
ABSTRACT

WANG, TIANHENG. Hybrid Impulsive and Mean Field Control Systems. (Under the direction
of Negash Medhin.)

This dissertation deals with hybrid impulsive optimal control problems and mean field

game/control problems. In addition to continuous control which is well studied in optimal

control theory, the system in our study is also influenced by impulsive control which changes

the state of the system in discrete time. Hybrid impulsive control problems receive considerable

attention for their wide applications in epidemiology, economy and sociology.

We will discuss impulsive optimal control in both deterministic version and stochastic ver-

sion. Perturbation methods will be used to derive the Pontryagin Minimum Principle which

characterizes the necessary conditions for the optimal control and trajectory. In stochastic

problems the necessary conditions involve coupled forward and backward stochastic differential

equations(FBSDE). The solution to the coupled forward backward stochastic differential equa-

tion with jump conditions will be provided. Dynamic programming is also discussed and the

comparison between Hamilton-Jacobi-Bellman(HJB) Equation and Minimum Principle will be

illustrated. A Multi-group SIR with Vaccination model will be studied as an example in detail

and numerical results will be given at the end of the chapters.

Mean field game/control is an extension of stochastic optimal control which deals with a

control problem involving a large number of interacting agents. Because the evolution of the

system satisfies a measure valued SDE, the Minimum Principle or HJB equation characterizing

the optimal control will be coupled with the Fokker-Planck equation which describes the evolu-

tion of the probability distribution of the state process. We will discuss an interesting problem

of mean field game with a dominating player, where the dominating player make decisions based

on the behavior of a representative player rather than individual minor players. At the end we

will discuss impulsive mean field control problems.



© Copyright 2018 by Tianheng Wang

All Rights Reserved



Hybrid Impulsive and Mean Field Control Systems

by
Tianheng Wang

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Applied Mathematics

Raleigh, North Carolina

2018

APPROVED BY:

Zhilin Li Tao Pang

Reha Uzsoy Negash Medhin
Chair of Advisory Committee



BIOGRAPHY

Tianheng Wang was born and raised in Wenzhou, a small city located at the east coast of China.

In the year of 2008, he went to Zhejiang University and started his study of mathematics. In

the year of 2012, he came to United States to continue his relationship with mathematics at

NC State University. He worked with Doctor Medhin on optimal control problems.

ii



ACKNOWLEDGEMENTS

I would like to thank the department of mathematics of NC State University for providing

financial support.

I would like to express my gratitude to all the professors who gave me excellent lectures.

They are Dr. Bociu, Dr. Campbell, Dr.Chertock, Dr. Chu, Dr. Haider, Dr. Kang, Dr. Medhin

and Dr. Putcha.

I would like to thank my advisor Dr. Medhin for being my mentor and inspiration. He

provided me guidance and help through all these years. I cannot remember how many times he

stayed up late revising my work. I would like to thank the members of my committee, Dr. Li,

Dr. Pang and Dr. Uzsoy, for their help and encouragement.

I would like to thank my father and mother. Though we are thousands of miles apart, their

support and unconditional love is always with me.

iii



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Deterministic Impulsive Control Problems . . . . . . . . . . . . . . . . 1
1.1 Deterministic Multi-group SIR Model . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Vaccination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Deterministic Impulsive Control Problem . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 Necessary Conditions by Methods of Variation of Calculus . . . . . . . . . 12

1.3 Numerical Solution to SIR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 2 Stochastic Impulsive Control . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1 Stochastic Multi-group SIR Model . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.1 Stability of Disease Free Equilibrium . . . . . . . . . . . . . . . . . . . . . 36
2.1.2 Stability of Endemic Equilibrium . . . . . . . . . . . . . . . . . . . . . . . 43
2.1.3 Vaccination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Stochastic Impulsive Control Problems . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.1 Necessary Conditions by Methods of Variation of Calculus . . . . . . . . . 52
2.2.2 Forward Backward Stochastic Differential Equations . . . . . . . . . . . . 59
2.2.3 Necessary Conditions by Dynamic Programming Approach . . . . . . . . 63

2.3 Numerical Solution to Stochastic SIR Model . . . . . . . . . . . . . . . . . . . . . 68
2.4 Proof of A Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Chapter 3 Mean Field Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.1 Master Equation for the SIR Model . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2 Stochastic Interacting System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2.1 Terms and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2.2 Inter-Banks Lending and Borrowing . . . . . . . . . . . . . . . . . . . . . 87
3.2.3 Multi-Objective Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3 Mean Field Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.3.1 Limit of Empirical Distribution . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3.2 Methods of Variation of Calculus . . . . . . . . . . . . . . . . . . . . . . . 95

3.4 Solution to Multi-Objective Problem and the Representative Player . . . . . . . 97
3.5 Mean Field Game with a Dominating Player . . . . . . . . . . . . . . . . . . . . 99

3.5.1 Representative Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.5.2 Optimal Control for the Representative Player and the Dominating Player102
3.5.3 Numerical Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.6 Impulsive Mean Field Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.6.1 Mean Field Type Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.6.2 Impulsive Mean Field Control . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.7 Numerical Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.8 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

iv



3.8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

v



LIST OF TABLES

Table 1.1 List of Costs Tested by Varying Controls . . . . . . . . . . . . . . . . . . . 27

Table 2.1 List of Cost Tested by Varying Controls . . . . . . . . . . . . . . . . . . . . 69

Table 3.1 List of Cost of the Representative Agent . . . . . . . . . . . . . . . . . . . 108
Table 3.2 List of Cost of the Dominating Agent . . . . . . . . . . . . . . . . . . . . . 109
Table 3.3 List of Cost Tested by Varying Controls . . . . . . . . . . . . . . . . . . . . 127
Table 3.4 Value of Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

vi



LIST OF FIGURES

Figure 1.1 Populations of Susceptibles in All Groups under Optimal Controls . . . . 28
Figure 1.2 Populations of Infected in All Groups under Optimal Controls . . . . . . . 28
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Chapter 1

Deterministic Impulsive Control

Problems

In this chapter we study deterministic impulsive optimal control problems. In many control

problems changes in the dynamics occur unexpectedly or are applied by a controller as needed.

The times at which changes occur are not necessarily known a priori, or they are probabilistic.

In manufacturing systems and flight operations changes in the control system may be auto-

matically implemented as needed in response to possibly unexpected external factors affecting

the operations of the system. In health-care it is necessary to launch a reasonably effective and

timely policy to deal with infectious disease epidemics long-term and short-term([2], [3], [12],

[15], [18], [19], [25]). Thus, impulsive control problems have received considerable attention for

their wide applications in engineering, epidemiology, economics and sociology.

Multi-group SIR model is important in studying the spreading of diseases. Taking migra-

tion into consideration, the rate of level of interactions between groups and within groups are

important features of the model. Stability of the dynamic system and reproduction number are

different with the single-group SIR model([16], [26], [31]). The positive preserve of the state

variables needs justification.

In Section 1.1, we introduce a multi-group SIR model and discuss its stability properties. We

will introduce a vaccination strategy and formulate the SIR model as a combined continuous

and discrete control problem. In Section 1.2 we give detailed statement of the general impulsive

optimal control problem and obtain the necessary conditions characterizing the optimal control

and trajectory. In Section 1.3, we give numerical results for the impulsive SIR model.
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1.1 Deterministic Multi-group SIR Model

Let us begin this chapter by considering a situation where a disease is spreading in the Triangle

region, i.e. Raleigh, Durham and Chapel Hill. One could get infected by contacting infectious

people at work, at school, at restaurants, at grocery stores and all public places. Taking into

account the large group of commuters, a person from Raleigh cannot ignore the possibility of

getting infected by infectious people from the other two cities.

We denote by Sk, Ik and Rk the size of the susceptible, infectious and recovered population

of city k, respectively. Let βkj be the transmission rate between city k and city j, and βkjSkIj

represent the new infections in city k caused by coming into contact with infectious people of

city j. We let Λk, dk, γk denote the birth rate, death rate and recovery rate of city k, respectively.

Thus, we could describe the spread of the disease by the following SIR model:


Ṡk = Λk −

∑n
j=1 βkjSkIj − dkSk,

İk =
∑n

j=1 βkjSkIj − (dk + γk)Ik,

Ṙk = γkIk − dkRk.

(1.1)

To simplify the model, we assume that once an infected individual recovers, he or she will

be immune to this disease. Under this assumption the size of the susceptible and infectious

population will not be affected by the size of the recovered population. Thus, we will focus on

the reduced SIR model:

 Ṡk = Λk −
∑n

j=1 βkjSkIj − dkSk,

İk =
∑n

j=1 βkjSkIj − (dk + γk)Ik,
(1.2)

in the rest of the thesis.

1.1.1 Stability

In this section we will study the stability of the SIR system (1.2). It is clear that the system

always has a disease free solution {S0
k = Λk

dk
, I0
k = 0}nk=1. We call E0 = [S0

1 , 0, S
0
2 , 0, . . . , S

0
n, 0]

the disease free equilibrium.

In the study of epidemiology, the reproduction number represents the number of cases

2



generated by one infected person over the course of his infectious period. The reproduction

number R0 of system (1.2), which is defined to be the greatest eigenvalue of the matrix B,

where

Bkj =
βkjΛk

dk(dk + γk)
, (1.3)

plays a role of threshold in the long term qualitative behavior of the SIR system. When R0 > 1,

Guo, Li and Shuai [16] proved that there exists an endemic equilibrium E∗ = [S∗1 , I
∗
1 , . . . , S

∗
n, I
∗
n]

other than the disease free equilibrium, where {S∗k > 0, I∗k > 0}nk=1 satisfies

Λk −
n∑
j=1

βkjS
∗
kI
∗
j − dkS∗k = 0, (1.4)

n∑
j=1

βkjS
∗
kI
∗
j − (dk + γk)I

∗
k = 0. (1.5)

The stability regarding the reproduction number is described in the following

Theorem 1.1.1.

1. If R0 < 1, then the disease free equilibrium E0 of the system (1.2) is globally stable.

2. If R0 > 1, then the endemic equilibrium E∗ of the system (1.2) is globally stable.

We will use the following lemmas to prove the theorem.

Lemma 1.1.2. Let A be a matrix where each column sums to zero. Then

1. the cofactors Cij of a given column are equal, i.e.,

Cij = Ckj , 1 ≤ i, j, k ≤ n, (1.6)

2. if the off-diagonal entries of A are all negative, then there exists a vector w with all positive

entries which solves Aw = 0.

Lemma 1.1.3. The system (1.2) will have a nonnegative solution {Sk(t), Ik(t)}k, t ∈ (0,∞).

3



Proof of Lemma 1.1.2.

1. We will prove the result for the first column, and the same applies to the other columns.

Denote by Ãij the submatrix of A with ith row and jth column removed. It is obvious

that Ã11 differs from Ãi1 in the top i− 1 rows. We have

4



Ci1 = (−1)−1−i det(Ãi1) = (−1)−1−i det





a12 a13 . . . a1n

a22 a23 . . . a2n

...
...

. . .
...

ai−1,2 ai−1,3 . . . ai−1,n

ai+1,2 ai+1,3 . . . ai+1,n

...
...

. . .
...

an2 an3 . . . ann





= (−1)−1−i det





−
∑n

k=2 ak2 −
∑n

k=2 ak3 . . . −
∑n

k=2 akn

a22 a23 . . . a2n

...
...

. . .
...

ai−1,2 ai−1,3 . . . ai−1,n

ai+1,2 ai+1,3 . . . ai+1,n

...
...

. . .
...

an2 an3 . . . ann





= (−1)−i det





ai2 ai3 . . . ain

a22 a23 . . . a2n

...
...

. . .
...

ai−1,2 ai−1,3 . . . ai−1,n

ai+1,2 ai+1,3 . . . ai+1,n

...
...

. . .
...

an2 an3 . . . ann





= det





a22 a23 . . . a2n

...
...

. . .
...

ai−1,2 ai−1,3 . . . ai−1,n

ai2 ai3 . . . ain

ai+1,2 ai+1,3 . . . ai+1,n

...
...

. . .
...

an2 an3 . . . ann




= det(Ã11) = C11. (1.7)

Using the same reason we will have C1j = Cij , for every column j.

2. for any i = 1, 2, . . . , n, we have

5



n∑
j=1

aijCjj =
n∑
j=1

aijCij = det(A) = 0, (1.8)

where the second equation is the cofactor expansion for det(A) in terms of ith row. So

the vector w = [C11 C22 . . . Cnn]T solves Aw = 0. If all the off diagonal entries of A are

negative, then each diagonal entry of A equals the sum of absolute value of all the other

entries of the column. We could see that ÃTkk is diagonally dominant matrix, then

Ckk = (−1)k+k det(Ãkk) = det(ÃTkk) > 0. (1.9)

Proof of Lemma 1.1.3. Let τe = inf{t : ‖S(t)‖ =∞ or ‖I(t)‖ =∞} denote the explosion time,

and we know that the system (1.2) has unique continuous solution {Sk(t), Ik(t)} on t ∈ (0, τe).

We define

τm = inf{t : min{Sk(t), Ik(t), k = 1, ..., n} ≤ m−1 or max{Sk(t), Ik(t), k = 1, ...n} ≥ m}.

(1.10)

We know that m ≤ n implies τm ≤ τn ≤ τe for sufficiently large m and n. Now we claim that

lim
m→∞

τm = ∞. Otherwise, we assume that lim
m→∞

τm = T < ∞. Clearly it is true that τm ≤ T ,

∀m > 0. Using the fact that g(x) = x− 1− lnx ≥ 0, we define

V (t) =
∑
k

akg(
Sk
ak

) + g(Ik) =
∑
k

(Sk − ak − ak ln
Sk
ak

) + (Ik − 1− ln Ik), (1.11)

where ak’s are nonnegative coefficients to be determined. Differentiating V (t) with respect to

time, we have

6



dV

dt
=
∑
k

(
(1− ak

Sk
)(Λk −

∑
j

βkjSkIj − dkSk) + (1− 1

Ik
)(
∑
j

βkjSkIj − (dk + γk)Ik)
)

=
∑
k

(
Λk − dkSk −

akΛk
Sk

+ ak
∑
j

βkjIj + akdk − (dk + γk)Ik −
∑
j

βkjSkIj
Ik

+ dk + γk

)
(1.12)

Now we choose ak satisfying
∑
k

akβkj ≤ dj + γj , yielding

∑
k

ak
∑
j

βkjIj −
∑
k

(dk + γk)Ik =
∑
j

(∑
k

akβkj − dj − γj
)
Ij ≤ 0, if Ij ≥ 0.

We integrate the equation (1.12) from 0 to τm, then we have

V (τm) = V (0) +

∫ τm

0

∑
k

(
Λk − dkSk −

akΛk
Sk

+ ak
∑
j

βkjIj

+akdk − (dk + γk)Ik −
∑
j

βkjSkIj
Ik

+ dk + γk

)
dt

≤ V (0) +

∫ τm

0

∑
k

(Λk + akdk + dk + γk)dt

= V (0) + τm
∑
k

(Λk + akdk + dk + γk)

≤ V (0) + T
∑
k

(Λk + akdk + dk + γk).

At time τm, we know at least one of {Sk, Ik}k has the value m or m−1, so we will have

V (τm) ≥ max{m− ak − ln
m

ak
,m−1 − ak − lnmak,m− 1− lnm,m−1 − 1 + lnm}. (1.13)

The right hand side of (1.13) could be arbitrarily large if m → ∞. Since V (τm) ≤ V (0) +

T
∑

k(Λk + akdk + dk + γk), we will have a contradiction unless lim
m→∞

τm = T = ∞. Thus the

7



solution {Sk(t), Ik(t)} to system (1.2) is nonnegative on t ∈ (0,∞).

Proof of Theorem 1.1.1.

1. First let us consider the system

 Ẋk = Λk − dkXk,

Xk(0) = Sk(0)
(1.14)

By the comparison principle we have Sk(t) ≤ Xk(t). Then, we consider the Lyapunov

function V (t) as follows

V (t) =
n∑
k=1

vk
dk + γk

Ik(t), (1.15)

where v = [v1, . . . , vn]T is the left eigenvector of the matrix defined in (1.3). We need

to justify that {vk}nk=1 are positive numbers such that the function defined in (1.15) is a

valid Lyapunov function. Perron Frobenius Theorem states that a matrix with all positive

components has a positive eigenvalue, and the eigenvector corresponding to that eigen-

value has all positive components. Thus V (t) is a nonnegative function. Differentiating

V (t) along the solution of (1.2), we have that

8



V̇ (t) =
n∑
k=1

vk
dk + γk

( n∑
j=1

βkjSk(t)Ij(t)− (dk + γk)Ik(t)
)

≤
n∑
k=1

n∑
j=1

vk
dk + γk

βkjXk(t)Ij(t)−
n∑
k=1

vkIk(t)

=

n∑
j=1

n∑
k=1

vk
βkjΛk

dk(dk + γk)
Ij(t) +

n∑
j=1

n∑
k=1

vk
βkj

dk + γk
Ij(t)

(
Xk(t)−

Λk
dk

)
−

n∑
k=1

vkIk(t)

=
n∑
j=1

R0vjIj(t) +
n∑
j=1

n∑
k=1

vk
βkj

dk + γk
Ij(t)

(
Xk(t)−

Λk
dk

)
−

n∑
k=1

vkIk(t)

=

n∑
j=1

[ n∑
k=1

vk
βkj

dk + γk

(
Xk(t)−

Λk
dk

)
+ (R0 − 1)vj

]
Ij(t).

We know that lim
t→∞

Xk(t) =
Λk
dk

. With the assumption that R0 < 1, we will have V̇ (t) ≤ 0

when t is sufficiently large, and the equality holds only if Ij = 0. Thus the disease free

equilibrium E0 is globally stable.

2. Now we suppose that R0 > 1, in which case there exists an endemic equilibrium E∗ =

[S∗1 , S
∗
2 , . . . , S

∗
n, I
∗
1 , I
∗
2 , . . . , I

∗
n].

Define β̄kj = βkjS
∗
kI
∗
j , and

B̄ =



∑
j 6=1 β̄1j −β̄21 −β̄31 . . . −β̄n1

−β̄12
∑

j 6=2 β̄2j −β̄32 . . . −β̄n2

−β̄13 −β̄23
∑

j 6=3 β̄3j . . . −β̄n3

...
...

...
. . .

...

−β̄1n −β̄2n −β̄3n . . .
∑

j 6=n β̄nj


. (1.16)

We notice that each column of B̄ sums to zero and all the off-diagonal entries of B̄ are

negative. By Lemma 1.1.2, the linear equation B̄w = 0 has a positive solution w =

[w1, . . . , wn]T . The kth row of the equation B̄w = 0 is equivalent to
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n∑
j=1

β̄kjwk =
n∑
j=1

β̄jkwj . (1.17)

We define g(x) = x − 1 − lnx. By checking the derivative of g(x) we easily get g(x) ≥ 0

for x > 0 and g(1) = min
x>0

g(x) = 0. We define the Lyapunov function

V (t) =
n∑
k=1

wk

[
S∗kg

(Sk(t)
S∗k

)
+ I∗kg

(Ik(t)
I∗k

)]
(1.18)

=

n∑
k=1

wk

[
Sk(t)− S∗k − S∗k ln

(Sk(t)
S∗k

)
+ Ik(t)− I∗k − I∗k ln

(Ik(t)
I∗k

)]
.

Differentiating V (t), and using the equilibrium condition (1.4, 1.5), we have

V̇ (t) =
n∑
k=1

wk

[(
1−

S∗k
Sk

)( n∑
j=1

βkjS
∗
kI
∗
j + dkS

∗
k −

n∑
j=1

βkjSkIj − dkSk
)

+
(

1−
I∗k
Ik

)( n∑
j=1

βkjSkIj − (dk + γk)Ik

)]

=

n∑
k=1

wkdkS
∗
k

(
2− Sk

S∗k
−
S∗k
Sk

)
+

n∑
j,k=1

wkβkjS
∗
kI
∗
j

(
2−

S∗k
Sk

+
Ij
I∗j
−
SkIjI

∗
k

S∗kI
∗
j Ik
− Ik
I∗k

)

≤
n∑
j,k

wkβkjS
∗
kI
∗
j

[
− g
(S∗k
Sk

)
+ g
( Ij
I∗j

)
− g
(SkIjI∗k
S∗kI

∗
j Ik

)
− g
(Ik
I∗k

)]

≤
n∑

j,k=1

wkβ̄kjg
( Ij
I∗j

)
−

n∑
j,k=1

wkβ̄kjg
(Ik
I∗k

)

=
n∑

j,k=1

wkβ̄kjg
( Ij
I∗j

)
−

n∑
k=1

g
(Ik
I∗k

) n∑
j=1

β̄jkwj

= 0,
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where the second to last equality is a result of (1.17). So we have that V̇ (t) ≤ 0 and

equality holds if Sk(t) = S∗k , Ik(t) = I∗k . Therefore, the endemic equilibrium E∗ is globally

stable.

1.1.2 Vaccination

In this subsection we introduce the vaccination strategy. Periodical repetition of vaccinations

are provided to a certain portion of the susceptible group. Those who receive vaccination will

be immune to the disease. Introducing vaccination into the system (1.2), we have


Ṡk = Λk −

∑
j

βkjSkIj − dkSk,

İk =
∑
j

βkjSkIj − (dk + γk)Ik,
t ∈ (ti, ti+1), (1.19)

with impulse condition

 Sk(t
+
i ) = Sk(t

−
i )(1− cki),

Ik(t
+
i ) = Ik(t

−
i ),

(1.20)

where cki is the portion of the susceptible from group i who receive vaccination at time tk. We

call the system (1.19,1.20) impulsive SIR model.

1.2 Deterministic Impulsive Control Problem

In this section we will discuss the main part of the first chapter. We will give a detailed statement

of the impulsive optimal control problem, and study the necessary conditions that the optimal

control must satisfy. We consider the system whose evolution satisfies the following ordinary

differential equation:

ẋ(t) = fk(x(t), u(t), t), t ∈ (tk, tk+1). (1.21)

At time t = tk, k = 1, 2, . . . , N − 1, the system satisfies the following jump condition

11



x(t+k ) = gk(x(t−k ), ck). (1.22)

We call x(t) ∈ Rn the state variable, u(t) ∈ Rm the continuous control variable, and ck ∈ RM

the impulsive control variable. The impulsive optimal control problem is to find a law for the

control u(t) and ck such that the following cost functional

J(u(·), c) =

N−1∑
k=1

φk(x(t−k ), ck) +

N−1∑
k=0

∫ tk+1

tk

Lk(x, u, t)dt+ φN (x(t−N )), (1.23)

is minimized. We assume that

fk(x, u, t) : Rn × Rm × R 7→ Rn,

gk(x, c) : Rn × RM 7→ Rn.

Lk(x, u, t) : Rn × Rm × R 7→ R,

φk(x, c) : Rn × RM 7→ R.

are smooth functions which have continuous derivatives of all orders.

1.2.1 Necessary Conditions by Methods of Variation of Calculus

In this subsection, we will study the necessary condition for the impulse optimal control prob-

lem. We introduce a small perturbation to the control and derive the variation for the cost

functional. The adjoint variable is defined and the adjoint equation is obtained, which will lead

us to the variational inequalities. We conclude this part with the maximum principle.

We assume that {û(·), ĉk} is the optimal control set and x̂(t) is the state corresponding to

{û(·), ĉk}. Let {ũ(·, θ), c̃k(θ)} be another set of controls where

12



ũ(t, θ) = û(t) + θv(t), (1.24)

c̃k(θ) = ĉk + θck, k = 1, . . . , N − 1 (1.25)

v(·), ck are arbitrary perturbations, and 0 < θ � 1. Let x̃θ(t) be the state corresponding to

{ũ(·, θ), c̃k(θ)}. Define

y(t) =
1

θ
(x̃θ(t)− x̂(t)). (1.26)

The function y(t) in the interval (tk, tk+1) satisfies

ẏ(t) =
∂fk
∂x

(x̂(t), û(t), t)y +
∂fk
∂u

(x̂(t), û(t), t)v + θη(t) (1.27)

and

y(t+k ) =
∂gk
∂x

(x̂(t−k ), ĉk)y(t−k ) +
∂gk
∂c

(x̂(t−k ), ĉk)ck + θζ. (1.28)

Then,

y(t) = Φk(t, tk)
(∂gk
∂x

(x̂(t−k ), ĉk)y(t−k ) +
∂gk
∂c

(x̂(t−k ), ĉk)ck

)
+

∫ t

tk

Φk(t, s)
∂fk
∂u

(x̂(s), û(s), s)v(s)ds+ θ
(

Φk(t, tk)ζ +

∫ t

tk

Φk(t, s)η(s)ds
)
, t ∈ (tk, tk+1),

(1.29)

where Φk(t, s) is the fundamental solution for the linear system
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 ż = ∂fk
∂x (x̂(t), û(t), t)z, t < tk+1,

z(s) = I.
(1.30)

We have the following fact.

