf

〈(Dτ̃)uf + (Duf )τ̃ , τ̃〉

∣∣∣∣∣ ≤ c2‖τ̃‖2
H1

Γf
(Ωf ).

Note that the smallness conditions of Assumption 6.3.1 are achieved by requiring small

enough uf and Duf .

6.3.2 Elliptic theory for the elastic components

We set up a variational framework to analyze Neumann and Dirichlet elliptic boundary

value problems associated with the elastic subsystems in (4.3.5) and (5.2.39). The systems
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described here are similar to those utilized in [11], with adaptations made to conform to

the configuration presently of interest, as well as the steady state setting.

Define the operator

S = −Divσe
′(·). (6.3.5)

We consider the following systems for S : H2(Ωe)→ L2(Ωe):SV = F Ωe

σe
′(V )n+ Bgen(V ) = G or V = G Γi

(6.3.6)

Take Bgen to be a first-order, tangential boundary operator with the property that the

transformation V 7→ Bgen(V ) continuously extends from H2(Ωe)→ L2(Γi) to a bounded

linear mapping H1(Ωe)→ H−1/2(Γi).

We define the following bilinear form associated to S:

agen
S (V,W ) :=

∫
Ωe

σe
′(V )..DW + {Bgen(V ),W} 1

2
,Γi
. (6.3.7)

It is of interest to show that agen
S is continuous and coercive on H1(Ωe). In that light, we

have the following preliminary proposition.

Proposition 6.3.2. Consider the linear transformation H1(Ωe)→ [H1(Ωe)]
′:

V 7→
(
W 7→ agenS for W ∈ H1(Ωe)

)
.

If V belongs to the set

D(S) :=
{
V ∈ H2(Ω) : σe

′(V )n+ Bgen = 0
}
,

then for any W ∈ H1(Ωe) we have,

agenS (V,W ) = (SV,W )L2(Ω).

Furthermore, under the conditions of Assumption 6.3.1, the bilinear form agenS is contin-
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uous and elliptic on H1(Ωe). That is, there exist maS and MaS such that,

maS‖V ‖2
H1(Ωe) ≤ agenS (V, V ) ≤MaS‖V ‖2,

for V ∈ H1(Ωe).

Proof. Observe that the bilinear operator agen
S is defined almost exactly as the bilinear

operators for the elastic components in each ‘at rest’ case, (6.2.8) and (6.2.20), with

the exception of some extra terms on the boundary. Consequently the result follows

from Propositions 6.2.5 and 6.2.8, with the extra boundary terms being covered by the

specification on Bgen.

With Proposition 6.3.2 established, we can state existence and uniqueness results for vari-

ations on elliptic boundary value problems for S. These results all follow from standard

elliptic theory, but some detail on the proofs is stated here for the sake of a self-contained

exposition.

Proposition 6.3.3 (S−Neumann problem). For F ∈ [H1(Ωe)]
′ and G ∈ H−1/2(Γi), the

Neumann boundary value problemSV = F Ωe

σ′e(V )n+ Bgen(V ) = G Γi

has a unique weak solution V ∈ H1(Ωe), where

agenS (V,W ) = (F,W )[H1(Ωe)]′;H1(Ωe) − {G,W |Γi
} 1

2
,Γi
, (6.3.8)

for all W ∈ H1(Ωe), with agenS given by (6.3.7). Moreover,

‖V ‖H1(Ωe) . max{‖F‖H1(Ωe)′ , ‖W‖H−1/2(Γi)}.

Proof. Recall that the trace map is surjective and continuous. Therefore, the right-hand

side of (6.3.8) gives the image of W under a bounded linear functional on H1(Ωe). Then,

along with the H1(Ωe) ellipticity of agen
S , we meet the criteria of the Lax-Milgram theorem
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and have existence of a unique solution V ∈ H1(Ωe).

