
ABSTRACT

SCOFIELD, DANIEL. Patterns in Khovanov Link and Chromatic Graph Homology. (Under the
direction of Radmila Sazdanović.)

In 2000, Khovanov introduced a homology theory whose graded Euler characteristic is the

Jones polynomial. The rich structure of Khovanov homology contains topological information such

as the Rasmussen s-invariant and spectral sequences that relate it to other link homology theories.

Although torsion, especially Z2 torsion, frequently appears in Khovanov homology, its relations with

topological properties of knots are not well understood. Using a similar construction, Helme-Guizon

and Rong have categorified the chromatic polynomial for graphs with a theory known as chromatic

graph homology. There is a partial isomorphism between Khovanov homology of a semi-adequate

link L and the chromatic homology HA2(G) of a state graph G obtained from a diagram D of

L. This isomorphism allows us to describe part of Khovanov homology in terms of combinatorial

graph data.

For chromatic homology over A2, we improve a bound given by Helme-Guizon and Rong by stat-

ing the precise homological span of HA2(G). We determine how HA2(G) changes under structural

operations on G and use these results to describe torsion in Khovanov homology for several families

of alternating 3-strand pretzel links and rational 2-bridge links. We give explicit formulas for the

ranks of several chromatic homology groups on the top diagonal, and use the chromatic polynomial

to compute the first n coefficients of the Jones polynomial for links with certain diagrams. We

also define a new invariant, the girth of a link, that describes the largest possible contribution of

chromatic homology to Khovanov homology. We prove some basic properties of this invariant and

provide bounds on the girths of many knots and links.

When other polynomial algebras of the form Am = Z[x]/(xm) are used in the construction, the

resulting homologies may be stronger than the chromatic polynomial and may contain torsion of

arbitrary order. In the case where m is greater than 2, we provide a lower bound for the homological

span of HAm(G) and prove that the homological thickness of HAm(G) is determined by m and

the number of vertices of G. We describe several examples of cochromatic graphs distinguished by

chromatic homology over A3, and show that the this version of chromatic homology can distinguish

graphs with the same Tutte polynomial and 2-isomorphism type.
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Chapter 1

Introduction

The Jones polynomial, first introduced in 1984, is a topological invariant of knots and links in three-

dimensional space. Khovanov [Kho00] introduced a homology theory for links whose graded Euler

characteristic is the Jones polynomial. This theory, known as Khovanov link homology, lifts the

Jones polynomial and its properties, a process known as categorification. Khovanov homology has

a rich algebraic structure which contains new invariants such as the Rasmussen s-invariant [Ras10]

and spectral sequences that relate it to other link homology theories. The Khovanov homology

of many links contains Z2 torsion, with Zp torsion appearing less frequently for odd primes p.

However, few results are known which relate this torsion to the topological properties of a knot or

link. Shumakovitch conjectured that the Khovanov homology of any link (except for disjoint unions

or connect sums of unlinks and Hopf links) has torsion of order 2. This conjecture has been found

true for homologically thin links, which have only Z2 torsion. On the other hand, odd torsion of

many orders is possible in non-alternating links such as torus links and their deformations, which

may contain odd torsion of various orders [BN02, MPS+17].

The process that led from the Jones polynomial to the construction of Khovanov homology is

known as categorification. Categorification takes objects with integral structure, such as natural

numbers or polynomials, and builds new algebraic structures which contain all the properties of the

original objects, along with (possibly) new information. Since Khovanov’s seminal paper, a number

of other combinatorial objects have been categorified. The chromatic polynomial for graphs has

been categorified by Helme-Guizon and Rong [HGR05] using a construction similar to that of

Khovanov homology. Given a semi-adequate link L, there is a partial isomorphism between the

Khovanov homology of L and the chromatic homology of the all-positive state graph obtained from

a diagram D of L. The extent of the isomorphism depends only on the length of the shortest

cycle in this graph. Lowrance and Sazdanovic [LS17] have shown that chromatic homology over the

algebra A2 = Z[x]/(x2) has only Z2 torsion, and is equivalent to the chromatic polynomial. When

other polynomial algebras of the form Am = Z[x]/(xm) are used in the construction, the resulting
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homologies may be stronger than the chromatic polynomial and may contain torsion of arbitrary

order.

In Chapter 3, we use graph-theoretic results and the partial isomorphism with chromatic ho-

mology to provide a combinatorial interpretation for certain properties in Khovanov homology.

We improve the bound given by Helme-Guizon and Rong for the homological span of chromatic

homology over A2, stating the precise homological span in terms of the numbers of vertices and

blocks in a given graph. We determine how chromatic homology over A2 changes under structural

operations on G, and give explicit formulas for the ranks of several chromatic homology groups.

We also use the chromatic polynomial to compute the first n coefficients of the Jones polynomial

for links with certain diagrams, along with the ranks and torsion of the corresponding groups in

Khovanov homology.

In Chapter 4, we provide a lower bound for the homological span of HAm(G),m > 2 and

prove that the homological thickness of HAm(G) is determined by m and the number of vertices

of G. We describe some interesting patterns in the last homological grading of HAm(G) and offer

a conjecture on how this grading relates to the addition of new edges in G. We describe several

examples of cochromatic graphs distinguished by chromatic homology over A3 which exhibit dif-

ferent properties from the example described in [PPS09]. In addition, we show that this version of

chromatic homology can distinguish graphs which have the same Tutte polynomial as well as the

same 2-isomorphism type.

In Chapter 5, we define the girth of a link to be the maximum girth of any all-positive state

graph associated to a diagram of the link. We determine the girth of (2, n) torus links, and provide

lower bounds on the girths of alternating pretzel links and connected sums of knots. We show

that for any link L whose Khovanov homology lies on two diagonals, the coefficients of the Jones

polynomial provide an upper bound on girth, and we provide statistics on this upper bound for

alternating knots with 16 or fewer crossings.
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Chapter 2

Background

Categorification is a process which lifts numbers or polynomials to objects in a category. For

example, the set of natural numbers N may be thought of as a “shadow” of the category of finite-

dimensional vector spaces. For each integer n, there is one n-dimensional vector space up to isomor-

phism. The arithmetical operations of addition and multiplication are upgraded to the algebraic

operations of direct sum (dim(V ⊕W ) = dimV + dimW ) and tensor product (dim(V ⊗W ) =

(dimV )(dimW )). The categorification has additional structure not found in the shadow. For ex-

ample, the set N does not come equipped with maps between its elements, but any pair of vector

spaces can be related by linear maps. Through the process of decategorification (in this example,

taking the dimension of a vector space) we project the category back down to its shadow.

Suppose we also wish to categorify the operation of subtracting natural numbers. To accommo-

date negative numbers, we must expand our perspective to the category of chain complexes, and

use Euler characteristic as our decategorifying operation. If V,W are vector spaces with dimen-

sions n,m respectively, then the chain complex 0 → V → W → 0 (where V and W are assigned

homological gradings 1 and 0) has the property χ(0→ V →W → 0) = dimW − dimV = m− n.
Many well-known categorifications are algebraic upgrades of polynomials. As in the example

above, the operation which recovers the polynomial is an Euler characteristic. To account for the

various terms of the polynomial, we need to include an additional grading structure for our vector

spaces. We will only discuss categorifications of single-variable polynomials, although this idea can

be extended to multivariate polynomials as well.

Suppose we have a chain (or cochain) complex (Ci, di), in which the elements of each chain group

belong to a Z-graded algebra with grading indexed by j. Each (co)chain group may be written as

a direct sum Ci = ⊕jCi,j , and the complex has a graded Euler characteristic given by the formula

χq(C) =
∑
i,j

(−1)iqj dimCi,j

3



which is a polynomial in the variable q. If the j-grading is preserved by the differential, then the

same formula holds for the homology of the complex (Ci, di):

χq(H) =
∑
i,j

(−1)iqj dimH i,j .

In low-dimensional topology, many polynomial invariants of knots and links have been cate-

gorified as the graded Euler characteristic of some homology theory. These include the Alexan-

der polynomial [OS04], the Jones polynomial [Kho00], the sln link polynomials [KR08a], and the

HOMFLY-PT polynomial [KR08b]. In combinatorics, many polynomial invariants of graphs have

received a similar treatment, including the chromatic polynomial [EH07, HGR05], the Tutte polyno-

mial [JHR06], the dichromatic polynomial [Sto08], the Penrose polynomial [LR11], the magnitude

polynomial [HW14], and the Stanley chromatic symmetric function [SY18].

2.1 Knot theory

Knots and links are one-dimensional models of physical strings and the ways in which they interact.

We often imagine a link as a collection of circles in three-dimensional space, each homeomorphic to

S1, which may be knotted or intertwined with each other like pieces of string. To keep this picture

close to physical reality, it is helpful to restrict the definition of a link to a set of piecewise linear

curves.

Definition 1. [Lic97] A link L of m components is a subset of S3 that consists of m disjoint,

piecewise linear, simple closed curves. A link of one component is a knot.

We define topological equivalence classes of links by the following relation. Two links L1 and L2

are said to be equivalent if there is a family of continuous maps ht : S3 → S3 such that h0(L1) = L1,

h1(L1) = L2, and ht(L1) remains homeomorphic to L1 for all t ∈ [0, 1]. This continuous deformation

is known as an ambient isotopy of S3 from L1 to L2.

Rather than manipulating knots and links in three dimensions, it is often easier to project them

down to the plane and look at their two-dimensional shadows. A projection of a link L into R2,

with under-strands and over-strands indicated at each crossing, is called a link diagram of L. Two

diagrams represent isotopic links if and only if they are related by a sequence of diagrammatic

operations known as Reidemeister moves (see Figure 2.1).
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R1 R3R2

Figure 2.1: The Reidemeister moves.

Link invariants are mathematical objects, such as numbers, groups, or polynomials, which are

computed from link diagrams and remain unchanged under the Reidemeister moves. Among the

most well-known link invariants are the Alexander, Jones, and HOMFLY-PT polynomials. Each of

these polynomials can be defined using a skein relation that measures the effect of local crossing

changes in a diagram. We will define the Jones polynomial in detail before introducing Khovanov

link homology.

−+

Figure 2.2: Positive and negative resolutions of a crossing.

Definition 2. The Kauffman bracket polynomial is a function that sends a link diagram D in R2

to a Laurent polynomial 〈D〉 ∈ Z[q, q−1] defined by the following properties.

1.
〈 〉

= q + q−1

2.
〈
D t

〉
= (q + q−1) 〈D〉

3.
〈 〉

=
〈 〉

− q
〈 〉

, where and denote the link diagrams which are identical

to except for a positive or negative resolution at the given crossing (Figure 2.2).

The bracket polynomial defined above is only invariant under Reidemeister moves R2 and R3.

To achieve invariance under R1, we multiply by a factor that depends on the crossings of the

diagram. A normalizing factor (q+ q−1)−1 may be applied so that the polynomial associated to the

unknot is trivial.

Definition 3. The Jones polynomial of an oriented link L, denoted J(L), is the Laurent polynomial

in Z[q, q−1] given by J(L) =
(−1)c−qc+−2c− 〈D〉

q + q−1
where D is a diagram of L with c+ positive

crossings and c− negative crossings according to the convention shown in Figure 2.3. We will refer

to Ĵ(L) = (−1)c−qc+−2c− 〈D〉 as the unnormalized Jones polynomial of L.
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+ —

Figure 2.3: Convention for positive/negative crossings of an oriented link diagram.

2.2 Khovanov homology

Khovanov homology is an invariant of oriented links first introduced in [Kho00]. The Khovanov

homology of L, denoted Kh(L), is a bigraded abelian group whose Euler characteristic is a version

of the Jones polynomial V (L). Since a link cobordism L1 → L2 induces a map Kh(L1)→ Kh(L2),

Khovanov homology is a functor from the category of links and link cobordisms to the category of

abelian groups and group homomorphisms. It possesses a rich algebraic structure that includes new

invariants (such as the Rasmussen s-invariant [Ras10]) and homological operations such as spectral

sequences [PS16]. It distinguishes many links which the Jones polynomial does not. In addition,

Kh(L) is an unknot detector [KM11], a property conjectured but not yet proven in the case of

the Jones polynomial. Since its discovery, Khovanov homology has been applied to link topology

[BS15, Ng05], Heegaard Floer homology for 3-manifolds [Bal11, OS05], and gauge theory [Wit12].

2.2.1 Construction

In this section, we review the construction of Khovanov homology following [BN02] and [Vir04].

Definition 4. Let M =
⊕

jM
j be a graded vector space where the M j are the homogeneous

components of M . The graded dimension of M is defined to be qdimM =
∑

j q
j dimM j. Let ·{`}

be the degree shift operation on a graded vector space M given by M{`}j = M j−`.

Definition 5. Let {Ci} be a chain complex. The height shift operation on this complex, denoted

·[s], adjusts the grading such that C[s]i = Ci−s.

Let D be a diagram of link L. The construction of Khovanov homology builds on so-called

Kauffman states described in Definition 6 where each crossing in a diagram D of link L is assigned

a choice of a positive or negative resolution, also known as a “smoothing” of the crossing (see Figure

2.2).

Definition 6. A Kauffman state of D is a collection of disjoint circles, denoted Ds, obtained

by resolving each crossing of D in either the positive or negative way according to a function

6



s : {crossings of D} → {−1, 1}. An enhanced Kauffman state S is a Kauffman state s in which

each circle in Ds is assigned a label 1 or x. Let n+(s) denote the number of positive smoothings in

Kauffman state s, and n−(s) denote the number of negative smoothings.

Let A2 = Z[x]/(x2) be the graded Z-module whose generators 1 and x have degree 1 and

−1, respectively. The graded dimension of a Z-module or graded vector space M is defined as

qdimM =
∑

j q
j dimM j . We use A2 in the construction of Khovanov homology because its graded

dimension qdimA2 = q + q−1 is the bracket polynomial of the unknot.

Fix an order on the n crossings of D, and let each Kauffman state be represented by a tuple in

{0, 1}n with 0s for positive smoothings and 1s for negative smoothings. The 2n Kauffman states of

D are in one-to-one correspondence with the vertices of an n-dimensional cube: state s corresponds

to vertex α = (α1, α2, . . . , αn) where αk = 0 if the kth crossing is resolved with a positive smoothing

in s, and αk = 1 if it is resolved with a negative smoothing. To the vertex α, we assign the graded

Z-module Cα(D) = A⊗k(s)2 , where k(s) is the number of circles in s.

  0   0  C0(L)   C1(L)   C2(L)

Figure 2.4: Kauffman states and Khovanov chain groups for the Hopf link L = 21.

The cochain groups in the Khovanov complex are obtained as direct sums along the diagonals

of the cube:

Ci(D) =
⊕
|α|=i

Cα(D)

where |α| represents the number of 1s in the label of vertex α. We can think of Ci(D) as a group

freely generated by enhanced states of D with i negative smoothings. Let Ci,j(D) denote the

subgroup of Ci(D) generated by elements whose Z-module grading is j.