Lemma 1.2.1. There is a function p(t) ∈ L(t0, tN ;Rn), satisfying the differential equation

−ṗ(s) =
(∂Lk
∂x

(x̂(s), û(s), s)
)T

+
(∂fk
∂x

(x̂(s), û(s), s)
)T
p(s), s ∈ (tk, tk+1), (1.31)

and the jump condition

pT (t−k ) = pT (t+k )
∂gk
∂x

(x̂(t−k ), ĉk) +
∂φk
∂x

(x̂(t−k ), ĉk), (1.32)

then the variation of the cost functional has the following form

J(û+ θv, ĉ+ θc)− J(û, ĉ) (1.33)

= θ
N−1∑
k=1

αkck + θ

N−1∑
k=0

∫ tk+1

tk

∂Hk

∂u
(x̂(s), û(s), p(s), s)v(s)ds+ o(θ),

where

αTk =
∂φk
∂c

(x̂(tk), ĉk) + pT (t+k )
∂gk
∂c

(x̂(tk), ĉk), (1.34)

Hk(x, u, p, t) = Lk(x, u, t) + pT fk(x, u, t). (1.35)

Proof. To prove the lemma, we compute the difference between the perturbed cost and the

minimal cost:
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J(û+ θv, ĉ+ θc)− J(û, ĉ)

= θ

{N−1∑
k=1

∂φk
∂c

ck +
N−1∑
k=0

(∂φk+1

∂x
y(t−k+1) +

∫ tk+1

tk

∂Lk
∂x

y(t) +
∂Lk
∂u

v(t)dt
)}

+ o(θ)

= θ

{
∂φN−1

∂c
cN−1 +

∂φN
∂x

(
ΦN−1(tN , tN−1)

(∂gN−1

∂x
y(t−N−1) +

∂gN−1

∂c
cN−1

)
+

∫ tN

tN−1

ΦN−1(tN , s)
∂fN−1

∂u
v(s)ds

)

+

∫ tN

tN−1

[
∂LN−1

∂x

(
ΦN−1(t, tN−1)

(∂gN−1

∂x
y(t−N−1) +

∂gN−1

∂c
cN−1

)
+

∫ t

tN−1

ΦN−1(t, s)
∂fN−1

∂u
v(s)ds

)
+
∂LN−1

∂u
v(t)dt

]

+
N−2∑
k=1

∂φk
∂c

ck +
N−2∑
k=0

(∂φk+1

∂x
y(t−k+1) +

∫ tk+1

tk

∂Lk
∂x

y(t) +
∂Lk
∂u

v(t)dt
)}

+ o(θ)

= θ

{(
∂φN−1

∂c
+
∂φN
∂x

ΦN−1(tN , tN−1)
∂gN−1

∂c
+

∫ tN

tN−1

∂LN−1

∂x
ΦN−1(t, tN−1)

∂gN−1

∂c
dt

)
cN−1

+

∫ tN

tN−1

[(∂φN
∂x

ΦN−1(tN , s) +

∫ tN

s

∂LN−1

∂x
ΦN−1(t, s)dt

)∂fN−1

∂u
v(s) +

∂LN−1

∂u
v(s)

]
ds

+
(∂φN
∂x

ΦN−1(tN , tN−1)
∂gN−1

∂x
+

∫ tN

tN−1

∂LN−1

∂x
ΦN−1(t, tN−1)dt

∂gN−1

∂x

)
y(t−N−1)

+
N−2∑
k=1

∂φk
∂c

ck +
N−2∑
k=0

(∂φk+1

∂x
y(t−k+1) +

∫ tk+1

tk

∂Lk
∂x

y(t) +
∂Lk
∂u

v(t)dt
)}

+ o(θ)

= θ

{
αTN−1cN−1 +

∫ tN

tN−1

(
pTN−1

∂fN−1

∂u
v(s) +

∂LN−1

∂u
v(s)

)
ds+ βTN−1y(t−N−1)

+

N−2∑
k=1

∂φk
∂c

ck +

N−2∑
k=1

(∂φk+1

∂x
y(t−k+1) +

∫ tk+1

tk

∂Lk
∂x

y(t) +
∂Lk
∂u

v(t)dt
)}

+ o(θ).

The last equation above is obtained by defining
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αTN−1 ,
∂φN−1

∂c
+
∂φN
∂x

ΦN−1(tN , tN−1)
∂gN−1

∂c
+

∫ tN

tN−1

∂LN−1

∂x
ΦN−1(t, tN−1)

∂gN−1

∂c
dt,

(1.36)

pT (s) ,
∂φN
∂x

ΦN−1(tN , s) +

∫ tN

s

∂LN−1

∂x
ΦN−1(t, s)dt, s ∈ (tN−1, tN ), (1.37)

βTN−1 ,
∂φN
∂x

ΦN−1(tN , tN−1)
∂gN−1

∂x
+

∫ tN

tN−1

∂LN−1

∂x
ΦN−1(t, tN−1)dt

∂gN−1

∂x
, (1.38)

Now we use induction to prove the following claim for l = N − 1, N − 2, . . . , 1:

J(û+ θv, ĉ+ θc)− J(û, ĉ) (1.39)

= θ

{N−1∑
k=l

(
αTk ck +

∫ tk+1

tk

(
pT
∂fk
∂u

v(s) +
∂Lk
∂u

v(s)
)

ds

)
+ βTl y(t−l )

+
l−1∑
k=1

∂φk
∂c

ck +
l−1∑
k=0

(∂φk+1

∂x
y(t−k+1) +

∫ tk+1

tk

∂Lk
∂x

y(t) +
∂Lk
∂u

v(t)dt
)}

+ o(θ).

The l = N − 1 case is already shown. Assuming the case for l = j, we compute

βTj y(t−j ) +
∂φj−1

∂c
cj−1 +

∂φj
∂x

y(t−j ) +

∫ tj

tj−1

∂Lj−1

∂x
y(t) +

∂Lj−1

∂u
v(t)dt

= (βTj +
∂φj
∂x

)

{
Φj−1(tj , tj−1)

(∂gj−1

∂x
y(t−j−1) +

∂gj−1

∂c
cj−1

)
+

∫ tj

tj−1

Φj−1(tj , s)
∂fj−1

∂u
v(s)ds

}

+
∂φj−1

∂c
cj−1 +

∫ tj

tj−1

{
∂Lj−1

∂x

[
Φj−1(t, tj−1)

(∂gj−1

∂x
y(t−j−1) +

∂gj−1

∂c
cj−1

)
+

∫ t

tj−1

Φj−1(tj , s)
∂fj−1

∂u
v(s)ds

]
+
∂Lj−1

∂u
v(s)

}
dt

= αTj−1cj−1 +

∫ tj

tj−1

(
pT
∂fj−1

∂u
v(s) +

∂Lj−1

∂u
v(s)

)
ds+ βTj−1y(t−j−1).
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The last equation is obtained by defining

αTj−1 ,
[(
βTj +

∂φj
∂x

)
Φj−1(tj , tj−1) +

∫ tj

tj−1

∂Lj−1

∂x
Φj−1(t, tj−1)dt

]∂gj−1

∂c
+
∂φj−1

∂c
,

(1.40)

pT (s) ,
(
βTj +

∂φj
∂x

)
Φj−1(tj , s) +

∫ tj

s

∂Lj−1

∂x
Φj−1(t, s)dt, s ∈ (tj−1, tj), (1.41)

βTj−1 ,
[(
βTj +

∂φj
∂x

)
Φj−1(tj , tj−1) +

∫ tj

tj−1

∂Lj−1

∂x
Φj−1(t, tj−1)dt

]∂gj−1

∂x
. (1.42)

Then (1.39) could be written as

J(û+ θv, ĉ+ θc)− J(û, ĉ)

= θ

{ N−1∑
k=j−1

(
αTk ck +

∫ tk+1

tk

(
pT
∂fk
∂u

v(s) +
∂Lk
∂u

v(s)
)

ds

)
+ βTj−1y(t−j−1)

+

j−2∑
k=1

∂φk
∂c

ck +

j−2∑
k=0

(∂φk+1

∂x
y(t−k+1) +

∫ tk+1

tk

∂Lk
∂x

y(t) +
∂Lk
∂u

v(t)dt
)}

+ o(θ),

which closes the induction. Then, we have
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J(û+ θv, ĉ+ θc)− J(û, ĉ)

= θ

{N−1∑
k=1

(
αTk ck +

∫ tk+1

tk

(
pT
∂fk
∂u

v(s) +
∂Lk
∂u

v(s)
)

ds

)
+ βT1 y(t−1 )

+
∂φ1

∂x
y(t−1 ) +

∫ t1

t0

∂L0

∂x
y(t) +

∂L0

∂u
v(t)dt

}
+ o(θ)

= θ

{N−1∑
k=1

(
αTk ck +

∫ tk+1

tk

(
pT
∂fk
∂u

v(s) +
∂Lk
∂u

v(s)
)

ds

)

+
(
βT1 +

∂φ1

∂x

)∫ t1

t0

Φ0(t1, s)
∂f0

∂u
v(s)ds

+

∫ t1

t0

∂L0

∂x

∫ t

t0

Φ0(t, s)
∂f0

∂u
v(s)dsdt+

∫ t1

t0

∂L0

∂u
v(t)dt

}
+ o(θ)

= θ
{N−1∑
k=1

αTk ck +

N−1∑
k=0

∫ tk+1

tk

(
pT
∂fk
∂u

v(s) +
∂Lk
∂u

v(s)
)

ds
}

+ o(θ).

The last equation is obtained by defining

pT (s) ,
(
β1 +

∂φ1

∂x

)
Φ0(t1, s) +

∫ t1

s

∂L0

∂x
Φ0(t, s)dt, s ∈ (t0, t1). (1.43)

From (1.40-1.43), we will have that

αTj−1 =
∂φj−1

∂c
+ pTj−1(t+j−1)

∂gj−1

∂c
(1.44)

βTj−1 = pT (t+j−1)
∂gj−1

∂x
(1.45)

−ṗ(s) =
(∂Lj−1

∂x

)T
+
(∂fj−1

∂x

)T
p, s ∈ (tj−1, tj) (1.46)

pT (t−j ) = βj +
∂φj
∂x

= pT (t+j )
∂gj
∂x

+
∂φj
∂x

(1.47)

By defining the Hamiltonian Hk:
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Hk(x, u, p, t) = Lk(x, u, t) + pT fk(x, u, t), t ∈ (tk, tk+1), (1.48)

we have the result

J(û+ θv, ĉ+ θc)− J(û, ĉ)

= θ
N−1∑
k=1

αkck + θ
N−1∑
k=0

∫ tk+1

tk

∂Hk

∂u
(x̂(s), û(s), p(s), s)v(s)ds+ o(θ),

Assuming there is no constraint on the control variables, we have the following result.

Theorem 1.2.2. If x̂(t) is the solution of the impulse optimal control problem stated as above,

we have

∂φk
∂c

(x̂(tk), ĉk) + pT (t+k )
∂gk
∂c

(x̂(tk), ĉk) = 0, (1.49)

∂Hk

∂u
(x̂(s), û(s), p(s), s) = 0, s ∈ (tk, tk+1). (1.50)

Remark 1.2.3. Although Pontryagin’s maximum principle gives a stronger set of necessary

conditions than Theorem 1.2.2, it is (1.49,1.50) that we will use in the sequel. In the following

we will prove the Pontryagin’s maximum principle by employing the “spike variation methods”.

Theorem 1.2.4. Let {û, ĉ} be optimal control pair, x̂(·) be the optimal state variable cor-

responding to {û, ĉ}, p(·) be the adjoint variable defined by (1.31), and Hk(x, u, p, t) be the

Hamiltonian defined by (1.35). Then, we have

Hk(x̂(τ), v, p(τ), τ) ≥ Hk(x̂(τ), û(τ), p(τ), τ), τ ∈ (tk, tk+1). (1.51)

for any admissible control v.
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Proof. Let uε(·) be defined as

uε(t) =



û(t) t ∈ (tk, τ)

v t ∈ (τ, τ + ε)

û(t) t ∈ (τ + ε, tk+1)

û(t) t ∈ (tj , tj + 1), j 6= k

(1.52)

with 0 < ε� 1, and xε(·) be the state variable corresponding to {uε, ĉ}. We consider zkε defined

by

dzkε
dt

=
∂fk
∂x

(x̂, û, t)zkε , t ∈ (τ, tk+1), (1.53)

zkε (τ) = f(x̂(τ), v, τ)− 1

ε

∫ τ+ε

τ
f(x̂(s), û(s), s)ds, (1.54)

Then, by taking ε→ 0 and Grönwall’s Inequality, we have zkε (t)→ 0 for t ∈ (τ, tk+1). Then we

consider zjε defined by

dzjε
dt

=
∂fj
∂x

(x̂, û, t)zjε , t ∈ (tj , tj+1), (1.55)

zjε(t
+
j ) =

∂gj
∂x

zj−1
ε (t−j ). (1.56)

It could be proved that by induction that zjε(t)→ 0, t ∈ (tj , tj+1) as ε→ 0 for j = k+1, . . . , N−
1.

We let yε(t) =
1

ε
(xε(t)− x̂(t)− εzkε (t)), t ∈ (τ + ε, tk+1). Then, we have
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dyε
dt

=

∫ 1

0

∂fk
∂x

(x̂+ λ(xε − x̂), û, t)dλyε +

∫ 1

0

(∂fk
∂x

(x̂+ λ(xε − x̂), û, t)− ∂fk
∂x

(x̂, û, t)
)
zkεdt,

(1.57)

yε(τ + ε) =
1

ε

∫ τ+ε

τ
fk(xε(t), v, t)− fk(x̂(τ), v, τ)dt−

∫ τ+ε

τ

∂fk
∂x

(x̂, û, t)zkεdt, (1.58)

By Grönwall’s Inequality again we have yε(t)→ 0 for t ∈ (τ + ε, tk+1) letting ε→ 0.

Then, let yε(t) =
1

ε
(xε(t)− x̂(t)− εzjε(t)), t ∈ (tj , tj+1) for j = k + 1, . . . , N − 1, and we have

dyε
dt

=

∫ 1

0

∂fj
∂x

(x̂+ λ(xε − x̂), û, t)dλyε +

∫ 1

0

(∂fj
∂x

(x̂+ λ(xε − x̂), û, t)− ∂fj
∂x

(x̂, û, t)
)
zjεdt,

(1.59)

yε(t
+
j ) =

∫ 1

0

∂gj
∂x

(x̂(t−j ) + λ(xε(t
−
j )− x̂(t−j )), ĉj)yε(t

−
j )dλ (1.60)

+

∫ 1

0

(∂gj
∂x

(x̂(t−j ) + λ(xε(t
−
j )− x̂(t−j )), ĉj)−

∂gk
∂x

(x̂(t−j ), ĉj)
)
zjε(t

−
j )dλ,

By using Grönwall’s Inequality it could be proved by induction that yε(t)→ 0, t ∈ (tj , tj+1) for

j = k + 1, . . . , N − 1, as ε→ 0.
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Then, we have

1

ε
(J(uε)− J(u)) (1.61)

=
1

ε

∫ τ+ε

τ
Lk(xε, v, t)− Lk(x̂, û, t)dt

+
1

ε

∫ tk+1

τ+ε
Lk(xε, û, t)− Lk(x̂, û, t)dt+

1

ε
(φk+1(xε(t

−
k+1))− φk+1(x̂(t−k+1)))

+
N−1∑
j=k+1

[1

ε

∫ tj+1

tj

Lj(xε, û, t)− Lj(x̂, û, t)dt+
1

ε
(φj+1(xε(t

−
j+1))− φj+1(x̂(t−j+1)))

]

= Lk(x̂(τ), v, τ)− 1

ε

∫ τ+ε

τ
Lk(x̂, û, t)dt+

1

ε

∫ τ+ε

τ
Lk(xε, v, t)− Lk(x̂(τ), v, τ)dt

+

∫ tk+1

τ

∂Lk
∂x

(x̂, û, t)zkεdt+
1

ε

∫ tk+1

τ+ε
Lk(xε, û, t)− Lk(x̂, û, t)− ε

∂Lk
∂x

(x̂, û, t)zkεdt

−
∫ τ+ε

τ

∂Lk
∂x

(x̂, û, t)zkεdt+
∂φk+1

∂x
(x̂(t−k+1))zkε (t−k+1)

+
1

ε

(
φk+1(xε(t

−
k+1))− φk+1(x̂(t−k+1))− ε∂φk+1

∂x
(x̂(t−k+1))zkε (t−k+1)

)
+

N−1∑
j=k+1

[ ∫ tj+1

tj

∂Lj
∂x

(x̂, û, t)zjεdt+
1

ε

∫ tj+1

tj

(
Lj(xε, û, t)− Lj(x̂, û, t)− ε

∂Lj
∂x

(x̂, û, t)zjε

)
dt

+
∂φj+1

∂x
(x̂(t−j+1))zjε(t

−
j+1) +

1

ε

(
φj+1(xε(t

−
j+1))− φj+1(x̂(t−j+1))− ε∂φj+1

∂x
(x̂(t−j+1))zjε(t

−
j+1)

)]
.

Since

∂pT (t)zjε
∂t

= −(
∂Lj
∂x

+ pT
∂fj
∂x

)zjε + pT
∂fj
∂x

zjε = −∂Lj
∂x

zjε , t ∈ (tj , tj+1), (1.62)

we have
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∫ tk+1

τ

∂Lk
∂x

(x̂, û, t)zkεdt = pT (τ)zjε(τ)− pT (t−k+1)zjε(t
−
k+1) (1.63)

= pT (τ)
(
f(x̂(τ), v)− 1

ε

∫ τ+ε

τ
f(x̂, û)dt

)
− pT (t−k+1)zkε (t−k+1).

= pT (τ)
(
f(x̂(τ), v)− 1

ε

∫ τ+ε

τ
f(x̂, û)dt

)
−
(
pT (t+k+1)

∂gk+1

∂x
+
∂φk+1

∂x

)
zkε (t−k+1).∫ tj+1

tj

∂Lj
∂x

(x̂, û, t)zjεdt = pT (t+j )zjε(t
+
j )− pT (t−j+1)zjε(t

−
j+1) (1.64)

= pT (t+j )
∂gj
∂x

zjε(t
−
j )−

(
pT (t+j+1)

∂gj+1

∂x
+
∂φj+1

∂x

)
zjε(t

−
j+1).

Therefore, we have
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1

ε
(J(uε)− J(û)) (1.65)

= Lk(x̂(τ), v, τ)− 1

ε

∫ τ+ε

τ
Lk(x̂, û, t)dt+

1

ε

∫ τ+ε

τ
Lk(xε, v, t)− Lk(x̂(τ), v, τ)dt

+pT (τ)
(
f(x̂(τ), v)− 1

ε

∫ τ+ε

τ
f(x̂, û)dt

)
− pT (t−k+1)zkε (t−k+1)

+
1

ε

∫ tk+1

τ+ε
Lk(xε, û, t)− Lk(x̂, û, t)− ε

∂Lk
∂x

(x̂, û, t)zkεdt−
∫ τ+ε

τ

∂Lk
∂x

(x̂, û, t)zkεdt

+
∂φk+1

∂x
(x(t−k+1))zkε (t−k+1) +

1

ε

(
φk+1(xε(t

−
k+1))− φk+1(x̂(t−k+1))− ε∂φk+1

∂x
(x̂(t−k+1))zkε (t−k+1)

)
+

N−1∑
j=k+1

[
pT (t+j )zjε(t

+
j )− pT (t−j+1)zjε(t

−
j+1)

+
1

ε

∫ tj+1

tj

Lj(xε, û, t)− Lj(x̂, û, t)− ε
∂Lj
∂x

(x̂, û, t)zjεdt+
∂φj+1

∂x
(x̂(t−j+1))zjε(t

−
j+1)

+
1

ε

(
φj+1(xε(t

−
j+1))− φj+1(x̂(t−j+1))− ε∂φj+1

∂x
(x̂(t−j+1))zjε(t

−
j+1)

)]

= Lk(x̂(τ), v, τ) + pT (τ)fk(x̂(τ), v, τ)− 1

ε

∫ τ+ε

τ
Lk(x̂, û, t) + pT (t)fk(x̂, û, t)dt

+
1

ε

∫ τ+ε

τ
(p(t)− p(τ))T fk(x̂, û, t)dt+

1

ε

∫ τ+ε

τ
Lk(xε, v, t)− Lk(x̂(τ), v, τ)dt

+
1

ε

∫ tk+1

τ+ε
Lk(xε, û, t)− Lk(x̂, û, t)− ε

∂Lk
∂x

zkεdt−
∫ τ+ε

τ

∂Lk
∂x

zkεdt

+
1

ε

(
φk+1(xε(t

−
k+1))− φk+1(x̂(t−k+1))− ε∂φk+1

∂x
(x̂(t−k+1))zkε (t−k+1)

)
+

N−1∑
j=k+1

[ ∫ tj+1

tj

Lj(xε, û, t)− Lj(x̂, û, t)− ε
∂Lj
∂x

zjεdt

+
1

ε

(
φj+1(xε(t

−
j+1))− φj+1(x̂(t−j+1))− ε∂φj+1

∂x
(x̂(t−j+1))zjε(t

−
j+1)

)]

= Hk(x̂(τ), p(τ), v, τ)− 1

ε

∫ τ+ε

τ
Hk(x̂, pk, û, t)dt+Xε

→ Hk(x̂(τ), p(τ), v, τ)−Hk(x̂(τ), pk(τ), û(τ), τ) as ε→ 0,
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where we use the fact that

1

ε

(
Lj(xε, u, t)− Lj(x, u, t)− ε

∂Lj
∂x

zjε

)
(1.66)

=

∫ 1

0

∂Lj
∂x

(x+ λ(xε − x), u, t)yεdλ+

∫ 1

0

(∂Lj
∂x

(x+ λ(xε − x), u, t)− ∂Lj
∂x

(x, u, t)
)
zjεdλ

→ 0 as ε→ 0

and that yε(t), z
k
ε (t)→ 0. Thus, the necessary condition for optimal control u satisfies

Hk(x(τ), v, pk(τ), τ) ≥ Hk(x(τ), u(τ), pk(τ), τ), τ ∈ (tk, tk+1). (1.67)

for all admissible v in control domain.

1.3 Numerical Solution to SIR Model

In this section, we will apply the impulse control methodology to the SIR model. Previous works

[25] have provided a continuous and impulsive vaccination strategies to hold the epidemics in

a stable state. Here we consider the multi-group SIR model:



Ṡi = Λi − diSi −
∑n

j=1 βijSiIj ,

İi =
∑n

j=1 βijSiIj − (di + γi)Ii,

Si(t
+
k ) = Si(t

−
k )(1− cik),

Ii(t
+
k ) = Ii(t

−
k ),

(1.68)

where Si and Ii are the population of susceptible and infected in group i, Λi and di represent

the birth and death rates of the individuals in group i, and γi represents the recovery rate of

the infected individuals in group i, βij is the infection rate in group i caused by infected popu-

lation from group j, and cik is the proportion of susceptible population in group i receiving the

vaccination at time tk. We know that cik takes value in [0, 1]. To keep the disease under control,

each group will enforce a migration policy to restrict incoming populations from other groups,
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at the expense of retarding economic growth. We will define the infected rate βij = β̄ij − uij ,
where uij ∈ [0, β̄ij ] represents the control of migration.

Now, we consider the cost function

J =
a

2

N−1∑
k=0

n∑
i=1

(
cikSi(t

−
k )
)2

+
N−1∑
k=0

n∑
i=1

∫ tk+1

tk

( b
2
I2
i +

1

2

n∑
j=1

u2
ij

)
dt+

n∑
i=1

e

2
I2
i (tN ). (1.69)

From the necessary condition (1.49, 1.50), we know that the optimal control has the form

ûij = (ηi− ξi)SiIj , and the optimal impulsive control has the form ĉik = ξi(t
−
k )/a, where [ξ, η]T

is the adjoint variable corresponding to the SIR system. For the numerical experiment, we set

the parameters of the model as follows:

Λ d β γ a b e T ∆t .4

.3

.2


 .4

.3

.2


 1 .05 .05

.05 1 .05

.05 .05 1


 .5

.5

.5

 1 20 1 10 2

and initial conditions

S(0) (×105) I(0) (×105) 0.9

0.8

0.7


 0.1

0.1

0.1


Here is the table showing the cost values in case of constant controls.
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Table 1.1: List of Costs Tested by Varying Controls

u c J

0 0 3.4658

0.1β 0 2.3479

0.15β 0 2.0632

0.2β 0 1.9561

0.25β 0 2.0133

0 0.1 2.5498

0 0.2 2.0776

0 0.3 1.8720

0 0.4 1.8240

0 0.5 1.8710

0.2β 0.4 1.8602

0.2β 0.3 1.7443

0.2β 0.2 1.6906

0.2β 0.1 1.7374

0.1β 0.1 1.8430

0.1β 0.2 1.6320

0.1β 0.3 1.5877

0.1β 0.4 1.6413

û ĉ 1.4626

Remark 1.3.1. The Table 1.1 lists the cost of the system driven by different control pairs. The

first row shows that the cost is 3.4658 if no controls are applied to the system. The second row

shows that the cost is 2.3479 if the migration rate is reduced by 10%. The last row shows that

the cost is 1.4626 if the system is driven by optimal control pair {û, ĉ}, which is derived by

solving the necessary conditions (1.49,1.50). The Table 1.1 shows that the cost of the system

under the optimal control pair is lower than the cost if the system is driven by other controls.

