
ABSTRACT

LAUBMEIER, AMANDA NICOLE. A Model-Driven Approach to Experimental Validation of Predator-Prey
Dynamics in a System of Terrestrial Arthropods. (Under the direction of H. T. Banks.)

The application of mathematical models to ecological communities in order to describe behavior

under varying conditions is fundamental to the field of predictive ecology. Although the data-driven

validation of population models is well-practiced, it is an unfortunate reality that many ecological

study systems are uncontrolled as well as spatially and temporally expansive. Observing these

systems is costly and time intensive, and the information obtained can be messy or driven by

unexpected factors. We are therefore interested in the effective validation of mathematical models

in population ecology

In this dissertation, we specifically study predator-prey interactions between arthropods (aphids,

beetles, and spiders) in an agricultural field. Our interest stems from the potential for the biological

control of aphids, an agricultural pest, by natural predators. Although this focus is fairly specific, we

still expect to encounter diverse populations of predators in natural communities. We therefore rely

on a generalizable model, in which interactions are parameterized by measurable species traits. To

evaluate the viability of this model in describing natural communities, we conduct least-squares

parameter estimation and fit the model to empirical data.

We begin by introducing the methodology for parameter estimation and motivating our choice

of mathematical model. We then detail initial attempts at fitting our model to aphid abundance

data in barley fields. The data used in this first attempt at model validation was opportunistically

obtained and primarily intended as a study of community complexity instead of temporal dynamics.

We demonstrate that insufficient sampling in time, along with mortality driven by unknown factors,

prevents the estimation of model parameters with any degree of certainty.

Motivated by the shortcomings of this first attempt, we move on to the design of greenhouse

experiments for model validation. We explicitly link the protocol for our experiment to the antici-

pated mathematical and statistical properties of our parameter estimation problem. We consider

the time-dependent sensitivity of the model to parameters in determining the temporal mesh

for data collection and the population-level observation error in determining feasible sampling

strategies. We attempt to validate our model against the resulting experimental data, with marked

improvement over our earlier work.

Returning to our initial question, we again consider the problem of validating our model in

an agricultural field. Although we do not have sufficient data to estimate model parameters in

the field, we motivate a simple partial differential equation model for predator-prey interactions.

We investigate the effect of temporal and spatial sampling protocols on the estimation of model

parameters over a single growing season.
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CHAPTER

1

INTRODUCTION

Faced with shifting global landscapes, there is immediate need for models which describe the effect

of changing ecological communities on ecosystem services, either because of species loss or migra-

tion [27, 90]. Such models must be generalizable, capable of being applied to communities drastically

different from those available for study at present. However, the development and validation of

these models is a challenging, and often iterative, process. From empirical observations, we must

identify mechanisms which drive community dynamics and formalize them with a mathematical

model. From an assumed model for community dynamics, we must analyze predicted behaviors

and compare them with empirical observations. In this dissertation, we study a trait-based model

for predator-prey dynamics in a system of terrestrial arthropods and the validation of this model

against experimental data regarding biological control ecosystem services.

In this chapter, we describe the ecological motivation for this work as well as the mathematical

approach we take in pursuing these questions. Chapter 2 outlines the models which we rely on

in studying our problem. In Chapter 3, we present preliminary efforts at validating these models

against data from an agricultural field. Chapter 4 outlines the design of greenhouse experiments for

model validation, and in Chapter 5 we analyze the results from experiments following this design.

In Chapter 6, we consider the design of field-level experiments through the use of a spatial model.

We offer some concluding remarks and discuss plans for future work in Chapter 7.
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1.1 Motivation

Ecosystem services are products of ecological interactions which provide benefits to humans [5,

6], such as crop pollination or water purification. In particular, biological control of pests is an

agricultural service driven by predator-prey interactions beween insects in an agro-ecosystem. The

value of this service in the US is estimated to be 4.5 billion dollars annually [72], and so there is some

interest in farming practices which encourage such interactions [23, 113]. Conventional practices

can adversely affect the biodiversity of predator communities in these ecosystems [104, 106, 107,

114], but the strength of predator-prey interactions can be affected in conflicting ways by predator

composition [40, 71]. To evaluate the merits of different farming practices, we must quantify the

effect of predator diversity on pest control in these systems.

Biological control services rely on the interactions between many species in an ecosystem, and

the cumulative effect of these interactions on a pest are complicated. Interactions between biological

control agents might be complementary or adversarial [86, 91, 103], so we expect that a community

of agents will seldom have an additive effect on the target pest. However, we cannot currently

predict which of these contributions will drive biological control as a community [27]. Empirically

determining the strength and preference of species interactions in true ecological communities can

reveal information about the degree of cooperation or conflict between predators [93, 94], but we

must understand the mechanisms underlying these interactions to generalize the expected effects

in different communities. Dynamic models for predator-prey interactions at a population level

present the opportunity to unravel these effects.

Population models are a well-established tool for the theoretical study of ecosystems, but their

true potential lies in the description of real-world dynamics. Recent work has demonstrated the

utility of mathematical models in describing the dynamics of ecological foodwebs, in both experi-

mental and natural systems [20, 62, 101]. In such studies, the mathematical formalization of system

interactions presents multiple benefits. First, the validation of a mathematical model informs future

theoretical study, directly building towards our goal to quantify the ecological impacts of unknown

environmental drivers. However, even the shortcomings of a model can provide insight into the

aptness of the biological assumptions which informed the model. This information allows for the

refinement of our assumed models for system behavior, revealing the conditions under which their

underlying descriptions are appropriate. Within this framework, model generalizability is a desirable

characteristic, permitting the evaluation of existing models in a variety of ecosystems.

We consider models built on the assumption that population-level interactions are dictated by

species traits. Trait-based models rely on descriptions of the biological processes driving species

interactions, such as metabolic demands or physical defenses [25, 63, 82, 119]. These assumptions

enable us to model arbitrarily large ecosystems using only assumed system traits and a handful of

simplifying parameterizations. Such models have been successful in predicting the structure and
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dynamics of ecological communities [25, 44, 87], and our eventual goal is to use the same models

in judging how these communities might respond to changes in species composition. However,

establishing the mechanistic relationships between species traits and community dynamics presents

a modelling challenge, in which we must identify traits that are responsible for governing most

species interactions and characterize the relationships between these traits and system dynamics.

Empirically obtaining information about these relationships is difficult, possibly requiring

multiple observations of predators in experiments targeted at identifying the imact of species traits

on these interactions. We instead rely on parameter estimation by least squares minimization [10,

11] to fit these models to empirical observations. In addition to parameterizing the relationships in

the model, the analysis of model fits to data provides information about which mechanisms have

the strongest effect on populations. As an alternative to fixed-time comparisons between model

performance and empirical observations (see, for example, [62, 101]), least squares fitting presents

the opportunity for us to evaluate model performance in time. This is a desirable characteristic

in ecosystems, where we expect that the factors which drive a population might vary temporally.

Additionally, this method of parameter estimation is well-established, with a supporting framework

for quantification of uncertainty in parameter estimates and comparisons of model performance.

The work presented in this dissertation is a part of the iterative modelling process [10], in which

our attempts to fit models to empirical data inform our future model formulations. Given some

empirical data, we estimate parameters which minimize the difference between real dynamics and

the proposed model. However, initial attempts at solving such problems naturally lead to questions

about the accuracy and information content of empirical data; in evaluating the resulting solutions,

we might also find that our mathematical model must be reformulated to accomodate unexpected

behaviors. These demands require us to reevaluate the biological assumptions which drove our

initial model formulation. Upon revisiting these biological assumptions, we must reformulate our

mathematical model to match our new understanding of the system. Eventually, we return to the

problem of fitting this new model to observational data; in our work, we pay particular attention to

the importance of our model and mathematical methodology in determining appropriate empirical

experiments for obtaining this data.

In the remainder of this chapter, we describe the inverse problem methodology as it is used

in parameter estimation and model validation. The process of parameter estimation only forms

a small part of the aforementioned iterative modelling process. However, since it is the means by

which we compare mathematical models with empirical observations, an understanding of the

methodology is important in our design of experiments and analysis of model performance.
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1.2 Inverse Problem Methodology

Throughout this dissertation, we return to least squares parameter estimation as the means by

which we validate a model against experimental data. Although we are interested in the “forward”

solution of a model for predator-prey dynamics which describes the effect predator biodiversity has

on biological control, we must first solve the “inverse” problem which parameterizes such a model.

In this section, we explicitly state the inverse problem for a vector dynamical system, assuming a

weighted error statistical model. This problem is given for consistent samples across all states in [8]

and alluded to in [10, 11]. We define the problem for inconsistent sampling across system states

and outline the algorithm for its solution, as given in [10, 11]. We follow with the corresponding

asymptotic approximations for standard errors in our inverse problem solutions and framework for

nested model comparison testing.

1.2.1 Iterative Weighted Least Squares: Vector Case

We consider the inverse problem for some vector system given by the mathematical model

d x

d t
= g (t , x (t ) , q) , (1.1)

with initial condition x (t0) = x0 for x ∈ Rn . We denote the solution of this system for a particular

parameter set by x (t ;θ ), for θ = [q, xT
0 ]

T . We assume that there is some observation process

f (t ;θ ) =K (t )x (t ;θ )

such that the time-dependent observation operatorK (t )maps a state x (t ;θ ) ∈Rn to some subset

of observed states in Rm (t ), where m (t )≤ n .

We additionally assume that data from these observations are drawn from realizations of the

statistical model,

Y j = f
�

t j ;θ0

�

+ fγ
�

t j ;θ0

�

◦E j , (1.2)

for j = 1, . . . , N indexing the times at which data is collected and θ0 the nominal parameter set which

describes the system’s underlying dynamics. We note that fγ
�

t j ;θ0

�

represents componentwise

exponentiation, for which each entry of f
�

t j ;θ0

�

is raised to the power of the corresponding entry in

the vector γ, and that the operation α ◦β indicates componentwise multiplication between vectors

α and β . We assume that E j ∈Rm(t j ) are random variables corresponding to noise in the data, nor-

mally distributed with variance matrix Vj = diag
�

σ2
j ,1, . . . ,σ2

j ,m (t j )

�

. We note that the varianceσ2
j ,k

corresponding to the noise in observations of state k at time t j is constant. However, for some time

t j̃ , the same state might be at index k̃ in the vector of observations, since our observation operator

4



is time-dependent. We will therefore have σ2
j ,k = σ

2
j̃ ,k̃

, but the variance matrix Vj is necessarily

time-dependent to accomodate potential re-indexing of states. For realizations ε j of the noise, the

data collected, {y j }Nj=1, is given by

y j = f
�

t j ;θ0

�

+ fγ
�

t j ;θ0

�

◦ε j . (1.3)

We define an estimator Θ for the solution of the inverse problem by

Θ = arg min
θ∈Ωθ

N
∑

j=1

�

Y j − f
�

t j ;θ
��T �

Wj Vj

�−1 �
Y j − f

�

t j ;θ
��

, (1.4)

where Ωθ is the space of admissible parameters and Wj is a matrix of weights given by

Wj = diag
�

fγ
�

t j ;θ0

��

.

For Vj the variance matrix of E j , we therefore have

Wj Vj = diag
�

f 2γ1
�

t j ;θ0

�

σ2
j ,1, . . . , f

2γm (t j )
�

t j ;θ0

�

σ2
j ,m ( j )

�

. (1.5)

Then the parameter estimate, θ̂ , corresponding to realizations of the data given in (1.3) is

θ̂ = arg min
θ∈Ωθ

N
∑

j=1

�

y j − f
�

t j ;θ
��T �

Wj Vj

�−1 �
y j − f

�

t j ;θ
��

.

We note that when seeking this minimization, the true values of the diagonal entries in Wj and

Vj are unknown. We employ an asymptotic approximation for the entries of the variance matrix

corresponding to this same realization of the data,

V̂j (θ̂LS ) = diag

 

1

κN −κθ

N
∑

j=1

�

y j − f
�

t j ; θ̂LS

��T
Ŵ −1

j

�

y j − f
�

t j ; θ̂LS

��

!

, (1.6)

for κN the number of data points in {y j }Nj=1 and κθ the number of parameters estimated in the

vector θ . We define

Ŵj (θ̂LS ) = diag
�

f 2γ1
�

t j ; θ̂LS

�

, . . . , f
2γm (t j )

�

t j ; θ̂LS

�

�

(1.7)

and obtain the corresponding parameter estimate

θ̂LS = arg min
θ∈Ωθ

N
∑

j=1

�

y j − f
�

t j ;θ
��T �

Ŵj V̂j

�−1 �
y j − f

�

t j ;θ
��

. (1.8)
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However, estimating θ̂LS requires that we simultaneously solve a coupled system of equations, (1.8)

and (1.6). We therefore numerically approximate the parameter in the following iterative process:

1. Define Ŵ (0)
j = V̂ (0)j = Im (t j )×m (t j ) for all j .

2. Obtain the first estimate, θ̂ (0)LS , using (1.8) and the matrices Ŵ (0)
j , V̂ (0)j .

3. Set k = 0.

4. Compute the matrix Ŵ (k )
j using (1.7) and the parameter estimate θ̂ (k )LS .

5. Compute the matrix V̂ (k )j using (1.6) and the parameter estimate θ̂ (k )LS .

6. Estimate θ̂ (k+1)
LS using (1.8) and the matrices V̂ (k )j , Ŵ (k )

j .

7. Set k = k +1 and return to step 4. Continue iterating until successive estimates θ̂ (k ) and θ̂ (k+1)

are sufficiently close, and then set θ̂LS = θ̂
(k+1)
LS .

1.2.2 Identifying the Statistical Model

We note that in order to perform the inverse problem as outlined above, we must determine an

appropriate statistical model for error in the data. Failure to employ the correct statistical model in

solving an inverse problem can result in erroneous conclusions and asymptotic approximations.

We assume a relative error model, as defined in (1.2), but the value of γk for each state k must be

estimated prior to solving the inverse problem. The value of γk can be checked against residual

plots after solving an inverse problem, or it can be determined by directly applying a differencing

scheme to the data before solving an inverse problem. Both methods are appropriate under different

circumstances, and we outline their use below.

Residual plots are a traditional tool for identifying mis-specified statistical models, and their

utility is described in detail by [10, 11]. We recall from the statistical model that the error for state k

at time t j is given by

E j ,k =
Yj ,k − fk (t j ;θ0)

f
γk

k (t j ;θ0)
.

We additionally assumed that for any time, this error is normally distributed with mean zero and

varianceσ2
k . We can verify that these assumed statistical properties hold by examining the modified

residuals,

r j ,k (γk ) =
yj − fk (t j ; θ̂LS )

f
γk

k (t j ; θ̂LS )
.

We note that this necessarily requires that we solve the inverse problem for the parameter estimate

θ̂LS using some assumed vector γ in the statistical error model.
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To test this choice of γ, we plot the values of r j ,k (γk ) against time t j or the model evaluated at

this time, fk (t j ; θ̂LS ). Given the assumed distribution of E j ,k , either of these plots should be random.

A characteristic “fan” shape in the residuals might be observed if the inverse problem relies on an

inappropriate value of γk . In Figure 1.1, we demonstrate the “random” behavior we expect in a

residual plot, followed by two examples of residual plots with a fan-shaped spread. In practice, if we

solve an inverse problem but obtain residuals with this fan shape, then we must revise the assumed

value of γk until residual plots exhibit the desired random behavior.

Figure 1.1 Examples of residual plots for an appropriate choice of γk (left) and two fan-shaped residual
plots characteristic of an inappropriate choice of γk (center, right).

We note that there are some drawbacks to this method of statistical model verification. As men-

tioned above, we must estimate model parameters θ̂LS to generate residual plots for the correspond-

ing model solution; if solving the inverse problem is computationally intensive, then repeatedly

solving the problem under varying values of γk will be a time-consuming process. Additionally,

the use of residuals as a proxy for observational error in our data is only appropriate when the

assumed mathematical model is accurate. However, we seldom expect that a mathematical model

will perfectly describe a biological system and must therefore recognize the potential for erroneous

conclusions when using residual analysis.

An alternative to analyzing residual plots is the use of difference-based measurement errors, as

outlined in [7]. We utilize a second-order difference approximation to compute pseudo-measurement

errors directly from the data. This approximation is given by

ε̂ j ,k =



























1
p

2

�

yj+1,k − yj ,k

�

j = 1

1
p

6

�

yj−1,k −2yj ,k + yj+1,k

�

j = 2, . . . , N −1

1
p

2

�

yj ,k − j j−1,k

�

j =N

(1.9)
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for each state k with N observations. Then, we compute the modified residual at time t j to be

η j ,k (γk ) =
ε̂ j ,k

�

�yj ,k − ε̂ j ,k

�

�

γk
.

As with model-based residuals, we examine plots of these difference-based residuals against time t j

or observations yj ,k ; an appropriate value of γk will yield a random plot with no fan shape.

Utilizing pseudo-measurement errors removes dependence on the mathematical model when

identifying the statistical model for error in the data. Additionally, because the difference-based

approximations are computed directly from the data, we can investigate statistical model assump-

tions without solving an inverse problem. However, the mesh between samples at times t1, t2, . . . , tN

determines the accuracy of the difference-based approximation to ε̂ j ,k . If data is collected at an

inappropriate temporal resolution, then the resulting pseudo-measurement errors may not be a

reliable respresentation of the true error in the data. In this work, we attempt both methods of

statistical model verification when handling experimental data for an inverse problem.

1.2.3 Approximating Standard Errors

Although we are interested in the solution to the inverse problem, θ̂LS , the utility of our solution is

determined by the accuracy with which the parameters are estimated. We are immediately interested

in quantifying the uncertainty in our estimates, which can be impacted by parameter sensitivity,

noisy data, or even model misspecification. We therefore consider the approximation of standard

errors for each entry in θ̂LS within the asymptotic framework of the IRLS inverse problem.

Under the conditions for convergence as outlined in [10, 11], the estimator Θ is normally dis-

tributed with mean θ0 and variance Σ0 in the limit as an infinitely large data set is used to inform

the inverse problem. An approximation to Σ0 for a finite data set with N observations is given by

ΣN
0 =

 

N
∑

j=1

D T
j (θ0)

�

Wj Vj

�−1
Dj (θ0)

!−1

.

Dj (θ0) is the sensitivity matrix,

Dj (θ ) =









∂ f1(t j ;θ )
∂ θ1

∂ f1(t j ;θ )
∂ θ2

· · · ∂ f1(t j ;θ )
∂ θκθ

...
...

...
∂ fm (t j )(t j ;θ )

∂ θ1

∂ fm (t j )(t j ;θ )

∂ θ2
· · ·

∂ fm (t j )(t j ;θ )

∂ θκθ









,

evaluated at θ0 and Wj Vj is the matrix given by (1.5). In practice, we do not know θ0 or the associated

value of Wj Vj . We therefore compute the approximation to ΣN
0 associated with the IRLS estimate
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θ̂LS given by

Σ̂
�

θ̂LS

�

=

 

N
∑

j=1

D T
j

�

θ̂LS

� �

Ŵj V̂j

�−1
Dj

�

θ̂LS

�

!−1

.

The standard error S Ek (θ̂LS ) associated with the k th entry of θ̂LS is therefore given by

S Ek

�

θ̂LS

�

=
Ç

Σ̂k k

�

θ̂LS

�

,

for Σ̂k k the (k , k )th entry of Σ̂.

The above approximation assumes knowledge of the sensitivity matrix Dj (θ ). However, in the

absence of an analytic solution to (1.1), we cannot directly calculate the partial derivatives
∂ fi (t j ;θ )
∂ θk

.

We can approximate these unknown entries in Dj (θ ) by a numerical differencing scheme, such as

the forward difference given by

∂ fi (t j ;θ )

∂ θk
≈

fi (t j ;θ +hk )− fi (t j ;θ )

||hk ||
,

where hk is a vector in Rκθ , with some small, non-zero quantity in the k th entry and zeroes in all

other entries. It is also possible to approximate the partial derivatives by a numerical scheme which

eliminates the cancellation error introduced by a differencing scheme [9]. However, in this work,

we largely rely on the chain rule to fill the entries of our sensitivity matrix, using the sensitivity

equations,
d

d t

�

∂ x

∂ θ

�

=
∂ g

∂ x

∂ x

∂ θ
+
∂ g

∂ θ
.

We solve these equations for the quantity ∂ x
∂ θ (t ), from which we obtain

∂ fi (t j ;θ )

∂ θk
=K (t j )

∂ xi (t j ;θ )

∂ θk
.

To solve the sensitivity equations, we define the quantity sqk
to be

sqk
(t ) =

∂ x

∂ qk
(t ),

for qk the k th entry of q. We also define the quantity rx0k
to be

rx0k
(t ) =

∂ x

∂ x0k
(t ),

for x0k the k th entry of the initial condition, x0. We denote the matrices s =
�

sq1
, sq2

, ..., sqκq

�

and

r=
�

rx01
rx02

, ..., rx0n

�

. Then the desired solution to the sensitivity equations is ∂ x
∂ θ = [s, r], for which we
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solve the system

d s

d t
=
∂ g

∂ x
(t , x(t ;θ ), q)s(t ) +

∂ g

∂ q
(t , x(t ;θ ), q),

d r

d t
=
∂ g

∂ x
(t , x(t ;θ ), q)r(t ),

s(t0) = 0n×κq
,

r(t0) = In×n .

We note that this system is necessarily coupled with the solution for x(t ;θ ) given by (1.1).

1.2.4 Nested Model Comparison Testing

In finding a mathematical model to describe physical dynamics, we are immediately concerned

with the model’s ability to “fit” empirical observations. However, an equally important concern is

the appropriateness of a model which successfully fits these observations. Increasingly complex

models, permitting the estimation of additional parameters, may reduce the error in our model

fit to data at the expense of certainty in estimated parameters. In this dissertation, we consider a

family of models with varying complexity. Simpler models within this family are special cases of the

more complex models, corresponding to some restriction in the parameter space. We seek models

which appropriately balance complexity and goodness of fit. We can compare the performance of

these nested models with a residual sum of squares model selection criterion, as outlined in [10, 11]

and described below.

We define the cost function J
�

{Y j }Nj=1,θ
�

to be the weighted least squares cost associated with

the inverse problem,

J
�

{Y j }Nj=1,θ
�

=
N
∑

j=1

�

Y j − f
�

t j ;θ
��T �

Wj Vj

�−1 �
Y j − f

�

t j ;θ
��

.

Given a realization {y j }Nj=1 of the data, we have the associated realization of the cost function,

J
�

{y j }Nj=1,θ
�

=
N
∑

j=1

�

y j − f
�

t j ;θ
��T �

Ŵj V̂j

�−1 �
y j − f

�

t j ;θ
��

,

for which θ̂LS , the realization of the estimator Θ given in (1.4), satisfies

θ̂LS = arg min
θ∈Ωθ

J
�

{y j }Nj=1,θ
�

.

We consider some restriction, ΩH
θ ⊂Ωθ , of the admissible parameter space. We assume that for
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some matrixH ∈Rκr×κθ and vector h ∈Rκr , this space is given by

ΩH
θ = {θ ∈Ωθ | H θ =h} .

The estimator, ΘH , associated with this restriction is given by

ΘH = arg min
θ∈ΩH

θ

J
�

{Y j }Nj=1,θ
�

.

