
ABSTRACT

COMBS, ALEXANDER NEAL . The Generalized Ideal Index and CAP∗-subalgebras of Leibniz Algebras.
(Under the direction of Dr. Ernest Stitzinger.)

Just as Lie algebras are generalizations of groups, Leibniz algebras are generalizations of Lie alge-

bras. Many important results from Lie algebras have been extended to Leibniz algebras; for example,

Engel’s theorem and Lie’s theorem. Ultimately from group theory, many other structures have more

recently been examined in Lie algebras that give insight into the solvability or supersolvability of Lie

algebras.

In this work, we introduce several generalizations of existing Lie and Leibniz algebra structures.

David Towers introduced the idea of the ideal index of a maximal subalgebra of a Lie algebra, and

Leila Goudarzi and Ali Reza Salemkar generalized this ideal index to all subalgebras of Lie algebras.

Sara Chehrazi introduced two extensions of CAP-subalgebras of Lie algebras, CAP∗- and SCAP-

subalgebras. In this work, we define these concepts for Leibniz algebras and extend results on

solvability and supersolvability.
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Chapter

1

Introduction

Group theory has a long history of study in mathematics, dating back to Cauchy and Galois in the

19th century. However, study in group theory was not commonplace until long after Galois’ untimely

death. In fact, much of what we know today about group theory was developed throughout the 20th

century, and work in group theory continues even today.

In the mid-nineteenth century, another algebraic structure, the Lie algebra, was introduced from

the study of Lie groups. In particular, Lie algebras found applications into applied mathematics and

physics. Many results from group theory have been extended and generalized to Lie algebras over

the past century, a work which continues today as well.

Several generalizations of the Lie algebra have been proposed and studied. In this work, we focus

on the Leibniz algebra, which is a generalization of Lie algebras that is not antisymmetric. Leibniz

algebras were defined in 1993 by Jean-Louis Loday [14]. Just as for groups and Lie algebras, many

results from the study of Lie algebras have been generalized to Leibniz algebras, and we continue
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that process in this work.

Much of the work in this paper relies on other concepts introduced for Lie algebras by David

Towers. Some of these concepts have been discussed and extended to Leibniz algebras by [16].

We generalize these concepts and provide more results to characterize solvable and supersolvable

Leibniz algebras. Background concepts necessary for this work are discussed in Chapter 2.

Some links between solvable and supersolvable Leibniz algebras and the generalized ideal index

of Chapter 3 are connected through the concept of c-ideals, introduced for Lie algebras by [13] and

extended to Leibniz algebras by [16]. The concept of a c-ideal is analogous to c-normal subgroups in

group theory, introduced in [17] by Wang. The necessary properties related to c-ideals are discussed

in Chapter 2. Some theorems related to c-ideals were proved independently by [16] and this work.

For these theorems, proofs are given in Chapter 2.

In Chapter 3, the primary object of study is the generalized ideal index. Ideal index for Lie algebras,

discussed by Towers, are analogous to the concept of the index complex of a maximal subgroup

of a finite group, discussed in [7] by Deskins. [16] studied the extension of this concept to Leibniz

algebras. However, the ideal index is only defined in both these cases for maximal subalgebras. In

[8], Goudarzi and Salemkar discuss a generalized ideal index for any subalgebra of a Lie algebra,

not only those that are maximal. Chapter 3 extends this concept to Leibniz algebras and preserves

properties that successfully extend to Leibniz algebras, such as solvability and supersolvability

criteria.

David Towers introduced CAP-subalgebras of Lie algebras in [15]. CAP-subalgebras are analogous

to ideas in finite group theory that provide some characterizations of finite solvable groups and

their subgroups. Similarly, Towers showed that CAP-subalgebras of Lie algebras can characterize

solvable finite-dimensional Lie algebras. Turner extended several of these results to Leibniz algebras

in [16]. In Chapter 4, we study CAP∗-subalgebras, a generalization of CAP-subalgebras discussed

by Chehrazi in [3]. CAP∗ subalgebras are analogous to the CAP∗-subgroup in finite group theory

discussed by Li and Liu in [9]. Using these subalgebras, we obtain more characterizations for solvable

and supersolvable Leibniz algebras.
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Chapter 5 takes a look at a different generalization of CAP-subalgebras called SCAP-subalgebras,

or semi-CAP subalbgebras, which cover or avoid a chief series of A rather than every chief factor.

This concept is related to semi cover-avoiding subgroups in the theory of finite groups, studied by

for example Li et al. in [10]. This concept was extended to Lie algebras by Chehrazi and Salemkar in

[4], and in Chapter 5 we attempt to extend some of their properties to Leibniz algebras.
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Chapter

2

Preliminaries

2.1 Leibniz Algebras

We begin with basic definitions and concepts that are used throughout. Much of the information

about Leibniz algebras in this section comes from [6] unless specified otherwise.

A (left) Leibniz algebra is a vector space over a fieldF together with a bilinear map (multiplication)

[, ] : A×A→ A

that satisfies the left Leibniz identity

[a , [b , c ]] = [[a , b ], c ] + [b , [a , c ]]

for all a , b , c ∈ A.

For an element a ∈ A, the left multiplication operator La : A→ A is defined by La (b ) = [a , b ] for

all b ∈ A. The left Leibniz identity is obtained from requiring all left multiplication operators to be
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derivations. Similarly, one may define a right Leibniz algebra by requiring the right multiplication

operator Ra : A→ A defined by Ra (b ) = [b , a ] for all b ∈ A to be a derivation, resulting in the right

Leibniz identity

[[b , c ], a ] = [[b , a ], c ] + [b , [c , a ]].

In general, right and left Leibniz algebras are different. Throughout this paper, we assume A is a

finite dimensional left Leibniz algebra, and that the term ’Leibniz algebra’ refers to a left Leibniz

algebra.

For any Leibniz algebra, define Leib(A)=span{[a , a ]|a ∈ A}. If Leib(A) is zero, then A is a Lie

algebra. If B , C are subsets of the Leibniz algebra A, then the notation [B , C ] = {[b , c ]|b ∈ B and

c ∈ C }. We call B ⊆ A a subalgebra of A if [B , B ] ⊆ B . A subalgebra I of A is called a left ideal if

[A, I ]⊆ I or a right ideal if [I , A]⊆ I . If both conditions hold, I is an ideal of A. For example, Leib(A)

is an ideal of A, and it is Abelian as [Leib(A),Leib(A)] = 0. In fact, defining factor algebras in the

usual way, Leib(A) is the smallest ideal such that
A

Leib(A)
is a Lie algebra. The sum and intersection

of two ideals is an ideal, but the product of two ideals may not be an ideal in a Leibniz algebra.

A Leibniz algebra is simple if it has no nonzero proper ideals. This agrees with the Lie algebra

definition. However, there is another commonly used definition of a simple Leibniz algebra we will

refer to when proving theorems about simple Leibniz algebras (see Chapter 3).

As with Lie algebras, we defined the center of A and the normalizer of a subalgebra B of A. The

left center of A, denoted Z l (A) = {x ∈ A|[x , a ] = 0 for all a ∈ A}, and the right center of A, denoted

Z r (A) = {x ∈ A|[a , x ] = 0 for all a ∈ A}. The center of A, denoted Z (A) = Z l (A)∩ Z r (A). The left

normalizer of B in A, denoted N l
A (B ) = {x ∈ A|[x , a ] ∈ B for all a ∈ B }, and the right normalizer

of B in A, denoted N r
A (B ) = {x ∈ A|[a , x ] ∈ B for all a ∈ B }. The normalizer of B in A, denoted

NA(B ) = N l
A (B )∩N r

A (B ). The left normalizer and normalizer are subalgebras of A, but the right

normalizer may not be.

A related concept is the centralizer of a subalgebra H of a Leibniz algebra, denoted ZA(H ). It is

defined as Z l
A(H )∩Z r

A (H )where Z l
A(H ) = {x ∈ A|[x , h ] = 0 for all h ∈H } and Z r

A (H ) = {x ∈ A|[h , x ] = 0

for all h ∈H }. We use this concept in Chapter 4.
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As in Lie algebras, solvable Leibniz algebras are of interest. We define the derived series of a

Leibniz algebra A as the series A ⊇ A(1) ⊇ A(2) ⊇ · · · where A(1) = [A, A] and A(k ) = [A(k−1), A(k−1)].

A Leibniz algebra A is said to be solvable if A(k ) = 0 for some positive integer k . The sum and

intersection of any two solvable ideals of a Leibniz algebra is solvable, so every Leibniz algebra

A contains a unique maximal solvable ideal, called the radical of A and denoted r a d (A), which

contains all solvable ideals.

We will make frequent use of the following two lemmas throughout this work. They are results

from Barnes in [1].

Lemma 2.1.1. If N is a minimal ideal of A, then either [N , A] = 0 or [n , a ] =−[a , n ] for all n ∈N , a ∈ A.

Lemma 2.1.2. Let M be an irreducible A-module. Let (T ,S ) be the associated representation. Then

A/K e r (T ,S ) is a Lie algebra and either M A = 0 or [a , m ] =−[m , a ].

2.2 Ideals and c- Ideals

The following concepts have been studied by, for example, [13] for Lie algebras and [16] for Leibniz

algebras. Future chapters will expand on these definitions and generalize them.