Proposition 6.3.4 (Homogenous S−Dirichlet Problem). For G ∈ H−1(Ωe), the homo-

geneous Dirichlet boundary value problemSV0 = G Ωe

V0 = 0 Γi
(6.3.9)

has a unique weak solution V0 ∈ H1
0 (Ωe), where

agenS (V0,W ) = (G,W )[H1(Ωe)]′;H1(Ωe). (6.3.10)

Proof. The proof has the same structure as that of Proposition 6.3.3, and depends on the

H1(Ωe) ellipticity of agen
S . We make the observation that because Bgen is a first-order tan-

gential operator, we can associate the same bilinear form (6.3.7) with both the Neumann

operator, (6.3.8), and the Dirichlet operator, (6.3.10). However, the optimization in the

case of the Dirichlet operator takes place on the smaller subspace H1
0 (Ωe) ⊂ H1(Ωe).

Proposition 6.3.5 (S−Dirichlet Problem). For F ∈ [H1(Ωe)]
′ and H ∈ H−1/2(Γi), the

Dirichlet boundary value problem SV = F Ωe

V = H Γi
(6.3.11)

has a unique weak solution V ∈ H1(Ωe) in the sense that V = V0 + Ṽ , where Ṽ has trace

H in H1/2(Γi) and V0 is the weak solution to (6.3.9), where G(W ) = F (W )−agenS (Ṽ ,W )

for all W ∈ H1
0 (Ωe).

Using (6.3.10), we have that V0 and Ṽ satisfy the variational identity,

agenS (V0,W ) = (F,W )[H1(Ωe)]′;H1(Ωe) − agenS (Ṽ ,W ), (6.3.12)
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which is equivalent to

agenS (V,W ) = (F,W )[H1(Ωe)]′;H1(Ωe), (6.3.13)

for all W ∈ H1
0 (Ωe). Additionally, we have the estimate

‖V ‖H1(Ωe) ≤ C(‖F‖H−1(Ωe) + ‖H‖H1/2(Γi)), (6.3.14)

where C depends on the ellipticity and continuity moduli of agenS , maS and MaS .

6.3.2.1 Babuška-Brezzi Theorem

As indicated, the goal will be to express each of the systems in the Babuška-Brezzi

framework, in order to show existence and uniqueness of solution.

For completeness of exposition, we restate the Babuška-Brezzi theorem (found in, e.g.

[35, p. 116]) here.

Theorem 6.3.6 (Babuška-Brezzi). Let X, V be Hilbert spaces and a : X × X → R,

b : X × V → R, bilinear forms which are continuous. Let

Z = {ξ ∈ X|b(ξ, v) = 0, for every v ∈ V }.

Assume that a(., .) is Z−elliptic, i.e. there exists a constant α > 0 such that

a(ξ, ξ) ≥ α‖ξ‖2
X , for every ξ ∈ Z.

Assume further that there exists a constant β > 0 such that

sup
τ∈X

b(τ, v)

‖τ‖X
≥ β‖v‖V , for every v ∈ V.

Then there exists a unique pair (ξ, θ) ∈ X × V such thata(ξ, τ) + b(τ, θ) = F (τ) for every τ ∈ X

b(ξ, v) = 0 for every v ∈ V.
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6.3.3 Existence and uniqueness for linearization around arbi-

trary solution

With the preliminaries in place, we can consider the well-posedness of the linearized

steady state linearization.



(Du′f )uf + (Duf )u
′
f −Divσf (p

′, u′f ) = v′f Ωf

divu′f = 0 Ωf

−Div
{
σ′e(ϕ̂

′ ◦ ϕ)
}

= ρev
′
e Ωe

u′f + (Duf )(ϕ̂
′ ◦ ϕ) = 0 Γi

σ′e(ϕ̂
′ ◦ ϕ)n = σf (p

′, u′f )n+ B(ϕ̂′ ◦ ϕ) Γi

u′f = 0 Γf

(6.3.15)

6.3.3.1 Main Result

Theorem 6.3.7. Assume that Assumption 6.3.1 holds. For (v′f , v
′
e) ∈ Hf ∩ H1

Γf
(Ωf ) ×

H1(Ωe), there exists a unique solution (ϕ̂′ ◦ ϕ, p′, u′f ) ∈ H for the steady state linear

system, (6.3.15).