For realizations of the data {y j }Nj=1, the corresponding estimate is given by,

θ̂H
LS = arg min

θ∈ΩH
θ

J
�

{y j }Nj=1,θ
�

.

We assert the null hypothesis that the nominal parameter set θ0 which describes system dynam-

ics is within this restricted parameter space, θ0 ∈ΩH
θ . We define the test statistic for this hypothesis,

U N =
N
�

J
�

{Y j }Nj=1,ΘH
�

− J
�

{Y j }Nj=1,Θ
��

J
�

{Y}Nj=1,Θ
� ,

with the corresponding realization Û N defined by,

Û N =
N
�

J
�

{y j }Nj=1, θ̂H
LS

�

− J
�

{y j }Nj=1, θ̂LS

��

J
�

{y}Nj=1, θ̂LS

� .

We use this statistic to determine if the null hypothesis is rejected.

We recall that the value of κr is equivalently the number of restrictions associated with the

reduced parameter space ΩH
θ . For sufficiently large values of N , the statistic U N is approximately

χ2-distributed, with κr degrees of freedom. Then, for a desired confidence level α, we seek the

threshold τ=τ(α) such that

P
�

χ2(κr )>τ
�

,

where χ2(κr ) denotes the χ2 distribution with κr degrees of freedom. If a realization of the test

statistic satisfies the inequality

Û N >τ,

then we reject the null hypothesis as false with (1−α) ·100% confidence. If Û n ≤τ, we only fail to

reject the null hypothesis. We note that a stronger conclusion, such as accepting that θ ∈Ωθ \ΩH
θ , is

not a possible outcome of this nested model comparison test. That is, we can reject a simplification

of the parameter space or a special case of our models, but we cannot accept a more complicated

model as the “true” description of system dynamics.
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CHAPTER

2

MODELLING PREDATOR-PREY

DYNAMICS

In this chapter, we discuss classic ordinary- and partial- differential equation models for predator-

prey dynamics, beginning with the Lotka-Volterra model. We move on to the variations of this

model given by assuming a nonlinear functional response. After, we motivate the Allometric Trophic

Network (ATN) model, which we employ in Chapter 3, and a variation of the ATN model which we

developed for the work in Chapters 4 and 5. We then state the sensitivity equations for the ATN model,

as described in their general form in Chapter 1. Following this, we move on to spatially-explicit

models for predator-prey dynamics, as employed in Chapter 6. We conclude with a brief discussion

of additional modelling approaches which are appropriate for predator-prey interactions.

2.1 Classic Models for Predator-Prey Dynamics

2.1.1 Lotka-Volterra

We begin with the Lotka-Volterra model, which has historically formed the foundation for many

discussions of predator-prey dynamics. A description of the model is readily available in most

textbooks on mathematical modelling, and we specifically refer to [42, 66, 79] in the following

introduction of the model. We consider the model for a system of two interacting species, some
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prey item with population abundance N1 and a predator item with population abundance N2. The

system dynamics are given by

d N1

d t
= r N1−a N1N2

d N2

d t
= d N1N2− x N2

(2.1)

where r, a , d , and x are positive scalar quantities.

The prey population experiences exponential growth with some intrinsic rate r and suffers

loss due to predation, as described by the term a N1N2. The rate of predation is assumed to be

proportional to both the predator and prey abundances, following the description that the rate of

predator-prey encounters increases with the product N1N2. Then the parameter a can be interpreted

as a per-capita attack rate, which scales these encounters to produce the rate of predation on the

prey population.

The predator population is assumed to experience exponential death with some intrinsic rate

x and to increase with successful consumption of its prey resources at a rate d N1N2. This term is

defined in the same way as the prey population’s loss due to predation, for which we can consider

the parameter d = e ·a . Given the definition of a as an attack rate, d can be interpreted as this rate

scaled by some other parameter, e . The value of e translates loss in the prey population to gain in

the predator population, as we do not necessarily expect that the consumption of one prey item

corresponds to the subsequent birth of one predator item.

The assumption of exponential growth and death in the two populations is, often, obviously

incorrect. These terms can be modified as necessary to accomodate logistic or seasonally-varying

rates. The underlying assumptions for the rate of predation are not as easily addressed. This term is

formulated in accordance with the law of mass action, which assumes that the two populations

are well-mixed. In true biological systems, we do not expect that such a condition will be satisfied.

However, it is difficult to know when the non-homogeneous distribution of true systems is significant

enough to invalidate the formulation of this term.

Solutions to the Lotka-Volterra equations can result in mutual extinction, or extinction of only

the predator population (reducing to exponential growth of the prey population). However, non-

trivial solutions to the Lotka-Volterra equations are typically oscillating limit cycles, as depicted

in Figure 2.1. Although there is a coexistence equilibrium for the predator and prey populations,

the equilibrium is unstable. Solutions to the differential equation therefore oscillate around this

equilibrium, with offset peaks in the predator and prey populations. An important criteria for

choosing a mathematical model for a biological system is the realism of its dynamics, and so it is

worth noting that we do not expect all ecosystems to mirror these limit cycles. Although there has

been some success in matching the Lotka-Volterra model to real systems (see, for example, the
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classic “Lynx and Hare” data set [45]), the unstable behavior of this model is often unsuitable for

physical applications.
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Prey
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Figure 2.1 An example of a predator-prey limit cycle, obtained by solving (2.1) with initial conditions
N1(0) = 5 and N2(0) = 1 with parameters r = 5, a = 2, d = 1, and x = 3 for 0≤ t ≤ 5.

2.1.2 Functional Responses

In addition to the aforementioned problems, the Lotka-Volterra model also describes an unrealistic

response of predators to abundant prey items. Simple analysis of the model shows that for a given

attack rate a , the effect of a fixed predator population scales with prey abundance. That is, a single

predator could instantaneously consume a · 5 or a · 5,000 prey items. We therefore consider a

common modification to the Lotka-Volterra model, the Holling Type II functional response [58].

The Lotka-Volterra model assumes a Type I functional response, characterized by a linear in-

crease in the per-capita consumption of prey items in the presence of additional prey. Biologically,

we expect that there is some maximal number of prey items which a single predator will consume,

either due to satiation or physical limitations. We therefore assume a Type II response in the presence

of some prey abundance N1,

F (N1) = 1+a hN1,
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where a is the attack rate from the Lotka-Volterra model and h is a parameter we will coloquially refer

to as “handling time.” Modifying attack rates with the response yields the per-capita consumption

of prey items,
a N1

1+a hN1
.

This quantity saturates in the presence of additional prey items, as illustrated in Figure 2.2. As h

increases, the saturating level of the response will decrease; that is, when more time is required to

catch or digest a prey item, the number of prey items a predator can possibly consume decreases.
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Type I Response
Type II Response

Maximal Satiation

Figure 2.2 The effect of Type I and II functional responses in determining per-capita consumption of prey
items as prey abundance increases.

This formulation of functional response is by no means a true description of biological interac-

tions. The true response in many systems exhibits an S-shape at low prey densities [58], which might

be attributed to predators learning to hunt sufficiently abundant prey. Moreover, attack rates could

justifiably be affected by predator abundance as well as prey abundance; given a single prey item,

we do not expect the number of prey consumed to differ in the presence of 500 or 5,000 predators.

We therefore consider an update to the Type II functional response, which accounts for intraspecific

competition within the predator species, termed the “Beddington-DeAngelis model” [102]. The
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resulting model for predator-prey dynamics is

d N1

d t
= r N1−

a N1N2

1+ c N2+a hN1

d N2

d t
=

d N1N2

1+ c N2+a hN1
− x N2

where c is the parameter which describes intraspecific competition.

2.2 Allometric Trophic Network (ATN) Model

Although the above treatment of the Lotka-Volterra model only considered two interacting species,

true ecosystems involve the interactions of many species, some of which are simultaneously preda-

tors and prey. We therefore generalize the Lotka-Volterra model with the Beddington-DeAngelis

functional response to describe the dynamics of any number of species with population density Ni ,

d Ni

d t
=Ni



ri +
∑

j∈Ri

e j i a j i Nj

1+ ci Ni +
∑

k∈Ri
ak i hk i Nk

−
∑

j∈Ci

ai j Nj

1+ c j Nj +
∑

k∈R j
ak j hk j Nk

− xi



 , (2.2)

forRi the set of resources (prey) for species i andCi the set of consumers (predators) of species

i . In this model, ri and xi are the intrinsic growth and death rates of the population Ni , ai j is the

attack rate of species j on species i , hi j is the handling time for predation on species i by species j ,

c j is the parameter for intraspecific competition, and ei j is the parameter for the efficiency with

which attacks by species j on species i is converted into gain for species j .

We note that in considering a system of m species which are generalist predators capable of

consuming most other species, we must specify up to 3(m 2+m )parameters to model these dynamics.

Estimating this many parameters through an inverse problem would require a wealth of data that is

unlikely to be available for every system we wish to study. Empirically measuring these parameters

would similarly require an enormous effort. Moreover, it is not immediately obvious how one might

measure ei j , or if a measurement for hi j in a lab setting may differ from the same quantity in a true

ecosystem. It is in addressing this problem that the utility of a trait-based model, as described in

Chapter 1, becomes clear.

2.2.1 Original ATN Model

Body mass is a trait with extraordinary explanatory power, which is well-studied as a factor governing

predator-prey interactions [17, 20, 26, 88]. It is directly related to species metabolism [25], diet

generality [51], and range of movement [80]. We therefore rely on the relationship between body mass

and predator-prey interactions to parameterize our model. The Allometric Trophic Network (ATN)
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model is a trait-based model which utilizes Lotka-Volterra dynamics with a functional response,

with model parameters defined in terms of body mass. Previous studies [62, 101] demonstrate this

model’s success in describing the outcome of predator-prey interactions for controlled experiments

in systems of terrestrial arthropods.

We begin by introducing the original ATN model, as described in [101], which assumes the

dynamics given in (2.2). The model parameters are given by

ai j = a0W 1/4
i W 1/4

j

�

Wj /Wi

Ro p t
e

1−
Wj /Wi
Ro p t

�φ

,

c j = c0W 1/2
j ,

hi j = h0W 1/4
i W −1/4

j ,

ei j = .85
Wi

Wj
,

xi = e 23.05W 0.695
i e

− 0.686
(8.617×10−5)T

3

7Wi
.

The quantity Wi is the mass of species i , T is the ambient temperature, and the remaining quantites

(a0, Ro p t ,φ, c0, h0) are allometric constants. We note that this parameterization significantly reduces

the burden of data collection or empirical specification of model parameters. If we can approximate

or measure the body mass Wi for each species in our system, then we only require the estimation of

5 allometric parameters to model the dynamics given by (2.2). This is true regardless of the size of

our system and a significant improvement over having 3(m 2+m ) unknown parameters for a system

of m species.

The ATN model parameterization is built on the allometric relationships between body mass and

biological processes. Parameters which describe interactions between individuals (i.e., attack rates,

handling times, and competition coefficients), rely primarily on a relationship between the body

mass and ground speed of an individual. Parameters which describe biological processes within an

individual (i.e., conversion efficiency and intrinsic death rates), rely on the relationships between

body mass and metabolic demands. The definitions of ei j and xi utilize empirical parameters which

are appropriate for systems of terrestrial arthropods, but which might differ for other species. In

particular, the constant in ei j follows from [84, 121] and the constants in xi were obtained from the

empirical work in [43].

Following [84], we assume that an individual’s speed is proportional to the body mass of that

individual raised to the power of 1
4 . This assumption is directly applied in the formulation of handling

time; we assume that the amount of time required for species j to handle species i will increase

with the speed of the prey item and decrease with the speed of the predator item. Then for h0 some
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normalizing constant, we have

hi j = h0W 1/4
i W −1/4

j .

We note that the underlying assumption for this parameterization is a simplication of the biological

processes driving predator satiation. “Handling time” might include the time a predator spends

processing and metabolising its prey, instead of only accounting for the time required to catch

prey. However, in the pursuit of an adequate and tractable model for predator-prey dynamics, we

tentatively proceed with this formulation of handling time.

We extend the assumption that individual speed is determined by body mass to an assumption

that encounters between individuals are similarly determined by body mass. We assume that the

rate at which two individuals encounter one another while traversing a shared space increases

with the speed of both individuals. Then the encounter rate between individuals of species i and

individuals of species j scales with the quantity W 1/4
i W 1/4

j . In particular, we consider the rate at

which an individual of species i encounters members of its own species to be W 1/2
i . Then, for c0 a

normalizing constant which accounts for the time spent on a competitive encounter, we have

c j = c0W 1/4
j W 1/4

j = c0W 1/2
j .

As with the mass-action term in the Lotka-Volterra model, this relationship between body mass

and encounter rates assumes an identical use of “space,” which is not explicitly modelled, between

individuals in our populations. Moreover, we assume that individuals are in constant random

motion, and so this formulation is inappropriate for predators which exhibit “sit and wait” [92]

hunting modes or which sense and actively avoid competitive members of their own species.

Despite these potential shortcomings, we use the same relationship between body mass and

encounter rates in determining the attack rates, ai j . For a0 a normalizing constant which also

accounts for the frequency with which predator-prey encounters result in an attack, we have the

potential attack rate of and individual of species j on an individual of species i , given by

a0W 1/4
i W 1/4

j .

However, not every attack is successful. The quantity

�

Wj /Wi

Ro p t
e

1−
Wj /Wi
Ro p t

�φ

can be interpreted as the probability that the attack is successful, and therefore the rate of successful

18



attacks by an individual of species j on an individual of species i is given by

ai j = a0W 1/4
i W 1/4

j

�

Wj /Wi

Ro p t
e

1−
Wj /Wi
Ro p t

�φ

. (2.3)

Following [83], we assume that there is some optimal predator-prey body mass ratio, given by Ro p t ,

at which attacks are always successful. The quantity within parentheses in (2.3) decreases as the

true predator-prey body mass ratio, given by Wj /Wi , deviates from this value. The sensitivity of

success rates to this optimal ratio is tuned by the parameterφ, as depicted in Figure 2.3.
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Figure 2.3 The successful attack rate curve, plotted against values of
Wj /Wi

Ro p t
along the x-axis. The width of

the curve is obtained by taking values ofφ ∈ [.4, 1].

We plot the probability of a successful attack for values of φ ∈ [.4,1], which gives a band of

success rates at each value of
Wj /Wi

Ro p t
along the x-axis. The bottom of the band corresponds to the case

whenφ = 1, and the top of the band corresponds to whenφ = .4. Asφ→ 0, the curve flattens such

that the probability of a successful attack is 1 for all values of
Wj /Wi

Ro p t
. For

Wj /Wi

Ro p t
< 1, the predator is

smaller than is optimal, and we can see a significant penalty to the probability of a successful attack

as this difference becomes extreme and
Wj /Wi

Ro p t
→ 0. When

Wj /Wi

Ro p t
= 1, the predator is the ideal size for

an attack on its prey, and attacks are always successful. For
Wj /Wi

Ro p t
> 1, the predator is larger than is
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optimal; although the rate of successful attacks does decrease, there is less of a penalty than when

the predator is smaller than the optimal size. We note that the effect ofφ is most pronounced when

Wj /Wi differs significantly from Ro p t , or, that the effect of body mass in determining the success of

an attack is more important when predators encounter less-suitable prey.

2.2.2 Short-Term Simplification

In this work, we assume that dynamics occur over a sufficiently short time interval such that there

is a negligible effect on the predator population due to natural death. We still permit death by

predation in these populations, but we remove the intrinsic death rate xi from our model. We

additionally assume that there is no growth in the predator population under such a short time

interval; although predator populations might gain biomass over a short time, we only model

abundances or population densities. We therefore remove the terms for predator growth (e j i a j i )

from our model.

The simplified ATN model that we will use in Chapter 3 is therefore given by

d Ni

d t
=Ni



ri −
∑

j∈Ci

ai j Nj

1+ c j Nj +
∑

k∈R j
ak j hk j Nk



 ,

where ri = 0 for any predators, but ri 6= 0 for quickly-growing basal prey populations. The only

allometric parameters we require are ai j , hi j , and c j , given by

ai j = a0W 1/4
i W 1/4

j

�

Wj /Wi

Ro p t
e

1−
Wj /Wi
Ro p t

�φ

,

c j = c0W 1/2
j ,

hi j = h0W 1/4
i W −1/4

j .

2.2.3 Modified ATN Model

We next introduce a variation on the ATN model, which forms the basis of our work in Chapters 4 and

5. Although body size is a well-studied trait in determining species interactions, it is not sufficient

to describe the mechanisms underlying all systems and efforts have been made to inform models

with additional traits [24, 51, 88]. Following the ideas explored in [99, 100], we additionally assume

that species habitat use is important in determining interactions; the assumption that interacting

species are well-mixed is fundamental to ATN model, but differences in the use of a shared habitat

might render this assumption invalid. We therefore formulate terms which account for species’

distributions within their habitat in our modification of the ATN model.

We introduce the parameter νi j to describe spatial overlap, with the assumption that species
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which spend more time in the same space will have a greater impact on each other. We also introduce

a functional response term
∑

l∈C j
b0a j lν j l Nl , describing the trade off that arises from balancing

the competing requirements of being both predator and prey. An individual which spends time

avoiding potential predators will necessarily limit the time spent exploiting prey items. We sum

over the potential attack rates of all species l on an individual of species j to account for time spent

avoiding or evading species l while attempting to capture prey items. The parameter b0 is a scaling

constant for the effect of this predator interference on the predation force of species j . For a group

of cannibalistic predators, interference from one’s own species may not be distinguishable from

general predator interference, and so we remove the intraspecific competition parameter c j from

this version of the ATN model.

Dynamics for the number of individuals Ni of species i are therefore given by

d Ni

d t
=Ni



ri −
∑

j∈Ci

ai jνi j Ni Nj

1+
∑

k∈R j
ak jνk j hk j Nk +

∑

l∈C j
b0a j lν j l Nl



 .

As in the original ATN model, Ci is the set of species which consume species i , R j is the set of

prey for species j , and ri is the intrinsic growth rate of species i , which we assume to be zero-

valued for predators. The parameters ai j and hi j are allometrically defined, and νi j is similarly

parameterized by the measurable trait “habitat use.” For the set Ω of all modes of habitat use, we

define the probability measure (µi ) such that evaluating µi (A ) for some habitatA contained in

Ω gives us the likelihood that species i occupies that habitatA . For example, oneA in Ωmight

be “residing in foliage” and an entirely ground-dwelling predator would therefore have a measure

µi (A ) = 0. That is, µi is a formalization of observed species habitat use. For species pair i and j , we

define the overlap parameter

νi j = 1− v0T V (µi ,µ j ) = 1− v0 sup
A⊂Ω

�

�µi (A )−µ j (A )
�

� ,

where T V (µi ,µ j ) is the total variation distance [41] and 0≤ v0 ≤ 1 is a scaling factor for the impor-

tance of habitat use in determining spatial overlap.

Total variation distance quantifies the difference between two measures, and so T V (µi ,µ j )

quantifies the dissimilarity between the habitat use of individuals of species i and individuals of

species j . Total variation takes on values between zero (no difference in the two measures) and one

(maximal difference in the two measures). Continuing our previous example, if species i is an entirely

ground-dwelling predator and species j is an entirely foliage-dwelling predator, then we would have

T V (µi ,µ j ) = 1, since habitat use is completely dissimilar for the two species. The corresponding

overlap νi j = 1− v0 is a quantification of the similarity in habitat use, with v0 indicating how much

weight we give to the assumed distributions µi and µ j . If v0 = 1, then we give full consideration to
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the assumed distributions; in our example, this results in a value of νi j = 0, and the two predators

never interact in our model). If v0 = 0, we ignore the assumed distributions in calculating the overlap

parameter. In Chapter 4, we give a more detailed explanation of the parameter’s formulation for

predators in a cage experiment.

Our primary motivation for the inclusion of this trait in our model is that it might significantly

affect population dynamics. However, we must weigh our interest in any additional traits against

the tractability and generalizability of our resulting model. We intend to only utilize traits which

maintain the model’s relevance in describing diverse communities, potentially in environments

outside the scope of our current studues, against which we can evaluate the model’s performance

[96]. Moreover, we cannot justify the use of a model with too many parameters to feasibly identify,

or which is so sensitive to model parameters that it cannot be reliably used to investigate questions

about physical processes. Our formulation of overlap is not driven by physical mechanisms, but it is

amenable to inclusion in the ATN model, which assumes encounters rates increase with mutual

distance covered. Inclusion of νi j scales species encounter rates so that they increase with mutual

distance covered in the same habitat zones. Additionally, this formulation is flexible and can be

adapted to any study system; we can define the set Ω as is most-relevant for the expected species

behaviors and measure µi in any new habitats.

2.2.4 ATN Sensitivity Equations

We denote the vector of population densities N= [N1, N2, ..., Nm ]T and consider the function g(t , N,θ )

as given by the modified ATN model with intraspecific competition,

g i (t N,θ ) =Ni



ri −
∑

j∈Ci

ai jνi j Ni Nj

1+ c j Nj +
∑

k∈R j
ak jνk j hk j Nk +

∑

l∈C j
b0a j lν j l Nl



 .

Although we will not use both b0 and c j in a single variation of the ATN model, we present this

formulation in order to give the sensitivity equations for any variation of the model in a succinct

manner. We denote the quantity

Fj =
1

1+ c j Nj +
∑

k∈R j
ak jνk j hk j Nk +

∑

l∈C j
b0a j lν j l Nl

,

for brevity and present the sensitivity equations for an ATN model of general size, assuming that

ai j = 0 whenever species j does not consume species i . Despite this, we retain summations over

setsCi andR j for clarity.
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We recall from Chapter 1 that for a system given by

d N

d t
= g(t , N,θ ),

we obtain the sensitivities s and r (with respect to model parameters and initial conditions, respec-

tively) by solving the system of differential equations

d s

d t
=
∂ g

∂ x
(t , x(t ;θ ), q)s(t ) +

∂ g

∂ q
(t , x(t ;θ ), q),

d r

d t
=
∂ g

∂ x
(t , x(t ;θ ), q)r(t ),

s(t0) = 0n×κq
,

r(t0) = In×n .

For any i and k , we have

∂ g i

∂ Nk
= ri

∂ Ni

∂ Nk
−
∑

j∈Ci

ai j vi j

�

∂ Ni

∂ Nk
Nj Fj +Ni

∂ Nj

∂ Nk
Fj +Ni Nj

∂ Fj

∂ Nk

�

,

where for j 6= i ,
∂ Fj

∂ Nk
=−F 2

j

�

ak j vk j hk j + b0a j k v j k

�

,

and if j = i , then
∂ Fj

∂ Nk
=−F 2

j

�

ak j vk j hk j + b0a j k a j k + c j

�

.

