
ABSTRACT

ZHAO, YANG. A Simple and Robust Expected Shortfall Estimation Approach and A Comprehensive
Comparison of Volatility Models. (Under the direction of Dr. Tao Pang.)

Measures of risk play essential roles in the financial risk management. Quantifying risks using

suitable measures is undoubtedly inevitable for a business success. This dissertation, consisting

of three essays, concentrates on two popular measures of risk: Expected Shortfall (ES) and

asset return volatility. Particularly, we propose a simple and robust ES estimation approach for

small samples and make a comprehensive comparison of volatility models under the physical

and risk-neutral measures. Risk-neutral volatility models incorporating the leverage effect are

investigated and a new Cumulative Return option pricing model is also put forward.

Estimating ES, though important and indispensable, is difficult when a sample size is

small. The first essay makes efforts to create a recipe for such challenge. A tail-based normal

approximation with explicit formulas is derived by matching a specific quantile and the mean

excess square of the sample points. To enhance the estimation accuracy, we then introduce

an adjusted tail-based normal approximation based on the sample’s tail weight. The adjusted

tailed-based normal approximation is robust and efficient in the sense that it can be applied to

various heavy-tailed distributions, such as student’s t, Lognormal, Gamma, Weibull, etc., and the

errors are considerably small. In addition, compared to two prevalent ES estimators—the mean

value of excessive losses and the extreme value theory estimator, our proposed approach achieves

more accurate estimates with substantially smaller errors, especially at a high confidence level.

Another appealing feature of the approach is that it works well with small samples. Effects

of linear transformations on the proposed ES estimator are also investigated to guarantee its

practicality and further validate our new approach.

The second essay conducts a comprehensive comparison of the GARCH(1, 1) and ARSV(1)

models using S&P 500 Index. Under the physical measure, after fitting the historical return

sequence, we calculate the likelihoods and test the normality for the error terms of these two



models. In addition, two robust loss functions, MSE and QLIKE, are adopted for the one-

step-ahead volatility forecast comparison. On the other hand, under the risk-neutral measure,

the in-sample and out-of-sample average option pricing errors of the two models are explored.

We find the ARSV(1) model outperforms the GARCH(1, 1) model in terms of in-sample and

out-of-sample performances under the physical measure. Under the risk-neutral model, these two

models are considerably close when pricing call options while the ARSV(1) model is significantly

superior to the GARCH(1, 1) model for put options.

In the third essay, enlightened by the Constant Elasticity of Variance model, a continuous-

time option pricing model is proposed. In this model, we straightforwardly relate the volatility to

the exponentially decayed weighted average cumulative asset return such that the leverage effect

is captured. Then we investigate the performances of option pricing models with the leverage

effect. Compared to the original risk-neutral GARCH(1, 1) and ARSV(1) models, both of the

two models exhibit remarkable improvements in terms of the in-sample and out-of-sample pricing

errors after incorporating the leverage effect. As for the put option pricing errors, the differences

among most examined models are considerably insignificant. Surprisingly, our Cumulative Return

model that has only two parameters dominates other sophisticated models when predicting call

option prices and has a robust performance on an outlier day.
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CHAPTER 1

Introduction

1.1 Background

Generally speaking, all financial activities can be and have to be connected with risk management.

Investors diversify their portfolios; traders monitor the ‘Greek Letters’ and adjust hedges

periodically; senior managers analyze possible total losses; regulators set requirements. Any gain

is sure to be followed by the corresponding exposure to risks. Only through identifying threats

and evaluating all scenarios can we reduce losses in unexpected situations and maximize the

realized profits. That is why the valid financial risk management is inevitable for a business

success.

It seems people are more inclined to remember unfortunate events but not willing to think

about them. In ‘good times’, we always take it for granted that our risk management is already

successful and overestimate our capability of recognizing extreme events with small probabilities.

The longer the ‘good time’ lasts, the more confident we are about what have been proposed:

models, algorithms, and assumptions. Ironically, after any financial crisis, the first question people
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asked is why the risk management failed. In fact, the prosperousness may be just spontaneous

or at most times it is because the rare events are too infrequent to occur. However, when Black

Swan events happen, they really happen no matter how highly improbable they should be. As

Albert Einstein said, “As far as the laws of mathematics refer to reality, they are not certain,

and as far as they are certain, they do not refer to reality.” Reality is so complicated that people

cannot fully grasp or even predict it. Everyone knows the next financial crisis, sooner or later, is

sure to come. Therefore, rather than judge when and where it will occur, we are supposed to ask

ourselves: whether our risk management is still solid under an assumed crisis. To answer that

question, it is necessary to enhance the awareness of pros and cons of each model used in risk

management and what is the suitable situation to adopt a specific method. Moreover, exploring

and validating feasible alternatives is also indispensable for the progress in risk management.

Fortunately, that is what we are doing. Increasingly more attention has been paid to the field

of risk management theses years. People learn lessons from crises so the Basel Accord is kept

updating. Researchers are developing estimation methods such that the risks can be recognized

more preciously. Once a new method is put forward, it needs to be revised based on market

feedbacks. Furthermore, comparing it to the existing alternatives also helps us determine which

is preferred under a given circumstance. This dissertation handles such tasks and focuses on one

of the essential areas in the financial risk management: measures of risk.

Measures of risk quantify the risk so the abstract conception is transformed to an amount

that is comprehensible and applicable in the management. One of the most commonly-used

measures of risk is Value-at-Risk (VaR), which aggregates the total capital loss at a given

confidence level with a time period. VaR is not only easy to calculate but also widely fit for

all kinds of risks. Moreover, the confidence level of VaR can be selected based on the specific

risk preference. However, it is criticized for the three major problems: inability to capture

tail risk, model risk, and non-sub-additivity. Therefore, Basel II introduced stressed VaR and

researchers also proposed many other alternatives among which the most promising one is

Expected Shortfall (ES). ES, also referred to as conditional VaR and expected tail loss, is defined

2



to be the conditional expected loss during a period given the loss is greater than a certain

quantile. Compared to VaR, ES is a coherent measure and remedies the tail risk problem. The

Basel Committee also suggests a shift from VaR to ES under stress when calculating minimum

capital requirements. The calculation of ES, however, is not as straightforward as VaR. Although

so far there are a large number of ES estimation methods, selecting a suitable ES estimator

is a tough decision in practice especially for small samples. Moreover, current ES estimators

are unstable for a heavy-tailed loss distribution where they are easily affected by whether the

infrequent losses would occur in a realized sample.

In the first essay, we propose a simple and robust ES estimation approach on a basis of

the tail-based normal approximation that is determined by a relatively large number of tail

dataset. This tail-based feature proves to be effective to alleviate the original ‘underestimation’

problem when estimating ES. Moreover, relevant regression models are subsequently adopted to

enhance our estimator’s accuracy. After the regression adjustment, our ES estimation approach

not only works well for heavy-tailed loss distributions but also outperforms the widely-used

arithmetic average and Extreme Value Theory ES estimators for small loss samples simulated

from heavy-tailed distributions. The properties of our ES estimator on linear transformation

further facilitate its application in the portfolio management.

Another measure of risk that has drawn much attention is the return volatility that describes

the fluctuations of asset prices. In financial risk management, there is never too much emphasis

on monitoring the market volatility. Though volatility cannot be observed or measured directly,

people dare not ignore it no matter whether they are sellers or buyers, hedgers or speculators,

participants or regulators. Market volatility rises, as does the risk of collapse. The global financial

crisis in 2008, the tech bubble burst in the late 1990s, the stock market crash on October 19,

1987, and the recent stock plunge on February 5, 2018, are all examples of such knock-on effect.

Furthermore, volatility is a fundamental parameter when calculating many prevalent measures

of risk such as the variance-covariance approach for VaR. It also plays an indispensable role in

pricing derivatives. As a result, how to precisely estimate and then forecast volatility has been
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an enduringly popular field of research.

So far, there are three main types of volatility models: ARCH/GARCH-family models,

stochastic volatility (SV) models and realized volatility models. The calculation of the realized

volatility needs to be supported by high-frequency data which is not always available. Therefore, in

this dissertation, we limit our attention to the first two types. The crucial difference between these

two volatility models is that in ARCH/GARCH-family models the volatility is a deterministic

response variable of the previous information set while in SV models, the volatility is assumed

to be a latent variable with unexpected innovation terms. The ARCH/GARCH-family models

appeal to a wider variety of studies because they are straightforward to estimate by maximum

likelihood estimation. Estimating the SV models, by contrast, is indeed time-consuming. Despite

extra flexibility in capturing stylized facts of financial series, SV models have a troublesome

problem resulted from the latent volatility process: no analytical likelihood function. Estimating

the SV models relies on simulation methods but the computation burden often impedes its

application. Thanks to the amazing breakthroughs in computing capacity and simulation methods

in recent years, the SV models are considerably faster to estimate. Hence, given the two choices,

people are interested in which model can bring about more accurate volatility estimate and

forecast.

Our second essay carries out a comprehensive comparison of the GARCH(1, 1) and autore-

gressive stochastic volatility (ARSV) models under both the physical and risk-neutral measures.

As for the ARSV(1) model, we adopt a novel particle-based ‘forward-only’ version of the Forward

Filtering Backward Smoothing algorithm with the off-line expectation-maximization method to

estimate and subsequently maximize its log likelihood. Under the physical measure, we measure

their log likelihoods1 after fitting historical returns and test normality for their error sequences.

In addition, we also refer to two robust loss functions, MSE and QLIKE, for a comparison

of the one-step-ahead volatility forecasts of these two models. On the other hand, under the

risk-neutral measure, the in-sample and out-of-sample option pricing errors are explored. Though

1These two models have the same number of parameters.
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the ARSV(1) model has two innovation processes, we show only the volatility dynamics need to

be simulated with the assistance of the famous Black-Scholes formula when pricing options. This

discovery ensures that estimating the risk-neutral versions of such two models have almost same

computation burdens. The results indicate the ARSV(1) model outperforms the GARCH(1, 1)

model in terms of the in-sample and out-of-sample performances under the physical measure.

Under the risk-neutral measure, the ARSV(1) model is significantly superior to the GARCH(1, 1)

model for put options while they are considerably close to each other when pricing call options.

Financial times series possess some patterns that are crucial for volatility modeling. Such

empirical patterns are called stylized facts in economics. One prevalent stylized fact is the

volatility clustering, which is proved to get captured by both the GARCH(1, 1) and ARSV(1)

models. It refers to the findings that large variations in price tend to be followed by large

price variations. Another fundamental stylized fact is the leverage effect which indicates that

the volatility is negatively correlated with the asset return. The ARSV(1) model is natural to

incorporate the leverage effect through a pair of negatively correlated error terms in the return

and volatility processes. By contrast, the GARCH(1, 1) model has to modify the specification of

its conditional variance to capture the leverage effect. Two commonly-used candidates are the

Exponential GARCH(1, 1) and Nonlinear Asymmetric GARCH(1, 1) models.

Enlightened by the Constant Elasticity of Variance (CEV) model (Cox, 1975), in the third

essay, we put forward a continuous-time option pricing model that straightforwardly relates

the volatility to the exponentially decayed weighted average (EDWA) cumulative asset return

such that the leverage effect is captured. The new information has little influence on the EDWA

cumulative asset return so our option pricing model is not sensitive to the initial conditions and

expected to be robust for the out-of-sample prediction. In addition to Monte Carlo simulation,

our Cumulative Return model is also capable of pricing options by solving the corresponding

partial differential equations numerically. These favorable features raise the need to compare it

to other sophisticated models regarding pricing options. Then we investigate the option pricing

performances of the risk-neutral models with the leverage effect. The implied versions of the
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GARCH(1, 1) and ARSV(1) models with the leverage effect, which parameterize the initial

volatility, are also studied. Compared to the original risk-neutral GARCH(1, 1) and ARSV(1)

models, both of the two models exhibit remarkable improvements regarding the in-sample and

out-of-sample pricing errors after incorporating the leverage effect. Therefore, the leverage effect

plays an indispensable role in option pricing. Surprisingly, our Cumulative Return model that

has only two parameters are superior to other sophisticated models in terms of the out-of-sample

price prediction for call options. When pricing put options, the differences among most examined

models are considerably insignificant. Moreover, the performance of our option pricing model on

an outlier day further highlights its robustness.

1.2 Contribution of the Research

This dissertation focuses on the ES estimator and volatility models. The contributions of our

research are summarized as follows:

For the ES estimator:

• Propose an idea of tail-based normal approximation for ES estimation.

• Develop a regression-adjusted tail-based ES estimation approach based on the tail weight.

• The approach is easy to implement and robust for various heavy-tailed distributions.

• Our ES estimator is substantially accurate and works well for small loss samples. In addition,

its properties on linear transformation are valuable in the portfolio management

For the volatility models:

• Demonstrate that only the volatility dynamics need to be simulated for option pricing using

the ARSV(1) model which has two innovation processes no matter whether the leverage effect

is incorporated or not.
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• Complement the literature by conducting a comprehensive comparison of the GARCH(1, 1)

and ARSV(1) models regarding in-sample fitting and out-of-sample prediction capabilities

under both the physical and risk-neutral measures.

• Propose a continuous-time option pricing model that straightforwardly relates the volatility

to the EDWA cumulative asset return.

• Investigate the option pricing performances of the risk-neutral models incorporating the

leverage effect. Our proposed model is robust for the out-of-sample option pricing.

1.3 Outline of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 reviews the existing literature that

is related to our research. In Chapter 3, we propose a simple and robust approach for expected

shortfall estimation. Chapter 4 carries out a comprehensive comparison of the GARCH(1, 1)

and ARSV(1) models under both the physical and risk-neutral measures. In Chapter 5, we

investigate the option pricing performances of volatility models incorporating the leverage effect

and put forward a new option pricing model that relates the volatility to the EDWA cumulative

asset return.
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CHAPTER 2

Literature Review

In this chapter, we review the literature that is relevant to our dissertation. Section 2.1 summarizes

the existing Expected Shortfall (ES) estimation and back-test methods. In Section 2.2, we briefly

review the ARCH/GARCH-family and stochastic volatility (SV) models with their extensions.

The leverage effect, one of the most prevalent stylized facts, is also reviewed. In Section 2.3,

we review the algorithms on particle filter, which is also referred to as sequential Monte Carlo

simulation. Such methods can be applied to the estimation of the autoregressive stochastic

volatility (ARSV) model under the physical measure.

2.1 Estimating and Back-Testing Expected Shortfall

Although Value-at-Risk (VaR) is a popular measure of risk, it fails to take into consideration

the extreme losses and suffers the lack of subadditivity (Artzner, Delbaen, Eber, & Heath, 1997).

Then ES, which remedies tail risk, is developed by Artzner, Delbaen, Eber, & Heath (1999) as a

natural coherent alternative to VaR.
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ES can be estimated by definition from a parametric loss distribution or by extreme value

theory (EVT) approach (McNeil, 1997). In addition to Generalized Pareto distribution (GPD)

supported by EVT, other asymmetric loss distributions such as skewed normal (Bernardi, 2013),

asymmetric t and exponential power distributions (Zhu & Galbraith, 2011), Tukey g-and-h

(Jiménez & Arunachalam, 2011), and Laplace (Q. Chen, Gerlach, & Lu, 2012) have also been

studied. In light of the location-scale loss distributions, Bae & Iscoe (2012) propose various

large-sample parametric confidence intervals for ES estimates. Moreover, Embrechts, Kaufmann,

& Patie (2005) introduce a multiple-period ES estimation method within frameworks of random

walks, autoregressive process or the GARCH(1, 1) model with t distributed innovations. Several

quantile regression-based ES estimators are given by J. W. Taylor (2007) with the benefit of

avoiding any distributional assumptions. As for the mixture distributions, normal and t mixture

distributions and their closed-form ES estimates are investigated by Broda & Paolella (2011).

Compared to parametric methods, non-parametric ES estimators can avoid the errors of

parameter estimation. A commonly-used non-parametric estimator is defined by S. X. Chen

(2007) as the arithmetic average of losses that are beyond a specific VaR estimator, which is

similar to the natural estimator for expected losses in the worst case proposed by Acerbi & Tasche

(2002a). Hill (2013) suggests a few ES estimators for heavy-tailed data by combining the classic

tail-trimming with an improved bias-correction method. Inui & Kijima (2005) demonstrate that

ES is a priority in the class of coherent risk measures and propose an extrapolation method to

estimate ES. Applying empirical likelihood, an asymptotically valid confidence interval for ES is

derived by Baysal & Staum (2008). In addition, Scaillet (2004) comes up with a kernel-smoothed

ES estimate that works well even in dependent situations. The kernel smoothing produces a

VaR estimator with less mean square errors especially for small samples (S. X. Chen & Tang,

2005), while S. X. Chen (2007) shows such smoothing can not give a more accurate ES estimator.

Therefore, taking advantage of its simplicity, the arithmetic average of exceedances is still one

of the most popular non-parametric ES estimators.

Despite the favorable properties of ES, it is much more difficult to back-test an ES estimation
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method than to back-test a VaR estimation method. Gneiting (2011) shows ES lacks elicitability

that is a necessity for back-testing. Going on with this finding, Carver (2013) and many others

also claim ES is not back-testable. Emmer, Kratz, & Tasche (2015), however, demonstrate ES is

conditionally elicitable and point out back-testing ES, though not straightforward, is still possible.

They also propose a back-test method based on an ES estimation approximated by VaRs at

several confidence levels. Moreover, Wong (2008) adopts the saddlepoint technique to back-test

ES. Acerbi & Szekely (2014) also introduce three non-parametric and model-independent back-

test methods for ES. All the three methods can be easily implemented without assuming any

asymptotic convergence. Costanzino & Curran (2015) discuss the coverage test for ES with

a defined failure rate. With a sufficiently large sample size, they show the distribution of the

defined ES failure rate at a given level can be well approximated by a normal distribution.

Hence, they propose an ES back-test method that is analogous to the Traffic Light approach for

back-testing VaR. Fissler, Ziegel, et al. (2016) argue that ES is jointly elicitable with VaR. Such

conclusion makes it possible in theory to back-test ES together with VaR.

2.2 Volatility Models and Leverage Effect

Though volatility can be simply defined to equal the standard deviation of the returns, dynamic

volatility models are preferred due to more accurate estimations. A typical group of such models

belongs to the ARCH/GARCH family. Engle (1982) introduces the ARCH model that fits the

conditional variance through a linear regression equation of previous squared errors. To avoid

negative coefficients in the long lagged ARCH orders, Bollerslev (1986) offers the GARCH

model so that a more flexible lag structure is considered. Though the GARCH process is able to

capture excess kurtosis and volatility clustering, two important characteristics of market data,

there are still some criticisms of its limitations. The strongest one is about its failure to exhibit

the leverage effect (Black, 1976; Christie, 1982), which indicates an asset return is negatively

correlated with the volatility. To overcome this inherent drawback, the EGARCH (Nelson, 1991)

and GJR-GARCH (Glosten, Jagannathan, & Runkle, 1993) models are proposed. In addition,
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Engle & Ng (1993) put forward the NGARCH and VGARCH models and examine empirical

outputs of several popular asymmetric GARCH models. Leverage effect aside, the heavy-tailed

feature of empirical returns also spark skepticism of the normally distributed error term in the

GARCH model. Instead of the original normal distribution, some Leptokurtic distributions such

as standardized t distribution (Bollerslev, 1987), exponential generalized beta family (Wang,

Fawson, Barrett, & McDonald, 2001) and Generalized Error Distribution (Nelson, 1991) have

been explored with the hope of fully capturing both the negative skewness and excess kurtosis.

Strictly speaking, given the previous information, volatility estimated from the ARCH/GARCH

family is just a deterministic response variable. By contrast, stochastic volatility (SV) models,

as its name implies, allow for a stochastic volatility process in a discrete-time or continuous-

time form. Tauchen & Pitts (1983) indicate daily price volatility is independently linked to a

Lognormal mixing variable after studying relationships between price variability and volume

from the T-bills future market. Meanwhile, treating volatility as a latent variable, S. Taylor

(1982) proposes a discrete-time ARSV model in which the log-variance follows a linear Gaussian

process. Taylor’s work is seen as the first published model that explicitly deals with volatility

modeling in finance. Moreover, the ARSV model could capture the leverage effect naturally

though the author himself does not explore such relevant traits. Continuous-time volatility

models are unveiled afterwards especially in the field of option pricing. To handle volatility

clustering, Hull & White (1987) generalize the famous Black-Scholes option pricing model and

assume both price and variance follow Gaussian Ornstein-Uhlenbeck processes with correlated

increments. Heston (1993) also builds an SV model where the increments for the variance process

depend on the square root of variance with an extraordinary advantage—an analytical option

pricing formula. As high-frequency data research is brought to center stage, more complicated

SV models have been constructed. For example, multiple SV factors with jump components

(Chernov, Gallant, Ghysels, & Tauchen, 2003) are considered and a fractional integration of the

square root volatility process (Comte, Coutin, & Renault, 2012) is adopted.

In order to exploit the high-frequency intra-day data, which are not valuable for the traditional

11



volatility models at the daily level, realized volatility (RV) models have been developed in recent

years (Andersen, Bollerslev, Diebold, & Labys, 2001). RV is proved to be an unbiased and

efficient estimator of the return volatility. It is also straightforward to calculate RV by summing

up squares of intra-day returns with short intervals. Such benefits spark researchers’ interests

in the application and extension of RV. For example, Andersen, Bollerslev, Diebold, & Ebens

(2001) examine the realized return volatilities and the correlations of individual stocks in Dow

Jones Industrial Average. They find the unconditional distributions of realized volatilities seem

to be Lognormal while the daily returns standardized by realized volatilities nearly follow normal

distributions. This finding is in line with the results on FTSE-100 index futures contracts

obtained by Areal & Taylor (2002). Due to the lack of high-frequency data, we focus on the

ARCH/GARCH-family and SV models in this dissertation.

2.3 Particle Filter

Except for special cases such as linear Gaussian and hidden finite state space Markov chains,

it is impossible to evaluate the posterior distributions analytically. Particle Filter is a class of

methods for posterior distribution approximation and parameter estimation in the state space

models such as the ARSV(1) model.

Particle filtering estimates the current state variable. Johannes & Polson (2009) propose the

exact particle filter for linear Gaussian models where the direct sampling is feasible. For non-

linear or non-Gaussian models, Kong, Liu, & Wong (1994) introduce the sequential importance

sampling (SIS) method to estimate marginal distribution of the latent state variables using

weighted particles. One problem with the SIS method is that it is easy to encounter a situation

where almost all particles have nearly zero weights. This problem is referred to as the degeneracy

problem and can be solved by a re-sampling procedure. Adding a re-sampling step to SIS

leads to sequential importance re-sample (SIR) methods (Gordon, Salmond, & Smith, 1993;

Kitagawa, 1996; Doucet, Godsill, & Andrieu, 2000). In many SIR methods, the re-sampling step

is performed only when it is necessary. J. S. Liu & Chen (1995) use an ‘effective number’ of
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particles to help judge whether a re-sampling is needed at a step. The bootstrap filter (BF)

(Gordon, Salmond, & Smith, 1993) is a special case of SIR methods where the importance

distribution is same as the transition distribution. This setting makes its implementation indeed

easy. However, it may require a large number of simulation samples for accurate estimation due

to the inefficiency of that special importance distribution. In addition, BF asks for re-sampling

at each time step. Introducing an auxiliary index into the particle filter, Pitt & Shephard (1999)

suggest the auxiliary particle filter that is more flexible and reliable than BF.

Particle smoothing approximates the distribution of the state variable in the past. It is

straightforward to solve this problem by marginalizing posterior distributions obtained from

particle filtering while some other alternatives such as fixed-lag smoother (Kitagawa, 1996),

backward smoothing (Doucet, Godsill, & Andrieu, 2000), backward simulation (Doucet, Godsill,

& West, 2000) and generalized two-filter smoother (Briers, Doucet, & Maskell, 2010) are capable

of better solving the degeneracy problem.

Particle learning methods provide a particle-based parameter estimation. J. Liu & West

(2001) see parameters as state variables and apply the shrinkage of kernel locations. Del Moral,

Doucet, & Singh (2010) recursively estimate parameters by maximizing the likelihood using a

particle-based ‘forward-only’ version of the Forward Filtering Backward Smoothing algorithm

with the on-line or off-line expectation-maximization method. Other particle-based maximum

likelihood approaches such as the gradient ascent method (Poyiadjis, Doucet, & Singh, 2011)

and iterated filtering (Ionides, Bhadra, Atchadé, King, et al., 2011) are also studied by many

researchers.
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CHAPTER 3

A Simple and Robust Approach for Expected Shortfall Estimation

3.1 Introduction

Expected Shortfall (ES), which takes into account losses exceeding the corresponding Value-

at-Risk (VaR), is a coherent measure of risk. As ES remedies tail risk and non-sub-additivity,

problems VaR inherently suffers (Artzner, Delbaen, Eber, & Heath, 1999), it has been attracting

more and more attention in the risk management recently.