To define a differential on this cochain complex, we first define maps along the edges of the

cube of resolutions. Suppose Kauffman states s and s′ only differ at the kth crossing, where s has

7



the positive smoothing and s′ has the negative smoothing. The corresponding vertices of the cube

α and α′ differ only in the kth coordinate, where αk = 0 and α′k = 1. Thus there is an edge of the

cube from α to α′, which we denote e. We define the map de : Cα(D)→ Cα′(D) as follows. If s′ is

obtained from s by joining two circles, de is the map m : A2⊗A2 → A2 that multiplies the labels on

those circles. If s′ is obtained from s by splitting one circle into two, de is the comultiplication map

∆ : A2 → A2⊗A2 that sends 1 7→ 1⊗x+x⊗1 and x 7→ x⊗x. The differential di : Ci(D)→ Ci+1(D)

is defined to be

di =
∑

{de : |α|=i}

(−1)ξde (2.1)

where Cα(D) is the domain of de and the sign (−1)ξ is chosen as follows.

Suppose the kth coordinate of α is being changed from 0 to 1 along edge e from α to α′. Let

ξ ∈ {0, 1, ∗}n be the n-tuple which has a ∗ in the kth coordinate and agrees with α and α′ in every

other coordinate. If the number of 1s preceding the ∗ is odd, then (−1)ξ = −1; if the number of 1s is

even, then (−1)ξ = 1. This assignment ensures that every square face of the cube has a single edge

whose associated map has opposite sign from the maps on the other three edges of the square. Since

m and ∆ are (co)associative and (co)commutative respectively, each square face anti-commutes,

and so d2 = 0.

The chain complex C(D) = (Ci(D), di) is the Khovanov (co)chain complex of D. Since the

differential preserves degree, C(D) is a bigraded chain complex. In accordance with the grading

conventions found in [BN02], we shift the original complex by a factor that depends on the number

of positive and negative crossings in D (denoted c+ and c−, respectively). The shifted complex

is denoted by C(D) = C(D)[−c−]{c+ − 2c−} where ·{`} and ·[s] are the degree and height shift

operations described above.

The homology of C(D) is denoted Kh(D), the Khovanov homology of diagram D. (Technically,

this is a cohomology theory because the differential increases the homological degree, but we will

follow general usage in calling it homology.) Khovanov homology is a link invariant ([Kho00],

[BN02]) with graded Euler characteristic χq(Kh(L)) =
∑

i(−1)i qdim(Khi(L)) = Ĵ(L) where Ĵ(L)

is the unnormalized Jones polynomial. This polynomial can also be expressed [Kau11] as a state

sum formula

Ĵ(L) = (−1)c−qc+−2c−
c++c−∑
i=0

(−1)i
∑

{S : n−(S)=i}

qi(q + q−1)|S| (2.2)

where S is an enhanced Kauffman state with |S| connected components.

In Khovanov homology, the Jones polynomial skein relation is categorified as a long exact
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sequence of homology groups:

. . .→ Khi−1
( )

→ Khi
( )

→ Khi
( )

→ Khi
( )

→ . . .

2.2.2 Supported gradings and diagonals

If L has an odd number of components, then the quantum grading Kh∗,m(L) = 0 for even m; if

the number of components is even, Kh∗,m(L) = 0 for odd m. These zero rows are typically omitted

from tabular diagrams of Khovanov homology. To give a more detailed picture of Kh(L), we can

describe its extent in the j-dimension, as well as the number of slope 2 diagonals on which it lives.

Definition 7. Let jmin be the minimal quantum grading on which Kh(L) is nontrivial, and let

jmax be the highest. Then we define the quantum span of homology Kh(L) as: qspan(Kh(L)) =

jmax − jmin + 1.

A b-diagonal in Khovanov homology is a set of bigradings (i, j) for which −2i+ j = b. If Kh(L)

is non-trivial on the set of diagonals {−2i+ j = ai}, then we define homological width of Kh(L) to

be hw(Kh(L)) = amax − amin + 1 where amax, amin are the maximum and minimum values of ai.

Torsion width of homology is defined analogously, and denoted hwt(Kh(L)).

The span of the Jones polynomial is the difference between the highest and lowest degrees of

its terms. While the quantum span of Khovanov homology cannot be less than the span of the

Jones polynomial, it may be larger due to extreme bigradings whose contributions to the Euler

characteristic cancel each other out. For an example, see Kh(10132) in [Kat].

The signature of a link, denoted σ(L), is the signature of the Seifert matrix obtained from any

diagram of L. For many links, Kh(L) lies only on the (σ(L)± 1)-diagonals. [Kho03]. When Kh(L)

lies only on these two diagonals, we say it is thin; otherwise, we say it is thick.

Theorem 1. [Lee05] If L is an alternating link, then Kh(L) is thin.

Manolescu and Oszvath later defined a more general class of links, known as quasi-alternating,

for which Khovanov homology is thin. However, there exist non-quasi-alternating links for which

Kh(L) is thin (see e.g. [Sta12]) and no general criterion for thinness is known.

When Kh(L) is thin, all ranks on the (σ(L)+1)-diagonal match those on the (σ(L)−1)-diagonal

up to a “knight move” shift of degree (1, 4), except for a finite number of “exceptional pairs” with

the form Z⊕Z{2}. In [Ras10], the location of one exceptional pair is used to define the Rasmussen

s-invariant, which gives a lower bound for the slice genus of a knot.

Theorem 2. [Lee05, Shu16] If L is a link such that hw(Kh(L)) = 2, then Kh(L) consists of a

finite number of summands of the form Z ⊕ Z[1]{4} ⊕ Z2[1]{2} together with a finite number of

summands of the form Z⊕ Z{2}.
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2.2.3 Torsion

Khovanov homology frequently contains Z2 torsion, while torsion of other orders is relatively rare.

Based on computations up to 13 crossings, Shumakovitch [Shu14] conjectured that Z2 torsion is

present in the Khovanov homology of all knots and links, except for disjoint unions and connected

sums of unknots and Hopf links. If true, this statement implies that Khovanov homology detects

the unknot, a result whose only known proof requires techniques from gauge theory [KM11]. In

recent work, Shumakovitch demonstrates that if Kh(L) is thin, then it contains only Z2 torsion

[Shu16].

The smallest known knot with odd torsion is the torus knot T (5, 6), which has Z3 and Z5 torsion

in its Khovanov homology [Kat, MPS+17]. Through twist deformations of torus links, [MPS+17]

found infinite families of links which have torsion of order n for 2 < n < 9, as well as infinite

families with torsion of order 2s for s < 24.

Reduced Khovanov homology, denoted Kh
:

(L), generally has fewer torsion groups than the

unreduced version. For example, Kh
:

(L) is torsion-free if L is alternating [Shu14]. However, odd

torsion is also possible; for example, in T (7, 8) and T (7, 9) [MPS+17]. Odd Khovanov homology

Khodd(L) [ORS13], which agrees with Kh(L) over Z2 coefficients, has odd torsion for knots with

crossing numbers as low as 8. Unlike the standard (even) version of reduced homology, Khodd
:

(L)

has the same orders of torsion as Khodd(L) for any given link [Shu11].

2.3 Chromatic graph homology

Inspired by Khovanov’s categorification of the Jones polynomial, Helme-Guizon and Rong con-

structed a bigraded chain complex for graphs whose Euler characteristic is the chromatic polynomial

[HGR05]. We review the definition of this polynomial along with several important properties.

Let G be a finite, undirected graph with vertex set V (G) and edge set E(G). We will often

denote the cardinalities of these sets by v = |V (G)| and E = |E(G)|. If G has an edge between

vertices x, y ∈ V (G), we write the corresponding element in E(G) as {x, y}.

Definition 8. Define the set of λ-colors to be the set of integers {1, . . . , λ}. A λ-coloring of G is

an assignment of λ-colors to the elements of V (G) such that if x, y ∈ V (G) and {x, y} ∈ E(G),

then the colors assigned to x and y are distinct.

Definition 9. The chromatic polynomial of graph G, denoted PG(λ), counts the number of λ-

colorings of G.

Proposition 1. The chromatic polynomial is the unique graph polynomial defined by the following

properties:

1. If Kn is the empty graph with n vertices and no edges, then PKn
(λ) = λn.
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2. If e ∈ E(G), then the following deletion-contraction relation holds: PG(λ) = PG−e(λ) −
PG/e(λ).

Note that if G has a loop at vertex v, then there are no possible colorings and PG(λ) = 0 for all λ.

If G′ is the graph G with multiple edges added between vertices v, w ∈ V (G), then PG(λ) = PG′(λ)

for all λ.

A spanning subgraph of G is a subgraph which contains all the vertices of G. The chromatic

polynomial admits an inclusion-exclusion type formula

PG(λ) =
E∑
i=0

(−1)i
∑

{s : |s|=i}

λk(s) (2.3)

where s is a spanning subgraph with |s| edges and k(s) connected components [HGR05]. This

formula plays a role in the construction of chromatic homology analogous to that played by the

Jones polynomial state sum formula Eq.(2.2) in Khovanov homology. The spanning subgraphs are

used in a manner similar to Kauffman states of a link diagram.

2.3.1 Construction

The construction of chromatic homology depends on the choice of an algebra A. In [HGR05],

this was originally envisioned as A2 = Z[x]/(x2), the polynomial algebra which appears in the

construction of Khovanov homology. The chromatic chain complex over A2 is isomorphic to the

Khovanov chain complex up until the first appearance of comultiplication in the latter. In general,

A may be any associative, Z-graded algebra with unit [HGR12].

We label the connected components of spanning subgraphs with generators of A to obtain

enhanced state graphs, analogous to enhanced Kauffman states. If we substitute λ = qdim A in

the state sum formula (2.3), then PG(qdim A) can be realized as the Euler characteristic of the

homology theory that follows.

Fix an ordering on the edge set E(G) = {e1, e2, . . . , en}. As with the Khovanov cube of res-

olutions, there are 2n possible spanning subgraphs of G that can be arranged as vertices of an

n-dimensional cube. Each vertex has a label (α1, α2, . . . , αn) ∈ {0, 1}n, where αk = 1 if and only if

the kth edge is present in the corresponding spanning subgraph s. To each vertex α, we assign the

graded Z-module CA,α(G) = A⊗k(s), where k(s) is the number of connected components in s; see

Figure 2.5. Let CiA(G) be the group freely generated by enhanced state graphs of G with i edges,

and let Ci,jA (G) be the subgroup generated by elements of CiA(G) whose Z-module grading is j.

Each edge of the cube corresponds to a map de, defined as follows. Suppose spanning subgraphs

s and s′ are identical except that s′ contains the kth edge and s does not. The corresponding vertices

of the cube α and α′ differ only in the kth coordinate, where αk = 0 and α′k = 1. Thus there is
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an edge of the cube from α to α′. If the kth edge (here denoted e) joins different components of

s, then de : CA,α(G) → CA,α′(G) is the map m : A ⊗ A → A that multiplies the labels on these

components. If the addition of edge e preserves the number of connected components in s, then de

is the identity map on A.

C1  (G) C2  (G) C3  (G)C0  (G) 0  0

⊕

⊕ ⊕

⊕

Figure 2.5: Subgraphs and chromatic chain groups of a 3-cycle G = P3.

The chromatic differential di : CiA(G)→ Ci+1
A (G) is defined by

di =
∑

{de : |α|=i}

(−1)ξde

where the sign (−1)ξ is chosen in analogous fashion to the sign in the Khovanov differential. The

chain complex CA(G) = (CiA(G), di) is the chromatic chain complex of G. The homology of CA(G)

is denoted HA(G) and called the chromatic homology of graph G.

The graded Euler characteristic of HA(G) is χq(HA(G)) =
∑

i(−1)i qdim(H i
A(G)), and since

di is a degree preserving differential, it recovers the evaluation of the chromatic polynomial at

λ = qdimA :

χq(HA(G)) = χq(CA(G)) =

E∑
i=0

(−1)i
∑

{s : |s|=i}

(qdim A)k(s) = PG(qdim A)

With the special choice of algebra A = Z[x]/(x2) = A2, this Euler characteristic is PG(qdim A2) =

PG(q + 1).

Analogous to the categorification of the Jones polynomial skein relation, the deletion-contraction
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formula for the chromatic polynomial

PG(λ) = PG−e(λ)− PG/e(λ)

is categorified by to the short exact sequence [HGR05] of chain groups

0→ Ci−1,jA (G/e)→ Ci,jA (G)→ Ci,jA (G− e)→ 0

which induces a long exact sequence in chromatic homology:

0→ H0,j
A (G)→ H0,j

A (G− e)→ H0,j
A (G/e)→ . . .→ H i−1,j

A (G/e)→ H i,j
A (G)→ H i,j

A (G− e)→ . . .

(2.4)

Both PG(λ) and HA(G) are trivial if G has a loop, and both remain unchanged if multiple

edges are added between two vertices. Therefore, unless otherwise stated, we will assume that G is

a simple graph with no loops or multiple edges. For simplicity, we assume G is connected, since the

following formula gives the chromatic homology of any graph in terms of the chromatic homology

of its connected components.

Theorem 3. [HGR12, Theorem 3.6] Let G1, G2 be graphs with disjoint union G1 tG2. Then

H i
A(G1 tG2) ∼=

 ⊕
p+q=i

Hp
A(G1)⊗Hq

A(G2)

⊕
 ⊕
p+q=i+1

Hp
A(G1) ∗Hq

A(G2)


where ∗ denotes the torsion product of two abelian groups.

Corollary 1. [HGR12, Example 4.1] The chromatic homology of the empty graph is given by

H i
A(Kn) =

A⊗n i = 0

0 otherwise.

A pendant edge of a graph is an edge which is attached to a vertex of degree one. Adding a

pendant edge to a graph G multiplies its chromatic polynomial PG(λ) by a factor of (λ− 1). This

property is categorified in chromatic homology. For a given algebra A with unit 1A, we can write

A = Z1A ⊕A′.

Theorem 4. [HGR12, Prop. 3.4] If e is a pendant edge of G, then HA(G) = HA(G/e)⊗A′.
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Corollary 2. [HGR12, Example 4.3] Let Tn be the tree with n+ 1 vertices and n edges. Then

H i
A(Tn) =

A⊗A′⊗n i = 0

0 otherwise.

2.3.2 Chromatic homology over Z[x]/(x2)

Although the construction may be more general, we focus on chromatic homology over polynomial

algebras of the form Am = Z[x]/(xm), following [HGPR06] and [PPS09]. Of particular interest is

A2 = Z[x]/(x2), since this is the same algebra used to construct Khovanov homology.

Definition 10. Let imin be the minimal homological grading on which HA(G) is nontrivial, and

let imax be the highest. Then we define the homological span of HA(G) as: hspan(HA(G)) = imax−
imin + 1. The quantum span of HA(G) is defined similarly: qspan(HA(G)) = jmax − jmin + 1.

A b-diagonal in chromatic homology is a set of bigradings (i, j) for which i + j = b. If HA(G)

is non-trivial on the set of diagonals {i + j = ai}, then we define homological width of HA(G) to

be hw(HA(G)) = amax − amin + 1 where amax, amin are the maximum and minimum values of ai.

Torsion width of homology is defined analogously, and denoted hwt(HA(G)).

Proposition 2. [HGPR06, Cor. 16] HA2(G) is concentrated on the v- and (v−1)-diagonals, where

v is the number of vertices in G. Torsion exists only on the v-diagonal.