The derivative of fi with respect to θ is given by

∂ g i

∂ θ
=−

∑

j∈Ci

Ni Nj

�

∂ (ai j vi j )

∂ θ
Fj +ai j vi j

∂ Fj

∂ θ

�

,

where

∂ Fj

∂ θa
=−F 2

j

 

∑

k∈R j

∂ (ak j vk j )

∂ θa
hk j Nk +

∑

h∈C j

b0

∂ (a j h v j h )

∂ θa
Nh

!

for θa = a0, Ro p t ,φ, v0,

∂ Fj

∂ b0
=−F 2

j

∑

h∈C j

a j h v j h Nh ,

∂ Fj

∂ h0
=−F 2

j

∑

k∈R j

ak j vk j

hk j

h0
Nk ,

∂ Fj

∂ c0
=−F 2

j

c j

c0
Nj .
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The derivatives of our allometric parameters with respect to a0, Ro p t , andφ are given by

∂ (ai j vi j )

∂ a0
=W 1/4

i W 1/4
j

�

Wj /Wi

Ro p t
e

1−
Wj /Wi
Ro p t

�φ
�

1− v0T V (µi ,µ j )
�

,

∂ (ai j vi j )

∂ v0
=−a0W 1/4

i W 1/4
j

�

Wj /Wi

Ro p t
e

1−
Wj /Wi
Ro p t

�φ

T V (µi ,µ j ),

∂ (ai j vi j )

∂ Ro p t
= ai j vi j

φ

R 2
o p t

�

Wj /Wi −Ro p t

�

,

∂ (ai j vi j )

∂ φ
= ai j vi j ln

�

Wj /Wi

Ro p t
e

1−
Wj /Wi
Ro p t

�

= ai j vi j

�

1−
Wj /Wi

Ro p t
+ ln

Wj /Wi

Ro p t

�

.

2.3 Spatial Considerations for Population Dynamics

We next outline some spatial processes, as described by partial differential equations, which we

will utilize in considering the spatial design of experiments for validating predator-prey interac-

tions in Chapter 6. We note that due to the aforementioned concerns about the well-mixedness

of populations in non-heterogeneous landscapes, describing predator-prey dynamics over large

spatial domains might require the use of spatially-explicit models. We introduce here a few spatially-

varying mechanisms which might drive predator-prey interactions in such a domain. We leave the

formulation of the particular model we will study for Chapter 6.

2.3.1 Diffusion

We first consider diffusion of populations, a common mechanism in spatially-explicit models, and

refer to [115] in our discussion. For some spatial domain Ω⊂R2, we consider the abundance N (t , x)

of some population at time t and position x ∈Ω. The diffusion equation for this population is given

by
∂ N (t , x)
∂ t

=∇· [D∇N (t , x)] ,

where D is the diffusion coefficient which determines the rate at which the population spreads.

This relationship can be derived by assuming that the rate at which individuals move across some

position x is proportional to the gradient of the population at that position. That is, the population

will move away from areas of high abundance and towards areas of low abundance.

Diffusion is often described in relationship to “random walks,” where the path of an individual

develops randomly in time. It is therefore an appropriate description of motion for species which

exhibit constant motion without a clear directional preference. Models utilizing this assumption

have been successfully applied to the behavior of real populations [22, 29], although modifications

should be made for species which exhibit more complicated modes of motion. For example, the
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diffusion coefficient D might be formulated as a function of time, population abundance N , or the

presence of some other state in the system; defining D in this matter permits for diffusion at varying

rates, but a more directed movement requires an alternative formulation of spatial dynamics.

2.3.2 Advection

We next consider the advective transport of populations, which describes motion that is driven

in a particular direction, again referring to [115]. The advection equation for a population with

abundance N (t , x)moving with some velocity ~v ∈R2 is

∂ N (t , x)
∂ t

=−∇· [~vN (t , x)] .

This relationship is formulated with the assumption that individuals in the population have some

preference in the direction of movement, as described by ~v. The velocity of the population can be

defined in terms of driving mechanisms; a constant ~v describes a fixed bias in the population’s

movement, while formulation of ~v as a function of system states can describe populations which

move towards resources or away from predators. In particular, the formulation of ~v to describe

predators which move towards resources is described as prey-taxis. This relationship can be simply

linear, but at its most complicated, the quantity ~v can be specified by its own differential equation.

2.4 Alternative Models for Predator-Prey Dynamics

We finally note that there is a wealth of possible modelling approaches, and given the importance of

trophic interactions in ecological research, many have been successfully applied to predator-prey

dynamics. An important step in modelling a physical system is identifying an appropriate model for

the intended analyses. The data required for validation varies between different types of models,

and so model choice might be dictated by available information. Alternatively, the dynamics which

are most-important in describing physical behavior might vary at different temporal or spatial

scales. The models described below have been appropriate for different analyses of predator-prey

dynamics, including in our own intended study systems. However, because of the types of behavior

we intend to model and information we hope to obtain, we do not rely on these models in our work.

We focus in this work on deterministic ordinary differential equation models for predator-

prey dynamics, but an immediate extension of our overview is to stochastic models for these

systems. Stochastic differential equations incorporate random variables which can describes noisy

driving processes or parameterizations. Stochastic Lotka-Volterra models are well-studied [30, 75,

89], and permit the inclusion of variability which can drive new modes of species extinction or

coexistence. There are numerous ecosystem processes which drive population dynamics, such as

temperature and environmental resources, which can present as random effects on the population.
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The accomodation of random fluctuations in parameters describing population characteristics

is therefore a desirable aspect of these models. However, we begin our work with deterministic

differential equations, which may not describe these random effects but are more tractable and can

still provide a useful description of the physical processes.

An alternative to partial differential equation models for spatial processes in predator-prey

interactions is the use of patch models. Patch models are an intermediate choice between ordinary-

and partial- differential equation models, in which the spatial domain of a study system is split into

“patches.” Dynamics within these patches are described by systems of ordinary differential equations,

and populations can move between the patches to approximate spatial interactions. Theoretical

analysis of predator-prey interactions in patched environments is well-established [16, 67] and can

be used to explore complicated mechanisms for population persistence [97]. Because these models

are systems of ordinary differential equations, they are computationally tractable and simpler to

analyze than equivalent partial differential equations. Moreover, these models are an intuitive in

light of the natural patchiness of real landscapes, particularly at multiple spatial scales [47, 64].

However, because our consideration of spatial dynamics occurs within a relatively-heterogeneous

field, we consider partial differential equations in our work, and acknowledge that a patch-based

model might be more appropriate for landscape-level interactions.

Another common approach to modelling populations is the use of agent-based (or, individual-

based) models. Such models rely on descriptions of behavior at the level of a single individual,

simulated simultaneously for the entire population of the study system and are well-studied in

ecology (see [35, 77] for a brief overview). These models are particularly useful in ecosystem man-

agement and have been successfully used in assessing population-level effects of predation [78] and

in describing the behavior of terrestrial arthropods [19, 112]. Additionally, agent-based models for

predator-prey dynamics have been utilized in studies of evolutionary processes [53, 76]. Although

stochastic variations on the Lotka-Volterra model [109] and classic analysis of Lotka-Volterra differ-

ential games [57] have been studied by the mathematical community, agent-based models are an

intuitive biological tool. However, the amount of data required to parameterize such models, as well

as the limited scope of our own investigations into predator-prey dynamics, make them impractical

for our current work.

We finally recognize the utility of entirely statistical, instead of mathematical, models in describ-

ing predator-prey interactions. Multivariate autoregressive models (MAR) [36, 56], for example, have

been successfully applied to aquatic food webs [48, 60] and can be used to identify the dominant

interactions in a foodweb. The benefit to such models is that a strong statistical framework acco-

modates the consideration of deviations from the model driven by random processes. However,

MAR models in particular only support linear species interactions, while we are interested in the

nonlinear effects of multiple predators in an ecological community.
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CHAPTER

3

FITTING THE ATN MODEL TO DATA:

FIELD EXPERIMENT

In this chapter, we describe an initial attempt at fitting the Allometric Trophic Network (ATN) model

to field data. The work presented here was originally published in [13] and formed the basis of the

ecological discussions in [33]. We begin by describing the experimental data to which we fit the

model. We then motivate a few simple variations on the ATN model and discuss their utility in

describing the dynamics we observe in the data. We conclude with a discussion of the results and

necessary future work.

3.1 Study System

We rely on data from [61, 94], which focused on the biological control of the bird cherry-oat aphid,

Rhopalosiphum padi, by a community of its natural predators. The data was collected in 2011, from

late May through early July, in the province of Uppland, Sweden. The study focused on barley fields

managed by five different farmers under two different management strategies, for a total of ten data

sets. For each of these fields, we have species abundance data, temperature readings, and the results

of molecular gut content analysis for predators. We describe below the necessary assumptions and

conversions we used to transform the data prior to its use in a parameter estimation problem.
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3.1.1 Species Abundances

Abundance data is collected using different techniques for different types of organisms. In the

experiment, the frequency with which data was collected also varied across different categories.

We convert all abundance data to a population density, with units [individuals/m2], for use in the

inverse problem.

Aphids were sampled 5-6 times in each field during the study period, approximately once a week.

At each field and time, aphids were directly counted on 100 barley plants (with a single exception, the

third observation in field JC) by randomly choosing 10 batches of 10 consecutive plants. We convert

an observed abundance A to a density N by the conversion N = AB , where B is the density of barley

plants in the field with value B = 411 [plants/m2] [95]. We assume exponential growth in the aphid

population, which is only appropriate if population growth is unhindered by the maturation stage

of crop resources [70]; the particular conditions for unimpeded population growth were monitored

weekly, and we truncate the aphid population data by excluding points after a field has reached

critical crop maturation.

Other plant-dwelling arthropods (Thrips, Diptera, and Coccinella) were sampled 2-4 times

during the study period. At each field and time, these arthropds were collected in 50 sweeps with a

sweepnet. We obtain a density N from an observed abundance A by the conversion N = A/a , where

a is the area covered by the 50 sweeps. We compute this area with the expression

a = 50 fcπ
�

(La + fh Lh +dne t )
2− (La + fh Lh )

2
�

,

for fc the fraction of a circle that a sweep constitutes, La the length of the arm of the person

sweeping, Lh the length of the sweepnet handle, fh a factor accounting for the effective reduction

of the sweep circle diameter caused by the handle being held at some angle towards the ground,

and dne t the diameter of the net. We assume that fc = 0.29, La = 0.65[m], fh = 1/3, Lh = 0.85[m],

and dne t = 0.353[m].

Soil organisms (Collembola and Earthworm) were sampled twice, approximately 4 weeks apart,

using 6 soil samples of diameter 0.05[m] for springtails (Collembola) and 4 soil samples of diameter

0.25[m] for earthworms at each field and time. We obtain a density N from an observed abundance

A by the conversion N = A/a , where a is the area of the soil sample, dependent on the diameter of

the sample.

Ground-dwelling predators (Bembidion, Harpalus, Poecilus, Pterostichus, Other Carabid, Linyphi-

idae, Lycosidae, Tetragnathidae, and Other Spider) were sampled using wet pitfall traps. The traps

were left open for the entire study period, with 6 in every field, and emptied 5 times during the study

period. There is a known size-bias in abundance data obtained through pitfall catches [4], and so

we follow the method from [28] to correct for this over-representation of larger species and obtain

“unbiased” abundances for the pitfall catch data, following a negative 3
4 relationship between body
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mass and species abundance [116].

We assume that abundance data Ã
j
i , obtained at time t j for the i t h species in the pitfall trap,

should follow the allometric relationship

Ã
j
i ∝ e [−

3
4 (mi−M )],

for mi the species body mass and M the average body mass over all species. Using a log-linear

regression over all species i and times t j , we obtain a fit to data that does not follow the negative 3
4

law, given by

Ã
j
i =C e

�

f (mi−M )+ε j
i

�

,

for ε
j
i the error in abundance observation with constants C and f obtained by regression on the

data. We use the constant C and errors ε
j
i to obtain the “unbiased” abundances A

j
i that follow the

negative 3
4 relationship,

A
j
i =C e

�

− 3
4 (mi−M )+ε j

i

�

.

We obtain a density N from an observed abundance A by the conversion N = A/d a for a the

assumed catching range of a pitfall trap, given by a =π1.52[m2] [122], and d the number of days the

trap was open.

3.1.2 Node Body Masses

We rely on body mass to parameterize predator-prey interactions between broadly characterized

“nodes” (groups of species which serve the same function in our foodweb) in the field. However,

because we use a model for population-level dynamics, we specify some average body mass for each

node which is dependent on the mass of individuals within the node. The calculation of this average

mass depends on the taxonomic resolution in, or the species composition of, the abundance data.

For Aphids, Thrips, and Earthworm nodes, the resolution of the abundance data is the same

as that of the node; we obtain abundance data for a single species, and that species makes up the

entirety of the node. In this case, the node body mass is constant across all fields, and it is an average

body mass of the corresponding species. For the remaining nodes, there is greater resolution in the

abundance data than the definition of the node, and so the assigned body mass will vary across

fields. For these nodes, the species composition is unique to the field in which the abundance data

was collected. We therefore take a weighted average of the constituting species’ body masses to

compute the effective mass of the node in that field. The weight given to each species’ mass is the

species’ relative contribution to node abundance over the entire season. The resulting node body

masses are given in Table 3.1, and we refer to [12] for the details of their computation.
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Table 3.1 Node body mass in milligram fresh weight. For nodes with field-specific body mass, the range
across fields is given.

Node Body mass (mg)

Aphid 0.59

Thrips 0.23

Diptera 26.674-29.687

Collembola 0.0015-0.0021

Earthworm 155

Bembidion 1.276-1.606

Harpalus 53.368-61.770

Poecilus 44.422-45.770

Pterostichus 85.179-103.960

Other Carabid 2.283-21.3030

Linyphiidae 1.036-1.638

Lycosidae 4.802-16.490

Tetragnathidae 1.910-2.263

Other Spider 3.938-31.900

Coccinella 4.470-20.780

3.1.3 Temperature-Dependent Growth Rates

We assume that the intrinsic growth rate, r , of an aphid population depends on temperature. Relying

on data regarding the intrinsic growth rate of populations of R. padi held at different temperatures

(10°C-30°C) in a laboratory setting [34], we obtain the relationship

r (t ) = 0.024T (t )− .089. (3.1)

The original data and this linear function are both plotted in Figure 3.1.

Field temperatures T (t )were recorded in each of the fields every 15 minutes (with the exception

of field SC, where temperature was collected every 30 minutes). The temperature logging device

in field OO disappeared; we assume that data from a nearby field (OC) is an appropriate proxy for

temperature in field OO. However, the function r (t ) relies on data from populations held at constant

temperatures, and we assume that the population growth rate does not instantaneously change

with temperature. We therefore take daily averages of the temperature, as depicted in Figure 3.2.
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Figure 3.1 Laboratory data and the resulting regression for r(T) on temperature T.
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Figure 3.2 Daily average temperatures T(t) with linear interpolation plotted as a function of time.
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3.1.4 Foodweb Structure

We must identify which predator-prey interactions occur in our system in order to specify the

mathematical model for population dynamics. We rely on observations of true feeding patterns in

the field, using a method of diagnostic multiplex PCR assays as described in [105]. Every predator

caught in a pitfall trap was identified to species and subjected to whole-body DNA extraction,

which was then screened for the DNA of prey categories. From this information, we obtain a binary

foodweb of predator-prey interactions for each field at each time predators were sampled. This

foodweb informs our model structure, specifying which predator-prey interactions are possible,

from which model assumptions dictate the frequency with which these interactions occur. Although

this is a sophisticated method of identifying true feeding patterns in a field, we must make some

assumptions to translate the raw information obtained from the PCR assays into model dynamics.

We assume that potential feeding events are constant across fields and time; we do not expect

that the possibility for one species to feed on another changes between May and July. Each of the

binary foodwebs obtained from the molecular gut content analysis (MGCA) described above is

merely one occurence of some potential feeding events in our study system. The resulting binary

foodweb is dependent on which predators were captured in that sample and which species the

predators recently consumed. To obtain a description of all potential feeding events for the fields

at any time, we generate a single binary foodweb using interactions from all fields and samples.

That is, we pool the observed interactions into a foodweb where all feeding events are represented,

regardless of the frequency with which they occurred in the MGCA.

Some links cannot be detected by the MGCA; cannibalism, for example, cannot be detected

because the DNA of the predator cannot be distinguished from the DNA of the prey items in its gut.

Similarly, the prey category “Other Carabid” cannot be detected in the guts of carabids (Bembidion,

Harpalus, Poecilus, and Pterostichus) and the prey category “Other Spider” cannot be detected in the

guts of spiders (Linyphiidae, Lycosidae, and Tetragnathidae). Additionally, the nodes Tetragnathidae

and Other Spider were not analyzed as predators in the MGCA. The results of the MGCA are given in

Table 3.2, with * markers indicating undetected interactions.

To fill in the missing interactions, we make the following assumptions. We assume that can-

nibalistic interactions occur for all predators, since such behavior is known to occur within these

groups [1, 32, 55]. Since the carabid and spider categories are generalist predators, we assume

that all carabids feed on the Other Carabid category, and that all spiders feed on the Other Spider

category. The species in the Tetragnathidae and Other Spider nodes are known to be predators,

and we therefore assume potential prey based on their similarities to the other two spider nodes in

the food web; the Tetragnathidae node is assumed to have the same set of prey as the Linyphiidae

node, and the Other Spider node is assumed to have the same set of prey as the Lycosidae node. The

resulting food web structure is given in Table 3.3.
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Table 3.2 The incomplete interaction matrix for our system. Each column represents a predator node and
each row represents a prey node. If there is a 1 in the (i , j )t h entry of the matrix, then node i is prey for
node j . If there is a * in the (i , j )t h entry, then the gut content analysis did not provide data for that link.
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Aphid * * * * * 1 1 1 1 1 1 1 * * 1

Thrips * * * * * 1 1 1 1 0 1 1 * * 1

Diptera * * * * * 1 1 1 1 1 1 1 * * 1

Collembola * * * * * 1 1 1 1 1 1 1 * * 1

Earthworm * * * * * 1 1 1 1 1 1 1 * * 1

Bembidion * * * * * * 1 1 1 1 1 1 * * 1

Harpalus * * * * * 1 * 1 1 1 1 1 * * 1

Poecilus * * * * * 1 1 * 1 1 1 1 * * 1

Pterostichus * * * * * 1 1 1 * 1 1 1 * * 1

Other Carabid * * * * * * * * * * 1 1 * * 0

Linyphiidae * * * * * 1 1 1 1 1 * 1 * * 0

Lycosidae * * * * * 1 1 1 1 1 1 * * * 0

Tetragnathidae * * * * * 0 1 1 1 1 1 1 * * 0

Other Spider * * * * * 1 1 1 1 1 * * * * 1

Coccinella * * * * * 1 1 1 1 1 0 1 * * *
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Table 3.3 The interaction matrix for our system, constructed from gut content analysis and additional
assumptions. Each column represents a predator node and each row represents a prey node. If there is a 1
in the (i , j )t h entry of the matrix, then node i is prey for node j .
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Aphid 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Thrips 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1

Diptera 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Collembola 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Earthworm 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Bembidion 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Harpalus 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Poecilus 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Pterostichus 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Other Carabid 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0

Linyphiidae 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0

Lycosidae 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0

Tetragnathidae 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

Other Spider 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Coccinella 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1

3.2 Modelling the System

The experiment from which we draw data addresses a broad study system; even with the course

categorization of species into fifteen nodes, we model a diverse ecosystem in each field. Additionally,

we consider population changes over more than a month. With the information available to us, we

could not specify the natural birth and death dynamics of non-aphid nodes during this time with

any certainty. We therefore dynamically model the Aphid node, for which we have a reasonable

understanding of seasonal dynamics, and drive the model with density data from the remaining

nodes. We describe the models we consider in the sections below, along with the statistical model of

error in aphid density data for use in the inverse problem.
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3.2.1 ATN Model

We assume that the density of the Aphid node, N1, adheres to the Allometric Trophic Network (ATN)

model as described in Chapter 2,

d N1

d t
=N1



r (t )−
∑

j∈Ci

a1 j Nj

1+ c j Nj +
∑

k∈R j
ak j hk j Nk



 . (3.2)

The density Nj of the j t h node for all j 6= 1 is a linear interpolation of the density data described in

Section 3.1.1. The intrinsic growth rate of the Aphid node, r (t ), is given by (3.1). We recall thatCi is

the set of predators of the i t h node and thatR j is the set of prey for the j t h node. These sets are

specified by the interaction matrix in Table 3.3. Model parameters are given by

ai j (a0, Ro p t ,φ) = a0W 1/4
i W 1/4

j

�

Wj /Wi

Ro p t
e

1−
Wj /Wi
Ro p t

�φ

,

hi j (h0) = h0

�

Wi /Wj

�1/4
,

c j (c0) = c0W 1/2
j .

Species body masses, Wi , are determined for each field as described in Section 3.1.2. We must

estimate the remaining model parameters (a0, Ro p t ,φ, c0, and h0) as well as the initial density of

the Aphid node (N 0
1 ).

3.2.2 Statistical Model

As described in Chapter 1, we utilize a relative error statistical model in which we assume that the

density data N
d , f

1 on day d in field f is a realization of the random variable Yd , f defined by

Yd , f =N1(td ;θ0, f ) +N
γ

1 (td ;θ0, f )Ed , f .

The parameter set θ0, f is the nominal parameter set which describes the system’s true dynamics.

We allow this “true” parameter set to vary between fields because of the natural variation in field

conditions. We assume that Ed , f is independent, normally distributed random noise. The weight γ

is unknown and must be identified by residual analysis or pseudo-measurement errors, as outlined

in Chapter 1.

We recall that the use of residual plots to determine γ tacitly assumes that our mathematical

model accurately describes the system dynamics. Initial treatment of this inverse problem in [12]

suggests that the ATN model cannot capture some aspects of population dynamics in the field. We

therefore begin by computing difference-based pseudo-measurement errors to test our statistical
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model without a mathematical model. We employ the second-order central differencing scheme to

compute pseudo-measurement errors, ε̂d , f , as given in (1.9). To identify an appropriate value of γ

for use in our statistical model, we compute

ηd , f ,γ̂ =
ε̂d , f

�

�

�N
d , f

1 − ε̂d , f

�

�

�

γ̂

for different values of γ̂ until we find the value that results in a random distribution of ηd , f ,γ̂ when

plotted against observation times td .

We compute pseudo-measurement errors for the density of the Aphid node in the ten fields

where data was collected. We note that the data sets for all fields were sparse, with five or six

observations for each field. After central differencing, we are left with three or four estimates of the

pseudo-measurement error, and it is difficult to identify randomness in so small a set of points.

However, the sparsity of the data is problematic even when using residuals from the model; because

deteriorating crop quality prevents comparison between the mathematical model and late-season

data, only four or five data points from each field can be used in residual analysis.

For some fields, we can identify an appropriate statistical model using pseudo-measurement

errors. The values of ηd ,J C ,γ̂ for Field JC are plotted in Figure 3.3, where we can see that γ̂= 0 gives

a distribution that appears random, while γ̂= 1 and γ̂= 2 do not perform as well. Similar results

are obtained in Fields JO, KC, KO, and OO (see the appendix of [13] for corresponding plots). In

the remaining fields, sparsity of the data makes it difficult to choose an appropriate value of γ̂. For

example, we plot the results from Field SO in Figure 3.4. No choice of γ̂ appears to give a random

distribution of η j ,γ̂, so we cannot choose a value of γ̂ for the statistical model. We reach the same

conclusion for Fields MC, MO, OC, and SC.