Selecting a suitable ES estimator is a challenge in practice. As for the most commonly-used

arithmetic average ES estimator, the given sample of losses, however, is not always large enough

to acquire a convincing estimator. Assuming the sample size is 250, the amount of one year’s

daily observations, only the largest two losses are covered when calculating daily ES99%
1 and

only the maximum one is valuable for daily ES99.5%. Moreover, according to Yamai & Yoshiba

(2005), such ES estimator is quite unstable especially for a heavy-tailed loss distribution where

it is easily affected by whether infrequent losses would occur in the realized sample.

1ESβ denotes the ES estimate at β confidence level during a given period.
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Normal distributions have many nice properties with the presence justified by the Central

Limit Theorem (CLT). That’s why it remains popular when modeling data. Such distributions,

however, cannot capture the heavy-tailed2 behaviors properly. If a model building approach with

normal distributions is applied to ES estimates, we usually suffer the so-called ‘underestimation’

problem. Heavy-tailed distributions such as student’s t and other stable distributions have also

been investigated but some inherent drawbacks impede their applications. For example, the sum

of two t distributed random variables generally no longer belongs to t distribution. On the other

hand, even though the sum of two stable random variables still follows a stable distribution,

there is usually no general explicit formula for the probability density function. Therefore, some

numerical methods must be used (Pang & Yang, 2015).

In this chapter, we first propose a new ES estimator on a basis of the tail-based normal

approximation that is determined by a relatively large number of tail data. Compared to

the global-based normal approximation, this tail-based feature proves to be quite effective to

alleviate the ‘underestimation’ problem. To further improve the estimation accuracy, we then

introduce an adjusted tail-based normal approximation, in which the sample tail weight is

taken into consideration. Moreover, we carry out robustness tests and the results show our

adjusted tail-based ES estimator works well for various heavy-tailed loss distributions. Moreover,

it also outperforms the popular sample arithmetic average estimator and EVT estimator for

small loss samples. Another appealing feature is that our ES estimator still works under linear

transformations.

Hereafter, for the ease of presentation, the abbreviation ‘r.v.’ stands for random variable.

The rest of this chapter is organized as follows: In Section 3.2, we propose a tail-based normal

approximation and derive the explicit formula of its ES estimator. The accuracy analysis and

the comparison with the traditional global-based normal approximation are also provided. In

Section 3.3, we adjust the tail-based normal approximation based on the sample tail weight,

and explore whether such adjustment leads to a more accurate ES estimation for loss r.v.’s

2In this chapter, a heavy-tailed distribution refers to any loss distribution that has a heavier right tail than
the normal distribution.
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with heavy-tailed distributions. In Section 3.4, we run self consistence and robustness tests to

investigate the efficiency of the adjusted ES estimator. Section 3.5 compares the adjusted ES

estimator to the widely-used arithmetic average estimator and EVT estimator for small samples.

Moreover, we study the effects of linear transformation on the proposed ES estimator in Section

3.6. Section 3.7 summarizes this chapter and suggests the directions of the future work. All

detailed derivations are included in the Appendix A.

3.2 Tail-Based Normal Approximation for ES Estimation

For a loss (or negative return) r.v. L, Acerbi & Tasche (2002b) defines its ES at the confidence

level β ∈ (0, 1) for a corresponding period as follows:

ESβ(L) =
1

1− β

∫ 1

β
VaRφ(L)dφ, (3.2.1)

where VaRφ(L), the VaR at level φ ∈ (0, 1), is defined by

VaRφ(L) = inf{z ∈ R|Pr(L ≤ z) ≥ φ}. (3.2.2)

If the loss r.v. L is continuously distributed with a PDF f(·), it can be shown Eq. (3.2.1) is also

equivalent to Eq. (3.2.3) through a variable transformation.

ESβ(L) = E[L|L ≥ VaRβ(L)] =
1

1− β

∫ ∞
VaRβ(L)

xf(x)dx. (3.2.3)

In traditional model building approaches, all available sample points are used when estimating the

distribution parameters. For example, a normal approximation is usually obtained by matching

its mean and variance to the sample mean and sample variance. This type of approaches are

global-based in the sense that all sample points are taken into consideration.

ES, however, is a statistic that mainly depends on the tail data. Therefore, global-based

approaches may not give efficient and accurate ES estimations. Actually, this is one of the
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reasons why the global-based normal approximation typically underestimates the ES for real

market data, especially at high confidence levels such as 99% and 99.5%.

In this section, we propose a tail-based approach that only considers the tail sample points.

In particular, focusing on the excessive observations, we build a tail-based normal approximation

by equating its specific quantile (e.g. 95%-quantile) and mean excess square to those of the

objective sample. This approximation will be further improved in the next section through some

adjustment factors related to the sample’s tail weight.

We want to point out that the idea of tail-based approximation can be applied to distributions

other than normal distributions, such as student’s t, Gamma, etc. In this chapter, we only

consider normal distributions for the following reasons. Firstly, normal distributions are simple

and have many nice properties. For example, the sum of two normal r.v.’s is still a normal

r.v., which is useful in risk management when calculating n-day ES (or VaR) based on daily

estimates. Secondly, the tail-based normal approximation gives considerably accurate results so

it might not be necessary to explore other distributions.

3.2.1 Explicit Formulas

Let Y = {yn}Nn=1 denote a sample of losses with a given time unit and our goal is to develop a

model-based approach to estimate its ESβ . β is usually close to 1, and two popular choices are

99% and 99.5%. Apparently, this approach should depends on the right-tail sample because we

look at losses instead of returns.

Firstly, for any α ∈ (0, 1), we define Aα, the α-quantile of the sample Y, as follows:

Aα ≡ (bNαc+ 1−Nα)y(bNαc) + (Nα− bNαc)y(bNαc+1), (3.2.4)

where bNαc represents the greatest integer that is less than or equal to Nα (i.e. b·c is the floor

function), and y(1), y(2), · · · , y(N) are the ascending order statistics of the sample Y. In case of

possible misunderstandings, ‘α-quantile’ (0 < α < 1) in this chapter is equivalent to (100α)th

17



percentile. For example, 0.75-quantile or 75%-quantile is equivalent to 75th percentile.

Next, we choose a threshold level α that is less than β (e.g. α = 0.95 when β = 0.99)

and define a normal r.v. X ∼ N(µ, σ2) to approximate the right tail of the sample Y beyond

the α-quantile3 Aα; that is, we are going to find a tail-based normal approximation for the

given sample. In particular, we solve µ and σ2 such that the following two tail statistics, the

α-quantile and the ‘conditional tail variance’ (mean excess square) match the corresponding

sample statistics:

Pr(X ≤ Aα) = α, E[(X −Aα)2|X > Aα] =

∑N
n=1(yn −Aα)2

1{yn>Aα}∑N
n=1 1{yn>Aα}

, (3.2.5)

where 1{·} is the indicator function.

We can derive a unique solution (µ, σ2) for the system of equations listed above. Define

Z ≡ X−µ
σ , and then Z follows the standard normal distribution. Let Φ(·) be the CDF and zα be

the z-score of the standard normal distribution; that is, zα = Φ−1(α). Thus the first equation in

Eq. (3.2.5) can be transformed as follows:

Pr(X ≤ Aα) = Pr

(
X − µ
σ

≤ Aα − µ
σ

)
= Pr

(
Z ≤ Aα − µ

σ

)
= Φ

(
Aα − µ
σ

)
= α. (3.2.6)

So we can get

Aα − µ
σ

= Φ−1(α) = zα. (3.2.7)

The conditional first and second moments of X (See Appendix A.1 for details) are calculated by

E[X|X > Aα] = E
[
σZ + µ

∣∣∣∣Z >
Aα − µ
σ

]
= µ+

σ

(1− α)
√

2π
e−

(Aα−µ)2
2σ2 , (3.2.8)

E[X2|X > Aα] = E
[
µ2 + σ2Z2 + 2µσZ

∣∣∣∣Z >
Aα − µ
σ

]
3In this chapter, Aα stands for the α-quantile for either a loss sample or a loss r.v. based on the specific

situation.
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= µ2 + σ2 +
σ(Aα + µ)

(1− α)
√

2π
e−

(Aα−µ)2
2σ2 . (3.2.9)

By virtue of Eq. (3.2.7)∼Eq. (3.2.9), we have

E[(X −Aα)2|X > Aα] = E[X2|X > Aα]− 2AαE[X|X > Aα] +A2
α

= (µ−Aα)2 + σ2 +
σ(µ−Aα)

(1− α)
√

2π
exp

(
− (Aα − µ)2

2σ2

)
= σ2

[
z2
α + 1− zα

(1− α)
√

2π
e−

1
2
z2α

]
.

(3.2.10)

From the above derivation (see Eq. (3.2.10), Eq. (3.2.7) and Eq. (3.2.5)), we can get the explicit

formulas for the parameters, µ and σ, of the tail-based normal approximation using the sample

dataset {yn}Nn=1 as follows:

σ̂2 =
1[

z2
α + 1− zα

(1−α)
√

2π
e−

1
2
z2α
] [∑N

n=1(yn −Aα)2
1{yn>Aα}∑N

n=1 1{yn>Aα}

]
,

µ̂ = Aα − σ̂zα.

(3.2.11)

In practice, when calculating the ES estimate of the loss sample Y = {yn}Nn=1 at confidence

level β (e.g. β = 99% or 99.5%), we first derive the tail-based normal approximation given by

Eq. (3.2.11) with a threshold level α that is less than β (e.g. α = 95%).

Once the approximation normal distribution is solved, it can be used to calculate the ESβ by

VaRβ = µ̂+ σ̂zβ, (3.2.12)

ESβ = E[X|X > VaRβ] = µ̂+
σ̂

(1− β)
√

2π
e−

1
2
z2β . (3.2.13)

where zβ = Φ−1(β) is the z-score of the standard normal distribution at confidence level β.

Furthermore, for the purpose of testing accuracy, we apply the tail-based normal approxima-

tion to a loss r.v. with an explicit distribution function. As for a loss r.v. W with CDF FW (·)
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and PDF fW (·), its α-quantile Aα and mean excess square are calculated by

Aα = F−1
W (α), E[(W −Aα)2|W > Aα] =

1

1− α

∫ ∞
Aα

(x−Aα)2fW (x)dx. (3.2.14)

Then we can obtain the tail-based normal approximation for the loss r.v., W , by virtue of

Eq. (3.2.10), Eq. (3.2.7) and Eq. (3.2.5), and the explicit formulas for µ̂ and σ̂ are

σ̂2 =
1[

z2
α + 1− zα

(1−α)
√

2π
e−

1
2
z2α
]E[(W −Aα)2|W > Aα],

µ̂ = Aα − σ̂zα,
(3.2.15)

where Aα and E[(W −Aα)2|W > Aα] are given by Eq. (3.2.14).

3.2.2 Accuracy Analysis for Tail and Global Based Normal Approximations

Now let us test the accuracy of the tail-based normal approximation. Firstly, we compare the

global-based and tail-based normal approximations for the daily loss sequence of S&P 500 Index

between Jan 4, 2010, and Jun 30, 2017. The daily loss at Day m is calculated by − ln(Pm/Pm−1),

where Pm is the index value at Day m. As previously mentioned, the global-based normal

approximation is determined by matching its mean and variance to the sample mean and sample

variance. The tail-based normal approximation is obtained by Eq. (3.2.11). The results are

displayed in the form of Q-Q probability plots in Figure 3.1.

As we can see from the figure, with respect to the right tail, the tail-based normal approxi-

mation is much closer to the given daily loss dataset than the global-based counterpart. Since

only the right tail is used for ES estimation, the tail-based normal approximation is expected to

give a more accurate ES estimator than the one from global-based normal approximation.

To further test the accuracy of our tail-based normal approximation, we examine its perfor-

mances for some heavy-tailed loss distributions that are widely adopted in empirical studies.

The idea is that, for a r.v. W , with a known distribution (such as t, Lognormal, etc.), we obtain

its tail-based normal approximation based on Eq. (3.2.15), and then use formulas Eq. (3.2.12)
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Figure 3.1: Q-Q Plots: global & tail-based normal approximations vs. realized losses with α = 95%.

and Eq. (3.2.13) to drive its VaR estimator and ES estimator which are denoted by VaRt
β and

EStβ, respectively. Here the superscript t stands for tail-based. The theoretical (true) values of

the VaR and ES estimates can be calculated through the PDF of the actual distribution and

they are denoted by VaRβ and ESβ, respectively.

To quantify the estimation errors, we define the relative errors for the tail-based normal

approximation as follows:

etβ(ES) ≡
ESβ − EStβ

ESβ
, etβ(VaR) ≡

VaRβ −VaRt
β

VaRβ
. (3.2.16)

From the above definitions, we can see that if the relative error is positive, there is an underes-

timation while if it is negative, there is an overestimation. Moreover, for comparison reasons,

we also obtain the traditional global-based normal approximation by matching its mean and

variance to the corresponding statistics of W . Its VaR and ES estimators are denoted by VaRg
β

and ESgβ where the superscript g stands for global-based. Similarly, the relative errors for the
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global-based normal approximation are defined by

egβ(ES) ≡
ESβ − ESgβ

ESβ
, egβ(VaR) ≡

VaRβ −VaRg
β

VaRβ
. (3.2.17)

To learn more about the performance of the tail-based normal approximation, we test it with

heavy-tailed distributions including t, Gamma, Lognormal, GPD, and Weibull with different

shape parameters. Relative errors for ES and VaR estimates at β = 99% or 99.5% of the tail-based

and global-based normal distributions are given in Table 3.1, which shows the tail-based normal

approximation has substantially smaller ES estimation errors than the global-based counterpart

for all examined loss distributions.

Table 3.1: Estimation errors of tail-based and global-based normal approximations, α = 95%.

W β (%) ESβ egβ(ES) (%) etβ(ES) (%) VaRβ egβ(VaR) (%) etβ(VaR) (%)

t, df=3.5
99 5.895 30.94 -4.848 4.061 12.49 -19.84
99.5 7.290 39.41 3.152 5.086 22.63 -14.72

t, df=8
99 3.591 14.30 0.121 2.896 7.258 -4.023
99.5 4.083 18.22 2.770 3.355 11.36 -2.380

Gamma(0.1, 1)
99 2.349 59.85 1.175 1.589 47.39 -9.720
99.5 2.887 64.86 6.214 2.095 56.34 -3.526

Gamma(3, 1)
99 9.639 20.98 0.303 8.406 16.38 -1.225
99.5 10.49 23.62 1.332 9.274 19.54 -0.489

Lognormal(0, 1.12)
99 20.15 53.75 -3.925 12.92 35.26 -23.92
99.5 25.64 61.16 5.455 17.00 47.67 -15.51

Lognormal(0, 0.32)
99 2.235 14.91 0.225 2.010 10.79 -1.179
99.5 2.391 17.42 1.237 2.166 13.52 -0.564

GPD(0.3,1)
99 15.62 52.33 -7.747 9.937 32.74 -29.38
99.5 20.01 60.21 2.547 13.00 44.27 -21.38

GPD(0.1,1)
99 7.610 41.89 0.179 5.849 31.59 -6.576
99.5 8.874 46.99 4.121 6.987 38.30 -3.584

Weibull(1,0.6)
99 17.99 52.45 0.339 12.75 39.92 -10.16
99.5 21.77 57.96 5.711 16.10 48.34 -4.972

Weibull(1,1.4)
99 3.415 21.84 0.262 2.977 17.83 -0.859
99.5 3.714 24.10 1.005 3.290 20.66 -0.290

The improvements in ES estimation using the tail-based normal approximation are associated

with overestimated VaR values (see the last column in Table 3.1). The overestimates of VaR are

22



necessary to compensate for the originally underestimated ES estimates because the normal

distribution has a lighter right tail than all the examined distributions.

Though the tail-based normal approximation gives more accurate ES estimates than the

global-based counterpart, its errors are not considerably small and further improvements are thus

needed. In addition, it seems that the errors have some dependence on the tail weight (shape)

parameters of those distributions. Therefore, we consider an adjustment factor related to the

tail weight statistics in the next section.

3.3 Adjusted Tail-Based Normal Approximation

For real-time financial data, loss distributions are usually heavy-tailed so extreme losses are

more frequent than those modeled by normal distributions. Table 3.1 indicates the estimation

errors of the tail-based normal approximation depend on the tail weight of its actual distribution.

Therefore, to further decrease the estimation errors, now we propose an adjusted tail-based

normal approximation.

Let T stand for a loss r.v. with a given distribution and β be the confidence level of the ES

estimate. We pick a value of α such that α < β and the α-quantile of T is denoted by Aα again.

Assuming X is the r.v. of the tail-based normal approximation of T obtained by Eq. (3.2.15), a

ratio Rα,β that measures estimation errors is defined by

Rα,β ≡
ESβ(T )−Aα
ESβ(X)−Aα

, (3.3.1)

where ESβ(X) is obtained by Eq. (3.2.13) and ESβ(T ) is the theoretical β-level ES estimate

of T . The reason why we subtract Aα from both the numerator and denominator of Rα,β in

Eq. (3.3.1) is that it ensures Rα,β stays unchanged when the loss r.v. is subject to a linear

transformation based on properties of our tail-based normal approximation (see Section 3.6).

This feature is desired as the relative distribution shapes of X and T are not changed by a linear

transformation, neither should Rα,β.
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If the estimation error is 0 or very small, then the value of Rα,β will be 1 or very close to 1

and vice versa. Therefore, Rα,β can be seen as a measure of the estimation error. Moreover, the

results in Table 3.1 imply that this ratio depends on the tail weight of T .

To further navigate the relation between the ratio Rα,β (estimation error) and the tail weight,

we need a variable to generally quantify the tail weight. Here a conditional skewness is defined,

as in Eq. (3.3.2):

γα ≡
E[(T −Aα)3|T > Aα]

(E[(T −Aα)2|T > Aα])
3
2

. (3.3.2)

A similarly defined conditional kurtosis can be considered, too. Since results with the conditional

skewness are already satisfying, we stick to it in this chapter. Our idea is to develop a regression

model between the Rα,β and γα such that the expected value of Rα,β , denoted by R̂α,β , satisfies

the following equation:

R̂α,β = fα,β(γα). (3.3.3)

Subsequently, we can have a more accurate ES estimator by adjusting the tail-based normal

approximation based on Eq. (3.3.1).

Now we take the student’s t distribution for the r.v. T as the training distribution. By

changing values of the degree of freedom, different tail weights γα from the corresponding

distributions of T are obtained. Therefore, a relevant regression model can be built. We want

to point out that, although our model is developed based on student’s t distribution, it can

be applied to other heavy-tailed distributions (see Remark 1 and the robustness test results in

Subsection 3.4.2).

To illustrate the relation between Rα,β and γα, we show some values in Figure 3.2 (the

small circles) for β = 99% (left) and β = 99.5% (right) with α = 95%. A regression analysis is

subsequently conducted to develop an equation that predicts Rα,β from the conditional skewness

24



2 4 6 8 10 12
0.9

0.92

0.94

0.96

0.98

1

1.02

conditional skewness, γα

R
α
,β

2 4 6 8 10 12
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

conditional skewness, γα

R
α
,β

Figure 3.2: Scatter plots of Rα,β on γα with regression lines, α = 95%, β = 99% (left) & 99.5% (right).

of the t distributed r.v. T . According to Figure 3.2, the scatter plots4 of Rα,β on γα, the following

nonlinear regression lines are devised (See the solid lines in Figure 3.2):

R̂α,β = fα,β(γα) = b0 + b1e
−b2γα + b3γ

−1
α + b4γ

−2
α , for α = 95%, β = 99% or 99.5%. (3.3.4)

In fact, the regression model is not unique. Any prediction equation works as long as it precisely

describes the relation between Rα,β and γα. Summary of the coefficients in Eq. (3.3.4) is reported

in Table 3.2, which shows all variables are useful to predict Rα,β.

By virtue of Eq. (3.3.1) and Eq. (3.3.3), we can obtain a more accurate ES estimator based

on the adjusted tail-based normal approximation as follows:

ÊSβ(X) ≡ [ESβ(X)−Aα]fα,β(γα) +Aα. (3.3.5)

The adjustment factor fγ,β(γα) may depend on the level of α and β, but it is usually robust on

the distribution of T .

Remark 1. Though the two regression models (β = 99% or 99.5%) in Eq. (3.3.4) are built on a

4To ensure the regression line is shown clearly, only a few points are displayed in Figure 3.2 while regression
analysis covers a sufficiently large number of points to guarantee the effectiveness.
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basis of student’s t distributions, we can adopt them to adjust the tail-based normal approximation

obtained from loss samples or loss r.v.’s from other distributions. This adjustment is feasible

since as a general statistic, the corresponding γα is defined by Eq. (3.3.6) or Eq. (3.3.7). The

accuracy of our ES estimator after the adjustment will be explored in the next two sections.

For a sample of losses Y = {yn}Nn=1, its conditional skewness γα can be acquired through

γα ≡

∑N
n=1(yn−Aα)31{yn>Aα}∑N

n=1 1{yn>Aα}[∑N
n=1(yn−Aα)21{yn>Aα})∑N

n=1 1{yn>Aα}

] 3
2

. (3.3.6)

where Aα, the sample’s α-quantile, is given by Eq. (3.2.4). Moreover, for a loss r.v., W , with a

given distribution whose α-quantile equals Aα, its γα is defined by

γα ≡
E[(W −Aα)3|W > Aα]

(E[(W −Aα)2|W > Aα])
3
2

. (3.3.7)

Eq. (3.3.7) will be used later for error estimation and robustness tests.

Table 3.2: Summary for regression models with α = 95%, β = 99% and α = 95%, β = 99.5%.

α = 95%, β = 99% α = 95%, β = 99.5%
Coefficient Value SE p-value Value SE p-value

b0 0.8611 1.7× 10−4 0.00 0.9919 2.2× 10−4 0.00
b1 0.5191 7.0× 10−3 0.00 0.6681 8.5× 10−3 0.00
b2 0.9747 3.8× 10−3 0.00 0.9607 3.7× 10−3 0.00
b3 0.6099 2.0× 10−3 0.00 0.6022 2.5× 10−3 0.00
b4 -0.9413 6.9× 10−5 0.00 -1.4623 6.2× 10−3 0.00

Adjusted R2 = 0.9999 Adjusted R2 = 0.9998

For a given loss sample Y, the algorithm to obtain our regression-adjusted ES estimator

from the tail-based normal approximation can be summarized as follows:
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Algorithm for the adjusted tail-based normal ES estimation

Step 1. Choose a value for α (e.g. α = 95%), and calculate Aα using Eq. (3.2.4);

Step 2. Determine the tail-based normal r.v. X by Eq. (3.2.5);

Step 3. Compute sample’s conditional skewness γα by virtue of Eq. (3.3.6);

Step 4. Compute the adjustment factor fα,β(γα) by virtue of Eq. (3.3.4);

Step 5. Obtain the adjusted tail-based normal ES estimator at β level by Eq. (3.3.5).

3.4 Consistence and Robustness Tests

Although the adjustment factor Rα,β is developed based on student’s t distribution, in this

section, we will demonstrate that it works well for many other heavy-tailed distributions, such as

Gamma, Lognormal, GPD, Weibull, etc. Therefore, the adjusted tail-based normal approximation

is a simple and robust approach for ES estimation.

3.4.1 Consistence Test

Before examining the accuracy of the adjusted tail-based normal ES estimator, we first conduct

a self-consistence test. Suppose the loss r.v. W follows a normal distribution, W ∼ N(µ, σ2).

Under this circumstance, in theory, the corresponding tail-based normal r.v. X is exactly same

as W , i.e., X ∼ N(µ, σ2), and no further adjustment based on tail weights is needed. That is,

the adjustment factor Rα,β should be equal to 1. Let us define

zα ≡ Φ−1(α), qα ≡
1

(1− α)
√

2π
e−

z2α
2 . (3.4.1)

Let Aα be the α-quantile of W and we can get

Aα = µ+ σzα. (3.4.2)
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In addition, we have (see Appendix A.1 for details)

E[W |W > Aα] = µ+ σqα, (3.4.3)

E[W 2|W > Aα] = µ2 + σ2 + σ(Aα + µ)qα, (3.4.4)

E[W 3|W > Aα] = µ3 + 3µσ2 + [σ(A2
α + µ2 +Aαµ) + 2σ3]qα. (3.4.5)

Define

s2 ≡ E[(W −Aα)2|W > Aα], r3 ≡ E[(W −Aα)3|W > Aα].

By virtue of Eq. (3.4.2)∼Eq. (3.4.5), we have

s2 = (µ−Aα)[σqα + (µ−Aα)] + σ2,

r3 = (µ−Aα)3 + 3(µ−Aα)σ2 + [2σ2 + (Aα − µ)2]σqα,

s2

σ2
= − zα(qα − zα) + 1,

r3

σ3
= − z3

α − 3zα + (2 + z2
α)qα.