The Figure 1.1 shows the susceptible population if the system is driven by optimal control. The

jumps of the curves represents the effect of vaccination. Those people receiving vaccination are

removed from the susceptible group as they are immune to this disease. The Figures 1.3, 1.4

and 1.5 display the optimal migration restriction of the three cities. It is reasonable that the

restriction decreases as the sizes of the infected population is under control. The Figures 1.7
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shows that the size of the infected population increases for a period of time if no control is

applied.
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Figure 1.1: Populations of Susceptibles in All Groups under Optimal Controls
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Figure 1.2: Populations of Infected in All Groups under Optimal Controls
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Figure 1.3: Optimal Control of City 1: û1j = (η1 − ξ1)S1Ij
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Figure 1.4: Optimal Control of City 2: û2j = (η2 − ξ2)S2Ij
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Figure 1.5: Optimal Control of City 3: û3j = (η3 − ξ3)S3Ij
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Figure 1.6: Populations of Susceptibles in All Groups under Zero Controls
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Figure 1.7: Populations of Infected in All groups under Zero Controls
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Chapter 2

Stochastic Impulsive Control

In this chapter we study stochastic impulsive optimal control problems. In practice, the real

world is a world of uncertainty. We receive weather forecast telling the chance of rain, we gain

or lose money as the stock price goes up and down, and we hear the sounds of the radio, which

receives signals contaminated by noises. In the perspective of quantum physics, every particle

of the world behaves in a random manner. Stochastic model is more interesting and receives

more attention than deterministic model due to its wider applicability.

There are not many papers dealing with stochastic multi-group SIR models. The stability

properties depends on the reproduction number as is the case in deterministic model. In fact,

the diffusion coefficients are also critical to the stability([36]). We will give details and correc-

tions to some of the arguments in [36].

Stochastic optimal control problem is one of the hot topics in applied mathematics research([4],

[5], [35], [37]). The necessary condition of the optimal control involves solving a coupled system

of forward backward stochastic differential equations(FBSDEs). Solvability and explicit scheme

of FBSDEs were discussed in [27], [30], [35]. In general, FBSDEs might not necessarily have

a solution. There are solutions when the FBSDEs are derived as necessary conditions of an

optimal control problem.

We follow the same plan of action as the first chapter. In Section 2.1, we discuss the stochastic

multi-group SIR model and its stability properties. In Section 2.2, we give the statement of the

stochastic impulsive optimal control and derive the necessary conditions from two directions.

Solutions to the forward backward stochastic differential equations will be studied and the

relation between maximum principle and dynamic programming will be discussed. In Section

2.3 we give numerical results on the stochastic impulse SIR model. At the end of the chapter,
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we give a proof of a lemma which is used in discussion of stability.

2.1 Stochastic Multi-group SIR Model

In this section we will include randomness into the SIR model. One option is to replace the death

rate dk with dk +σkdBk(t). It is reasonable to consider this kind of replacement since there are

unpredictable natural disasters such as earthquake and tsunami that will cause unpredictable

number of deaths. Let us now consider the stochastic multi-group SIR model:

 dSk =
(

Λk −
∑n

j=1 βkjSkIj − dkSk
)

dt+ ρkSkdWk(t),

dIk =
(∑n

j=1 βkjSkIj − (dk + γk)Ik

)
dt+ θkIkdBk(t),

(2.1)

where Wk(t), Bk(t), 1 ≤ k ≤ n, are independent Brownian motions, and σk, ρk, 1 ≤ k ≤ n, are

nonnegative numbers describing the volatility.

Because of the presence of random noise, the study of the long term behavior of the SIR

model becomes more complicated. In the rest of the section, we will address two questions:

first, does there exist a limit for the susceptible population and infected population? Second, if

there exists a limit, then in what sense does the population converge to that limit? Does it have

almost sure convergence, L2 convergence, weak convergence or convergence in probability? As

we have seen in Theorem 1.1.1, the reproduction number R0 is the threshold regarding the long

term stability. One reasonable guess is that in case of low volatility, the stochastic process will

converge to the equilibrium of the deterministic model.

The following lemma is the stochastic version of Lemma 1.1.3, which will be used in the

discussion of stability of the stochastic SIR model.

Lemma 2.1.1. The system (2.1) will almost surely have a nonnegative solution {Sk(t), Ik(t)}k,

t ∈ (0,∞).

Proof of Lemma 2.1.1. Let τe denote the explosion time, and we know that the system (2.1)

has unique solution {Sk(t), Ik(t)} on t ∈ (0, τe). We define the stopping time

τm = inf{t : min
k
{Sk(t), Ik(t)} ≤ m−1 or max

k
{Sk(t), Ik(t)} ≥ m}. (2.2)
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For any ω in sample space, we have τm(ω) ≤ τn(ω) if m ≤ n. So the limit of τm exists and we

define T = lim
m→∞

τm. We claim that T = ∞ almost sure. Otherwise assuming P (T < ∞) > 0,

we will have

P (T <∞) =

∞∑
k=1

P (k − 1 ≤ T < k) > 0. (2.3)

There exists K and ε > 0 such that P (K − 1 ≤ T < K) = ε. We define the set AK = {ω :

T (ω) < K}, then we have τm(ω) < K for ω ∈ AK , ∀m. We define

V (t) =
∑
k

(Sk − ak − ak ln
Sk
ak

) + (Ik − 1− ln Ik), (2.4)

where ak’s are chosen in the same manner as in Lemma 1.1.3. By Ito’s lemma, we have

dV =
∑
k

(
(1− ak

Sk
)(Λk −

∑
j

βkjSkIj − dkSk) +
akρ

2
k

2

+(1− 1

Ik
)(
∑
j

βkjSkIj − (dk + γk)Ik) +
θ2
k

2

)
dt+ (. . . )dW + (. . . )dB

=
∑
k

(
Λk − dkSk −

akΛk
Sk

+ ak
∑
j

βkjIj + akdk − (dk + γk)Ik

−
∑
j

βkjSkIj
Ik

+ dk + γk +
akρ

2
k

2
+
θ2
k

2

)
dt+ (. . . )dW + (. . . )dB

(2.5)

We integrate the above equation from 0 to K ∧ τm, and we will have
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V (K ∧ τm) = V (0) +

∫ K∧τm

0

∑
k

(
(1− ak

Sk
)(Λk −

∑
j

βkjSkIj − dkSk) +
akρ

2
k

2

+(1− 1

Ik
)(
∑
j

βkjSkIj − (dk + γk)Ik) +
θ2
k

2

)
dt+MK∧τm

≤ V (0) +

∫ K∧τm

0

∑
k

(Λk + akdk + dk + γk +
akρ

2
k

2
+
θ2
k

2
)dt+MK∧τm

≤ V (0) +K
∑
k

(Λk + akdk + dk + γk +
akρ

2
k

2
+
θ2
k

2
) +MK∧τm . (2.6)

Taking expectation of the above inequality (2.6), we will have

EV (K ∧ τm) ≤ EV (0) +K
∑
k

(Λk + akdk + dk + γk +
akρ

2
k

2
+
θ2
k

2
). (2.7)

Since the function V (t) is always nonnegative, we have

EV (K ∧ τm) ≥ P (τm < K)E[V (τm)|τm < K] ≥ P (T < K)E[V (τm)|τm < K] (2.8)

≥ εmax{m− ak − ln
m

ak
,m−1 − ak − lnmak,m− 1− lnm,m−1 − 1 + lnm}.

Combining (2.7) and (2.8) we have

εmax{m− ak − ln
m

ak
,m−1 − ak − lnmak,m− 1− lnm,m−1 − 1 + lnm}

≤ EV (0) +K
∑
k

(Λk + akdk + dk + γk +
akρ

2
k

2
+
θ2
k

2
), (2.9)

which leads to a contradiction since the left hand side of (2.9) could be arbitrarily large if we

take m → ∞. Therefore we have lim
m→∞

τm = ∞ and the the solution {Sk(t), Ik(t)} to system

(2.1) is nonnegative on t ∈ (0,∞).
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2.1.1 Stability of Disease Free Equilibrium

In this part we consider the case when R0 < 1.

Consider the system:

 dXk =
(

Λk − dkXk

)
dt+ ρkXkdWk,

Xk(0) = Sk(0)
(2.10)

By the comparison principle, we have that Sk(t) ≤ Xk(t) almost surely.

Let v = [v1, . . . , vn]T be the same vector defined in Theorem 1.1.1, which satisfies

n∑
k=1

vk
βkjΛk

dk(dk + γk)
= R0vj . (2.11)

We consider the Lyapunov function V (t) =
n∑
k=1

ekIk, where ek =
vk

dk + γk
. By Ito’s formula, we

have
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d log V =
1

V

(∑
k,j

ekβkjSkIj −
∑
k

wkIk

)
dt− 1

2V 2

∑
k

e2
kθ

2
kI

2
kdt+

1

V

∑
k

ekθkIkdBk

≤ 1

V

(∑
k,j

ekβkjXkIj −
∑
k

wkIk

)
dt− 1

2V 2

∑
k

e2
kθ

2
kI

2
kdt+

1

V

∑
k

ekθkIkdBk

=
1

V

(∑
k,j

ekβkj
Λk
dk
Ij −

∑
k

wkIk

)
dt− 1

2V 2

∑
k

e2
kθ

2
kI

2
kdt+

1

V

∑
k

ekθkIkdBk

+
1

V

[∑
k,j

ekβkj

(
Xk −

Λk
dk

)
Ij

]
dt

=
1

V

(
(R0 − 1)

∑
k

wkIk

)
dt− 1

2V 2

∑
k

e2
kθ

2
kI

2
kdt+

1

V

∑
k

ekθkIkdBk

+
1

V

[∑
k,j

ekβkj

(
Xk −

Λk
dk

)
Ij

]
dt

Integrating the above equation, then computing time average, we have

log V (T )− log V (0)

T
≤ 1

T

∫ T

0

1

V
(R0 − 1)

∑
k

wkIkdt−
1

T

∫ T

0

1

2V 2

∑
k

e2
kθ

2
kI

2
kdt (2.12)

+
∑
k

1

T

∫ T

0

1

V
ekθkIkdBk +

∑
k

1

T

∫ T

0

1

V

∑
j

ekβkj

(
Xk −

Λk
dk

)
Ijdt.

Now we look at the first integral on the right hand side. Notice that

∑
k wkIk
V

=

∑
k wkIk∑
j ejIj

=

∑
k wkIk∑

j
wj

dj+γj
Ij
≤

∑
k wkIk

1
maxj{dj+γj}

∑
k wkIk

= max
j
{dj + γj}, (2.13)

So the first integral is bounded by
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1

T

∫ T

0

1

V
(R0 − 1)

∑
k

wkIkdt ≤

 (R0 − 1) maxj{dj + γj}, R0 ≥ 1,

0, R0 < 1,
. (2.14)

Looking at the second integral, we compute

∑
k e

2
kθ

2
kI

2
k

V 2
=

∑
k e

2
kθ

2
kI

2
k(∑

j ejIj

)2 =

∑
k e

2
kθ

2
kI

2
k(∑

j ejθjIjθ
−1
j

)2 ≥
∑

k e
2
kθ

2
kI

2
k∑

j e
2
jθ

2
j I

2
j

∑
j θ
−2
j

=
1∑
k θ
−2
k

. (2.15)

The second integral is bounded by

− 1

T

∫ T

0

1

2V 2

∑
k

e2
kθ

2
kI

2
kdt ≤ − 1

2
∑

k θ
−2
k

. (2.16)

Now we look at the third integral. Define a martingaleM(t) =

∫ t

0

1

V
ekθkIkdBk . We will show

that

lim
T→∞

1

T
M(T ) = 0 a.s. (2.17)

We define

A(m) =
{
ω : limT→∞

1

T
|M(T )| > 1

m

}
, (2.18)

A = ∪∞m=1A
(m), (2.19)

B =
{
ω : lim

T→∞

1

T
M(T ) = 0

}
. (2.20)

Let ω /∈ A, then it is true for all m ∈ N that
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limT→∞
1

T
|M(T )| ≤ 1

m
, (2.21)

which implies lim
T→∞

1

T
M(T ) = 0. Then, we have Ac = B. To show the almost sure convergence,

we need to show

P(B) = 1 ⇐⇒ P(A) = 0 ⇐⇒ P(A(m)) = 0, ∀m (2.22)

For a fixed m, we define

Am,l =
{
ω : sup

T>2l

1

T
|M(T )| > 1

m

}
, (2.23)

then we will have A(m) = ∩∞l=1Am,l. Notice that

Am,l ⊃ Am,l+1, (2.24)

we have

P(A(m)) = lim
l→∞

P(Am,l). (2.25)

By Doob’s Martingale Inequality, we have

P
(

sup
2r−1<T≤2r

|M(T )| > ε
)
≤ P

(
sup
T≤2r

|M(T )| > ε
)
≤ 1

ε
E|M(2r)| (2.26)

≤ 1

ε

[
E(|M(2r)|2)

] 1
2

=
1

ε

{
E
[ ∫ 2r

0

1

V 2
e2
kθ

2
kI

2
kdt
]} 1

2
.
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Notice that

1

V 2
e2
kθ

2
kI

2
k =

e2
kθ

2
kI

2
k(∑

j ejIj

)2 ≤
e2
kθ

2
kI

2
k

e2
kI

2
k

= θ2
k. (2.27)

We have that

P
(

sup
2r−1<T≤2r

|M(T )| > ε
)
≤ θk2

r
2

ε
. (2.28)

We choose ε = 1
m2r−1, then we have that

P
(

sup
2r−1<T≤2r

1

T
|M(T )| > 1

m

)
= P

(
sup

2r−1<T≤2r

1

T
|M(T )| > ε

2r−1

)
(2.29)

≤ P
(

sup
2r−1<T≤2r

|M(T )| > ε
)

≤ 2mθk

2
r
2

.

Then, we have that

P(Am,l) ≤
∞∑

r=l+1

P
(

sup
2r−1<T≤2r

1

T
|M(T )| > 1

m

)
≤

∞∑
r=l+1

2mθk

2
r
2

→ 0 (2.30)

as l→∞. Thus, the almost sure convergence is proved.

Now we look at the fourth integral under the limit T →∞.
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lim
T→∞

∑
k,j

1

T

∫ T

0

1

V
ekβkjIj(Xk −

Λk
dk

)dt (2.31)

≤ lim
T→∞

∑
k,j

1

T

∫ T

0

ekβkjIj
V

∣∣∣Xk −
Λk
dk

∣∣∣dt
≤

∑
k,j

ekβkj
ej

lim
T→∞

1

T

∫ T

0

∣∣∣Xk −
Λk
dk

∣∣∣dt
=

∑
k,j

ekβkj
ej

∫ ∞
0

∣∣∣x− Λk
dk

∣∣∣ν(x)dx

≤
∑
k,j

ekβkj
ej

[ ∫ ∞
0

(
x− Λk

dk

)2
ν(x)dx

] 1
2

In the fourth line of the we used the ergodic property of the processXk(t), i.e. for any measurable

function f(x), we have

lim
T→∞

1

T

∫ T

0
f(Xk(t))dt =

∫
R
f(x)ν(x)dx, a.s., (2.32)

where ν(x) is the stationary distribution of Xk(t). We will provide the proof of the ergodic

property in the end of this chapter. Using this property of Xk with function f(x) = (x− Λk
dk

)∧m,

we have

∫ ∞
0

[(
x− Λk

dk

)2
∧m

]
ν(x)dx = lim

T→∞

1

T

∫ T

0

[(
Xk −

Λk
dk

)2
∧m

]
dt (2.33)

= lim
T→∞

1

T

∫ T

0
E
[(
Xk −

Λk
dk

)2
∧m

]
dt

≤ lim
T→∞

1

T

∫ T

0
E
(
Xk −

Λk
dk

)2
dt

We can solve Xk(t) in explicit form as
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Xk(t) = e−(dk+
ρ2k
2

)t+ρBtSk(0) +

∫ t

0
e(dk+

ρ2k
2

)(s−t)+ρ(Bt−Bs)Λkds. (2.34)

By cumbersome calculation, which will be provided at the end of this chapter, we have

lim
T→∞

E
(
Xk(T )− Λk

dk

)2
=

ρ2
k

d2
k(2dk − ρ2

k)
(2.35)

Then, letting m→∞ in (2.33) we have

∫ ∞
0

(
x− Λk

dk

)2
ν(x)dx ≤

ρ2
k

d2
k(2dk − ρ2

k)
(2.36)

Then, the inequality (2.31) could be rewritten as

lim
T→∞

∑
k,j

1

T

∫ T

0

1

V
ekβkjIj(Xk −

Λk
dk

)dt ≤
∑
k,j

ekβkj
ej

ρk

dk

√
2dk − ρ2

k

(2.37)

= max
l

{ ρl√
2dl − ρ2

l

}∑
k,j

wkβkj
dk(dk + γk)ej

= max
l

{ ρl√
2dl − ρ2

l

}∑
j

R0wj
ej

= max
l

{ ρl√
2dl − ρ2

l

}∑
j

R0(dj + γj)

Therefore, we have the estimate

42



lim
T→∞

1

T
log V (T ) ≤ (R0 − 1) max

k
{dj + γk} −

1

2
∑

k θ
−2
k

(2.38)

+ max
l

{ ρl√
2dl − ρ2

l

}∑
j

R0(dj + γj).

Remark 2.1.2. From the above proof we could see the limit in the estimate (2.38) is taken in the

almost sure sense. The first two terms on the right hand side of (2.38) are negative, the third

term is a small positive number with the assumption that the volatility ρ is small. Then, the

estimation (2.38) states that in case of R0 < 1, the Lyapunov function V (t), which is equivalent

to the infected population, decrease to zero exponentially almost surely.

2.1.2 Stability of Endemic Equilibrium

Now we consider the case when R0 > 1. By Theorem 1.1.1 we know that the deterministic

multi-group SIR system (1.2) has an endemic equilibrium E∗ = [S∗1 , S
∗
2 , . . . , S

∗
n, I
∗
1 , I
∗
2 , . . . , I

∗
n],

and E∗ is globally stable. We have the equilibrium condition

Λk −
n∑
j=1

βkjS
∗
kI
∗
j − dkS∗k = 0, (2.39)

n∑
j=1

βkjS
∗
kI
∗
j − (dk + γk)I

∗
k = 0. (2.40)

Let B̄ and w = [w1, . . . , wn] be defined as in Theorem 1.1.1, where

B̄ =



−
∑

j 6=1 β̄1j β̄21 β̄31 . . . β̄n1

β̄12 −
∑

j 6=2 β̄2j β̄32 . . . β̄n2

β̄13 β̄23 −
∑

j 6=3 β̄3j . . . β̄n3

...
...

...
. . .

...

β̄1n β̄2n β̄3n . . . −
∑

j 6=n β̄nj


, (2.41)

and w satisfies
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n∑
j=1

β̄kjwk =
n∑
j=1

β̄jkwj . (2.42)

We define g(x) = 1 + lnx, and the fact that x ≥ g(x) will be used repeatedly.

We consider the function

V1 =

N∑
k=1

wk

[
S∗k

(Sk(t)
S∗k
− g
(Sk(t)
S∗k

))
+ I∗k

(Ik(t)
I∗k
− g
(Ik(t)
I∗k

))]
(2.43)

Differentiating (2.43), we have
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dV1 =
∑
k

wk

[
Λk − dkSk − (dk + γk)Ik −

S∗k
Sk

(Λk −
∑
j

βkjSkIj − dkSk)

−
I∗k
Ik

(
∑
j

βkjSkIj − (dk + γk)Ik) +
1

2
ρ2
kS
∗
k +

1

2
θ2
kI
∗
k

]
+ (...)dBk + (...)dWk

=
∑
k

wk

[∑
j

βkjS
∗
kI
∗
j + dkS

∗
k − dkSk −

S∗k
Sk

(
∑
j

βkjS
∗
kI
∗
j + dkS

∗
k) +

∑
j

βkjS
∗
kIj

+dkS
∗
k −

I∗k
Ik

∑
j

βkjSkIj +
∑
j

S∗kI
∗
j + +

1

2
ρ2
kS
∗
k +

1

2
θ2
kI
∗
k

]
+ (...)dBk + (...)dWk

=
∑
k

wk

[
dkS

∗
k(2− Sk

S∗k
−
S∗k
Sk

) +
∑
j

βkjS
∗
kI
∗
j (2− Ik

I∗k
−
S∗k
Sk

+
Ij
I∗j
−
I∗kSkIj
IkS

∗
kI
∗
j

)

+
1

2
ρ2
kS
∗
k +

1

2
θ2
kI
∗
k

]
+ (...)dBk + (...)dWk

=
∑
k

wkdkS
∗
k

(
2− Sk

S∗k
−
S∗k
Sk

)
+
∑
k,j

wkβkjS
∗
kI
∗
j

(
g(
Ik
I∗k

)− Ik
I∗k
− g(

Ij
I∗j

) +
Ij
I∗j

)

+
∑
k,j

wkβkjS
∗
kI
∗
j

(
g(
S∗k
Sk

)−
S∗k
Sk

+ g(
I∗kSkIj
IkS

∗
kI
∗
j

)−
I∗kSkIj
IkS

∗
kI
∗
j

)
+
∑
k

wk(
1

2
ρ2
kS
∗
k +

1

2
θ2
kI
∗
k)

+(...)dBk + (...)dWk. (2.44)

From (2.42) we have

∑
k,j

wkβkjS
∗
kI
∗
j

(
g(
Ik
I∗k

)− Ik
I∗k

)
=
∑
k,j

wjβjkS
∗
j I
∗
k

(
g(
Ik
I∗k

)− Ik
I∗k

)
, (2.45)

Therefore, we have

dV1 ≤
∑
k

wkdkS
∗
k

(
2− Sk

S∗k
−
S∗k
Sk

)
+
∑
k

wk(
1

2
ρ2
kS
∗
k +

1

2
θ2
kI
∗
k) + (. . . )dB + (. . . )dW. (2.46)

Consider the function
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V2 =

N∑
k=1

wkI
∗
k

[Ik
I∗k
− g(

Ik
I∗k

)
]
. (2.47)

Then, we have

dV2 =
∑
k

wk

[
(1−

I∗k
Ik

)
(∑

j

βkjSkIj − (dk + γk)Ik

)
+

1

2
θ2
kI
∗
k

]
+ (...)dBk + (...)dWk

=
∑
k

wk

[∑
j

βkjSkIj −
Ik
I∗k

∑
j

βkjS
∗
kI
∗
j −

I∗k
Ik

∑
j

βkjSkIj +
∑
j

βkjS
∗
kI
∗
j +

1

2
θ2
kI
∗
k

]
+(...)dBk + (...)dWk

=
∑
k

wk

[∑
j

βkj(Sk − S∗k)(Ij − I∗j ) +
∑
j

βkjS
∗
kI
∗
j (
Sk
S∗k

+
Ij
I∗j
− Ik
I∗k
−
I∗kSkIj
IkS

∗
kI
∗
j

) +
1

2
θ2
kI
∗
k

]
+(...)dBk + (...)dWk

≤
∑
k

wk

[∑
j

βkj(Sk − S∗k)(Ij − I∗j ) +
∑
j

βkjS
∗
kI
∗
j (
Sk
S∗k

+
Ij
I∗j
− Ik
I∗k

) +
1

2
θ2
kI
∗
k

+
∑
kj

S∗kI
∗
j (−1− ln

I∗kSkIj
IkS

∗
kI
∗
j

)
]

+ (...)dBk + (...)dWk

=
∑
k

wk

[∑
j

βkj(Sk − S∗k)(Ij − I∗j ) +
∑
j

βkjS
∗
kI
∗
j (
Ij
I∗j
− ln

Ij
I∗j
− Ik
I∗k

+ ln
Ik
I∗k

)

+
∑
j

βkjS
∗
kI
∗
j (
Sk
S∗k
− 2 + g(

S∗k
Sk

)) +
1

2
θ2
kI
∗
k

]
+ (...)dBk + (...)dWk

≤
∑
k

wk

[∑
j

βkj(Sk − S∗k)(Ij − I∗j ) +
∑
j

βkjS
∗
kI
∗
j (
Sk
S∗k

+
S∗k
Sk
− 2) +

1

2
θ2
kI
∗
k

]
+(...)dBk + (...)dWk. (2.48)

Consider the function
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V3 =

N∑
k=1

wk
(Sk − S∗k)2

2S∗k
. (2.49)

Then, we have

dV3 =
∑
k

wk

[Sk − S∗k
S∗k

(Λk −
∑
j

βkjSkIj − dkSk) +
ρ2
kS

2
k

2S∗k

]
+ (...)dBk + (...)dWk (2.50)

=
∑
k

wk

[Sk − S∗k
S∗k

(
∑
j

βkjS
∗
kI
∗
j + dkSk −

∑
j

βkjSkIj − dkSk) +
ρ2
k(Sk − S∗k + S∗k)2

2S∗k

]
+(...)dBk + (...)dWk

= wk

[
−
dk − ρ2

k

S∗k
(Sk − S∗k)2 − 1

S∗k

∑
j

βkj(Sk − S∗k)2Ij −
∑
j

βkj(Sk − S∗k)(Ij − I∗j )

+ρ2
kS
∗
k

]
+ (...)dBk + (...)dWk

≤ wk
[
−
dk − ρ2

k

S∗k
(Sk − S∗k)2 −

∑
j

βkj(Sk − S∗k)(Ij − I∗j ) + ρ2
kS
∗
k

]
+(...)dBk + (...)dWk. (2.51)

Consider the function

V4 =
∑
k

(Sk − S∗k + Ik − I∗k)2. (2.52)

Then, we have
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dV4 =
∑
k

2(Sk − S∗k + Ik − I∗k)(Λk − dkSk − (dk + γk)Ik) + (ρ2
kS

2
k + θ2

kI
2
k) (2.53)

+(...)dBk + (...)dWk

=
∑
k

2(Sk − S∗k + Ik − I∗k)((dk + γk)I
∗ + dkS

∗
k − dkSk − (dk + γk)Ik)

+(ρ2
kS

2
k + θ2

kI
2
k) + (...)dBk + (...)dWk

=
∑
k

−2dk(Sk − S∗k)2 − 2(dk + γk)(Ik − I∗k)2 − 2(2dk + γk)(Sk − S∗k)(Ik − I∗k)

+(ρ2
kS

2
k + θ2

kI
2
k) + (...)dBk + (...)dWk.