Having insufficient information to suggest otherwise, we take γ= 0 in all fields and solve the

inverse problem with an absolute error formulation. Abundance data may be managed by different

individuals in different fields, and so we do not necessarily expect that γ should be the same for all

fields. Additionally, intuition about the way that abundance data is collected suggests that γ 6= 0 is

a better description for the error introduced during data collection; the error in a direct count of

aphids on a plant should scale with the number of aphids being counted on the plant. However,

we would require additional data in order to identify the correct value of γ in each field. We find

that γ= 0 is an appropriate choice for some fields, and do not have enough information to select a

different value in the remaining fields.
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Figure 3.3 Values of ηd ,J C ,γ̂ are plotted against time for γ̂= 0 (left), γ̂= 1 (middle), and γ̂= 2 (right).
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Figure 3.4 Values of ηd ,SO ,γ̂ are plotted against time for γ̂= 0 (left), γ̂= 1 (middle), and γ̂= 2 (right).

3.2.3 Model Variations

We additionally consider three variations on the ATN model. Two of these variations are simplifying

restrictions of the model which require the estimation of fewer model parameters. We consider these

models because of the sparsity of our data set, and not necessarily because we think that the models
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are biologically meaningful. The third variation introduces an unknown mortality event during the

season. Although we can only speculate about the potential mechanisms driving mortality, density

data for the Aphid node does suggest that such an event occurs in many fields.

We refer to the original ATN model without mortality, as stated in (3.2), as Model 1. We consider

the restriction of Model 1 to a parameter space where h0 = c0 = 0. This results in a linear functional

response, or standard Lotka-Volterra type dynamics. The corresponding differential equation is

given by,

d N1

d t
=N1



r (t )−
∑

j∈C1

a1 j (a0, Ro p t ,φ)Nj



 , (3.3)

for a1 j the attack rate under the ATN model parameterization. For this restriction, we note that

there are only three parameters (a0, Ro p t , andφ) and the initial condition (N 0
1 ) to be estimated. We

denote this as Model 2.

Parameter estimation on Model 2 yields values ofφ ∈ [.3, 2], so we also consider the restriction

of Model 2 to a parameter space whereφ = 1. This is equivalent to assuming that the sensitivity of

successful attacks to predator-prey body mass ratio does not need to be tuned for the system. The

corresponding differential equation is given by,

d N1

d t
=N1



r (t )−
∑

j∈C1

a1 j (a0, Ro p t , 1)Nj



 ,

enforcing φ = 1 in the ATN model parameterization. We refer to this as Model 3, where the only

parameters to estimate are a0, Ro p t , and the initial condition N 1
0 .

The aphid population data exhibits unexpected population declines that cannot reasonably be

attributed to predation described by the ATN model. We therefore consider the addition of an as-yet

unknown source of mortality to the model. We assume that the mortality occurs over a full day and

after the last data point before an unexpected population decline. That is, if the aphid population

decreases by 25% or more between the observation collected at td and the observation collected at

td+1, then we denote the time Tk = td . We assume that the aphids suffer some extrinsic mortality

factor µ over the interval Mk = [Tk +1, Tk +2]. We denote the set of all such times asM=
⋃

k
Mk and

add this discrete mortality term to (3.3). The corresponding differential equation is given by,

d N1

d t
=N1



r (t )−
∑

j∈C1

a1 j (a0, Ro p t ,φ)Nj −µχM



 ,

where χM is the indicator function for the setM. We refer to this formulation as Model 4, and it

requires the specification of four parameters (a0, Ro p t , φ, and µ) as well as the initial condition
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(N 0
1 ). We note that Model 2 is a restriction of Model 4 to a parameter space where µ= 0.

To compare performance between two models, we follow the methods described in Chapter

1 to test the null hypothesis that the nominal parameter set exists in a constrainted parameter

space. We denote J (θ , Yf ) to be the cost functional associated with a parameter θ and observations

Yf = {Yd , f }nd=1. For our problem, this reduces from the vector IRLS case previously described to a

scalar ordinary least squares cost function,

J (θ , Yf ) =
n
∑

d=1

�

Yd , f −N1(td ;θ )
�2

.

We respectively define θ̂ and θ̂H to be solutions to the inverse problem for a model and its restriction

to a subset of the full parameter space. Then the realization of the model comparison test statistic

corresponding to the data set N̂
f

1 = {N
d , f

1 }nd=1 is

Ûn (N̂
f

1 ) = n
J ( ˆθH , N̂1

f )− J (θ̂ , N̂1
f )

J (θ̂1, N̂1
f )

.

We reject the null hypothesis with (1−α) ·100% certainty if Ûn (N̂1)>τα, for τα the critical value of

the χ2(r ) distribution and r the additional degrees of freedom the full model has over the parameter

restriction. We set the threshold for model rejection at 75%, since we are dealing with rather sparse

experimental data sets.

3.3 Results

The fits for the ATN model and its three variations are plotted against experimental data in Figures 3.5

and 3.6. We denote with star markers the density data from each field, with error bars indicating a

standard deviation of the data. The date at which crop maturation passed its critical threshold is

indicated with a solid horizontal line, after which we no longer fit the models to data. All model fits

are plotted with solid lines, with markers to differentiate between models - Model 1 is denoted by a

triangle marker (4), Model 2 by a circle marker (◦), Model 3 by a square marker (�), and Model 4

by an x marker (×). We note that solutions for all four models are plotted in each figure. However,

because of our conditions for a “mortality event,” Model 4 does not generate dynamics unique from

Model 2 in fields KC, MC, MO, and SO. See Table 3.7 for a list of parameter values for all fields and

model variations.
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Figure 3.5 Ordinary least squares solutions of the ATN model and its three variations for data from six
agricultural fields. Data is plotted with a star marker (∗) with error bars to indicate the standard deviation
in the data and the horizontal line indicates the cutoff date for data to be used in the inverse problem.
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Figure 3.6 Ordinary least squares solutions of the ATN model and its three variations for data from four
agricultural fields. Data is plotted with a star marker (∗) with error bars to indicate the standard deviation
in the data and the horizontal line indicates the cutoff date for data to be used in the inverse problem.

3.3.1 Model Comparison Tests

We first compare the performance of Model 1, the full ATN model, to its restriction to a linear

functional response, h0 = c0 = 0, in Model 2. The solution to the inverse problem for the full model is

to take h0 = c0 = 0 in almost all fields, and so there is little variation between the solutions to Models

1 and 2. As expected, we see in Table 3.4 a failure to reject the null hypothesis that the solution is

contained in the restriction given by Model 2.
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Table 3.4 Realizations of the nested model comparison test statistic for Model 2 a restriction of Model 1.

Field JC JO KC KO MC MO OC OO SC SO

Ûn 0.126 0.001 0 0.012 0.023 0 -0.0003 0.010 0.121 0

Reject? Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail

Although we fail to show that the nominal parameters do not satisfy h0 = c0 = 0, we cannot

readily conclude from this test that the functional response in the ATN model should be linear.

A linear functional response results in a model formulation which does not account for the time

predators spend consuming prey, which means that predation force does not saturate in the presence

of abundant prey items. This is an unreasonable model assumption, in direct opposition to the

system’s underlying biology. Mathematically, the linear functional response increases the predation

force on the Aphid node. If our model for the population’s intrinsic growth rate is too generous

or the abundance of predators is underreported, then the linear functional response could be a

means of attaining sufficiently slow growth of the Aphid node. With our current data set, there is

insufficient information to support the estimation of h0, c0 6= 0. However, we caution against drawing

conclusions from this statistical result, particularly due to the sparsity of the data set.

We next assert the null hypothesis that the nominal parameters are contained in the restriction

given by Model 3, fixing φ = 1, instead of Model 2. The results from the model comparison test

are given in Table 3.5, and we reject Model 3 with 75% or higher certainty in all fields except JC

and JO. In these two exceptions, the estimated value of φ is close to 1, and so it is not surprising

that the comparison test fails. We conclude that there is sufficient information in the data set to

justify the estimation ofφ in the ATN model. This parameter tunes sensitivity to Ro p t in formulation

of attack rates, and so it is worth noting that the significance of this parameter can vary with the

distribution of predator body masses, which does vary across fields. Moreover, it is likely that the

value of Ro p t varies across guilds of predators - i.e., that the optimal predator-prey body mass ratio

differs from beetles to spiders - and so we might estimate more consistent values of φ if we had

sufficient information to estimate varying values of Ro p t .

Table 3.5 Realizations of the nested model comparison test statistic for Model 3 a restriction of Model 2.

Field JC JO KC KO MC MO OC OO SC SO

Ûn 0.19 0.03 49.35 4.30 17.97 41.34 34.75 1.63 1.58 5.10

Reject? Fail Fail 99.9% 95% 99.9% 99.9% 99.9% 75% 75% 95%
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We finally consider the addition of a mortality term by asserting the null hypothesis that the

nominal parameters are contained in the restriction given by Model 2 instead of the model with

mortality, Model 4. The results from the comparison test, for the six fields that satisfy the requirement

that a 25% or greater population decline occur between observations, are given in Table 3.6. We

reject the model without mortality with 99.9% confidence in all but Field OC. We conclude that in

Fields JC, JO, KO, OO, and SC, the data supports the estimation of some additional mortality event

in the aphid population.

Table 3.6 Realizations of the nested model comparison test statistic for Model 2 a restriction of Model 4.

Field JC JO KO OC OO SC

Ûn 127.58 54.443 13.246 -0.621 582.07 117.74

Reject? 99.9% 99.9% 99.9% Fail 99.9% 99.9%

Our primary concern with the estimation of ATN model parameters in these fields is that we do

not know if the model should reproduce the significant population crashes observed in the data. The

mortality might be driven by an abiotic factor outside the scope of our model, such as precipitation

or wind, and we cannot verify such correlations without additional information about experimental

conditions. However, the mortality might also be driven by predation within the scope of our model,

such as by the Coccinella node. It is possible that our model, which is parameterized entirely by

body mass, underestimates the effect of these specialist predators on the Aphid node. If there are

external factors which can strongly impact the aphid population, then these are certainly worth

taking into consideration when designing pest management strategies. However, if our model does

not accurately describe the impact of predation on the pest population, then we need to revise the

formulation of predator-prey interactions in the model.

Without knowing the cause of the mortality events, and considering the lack of certainty in

our parameter estimation due to the sparse data set, it is difficult to say what “next step” in the

iterative modelling process these results demand. As demonstrated in Field OC, it is possible to drive

significant decline in the Aphid node by predation in the ATN model. However, comparison between

Models 1 and 2 demonstrates that our current parameterization of the ATN model is not biologically

reasonable, casting some doubt on the validity of our estimated parameters. In addition to requiring

additional data to estimate our model parameters with some certainty, we should carefully consider

hypotheses about the factors driving aphid dynamics and formulate future iterations of our model

with these ideas in mind.
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Table 3.7 Estimated parameters for Models 1, 2, 3, and 4 over the ten fields. In Fields KC, MC, MO, and SO,
the data did not meet the requirements to estimate the parameters for Model 4.

Field Model a0 Ro p t φ h0 c0 µ N 1
0

JC Model 1 3.10 387.37 1.07 0 0 - 7.43

Model 2 2.97 515.64 0.96 - - - 7.30

Model 3 2.56 428.92 - - - - 4.62

Model 4 3.69 0.54 1.01 - - 1.98 9.99

JO Model 1 2.57 750.28 0.94 0 0 3.13

Model 2 2.58 750.31 0.94 - - - 3.13

Model 3 3.04 803.08 - - - - 2.86

Model 4 2.52 823.56 1.20 - - 1.84 1.46

KC Model 1 0.81 184.75 1.98 0 0 - 0.94

Model 2 0.81 184.75 1.98 - - - 0.94

Model 3 0.83 518.41 - - - - 3.93

KO Model 1 0.12 37.49 1.43 0 0 - 1.71

Model 2 0.12 38.73 1.52 - - - 1.71

Model 3 0.88 0.87 - - - - 2.90

Model 4 0.02 24.93 0.05 - - 3.68 1.64

MC Model 1 0.42 160.09 0.86 0 0 - 7.00

Model 2 0.42 160.09 0.86 - - - 7.00

Model 3 0.51 161.19 - - - - 7.61

MO Model 1 0.16 1000 0.22 0 0 - 18.18

Model 2 0.16 1000 0.22 - - - 18.18

Model 3 0.52 0.90 - - - - 18.17

OC Model 1 0.18 46.86 0.21 0 0 - 1.45

Model 2 0.18 46.86 0.21 - - - 1.45

Model 3 0.29 37.78 - - - - 1.00

Model 4 0.18 46.75 0.21 - - 0.01 1.41

OO Model 1 1.15 0.75 0.99 0 0 - 6.02

Model 2 1.16 0.75 0.99 - - - 6.01

Model 3 0.95 0.81 - - - - 4.86

Model 4 0.18 2.12 0.40 - - 1.08 2.32

SC Model 1 0.37 0.73 0.41 0 0 - 18.18

Model 2 0.34 0.70 0.35 - - - 18.18

Model 3 0.57 146.55 - - - - 18.19

Model 4 2.07 478.73 2.00 - - 4.01 4.94

SO Model 1 3.30 239.33 1.57 0 0 - 5.01

Model 2 3.30 239.33 1.57 - - - 5.01

Model 3 1.68 227.45 - - - - 5.00
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3.3.2 ATN solution with additional data

For all fields, we find that the inclusion of h0 and c0 as unknown parameters in the inverse problem

does not add value to the estimates. Additionally, the numerical minimization necessary for the

inverse problem using the full model is sensitive to the initial iterate supplied to the program.

We only find that h0 = c0 = 0 by starting sufficiently close to the solution, with initial iterates for

each parameter on the order of 10−4 or 10−3 across fields. The physically admissible range for

each parameter is h0 ∈ [0,0.42] and c0 ∈ [0,0.24] in our system [62], and so this is a relatively small

perturbation in the parameter value. In its current formulation, the inverse problem for the full ATN

model is too sensitive to initial conditions to be tractable. We conjecture that with data collected at

a higher sampling rate, the problem could be solved with less sensitivity to the initial conditions of

the numerical minimizer.

We consider this assumption for Field MC, where the aphid population does not experience

a mortality event and is well-fit by the inverse problem using the reduced ATN model with initial

iterate a0 = .8, Ro p t = 150, andφ = 1, yielding parameters a0 = 0.4207, Ro p t = 160, andφ = 0.8570.

We construct a synthetic data set with these parameters and solve the inverse problem for the full

model, using initial iterate a0 = .4, Ro p t = 160, andφ = 0.8, with an increasing number of data points

added between each existing observation. The resulting solutions are plotted in Figure 3.7 and the

parameters used to generate the synthetic data, initial iterate for the inverse problem using the

synthetic data, and resulting parameter estimates are given in Table 3.8.

Table 3.8 Parameter values and initial iterates used in the inverse problem on synthetic data.

Parameter a0 Ro p t φ h0 c0

Synthetic Value 0.4207 160 0.8570 0 0

Initial Iterate 0.4 160 0.8 0.1 0.1

Estimated Value 0.3459 140 0.7772 0.0005 0.0005

The inverse problem for the full ATN model in Field MC requires five additional observations

between each existing point to visually fit the data, but the solution does not give the same param-

eters as we used to generate the synthetic data. This rate of sampling would require population

measurements approximately three times a week, where a single measurement of the aphid popula-

tion requires a count of the aphids on 100 barley plants. This would be a significant undertaking,

and even then we do not claim that this rate of data collection would support parameter estimation

for the full ATN model in future experiments. We again speculate that there could be some tradeoff

between estimates ofφ and Ro p t , in which a shift in the value of Ro p t across our diverse predator
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community might be absorbed by an accompanying adjustment in the tuning parameter φ. We

note that such a problem might be remedied if we were able to model the dynamics of the predator

community, instead of only fitting our model to the cumulative effect on one prey item. There is a

significant level of consumption within the predator community, and so it is more difficult to mask

an erroneous specification of Ro p t when validating the model against information about predation

on all nodes in the system.
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Figure 3.7 The solution to the inverse problem using the full ATN model with the original data (left) and a
synthetic data set with increased sampling (right) is plotted with a solid line. The data used in the inverse
problem is plotted with a star marker. Take care to note the differently scaled vertical axes.

3.4 Conclusion

Despite our inability to draw concrete conclusions about the effect of a given predator community

on the Aphid node, the results presented here are a necessary step in the development of more

accurate models for predator-prey interactions in our study system. This is particularly important

in the context of our overarching goal to meet recent calls for an integration of food web ecology

and ecosystem services [40]. As a proof-of-concept effort, we hoped to verify that our mathematical

model and inverse problem methodology could be used to replicate the dynamics of a pest in an

agricultural field. Although the inverse problem was not tractable for the original formulation of the

ATN model, and efforts must be made to address unknown mortality events in our system, we are

optimistic about the viability of our approach in future work addressing this problem.

We have demonstrated that the ill-posedness of the inverse problem can be ameliorated by

reducing the number of parameters or increasing the data against which we validate our model.
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Moving forward, we propose studying this model in a much simpler study system or collecting more

data in the current study system, regarding both species abundances and external factors which

might affect population dynamics. These results, paired with further formalization of biological

hypotheses about the processes driving system dynamics, will inform our future formulations of a

trait-based model for predator-prey dynamics in similar systems and attempts at validating such

models against experimental data.
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CHAPTER

4

DESIGNING GREENHOUSE

EXPERIMENTS FOR MODEL TESTING

In this chapter, we outline the design of greenhouse experiments for validation of the Allometric

Trophic Network (ATN) model. The work presented here formed the basis for a manuscript currently

under review [69], and the resulting data is used in Chapter 5. We begin by motivating our approach,

which explicitly links experimental design to model dynamics. We then describe our choice of

study system, as it relates to the trait-based formulation of our model. We additionally formulate a

sampling protocol by examining the mathematical model for system dynamics and the statistical

model for error in our observations. We conclude by exploring the potential shortcomings of our

design.

4.1 Motivation

A significant component of work in the fields of mathematical biology and ecology as a whole

concerns the application of theoretical models to physical systems. Tailoring these models to real

study systems, either through our approach of least squares minimization or an alternative approach

of empirical parameter measurement, requires costly collections of data. Moreover, the validation

of these models is an iterative process, in which we must verify that the model is applicable under a

variety of conditons before we can confidently conclude that it describes the driving mechanisms
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behind system behavior. The experiments required to obtain such data are necessarily dictated by

practical constraits, and so it is not uncommon to opportunistically validate a model using data

for which the model was never intended (our own work in Chapter 3 being an example of such an

occurence). It is therefore vitally important that we inform and improve experimental design by

in-depth model analysis, generating experiments better targeted at testing the model.

We propose intimately linking the design of our experiment with the development of our mathe-

matical model to ensure the relevance of collected data. Our primary concern is ensuring that we

collect sufficient data for model validation, subject to physical constraints. We supplement tradi-

tional design considerations with mathematical and statistical analyses to optimize the information

content in our data set, while only sampling as much as is necessary. This approach requires the

simulation of different sampling strategies prior to conducting the experiment, which permits a

rigorous evaluation of the proposed strategy and highlights potential sources of uncertainty. This is a

valuable exercise, as empirical experiments represent a significant investment of time and resources.

Due to the cost associated with experiments and the uncertainty in observational data, empirical

scientists are careful to explicitly design experiments in terms of testable hypotheses. The conclu-

siveness of an experiment is determined by its design, which must target clear-cut predictions and

measure well-defined quantities. The goal of our experiment is to test our mathematical model, and

this broad goal does not immediately lend itself to specificity in design. However, mathematical

models are formalizations of physical and biological interactions, built on our assumptions of a

system’s behavior. When we validate models against empirical data, we establish credibility by

matching model dynamics to the observed outcomes; in this way, data-driven parameter estimation

is a type of experiment intended to test the assumptions on which we built our model. We therefore

design our experiment to test the underlying assumptions of our model, formally hypothesizing

that body mass and habitat use govern predator-prey dynamics.

We note that in addition to guiding our experimental design, the explicit formulation of biological

hypotheses sets the stage for stronger scientific conclusions. Experiments designed specifically to

test and distinguish among a priori hypotheses permit strong inference [85], which is a desirable

result. Some empirical sciences encourage this practice by promoting pre-registration of proposed

experiments [2, 52, 81]. Pre-registration enables researchers to critically examine their hypotheses

and design prior to running an experiment and invites feedback from the scientific community

[52]. Following this template, we lay out our hypotheses and experimental design in [69] prior to

conducting the analysis of the experimental data.

4.2 Study System

Our intent is to validate the variation on the ATN model described in Chapter 2, which incorporates

our hypothesized mechanism for habitat use overlap. The model dynamics for the number of
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individuals Ni of species i are given by

d Ni

d t
=Ni



ri −
∑

j∈Ci

ai jνi j Ni Nj

1+
∑

k∈R j
ak jνk j hk j Nk +

∑

l∈C j
b0a j lν j l Nl



 ,

where ri is the growth rate of species i ,Ci is the set of species which consume species i , andR j is

the set of prey for species j . The parameters ai j (attack rate), hi j (handling time), and νi j (spatial

overlap, or, similarity in habitat use) are given by

ai j = a0W 1/4
i W 1/4

j

�

Wj /Wi

Ro p t
e

1−
Wj /Wi
Ro p t

�φ

,

νi j = 1− v0T V (µi ,µ j ) = 1− v0 sup
A⊂Ω

�

�µi (A )−µ j (A )
�

� ,

hi j = h0W 1/4
i W −1/4

j ,

for species body mass Wi a measurable quantity and species habitat useµi defined from observations

of individual behavior. We recall that for the setΩof all modes of habitat use, we define the probability

measure µi : Ω→ R such that evaluating µi (A ) for some habitatA contained in Ω gives us the

likelihood that species i occupies that habitatA .

4.2.1 Cage Design

Due to the complications that arose from our field-level experiment, we conduct greenhouse exper-

iments for this attempt at model validation. Although we eventually hope to understand predator-

prey dynamics in a real agricultural field, a greenhouse experiment presents the opportunity to

examine these dynamics without interference from ambient weather conditions and uncontrolled

species introduction. Additionally, the necessarily small scale of a greenhouse experiment permits

frequent sampling in time with a lower experimental burden. Our greenhouse experiments are

conducted inside of “cages,” which are wooden frames with a dirt base and mesh walls which prevent

the escape of experimental subjects.

The aphid-based study system of terrestrial arthropods is appropriate for use in a greenhouse.

Natural predators for the aphid are sufficiently diverse that we can identify species which vary in

body mass and habitat overlap, a necessary condition for testing our experimental hypotheses.

Additionally, aphids undergo rapid asexual reproduction, allowing us to run experiments over short

periods while still observing the impact of predators on population growth. Due to this rapid growth,

we limit the length of the experiment to 8 days; this period is sufficiently long to observe population

growth, but sufficiently short to avoid conditions of overcrowding and resource scarcity which

trigger complicated modes of reproduction in aphid populations.
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To study the effects of body size and habitat use, we choose predators which vary in both of

these traits. We choose two predators which are primarily ground predators (Wolf spiders of the

genus Pardosa and ground beetles of the genus Bembidion) and two which primarily reside in

the foliage (lady beetle Coccinella septempunctata and the minute pirate bug Orius majusculus).