As we can see, r3/σ
3 and s2/σ

2 depend only on α. Therefore, we can get the square of the

conditional skewness of W by

γ2
α =

r2
3

s3
2

=

(
r3
σ3

)2(
s2
σ2

)3 =
[−z3

α − 3zα + (2 + z2
α)qα]2

[−zα(qα − zα) + 1]3
. (3.4.6)

So γα is a constant that only depends on α and it is independent of µ and σ2.

Obviously, the original estimation error of the unadjusted tail-based normal approximation

is zero because X is a replication of W . As for α = 95%, we have γα = 1.838 by Eq. (3.4.6) and

fα,β(γα) ≈ 1.00 by Eq. (3.3.4) for both 99% and 99.5% β levels. When fα,β(γα) is near 1, there

is almost no adjustment so the estimation error of the adjusted tail-based normal approximation

is still close to zero. Therefore, the adjusted tail-based normal ES estimation method is verified

to be self-consistent.
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3.4.2 Robustness Test and Estimation Errors for Heavy-Tailed Loss Distri-

butions

To test the accuracy of our proposed adjusted tail-based normal ES estimator, we calculate the

corresponding ES estimates of some heavy-tailed distributions. The results will be compared to

the theoretical values derived from the distribution functions.

In particular, for a loss r.v. W with a known distribution, its corresponding tail-based

normal r.v. X and conditional skewness γα can be determined respectively by Eq. (3.2.15) and

Eq. (3.3.7). In addition to the original ES estimation error that has been defined in Eq. (3.2.16),

a measure of the estimation error for our regression-adjusted ES estimator at β level is defined

by

êtβ(ES) ≡ ESβ(W )− ÊSβ(X)

ESβ(W )
, (3.4.7)

where ÊSβ(X), the β-level adjusted tail-based normal approximation, is given in Eq. (3.3.5).

Table 3.3: Regression-adjusted errors for various heavy-tailed loss distributions, α = 95%.

W γα et99%(ES) (%) êt99%(ES) (%) et99.5%(ES) (%) êt99.5%(ES) (%)

t, df=3.5 7.181 -4.848 -0.028 3.152 -0.036
t, df=5 3.165 -0.919 -0.003 3.924 -0.004
t, df=8 2.359 0.121 -0.001 2.770 -0.001
Gamma(0.1,1) 2.441 1.175 1.100 6.214 2.002
Gamma(0.3,1) 2.249 0.819 0.572 3.954 0.985
Gamma(1.5,1) 2.086 0.430 0.218 1.938 0.354
Lognormal(0,1.12) 4.560 -3.925 -0.660 5.455 1.073
Lognormal(0,0.92) 3.416 -1.316 0.104 5.417 1.116
Lognormal(0,0.32) 2.098 0.225 0.091 1.237 0.158
GPD(0.3, 1) 11.23 -7.747 -0.689 2.547 0.065
GPD(0.25, 1) 5.196 -3.926 -0.245 4.395 0.452
GPD(0.1, 1) 2.571 0.179 0.274 4.121 0.652
Weibull(0.5, 1) 3.109 -0.574 0.525 6.919 2.092
Weibull(0.9, 1) 2.192 0.584 0.352 2.936 0.612
Weibull(1.4, 1) 1.967 0.262 0.114 1.005 0.166
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The results are summarized in Table 3.3, in which the original and adjusted errors are both

reported for various heavy-tailed loss distributions. The location parameter is set to zero and

the scale parameter is set to one if they exist. For each kind of distributions, we choose three

different parameter sets, and the most heavy-tailed one is listed first.

From Table 3.3, we can see that the adjusted tail-based normal approximation gives us a

substantially better accuracy than the original one. Not surprisingly, the relative errors after

adjustment are less than 0.05% for t distributions since the adjustment factors are obtained on a

basis of that distribution. Moreover, for other heavy-tailed distributions, the adjusted tail-based

normal approximation also has good results with considerably small relative errors (0− 2%),

even though the adjustment factors are initially developed from t distributions.

Therefore, the regression models work well for distributions other than student’s t and the

adjusted tail-based normal approximation offers an effective and robust ES estimation method

for loss r.v.’s with various heavy-tailed distributions.

3.5 Comparison with the AA and EVT Estimators

To further test the accuracy of our method, we compare the dispersion and accuracy of the

adjustment tail-based normal ES estimator with the arithmetic average (AA) of excessive losses

and extreme value theory (EVT) ES estimators for small loss samples simulated from various

heavy-tailed distributions.

We adopt the AA estimator proposed by S. X. Chen (2007): Assuming Ỹ(1), . . . , Ỹ(N−1), Ỹ(N)

is a sample of losses sorted in ascending order, its ES estimator at level β is defined as

ẼSβ =

∑N
n=dNβe Ỹ(n)

N + 1− dNβe , (3.5.1)

where d·e denotes the ceiling function; that is, dxe gives the smallest integer greater than or

equal to x.

In light of the EVT estimator, suppose that F (w) is the CDF for a loss r.v. W . The
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distribution function of excesses beyond a threshold v is defined by McNeil (1997) as follows:

Fv(y) = Pr(W − v ≤ y|W > v) =
F (v + y)− F (v)

1− F (v)
. (3.5.2)

According to Gnedenko (1943), as the threshold v increases, Fv(y) converges to a GPD whose

CDF and PDF are listed as below:

Gξ,σ(y) = 1−
(

1 + ξ
y

σ

)−1/ξ
, gξ,σ(y) =

1

σ

(
1 + ξ

y

σ

)−1/ξ−1
, ξ 6= 0, σ > 0, (3.5.3)

where ξ is a shape parameter and σ is a scale parameter. Assuming there are nv losses, {wk}nvk=1,

greater than the threshold v, then the sequence {wk − v}nvk=1 will show Generalized Pareto

behaviors (Davison & Smith, 1990). If ξ < 0, an extra condition is 1+ξ (wi−v)
σ > 0 for i = 1, . . . , nv.

When ξ = 0, the GPD becomes the exponential distribution so we have

Gσ(y) = 1− exp
(
− y
σ

)
, gσ(y) =

1

σ
exp

(
− y
σ

)
, ξ = 0, σ > 0. (3.5.4)

Moreover, ξ and σ in GPD can be estimated by maximizing its log-likelihood function:

(ξ∗, σ∗) = arg max
ξ,σ

nv∑
k=1

ln
(
gξ,σ(wk − v)

)
, (3.5.5)

where the function g is given by Eq. (3.5.3) or Eq. (3.5.4), depending on the value of ξ. We need

to compare all the three situations where ξ < 0, ξ = 0 or ξ > 0 and choose the one with the

largest maximum log-likelihood.

Fv(y) in Eq. (3.5.2) is a conditional probability that W ≤ v + y given that W > v. The

unconditional distribution of excesses beyond the threshold v is thus derived by

Pr(W ≤ w) = (1− F (v))Gξ,σ(w − v) + F (v), w > v. (3.5.6)

Based on Eq. (3.5.6), EVT β-level (β > F (v)) VaR and ES estimators of W can be derived and
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the results are showed in Table 3.4 (see Appendix A.2 for derivation details). If the loss sample

size is N , 1− F (v) can be approximated by nv/N (Hull, 2012).

Table 3.4: EVT estimators for VaR and ES at β-level.

VaRβ(W ) ESβ(W )

ξ 6= 0 v + σ
ξ

[(
1−β

1−F (v)

)−ξ
− 1

]
VaRβ(W )+σ−ξv

1−ξ

ξ = 0 v − σ ln
(

1−β
1−F (v)

)
VaRβ(W ) + σ

Remark 2. In practice, the threshold v is usually set as the 95th percentile of the loss sample.

We keep this selection so that the threshold v of the EVT estimator is same as Aα (α = 0.95)

in our ES estimation method.

To get more information about the accuracy of our adjusted tail-based normal approximation,

we apply the Monte Carlo simulation and compare our adjusted ES estimates to the counterparts

of the AA method and EVT method. In particular, small random loss samples are generated

from various heavy-tailed distributions. For every examined distribution, 103 loss samples are

produced in which the same sample size of 250 (or 500) is adopted. With regard to each simulated

sample, our regression-adjusted estimator, AA estimator and EVT estimator for ES at 99% and

99.5% levels will be respectively computed and recorded. Repeating this step for all the 103

samples, we get the corresponding mean, relative standard deviation (RSD) and mean squared

error (MSE) of each estimator.

The MSE of the ES estimator for a given underlying distribution is computed by

MSE of ESβ,j =
1

1000

1000∑
i=1

(ESβ,j(i)− true ESβ)2, j = 1, 2, 3. (3.5.7)

where ‘true ESβ ’ is the theoretical ES value at the confidence level β of the underlying distribution,

j = 1 stands for the adjusted tail-based estimator, j = 2 stands for the AA estimator, j = 3
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stands for the EVT estimator and i is the sample index for all the 103 samples.

To better compare the three ES estimation methods, based on the extent of heavy-tailed

behaviors, the underlying distributions are split up into three groups, namely highly, moderately,

and slightly heavy-tailed distributions. This categorization is conducted by shape parameters

within each distribution family and the criteria are vague.

Table 3.5: Comparisons of our estimator, AA and EVT estimators for ES, (a).

β = 99% β = 99.5%
Sample Estimator Mean RSD MSE Mean RSD MSE

t, df=3.5
ÊSβ 5.663 0.331 3.558 6.474 0.383 6.792
AA 6.035 0.360 4.746 7.105 0.481 11.70

EVT 5.830 0.340 3.935 7.087 0.463 10.77

Gamma(0.1, 1)
ÊSβ 2.231 0.288 0.427 2.585 0.318 0.766
AA 2.384 0.310 0.548 2.783 0.377 1.111

EVT 2.330 0.311 0.526 2.796 0.417 1.368

Lognormal(0, 1.12)
ÊSβ 19.39 0.390 57.59 22.61 0.442 109.1
AA 20.89 0.413 74.85 25.23 0.551 193.1

EVT 20.18 0.382 59.20 25.49 0.500 162.0

GPD(0.3, 1)
ÊSβ 14.89 0.440 43.40 17.38 0.501 82.67
AA 16.08 0.478 59.26 19.61 0.618 146.9

EVT 15.26 0.410 39.19 19.26 0.538 107.7

Weibull(0.6, 1)
ÊSβ 17.06 0.276 22.96 19.46 0.314 42.74
AA 18.15 0.310 31.71 21.02 0.378 63.76

EVT 17.69 0.317 31.51 21.22 0.429 82.93

sample size = 250, highly heavy-tailed distributions.

The results are summarized in Table 3.5, Table 3.6 and Table 3.7, in which the adjusted

tail-based estimator is denoted by ÊSβ , and the smallest RSD and MSE of the three estimators

are highlighted in bold. From those tables, we can see that when β = 99%, our adjusted tail-based

normal approximations dominates the other two estimators except RSD and MSE of GPD(0.3, 1)

and RSD of Lognormal(0, 1.12). Even for the scenarios containing those exceptions, the results of

our adjusted tail-based normal approximation are quite close to the best results. Moreover, for a
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high confidence level with β = 99.5%, our adjusted tail-based normal ES estimator substantially

outperforms the other two in terms of RSD and MSE of all underlying distributions.

Table 3.6: Comparisons of our estimator, AA and EVT estimators for ES, (b).

β = 99% β = 99.5%
Sample Estimator Mean RSD MSE Mean RSD MSE

t, df=5
ÊSβ 4.278 0.236 1.048 4.769 0.276 1.963
AA 4.492 0.264 1.408 5.080 0.343 3.060

EVT 4.381 0.261 1.311 5.050 0.367 3.480

Gamma(0.3, 1)
ÊSβ 3.343 0.220 0.565 3.740 0.249 0.992
AA 3.507 0.244 0.729 3.924 0.294 1.362

EVT 3.425 0.246 0.714 3.917 0.341 1.817

Lognormal(0, 0.92)
ÊSβ 11.12 0.294 10.84 12.68 0.339 20.38
AA 11.83 0.320 14.37 13.79 0.424 34.25

EVT 11.52 0.313 13.00 13.92 0.425 35.04

GPD(0.2, 1)
ÊSβ 10.21 0.306 10.01 11.63 0.355 18.99
AA 10.87 0.344 13.95 12.69 0.439 31.13

EVT 10.53 0.331 12.18 12.70 0.450 32.77

Weibull(0.9, 1)
ÊSβ 6.557 0.174 1.361 7.190 0.203 2.429
AA 6.810 0.198 1.821 7.510 0.242 3.363

EVT 6.651 0.196 1.717 7.439 0.272 4.163

sample size = 250, moderately heavy-tailed distributions.

The reason why our ES estimator defeats AA estimator is that the latter one only uses a

very small percentage (1− β, with β = 99%, 99.5%) of all observations while our ES estimator

always considers much more data whatever β is: the largest 5% (1− α, with α = 95%) of the

losses. Moreover, compared to the EVT estimator, our ES estimator is also preferable though

both of them make use of the largest 5% of the sample observations in this chapter. The EVT

ES estimator is thus more sensitive to the largest losses than our adjusted tail-based normal

estimator.

To further compare the three estimators, let us double the size of the simulated samples to

500 and investigate those three ES estimators again. Results are reported in Table 3.8, Table
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Table 3.7: Comparisons of our estimator, AA and EVT estimators for ES, (c).

β = 99% β = 99.5%
Sample Estimator Mean RSD MSE Mean RSD MSE

t, df=8
ÊSβ 3.473 0.171 0.365 3.794 0.202 0.670
AA 3.595 0.191 0.469 3.969 0.251 1.007

EVT 3.533 0.184 0.425 3.904 0.264 1.091

Gamma(1.5, 1)
ÊSβ 6.541 0.132 0.788 7.043 0.155 1.379
AA 6.730 0.148 0.991 7.263 0.185 1.843

EVT 6.587 0.145 0.939 7.147 0.200 2.155

Lognormal(0, 0.32)
ÊSβ 2.206 0.084 0.036 2.313 0.102 0.062
AA 2.245 0.095 0.046 2.361 0.124 0.087

EVT 2.251 0.097 0.047 2.351 0.131 0.097

GPD(0.1, 1)
ÊSβ 7.306 0.217 2.596 8.121 0.254 4.802
AA 7.658 0.247 3.575 8.618 0.310 7.182

EVT 7.478 0.249 3.478 8.605 0.348 9.003

Weibull(1.4, 1)
ÊSβ 3.337 0.109 0.138 3.547 0.129 0.237
AA 3.411 0.124 0.179 3.632 0.152 0.311

EVT 3.397 0.114 0.150 3.592 0.161 0.350

sample size = 250, slightly heavy-tailed distributions.

3.9 and Table 3.10. We can see our adjusted tail-based normal ES estimator is still superior to

the other two at 99.5% level while the three estimators are considerably close to each other

regarding RSD and MSE at 99% level.

3.6 Effects of Linear Transformations

In this section, we investigate the effects of linear transformation on the ES estimator of a

loss r.v. or a loss sample. Linear transformation is common in portfolio management and risk

management, such as the exchanges among currencies and the change of time units.

Assuming an underlying distribution is transformed linearly with a positive scale multiplier

m (m > 0) and a constant summand c, then any random loss sample generated from it will

be subject to the same transformation. In what follows, we use superscript τ for the new

variables after transformation. Suppose the transformation is in forms of Yτ = mY + c, where
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Table 3.8: Comparisons of our estimator, AA and EVT estimators for ES, (d).

β = 99% β = 99.5%
Sample Estimator Mean RSD MSE Mean RSD MSE

t, df=3.5
ÊSβ 5.781 0.248 2.074 6.475 0.291 4.132
AA 5.808 0.234 1.860 7.434 0.344 6.551

EVT 5.929 0.254 2.258 7.360 0.342 6.344

Gamma(0.1, 1)
ÊSβ 2.265 0.203 0.218 2.681 0.225 0.406
AA 2.301 0.207 0.228 2.920 0.261 0.579

EVT 2.343 0.241 0.319 2.916 0.316 0.852

Lognormal(0, 1.12)
ÊSβ 19.89 0.294 34.29 23.73 0.336 67.20
AA 19.97 0.267 28.46 26.52 0.384 104.6

EVT 20.65 0.287 35.29 26.70 0.375 101.4

GPD(0.3, 1)
ÊSβ 15.30 0.344 27.85 18.29 0.394 54.94
AA 15.28 0.306 22.02 20.64 0.455 88.38

EVT 15.74 0.306 23.22 20.43 0.401 67.18

Weibull(0.6, 1)
ÊSβ 17.35 0.201 12.57 20.19 0.231 24.30
AA 17.54 0.203 12.83 22.00 0.276 36.75

EVT 17.93 0.232 17.25 21.97 0.311 46.80

sample size = 500, highly heavy-tailed distributions.

Table 3.9: Comparisons of our estimator, AA and EVT estimators for ES, (e).

β = 99% β = 99.5%
Sample Estimator Mean RSD MSE Mean RSD MSE

t, df=5
ÊSβ 4.376 0.181 0.634 4.971 0.216 1.231
AA 4.411 0.177 0.608 5.334 0.258 1.900

EVT 4.469 0.196 0.765 5.285 0.275 2.105

Gamma(0.3, 1)
ÊSβ 3.403 0.154 0.284 3.878 0.177 0.516
AA 3.438 0.161 0.308 4.118 0.206 0.721

EVT 3.460 0.179 0.383 4.052 0.241 0.954

Lognormal(0, 0.92)
ÊSβ 11.34 0.218 6.119 13.18 0.254 11.94
AA 11.42 0.208 5.639 14.40 0.298 18.56

EVT 11.69 0.232 7.388 14.40 0.315 20.63

GPD(0.2, 1)
ÊSβ 10.40 0.230 5.826 12.09 0.270 11.52
AA 10.47 0.221 5.395 13.27 0.323 18.37

EVT 10.72 0.246 6.930 13.21 0.334 19.43

Weibull(0.9, 1)
ÊSβ 6.627 0.126 0.723 7.379 0.148 1.324
AA 6.668 0.130 0.770 7.764 0.177 1.890

EVT 6.697 0.143 0.931 7.610 0.196 2.247

sample size = 500, moderately heavy-tailed distributions.
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Table 3.10: Comparisons of our estimator, AA and EVT estimators for ES, (f).

β = 99% β = 99.5%
Sample Estimator Mean RSD MSE Mean RSD MSE

t, df=8
ÊSβ 3.553 0.129 0.210 3.945 0.155 0.392
AA 3.570 0.131 0.220 4.141 0.189 0.613

EVT 3.587 0.143 0.263 4.063 0.201 0.663

Gamma(1.5, 1)
ÊSβ 6.583 0.091 0.382 7.172 0.108 0.696
AA 6.617 0.095 0.414 7.439 0.130 0.931

EVT 6.614 0.101 0.465 7.289 0.140 1.082

Lognormal(0,0.32)

ÊSβ 2.218 0.060 0.018 2.346 0.074 0.032
AA 2.223 0.063 0.020 2.401 0.088 0.045

EVT 2.243 0.059 0.018 2.405 0.081 0.038

GPD(0.1, 1)
ÊSβ 7.401 0.159 1.412 8.370 0.188 2.727
AA 7.455 0.160 1.451 8.948 0.227 4.136

EVT 7.539 0.180 1.851 8.819 0.249 4.827

Weibull(1.4, 1)
ÊSβ 3.360 0.078 0.072 3.610 0.094 0.126
AA 3.368 0.082 0.078 3.715 0.111 0.171

EVT 3.366 0.085 0.085 3.640 0.116 0.182

sample size = 500, slightly heavy-tailed distributions.

Y represents the original loss sample dataset (or the original loss r.v.).

The three β-level ES estimators for the i-th original sample set are denoted by {ESβ,j(i)}3j=1

(j = 1 for adjusted tail-based normal approximation, j = 2 for AA, and j = 3 for EVT). As

for the corresponding i-th linearly-transformed sample, the new estimators are denoted by

{ESτβ,j(i)}3j=1. Apparently, the β-level theoretical ES estimate for the new sample is

true ESτβ = m(true ESβ) + c.

Firstly, we examine the effects of the linear transformation on our adjusted tail-based normal ES

estimator. We have the following proposition:

Proposition 1. If a loss sample or a loss r.v. is transformed linearly, then the corresponding

tail-based normal r.v. X and the adjusted tail-based normal ES estimator are subject to the same

linear transformation. Moreover, the conditional skewness stays unchanged.
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Proof. Suppose the original loss sample is denoted by {yn}Nn=1 whose α-quantile is Aα and

conditional skewness is γα. After undergoing a linear transformation, the loss sample becomes

a new one denoted by {yτn}Nn=1 such that yτn = myn + c for n = 1, . . . , N where m, c are both

constants and m > 0.

The α-quantile for the new sample after the linear transformation is mAα + c. The new

conditional skewness is

γτα =

∑N
n=1(yτn−mAα−c)31{yτn>mAα+c}∑N

n=1 1{yτn>mAα+c}[∑N
n=1(yτn−mAα−c)21{yτn>mAα+c}∑N

n=1 1{yτn>mAα+c}

] 3
2

=

m3

[∑N
n=1(yn−Aα)31{yn>Aα}∑N

n=1 1{yn>Aα}

]
m3

[∑N
n=1(yn−Aα)21{yn>Aα}∑N

n=1 1{yn>Aα}

] 3
2

= γα. (3.6.1)

That is, after the linear transformation, γτα is equal to γα. Furthermore, by Eq. (3.2.11), the

parameters of the original tail-based normal r.v. X ∼ N(µ, σ2) is solved by

σ =
(
z2
α + 1− zαqα

)− 1
2

[∑N
n=1(yn −Aα)2

1{yn>Aα}∑N
n=1 1{yn>Aα}

] 1
2

,

µ = Aα − σΦ−1(α).

(3.6.2)

where zα and qα are defined in Eq. (3.4.1). Assuming the tail-based normal r.v. for {yτn}Nn=1 is

Xτ ∼ N(µτ , (στ )2), we have

στ =
(
z2
α + 1− zαqα

)− 1
2

[∑N
n=1(yτn −mAα − c)2

1{yτn>mAα+c}∑N
n=1 1{yτn>mAα+c}

] 1
2

=
(
z2
α + 1− zαqα

)− 1
2

[
m2
∑N

n=1(yn −Aα)2
1{yn>Aα}∑N

n=1 1{yn>Aα}

] 1
2

.

Therefore, στ = mσ and µτ = mAα + c − mσΦ−1(α) = mµ + c. So we can get that Xτ ∼

N(mµ + c,m2σ2) and Xτ has the same distribution as mX + c. By virtue of Eq. (3.3.5), we

can get the new β-level ES estimator as follows:

ÊSβ(Xτ ) = [ESβ(Xτ )−mAα − c]fα,β(γτα) +mAα + c
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= [mESβ(X) + c−mAα − c]fα,β(γα) +mAα + c

= m[ESβ(X)−Aα]fα,β(γα) +mAα + c

= mÊSβ(X) + c. (3.6.3)

where ESβ(Xτ ) = mESβ(X) + c is derived from Eq. (3.2.13). The other scenario that a loss r.v.

W is transformed linearly can be proved similarly. Q.E.D

From Proposition 1, we have ESτβ,1(i) = mESβ,1(i) + c. As for AA estimator, ESτβ,2(i) equals

mESβ,2(i) + c obviously. Next we consider the effects on the EVT estimator; in particular, we

examine whether ESτβ,3(i) equals mESβ,3(i) + c.

Suppose {wk}nvk=1 denote the nv losses that are greater than the threshold v in the original

sample. After the linear transformation, the new threshold is mv + c and losses beyond it

become {mwk + c}nvk=1. Assuming (ξ̂, σ̂) are the maximum likelihood estimation (MLE) GPD

parameters of the i-th original sample, we have

(ξ̂, σ̂) = arg max
ξ,σ

nv∑
k=1

− lnσ −
(

1

ξ
+ 1

)
ln

(
1 +

ξ

σ
(wk − v)

)
, ξ 6= 0. (3.6.4)

Suppose (ξ̂τ , σ̂τ ) are the MLE GPD parameters after linear transformation. Then they satisfy:

(ξ̂τ , σ̂τ ) = arg max
ξ,σ

nv∑
k=1

− lnσ −
(

1

ξ
+ 1

)
ln

(
1 +

ξ

σ
(mwk + c−mv − c)

)
, ξ 6= 0

= arg max
ξ,σ

nv∑
k=1

− ln(σ/m)−
(

1

ξ
+ 1

)
ln

(
1 +

ξ

σ/m
(wk − v)

)
, ξ 6= 0. (3.6.5)

Comparing Eq. (3.6.5) to Eq. (3.6.4), we conclude that ξ̂τ = ξ̂ and σ̂τ = mσ̂. According to
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Table 3.4, the EVT β-level ES estimator (ξ 6= 0) for the sample after the linear transformation is

ESτβ,3(i) =
mv + c+ σ̂τ

ξ̂τ

[
( 1−β
nv/N

)−ξ̂
τ − 1

]
+ σ̂τ − ξ̂τ (mv + c)

1− ξ̂τ

=
mv +m σ̂

ξ̂

[
( 1−β
nv/N

)−ξ̂ − 1
]

+mσ̂ −mξ̂v + (1− ξ̂)c
1− ξ̂

= mESβ,3(i) + c.