Definition 2.2.1. Let B be a subalgebra of A. The core of B with respect to A, BA , is the largest ideal

of A contained in B .

Definition 2.2.2. Let B be a subalgebra of A. B is a c-ideal of A if there is some ideal C such that

B +C = A and B ∩C ⊂ BA .

Example 2.2.3. If B is itself an ideal of A, then it is a c-ideal of A, since A = B + A and B ∩A ⊂ BA

since B ∩A = B = BA since B is an ideal.

Lemma 2.2.4. 1. If B is a c-deal of A and B ⊂ K ⊂ A, then B is a c-ideal of K .

2. If I is an ideal of A and I ⊂ B , then B is a c-ideal of A if and only if B/I is a c-ideal of A/I .
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Proof. 1. If B is a c-ideal of A, then there is an ideal C such that A = B +C and B ∩C ⊂ BA . Since

B ⊂ K , K = (B +C )∩K = B +C ∩K , and C ∩K is an ideal of K . B ∩ (C ∩K ) = (B ∩C )∩K ⊂

BA ∩K ⊂ BK ., so B is a c-ideal of K complemented by C ∩K .

2. (=⇒ ) Suppose B is a c-ideal of A and I is an ideal of A contained in B . Then there is an ideal

C such that A = B +C and B ∩C ⊂ BA . Suppose a ∈ A. Then, since A = B +C , a = b + c for

some b ∈ B , c ∈ C . Suppose a + I ∈ A/I . Then a + I = (b + c ) + I = (b + I ) + (c + I ). Since

b + I ∈ B/I , c + I ∈C /I , it follows that A/I = B/I +C /I , =⇒ A/I = B/I + (C + I )/I . Since C

and I are ideals of A, (C + I )/I is an ideal of A/I . Finally, (B/I )∩ (C + I )/I = (B ∩ (C + I ))/I =

(B ∩C +B ∩ I )/I = (B ∩C + I )/I ⊂ BA/I = (B/I )A/I . Thus B/I is a c-ideal of A/I complemented

by (C + I )/I .

Conversely, suppose B/I is a c-ideal of A/I . Then there is an ideal C /I such that B/I +C /I =

A/I and (B/I ) ∩ (C /I ) ⊂ (B/I )A/I = BA/I . Similarly to the forward direction, this implies

A = B +C . Since (B/I )∩ (C /I ) = (B ∩C )/I ⊂ (B/I )A/I = BA/I , it follows that B ∩C ⊂ BA

Theorems 2.0.6 and 2.0.7 have also been proved by [16]. The proofs are particularly nice, so we

include them here.

Theorem 2.2.5. All maximal subalgebras of a Leibniz algebra A are c-ideals of A if and only if A is

solvable.

Proof. Suppose A is a Leibniz algebra in which all maximal subalegbras are c-ideals, but A is not

solvable. Choose the smallest such example of A. Consider A/Leib(A). Note if Leib(A) is {0}, then A

is Lie and the theorem is known. If Leib(A) is nonzero, then maximal subalgebras of A/Leib(A) are

of the form M /Leib(A), where M is a maximal subalgebra of A. By Lemma 2.1 (ii), every maximal

subalgebra of A/Leib(A) is a c-ideal of A/Leib(A).

On the other hand, suppose A is solvable. Let M be a maximal subalgebra of A. Let I be a minimal

ideal of A. Suppose I 6⊂M . Then M + I is larger than M , which is maximal, so M + I = A. Since

I ∩M = {0} ⊂MA , M is a c-ideal of A.
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Now, choose the smallest dimensional counterexample A (so that A is solvable, but it has a

subalgebra M that is not a c-ideal of M ). Suppose I ⊂M . Since A/I is of smaller dimension than A,

M /I is a c-ideal of A/I since it is maximal. However, Lemma 2.2.4 (ii) implies that M is a c-ideal of

A, a contradiction.

Theorem 2.2.6. Let A be a Leibniz algebra that is either

a) over a field F of characteristic zero, or

b) over an algebraically closed field F of characteristic greater than 5.

Then A has a solvable maximal subalgebra that is a c-ideal of A if and only if A is solvable.

Proof. Suppose A has a solvable maximal subalgebra that is a c-ideal of A, say M . Consider the

radical of A, rad(A). First, suppose rad(A) is not contained in M . Then M + rad(A) is larger than M ,

a maximal subalgebra. So M + rad(A) = A. But M and rad(A) are both solvable, so A is solvable.

Now suppose rad(A) is contained in M . Since A/rad(A) is semisimple, A/rad(A) is Lie since

Leib(A)=0. Since rad(A) is contained in M , by Lemma 2.1 M /Leib(A) is a c-ideal of the Lie algebra

A/rad(A). Since A/rad(A) is a Lie algebra that has a maximal subalgebra which is a c-ideal, A/rad(A)

is solvable by [Towers 3.2/3.3]. Since rad(A) is also solvable, we have that A is solvable.

Conversely, if A is solvable, Theorem 3.1 implies A has a maximal subalgebra that is a c-ideal.

2.3 Index Complex

The index complex for maximal subalgebras was introduced by Towers in [14]

Definition 2.3.1. Let M be a maximal subalgebra of A. A subalgebra C of A is said to be a completion

for M if C is not contained in M but every proper subalgebra of C that is an ideal of A is contained

in M . The set of all completions of M , I (M ) is called the index complex of M in A.

Example 2.3.2. Below, in Lemma 2.0.12, it is shown that every maximal subalgebra of a Leibniz

algebra A has at least one completion C , at least one of which is an ideal of A.

8



Definition 2.3.3. The strict core of a subalgebra B 6= 0, denoted k (B ), is the sum of all ideals of A

that are proper subalgebras of B .

A simple example shows that the strict core and core can differ even when B is itself an ideal.

Example 2.3.4. Consider the Leibniz algebra A =span{x , a , b , c , d }with [a , b ] = c , [b , a ] = d [x , a ] =

a =−[a , x ], [x , c ] = c , [x , d ] = d , [c , x ] = d , [d , x ] =−d , otherwise 0.

Consider the subalgebra B =span{d }. Note B is an ideal, so BA = B . However, k (B ) = 0.

Lemma 2.3.5. If M is a maximal subalgebra of A then I (M ) is non-empty. In fact, I (M ) contains an

ideal of A.

Proof. The set of ideals of A which do not lie in M is a non-empty (e.g., A itself), partially ordered

(by dimension) set. Choose C to be a minimal element of this set. Then A =M +C , and k (C )⊂M

since C is an ideal of minimal dimension not contained in M , so C ∈ I (M ).

Definition 2.3.6. If C is a completion of M , and C is an ideal of A, then we call C an ideal completion

of A.

The below theorem, which is proved for Lie algebra in [14] and for Leibniz algebras in [16], allows

for the definition of ideal index.

Theorem 2.3.7. Let C and D be ideal completions of the maximal subalgebra M of A. Then C /k (C )∼=

D /k (D ).

Proof. For contradiction, let A be the smallest dimensional Leibniz algebra that has a maximal

subalgebra M with two ideal completions C and D such that C /k (C ) � D /k (D ). First suppose

k (C )∩k (D ) 6= 0. Then, in
A

k (C )∩k (D )
,

M

k (C )∩k (D )
is a maximal subalgebra with ideal completions

E =
C

k (C )∩k (D )
and F =

D

k (C )∩k (D )
. However, since k (C ) ∩ k (D ) 6= 0 and A is the smallest

counterexample, we know E /k (E )∼= F /k (F ) since they are ideal completions. This is a contradiction.

Hence k (C )∩k (D ) = 0.
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Definition 2.3.8. The ideal index of a maximal subalgebra M of A, denoted η(A : M ), is the dimen-

sion of C /k (C ), where C is an ideal completion of M in A.

Corollary 2.3.9. If M is a maximal subalgebra of A, then η(A : M ) is well-defined.

The following theorems on the ideal index of maximal subalgebras have been proved by [Turner]

for Leibniz algebras. We will use these results in later chapters and attempt to expand on them,

generalizing them to non maximal subalgebras as well as the concept of ideal index.

Proposition 2.3.10. Let M be a maximal subalgebra of A and let B be an ideal of A with B ⊂M .

Let C /B be an ideal completion of M /B in A/B , suppose k (C /B ) = K /B , and let D be an ideal

completion of M in A. Then C /K ∼=D /k (D ).

Corollary 2.3.11. Let M be a maximal subalgebra of A and let B be an ideal of A with B ⊂M . Then

η(A/B : M /B ) =η(A : M ).

Theorem 2.3.12. Let M be a maximal subalgebra of A. Then M is a c-ideal of A if and only if

η(A : M ) =dim(A/M ).

Corollary 2.3.13. A is solvable if and only if η(A : M ) =dim(A/M ) for all maximal subalgebras M of

A.

Corollary 2.3.14. Let A be a Leibniz algebra over a field F , where F is of characteristic zero or F is

algebraically closed with characteristic greater than 5. Then A has a solvable maximal subalgebra M

with η(A : M ) =dim(A/M ) if and only if A is solvable.