Chromatic homology of a connected graph over A2 closely resembles the Khovanov homology of

an alternating link, occupying exactly two diagonals and having only Z2 torsion [LS17]. Chmutov,

Chmutov and Rong [CCR08] proved that the ranks of HA2(G;Q) on these two diagonals are related

by a knight move isomorphism with bidegree (1,−4). Lowrance and Sazdanovic [LS17] showed that

over integral coefficients, torsion is always found between Zs in a knight move pair, and so HA2(G)

can be constructed using only information about ranks.

Theorem 5. [LS17, Theorem 1.4] HA2(G;Z) is determined by the chromatic polynomial of G.

Specifically, HA2(G;Z) consists of a finite number of summands of the form (Z ⊕ Z[1]{−2} ⊕
Z2[1]{−1})[i]{v − i} with i ≥ 0, plus a summand Z{v} ⊕ Z{v − 1} in homological grading i = 0 if

G is bipartite.

2.3.3 Chromatic homology over Z[x]/(xm) for m > 2

For values of m greater than 2, HAm(G) may lie on many diagonals, and all but one of these are

allowed to contain torsion.

Proposition 3. [HGPR06, Cor. 13] Let G be a connected graph with v vertices.
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H i,j
Am

(G) 6= 0⇒


0 ≤ i ≤ v − 2

i+ j ≥ v − 1

(m− 1)i+ j ≤ (m− 1)v

tor H i,j
Am

(G) 6= 0⇒


1 ≤ i ≤ v − 2

i+ j ≥ v

(m− 1)i+ j ≤ (m− 1)v

Computations suggest that Zm torsion is most common in HAm(G), and that Z2 appears in the

homology of wheel graphs and complete graphs. In general, however, there are no restrictions on

the orders of torsion that may appear. In [PPS09], the authors construct a cell complex which is a

partial geometric realization of the bigrading H1,2v−3
A3

(G) and show that this complex may be used

to produce torsion of any kind.

Proposition 4. [PPS09, Cor. 5.2] For any finite abelian group T , there is a simple graph G such

that tor H1,2v−3
A3

(G) = T .

2.4 Correspondence between Khovanov and chromatic homologies

Given a diagram D of a link L, let s+(D) be the Kauffman state of D which has a positive

smoothing at each crossing. The all-positive state graph G+(D) consists of one vertex for each

circle in s+(D), with an edge connecting any pair of circles related by a crossing in D (see Figure

2.6). (For alternating links, G+(D) is often referred to as the Tait graph of D.) This construction

may also be applied to any other Kauffman state of G. We denote by s−(D) the Kauffman state

that results from applying the negative smoothing at each crossing, with G−(D) the all-negative

state graph.

DD s+(D) G+(D)

Figure 2.6: Diagram of 51 and its corresponding planar graph.

The connection between Khovanov homology and state graphs of a diagram was first realized

by Przytycki via Hochschild homology, a homology theory for associative algebras introduced in

[Hoc45]. Our definition of Hochschild homology follows [Lod98, Prz10]. Let k be a commutative

ring and let A a k-algebra with unit. Let M be a bimodule over A; that is, a module on which A
operates linearly such that (am)a′ = a(ma′) for all a, a′ ∈ A, m ∈ M. In this section, let A ⊗ B
denote the tensor product of two algebras over the ring k.

Definition 11. The Hochschild chain complex C∗(A,M) of the algebra A with coefficients in M is
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defined as

. . .→M⊗A⊗n →M⊗A⊗n−1 → . . .→M⊗A →M

where Cn(A,M) = M ⊗ A⊗n and the Hochschild boundary is the k-linear map b : M ⊗ A⊗n →
M⊗A⊗n−1 given by b =

∑n
i=0(−1)idi, with face maps di defined as follows:

d0(m, a1, . . . , an) = (ma1, a2, . . . , an)

di(m, a1, . . . , an) = (m, a1, . . . , aiai+1, . . . , an) for 1 ≤ i ≤ n− 1

dn(m, a1, . . . , an) = (anm, a1, . . . , an−1)

The nth homology group of this chain complex is called the nth Hochschild homology group of A
with coefficients in M and denoted Hn(A,M). In the case M = A, we use the notation HHn(A)

for this homology.

The Khovanov homology of the (2, n) torus link is isomorphic to part of the Hochschild homology

of the algebra A2. The standard diagram of this link has an all-positive state graph which is a cycle

(or polygon) Pn (Figure 2.7), and the chromatic homology HA2(Pn) is also related to the Hochschild

homology of A2. The following result explains the correspondence precisely for any Am.

T(2,7) P7

Figure 2.7: Diagram of torus knot T (2, 7) and its corresponding all-positive state graph.

Theorem 6. [Prz10] Let HH(Am) be the Hochschild homology of Am. For i > 0, Hochschild

homology determines the chromatic homology of a cycle graph Pn as follows:

HHi−n−1,j(Am) ∼= H i,j
Am

(Pn) ∼=


Zm if i < n− 1, n− i even, j = n−i

2 m

Z if i < n− 1, bn−i−12 cm+ 1 ≤ j ≤ bn−i−12 cm+m− 1

0 otherwise

Chromatic homology may be considered as a generalization of Hochschild homology of Am to
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graphs with multiple cycles.

Definition 12. The girth of a graph G, denoted `(G), is the length of the shortest cycle in G. We

adopt the convention that the girth of a tree is zero, as opposed to considering the girth of a tree to

be infinite (see [Bol98, Die00]).

The chromatic chain complex CiA(G+(D)) is isomorphic to the Khovanov chain complex of L

in homological gradings i = 0 through i = `− 1. For these gradings, the enhanced Kauffman states

of D and the enhanced state graphs of G+(D) have the same number of components. The edge

maps de on each cube complex multiply the labels associated to these components. In C`A(G+(D)),

one of the spanning subgraphs with ` edges contains a cycle. The closure of a cycle in the `th

grading indicates that one of the edge maps in Eq. (2.1) is a comultiplication in the Khovanov cube

complex. It follows that the chromatic homology in degree ` and all subsequent gradings may differ

from the corresponding gradings in Khovanov homology.

The following result describes the partial correspondence between the Khovanov homology of

L and the chromatic homology of the corresponding graph G+(D).

Theorem 7. [Prz10, PS14] Let D be a diagram of link L with c− negative crossings and c+ positive

crossings. Suppose G+(D) has v vertices and positive girth `. Let p = i−c− and q = v−2j+c+−2c−.

For 0 ≤ i < ` and j ∈ Z, there is an isomorphism H i,j
A2

(G+(D)) ∼= Khp,q(L). Additionally, for all

j ∈ Z, there is an isomorphism of torsion tor H`,j
A2

(G+(D)) ∼= tor Kh`−c−,q(L).

Similarities between Khovanov link and chromatic homology go beyond this theorem, and extend

mainly to alternating knots and their associated graphs. Note that the following result from [LS17]

states that the portion of Khovanov homology of any link is the same as Khovanov homology of

an alternating link provided that their associated graphs are isomorphic. More precisely, if D is an

alternating diagram of a link L and D′ is a diagram of any link L such that G = G+(D) = G+(D′),

then we have the following isomorphism of Khovanov homology groups: Khi,j(D) ∼= Khp,q(D′) for

−c−(D) ≤ i ≤ −c−(D)−`(G)−1 and all j where p−c−(D1) = i−c−(D0) and q+c+(D′)−2c−(d′) =

j + c+(D)− 2c−(D) [LS17, Cor. 5.2].
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Chapter 3

Structure of chromatic homology over

A2 = Z[x]/(x2)

In this section we prove a number of results about the chromatic homology of a graph over A2,

building on the results found in [HGR05, HGPR06, CCR08, LS17]. Using the long exact sequence

(2.4) and a result about chromatic polynomials, we determine the homological span of HA2(G) for

any connected graph G, showing that it depends only on the number of vertices and the number of

blocks in the graph. We also use the long exact sequence together with the knight move structure

described in Theorem 5 to describe the effect on homology when we glue a cycle to G along a single

edge or a single vertex. These results provide information about torsion in extreme gradings of

Khovanov homology. For certain links, we can describe an interval of Khovanov gradings on which

torsion has no gaps.

We provide explicit descriptions of chromatic homology in gradings i = 3 through i = 6,

derived from the coefficients of the chromatic polynomial [Mer72, Far80, Bie05]. For homologically

thin links which a corresponding graph G with girth `, we show that the first ` coefficients of the

Jones polynomial depend only on the cycles of G.

3.1 Homological span

In order to compute the precise homological span of HA2(G), we first observe that the minimal

quantum grading is equal to the number of blocks in a graph, then define a contracting sequence

of graphs that will induce inclusion between their corresponding homology groups.

A bridge of a connected graph G is an edge e ∈ E(G) such that G− e is disconnected. We say

that a graph is 2-connected if it cannot be disconnected by the removal of a single edge.

Definition 13. A subgraph B is a block of G (also known as a biconnected component of G) if it
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is either a bridge or a maximal 2-connected subgraph of G ([Bol98]). We let b = b(G) denote the

number of blocks of G.

Proposition 5. [Rea68, WJZ84] Let G be any graph and let c0, c1 be the multiplicities of the factors

λ, (λ− 1) respectively in PG(λ). Then c0 is the number of connected components in G and c1 is the

number of blocks.

Lemma 1. Let jmin be the minimal quantum grading for which H∗,jA2
(G) is non-trivial. Then

jmin(H∗,jA2
(G)) = b(G).

Proof. Theorem 5 implies that there is only one non-trivial homology group in the minimal quantum

grading: Hv−jmin−1,jmin

A2
(G) on the lower diagonal. Therefore the lowest degree term in the chromatic

polynomial PG(1 + q) equals ±rk Hv−jmin−1,jmin

A2
(G)qjmin , and qjmin divides PG(1 + q). In terms

of the original variable λ = 1 + q this means that jmin is the multiplicity of the factor (λ − 1) in

PG(λ), which is known to be equal to the number of blocks b by Proposition 5.

Given a graph G, we define a sequence of graphs obtained by contracting certain edges of G.

The requirements of Definition 14 are tailored to fit conditions in Theorems 8 and 9, where we use

the long exact sequence (2.4) and results of [CCR08] for connected graphs. In particular, we avoid

contracting bridges, as in that case G− e is not connected and its chromatic homology is not thin.

e0

e1

G0 G1 G2

Figure 3.1: Contraction sequence {G0, G1, G2} with ending with a tree G2.

Example 1. The contraction sequence shown in Figure 4 reduces the graph G = G0 to a tree G2 in

v(G)−b(G)−1 = 2 steps. Note that bridges (represented by a bold line in G0) can not be contracted,

and remain fixed in the contraction sequence. First we reduce the block on the right to a single edge

by contracting e0 to obtain the first graph in the contracting sequence G1. The second contracting

step does the same for the block on the left by contracting e1 which reduces G1 to G2 which is a

tree.

Definition 14. A contraction sequence G/s of a graph G is a set of graphs G/s = {Gi}ni=0 such

that G0 = G and each Gi with 0 < i ≤ n is obtained from Gi−1 by contracting a single non-bridge

edge and removing any double edges after the contraction.
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Remark 1. Note that each contraction decreases the number of vertices in the graph by one; i.e.,

v(Gi) = v(Gi−1)−1. This procedure can never decrease the number of blocks because contraction of

bridges is prohibited, and if a block has more than two vertices then any edge e ∈ E(B) is contained

in a cycle of B, so contraction of e can not eliminate B. Moreover, this procedure cannot remove

cut-vertices, which implies that each block is contracted separately.

Lemma 2. For any graph G there exists a contraction sequence G/s that reduces G to a tree in

exactly v − b− 1 steps, i.e. the first and only tree in a sequence G/s is {Gi}i≥0 is Gv−b−1.

Proof. In the light of Remark 1, we need to prove the existence of the longest possible contracting

sequence because after v − b − 1 steps we will have a graph with b + 1 vertices and b blocks so

Gv−b−1 has to be a tree. Theorem 5.12 [Hav] states that if you have a 2-connected graph (in this

case, a block) B with more than three vertices, there is an edge e of B such that B/e is 2-connected.

This fact ensures that we will not get a tree prior to Gv−b−1.

The tree obtained in Lemma 2 is similar to the “block-cutvertex tree” defined in [HP66] (see

[Bar02]).

Theorem 8. For any connected graph G with v vertices and b blocks, hspan(HA2(G)) = v − b.

Proof. Since H0,v
A2

(G) = Z for any G, it suffices to show that the last nontrivial homology group

occurs in homological grading i = v − b − 1. In particular, we show that the group Hv−b−1,b
A2

(G)

is non-trivial. Let G/s be a contraction sequence described in Lemma 2. If e1 ∈ E(G) is the first

edge contracted in the sequence, we have a deletion-contraction long exact sequence in chromatic

homology Eq. (2.4):

. . .→ Hv−b−2,b
A2

(G− e1)→ Hv−b−2,b
A2

(G/e1)
α1→ Hv−b−1,b

A2
(G)→ . . .

in which Hv−b−2,b
A2

(G − e1) ∼= 0 (because G − e1 is connected and has v vertices). Thus map α1 is

injective. Applying the same argument to each of the steps in the contracting sequence yields:

H0,b
A2

(Gv−b−1) ↪
αv−b−1−−−−→ . . .

α3
↪→ Hv−b−3,b

A2
((G/e1)/e2)

α2
↪→ Hv−b−2,b

A2
(G/e1)

α1
↪→ Hv−b−1,b

A2
(G)

with each αi injective.

Since Gv−b−1 is a tree, based on Corollary 2, H0,b
A2

(Gv−b−1) ∼= Z. The sequence of injections

implies that Hv−b−1,b
A2

(G) is also non-trivial. So the span of homology on the i+ j = v− 1 diagonal

is at least v − b. Since Hv−j−1,j
A2

(G) with j < b must be trivial by Lemma 1, the span is exactly

v − b. Theorem 5 implies that the i+ j = v diagonal must have the same homological span.
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Theorem 9. Chromatic homology H i
A2

(G) contains at least one copy of Z for each i-grading such

that 0 ≤ i ≤ v − b− 1, that is, rk H i,v−i
A2

(G)⊕H i,v−i−1
A2

(G) > 0.

Proof. In case i = 0, 1 the statement follows from [PPS09, Thm. 3.1] and [PS14, Lem. 3.1].

Now let 2 ≤ i ≤ v − b− 1 and assume that G is not a tree. The proof relies on the contraction

sequence of Definition 14 and the deletion-contraction long exact sequence in chromatic homology.

More precisely, we will show that the statement is true for all graphs in the contraction sequence,

working backwards starting from n = v − b − 1. By Lemma 2, there is a contraction sequence

{Gk}v−b−1k=0 of G such that Gv−b−1 is a tree. We let Gv−b−1 be our base case, since the result holds

for any tree in homological degree zero (Corollary 2).

Next, assume that the result holds for Gk+1, 1 ≤ k + 1 ≤ v − b − 1. We show the result also

holds for Gk.