(3.6.6)

The other situation when ξ = 0 can be demonstrated similarly. Therefore, all three ES estimators

are subject to the same linear transformation as the simulated sample. Furthermore, based on

the definition of MSE, we have

(ESτβ,j(i)− true ESτβ)2

= (mESβ,j(i) + c−m(true ESβ)− c)2,

= m2(ESβ,j(i)− true ESβ)2, j = 1, 2, 3, i = 1, 2, . . . , 103.

(3.6.7)

Therefore, all the squared errors of the new sample are proved to be proportional to the original

ones with a constant multiple m2 by Eq. (3.6.7). Every simulated sample has this property, so

does the MSE for any examined underlying distribution. We can conclude that the superiority of

our estimator in MSE will be maintained even after a linear transformation (m 6= 0) is applied

to the underlying distribution.

3.7 Conclusion and Future Work

In this chapter, we propose a simple and robust ES estimation method on a basis of the tail-

based normal approximation. The regression models related to sample’s tail weight are also

introduced to make the ES estimates more accurate. For various heavy-tailed loss distributions,

the regression-adjusted estimation errors are all considerably small. Moreover, compared to the

commonly-used arithmetic average and EVT estimators, our ES estimator is preferred, especially
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at a high confidence level such as 99.5% with a small sample size of 250 or 500. In addition, we

also show that our method works well under linear transformations, which further adds to its

practicality in portfolio management.

Nonetheless, we only consider the scenario that β = 99% or 99.5% with α = 95% and other

combinations may have better performances. It is also likely our regression models would fail to

work for an extremely large conditional skewness γα (γα > 12, etc.) even though that situation

is very rare in practice. Furthermore, instead of fitting the tailed data, the tail-based normal

approximation matches specific statistics of the excessive losses. That normal approximation

itself cannot describe the tail behaviors correctly. It needs to work jointly with the regression

model to give the ES estimate. These deficiencies are worth looking into in the future.
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CHAPTER 4

GARCH vs. ARSV under the Physical and Risk-Neutral Measures

4.1 Introduction

Although return volatility cannot be observed directly, there is never too much emphasis on

monitoring it. As a fundamental parameter, return volatility plays crucial roles in pricing

derivatives and estimating measures of risk. Hence, how to precisely estimate and forecast

market return volatilities has been an enduringly popular field of research. There are three

prevalent types of volatility models: the ARCH/GARCH-family models, the stochastic volatility

(SV) models and the realized volatility (RV) model. The RV model is developing fast these years

but it depends on high-frequency intra-daily data which is not always available. The scope of

this chapter is thus limited to the first two types of models—specifically, the basic GARCH(1,

1) and ARSV(1) models. The fundamental difference between these two models is that the

ARSV(1) model considers the volatility to be a latent variable with the unexpected noise while

the volatility is deterministic in the GARCH(1, 1) model.

Despite the extra adaptability, the latent volatility process in the SV models adds to
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the difficulty of parameter estimation. Due to the improvement in computing capacity along

with more efficient estimation methods, it is increasingly likely to take advantage of the SV

models when estimating or forecasting volatilities. As alternatives to the ARCH/GARCH-family

models, the SV models generally better explain some stylized facts of financial time series. For

example, M. Á. Carnero, Peña, & Ruiz (2001) show the ARSV(1) model is more flexible than

the GARCH(1, 1) model in terms of excess kurtosis, low first-order autocorrelation and high

persistence of volatility. Yu (2002) makes a comparison of nine models in terms of predicting

volatilities using New Zealand stock data and demonstrate the ARSV(1) model outperforms

the rival candidates. Lehar, Scheicher, & Schittenkopf (2002) also compare the performance

of the GARCH and Hull-White models in terms of the out-of-sample option valuation errors

and Value-at-Risk forecasts. Moreover, the abilities to reproduce the stylized facts in financial

series of the GARCH(1, 1), exponential GARCH(1, 1) and ARSV(1) models are investigated by

Malmsten, Teräsvirta, et al. (2004) and they conclude that none of the models dominates the

others.

Generally speaking, measurements of return volatility of financial assets can be classified

into two main categories based on the probability measures. The first one directly takes into

account historical market data and tracks volatility by fitting asset return series. Volatility

models that give such measurements are known to be built under the real-world or physical

probability measure. The second measurement derives the volatility of the underlying asset from

its derivative market prices. This measurement follows volatility under the so-called risk-neutral

probability measure because of its relationship with the derivative pricing.

Until now, the risk-neutral GARCH(1, 1) and ARSV(1) models have not been directly

compared in the previous empirical studies. This chapter complements the literature by a

comprehensive comparison of the GARCH(1, 1) and ARSV(1) models regarding in-sample fitting

and out-of-sample prediction capabilities under both the physical and risk-neutral measures.

Under the physical measure, we compare their log-likelihoods after fitting historical returns

and test normality for the error terms. Moreover, two robust loss functions, MSE and QLIKE,
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are referred to for the one-step-ahead volatility forecast comparison. On the other hand, under

the risk-neutral measure, the in-sample and out-of-sample option pricing errors of these two

models are investigated. When pricing options, we consider two choices of the initial volatility: a

casually determined value derived from historical returns and an optimal value that minimizes

the in-sample pricing error. The latter choice leads to the implied versions of the two models.

The results show the ARSV(1) model outperforms the GARCH(1, 1) model in terms of the

in-sample and out-of-sample performances under the physical measure. Under the risk-neutral

measure, these two models obtain considerably similar results when pricing call options while

the ARSV(1) model performs substantially better for put options. Although the implied versions

of these two models improve the in-sample pricing errors as expected, they are sensitive to the

initial conditions and not robust for the out-of-sample predictions.

The rest of this chapter is organized as follows: In Section 4.2, we discuss the parameter

estimation methods for the GARCH(1, 1) and ARSV(1) models under both the physical and

risk-neutral measures. Section 4.3 introduces the dataset and discuss the methodologies for the

comprehensive comparison of these two models. Section 4.4 investigates the empirical results. In

section 4.5, we summarize this chapter and point out directions for the future work. All technical

details are included in Appendix B.

4.2 Models and Parameter Estimation Methods

4.2.1 Estimating GARCH(1, 1) Model under the Physical Measure

Considering the historical returns, a volatility model under the physical measure is estimated

by fitting the return series as precisely as possible. The GARCH model relates the current

conditional variance to the lagged squared residuals and lagged conditional variance estimates. As

the most commonly-used GARCH model, the GARCH(1, 1) model under the physical measure
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is constructed as in Eq. (4.2.1):

yt = σtzt, zt
i.i.d∼ N(0, 1),

σ2
t = a0 + a1σ

2
t−1z

2
t−1 + b1σ

2
t−1.

(4.2.1)

where {yt}t≥1 denotes the log daily return series (can be magnified), σ2
t stands for the conditional

variance at time t. To ensure the stationarity of the variance, it is required that the parameters

satisfy a0 > 0, a1 ≥ 0, b1 ≥ 0 and a1 + b1 < 1.

Since zt conditionally follows a normal distribution, the maximum likelihood estimation

method can be adopted to estimate the GARCH(1, 1) model. Suppose θ1 = (a0, a1, a2) is its

constant parameter vector to be estimated under the physical measure. Given a sample of T

realized log daily returns, the GARCH(1, 1) model under the physical measure is estimated by

maximizing its log likelihood function, denoted by ln[pθ(y1:T )], as follows:

θ̂1 = (â0, â1, b̂1) = arg max
a0,a1,b1

ln[pθ(y1:T )],

ln[pθ(y1:T )] = −1

2

[
T ln(2π) +

T∑
t=1

ln(σ2
t ) +

T∑
t=1

y2
t

σ2
t

]
.

(4.2.2)

4.2.2 Estimating ARSV(1) Model under the Physical Measure

There have been a lot of studies on Taylor’s ARSV model. Actually, in Bayesian time series

analysis, the ARSV model is a fundamental example when studying the Markov chain Monte

Carlo (MCMC) methods and Particle Filter methods due to its non-linearity that makes the

traditional Kalman filter method infeasible. Assuming the latent log variance follows a Gaussian

AR(1) process, the ARSV(1) model is generally given by

yt = exp(
x′t
2

)ξt, ξt
i.i.d∼ N(0, 1),

x′t = α+ φx′t−1 + γηt, ηt
i.i.d∼ N(0, 1), ξt ⊥ ηt.

(4.2.3)
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where {yt}t≥1 is still the log daily return series and x′t = lnσ2
t denotes the log conditional

variance at time t.

In this chapter, we adopt the following ARSV(1) model since it is easier to estimate and

more straightforward to implement in the option pricing model. It can be shown that Eq. (4.2.3)

is equivalent to Eq. (4.2.4) as long as we consider β2 exp(xt) in Eq. (4.2.4) to be the conditional

variance (See Appendix B.1).

yt = β exp(
xt
2

)ξt, ξt
i.i.d∼ N(0, 1),

xt = φxt−1 + γηt, ηt
i.i.d∼ N(0, 1), ξt ⊥ ηt.

(4.2.4)

Suppose θ2 = (φ, γ2, β2) is the constant parameter vector of the ARSV(1) model under the

physical measure. The scale parameter β replaces the constant drift of the original log variance

process in Eq. (4.2.3). Sometimes a constant or even a stochastic return drift is added in the first

equation of Eq. (4.2.4) to capture the sharp return changes. Here no return drift is added to keep

in line with the GARCH(1, 1) model above and this selection also makes it easier to estimate. φ

can be seen as a persistence parameter in log variance process and |φ| < 1 should be ensured to

satisfy the stationarity condition. In addition, {ξt}t≥1 and {ηt}t≥1 are two independent processes

in this chapter though in many cases they are assumed to be correlated in order to capture the

leverage effect.

Unlike the GARCH(1, 1) model, the log variance process in the ARSV(1) model has an

unexpected noise term, which implies why it is called stochastic volatility. Despite its lack of

the analytical likelihood function, many Monte Carlo simulation methods have been proposed

to estimate the ARSV(1) model. MCMC algorithms such as Gibbs sampler can be adopted

to calculate the posterior distributions of its parameters. Moreover, Particle Filter, which is

also referred to as Sequential Monte Carlo, is effective to estimate its likelihood and then the

expectation-maximization (EM) or gradient ascent method can be implemented to maximize

the estimated likelihood. Particle MCMC, a combination of the Particle Filter and MCMC

methods, also works for parameter learning of the ARSV(1) model. In this chapter, we adopt a
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forward-only version of the Forward Filter Backward Smoothing (FFBS) algorithm with EM

method (Del Moral, Doucet, & Singh, 2010) to maximize the particle-based likelihood of the

ARSV(1) model. In what follows we will introduce this algorithm and derive its implementation

to the estimation of the ARSV(1) model.

4.2.2.1 Forward Filter Backward Smoothing

As expressed in the form of Eq. (4.2.4), the ARSV(1) model belongs to the family of state

space model (SSM) which is constructed by a transition equation for state variables and a

measurement equation for observations. SSM assumes the observation and the latent transition

processes are both Markovian. For the ease of presentation, hereafter ui:j denotes the sequence

{ui, ui+1, . . . , uj}. Moreover, x1 follows a given prior distribution. fθ(·|·) and gθ(·|·) stand

for the transition and measurement equations, respectively. In the ARSV(1) model with a

parameter vector θ, the unobservable state variable, xt, is independent of the history of states

and observations once xt−1 is given:

p(xt|x1:t−1, y1:t−1) = p(xt|xt−1, x1:t−2, y1:t−1) = fθ(xt|xt−1). (4.2.5)

If {ξt}t≥1 are independent of {ηt}t≥1, we also have

p(yt|x1:t, y1:t−1) = p(yt|xt, x1:t−1, y1:t−1) = gθ(yt|xt). (4.2.6)

Given n observations, suppose sk : X ×X → R, k ∈ N, is a sequence of functions and Sn(x1:n) =∑n
k=2 sk(xk−1, xk) denotes the corresponding sequence of additive functionals built from sk.

Then the smoothed additive functional is defined by

Sθn = Eθ[Sn(x1:n)|y1:n] =

∫ [ n∑
k=2

sk(xk−1, xk)

]
pθ(x1:n|y1:n)dx1:n. (4.2.7)
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The FFBS algorithm can be adopted through two steps to compute Sθn that is inevitable for a

maximum-likelihood method. In the particle filter framework, the first step is to approximate

the particle-based pθ(xk|y1:k) through a forward particle filtering for k = 1, 2, . . . , n. At any

time step k, let x
(i)
k denote the i-th particle and w

(i)
k , an approximation of pθ(x

(i)
k |y1:k), stand

for its weight for i = 1, 2, . . . , N where N is the number of particles at each time step. Using

the particles with corresponding weights, the second step is to calculate pθ(xk−1, xk|y1:n) by

backward recursion. Subsequently, the particle-based approximation of Sθn is given by

Ŝθn =
n∑
k=2

∫
sk(xk−1, xk)p̂θ(dxk−1:k|y1:n). (4.2.8)

Though feasible, Eq. (4.2.8) is quite complicated in computation. Fortunately, when Sn(x1:n)

is in the form of additive functionals, the challenging backward recursion step can be avoided

through a forward-only version of the FFBS algorithm. Define an auxiliary function by

T θn(xn) ≡
∫
Sn(x1:n)pθ(x1:n−1|y1:n−1, xn)dx1:n−1. (4.2.9)

T θ1 (x1) is generally set to be 0 and T θn(xn) can be obtained recursively as follows:

T θn(xn) =

∫
[Sn−1(x1:n−1) + sn(xn−1, xn)]pθ(x1:n−1|y1:n−1, xn)dx1:n−1

=

∫ [∫
Sn−1(x1:n−1)pθ(x1:n−2|y1:n−2, xn−1)dx1:n−2

]
pθ(xn−1|y1:n−1, xn)dxn−1

+

∫
sn(xn−1, xn)pθ(x1:n−1|y1:n−1, xn)dx1:n−1

=

∫
T θn−1(xn−1)pθ(xn−1|y1:n−1, xn)dxn−1

+

∫
sn(xn−1, xn)pθ(xn−1|y1:n−1, xn)dxn−1

=

∫ [
T θn−1(xn−1) + sn(xn−1, xn)

]
pθ(xn−1|y1:n−1, xn)dxn−1. (4.2.10)
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where pθ(xn−1|y1:n−1, xn) is approximated using the forward-filtering weighted particles:

p̂θ(dxn−1|y1:n−1, xn) =

∑N
j=1 ω

(j)
n−1fθ(xn|x

(j)
n−1)δ

x
(j)
n−1

(dxn−1)∑N
l=1 ω

(l)
n−1fθ(xn|x

(l)
n−1)

. (4.2.11)

Particle Filter methods such as Bootstrap Filter (BF) and Auxiliary Particle Filter (APF) (see

Appendix B.4.1) are feasible for the necessary forward filtering process. Obviously, we can use

T θn(xn) to express Eq. (4.2.7) as follows:

Sθn =

∫
Sn(x1:n)pθ(x1:n|y1:n)dx1:n =

∫
Sn(x1:n)pθ(x1:n−1|y1:n, xn)pθ(xn|y1:n)dx1:n

=

∫
Sn(x1:n)pθ(x1:n−1|y1:n−1, xn)pθ(xn|y1:n)dx1:n

=

∫ ∫
Sn(x1:n)pθ(x1:n−1|y1:n−1, xn)dx1:n−1pθ(xn|y1:n)dxn

=

∫
T θn(xn)pθ(xn|y1:n)dxn. (4.2.12)

where pθ(x1:n−1|y1:n, xn) = pθ(x1:n−1|y1:n−1, xn) because of the Markovian property of SSM.

Accordingly, based on Eq. (4.2.10)∼Eq. (4.2.12), an algorithm to approximate Sθn is derived in

Appendix B.2.

4.2.2.2 Off-line EM Method

When maximizing the particle-based likelihood, techniques such as gradient ascent and EM

methods can be applied in the on-line or off-line scheme. The off-line scheme means updating

parameter estimations after capturing all observations while the on-line scheme updates parameter

estimations at each time step when a new observation arrives. Generally, the dataset of a real

market problem is not large enough for the on-line scheme so the off-line scheme will be used

in this chapter. The EM method consists of two steps: the expectation step (E-step) and the

maximization step (M-step). In addition, the EM method, if feasible, is preferred to the gradient

ascent method because it has no worries about the step size problem.

In the off-line EM method, assuming θs is the parameter vector at s-th iteration, then the
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parameter vector at (s+ 1)-th iteration is computed by

θs+1 = arg max
θ

Q(θs, θ). (4.2.13)

where Q(θs, θ) =
∫

log pθ(x1:n, y1:n)pθs(x1:n|y1:n)dx1:n denotes the expectation of the log likeli-

hood in the E-step. When pθ(x1:n, y1:n) belongs to the exponential family, the M-step in EM

method can be simply finished through a function of sufficient statistics calculated by the

forward-only FFBS algorithm. Since the ARSV(1) model admits this beautiful property, it is

straightforward to update its parameter estimates in Eq. (4.2.13).

Suppose {sh}mh=1 is the collection of m sufficient statistics that are needed in the parameter

update function. The summary statistic is calculated by

Sθh,n =

∫
Sh,n(x1:n, y1:n)pθ(x1:n|y1:n)dx1:n, h = 1, . . . ,m. (4.2.14)

where Sh,n(x1:n, y1:n) =
∑n

k=1 s
h(xk−1, xk, yk) is in the additive form of Eq. (4.2.7). That’s why

the forward-only FFBS algorithm is feasible to calculate the summary statistics. For a model in

the exponential family, we first transform pθ(xk+1, yk+1|xk) to the following form:

pθ(xk+1, yk+1|xk) = v(xk+1, yk+1) exp
(
〈ψ(θ), s(xk, xk+1, yk+1)〉 −A(θ)

)
. (4.2.15)

where s(xk, xk+1, yk+1) = [s1(xk, xk+1, yk+1), . . . , sm(xk, xk+1, yk+1)] is the vector of sufficient

statistics, θ denotes the parameter vector and 〈·〉 stands for the scalar product. According to

Cappé (2011), the maximizing step can be completed through the following update function:

θs+1 = Λ(
Sθsn
n

). (4.2.16)

Sθsn is a m-dimensional vector whose h-th element, Sθsh,n, can be derived by Eq. (4.2.14)

using the forward-only FFBS algorithm and Λ(s(xk, xk+1, yk+1)) is the unique solution of

∇θψ(θ)s(xk, xk+1, yk+1)−∇θA(θ) = 0.
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4.2.2.3 Particle-based Parameter Estimation of ARSV(1) Model

Now let us implement the forward-only FFBS algorithm with the off-line EM method to estimate

the ARSV(1) model. According to Eq. (4.2.4), we write down pθ(xt+1, yt+1|xt) into the form of

Eq. (4.2.15):

pθ(xt+1, yt+1|xt)

= pθ(yt+1|xt+1, xt)pθ(xt+1|xt)

=
1√

2πβ exp(xt+1/2)
exp[− y2

t+1

2β2 exp(xt+1)
]

1√
2πγ

exp[−(xt+1 − φxt)2

2γ2
]

=
1

2π exp(xt+1/2)
exp[−φ

2x2
t

2γ2
+
φxtxt+1

γ2
− x2

t+1

2γ2
− y2

t+1 exp(−xt+1)

2β2
− 1

2
ln(β2γ2)].

where θ = (φ, γ2, β2), v(xt+1, yt+1) = 1
2π exp(xt+1/2) , A(θ) = 1

2 ln(γ2) + 1
2 ln(β2), ψ(θ) =

(− φ2

2γ2
, φ
γ2
,− 1

2γ2
,− 1

2β2 ) and st+1(xt, xt+1, yt+1) = (x2
t , xtxt+1, x

2
t+1, y

2
t+1 exp(−xt+1)). For ease

of presentation, let vector (z1, z2, z3, z4) denote the vector (x2
t , xtxt+1, x

2
t+1, y

2
t+1 exp(−xt+1)).

The unique solution to the maximizing step is Λ(z1, z2, z3, z4) = ( z2z1 , z3 − z22
z1
, z4) (see Appendix

B.3). Since there are four sufficient statistics, m is equal to 4 in the off-line EM method. The

algorithm to estimate parameters in ARSV(1) under the physical measure is listed as follows:

1 Obtain initial parameter estimates θ0 = (φ0, γ
2
0 , β

2
0).

2 For iteration l = 0, 1, . . . , ItN, update parameter estimate by the following steps:

2.1 Generate {x(i)1 }Ni=1 from the prior distribution with θl, initialize T̂
(i)
1 (θl) = 0 and set weighted

filtering particles {x(i)1 , ω
(i)
1 = 1

N }Ni=1.

2.2 Repeat the following steps for time steps k = 2, . . . , T with θl by APF algorithm:

2.2.1 Obtain normalized weighted filtering particles {x(i)k , ω
(i)
k } for i = 1, . . . , N .

2.2.2 T̂
(i)
k (θl) =

∑N
j=1 ω

(j)
k−1fθ(x

(i)
k |x

(j)
k−1)[T̂

(j)
k−1(θl) + sk(x

(j)
k−1, x

(i)
k , yk)]∑N

j=1 ω
(j)
k−1fθ(x

(i)
k |x

(j)
k−1)

, i = 1, . . . , N .

2.3 Obtain ŜT =
∑N
i=1 ω

(i)
T T̂

(i)
T (θl) and update parameter estimates by θl+1 = Λ(T−1ŜT ).

In the algorithm above, T is the number of observations, ItN is the number of iterations,
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T̂
(i)
k (θl) is a 4-dimensional vector and the APF algorithm adopted in Step 2.2 is listed in Appendix

B.4.1. In addition, sk(xk−1, xk, yk) and Λ(·) : R4 → R3 have been derived as above.

4.2.3 Estimating Models under the Risk-Neutral Measure

Instead of maximizing likelihood, parameter estimation under the risk-neutral measure is related

to option pricing. Duan (1995) shows the risk-neutral GARCH(1, 1) model is given by

ln
St
St−1

= r1 −
1

2
σ̃2
t + σ̃tzt, zt

i.i.d∼ N(0, 1),

σ̃2
t = ã0 + ã1σ̃

2
t−1z

2
t−1 + b̃1σ̃

2
t−1.

(4.2.17)

where r1 denotes the daily risk-free interest rate and St denotes the asset spot price at time t.

Similarly, the risk-neutral ARSV(1) model can be derived as follows:

ln
St
St−1

= r1 −
1

2
β̃2exp(x̃t) + β̃ exp(

x̃t
2

)ξt, ξt
i.i.d∼ N(0, 1),

x̃t = φ̃x̃t−1 + γ̃ηt, ηt
i.i.d∼ N(0, 1), ξt ⊥ ηt.

(4.2.18)

As for a certain European call/put option at time t which expires at time T , its price is calculated

as the discounted average pay-off at maturity under the risk-neutral probability measure Q:

Ct = e−r1(T−t)EQ[max(ST −K, 0)|F(t)],

Pt = e−r1(T−t)EQ[max(K − ST , 0)|F(t)].

(4.2.19)

where K is its strike price, ST is the asset price at maturity T , F(t) is a filtration and r1 is still

the daily risk-free interest rate. The unit of time in Eq. (4.2.19) is ‘trading day’. Without a

analytical solution for the option price for both the risk-neutral GARCH(1, 1) and ARSV(1)

models, the option needs to be priced by Monte Carlo simulation. Suppose the initial volatility

estimate at time t is σt. Based on Eq. (4.2.17), the asset price at maturity T under risk-neutral

GARCH(1, 1) model is computed by a simulation of the return process step by step (the log
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variance at each time step is also determined) as follows:

SGT = St exp
[
(T − t)r1 −

1

2

T∑
k=t+1

σ̃2
k +

T∑
k=t+1

σ̃kzk
]
. (4.2.20)

where the superscript G stands for the GARCH(1, 1) model. Repeating the simulation m times,

then the simulated European call/put option price at time t of the risk-neutral GARCH(1, 1)

model is calculated by

ĈGt (θ) ≈ 1

m
e−r1(T−t)

m∑
j=1

max(SGT (j)−K, 0),

P̂Gt (θ) ≈ 1

m
e−r1(T−t)

m∑
j=1

max(K − SGT (j), 0).

(4.2.21)

where θ is the parameter vector of the risk-neutral GARCH(1, 1) model and j is the simulation

index.