Theorem 2.3.15. If A has a supersolvable maximal subalgebra M with η(A : M ) = 1 and N (A) is not

contained in M , then A is supersolvable.

2.4 Nilpotency and Cartan Subalgebras

The topics of nilpotency, Engel subalgebras, and Cartan subalbgeras are of interest while studying

CAP∗-subalgebras in Chapter 4.
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A Leibniz algebra A is nilpotent of class c if every product of c + 1 elements is 0 and there is

some product of c elements that is not zero. Equivalently, A is nilpotent if Ac+1 = 0 for some c . For

example, A is solvable if and only if [A, A] is nilpotent.

Suppose A is a Leibniz algebra. The Fitting null component of the left multiplication operator

of an element a , La is denoted EA(a ). It is called the Engel subalgebra corresponding to a . In a

Lie algebra, a always belongs to such an Engel subalgebra, but this is not necessarily the case for

Leibniz algebras.

A subalgebra H of A is called a Cartan subalgebra if it is nilpotent and self-normalizing (NA(H ) =H ).

The following theorems from [2] provides a realization and a useful result

Theorem 2.4.1. A subalgebra of a Leibniz algebra A is a Cartan subalgebra if it is minimal in the set

of all Engel subalgebras of A.

Lemma 2.4.2. Let H be a Cartan subalgebra of A and I an ideal of A. Then (H + I )/I is a Cartan

subalgebra of A/I .

2.5 CAP-subalgebras

We also consider subalgebras that cover or avoid certain factor algebras called chief factors of a

Leibniz algebra. These subalgebras are called CAP-subalgebras, and we offer generalizations of

these subalgebras in later chapters.

Definition 2.5.1. Let A be a finite dimensional Leibniz algebra, C a subalgebra of A, and D an ideal

of A. The factor algebra C /D is called a chief factor of A if C /D is a minimal ideal of A/D .

Definition 2.5.2. Let U be a subalgebra of the Leibniz algebra A. U is said to avoid the factor algebra

C /D if U ∩C =U ∩D . Similary, U is said to cover the factor algebra C /D if U +C =U +D .

Definition 2.5.3. The subalgebra U has the covering and avoidance property, or is called a CAP-

subalgebra if it covers or avoids every chief factor of A.

11



Of particular interest in later chapters are specifically Frattini and non-Frattini chief factors of A.

The Frattini subalgebra of A, denoted F(A), is the intersection of all maximal subalgebras of A. The

Frattini ideal of A, denotedφ(A), is the largest ideal which is contained in F(A).

The following lemma from [1] is useful in Chapter 4.

Lemma 2.5.4. Let C be a Cartan subalgebra of A and K an ideal of A. Then (C +K )/K is a Cartan

subalgebra of A/K .
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Chapter

3

Generalized Ideal Index

3.1 Definitions and Properties

In [14], David Towers introduced the idea of the ideal index of a maximal subalgebra of a Lie algebra

based on similar concepts from group theory. For Lie algebras, the ideal index provides useful results

related to Lie algebra structure. Many of these useful properties were extended to Leibniz algebras

by Turner in [16]. In [8], Goudarzi and Salemkar provide a generalization of the ideal index to all

subalgebras of a Lie algebra. In this chapter, we extend this generalization to Leibniz algebras along

with properties that still hold in the Leibniz case.

Definition 3.1.1. Let H be a subalgebra of a Leibniz algebra A and K an ideal of A with A =H +K .

Then the dimension of the Leibniz algebra
K

K ∩HA
is said to be the ideal index of H in A, denoted

by η̄(A : H ), provided that dim
T

T ∩HA
≥ dim

K

K ∩HA
for all ideals T of A such that A =H +T .

13



Example 3.1.2. Consider a nilpotent Lie algebra A of dimension 5 with basis {x , y , z , t , w } and

multiplication

[x , w ] = t , [x , t ] = z , [x , z ] = y , [t , w ] = y

Note y ∈ Z (A). Consider the subalgebra H =span{x , y }. Then HA =span{y }. Consider K spanned

by {w , y , t , z }.

A =H +K and dim
K

K ∩HA
= 3.

Any smaller dimensional choice for K would either not complete H or not be an ideal, and larger

dimensional choices would yield larger values for dim
K

K ∩HA
. Thus η̄(A : H ) = 3.

Example 3.1.3. Consider the cyclic 2-dimensional Leibniz algebra spanned by x and [x , x ] = x 2

with [x , x 2] = x 2.

Let H =span{x − x 2}. Note H is not an ideal since [x − x 2, x ] = x 2. Since H is one dimensional,

HA = 0. The smallest ideal K such that A = H + K must be one dimensional, e.g. K =span{x 2}.

Then η̄(A : H ) =dim
K

K ∩HA
= 1.

Lemma 3.1.4. Let A be a Leibniz algebra, and H a proper subalgebra of A.

1. η̄(A : H )≥ dim(A/H ).

2. η̄(A : H )≥max{η̄(T : H ), η̄(A : T )} for any subalgebra T of A containing H . Also, if H ⊆ T ⊂ A,

then η̄(A : H )> η̄(T : H ).

3. η̄(A : H ) =dim(A/H ) if and only if H is a c-ideal of A.

4. η̄(A : H ) = η̄(A/N : H /N ) for any ideal N of A that is contained in H .

5. η̄(A : H ) =η(A : H ) if H is a maximal subalgebra of A.

6. If η̄(A : H ) = dim(A/H ), then η̄(T : H ) =dim(T /H ) for all subalgebras T of A containing H .

Proof. 1. For some ideal K of A, η̄(A : H ) =dim
�

K

K ∩HA

�

≥dim
�

K

K ∩H

�

= dim
�

A

H

�

since A =

H +K =⇒
A

H
∼=

H +K

H
∼=

K

K ∩H
.
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2. Let T be a subalgebra of A containing H . Suppose K is an ideal of A such that η̄(A : H ) =dim
�

K

K ∩HA

�

,

so that A =H +K . Then K ∩T is an ideal in T and T =H +K ∩T . Thus

η̄(A : H ) =dim
�

K

K ∩HA

�

≥dim
�

K ∩T

K ∩HA

�

=dim
�

K ∩T

K ∩T ∩HA

�

≥ η̄(T : H ).

In the above equation, we have if T is a proper subalgebra of A then K ∩T is a proper subalgebra

of K , giving a strict inequality η̄(A : H )> η̄(T : H ).

Also, since H ⊆ T , HA ⊆ TA . Additionally, A =H +K =⇒ A = T +K so that

η̄(A : H ) =dim
�

K

K ∩HA

�

≥dim
�

K

K ∩TA

�

≥ η̄(A : T ).

3. First suppose that η̄(A : H ) =dim(A/H ). For some ideal K of A this means

dim
�

K

K ∩HA

�

=dim
�

A

H

�

=dim
�

H +K

H

�

=dim
�

K

K ∩H

�

=⇒ H ∩K =HA ∩K ⊂HA =⇒ H is

a c-ideal of A.

Now suppose H is a c-ideal of A. Then there is some ideal C of A such that A =H +C and

C ∩H ⊆HA . By definition,

η̄(A : H )≤dim
�

C

C ∩HA

�

≤dim
�

C

C ∩H

�

=dim
�

C +H

H

�

=dim
�

A

H

�

.

This along with part 1 implies η̄(A : H ) =dim(A/H ).

4. Suppose C is an ideal of A contained in H . Then, for some ideal K of A,

η̄(A : H ) =dim
�

K

K ∩HA

�

=dim
�

K +N

(K ∩HA) +N

�

=dim
�

K +N

(K +N )∩HA

�

Suppose now that C is an ideal of A that contains N with A =H +C . Then

dim
�

C

C ∩HA

�

=dim
�

K

K ∩HA

�

=⇒ dim

�

C /N

(C /N )∩ (H /N )A/N

�

≥dim

�

(K +N )/N
((K +N )/N )∩ (H /N )A/N

�
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=⇒ η̄(A/N : H /N ) =dim

�

(K +N )/N
((K +N )/N )∩ (H /N )A/N

�

=dim
�

K +N

(K +N )∩HA

�

= η̄(A : H ).

5. Let H be a maximal subalgebra of A. We can asssume HA is zero (if not, we may factor it out

by part 4). This means that for some ideal K of A for which A =H +K , η̄(A : H ) =dim(K ). K

must be a minimal ideal; if it had any proper subalgebras that were ideals of A, then η̄(A : H )

would be the dimension of that ideal. Thus η(A : H ) =dim(K ) = η̄(A : H ).

6. From part 3 we know that η̄(A : H ) = dim(A/H ) if and only if H is a c-ideal of A. From [16]we

know that H is a c-ideal of any subalgebra T containing it, thus η̄(T : H ) = dim(T /H ).

For Lie algebras, the definition of a simple Lie algebra is one that has no nontrivial proper ideals.

We may also use this definition for Leibniz algebra, so that the following corollary is true.

Corollary 3.1.5. Let A be a Leibniz algebra. A is simple if and only if for any proper subalgebra H of

A, η̄(A : H ) = dim(A).