In the induction step that follows, v,E, and b refer to the number of vertices, edges, and blocks

in Gk, respectively. By [CCR08]:

rk H i,v−i
A2

(Gk) = rk H i−1,v−i
A2

(Gk+1) + rk H i,v−i
A2

(Gk − e)

rk H i,v−i−1
A2

(Gk) = rk H i−1,v−i−1
A2

(Gk+1) + rk H i,v−i−1
A2

(Gk − e)

where e is the edge such that Gk+1 = Gk/e.

Note that Gk+1 has v−1 vertices, E−1 edges, and b blocks (the number of blocks cannot change

since e was not a bridge). The group H i−1,v−i
A2

(Gk+1) is on the upper diagonal of the homology of

Gk+1, while H i−1,v−i−1
A2

(Gk+1) is immediately below it on the lower diagonal. Since 2 ≤ i ≤ v−b−1,

we have 1 ≤ i − 1 ≤ v − b − 2 where v − b − 2 = v(Gk+1) − b(Gk+1) − 1. By assumption,

then, rk H i−1,v−i
A2

(Gk+1) ⊕ H i−1,v−i−1
A2

(Gk+1) > 0. This implies that rk H i−1,v−i
A2

(Gk+1) > 0 or

rk H i−1,v−i−1
A2

(Gk+1) > 0.

Using our description of homological span over A2, we can give a fairly weak lower bound for

the span of torsion in Khovanov homology.

Theorem 10. Let D be a link diagram of link L whose graph G+(D) has v vertices, b blocks, and

girth `.

hspant(Kh(L)) ≥ hst+ =



v − b− 1 G+(D) has odd cycle with ` ≥ v − b− 1

v − b− 2 G+(D) is bipartite with ` ≥ v − b− 1

` G+(D) has odd cycle with ` < v − b− 1

`− 1 G+(D) is bipartite with ` < v − b− 1

Proof. The minimal i-grading with torsion is either i = 1 (odd cycle) or i = 2 (bipartite) [PPS09].

On the other hand, HA2(G) contains one Z2 in (i+1, j−1) for each (i, j), (i+1, j−2) knight move

pair, based on the proof of Theorem 5 [LS17]. Therefore, the maximal homological grading with

21



torsion is i = v− b− 1, where the last Z occurs. If ` ≥ v− b−1, the last grading with torsion inside

the correspondence is i = v − b − 1 and the span of torsion is v − b − 1 (odd cycle) or v − b − 2

(bipartite). If ` < v− b−1, then the span of torsion is at least ` (odd cycle) or `−1 (bipartite).

Corollary 3. Let D be a link diagram whose graphs G+(D) and G−(D) have v± vertices, b± blocks,

and girth `±, respectively. Using notation in Theorem 10 if both hst+, hs
t
− > 0 we know that the

span of torsion relates to the homological span of Khovanov homology in the following way:

2 ≤ hspan(Kh(L))− hspant(Kh(L)) ≤ 4.

3.2 Addition of cycles

In this section we analyze how attaching a cycle along an edge or vertex affects chromatic homology

HA2(G) and use these results to describe patterns in Khovanov homology of some alternating 3-

strand pretzel links and rational 2-bridge links.

Recall that the chromatic homology of an n-cycle, denoted Pn, is determined by the Hochschild

homology of the chosen algebra (Theorem 6). As mentioned before, we focus on polynomial algebras

Am.
This result, applied to algebra A2, says the following:

Corollary 4. The chromatic homology for Pn over A2 is given by

H i,n−i
A2

(Pn=2k+1) ∼=

Z2 i odd, 1 ≤ i ≤ n− 2

Z i even, 0 ≤ i ≤ n− 3

H i,n−i
A2

(Pn=2k) ∼=

Z2 i even, 2 ≤ i ≤ n− 2

Z i = 0 or i odd, 1 ≤ i ≤ n− 3

H i,n−i−1
A2

(Pn=2k+1) ∼=

Z i odd, 1 ≤ i ≤ n− 2

0 otherwise

H i,n−i−1
A2

(Pn=2k) ∼=

Z i even, 0 ≤ i ≤ n− 2

0 otherwise

For other connected graphs, explicit formulae were known only for the first three homological

gradings [AP04, PPS09, PS14] and Theorem 21 describes the fourth grading. It is not surprising,

but still curious, that these initial gradings in chromatic homology depend only on the bipartiteness

and the number of triangles.

Definition 15. The cyclomatic number p1(G) of a connected graph G is equal to p1(G) = |E|−v+1.
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Proposition 6. [PPS09, PS14] Let G be a graph, with t1 equal to the number of triangles in G.

Then:

H0,v
A2

(G) = Z

H0,v−1
A2

(G) =

Z G bipartite

0 otherwise

H1,v−1
A2

(G) =

Zp1 G bipartite

Zp1−1 ⊕ Z2 otherwise

H2,v−2
A2

(G) =

Z(p12 ) ⊕ Zp12 G bipartite

Z(p12 )−t1+1 ⊕ Zp1−12 otherwise

Lemma 3 states that entries on the main diagonal in chromatic homology of graph G are

determined by entries from the main diagonals of chromatic homology for graphs G− e and G/e,

provided that edge e is not a bridge.

Lemma 3. Given graph G with v vertices and an edge e ∈ E(G) which is not a bridge, then for

all i ≥ 2,

H i,v−i
A2

(G) ∼= H i−1,v−i
A2

(G/e)⊕H i,v−i
A2

(G− e) (3.1)

Proof. The free part of H i,v−i
A2

(G) is determined by computation of rational chromatic homology

[CCR08, Corollary 4.2]:

rk H i,v−i
A2

(G;Q) = rk H i−1,v−i
A2

(G/e;Q) + rk H i,v−i
A2

(G− e;Q)

The same result, applied in the previous homological grading

rk H i−1,v−i+1
A2

(G;Q) = rk H i−2,v−i+1
A2

(G/e;Q) + rk H i−1,v−i+1
A2

(G− e;Q)

together with Theorem 5 determine the torsion on the main diagonal:

tor H i,v−i
A2

(G) = tor H i−1,v−i
A2

(G/e)⊕ tor H i,v−i
A2

(G− e).

3.2.1 Edge gluing of a cycle

In this section we analyze how attaching a cycle along an edge or vertex affects chromatic homology

HA2(G).

We use the notation G1|G2 to represent the graph obtained by gluing G1 and G2 along a single

edge, and G1|kG2 for a gluing along k edges, Figure 3.2. Similarly, G1 ∗G2 is the gluing of G1 and

G2 at a single vertex.

Theorem 11 provides an explicit formula for the upper diagonal i + j = v of HA2(G|Pn), and,

together with Theorem 5, determines the rest of chromatic homology, i.e. the lower diagonal.
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k edges
G1 G2 G1 G2

G1 G2

G1 | G2 G1 |
k G2 G1 ∗ G2

Figure 3.2: Edge and vertex gluings of graphs.

Theorem 11. Let G be a graph with v vertices, E edges, and St(G) =
t⊕

k=0

H i−k,v−i+k
A2

(G). For

n ≥ 3,

H
i,(v+n−2)−i
A2

(G|Pn) ∼=


Sn−2(G) i > n− 2

ZE−v+2 ⊕ Si−2(G) i ≤ n− 2, n− i odd, G bipartite

ZE−v+1 ⊕ Z2 ⊕ Si−2(G) otherwise

Proof. Note that H
i,v(G|Pn)−i
A2

(G|Pn) = H
i,(v+n−2)−i
A2

(G|Pn). First we consider the case where i >

n− 2. We induct on n, the length of the added cycle. For n = 3, let e be an edge of P3 that is not

in G.

Observe that (G|P3)/e isG with a double edge, soHA2((G|P3)/e) ∼= HA2(G). The graphG|P3−e
is G with a pendant edge. From Lemma 3 and Theorem 4, we obtain the proof for n = 3:

H
i,(v+1)−i
A2

(G|P3) ∼= H
i−1,(v+1)−i
A2

(G|P3/e)⊕H i,(v+1)−i
A2

(G|P3 − e) ∼= H
i−1,(v+1)−i
A2

(G)⊕H i,v−i
A2

(G)

The induction step is based on following:

H
i,(v+n−2)−i
A2

(G|Pn) ∼= H
i−1,(v+n−2)−i
A2

(G|Pn/e)⊕H i,(v+n−2)−i
A2

(G|Pn − e)
∼= H

i−1,(v+n−2)−i
A2

(G|Pn−1)⊕H i,(v+n−2)−i
A2

(G){n− 2}
∼= H

i−1,(v+n−3)−(i−1)
A2

(G|Pn−1)⊕H i,v−i
A2

(G)

∼=

(
n−3⊕
k=0

H
(i−1)−k,v−(i−1)+k
A2

(G)

)
⊕H i,v−i

A2
(G) ∼=

n−2⊕
k=0

H i−k,v−i+k
A2

(G).

For cases where i ≤ n−2, we state the result differently to accommodate the extra Z in bipartite

graphs. We apply Lemma 3 a total of i− 1 times to obtain:
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H
i,(v+n−2)−i
A2

(G|Pn) ∼= H
i−1,(v+n−2)−i
A2

(G|Pn−1)⊕H i,v−i
A2

(G)

∼= H
1,(v+n−2)−i
A2

(G|Pn−(i−1))⊕
i−2⊕
k=0

H i−k,v−i+k
A2

(G)

Now we compute the first summand in terms of G only, using Proposition 6:

H
1,(v+n−2)−i
A2

(G|Pn−(i−1)) = H
1,v(G|Pn−(i−1))−1
A2

(G|Pn−(i−1))

=

ZE−v+2 G|Pn−(i−1) is bipartite

ZE−v+1 ⊕ Z2 otherwise

Since G|Pn−(i−1) is bipartite only for G bipartite, n− i odd, we have derived the formulas for the

second and third cases.

The following results are special cases of the previous theorem when graph G is also a cycle.

Corollary 5. The rank of H i,v−i
A2

(P3|Pn) is given by rk H i,v−i
A2

(P3|Pn) =

1 0 ≤ i ≤ n− 2

0 otherwise

Corollary 6. The rank of H i,v−i
A2

(P4|Pn) is given by the following formulas:

If n is even, then rk H i,v−i
A2

(P4|Pn) =


2 i < n− 1 odd

1 i < n− 1 even, i = n− 1

0 i ≥ n

If n is odd, then rk H i,v−i
A2

(P4|Pn) =


2 0 < i < n− 1 even

1 i < n− 1 odd, i = 0, i = n− 1

0 i ≥ n

Corollary 7. The rank of H i,v−i
A2

(P5|Pn) is given by rk H i,v−i
A2

(P5|Pn) =


1 i = 0, 1, n− 1, n

2 1 < i < n− 1

0 i > n

Concatenation of a pair of sequences a = (a1, . . . , ak) and b = (b1, . . . , b`) is denoted by a · b =

(a1, . . . , ak, b1, . . . , b`). Let a′ denote the sequence obtained from a by removing its last element; let

a represent the sequence obtained from a by reversing its order. The notation (a)p = a · a · . . . · a
represents the constant sequence of length p. We introduce the following notation for special integer

sequences, as in [Man14]: Ap = (2, 1, 3, 2, 4, 3, . . . , p, p− 1) and Cp = (1, 1, 2, 2, 3, 3, . . . , p, p).
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Torsion in chromatic homology of graphs G = Ps|Pt depends on the parity of s and t. Writing

s = 2m or s = 2m+ 1 and j = 2n or j = 2n+ 1, we denote M = M(G) = min{m,n}.

Theorem 12. For all graphs of the form G = Ps|Pt (s, t ≥ 3), torsion in chromatic homology

follows the pattern tor H i,v−i
A2

(G) = Zxi2 where xi is the ith term of the sequences x = (xn)n∈N

described below:

A) If G = P2n+1|P2m+1 then x = CM−1 · (M)2|m−n|+2 · CM−1 for 1 ≤ i ≤ 2n+ 2m− 2.

B) If G = P2n+1|P2m with n ≤ m, then x = CM−1 · (M)2|m−n|+1 ·CM−1 for 1 ≤ i ≤ 2n+ 2m−3.

C) If G = P2n+1|P2m with n > m, then x = CM−1 ·M · (M − 1,M)|m−n| · CM−1 for 1 ≤ i ≤
2n+ 2m− 3.

D) If G = P2n|P2m, then x = AM−1 ·M · (M − 1,M)|m−n| · CM−1 for 1 ≤ i ≤ 2n+ 2m− 4.

Proof. Based on Theorem 5 [LS17] the torsion pattern follows from the the free part of homology

on the i+ j = v diagonal.

We prove the result for all Ps|Pt where s ≤ t. This suffices because graphs Ps|Pt and Pt|Ps are

isomorphic. The result holds for P3|Pt, t ≥ 3 (Corollary 5) and P4|Pt, t ≥ 4 (Corollary 6). It follows

that the result holds for Ps|P3 for any s ≥ 3, and Ps|P4 for any s ≥ 4, – we use this as a base for

the induction.

Next, fix s ≥ 5 and assume the result holds for Ps|Pq, q < s. To show that it holds for Ps|Pq,
q ≥ s we consider the following four cases based on the parity of cycle lengths:

A) Suppose G = Ps|Pq = P2n+1|P2m+1, with M = min{m,n} = n ≤ m. Let e be an edge

of G that is contained in P2m+1 but not in the other cycle. Then G/e = P2n+1|P2m and

G− e = P2n+1 with 2m pendant edges. By assumption, homology of G/e follows the pattern

given in case B): Cn−1 · (n)2(m−n)+1 · Cn−1. We have rk H0,v
A2

(G) = 1 and rk H1,v−1
A2

(G) = 1

by Proposition 6. For i > 1, Equation (3.1) gives:

1 2 2 3 3 . . . (n− 2) (n− 1) (n− 1) n . . . n︸ ︷︷ ︸
2(m−n)+1

Cn−1 (homology of G/e)

+ 1 0 1 0 1 . . . 1 0 1 (homology of G− e)

= 2 2 3 3 . . . (n− 1) (n− 1) n n . . . n︸ ︷︷ ︸
2(m−n)+1

Cn−1 (homology of G)

The final pattern for H i,v−i
A2

(G) is

1 1 2 2 3 3 . . . (n− 1) (n− 1) n n . . . n︸ ︷︷ ︸
2(m−n)+1

Cn−1 = Cn−1 · (n)2(m−n)+2 · Cn−1
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B) Analogously, case G = Ps|Pq = P2n+1|P2m, M = n ≤ m, builds off of case A). Choosing an

edge e ∈ G that is contained only in P2m means that G/e = P2n+1|P2(m−1)+1 and G − e =

P2n+1 with 2m− 1 pendant edges attached.

C) Notice that G = Ps|Pq = P2n+1|P2m, n > m is isomorphic to G = Pq|Ps = P2m|P2n+1. In this

case M = m and for simplicity of the argument, we choose the edge of the odd cycle which

reduces the computation to graph P2m|P2n which belongs to Case D).

D) Let G = Ps|Pq = P2n|P2m with M = min{m,n} = n ≤ m. Select an edge e of G that is

contained in P2m but not in the other cycle. Then G/e = P2n|P2(m−1)+1 and G − e = P2n

with pendant edges attached. Case C) gives us the homology of G/e if n < m− 1; if n = m

or n = m− 1, use Case B) instead.