Unlike the GARCH(1, 1) option pricing model, the risk-neutral ARSV(1) model has a

volatility process that is independent of the return dynamics. Since σt is the initial volatility

estimate at time t, then the initial xt is set to be 2 ln(σt/β). Conditional on one simulated

{xk}Tk=t+1 sequence, the asset call/put option price at time t of the risk-neutral ARSV(1) model

can be calculated with the assistance of the famous Black-Scholes (B-S) formula as follows:

EQ[CAt | exp(x̃t+1), exp(x̃t+2), . . . , exp(x̃T )] = BScall(T − t, St,K, r1, σ̂), (4.2.22)

EQ[PAt | exp(x̃t+1), exp(x̃t+2), . . . , exp(x̃T )] = BSput(T − t, St,K, r1, σ̂), (4.2.23)

σ̂2 =
1

T − t
T∑

k=t+1

β̃2 exp(x̃k). (4.2.24)

We still use time unit ‘trading day’ for parameters of the B-S formula in Eq. (4.2.22), Eq. (4.2.23)

and superscript A stands for the ARSV(1) model. Despite the commonly-used yearly-expressed

parameters in the B-S formula, the daily-expressed ones actually work in the same way. In

other words, BScall(
T−t
Y , St,K, Y r1,

√
Y σ̂) = BScall(T − t, St,K, r1, σ̂) given T , t, r1 and σ̂ are
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all expressed in ‘day’ and Y (Y = 252 in this chapter) is the amount of trading days in a year.

The proof of Eq. (4.2.22) and Eq. (4.2.23) is straightforward.

Proof. Suppose one simulated sequence {x̃k}Tk=t+1 has been obtained. Then we have

lnSAT |{exp(x̃k)}Tk=t+1
D
= lnSt + r1(T − t)− 1

2
β̃2

T∑
k=t+1

exp(x̃k) +
T∑

k=t+1

β̃ exp(
x̃k
2

)ξk, (4.2.25)

where
D
= stands for the operator for ‘equivalence in distribution’. As ξk

i.i.d∼ N(0, 1) for k =

t + 1, . . . , T , we have
∑T

k=t+1 β̃ exp
(
x̃k
2 )ξk ∼ N

(
0, β̃2

∑T
k=t+1 exp(x̃k)

)
by properties of the

normal distribution. Hence, using Eq. (4.2.24), we can simplify Eq. (4.2.25) by

lnSAT |{exp(x̃k)}Tk=t+1

D
= lnSt + r1(T − t)− 1

2
β̃2

T∑
k=t+1

exp(x̃k) +
(√√√√β̃2

T∑
k=t+1

exp(x̃k)
)
Z

D
= lnSt + r1(T − t)− 1

2
σ̂2(T − t) + σ̂

√
T − t Z, Z ∼ N(0, 1), (4.2.26)

It is obvious that Eq. (4.2.26) can been seen as a model in which the asset price follows a

geometric Brownian motion. In fact, the B-S formula is derived from such model. Firstly, we

transform Eq. (4.2.26) by

SAT |{exp(x̃k)}Tk=t+1
D
= Ste

(r1− 1
2
σ̂2)(T−t)+σ̂

√
T−t Z , Z ∼ N(0, 1). (4.2.27)

Based on the first equation of Eq. (4.2.19) and Eq. (4.2.27), we can derive the conditional

European call option price at time t of the ARSV(1) model by

(
er1(T−t)CAt

)
|{exp(x̃k)}Tk=t+1

= E
[
max

(
(SAT |{exp(x̃k)}Tk=t+1)−K, 0

)]
=

∫ ∞
−∞

max(Ste
(r1− 1

2
σ̂2)(T−t)+σ̂

√
T−t x −K, 0)

1√
2π
e−

x2

2 dx
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=

∫ ∞
a

(Ste
(r1− 1

2
σ̂2)(T−t)+σ̂

√
T−t x −K)

1√
2π
e−

x2

2 dx

= Ste
(r1− 1

2
σ̂2)(T−t)

∫ ∞
a

1√
2π
eσ̂
√
T−t x−x2

2 dx−K(1− Φ(a))

= Ste
(r1− 1

2
σ̂2)(T−t)+ σ̂2(T−t)

2

∫ ∞
a

1√
2π
e−

(x−σ̂√T−t)2
2 dx−K(1− Φ(a))

= Ste
(r1− 1

2
σ̂2)(T−t)+ σ̂2(T−t)

2

∫ ∞
a−σ̂
√

(T−t)

1√
2π
e−

x′2
2 dx′ −K(1− Φ(a))

= Ste
r1(T−t)(1− Φ(a− σ̂

√
T − t))−K(1− Φ(a)), (4.2.28)

where Φ(·) denotes the CDF of the standard normal distribution, x′ ≡ x − σ̂
√
T − t, and

a ≡ ln( K
St

)−(r1− 1
2
σ̂2)(T−t)

σ̂
√
T−t . Further simplifying Eq. (4.2.28) using 1− Φ(x) = Φ(−x), we have

CAt |{exp(x̃k)}Tk=t+1 = StΦ(σ̂
√
T − t− a)− e−r1(T−t)KΦ(−a). (4.2.29)

Eq. (4.2.29) is equivalent to the B-S formula for a call option with a constant daily volatility σ̂,

a constant daily risk-free rate r1, time to maturity T − t (in trading day), a spot price St and a

strike price K. Therefore, we have

EQ[CAt |{exp(x̃k)}Tk=t+1] =BScall(T − t, St,K, r1, σ̂). Q.E.D

Then the simulated European call option price of the risk-neutral ARSV(1) model is derived by

ĈAt (θ) = EQ
[
EQ[CAt |{exp(x̃k)}Tk=t+1]

]
≈ 1

m

m∑
j=1

BScall(T − t, St,K, r1, σ̂(j)). (4.2.30)

Similarly, the European put option can be valued by

P̂At (θ) = EQ
[
EQ[PAt |{exp(x̃k)}Tk=t+1]

]
≈ 1

m

m∑
j=1

BSput(T − t, St,K, r1, σ̂(j)). (4.2.31)

where σ̂(j) is computed from the j-th simulation path of the ARSV(1) log variance process with

a given parameter vector θ. In this chapter, the simulation number m is set to be 104 and the
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common random number technique is applied for options with different strike prices.

As Eq. (4.2.30) and Eq. (4.2.31) show, all we need to simulate is the log variance dynamics

when pricing options with the risk-neutral ARSV(1) model even though it originally has two

innovation processes. On the other hand, the conditional variance process in the risk-neutral

GARCH(1, 1) model is deterministic and fully depends on the previous return. That’s why only

the simulation of the return dynamics is needed in the GARCH(1, 1) option pricing model as

indicated by Eq. (4.2.20) and Eq. (4.2.21).

Suppose we have a collection of options with their observed market prices. As for both

the risk-neutral GARCH(1, 1) and ARSV(1) models, the nonlinear-least-squares parameter

estimator is obtained by minimizing the mean squared pricing error (MSPE):

θ∗ = arg min
θ

1

n

n∑
i=1

(vi − v̄i(θ))2, MSPE =
1

n

n∑
i=1

(vi − v̄i(θ))2. (4.2.32)

where vi is the observed market price of the i-th option, n is the number of options in the

collection and v̄i(θ) is the theoretical price of the i-th option derived from the corresponding

volatility model with the parameter vector θ.

Another popular error loss function is the mean squared relative pricing errors (MSRPE), as

defined in Eq. (4.2.33).

MSRPE =
1

n

n∑
i=1

(vi − v̄i(θ)
vi

)2
. (4.2.33)

This error loss function focuses on the valuation error in proportion to the market option price.

Consequently, an option with a larger market price bears a relatively larger pricing error. For

MSPE, however, only the absolute pricing error matters.

There is no doubt that different error loss functions will lead to different parameter estimates

and rank the examined models in a different way. The choice of the loss functions is a worthwhile

topic but it is outside the scope of this chapter. As Christoffersen, Jacobs, et al. (2001) points

out, once a loss function is used in the parameter estimation, the model evaluation should also
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depend on it. If we estimate in-sample parameters with one loss function and subsequently

evaluate the out-of-sample performance with another one, the comparison among different

models will become unfair and cannot reveal the authentic results. Therefore, in this chapter,

only MSPE is adopted as the loss function in the parameter estimation and model evaluation

under the risk-neutral measure.

4.3 Methodology and Data

4.3.1 Comparison under the Physical Measure

Using historical return series, we estimate a volatility model by maximizing its log-likelihood.

For the GARCH(1, 1) model, its log-likelihood is straightforwardly calculated while for the

ARSV(1) model, it needs to be computed by Particle Filter. Since both of the two models

have three parameters, the maximum likelihood is valuable for the in-sample fitting comparison

under the physical measure. Besides, some other statistics can be compared using the estimated

volatility at each time step.

Suppose the size of the in-sample dataset is T . As for the GARCH(1, 1) model, given the pa-

rameter estimates under physical measure and the observed return series, we can fully determine

the series of conditional variance σ2
t . On the other hand, for the ARSV(1) model, its conditional

variance is still a latent state variable even though its parameters have been determined. Suppose

(φ̂, γ̂2, β̂2) is the estimated parameter vector of the ARSV(1) model. Using particle smoothing

algorithms(see Appendix B.4.2), the particle-based volatility estimate, E[β̂ exp(xt/2)|y1:T ], is

approximated for t = 1, 2, . . . , T by Eq. (B.4.4). Subsequently, through normality tests such as

the Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests, we can investigate how good

the error sequence (
{ yt
σt

}T
t=1

for GARCH(1, 1) model and
{

yt
E[β̂ exp(xt/2)|y1:T ]

}T
t=1

for ARSV(1)

model) is to fit the assumed standard normal distribution.

As for any volatility model, fitting in-sample observations is one thing while forecasting

volatility in the future is an entirely different challenge. A preferred model for in-sample
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comparison does not necessarily guarantee a better out-sample forecast. Patton (2011) studies

the properties of well-documented loss functions developed for volatility forecast evaluation and

shows only MSE and QLIKE, defined in Eq. (4.3.1) and Eq. (4.3.2), are robust to noisy volatility

proxy. Therefore, in this chapter we refer to these two loss functions for the out-of-sample

one-step-ahead volatility forecast comparison between the two volatility models.

MSE ≡ 1

n

n∑
t=1

(σ̂2
t − ht|t−1)2, (4.3.1)

QLIKE ≡ 1

n

n∑
t=1

(lnht|t−1 +
σ̂2
t

ht|t−1
). (4.3.2)

where n is the number of out-of-sample observations, ht|t−1 is the conditional variance forecast

for time t given the information set till time t− 1, σ̂2
t is the true conditional variance or one

conditionally unbiased variance proxy at time t. In practice, true conditional variances are

unobservable and the realized volatility, computed by the sum of intra-daily returns, is often

considered to be a good proxy. Though such computation is not complicated, the high-frequency

intra-daily return data is not always accessible. We adopt a variance proxy suggested by Awartani

& Corradi (2005). This variance proxy adopts the squared filtered daily return and ensures a

correct ranking of volatility forecast models; that is, in Eq. (4.3.1) and Eq. (4.3.2), σ̂2
t is replaced

by (y′t − ȳ)2 where y′t is the out-of-sample log daily return and ȳ = 1
n

∑n
t=1 y

′
t denotes the mean

of the out-of-sample log daily returns.

We can directly use the maximum-likelihood estimators of a volatility model to price a

collection of options and then evaluate the pricing errors. Such evaluation, however, is not

meaningful enough because MLE only considers historical return series while option pricing

allows for the information in the future. Christoffersen, Jacobs, et al. (2002) also points out the

maximum-likelihood estimators are neither suitable for option valuation nor reliable to rank

models’ capabilities of pricing options. Therefore, in this chapter, the performances of the two

models regarding option pricing with MLE parameters will not be provided.
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4.3.2 Comparison under the Risk-Neutral Measure

The risk-neutral versions of the GARCH(1, 1) and ARSV(1) models will be evaluated based on

the in-sample price fitting and out-of-sample price prediction. Instead of handling a collection of

options over a long time span, we analyze options in a single day, a choice adopted by Bakshi,

Cao, & Chen (1997), for the following reasons. Firstly, though the option sample limited in

a single day might not be sufficient to obtain a robust parameter estimation, it indeed eases

the computation burden when minimizing the in-sample pricing error. Moreover, the one-day

collection makes more sense because parameter estimation is updated as soon as the new

information reaches while a long-term sample has to assume the parameters stay unchanged for

a long time. This choice also avoids mixing up known information with unknown conditions.

For example, if the collection includes options in two different days, we have to ignore the asset

price after the first day when pricing first-day options even though that information is provided.

Another issue is on the selection of out-of-sample options. After estimating parameters by

minimizing the in-sample option pricing error, we adopt them to calculate the pricing error of

the out-of-sample options, which indicates a model’s capability of predicting option prices in the

future. Indeed, the out-of-sample performance draws much more attention of participants in the

derivative market. A smaller in-sample error implies a model is better to fit the observed option

prices based on current information set, but it is the out-of-sample prediction that instructs

participants’ subsequent behaviors. Following the single day in-sample collection, we also select

the out-of-sample options in a single day.

Christoffersen, Jacobs, et al. (2002) value options in the next Wednesday with parameters

estimated from the current Wednesday when examining different GARCH models. This is a

favorable selection because it leaves five days to update parameters. However, such scheme is

not suitable for the ARSV(1) model. As previously demonstrated, the new observed asset prices

will directly affect the deterministic conditional variance in the GARCH(1, 1) model. However,

leaving some days between in-sample and out-of-the sample collections is trivial for the ARSV(1)

model because in that model, the new price information will not get involved in the log variance
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dynamics which is stochastic and independent of the return process. Therefore, in this chapter,

the out-of-sample options come from the day following the in-sample single day.

Moreover, an indispensable precondition for the risk-neutral parameter estimation is the

initial conditional variance. Suppose the in-sample options are selected from Day t and the

out-of-sample options come from the next day—Day t + 1. In this chapter, the conditional

variance of Day t, denoted by σt,
1 is set as the unconditional sample variance of the 180-day

log return series (original, not magnified) before Day t and the conditional variance estimates

after Day t are updated based on the corresponding volatility model. We also investigate the

pricing error after parameterizing the initial volatility. When the risk-neutral parameters for

Day t are estimated by minimizing the in-sample MSPE using Eq. (4.2.32), we assume they stay

unchanged overnight. Therefore, the out-of-sample options on Day t+ 1 are valued under the

corresponding volatility model using its in-sample parameter estimates, the initial conditional

variance of Day t and the new information set on Day t+ 1. Then the out-of-sample pricing

errors are thus determined. Moreover, the yearly risk-free interest rate is assumed to constantly

equal 2.5%, which approximately sets the interest rate for each trading day as 2.5%
252 .

4.3.3 Data

In this chapter, we focus on the daily close value and options of S&P 500 Index. For comparison

under the physical measure, the in-sample observations, Sample A, are from the log daily return

sequence during a ten-year period starting on January 2nd, 1996, and ending on December 30th,

2005. When estimating the in-sample MLE parameters analytically (GARCH) or numerically

(ARSV), we consider the magnified return series, yt = 100 × ln St
St−1

, t = 1, . . . , T , which are

computed by multiplying the original log daily returns by 100. On the other hand, 250 log daily

returns, magnified in the same way, follow Sample A construct the out-of-sample dataset—Sample

B. The summary of Sample A and Sample B is reported in in Table 4.1.

For the comparison under the risk-neutral measure, as previously mentioned, we adopt the

1The risk-neutral GARCH(1, 1) model adopts σt directly while the ARSV(1) model use it to determine the
initial xt by solving β exp(xt/2) = σt where β is from the present parameter estimate.
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‘one-day in-sample with second-day out-of-sample’ rule. During the period of October 30th,

2017 to February 1st, 2018, all in-sample and out-of-sample pairs are selected from every two

continuous days in each week; that is, we will have four such pairs every week. For example, every

Monday will only be selected as the in-sample day and the following Tuesday is its out-of-sample

day. That Tuesday itself also offers the second in-sample options in that week while its matched

out-of-sample day is the Wednesday, and so on. We skip holidays in the weekdays and avoid

selecting Friday as in-sample day so that there is no weekend gap between the in-sample and

out-of-sample days. At each day, around thirty-five options with highest volumes whose ratio of

index to strike is also located in [0.9, 1.1] will be selected and the market price of each chosen

option is set to be the mean value of the last bid and ask prices.

Table 4.1: Characteristics of the magnified in-sample (Sample A) and out-of-sample (Sample B) datasets
under the physical measure.

Sample Size Mean Max Min Std. Dev. Skewness Kurtosis

A T = 2518 2.775× 10−2 5.574 -7.113 1.154 −9.077× 10−2 5.956

B T ′ = 250 5.288× 10−2 2.134 -1.850 0.631 9.547× 10−2 4.157

4.4 Empirical Study

4.4.1 Results under the Physical Measure

4.4.1.1 In-Sample Comparison under the Physical Measure

The parameter estimation results of the GARCH(1, 1) and ARSV(1) models for Sample A under

the physical measure are listed in Table 4.2 in which ‘LL’ is short for log-likelihood and the

standard errors are reported in brackets. The parameter estimates and their standard errors

of the ARSV(1) model are sample mean and sample standard deviations of the estimates of

the last 250 iterations in its off-line EM method. It shows the ARSV(1) model has a larger

61



log-likelihood.

Table 4.2: Parameter estimates under the physical measure, Sample A.

Volatility Model Parameter Estimates LL

GARCH(1, 1) â0 = 1.26345× 10−2 â1 = 7.76129× 10−2 b̂1 = 9.15091× 10−1 -3682.529
(4.9× 10−3) (1.2× 10−2) (1.4× 10−2)

ARSV(1) φ̂ = 9.86795× 10−1 γ̂2 = 1.50959× 10−2 β̂2 = 1.02930 -3656.791
(1.7× 10−4) (7.0× 10−5) (2.7× 10−2)

When calculating the maximum-likelihood estimators of the GARCH(1, 1) model, the initial

volatility for Day 1 (the first in-sample day), denoted by σ̂1, is set as the standard deviation of

Sample A2. In the s-th EM off-line iteration for estimating the ARSV(1) model, we also set a

prior normal distribution for particles of Day 1 such that the expected volatility on that day is

same as σ̂1. Hence, the prior distribution can be derived as follows.

Suppose xi1 ∼ N(µs, σ
2
s) in the s-th iteration for i = 1, . . . , N where N is the number

of particles. The parameter estimate (φs, γ
2
s , β

2
s ) used in s-th iteration are updated from the

maximum step of the (s − 1)-th iteration. One popular choice for σ2
s is γ2s

1−φ2s . Here we let

σ2
s = max( γ2s

1−φ2s , 1.35) to ensure the diversity of the particles. µs can be calculated by solving

βsE[exp(x12 )] = σ̂1, as in Eq. (4.4.1):

E
[
exp(

x1

2
)
]

= exp(
1

2
µs +

1

8
σ2
s) =

σ̂1

βs
, µs = 2 ln(

σ̂1

βs
)− 1

4
σ2
s . (4.4.1)

The maximum-likelihood parameter estimates of the GARCH(1, 1) model under the physical

measure, whose p-values are all less than 0.01, are significantly different from 0. Those estimates

are obtained with the maximum log-likelihood −3682.529. Many empirical studies have a positive

log-likelihood because their returns are not subject to the 100-times magnification. Revisiting

the second equation in Eq. (4.2.2), when magnifying yt and σt at the same time, the first term

2When implementing the MLE method for the GARCH(1, 1) model, the subsequent conditional variances are
updated by the model while the initial volatility or conditional variance for the first day should be provided.
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−1
2 ln(2π) and the third term −1

2

∑T
t=1

y2t
σ2
t

stay unchanged while the second term −1
2

∑T
t=1 ln(σ2

t )

is indeed affected. A larger σ2
t series may decrease the log-likelihood to a negative value.

Furthermore, as illuminated in section 4.2.2.3, the ARSV(1) model is estimated by the

off-line EM method with a forward-only FFBS algorithm and the estimates of all iterations are

shown in Figure 4.1. We run 2730 off-line iterations in total of which the last 200 iterations

have 1250 particles and the remaining ones use 800 particles. For each parameter estimate, the

arithmetic mean of the last 250 iterations is depicted by a blue dash line with the mean value

marked on the right side while the red line sketches the estimate of each iteration. According

to Figure 4.1, estimates of φ and γ2 quickly reach their convergent values, and estimates of β2

fluctuates in a considerably small range around the blue dashed line.

Once the parameter estimates of the ARSV(1) model are determined, its particle-based

computations of both the log-likelihood and E[β̂ exp(xt2 )|y1:T ] (t ≤ T ) can be implemented

together by particle filtering and smoothing using Bootstrap Filter algorithm with 105 particles

as demonstrated in Appendix B.4.2. Its numerical log-likelihood estimation, as approximated

by Eq. (B.4.10) in Section B.4.3, does not ask for such a large number of particles while the

subsequent particle smoothing does since it suffers the degeneracy problem resulted from a large

observation number (T = 2518).

Now let us investigate the distribution of error terms in the return dynamics. Given the

maximum-likelihood parameter estimates and the initial volatility, the volatility at time step t

(1 ≤ t ≤ T ) of the GARCH(1, 1) model is fully determined so its error sequence is thus
{ yt
σt

}T
t=1

.

The ARSV(1) counterpart needs to be estimated through the particle smoothing as indicated

in Appendix B.4.2 and subsequently we can obtain the error sequence
{ yt
E[β̂ exp(xt/2)|y1:T ]

}T
t=1

, of

which the denominator (in-sample volatility estimate) is computed by Eq. (B.4.4). Both models

assume the errors in the return process follow the standard normal distribution.

The Q-Q plots versus the assumed standard normal distribution for the error sequences

of the two models are shown in Figure 4.2 and the corresponding normality test results are

reported in Table 4.3 in which the preferred value in each row is underlined. The Q-Q plots
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Figure 4.1: Particle-based parameter estimation for the ARSV(1) model under the physical measure,
Sample A.

indicate the error sequences of both models have slightly lighter right tails than the standard

normal distribution. As for the left tail, the error sequence of the GARCH(1, 1) model is much

heavier than the standard normal distribution while the ARSV(1) counterpart is identical to

the standard normal distribution. In addition, considering the result of each normality test

whose null hypothesis assumes the tested sample follows the standard normal distribution, the

ARSV(1) always has a larger p-value. Therefore, when it comes to fitting historical return

series, the normality assumption for the error sequence in the ARSV(1) model is more adequate

than the one in the GARCH(1, 1) model. This conclusion is in accordance with the finding of

M. A. Carnero, Peña, & Ruiz (2004).

Table 4.3: Normality tests results for error sequences, Sample A.

normality test p-value, GARCH(1, 1) p-value, ARSV(1)

Kolmogorov-Smirnov < 10−3 0.013
Lilliefors < 10−3 0.472

Anderson-Darling 0.006 0.015
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Figure 4.2: Q-Q Plots: error sequences of GARCH(1, 1) and ARSV(1) models vs. standard normal
distribution, Sample A.

As a whole, the ARSV(1) model has a larger likelihood when fitting historical return series

and is better to satisfy the assumption that the error sequence in the return process belongs to

the standard normal distribution. Therefore, the ARSV(1) model outperforms the GARCH(1,

1) model in terms of the in-sample comparison under the physical measure.

4.4.1.2 Out-of-Sample Comparison under the Physical Measure

As previously mentioned, Sample B, the out-of-sample return dataset, follows Sample A, the in-

sample dataset, without any gap. Therefore, the last in-sample volatility estimate can be directly

used to generate the first out-of-sample volatility estimate. Such one-step-ahead prediction is

natural for the GARCH(1, 1) model since actually, it is how that model works. Given the last

in-sample conditional variance estimate and the out-of-sample magnified return series, then all

the out-of-sample conditional variances are determined through the specification of conditional

variance in the GARCH(1, 1) model step by step as follows:

hGt+1|t = â0 + â1y
2
t + b̂1h

G
t|t−1, t = T, T + 1, . . . , T + T ′ − 1. (4.4.2)
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where the superscript G stands for the GARCH(1, 1) model, (â0, â1, b̂1) denote the in-sample

maximum-likelihood parameter estimates, hGT |T−1 is the last in-sample conditional variance

estimate, T is the size of the in-sample dataset and T ′ is the size of the out-of-sample one.

In light of the ARSV(1) model, the out-of-sample volatility forecasts are still particle-based.

Fortunately, as demonstrated in Appendix B.4.4, the one-step-ahead prediction can be connected

seamlessly with the particle filtering; that is, the ARSV(1) out-of-sample conditional variance

estimate is given, as in Eq. (4.4.3):

hAt+1|t = E[β̂2 exp(xt+1)|y1:t], t = T, T + 1, . . . , T + T ′ − 1. (4.4.3)

where the superscript A stands for the ARSV(1) model. Its parameter estimates are determined

based on the in-sample dataset and stay unchanged for out-of-sample forecasts. Moreover, both

the in-sample and out-of-sample volatility estimates are sketched in Figure 4.3, which shows the

two models’ volatility estimates have similar patterns but the magnitudes are different.