Note that

−2(2dk + γk)(Sk − S∗k)(Ik − I∗k) ≤ (dk + γk)(Ik − I∗k)2 +
(2dk + γk)

2

dk + γk
(Sk − S∗k)2, (2.54)

Then, we have

dV4 ≤
∑
k

(
(2dk + γk)

2

dk + γk
− 2dk + 2ρ2

k)(Sk − S∗k)2 − (dk + γk − 2θ2
k)(Ik − I∗k)2 (2.55)

+2ρ2
kS
∗2
k + 2θ2

kI
∗2
k + (...)dBk + (...)dWk.

Choose λ = maxk{
∑

j βkjI
∗
j /dk} and ε ≤ mink{

dk−ρ2k
S∗k

( (2dk+γk)2

dk+γk
− 2dk + 2ρ2

k)
−1}. Now we

compute

d(λV1 + V2 + V3 + εV4) (2.56)

≤
∑
k

−Ak(Sk − S∗k)2 −Bk(Ik − I∗k)2 + Ckρ
2
k +Dkθ

2
k + (...)dBk + (...)dWk,

48



where

Ak =
dk − ρ2

k

S∗k
− ε((2dk + γk)

2

dk + γk
− 2dk + 2ρ2

k), (2.57)

Bk = ε(dk + γk − 2θ2
k), (2.58)

Ck =
1

2
λwkS

∗
k + wkS

∗
k + 2εS∗2k , (2.59)

Dk =
1

2
λwkI

∗
k + wkI

∗
k + 2εI∗2k . (2.60)

Integrate (2.56) from 0 to T and then take expectation, we have

E(λV1 + V2 + V3 + εV4)(T )− E(λV1 + V2 + V3 + εV4)(0) (2.61)

≤
∑
k

E

∫ T

0
−Ak(Sk − S∗k)2 −Bk(Ik − I∗k)2dt+ (Ckρ

2
k +Dkθ

2
k)T.

Divide (2.61) by T , we will have

1

T
E(λV1 + V2 + V3 + εV4)(T )− 1

T
E(λV1 + V2 + V3 + εV4)(0) (2.62)

≤
∑
k

E
1

T

∫ T

0
−Ak(Sk − S∗k)2 −Bk(Ik − I∗k)2dt+ Ckρ

2
k +Dkθ

2
k.

Then, we have

∑
k

E
1

T

∫ T

0
Ak(Sk − S∗k)2 +Bk(Ik − I∗k)2dt ≤

∑
k

(Ckρ
2
k +Dkθ

2
k) (2.63)

+
1

T
E(λV1 + V2 + V3 + εV4)(0)− 1

T
E(λV1 + V2 + V3 + εV4)(T )

≤
∑
k

(Ckρ
2
k +Dkθ

2
k) +

1

T
E(λV1 + V2 + V3 + εV4)(0).
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Assuming T ≥ 1, we know that the right hand side of (2.63) is bounded by constant. Then we

take T →∞ on both side of (2.63). By dominating convergence theorem, it is valid to exchange

limit operator and expectation. So we will have

∑
k

E lim
T→∞

1

T

∫ T

0
Ak(Sk − S∗k)2 +Bk(Ik − I∗k)2dt ≤

∑
k

(Ckρ
2
k +Dkθ

2
k). (2.64)

Remark 2.1.3. From the estimation (2.64) we could see that the limit is taken in the L2 sense.

With the assumption that the volatility {ρk, θk} is small, the susceptible population and the in-

fected population [S1, I1, . . . , Sn, In] will be close to the endemic equilibrium [S∗1 , I
∗
1 , . . . , S

∗
n, I
∗
n].

2.1.3 Vaccination

We will apply pulse vaccination strategy to the stochastic SIR model. We have the following

system:

 Ṡk = Λk −
∑n

j=1 βkjSkIj − dkSk + σkSkdWk(t),

İk =
∑n

j=1 βkjSkIj − (dk + γk)Ik + ρkIkdBk(t),
t ∈ (ti, ti+1), (2.65)

with vaccination condition

 Sk(t
+
i ) = Sk(t

−
i )(1− cki),

Ik(t
+
i ) = Ik(t

−
i ).

(2.66)

We will study the optimal strategy for vaccination and give numerical results in the later

sections.

2.2 Stochastic Impulsive Control Problems

In this section we will give detailed description of the impulsive optimal control problem, and

study the necessary condition that the optimal controls must satisfy. We have two approaches:

methods of variation of calculus and dynamic programming. In addition we will discuss the

solutions to coupled forward backward stochastic differential equations.
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We look at the system whose evolution satisfies the following stochastic differential equation

dx = fk(x, u, t)dt+

d∑
j=1

σjk(x, u, t)dWj(t), t ∈ (tk, tk+1), (2.67)

where W (·) = (W1(·), ...,Wd(·))T is a standard d-dimensional Wiener process defined on a

complete probability space (Ω,F , P ) with filtration F t = σ{W (s); 0 ≤ s ≤ t}. Impulsive

control ck’s are applied to the system at time tk, k = 1, . . . , N − 1, and the state variable

satisfies the following jump conditions

x(t+k ) = gk(x(t−k ), ck). (2.68)

The stochastic impulsive optimal control problem is to find a continuous control u(t) adapted

to F t and impulses ck’s , such that the cost functional

J(u(·), c) = E
{N−1∑
k=1

φk(x(t−k ), ck) +
N−1∑
k=0

∫ tk+1

tk

Lk(x, u, t)dt+ φN (x(t−N ))
}

(2.69)

is minimized. We assume that

fk(x, u, t) : Rn × Rm × R 7→ Rn,

gk(x, c) : Rn × RM 7→ Rn.

σjk(x, u, t) : Rn × Rm × R 7→ Rn.

Lk(x, u, t) : Rn × Rm × R 7→ R,

φk(x, c) : Rn × RM 7→ R.

are smooth functions which have continuous derivatives of all orders.
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2.2.1 Necessary Conditions by Methods of Variation of Calculus

As in the deterministic version, we derive the variational equation by adding a small perturba-

tion to the optimal control. An adjoint variable is defined by a backward stochastic differential

equation, and the optimal continuous control is found by minimizing the Hamiltonian, and the

optimal impulse is determined in the process.

Assume {û(·), ĉk} is the optimal control pair and x̂(·) is the state variable of the system

corresponding the control {û(·), ĉk}. Let us define another set of control {uθ(·), cθk} by

uθ(t) , û(t) + θv(t),

cθk , ĉk + θck, k = 1, . . . , N − 1,

where v(·), ck are arbitrary perturbations, and 0 < θ � 1. Let xθ(·) be the state variable

corresponding to {uθ(t), cθk}.

Let us consider zk(t), k = 0, . . . N − 1, which solves the system,

dzk =
(∂fk
∂x

(x̂(t), û(t), t)zk +
∂fk
∂u

v
)

dt+

d∑
j=1

(∂σjk
∂x

zk +
∂σjk
∂u

v
)

dWj , t ∈ (tk, tk+1),

(2.70)

zk(t
+
k ) =

∂gk
∂x

(x̂(t−k ), ĉk)zk−1(t−k ) +
∂gk
∂c

ck, (2.71)

for k = 0, . . . , N − 1. We define z−1(t−0 ) = 0 and c0 = 0 just to ease the notation. Then, we will

have the following estimation.

Lemma 2.2.1. Let x̂(·), xθ(·) and zk(·) be defined as above, then we have

1. E{xθ(t)− x̂(t)− θzk(t)} = O(θ2), t ∈ (tk, tk+1), and that
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2.

dJ(uθ, cθ)

dθ

∣∣∣
θ=0

= E
{N−1∑
k=0

[∂φk
∂c

(x̂(t−k ), ĉk)ck +
∂φk+1

∂x
(x̂(t−k ), ĉk)zk(t

−
k+1) (2.72)

+

∫ tk+1

tk

(∂Lk
∂x

(x̂(s), û(s), s)zk(s) +
∂Lk
∂u

(x̂(s), û(s), s)zk(s)v(s)
)

dt
]}
.

Proof. 1. let

yθ(t) =
1

θ
(xθ(t)− x̂(t)− θzk(t)), t ∈ (tk, tk+1), (2.73)

then we have

dyθ =
(∫ 1

0

∂fk
∂x

(x̂+ λ(xθ − x̂), û+ λθv, t)yθdλ
)

dt (2.74)

+
(∫ 1

0

(∂fk
∂x

(x̂+ λ(xθ − x̂), û+ λθv, t)− ∂fk
∂x

(x̂, û, t)
)
zkdλ

)
dt

+
(∫ 1

0

(∂fk
∂u

(x̂+ λ(xθ − x̂), û+ λθv, t)− ∂fk
∂u

(x̂, û, t)
)
vdλ

)
dt

+
∑
j

(∫ 1

0

∂σjk
∂x

(x̂+ λ(xθ − x̂), û+ λθv, t)yθdλ
)

dWj

+
∑
j

(∫ 1

0

(∂σjk
∂x

(x̂+ λ(xθ − x̂), û+ λθv, t)−
∂σjk
∂x

(x̂, û, t)
)
zkdλ

)
dWj

+
∑
j

(∫ 1

0

(∂σjk
∂u

(x̂+ λ(xθ − x̂), û+ λθv, t)−
∂σjk
∂u

(x̂, û, t)
)
vdλ

)
dWj .

Now we refer to the useful fact (see [37] lemma 3.4.2) that if Y (t) is the solution of the

following
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
dY (t) = (A(t)Y (t) + a(t))dt+

∑
j

(Bj(t)Y (t) + bj(t))dWj ,

Y (0) = Y0,

(2.75)

and |A(t)|, |Bj(t)| ≤ L, a.e. t ∈ [0, T ]. Then,

sup
t∈(0,T )

E|Y (t)|2 ≤ K
{
E|Y (0)|2 + E

∫ T

0
(|a(s)|2 +

∑
j

|bj(s)|2)ds
}
. (2.76)

Using the above result, we have

sup
t∈(t0,t1)

E|yθ(t)|2 ≤ K
{
E|yθ(t0)|2 + E

∫ T

0
(|a0(s)|2 +

∑
j

|bj0(s)|2)ds
}
, (2.77)

where

ak(t) =

∫ 1

0

(∂fk
∂x

(x̂+ λ(xθ − x̂), û+ λθv, t)− ∂fk
∂x

(x̂, û, t)
)
zkdλ (2.78)

+

∫ 1

0

(∂fk
∂u

(x̂+ λ(xθ − x̂), û+ λθv, t)− ∂fk
∂u

(x̂, û, t)
)
vdλ = O(θ),

bjk(t) =

∫ 1

0

(∂σjk
∂x

(x̂+ λ(xθ − x̂), û+ λθv, t)−
∂σjk
∂x

(x̂, û, t)
)
zkdλ

)
dWj (2.79)

+

∫ 1

0

(∂σjk
∂u

(x̂+ λ(xθ − x̂), û+ λθv, t)−
∂σjk
∂u

(x̂, û, t)
)
vdλ

)
dWj = O(θ).

Since yθ(t0) = 0, we have
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sup
t∈(t0,t1)

E|yθ(t)|2 = O(θ2) =⇒ sup
t∈(t0,t1)

E|yθ(t)| = O(θ), (2.80)

by Hölder’s Inequality.

Moving to the next interval (t1, t2), we have that

yθ(t+1 ) =
1

θ

(
g1(x̂θ(t−1 ), ĉ1 + θc1)− g0(x̂(t−1 ), ĉ1) (2.81)

−θ∂g1

∂x
(x̂(t−1 ), ĉ1)z0(t−1 )− θ∂g1

∂c
(x̂(t−1 ), ĉ1)c1

)
=

∂g1

∂x
(x̂(t−1 ), ĉ1)yθ(t−1 ) +O(θ).

Then, we compute that

E|yθ(t+1 )|2 ≤ K1E|yθ(t−1 )|2 +K2θE|yθ(t−1 )|+K3θ
2. (2.82)

Using the estimation

sup
t∈(t1,t2)

E|yθ(t)|2 ≤ K
{
E|yθ(t+1 )|2 + E

∫ T

0
(|a1(s)|2 +

∑
j

|bj1(s)|2)ds
}
, (2.83)

we will have that
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sup
t∈(t1,t2)

E|yθ(t)|2 = O(θ2), (2.84)

sup
t∈(t1,t2)

E|yθ(t)| = O(θ), (2.85)

By induction, we have

sup
t∈(tk,tk+1)

E|yθ(t)|2 = O(θ2), (2.86)

sup
t∈(tk,tk+1)

E|yθ(t)| = O(θ), (2.87)

for k = 0, . . . , N − 1, which finishes the first part of the lemma.

2. The second part of the lemma is proved by computing

J(uθ, cθ)− J(û, ĉ)− θE
{ N−1∑

k=0

[∂φk
∂c

ck +
∂φk+1

∂x
zk(t

−
k+1) +

∫ tk+1

tk

(∂Lk
∂x

zk +
∂Lk
∂u

v
)

dt
]}

=
N−1∑
k=0

E

{∫ tk+1

tk

[ ∫ 1

0

∂Lk
∂x

(x̂+ λ(xθ − x̂), û+ λθv, t)θyθdλ

+

∫ 1

0

(∂Lk
∂x

(x̂+ λ(xθ − x̂), û+ λθv, t)− ∂Lk
∂x

(x̂, û, t)
)
θzkdλ

+

∫ 1

0

(∂Lk
∂u

(x̂+ λ(xθ − x̂), û+ λθv, t)− ∂Lk
∂u

(x̂, û, t)
)
θvdλ

]
dt

+
∂φk+1

∂x
(x̂(t−k+1), ĉk+1)θŷθ(t

−
k+1) +O(θ2)

}

=⇒ dJ(uθ, cθ)

dθ

∣∣∣
θ=0

= E
{N−1∑
k=0

[∂φk
∂c

ck +
∂φk+1

∂x
zk(t

−
k+1) +

∫ tk+1

tk

(∂Lk
∂x

zk +
∂Lk
∂u

v
)

dt
]}
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Let us define

Jk =
∂φk
∂c

ck +
∂φk+1

∂x
zk(t

−
k+1) +

∫ tk+1

tk

(∂Lk
∂x

zk +
∂Lk
∂u

v
)

dt, (2.88)

which simplifies the lemma as

dJ(uθ, cθ)

dθ

∣∣∣
θ=0

= E
{∑
k=0

Jk

}
. (2.89)

Now we consider the following backward stochastic differential equation:

dpN−1(t) =
(
−
(∂LN−1

∂x
(x̂(t), û(t), t)

)T
−
(∂fN−1

∂x
(x̂(t), û(t), t)

)T
pN−1(t) (2.90)

−
d∑
j=1

(∂σjN−1

∂x
(x̂(t), û(t), t)

)T
rjN−1(t)

)
dt+

∑
j

rjN−1(t)dWj , t ∈ (tN−1, tN ),

pN−1(t−N ) =
∂φN
∂x

T

(x̂(t−N )). (2.91)

By theory of BSDE, there exists a unique pair of processes {pN−1(t), rjN−1(t)} which are adapted

to the filtration F t.

By Ito’s formula we will have

d(pTN−1zN−1) = −∂LN−1

∂x
(x̂(t), û(t), t)zN−1(t) + pTN−1(t)

∂fN−1

∂u
((x̂(t), û(t), t))v(t)

+
∑
j

(rjN−1(t))T
∂σjN−1

∂u
(x̂(t), û(t), t)v(t)dt+ (. . . )dW. (2.92)

Integrating and taking expectation, we have that
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E
{∂φN
∂x

(x̂(t−N ))zN−1(t−N ) +

∫ tN

tN−1

∂LN−1

∂x
(x̂(t), û(t), t)zN−1(t)dt

}
(2.93)

= E
{
pTN−1(t+N−1)

(∂gN−1

∂x
(x̂(t−N−1), ĉN−1))zN−2(t−N−1) +

∂gN−1

∂c
(x̂(t−N−1), ĉN−1))cN−1

)
+

∫ tN

tN−1

pTN−1(t)
∂fN−1

∂u
(x̂(t), û(t), t)v(t) +

∑
j

(rjN−1(t))T
∂σjN−1

∂u
(x̂(t), û(t), t)v(t)dt

}
.

Then, we could get

E{JN−1} = E
{
αTN−1cN−1 +

∫ tN

tN−1

(
pTN−1(t)

∂fN−1

∂u
(x̂(t), û(t), t) (2.94)

+
∑
j

(rjN−1)T (t)
∂σjN−1

∂u
(x̂(t), û(t), t) +

∂LN−1

∂u
(x̂(t), û(t), t)

)
v(t)dt+ βTN−1zN−2(t−N−1)

}
,

where

αTN−1 =
∂φN−1

∂c
(x̂(t−N−1), ĉN−1) + pTN−1(t+N−1)

∂gN−1

∂c
(x̂(t−N−1), ĉN−1) (2.95)

βTN−1 = pTN−1(t+N−1)
∂gN−1

∂x
(x̂(t−N−1), ĉN−1). (2.96)

By induction we will conclude the result as follows.

Theorem 2.2.2. For k = N − 1, N, . . . , 0, let {pk(t), rjk(t)} be the unique processes solving the

following BSDE
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dpk(t) =
[
−
(∂Lk
∂x

(x̂(t), û(t), t)
)T
− ∂fk

∂x
(x̂(t), û(t), t)pk(t) (2.97)

−
∑
j

(∂σjk
∂x

(x̂(t), û(t), t)
)T
rjk(t)

]
dt+

∑
j

rjk(t)dWj , t ∈ (tk, tk+1)

pk(t
−
k+1) = pTk+1(t+k+1)

∂gk+1

∂x
(x̂(t−k+1), ĉk+1) +

∂φk+1

∂x

T

(x̂(t−k+1), ĉk+1), (2.98)

then the variation of the cost function has the form:

dJ(uθ, cθ)

dθ

∣∣∣
θ=0

= E

{∑N−1
k=0

[(∂φk
∂c

(x̂(t−k ), ĉk) + pTk (t+k )
∂gk
∂c

(x̂(t−k ), ĉk)
)
ck (2.99)

+

∫ tk+1

tk

pTk
∂fk
∂u

v +
∑
j

(rjk)
T ∂σ

j
k

∂u
v +

∂Lk
∂u

vdt
]}
.

The optimal control {û(t), ĉ} satisfy

∂φk
∂c

(x̂(t−k ), ĉk) + pTk (t+k )
∂gk
∂c

(x̂(t−k ), ĉk) = 0, (2.100)

pTk
∂fk
∂u

(x̂(t), û(t), t) +
∑
j

(rjk)
T ∂σ

j
k

∂u
(x̂) +

∂Lk
∂u

(x̂, û, t) = 0.

2.2.2 Forward Backward Stochastic Differential Equations

By Theorem 2.2.2 the optimal control û could be solved in a feedback form û = û(x̂, p, r, t),

and we set

bk(t, x, pk, rk) = fk(x, u(t, x, pk, rk), t),

b̂k(t, x, pk, rk) = −∂Lk
∂x

T

(x, û(t, x, pk, rk), t)−
∂fk
∂x

(x, û(..), t)pk(t)−
∑
j

∂σjk
∂x

T

(x, û(..), t)rjk(t),

ξjk(t, x, pk, rk) = σjk(x, û(t, x, pk, rk), t).
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Then, the problem is to solve the following FBSDE

dx(t) = bk(t, x, pk, rk)dt+

d∑
j=1

ξk(t, x, pk, rk)dWj , (2.101)

dpk(t) = −b̂k(t, x, pk, rk)dt+

d∑
j=1

rjkdWj , t ∈ (tk, tk+1), (2.102)

with jump conditions

x(t+k ) = gk(x(t−k ), ck), (2.103)

pk(t
−
k+1) = pTk+1(t+k+1)

∂gk+1

∂x
(x(t−k+1), ck+1) +

∂φk+1

∂x

T

(x(t−k+1), ck+1), (2.104)

where ck satisfies

∂φk
∂c

(x(t−k ), ck) + pTk (t+k )
∂gk
∂c

(x(t−k ), ck) = 0. (2.105)

Previous works are done by Ma et al. [27] and the solvability of the adapted solution to the

FBSDE has been studied. In particular, a direct scheme, called the four step scheme is provided

to solve the FBSDE explicitly.

Then, our approach to solve the impulsive optimal control has the following steps.

1. Solve for rN−1 = rN−1(t, x, y, z)

zξN−1(t, x, y, rN−1) + rN−1 = 0. (2.106)

2. Solve the system
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∂θjN−1

∂t
+

1

2
tr
(∂2θjN−1

∂x2
ξN−1(t, x, θN−1, rN−1(t, x, θ,

∂

∂x
θN−1))ξTN−1

)
(2.107)

+
∂θjN−1

∂x
bN−1(t, x, θN−1, rN−1(..)) + b̂jN−1(t, x, θN−1, rN−1(..)) = 0,

for t ∈ [tN−1, tN ], with the terminal condition θN−1(tN , x) =
∂φN
∂x

T

(x).

3. Then for k = N − 2, ..., 1, 0, do the following steps:

(a) Solve for ck(x) satisfying

∂φk
∂c

(x, ck) + θTk (tk, gk(x, ck))
∂gk
∂c

(x, ck) = 0. (2.108)

(b) Solve for rk = rk(t, x, y, z)

zξk(t, x, y, rk) + rk = 0. (2.109)

(c) Solve the system

∂θjk
∂t

+
1

2
tr
(∂2θjk
∂x2

ξk(t, x, θk, rk(t, x, θ,
∂

∂x
θk))ξ

T
k

)
(2.110)

+
∂θjk
∂x

bk(t, x, θk, rk(..)) + b̂jk(t, x, θk, rk(..)) = 0

for t ∈ [tk, tk+1] with terminal condition

61



θk(tk+1, x) =
∂gk+1

∂x

T

(x, ck+1(x))θk+1(tk+1, gk+1(x, ck+1(x))) +
∂φk
∂x

(x, ck(x)).(2.111)

4. Solve the FSDE

dXk(t) = bk(t,Xk, θk(t,Xk), rk(t,Xk, θk(t,Xk), ∂xθk(t,Xk)))dt (2.112)

+ξk(t,Xk, θk(t,Xk), rk(..))dW (t)

Xk(tk) = gk(Xk−1(tk), ck(Xk−1(tk))) (2.113)

for k = 0, 1, ..., N − 1, and x−1(t0) = x0.

5. Compute the adjoint processes by

pk(t) = θk(t,Xk(t)), (2.114)

rk(t) = rk(t,Xk, θk(t,Xk), ∂xθk(t,Xk)). (2.115)

6. The optimal control is determined by

ck = ck(Xk(tk)), (2.116)

uk(t) = uk(t,Xk(t), pk, rk). (2.117)

Remark 2.2.3. The realization of the scheme depends on the solvability of the pde in step (2)

and (3c), and the existence of the smooth function ck(x) in step (3a).
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2.2.3 Necessary Conditions by Dynamic Programming Approach

In the study of optimal control dynamic programming is another frequently used approach. How-

ever, we cannot find any study of dynamic programming applied to impulsive optimal control

problem. In this subsection, we set up the value function which involves the impulse cost and we

derive the Hamilton-Jacobi-Bellman equation which characterize the optimal control and value

function. The relation between the value function and the maximum principle will be discussed.