We additionally note that preliminary observations suggest Bembidion is the most restricted in

habitat use, while Pardosa sometimes climbs the plants, and both of the foliage predators spend

time on the ground; there is substantial overlap in habitat use, and all four predators can be expected

to encounter one another. Within these two categories, we can further divide the predators into

being small-bodied (Bembidion and Orius) or large-bodied (Pardosa and Coccinella). There are

many species which could be divided into these categories, but we have selected a diverse group

of predators (a spider, a beetle, a bug, and a specialist predator) in order to demonstrate that our

hypothesized traits are important across different predators. We present this information in Table 4.1,

for reference.

Table 4.1 Species traits for the four predators in our experiment. In parentheses, we designate the subject
species’ unique contribution within the experiment.

Foliage-Dwelling Ground-Dwelling

Small-Bodied Orius (bug) Bembidion (beetle)

Large-Bodied Coccinella (specialist) Pardosa (spider)

We additionally explore the effect of body mass and habitat use in determining interactions by

including two species of aphid prey items. We choose a large-bodied aphid (Acyrthosiphon pisum),

which primarily resides on bean leaves with a prefence for the undersides of the plant. We also

choose a small-bodied aphid (Rhopalosiphum padi), which lives on barley plants with a preference

for the bottom of the stem. Although both species of aphid primarily reside in their respective

foliage, R. padi is more accessible to ground predators due to its location on the plant. We note that

individuals of species A. pisum will frequently drop from the underside of the bean plant when

neighboring aphids are disturbed by a foliage-dwelling predator, making this prey item temporarily

accessible to ground-dwelling predators before the aphids reestablish themselves on nearby bean

plants.

The use of these two aphids necessitates that we seed our cages with barley and bean plants.

We plant the beans and barley in alternating rows within the cage prior to running the experiment,

initially growing the plants in abundance before thinning the plant density to a uniform level at the

start of the experiment. We establish a population of aphids in the cage for two days, permitting

sufficient time for population growth to begin, before introducing predators to the cage. Each cage
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has a designated “prey treatment” and “predator treatment.” The three types of aphid treatments

are: R. padi only, A. pisum only, or R. padi and A. pisum in combination. We take all pairwise

combinations of our four predators (including a predator matched with itself) for ten predator

treatments. We additionally study a predator-free control treatment for all three aphid treatments.

Taking each combination of predator and prey treatments, we have 33 unique cage designations,

each of which we replicate six times to account for natural variation in the systems.

The body masses and initial abundances of all species in our system are given in Table 4.2. We

note that the initial abundance of a species is doubled if it appears individually in a treatment; for

example, if Orius is the only predator in a cage, then we include two populations of Orius for a total

of 40 predators.

Table 4.2 The body masses and initial abundances for all species used in the mesocosm experiments.

A. pisum R. padi Bembidion Coccinella Orius Pardosa

Wi (mg) 0.6706 0.1550 2.145 37.4636 0.58 17.72

Ni ,0 (individuals) 75 75 20 2 20 10

4.2.2 Habitat Use

The parameter νi j can be interpreted as a measure of similarity in spatial distribution between

species in our system. To motivate the mathematical formulation of this parameter, we outline

its physical value for species in our experiment, using preliminary observations of habitat use in

the greenhouse cages. In Table 4.3, we state the assumed probability that each species will use a

particular region of the cage. We obtained these probabilities by observing the cages on multiple

occasions and approximating the fraction out of all observations where the species was within each

region.

Recall that for calculation of the overlap parameter we must first define the set Ω of all modes of

habitat use and the probability measure µi that a species utilizes some habitat within that set. From

these observations, we define Ω= {P, N ,G , P N , P G , N G , P N G }where P indicates use of the plant

region, N indicates use of the netting region, and G indicates use of the ground region. We then

have P N indicating use of the plant and netting regions, P G indicating use of the plant and ground

regions, and so forth.

We next define the probability measures µi of each species i for habitat use within the set Ω. We
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state, for example, the definition of µA (for species A. pisum) on the set Ω:

µA(P ) = 0.9, µA(N ) = 0, µA(G ) = 0.1

µA(P N ) = 0.9, µA(P G ) = 1, µA(N G ) = 0.1, µA(P N G ) = 1

For comparison, we give the same values of µB (for species Bembidion):

µB (P ) = 0.05, µB (N ) = 0.2, µB (G ) = 0.75

µA(P N ) = 0.25, µB (P G ) = 0.8, µB (N G ) = 0.95, µB (P N G ) = 1

Table 4.3 Probability that species from the cage experiments occupy various regions of the cage. We split
habitat use into the categories “plant,” “netting,” and “ground.” We note that the “ground” region includes
the base of the plants, which can be reached by ground-dwelling predators without climbing plants.

Plant Netting Ground

A. pisum 0.9 0 0.1

R. padi 0.6 0 0.4

Bembidion 0.05 0.2 0.75

Coccinella 0.5 0.25 0.25

Orius 0.5 0.25 0.25

Pardosa 0.05 0.35 0.6

We next compute for all species pairs in the system, the total variation T V (µi ,µ j ) in the habitat

use distributions. We recall that the definition of total variation is given by

T V (µi ,µ j ) = sup
A⊂Ω

�

�µi (A )−µ j (A )
�

�

and can be interpreted as dissimilarity between the distributions µi and µ j . For the example we

began above, we note that this largest difference occurs when we look at the sets P or N G , since

�

�µA(P )−µB (P )
�

�=
�

�µA(N G )−µB (N G )
�

�= 0.85,

and this is the largest magnitude difference we see over all sets in Ω. The total variations for all

species pairs in our system are given in Table 4.4.

We note that a larger value of T V (µi ,µ j ) indicates a higher dissimilarity in habitat use; there

exists some mode of habitat use in Ω for which the probability that species i uses that region is
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very different from the probability that species j uses that region. Because the values of µi (A )
must fall between zero and one by the definition of a probability measure, we will necessarily have

0≤ T V (µi ,µ j )≤ 1. We can therefore see that A. pisum and Bembidion use the habitat within the cage

in a very dissimilar way. However, we see that T V (µi ,µi ) = 0, since a species will always match its own

probability of occupying a given region. We finally note that we always have T V (µi ,µ j ) = T V (µ j ,µi );

this is biologically reasonable, since we do not assume that habitat use will asymmetrically affect

the two species.

Table 4.4 Total variation T V (µi ,µ j ) for species in the cage experiments. We calculate these values using
the probability measures for habitat use defined in Table 4.3

A. pisum R. padi Bembidion Coccinella Orius Pardosa

A. pisum 0 0.3 0.85 0.4 0.4 0.85

R. padi 0.3 0 0.55 0.25 0.25 0.55

Bembidion 0.85 0.55 0 0.5 0.5 0.15

Coccinella 0.4 0.25 0.5 0 0 0.45

Orius 0.4 0.25 0.5 0 0 0.45

Pardosa 0.85 0.55 0.15 0.45 0.45 0

The final step in computing habitat use overlap is to convert the total variation into a measure of

similarity instead of dissimilarity. Since we know that 0≤ T V (µi ,µ j )≤ 1, we subtract this quantity

from 1 to obtain a quantity which increases with similarity of habitat use but still falls between 0

and 1. We introduce some scaling factor 0≤ v0 ≤ 1 to quantify the effect of assumed habitat use on

spatial overlap, which gives the parameter νi j = 1− v0T V (µi ,µ j ).

4.3 Sampling Protocols

In defining the sampling protocol, we must balance what is a reasonable undertaking with the data

required for parameter estimation. Since different methods of data analysis have different criteria

for meaningful information content, we must identify the method of analysis when establishing

sampling protocol. This choice determines the frequency with which we must collect data and

the sampling strategies we can implement. We employ a data-driven least squares minimization

to estimate model parameters, as described in Chapter 1. Although other methods exist for the

estimation of ATN model parameters (see, for example, examining interaction strengths as in [101]),

solving a least squares inverse problem allows us to fit model dynamics to data in time and preserve

maximal information about physical processes.
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To effectively solve a least squares problem, we must collect sufficient data throughout the

experiment, but obtaining data at an appropriate temporal scale is a time-consuming and expensive

endeavour. It is therefore advantageous to know the optimal timing for data collection during the

experiment, with the goal of using this data to estimate model parameters a0, Ro p t ,φ, h0, b0, and

v0. Our method of parameter estimation relies on fitting a mathematical model to time-series

data, and observations from different days can vary in how much information they provide about

model parameters. In order to focus our effort on the days which provide the most information and

ensure maximal information content in the data, we examine the sensitivity of aphid populations

(the primary source of data in our experiment) to parameter inputs as time progresses. After we

determine the optimal timing for these samples, we will investigate the feasibility of subsampling

strategies, which reduce the burden of data collection.

4.3.1 Timing for Population Samples

We compute the sensitivity of a population density Ni with respect to a parameter θ , s θi =
d Ni
dθ , by

solving the sensitivity equations [10, 11] as given in Chapter 2. To facilitate comparison of sensitivities

between treatments, we compute the relative sensitivity [46, 49], given by

s r θi (t ) =
θ

Ni (t ,θ )
s θi (t ).

To avoid giving undue importance to aphid populations approaching zero, we do not normalize by

the population when Ni (t ,θ )< 1. We refer to sensitivities of great magnitude (regardless of sign)

as “high,” indicating that model solutions depend strongly on a given parameter. To effectively

estimate parameters for our model, we must collect data on days with high sensitivity; we obtain

less information about the parameters by sampling on days with low sensitivity. We are primarily

concerned with the sensitivities of aphid population densities with respect to model parameters,

since we cannot obtain predator population data during the experiment.

We present sensitivity results for θ = a0,φ, v0, h0, b0 using parameter values a0 = 24× .9,φ = 1,

v0 = 1, h0 = 2/24, b0 = h0, Ro p t = 60 for Bembidion, Ro p t = 115 for Coccinella, Ro p t = 1 for Orius, and

Ro p t = 60 for Pardosa. We plot in Fig 4.1 the sensitivities of aphid populations to model parameters

for four cage treatments, which exhibit the types of behavior we see in the sensitivities as a function

of time. In Table 4.5, we describe the conditions of the four treatments.

We cannot know the model parameters prior to running the experiment, and so our parame-

ters are informed by estimates from similar mesocosm experiments [62]. We estimate Ro p t from

personal observations of predator feeding preferences during planning stages of the experiment;

because we manually select values of Ro p t , we do not include this parameter’s sensitivity results

in our consideration of sampling protocol. From control-treatment “trial runs” during planning,
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we estimate intrinsic growth rates r = 0.3007 for A. pisum alone, r = 0.3211 for R. padi alone, and

r = 0.2453, r = 0.2591 for A. pisum and R. padi (respectively) in a combined treatment.

Table 4.5 Key for cage treatments referenced in Fig 4.1.

Treatment Prey Predator 1 Predator 2

R-BP R. padi Bembidion Pardosa

R-C R. padi Coccinella Coccinella

A-OP A. pisum Orius Pardosa

A-B A. pisum Bembidion Bembidion
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Figure 4.1 Sensitivities of aphid population abundances with respect to model parameters. Sensitivities
are plotted in time and different parameters are indicated by line style.
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Treatment R-BP represents the most common type of sensitivity behavior we see, characterized

by high sensitivities on or before t = 2, which quickly decrease to low levels for the remainder of the

experiment. Solutions with this type of sensitivity describe aphid populations which are quickly

decimated by the predator treatment and do not recover. Treatment R-C represents the second

type of behavior for model sensitivities, characterized by low sensitivities until t = 2, after which

sensitivities quickly increase to their peak around t = 3 and remain at high levels for the duration of

the experiment. Solutions with this type of sensitivity describe aphid populations which experience

eventual decimation, but the decline is slightly delayed. Treatment A-OP represents the third type

of behavior for model sensitivities, in which we see high sensitivity early in the experiment and

a decrease to low values around t = 4, with a slight rebound towards the end of the experiment.

Solutions with this type of sensitivity describe aphid populations which experience drastic decline

at the beginning of the experiment but manage to recover when predators become scarce later in

the experiment. Treatment A-B represents the final type of sensitivity behavior we see, with constant

or increasing sensitivities for most of the experiment and the most significant increase in model

sensitivities before t = 2. Treatments of this type do not result in a drastic decline in the modeled

aphid population; the population is increasing for at least several days of the experiment.

We caution that our solutions to the sensitivity equations are local to the assumed parameters in

our model formulation, and therefore may change for different parameter inputs. If any parameters

estimated from our experiment differ significantly from these assumed values, the model sensitivities

to all parameters may not follow the patterns we observe here. To minimize the risk of missing

the sensitivity of our “true” model solution, we obtain assumed parameter ranges from a related

experiment and verify that similar peaks in sensitivity are obtained for different parameter values

in this range. We cannot draw conclusions about the specific cages which belong to each of these

categories for the experiment, where true model parameters may be significantly different from what

is assumed here. Rather, we present an example of the types of behaviors that model sensitivities

might exhibit, regardless of the treatments under which they truly occur.

Based on these results, we conclude that sampling on days t = 2,4, and 8 will yield data with

high information content related to all model parameters, in at least some treatments. In the

interest of obtaining maximal information in treatments with rapid aphid population decline, we

suggest additional samples on days t = 1 and 3 when possible. We obtain less information with

repeated sampling of such treatments later in the experiment, when the population has already been

decimated; the rate of decimation, occurring quickly over the first few days, is of greater interest.

Under this sampling scheme, we can be as confident as possible that the collected data contains

sufficient information for parameter estimation.

Convergence of a least squares parameter estimation requires substantial, temporal data. There

is no consistent translation of this requirement to some number of data points required to obtain

a good solution to the inverse problem. However, we tentatively assume that to estimate our five
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model parameters, we should inform the inverse problem with at least ten data points. Grouping

our cages into cohorts of the three aphid treatments, with predator treatments fixed, yields nine

data points when using our proposed samples on days t = 2,4,8. The alternative of grouping our

cages into cohorts of the ten predator treatments, with aphid treatments fixed, for 30 data points is

perhaps drastic. Since we can only theorize that dynamics will be the same for all predators, despite

significant predator diversity, we hesitate to rely on such a broad categorization of treatments. We

therefore compromise by adding an additional sample on day t = 6, which may not be a day with

particularly high parameter sensitivities but does give additional information.

4.3.2 Subsampling Protocol

Our choice of timing for population samples presents an enormous effort, requiring many man-

hours of work in the lab. With limited resources, obtaining this data becomes a trade-off between

sampling thoroughly at every time or sampling frequently in time. We therefore consider the poten-

tial for subsampling of the aphid population in order to obtain data more quickly on these days.

To subsample the aphid population, Nj , at time t j in a cage with T plants, we count the number

of aphids on n < T plants, Ñ n
j , and scale by T /n to obtain an estimate of the aphid population,

N n
j =

T
n Ñ n

j . We investigate the effect that any error in N n
j might have on our ability to estimate

model parameters. We first consider this problem in predator-free control cages for R. padi, for

which we had previous data to consult.

We assume exponential growth in predator-free control cages of R. padi, with the model solution

given by f (t , r ) = 150e r0(t+1), assuming that t = 0 one day after aphids are introduced to the cage.

We temporarily suppress the species indexing and let N denote the aphid population and Nj

the sampled population at some time t j . In current experiments, the protocol is to obtain some

estimate r̂ to the growth rate r0 in predator-free control cages, which is in turn used for the full ATN

model in predator-treated cages. We estimate this parameter by seeking the ordinary least squares

minimization,

r̂ = arg min
r≥0

M
∑

j=1

(Nj − f (t j , r ))2.

If we instead use the subsampled approximations to the population, N n
j , in the least squares

formulation, we obtain the estimate

r̂ n = arg min
r≥0

M
∑

j=1

(N n
j − f (t j , r ))2.

To investigate the effect of subsampling on the estimated growth rate, we generate synthetic data

with a known growth rate and compare the error in parameter estimation under a subsampling

scheme for different values of n . The provided data includes the per-plant aphid counts, y k
j , for
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six cages, collected on days t j = 4,8. For each cage, we estimate the growth rate r̂ from the fully

sampled population counts, Nj . The resulting parameter estimates for the six cages are given in

Table 4.6.

Table 4.6 Estimated growth rates r̂ for each of the six replicate control cages. The average across all growth
rates is r = 0.4145, with an average value of |r̂ − r |= 0.0138.

Cage Cage 1 Cage 2 Cage 3 Cage 4 Cage 5 Cage 6 Mean

r̂ 0.4204 0.4045 0.3830 0.4233 0.4233 0.4323 0.4145

|r̂ − r | 0.0059 0.0099 0.0315 0.0088 0.0088 0.0178 0.0138

For a cage with growth rate r̂ , we compute the normalized difference from model output, εk
j , at

time t j for each plant k . Assuming that aphids are uniformly distributed across the cage’s T plants,

we have

εk
j =

1

f (t j , r̂ )/T

�

y k
j −

f (t j , r̂ )

T

�

.

For r the average of the estimated growth rates across all six cages, we compute the true population

curve f (t , r ) = 150e r (t+1). We generate synthetic cages with T = 90 plants which have true population

f (t , r )/T and have been sampled on days t j = 4, 8. We randomly draw observational noise for each

plant from the set of all normalized errors εk
j for a fixed j .

For each synthetic cage, we consider subsampling strategies in which n = 5,6, ..., 90 plants are

counted. For each strategy, we estimate the growth rate r̂ n from the approximated population N n
j .

We compute the resulting error |r̂ n − r | for all n , and repeat this process for 200 synthetic cages. We

plot the average error |r̂ n − r | for each subsampling strategy in Fig 4.2. The dashed line in the figure

indicates the average value of |r̂ − r | for the estimated growth rates in the six true data sets.

We note that although the strategy prone to the least error is to sample all 90 plants, the accuracy

gained from sampling additional plants drops significantly around n = 25 plants. Sampling around

n = 40 plants results in error that is on the same scale as the average value of |r̂ − r |. That is, the error

induced by subsampling is no more drastic than the natural variation we see in parameter estimates

across controlled replicates; if we are comfortable averaging out the latter and incorporating this

parameter in our model, then the former should be similarly manageable. We therefore conclude that

sampling 45 out of 90 plants (or, 1-in-2 subsampling) yields sufficiently accurate parameter estimates.

If the burden of data collection is too high, sampling 30 out of 90 plants (1-in-3 subsampling) is

justifiable, and sampling as high as 60 out of 90 plants (2-in-3 subsampling) seems to be a very safe,

if intensive, strategy.
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Figure 4.2 The average value of |r̂ n − r | across 200 synthetic cages. The horizontal dashed line indicates
the average value of |r̂ − r | for parameter estimates using the true data set.

We next consider the effect of error induced by subsampling on our estimates of ATN model

parameters. We obtained per-plant aphid counts for experimental cages with R. padi as the basal

species, but sometimes under different predator treatments than our intended study communities

[62]. Additionally, previous data is not sampled sufficiently in time to permit the estimation of ATN

model parameters. We must directly infer from this experimental data the distribution of noise

induced by subsampling and add this noise to a simulation of cages which we assume perfectly

follow ATN dynamics.

To investigate the effect of subsampling on parameter estimation for the ATN model, we first

categorize available mesocosm data by full-cage population values. For all replicate cages of a

single treatment and fixed times t j , we have Nj ∈ [0, 100], Nj ∈ [150, 1500], or Nj ∈ [4000, 9000]. We

define the set of all plant counts y k
j which correspond to full-cage population values in the range of

Nj ∈ [0, 100] as “Category 1,” the set of all plant counts y k
j which correspond to full-cage population

values in the range of Nj ∈ [150,1500] as “Category 2,” and the set of all plant counts y k
j which

correspond to full-cage population values in the range of Nj ∈ [4000,9000] as “Category 3.” We do

not make any distinctions between plant counts based on the treatment from which they originated

or time at which they were obtained.

We generate synthetic cages for a given category by randomly sampling 90 plant counts, { ŷ k }90
k=1,
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from the category. We compute the true population of the synthetic cage,

N̂ =
90
∑

k=1

ŷ k ,

and a subsampled approximation to the true population,

N̂ n =
90

n

n
∑

k=1

ŷ k ,

for n = 30, 45, and 60. We then compute the normalized error induced by subsampling,

ε̂n =
1

N̂
(N̂ n − N̂ ),

and repeat this process for 1000 synthetic cages. From the synthetic cages, we attempt to identify

the distribution of errors ε̂n for each category.

In Figure 4.3, we present the scatter plots and histograms for the normalized errors induced

by the three subsampling procedures for Category 3. We note that the distribution of ε̂n is close to

normal, with the variance of the distribution increasing at lower subsampling rates.

4000 6000 8000 10000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
1 in 3 Counted

True cage count

R
el

at
iv

e 
er

ro
r 

in
 s

ub
sa

m
pl

e

−0.5 0 0.5
0

20

40

60

80

100

120

140

Relative error in subsample

F
re

qu
en

cy

4000 6000 8000 10000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
1 in 2 Counted

True cage count

−0.5 0 0.5
0

20

40

60

80

100

120

140

Relative error in subsample

4000 6000 8000 10000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
2 in 3 Counted

True cage count

−0.5 0 0.5
0

20

40

60

80

100

120

140

Relative error in subsample

Figure 4.3 Normalized errors induced by subsampling (ε̂n ) for synthetic cages generated from plant
counts in Category 3. We take n = 30,45,60 (1-in-3, 1-in-2, and 2-in-3 subsampling strategies, respec-
tively).
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In Figure 4.4, we present the scatter plots and histograms for the normalized errors induced

by the three subsampling procedures for Category 2. We note that the histograms again indicate

a normal distribution, with variances at a given subsampling rate higher than the corresponding

variances in Category 3. However, the scatter plots seem to indicate that at the lower-range of

populations in Category 2, the relative error induced by subsampling begins to skew.
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Figure 4.4 Normalized errors induced by subsampling (ε̂n ) for synthetic cages generated from plant
counts in Category 2. We take n = 30,45,60 (1-in-3, 1-in-2, and 2-in-3 subsampling strategies, respec-
tively).

In Figure 4.5, we present the scatter plots and histograms for the normalized errors induced

by the three subsampling procedures for Category 1. We observe in the histograms a truncated

statistical distribution for all three sampling strategies and cannot identify a distribution for the

error induced by subsampling for cages in this category. There is a clear bias towards the upper and

lower limits of ε̂n when the aphid population is low, which we intuitively explain by considering

the example of a single aphid in a cage where we subsample n of T plants. The only possible

approximations are N̂ n = T /n or 0, and unless n = T , we will not accurately report the population

in the cage. This causes the tendency towards fixed values of ε̂n in populations close to zero.
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Figure 4.5 Normalized errors induced by subsampling (ε̂n ) for synthetic cages generated from plant
counts in Category 1. We take n = 30,45,60 (1-in-3, 1-in-2, and 2-in-3 subsampling strategies, respec-
tively).