However, consider the following. Suppose A is a Leibniz algebra and not a Lie algebra. This

implies that Leib(A) is nonzero. Since Leib(A) is an ideal of A, this means that no non-Lie Leibniz

algebra is simple by the Lie definition unless Leib(A)=A. One possible way to study theorems that

are true for Lie algebras is to instead define a Leibniz-simple Leibniz algebra to be one that has no

nontrivial proper ideals except Leib(A), and A2 6= Leib(A). For this definition, we can modify the

corollary but equivalence is lost.

Corollary 3.1.6. Let A be a Leibniz algebra. If A is Leibniz-simple then for any proper subalgebra H

of A, η̄(A : H ) = dim(A), η̄(A : H ) = dim(Leib(A)), or η̄(A : H ) =dim
A

Leib(A)
.

Proof. Let H be any proper subalgebra of A. The only possible ideals K of A such that A =H +K

are Leib(A) or A itself.

Suppose A = H + Leib(A). Then Leib(A) is not contained in H , so the core of H is zero. Either

η̄(A : H ) =dim
A

A ∩{0}
=dim(A) or η̄(A : H ) =dim

Leib(A)
Leib(A)∩{0}

=dim(Leib(A)).
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Suppose now A 6= H + Leib(A). Then the core of H is either zero or Leib(A), so either η̄(A :

H ) =dim
A

A ∩{0}
=dim(A) or η̄(A : H ) =dim

A

A ∩Leib(A)
=dim

A

Leib(A)
.

3.2 Solvability

The following theorems give conditions on the ideal index of second maximal subalgebras for a

Leibniz algbera to be solvable. For Lie algebras, the theorems and proofs may be found in [8]. For

Leibniz algebras, many of the proofs utilize the fact that for any Leibniz algebra A, A/Leib(A) is a Lie

algebra. Leib(A) is also a solvable ideal, so if A/Leib(A), we can conclude A is solvable as well.

Theorem 3.2.1. A Leibniz algebra A is solvable if for any second maximal subalgebra H of A, there is

an ideal K of A containing HA such that A =H +K , η̄(A : H ) = dim(K /HA), and CA/HA
(K /HA) 6= 0.

Proof. We will use induction. Assume A is the smallest dimensional Leibniz algebra that is as stated

but not solvable. This theorem is known for Lie algebras, so assume that A is not Lie. Then there

is a minimal ideal N that is solvable. Let N be a minimal ideal of A and H /N a second maximal

subalegbra of A/N . By hypotheses, there is an ideal K of A containing HA such that A = H + K ,

η̄(A : H ) = dim(K /HA), and CA/HA
(K /HA) 6= 0. Since N ⊂ H by assumption, N ⊂ HA since it is

minimal and thus N ⊂ K since HA ⊂ K . Hence N ⊂H ∩K and

η̄(A/N : H /N ) = dim

�

K /N

K /N ∩HA/N

�

=dim

�

K /N

(H /N )A/N

�

.

Also,

C A/N

HA/N

�

K /N

(H /N )A/N

�

∼=C A

HA

�

K
HA

�

6= 0

This implies that A/N is solvable by the induction hypothesis. Since N is minimal, it is contained

in Leib(A), which is Abelian. Hence N is solvable. Since A/N and N are solvable, we have that A

is.
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Theorem 3.2.2. A Leibniz algebra A is solvable if and only if for any second maximal subalgebra H

of A, there is an ideal K of A containing HA such that A =H +K , η̄(A : H ) = dim(K /HA), and K /HA

is solvable.

Proof. (=⇒ ) First, suppose A is solvable and let H be a second maximal subalgebra of A.

Consider the factor algebra A/HA . There is an ideal K /HA such that A/HA = K /HA +H /HA (for

example, A/HA is itself a candidate) and

η̄(A/HA : H /HA) = η̄(A : H ) =dim
�

K /HA

(K /HA)∩ (H /HA)A

�

=dim
K

HA
since H /HA is core-free.

Clearly, K /HA is solvable since A is.

In the opposite direction, we will use induction. Assume A is the smallest dimensional Leibniz

algebra that is as stated but not solvable. This theorem is known for Lie algebras, so assume that A

is not Lie. Hence Leib(A) is not zero. Let N be a minimal ideal of A and H /N a second maximal

subalegbra of A/N . By hypotheses, there is an ideal K of A containing HA such that A = H + K ,

η̄(A : H ) = dim(K /HA), and K /HA is solvable. Since N ⊂ H by assumption, N ⊂ HA since it is

minimal and thus N ⊂ K since HA ⊂ K . Hence N ⊂H ∩K and

η̄(A/N : H /N ) = dim

�

K /N

K /N ∩HA/N

�

=dim

�

K /N

(H /N )A/N

�

.

Also,

K /N

HA/N
∼=

K

HA
is solvable.

This implies that A/N is solvable by the induction hypothesis. Since N is a minimal ideal, by

Lemma 2.0.1 either [N , N ] = 0 or N ⊆Leib(A). In either case, N is solvable, so A is solvable.

Theorem 3.2.3. A Leibniz algebra A is solvable if and only if there exists a solvable second maximal

subalgebra H of A and an ideal K of A containing HA such that A =H +K , η̄(A : H ) = dim(K /HA),

and K /HA is solvable.

Proof. First, suppose A is solvable and let H be a second maximal subalgebra of A.

Consider the factor algebra A/HA . There is an ideal K /HA such that A/HA = K /HA +H /HA (for

example, A/HA is itself a candidate) and
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η̄(A/HA : H /HA) = η̄(A : H ) =dim
�

K /HA

(K /HA)∩ (H /HA)A

�

=dim
K

HA
since H /HA is core-free.

Clearly, K /HA is solvable since A is.

Using induction, suppose that A is the smallest dimensional Leibniz algebra that is as above but

not solvable. If HA 6= 0, then we show that A/HA is solvable. By Lemma 3.1.4(iv) η̄(A/HA : H /HA) =

η̄(A : H ) =dim(K /HA) =dim((K /HA)/(HA/HA)) and (K /HA)/(HA/HA) = K /HA is solvable, which

makes A/HA solvable by the induction hypothesis. However, since HA is solvable, A is.

Suppose instead that HA is zero. Then K is solvable, and
A

K
∼=

H +K

K
∼=

H

H ∩K
, which are all

solvable making A solvable.

Corollary 3.2.4. A Leibniz algebra A is solvable if it has a solvable second maximal subalgebra H

with η̄(A : H ) = 2.

Theorem 3.2.5. Let A be a Leibniz algebra over a field of characteristic zero. If η̄(A : H ) =dim(A/H )

for all second maximal subalgebras of A, then A is solvable.

Proof. If A is Lie, then the statement is known. Assume that A is not Lie, i.e. that Leib(A) is not

zero. Hence A is not simple. We will use induction. Assume A is the smallest dimensional Leibniz

algebra that is as stated but not solvable. Let N be a minimal ideal of A and H /N a second maximal

subalegbra of A/N . By Lemma 3.1.4(iv), η̄(A/N : H /N ) = η̄(A : H ) =dim(A/H ) =dim
A/N

H /N
.

Thus by the induction hypothesis A/N is solvable. N is solvable because either [N , N ] = 0 or it is

contained in Leib(A). Hence A is solvable.

Theorem 3.2.6. Let A be a Leibniz algebra over a field of characteristic zero. If

η̄(A : H ) = η̄(A : M )+ η̄(M : H ) for any H ⊂M ⊂ A, where H is maximal in M and M is maximal in

A, then A is solvable.

Proof. We will use induction. Assume A is the smallest dimensional Leibniz algebra that is as stated

but not solvable. Also assume that A is not Lie, i.e. Leib(A) is not zero. In the Lie case, the statement

is true.

Let N be a minimal ideal of A (thus solvable). Let H /N ⊂M /N ⊂ A/N be any maximal chain in

A/N . By Lemma 3.1.4(iv),
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η̄(A/N : H /N ) = η̄(A : H ) = η̄(A : M ) + η̄(M : H ) = η̄(A/N : M /N ) + η̄(M /N : H /N ).

Thus A/N is solvable. Since N is also solvable, A is solvable.

Corollary 3.2.7. If A is a Leibniz algebra of a field of characteristic zero, then

η̄(A : H ) =dim(A/H ) for any second maximal subalgebra H of A if and only if η̄(A : H ) = η̄(A :

M ) + η̄(M : H ) for any maximal chain H ⊆M ⊆ A.

Proof. Suppose first that η̄(A : H ) =dim(A/H ) for any second maximal subalgebra H of A. By

Theorem 3.2.6, A is solvable. Let H ⊆M ⊆ A be a maximal chain. Then η̄(A : H ) =dim(A/H ). Then

by Lemma 3.1.4 part 6, η̄(M : H ) =dim(M /H ). Also, by Lemma 3.1.4 part 3, η̄(A : M ) =dim(A/M )

since M is maximal and A is solvable, making M a c-ideal of A. Then η̄(A : H ) = η̄(A : M ) + η̄(M : H )

is equivalent to dim(A/H ) =dim(A/M )+dim(M /H ).

In the other direction, suppose η̄(A : H ) = η̄(A : M ) + η̄(M : H ) for any maximal chain H ⊆M ⊆ A.