The out-of-sample volatility forecast results of the two models are summarized in Table 4.4

in which the preferred value in each row is underlined. As it shows, the ARSV(1) model has

smaller values for the MSE and QLIKE loss functions so it is also superior to the GARCH(1, 1)

model in terms of the out-of-sample volatility forecast under the physical measure.

Table 4.4: Out-of-sample volatility forecast results of the GARCH(1, 1) and ARSV(1) models, Sample B

loss function GARCH(1, 1) ARSV(1)

MSE 5.0372× 10−1 5.0367× 10−1

QLIKE 6.8369× 10−2 6.7339× 10−2
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Figure 4.3: In-sample (A) and out-of-sample (B) volatility estimates.

4.4.2 Results under the Risk-Neutral Measure

The S&P 500 Index European call and put options are investigated separately. For each kind

of option, we split them into two groups: one expires in about 30 calendar days and the other

expires in about 50 calendar days.

In addition to the GARCH(1, 1) and ARSV(1) models, we also investigate the traditional

B-S model and the B-S model with the implied volatility (BS-IV). Both of the traditional BS

model and the BS-IV model consider a constant volatility across the time to maturity when

pricing options. The initial volatility in the traditional B-S model is set to be same as the initial

one of the GARCH(1, 1) and the ARSV(1) models which is the unconditional sample standard

deviation of the 180-day log return series before the in-sample day. On the other hand, the

BS-IV model parameterize its initial volatility when minimizing the in-sample MSPE. Assuming
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there are n call options in the in-sample day t, then the daily implied volatility is calculated by

σ̃iv = arg min
σ

1

n

n∑
i=1

[vi −BScall(Ti − t, St,Ki, r1, σ)]2. (4.4.4)

where St is the close price of day t, r1 is the constant daily risk-free rate (r1 = 2.5%/252), Ti− t,

Ki and vi are the time to maturity3 (in trading days), strike price and market price of the i-th

option, respectively. The risk-neutral GARCH(1, 1) and ARSV(1) models for the n in-sample

call options at t are estimated as follows:

GARCH(1, 1) : θ̃G = arg min
θG

1

n

n∑
i=1

[vi − ĈGt (θG, σt, i)]
2, θG = (a0, a1, b1), (4.4.5)

ARSV(1) : θ̃A = arg min
θA

1

n

n∑
i=1

[vi − ĈAt (θA, σt, i)]
2, θA = (φ, γ, β). (4.4.6)

where theoretical option prices ĈGt (θG, σt, i) and ĈAt (θA, σt, i) are respectively calculated by

Eq. (4.2.21) and Eq. (4.2.30) using the given initial volatility estimate—σt, along with the

identifications (strike price Ki and time to maturity Ti − t) of the i-th option. All the three

risk-neutral models (BS-IV, GARCH(1, 1) and ARSV(1)) for put options are estimated similarly.

It is worth noting that the risk-neutral parameter estimates stay unchanged for the out-of-

sample option pricing. Moreover, the initial volatility estimate of the risk-neutral B-S, GARCH(1,

1) and ARSV(1) models comes from the historical daily returns (unconditional sample standard

deviation of the 180-day log returns before the in-sample day) while it is considered to be the

only parameter in the BS-IV model. Actually, the B-S model has no parameter and its in-sample

and out-of-sample performances are fully determined by the initial volatility estimate and option

selections. The average results are reported in Table 4.6 and Table 4.7 in which the preferred

value in each column is underlined and the corresponding sample standard deviations are

included in the brackets. In addition, Table 4.5 summarizes the average risk-neutral parameter

estimates with the corresponding sample standard deviations included in the brackets.

3Though our in-sample or out-of-sample options are chosen in a single day and expire in about 30 or 50 days,
they can have a little different times to maturity such as 31 days or 33 days.
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Table 4.5: Average in-sample risk-neutral parameter estimates.

GARCH(1, 1) ARSV(1) BS-IV

ã0 ã1 b̃1 φ̃ γ̃ β̃ σ̃

call, 30 days
6.949× 10−6 0.144 0.571 0.442 0.525 6.787× 10−3 4.557× 10−3
(8.10× 10−6) (0.20) (0.35) (0.28) (0.52) (1.55× 10−2) (7.87× 10−4)

call, 50 days
4.477× 10−6 0.204 0.605 0.367 0.234 4.589× 10−3 4.817× 10−3
(3.05× 10−6) (0.21) (0.33) (0.12) (0.35) (9.42× 10−4) (6.85× 10−4)

put, 30 days
6.727× 10−6 0.939 0.061 0.886 1.228 1.038× 10−3 6.207× 10−3
(2.4× 10−6) (0.08) (0.08) (0.08) (0.40) (8.36× 10−4) (8.36× 10−4)

put, 50 days
6.134× 10−6 0.863 0.137 0.873 1.417 9.888× 10−4 6.924× 10−3
(1.66× 10−6) (0.11) (0.11) (0.05) (0.32) (4.90× 10−4) (8.19× 10−4)

According to Table 4.5, the risk-neutral parameters of the GARCH(1, 1) and ARSV(1)

models are quite different from their physical counterparts4. For example, the put options

have b̃1 in the GARCH(1, 1) model less than 0.2 while its physical counterpart is close to

one. By contrast, γ̃ in the ARSV(1) model is much larger than its physical counterpart. The

risk-neutral estimates also depend on the kind of option. ã1 in the GARCH(1, 1) is such an

example. Interestingly, it seems the put options have larger volatilities as the corresponding σ̃iv

apparently grows. That’s why pricing errors of the traditional B-S model are exacerbated for

put options because the initial volatility is always around 4.2× 10−3 with tiny fluctuations.

Table 4.6: Average in-sample and out-of-sample call option pricing errors with a given initial volatility.

Call, 30 calendar days Call, 50 calendar days
MSPE In-Sample Out-of-Sample In-Sample Out-of-Sample

GARCH(1, 1)
2.1912 4.0073 3.4537 5.5005
(2.14) (3.54) (2.59) (3.85)

ARSV(1)
2.2057 4.0540 3.6125 5.6605
(2.19) (3.58) (2.66) (3.92)

BS-IV
2.2675 3.9935 3.6264 5.6303
(2.23) (3.59) (2.68) (3.92)

B-S
11.3419 11.2559 21.3919 20.7546
(15.56) (15.39) (33.34) (33.21)

4The return sequence is 100-times magnified. Without the magnification, the previous â0 in GARCH(1, 1) and
β̂ in ARSV(1) would divide by 100 while other parameter estimates are unchanged.
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Table 4.7: Average in-sample and out-of-sample put option pricing errors with a given initial volatility.

Put, 30 calendar days Put, 50 calendar days
MSPE In-Sample Out-of-Sample In-Sample Out-of-Sample

GARCH(1, 1)
2.9376 4.0737 5.6874 7.5993
(2.19) (3.40) (2.84) (5.00)

ARSV(1)
0.6949 2.0679 1.1797 2.7540
(1.06) (2.21) (1.47) (2.86)

BS-IV
9.8680 10.8460 21.3281 23.7384
(3.55) (4.88) (6.32) (8.46)

B-S
46.4342 44.1500 143.4384 137.2699
(41.65) (39.52) (91.28) (91.59)

Furthermore, though estimating the ARSV(1) model is much more complicated than the

GARCH(1, 1) model under the physical measure, estimating their risk-neutral versions asks for

similar computation burden. The reason is that as previously demonstrated, only one process

needs to be simulated in the risk-neutral ARSV(1) model.

4.4.2.1 In-Sample Comparison under the Risk-Neutral Measure

As for call options, the GARCH(1, 1) model is slightly superior to the three rivals in terms of

the average in-sample MSPE and the standard deviation regardless of the time to maturity.

Therefore, the GARCH(1, 1) model fits the observed call option prices better with less dispersion.

However, its superiority over the ARSV(1) and BS-IV models, however, are not obvious.

The in-sample performance of the put options is another thing. The ARSV(1) model

remarkably dominates the others for both the 30-day and 50-day put options. In addition, the

GARCH(1, 1) model also substantially outperforms the BS-IV model.

Moreover, options with longer time to maturity tend to have a larger average in-sample

MSPE. Not surprisingly, the traditional B-S model is always inferior to the GARCH(1, 1) and

BS-IV model regarding the in-sample pricing error. The reason is that with the same initial

volatility estimate, the B-S model refers to a special case of the GARCH(1, 1) model (a0 = σ̂2
1,

a1 = b1 = 0). On the other hand, the BS-IV model, whose initial volatility is parameterized, is
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an optimal version of the B-S model with respect to the in-sample MSPE.

4.4.2.2 Out-of-Sample Comparison under the Risk-Neutral Measure

As expected, for all models, the out-of-sample average MSPE is larger than the in-sample

counterpart. In addition, the longer the time to maturity is, the harder it is to predict the

out-of-sample option prices. In light of call options, the BS-IV model performs better than

others for 30-day options while the GARCH(1, 1) model is preferred for 50-day options. Like the

in-sample call options, the out-of-sample call pricing errors are very similar among the models

except the traditional B-S model.

The obvious superiority of the ARSV(1) model over others within in-sample put options

is kept for the out-of-sample pricing performances. As a whole, the ARSV(1) model is indeed

preferable when pricing put options. By contrast, put options are less suitable for the GARCH(1,

1) model than call options. This finding is similar to the result of Heston & Nandi (1997).

One thing we need to pay attention to is the initial volatility estimate of each in-sample

trading day. Admittedly, we set the initial volatility casually without examining other strategies.

Undoubtedly, some refined initial values will improve the GARCH(1, 1) and ARSV(1) models in

terms of the option pricing performance. For example, the initial volatility for a risk-neutral

model can be estimated by the physical version of itself. On the other hand, the BS-IV model

adopts an implied volatility but it is still inferior to the two models with variant volatilities in

most of the examined scenarios. Therefore, dynamic volatility models such as the ARSV(1) and

GARCH(1, 1) models are more accurate for option pricing than a constant volatility.

Instead of using historical returns, we can also derive the initial volatility directly from

preceding option prices. That adjustment brings about the implied versions of the GARCH(1, 1)

and ARSV(1) models whose pricing performances are explored in the following subsection.
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4.4.3 Risk-Neutral GARCH(1, 1) and ARSV(1) Models using Implied

Volatilities

Rather than set a casual value, we can also parameterize the initial volatility estimate in the

risk-neutral GARCH(1, 1) and ARSV(1) models. For call options, the implied versions of the

two models are estimated by minimizing the in-sample MSPE of the n options as follows:

GARCH-IV(1, 1) : θ̃Giv = arg min
θGiv

1

n

n∑
i=1

[vi − ĈGt (θGiv, i)]
2, θGiv = (a0, a1, b1, σt), (4.4.7)

ARSV-IV(1) : θ̃Aiv = arg min
θAiv

1

n

n∑
i=1

[vi − ĈAt (θAiv, i)]
2, θAiv = (φ, γ, β, σt). (4.4.8)

where the suffix ‘-IV’ or subscript ‘iv’ stands for the implied version that parameterizes the

initial volatility estimate σt. In addition, ĈGt (θGiv, i) and ĈAt (θAiv, i), which denote the theoretical

prices of the i-th call option with the risk-neutral GARCH(1, 1) and ARSV(1) models, are

calculated by Eq. (4.2.21) and Eq. (4.2.30), respectively. Here σt is an extra parameter. The

counterparts for put options can be estimated in a similar way. The in-sample and out-of-sample

average MSPE of the implied versions of the two risk-neutral models are presented in Table 4.8,

in which the standard deviations are included in brackets.

Table 4.8: Average in-sample and out-of-sample option pricing errors of the implied GARCH(1, 1) and
ARSV(1) models.

GARCH-IV(1, 1) ARSV-IV(1)
MSPE In-Sample Out-of-Sample In-Sample Out-of-Sample

call, 30 days
1.9666 12.3583 2.2000 4.5315
(2.03) (11.47) (2.20) (3.87)

call, 50 days
3.3549 5.7784 3.4535 6.4111
(2.45) (4.62) (2.50) (5.16)

put, 30 days
0.6459 7.3234 0.6787 2.2551
(1.00) (5.97) (1.05) (2.56)

put, 50 days
1.1828 9.5250 1.1271 2.9827
(1.35) (6.28) (1.48) (3.42)

72



It can be seen from Table 4.8 that parameterizing the initial volatility leads to a smaller

average in-sample MSPE for both the risk-neutral GARCH(1, 1) and ARSV(1) models. Most

corresponding standard deviations are also decreased. Such improvements are within our expec-

tation since the original non-implied versions are just special cases of the implied versions when

minimizing the in-sample MSPE.

However, an extra volatility parameter also brings about more uncertainties in the out-of-

sample results. In terms of the average values and standard deviations of the out-of-sample

pricing errors, the implied versions of both models are inferior to their original non-implied

counterparts that casually choose the predetermined initial volatility estimates from historical

returns. Therefore, a more sophisticated model does not necessarily imply a more robust model

for the out-of-sample prediction.

One reason is that the in-sample nonlinear-least-squares parameter estimators are to some

extent sensitive to the input option identifications such as the spot price and time to maturity

while parameterizing the volatility would further add to such sensitivity. Moreover, it is likely

that the implied models will have an abnormal initial volatility estimate; that is, when minimizing

the in-sample MSPE, we may obtain an extremely large initial volatility estimate in the implied

models. Then the subsequent out-of-sample prediction error tends to become out of control. In

theory, volatility is a positive real number without an upper bound. To avoid the abnormal cases,

within our implementation, the daily initial volatility is constrained to be less than 0.023 (the

yearly equivalent upper bound is
√

252× 0.023 = 36.5%). When the in-sample initial volatility

estimate reaches that upper bound, there is a high possibility that their out-of-sample prediction

error will be substantially large. Allowing for a smaller upper bound, the out-of-sample results

may be better but it will make the extra volatility parameter less meaningful. In addition, the

upper bound should be connected with the market situation. For example, in a bear market

that upper bound can be relatively larger. How to set a reasonable upper bound for the initial

volatility parameter is worth investigating in the future. As a whole, for our option samples, the

implied versions of the GARCH(1, 1) and ARSV(1) models are not recommended. After all, the
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out-of-sample prediction error matters more than the in-sample counterpart.

4.5 Conclusion and Future Work

This chapter conducts a comprehensive comparison of the GARCH(1, 1) and ARSV(1) models

under both the physical and risk-neutral measures. Under the physical measure, we investigate

their log-likelihoods after fitting historical returns and test the normality assumption for their

error terms in the return process. Moreover, two robust loss functions, MSE and QLIKE, are

adopted for the one-step-ahead volatility forecast comparison. The results indicate the ARSV(1)

model outperforms the GARCH(1, 1) model in terms of the in-sample fitting and out-of-sample

prediction performances under the physical measure.

On the other hand, under the risk-neutral measure, the in-sample and out-of-sample option

pricing errors of the two models are explored. We show that only the volatility process of the

ARSV(1) model needs to be simulated for option pricing. In addition, the original and implied

versions of the two risk-neutral models are taken into consideration. The traditional and implied

B-S models are also examined as benchmarks. We find the performances of the two models are

considerably similar when pricing call options while the ARSV(1) model is remarkably superior

to the GARCH(1, 1) model for put options. However, their implied versions are not robust for

the out-of-sample prediction.

For the original non-implied version of the risk-neutral GARCH(1, 1) and ARSV(1) model,

we adopt a causal initial volatility when investigating their in-sample and out-of-sample pricing

errors. It is much likely that some other selections will lead to a better performance. For

example, the initial volatility for a risk-neutral model can be estimated by the physical version

of itself. Moreover, when parameterizing the initial volatility in the implied version, how to set a

reasonable upper bound for that parameter is also worth studying in the future.
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CHAPTER 5

A Comparison of Option Pricing Models with Leverage Effect

5.1 Introduction

Stylized facts, mostly used in economics, refer to common statistical properties in the financial

series that are widely found in empirical studies. Only when a volatility model is capable of

capturing some stylized facts can it precisely estimate or forecast volatilities. A lot of dynamic

volatility models have been proposed to exhibit certain stylized facts. In this chapter, we will

concentrate our attention on two widely-used volatility models—the GARCH(1, 1) and ARSV(1)

models, which have been studied in Chapter 4. Both of the models can explain two prevalent

stylized facts: excess kurtosis and volatility clustering (M. A. Carnero, Peña, & Ruiz, 2004).

They, however, fail to directly capture another stylized fact—leverage effect, which refers to a

negative correlation between the return and the subsequent volatility. Black (1976) and Christie

(1982) attempt to explain this common characteristic by the financial leverage (equivalently, the

ratio of debt to equity). Figlewski & Wang (2000), by contrast, conclude the leverage effect is

more related to the falling stock prices than the financial leverage. Bouchaud, Matacz, & Potters
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(2001) also rationalize the leverage effect using a retarded volatility model.

To capture the leverage effect, the ARSV(1) model just needs to introduce a negative

correlation between the return and volatility innovation processes but the GARCH(1, 1) model

has to replace its volatility specification with other forms such as the Exponential GARCH

(EGARCH) (Nelson, 1991) and Nonlinear Asymmetric GARCH (NGARCH) (Engle & Ng, 1993)

models. M. A. Carnero, Peña, & Ruiz (2004) show that introducing the leverage effect will not

change the conclusions about the persistence and kurtosis captured in the GARCH(1, 1) and

ARSV(1) models. Until now, there have been no empirical studies on the comparison of these

two volatility models under the risk-neutral measure after incorporating the leverage effect.

The objective of this chapter is to compare the capacities of the GARCH(1, 1) and ARSV(1)

models with the leverage effect to fit the observed option prices and to forecast option prices in

the future. In addition, we propose a continuous-time option pricing model that captures the

leverage effect by straightforwardly relating the volatility to the exponential decayed weighted

average (EDWA) cumulative asset return. We show that incorporating the leverage effect brings

about substantial improvements to the GARCH(1, 1) and ARSV(1) models in terms of the

in-sample and out-of-sample option pricing performances. Moreover, our Cumulative Return

model with only two parameters dominates other sophisticated models for predicting call options

and has as accurate results as others when it comes to pricing put options. The performance of

our model in an outlier day also further highlights its robustness.

The rest of this chapter is composed as follows: Section 5.2 discusses the GARCH(1, 1)

and ARSV(1) models with the leverage effect under the risk-neutral measure. In Section 5.3,

we put forward the new continuous-time Cumulative Return option pricing model. Section

5.4 investigates the empirical results and Section 5.5 summarizes this chapter and provides

suggestions for the future work.
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5.2 GARCH(1, 1) and ARSV(1) models with Leverage Effect

5.2.1 Risk-Neutral ARSV(1) Model with Leverage Effect

The standard ARSV(1) option pricing model, as shown by Eq. (4.2.18), has independent

observation and state processes with uncorrelated {ξt} and {ηt} sequences. Taking the leverage

effect into consideration, the ARSV(1) option pricing model has the following form:

ln
St
St−1

= r1 −
1

2
β̃2exp(x̃t) + β̃ exp(

x̃t
2

)ξt,

x̃t+1 = φ̃x̃t + γ̃ηt+1.

(5.2.1)

where

 ξt

ηt+1

 ∼ N(0,Σ), Σ =

 1 ρ

ρ 1

 and the parameter ρ measures the leverage effect.

Hereafter, the ARSV(1) option pricing model incorporating the leverage effect is denoted by

ρ−ARSV(1). Instead of generating two random variables from a multivariate normal distribution,

we determine ηt+1 at first and subsequently calculate ξt; that is, we have

ξt = ρηt+1 +
√

1− ρ2ζt, ηt+1 ∼ N(0, 1), ζt ∼ N(0, 1), ηt+1 ⊥ ζt. (5.2.2)

This substitution avoids the correlated innovation processes which are troublesome in price

simulation. Plugging Eq. (5.2.2) into Eq. (5.2.1) implies the equivalent form of the ρ−ARSV(1)

model as follows:

ln
St
St−1

= r1 −
1

2
β̃2exp(x̃t) + ρβ̃ exp(

x̃t
2

)ηt+1 +
√

1− ρ2β̃ exp(
x̃t
2

)ζt,

x̃t+1 = φ̃x̃t + γ̃ηt+1, ηt+1
i.i.d∼ N(0, 1), ζt

i.i.d∼ N(0, 1), ηt+1 ⊥ ζt.
(5.2.3)

At first sight, the model above is more complicated than its counterpart without the leverage

effect. Fortunately, like the ARSV(1) model, only the volatility process in the ρ−ARSV(1)

model needs to be simulated when pricing options. Starting at time t, suppose the sequence

{x̃k}Tk=t+1 has been simulated using a corresponding random number sequence {ηk}T+1
k=t+1 and
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an initial value x̃t. Given x̃t and {ηk}T+1
k=t+1 from one simulation path, the conditional asset price

at maturity T , denoted by SALT , can be derived as follows1:

lnSALT |x̃t, {ηk}T+1
k=t+1

D
= lnSt + r1(T − t)− 1

2
β̃2

T∑
k=t+1

exp(x̃k)

+ ρβ̃
T∑

k=t+1

exp(
x̃k
2

)ηk+1 +
√

1− ρ2β̃
T∑

k=t+1

exp(
x̃k
2

)ζk,

(5.2.4)

where r1 still denotes the risk-free rate and the superscript AL stands for the ARSV(1) model

with the leverage effect. It is worth noting that ηT+1 is needed in Eq. (5.2.4) even though it is

beyond the maturity date.

Moreover, since the independent and identically distributed standard normal error se-

quence {ζk}Tk=t+1 in Eq. (5.2.3) is independent of {ηk}T+1
k=t+1, we have β̃

∑T
k=t+1 exp( x̃k2 )ζk ∼

N
(
0, β̃2

∑T
k=t+1 exp(x̃k)

)
. Hence, we can expand Eq. (5.2.4) through

lnSALT |x̃t, {ηk}T+1
k=t+1

D
= lnSt + r1(T − t)− 1

2
β̃2

T∑
k=t+1

exp(x̃k)

+ ρβ̃
T∑

k=t+1

exp(
x̃k
2

)ηk+1 +
√

1− ρ2
(√√√√β̃2

T∑
k=t+1

exp(x̃k)
)
Z

D
= lnSt + r1(T − t)− 1

2
(1− ρ2 + ρ2)σ̂2(T − t)

+ ρβ̃
T∑

k=t+1

exp(
x̃k
2

)ηk+1 +
√

1− ρ2σ̂
√
T − t Z, Z ∼ N(0, 1),

where σ̂2(T − t) =
∑T

k=t+1 β̃
2 exp(x̃k) as defined in Eq. (4.2.24). Furthermore, we can write the

conditional log asset price at T into the following form:

lnSALT |x̃t, {ηk}T+1
k=t+1

D
= lnSt + r1(T − t)− 1

2
ρ2σ̂2(T − t) + ρβ̃

T∑
k=t+1

exp(
x̃k
2

)ηk+1

− 1

2
(1− ρ2)σ̂2(T − t) +

√
1− ρ2σ̂

√
T − t Z

1According to the second equation in Eq. (5.2.3) that describes the dynamics of x̃t, {x̃k}Tk=t+1 is determined
given the initial x̃t and corresponding error term sequence {ηk}Tk=t+1.
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D
= lnSt +

(
r1 −

1

2
ρ2σ̂2 +

ρβ̃
∑T

k=t+1 exp( x̃k2 )ηk+1

T − t
)
(T − t)

− 1

2
(1− ρ2)σ̂2(T − t) +

√
1− ρ2σ̂

√
T − t Z. (5.2.5)

Let rL ≡ r1 − 1
2ρ

2σ̂2 +
ρβ̃
∑T
k=t+1 exp(

x̃k
2

)ηk+1

T−t and σ̂L ≡
√

1− ρ2σ̂. Based on Eq. (5.2.5), we find

the dynamics of SALT |x̃t, {ηk}T+1
k=t+1 thus belongs to a geometric Brownian motion with a constant

daily volatility σ̂L and a constant daily risk-free rate rL. With the assistance of the Black-Scholes

option pricing formula, the conditional European call/put option prices can be derived by

EQ[CALt |x̃t, {ηk}T+1
k=t+1] = BScall(T − t, St,K, rL, σ̂L), (5.2.6)

EQ[PALt |x̃t, {ηk}T+1
k=t+1] = BSput(T − t, St,K, rL, σ̂L). (5.2.7)

where CALt and PALt respectively denote the European call and put option prices at time t

(expire at time T ) derived by the ρ−ARSV(1) model. The proof is similar to the one in Section

4.2.3. Then the corresponding unconditional European call/put option prices are simulated by

ĈALt (θL) = EQ
[
EQ[CLt |x̃t, {ηk}T+1

k=t+1]
]
≈ 1

m

m∑
j=1

BScall(T − t, St,K, rL(j), σ̂L(j)), (5.2.8)

P̂ALt (θL) = EQ
[
EQ[PLt |x̃t, {ηk}T+1

k=t+1

]
≈ 1

m

m∑
j=1

BSput(T − t, St,K, rL(j), σ̂L(j)). (5.2.9)

where j in the parentheses stands for the j-th simulated path under the risk-neutral ρ−ARSV(1)

model using the parameter vector θL = (ρ, φ, γ, β). Similar to its counterpart without leverage

effect, when pricing European options, only the volatility dynamics needs to be simulated though

there are two innovation processes in that model. In this chapter, the simulation number m is

still set to be 104.
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5.2.2 Risk-Neutral GARCH(1, 1) Model with Leverage Effect

When incorporating the leverage effect, the GARCH(1, 1) model is not as natural as the ARSV(1)

model because the variance process in the framework of the GARCH model is deterministic.