The proof takes place in several steps.

6.3.3.2 Elliptic theory for the elastic component

We will use the elliptic theory established in Subsection 6.3.2 in order to recover the

solution for the elastic subsystem from a linear map which depends on the extension of

the fluid velocity as data.

We consider the following systems for S : H2(Ωe)→ L2(Ωe):S(ϕ̂′ ◦ ϕ) = F Ωe

σe
′(ϕ̂′ ◦ ϕ)n− B(ϕ̂′ ◦ ϕ) = G or ϕ̂′ ◦ ϕ = G Γi

(6.3.16)
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We define the following bilinear form associated to S and B for (6.3.16):

aS(V,W ) :=

∫
Ωe

σe
′(V )..DW + {−B(V ),W} 1

2
,Γi
. (6.3.17)

We have that B meets the criteria assumed in the elliptic theory:

Proposition 6.3.8 (Boundary operator B). The transformation V 7→ B(V ) continuously

extends from H2(Ωe)→ L2(Γi) to a bounded linear mapping H1(Ωe)→ H−1/2(Γi).

Proof. By definition, B(V ) is a linear operator. Furthermore, B(V ) is defined only in

terms of components of V and/or tangential derivatives of V . Consequently the result

follows given the regularity assumptions on the coefficients, Assumption 6.3.1.

Then from Proposition 6.3.2, we have that aS is continuous and coercive on H1(Ωe).

Furthermore, we can write the following solution map.

Definition 6.3.9 (S−Dirichlet extension for B). Denote by DS the bilinear solution map

DS : (F,W ) 7→ ϕ̂′ ◦ ϕ

to the Dirichlet problem (6.3.11).

It follows from Proposition 6.3.5 that DS is a continuous operator [H1(Ωe)]
′×H1/2(Γi)→

H1(Ωe).

Then, the elastic subsystem S(ϕ̂′ ◦ ϕ) = ρev
′
e Ωe

ϕ̂′ ◦ ϕ = −(Duf )
−1u′f Γi

(6.3.18)

has a unique solution ϕ̂′ ◦ ϕ = DS[ρev
′
e,−(Duf )

−1u′f ].

Furthermore, the element σ′e(ϕ̂
′ ◦ ϕ)n−B(ϕ̂′◦ϕ) ∈ H−1/2(Γi) is well-defined and satisfies,

{σ′e(ϕ̂′ ◦ ϕ)n− B(ϕ̂′ ◦ ϕ),W |Γi
} 1

2
,Γi

= aS(ϕ̂′ ◦ ϕ,W )− (ρev
′
e,W )L2(Ωe). (6.3.19)

We can choose W such that in Ωe, W is the S-harmonic extension of τ ∈ H1/2(Γi), in
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which case

W = DS[0, τ ].

Together, we have the identification

{σ′e(ϕ̂′ ◦ ϕ)n− B(ϕ̂′ ◦ ϕ),W |Γi
} 1

2
,Γi

=aS(DS[0,−(Duf )
−1u′f ], DS[0, τ ])

+ aS(DS[ρev
′
e, 0], DS[0, τ ])− (ρev

′
e, DS[0, τ ])L2(Ωe),

for all τ ∈ H1/2(Γi).