By Theorem 3.2.6, A is solvable. Let H be any second maximal subalgebra of A. Then we have

η̄(A : H ) = η̄(A : M ) + η̄(M : H ) where η̄(A : M ) =dim(A/M ) since M is maximal in a solvable

Leibniz algebra, making M a c-ideal. Then, by Lemma 3.1.4 part 6, η̄(M : H ) =dim(M /H ) so that

η̄(A : H ) = η̄(A : M ) + η̄(M : H ) =dim(A/M )+dim(M /H ) =dim(A/H ).

Proposition 3.2.8. Let A be a Leibniz algebra with maximal chain H ⊂M ⊂ A, and K an ideal of A

with A =H +K and η̄(A : H ) =dim
�

K

K ∩HA

�

. If K /(K ∩HA) is solvable, then η̄(A : M )< η̄(A : H ).

Proof. Suppose that K /(K ∩HA) is a cheif factor of A. Then K /(K ∩HA) is Abelian since it is a solvable

minimal ideal of A/(K ∩HA). Since A =H +K =M +K , then K ∩H and K ∩M are ideals of A. Since

HA ⊂H ⊂M , both these ideals contain K ∩HA , implying that K ∩H = K ∩M thus dim(H )=dim(M ),

but this is a contradiction since H is maximal in M . Hence
�

K

K ∩HA

�

is not a chief factor of A and

we can find a chief factor
N

K ∩HA
where N is an ideal of A with N ⊂ K .

Suppose N is a subalgebra of M . Then

η̄(A : M )≤dim
�

K

K ∩MA

�

=dim
�

K

K ∩HA

�

−dim
�

K ∩MA

K ∩HA

�

≤dim
�

K

K ∩HA

�

−dim
�

N

K ∩HA

�

< η̄(A : H ).
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Now suppose N is not contained in M . Then since M is maximal and N is minimal, we have

A =N +M and so η̄(A : M )≤dim
�

N

K ∩MA

�

< η̄(A : H ).

3.3 Supersolvability

In the following, we establish criteria for a Leibniz algebra to be supersolvable (see Chapter 2) based

on the generalized ideal index. These theorems and proofs for Lie algebras may be found in [8].

Corollary 3.3.1. Let A be a Leibniz algebra and M a supersolvable maximal subalgebra of A such

that N (A) is not contained in M or MA = 0. If η̄(A : H ) = 2 for some H maximal in M , then A is

supersolvable.

Proof. We know H ⊂M ⊂ A is a maximal chain. Suppose K is an ideal of A such that

η̄(A : H ) =dim
K

K ∩HA
= 2. Thus,

K

K ∩HA
is solvable since it is two dimensional, and by Proposition

3.2.8, we have η̄(A : M )< η̄(A : H ) = 2 so that η̄(A : M ) = 1.

Suppose N (A) is not contained in M . Then [16] shows A is supersolvable. If instead MA = 0, then

η̄(A : M ) =dim
K

K ∩MA
= 1 for some ideal K of A with A =M +K implies dimK =1, and since MA = 0

and K is an ideal of A, M ∩K =0. Thus
M

M +K
=M ∼=

M +K

K
=

A

K
. Since M and K are supersolvable,

so is A.

Corollary 3.3.2. Let A be a Leibniz algebra over a field of characteristic zero. Then A is supersolvable

if η̄(A : H ) = 2 for any second maximal subalgebra H of A.

Proof. Let M be any maximal subalgebra of A. Suppose H ⊂M ⊂ A a maximal chain. Suppose

K is an ideal of A such that η̄(A : H ) =dim
K

K ∩HA
= 2. Thus,

K

K ∩HA
is solvable since it is two

dimensional, and by Proposition 3.2.8, we have η̄(A : M )< η̄(A : H ) = 2 so that η̄(A : M ) = 1.

Since M is maximal in A, η̄(A : M ) =η(A : M ) = 1 and by [16], A is supersolvable.
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Chapter

4

CAP∗ Subalgebras

4.1 Definitions and Properties

CAP-subalgebras, or subalgebras with the cover-avoiding property discussed in Chapter 2, have

many interesting properties in Lie and Leibniz algebras, some of which were also discussed in

Chapter 2. We will now consider a generalization of CAP-subalgebras of Leibniz algebras which have

been examined for Lie algebras by [3] called CAP∗-subalgebras. The notion of a CAP∗-subalgebra

provides more results on solvability and supersolvability for Leibniz algebras.

Definition 4.1.1. Let A be a Leibniz algebra and C /D a chief factor of A. C /D is said to be a Frattini

chief factor if C /D ⊆φ(A/D ). Similarly, C /D is a non-Frattini chief factor if C /D 6⊆φ(A/D ).

Definition 4.1.2. A subalgebra H of a Leibniz algebra A is called a CAP∗-subalgebra if H covers or

avoids every non-Frattini chief factor of A.
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A CAP∗-subalgebra is a generalization of CAP-subalgebras. Clearly every CAP-subalgebra is a

CAP∗-subalgebra, but not every CAP∗-subalgebra is a CAP-subalgebra. The following lemma is

useful in supersolvable Leibniz algebras.

Lemma 4.1.3. Let A be a Frattini-free Leibniz algebra and K =N1⊕ · · ·⊕Nr , where Ni is a minimal

ideal of A for every 1≤ i ≤ r . Suppose every maximal subalgebra of K is a CAP∗-subalgebra of A. Then

dimNi=1 for all 1≤ i ≤ r .

Proof. Let M be a maximal subalgebra of K . We claim M must contain all but one of the Ni . Suppose

M did not contain two of the Ni , say N1 and N2. Then M ⊆M +N1 ⊂ K and M is not maximal.

Therefore M contains all Ni except one, say N1.

Because A is Frattini-free, every chief factor of A is a non-Frattini chief factor. Since M is a CAP∗-

subalgebra of A, consider the chief factor N1/0. M must cover or avoid this chief factor. Since

M +N1 =M + 0 would imply M contains N1, we know it must avoid N1 instead. Thus M ∩N1 =

M ∩0= 0. Since M is maximal, dimN1=1.

Lemma 4.1.4. Let A be a Leibniz algebra. Let C be an ideal of A and C /D a non-nilpotent ideal of

A/D . Then there exists a maximal subalgebra M of A containing an Engel subalgebra of A such that

A =C +M and D is a proper ideal of C ∩M .

Proof. Since C /D is not nilpotent, there exists an element u in C −D such that C 6⊆ EA(u )+D . Since

L1(u )⊆C because C is an ideal, A =C +EA(u ). Let M be any maximal subalgebra of A containing

EA(u ) +D . Then A =C +EA(u ), the result.

The following lemma, which can be found in [15] for Lie algebras, contains many useful facts

about the covering and avoiding properties and CAP-subalgebras. We prove them here for Leibniz

algebras, though the details are the same as in [15].

Lemma 4.1.5. Let H be a subalgebra of A and C /D a chief factor of A. Then

1. H covers C /D if and only if H ∩C +D =C .
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2. H avoids C /D if and only if (D +H )∩C =D .

3. If H ∩ C +D is an ideal of A, then H covers or avoids C /D . In particular, ideals are CAP-

subalgebras.

4. The nontrivial Leibniz algebra A is simple if and only if it has no nontrivial proper CAP-

subalgebras.

5. H covers or avoids C /D if and only if there exists an ideal N with N ⊆H ∩D and H /N covers

or avoids (C /N )/(D /N ) respectively. Furthermore, H is a CAP-subalgebra of A if and only if

there exists an ideal N of A such that N ⊆H and H /N is a CAP-subalgebra of A/N .

6. Let K be a subalgebra containing H . If C /D is covered (respectively, avoided) by H , then so is

(C ∩K )/(D ∩K ).

Proof. 1. Suppose H covers C /D . Then H +C =H +D . Let x ∈H ∩C +D . Then x is in H ∩C or x

is in D . In either case, x is in C since C ⊆D . Now suppose x ∈C . Then x ∈H ∩C ⊆H ∩C +D .

Now suppose H ∩C +D =C . Let x ∈H +C . Then x is in H or C . If x is in H , it is in H +D

as required. If it is in C and not H , then since C =H ∩C +D and x is not in H ∩C , x is in D

and thus H +D as required. Then H +C ⊆H +D . If x is in H +D , it is in H +C since D ⊆C .

Thus H +C =H +D and H covers C /D .

2. Suppose H avoids C /D . Then H ∩C =H ∩D . Then (D+H )∩C =D∩C+H ∩C =D+H ∩D =D .

Now suppose (D+H )∩C =D . Then D∩C +H ∩C =D =⇒ D+H ∩C =D =⇒ H ∩D+H ∩C =

H ∩D =⇒ H ∩C ⊆H ∩D . Since D ⊆C , we have H ∩D ⊆H ∩C and so H ∩C =H ∩D and

H avoids C /D . Since D ⊆C , H ∩D ⊆H ∩C and H avoids C /D as required.

3. Since C /D is a chief factor of A and H∩C , D ⊆C , we have either H∩C+D =D or H∩C+D =C .

If H ∩C +D =C , then by (i) it covers C /D . If H ∩C +D =D , then (D +H )∩C =D ∩C +H ∩C =

D +H ∩C =D so that it avoids C /D by (ii).
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4. Assume A is simple and it has a nontrivial proper CAP∗-subalgebra. Since A is simple, the only

chief factor of A is A/0. Let H be a nontrivial proper CAP-subalgebra. Then either H ∩A =

H ∩0 or H +A =H +0. In either case, this is a contradiction.