We conclude that for full-cage populations greater than 150 aphids, the normalized error induced

by subsampling n plants is normally distributed, with variance decreasing as the aphid population

increases. However, we note that when the aphid population is at very low values, it is easier to

make the worst possible over- and under-estimates of the population when subsampling. When

generating synthetic data for aphid densities in the range of (150,∞), we assume that the relative

error induced by each subsampling strategy is normally distributed, with the standard deviation

a function of aphid density. Using the distributions seen in categories 2 and 3, we compute the

standard devitiation as a linear function of population for our synthetic data. For aphid populations

in [0, 150], we generate synthetic data by manually sampling from the distribution of possible relative

errors. We generate the distribution using 10000 synthetic cages, and construct at most 6 synthetic

data sets with 8 points each.

We generate synthetic data with dynamics given by ATN model solutions and error induced

by subsampling for use in an inverse problem in which we incorrectly specify φ and Ro p t and

estimate a0, h0, v0, and b0. We plot two sample outcomes in Figure 4.6 and note that visual fits to

the true model solution are poor for aphid populations below 150 (Pardosa-treated populations).

This problem occured regardless of subsampling strategy and did not have a significant effect on

the error in the estimated parameters. Although the error in our parameter estimation did not vary
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considerably in these cases, we caution against implementing a subsampling strategy for cages with

low population densities until more information is available.

Figure 4.6 The true model solution (solid line) is plotted against six replicates of synthetically subsam-
pled data (red markers) and the resulting estimated model solutions (dashed lines) for each subsampling
scheme of R. padi populations in Pardosa-treated cages (top, labelled PP) and Orius-treated cages (bottom,
labelled OO).

4.3.3 Terminal Sampling Protocol

A previous cage experiment [62], which we have used as the basis for this work, employed destructive

sampling on the final day of data collection to obtain estimates of aphid and predator abundances.

When a cage is destructively sampled, each plant is cut at ground level and removed from the cage

before aphids are counted. Aphids that are obscured from view within the plants can be found with

destructive sampling, and we therefore expect that destructive sampling yields a more accurate

count of the population. However, it is not possible to destructively sample a cage more than once,

meaning we cannot sample this way before the end of the experiment.

We recall the importance of a study system’s adherence to both the mathematical model of

dynamics and the statistical model of error in the data in estimating model parameters. In particular,

misspecification of the statistical model can result in inverse problem solutions which appear to fit

the data without matching underlying behavior. This is a problematic outcome, as it is impossible

to tell from standard errors in our estimates and visual fit alone if the data is accurately described

by the models [10]; model-based analysis in this situation could be wrong without any indication
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of the underlying issue. When establishing the experimental sampling protocol, we must consider

the underlying statistical model of error that such a protocol suggests and how we might be able to

identify this model.

Unfortunately, we cannot describe the relationship between the error in non-destructive and

destructive samples at all aphid density levels without destructively sampling over a range of preda-

tor treatments for the duration of the experiment. Without the space and resources to destroy a set

of cages on every day that data is collected, we refrain from destructively sampling the aphid popu-

lation on the final day. We are therefore able to statistically model error with fewer unquantifiable

assumptions, despite trading away the added accuracy of a destructive count on a single day.

4.4 Discussion

4.4.1 A Cautionary Example

When solving the inverse problem, we may find that some parameters are difficult to identify

simultaneously; despite describing different mechanisms, these parameters might have similar

effects on prey dynamics and therefore be indistinguishable when validating the model against

experimental data. To illustrate this, we present a contrived example of a potential identifiability

issue in Fig 4.7, where we consider model solutions for a single predator treatment (Bembidion-

Pardosa) using different parameter values. We choose two reasonable values of h0 based on the

results from [62] (h 1
0 = 2/24, h 2

0 = 3/24). Since we introduced b0 to the model, we do not have prior

results to consult for its value; we consider b 1
0 = 2/24 and b 2

0 = 9/24 to capture a broad range of

resulting model dynamics.

If b0 = b 2
0 , we see a significant difference in the A. pisum population for h0 = h 1

0 (solid line,

circle marker) and h0 = h 2
0 (dashed line, circle marker) on day 8. If populations were close to 450

under treatment A-BP and close to 0 under treatment AR-BP when b0 = b 2
0 , we would conclude that

h0 = h 1
0 . However, suppose we did not know that b0 = b 2

0 and instead assumed that b0 = b 1
0 . Since

error in the data is as likely to over- as under-estimate the aphid population, we might erroneously

conclude that h0 = h 2
0 (dashed line, no marker) instead of h0 = h 1

0 (solid line, no marker) based on a

noisy observation of the true solution (solid line, circle marker).

Given the noise inherent to experimental data (in particular, noise which will increase with

the size of the population we sample), it is unlikely that we could distinguish between these two

population trajectories. We cannot necessarily anticipate where similar problems may arise prior

to parameter estimation, but we can guard against them by sampling sufficiently often in time to

outweigh experimental noise or, if such sampling is not feasible, by comparing parameter results

across different treatment types.
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Figure 4.7 Model trajectories for aphid populations under predator treatment Bembidion-Pardosa. Upper
left: A. pisum aphid treatment. Upper right: R. padi aphid treatment. Lower left: A. pisum in combined
aphid treatment. Lower Right: R. padi in combined aphid treatment. We plot model solutions for all combi-
nations of parameters h 1

0 = 2/24, h 2
0 = 3/24, b 1

0 = 2/24, and b 2
0 = 9/24.

4.4.2 Conclusion

In order to attain sufficient information for model validation, we sample on days 2, 4, 6, and 8. If we

are constrained by resources and cannot sample at this rate, we expect that aphid populations will

be most sensitive to model parameters on days 2, 4 and 8. For treatments under which the aphid

population is rapidly decimated, it may be necessary to sample more frequently at the start of the

experiment. In these cases, we may also sample on days 1 and 3. In our experiment, we cannot

guarantee that there will be sufficient time in the day to obtain the necessary data at the experiment’s

peak, when populations have reached maximal values. It is therefore important that we determine a
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viable subsampling protocol before starting the experiment. We conclude that once the population

reaches a threshold value, subsampling is a viable option. At low population densities, subsampled

populations might poorly estimate the true population size, and so we prioritize fully sampling

these populations when there is insufficient time for the full sampling of all populations.

We note that our proposed experimental protocol is intrinsically linked to the assumed ATN

model for aphid dynamics and statistical model for error in the data. We cannot make general

conclusions about the amount of data required to validate a model with p parameters, or the

frequency with which such data must be collected. Instead, we propose that sampling schemes

should optimize the expected information content in an experimental data set, conditioned on

the anticipated model dynamics and statistical noise. Because we have designed this experiment

to explicitly test our model, we substantially increase our confidence that any observed dynamics

which we fail to capture are based on mechanisms we have missed or misrepresented in the model,

as opposed to simply being caused by insufficient data.
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CHAPTER

5

FITTING THE ATN MODEL TO DATA:

MESOCOSM EXPERIMENT

In this chapter, we attempt to validate the ATN model using data from controlled experiments

conducted in a greenhouse, as outlined in Chapter 4. We begin with a brief description of the

experimental methodology and resulting data set. We also describe our estimation of parameters

for the modified ATN model as well as a version which ignores habitat use. We conclude with a

discussion of our model in light of these results. The results from this chapter appear in [120], which

contains a detailed description of experimental methodology and ecological analysis of these results.

5.1 Study System

5.1.1 Experimental Methods

We continue our study of the ATN model applied to a system of terrestrial arthropods by monitoring

aphid dynamics in a greenhouse mesocosm experiment. The experiment is conducted inside mesh

cages, in which we create miniature foodwebs of plants, aphids, and predators. Aphids are added to

the cages when plants, their primary food supply, are sufficiently grown. The aphids are given two

days to establish in the cages and begin reproduction before predators are added to the cage. For

eight days, we monitor the aphid population in the presence of its predators. After this, plant quality

68



is sufficiently deteriorated that we must terminate the experiment, and the cages are deconstructed.

The mesh cages are kept inside a greenhouse, permitting control of ambient temperature and light.

To explore the importance of body mass in determining aphid dynamics, we use differently

sized species of aphid, Acyrthosiphon pisum and Rhopalosiphum padi. The three possible aphid

treatments are (i) A. pisum, (ii) R. padi, or (iii) A. pisum and R. padi. We use four predators, selected for

variation in body size and habitat use: small foliage-dwelling Orius, large foliage-dwelling Coccinella,

small ground-dwelling Bembidion, and large ground-dwelling Pardosa. See Figure 5.1 for a depiction

of species size differences.

Figure 5.1 Relative sizes of subject organisms in our greenhouse experiments. Photographs courtesy Kate
Wootton.
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Taking pairwise combinations of all predators, including a predator paired with itself, we have

ten possible predator treatments and a control treatment with no predators. We match each predator

treatment with each aphid treatment, for a total of 33 treatments, each of which is replicated six

times. Due to the number of cages required to do this, our experiment is conducted in batches,

and replicates are randomly distributed across batches. That is, the first replicate of two different

treatments do not necessarily occur at the same time, and the fifth replicate of either of these

treatments could occur before the first.

As motivated in Chapter 4, aphid population counts are taken on days 2, 4, 6, and 8 of the

experiment. Additionally, aphids are counted on days 1 and 3 in cages with Coccinella, where the

population is quickly decimated. Predators are only counted on day 8 of the experiment, after

the cages have been deconstructed. We note that in practice, the smaller predators (Orius and

Bembidion) are difficult to recover from the cages, as they can burrow in the dirt. Additionally, we

note that Coccinella and Pardosa regularly escape from cages through small gaps in the mesh walls.

Because Coccinella is not reasonably a prey item for any other species in the experiment, we replace

Coccinella whenever it goes missing from a cage, but we do not replace Pardosa.

5.1.2 Model Assumptions

We recall that the modified ATN model is given by

d Ni

d t
= ri Ni −

∑

j∈Ci

ai jνi j Ni Nj

1+
∑

k∈R j
ak jνk j hk j Nk +

∑

l∈C j
b0a j lν j l Nl

,

ai j = a0W 1/4
i W 1/4

j

�

Wj /Wi

Ro p t
e

1−
Wj /Wi
Ro p t , j

�φ

,

hi j = h0W 1/4
i W −1/4

j ,

νi j = 1− v0T V (µi ,µ j ) = 1− v0 sup
A⊂Ω

�

�µi (A )−µ j (A )
�

� ,

where Ni is the abundance of species i , Wi is the mass of species i , Ci is the set of predators for

species i , andRi is the set of prey for species i . For the set Ω of all modes of habitat use, we define

the probability measure µi :Ω→R for the likelihood that species i occupies someA ⊂Ω. We must

specify Wi , µi ,Ci , andRi from empirical observations and assumptions about the study system.

The parameters ri , a0, Ro p t , j ,φ, h0, and v0 must be estimated from experimental data.

We assume that all species in the experiment adhere to the above dynamics, with the exception

of Coccinella. Due to the aforementioned problem with escaping Coccinella, we do not model this

population and instead directly input its value from our records in driving all other populations’

dynamics. Although we could model the escape and replacement of Coccinella with a switching

birth and death rate, we reason that this would be largely guesswork, as there is no way to know when
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Coccinella escape the cage. This would result in an unnecessarily complicated model, particularly

because we do not expect Coccinella to be prey to other species in the experiment.

The body masses and initial abundances of all species in our system are given in Table 5.1. We

note that the initial abundance of a species is doubled if it appears individually in a treatment;

for example, if Orius is the only predator in a cage, then we include two populations of Orius for

a total of 40 predators. We assume that the initial abundance of a predator species is accurate.

However, because aphids reproduce quickly and establish themselves in the cages with varying

success, we assume that there is some uncertainty in the initial aphid abundance. We therefore

choose to estimate the initial condition Ni ,0 for all aphid populations in the experiment, while taking

the initial condition Ni ,0 from Table 5.1 for all predators. We consider t = 0 to be the day predators

are introduced to the cages, and therefore the estimated value of Ni ,0 for aphids is the population

after two days in the cage.

Table 5.1 The body masses and initial abundances for all species used in the mesocosm experiments.

A. pisum R. padi Bembidion Coccinella Orius Pardosa

Wi (mg) 0.6706 0.1550 2.145 37.4636 0.58 17.72

Ni ,0 (individuals) 75 75 20 2 20 10

In determining the setsCi andRi , we begin with the assumption that aphids do not consume

any other species and that predators consume all other species. We then remove links between

predators and prey where we expect that a feeding interaction would not reasonably occur, due to

mechanisms outside the scope of the current model. For example, we assume that Pardosa would

not consume Coccinella due to its hard shell, and because this interaction is not driven by body

mass or habitat use, we explicitly remove this link. Following similar reasoning, we also assume that

Coccinella does not consume Coccinella or Bembidion. Due to numerical problems associated with

our inability to dynamically model Coccinella, we additionally remove Coccinella as a prey item for

Orius and Bembidion. Although these interactions might reasonably be driven near zero through

parameterization in the ATN model, we do not fit Coccinella populations to data and therefore have

no way to push estimations away from unrealistic assumptions about consumption of Coccinella by

potential predators. The resulting table of species interactions is given in Table 5.2, where predators

are listed along the columns and their potential prey items in the rows. An entry of 0 indicates that

the feeding interaction does not occur, and a 1 indicates the interaction can occur, although the

strength of the interaction is determined by the ATN model.

To determine µi for the species, we partition the cage into six habitat regions: under bean leaf,

bottom 2cm of bean plant, rest of bean plant, bottom 2cm of barley plant, rest of barley, and ground.
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The bean plant is the primary host for A. pisum and the barley plant is the primary host for R. padi.

We additionally consider the walls of the cage, which predators might climb, to be an extension of

the ground. We observe the aphids in each of the control cages on days 2 and 6 of the experiment

and count the number of aphids in each of the habitat regions. We observe on days 2, 4, 6, and 8 of

the experiment the number of predators in each habitat region for single-predator treated cages.

We use these counts to obtain the probability that each species occupies a given habitat region and

compute the total variation distances between their habitat use measures accordingly. In general,

we assume that there is no overlap between different habitat regions in the cages. However, we do

assume that there is some overlap between the floor of the cage and the base of a plant, and that the

magnitude of this overlap is dependent on the size of the predator on the ground. For example, a

predator on the ground with body length 1 centimeter would overlap with 50% of the 2 centimeter

base of a plant. The resulting values of T V (µi ,µ j ) are given in Table 5.3.

Table 5.2 Assumed interaction matrix for species in the cage experiments. Potential feeding interactions
are indicated with a 1, with predators in the columns and their prey items down the rows.

Prey

Predator
A. pisum R. padi Bembidion Coccinella Orius Pardosa

A. pisum 0 0 1 1 1 1

R. padi 0 0 1 1 1 1

Bembidion 0 0 1 0 1 1

Coccinella 0 0 0 0 0 0

Orius 0 0 1 1 1 1

Pardosa 0 0 1 0 1 1

Table 5.3 Total variation T V (µi ,µ j ) for species in the cage experiments.

A. pisum R. padi Bembidion Coccinella Orius Pardosa

A. pisum 0 1 0.9945 0.8700 0.7760 0.9670

R. padi 1 0 0.8870 0.6850 0.7775 0.7670

Bembidion 0.9945 0.8870 0 0.2350 0.6050 0.0450

Coccinella 0.8700 0.6850 0.2350 0 0.4140 0.1970

Orius 0.7760 0.7775 0.6050 0.4140 0 0.5600

Pardosa 0.9670 0.7670 0.0450 0.1970 0.5600 0
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5.2 Estimating ATN Model Parameters

We implement an iterative reweighted least squares parameter estimation, as described in Chapter

1, to obtain estimates of ri , a0, Ro p t , j , φ, h0, and v0 along with the initial conditions Ni ,0 for all

aphid populations. To preserve variability between replicates and treatments, we estimate different

initial aphid abundances for all cages. Solution of the inverse problem requires more data than

can possibly be collected in a single cage, for which there are often more parameters to estimate

than days on which data is collected. We therefore solve the problem simultaneously over several

different treatment types, using all replicates within these treatments.

We define θ to be the vector of parameters and initial conditions we will estimate. Recall that the

iterative reweighted least squares inverse problem corresponds to a relative error statistical model

in which we assume that the population data yi ,c ,d for species i observed at time td in replicate c is

a realization of the random variable Yi ,c ,d defined by

Yi ,c ,d =Ni (td ,θ0) +N
γi

i (td ,θ0)Ec ,d .

Ni (td ,θ0) is the solution to the ATN model for the “true” parameter set θ0 and Ec ,d is normally

distributed noise associated with measurement error. We letA andB be the set of all aphid and

predator populations we use to estimate model parameters andDi the days over which species i is

sampled. Following the iterative reweighted least squares formulation of this problem, we define

the cost functional for realizations {yi ,c ,d }i∈A∪B of the collected data,

J (θ , ~y ) =
6
∑

c=1





∑

i∈A

∑

d∈D
N
−2γi

i (td ,θ )
�

yi ,c ,d −Ni (td ,θ )
�2
+
∑

j∈B
N
−2γ j

j (8,θ )
�

yj ,c ,8−Nj (8,θ )
�2



 .

In the following subsections, we use this cost function to estimate model parameters using three

different subsets of cages from the experiment.

5.2.1 Control Cages - Estimating ri and γi

In control treatment cages, there is no predator influence on the aphid population and the ATN

model reduces to exponential growth. We use the data from these cages to estimate the growth rates

ri of the two aphid species, which are then fixed in the ATN model for predator-treated cages. We

assume that the aphid species have different growth rates, but that across all three aphid treatments

(individual or combined) and the replicates of these treatments, the growth rate should be the same

within each species. We therefore solve two inverse problems, one for each aphid species, in which

the above cost functional reduces to the scalar case of iterative reweighted least squares. We estimate

that rA = 0.29136 and rR = 0.34231.

73



We additionally use the model fit in these cages to determine a preliminary value of γi for

aphid populations. We assume that the underlying statistical model for observational noise in

aphid abundance data is independent of the predator treatment in each cage. We therefore conduct

residual testing for the exponential fit in control cages to inform our choice of γi when solving the

inverse problem in predator-treated cages. We again consider the two aphid species separately,

using data from all three aphid treatments and the replicates of these treatments.

In Figure 5.2, we plot the residuals from our iterative reweighted least squares estimation in

control R. padi cages for different values of γi . We note that because the population grows exponen-

tially, the size of the population increases in time. We can see that for γR = 0.1, residuals have a wide

spread early in the experiment and a narrow spread at the end of the experiment. At this value of γR ,

we conclude that the residuals are not identically distributed in time, because the solution to the

inverse problem minimizes relative error at the end of the experiment, when the aphid population

is at its peak. Conversely, for γR = 0.6, residuals have a narrow spread early in the experiment and

wide spread later in the experiment. We conclude that γR = 0.4 gives the most-balanced spread of

residuals over the course of the experiment. We therefore take γR = 0.4 as a preliminary choice for

observations of R. padi in the remaining predator-treated cages.

In Figure 5.3, we plot the residuals from our iterative reweighted least squares estimation in A.

pisum cages for different values of γA . Using similar criteria as above, we conclude that γA = 0.5 is

the most appropriate choice for the statistical model, although there is less distinction between

these residuals and those obtained for γA = 0.4. There is insufficient data to conduct residual tests for

predator populations, since samples are obtained only on one day during the experiment. However,

we reason that because smaller predators are more difficult to recover, and smaller predators occur

in higher abundance in the experiment, there is a relationship between the observational error and

population size. Having no other information, we take γi = 0.5 for predators in the experiment; this

choice is largely arbitrary, but A. pisum is closer in size to the predators.
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Figure 5.2 Residuals from an exponential fit to all control data for R. padi plotted in time, for different
values of γR .
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Figure 5.3 Residuals from an exponential fit to all control data for A. pisum plotted in time, for different
values of γA .
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5.2.2 Individual Predator Treatments - Estimating Ro p t , j

We use data from the four single-predator treatments to estimate the value of Ro p t , j for each predator

species j . With only one predator, we reason that predator interference (and to a lesser degree,

habitat use) is less important in determining species interactions in these treatments. We therefore

use the information from these cages to establish a baseline for the predator-specific parameter

Ro p t , j . We assume that the optimal predator-prey body mass ratio will vary across predators, but that

this parameter should be constant in the presence of different prey items. We use data from all three

aphid treatments within each single-predator treatment to obtain an estimate of this parameter.

For each predator treatment, this corresponds to data from 24 aphid populations, each sampled on

at least four days, and a single count of 18 predator populations.

In Table 5.4, we list the estimated model parameters for each of the single-predator treatments.

We also give the standard deviation of each parameter in parentheses, using the asymptotic approx-

imation from Chapter 1.

Table 5.4 Estimated model parameters using data from single-predator treatments. Standard errors are
given in parentheses.

Bembidion Coccinella Orius Pardosa

a0 0.03945 (0.00318) 0.2146 (.0181) 0.001 (1.24) 0.00311 (0.0168)

Ro p t , j 52 (26) 300 (2×106) 15 (768) 14 (15)

φ 1.031 (.0161) 0.900 (.0448) 1.10 (7.28) 0.2227 (3.99)

h0 0.01000 (.0476) 0.08 (.00051) 0.09 (110) 0.09 (0.464)

v0 0.9213 (.0161) 1.00 (1×103) 1.00 (174) 1.00 (0.061)

b0 0.090 (2.89) – 0.09 (1×105) 0.001 (23.6)

The results from Bembidion treatment are the most straightforward, and model fits to data are

fair for cages in this treatment (not shown for brevity). The standard deviation for b0 and Ro p t ,B is

high, meaning that we are less certain in the values of these parameters. However, the model is not so

insensitive to Ro p t ,B that the estimate is arbitrary, and so we fix this value when solving the inverse

problem in the combined-predator treatments. The high standard deviation for b0 can be explained

by model insensitivity to this parameter, which is caused by the single-predator treatment. Because

Bembidion is assumed to be a cannibal, other predators in the cage are both alternative prey items

and potential predators, and the attack rate is the same for both interactions. The contributions
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from k , l = B in the functional response for Bembidion, given by

FB = 1+
∑

k∈RB

ak B vk j hk B Nk +
∑

l∈CB

b0aBl vBl Nl ,

therefore reduce to a common term aB B vB B (hB B + b0)NB . The model is theoretically sensitive to b0

because h0 independently occurs in the term aAB vAB hAB NA +aR B vR B hR B NR for alternative aphid

prey items. However, in practice, we find that contribution to the functional response due to b0 is

insignificant when compared to h0, particularly at the low estimated value.

The high standard deviations in our estimates from the Coccinella treatment are largely due to

the fact that Coccinella is not its own predator, and so aphid dynamics are insensitive to many model

parameters. We cannot meaningfully estimate b0 in this treatment, since there are no predators

present to cause interference. Additionally, there is a tradeoff between parameters a0, Ro p t , φ,

and v0 in determining the magnitude of attack rates. Intuitively, we are attempting to specify the

magnitude of two effective attack rates (aAC and aR C ) using four parameters, and the resulting

insensitivity of some of these parameters is unsurprising. In particular, we note that T V (µC ,µA) =

0.870 and T V (µC ,µR ) = 0.685, and so v0 = 1 results in a preference for attacks on R. padi. Similarly,

WC /WA = 55.9 and WC /WR = 241.7, which means that Ro p t ,C = 300 yields the same preference. The

magnitude ofφ tunes the strength of the preference, determining the ratio of attacks made on either

species of aphid, and the value of a0 scales the frequency of attacks as necessary.