6.3.3.3 Formulation as a Babuška-Brezzi System

In order to write the system in the Babuška-Brezzi framework, we need to write the vari-

ational equation satisfied by u′f and p′. Integrating against a test function τ ∈ H1
Γf

(Ωf ),

we obtain, ∫
Ωf

〈v′f , τ〉 =

∫
Ωf

〈(Du′f )uf + (Duf )u
′
f − ν∆u′f +∇p′, τ〉,

=

∫
Ωf

2νε(u′f )..ε(τ) + 〈(Du′f )uf + (Duf )uf , τ〉

+

∫
Γi

〈−2νε(u′f )nf + p′nf , τ〉 −
∫

Ωf

p′div (τ) (6.3.20)

Recall from (6.3.15) we have

σ′e(ϕ̂
′ ◦ ϕ)n− B(ϕ̂′ ◦ ϕ) = 2νε(u′f )n− p′n,

and substituting n = −nf into (6.3.20) we have,∫
Ωf

〈v′f , τ〉 =

∫
Ωf

〈(Du′f )uf + (Duf )u
′
f − ν∆u′f +∇p′, τ〉,

=

∫
Ωf

2νε(u′f )..ε(τ) + 〈(Du′f )uf + (Duf )uf , τ〉

+

∫
Γi

〈σ′e(ϕ̂′ ◦ ϕ)n− B(ϕ̂′ ◦ ϕ), τ〉 −
∫

Ωf

p′div (τ). (6.3.21)
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We can now formulate (6.3.15) as a Babuška-Brezzi system. We have that u′f and p′

satisfy the following system:

aBB(u′f , τ) + b(τ, p′) = F (τ) for all τ ∈ H1
Γf

(Ωf )

b(u′f , v) = 0 for all v ∈ L2(Ωf )
(6.3.22)

where

aBB(u′f , τ) :=2ν

∫
Ωf

ε(u′f )..ε(τ) + 〈(Du′f )uf + (Duf )u
′
f , τ〉

+ aS(DS[0,−(Duf )
−1u′f ], DS[0, τ ]), (6.3.23)

and

b(τ, v) := −(v, div (τ))L2(Ωf ), (6.3.24)

and

F (τ) := (v′f , τ)L2(Ωf ) − aS(DS[ρev
′
e, 0], DS[0, τ ]) + (ρev

′
e, DS[0, τ ])L2(Ωe). (6.3.25)

The following consequence of Korn’s inequality [16, Thm. 6.15-4, p. 409] is useful for

establishing both the continuity and the coercivity of aBB.

Proposition 6.3.10. The functional

τ̃ 7→

(∫
Ωf

ε(τ̃)..ε(τ̃)

)1/2

defines an equivalent norm on the H1
Γf

(Ωf ).

Regarding the continuity of aBB, recall that DS is continuous, and that aS is continuous

bilinear. The continuity of aBB then follows from Proposition 6.3.10 and the smallness

condition of Assumption 6.3.1.

The next step is to show the H1
Γf

(Ωf )−coercivity of aBB. (Note that this is actually a

stronger statement than what is required by Babuška-Brezzi).
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By Proposition 6.3.10, we have H1
Γf

(Ωf )−coercivity of the term 2ν
∫

Ωf
ε(τ)..ε(τ). Specif-

ically, let mε be the ellipticity constant guaranteed by Proposition 6.3.10, and we have

2ν

∫
Ωf

ε(τ)..ε(τ) ≥ 2νmε‖τ‖2
H1

Γf
(Ωf ). (6.3.26)

Next, we consider the term
∫

Ωf
〈(Dτ)uf +(Duf )τ, τ〉. It suffices to consider

∫
Ωf
〈(Dτ)uf +

(Duf )τ, τ〉 < 0 in which case we we have,

〈(Dτ)uf + (Duf )τ, τ〉 = − |〈(Dτ)uf + (Duf )τ, τ〉| ,

≥ −c2‖τ‖2
H1

Γf
(Ωf ),

from the smallness condition of Assumption 6.3.1.