Consider the time interval t ∈ (tm, tm+1), and define the value function as follows

Vm(x, t) = inf
u(s), t<s<tN−1

{ck}N−1
k=m+1

E
{∫ tm+1

t
Lm(Y (s), u(s), s)ds (2.118)

+
N−1∑

k=m+1

[
φk(Y (t−k ), ck) +

∫ tk+1

tk

Lk(Y (s), u(s), s)ds
]

+ φN (Y (t−N ))
}
,

where Y (s) is the process defined by



dY (s) = fk(Y (s), u(s), s)ds+
∑d

j=1 σ
j
k(Y (s), u(s), t)dWj(s),

s ∈ (t, tm+1)
⋃(⋃N−1

k=m+1(tk, tk+1)
)
,

Y (t+k ) = gk(Y (t−k ), ck), k = m+ 1, ..., N − 1

Y (t) = x

(2.119)

Assuming we use an arbitrary constant control u in a short time interval (t, t + h), and then

guide the system by optimal control, we will have

Vm(x, t) ≤ E
{∫ t+h

t
Lm(Y (s), u, t)ds+ Vm(Y (t+ h), t+ h)

}
=⇒

0 ≤ E
{∫ t+h

t
Lm(Y (s), u, t)ds+ Vm(Y (t+ h), t+ h)− Vm(Y (t), t)

}
. (2.120)

Applying Ito’s formula to Vm(X(t), t), we have
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dVm =
∂Vm
∂t

dt+
∂Vm
∂x

fmdt+
∂Vm
∂x

σmdW +
1

2

∑
i,j,k

∂2Vm
∂xixk

σijmσ
kj
m dt. (2.121)

Then we have

E
{
Vm(Y (t+ h), t+ h)− Vm(Y (t), t)

}
(2.122)

= E
{∫ t+h

t

∂Vm
∂t

+
∂Vm
∂x

fm +
1

2

∑
i,j,k

∂2Vm
∂xixk

σijmσ
kj
m ds

}
.

We combine (2.122) and inequality (2.120), then

E

{∫ t+h

t
Lm(Y (s), u, s) +

∂Vm
∂t

(Y (s), s) +
∂Vm
∂x

(Y (s), s)fm(Y (s), u, s) (2.123)

+
1

2

∑
i,j,k

∂2Vm
∂xixk

(Y (s), s)σijm(Y (s), s)σkjm (Y (s), s)ds

}
≥ 0.

For s→ t, we have Y (s)→ Y (t) = x almost surely, thus we derive that

∂Vm
∂t

(x, t) +
∂Vm
∂x

(x, t)fm(x, u, t) +
1

2

∑
i,j,k

∂2Vm
∂xixk

(x, t)σijm(x, t)σkjm (x, t) + Lm(x, u, t) ≥ 0

by taking h→ 0. Equality will be reached when u is chosen to be optimal, i.e.

min
u

{∂Vm
∂t

(x, t) +
∂Vm
∂x

(x, t)fm(x, u, t) (2.124)

+
1

2

∑
i,j,k

∂2Vm
∂xixk

(x, t)σijm(x, t)σkjm (x, t) + Lm(x, u, t)
}

= 0.

The above equation is the Hamilton-Jacobi-Bellman Equation.
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Now we consider the jump condition of the value function at time tm, and by definition (2.118)

we have

Vm−1(x, t−m) = inf
u(s), tm<s<tN−1

{ck}N−1
k=m

E

{
N−1∑
k=m

φk(Y (t−k ), ck)

+
N−1∑
k=m

∫ tk+1

tk

Lk(Y (s), u(s), s)ds+ φN (Y (t−N ))

}
.

We refer to the fact that

inf
x,y

f(x, y) = inf
x
{inf
y
f(x, y)} (2.125)

where f(x, y) is smooth and minimum of f exists. Then, we have that

Vm−1(x, t−m) = inf
cm

{
inf

u(s), tm<s<tN−1

{ck}N−1
k=m+1

E

{N−1∑
k=m

φk(Y (t−k ), ck)

+

N−1∑
k=m

∫ tk+1

tk

Lk(Y (s), u(s), s)ds+ φN (Y (t−N ))

}}

= inf
cm

{
φm(x, cm) + inf

u(s), tm<s<tN−1

{ck}N−1
k=m+1

E

{ N−1∑
k=m+1

φk(Y (t−k ), ck)

+

N−1∑
k=m

∫ tk+1

tk

Lk(Y (s), u(s), s)ds+ φN (Y (t−N ))

}}

= inf
cm

{
φm(x, cm) + Vm(gk(x, cm), t+k )

}
. (2.126)

For a regular optimal control problem, the necessary condition derived from Pontryagin’s

Maximum Principle is equivalent to HJB equation. In fact for the impulsive optimal control

problem, the two approaches are also equivalent.
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Proposition 2.2.4. If the value function Vm(x, t), m = 0, . . . , N − 1, is sufficiently smooth,

then we have that

pm(t) =
(∂Vm
∂x

(x̂(t), t)
)T
, (2.127)

rlkm =
∑
i

∂2Vm
∂xi∂xl

(x̂(t), t)σikm(x̂(t), t), (2.128)

where {pm(t), rm(t)} are the processes adapted to F t, which solve the adjoint equation defined

in (2.97).

Proof. In this proof, we would use comma to indicate spatial derivatives. Ito’s formula gives

dpjm = (Vm,j)tdt+
∑
i

Vm,jif
i
mdt+

∑
i,l

Vm,jiσ
il
mdWl +

1

2

∑
i,l,k

Vm,jikσ
il
mσ

kl
mdt. (2.129)

Taking derivative w.r.t. xj in the equation (2.124), we have

(Vm,j)t +
∑
i

Vm,jif
i
m +

∂Vm
∂x

(
fm,j +

∂fm
∂u

û,j

)
(2.130)

+
1

2

∑
ilk

(
Vm,ijkσ

il
mσ

kl
m + Vm,ik(σ

il
mσ

kl
m),j + Vm,ik

∂(σilmσ
kl
m)

∂u
û,j

)
+ Lm,j +

∂Lm
∂u

û,j = 0

Recalling (2.124) we know that û satisfies

∂Vm
∂x

∂fm
∂u

+
1

2

∑
i,j,k

∂2Vm
∂xixk

σijmσ
kj
m

∂u
+
∂Lm
∂u

= 0, (2.131)

which reduces (2.130) to
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(Vm,j)t +
∑
i

Vm,jif
i
m +

∂Vm
∂x

fm,j +
1

2

∑
ilk

(
Vm,ijkσ

il
mσ

kl
m + Vm,ik(σ

il
mσ

kl
m),j

)
+ Lm,j = 0(2.132)

Then, substitute (2.132) in (2.129) and we have

−dpjm =
(
pT fm,j +

1

2

∑
ilk

Vm,ik(σ
il
mσ

kl
m),j + Lm,j

)
dt−

∑
i,l

Vm,jiσ
il
mdWl. (2.133)

Define rjlm =
∑
i

Vm,jiσ
il
m, and the equation (3.114) could be rewritten as

−dpm =
(∂Lm
∂x

T

+
∂fm
∂x

pm +
∑
k

σkm
∂x

rkm

)
dt− rmdW, (2.134)

which is exactly the same equation as (2.97). Now we are going to check the variable pm defined

by
(∂Vm
∂x

(x̂(t), t)
)T

satisfies the jump condition (2.98).

Look at the equation (2.126), the optimal impulsive control ĉm satisfies

∂φm
∂c

(x, ĉm(x)) +
∂

∂x
Vm(gm(x, ĉm), t+m)

∂gm
∂c

(x, ĉm) = 0 =⇒

∂φm
∂c

(x, ĉm(x)) + pTm(t+m)
∂gm
∂c

(x, ĉm) = 0 (2.135)

Taking partial derivative w.r.t. xj in equation (2.126), we get

pjm−1(t−m) =
∂φm
∂xj

(x, ĉm) +
∂φm
∂c

∂ĉ

∂xj
+
∂Vm
∂x

(∂gm
∂xj

+
∂gm
∂c

∂ĉ

∂xj

)
, (2.136)

which shows the variable defined in (2.127) satisfies the condition (2.98).
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2.3 Numerical Solution to Stochastic SIR Model

Here we consider the following SIR model, where the system is affected by stochastic perturba-

tion:



dSi = (Λi − diSi −
∑
i,j

(β̄ij − uij)SiIj)dt+ µiSidBi,

dIi =
∑
i,j

((β̄ij − uij)IjSi − (di + γi)Ii)dt+ ρiIidW,

Si(t
+
k ) = Si(t

−
k )(1− cik),

Ii(t
+
k ) = Ii(t

−
k ),

(2.137)

with the cost function

J = E

{
a

2

N−1∑
k=0

n∑
i=1

(
cikSi(t

−
k )
)2

+

N−1∑
k=0

n∑
i=1

∫ tk+1

tk

( b
2
I2
i +

1

2

n∑
j=1

u2
ij

)
dt+

α

2

n∑
i=1

I2
i (t−N )

}
.

(2.138)

For the numerical experiment, we set the parameters of the model as follows:

d β γ ρ µ a b α N t0 t1 t2 t3(
0.4

0.4

) (
1.6 0.2

0.1 1.4

) (
0.6

0.7

) (
0.04

0.04

) (
0.04

0.04

)
1 1 .5 3 0 0.5 1 1.5

and initial conditions:

S(0) (×105) I(0) (×105)(
0.7

0.6

) (
0.4

0.3

)
Here is the table showing the cost values in case of constant controls.
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Table 2.1: List of Cost Tested by Varying Controls

u c J

0 0 0.3210

0 0.1 0.3087

0 0.2 0.3050

0 0.3 0.3092

0.1β 0 0.3297

0.02β 0 0.3169

0.03β 0 0.3158

0.04β 0 0.3159

0.05β 0 0.3165

0.06β 0 0.3178

0.03β 0.2 0.3024

0.03β 0.22 0.3024

0.03β 0.21 0.3024

0.03β 0.19 0.3023

0.03β 0.18 0.3022

0.03β 0.17 0.3022

û ĉ 0.2937
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Figure 2.1: populations of susceptible in different groups under optimal controls
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Figure 2.2: populations of infected in different groups under optimal controls
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Figure 2.3: expected populations of susceptible in different groups under zero controls
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Figure 2.4: expected populations of infected in different groups under zero controls
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Figure 2.6: Value Function V (S1, S2, I1 = .5, I2 = .5)
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Figure 2.7: Value Function V (S1 = .75, S2 = .5, I1, I2)

2.4 Proof of A Lemma

This section serves as a supplement to the discussion of stability. We will give a proof to some

properties of the process X(t), which is defined as the solution to the following system:

 dX =
(

Λ− aX
)

dt+ ρXdW,

X(0) = X0

(2.139)

Lemma 2.4.1.

1.

lim
T→∞

E
(
X(T )− Λ

a

)2
=

ρ2

a2(2a− ρ2)
(2.140)

2. X(t) has a stationary distribution ν(x).

3. The distribution of X(t) converges to ν(x).

4. The ergodic property holds for X(t), i.e. for any measurable function f(x), we have
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lim
T→∞

1

T

∫ T

0
f(X(t))dt =

∫
R
f(x)ν(x)dx, a.s.. (2.141)

Proof.

1. Recall the fact that

X(t) = e−(a+ ρ2

2
)t+ρBtX0 +

∫ t

0
e(a+ ρ2

2
)(s−t)+ρ(Bt−Bs)Λds, (2.142)

and that the moment generating function for a normal random variable X ∼ N (µ, σ) is

give as MX(u) = E[eXu] = eµu+σ2u2

2 . Then we compute

E
(
X(t)− Λ

a

)2
= E

[
X2

0e
(−2a−ρ)te2ρBt

]
+ E

[
2X0Λ

∫ t

0
e(a+ ρ2

2
)(s−2t)e2ρ(Bt−Bs)+ρBsds

]
−E
[
2

Λ

a
X0e

(−a− ρ
2

2
)teρBt

]
+ E

[
Λ

∫ t

0
e(a+ ρ2

2
)(s−t)+ρ(Bt−Bs)ds

]2

−E
[
2

Λ2

a

∫ t

0
e(a+ ρ2

2
)(s−t)+ρ(Bt−Bs)ds

]
+

Λ2

a2

= X2
0e

(−2a+ρ2)t + 2X0Λ

∫ t

0
ea(s−2t)eρ

2(− 3
2
s+t)ds− 2Λ

a
X0e

−at

+E
[
Λ

∫ t

0
e(a+ ρ2

2
)(s−t)+ρ(Bt−Bs)ds

]2
− 2Λ2

a

∫ t

0
ea(s−t)ds+

Λ2

a2

(2.143)

With the assumption that −2a+ ρ2 < 0, the first and the third term converge to zero as

t→∞. Now we compute

2X0Λ

∫ t

0
ea(s−2t)eρ

2(− 3
2
s+t)ds = 2X0Λ

1

a− 3
2ρ

2

(
e(−a− ρ

2

2
)t − e(−2a+ρ2)t

)
→ 0 (2.144)

as t→∞, and

2Λ2

a

∫ t

0
ea(s−t)ds =

2Λ2

a2
(1− e−at)→ 2Λ2

a2
(2.145)
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as t→∞. Then we compute

E
[
Λ

∫ t

0
e(a+ ρ2

2
)(s−t)+ρ(Bt−Bs)ds

]2

= Λ2E
[ ∫ t

0

∫ t

0
e(a+ ρ2

2
)(s−t)+ρ(Bt−Bs)e(a+ ρ2

2
)(u−t)+ρ(Bt−Bu)duds

]
. (2.146)

We split the above integral in two parts. We have the first part as

E

∫ t

0

∫ s

0
e(a+ ρ2

2
)(s−t)+ρ(Bt−Bs)e(a+ ρ2

2
)(u−t)+ρ(Bt−Bu)duds

= E

∫ t

0

∫ s

0
e(a+ ρ2

2
)(s+u−2t)e2ρ(Bt−Bs)eρ(Bs−Bu)duds

=

∫ t

0

∫ s

0
e(a+ ρ2

2
)(s+u−2t)e2ρ2(t−s)e

ρ2

2
(s−u)duds

=
1

a

( 1

2a− ρ2
(1− e(−2a+ρ2)t)− 1

a− ρ2
(e−at − e(−2a+ρ2)t)

)
→ 1

a

1

2a− ρ2
, (2.147)

and the second part as

E

∫ t

0

∫ t

s
e(a+ ρ2

2
)(s−t)+ρ(Bt−Bs)e(a+ ρ2

2
)(u−t)+ρ(Bt−Bu)duds

= E

∫ t

0

∫ t

s
e(a+ ρ2

2
)(s+u−2t)e2ρ(Bt−Bu)eρ(Bu−Bs)duds

=

∫ t

0

∫ t

s
e(a+ ρ2

2
)(s+u−2t)e2ρ2(t−u)e

ρ2

2
(u−s)duds

=
1

a− ρ2

(1

a
(1− e−at)− 1

2a− ρ2
(1− e(−2a−ρ2)t)

)
→ 1

a− ρ2

1

a
− 1

a− ρ2

1

2a− ρ2
. (2.148)

We substitute (2.144, 2.145, 2.146, 2.147, 2.148) to (2.143), then we have

lim
t→∞

E
(
X(t)− Λ

a

)2
=

Λ2

a2
− 2Λ2

a2
+

Λ2

a(2a− ρ2)
+

Λ2

(a− ρ2)a
− Λ2

(a− ρ2)(2a− ρ2)

=
Λ2ρ2

a2(2a− ρ2)
(2.149)
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2. To prove the existence of stationary distribution, we will introduce the idea of Fokker

Planck Equation, which is a main tool of the next chapter. Let us consider Xξ
t which

denotes the solution to the system dX = b(X, t)dt+ σ(X, t)dBt,

X(0) = ξ,
(2.150)

and we denote by m(x, t) the distribution of Xξ
t . By Ito’s formula, we have

E[f(Xξ
t )− f(Xξ

0)] = E
[ ∫ t

0

∂f

∂x
b(Xξ

s , s) +
1

2

∂2f

∂x2
σ2(Xξ

s , s)ds
]

(2.151)

for any measurable function f(·). By definition of m(x, t), we could write the equation

(2.151) into∫
R
f(x)m(x, t)dx−

∫
R
f(x)m(x, 0)dx =

∫ t

0

∫
R

(∂f
∂x
b(x, s) +

1

2

∂2f

∂x2
σ2(x, s)

)
m(x, s)dxds.

(2.152)

Taking the derivative of equation (2.152) with respect to t, we have∫
R
f(x)

∂m(x, t)

∂t
dx =

∫
R

(∂f
∂x
b(x, t) +

1

2

∂2f

∂x2
σ2(x, t)

)
m(x, t)dx (2.153)

Integration by part on the right hand side of (2.153) gives∫
R
f(x)

∂m(x, t)

∂t
dx =

∫
R
−f(x)∂x(b(x, t)m(x, t)) +

1

2
f(x)∂xx(σ2(x, t)m(x, t))dx

(2.154)

Since f(·) could be arbitrary measurable function, then we have

∂m(x, t)

∂t
= −∂x(b(x, t)m(x, t)) +

1

2
∂xx(σ2(x, t)m(x, t)) (2.155)

The above equation (2.155) is the Fokker Planck Equation for the system (2.150) and the

initial condition of m(x, t) is determined by the distribution of ξ. We assume the system

(2.150) is homogeneous, i.e. dX = b(X)dt+ σ(X)dB, and we assume that there exists a

function ν(x) satisfying
∫
R ν(x)dx = 1, and

−∂x(b(x)ν(x)) +
1

2
∂xx(σ2(x)ν(x)) = 0. (2.156)
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We call ν(x) the stationary distribution of the system (2.150). Assuming σ(x) 6= 0 for

x ∈ G ⊂ R, we can integrate the above differential equation and get

ν(x) = Cσ−2(x) exp
(∫ x

θ

2b(z)

σ2(z)
dz
)
, (2.157)

for [θ, x] ⊂ G. Assuming σ(x) 6= 0 for x ∈ R, and∫ ∞
−∞

σ−2(x) exp
(∫ x

θ

2b(z)

σ2(z)
dz
)

dx <∞, (2.158)

then ν(x) defined in (2.157) is the stationary distribution of the system (2.150), where

C =
( ∫∞
−∞ σ

−2(x) exp
( ∫ x

θ
2b(z)
σ2(z)

dz
)

dx
)−1

.

Since it is proved in Section 2.1 that the process defined in (2.139) is positive almost

surely, it will be valid to define Y (t) = lnX(t). The process Y (t) will satisfy

dY = (Λe−Y − a− 1

2
σ2)dt+ σdB. (2.159)

Let b(x) = (Λe−x − a− 1
2σ

2) and σ(x) = σ, it is not difficult to check that the integral in

(2.158) is finite. Therefore the process Y (t) has a stationary distribution, so does X(t).

3. If the process X(t) starts with the stationary distribution, i.e. m(x, 0) = ν(x), then we

have m(x, t) ≡ ν(x) for any t > 0, and the equation (2.151) will lead to

E[f(Xξ
t )] = E[f(Xξ

0)]. (2.160)

Taking f(x) = 1A(x) to be the indicator function of any measurable set A ⊂ R, then we

have ∫
R
P (Xx

t ∈ A)ν(x)dx = P (Xξ
t ∈ A) = P (ξ ∈ A) = P 0(A), ∀t > 0, (2.161)

where P 0(dx) = ν(x)dx is the probability measure induced by the stationary distribution

ν(x). Now we consider Xx
t and Xy

t be two copies of the process defined in (2.139) which

starts from x and y. We define Z(t) = Xx
t −X

y
t , then Z(t) satisfies

dZ = −aZdt+ σZdB, (2.162)
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and the solution has the form

Z(t) = Ce−(a+ 1
2
σ2)t+σBt . (2.163)

Recall the fact that

lim sup
t→∞

Bt√
2t ln ln t

= 1 a.s. (2.164)

then we will have

lim
t

(Xx
t −X

y
t ) = 0 a.s. (2.165)

Combine (2.165) with the equation (2.161) we could have

P 0(A) =

∫
R
P (Xx

t ∈ A)ν(x)dx

=

∫
R

∫
Ω
1Xx

t ∈A(ω)dP (ω)ν(x)dx

= lim
t→∞

∫
Ω

∫
R
1Xx

t ∈A(ω)ν(x)dxdP (ω)

= lim
t→∞

∫
Ω

∫
R
1Xy

t ∈A(ω)ν(x)dxdP (ω)

= lim
t→∞

∫
Ω
1(Xy

t ∈ A)(ω)dP (ω)

= lim
t→∞

P (Xy
t ∈ A)

for any y ∈ R. So the process Xy
t has a limiting distribution ν(x) regardless of its ini-

tial distribution. The stationary distribution should be unique. Otherwise let P̃ (dx) be

a stationary distribution, and let Xξ
t have initial distribution P (Xξ

0 ∈ A) = P̃ (A). Since

the distribution of Xξ
t is stationary, we will have P̃ (A) = P (Xξ

t ∈ A) for all t. Then

P̃ (A) = lim
t→∞

P (Xξ
t ∈ A) = P 0(A).

Now we give another characterization for the stationary distribution. With the assumption

that the process is positive recurrent, i.e. Tyy , inf{t > 0 : Xt = y,X0 = y} < ∞ a.s.,

we will prove that the stationary distribution satisfies P 0(A) = m(A)
EyTyy

, where m(A) is the

mean time Xt spend in set A before Xt returns y, i.e.

m(A) = Ey
∫ Tyy

0
1(Xt ∈ A)dt. (2.166)
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Let f(·) be arbitrary measurable function. Integration of f(·) with respect to measure m

gives ∫
z∈R

f(z)m(dz) =

∫
z∈R

f(z)Ey
∫ Tyy

0
1(Xt ∈ dz)dt

=

∫
z∈R

f(z)Ey
∫ ∞

0
1(Xt ∈ dz, t < Tyy)dt

= Ey
∫ ∞

0
f(Xt)1(t < Tyy)dt

= Ey
∫ Tyy

0
f(Xt)dt. (2.167)

Now we check that m is a stationary measure. Define g(z) , Ezf(Xs), we have∫
z∈R

Ezf(Xs)m(dz) =

∫
z∈R

g(z)m(dz) = Ey
∫ Tyy

0
g(Xt)dt

= Ey
∫ Tyy

0
EXtf(Xs)dt =

∫ ∞
0

Ey
[
1(t < Tyy)E

Xtf(Xs)
]
dt

=

∫ ∞
0

Ey
[
1(t < Tyy)E

y
[
f(Xt+s)|Ft

]]
dt =

∫ ∞
0

EyEy
[
1(t < Tyy)f(Xt+s)|Ft

]
dt

=

∫ ∞
0

Ey
[
f(Xt+s)1(t < Tyy)

]
dt = Ey

∫ Tyy

0
f(Xt+s)dt = Ey

∫ Tyy+s

s
f(Xu)du

= Ey
∫ Tyy

0
f(Xu)du+ Ey

∫ Tyy+s

Tyy

f(Xu)du− Ey
∫ s

0
f(Xu)du

= Ey
∫ Tyy

0
f(Xu)du =

∫
z∈R

f(z)m(dz) (2.168)

Substituting f(z) = 1(z ∈ A) in (2.168) we have∫
1(z ∈ A)m(dz) = m(A). (2.169)

On the other hand we have∫
z∈R

Ez1(Xs ∈ A)m(dz) =

∫
z∈R

P (Xz
s ∈ A)m(dz). (2.170)
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Equating (2.169) with (2.170) we conclude that m is a stationary measure. Notice that∫
z∈R

m(dz) =

∫
z∈R

Ey
∫ Tyy

0
1(Xt ∈ dz)dt =

∫ ∞
0

Ey1(t < Tyy)dt = EyTyy, (2.171)

we define

P̃ (dz) ,
m(dz)

EyTyy
, (2.172)

and we will have P̃ is stationary measure of Xt and P̃ (R) = 1. Then we know that P̃ is

equivalent to the stationary distribution P 0.

4. To prove the ergodic property of the process X(t) defined in (2.150), it is sufficient to

prove the ergodic property of Y (t) , lnX(t). We know that Y (t) satisfies

dY = b(Y )dt+ σdB, (2.173)

where b(x) = (Λe−x − a− 1
2σ

2). Let us define

ϕ(x) =

∫ x

0
exp

(∫ y

0
−2b(z)

σ2
dz
)

dy (2.174)

It is not difficult to check that lim
x→∞

ϕ(x) =∞ and lim
x→−∞

ϕ(x) = −∞. Then let us define

Z(t) = ϕ(Y (t)), and we have

dZ(t) = exp
(∫ Y (t)

0
−2b(z)

σ2
dz
)
σdBt,

which implies Z(t) is a martingale. Assume Y (0) = y and a < y < b. Denote by Ta the

stopping time when Y (t) first hits a, and τ = Ta ∧ Tb, we have

ϕ(y) = Eϕ(Yτ ) = ϕ(a)P y(Ta < Tb) + ϕ(b)(1− P y(Ta < Tb)), (2.175)

and solving we have

P y(Ta < Tb) =
ϕ(b)− ϕ(y)

ϕ(b)− ϕ(a)
. (2.176)

Recall that lim
x→∞

ϕ(x) =∞, we have P y(Ta <∞) = 1. Similarly we have P y(Tb <∞) = 1.