The proof of the following theorem is omitted, as it closely follows the proof of Theorem 12.

Theorem 13. For all graphs of the form G = Ps|2Pt (s, t ≥ 4), torsion in chromatic homology

follows the pattern tor H i,v−i
A2

(G) = Zxi2 where xi is the ith term of the sequences x = (xn)n∈N

described below:

A) If G = P2n+1|2P2m+1 with M = min{m,n}, then x = CM−1 · (M)2|m−n|+2 ·C
′

M−1 for 1 ≤ i ≤
2n+ 2m− 3.

B) If G = P2n+1|2P2m with n ≤ m, then x = CM−1 ·(M)2|m−n|+1 ·C
′

M−1 for 1 ≤ i ≤ 2n+2m−4.

C) If G = P2n+1|2P2m with n > m, then x = CM−1 ·M · (M − 1,M)|m−n| · C
′

M−1 for 1 ≤ i ≤
2n+ 2m− 4.

D) If G = P2n|2P2m, then x = AM−1 ·M · (M − 1,M)|m−n| · C
′

M−1 for 1 ≤ i ≤ 2n+ 2m− 5.

3.2.2 Vertex gluing of a cycle

Using ideas outlined in Section 3.2.1, we describe the chromatic homology of graphs obtained by

gluing a cycle along a vertex of a given graph. These results allow us to give an alternative proof

of [WW92, Theorem 2] stating that certain classes of outerplanar graphs are cochromatic.

Corollary 8, which follows from Theorem 11, says that gluing a cycle to G at a vertex has the

same effect as gluing along a single edge, up to a shift in the j-grading.

Corollary 8. For any graph G and any n ≥ 3, H i,v−i
A2

(G ∗ Pn) = H i,v−i−1
A2

(G|Pn).
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Proof. The proof is analogous to the proof of Theorem 11, and yields:

H
i,v(G∗Pn)−i
A2

(G ∗ Pn) ∼= H
i,(v+n−1)−i
A2

(G ∗ Pn)

∼=


Sn−2(G) i > n− 2

ZE−v+2 ⊕ Si−2(G) i ≤ n− 2, n− i odd, G bipartite

ZE−v+1 ⊕ Z2 ⊕ Si−2(G) otherwise

Since G ∗ Pn has one more vertex than G|Pn, the formula above implies that G ∗ Pn has the same

homology as G|Pn with an upward shift of one j-grading.

The results in this section determine the chromatic homology of graphs constructed iteratively

by gluing cycles only along single edges, or along both single edges and vertices. These families of

graphs are known as polygon trees and outerplanar graphs, respectively.

Definition 16. A first-order polygon tree is a graph consisting of a single cycle. An nth order

polygon tree may be constructed by gluing a new cycle along one edge of an (n− 1)st order polygon

tree.

Definition 17. A planar graph is outerplanar if it can be embedded in the plane with all its vertices

on the same face.

Remark 2. The set of outerplanar graphs may be considered a generalization of polygon trees in

which cycles are glued along a single edge, glued at a single vertex, or connected by a bridge. An

equivalent description is given in [Sys79, Theorem 4].

Theorem 14. Suppose that G = G1 ∗ G2 and GB is the graph obtained by expanding the shared

vertex into a bridge between G1 and G2. Then HA2(GB) = HA2(G){1}.

Proof. Let J1 denote G1 with a pendant edge, J2 denote G2 with a pendant edge. A result for

chromatic polynomials ([DKT05], [Zyk49]) says that: PG(λ) =
PG1

(λ)PG2
(λ)

λ and

PGB
(λ) =

PJ1(λ)PJ2(λ)

λ(λ− 1)
=

(
(λ− 1)PG1(λ)

)(
(λ− 1)PG2(λ)

)
λ(λ− 1)

= (λ− 1)PG(λ).

Changing variables to q = λ−1, we have PGB
(q) = qPG(q), so HA2(GB) and HA2(G) are determined

up to a shift of one q-grading.

Definition 18. An induced subgraph H ⊆ G is a graph such that V (H) ⊆ V (G) and E(H) contains

all edges in E(G) with both endpoints in H.
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Note that induced cycles of G are sometimes referred to as “chordless cycles” or “pure cycles”.

If two polygon-trees have the same collection of induced cycles, they are chromatically equiva-

lent; i.e., they have the same chromatic polynomial ([CL85], [WW92]). An analogous result holds

for outerplanar graphs with the same collection of induced cycles and the same number of blocks

[WW92, Theorem 2]. Corollary 9 provides another proof of this fact using chromatic homology.

Corollary 9. [WW92, Theorem 2] The family of all connected outerplanar graphs with rk induced

cycles of length k and b blocks is chromatically equivalent. If G is in this family, and GE is a polygon

tree with the same collection of induced cycles, then PG(λ) = (λ − 1)yPGE (λ) where y is the total

number of vertex gluings and bridges in G.

Proof. Based on Remark 2, we need to know the effect that gluing two cycles along a single edge,

gluing two cycles at a vertex, or connecting two cycles by a bridge has on chromatic graph homology.

Theorem 11, Corollary 8, and Theorem 14 cover all relevant graph operations.

Corollary 10. Let G be a connected outerplanar graph with rk induced cycles of length k. Then

hspan(HA2(G)) =
∑
rk(k − 2) + 1.

Proof. Follows from [WW92, Theorem 2] and our considerations.

3.2.3 Khovanov homology of certain 3-strand pretzel links

Note that the graphs G|Pn described in Subsection 3.2.1 are instances of multibridge graphs, Figure

3.3, defined as follows:

Definition 19 ([DHK+04]). The multibridge graph θ(a1, a2, . . . , ak) is the graph obtained by con-

necting two distinct vertices with k internally disjoint paths, each of length ak. In particular,

θ(a1, a2, . . . , ak) is called a k-bridge graph.

Specifically, the 3-bridge graph θ(a1, 1, a2) consists of two cycles Pa1+1 and Pa2+1 glued along a

single edge. We will compute torsion patterns in chromatic homology of multibridge graphs of the

form Pn|kPm when k = 1 or k = 2. Note that the graph assigned to the standard diagram of the

pretzel knot K = (−a1,−a2, . . . ,−an), which is Pa1+a2 |a2Pa2+a3 |a3 . . . |an−1Pan−1+an , where n ≥ 3

and ai ≥ 2 for all i, is precisely the multibridge graph θ(a1, a2, . . . , ak). As a corollary, we will be

able to partially describe Khovanov homology of alternating 3-strand pretzel knots.

For thin pretzel links, such as those which are alternating or quasi-alternating ([OS08], [Gre10]),

torsion is determined by the Jones polynomial and signature via results of Alex Shumakovitch that

inspired results in [LS17]. Three-strand pretzel links of the form (p1, p2,−q) are quasi-alternating

if and only if q > min{p1, p2} [Gre10]. Rational Khovanov homology of (p, q,−q) is given by a

recursive formula on the parameter p [Sta12, Qaz11]. Furthermore, links of the form (p, q,−q)
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  . . . . .

a1 a2 ak

  �(a1, a2, ... , ak)  �(3,2,3) = P5 |
2 P5    (-3, -2, -3)

Figure 3.3: Multibridge graphs (left), multibridge graph θ(3, 2, 3) (middle) which can be seen as
gluing two pentagons along two edges, that corresponds to the standard diagram of pretzel knot
(−3,−2,−3) (right).

with q odd and p > q are the only non-quasi-alternating pretzels which are homologically thin

[Man13]. The results below describe patterns in Khovanov torsion of alternating links, in terms of

the combinatorial properties of the corresponding graph.

Theorem 15. Let L = (−a1, . . . ,−an) be a pretzel link with standard diagram D. The homological

span of torsion in Kh(L) has the following lower bound:

hspant(Kh(L)) ≥


min

1≤i<j≤n
{ai + aj} − 1 if ai + aj is even for all i 6= j

min
1≤i<j≤n

{ai + aj} otherwise

Proof. This result is an application of Theorem 10 in the case of alternating pretzel knots. GD is a

graph with 1 block and (
∑n

i=1 ai)− n+ 2 vertices. By Theorem 8, hspan(HA2(GD)) = (
∑n

i=1 ai)−
n+ 1. So the last torsion group occurs in grading i = (

∑n
i=1 ai)− n ([LS17]). To prove the result,

we need to show that (
∑n

i=1 ai)− n is greater than or equal to the girth l.

The girth of a multibridge graph GD = θ(a1, a2, . . . , an) is l = min
1≤i<j≤n

{ai + aj}. Without loss

of generality, assume that ` = aj1 + aj2 and notice that

(
n∑
i=1

ai

)
− n =

n∑
i=1

(ai − 1) =

 ∑
i 6=j1,j2

(ai − 1)

+ (aj1 − 1) + (aj2 − 1) ≥ aj1 + aj2

The last inequality is true when
∑

i 6=j1,j2(ai − 1) ≥ 2. This is true for any set of parameters

except for (−2,−2,−2) (this case can be verified by direct computation).

For thin links, torsion in Khovanov homology is determined by the Jones polynomial and signa-

ture [Shu16]. No general formula is known for computing this torsion. Using patterns in chromatic
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homology of multibridge graphs, we can describe a large part of Z2 torsion in the Khovanov ho-

mology of alternating pretzel links.

Example 2 (Torsion of pretzel knot and multibridge graph). The alternating knot with diagram

D = (−3,−2,−3), shown in Figure 3.3, is the mirror of 85 in Rolfsen’s table [Rol03, Kat]. Its

corresponding graph is G = θ(3, 2, 3), which has girth 5. In Table 3.1 we compare torsion in Kh(D)

and HA2(G), using boldface to denote matching copies of Z2.

Table 3.1: Torsion in Khovanov homology of pretzel knot L = (−3,−2,−3) and in chromatic
homology of the corresponding graph G = θ(3, 2, 3). Entries in boldface denote the range where
torsion is isomorphic.

p = −5 p = −4 p = −3 p = −2 p = −1 p = 0 p = 1 p = 2

tor Khp(L) ZZZ2 ZZZ2 ZZZ2
2 ZZZ2

2 ZZZ2 Z2
2 Z2

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

tor H i(G) ZZZ2 ZZZ2 ZZZ2
2 ZZZ2

2 ZZZ2

The following results are corollaries of the results in Section 3.2 that describe patterns in chro-

matic homology of multibridge graphs.

Corollary 11. Let L be an alternating 3-strand pretzel link with diagram D such that D has c−

negative crossings and c+ positive crossings and G+(D) has v vertices. Then L has torsion in

Khovanov grading (i− c−, v− 2j + c+− 2c−) equal to Zxi2 where xi is the ith term of the sequences

x described below:

A) If D = (−(2n−1),−2,−(2m−1)) with m 6= n, then x = CM−1 ·M ·M ·M for 1 ≤ i ≤ 2M+1,

where M = min{m,n}.

B) If D = (−(2n− 1),−2,−(2n− 1)), then x = CM−1 ·M ·M · (M − 1) for 1 ≤ i ≤ 2n+ 1.

C) If D = (−(2n−1),−2,−(2m−2)) with n < m, then x = CM−1 ·M ·M ·M for 1 ≤ i ≤ 2n+1.

D) If D = (−(2n− 1),−2,−(2m− 2)) with n ≥ m, then x = CM−1 ·M · (M − 1) for 1 ≤ i ≤ 2m.

E) If D = (−(2n− 2),−2,−(2m− 2)), then x = AM−1 ·M · (M − 1) for 1 ≤ i ≤ 2M .

If we take the graph θ(a1, a2, a3) with a single parameter ai = 1, the corresponding alternating

diagram describes a rational 2-bridge link. The Khovanov homology of these links is similar to that
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of the pretzel links above. Note that the sequences Ck and Ak in Corollaries 11 and 12 also appear

in the rational homology of non-alternating pretzels [Man14].

Corollary 12. Let L be a rational link with Conway notation −P Q and diagram D with c−

negative crossings and c+ positive crossings. Let v the number of vertices in G+(D). Then L has

torsion in Khovanov grading (i− c−, v− 2j + c+− 2c−) equal to Zxi2 where ki is the ith term of the

sequences x described below:

A) If L has Conway notation −(2n + 1) 2m + 1 with m 6= n, then x = CM−1 ·M ·M ·M for

1 ≤ i ≤ 2M + 1, where M = min{m,n}.

B) If L has Conway notation −(2n+1) 2n+1, then x = CM−1 ·M ·M ·(M−1) for 1 ≤ i ≤ 2n+1.

C) If L has Conway notation −(2n + 1) 2m with n < m, then x = CM−1 · M · M · M for

1 ≤ i ≤ 2n+ 1.

D) If L has Conway notation −(2n + 1) 2m with n ≥ m, then x = CM−1 ·M · (M − 1) for

1 ≤ i ≤ 2m.

E) If L has Conway notation −2n 2m, then x = AM−1 ·M · (M − 1) for 1 ≤ i ≤ 2M .

3.3 Existence of gaps in Khovanov and chromatic homology

We prove several results concerning gaps in torsion for HA2(G) and their analogues for Khovanov

homology of corresponding diagrams via Theorem 7.

Definition 20. Let H be either Khovanov or chromatic homology. A homological torsion gap of

H of length g exists if there exists i in the span of homology such that H i−1(G) and H i+g(G) has

torsion, but Hk(G) does not for i ≤ k < i+ g.

Notice that the quantum torsion gap can be defined analogously and that for chromatic homol-

ogy over A2 and thin Khovanov homology, a homological gap in torsion is necessarily a quantum

torsion gap, since torsion exists only on one diagonal.

Since there is a single Z2 in H1,v−1
A2

(G) if G has an odd cycle, and no torsion if G is bipartite,

the following definition involves homology in degrees two and higher.

Definition 21. Torsion of chromatic homology HA2(G) over algebra A2 is said to be dense if there

is at least one Z2 in every i-grading from i = 2 to i = v − b − 1, i.e. if there are no homological

torsion gaps.

Theorem 16. Chromatic homology HA2(Pm|Pn) of two polygons Pn, Pm for m,n ≥ 3 glued along

an edge has dense torsion.
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Proof. Having dense torsion means that H
i,(m+n−2)−i
A2

(Pm|Pn) contains torsion for every 2 ≤ i ≤
m+ n− 4. Based on Theorem 11 we consider the following cases.

For n − 2 < i ≤ m + n − 4, we use the formula H
i,(m+n−2)−i
A2

(Pm|Pn) ∼=
n−2⊕
k=0

H i−k,m−i+k
A2

(Pm).

Since n ≥ 3, the sum in the formula must include at least the k = n − 2 and k = n − 3 terms.

That means we are looking into one of the H i∗,m−i∗
A2

(Pm) with i∗ = i − k, 2 ≤ k ≤ m − 2 which

must contain a copy of Z2 by Corollary 4. Suppose i ≤ n − 2, n − i is odd, and m is even. The

corresponding formula from Theorem 11 H
i,(m+n−2)−i
A2

(Pm|Pn) ∼= ZE−v+2 ⊕
i−2⊕
k=0

H i−k,m−i+k
A2

(Pm)

contains H2,m−2
A2

(Pm) = Z2 for k = i− 2.