Then, we consider the term aS(DS[0,−(Duf )
−1u′f ], DS[0, τ ]). Recall that by the regular-

ity condition of Assumption 6.3.1, we have (Duf )
−1 ∈M3(C(Ωf )). As a preliminary, we

note that the topology on M3(C(Ωf ) defines multipliers on H1/2(Γi), according to the

following estimate in [11]:

‖Y V ‖H1/2(Γi) . ‖Y ‖M3(C(Ωf ))‖X‖H1/2(Γi). (6.3.27)

Using this estimate, as well as (6.3.14) (and recalling that the continuity constant of aS

is MaS), we obtain,

|aS(DS[0,−(Duf )
−1τ ], DS[0, τ ])| ≤MaS‖DS[0,−(Duf )

−1τ ]‖H1(Ωe)‖DS[0, τ ]‖H1(Ωe)

≤MaSC‖(Duf )−1τ‖H1/2(Γi)‖τ‖H1/2(Γi),

≤MaSC
′‖(Duf )−1‖M3(C(Ωf ))‖τ‖2

H1/2(Γi)

≤MaSC
′′‖τ‖2

H1/2(Γi)
, (6.3.28)

where in the last step we used that ‖(Duf )−1‖M3(C(Ωf )) is small.

Substituting into (6.3.23) we have

aBB(τ, τ) ≥ 2νmε‖τ‖2
H1

Γf
(Ωf ) − c2‖τ‖2

H1
Γf

(Ωf ) −MaSC
′′‖τ‖2

H1/2(Γi)
,
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and the desired coercivity follows by assuming the viscosity is large enough to ensure

2νmε > c2 +MaSC
′′.

The last step in applying the Babuška-Brezzi theorem is to show that the bilinear form

b meets the inf-sup condition, which is to say that there exists β > 0 such that

sup
τ∈H1

Γf
(Ωf )

b(τ, v)

‖τ‖H1
Γf

(Ωf )

≥ β‖v‖L2(Ωf ), for every v ∈ L2(Ωf ).

This argument is contained in [11] and elsewhere; we give the outline here in the interest

of a self-contained exposition. Take v ∈ L2(Ωf ) and consider the boundary value problem:
div (ω) = −v Ωf

ω|Γf
= 0 Γf

ωΓi
= −

∫
Ωf
v

|Γi|
n Γi

(6.3.29)

From [26, (III.3.31), p. 176], (6.3.29) has a solution ω ∈ H1
Γf

(Ωf ) and there exists C > 0

such that

‖∇ω‖H1
Γf

(Ωf ) ≤ C‖v‖L2(Ωf ).

Then we can consider the equivalent norm on H1
Γf

, ‖∇(·)‖L2(Ωf ), and for any v ∈ L2(Ωf )

we obtain,

sup
τ∈H1

Γf
(Ωf )

b(τ, v)

‖τ‖H1
Γf

(Ωf )

= sup
τ∈H1

Γf
(Ωf )

−(v, div (τ))L2(Ωf )

‖∇τ‖L2(Ωf )

,

≥
−(v, div (ω))L2(Ωf )

‖∇ω‖L2(Ωf )

,

=
‖v‖2

L2(Ωf )

‖∇ω‖L2(Ωf )

,

≥ 1

C
‖v‖L2(Ωf ).

Thus the criteria of the Babuška-Brezzi theorem are met and we obtain the existence of
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the unique solution

(u′f , p
′) ∈ H1

Γf
(Ωf )× L2(Ωf )

of (6.3.15).

Observe that the second equation in (6.3.22) guarantees that u′f is divergence-free, so in

fact we have u′f ∈ Hf , and consequently can recover ϕ̂′ ◦ ϕ ∈ H1(Ωe) from the definition

of DS. This completes the proof.

6.3.4 Existence and uniqueness for adjoint around arbitrary so-

lution

Next, we turn our attention to the well-posedness of the linear, steady state adjoint

system. 

(Duf )
∗Q− (DQ)uf −Divσf (P,Q) = vA1 Ωf

div (Q) = 0 Ωf

−Divσ′e(R) = 0 Ωe

Q = R Γi

σ′e(R)n+ (Duf )
∗σf (P,Q)n+ BA(R) = vA2 |Γi

Γi

Q = 0 Γf

(6.3.30)

6.3.5 Main Result

Theorem 6.3.11. Assume that Assumption 6.3.1 holds. For (vA1 , v
A
2 |Γi

) ∈ Hf∩H1
Γf

(Ωf )×
H1/2(Γi), there exists a unique solution (R,P,Q) ∈H for the steady state linear adjoint,

(6.3.30).