Rather than easily adjust the correlation between two innovation processes, the GARCH(1, 1)

model has to modify the specification of its conditional variance to capture the leverage effect.

5.2.2.1 Exponential GARCH(1, 1) Model

One commonly-used candidate is the EGARCH(1, 1) model (Nelson, 1991), which puts the log

variance into a linear regression equation such that

ln(σ̃2
t ) = ã0 + ã1zt−1 + γ̃1[|zt−1| − E(|zt−1|)] + b̃1 ln(σ2

t−1). (5.2.10)

where E(|zt−1|) =
√

2
π for any standard normal error term zt−1. The logarithmic transformation

of variance removes the positivity restrictions on parameters in Eq. (5.2.10) and |b̃1| < 1

guarantees the stationarity. Parameters ã1 and γ̃1 allow for asymmetry and leverage effect. The

responses of log variance are (ã1 + γ̃1)zt−1 and (ã1 − γ̃1)zt−1 for positive and negative zt−1,

respectively. If γ̃1 is zero, then negative and positive return have same effect on volatility. That’s

why the asymmetry is counted unless γ̃1 is negative (ã1 − γ̃1 > a1 + γ̃1). Moreover, the leverage

effect, which refers to the negative correlation between the return and the subsequent volatility,

asks for two extra constraints: ã1 + γ̃1 < 0 and ã1 − γ1 > 0 (equivalently, γ̃1 < ã1 < −γ̃1).

The second popular asymmetric model within the ARCH/GARCH family is the GJR-

GARCH(1, 1) model (Glosten, Jagannathan, & Runkle, 1993), which adds an indicator function

into the variance process to judge whether the previous return is positive. It has the following

variance process:

σ̃2
t = ã0 +

(
ã1 + γ̃11{zt−1<0}

)
σ̃2
t−1z

2
t−1 + b̃1σ̃

2
t−1. (5.2.11)

To ensure the conditional variance is positive, a1 ≥ 0 has to be satisfied. However, with a
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positive a1, a larger positive return cannot subsequently lead to a smaller volatility. Therefore,

the GJR-GARCH(1, 1) model is unable to capture the leverage effect.

5.2.2.2 Nonlinear Asymmetric GARCH(1, 1) Model

Another GARCH model with leverage effect that has been adopted by many researchers is the

NGARCH(1, 1) model. This model is proposed by Engle & Ng (1993), as in Eq. (5.2.12):

σ̃2
t = ã0 + ã1(zt−1 − γ̃1)2σ̃2

t−1 + b̃1σ̃
2
t−1. (5.2.12)

where ã0 > 0, ã1 ≥ 0, b̃1 ≥ 0. To derive its covariance stationarity constraint, we need to have a

look at the corresponding persistence that equals to b̃1+ã1E(zt−1−γ̃1)2. As zt−1−γ̃1 ∼ N(−γ̃1, 1),

we have E(zt−1 − γ̃1)2 = 1 + γ̃2
1 . Therefore, b̃1 + ã1(1 + γ̃2

1) < 1 ensures the stationarity of the

NGARCH(1, 1) model.

When it comes to pricing the European call/put option price by the GARCH(1, 1) model with

the leverage effect, we can refer to Eq. (4.2.20) and Eq. (4.2.21) in which the volatility at each

step is updated by Eq. (5.2.10) or Eq. (5.2.12) for the EGARCH(1, 1) or NGARCH(1, 1) model,

respectively. Hereafter, the European call/put options prices simulated by the EGARCH(1,

1) model are denoted by ĈE(θE) and P̂E(θE) where θE = (aE0 , a
E
1 , γ

E
1 , b

E
1 ) stands for the

EGARCH(1, 1) parameter vector. Similarly, the European call/put option prices simulated by

the NGARCH(1, 1) model are denoted by ĈN (θN ) and P̂N (θN ) where θN = (aN0 , a
N
1 , γ

N
1 , b

N
1 )

stands for its parameter vector.

5.3 A New Option Pricing Model with the Leverage Effect

Enlightened by the constant elasticity of variance (CEV) model put forward by Cox (1975) which

directly relates the current asset price with the subsequent volatility, we propose a Cumulative

Return option pricing model. Given a invariant base time point t0 which is before the option
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trading day, our model satisfies the following stochastic differential equations:

dRt =
(
r1 −

1

2
f2(Yt)σ

2
)
dt+ f(Yt)σdWt, (5.3.1)

Yt =
1

M

∫ 0

−h
eλsRt+sds, M =

∫ 0

−h
eλsds =

1− e−λh
λ

. (5.3.2)

where r1 is the constant daily risk-free interest rate, σ is the constant daily volatility factor,

Rt = lnSt − lnSt0 denotes the cumulative return from time t0 till current time t, Yt is the

EDWA cumulative return of previous h days with a decay rate λ, Wt is a Brownian motion and

the form of f(Yt) will be given later. It is worth noting that σ alone in Eq. (5.3.1) does not

stand for a daily volatility estimate. It is just a constant factor of volatility and f(Yt)σ together

can be seen as the volatility estimate at time t + ∆t. We first transform Yt linearly into the

following form:

1

M

∫ 0

−h
eλsRt+sds

µ=t+s
=

1

M

∫ t

t−h
eλ(µ−t)Rµdµ, (5.3.3)

Then by Leibniz integral rule, the differential of Yt is given by

dYt
dt

=
1

M
[
d
∫ t
t−h e

λ(µ−t)Rµdµ

dt
] =

1

M
[Rt − e−λhRt−h +

∫ t

t−h
−λeλ(µ−t)Rµdµ]

= −λYt +
1

M
(Rt − e−λhRt−h),

dYt = [−λYt +
1

M
(Rt − e−λhRt−h)]dt. (5.3.4)

The day on which the option needs to be valued is set as Day 0 and the spot price of the

underlying asset is S0. Our base time point t0 is defined to be Day −h, which means h days

before Day 0.2 The option will be exercised at Day T so the time to maturity is T trading

days.3 In addition, the strike price of the option is denoted by K.

2We only consider trading days and assume one year have 252 trading days. When k is negative, Day k
denotes the day that is k days before Day 0.

3Generally, time to maturity is denoted by τ . Since the option has a valid period from Day 0 to Day T , its
time to maturity also equals T days.
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Suppose the volatility estimate for for Day 1, denoted by σ1 is given at Day 0. To indicate

the leverage effect, f(·) should be a nonnegative and decreasing function of the EDWA cumulative

return Yt. In this chapter, we set f(Yt) = eα(Y0+rt−Yt) with a constant parameter α that is

constrained to be positive. The reason why we add r1t in the function is that this term can

offset the time effect. Considered to be the EDWA of h previous cumulative returns with a fixed

base time, Yt is expected to increase as time t grows. Moreover, f(Y0)σ should be ensured to

equal σ1 so that the estimated daily volatility for Day 1 is in line with our initialization; that

is, σ = σ1 since f(Y0) = 1 here.

5.3.1 Partial Differential Equations for Option Pricing

To calculate the option price, one method is to numerically solve the corresponding PDE

equations that are related to the stochastic differential equations of our option pricing model by

the Discounted Feynman-Kac Theorem.

Hereafter, the time unit is a trading day while other units can be applied if the intra-daily

data are available. Assuming V is the value of an option on the underlying asset whose pay-off

at maturity time T is g(X(T )). Under the risk-neutral measure Q, the value of the option at

time t (0 ≤ t ≤ T ) is given by

V (t,X(t), Y (t)) = EQ
(
e−r1(T−t)g(X(T ))|F(t)

)
, (5.3.5)

where F(t) is a filtration. It is worth noting that V (t,X(t), Y (t)) itself is not a Q-martingale.

To build a martingale process, we need to add an extra discount term such that the subsequent

expected value will not depend on the time t. Therefore, we have

e−r1tV (t,X(t), Y (t)) = EQ(e−r1T g(X(T ))|F(t)
)
. (5.3.6)

It can be proved that e−r1tV (t,X(t), Y (t)) is a Q-martingale:
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Proof. For 0 ≤ s ≤ t ≤ T , then

EQ[e−r1tV (t,X(t), Y (t))|F(s)] = EQ[EQ[e−r1T g(X(T ))|F(t)]|F(s)]

= EQ[e−r1T g(X(T ))|F(s)]

= e−r1sEQ[e−r1(T−s)g(X(T ))|F(s)]

= e−r1sV (s,X(s), Y (s)). Q.E.D

Then the differential of this Q-martingale is

d
(
e−r1tV (t,X(t), Y (t))

)
= e−r1t[−r1V dt+ Vtdt+ VxdX + VydY +

1

2
VxxdXdX +

1

2
VyydY dY + VxydXdY ]

= e−r1t
[
− r1V dt+ Vtdt+ Vx(r1 −

1

2
f2(Y (t))σ2dt+ f(Y (t))σdW (t))

+ Vy
(
− λY (t) +

1

M
(X(t)− e−λhX(t− h))

)
dt+

1

2
Vxxf

2(Y (t))σ2dt
]

= e−r1tf(Y (t))σdW (t) + e−r1t
[
− r1V + Vt + Vx

(
r1 −

1

2
f2(Y (t))σ2

)
+

1

2
Vxxf

2(Y (t))σ2

+ Vy
(
− λY (t) +

1

M
(X(t)− e−λhX(t− h))

)]
dt. (5.3.7)

Since e−r1tV is a Q-martingale, the dt term should be zero. Therefore, V (t,X(t), Y (t)) (0 ≤ t ≤

T ) must satisfy the following partial differential equations:



Vy[−λY (t) + 1
M

(
X(t)− e−λhX(t− h)

)
]

−r1V + Vt + Vx[r − 1
2f

2(Y (t))σ2] + 1
2Vxxf

2(Y (t))σ2 = 0,

X(s) = lnS(bsc)− lnS(−h), −h ≤ s ≤ 0, Y (0) =
∑0
j=−h+1 e

λjX(j)∑0
j=−h+1 e

λj
,

V (T,X(T ), Y (T )) = g(X(T )).

(5.3.8)

where b·c denotes the floor function, the sequence of historical close asset prices, denoted

by S(k), k = −h, . . . , 0, are known and the form of g(X(T )) depends on the option kind.
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For call options, g(X(T )) = max(eX(T )+lnS(−h) − K, 0) while for put options, g(X(T )) =

max(K−eX(T )+lnS(−h), 0). When λh is large enough, M approaches 1
λ and we can approximately

simplify dYt by

dYt = λ(Rt − Yt)dt. (5.3.9)

5.3.2 Monte Carlo Simulation for Option Pricing

In addition to solving partial differential equations, our Cumulative Return model can also value

options by Monte Carlo simulations. Firstly, we initialize R0 and Y0 by

R0 = lnS0 − lnS−h, Y0 =

∑0
j=−h+1 e

λjRj

M ′
, M ′ =

0∑
j=−h+1

eλj . (5.3.10)

Subsequently, let us define the discrete-time versions of EDWA cumulative returns at Day k

and k + 1 as follows:

Yk =
1

M ′

0∑
s=−h+1

eλsRk+s, Yk+1 =
1

M ′

0∑
s=−h+1

eλsRk+1+s. (5.3.11)

Then Yk+1 can be thus expressed using Yk, as in Eq. (5.3.12).

Yk+1 = e−λ
(
Yk −

1

M ′
eλ(−h+1)Rk−h+1

)
+

1

M ′
Rk+1. (5.3.12)

where Rk for k = −h + 1, . . . − 1 should also be provided (Rk ≡ lnSk − lnS−h). Now the

underlying asset price at Day T can be simulated step by step by

Rk+1 = Rk + r1 −
1

2
(f(Yk))

2σ2
1 + f(Yk)σ1zk,

Yk+1 = e−λ
(
Yk −

1

M ′
eλ(−h+1)Rk−h+1

)
+

1

M ′
Rk+1.

(5.3.13)
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where zk
i.i.d∼ N(0, 1) for k = 0, 1, . . . , T − 1. Therefore, the cumulative return RCT at maturity is

calculated by

RCT = R0 + r1T −
1

2
σ2

1

T−1∑
k=0

(f(Yk))
2 + σ1

T−1∑
k=0

f(Yk)zk. (5.3.14)

where the superscript C stands for the Cumulative Return option pricing model. As for this

simulation, the asset price at the end of Day T is calculated by SCT = eR
C
T +lnS−h because

RCT = lnSCT − lnS−h. Then the call/put option price at Day 0 can be derived by

Call : ĈC0 ≈
1

m
e−r1T

m∑
j=1

max(SCT (j)−K, 0), (5.3.15)

Put : P̂C0 ≈
1

m
e−r1T

m∑
j=1

max(K − SCT (j), 0). (5.3.16)

where m is the total simulation number and SCT (j) is the asset price at Day T calculated by

the j-th simulated path under our Cumulative Return option pricing model.

5.4 Methodology and Empirical Study

In this section, we will introduce the methodology for the comparison among the risk-neutral

models incorporating the leverage effect and investigate the empirical results. In the empirical

study, our Cumulative Return option pricing model will value options by the Monte Carlo

simulation method.

5.4.1 Methodology

In what follows we will conduct a comparison among the GARCH(1, 1) and ARSV(1) models

with the leverage effect and our Cumulative Return option pricing model under the risk-neutral

measure. Except for our model, both the implied and non-implied versions of the examined

models are explored. As for the non-implied versions, we adopt the initial volatility choice of
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Chapter 4, which is the unconditional standard deviation of the 180-day log returns before the

option trading day. Regarding the implied version, the upper bound for the initial volatility

parameter is also set in line with Chapter 4. Moreover, we keep the ‘one-day in-sample with

second-day out-of-sample’ rule and deal with the same dataset of options as the one used in the

comparison between the risk-neutral GARCH(1) and ARSV(1) models without leverage effect

in Chapter 4.

In light of our Cumulative Return option pricing model, we only report the results of its

implied version for the following reasons. Firstly, compared to the GARCH(1, 1) or ARSV(1)

model with the leverage effect which has four parameters, the non-implied version of our option

pricing model has only one parameter—α if initial volatility is not parameterized. Though a

model with fewer parameters is easier to estimate, it is less flexible when fitting in-sample

observations. In fact, we examine the performance of the non-implied version of our option

pricing model and the results are significantly inferior to its non-implied rivals with the leverage

effect: the EGARCH(1, 1), NGARCH(1, 1) and ρ−ARSV(1) models. Secondly, our model relates

the volatility to a function of the EDWA cumulative return Yt so that the new asset price of the

out-of-sample day (Day 1) has little effect on Y1. If the initial volatility is parameterized, it

is expected to be robust for the out-of-sample prediction. Therefore, only through the implied

version can we take advantage of this feature.

In this chapter, the risk-neutral models are still estimated by minimizing the in-sample mean

squared pricing error (MSPE) which is defined in (4.2.32). If it is not parameterized, σ0 is set to

be the unconditional standard deviation of the 180-day log returns before Day 0.4 Assuming n

in-sample options are selected on Day 0, then all the examined models with the leverage effect

are estimated as follows:

ρ−ARSV(1) : θ̃L = arg min
θL

1

n

n∑
i=1

[vi − ĈAL0 (θL, σ0, i)]
2, θL = (ρ, φ, γ, β),

4As illustrated in Chapter 4, the ρ-ARSV(1) and ρ-ARSV-IV(1) models use σ0 to determine x̃0 by solving
β exp(x̃/2) = σ0 where β is from the present parameter estimates.
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ρ−ARSV-IV(1) : θ̃Liv = arg min
θLiv

1

n

n∑
i=1

[vi − ĈAL0 (θLiv, i)]
2, θLiv = (ρ, φ, γ, β, σ0),

EGARCH(1, 1) : θ̃E = arg min
θE

1

n

n∑
i=1

[vi − ĈE0 (θE , σ0, i)]
2, θE = (aE0 , a

E
1 , γ

E
1 , b

E
1 ),

EGARCH-IV(1, 1) : θ̃Eiv = arg min
θEiv

1

n

n∑
i=1

[vi − ĈE0 (θEiv, i)]
2, θEiv = (aE0 , a

E
1 , γ

E
1 , b

E
1 , σ0),

NGARCH(1, 1) : θ̃N = arg min
θN

1

n

n∑
i=1

[vi − ĈN0 (θN , σ0, i)]
2, θN = (aN0 , a

N
1 , γ

N
1 , b

N
1 ),

NGARCH-IV(1, 1) : θ̃Niv = arg min
θNiv

1

n

n∑
i=1

[vi − ĈN0 (θNiv , i)]
2, θNiv = (aN0 , a

N
1 , γ

N
1 , b

N
1 , σ0),

CR : θ̃Civ = arg min
θCiv

1

n

n∑
i=1

[vi − ĈC0 (θCiv, , h, λ, i)]
2, θCiv = (α, σ1).

where vi is the market price of the i-th call option, σ0 is the initial volatility, ĈAL0 (·, i), ĈE0 (·, i),

ĈN0 (·, i) and ĈC0 (·, i) are the theoretical prices of the corresponding volatility models for the i-th

call option with the identifications (strike price Ki and time to maturity Ti − t). In addition,

‘CR’ refers to our Cumulative Return option pricing model and the suffix ‘-IV’ stands for the

implied versions that parameterize the initial volatility. As previously mentioned, ĈAL0 (·, i) and

ĈC0 (·, i) are calculated by Eq. (5.2.8) and Eq. (5.3.15), respectively. ĈE0 (·, i) and ĈN0 (·, i) can be

calculated by what we have described at the end of Section 5.2.2. The put option counterparts

are estimated in a similar way.

5.4.2 Empirical Results

The in-sample and out-of-sample results of risk-neutral volatility models with leverage effect

are presented in Table 5.1 and Table 5.2. The preferred value in each column is underlined.

Regarding our cumulative return model, h is set to be 20 while there are three choices for the

decay rate λ: 0.2, 0.5 and 0.9.

First of all, compared to the original risk-neutral GARCH(1, 1) and ARSV(1) models in

Chapter 4, both of the two models are subject to substantial improvements in terms of the average
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in-sample and out-of-sample pricing errors after incorporating the leverage effect, indicating

the leverage effect should be considered when pricing options. The subsequent in-sample and

out-of-sample comprehensive comparisons will be divided into two groups by call and put options.

Moreover, the results of an outlier day (February 1st, 2018) are also investigated.

Table 5.1: Average in-sample and out-of-sample call option pricing errors of risk-neutral models with
leverage effect.

Call, 30 calendar days Call, 50 calendar days
MSPE In-Sample Out-of-Sample In-Sample Out-of-Sample

ρ−ARSV(1)
0.0460 2.3828 0.0171 2.5883
(0.09) (3.29) (0.05) (3.68)

ρ−ARSV-IV(1)
0.0454 3.6186 0.0126 2.2966
(0.07) (6.21) (0.01) (3.72)

EGARCH(1, 1)
0.0750 2.5348 0.0184 2.6446
(0.15) (3.36) (0.02) (3.60)

EGARCH-IV(1, 1)
0.0668 7.3703 0.0157 3.8715
(0.15) (8.88) (0.02) (5.03)

NGARCH(1, 1)
0.1157 2.5401 0.1051 2.7322
(0.20) (3.34) (0.10) (3.79)

NGARCH-IV(1, 1)
0.1144 2.7526 0.0794 2.6770
(0.20) (3.69) (0.10) (3.80)

CR, h = 20, λ = 0.2
0.1952 1.7967 0.1865 1.9500
(0.22) (2.54) (0.13) (2.62)

CR, h = 20, λ = 0.5
0.1731 1.8395 0.1836 1.8498
(0.21) (2.61) (0.13) (2.30)

CR, h = 20, λ = 0.9
0.1678 1.7787 0.1902 1.9836
(0.21) (2.53) (0.13) (2.52)

5.4.2.1 In-Sample Comparison

As for call options, the implied ρ−ARSV(1) model dominates other models in terms of the

average value and standard deviation of the in-sample MSPE no matter whether the time

to maturity is 30 or 50 calendar days. With respect to the 30-day put options, the implied

EGARCH(1, 1) model is preferred in terms of the average value and standard deviation of the
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Table 5.2: Average in-sample and out-of-sample put option pricing errors of risk-neutral models with
leverage effect.

Put, 30 calendar days Put, 50 calendar days
MSPE In-Sample Out-of-Sample In-Sample Out-of-Sample

ρ−ARSV(1)
0.0198 1.5919 0.0057 1.8927
(0.07) (2.16) (0.0104) (2.59)

ρ−ARSV-IV(1)
0.0092 2.4377 0.0038 1.7785
(0.014) (5.64) (0.0064) (2.38)

EGARCH(1, 1)
0.0108 1.6437 0.0062 1.8895
(0.02) (2.32) (0.0078) (2.79)

EGARCH-IV(1, 1)
0.0024 2.2565 0.0036 2.8590
(0.004) (2.23) (0.0075) (3.26)

NGARCH(1, 1)
0.0629 1.7850 0.1360 1.9173
(0.06) (2.42) (0.24) (2.43)

NGARCH-IV(1, 1)
0.0613 1.9754 0.0934 2.0558
(0.10) (2.49) (0.18) (2.59)

CR, h = 20, λ = 0.2
0.3030 2.6692 0.3706 2.5786
(0.24) (3.95) (0.63) (2.93)

CR, h = 20, λ = 0.5
0.2656 2.2479 0.4180 2.2924
(0.23) (3.37) (0.73) (2.55)

CR, h = 20, λ = 0.9
0.2804 2.0178 0.5158 2.3455
(0.26) (2.57) (0.80) (1.94)

in-sample MSPE. Regarding the 50-day put options, the implied ρ−ARSV(1) model has as good

results as the implied EGARCH(1, 1) model and these two models are superior to the others.

Not surprisingly, all the implied versions have better in-sample performances than their

non-implied counterparts while the improvements are considerably insignificant. Moreover, all

the examined risk-neutral models including our Cumulative Return option pricing model have

remarkably satisfying in-sample results. Consequently, models with leverage effects are capable

of precisely fitting the observed in-sample option prices. Interestingly, all the ARSV(1) and

GARCH(1, 1) models with leverage effects have a smaller average in-sample MSPE for 50-day

options than their 30-day counterparts. Options with a longer time to maturity are usually

believed to be more difficult to fit. The reason of the uncommon case here is worth studying

in the future but at least it shows incorporating the leverage effect makes risk-neutral models
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more promising to fit observed option prices that will be exercised in a long time.

Now let us have a look at our Cumulative Return option pricing model. Its average in-sample

MSPE, though a little inferior to the other models with leverage effect, are still acceptable. After

all, as previously mentioned, it is the capability of out-of-sample prediction that decides whether

a model can be adopted to price options in the market. Next, putting aside the in-sample results,

we will focus on the out-of-sample option pricing errors.

5.4.2.2 Out-of-Sample Comparison

For both the 30-day and 50-day call options, our Cumulative Return option pricing model is

superior to other models in terms of the average value and standard deviation of the out-of-

sample option pricing errors. Such results are surprising since our option pricing model has only

two parameters and seems to be much easier than the other examined models. In addition, the

decay rate in our option pricing model can be further refined to provide a better out-of-sample

prediction performance.

As for put options, the ρ−ARSV(1) model dominates other models regarding the 30-day

out-of-sample prediction performance while the implied ρ−ARSV(1) has the smallest average

MSPE for the 50-day options. Our cumulative return model with λ = 0.9 is preferred to other

models in terms of the standard deviation of the out-sample MSPE for the 50-day put options.

As expected, the average out-of-sample MSPE is larger than the in-sample counterpart for

each risk-neutral model. Furthermore, the 50-day out-of-sample results are not always inferior

to their 30-day counterparts, indicating the potential of such models to price options with a

long time to maturity.