For all other i ≤ n−2 not covered by case 2, there is Z2 torsion by the third formula in Theorem

11.

Corollary 13. If G is a polygon-tree, then HA2(G) has dense torsion.

Proof. We induct on the number of cycles in G with Theorem 16 as our base case for a graph G2

with only two cycles. Assume the result holds for all polygon-trees with p− 1 cycles, where p ≥ 3.

For the induction step we show that if Gp−1 is one such graph, then the result also holds for any

Gp = Gp−1|Pn, n ≥ 3.

If v denotes the number of vertices in Gp−1 then Gp has v + n− 2 vertices and the gradings of

interest are 2 ≤ i ≤ v + n− 4. According to Theorem 11 there are three cases.

For n− 1 ≤ i ≤ v + n− 4, Theorem 11 yields H
i,(v+n−2)−i
A2

(Gp) ∼=
n−2⊕
k=0

H i−k,v−i+k
A2

(Gp−1). As in

the proof of Theorem 16 we show that there exists a term that contributes at least one copy of Z2.

By induction hypothesis, if i = n− 1, then the term with k = n− 3 contains torsion, otherwise the

same is true for k = n− 2. Similar arguments apply in the remaining two cases.

The following two Theorems are based on Corollary 8 and Corollary 13, respectively.

Theorem 17. If G is a connected outerplanar graph, HA2(G) has dense torsion.

Theorem 18. If HA2(G) has dense torsion, the same is true of HA2(G|Pn) and HA2(G ∗ Pn) for

n ≥ 3.

As a corollary we get the existence of Z2 torsion in Khovanov homology of some link provided

that it can be associated a graph with certain properties.

Corollary 14. Let D be a diagram of link L such that G = G+(D) is a polygon-tree or bridge-

free outerplanar graph where v, b, ` are the number of vertices, number of blocks, and girth of G.

Then there is Z2 torsion in Khovanov homology Khp,p−v+c+−c−(L) of the corresponding link for

2− c− ≤ p ≤ min{`, v − b− 1} − c−.
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Theorem 19. Let L be an alternating 3-strand pretzel link with a diagram D given by Conway

symbol −2,−2,−(n− 2) where n ≥ 4. Then there is a homological gap in torsion of its Khovanov

homology Kh(L).

Proof. Note that diagram D corresponds to a multibridge graph G+(D) = θ(2, n− 2, 2) which has

1 block, n+ 1 vertices and girth n. By Theorem 8, HA2(G+(D)) has no homology in grading i = n,

so Khp,q(L) has no torsion in the corresponding Khovanov grading p = n− c−.

3.4 Khovanov homology groups and the corresponding coefficients

of the Jones polynomial

Chromatic graph homology over algebra A2 has proven to be useful for providing explicit formulae

for the first few extremal homological gradings of Khovanov homology subject to combinatorial

conditions on the Kauffman state of a link diagram. The torsion groups in chromatic homology in

degrees i, v − i for i = 1, 2, 3, are computed explicitly in [AP04, PPS09, PS14] and used to get the

following gradings in Khovanov homology when the isomorphism theorem holds.

Proposition 7 ([PPS09, PS14]). Let D be a diagram of L with c+ positive crossings and c− negative

crossings, and let G = G+(D) with p1 the cyclomatic number and t1 the number of triangles.

Kh−c−,−v+c+−2c−(L) = Z

Kh−c−,−v+2+c+−2c−(L) =

Z G bipartite

0 otherwise

Kh1−c−,−v+2+c+−2c−(L) =

Zp1 G bipartite

Zp1−1 ⊕ Z2 otherwise

Kh2−c−,−v+4+c+−2c−(L) =

Z(p12 ) ⊕ Zp12 G bipartite

Z(p12 )−t1+1 ⊕ Zp1−12 otherwise

We use recent results from [LS17] and the formulas for coefficients of PG(λ) given in [Far80,

Bie05], to calculate the torsion in the first `(G) + 1 gradings of Khovanov homology.

Theorem 20. [Far80, Bie05] Let G be a graph with v vertices, E edges, t1 triangles, t2 induced

4-cycles, and t3 complete graphs of order 4. The first four coefficients of the chromatic polynomial

PG(λ) = cvλ
v + cv−1λ

v−1 + cv−2λ
v−2 + cv−3λ

v−3 + . . .

are given by the following formulas: cv = 1, cv−1 = −E, cv−2 =

(
E

2

)
− t1, and cv−3 = −

(
E

3

)
+
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(E − 2)t1 + t2 − 2t3.

The 5th and 6th coefficients are given by the following formulas, where ti is the number of

induced subgraphs of G isomorphic to Ti (see Figures 3.4, 3.5).

cv−4 =

(
E

4

)
−
(
E − 2

2

)
t1 +

(
t1
2

)
− (E − 3)t2 − (2E − 9)t3 − t4 + t5 + 2t6 + 3t7 − 6t8

cv−5 = −
(
E

5

)
+

(
E − 2

3

)
t1 − (E − 4)

(
t1
2

)
+

(
E − 3

2

)
t2 − (t2 − 2t3)t1 − (E2 − 10E + 30)t3 + t4

− (E − 3)t5 − 2(E − 5)t6 − 3(q − 6)t7 + 6(E − 8)t8 + t9 − t10 − 2t11 − 2t12 − t13 + t14

− t15 − 3t16 − 4t17 − 4t18 + 2t19 − 4t20 − t21 + 4t22 + 3t23 + 4t24 + 5t25 + 4t26 + 6t27 + 8t28

+ 16t29 + 12t30 − 24t31

T1 T2 T3 T4 T5

T6 T7 T8 T9 T10

T11 T12 T13 T14 T15

T16 T17 T18 T19 T20

Figure 3.4: Graphs T1 through T20 involved in the computation of the 5th and 6th coefficients of
the chromatic polynomial [Bie05].
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T21 T22 T23 T24 T25

T26 T27 T28 T29 T30

T31

Figure 3.5: Graphs T21 through T31 involved in the computation of the 5th and 6th coefficients of
the chromatic polynomial [Bie05].

The following result describes the rank of H3,v−3
A2

(G) and the torsion of H4,v−4
A2

(G) in terms of

the cyclomatic number and subgraphs of G. This adds to the description of the first 3 gradings

stated in Proposition 6.

Theorem 21.

rk H3,v−3
A2

(G) =

p1 +
(
p1+1
3

)
− t2 G bipartite

p1 +
(
p1+1
3

)
− t1(p1 − 1)− t2 + 2t3 − 1 otherwise

tor H4,v−4
A2

(G) =

Zp1+(p1+1
3 )−t2

2 G bipartite

Zp1+(p1+1
3 )−t1(p1−1)−t2+2t3−1

2 otherwise

Proof. Let the chromatic polynomial of G have coefficients labeled as follows:

PG(λ) = λv + cv−1λ
v−1 + . . .+ c2λ

2 + c1λ

We change variables to λ = q+1 to match the graded Euler characteristic of HA2(G). The coefficient
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of qv−i in this polynomial will be denoted ai throughout this section.

PG(q) = (q + 1)v + cv−1(q + 1)v−1 + . . .+ c2(q + 1)2 + c1(q + 1)

= qv + av−1q
v−1 + . . .+ a2q

2 + a1q + a0.

Since chromatic homology is supported on only two diagonals, av−3 = rk H2,v−3
A2

(G)−rk H3,v−3
A2

(G).

By [CCR08, Cor. 4.2], rk H2,v−3
A2

(G) = rk H1,v−1
A2

(G). The rank of H1,v−1
A2

(G) is known (see Propo-

sition 6), so

rk H3,v−3
A2

(G) = rk H2,v−3
A2

(G)− av−3 = rk H1,v−1
A2

(G)− av−3 =

p1 − av−3 G bipartite

p1 − 1− av−3 otherwise

Using formulas in Theorem 20, we compute av−3.

av−3 =

(
v

v − 3

)
+ cv−1

(
v − 1

v − 3

)
+ cv−2

(
v − 2

v − 3

)
+ cv−3

=

(
v

v − 3

)
− E

(
v − 1

2

)
+

((
E

2

)
− t1

)
(v − 2)−

(
E

3

)
+ (E − 2)t1 + t2 − 2t3

= −1

6
(E − v)(1 + E − v)(2 + E − v) + t1(E − v) + t2 − 2t3

= −
(
p1 + 1

3

)
+ t1(p1 − 1) + t2 − 2t3

Note that t1 = t3 = 0 if G is bipartite.

The rank of H4,v−4
A2

(G) and the torsion of H5,v−5
A2

(G) can be described using a proof similar to

that of the previous result.

Theorem 22.

rk H4,v−4
A2

(G) =


(
p1
2

)
+ av−4 G bipartite(

p1
2

)
− t1 + 1 + av−4 otherwise

tor H5,v−5
A2

(G) =

Z(p12 )+av−4

2 G bipartite

Z(p12 )−t1+1+av−4

2 otherwise

The coefficient av−4 depends on v and on the first five coefficients of PG(λ).

av−4 =

(
v

4

)
− E

(
v − 1

3

)
+

((
E

2

)
− t1

)(
v − 2

2

)
+ cv−3(v − 3) + cv−4.

Proof. Similar to the proof of Theorem 21, using Theorem 20 and the equation rk H4,v−4
A2

(G) =
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rk H2,v−2
A2

(G) + av−4.

Finally, we describe the rank of H5,v−5
A2

(G) and the torsion of H6,v−6
A2

(G). This approach can

theoretically be extended to further groups on the diagonal, using the method of [Bie05] to find

formulas for additional chromatic coefficients.

Theorem 23.

rk H5,v−5
A2

(G) =

p1 +
(
p1+1
3

)
− t2 − av−5 G bipartite

p1 +
(
p1+1
3

)
− t1(p1 − 1)− t2 + 2t3 − 1− av−5 otherwise

tor H6,v−6
A2

(G) =

Zp1+(p1+1
3 )−t2−av−5

2 G bipartite

Zp1+(p1+1
3 )−t1(p1−1)−t2+2t3−1−av−5

2 otherwise

The coefficient av−5 depends on v and on the first six coefficients of PG(λ).

av−5 =

(
v

5

)
− E

(
v − 1

4

)
+

((
E

2

)
− t1

)(
v − 2

3

)
+ cv−3

(
v − 3

2

)
+ cv−4(v − 4) + cv−5.

Proof. Similar to the proof of Theorem 21, using Theorem 20 and the equation rk H5,v−5
A2

(G) =

rk H3,v−3
A2

(G)− av−5.

For a reduced alternating diagram D, the first three coefficients of the Jones polynomial may be

stated in terms of the all-A-state graph A(D) [DL06] which is equivalent to our all-positive graph

G+(D). If G+(D) has girth `, we can extend this description to the first ` coefficients of the Jones

polynomial via the following result about chromatic coefficients.

Theorem 24. [Mer72] If G is a graph with girth ` > 2 and n` cycles of length `, then the first `

coefficients of the chromatic polynomial are:

cv−i =


(−1)i

(
E

i

)
0 ≤ i < `− 1

(−1)`−1
((

E

`− 1

)
− n`

)
i = `− 1

Remark 3. The statement of this result in [Mer72, Theorem 2] is not explicitly restricted to

graphs with ` > 2. In the case i = ` − 1, the proof contains an assumption that the number of

cycle-containing subgraphs with v − 1 connected components and t edges is zero for t > 2; this is

not true for graphs with edge multiplicities of 3 or higher.

Theorem 25. Let D be a diagram of a link L such that Kh(L) is homologically thin and the girth

of G+(D) is ` > 2. Let p1 be the cyclomatic number of G+(D), and n` be the number of `-cycles.
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Then the first `− 1 coefficients of the Jones polynomial J(L) are given by the sequence:

1,−p1,
(
p1 + 1

2

)
, . . . , (−1)i

(
p1 − 1 + i

i

)
, . . .

and the `th coefficient is (−1)`−1
((p1−1+(`−1)

`−1
)
− n`

)
. If we consider the all-negative state graph

G−(D), an analogous statement holds for the first `(G−(D)) ultimate coefficients of J(L).

Proof. For notational convenience, let G = G+(D). We first change variables from λ to q + 1 and

calculate the coefficients of PG(q), in the same manner as in the proof of Theorem 21.

PG(q) = (q + 1)v + cv−1(q + 1)v−1 + . . .+ c2(q + 1)2 + c1(q + 1)

= qv + av−1q
v−1 + . . .+ a2q

2 + a1q + a0.

The coefficient on the term qv−i is given by

av−i =

(
v

v − i

)
+ cv−1

(
v − 1

v − i

)
+ . . .+ cv−i

(
v − i
v − i

)
=

i∑
k=0

cv−k

(
v − k
v − i

)
.

For i < `− 1, we combine this formula with Theorem 24. (See Appendix A, Proposition 10.)

av−i =

i∑
k=0

cv−k

(
v − k
v − i

)
=

i∑
k=0

(−1)k
(
E

k

)(
v − k
v − i

)
= (−1)i

(
p1 − 2 + i

i

)
.

For i = `− 1, a similar computation shows that av−`−1 = (−1)`−1
((p1−2+(`−1)

`−1
)
− n`

)
. Now let

the Jones polynomial of L be written with positive first coefficient as

JL(q) = β0q
C + β1q

C+2 + β2q
C+4 + β3q

C+6 + . . .

We write the unnormalized Jones polynomial with coefficients αi:

ĴL(q) = (q + q−1)JL(q)

= (β0q
C−1 + β0q

C+1) + (β1q
C+1 + β1q

C+3) + (β2q
C+3 + β2q

C+5) + (β3q
C+5 + β3q

C+7) + . . .

= β0q
C−1 + (β0 + β1)q

C+1 + (β1 + β2)q
C+3 + (β2 + β3)q

C+5 + . . .

= α0q
C−1 + α1q

C+1 + α2q
C+3 + α3q

C+5 + . . .

We observe the following relationship: α0 = β0 = 1 and for n > 0, αn = βn−1 + βn. Solving for βn

explicitly in terms of the α, we find βn =
∑n

i=0(−1)n+iαi for n > 0.

Since Kh(L) lies only on two diagonals, the isomorphism of Theorem 7 implies that αi = av−i
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for 0 ≤ i ≤ `− 1, where the av−is are the coefficients of the chromatic polynomial PG(q). Hence we

can express the coefficient βn in terms of the av−is. (See Appendix A, Proposition 11.)

βn =
n∑
i=0

(−1)n+iav−i =
n∑
i=0

(−1)n
(
p1 − 2 + i

i

)
= (−1)n

(
p1 − 1 + n

n

)

for n < `− 1, and

β`−1 =
`−2∑
i=0

(−1)`−1+i(−1)i
(
p1 − 2 + i

i

)
+ (−1)`−1

((
p1 + 2 + (`− 1)

`− 1

)
− n`

)

= (−1)`−1

(
`−2∑
i=0

(
p1 − 2 + i

i

)
+

(
p1 + 2 + (`− 1)

`− 1

))
− (−1)`−1n`

= (−1)`−1
((

p1 − 1 + (`− 1)

`− 1

)
− n`

)
.