The proof of Theorem 6.3.11 takes place in several steps.

6.3.5.1 Analysis of the elastic component

Again, we will use the elliptic theory established in Subsection 6.3.2.
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We consider the following systems for S : H2(Ωe)→ L2(Ωe):SR = F Ωe

σe
′(R)n+ BA(R) = G or R = G Γi

(6.3.31)

Define the following bilinear form associated to S and BA:

aAS(V,W ) =

∫
Ωe

σe
′(V )..DW + {BA(V ),W} 1

2
,Γi
. (6.3.32)

We have that BA meets the criteria of the elliptic theory, analogous to Propostion 6.3.8.

Then we can define the following solution map.

Definition 6.3.12 (S−Dirichlet extension). Denote by DA
S the bilinear solution map

DA
S : (F,W ) 7→ R

to the Dirichlet problem (6.3.11).

According to (6.3.14), DA
S is a continuous operator [H1(Ωe)]

′ ×H1/2(Γi)→ H1(Ωe).

As in the previous case, we consider the elastic subsystem:

SR = 0 Ωe

Q = R Γi,
(6.3.33)

which has a unique solution R = DS[0, Q]. Furthermore, the element σ′e(R)n−BA(R) ∈
H−1/2(Γi) is well-defined and satisfies,

{σ′e(R)n− BA(R),W |Γi
} 1

2
,Γi

= aS(R,W ). (6.3.34)

Thus, we have the identification

{σ′e(R)n− BA(R),W |Γi
} 1

2
,Γi

= aS(DS[0, Q], DS[0, τ ]) (6.3.35)

for all τ ∈ H1/2(Γi).
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6.3.5.2 Formulation as a Babuška-Brezzi System

We can now formulate (6.3.30) as a Babuška-Brezzi system. Here, we have that Q and

P satisfy the following system:

aABB(Q, τ) + b(τ, P ) = FA(τ) for all τ ∈ H1
Γf

(Ωf )

b(Q, v) = 0 for all v ∈ L2(Ωf )
(6.3.36)

where

aABB(Q, τ) :=2ν

∫
Ωf

ε(Q)..ε(τ) + 〈(Duf )∗Q− (DQ)uf , τ〉

+ aAS(DA
S [0, Q], DA

S [0, τ ]),

FA(τ) :=(vA1 , τ)L2(Ωf ) − {vA2 |Γi
, τ} 1

2
,Γi
,

and b is defined as in (6.3.24).

The first step is to show the continuity of aABB. Recall that DA
S is continuous, and that

aAS is continuous bilinear. The continuity of aABB follows.

The next step is to show the H1
Γf

(Ωf )−coercivity of aABB. The argument is analogous to

that in the previous case. Along with an appeal to Proposition 6.3.10, we can show the

coercivity of the term
∫

Ωf
〈(Duf )∗τ−(Dτ)uf , τ〉 with the smallness condition of Assump-

tion 6.3.1, and the coercivity of term aAS(DA
S [0, Q], DA

S [0, τ ]) using the continuity of aAS
and the estimates (6.3.14) and (6.3.27). We again require a sufficiently large viscosity, ν.

Finally, we have shown that b meets the inf-sup condition. Thus the criteria of the

Babuška-Brezzi theorem are met and we obtain the existence of the unique solution

(Q,P ) ∈ H1
Γf

(Ωf )× L2(Ωf )

of (6.3.30).

As in the previous case, the second equation in (6.3.36) guarantees that Q is divergence-

free, so in fact we have Q ∈ Hf ; we recover R ∈ H1(Ωe) from the definition of DA
S . This

completes the proof.
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