In the other direction, suppose A has no nontrivial proper CAP-subalgebras but it is nonsimple.

Let I be a nontrivial proper ideal of A. Then I is a nontrivial proper CAP-subalgebra by (iii), a

contradiction.

5. In particular, the ideal N = (H ∩D )A has the property that H +C =H +D ⇐⇒ H /N +C /N =

H /N +D /N and H ∩C =H ∩D ⇐⇒ H /N ∩C /N =H /N ∩D /N .

6. Suppose C /D is covered by H ⊂ K . Then C +H =D +H . Thus C ∩K +H =C ∩K +H ∩K =

(C +H )∩K = (D +H )∩K =D ∩K +H . If C /D is avoided by H ⊂ K , then C ∩H =D ∩H and

thus (C ∩K )∩H = (C ∩H )∩K = (D ∩H )∩K = (D ∩K )∩H .

The following lemma is found for Lie algebras in [3]. However, we will also discuss the case when

A is Leibniz-simple

Lemma 4.1.6. A is simple if and only if it has no nontrivial proper CAP∗-subalgebras.

Proof. First, we prove the forward direction. Assume A is simple and it has a nontrivial proper

CAP∗-subalgebra. Since A is simple, the only chief factor of A is A/0. Let H be a nontrivial proper

CAP∗-subalgebra. Then either H ∩A =H ∩0 or H +A =H +0. In either case, this is a contradiction.

In the other direction, suppose A has no nontrivial proper CAP∗-subalgebras but it is nonsimple.

Let I be a nontrivial proper ideal of A.

Then I is a nontrivial proper CAP∗-subalgebra, a contradiction.

While it is true that a Leibniz algebra A being simple by the Lie definition is equivalent to having no

nontrivial proper CAP∗-subalgebras, it is interesting to consider the case where A is Leibniz-simple

(i.e., Leib(A) is the only nontrivial proper ideal of A.) In this case, there is always a CAP∗-subalgebra,

in particular Leib(A), since all ideals are CAP-subalgebras and thus CAP∗-subalgebras by Lemma
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4.1.5(3). Conversely, if Leib(A) is the only CAP∗-subalgebra of A, then it must be the only ideal since

ideals are CAP∗-subalgebras. However, if A is Leibniz-simple, it is not necessarily the case that

Leib(A) is the only CAP∗-subalgebra of A. For example, any subalgebra H that is core-free would

cover Leib(A)/0, which is a non-Frattini chief factor assuming at least one maximal subalgbera is

core-free. The following example and theorem summarize these points.

Example 4.1.7. Consider the set s l (2,C) +C2 with the following multiplication. If A, B are matrices

from s l (2,C) and v, w are vectors from C2, then [A, v ] = Av and [A, B ] = AB −B A. In this example,

[v, A] and [v, w ] are zero.

Given A+v and B+w in this algebra, [A+v, B+w ] = [A, B ]+[A, w ], so [s l (2,C)+C2, s l (2,C)+C2] =

s l (2,C) +C2. Since [A+ v, A+ v ] = [A, A] + [A, v ] = Av , Leib(A) =
�

[a , a ]|a ∈ s l (2,C) +C2
	

=C2. This

is the only ideal of s l (2,C) +C2.

Since s l (2,C) is irreducible on C2, it is a maximal subalgebra which has a core of zero. Thus the

Frattini ideal of this Leibniz algebra is zero. Hence C2/0 is a non-Frattini chief factor covered by

s l (2,C).

Lemma 4.1.8. If [A, A] 6=Leib(A) is the only CAP∗-subalgebra of A that is an ideal, then A is Leibniz-

simple.

The rest of the lemmas and properties in this section can be found for Lie algebras in [3].

Lemma 4.1.9. Let C /D be a chief factor of a Leibniz algebra A. If I is an ideal of A contained in D ,

then C /D is a Frattini chief factor of A if and only if (C /I )/(D /I ) is a Frattini chief factor of A/I .

Lemma 4.1.10. Every non-Frattini chief factor of A is avoided by every subalgebra ofφ(A).

Proof. Let C /D be a non-Frattini chief factor of A and H a subalgebra of φ(A). Then C /D is not

contained inφ(A/D ). Let I ⊂φ(A). Then (I +D )/D ⊂φ(A/D ). Since C /D is a chief factor of A, C /D

is minimal in A/D and thus C /D ∩φ(A/D ) = 0 =⇒ C /D ∩ ((I +D )/D ) = 0 =⇒ A ∩ I = B ∩ I .

Lemma 4.1.11. If I is an ideal of A and H is a CAP∗-subalgebra of A, then we have the following:

1. (H + I )/I is a CAP∗-subalgebra of A/I .
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2. H ∩ I is a CAP∗-subalgebra of A.

3. If I ⊆φ(A) then H + I is a CAP∗-subalgebra of A.

4. If H + I is a maximal subalgebra of A, then H + I is a CAP∗-subalgebra of A.

Proof. 1. Suppose (C /I )/(D /I ) is a non-Frattini chief factor of A/I . Lemma 4.1.9 shows that

C /D is a non-Frattini chief factor of A. Since H is a CAP∗-subalgebra of A, it covers or avoids

C /D . If it covers C /D , then H +C = H +D . Then consider x + I ∈ (H + I )/I +C /I . Then

x+I ∈ (H +I )/I or C /I =⇒ x ∈H +I or x ∈C . If x ∈H +I then clearly x+I ∈ (H +I )/I +D /I .

If x ∈ C then x ∈ H + C = H +D =⇒ x + I ∈ (H + I )/I +D /I . Similarly, we can show

(H + I )/I +C /I = (H + I )/I +D /I and we have that (H + I )/I covers (C /I )/(D /I ).

Now suppose H avoids C /D . Then H ∩C =H ∩D . Then (H +I )∩C = (H ∩C )+I = (H ∩D )+I =

(H + I )∩B so that (H + I )/I avoids (C /I )/(D /I ).

2. Suppose C /D is a non-Frattini chief factor of A. H or I avoids C /D =⇒ H ∩ I avoids C /D as

well. Suppose both H and I cover C /D . If I ⊆φ(A) then H ∩ I is a CAP∗-subalgebra of A by

Lemma 4.1.10. If I is minimal in A and I *φ(A) then H ∩ I is a CAP∗-subalgebra of A. Now

suppose I is not a minimal ideal of A. If I ∩D is nonzero, then there is a minimal ideal J of A

such that J is an ideal contained in I ∩D .

By (1) and induction, (H ∩ I + J )/J is a CAP∗-subalgebra of A/J . If it covers (C /J )/(D /J ), then

we have H ∩ I+C=H ∩ I +D, and H ∩ I is a CAP∗-subalgebra. If it instead avoids (C /J )/(D /J ),

then (H ∩ I ∩C ) + J = (H ∩ I ∩D ) + J . However, J is minimal so by the dimension we can see

that H ∩ I ∩C =H ∩ I ∩D .

Now, instead assume I ∩D is zero. Let J be a minimal ideal of L contained in I ∩C , which

is nonzero by assumption. Thus J +C = J +D = C , thus H ∩ I +C =H ∩ I + J +B . J is not

contained in φ(A) because C /D is a non-Frattini chief factor. If H covers the non-Frattini

chief factor J /0, then H ∩ I +C =H ∩ I + J +D =H ∩ I +D . If H avoids J /0, then H ∩ J = 0

so H ∩ I ∩ J = 0. Thus we can examine the dimension as follows:
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dim(H ∩ I )+dimC−dim(H ∩ I ∩ C ) =dim((H ∩ I ) + C ) =dim((H ∩ I ) + J + D ) =dim(H ∩

I )+dimC−dim(H ∩ I ∩ J )−dim(H ∩ I ∩D )+dim(H ∩ I ∩ J ∩D ).

Thus H ∩ I ∩C =0 and thus H ∩ I avoids C /D .

3. Let C /D be a non-Frattini chief factor of A. Since H is CAP∗, if H covers C /D then so does

H + I . The same is true if I covers C /D . So assume that H and I both avoid C /D . Then

(C + I )/(D + I ) is a non-Frattini chief factor of A. Thus H covers or avoids it. If H covers

this chief factor, then H + I covers C /D . So instead assume H avoids (C + I )/(D + I ). Then

H ∩ (C + I ) =H ∩ (D + I ) and thus (H ∩ I ) +C = (H ∩ I ) +D .

4. Let C /D be a non-Frattini chief factor of A. If H +C =H +D , then H + I +C =H + I +D and

if I +C = I +D then H + I +C =H + I +D so it is proved if H or I covers C /D . Instead assume

H and I both avoid C /D . Since H + I is maximal, (H + I )∩C =H ∩C + I ∩C =H ∩D + I ∩D =

(H + I )∩D , thus H + I is a CAP∗-subalgebra.

Theorem 4.1.12. Let A be a Leibniz algebra and H a maximal subalgebra of A. Then H is a CAP∗-

subalgebra of A if and only if η(A : H ) =dim(A/H ).

Proof. If A is Lie, then the theorem is true by Theorem 3.3 of [3]. Assume A is non-Lie, i.e. that

Leib(A) is nonzero.