Example 3. Let K = 12a1242 (the (−3,−4,−5) pretzel knot) with Jones polynomial J(K) =

q−22 − 2q−20 + 3q−18 − 4q−16 + 5q−14 − 6q−12 + 6q−10 − 6q−8 + 5q−6 − 4q−4 + 3q−2 − 1 + q2. This

knot has a diagram whose all-positive state graph is P7|3P8 with ` = 7 and p1 = 2. The first 6

coefficients are equal to (−1)i
(
1+i
i

)
= 1,−2, 3,−4, 5,−6 and the 7th coefficient is (−1)6

(
7
6

)
− 1 = 6.

Corollary 15. Let D be a diagram of L with c+ positive crossings and c− negative crossings. Let

` be the girth of G+(D), p1 be the cyclomatic number, and ni equal to the number of i-cycles. If

3 ≤ i < ` with i odd, then

rk Khi−c−,−v+2i+c+−2c−(L) =

 ∑
k odd, 3 ≤ k ≤ i

(
p1 − 2 + k

k

)+ p1 − ni+1 − δodd

where δodd = 1 if G+(D) has an odd cycle and 0 otherwise.

If 3 < i < ` with i even, then

rk Khi−c−,−v+2i+c+−2c−(L) =

 ∑
k even, 2 ≤ k ≤ i

(
p1 − 2 + k

k

)− ni+1 + δodd

where δodd = 1 if G+(D) has an odd cycle and 0 otherwise.

By Theorems 5 and 7, these formulas also give the number of Z2-torsion groups on the next

grading of this diagonal: tor Kh(i+1)−c−,−v+2(i+1)+c+−2c−(L). If we consider the all-negative state

graph G−(D), an analogous statement holds for the highest homological gradings in Kh(L).

Proof. We prove the statement for i = 3 and i = 4 and use induction on these base cases. Note
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that the general formula for a coefficient of the Jones polynomial of a homologically thin link is

αk = (−1)k−c−rk Khk−c−,−v+2k+c+−2c−(L) + (−1)(k−1)−c−rk Kh(k−1)−c−,−v+2k+c+−2c−(L). In our

convention for the Jones polynomial, we fix the sign of the leading term to be positive, and the

other coefficients alternate in sign. Thus, in this context, we will write

αk = (−1)krk Khk−c−,−v+2k+c+−2c−(L) + (−1)k−1rk Kh(k−1)−c−,−v+2k+c+−2c−(L).

Suppose i = 3 < `:

α3 = av−3 = −rk Kh3−c−,−v+6+c+−2c−(L) + rk Kh2−c−,−v+6+c+−2c−(L)

= −rk Kh3−c−,−v+6+c+−2c−(L) + rk Kh1−c−,−v+2+c+−2c−(L)

= −rk Kh3−c−,−v+6+c+−2c−(L) +

p1 G bipartite

p1 − 1 G otherwise

The girth of G may be 4 or greater, so from Theorem 24 and its proof we see that av−3 =

−
(
p1+1
3

)
+ n4. The formula for rk Kh3−c−,−v+6+c+−2c−(L) follows from the equation above.

Now suppose i = 4 < `:

α4 = av−4 = rk Kh4−c−,−v+8+c+−2c−(L)− rk Kh3−c−,−v+8+c+−2c−(L)

= rk Kh4−c−,−v+8+c+−2c−(L)− rk Kh2−c−,−v+4+c+−2c−(L)

= rk Kh4−c−,−v+8+c+−2c−(L) +


(
p1
2

)
G bipartite(

p1
2

)
+ 1 G otherwise

The girth of G may be 5 or greater, so av−4 =
(
p1+2
4

)
− n5. Then we use the equation above to

determine the formula for rk Kh4−c−,−v+8+c+−2c−(L).

For the induction step, let 3 < i < ` with i odd. Then

αi = av−i = −rk Khi−c−,−v+2i+c+−2c−(L) + rk Kh(i−1)−c−,−v+2i+c+−2c−(L)

= −rk Khi−c−,−v+2i+c+−2c−(L) + rk Kh(i−2)−c−,−v+2(i−2)+c+−2c−(L)

= −rk Khi−c−,−v+2i+c+−2c−(L) +

 ∑
k odd, 3 ≤ k ≤ i− 2

(
p1 − 2 + k

k

)+ p1 − δodd

Note the absence of an ni−1 term in the expression for rk Kh(i−2)−c−,−v+2(i−2)+c+−2c−(L), since

we know ` > i− 1.
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Since av−i = −
(
p1−2+i

i

)
+ ni+1, we have:

rk Khi−c−,−v+2i+c+−2c−(L)

=

 ∑
k odd, 3 ≤ k ≤ i− 2

(
p1 − 2 + k

k

)+ p1 − δodd +

(
p1 − 2 + i

i

)
− ni+1

=

 ∑
k odd, 3 ≤ k ≤ i

(
p1 − 2 + k

k

)+ p1 − ni+1 − δodd.

Finally, let 4 < i < ` with i even. Then

αi = av−i = −rk Khi−c−,−v+2i+c+−2c−(L) + rk Kh(i−1)−c−,−v+2i+c+−2c−(L)

= −rk Khi−c−,−v+2i+c+−2c−(L) + rk Kh(i−2)−c−,−v+2(i−2)+c+−2c−(L)

= −rk Khi−c−,−v+2i+c+−2c−(L) +

 ∑
k even, 4 ≤ k ≤ i− 2

(
p1 − 2 + k

k

)+ δodd

Since av−i =
(
p1−2+i

i

)
− ni+1, we have:

rk Khi−c−,−v+2i+c+−2c−(L) =

 ∑
k even, 4 ≤ k ≤ i− 2

(
p1 − 2 + k

k

)+ δodd +

(
p1 − 2 + i

i

)
− ni+1

=

 ∑
k even, 4 ≤ k ≤ i

(
p1 − 2 + k

k

)− ni+1 + δodd.

Future work will focus on extending Theorem 25 and Corollary 15 to large classes of links whose

Khovanov homology is thick. In Chapter 5, we apply Theorem 25 to find upper bounds for possible

girths of G+(D) over all diagrams D of L.
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Chapter 4

Structure of chromatic homology over

Am = Z[x]/(xm), m > 2

In this section we provide generalizations of some of the results and patterns observed in chromatic

homology overA2 to the algebraAm = Z[x]/(xm), focusing onm = 3.We show that some properties

which are constant over A2, such as width, become dependent both on the choice of algebra Am for

m > 2, and and the choice of graph. These preliminary results indicate that chromatic homology

may have richer algebraic structure over other algebras and may be better at distinguishing graphs.

4.1 Width of chromatic homology over Am

Computations indicate that the homological span of chromatic homology is invariant under the

choice of algebra Am.

Conjecture 1. The homological span of chromatic homology over algebra Am of any graph G with

v vertices and b blocks is equal to hspan(HAm(G)) = v − b.

At the moment, we can only show that we have a lower bound on width following the reasoning

in Theorem 8 and basic results from [HGPR06]:

Theorem 26. Homological span of chromatic homology over any algebra Am depends only on the

number of vertices v and blocks b of a graph G: hspan(HAm(G)) ≥ v − b.

Note that, unlike the case of A2 where width is equal to two, the width of the chromatic

homology increases with m and depends on the number of vertices of the graph.

Theorem 27. For any graph G the width of HAm(G) is equal to hw(HAm(G)) = (m− 2)v + 2.
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Proof. In case that G is a tree note that |E(G)| = v − 1. Next note that H0
Am

(G) = Am ⊗A′⊗
v−1

m

where A′m is the submodule of Am such that Am = Z1 ⊕A′ with 1 the identity of Am (Corollary

2). Therefore the highest non-zero homology group is H
0,(m−1)v
Am

(G) = Z, on the diagonal i +

j = (m − 1)v. The lowest non-zero group in Am is located on the diagonal i + j = v − 1, so

hw(HAm(G)) = (m− 1)v − (v − 1) + 1 = (m− 2)v + 2.

If G is not a tree we still have H
0,(m−1)v
Am

(G) = Z. It remains to show that there exists a non-

trivial entry on i + j = v − 1 diagonal; i.e., that there exists j > 0 such that Hv−1−j,j
Am

(G) 6= 0.

Arguments in the proof of Theorem 8 generalize to Am to show that Hv−b−1,b
Am

(G) is non-trivial,

which is precisely the group we needed.

Considering homological span of torsion is somewhat more involved. Note that Hochschild

homology implies the following about the span of torsion for cycle graphs:

Proposition 8. For m > 2, HAm(Pn) has one Zm torsion group on each of
⌈
n
2 − 1

⌉
diagonals.

Proposition 9. The torsion width of chromatic homology of a cycle is given by

hwt(HAm(Pn)) =

mn
2 − 2m− n+ 5, n even

mn
2 −

3
2m− n+ 4, n odd

We conjecture that the width of torsion over A3 of any graph depends only on the number of

vertices and the girth of the graph.

Conjecture 2. Let G be a simple, connected graph with v vertices and girth `, with ` = 2k or

` = 2k − 1 depending on parity. Then

hwt(HA3(G)) = hwt(HA3(P`)) + v − ` = (k − 1) + v − ` =

v − k − 1, ` even

v − k, ` odd

4.2 H imax(G) tail of homology

The fact that chromatic homology HA2(G) is supported on two diagonals, has the knight move

structure [CCR08], contains no torsion other than Z2 and is completely determined by the chromatic

polynomial [LS17] enables us to describe the homology in the maximal homological grading imax.

H imax
A2

(G) contains a free group on the lowest diagonal, and since Hv−b−1,b
A2

(G) = Zk is the only

group in jmin, k is equal to the absolute value of the coefficient on the lowest degree term in

PG(1 + q). The only other non-trivial group in maximal homological grading imax = v − b − 1 is

Hv−b−1,b+1
A2

(G) and it contains a copy of Z2 for every copy of Z in Hv−b−1,b
A2

(G). In the rest of the
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Section we will refer to H imax
A2

(G) = Hv−b−1
A2

(G) as the tail of chromatic homology of G and denote

it as T lA2(G). Notice that the tail of a cycle Pn is T lA2(Pn) =
Z2

Z
.

The tail of any graph consists of some number of copies of T l2 := T lA2(Pn). The rest of the

section contains explicit computations of the tail of chromatic homology based on knowing the

lowest coefficient of PG(1 + q).

Theorem 28. If G is a connected outerplanar graph, then T lA2(G) = T l2.

Proof. If G has rk k-gons and b blocks, then PG(λ) = (−1)nλ(λ − 1)b
∏
k≥3(1 + (1 − λ) + (1 −

λ)2 + . . .+ (1−λ)k−2)rk where n =
∑
k≥3

rk(k− 2) ([WW92, Theorem 2]). Under the variable change

λ = 1 + q, the chromatic polynomial of G becomes the q-polynomial

(−1)n(1 + q)qb
∏
k≥3

(1 + (−q) + (−q)2 + . . .+ (−q)k−2)rk

The lowest degree term in this polynomial has coefficient ±1 so we get only one copy of T l2 in the

tail of G.

Definition 22. A chord is an edge that joins two vertices of Pn but is not itself an edge of Pn.

A chordal graph is a graph in which every cycle of length 4 or higher has a chord. In other words,

chordal graphs contain no induced cycles of length greater than 3.

Theorem 29. If G is a chordal graph, T lA2(G) is the direct sum of 2s33s4 · · · (k − 1)sk copies of

T l2, where sk is the exponent of (λ− k) in PG(λ).

Proof. If G is a chordal graph with v vertices, then PG(λ) = λs0(λ− 1)s1(λ− 2)s2 · · · (λ− k)sk with

si ≥ 0, ∀i such that
∑k

i=0 si = v ([DKT05]). Next PG(1 + q) = (1 + q)s0(q)s1(−1 + q)s2 · · · (−(k −
1) + q)sk whose lowest degree term is (−1)S2s33s4 · · · (k− 1)skqs1 , where S =

∑k
i=1 si. The absolute

value of the coefficient of the lowest degree term is 2s33s4 · · · (k − 1)sk .

Corollary 16. Let Kn denote the complete graph on n vertices and Wn the wheel graph. Then

T lA2(Kn) ∼= T l
⊕(n−2)!
2 , and T lA2(Wn) = T l

⊕(n−2)
2 .

Proof. We use the formulas PKn(q) = (q+ 1)q(q− 1) · · · (q− (n− 2)) [DKT05, Example 1.2.2] and

PWn(q) = (q + 1)
(
(q − 1)n−1 + (−1)n−1(q − 1)

)
[DKT05, Cor. 1.5.1]. For the second formula, note

that the constant term of the second factor is always zero, while the q term will be ((n− 1)− 1)q =

(n− 2)q if n is even, and (−(n− 1) + 1)q = −(n− 2)q if n is even.

Conjecture 3. Let W in
n be the graph obtained from Wn by removing an edge that connects the

central vertex to one of the outer vertices. Then the tail of T lA2(W in
n ) = T l

⊕(n−3)
2 .
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It is natural to ask if this phenomenon extends to chromatic homology over other algebras.

From the Hochschild homology of Am (see Theorem 6), we know that the tail of HAm(Pn), denoted

by T lm := Hn−2
Am

(Pn), consists of m− 1 copies of Z with a Zm in the highest quantum grading.

We conjecture that the tail of any graph T lAm(G) consist of some number of copies of the tail

of a cycle, but proving this statement would require structure theorems such as those existing in

the A2 case. For example, computations for small values of n,m hint that Corollary 16 extends to

other Am in the case of complete graphs.

Conjecture 4. The tail of the complete graph Kn in chromatic homology over Am consists of

(n− 2)! copies of the tail of Pn, i.e. T lAm(Kn) = T l
⊕(n−2)!
m for m ≥ 3.

Conjecture 5. If G is a polygon tree (see Section 3.2.2) with P pendant edges attached, then

T lAm(G) =

(m−2)P+1⊕
i=1

(
T l
⊕Di

m,P
m {i+ (P − 1)}

)

where Di
m,P is the ith coefficient of the multinomial (1+x+ . . .+xm−2)P . In particular, T lAm(G) =

T lm if G is a polygon-tree with no pendant edges.

Example 4. Let G be the graph consisting of a triangle with 2 pendant edges. We will examine the

last non-trivial homological grading of HA5(G). The numbers Di
5,2 in the formula above come from

the multinomial (1 + x+ x2 + x3)2 = 1 + 2x+ 3x2 + 4x3 + 3x4 + 2x5 + x6 and the tail of Pn over

A5 is T l5 = Z{1} ⊕ Z{2} ⊕ Z{3} ⊕ Z{4} ⊕ Z5{5}. According to the formula in Conjecture 5:

T lA5(G) =
7⊕
i=1

(
T l
⊕Di

5,2

5 {i+ 1}
)

= T l5{2} ⊕ T l⊕25 {3} ⊕ T l
⊕3
5 {4} ⊕ T l

⊕4
5 {5} ⊕ T l

⊕3
5 {6} ⊕ T l

⊕2
5 {7} ⊕ T l5{8}.

This agrees with our computation for the tail of G over A5, shown in Table 4.1.