Since y, a, b are arbitrary, we know that the process Y (t) is recurrent and P (Tyy <∞) = 1,

where Tyy is the next time of Y (t) hitting y after leaving y. Let τ0 = 0, define τk recursively

that τk = inf{t : t > τk−1, Y (t) = y}. We denote ηk =
∫ τk+1

τk
f(Y (t))dt and ∆k = τk+1−τk.
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By strong Markov property of Y (t), {ηk}k>0 are i.i.d. and {∆k}k>0 are i.i.d., and by Strong

Law of Large Numbers, we have

lim
n→∞

1

n

n∑
k=1

ηk = Eη0, lim
n→∞

1

n

n∑
k=1

∆k = ETyy. (2.177)

Recall (2.167, 2.172) we have

Eη0 = Ey
∫ Tyy

0
f(Y (t))dt =

∫
z∈R

f(z)m̃(dz) = EyTyy

∫
z∈R

f(z)P̃ (dz), (2.178)

where P̃ is the unique stationary distribution for the process Yt. Let κ(T ) = max{k : τk <

T}, we claim that

lim
T→∞

τκ(T )

T
= 1, (2.179)

since

1 ≥ lim
T→∞

τκ(T )

T
≥ lim

T→∞

τκ(T )

τκ(T )+1
= lim

T→∞

∑κ(T )
k=0 ∆k

κ(T )

κ(T ) + 1∑κ(T )+1
k=1 ∆k

= 1. (2.180)

Then we have

1

T

∫ T

0
f(Y (t))dt =

1

T

( κ(T )−1∑
k=0

∫ τk+1

τk

f(Y (t))dt+

∫ T

τκ(T )

f(Y (t))dt
)
, (2.181)

which leads to

lim
T→∞

1

T

∫ T

0
f(Y (t))dt = lim

T→∞

1

τκ(T )

κ(T )−1∑
k=0

ηk ·
τκ(T )

T

= lim
T→∞

1

κ(T )

κ(T )−1∑
k=0

ηk ·
1

1
κ(T )

∑κ(T )−1
0 ∆k

=

∫
R
f(z)P̃ (dz).
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Chapter 3

Mean Field Control

The concept of mean field comes from particle physics, which deals with a large number of

interacting particles. The enormous number of interaction makes it unreasonable to describe

the dynamics of each individual particle. So the “mean field” idea is brought up to reduce the

large system to a simple model by only considering an averaged influence from a representative

agent instead of interactions from every individual.

Mean field game studies the control problem of the representative agent, where the dynamic

system can be described as McKean-Vlasov equation([1], [6], [9], [10]). In particular, the linear

quadratic mean field control problem was studied by Yong [38], where a feedback form control

was explicitly solved and uniqueness of the solution was discussed.

In Section 3.1, we will introduce the Fokker-Planck equation by studying the evolution of

the probability distribution of stochastic SIR model. In Sections 3.2 and 3.3, we will study

the control problem of a large interacting system. When the number of players N → ∞, the

problem turns to mean field game. We will study the multi-banks model given by Carmona [9],

and will give justification for his approach. In Section 3.4, an interesting problem of mean field

game with a dominating player is discussed. In Section 3.5 we will consider the impulse mean

field control problem.

3.1 Master Equation for the SIR Model

In this section we will look at the distribution of the SIR model. In general, the master equation

demonstrates the evolution of P (n, t), which represents the probability of finding the system in

state n at time t:
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∂P (n, t)

∂t
=
∑
n′ 6=n

T (n|n′)P (n′, t)−
∑
n′ 6=n

T (n′|n)P (n, t), (3.1)

where T (n′|n) represents the transition rate from state n to state n′.

Let us consider the single group SIR model. Assuming that the birth rate equals the

death rate, so that the population remains as a constant N. Let S, I,R denote the number

of people who are susceptible, infected and recovered, then we have R = N − S − I. So the

state of the population is determined by a two dimensional vector (S, I), which takes value in

{(n,m) ∈ N2|n+m ≤ N}.

Consider the transition probabilities of the following type:

(1) Infection: a susceptible individual getting the disease by contact with infectious person,

resulting in an increase of infectious population and a decrease of susceptible population.

T (S = n− 1, I = m+ 1|S = n, I = m) = β
n

N
m.

(2) Recovery: an infectious individual is cured from the disease, results in an decrease of infec-

tious population.

T (S = n, I = m− 1|S = n, I = m) = γm.

(3) Death of an infectious individual: with the assumption that birth rate and death rate

are equal, the total population is constant. With another assumption that all newborns are

susceptible, then a death of an infectious individual results in a decrease of infectious population

and an increase of susceptible population .

T (S = n+ 1, I = m− 1|S = n, I = m) = µm.

(4) Death of a recovered individual: with the same reasoning as in the last scenario, a death of a

recovered individual results in a decrease of recovered population and an increase of susceptible

population.

T (S = n+ 1, I = m|S = n, I = m) = µR = µ(N − n−m).

Substituting the transition probabilities into the master equation, we have
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∂P (n,m, t)

∂t
= P (n+ 1,m− 1, t)β

m− 1

N
(n+ 1) + P (n,m+ 1, t)γ(m+ 1)

+P (n− 1,m+ 1, t)µ(m+ 1) + P (n− 1,m, t)µ(N − n−m+ 1)

−P (n,m, t)(β
m

N
n+ γm+ µm+ µ(N − n−m)) (3.2)

Now, we let x =
n

N
, y =

m

N
, and define

p(x, y, t) = P (n,m, t) = P (Nx,Ny, t),

then we can rewrite the master equation of SIR model (3.2) as

∂p(x, y, t)

∂t
= p(x+

1

N
, y − 1

N
, t)Nβ(y − 1

N
)(x+

1

N
) + p(x, y +

1

N
, t)Nγ(y +

1

N
)

+ p(x− 1

N
, y +

1

N
, t)Nµ(y +

1

N
) + p(x− 1

N
, y, t)Nµ(1− x− y +

1

N
)

− p(x, y, t)N(βxy + γy + µy + µ(1− x− y))

= [p+
1

N
(px − py) +

1

2N2
(pxx − 2pxy + pyy)]Nβ(xy +

1

N
(y − x)− 1

N2
)

+ (p+
1

N
py +

1

2N2
pyy)Nγ(y +

1

N
) + [p+

1

N
+

1

2N2
(pxx − 2pxy + pyy)]Nµ(y +

1

N
)

+ [p− 1

N
+

1

2N2
pxx]Nµ(1− x− y − 1

N
)− pN(βxy + γy + µy + µ(1− x− y))

= pβ(y − x) + pγ + 2pµ− p β
N

+ px(βxy − µ(1− x) +
β

N
(y − x)− 2µ

N
)

+ py(−βxy + γy + µy − β

N
(y − x) +

γ

N
+
µ

N
) +

1

2N
pxx(βxy + µy + µ(1− x− y))

− 1

N
pxy(βxy + µy) +

1

2N
pyy(βxy + γy + µy)

= [p(βxy − µ(1− x))]x + [p(−βxy + γy + µy)]y +
1

2N
[p(βxy + µ(1− x))]xx

− 1

N
[p(βxy + µy)]xy +

1

2N
[p(βxy + γy + µy)]yy,
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where we have neglected the higher order term of 1
N . With the notation x = [x, y], the above

equation could be written as

∂

∂t
p(x, t) = −div[f(x)p(x, t)] +

1

2

∂

∂x

∂

∂x
[A(x)p(x, t)], (3.3)

where

f(x) =

 −βxy + µ(1− x)

βxy − γy − µy

 , (3.4)

A(x) = 1
N

 βxy + µ(1− x) −βxy − µy

−βxy − µy βxy + γy + µy

 . (3.5)

The equation (3.3) is in the form of the Fokker Planck equation, where p(x, t) characterizes the

density of the stochastic process

dX = f(X)dt+ σ(X)dW. (3.6)

where σ(x) satisfies A(x) = σ(x)σ(x)T .

Remark 3.1.1. The Fokker Planck equation gives information on the evolution of the probability

distribution of a stochastic process based on the stochastic differential equation which describes

the dynamics of the stochastic process. The Fokker Planck equation is widely used in the mean

field problem.

3.2 Stochastic Interacting System

In this section we study the control problem for an interacting system, where the evolution of

system satisfies a measure valued stochastic differential equation.
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3.2.1 Terms and Notations

Let L(R) denote the set of all integrable functions defined in R. We suppose that

f(t, x,m, u) : [0, T ]× R× L(R)× Rm 7→ R

σ(t, x,m, u) : [0, T ]× R× L(R)× Rm 7→ R

L(t, x,m, u) : [0, T ]× R× L(R)× Rm 7→ R

φ(x,m) : R× L(R)× 7→ R

are differentiable with respect to all arguments, where the argument m represents the measure

term. In case of differentiability with respect to m, We use the notation
∂f

∂m
(t, x,m, u, ξ) and

it is the unique function [0, T ]× R× L(R)× Rm × R 7→ R, such that

d

dθ
f(t, x,m+ θm̃, u)|θ=0 =

∫
R

∂f

∂m
(t, x,m, u, ξ)m̃(ξ)dξ (3.7)

for all m̃ ∈ L(R).

In this section we will consider the case when m is the empirical distribution µNt , where

µNt (·) =
1

N

N∑
k=1

δxkt
(·). (3.8)

The dynamics of agent i satisfies

dxit = f(t, xit, µ
N
t , u

i
t)dt+ σ(t, xit, µ

N
t , u

i
t)dW

i
t , 1 ≤ i ≤ N, (3.9)

where uit is the strategy he takes to minimize his cost functional:
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J i(u1, . . . , uN ) = E
{∫ T

0
L(t, xit, µ

N
t , u

i
t)dt+ φ(xiT , µ

N
T )
}
. (3.10)

To ease the discussion, the equation (3.9) depends on the empirical measure only through the

mean. Thus we rewrite the dynamics in the form:

dxit = f(t, xit, x̄t, u
i
t)dt+ σ(t, xit, x̄t, u

i
t)dW

i
t , 1 ≤ i ≤ N. (3.11)

where x̄t =
1

N

N∑
j=1

xjt . The game is for each agent to work out a strategy uit to minimize his cost

functional

J i(u1, . . . , uN ) = E
{∫ T

0
L(t, xit, x̄t, u

i
t)dt+ φ(xiT , x̄T )

}
. (3.12)

Keep in mind the fact that the cost J i depends on all the controls {ujt}1≤j≤N through the mean

x̄t. To find the equilibrium, we assume all players except player i are already taking the optimal

strategy, and player i is still in search for his optimal strategy. When N →∞, the dynamics of

all the other players will not be affected by a single player xit. That is to say, x̄t will remain the

same regardless of the behavior of player xi. So the equilibrium could be worked out by solving

the optimal control problem of one single player xi, while all the other players xj ’s keep staying

at their optimal paths.

3.2.2 Inter-Banks Lending and Borrowing

We consider the following inter-bank lending and borrowing model. Assume xi, the reserve

assets of bank i, has the following dynamics:

dxit = (a(x̄t − xit) + uit)dt+ σdW i
t , (3.13)

where uit represents the rate of bank i lending to (if uit < 0) and borrowing from (if uit > 0) the

87



central bank. Bank i controls the rate uit in order to minimize

J i(u1, . . . , uN ) = E
(∫ T

0

1

2
(uit)

2 − quit(x̄t − xit) +
ε

2
(x̄t − xit)2dt+

c

2
(x̄T − xiT )2

)
. (3.14)

Assuming all banks except bank i are taking the optimal strategy. Solving the optimization for

bank i via dynamic programming approach, the value function V i(t, x) will satisfy the HJB

equation:

∂V i(t, x)

∂t
+ inf
u∈R

{
(a(x̄− xi) + u)

∂V i

∂xi
+

1

2
u2 − qu(x̄t − xit)

}
+
ε

2
(x̄t − xit)2 (3.15)

+
∑
j 6=i

(a(x̄− xj) + ûj)
∂V i

∂xj
+
σ2

2

N∑
j=1

∂2V i

∂xj∂xj
= 0,

where we use the notation x̄ = (x1 + · · ·+ xN )/N and with the terminal condition V i(T, x) =

(c/2)(x̄− xi)2. The infimum in the HJB equation (3.15) can be solved

inf
u∈R

{
(a(x̄− xi) + u)

∂V i

∂xi
+

1

2
u2 − qu(x̄t − xit)

}
(3.16)

= a(x̄− xi)∂V
i

∂xi
− 1

2

(
q(x̄− xi)− ∂V i

∂xi

)2
,

and the optimal strategy of bank i is

ûi = q(x̄− xi)− ∂V i

∂xi
. (3.17)

Then, the HJB equation could be rewritten as:

88



∂V i

∂t
+
∑
k

∂V i

∂xk

[
(a+ q)(x̄− xk)− ∂V k

∂xk

]
+
σ2

2

∑
k

∂V i

∂xk∂xk
(3.18)

+
1

2
(ε− q2)(x̄− xi) +

1

2

(∂V i

∂xi

)2
= 0,

Assume the value function V i(x, t) has the form

V i(x, t) =
1

2
(x̄− xi)2η(t) + µ(t), (3.19)

with undetermined functions η(t), µ(t). Then, we have

∂V i

∂xk
= η(t)(x̄− xi)( 1

N
− δik), (3.20)

∂2V i

∂xj∂xk
= η(t)(

1

N
− δij)(

1

N
− δik). (3.21)

Then, the HJB equation would be simplified as

(x̄− xi)2
( η̇

2
− η(a+ q +

N − 1

N
η) +

1

2
(ε− q2) +

1

2
η2(

N − 1

N
)2
)

+ µ̇+
σ2

2

N − 1

N
η = 0. (3.22)

Notice that the equation (3.22) holds for all x = (x1, . . . , xN ) ∈ RN . Therefore, we have

η̇ = 2η(a+ q +
N − 1

N
η)− (ε− q2)− η2(

N − 1

N
)2, (3.23)

µ̇ = −σ
2

2

N − 1

N
η, (3.24)

with terminal conditions η(T ) = c and µ(T ) = 0. Substituting (3.20) to (3.17), the optimal
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strategy could be written as

uit =
(
q +

N − 1

N
η(t)

)
(x̄− xi). (3.25)

3.2.3 Multi-Objective Problem

In the previous inter-banks model, Carmona solves the optimal control by minimizing each

bank’s cost function as if no one pays attention to the cost of the other banks. However,

multi-objective problem might not generally have a solution that achieves minimum for all the

cost functions. In this subsection, we will give a justification for Carmona’s approach. Here we

assign weight wk to the cost functional of player k, therefore the multi-objective optimal control

problem could be solved by minimizing one weighted averaged cost functional:

J(u1, . . . , uN ) =
N∑
i=1

wiE
(∫ T

0

1

2
(uit)

2 − quit(x̄t − xit) +
ε

2
(x̄t − xit)2dt+

c

2
(x̄T − xiT )2

)
.

(3.26)

In this case let x̄ denote
N∑
k=1

wkx
k, where

N∑
k=1

wk = 1. Then, by the usual dynamic programming

approach we will have the HJB equation:

∂V

∂t
+

N∑
k=1

inf
uk

[ ∂V
∂xk

(
a(x̄− xk) + uk

)
+
wk
2

(uk)2 − wkquk(x̄− xk)
]

(3.27)

+
σ2

2

∂V

∂xk∂xk
+
ε

2
(x̄− xk) = 0,

Solving the infimum of the equation (3.27), the optimal control uk should have the feedback

form:

uk = q(x̄− xk)− 1

wk

∂V

∂xk
. (3.28)
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Then, (3.27) could be rewritten as

∂V

∂t
+

N∑
k=1

∂V

∂xk

(
(a+ q)(x̄− xk)− 1

wk

∂V

∂xk

)
+

N∑
k=1

σ2

2

∂V

∂xk∂xk
(3.29)

+
N∑
k=1

wk
2

(ε− q2)(x̄− xk) +
N∑
k=1

1

2wk

( ∂V
∂xk

)2
= 0,

In this problem, we assume that the value function has the form V (x, t) =
η(t)

2

N∑
k=1

wk(x̄ −

xk)2 + µ(t). We compute

∂V

∂xk
= −η(t)wk(x̄− xk); (3.30)

∂V

∂xk∂xk
= −ηwk(wk − 1). (3.31)

After substituting the expression for V (x, t) to (3.29), we will end up with

N∑
k=1

wk(x̄− xk)
[ η̇

2
− (a+ q)η − η2

2
+

1

2
(ε− q2)

]
+ µ̇+

σ2

2
η
(

1−
N∑
k=1

w2
k

)
= 0. (3.32)

It implies that the solution to the HJB equation (3.29) is

V (x, t) =
η(t)

2

N∑
k=1

wk(x̄− xk)2 + µ(t), (3.33)

where η(t) and µ(t) satisfies
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η̇ = 2η(a+ q)− (ε− q2) + η2, (3.34)

µ̇ = −σ
2

2
η
(

1−
N∑
k=1

w2
k

)
. (3.35)

We assume that wk = O( 1
N ). Then we could see that taking N → ∞ in equations (3.23,

3.24) and (3.34, 3.35), the two systems of Riccati equations has the same limit. In the situation

when each bank minimize its own cost functional, the optimal strategy of bank k is given in

(3.25) as

uk =
(
q + η(1− 1

N
)
)

(x̄− xk), (3.36)

and in the situation when all the banks cooporate to minimize a single total cost functional,

the strategy for bank k can be derived from (3.28) and (3.30):

uk = (q + η)(x̄− xk). (3.37)

Remark 3.2.1. It shows that when the number N is large, then the strategy for minimizing the

total cost functional is the same as that of each player minimizing its cost functional individually.

Thus it gives the justification for Carmona’s approach. Every individual can just deal with his

cost functional with the size of the group being large, and it will turn out a minimized total

cost functional as if everyone is cooperating with each other.

3.3 Mean Field Game

Mean field games deal with a system consisting of a large number of interacting players who

make their decisions under the mean behavior of the group of agents rather than the behavior

of an individual. The idea of mean field was first brought up by physicists, and later, works

done by French mathematicians Lasry and Lions laid a basis for this field and was followed by

a lot of studies in economics, finance, social dynamics and etc.
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3.3.1 Limit of Empirical Distribution

Consider that the dynamics of agent i satisfies

dxit = f(t, xit, µ
N
t , u

i
t)dt+ σ(t, xit, µ

N
t , u

i
t)dW

i
t , 1 ≤ i ≤ N. (3.38)

Assume that for each player i, the control uit has the feedback form uit = u(xit, µ
N
t , t). For any

test function f(x) ∈ C∞(R), we have

d〈φ(x), µNt (x)〉 =
1

N

N∑
k=1

dφ(xkt )

=
1

N

N∑
k=1

φ′(xkt )f(t, xkt , µ
N
t , u(xkt , µ

N
t , t))dt

+
1

2N

N∑
k=1

φ′′(xkt )σ
2(t, xkt , µ

N
t , u(xkt , µ

N
t , t))dt

+
1

N

N∑
k=1

φ′(xkt )σ(t, xkt , µ
N
t , u(xkt , µ

N
t , t))dW

k
t

= 〈φ′(x)f(t, x, µNt , u(x, µNt , t)) +
1

2
φ′′(x)σ(t, x, µNt , u(x, µNt , t)), µ

N
t (x)〉dt

+
1

N

N∑
k=1

φ′(xkt )σ(t, xkt , µ
N
t , u(xkt , µ

N
t , t))dW

k
t

Assume that ‖φ′(x)‖ · ‖σ(t, x,m, u)‖ ≤ C, we have that

1

N

∑
φ′(xk(t))σ(t, xkt , µ

N
t , u(xkt , µ

N
t , t))dW

k
t → 0 almost surely, as N →∞. (3.39)

The proof of (3.39) follows the same steps we take to prove (2.17). Then we will have the limit

of the empirical distribution µ satisfying
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d〈φ(x), µt(x)〉 = 〈φ′(x)f(t, x, µt, u(x, µt, t)) +
1

2
φ′′(x)σ(t, x, µt, u(x, µt, t)), µt(x)〉dt (3.40)

By integration by parts, we know from (3.40) that the measure µt(x) is the weak solution to

the PDE:

∂µt(x)

∂t
= − ∂

∂x
(f(t, x, µt, u(x, µt, t))µt(x)) +

1

2

∂2

∂x2
(σ2(t, x, µt, u(x, µt, t))µt(x)). (3.41)

From the Fokker Planck Equation, µt(x) is the probability distribution of the process Xt , where

Xt satisfies

dXt = f(t,Xt, µt, u(Xt, µt, t))dt+ σ(t,Xt, µt, u(Xt, µt, t))dW (t). (3.42)

In the study of mean field games, the process Xt is called the representative player, who

characterizes the average behavior of the community. The mean field game theory studies the

control problem of the representative player. For any pair {ut, µt}, we let xt be the solution to

the stochastic differential equation

dxt = f(t, xt, µt, ut)dt+
d∑
j=1

σj(t, xt, µt, ut)dW
j
t , (3.43)

x0 = ξ,

and then we could associate to the pair {ut, µt} a cost defined as

J(u, µ) = E
[ ∫ T

0
L(xt, µt, ut)dt+ φ(xT , µT )

]
. (3.44)

The objective is to find a law of control variable ut such that µt is the probability distribution

of xt, ∀t ∈ [0, T ], and
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J(u, µt) ≤ J(v, µt), ∀v. (3.45)

3.3.2 Methods of Variation of Calculus

We assume that ût is the optimal control for the mean field game (3.45) and x̂t is the state

variable of the system corresponding to the control ût. Define uθt to be a perturbation of the

optimal control ût:

uθt , ût + θvt,

where vt is arbitrary and 0 < θ � 1. Let

xθt , x̂t + θx̃t

denote the state corresponding to uθ. We have

dx̃t =
(
∂xf(t, x̂t, µt, ût)x̃t + ∂uf(t, x̂t, µt, ût)vt

)
dt

+

d∑
j=1

(
∂xσ

j(t, x̂t, µt, ût)x̃t + ∂uσ
j(t, x̂t, µt, ût)vt

)
dWt, (3.46)

x̃0 = 0, (3.47)

and

∂J(uθt , µt)

∂θ

∣∣∣
θ=0

= E
[ ∫ T

0
∂xL(x̂t, ût, µt)x̃t + ∂uL(x̂t, ût, µt)vtdt+ ∂xφ(x̂T , µT )x̃T

]
. (3.48)

We define the process {pt, rjt} to be the unique solution to the following backward stochastic

differential equation
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

dpt =
{
−
(∂L
∂x

(x̂t, ût, µt)
)T
−
(∂f
∂x

(t, x̂t, ût, µt)
)T
pt

−
d∑
j=1

(∂σj
∂x

(t, x̂t, ût, µt)
)T
rjt

}
dt+

∑
j

rjtdWj , t ∈ (0, T ),

pT =
∂φ

∂x

T

(x̂T ).

(3.49)

By Ito’s formula we have

∂xφ(x̂T , µT )x̃T = E
[ ∫ T

0
pTt ∂uf(t, x̂t, ût, µt)vt +

∑
j

(rjt )
T∂uσ

j(t, x̂t, ût, µt)vt − ∂xL(x̂t, ût, µt)x̃tdt
]
.

(3.50)

Therefore, we have

∂J(uθt , µt)

∂θ

∣∣∣
θ=0

= E
[ ∫ T

0
∂uL(x̂t, ût, µt)vt + pTt ∂uf(t, x̂t, ût, µt)vt +

∑
j

(rjt )
T∂uσ

j(t, x̂t, ût, µt)vtdt
]

= E
[ ∫ T

0

(
∂uL(x̂t, ût, µt) + pTt ∂uf(t, x̂t, ût, µt) +

∑
j

(rjt )
T∂uσ

j(t, x̂t, ût, µt)
)
vtdt

]
(3.51)

Theorem 3.3.1. The optimal control ût of the mean field game satisfies

∂uL(x̂t, ût, µt) + pTt ∂uf(t, x̂t, ût, µt) +
∑
j

(rjt )
T∂uσ

j(t, x̂t, ût, µt) = 0 (3.52)

where {pt, rjt} is the pair of the adjoint processes solves (3.49), and the measure µt satisfies the

Fokker-Planck equation:

∂µt(x)

∂t
= −div(f(t, x̂t, ût, µt)µt) +

1

2

d∑
j=1

n∑
k,l=1

∂2

∂xkxl

(
(σkjσlj)(t, x̂t, ût, µt)µt

)
. (3.53)
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3.4 Solution to Multi-Objective Problem and the Representa-

tive Player

In the last section, we construct the representative player by the empirical distribution of a

large interacting system. Intuitively, the evolution of representative player should represent

averaged evolution of the community. In this section, we will revisit the inter-bank lending and

borrowing model and solve the problem of the representative bank. Recall that the process xi,

which stands for the reserve assets of bank i, has the following dynamics:

dxit = (a(x̄t − xit) + uit)dt+ σdW i
t , (3.54)

Bank i controls uit, which stands for the rate of lending to (if uit < 0) and borrowing from

(if uit > 0) the central bank, in order to minimize

J i(u1, . . . , uN ) = E
(∫ T

0

1

2
(uit)

2 − quit(x̄t − xit) +
ε

2
(x̄t − xit)2dt+

c

2
(x̄T − xiT )2

)
. (3.55)

From the discussion of empirical distribution and representative player, we know that the

reserve assets xt of the representative bank of the system (3.54) should satisfy

dxt = (a(mt − xt) + ut)dt+ σdWt, (3.56)

where mt =
∫
ξµt(ξ)dξ, and µt(·) is the probability distribution of the process xt. By Theorem

3.3.1 in the last section, the optimal control ut could be solved as:

ut = q(mt − xt)− p (3.57)

where p is the adjoint variable satisfying
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−dp = q2(mt − xt)− (q + a)p+ ε(xt −mt) + rtdWt, (3.58)

p(T ) = c(xT −mT ).