(=⇒ ) Assume H is a CAP∗-subalgebra of A. Then
H +HA

HA
=

H

HA
is a CAP∗-subalgebra of

A

HA
by

Lemma 4.0.9. Since H is maximal, we have the Frattini ideal of
A

HA
is 0. Thus since H /HA is CAP∗,

every minimal ideal I /HA of A/HA has the property that H /HA + I /HA = A/HA and I /HA is an ideal

completion for H /HA . Hence η(A : H ) =dim(I /HA) =dim(A/HA).

(⇐= ) Suppose A is the smallest such Leibniz algebra such that every maximal subalgebra H of

A has the property η(A : H ) =dim(A/H ) but there exists such a maximal subalgebra that is not a

CAP∗-subalgebra.

Let H be a maximal subalgebra of A. Then we have
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η

�

A

HA
:

H

HA

�

=η(A : H ) =dim (A/H ) =η
�

A/HA

H /HA

�

by Corollary 2.3.11. Since
A

HA
is a Lie algebra, Theorem 3.3 of [3] implies

H

HA
is a CAP∗-subalgebra

of
A

HA
.

We will show H is a CAP∗-subalgebra of A. Suppose C /D is a non-Frattini chief factor of A. If

C and D are subalgebras of H , then H +C = H +D . If they are both not contained in H , then

H +C =H +D = A since H is maximal. This leaves the case where, C ⊆H and D 6⊂H .

Since HA is an ideal, it is a CAP subalgebra, so that HA +C =HA +D or HA ∩C =HA ∩D . Since

HA ⊆H , HA+C =HA+D implies H +C =H +D . Suppose then HA∩C =HA∩D . Then (C +HA)/HA

is a non-Frattini chief factor of A/HA and so C ∩H ) +HA =HA . Hence C ∩H =D ∩H but then H is

a CAP∗-subalgbera, a contradiction. So we may assume HA is zero.

Let I be a minimal ideal of A, which is non Lie and non simple. Then since H is maximal, A =H +I

and η(A : H ) =dim(I ). By hypothesis we have η(A : H ) =dim(A/H ) so A ∩ I = 0. Hence H is CAP∗ in

A.

4.2 Solvability

Theorem 4.2.1. Let A be a Leibniz algebra and I an ideal of A. If all maximal subalgebras H of A

such that A =H + I are CAP∗-subalgebras of A, then I is solvable.

Proof. Suppose A is not solvable. Then there is a chief factor C /D of A that is non-nilpotent. By

Lemma 4.1.4, there is a maximal subalgebra H of A containing an Engel subalgebra of A such that

A = C +H and D is a proper ideal of C ∩H . We will show that this H is not a CAP∗-subalgebra.

Clearly H +C 6= H +D since D ⊂ C and A = C +H . Also, D ∩H = D , but D is a proper ideal of

H ∩C .

Theorem 4.2.2. Let A be a Leibniz algebra over a field of characteristic zero. A is solvable if and only

if there exists a maximal subalgebra H of A such that H is a solvable CAP∗-subalgebra of A.
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Proof. (=⇒ ) Let A be a non-Lie Leibniz algebra, i.e. Leib(A) is not zero. Suppose A is not solvable.

Let H be a solvable maximal subalgebra of A. Clearly, H +HA is not A, or A would be solvable since

Leib(A) is. Hence Leib(A) ⊂ H and H /HA is a maximal solvable subalgebra of A/HA , which is a

Lie algebra. If A/HA is solvable, then A is, a contradiction. Thus assume A/HA is not solvable. By

Theorem 3.6 of [3], H /HA is not a CAP∗-subalgebra of A/HA .

Assume H is a CAP∗-subalgebra of A. Then, by Lemma 4.1.11(1), so is (H +HA)/HA = H /HA a

CAP∗-subalgebra of A/HA , a contradiction.

(⇐= ) If A is solvable, then by Corollary 2.3.13, every maximal subalgebra H has the property

η(A : H ) =dim(A/H ), and by Theorem 4.1.12, every such H is a CAP∗-subalgebra. Since A is solvable,

so is H .

The following lemma, similar to from Lemma 3.6.2 from [5] for Lie algebras, is used to get a

condition on Cartan subalgebras.

Lemma 4.2.3. Let A1, A2 be Leibniz algebras over a field of characteristic zero. If φ : A1 → A2 is a

surjective homomorphism, and H is a Cartan subalgebra of A2, then any Cartan subalgebra ofφ−1(H )

is also a Cartan subalgebra of A1.

Proof. Let H be a Cartan subalgebra of A2. Let J be a Cartan subalgebra of φ−1(H ). Then, using

Lemma ,φ(J ) is a Cartan subalgebra ofφ(φ−1(H )) =H .

Let x ∈ A1, j ∈ J and suppose [x , j ] ∈ J and [ j , x ] ∈ J . Then [φ(x ),φ( j )] and [φ( j ),φ(x )] belong to

φ(J ), which is a Cartan subalgebra of H . Henceφ(x ) ∈φ(J ) and x ∈ J , so J is Cartan in A1.

Theorem 4.2.4. Let A be a Leibniz algebra over a field of characteristic zero. A is solvable if every

Cartan subalgebra of A is a CAP∗-subalgebra of A.

Proof. Assume A is non-Lie. If it is Lie, it is true by Theorem 3.7 of [3]. Suppose by induction A is

the smallest such Leibniz algebra that has all of its Cartan subalgebras being CAP∗-subalgebras, but

is not solvable.

Let I be a minimal ideal of A. Let C /I be a Cartan subalgebra of A/I . Applying Lemma 2.5.4 and

Lemma 4.2.3, there is a Cartan subalgebra H of A such that C = H + I . Since H is Cartan, it is a
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CAP∗-subalgebra, and so by Lemma 4.1.11 (1), (H + I )/I =C /I is a CAP∗-subalgebra of A. Hence

A/I is solvable. I is solvable since by Lemma 2.1.1 it is either Abelian or contained in Leib(A) which

is Abelian. Thus we have A is solvable.

4.3 Supersolvability

In this section we obtain some conditions on CAP∗-subalgebras under which Leibniz algebras are

supersolvable. Similar conditions for Lie algebras are proved in [3]. The following lemma, proved

for Lie algebras in [12], is useful in this section.

Lemma 4.3.1. Let A be a Leibniz algebra such that there is a series of ideals 0= I0 ⊂ I1 ⊂ · · · ⊂ Im = I

where each Ii is an ideal of A and dim(Ii /Ii−1) = 1 for all 1≤ i ≤m. Then A/ZA(I ) is supersolvable.

Proof. Given the series of ideals 0= I0 ⊂ I1 ⊂ · · · ⊂ Im = I , we may construct a basis for I ,{i1, i2, · · · , im}

such that ii + Ii−1 6= 0 ∈ Ii /Ii−1. Let a ∈ A. Since each Ii is a (two-sided) ideal and has codimension

one with each Ii−1, the matrix representation for left and right multiplication of a acting on I relative

to this basis is upper triangular. Hence A/Z l
A(I ) is isomorphic to a Lie subalgebra of the upper

triangular matrices, and is thus supersolvable.

Consider D = Z l
A(I )/ZA(I ). Any element of D acts as 0 via left multiplication on I . Therefore it

acts on each Ii as zero and hence by Lemma 2.1.2 right multiplication by D is zero on these Ii and

thus K as well. Therefore by Engel’s Theorem, D is nilipotent and A/ZA(I ) is supersolvable.

Theorem 4.3.2. Let I be a solvable ideal of a Leibniz algebra A such that N (I ) is an ideal of A and

A/I is supersolvable. If every maximal subalgebra of N (I ) is a CAP∗-subalgebra of A, then A is

supersolvable.

Proof. First, we show that
N (I ) +φ(A)
φ(A)

=N
�

I +φ(A)
φ(A)

�

.

Suppose x + φ(A) ∈
N (I ) +φ(A)
φ(A)

, i.e. x = n + p1 for some n ∈ N (I ), p1 ∈ φ(A). x + φ(A) ∈

N
�

I +φ(A)
φ(A)

�

if [x +φ(A), y +φ(A)] and [y +φ(A), x +φ(A)] belong to
I +φ(A)
φ(A)

for all y +φ(A) ∈

I +φ(A)
φ(A)

, i.e. y = i +p2 for some i ∈ I , p2 ∈φ(A).
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[y +φ(A), x+φ(A)] = [i+p2+φ(A), n+p1+φ(A)] = [i+p2, n+p1]+φ(A) = [i , n+p1]+[p2, n+p1]+φ(A).

The first term belongs to I since it is an ideal. The second belongs to φ(A) since it is also an

ideal. The left multiplication is a similar calculation. Hence
N (I ) +φ(A)
φ(A)

⊆N
�

I +φ(A)
φ(A)

�

. Similarly,

N (I ) +φ(A)
φ(A)

⊇N
�

I +φ(A)
φ(A)

�

.

Due to this fact, using Lemma 4.1.11(1), we may assume thatφ(A) = 0. By Corollary 2.5 of [2], N (A)

is the direct sum of some number of minimal ideals of A. Since N (I ) is an ideal of A, N (I )⊆N (A)

and so N (I ) can be written as a direct sum of minimal ideals. By Lemma 4.1.3, the dimension of

each of these minimal ideals is one.