The estimates from Orius and Pardosa treatments have the highest uncertainty in estimated

parameters, without a clear cause. In general, these predators have a smaller impact on aphid

populations, compared to Coccinella and (to a lesser degree) Bembidion. The estimated value

of a0 results in a minimal attack rate on aphid populations, and so aphid dynamics are not very

sensitive to model parameters. In some cages, this makes sense; the presence of Orius or Pardosa

can permit growth comparable to what we see in some control cages. However, there is significant

variation in the aphid population’s growth across replicates; for example, see Figure 5.4, where we

plot the population data from the six replicates of only R. padi in an Orius treatment. The final aphid

populations in replicates 2, 4, and 6 are close to those seen in most control R. padi populations in

a combined treatment and one control R. padi population in an individual treatment. However,

the aphid populations in replicates 1, 3, and 5 are clearly impacted by the Orius treatment. We

additionally note that there is no clear correlation between the final population of Orius and R. padi

in these treatments. The solution to the inverse problem fits the high growth cages under Orius

and Pardosa treatments well, but the estimated initial condition must be very low to fit populations

similar to those seen in replicates 1, 3, and 5.
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Figure 5.4 Population of R. padi for replicates of Orius-treated cages and R. padi the only aphid species.
Data is plotted with a circle marker (◦) and model fit to data with a solid line.

We additionally use these same data sets to estimate model parameters assuming that v0, b0 = 0.

We list in Table 5.5 the estimated values of a0, Ro p t , j ,φ, and h0 in this case, as well as the standard

deviation of each parameter in parentheses. In general, the standard deviation is lower for estimated

parameters; this is due to an increased sensitivity to model parameters, with the redundancies

discussed above removed from the inverse problem. The exception to this pattern is the solution to

the inverse problem for Pardosa treated cages, which we discuss below.

Table 5.5 Estimated model parameters using data from single-predator treatments, assuming v0, b0 = 0.
Standard deviations are given in parentheses.

Bembidion Coccinella Orius Pardosa

a0 0.00165 (0.00006) 0.2146 (0.0181) 0.001 (.0112) 0.00287 (2×107)

Ro p t , j 27.4 (2) 269 (6) 30 (433) 1.007 (2×109)

φ 1.20 (0.0255) 0.8639(0.0245) 1.00 (1.25) 0.838 (7×109)

h0 0.089 (.0063) 0.05512 (0.00216) 0.09 (.003) 0.0739 (5×109)

79



In Figure 5.5, we plot the model fit to data for the first replicate of all three aphid treatments

under the individual Pardosa treatment. The data for R. padi is plotted with a circle marker (◦), the

data for A. pisum is plotted with a square marker (�), and the data for Pardosa is plotted with a

triangle marker (4). The model fit for R. padi is plotted with a solid line, and the fit for A. pisum is

plotted with a dashed line. We plot the solutions with v0, b0 as well as the solutions when v0, b0 = 0,

indicating the latter with dotted lines; for the aphid populations, these fits are indistinguishable

from one another. We plot the model fit with v0, b0 to the predator population using a solid line and

the fit for v0, b0 = 0 using a dotted line; these fits differ by only 1 or 2 individuals over the course of

the experiment. We observe the same behavior for other replicates (not plotted for brevity). Despite

the similarity between model fits, as well as comparable values of a0, the standard deviation of

estimated parameters when v0, b0 = 0 is unreasonably high. The cause of this seems to be a lack of

sensitivity in some cages; at the value of Ro p t ,P estimated when v0, b0 = 0, some model solutions

have no sensitivity toφ.
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Figure 5.5 Model fit to data for a replicate of all aphid treatments under Pardosa single-predator treatment.
Model fit to data is plotted with lines, and dots indicate the fit when v0, b0 = 0. We use markers to indicate
the abundance data for R. padi (◦), A. pisum (�), and Pardosa(4).
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5.2.3 Combined Predator Treatments - Estimating Scaling Constants

We finally use the remaining data, consisting of the three aphid treatments in the presence of distinct

two-predator combinations, to estimate the remaining ATN model parameters, a0,φ, h0, v0, and

b0. This corresponds to data from 18 treatment types, each with six replicates, for a total of 144

aphid populations and 216 predator populations. We fix values of Ro p t , j as estimated in the previous

section and consider the case where v0, b0 are freely estimated as well as when we enforce the

constraint v0, b0 = 0. In Table 5.6, we list the estimated parameters for both cases, with standard

deviations in parentheses. In the figures following the table, we show representative plots of the full

ATN model with habitat use for each combined predator treatment.

We first note that standard deviations are significantly lower than in the single predator treat-

ments. Although model fit to data is sometimes poor in this larger data set, we find that the solution

of the inverse problem is more sensitive to all parameters under many treatments, resulting in lower

estimated values of the standard deviation. However, we note that standard deviations are still lower

when we fix v0, b0 = 0 than when we estimate these parameters. In the case of a0, this may be an

unfair comparison; the estimated value of a0 when v0, b0 = 0 is significantly lower than when we

estimate v0, b0. The inclusion of habitat use in our model reduces attack rates on aphid populations

by their predators, and so a higher value of a0 is required to achieve the same level of predation on

the aphid population.

Table 5.6 Estimates of ATN model parameters and standard deviations in combined-predator treatments.

a0 φ h0 v0 b0

v0, b0 free 0.11 (0.0005) 0.4 (0.019) 0.09 (0.0013) 0.9457 (0.0004) 0.09 (0.0120)

v0, b0 = 0 0.00841 (0.00002) 0.5 (0.0083) 0.099 (0.0007) – –

We plot the full model fit to data in Coccinella-Bembidion treatments for the second replicate of

all three aphid treatments in Figure 5.6. The model fit to the individual R. padi treatment (top-left

plot) is typical for decreasing aphid populations. The ATN model fit to all data does not capture the

devastating effect of Coccinella on R. padi. The model can match R. padi abundance data from some

Coccinella-treated cages, but this is only possible when the R. padi population is growing, albeit

at low rates. The parameters which determine appropriate attack rates for other predators in the

experiment are not sufficiently high to match the force of predation in Coccinella cages. Additionally,

model solutions for the Bembidion population are usually too low at the end of the experiment, as

seen in the three bottom plots as well as Figures 5.10 and 5.7. We note that the model solution when

v0, b0 = 0 generally yields higher values of Bembidion, with aphid populations largely unchanged.

81



0 2 4 6 8
20

40

60

80

100

120

140

160

180
R. padi − Rep. 2

ap
hi

d 
po

pu
la

tio
n

0 2 4 6 8
0

5

10

15

20

pr
ed

at
or

 p
op

ul
at

io
n

days

0 2 4 6 8
0

200

400

600

800

1000

1200

1400
A. pisum − Rep. 2

0 2 4 6 8
0

5

10

15

20

days

0 2 4 6 8
0

500

1000

1500

2000

2500

3000
R. padi, A. Pisum − Rep. 2

0 2 4 6 8
0

5

10

15

20

days

Figure 5.6 ATN model fit to data for a replicate of all aphid treatments under Coccinella-Bembidion
combined-predator treatment. Model solutions for populations of Coccinella and R. padi are indicated
with solid lines and Bembidion and A. pisum are indicated with dashed lines. We use markers to indicate
the abundance data for R. padi (◦), A. pisum (�), Coccinella (4), and Bembidion (∗).

In Figures 5.7 and 5.8, we plot the full model fit to data for the sixth and fourth replicates

of the three aphid treatments under Pardosa-Bembidion and Pardosa-Coccinella combinations,

respectively. We again note that the fit to the individual R. padi population is significantly worse

in the treatment with Coccinella, but that fits to increasing aphid populations are closer to the

observed abundances. When v0, b0 = 0, the solutions to the inverse problem are similar, except for

the aforementioned difference in Bembidion populations.

We compare the model solution for Bembidion and Pardosa treatments at the end of the experi-

ment (Figure 5.7). The estimated model solutions for the Pardosa populations are much closer to

the experimental values than we generally see for Bembidion. However, in the cage with Coccinella

(Figure 5.8), model solutions for the Pardosa population are much lower than the observed values.

This is because Coccinella is not a prey item for Pardosa; our model predicts low attack rates on
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aphid populations by Pardosa and in the absence of alternative prey items to increase the functional

response, the force of predation on Pardosa is higher. We can see that approximations to Pardosa

populations are improved in Figure 5.11, where Orius is available as an alternative prey item. We

note that the Pardosa population is not always underestimated by the model solution, although the

example we selected does exhibit this behavior. Additionally, for the restricted model (v0, b0 = 0), we

see some change in the modelled Pardosa populations, but the resulting fit to data is not noticably

different.
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Figure 5.7 ATN model fit to data for a replicate of all aphid treatments under Pardosa-Bembidion
combined-predator treatment. Model solutions for populations of Pardosa and R. padi are indicated with
solid lines and Bembidion and A. pisum are indicated with dashed lines. We use markers to indicate the
abundance data for R. padi (◦), A. pisum (�), Pardosa (4), and Bembidion (∗).

83



0 2 4 6 8
0

10

20

30

40

50

60
R. padi − Rep. 4

ap
hi

d 
po

pu
la

tio
n

0 2 4 6 8
0

2

4

6

8

10

pr
ed

at
or

 p
op

ul
at

io
n

days

0 2 4 6 8
0

1000

2000

3000

4000

5000

6000
A. pisum − Rep. 4

0 2 4 6 8
0

2

4

6

8

10

days

0 2 4 6 8
0

100

200

300

400

500
R. padi, A. Pisum − Rep. 4

0 2 4 6 8
0

2

4

6

8

10

days

Figure 5.8 ATN model fit to data for a replicate of all aphid treatments under Pardosa-Coccinella
combined-predator treatment. Model solutions for populations of Pardosa and R. padi are indicated with
solid lines and Coccinella and A. pisum are indicated with dashed lines. We use markers to indicate the
abundance data for R. padi (◦), A. pisum (�), Pardosa (4), and Coccinella (∗).

We next plot sample solutions of the full ATN model for three aphid treatments when subjected

to Orius-Coccinella and Orius-Bembidion treatments, in Figures 5.9 and 5.10 respectively. In both

of these examples, the individual R. padi population is slowly increasing, or close to constant with

significant noise in the data. As mentioned above, the model approximation matches the general

trend of the data under these conditions. However, the estimated initial condition for R. padi is

very low in these cages (the same type of solution can be seen above in Figure 5.8). Although the

visual fit to data in these cages is improved, the estimated initial condition may not be realistic.

This initial condition is much lower than what we estimate in cages with larger aphid populations.

Instead of beginning at a very low value, the population may have been higher at t = 0, before

rapidly decreasing after the introduction of predators and increasing later in the experiment. When

estimating model parameters on smaller subsets of the data, we can recreate dynamics that match
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this expected behavior. However, our goal is to demonstrate general applicability of the model to the

bulk of our experimental data. We therefore trade potential accuracy in some individual descriptions

of population dynamics for a single estimate of ATN model parameters which provides an adequate

description of most populations’ dynamics.
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Figure 5.9 ATN model fit to data for a replicate of all aphid treatments under Orius-Coccinella combined-
predator treatment. Model solutions for populations of Orius and R. padi are indicated with solid lines and
Coccinella and A. pisum are indicated with dashed lines. We use markers to indicate the abundance data
for R. padi (◦), A. pisum (�), Orius (4), and Coccinella (∗).
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Figure 5.10 ATN model fit to data for a replicate of all aphid treatments under Orius-Bembidion combined-
predator treatment. Model solutions for populations of Orius and R. padi are indicated with solid lines and
Bembidion and A. pisum are indicated with dashed lines. We use markers to indicate the abundance data
for R. padi (◦), A. pisum (�), Orius (4), and Bembidion (∗).

The last combined predator treatment is Pardosa-Orius, for which we plot model solutions of the

full ATN model for a single replicate of the three aphid treatments in Figure 5.11. As in the individual-

predator treatments, these two predators often have a minimal effect on aphid populations. However,

we note that the model solutions for Orius abundance at the end of the experiment are close to

observed values. We see that, to a lesser extent, this is also true in Figures 5.9 and 5.10. However,

when we restrict v0, b0 = 0, the fit to Orius populations is generally worse. This is particularly true in

cages with Pardosa; overall reduced attack rates result in low predation on Orius, which is close in

size to the aphid species when compared to Pardosa. Due to difficulty in recovering the predators,

there is significant uncertainty in final Orius abundances, and if anything, the observed data is an

underestimate of the true population. We therefore hesitate to draw any conclusions about the

significance of this difference.
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Figure 5.11 ATN model fit to data for a replicate of all aphid treatments under Pardosa-Orius combined-
predator treatment. Model solutions for populations of Pardosa and R. padi are indicated with solid lines
and Orius and A. pisum are indicated with dashed lines. We use markers to indicate the abundance data
for R. padi (◦), A. pisum (�), Pardosa (4), and Orius (∗).

We chose not to plot estimated model solutions for the restriction of v0, b0 = 0 in the above

examples. Population trajectories were generally similar, although sufficient variation existed to

reduce graph readability. However, these small differences in model solutions accumulated over the

entirety of the data set. In Table 5.7, we list the final iterative reweighted least squares cost associated

with the full ATN model and its restriction to v0, b0 = 0. We additionally list the number of data

points used to obtain our iterative least squares parameter estimates. Following the description of

residual sum of squares-based model selection criterion for nested models from Chapter 1, we test

the null hypothesis that the “true,” or nominal, ATN model parameter values for combined-predator

treatments adhere to the restriction v0, b0 = 0.

We respectively define θ̂H and θ̂ to be the estimated ATN model parameters given in Table 5.6

for the restricted case v0, b0 = 0 and for freely varying v0, b0 during parameter estimation. Then for
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J (θ , ~y ) as defined in 5.2, the realization of our test statistic for the null hypothesis is

Û =
M
�

J (θH , ~y )− J (θ , ~y )
�

J (θ , ~y )
= 59.19.

Since the null hypothesis restricts the value of two variables, we consult a table of critical values for

the χ2 distribution with two degrees of freedom. We conclude that we can reject the null hypothesis

(that v0, b0 = 0) with 99.9% confidence. That is, the nominal ATN model parameter values for

populations subjected to combined-predator treatments do not necessarily satisfy v0, b0 = 0. We

note that due to the number of parameters used in solving the inverse problem, we would have

rejected the null hypothesis for any relative difference in iterative reweighted least squares cost for

these two cases greater than 1.5%.

Table 5.7 Total variation T V (µi ,µ j ) for species in the cage experiments.

IRLS cost with v0, b0 free (J (θ̂ , ~y )) 9.06×104

IRLS cost with v0, b0 = 0 (J (θ̂H , ~y )) 9.68×104

Number of data points (M ) 865

5.3 Conclusion

We note that in individual-predator treatments, there is insufficient information to estimate param-

eters for the modified ATN model. We theorize that this is not caused by scarcity of data, but instead

by an inappropriate foodweb configuration; the mechanisms described by the modified ATN model

are less relevant in a single-predator system, compared to a two-predator system. In contrast, we

can estimate the parameters for the modified ATN model in combined-predator treatments with a

reasonable degree of confidence. We note that habitat use (as quantified by v0) seems to be more

important in describing aphid dynamics than intraguild predator interference (as quantified by b0).

In future work, we may return to the classic ATN model description of intraspecific competition

instead of general predator interference, while retaining our formulation of habitat use overlap.

The modified ATN model fits the data with less error than the model without habitat use or

predator interference, and we can reject this simpler model with 99.9% confidence. However, the

description of aphid dynamics is similar between the two models, and we can see that the effect of

habitat use overlap is absorbed by the optimal predator-prey body mass ratios, Ro p t , as well as the

scaling parameter for attack rates a0. It remains to be seen if the additional complexity presented

by the modified ATN model is necessary to describe predator-prey dynamics in more complicated

study systems. Additionally, our specification of habitat use may not be appropriate for Coccinella,
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which is more voracious than model predictions; we note that instead of randomly moving through

its habitat zones, Coccinella actively hunts while in proximity to aphids and rests at other times. In

future work, we hope to investigate the appropriateness of our formulation of attack rates between

Coccinella and its prey.
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CHAPTER

6

FIELD-LEVEL DESIGN OF EXPERIMENTS

In this chapter, we consider the design of field-level experiments for the validation of predator-prey

models for dynamics in a system of terrestrial arthropods. We motivate the use of a partial differential

equation model for the dynamics of three populations in a field, as well as a 1-dimensional reduction

of this model. We then investigate the estimation of model parameters using synthetically generated

data and compare these results to parameter estimation in an analagous ordinary differential

equation model. The results from this chapter are an initial proof-of-concept exercise, which we

will expand in a future publication.

6.1 Introduction

Throughout this work, we have focused on the validation of ordinary differential equation models

for predator-prey dynamics. This type of model has been sufficient for quantifying the interac-

tions between predators and prey on a small scale, but the biological control of pest species in an

agricultural field will be driven by spatial processes outside the scope of our current model. Due

to the seasonally varying nature of agroecosystems, landscape composition affects the diversity

and abundance of predator communities [18, 108, 113]which in turn affects the level of biological

control in the field [50, 68, 103]. In particular, landscape use at the border of agricultural fields affects

the migration of beneficial predators into a field [54, 110, 111, 118]. We must therefore understand

the spatial processes underlying population dynamics in order to describe the predator community
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in an agricultural field.

In order to investigate the contribution of these factors to biological control, we develop a simple

partial differential equation model for predator-prey dynamics in an agricultural field over a single

season. In contrast to our previous modelling efforts, we additionally consider crop dynamics in this

model; our primary motivation for this decision is that pest growth is limited by crop availability,

but an additional benefit to this decision is our ability to monitor crop viability (and therefore the

economic benefits of biological control ecosystem services). We again consider a single population

of aphid pests which feed on this crop, but we do not preserve the species-level resolution of the

predator community from our previous work. We instead consider a single predator population in

this preliminary work, as a multiple-predator model would be complicated and we are primarily

interested in understanding spatial effects on the population. Our eventual goal is to formalize

questions about biological control as a boundary control problem, since the predator community

in an agroecosystem is partially determined by landscape use at the edge of the field.

In this work, we consider the implications of this model’s simple spatial dynamics on the design

of field-level experiments. We are primarily interested in the utility of this model for theoretical

study of biological control under varying conditions, and so we seek an understanding of the data

necessary for this model’s validation in real-world settings. However, we also study this model

within the framework of our attempts at validating the Allometric Trophic Network (ATN) model

against field-level dynamics. Regardless of the model to which we fit it, data from a field is inherently

dependent on spatial processes. We are therefore interested in the effect of these assumed spatial

dynamics on our ability to validate an ordinary differential equation model for population dynamics.

6.2 Spatial Model

We consider the domain of the field to be some Ω⊂R2, with boundary ∂ Ω. We define the quantities

A(x, t ), B (x, t ), and C (x, t ) to be the population densities of the crop, pest, and predator respectively

for x ∈Ω and t ≥ 0. We assume that the crop grows logistically at some rate rA with carrying capacity

KA and is consumed at some rate µA by the pest, with dynamics given by

d

d t
A(x, t ) = rA

�

1−
A(x, t )

KA

�

A(x, t )−µA A(x, t )B (x, t ).

We note that although the density of the crop is defined on the 2-D region Ω, the crop does not have

spatial dynamics. We therefore only specify an initial condition for the population, A(x, 0) =A (x).
We assume that the pest grows at some rate rB as crop resources are consumed. In reality, we

expect pest growth to be limited; as aphids become crowded in a resource-scarce environment, they

switch to the production of flying alatae which permit migration to a resource-rich environment

[38, 39]. However, because this is a spatial process which does not result in the loss of aphids in the
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field, we model this as a diffusion from high-density areas at a rate dB . In the presence of predators,

we assume an additional difffusion at some rate dB C . Although we do not expect aphids to actively

evade predators, it has been noted that aphids are knocked from a plant with increasing frequency

when disturbed by predators [37, 73, 74]. In greenhouse experiments, we additionally noted that

such disturbances resulted in increased movement towards neighboring plants by more-mobile

aphids (of the species A. pisum). This type of diffusion may not be appropriate for all aphid species

or terrains, but we assume that it is possible in our preliminary treatment of this model. We finally

assume that the pest is consumed by predators at some rate µB .

The dynamics of the pest are therefore given by

∂

∂ t
B (x, t ) = rB A(x, t )B (x, t ) +∇· [(dB +dB C C (x, t ))∇B (x, t )]−µB B (x, t )C (x, t ).

We assume that the initial condition of the pest in the field is given by B (x,0) = B (x) and that

there is no movement of pests beyond the boundary of the field; aphids migrate by flight [38, 39],

and so movement from the field would occur over the entirety of the domain, but we assume that

the net effect of migration between fields is negligible for this preliminary model. The boundary

condition for the population is therefore given by ∇B (x, t )|x∈∂ Ω = 0. We note, however, that landscape

composition might affect pest migration patterns [14, 117] and that this condition may be affected

by land-use around the field; moreover, movement of aphids within a field might be affected by

growing different types of crops simultaneously, and the theoretical work of [15] indicates that this

might have a strong impact on pest abundance.

We assume that the predator does not experience growth for the duration of the season. Although

this may not be a reasonable assumption for true ecosystems, the timing of reproduction and effect

on within-field dynamics varies across predator species; in the interest of developing a tractable

model for theoretical investigation, we temporarily accept this erroneous assumption. We first

assume that predators diffuse at some rate dC ; this is a well-studied assumption for randomly

moving foragers [59, 115], although modifications for more complicated behavior are necessary. We

additionally assume that predators undergo directed movement with velocity ~V (x, t ). This directed

movement accounts for “prey-taxis” [65], or the movement of predators towards prey populations,

at some rate dV B . This velocity also experiences smoothing with some diffusion constant dV , which

quantifies the effects of intraspecific competition on predator movement [3].

We follow the model development of [3] in our formulation of ~V (x, t ), and the resulting dynamics

for the predator and its velocity are given by

∂

∂ t
C (x, t ) =∇· [dC∇C (x, t )] +∇· [ ~V (x, t )C (x, t )],

∂

∂ t
~V (x, t ) = dV B∇B (x, t ) +dV∆ ~V (x, t ).
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We assume that the initial condition of the predator in the field is given by C (x, 0) =C (x) and that the

initial velocity of the predator is given by ~V (x, 0) = ~0. As with the pest species, we assume that there

is no movement of predators beyond the boundary of the field. We eventually hope to incorporate

boundary-value dynamics in this model, but the flux of predators at the field boundary depends on

the quality of prey resources both within and outside the field. We begin with the assumption that

this field is isolated from another predator community. The boundary conditions for the predator

and its velocity are therefore given by ∇C (x, t )|x∈∂ Ω = 0 and ~V (x, t )
�

�

x∈∂ Ω = ~0.

6.2.1 1-D Reduction

For this preliminary work, we consider the reduction of our partial differential equation (PDE) to

one dimension. Although we are eventually interested in answering questions on a 2-D domain, we

begin by considering a simpler case. We therefore define Ω= [0, L ] for L the length of an agricultural

field and have x ∈R. The quantities A(x , t ), B (x , t ) and C (x , t ) can therefore be thought of as the

population densities of the crop, pest, and predator along a single “slice” of the agriultural field (see

Figure 6.1 for a schematic of this domain).

x=Lx=0
x+  t = t* fixed 

∂B
  ∂

C
∂x
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x

 =
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Outside      Inside Field          Outside
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 (predator velocity)

Field               Field
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(predator)

V 
=

V 
=

Figure 6.1 The values of the crop, pest, and predator populations are indicated in green, red, and blue
respectively at a fixed time t ∗ along the length of the field, x ∈ [0, L ].