We assume that the adjoint variable has the form

p(t) = η̃(t)(xt −mt). (3.59)

Using Ito’s formula to the equation (3.59), we will have

dp =
(

˙̃η(t)(xt −mt) + η̃((a+ q)(mt − xt)− η̃(xt −mt)− ṁt)
)

dt+ η̃(t)σdWt. (3.60)

In equation (3.40) from last section, taking φ(x) = x, we will have

ṁt = 〈(a+ q)(mt − x)− η̃(t)(x−mt), µt(x)〉 = 0. (3.61)

From (3.58,3.60,3.61), we could determine η̃(t), which solves

˙̃η(t) = η̃(t)2 + 2(a+ q)η̃(t) + (q2 − ε) (3.62)

η̃(T ) = c.

The optimal strategy for the representative bank could be written as

ût = (q + η̃(t))(mt − xt). (3.63)
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Recall that in the multi-objective problem, the optimal strategy for the kth agent is

ûkt = (q + η)(x̄t − xkt ). (3.64)

The function η̃ and η appearing in the two formulas are almost identical since they solve

the same ODE with identical terminal condition. So the representative bank behaves the same

as the banks in the multi-objective problem.

Remark 3.4.1. The ODE satisfied by η̃ differs with the ODE of η by a O( 1
N ) term. We neglect

this difference by assuming N is sufficiently large and the ODE is well posed.

Remark 3.4.2. The result ṁt = 0 is not surprising. In the multi-objective problem, we could

show that ∀t, x̄t = x̄0 almost surely, if N →∞. Since the dynamics of x̄t could be written as

dx̄t =
1

N

N∑
k=1

dW k
t , (3.65)

which has the solution

x̄t = x̄0 +
1

N

N∑
k=1

W k
t . (3.66)

By the law of large numbers we have x̄t = x̄0 almost surely if N →∞.

3.5 Mean Field Game with a Dominating Player

Let x0(t) ∈ R and xk(t) ∈ R denote the state variables for the dominating player and the

minor players, respectively. Suppose the dynamics for x0(t) and xk(t) are given by the following

stochastic differential equations,
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dx0(t) =
[
A0x0(t) +B0

1

N

N∑
j=1

xj(t) + C0u0(t)
]
dt+ σ0dW0(t), (3.67)

dxk(t) =
[
Axk(t) +B

1

N

N∑
j=1

xj(t) + Cuk(t) +Dx0(t)
]
dt+ σdWk(t). (3.68)

Suppose the cost functional of the dominating player and the cost functionals of the minor

players are given as follows:

J0 = E
[ ∫ T

0

Q0

2

(
x0(t)− α0

1

N

∑
xj(t)− ζ0(t)

)2
+
R0

2
u2

0(t)dt

+
Q̄0

2

(
x0(T )− ᾱ0

1

N

∑
xj(T )− ζ̄0

)2]
(3.69)

Jk = E
[ ∫ T

0

Q

2

(
xk(t)− α

1

N

∑
xj(t)− βx0(t)− ζ(t)

)2
+
R

2
u2
k(t)dt

+
Q̄

2

(
xk(T )− ᾱ 1

N

∑
xj(T )− β̄x0(T )− ζ̄

)2]
(3.70)

3.5.1 Representative Player

Now we investigate the evolution of the empirical distribution µN (x, t) for the minor players,

where µN (x, t) = 1
N

∑N
k=1 δxk(t)(x). Assuming that x0(t) is a known process, and that the control

uk(t) for the player k has the homogeneous feedback form uk(t) = u(xk(t),
1
N

∑
j xj(t), t) we

have
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d〈f(x), µN (x, t)〉 =
1

N

∑
df(xk(t))

=
1

N
f ′(xk(t))

[
Axk(t) +B

1

N

∑
xj(t) + Cu(xk(t), 〈ξ, µN (ξ, t)〉, t) +Dx0(t)

]
dt

+
1

N

∑
f ′′(xk(t))

1

2
σ2dt+

1

N

∑
f ′(xk(t))σdWk(t)

= 〈f ′(x)[Ax+B〈ξ, µN (ξ, t)〉+ Cu(x, 〈ξ, µN (ξ, t)〉, t) +Dx0(t)], µN (x, t)〉dt

+〈f ′′(x)
1

2
σ2, µN (x, t)〉dt+

1

N

∑
f ′(xk(t))σdWk(t). (3.71)

Assuming that ‖f ′(x)‖ ≤ C, we have that

1

N

∑
f ′(xk(t))σdWk(t)→ 0 almost surely, as N →∞. (3.72)

The proof of (3.39) follows the same steps we take to prove (2.17). Then we will have the limit

of the empirical distribution µ satisfying

d〈f(x), µ(x, t)〉 (3.73)

= 〈f ′(x)[Ax+B〈ξ, µ(ξ, t)〉+ Cu(x, 〈ξ, µ(ξ, t)〉, t) +Dx0(t)], µ(x, t)〉dt

+〈f ′′(x)
1

2
σ2, µ(x, t)〉dt.

From the Fokker Planck Equation, µ(x, t) is the conditional distribution of the process X(t)

under the filtration Ft = σ{W (s), s ≤ t}, where X(t) satisfies

dX(t) = [AX(t) +Bz(t) + Cu(X(t), z(t), t) +Dx0(t)]dt+ σdW (t), (3.74)

where z(t) = 〈x, µ(x, t)〉. By taking f(x) = x in equation (3.73), the dynamic of z(t) is given as
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dz(t) = [(A+B)z(t) + C〈u(x, z(t), t), µ(x, t)〉+Dx0(t)]dt. (3.75)

3.5.2 Optimal Control for the Representative Player and the Dominating

Player

Instead of considering N minor players’ game, we will just look at the process X(t) as a

representative player with a cost function

Ĵ(u) = E
[ ∫ T

0

Q

2

(
X(t)− αz(t)− βx0(t)− ζ(t)

)2
+
R

2
u2(t)dt

+
Q̄

2

(
X(T )− ᾱz(T )− β̄x0(T )− ζ̄

)2]
(3.76)

By Theorem 3.3.1, the optimal control of the representative player could be computed using

equation (3.52), which implies û(t) = −R−1Cn(t), where n(t) is the adjoint variable which

satisfies the backward stochastic equation

−dn(t) = [An(t) +Q(X(t)− αz(t)− βx0(t)− ζ(t))]dt

−Zn0(t)dW0 − Zn(t)dW, (3.77)

n(T ) = Q̄(X(T )− ᾱz(T )− β̄x0(T )− ζ̄). (3.78)

By assuming n(t) = PtX(t) + g(t), and differentiating n(t), we derive that

Ṗt + 2PtA− P 2
t C

2R−1 +Q = 0, (3.79)

PT = Q̄, (3.80)

and
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−dg(t) =
[
(A− C2R−1Pt)g(t) + (PtB −Qα)z(t) + (PtD −Qβ)x0(t)−Qζ

]
dt

−Zn0(t)dW0, (3.81)

g(T ) = Q̄(−ᾱz(T )− β̄x0(T )− ζ̄). (3.82)

Therefore, the optimal control has the feedback form

û(t) = u(X(t), z(t), t) = −R−1C(PtX(t) + g(t)). (3.83)

Substituting (3.83) into (3.75) we have

dz(t) =
[
(A+B)z(t)−R−1C2(Ptz(t) + g(t)) +Dx0

]
dt. (3.84)

Now, the problem becomes minimizing the cost functional for the dominating player:

Ĵ0(u0) = E
[ ∫ T

0

Q0

2

(
x0(t)− α0z(t)− ζ0(t)

)2
+
R0

2
u2

0(t)dt (3.85)

+
Q̄0

2

(
x0(T )− ᾱ0z(T )− ζ̄0

)2]
subject to



dx0(t) =
[
A0x0(t) +B0z(t) + C0u0(t)

]
dt+ σ0dW0(t),

dz(t) =
[
(A+B)z(t)−R−1C2(Ptz(t) + g(t)) +Dx0

]
dt,

−dg(t) =
[
(A− C2R−1Pt)g(t) + (PtB −Qα)z(t) + (PtD −Qβ)x0(t)−Qζ

]
dt

−Zn0(t)dW0 − Zn(t)dW,

g(T ) = Q̄(−ᾱz(T )− β̄x0(T )− ζ̄).

(3.86)
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We consider the following general forward backward optimal control problem:

Minimize J(u) = E
[ ∫ T

0
L(x(t), y(t), u(t))dt+ Ψ(x(T ))

]
(3.87)

subject to

 dx(t) = f(x(t), y(t), u(t), t)dt+ σdW, x(0) = x0,

−dy(t) = g(x(t), y(t), u(t), t)dt− Zy(t)dW, y(T ) = h(x(T )).
(3.88)

Let us make a perturbation for the control u(t) → u(t) + θũ(t) for small θ, then we will have

{x(t) + θx̃(t), y(t) + θỹ(t)} as the solution to the system (3.88) corresponding to the control

u(t) + θũ(t). And we have

 dx̃(t) = fx(x, y, u, t)x̃(t) + fy(x, y, u, t)ỹ(t) + fu(x, y, u, t)ũ(t),

−dỹ(t) = gx(x, y, u, t)x̃(t) + gy(x, y, u, t)ỹ(t) + gu(x, y, u, t)ũ(t)− Z̃y(t)dW,
(3.89)

with boundary condition

 x̃(0) = 0,

ỹ(T ) = hx(x(T ))x̃(T )
(3.90)

Now,

d

dθ
J(u+ θũ) = E

[ ∫ T

0
Lx(x, y, u, t)x̃(t) + Ly(x, y, u, t)ỹ(t) + Lu(x, y, u, t)ũ(t)dt

+Ψx(x(T ))x̃(T )
]

(3.91)

We consider the adjoint system
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

−dp(t) =
[
fTx (x, y, u, t)p(t) + gTx (x, y, u, t)r(t) + LTx (x, y, u, t)

]
dt− Zp(t)dW,

dr(t) =
[
fTy (x, y, u, t)p(t) + gTy (x, y, u, t)r(t) + LTy (x, y, u, t)

]
dt

p(T ) = ΨT
x (x(T )) + hTx (x(T ))r(T )

r(0) = 0.

(3.92)

We compute that

d(pT x̃− rT ỹ) = pT (fxx̃+ fyỹ + fuũ)− (pT fx + rT gx + Lx)x̃ (3.93)

+rT (gxx̃+ gyỹ + guũ)− (pT fy + rT gy + Ly)ỹ + (. . . )dW

= −Lxx̃− Lyỹ + pT fuũ+ rT guũ+ (. . . )dW.

Integrating the above equation and taking expectation we have

E
[
Ψx(x(T ))x̃(T )

]
= E

[ ∫ T

0

(
− Lxx̃− Lyỹ + pT fuũ+ rT guũ

)
dt
]
. (3.94)

Then, we have

d

dθ
J(u+ θũ) = E

[ ∫ T

0

(
pT fu + rT gu + Lu

)
ũdt
]
. (3.95)

Since ũ(t) is arbitrary, the optimal control u(t) should satisfy

pT fu(x, y, u, t) + rT gu(x, y, u, t) + Lu(x, y, u, t) = 0. (3.96)

Recall the system (3.86), the optimal control for the dominating player û0 should satisfy
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p(t)C0 +R0û0 = 0, (3.97)

which gives û0(t) = −R−1C0p(t). Then, to solve the dominating player game, we have the

following forward backward system:



dx0(t) =
[
A0x0(t) +B0z(t)− C2

0R
−1
0 p(t)

]
dt+ σ0dW0(t),

dz(t) =
[
(A+B)z(t)−R−1C2(Ptz(t) + g(t)) +Dx0

]
dt,

−dg(t) =
[
(A− C2R−1Pt)g(t) + (PtB −Qα)z(t) + (PtD −Qβ)x0(t)−Qζ

]
dt

−Zn0(t)dW0,

−dp(t) =
[
A0p(t) +Dq + (PtD −Qβ)r(t) +Q0(x0(t)− α0z(t)− ζ0(t))

]
dt

−Zp0dW0

−dq(t) =
[
B0p(t) + (A+B −R−1C2Pt)q(t) + (PtB −Qα)r(t)

−α0Q0(x0(t)− α0z(t)− ζ0(t))
]
− Zq0dW0

dr(t) = −R−1C2q(t) + (A− C2R−1Pt)r(t),

g(T ) = Q̄(−ᾱz(T )− β̄x0(T )− ζ̄).

p(T ) = Q̄0(x0(T )− ᾱ0z(T )− ζ̄0)− β̄Q̄r(T )

q(T ) = −ᾱ0Q̄0(x0(T )− ᾱ0z(T )− ζ̄0)− ᾱQ̄r(T )

(3.98)

Ma, Protter and Yong have some work on the explicit scheme for forward backward stochastic

equations. We rearrange the above equations as follows:


dx = (Ax− Bp)dt+ σdW,

−dp = (Cx +Dp + k)dt− ZdW,

p(T ) = Qx(T ) + h,

(3.99)

where
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x =


x0

z

r

 , p =


p

q

g

 , A =


A0 B0 0

D A+B −R−1C2Pt 0

0 0 A− C2R−1Pt

 ,

B =


C2

0R
−1
0 0 0

0 0 R−1C2

0 R−1C2 0

 , C =


Q0 −α0Q0 PtD −Qβ

−α0Q0 α2
0Q0 PtB −Qα

PtD −Qβ PtB −Qα 0

 ,

D =


A0 D 0

B0 A+B −R−1C2Pt 0

0 0 A− C2R−1Pt

 , k =


−Q0ζ0

α0Q0ζ0

−Qζ

 , h =


−Q̄0ζ̄0

ᾱ0Q̄0ζ̄0

−Q̄ζ̄

 ,

Q =


Q̄0 −Q̄0ᾱ0 −β̄Q̄

−ᾱ0Q̄0 ᾱ2
0Q̄0 −ᾱQ̄

−Q̄β̄ −Q̄ᾱ 0

 , σ =


σ0 0

0 0

0 0

 , Z =


Zp0 Zp

Zq0 Zq

Zn0 Zn

 ,

To solve the system (3.99), we assume p = Stx+ η(t). We could derive the evolution for St and

η(t), which satisfy


Ṡt + StA+DSt − StBSt + C = 0,

η̇ − StBη +Dη + k = 0,

ST = Q, η(T ) = h.

(3.100)

Then, the forward backward system becomes a forward SDE:

dx = (Ax− B(Stx + ηt))dt+ σdW. (3.101)
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3.5.3 Numerical Experiment

Consider the system  dx0 = (A0x0 +B0z + C0u0)dt+ σ0dW0

dx = (Ax+Bz + Cu+Dx0)dt+ σdW
(3.102)

with the following set of parameters

A0 B0 C0 σ0 A B C D σ

0.1 −0.05 1 0.2 0.2 −0.05 1 0.01 0.3

and the cost functional

J0 = E

{∫ T

0

1

2
(x0(t)− 10z(t))2 +

1

2
u0(t)2dt+

1

2
(x0(T )− 10z(T ))2

}
(3.103)

J = E

{∫ T

0

1

2
(x(t)− z(t))2 +

1

2
u(t)2dt+

1

2
(x(T )− z(T ))2

}
(3.104)

From the cost functional, we could see that the dominating player will keep track of the

average of the minor players. He thinks 10 times as large as the average is the good size for him

to remain the dominant position, and to avoid the market turning monopolistic. The minor

players intend to stay close to the average for a safe environment of growth. The following table

shows the cost of the representative player and the dominating player under different controls.

Table 3.1: List of Cost of the Representative Agent

u u0 J

0 0 1.947

0.1 0 2.014

-0.1 0 1.910

-0.2 0 2.064

û 0 0.271
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Table 3.2: List of Cost of the Dominating Agent

u u0 J0

û 0 243.44

û 0.1 226.56

û 0.2 211.09

û û0 22.13

Remark 3.5.1. We could see from Table (3.1) that in the scenario when the dominating agent

takes a constant control strategy, the cost of the representative agent is minimized by taking the

optimal control û. The Table (3.2) displays that in the scenario when the representative agent

sticks to his optimal control û, the dominating player could minimize his cost J0 by taking his

optimal strategy û0.
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Optimal Control of Representative Player

Figure 3.1: Path/State of Optimal Control of Repr. Player:

û(t) = −C(Ptx(t)+g(t))
R
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Figure 3.2: Path/State of Optimal Control of Dominating Player:
û0(t) = −R−1C0p(t)
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Figure 3.3: Optimal Path/State of Representative Player
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Figure 3.4: Optimal Path/State of Dominating Player

3.6 Impulsive Mean Field Control

In this section we will discuss the topic of impulsive mean field control. In case of the multi-banks

game, we consider the the banks are controlling their portfolio to optimize their payoffs. Then

fixed assets could be modeled as impulsive control, where changes are made only at discrete

times. We will study the necessary conditions for the optimal continuous control and impulsive

control of mean field control problems.

3.6.1 Mean Field Type Control

Before we discuss the impulsive mean field control problem, consider the process xu(t) whose

evolution satisfies the following SDE:

dxu(t) = f(t, xu(t), µu(t, ·), u(t))dt+

d∑
j=1

σ(t, xu(t), µu(t, ·), u(t))dW j , (3.105)

where µu(t, ·) is the probability distribution of xu(t). We use the notation xu, µu to identify the

dependence of the states and the distributions on the control process u(t). Then we define the

cost:
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J(u) = E
[ ∫ T

0
L(xu(t), µu(t, ·), u(t))dt+ φ(xu(T ), µu(T, ·))

]
. (3.106)

The mean field type control problem is defined as follows: find a control process u(t), such that

J(u) ≤ J(v), ∀v.

Remark 3.6.1. It is important to distinguish between mean field type control and mean field

games(Section 3.3). For the mean field games, the state process satisfies (3.43) and the cost is

defined as (3.45). Notice that the cost (3.45) depends on the control u and measure m, because

the measure m is known to be external to (3.43). In the mean field type control problem, the

measure µu in (3.105) is required to be the probability of the process xt defined by (3.105), so

the cost (3.106) only depends on the control u.

We could write the cost (3.106) as follows:

J(u) = E
[ ∫ T

0
L(xu(t), µu(t, ·), u(t))dt+ φ(xu(T ), µu(T, ·))

]
=

∫ T

0

∫
Rn
L(x, µu(t, ·), u(t))µu(t, x)dxdt+

∫
Rn
φ(x, µu(T, ·))µu(T, x)dx.(3.107)

We approach the problem using dynamic programming. Consider the family of control problems

indexed by initial condition (t, µ):


dxu = f(s, xu, µu(s, ·), u(s))ds+

∑
j

σj(s, xu, µu(s, ·), u(s))dW j
s , s ∈ (t, T )

µu(t, x) = µ(x),
(3.108)

with cost functional

V (t, µ) = inf
us

{
E
[ ∫ T

t
L(xu(s), µu(s, ·), us)ds+ φ(xu(T ), µu(T, ·))

]}
. (3.109)

Let
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v(s) ,

 v̄, t ≤ s < t+ ε

optimal control, t+ ε ≤ s < T
(3.110)

Then using the dynamic programming approach we have

V (t, µ) ≤ E
{∫ t+ε

t
L(xv(s), µv(s, ·), v̄)ds

}
+ V (t+ ε, µv(t+ ε, ·)) (3.111)

where the state xv(t) satisfies

dxv = f(s, xv, µv(s, ·), v̄)ds+ σ(s, xv, µv(s, ·), v̄)dWs,

in the interval s ∈ (t, t + ε). Keep in mind that the Fokker Planck equation in time interval

(t, t+ ε) has the form

∂µv(t, x)

∂t
= −div(f(t, x, µv(t, ·), v̄)µv(t, x)) +

1

2

∑
i,j

∂2

∂xi∂xj

(
aij(t, x, µv(t, ·), v̄)µv(t, x)

)
.

(3.112)

where a = σσT . Then, µv(t+ ε, ·) could be approximated by

µv(t+ ε, x) = µ(x) +
[
− div(f(t, x, µ(·), v̄)µ(x))

+
1

2

∑
i,j

∂2

∂xi∂xj

(
aij(t, x, µ(·), v̄)µ(x)

)]
ε+ o(ε), (3.113)

Next,
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1

ε

(
V (t+ ε, µv(t+ ε, ·))− V (t, µv(t, ·))

)
=

1

ε

(
V (t+ ε, µv(t+ ε, ·))− V (t+ ε, µv(t, ·)) + V (t+ ε, µ(·))− V (t, µ(·))

)
=

∫
Rn

∂V

∂m
(t, µ, x)(µv(t+ ε, x)− µv(t, x))dx+

∂V

∂t
(µ, t) +O(ε)

=

∫
Rn

∂V

∂m
(t, µ, x)

[
− div(f(t, x, µ, v̄)µ(x)) +

∑
i,j

∂2

∂xi∂xj

(1

2
aij(t, x, µ, v̄)µ(x)

)]
dx

+
∂V

∂t
(t, µ) +O(ε),

=

∫
Rd

∂

∂x

(∂V
∂m

(t, µ, x)
)
f(t, x, µ, v̄)µ(x) +

1

2

∑
i,j

∂2

∂xi∂xj

(∂V
∂m

(t, µ, x)
)
aij(t, x, µ, v̄)µ(x)dx

+
∂V

∂t
(t, µ) +O(ε). (3.114)

Then, from (3.111, 3.114) and let ε→ 0 we have

∂V

∂t
(t, µ) +

∫
Rd
L(x, µ, v̄)µ(x)dx+

∫
Rd

∂

∂x

(∂V
∂m

(t, µ, x)
)
f(t, x, µ, v̄)µ(x)dx

+

∫
Rd

1

2

∑
i,j

∂2

∂xi∂xj

(∂V
∂m

(t, µ, x)
)
aij(t, x, µ, v̄)µ(x)dx ≥ 0. (3.115)

Equality will hold when optimal control v̂ is chosen, which minimizes the left hand side of

(3.115). The optimal control has the feedback form v̂(t, x, µ,∇ ∂V
∂m ,∇

2 ∂V
∂m), where

v̂(t, x, µ, p, P ) = arg min
v

{
L(x, µ, v) + pT f(t, x, µ, v) +

1

2

∑
i,j

Pijaij(t, x, µ, v)
}
. (3.116)

Then, we have
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∂V

∂t
(t, µ) +

∫
Rd
L(x, µ, v̂(t, x, µ,∇∂V

∂m
,∇2 ∂V

∂m
))µ(x)dx (3.117)

+

∫
Rd

∂

∂x

(∂V
∂m

(t, µ, x)
)
f(t, x, µ, v̂(t, x, µ,∇∂V

∂m
,∇2 ∂V

∂m
))µ(x)dx

+

∫
Rd

1

2

∑
i,j

∂2

∂xi∂xj

(∂V
∂m

(t, µ, x)
)
aij(t, x, µ, v̂(t, x, µ,∇∂V

∂m
,∇2 ∂V

∂m
))µ(x)dx = 0.

Define U(t, µ, x) =
∂V

∂m
(t, µ), and taking derivative with respect to µ in equation (3.117), we

have

∂U

∂t
(t, µ, x) + L(x, µ, v̂(t, x, µ,∇U,∇2U))

+

∫
Rd

∂L

∂m
(ξ, µ, v̂(t, ξ, µ,∇U,∇2U), x)µ(ξ)dξ

+
∂

∂x

(
U(t, µ, x)

)
f(t, x, µ, v̂(t, x, µ,∇U,∇2U))

+

∫
Rn

∂

∂x

(
U(µ, t, ξ)

) ∂f
∂m

(t, ξ, µ, v̂(t, ξ, µ,∇U,∇2U), x)µ(ξ)dξ

−
∫
Rn

∂U

∂m
(t, µ, ξ, x)∇ ·

(
f(t, ξ, µ, v̂(t, ξ, µ,∇U,∇2U))µ(ξ)

)
dξ

+
∑
i,j

1

2
aij(t, x, µ, v̂(t, x, µ,∇U,∇2U))

∂2

∂xi∂xj
U(t, µ, x)

+

∫
Rn

∂U

∂m
(t, µ, ξ, x)

∑
i,j

∂2

∂xi∂xj

(1

2
aij(t, ξ, µ, v̂(t, ξ, µ,∇U,∇2U))µ(ξ)

)
dξ

+

∫
Rd

1

2

∑
i,j

∂2

∂xi∂xj

(
U(t, µ, ξ)

)∂aij
∂m

(t, ξ, µ, v̂(t, ξ, µ,∇U,∇2U), x)µ(ξ)dξ = 0.