Moreover, except for the ρ−ARSV(1) model for the 50-day call and put options and the

NGARCH(1, 1) model for the 50-day call options, the implied models especially the implied

EGARCH(1, 1) model are inferior to their non-implied versions. Although parameterizing the

initial volatility can better fit the in-sample observations, it undermines a model’s robustness for

the out-of-sample prediction. However, compared to the results shown in Table 4.8 of Chapter
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4, the impact of the extra volatility parameter on the models that capture the leverage effect

is not as strong as the one on the original GARCH(1, 1) and ARSV(1) models without the

leverage effect. Therefore, the introduction of the leverage effect makes the implied versions of

the GARCH(1, 1) and ARSV(1) models more robust for the out-of-sample pricing performance.

Revisiting the initial setting of our Cumulative Return option pricing model, we assume h is

equal to 20. Whether other values of h will lead to a better performance is out of the scope of

this chapter. Moreover, for a given h, how can we derive the optimal decay rate λ? Such topics

are worth investigating in the future.

5.4.2.3 Comparison On An Outlier Day

Table 5.3: In-sample and out-of-sample put option pricing error of risk-neutral models with the leverage
effect on the outlier day.

Feb 1, 2018 Put, 30 calendar days Put, 50 calendar days
MSPE In-Sample Out-of-Sample In-Sample Out-of-Sample

ρ−ARSV(1) 0.0024 58.5681 0.0012 64.9115

ρ−ARSV-IV(1) 0.0019 55.6732 0.0012 62.6181

EGARCH(1, 1) 0.0089 57.9871 0.0018 62.9838

EGARCH-IV(1, 1) 0.0015 74.0426 0.0010 86.2504

NGARCH(1, 1) 0.0273 55.9743 0.0169 61.6368

NGARCH-IV(1, 1) 0.0995 55.7715 0.0011 56.1960

CR, h = 20, λ = 0.2 0.1885 0.4663 0.0095 0.6730

CR, h = 20, λ = 0.5 0.1515 2.8194 0.0128 8.4193

CR, h = 20, λ = 0.9 0.1226 17.8401 0.0161 22.3763

For the results shown in Table 5.1 and Table 5.2, the last out-of-sample day in our collection

is Thursday, February 1st, 2018. The U.S. stock market experienced a series plunge on the next

Monday, February 5th. In fact, if we minimize the in-sample pricing error for the put options on

Thursday, February 1st and the corresponding out-of-sample results on Friday, February 2nd will
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reveal some clues of the plunge.5 That day can be seen an outlier day because the out-of-sample

errors of all examined option pricing models except our proposed model are exceptionally

large. The results are reported in Table 5.3, which illustrates our Cumulative Return model

substantially outperforms other models on that outlier day. Therefore, our model is capable of

tracking the true volatility trend at the extreme situation by combining the in-sample parameter

estimates and the slight change in EDWA cumulative Yt when the new out-of-sample asset price

arrives. In addition, regarding our model, the performance when λ = 0.2 dominates the one

when λ = 0.5 or 0.9. As shown in Table 5.4, a smaller λ leads to a larger α and a smaller initial

volatility estimates on that outlier day. The reason of the superiority of that case might be: the

smaller initial volatility makes the model less sensitive to the new asset price while the larger α

ensures its capability of identifying the volatility trend from a insignificant change in the EDWA

cumulative return.

Table 5.4: In-sample nonlinear-least-square parameter estimates of our model for put options on the
outlier day.

Feb 1, 2018 Put, 30 calendar days Put, 50 calendar days
Parameter Estimates σ̃1 α̃ σ̃1 α̃

CR, h = 20, λ = 0.2 7.49412× 10−3 14.74616 7.464591×10−3 11.13344

CR, h = 20, λ = 0.5 7.49939× 10−3 13.09271 7.66398× 10−3 10.34252

CR, h = 20, λ = 0.9 7.588897×10−3 11.96045 7.906737×10−3 9.84929

The value of the results on the outlier day is limited for the following reasons. Firstly, regarding

that extreme market situation, our predetermined initial volatility for the non-implied models is

too small. Secondly, our assumption that the in-sample nonlinear-least-squares parameters will

stay unchanged overnight is not suitable for such an abnormal out-of-sample day. Moreover, we

observe only one outlier day and other extreme situations may lead to different performances.

However, the results at least highlight the robustness of our Cumulative Return option pricing

5Only the results of the put options on the outlier day are discussed here since the call options seem to be
relatively normal.
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model especially for a small λ.

5.5 Conclusion and Future Work

This paper evaluates the in-sample and out-of-sample performances of four option pricing models

incorporating the leverage effect: the ρ-ARSV(1), EGARCH(1, 1), NGARCH(1, 1) models and

our Cumulative Return option pricing model. The implied versions of the first three models are

also investigated. Our first conclusion is that compared to the original risk-neutral GARCH(1, 1)

and ARSV(1) models in Chapter 4, both of the two models exhibit substantial improvements in

terms of the average in-sample and out-of-sample pricing errors after incorporating the leverage

effect. Therefore, the leverage effect plays an indispensable role in option pricing. Secondly,

our Cumulative Return option pricing model that has only two parameters are superior to the

other sophisticated models regarding the out-of-sample pricing error of call options. As for the

put option pricing, the results of most models are considerably close. The comparison of the

outlier day also further adds to the robustness of our proposed model for the out-of-sample price

prediction.

For the future work, we can focus on the selection of the initial volatility for the non-implied

option pricing models. In our proposed model, the choices of h and λ can be further adjusted to

have a better performance. Moreover, we only explore the results with f(Yt) = eα(Y0+rt−Yt) and

other decreasing functions are worth exploring. We can also investigate the pricing errors of the

in-the-money and out-of-the-money options separately.
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APPENDIX A

Appendix for Chapter 3

A.1 Derivations of Eq. (3.2.8) and Eq. (3.2.9)

Suppose X ∼ N(µ, σ2) and Pr(X ≤ Aα) = α. Let Z ≡ X−µ
σ and a ≡ Aα−µ

σ . Then Z ∼ N(0, 1)

and Φ(a) = Φ
(
Aα−µ
σ

)
= Pr

(
Z ≤ Aα−µ

σ

)
= Pr(X ≤ Aα) = α, where Φ(·) is the CDF of the

standard normal distribution. Hence, we have

E[X|X > Aα] = σE [Z|Z > a] + µ = µ+
σ

1− Φ(a)

∫ ∞
a

z
1√
2π
e−

z2

2 dz

= µ+
σ

(1− α)
√

2π
e−

a2

2 = µ+
σ

(1− α)
√

2π
e−

(Aα−µ)2
2σ2 ,

E[X2|X > Aα] =
1

Pr(X > Aα)

∫ ∞
Aα

x2

√
2πσ

e−
(x−µ)2

2σ2 dx =
1

1− α

∫ ∞
a

(zσ + µ)2

√
2π

e−
z2

2 dz

=
1

(1− α)
√

2π

∫ ∞
a

(z2σ2 + 2µσz + µ2)e−
z2

2 dz

= µ2 + σ2 +
σ(Aα + µ)

(1− α)
√

2π
e−

(Aα−µ)2
2σ2 ,
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where the form
∫∞
a z2e−

z2

2 dz is evaluated using integration by parts as follows:

∫ ∞
a

z2e−
z2

2 dz =

∫ ∞
a
−zde− z

2

2 =

(
−ze− z

2

2

)∣∣∣∣∞
a

−
∫ ∞
a
−e− z

2

2 dz = ae−
a2

2 +
√

2π(1−Φ(a)).

E[X3|X > Aα] can be derived using integration by parts in a similar way.

A.2 EVT estimators for VaR and ES

The EVT estimator for VaR at β level is calculated by solving Pr(W ≤ VaRβ(W )) = β, where

the unconditional probability Pr(W ≤ VaRβ(W )) is given in (3.5.6). When ξ 6= 0, we have

(1− F (v))

(
1−

[
1 +

ξ(VaRβ(W )− v)

σ

]−1/ξ
)

+ F (v) = β. (A.2.1)

Hence, VaRβ(W ) = v + σ
ξ [( 1−β

1−F (v))−ξ − 1]. Since W − v ∼ GPD(ξ, σ), its ES estimate is

ESβ(W ) = E[W |W ≥ VaRβ(W )] = v + E[W − v|W − v ≥ VaRβ(W )− v]

= v + VaRβ(W )− v +
σ + ξVaRβ(W )− ξv

1− ξ =
VaRβ(W ) + σ − ξv

1− ξ , (A.2.2)

where (A.2.2) is obtained by GPD’s ES closed-form formula in Table A.1. When ξ = 0, we have

(1− F (v))
(

1− e− 1
σ

(VaRβ(W )−v)
)

+ F (v) = β. (A.2.3)

Thus VaRβ(W ) = v − σ ln( 1−β
1−F (v)). Now W − v follow an exponential distribution with the

parameter σ and we have the following derivation based on PDF of the exponential distribution:

E[W − v|W − v ≥ VaRβ(W )− v] =
1

1−Gσ(b)

∫ ∞
b

y

σ
e−

y
σ dy = VaRβ(W )− v + σ,

ESβ(W ) = v + E[W − v|W − v ≥ VaRβ(W )− v] = VaRβ(W ) + σ. (A.2.4)

where b = VaRβ(W )− v and Gσ(b) = Pr(W − v ≤ b) = 1− e−b/σ.
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A.3 Closed-form Formulas for Some Heavy-Tailed Distribu-

tions

In what follows we summarize closed-form expressions of some necessary statistics used in this

paper. Results are reported in Table A.1, in which A is a constant, Γ(·) is the gamma function,

γ(α;x) =
∫ x

0 z
α−1e−zdz is the lower incomplete gamma function and Γ̂(α;x) =

∫∞
x zα−1e−zdz

is the upper incomplete gamma function. Except t and GPD, the domains of PDF and CDF

are w > 0. In GPD, ξ 6= 0, σ > 0 always hold and 1 + ξw/σ > 0 should be guaranteed when

ξ is negative. Some non-analytical expressions need to be computed by numerical methods or

software packages. For the ease of presentation, long equations are shown below separately:

mt
1 =

1

1− FW (A)

Γ(v+1
2 )v√

vπΓ(v2 )(v − 1)

(
A2

v
+ 1

)− v−1
2

, v > 1;

mGPD
2 = A2 + 2

(
1 +

ξ

σ
A

)
σ(A+ σ −Aξ)
(ξ − 1)(2ξ − 1)

, ξ <
1

2
;

mGPD
3 = A3 − 3σ

(
1 + ξAσ

)
ξ − 1

A2 +
6σ2

(
1 + ξAσ

)2
(ξ − 1)(2ξ − 1)

A− 6σ3
(
1 + ξAσ

)3
(ξ − 1)(2ξ − 1)(3ξ − 1)

, ξ <
1

3
.
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Table A.1: Closed-form formulas of 1st, 2nd & 3rd conditional moments.

W t, df =v Gamma(α, β) Lognormal(µ, σ2) GPD(ξ, σ) Weibull(k, λ)

PDF, fW (w)
Γ( v+1

2
)√

vπΓ( v
2

)
(1 + w2

v )−
v+1
2

wα−1e
−w
β

Γ(α)βα
1√

2πσw
e−

(lnw−µ)2
2σ2

1
σ

(
1 + ξwσ

)− 1
ξ
−1 k

λ(wλ )k−1e−(w
λ

)k

CDF, FW (w)
∫ w
−∞ fW (x)dx

γ
(
α;w
β

)
Γ(α) Φ( lnw−µ

σ ) 1−
(
1 + ξwσ

)− 1
ξ 1− e−(w

λ
)k

E[W |W ≥ A] mt
1

βΓ̂
(
α+1;A

β

)
(1−FW (A))Γ(α)

Φ(µ+σ
2−lnA
σ

)

1−FW (A) eµ+σ2

2 A+ ξA+σ
1−ξ , ξ < 1

λΓ̂
(

1
k

+1;(Aλ )
k
)

1−FW (A)

E[W 2|W ≥ A]
∫∞
A x2fW (x)dx

1−FW (A) , v > 2
β2Γ̂

(
α+2;A

β

)
(1−FW (A))Γ(α)

Φ(µ+2σ2−lnA
σ

)

1−FW (A) e2µ+2σ2
mGPD

2

λ2Γ̂
(

2
k

+1;(Aλ )
k
)

1−FW (A)

E[W 3|W ≥ A]
∫∞
A x3fW (x)dx

1−FW (A) , v > 3
β3Γ̂

(
α+3;A

β

)
(1−FW (A))Γ(α)

Φ(µ+3σ2−lnA
σ

)

1−FW (A) e3µ+ 9
2
σ2

mGPD
3

λ3Γ̂
(

3
k

+1;(Aλ )
k
)

1−FW (A)



APPENDIX B

Appendix for Chapter 4

B.1 Two Forms of ARSV(1) Model

The first version of the ARSV(1) model is

yt = exp(
x′t
2

)ξt, ξt
i.i.d∼ N(0, 1),

x′t = α+ φx′t−1 + γηt, ηt
i.i.d∼ N(0, 1), ξt ⊥ ηt.

The second equation can be transformed by

x′t − µ = φ(x′t−1 − µ) + γηt,

where µ = α
1−φ . Let xt ≡ x′t − µ. Then we have

yt = exp(
xt + µ

2
)ξt = exp(

µ

2
) exp(

xt
2

)ξt.
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Therefore, the former ARSV(1) model is transformed as follows:

yt = β exp(
xt
2

)ξt, ξt
i.i.d∼ N(0, 1),

xt = φxt−1 + γηt, ηt
i.i.d∼ N(0, 1), ξt ⊥ ηt.

where β ≡ exp(µ2 ). One change we need to pay attention to is the conditional variance in the

former version is exp(x′t) while it becomes β2 exp(xt) in the new version.

B.2 Forward-Only FFBS Algorithm for estimating Sθn
1 Initialize T̂ θ0 (x

(i)
0 ) = 0 and obtain the weighted filtering particles {x(i)0 , ω

(i)
0 }Ni=1.

2 Repeat the following steps for time steps k = 1, 2, . . . , n.

2.1 Obtain weighted filtering particles {x(i)k , ω
(i)
k } for i = 1, . . . , N .

2.2 T̂ θk (x
(i)
k ) =

∑N
j=1 ω

(j)
k−1fθ(x

(i)
k |x

(j)
k−1)[T̂ θk−1(x

(j)
k−1) + sk(x

(j)
k−1, x

(i)
k )]∑N

j=1 ω
(j)
k−1fθ(x

(i)
k |x

(j)
k−1)

, i = 1, . . . , N .

2.3 Ŝθk =
∑N
i=1 ω

(i)
k T̂ θk (x

(i)
k ).

B.3 Solution to the Maximizing Step

We have A(θ) = 1
2 ln(γ2) + 1

2 ln(β2) and ψ(θ) = (− φ2

2γ2
, φ
γ2
,− 1

2γ2
,− 1

2β2 ). The unique solution of

the complete-data maximum likelihood equation ∇θψ(θ)s−∇θA(θ) = 0 is derived as follows:

∇θψ(θ) =


− φ
γ2

1
γ2

0 0

φ2

2γ4
− φ
γ4

1
2γ4

0

0 0 0 1
2β4

 , s =



z1

z2

z3

z4


, ∇θA(θ) =


0

1
2γ2

1
2β2

 .
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Then we have

∇θψ(θ)s =


− φ
γ2
z1 + 1

γ2
z2

φ2

2γ4
z1 − φ

γ4
z2 + 1

2γ4
z3

1
2β4 z4

 =


0

1
2γ2

1
2β2

 .

φ̂ and β̂2 can be solved from the first and third equations in the linear system, respectively.

Plugging φ̂ into the second equation, γ̂2 is also solved. We have φ = z2
z1

, γ2 = z3 − z22
z1

, β2 = z4.

Therefore, the unique solution is θ(s) = Λ(z1, z2, z3, z4) = ( z2z1 , z3 − z22
z1
, z4).

B.4 Particle Filter and Smoothing

B.4.1 Auxiliary Particle Filter

Auxiliary Particle Filter (APF) algorithm with the given parameter vector θ is listed as follows:

step 0 Draw N samples x
(i)
0 from the initial particle distribution and set ω

(i)
0 = 1

N , for

i = 1, . . . , N .

step 1 For each time step, given the new observation yt+1 and recent particles {x(i)
t , ω

(i)
t }Ni=1,

t = 0, 1, . . . , T − 1, we need to

• Calculate the conditional expected value µ
(i)
t+1 = E[xt+1|x(i)

t ] for i = 1, . . . , N .

• Calculate probabilities for each auxiliary index p(k(i)) ∝ ω
(i)
t gθ(yt+1|µ(i)

t+1) for i =

1, . . . , N and then normalize them to unity.

• (Re-sampling) Sample auxiliary indices k(i) according to {p(k(j))}Nj=1 and set x
(i)
t =

xk
(i)

t , µ
(i)
t+1 = µk

(i)

t+1 for i = 1, . . . , N .

• (Propagating) Draw {x(i)
t+1} by fθ(·|x(i)

t ) for i = 1, . . . , N .

• Update weights as ω
(i)
t+1 ∝

g(yt+1|x(i)
t+1)

g(yt+1|µ(i)
t+1)

and then normalize them to unity.
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B.4.2 Particle Filtering together with Smoothing by Bootstrap Filter

The particle filtering along with smoothing algorithm using Bootstrap Filter with the given

parameter vector θ is run as follows:

step 1 At time t = 1,

• Draw N samples x
(i)
1 from the initial particle distribution, µ(x1), for i = 1, . . . , N .

• Calculate and normalize particle weights,

unnormalized weights: ω′1(x
(i)
1 ) = gθ(y1|x(i)

1 ), i = 1, . . . , N ,

weight sum at time 1: ws(1) =
∑N

i=1 ω
′
1(x

(i)
1 ),

normalized weights: ω
(i)
1 =

ω′1(x
(i)
1 )

ws(1) , i = 1, . . . , N .

step 2 At times t = 2, . . . , T ,

• Sample index A
(i)
t−1 based on normalized weights {ω(k)

t−1}Nk=1 using multinomial or stratified

re-sampling schemes for i = 1, . . . , N .

• Sample x
(i)
t ∼ fθ(·|x

(A
(i)
t−1)

t−1 ) and set x
(i)
1:t = (x

(A
(i)
t−1)

1:t−1 , x
(i)
t ) for i = 1, . . . , N .

• Calculate and normalize particle weights,

unnormalized weights: ω′t(x
(i)
1:t) = gθ(yt|x(i)

t ), i = 1, . . . , N ,

weight sum at time t: ws(t) =
∑N

i=1 ω
′
t(x

(i)
1:t),

normalized weights: ω
(i)
t =

ω′t(x
(i)
1:t)

ws(t)
, i = 1, . . . , N .

This algorithm re-sample particles with their ancestors so that the smoothing process is also

included; that is, the re-sampling step at each time t is conducted for the whole particle path

x1:t. At each time step t (t < T ), pθ(x1:t|y1:t) is approximated by the particles with normalized

weights as follows:

p̂θ(xt|y1:t) = p̂θ(x1:t|y1:t) =

N∑
i=1

ω
(i)
t δ

x
(i)
1:t

(dx1:t), (B.4.1)
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Therefore, at final time step T , the joint posterior density pθ(x1:T |y1:T ) can be approximated by

p̂θ(dx1:T |y1:T ) =
N∑
i=1

ω
(i)
T δ

x
(i)
1:T

(dx1:T ), (B.4.2)

Actually, this algorithm also solves the smoothing problem. It is straightforward to approximate

pθ(xs|y1:T ), 1 ≤ s ≤ T by marginalizing p̂θ(dx1:T |y1:T ), as in (B.4.3).

p̂θ(dxs|y1:T ) =

N∑
i=1

ω
(i)
T δ

x
(i)
s

(dxs), (B.4.3)

where x
(i)
s is the s-th element of the vector (or path) x

(i)
1:T . In addition, the volatility at time s

(s ≤ T ) is approximated by

E[β exp(xs/2)|y1:T ] = β
N∑
i=1

ω
(i)
T exp(

x
(i)
s

2
)δ
x
(i)
s

(dxs). (B.4.4)

However, when T − s is very large, only few original particles at time step s will be kept at final

time step. This is called the degeneracy problem. To alleviate such problem, we increase the

number of particles to 105.

B.4.3 Particle-Based Log-Likelihood Computation

Given the approximated pθ(x1:t|y1:t) and pθ(xt) (t ≤ T ), particle filtering provides a numerical

solution for the likelihood estimation. Firstly, the marginal likelihood is approximated by

p̂θ(y1:T ) = p̂θ(y1)

T∏
t=2

p̂θ(yt|y1:t−1), (B.4.5)

where p̂θ(y1) and p̂θ(yt|y1:t−1) are derived by the Bootstrap Filter algorithm as follows:

pθ(y1) =

∫
pθ(y1|x1)µ(x1)dx1
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≈ 1

N

N∑
i=1

gθ(y1|x(i)
1 ) =

1

N

N∑
i=1

ω′1(x
(i)
1 ) =

1

N
ws(1), (B.4.6)

pθ(yt|y1:t−1) =

∫
pθ(yt, x1:t−1, xt|y1:t−1)dx1:t

=

∫
pθ(yt|x1:t−1, xt, y1:t−1)pθ(xt|x1:t−1, y1:t−1)pθ(x1:t−1|y1:t−1)dx1:t (B.4.7)

=

∫
gθ(yt|xt)fθ(xt|xt−1)pθ(x1:t−1|y1:t−1)dx1:t, (B.4.8)

The simplification from (B.4.7) to (B.4.8) results from the Markovian property of observation

and transition processes in the state space model including the ARSV(1) model. Within the

Bootstrap Filter algorithm, we generate xt ∼ fθ(xt|xt−1) while the previous re-sampling step

is conducted based on pθ(x1:t−1|y1:t−1), then we have x1:t|y1:t−1 ∼ fθ(xt|xt−1)pθ(x1:t−1|y1:t−1).

Consequently, (B.4.8) can be approximated by

pθ(yt|y1:t−1) ≈ 1

N

N∑
i=1

gθ(yt|x(i)
t ) =

1

N

N∑
i=1

ω′t(x
(i)
1:t) =

1

N
ws(t), 1 < t ≤ T. (B.4.9)

As a whole, the particle-based computations of the marginal likelihood and log likelihood are

approximated by

p̂θ(y1:T ) =
1

N
ws(1)

T∏
t=2

1

N
ws(t),

ln p̂θ(y1:T ) = −T lnN +

T∑
t=1

ln ws(t).

(B.4.10)

B.4.4 Particle-Based One-Step Ahead Prediction by Bootstrap Filter

Under the framework of the state space model, the one-step-ahead prediction density pθ(xt+1|y1:t)

is given by

pθ(xt+1|y1:t) =

∫
pθ(xt+1, x1:t|y1:t)dx1:t =

∫
pθ(xt+1|x1:t, y1:t)pθ(x1:t|y1:t)dx1:t

=

∫
fθ(xt+1|xt)pθ(x1:t|y1:t)dx1:t, (B.4.11)
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Revisiting the particle filtering along with smoothing algorithm using Bootstrap Filter in B.4.2,

if the weighted particles {x(i)
1:t, ω

(i)
t }Ni=1 are obtained at time t, we have

pθ(xt+1|y1:t) ≈
N∑
i=1

fθ(xt+1|x(i)
t )ω

(i)
t =

N∑
i=1

fθ(xt+1|x(A
(i)
t )

t ). (B.4.12)

where A
(i)
t is the re-sampling index at t + 1. Therefore, the particle-based one-step-ahead

prediction by Bootstrap Filter can be summarized as follows:

step 1 Obtain {x(i)
1:T , ω

(i)
T }Ni=1 from the particle filtering together with smoothing by boot-

strap filter at the last in-sample step T .

step 2 At times t = T + 1, . . . , T + T ′,

• Sample index A
(i)
t−1 based on normalized weights {ω(k)

t−1}Nk=1 using multinomial or

stratified re-sampling schemes for i = 1, . . . , N .

• Sample x
(i)
t ∼ fθ(·|x

(A
(i)
t−1)

t−1 ) and set x
(i)
1:t = (x

(A
(i)
t−1)

1:t−1 , x
(i)
t ) for i = 1, . . . , N .

• One-step-ahead prediction, conditional variance forecast at t: β
2

N

∑N
i=1 exp(x

(i)
t ), volatil-

ity forecast at t (if needed): β
N

∑N
i=1 exp(x

(i)
t /2).

• Capture the new observation y′t. Calculate and normalize particle weights,

unnormalized weights: ω′t(x
(i)
1:t) = gθ(y

′
t|x(i)

t ), i = 1, . . . , N ,

weight sum at time t: ws(t) =
∑N

i=1 ω
′
t(x

(i)
1:t),

normalized weights: ω
(i)
t =

ω′t(x
(i)
1:t)

ws(t)
, i = 1, . . . , N .

The size of the out-of-sample dataset is T ′. The first step above is to obtain the weighted

particles at the last in-sample step. Since the out-of-sample dataset follows the in-sample one

without any gap, the first step of the out-of-sample observations is on T + 1. If there is a gap

between the in-sample and out-of-sample datasets, the algorithm above should be adjusted.
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