We suppress the functional notation of our states for simplicity, letting A = A(x , t ), B = B (x , t ),
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and C =C (x , t ). We additionally note that in one dimension, the velocity ~V can be written as a scalar

quantity, for which positive values correspond to motion in the positive x -direction (increasing

values of x and negative values correspond to motion in the opposite direction. We denote this

quantity by V = V (x , t ). The system of differential equations corresponding to this reduction is

given by

d A

d t
= rA

�

1−
A

KA

�

A−µA AB ,

∂ B

∂ t
= rB AB + [dB +dB C C ]

∂ 2B

∂ x 2
+dB C

∂ C

∂ x

∂ B

∂ x
−µB B C ,

∂ C

∂ t
= dC

∂ 2C

∂ x 2
+
∂ V

∂ x
C +V

∂ C

∂ x
,

∂ V

∂ t
= dV B

∂ B

∂ x
+dV

∂ 2V

∂ x 2
.

(6.1)

The initial conditions for our system are given by

A(x , 0) =A (x ), B (x , 0) =B (x ), C (x , 0) =C (x ), V (x , 0) = 0,

and our states satisfy the boundary conditions

∂ B

∂ x
(0, t ) =

∂ B

∂ x
(L , t ) = 0,

∂ C

∂ x
(0, t ) =

∂ C

∂ x
(L , t ) = 0,

V (0, t ) =V (L , t ) = 0.

We note that in order to have V (0, t ) =V (L , t ) = 0 for all t , we must necessarily have

∂ V

∂ t
(0, t ) =

∂ V

∂ t
(L , t ) = 0.

However, because ∂ B
∂ x (0, t ) = ∂ B

∂ x (L , t ) = 0, substitution into the PDE for ∂ V
∂ t yields an additional

boundary condition,
∂ 2V

∂ x 2
(0, t ) =

∂ 2V

∂ x 2
(L , t ) = 0.

We will utilize this condition in our numerical approximation scheme.

6.2.2 Numerical Approximation

To numerically evaluate this PDE, we utilize the method of lines [98] and reduce the model to a

system of ordinary differential equations by substituting discretized approximations for spatial
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derivatives. We discretize our domain into a uniform grid with mesh size h . The points along this

spatial grid are {xk }Mk=1 given by

x1 = 0, x2 = h , ..., xM = h (M −1) = L

for M = L/h+1 the number of grid points. We then define for all k = 1, ..., M the states Ak (t ) = A(xk , t ),

B k (t ) = B (xk , t ), C k (t ) =C (xk , t ), and V k (t ) =V (xk , t ), which vary only in time. We then utilize the

central difference approximations for first and second spatial derivatives, given by

∂ F

∂ x
≈

F (x +h )− F (x −h )
2h

and
∂ 2F

∂ x 2
≈

F (x +h )−2F (x ) + F (x −h )
h 2

for a general function F (x ).

Substituting these approximations for the spatial derivatives in (6.1) for our system of discrete

states yields the ordinary differential equations,

d Ak

d t
= rA

�

1−
Ak

KA

�

Ak −µA Ak B k ,

d B k

d t
= rB Ak B k +

�

dB +dB C C k
� B k+1−2B k +B k−1

h 2
,

+dB C

�

C k+1−C k−1
� �

B k+1−B k−1
�

4h 2
−µB B k C k ,

d C k

d t
= dC

C k+1−2C k +C k−1

h 2
+

V k+1−V k−1

2h
C k +V k C k+1−C k−1

2h
,

d V k

d t
= dV B

B k+1−B k−1

2h
+dV

V k+1−2V k +V k−1

h 2
.

The initial conditions are given by

Ak (0) =A (xk ), B k (0) =B (xk ), C k (0) =C (xk ), V k (0) = 0.

We note that for k = 0, M we rely on the boundary conditions of our PDE to define the quantities at

xk−1 and xk+1, respectively. These conditions are given by

B−1 = B 1, B M+1 = B M−1,

C −1 =C 1, C M+1 =C M−1,

V 0 =V M = 0, V M+1 =−V M−1, V −1 =−V 1.
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6.2.3 Analagous Ordinary Differential Equation Model

We finally consider the analagous ordinary differential equation (ODE) model for population dy-

namics over the entire domain. That is, we define the quantities

AI (t ) =

∫ L

0

A(x , t )d x and BI (t ) =

∫ L

0

B (x , t )d x (6.2)

and seek the differential equation which describes the dynamics of these states. We note that because

the predator does not experience growth and does not cross the boundary of the field, the total

predator population is fixed at C =
∫ L

0
C (x )d x for all time. The dynamics for AI and BI analagous

to the dynamics assumed by the PDE model are

d AI

d t
= rA

�

1−
AI

KA

�

AI −µA AI BI ,

d BI

d t
= rB AI BI −µB BI C ,

with initial conditions

AI (0) =

∫ L

0

A (x )d x and BI (0) =

∫ L

0

B (x )d x .

We note that in practice, the solutions to this differential equation with fixed model parameters

(rA , KA , µA , rb , and µB ) do not satisfy the desired equalities given in (6.2) for A(x , t ) and B (x , t )

solutions to our PDE model with the same parameters. Instead, given a set of true parameters

rA , KA , µA , rb , and µB , there are best-fitting parameters rA,I , KA,I , µA,I , rB ,I , and µB ,I such that

AI (t )≈
∫ L

0

A(x , t )d x and BI (t )≈
∫ L

0

B (x , t )d x

for AI , BI solutions to the ODE model with parameters rA,I , KA,I , µA,I , rB ,I , and µB ,I and A, B

solutions to the PDE model with parameters rA , KA , µA , rb , and µB .

6.3 Synthetic Experiments

We consider the duration of a season to be 0 ≤ t ≤ 90 days and we define the length of the field

to be L = 1, scaling our parameters for spatial motion accordingly. We consider the average size

of an agricultural field to be 3 hectares, which corresponds to a field length of approximately 170

meters. We refer to [31] for the expected rate of diffusion dC of the predator community, and in the

absence of data on aphid diffusion, we assume that the prey diffuses ten-times more slowly than the
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more-mobile predator population. We assume that directed movement of the predators dBV occurs

ten-times more quickly than natural diffusion and that the movement of aphids when disturbed by

predators occurs ten-times more quickly than natural diffusion. We therefore take the parameter

values

dB = 0.0001, dB C = 0.001, dC = 0.001, dV B = 0.01, and dV = 0.01.

We nominally fix the carrying capacity of the crop at KA = 1, and specify the growth rate rA = 0.08,

which permits the crops to grow to maturity over the duration of our season. We use the prey

growth rate rB = 0.75, following our observations from greenhouse experiments. We set the rates

of predation to be µA = 0.9 and µB = 0.7, which did not result in eradication of the plants or pests

for the duration of the season. Following the goal of our previous work, we will assume that the

synthetic experiment is conducted with the goal of estimating the predation rate on the pest species,

µB , but that other parameters are unknown and must be estimated as well.

Specifically, we assume that the parameters µA , µB , dB , and dC must be estimated. We assume

that the parameters related to plant and aphid growth (rA , KA , and rB ) can be specified from other

sources and are not estimated. We additionally assume that the relationships dB C = 10dB and dV B =

dV = 10dC are given when solving the inverse problem. Although in future work we may consider

estimating additional parameters or incorrectly specifying some of our assumed parameters, we

take this idealized case in our preliminary investigations.

We assume that the initial condition of the crop is uniformly A(x , 0) = 0.05 for all 0≤ x ≤ L and

that the initial condition of the prey population is B (x , 0) = 0.1 for all 0≤ x ≤ L . We assume that the

predator population is non-uniform at the start of the season, with the highest abundances at the

edge of the field. We therefore take C (0,0) = C (L ,0) = .25 and C (x ,0) = .1 for all 0 < x < L . When

solving the inverse problem, we let A0 and C0 be fixed and only estimate B0; again, this is aligned

with our approach to parameter estimation for similar study systems in our previous work.

We plot in Figure 6.2 the solution for the aphid population which adheres to our model’s dynamics

under these conditions. On the left, we plot a heat map of the aphid population, with position in the

field on the horizontal axis and time increasing along the vertical axis. The population is uniformly

distributed to start, before peaking at the edges of the field mid-season. This might seem counter-

intuitive, as the predator population is initially concentrated at the edges of the field; the predators

begin moving toward the un-exploited aphid population in the middle of the field during the first

half of the season, causing the edges to be neglected. By the end of the season, the predators again

cover the edge of the field and the aphid population is at its highest in the middle of the field.

On the right, we plot the total aphid population in the field along the vertical axis, against

time on the horizontal axis. We indicate with a solid line the true total aphid population, obtained

by numerically integrating the solution to the PDE over the spatial domain. With a dashed line,

we indicate the closest-fitting ODE approximation to the true total population. We fix rA,I = rA ,
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KA,I = KA , and rB ,I = rB at the same values as the PDE, but we estimate values ofµA,I andµB ,I which

yield the desired population levels. We obtain

µA,I = 0.8960 and µB ,I = 0.6693,

which results in an approximated population which closely matches the true solution, with a slight

over-estimation at the population’s peak.
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Figure 6.2 The “true” aphid population utilized in our synthetic experiments, plotted against both field
length and time on the left. The total aphid population in the field is plotted against time on the right.

We generate synthetic data which is sampled at points x j =∆x · j for j = 1,2, ..., L/∆x +1 and

times tk =∆t ·k for k = 1, 2, ..., 90/∆t +1. We consider spatial grids corresponding to

∆x = 0.05 , 0.1, 0.15, 0.2, 0.25, 0.3, and 0.5

and temporal grids corresponding to waiting

∆t = 3, 7, 10, 14, 21, and 28

days between samples. We assume that it is possible to collect data on the pest and predator

populations (B (x , t ) and C (x , t )), but that there is no data on the plant population; although it is

certainly possible to monitor plant growth over the course of the experiment, our previous work has
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not relied on this type of data. We therefore generate synthetic data {B̂ i
j , Ĉ i

j }x j ,ti
sampled at every

combination of these spatial and temporal grid sizes.

We introduce an absolute error to the data which is normally distributed with mean zero and

varianceσ2 = 0.01 orσ2 = 0.05. Data which is noisier than this becomes problematic in estimating

parameters in the PDE model; because we are interested in comparing performance between

sampling strategies, we choose sufficiently low noise to give an appropriate solution to the inverse

problem at some sampling strategies. We use two criteria to evaluate the performance of the inverse

problem on synthetic data; we first consider our ability to estimate the parameter µB , which is

related to the biological control of the pest species, and we additionally consider the accuracy with

which we fit the underlying model dynamics.

We directly estimate PDE model parameters by a least squares minimization over the synthetic

data, fitting the numerical approximation of our model to the set of all {B̂ i
j , Ĉ i

j }x j ,ti
. To estimate

ODE model parameters, we must numerically integrate our synthetic data over our spatial domain.

That is, the data for the parameter estimation is given by

B̂ i
I =

L/∆x+1
∑

j=1

1

∆x
B̂ i

j ,

against which we fit the model for BI (t ). We note that because the predator population is assumed to

be constant in this model, we only use data from the pest population in estimating model parameters.

6.3.1 Effect of Spatial Grid on Parameter Estimates

We first consider the effect of different values of∆x on our ability to estimate model parameters.

Using the PDE model, we hope to identify the value of µB in the synthetic experiment. However,

in the ODE model, we can only hope to identify the value of µB ,I ; it is therefore important to note

that the value of µB ,I introduces an error of approximately 0.04 to the true value of µB , and so low

error in the estimate of µB ,I still represents a poor approximation to µB . We average the error in our

estimate for µB in the PDE and µB ,I in the ODE across all temporal sampling schemes and plot the

resulting error as a function of the spatial sampling grid in Figure 6.3. We note that the schemes

which introduce the most error for the estimation of µB ,I in the ODE are the very schemes which

introduce the least error for the estimation ofµB in the PDE. This is caused by our uniform sampling

grid.

Grids which do not include the very center of the field (∆x = 0.15 and∆x = 0.3) result in poor

performance of the ODE in fitting model dynamics. This is because there are periods over the course

of the season during which the peak of the aphid population is in the center of the field. By not

collecting data at this point, we underestimate the total population in the field at these times. The

population then shifts symmetrically so that there are peaks of the population at the two edges
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of the field, with a significantly lower population in the middle of the field. After this shift, the

approximation of the data for use in the ODE parameter estimation is an overestimation of the true

population.
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Figure 6.3 The average error in the estimated value of µB for the PDE and µB ,I for the ODE over all tem-
poral sampling strategies. We average over three replicates of the experiment using noise drawn from a
normal distribution with standard errorσ2 = 0.01, plotted against sampling strategy.

These same grids result in the best performance of the PDE in fitting model dynamics. By sam-

pling away from the center of the field, we obtain more information about the rate at which the

aphid population shifts across the field. We therefore note that the optimal design of a field-level

experiment is linked to the type of dynamics we hope to validate in the experiment. To obtain infor-

mation about a spatial process, such as diffusion, we seek samples at points which see significant

change in the movement of populations, even if we do not obtain information about the points

which see the most significant changes in the density of populations.

6.3.2 Error in Parameter Estimates

We next consider the effect of temporal sampling and noise in the data on our estimated parameters.

We consider the spatial sampling strategies which corresponded to the best solutions of the inverse

problem in the ODE (excluding∆x = 0.15,0.3); this permits more cases to study than when only
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considering strategies which correspond to the best solutions of the inverse problem for the PDE

(excluding∆x = 0.05,0.1,0.2, .0.25,0.5). In Figure 6.4, we plot the average error in our estimate of

µB and µB ,I over the three synthetic experiments with noise drawn from a normal distribution with

standard deviationσ2 = 0.01 for our range of spatial and temporal grids.
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Figure 6.4 The average error in estimation of µB using the PDE (left) and µB ,I using the ODE (right. We
consider the average over three synthetic experiments with noise drawn from a normal distribution with
standard deviationσ2 = 0.01.

We again caution against comparing the scale of the error between the PDE and ODE parameter

estimates. Estimates of µB ,I are often closer to their true value than estimates of µB , but this “true”

value is not an accurate quantification of the predation rate on the pest population.

We note that the error in parameter estimation for the ODE increases as we increase the size of

our temporal and spatial grids. However, contrary to our expectations, the highest error in parameter

estimation for the PDE actually occurs for fine temporal grids, when we sample every 3 or 7 days. At

these temporal resolutions, we can only accurately estimate the model parameters for the finest

spatial grids (∆x = 0.05). We theorize that pairing a fine temporal grid with a sparse spatial grid

results in a fit to noise in our data with insufficient information about the diffusion process driving

our PDE. Because the fit to the ODE model averages across our spatial grid, the parameter estimation

is not as strongly impacted by this problem.

We next evaluate the performance of our parameter estimation in the three synthetic experiments

with noise drawn from a normal distribution with standard deviation σ2 = 0.05 for our range of

spatial and temporal grids. The average error in our parameter estimates is plotted in Figure 6.5.

In this case, we note that the accuracy of the parameter estimation in the PDE model is almost
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entirely-determined by our choice of spatial grid. In contrast, we see that for estimates of µB in the

ODE model, we have accurate results for relatively sparse spatial grids when using temporal grids

of 3 or 7 days between experiments. We note that in reality, such a fine temporal grid may not be

feasible; if we take a sufficiently fine spatial grid, we can estimate model parameters for both the

ODE and PDE with data collected every 14 or 21 days.
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Figure 6.5 The average error in estimation of µB using the PDE (left) and ODE (right) over three synthetic
experiments with noise drawn from a normal distribution with standard deviationσ2 = 0.05.

6.3.3 Error in Population Approximation

We finally consider the accuracy with which our estimated model parameters describe the pest

population in the field. In Figures 6.6 and 6.7, we plot the approximation to the aphid population from

data with noise drawn from a normal distribution with standard deviationσ2 = 0.01. We compare

the approximation to the true distribution of the aphid population for temporal samples obtained

every seven days and three different spatial sampling strategies,∆x = 0.05, 0.25, and∆x = 0.50. As

we saw in our analysis of the error in estimated parameters, we note that the approximation closely

follows the true population for the fine sampling grid (∆x = 0.05), but that the approximation is

poor over a coarse sampling grid (∆x = 0.50).

Although the results for the coarse grid seems discouraging at a glance, we note that the finer

spatial grids are feasible sampling strategies. For the assumed size of our synthetic field, a distance

of∆x = 0.05 between samples is approximately 8.5 meters, while a distance of∆x = 0.25 is approxi-

mately 42.5 meters. In consulting the literature, we find that pitfall traps for predators can be placed

with anywhere from 10 meters between traps to 50 meters between traps [21]. The grid over which

we can accurately estimate model parameters and recreate the true distribution of prey in the field
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is only slightly finer than sampling strategies reported in the literature. Samples of prey populations

are often obtained over a finer grid than this, although this might occur over only a subset of the

field.
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Figure 6.6 The solution for the true pest population (left) and the approximated pest population using a
spatial grid of∆x = .05 and 7 days between samples (right).
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(left) or∆x = .50 (right).
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We additionally plot the performance of the ODE in matching the true population in the field

for these two cases in Figure 6.8. We note that for both the coarse and fine spatial sampling grid, we

accurately capture the true dynamics of the prey population. Because the estimate of µB ,I is not

an accurate description of predator feeding rates, it is particularly important that the ODE model

fit the true population in the field. There is little information to be gained from estimating ODE

model parameters, and so our primary goal is to obtain an appropriate approximation to the pest

population. Our results indicate that, for the current PDE model formulation, this is possible with

many sampling strategies. Moreover, we can obtain such an approximation with less data than is

required to validate the PDE model. We are cautiously optimistic about the implications this might

have for efforts to validate field-level populations against ODE models, although we must consider

different PDE model formulations to describe the breadth of spatial processes which might affect

the population.

We note that the accuracy of the ODE model approximation is sensitive to noise in the data. In

Figure 6.9, we plot the performance of the ODE in matching the true population in the field for data

with noise drawn from a normal distribution with standard deviationσ2 = 0.05, utilizing the same

temporal and spatial strategies as we previously explored. Although the PDE performs similarly with

the higher level of noise (results not shown), the ODE approximation to prey dynamics is worse in

this case.
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Figure 6.8 The solution for the true pest population and the approximated pest population using a spatial
grids of∆x = .05, .25 and 7 days between samples and noise with standard deviationσ2 = 0.01
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Figure 6.9 The solution for the true pest population and the approximated pest population using a spatial
grids of∆x = .05, .25 and 7 days between samples and noise drawn with standard deviationσ2 = 0.05.

6.4 Directions for Future Work

The preliminary work we have presented here is specific to our assumed boundary conditions and

parameters. We are therefore interested in first studying the effect that weaker or stronger spatial

processes, as described by the values of dB and dC , might have on sampling protocols. In particular,

we would like to identify the degree to which spatial processes affect our ability to match the ODE

model to the total population in the field as described by PDE dynamics. We then hope to loosen

our restrictions on boundary conditions in order to accomodate realistic descriptions of alternative

farming practices. Different types of field boundaries can affect aphid and predator migration, and

we expect that non-insulated boundary conditions (corresponding to fields with natural foliage at

the borders) will present a challenge when fitting the ODE model to field data.

Another interesting avenue for future research is the consideration of pitfall traps in experimental

design. Ground-dwelling predators are sampled through the use of pitfall traps, which are cups

buried in the ground and left open for a designated period (for example, several days). The contents

of the cups are collected after a period, and an approximation to the predator population is obtained

from the number of individuals caught in the cup. There are different transformations of the data

for this approximation, but our current work has assumed that the results from pitfall traps are

a near-perfect report of the predator population. Moreover, directional pitfall traps exist, which

distinguish between predators travelling in opposite directions; we are interested in the implications
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that this knowledge might have on the estimation of model parameters.

Finally, we hope to expand our model back to the two-dimensional case and repeat similar

analyses. In this more-realistic case, we can investigate the effect of radial or grid-like sampling of the

predator population. We can also simulate a realistic aphid sampling strategy, in which populations

are highly sampled in small, discrete regions within the field. In the two-dimensional case, we

additionally hope to conduct preliminary analysis of the biological control of the aphid as it relates

to the assumed boundary conditions for the field; these conditions can affect both the migrating

predator population and the seasonal colonization of the field by the aphid population. Although

we must validate our model against real data before we can make statements about true biological

control, we can begin by testing the sensitivity of model solutions to different descriptions of the

field boundary.
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CHAPTER

7

CONCLUDING REMARKS

Throughout this work, we have relied on the interplay between the biological and mathematical

sciences, with the eventual goal of addressing real-world ecological questions in a quantitative

manner. We have employed least squares parameter estimation as the means by which we validate

models for biological processes against empirical data, and we have consistently referred back to an

ecological understanding of these processes in our model development. We were initially motivated

by an interest in modelling the expected level of biological control in an agricultural ecosystem by a

pest’s natural predators. However, our attempts to address this question became an exercise in the

iterative process of modelling, in which both our mathematical models and biological hypotheses

developed over time.

Our own work began many iterations into this process, as there were already well-established

models for predator-prey dynamics appropriate for our study system. We started with an existing

trait-based model for these dynamics and attempted to fit the model to experimental data from

ten true agro-ecosystems. We quickly discovered that, although we chose a simple model for these

initial eforts, there was insufficient data for the reliable estimation of model parameters. Relying on

our biological understanding of the study system, we concluded that the mechanisms described by

the estimated parameters were physically unreasonable. Within the constraints of the existing data

set, we were unable to validate our model or draw conclusions about its deficiencies.

In pursuit of a suitable data set for model validation, we returned to our understanding of the

inverse problem methodology. We designed controlled experiments against which we hoped to test
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the model, studying subsets of this same agro-ecosystem inside a greenhouse. Because of our heavy

reliance on experimental data in the iterative modelling process, it is important that we consider

our means of model validation in experimental design. We considered model sensitivities and

characteristics of population data in similar experiments to determine appropriate protocols. By

linking our model and mathematical methodology for validation with the design of the experiment,

we safeguarded against potential shortcomings in the resulting data set.

We were able to fit the simple model from previous work, as well as a more-complicated model

which was formulated to reflect new biological hypotheses, to the the experimental data with varying

degrees of success. We evaluated model performance under different conditions and – because

of the link between our biological assumptions, the mathematical model, and the experiment

designed to test that model – we were able to determine the relevance of our biological hypotheses.

We identified future work with information from greenhouse and field experiments which could

further our understanding of these agro-ecosystems.

We finally considered some questions of experimental design in the field. We employed a simple

spatial model for ecological interactions in a preliminary effort to explore the effect of landscape-

level interactions on the population data used in model validation. Our results should be verified

against existing data and more realistic models before informing experimental design. However,

we concluded that the interaction between temporal and spatial sampling strategies is critically

important in determining an appropriate design for field experiments. Our efforts in this dissertation

have set the stage for future work modelling biological control agents in an agricultural ecosystem,

both with and without spatial considerations.
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