By Lemma 4.3.1, this implies A/ZA(N (A)) is supersolvable. A is solvable, so by [2] we have

ZA(N (A)) =N (A). Hence A is supersolvable since A/N (A) and N (A) are.

Corollary 4.3.3. Let A be a solvable Leibniz algebra. If every maximal subalgebra of N (A) is a CAP∗-

subalgbera of A, then A is supersolvable.

Proof. This follows from Theorem 4.3.1 with A =H .
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Chapter

5

SCAP Subalgebras

5.1 Definitions and Properties

In Chapter 4, we considered a generalization of CAP subalgebras which only cover or avoid those

chief factors that are not contained in the Frattini ideal of A/D . In this chapter, we will now examine

a generalization of CAP subalgebras which covers or avoids every chief factor in a chief series. This

concept and related theorems for Lie algebras have been studied in [4] by Chehrazi and Salemkar.

Definition 5.1.1. Let A be a Leibniz algebra. A chief series of A is a series of ideals 0 = A0 ⊂ A1 ⊂

· · · ⊂ At = A such that each Ai /Ai−1 is a chief factor of A.

Definition 5.1.2. Let A be a Leibniz algebra. H is a SCAP-subalgebra of A if there is a chief series

of A such that H covers or avoids each chief factor of the series.

Lemma 5.1.3. Let H be a subalgebra of A and 0= A0 ⊂ A1 ⊂ · · · ⊂ An = A an ideal series. If H covers
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A j /Ai , then H covers As /Ar for all i ≤ r < s ≤ j . If H avoids A j /Ai , then H avoids As /Ar for all

i ≤ r < s ≤ j .

Proof. Suppose H covers A j /Ai . Then H +A j =H +Ai , which implies A j is an ideal of Ai +H . Since

we have a chief series, As /Ai is an ideal of A j /Ai , so As is an ideal of Ai +H . Ai is also an ideal of Ar ,

so therefore As is an ideal of Ar +H . Thus As +H = Ar +H and so H covers As /Ar .

Similarly, if H avoids A j /Ai , it avoids As /Ar .

This lemma allows us to make a link between c-ideals, discussed previously, with SCAP subalge-

bras.

Lemma 5.1.4. If H is a c-ideal of a Leibniz algebra A, then H is a SCAP-subalgebra of A.

Proof. Let H be a c-ideal of A. Then there is an ideal K of A such that A = K +H and K ∩H ⊆HA .

Then 0⊂H ∩K ⊂ K ⊆ A is an ideal series of A. Since H =H + (H ∩K ) =H +0, H +A =H +K , and

H ∩K =H ∩ (H ∩K ), H covers or avoids each term of this series. By Lemma 5.1.3, any chief series is

covered or avoided by H and thus H is a SCAP-subalgebra.

Lemma 5.1.5. If H is a SCAP-subalgebra of A, then H /I is a SCAP-subalgebra of A/I for any ideal

I ⊂H .

Proof. Since the ideals of A/I are in one-to-one correspondence with the ideals of A containing I ,

any chief series of A/I corresponds to a chief series in A possibly with some terms mapping to zero

in A/I . If H covers the chief series in A, H /I covers the chief series mapped into A/I and is thus a

SCAP-subalgebra.

Lemma 5.1.6. A is simple if and only if it has no nonzero proper SCAP-subalgebras.

Proof. ( =⇒ ) Suppose A is simple. Then the only chief factor of A is A/0. Suppose H is a SCAP

subalgebra. The only chief series is 0 ⊂ A. Suppose H covers or avoids A/0. Then H + A =H + 0

implies H = 0 or H = A, or H ∩A =H ∩0 implies H = 0.

(⇐= ) Suppose A has no nonzero proper SCAP-subalgebras. Then it has no c-ideals, and hence

no nonzero proper ideals.
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Lemma 5.1.7. Suppose I is a minimal Abelian ideal of A such that A/I is nilpotent. Then all maximal

subalgebras of Cartan subalgebras of A are SCAP-subalgebras of A.

Proof. A/I is nilpotent and thus solvable, I is Abelian and thus solvable, so A is solvable. Hence

there is a Cartan subalgebra C of A and (C + I )/I is a Cartan subalgebra of A/I . Let C1 be a maximal

subalgebra of C . A/I is nilpotent so (C + I )/I = A/I and hence A =C + I . Therefore (C1+ I )/I is a

maximal subalgebra of A/I , hence an ideal since A/I is nilpotent.

Consider the Fitting decomposition of A =C + L1(C )with respect to u . Any element of L1(C ), say

x = c +i where c ∈C , i ∈ I since A =C +I . C is Cartan so there exists a k so that a d k
u (x ) = a d k

u (i ) ∈ I .

Hence L1(C ) ∈ I , a minimal ideal. [A, L1(C )] = [C + L1(C ), L1(C )]⊆ L1(C ). Hence L1(C ) is a left ideal.

Thus by Lemma 2.1.1 it is a right ideal as well since i tis contained in a minimal ideal.

But L1(C ) is then an Abelian ideal contained in I , a minimal ideal. This implies L1(C ) is zero

or I . If L1(C ) is zero then A = C and so A is nilpotent. So L1(C ) = I and thus 0 ⊂ I ⊂ C1 + I ⊂ A

is an ideal series of A. C1 avoids I /0 and (C1 + I )/I . It covers A/(C1 + I ). By Lemma 5.1.3 C1 is a

SCAP-subalgebra.

5.2 Solvability

Theorem 5.2.1. Let A be a Leibniz algebra. If every maximal subalgebra H of A satisfying A =H + I

for some ideal I of A is a SCAP-subalgebra of A, then I is solvable.

Proof. This theorem is true for Lie algebras by Theorem 3.1 of [5], so assume A is non-Lie and so

Leib(A) is not zero. Assume A is the smallest Leibniz algebra such that every maximal subalgebra H

satisfying A =H +I for some ideal I is a SCAP-subalgebra, but I is not solvable. Consider A/Leib(A), a

Lie algebra. Let M /Leib(A) be a maximal subalgebra of A/Leib(A), then M is maximal in A. Suppose

there is an ideal K /Leib(A) such that M /Leib(A) + K /Leib(A) = A/Leib(A), then M + K = A and

hence M is a SCAP-subalgbera of A. By Lemma 5.1.5, M /Leib(A) is a SCAP-subalgebra of A/Leib(A).

Hence K /Leib(A) is solvable by the induction hypothesis. Leib(A) is Abeilan and thus solvable, so

we have K is solvable.
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Theorem 5.2.2. A Leibniz algebra A is solvable if and only if every maximal subalgebra of A is a

SCAP-subalgebra of A.

Proof. ( =⇒ ) Suppose A is solvable. Then, by Theorem 4.4.1 in [16], every maximal subalgebra is a

CAP-subalgebra and thus a SCAP-subalgebra.

(⇐= ) Suppose every maximal subalgebra of A is a SCAP-subalgebra. Then by Theorem 5.2.1 A is

solvable.

Theorem 5.2.3. Let A be a Leibniz algebra over a field that has either characteristic zero or is alge-

braically closed with characteristic greater than 5. Then A is solvable if and only if there is a solvable

maximal subalgebra H of A such that H is a SCAP-subalgebra of A.

Proof. ( =⇒ ) Suppose A is solvable. Then by Theorem 5.2.2, every maximal subalgebra is solvable

and an SCAP-subalgebra.

(⇐= ) Suppose by induction A is the smallest non-Lie Leibniz algebra such that there is a solvable

maximal subalgebra H of A such that H is a SCAP-subalgebra of A. but A is not solvable. If Leib(A)

⊂H then H /Leib(A) is a SCAP-subalgebra of A/Leib(A). H and Leib(A) are solvable, so H /Leib(A)

is as well. Hence by induction A/Leib(A) and thus A are solvable.

Now suppose Leib(A) is not contained in H . H is maximal, so we have H+Leib(A) = A, but H and

Leib(A) are both solvable, so we have A is solvable.

Theorem 5.2.4. Let A be a Leibniz algebra over a field with at least dimA elements. If every maximal

subalgebra of A that contains the normalizer of a maximal nilpotent subalgebra of A is a SCAP-

subalgebra of A, then A is solvable.

Proof. Assume A is a non-Lie Leibniz algebra. If A is Lie, it is true by Theorem 3.4 of [5]. Let

H /Leib(A)be a maximal subalgebra of A/Leib(A) that contains the normalizer of a maximal nilpotent

subalgebra N /Leib(A) of A/Leib(A). By Lemma 5.1.2 of [16], N =C +Leib(A)where C is a maximal

nilpotent subalgebra of A.

First, NA(C )⊆NA(N ) and (NA(N ) +Leib(A))/Leib(A)⊆NA/Leib(A)(Q/Leib(A))⊆H /Leib(A) implies

NA(C ) ⊆ H . Thus H is a SCAP-subalgebra of A and so by Lemma 5.1.5 H /Leib(A) is a SCAP-
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subalgebra of A/Leib(A). By induction, A/Leib(A) is solvable, and since Leib(A) is Abelian and

hence solvable, so is A.
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