(3.118)

Let µv̂(s, x) solve
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∂µv̂(t, x)

∂t
= −∇ ·

(
f(t, x, µv̂(t, ·), v̂(t, x, µv̂(t, ·),∇U,∇2U))µv̂(t, x)

)
(3.119)

+
∑
i,j

∂2

∂xi∂xj

(1

2
aij(t, x, µv̂(t, ·), v̂(t, x, µv̂(t, ·),∇U,∇2U))µv̂(t, x)

)
, t ∈ (0, T ),

µv̂(0, x) = µ0(x). (3.120)

We define Û(t, x) = U(t, µv̂(t, ·), x), then we compute

∂Û(t, x)

∂t
= lim

ε→0

1

ε
(U(t+ ε, µv̂(t+ ε, ·), x)− U(t, µv̂(t, ·), x))

=
∂U

∂t
(t, µv̂(t, ·), x) + lim

ε→0

1

ε

∫
Rd

∂U

∂m
(t, µv̂(t, ·), x, ξ)(µv̂(t+ ε, ξ)− µv̂(t, ξ))dξ

=
∂U

∂t
(t, µv̂(t, ·), x)−

∫
Rn

∂U

∂m
(t, µv̂, x, ξ)∇ ·

(
f(t, ξ, µv̂, v̂(t, ξ, µv̂,∇U,∇2U))µv̂(t, ξ)

)
dξ

+

∫
Rn

∂U

∂m
(t, µv̂, x, ξ)

∑
i,j

∂2

∂xi∂xj

(1

2
aij(t, ξ, µv̂, v̂(t, ξ, µv̂,∇U,∇2U))µv̂(t, ξ)

)
dξ

(3.121)

Under sufficient smoothness we have

∂2V

∂m2
(t, µ, x, ξ) =

∂2V

∂m2
(t, µ, ξ, x) =⇒ ∂U

∂m
(t, µ, x, ξ) =

∂U

∂m
(t, µ, ξ, x). (3.122)

Comparing (3.121) and (3.118), we have
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∂Û

∂t
(t, x) + L(x, µv̂(t, ·), v̂(t, x, µv̂(t, ·),∇Û ,∇2Û))

+
∂

∂x

(
Û(t, µv̂(t, ·), x)

)
f(t, x, µv̂(t, ·), v̂(t, x, µv̂(t, ·),∇Û ,∇2Û))

+
∑
i,j

1

2
aij(t, x, µv̂(t, ·), v̂(t, x, µv̂(t, ·),∇Û ,∇2Û))

∂2

∂xi∂xj
Û(t, x)

+

∫
Rd

∂L

∂m
(ξ, µv̂(t, ·), v̂(t, ξ, µv̂(t, ·),∇Û ,∇2Û), x)µv̂(t, ξ)dξ

+

∫
Rn

∂

∂x

(
Û(t, ξ)

) ∂f
∂m

(t, ξ, µv̂(t, ·), v̂(t, ξ, µv̂(t, ·),∇Û ,∇2Û), x)µv̂(t, ξ)dξ

+

∫
Rd

1

2

∑
i,j

∂2

∂xi∂xj

(
Û(t, ξ)

)∂aij
∂m

(t, ξ, µv̂(t, ·), v̂(t, ξ, µv̂(t, ·),∇Û ,∇2Û), x)µv̂(t, ξ)dξ = 0.

(3.123)

By defining

H(t, x, µ, P,Q) = L(x, µ, v̂(t, x, µ, P,Q)) + pT f(t, x, µ, v̂(t, x, µ, P,Q))

+
1

2

∑
i,j

Qijaij(t, x, µ, v̂(t, x, µ, P,Q)),

(3.124)

equation (3.123) will be reduced to

∂Û

∂t
(t, x) +H(t, x, µv̂(t, ·),∇Û ,∇2Û) +

∫
Rd

∂H

∂m
(t, x, µv̂(t, ·),∇Û ,∇2Û , ξ)µv̂(t, ξ)dξ = 0.

(3.125)

For the terminal condition of Û(t, x), we have
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Û(T, x) =
∂

∂m
V (T, µv̂(T, ·), x) (3.126)

=
∂

∂m

∫
Rd
φ(y, µv̂(T, ·))µv̂(t, y)dy

= φ(x, µv̂(T, ·)) +

∫
Rd

∂φ

∂m
(y, µv̂(T, ·), x)µv̂(T, y)dy.

To sum up the mean field type control problem, we have to solve the coupled forward backward

PDEs:

∂µv̂(t, x)

∂t
= −∇ ·

(
f(t, x, µv̂(t, ·), v̂(t, x, µv̂(t, ·),∇Û ,∇2Û))µv̂(t, x)

)
+
∑
i,j

∂2

∂xi∂xj

(1

2
aij(t, x, µv̂(t, ·), v̂(t, x, µv̂(t, ·),∇Û ,∇2Û))µv̂(t, x)

)
, (3.127)

∂Û

∂t
(t, x) +H(t, x, µv̂(t, ·),∇Û ,∇2Û) +

∫
Rd

∂H

∂m
(t, x, µv̂(t, ·),∇Û ,∇2Û , ξ)µv̂(t, ξ)dξ = 0.

(3.128)

with boundary conditions

µv̂(t, x) = µ0(x), (3.129)

Û(T, x) = φ(x, µv̂(T, ·)) +

∫
Rd

∂φ

∂m
(y, µv̂(T, ·), x)µv̂(T, y)dy. (3.130)

3.6.2 Impulsive Mean Field Control

We consider the system

 dx(t) = f(t, x(t), µ(t, ·), ut)dt+ σ(t, x(t), µ(t, ·), ut)dWt, t ∈ (0, τ) ∪ (τ, T ),

x(τ+) = g(x(τ−), c),
(3.131)

where c ∈ Rl is the impulse control, and g(x, c) defined on Rd×Rl represents the jump condition

118



of the state when the impulse is applied. The problem is to find a pair {ut, c} in order to minimize

the cost functional

J(ut, c) = E
{∫ T

0
L(x(t), µ(t, ·), ut)dt+ ψ(x(τ−), c) + φ(x(T ), µ(T, ·))

}
. (3.132)

In mean field control problems, the probability distribution µ(t, ·) plays an important role.

Suppose the impulse control is of the form c = c(x(τ−)). Then this impulsive control does not

only gives the jump condition of the state, but it also gives the change in the distribution. Let

h(x) be an arbitrary smooth function defined on Rd, then we compute

Eh(x(τ+)) =

∫
Rd
h(x)µ(τ+, x)dx. (3.133)

On the other hand we have

Eh(x(τ+)) = Eh(g(x(τ−), c(x(τ−)))) =

∫
Rd
h(g(y, c(y)))µ(τ−, y)dy. (3.134)

Assuming an implicit function y = y(x) is defined by x = g(y, c(y)),

∫
Rd
h(g(y, c(y)))µ(τ−, y)dy =

∫
Rd
h(x)µ(τ−, y(x))|yx(x)|dx, (3.135)

which implies

µ(τ+, x) = µ(τ−, y(x))|yx(x)|, (3.136)

where |yx(x)| is the determinant of the Jacobian matrix.

Remark 3.6.2. In the jump condition, the function y(x) plays a central role in the measure

119



jump, which depends on the choice of the feedback impulse strategy c(x).

As we did in the previous section, we consider a family of control problems indexed by initial

condition (t, µ):

if t ≥ τ,

 dx = f(s, x, µ(s, ·), vs)ds+ σ(s, x, µ(s, ·), vs)dWs, s ∈ (t, T )

µ(t, ·) = µ(·),
(3.137)

if t < τ,


dx = f(s, x, µ(s, ·), vs)ds+ σ(s, x, µ(s, ·), vs)dWs, s ∈ (t, τ) ∪ (τ, T )

µ(t, ·) = µ(·),

x(τ+) = g(x(τ−), c),

(3.138)

with cost functional

V (t, µ) = inf
us,c

{
E
[ ∫ T

t
L(x(s), µ(s, ·), us) + ψ(x(τ−), c)δ(s− τ)ds+ φ(x(T ), µ(T, ·))

]}
.

(3.139)

Keep in mind that the flow of the measure µ(s, ·) depends on the control {us, c}. Particularly,

the jump of measure from µ(τ−, ·) to µ(τ+, ·) is determined by the impulse control c(x). We

use the notation µc(τ
+, ·) to specify the dependency of the measure on the impulse.

We compute

V (τ−, µ(τ−, ·)) = inf
us,c

{
E
[
ψ(x(τ−), c) +

∫ T

τ+
L(x(s), µ(s, ·), us)ds+ φ(x(T ), µ(T, ·))

]}
= inf

c

{∫
Rd
ψ(x, c(x))µ(τ−, x)dx+ V (τ+, µc(τ

+, ·))
}

(3.140)

Suppose c = ĉ(x) is the optimal impulse strategy, then it is true that

d

dθ

{∫
Rd
ψ(x, ĉ(x) + θc(x))µ(τ−, x)dx+ V (τ+, µĉ+θc(τ

+, ·))
}∣∣∣
θ=0

= 0, (3.141)

120



for any function c(x). The derivative (3.141) is computed by

lim
θ→0

1

θ

∫
Rd

(
ψ(x, ĉ(x) + θc(x))− ψ(x, ĉ(x))

)
µ(τ−, x)dx (3.142)

+ lim
θ→0

1

θ

{
V (τ+, µĉ+θc(τ

+, ·))− V (τ+, µĉ(τ
+, ·))

}

It is clear that

lim
θ→0

1

θ

∫
Rd

(
ψ(x, ĉ(x) + θc(x))− ψ(x, ĉ(x))

)
µ(τ−, x)dx =

∫
Rd

∂ψ

∂c
(x, ĉ(x))c(x)µ(τ−, x)dx.

(3.143)

For any fixed function c(x), the implicit function defined by x = g(y, ĉ(y) + θc(y)) depends on

θ. Therefore, we will use the notation y = y(x, θ). We consider the one dimensional case for

computing the second term of (3.147):
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lim
θ→0

1

θ

(
V (τ+, µĉ+θc(τ

+, ·))− V (τ+, µĉ(τ
+, ·))

)
(3.144)

= lim
θ→0

1

θ

∫
R

∂V

∂m
(τ+, µĉ(τ

+, ·), x)
[
µĉ+θc(τ

+, x)− µĉ(τ+, x)
]
dx

= lim
θ→0

1

θ

∫
R

∂V

∂m
(τ+, µĉ(τ

+, ·), x)
[
µ(τ−, y(x, θ))yx(x, θ)− µ(τ−, y(x, 0))yx(x, 0)

]
dx

=

∫
R

∂V

∂m
(τ+, µĉ(τ

+, ·), x)
[
µ(τ−, y(x, 0))yxθ(x, 0) + µy(τ

−, y(x, 0))yθ(x, 0)yx(x, 0)
]
dx

=

∫
R

∂V

∂m
(τ+, µĉ(τ

+, ·), x)µ(τ−, y(x, 0))yxθ(x, 0)− ∂

∂x

(∂V
∂m

(µĉ(τ
+, ·), x)yθ(x, 0)

)
µ(τ−, y(x, 0))dx

=

∫
R
− ∂

∂x

(∂V
∂m

(τ+, µĉ(τ
+, ·), x)

)
yθ(x, 0)µ(τ−, y(x, 0))dx

=

∫
R
−∂U
∂x

(τ+, µĉ(τ
+, ·), x)

(
− gcc

gy + gcĉ′

)
µ(τ−, y(x, 0))dx

=

∫
R
−∂U
∂x

(τ+, µĉ(τ
+, ·), g(y, ĉ(y)))

(
− gcc

gy + gcĉ′

)
µ(τ−, y)(gy + gcĉ

′)dy

=

∫
R

∂U

∂x
(τ+, µĉ(τ

+, ·), g(x, ĉ(x)))gc(x, ĉ(x))c(x)µ(τ−, x)dx,

where we used the fact that

x = g(y(x, θ), ĉ(y(x, θ)) + θc(y(x, θ))), (3.145)

differentiate with respect to θ,

=⇒ 0 = gyyθ + gc(ĉ
′yθ + c+ θc′yθ) =⇒ yθ(x, 0) = − (gcc)

gy + gcĉ′
. (3.146)

Therefore the equation (3.141) could be written as

∫
R

[∂ψ
∂c

(x, ĉ(x)) +
∂U

∂x
(τ+, µĉ(τ

+, ·), g(x, ĉ(x)))gc(x, ĉ(x))
]
c(x)µ(τ−, x)dx = 0. (3.147)
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Since c(x) is an arbitrary function, (3.147) implies that

∂ψ

∂c
(x, ĉ(x)) +

∂U

∂x
(τ+, µĉ(τ

+, ·), g(x, ĉ(x)))gc(x, ĉ(x)) = 0. (3.148)

With Û(t, x) defined as U(t, µ(t, ·), x), we have

∂ψ

∂c
(x, ĉ(x)) +

∂Û

∂x
(τ+, g(x, ĉ(x)))gc(x, ĉ(x)) = 0. (3.149)

As long as we obtained the optimal impulse from (3.149), the equation (3.140) can be written

as

V (τ−, µ(τ−, ·)) =

∫
R
ψ(x, ĉ(x))µ(t−, x)dx+ V (τ+, µĉ(τ

+, ·)). (3.150)

Taking the derivative of the equation (3.150) with respect to µ in the direction of µ̃, the left

hand side equals

∫
R

∂V

∂m
(τ−, µ(τ−, ·), x)µ̃(x)dx =

∫
R
Û(τ−, x)µ̃(x)dx, (3.151)

and the derivative of the right hand side splits into two parts, where the first term equals

d

dθ

(∫
R
ψ(x, ĉ(x))(µ(t−, x) + θµ̃(x))dx

)∣∣∣
θ=0

(3.152)

=

∫
R
ψ(x, ĉ(x))µ̃(x)dx,

while the second term equals
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d

dθ

(
V (τ+, (µ+ θµ̃)ĉ(τ

+, ·))
)∣∣∣
θ=0

(3.153)

=
d

dθ

(
V (τ+, (µ+ θµ̃)(τ−, y(·))|yx|)

)∣∣∣
θ=0

=
d

dθ

(
V (τ+, µĉ(τ

+, ·) + θµ̃(τ−, y(·))|yx|)
)∣∣∣
θ=0

=

∫
R

∂V

∂m
(τ+, µĉ(τ

+, ·), x)µ̃(τ−, y(x))|yx|dx

=

∫
R

∂V

∂m
(τ+, µĉ(τ

+, ·), g(y, ĉ(y)))µ̃(τ−, y)dy

=

∫
R
Û(τ+, g(y, ĉ(y)))µ̃(τ−, y)dy

Since the direction µ̃ could be arbitrary, it gives that

Û(τ−, x) = ψ(x, ĉ(x)) + Û(τ+, g(x, ĉ(x))). (3.154)

Therefore we summarize the necessary condition for the impulse mean field control problem

(3.131, 3.132) as

Theorem 3.6.3. The optimal control {v̂, ĉ} minimizing the cost (3.132) should satisfy

v̂ = arg min
v

{
L(x, µ, v) +

∂Û

∂x
f(t, x, µ, v) +

1

2

∑
i,j

∂2Û

∂xi∂xj
aij(t, x, µ, v)

}
, (3.155)

∂ψ

∂c
(x, ĉ(x)) +

∂Û

∂x
(τ+, g(x, ĉ(x)))gc(x, ĉ(x)) = 0, (3.156)

where µ(t, x) and Û(t, x) satisfy
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∂µ(t, x)

∂t
= −∇ ·

(
f(t, x, µ(t, ·), v̂(t, x, µ(t, ·),∇Û ,∇2Û))µ(t, x)

)
+
∑
i,j

∂2

∂xi∂xj

(1

2
aij(t, x, µ(t, ·), v̂(t, x, µ(t, ·),∇Û ,∇2Û))µ(t, x)

)
, (3.157)

∂Û

∂t
(t, x) +H(t, x, µ(t, ·),∇Û ,∇2Û) +

∫
Rd

∂H

∂m
(t, x, µ(t, ·),∇Û ,∇2Û , ξ)µ(t, ξ)dξ = 0.

(3.158)

with jump conditions

µ(τ+, x) = µ(τ−, y(x))|yx(x)|, (3.159)

Û(τ−, x) = ψ(x, ĉ(x)) + Û(τ+, g(x, ĉ(x))), (3.160)

where y(x) is defined by the implicit function x = g(y, c(y)).

3.7 Numerical Result

Example 3.7.1. We consider the problem: find continuous control u(t) and impulsive control

ck to minimize

J = E
[( ∫ T

t0

1

2
(X(t)2 + u(t)2)dt+

a

2
c2
)

+
1

2
X(T )2

]
, (3.161)

where X(t) is the process satisfying

 dX = αEX · (1− u)dt+ σdW, t ∈ (t0, τ) ∪ (τ, T )

X(τ+) = X(τ−)− ck(X(τ−)).
(3.162)

By Theorem 3.6.3, the feedback control u(x) has the form
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u(x) = αEX
∂V (x, t)

∂x
. (3.163)

The control problem becomes the forward backward PDE



∂V (x,t)
∂t + σ2

2
∂2V
∂x2

+ ∂V
∂x αEX(1− αEX ∂V

∂x ) + 1
2(x2 + (αEX ∂V

∂x )2)

+x
∫
R α

∂V
∂x (ξ, t)

(
1− αEX ∂V

∂x (ξ, t)
)
m(t, ξ)dξ = 0,

∂m(t,x)
∂t = − ∂

∂x

(
αEX · (1− αEX ∂V

∂xm(t, x))
)

+ σ2

2
∂2m(t,x)
∂x2

,

t ∈ (t0, τ) ∪ (τ, T ),

(3.164)

with initial condition m(t0, x) = m0(x) and terminal condition V (x, tN ) = 1
2x

2. The impulsive

control c(x) satisfies

∂V

∂x
(x− c(x), τ+) = ac(x). (3.165)

The jump of value function V (x, t) and the density m(t, x) at time τ will satisfy

V (x, τ−) = V (x− c(x), τ+) + a
2c(x)2 (3.166)

m(τ+, x) = m(τ−, z(x))|zx(x)|, (3.167)

where y = z(x) is the implicit function of x = y − c(y).
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Choose a = 30, α = 0.1, σ = 1, m0(x) = 1√
2π·(0.2)2

exp(− (x−6)2

2·(0.2)2
), and t0 = 0, τ = 0.5, T = 1.

Table 3.3: List of Cost Tested by Varying Controls

u c J

0.0 0.0 42.6538

0.0 0.1 42.5056

0.1 0.0 42.0284

0.5 0.0 39.7232

1.0 0.0 37.2850

2.0 0.0 33.8410

3.0 0.0 32.1914

4.0 0.0 32.2042

3.5 0.0 31.9975

3.4 0.0 32.0037

3.6 0.0 32.0037

3.5 0.05 31.3606

3.5 0.04 31.3095

3.5 0.03 31.3477

û ĉ 30.8517

Remark 3.7.2. In this table, we test the system by using different constant continuous control

u and different impulse c, and list the cost corresponding to the control pair. The last row of

the table gives the cost under the optimal control. The evolution of the distribution under the

optimal control is shown in Figure 3.5 and the jump of the distribution is shown in Figure 3.6.

A particular path of optimal control and the corresponding trajectory are shown in Figure 3.8

and Figure 3.7. In Figure 3.10 and Figure 3.9, we give the expected value of optimal control

and the expected path of the optimal trajectory.
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Figure 3.5: Evolution of Distribution

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Shift of Distribution

m(τ-,x)

m(τ+ ,x)

Figure 3.6: Shift of Distribution
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Figure 3.7: A Particular Path of Optimal Control:
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Figure 3.8: An Optimal Path of State
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Figure 3.9: Expected Optimal Control
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Figure 3.10: Expected Optimal Trajectory:
m(t) = EXt
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Example 3.7.3. Now we introduce an impulse to the bank model. Consider the process

dx(t) = [a(m(t)− x(t)) + ut]dt+ σdWt (3.168)

and the impulse is applied to the system at time τ in the following manner:

x(τ+) = x(τ−)− c. (3.169)

We consider the problem of finding the control {u(·), c} to minimize the following cost functional:

J(ut, c) = E
[ ∫ T

0

1

2
u2
t − qut(mu(t)− xu(t)) +

ε

2
(mu(t)− xu(t))2dt (3.170)

+
1

2
βc2 +

α

2
(mu(T )− xu(T ))2

]
.

By Theorem 3.6.3, we know that the problem is translated into solving the system of the

FBPDEs

∂µ

∂t
= −∂x[((m(t)− x)(a+ q)− ∂xÛ)µ] +

1

2
σ2∂xxµ (3.171)

∂Û

∂t
+ (a+ q)∂xÛ(m(t)− x) +

1

2
(ε− q2)(m(t)− x)2 − 1

2
(∂xÛ)2 +

1

2
σ2∂xxÛ (3.172)

+

∫
Rd

[(a+ 2q)∂xÛ(t, ξ) + (ε− q2)(m(t)− ξ)]µ(t, ξ)dξ = 0,

in the interval t ∈ (0, τ)∪ (τ, T ). We already know that Û(t, x) = (1/2)η(t)(m(t)−x)2 +ζ(t)

satisfies (3.172) for t ∈ (τ, T ), where η(t), ζ(t) solves
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 η̇(t) = 2(a+ q)η(t) + η(t)2 − (ε− q2),

ζ̇(t) = −1
2σ

2η(t),
t ∈ (τ, T ), (3.173)

with terminal condition η(T ) = α, ζ(T ) = 0. The equation which optimal impulse satisfies is

written as

βc+ η(τ+)(m(τ+)− (x− c)) = 0, (3.174)

where the optimal impulse could be obtained as

ĉ(x) = −η(τ+)(m(τ+)− x)

β + η(τ+)
. (3.175)

The function y = y(x) defined by

x = y − ĉ(y) (3.176)

could be solved out as

y(x) = x− η(τ+)(m(τ+)− x)

β
. (3.177)

Then the the jump condition of the value function could be written as:

Û(τ−, x) =
1

2
βĉ2(x) +

1

2
η(τ+)(m(τ+)− (x− ĉ(x))) + ζ(τ+) (3.178)

=
βη(τ+)

2(β + η(τ+))
(m(τ+)− x)2 + ζ(τ+).
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We expect m(τ+) = m(τ−), such that Û(τ−, x) has the form

Û(τ−, x) =
1

2
η(τ−)(m(τ−)− x)2 + ζ(τ−). (3.179)

In fact

m(τ−) =

∫
R
yµ(τ−, y)dy (3.180)

=

∫
R
y(x)µ(τ−, y(x))|yx|dx

=

∫
R

(
x− η(τ+)(m(τ+)− x)

β

)
µ(τ+, x)dx

= m(τ+).

Therefore we conclude that Û(t, x) = 1
2η(t)(m(t)−x)2 +ζ(t) solves (3.172) , where η(t) satisfies

η̇(t) = 2(a+ q)η(t) + η(t)2 − (ε− q2), t ∈ (0, τ) ∪ (τ, T ), (3.181)

η(T ) = α; (3.182)

η(τ−) =
βη(τ+)

β + η(τ+)
(3.183)

and

ζ(t) =

∫ T

t

1

2
σ2η(s)ds. (3.184)

Following is a table shows that how the control process ut and the impulse c works to minimize

the cost functional. The coefficient are chosen as: a = 0.1, q = 0.1, β = 0.1, α = 1, ε = 1, σ = 2,

µ0(x) = 1√
2π

exp{−x2/2}.
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Table 3.4: Value of Cost Function

ut = 0, c = 0 ut = ût, c = 0 ut = ût, c = ĉ

J(ut, c) 7.972162 3.839801 3.524391

3.8 Summary and Future Work

3.8.1 Summary

In this thesis three types of impulsive optimal control problems are considered. Our primary

motivation is control of epidemics models. There are some works in the literature dealing with

deterministic impulsive control problems. However, papers that deal with stochastic impulsive

control problems are rare. Mean field control problems have recently been dealt with by many

authors. To our knowledge impulsive mean field control has not been studied before. In this

thesis, the three different types of impulsive control problems have been dealt with in a coherent

manner. In each case necessary conditions to characterize the optimal control, and numerical

examples to validate the necessary conditions are presented.

Stability properties of SIR models have been studied by many authors. We studied stability

properties of both deterministic and stochastic multi-group SIR models. When dealing with

migration, the positivity of the populations are ignored by many papers, and the validity of

the Lyapunov function also needs justification. In the discussion of the stochastic version, we

proved the law of large numbers in two particular forms:

lim
T→∞

1

T

∫ T

0
f(t)dBt = 0, a.s.

lim
T→∞

1

T

∫ T

0
f(X(t))dt =

∫
R
f(x)ν(x)dx, a.s.

when the function f(·) and the process X(t) satisfy some conditions. We applied impulsive

optimal controls to SIR models, where migration restriction and vaccination are modeled as

continuous and impulsive controls respectively.

Mean field controls often arise in studying large numbers of interacting agents. We studied

inter-banks lending and borrowing model and we compared Carmona’s solution [9] with the
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solution to the weighted multi-objective control problem and the solution of the representative

bank. The solutions to the first two problems converges to the solution of the representative

bank when the number of banks tends to infinity. When dealing with the control problem of the

dominating player and the representative player, we developed a general conclusion of coupled

forward backward optimal control problem. We applied the dominating player game to the

inter-banks model and displayed the numerical results.

3.8.2 Future Work

Control problems where impulsive controls are applied at random times are very interesting and

need to be considered. Unlike vaccination models, there are many problems where impulsive

controls are not applied at known times. In some cases, the time to apply impulsive controls

could be considered as a control variable. It will be necessary to find the best timing and opti-

mal control to apply.

In future work we plan to consider epidemic models with large real data. The control strat-

egy could be more than migration restriction and vaccination, and the cost function should be

properly modeled.

In mean field problems we are interested in opinion dynamic in social networks. People have

to balance seeking consensus and sticking to their own opinions and decisions as they relate

to individuals within their own group as well as outside of their group. We also plan to study

mean field problems to study problems in economics. Finally we have interest in studying these

problems in the framework of variational problems in abstract spaces.
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