Table 4.1: Computation of H1,j
A5

(G) in Mathematica [Sco], where G is a triangle with 2 pendant
edges (see Example 4).

i

j
13 12 11 10 9 8 7 6 5 4 3

1 Z5 Z⊕ Z2
5 Z3 ⊕ Z3

5 Z6 ⊕ Z4
5 Z10 ⊕ Z3

5 Z12 ⊕ Z2
5 Z12 ⊕ Z5 Z10 Z6 Z3 Z
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4.3 Relative strengths of chromatic homology and graph polyno-

mials

As stated in Section 2.3, chromatic homology over A2 is completely determined by the chromatic

polynomial. However, this is not necessarily true over other algebras. In this section, we compare

HAm(G) to several well-known graph invariants: the chromatic polynomial, the Tutte polynomial,

and the cycle matroid.

Definition 23. [Tut54, Bol98] The Tutte polynomial of graph G = (V,E) is defined by

TG(x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A)

where r(A) = v − k(A) and k(A) is the number of components in the spanning subgraph (V,A).

Equivalently, the Tutte polynomial may be defined as the unique function on graphs which sat-

isfies the following three properties:

1. If G has b bridges, l loops, and no other edges, then TG(x, y) = xbyl.

2. If G is obtained from graph H by adding b bridges and l loops, and no other edges, then

TG(x, y) = xbylTH(x, y).

3. A deletion-contraction rule holds for any edge e in G which is neither a bridge nor a loop:

TG = TG−e + TG/e.

The chromatic polynomial of G is the specialization of the Tutte polynomial given by PG(λ) =

(−1)v−k(G)λk(G)TG(1−λ, 0). The Jones polynomial is also a specialization of the Tutte polynomial.

Given an alternating diagram of knot K whose Tait graph is G, the Jones polynomial of K is

the Tutte polynomial of G evaluated on the hyperbola xy = 1 [Bol98]. The Tutte polynomial is

determined by a stronger graph invariant: the cycle matroid (also known as the graphic matroid).

Definition 24. [Whi35, dMN05] A matroid M is an ordered pair (S, I) consisting of a finite set

S (called the ground set) and a collection I of subsets of S (called the independent sets) satisfying

the following conditions:

1. ∅ ∈ I

2. If I ∈ I and J ⊆ I, then J ∈ I.

3. If I, J ∈ I and |J | < |I|, then there is an element x of I − J such that J ∪ x ∈ I.

The rank-size generating function of M is defined as F (M ;x, y) =
∑
A⊆S

xr(A)y|A| where r(A) is

the rank of A (the size of the largest independent set contained in A).
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The cycle matroid of graph G = (V,E), denoted M(G), is a matroid whose ground set is E

and whose linearly independent sets are the acyclic subsets of E. The circuits of M(G) (minimal

dependent sets) are precisely the edge sets of cycles in G. Up to a change of variables, the Tutte

polynomial TG(x, y) is equivalent to the generating function F (M(G);x, y) [dMN05].

Definition 25. Graphs G and H are 2-isomorphic if G can be transformed into H by means of

these two moves:

(1) Gluing or separating components of a graph at a single vertex;

(2) Whitney flip: if G consists of two subgraphs A and B glued at two vertices (vA = vB and

wA = wB), then flip B and reglue with the original vertex identification reversed (vA = wB and

wA = vB). See Figure 4.1.

A
B

vA vB

wA wB

A B

vA

vB
wA

wB

Figure 4.1: Whitney flip operation on graphs.

Theorem 30. [Oxl92, Thm. 5.3.1] M(G) and M(H) are isomorphic matroids if and only if G and

H are 2-isomorphic graphs.

Graphs with the same chromatic polynomial may be distinguished by their chromatic homology

over A3. For example, the two graphs in Figure 4.2 are cochromatic and share a Tutte polynomial,

but H1,9
A3

(A) contains an extra copy of Z which is not found in H1,9
A3

(B). The difference which

appears in this example can be explained in terms of the edge attachments in the two graphs.

In graph A, the top triangle shares an edge with another 3-cycle, while in graph B, it has been

attached along a different edge which does not have this property. The difference of Z in chromatic

homology is quantified by [PPS09, Proposition 6.3].

In this section we list several examples of cochromatic graphs which are distinguished by chro-

matic homology over A3. None these pairs differ by an edge attachment and thus are not explained

by the result from [PPS09].

Example 5. The graphs in Figure 4.3 appear in [BM76, Exercise 8.4.1] and share the following

chromatic polynomial: λ6 − 10λ5 + 41λ4 − 84λ3 + 84λ2 − 32λ. However, H1,9
A3

(A) = Z7 ⊕ Z3
3, which

differs from H1,9
A3

(B) = Z8 ⊕ Z3
3.
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A B

Figure 4.2: Cochromatic graphs of Marion C. Gray [PPS09, Example 6.4].

A B

Figure 4.3: An example of cochromatic graphs from [BM76].

Example 6. Cochromatic graphs in Figure 4.4 from [CWJ79] and have the following chromatic

polynomial: λ6−10λ5+40λ4−80λ3+79λ2−30λ. Their first chromatic cohomology differ in quantum

degree 9: H1,9
A3

(A) = Z5 ⊕ Z2 ⊕ Z5
3, H1,9

A3
(B) = Z6 ⊕ Z2 ⊕ Z4

3.

A B

Figure 4.4: First example of cochromatic graphs from [CWJ79].

Example 7. The graphs in Figure 4.5, also found in [CWJ79], share the following chromatic

polynomial:

λ7 − 11λ6 + 51λ5 − 128λ4 + 184λ3 − 143λ2 + 46λ

but H1,11
A3

(A) = Z4 ⊕ Z4
3, which differs from H1,11

A3
(B) = Z5 ⊕ Z3

3.
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A B

Figure 4.5: Second example of cochromatic graphs from [CWJ79].

A B

Figure 4.6: An example of cochromatic graphs from [KG90].

Example 8. The graphs in Figure 4.6 appear in [KG90] and share the following chromatic poly-

nomial:

λ7 − 11λ6 + 51λ5 − 129λ4 + 188λ3 − 148λ2 + 48λ

but H1,11
A3

(A) = Z4 ⊕ Z2 ⊕ Z3
3, which differs from H1,11

A3
(B) = Z2 ⊕ Z4

3.

Example 9. The graphs in Figure 4.7 appeared in [DKT05] (attributed to unpublished work by

Chee and Royle). They share the following chromatic polynomial:

λ6 − 11λ5 + 48λ4 − 103λ3 + 107λ2 − 42λ

but H1,9
A3

(A) ∼= Z10 ⊕ Z2 ⊕ Z4
3, which differs from H1,9

A3
(B) ∼= Z9 ⊕ Z2 ⊕ Z5

3. Note that [DKT05,

Example 3.2.3] has additional examples of cochromatic graphs for which the computation of HA3

exceeds our current resources.

The bigrading H1,2v−3
A3

(G) featured in the above examples is a cycle matroid invariant [PPS09,

Theorem 6.2]. The following example demonstrates that the next quantum grading over A3, j =

2v − 4, can distinguish 2-isomorphic graphs.
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A B

Figure 4.7: An example of cochromatic graphs from [DKT05].

Example 10. The graphs in Figure 4.8 are related via a Whitney twist on vertices v and w.

Therefore they are 2-isomorphic and have the same Tutte polynomial

T (x, y) = x+ 3x2 + 4x3 + 4x4 + 3x5 + x6 + y+ 4xy+ 5x2y+ 4x3y+ 2x4y+ 2y2 + 3xy2 + x2y2 + y3.

G1 G2

v

w

v

w

Figure 4.8: Two graphs in the same 2-isomorphism class.

However their chromatic homology over A3 differs already in the zeroth homology group:

H0,10
A3

(G1) = Z11

H0,10
A3

(G2) = Z10

H1,10
A3

(G1) = Z5 ⊕ Z8
3

H1,10
A3

(G2) = Z4 ⊕ Z9
3

51



Chapter 5

The girth of a link

Each planar diagram of a link L has an associated state graph, whose chromatic homology is

related to Khovanov homology by the correspondence described in Theorem 7. The extent of the

correspondence depends on the girth of the associated graph, which varies widely over the set of

possible diagrams. For example, adding a right-hand twist to any strand of a diagram D adds a

loop to the corresponding all-positive state graph, reducing the girth to 1. In order to determine

the largest correspondence between the Khovanov homology of a link and the chromatic homology

of a graph, we would like to identify a diagram which yields a graph of maximal girth. This

motivates the definition of a new link invariant gr(L), the maximum girth over all diagrams, and

describe properties of this invariant for certain knots and links. We use the coefficients of the Jones

polynomial to obtain upper bounds on gr(L) for alternating links with 16 or fewer crossings.

5.1 Definition of girth and properties

Recall that G+(D) is the graph obtained from the all-positive Kauffman state of diagram D (see

Section 2.4), and that the girth `(G+(D)) is the length of the shortest cycle in this graph.

Definition 26. The girth of link L is given by gr(L) = max{`(G+(D)) | D is a diagram of L}.

Theorem 31. Let L be a prime alternating link. If D, D′ are two reduced alternating diagrams of

L, then G+(D), G+(D′) have the same girth.

Proof. The Tait flyping conjecture states that any two reduced alternating diagrams of L are related

by flypes [MT91]. Flypes may be expressed as a series of mutations, which induce Whitney flips on

the corresponding graph [Gre11]. Thus G+(D) and G+(D′) are 2-isomorphic graphs. Girth is an

invariant of the cycle matroid [Oxl92], so G+(D) and G+(D′) have the same girth.

For a specific alternating diagram, crossing information gives upper bounds on the girths of

G+(D) and G−(D), the graphs related to the all-positive and all-negative Kauffman states s+(D)
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and s−(D) (see Section 2.4). Recall that σ(L) is a link invariant given by the signature of the Seifert

matrix obtained from any diagram of L. We denote the number of crossings in a diagram by c(D)

and the numbers of positive and negative crossings by c+(D), c−(D) respectively.

Theorem 32. Let L be a nontrivial, non-split alternating link, and let D be a reduced alternating

diagram of L. Then `(G+(D)) ≤ 2c(D)

c+(D) + σ(L) + 2
and `(G−(D)) ≤ 2c(D)

c−(D)− σ(L) + 2
.

Proof. The graph G+(D) is planar and connected, so the girth `(G+(D)) is related to the numbers

of edges and vertices by the following inequality: E ≤ `

`− 2
(v − 2) (see e.g. [Die00]). Since D is

reduced, we may assume that ` ≥ 2 and rearrange the inequality as ` ≤ 2E

E − v + 2
. The number

of edges E is the number of crossings c(D), and the number of vertices is the number of connected

components s+ in the all-positive smoothing of D. Using the formula σ(L) = s+(D) − c+(D) − 1

([Tra04]) we obtain the first inequality above. Similarly, σ(L) = −s−(D)+c−(D)+1 gives an upper

bound for the girth of G−(D).

As a corollary of Theorem 25 in Section 3.4, if Khovanov and chromatic homology agree on

3 or more gradings, this agreement imposes a restriction on the type of graphs that realize the

isomorphism.

Corollary 17. Suppose that link L is homologically thin with Jones polynomial:

JL(q) = β0q
C + β1q

C+2 + β2q
C+4 + β3q

C+6 + . . .

and that D is a diagram of L whose all-positive state graph G has girth ` > 2. Then the cyclomatic

number of G is equal to −β1 and the number of `-cycles in G is equal to
(−β1−1+(`−1)

`−1
)
− |β`|.

The 2nd coefficient of J(L) uniquely determines the first gr(L) coefficients. This leads to a

somewhat surprising result.

Theorem 33. Suppose that link L is homologically thin with gr(L) = G ≥ 3. If D is a diagram of

L, the all-positive state graph associated to D must have girth equal to 1, 2, or G.

Proof. The result is trivial for G = 3, so we consider G > 3. Using the notation of Corollary 17,

we know that βi = (−1)i
(−β1+i−1

i

)
for 0 ≤ i < G− 1 and βG−1 = (−1)G−1

((−β1+(G−1)−1
G−1

)
− nG

)
,

where nG is the number of G-cycles in any all-positive state graph graph with girth G (Theorem

25, Corollary 17).

Now suppose that there exists a diagram D of L such that G+(D) has girth H, with 3 ≤ H <

G. As above, Theorem 25 implies that βH−1 = (−1)H−1
((−β1+(H−1)−1

H−1
)
− nH

)
where nH is the

53



number of H-cycles in G+(D). Since H − 1 < G − 1, we compare the formulas for βH−1 given by

the equations above:

(−1)H−1
(
−β1 + (H − 1)− 1

H − 1

)
= βH−1 = (−1)H−1

((
−β1 + (H − 1)− 1

H − 1

)
− nH

)
.

This implies that nH is equal to zero, which is a contradiction since G+(D) must have at least one

cycle of order H.

We can find lower bounds for gr(L) by constructing diagrams with favorable properties, as in

the following results.

Corollary 18. The girth of the positive T (2, n) torus knot is equal to n, and the girth of its mirror

image is equal to 2.

Proof. The Jones polynomial of T (2, n) can be written in the form
n−1∑
k=1

(−1)kq−(n+1)−2k − q−(n−1)

[KSU09]. The coefficients of the Jones polynomial are βi = 1 for i even, 0 ≤ i < n− 1 and βi = −1

for i odd, 0 < i < n − 1 as well as i = n − 1. The first n − 1 coefficients alternate between 1 and

-1, so these could be the coefficients of the chromatic polynomial of a graph whose girth is n and

whose cyclomatic number is p1 = 1 (see Theorem 25). Since βn−2 = βn−1 = −1, the girth cannot be

any greater than n. The standard n-twist diagram demonstrates equality (see Figure 2.7 in Section

2.4).

For the mirror image of T (2, n), the Jones polynomial has the same coefficients in reverse order.

After changing signs so that β0 = 1 according to our convention, the first two coefficients are both

equal to 1. Since no graph has negative cyclomatic number, Theorem 25 implies the girth of this

knot is less than 3. The mirror of the standard n-twist diagram yields a girth of 2.

Corollary 19. Let L be an alternating pretzel link with twist parameters (−a1,−a2, . . . ,−an). Then

gr(L) ≥ min{ai + aj | 1 ≤ i 6= j ≤ n}.

Proof. Draw the diagram of L which has n columns of left-hand-twists (see Section 3.2.3).

The connected sum of two oriented knots K1,K2 is well-defined for any choice of planar diagrams

for these two knots. There is a lower bound for the girth of the connected sum K1#K2 in terms of

the girths of the summands.

Theorem 34. gr(K1#K2) ≥ min{gr(K1), gr(K2)}.

Proof. Let D1 be a diagram of K1, D2 be a diagram of K2 such that `(G+(D1)) = gr(K1) and

`(G+(D2)) = gr(K2). When we perform the connected sum operation on D1 and D2, the all-positive

state graph of the new diagram consists of G+(D1) and G+(D2) joined at a single vertex, with girth

min{gr(K1), gr(K2)}.
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5.2 Khovanov homology bound on girth

In this section, we show that as the girth of a graph goes to infinity, so does the span of chromatic

homology and also the corresponding part of Khovanov homology. For any graph G, let v be the

number of vertices in G and b the number of blocks.

Lemma 4. Let M be the maximum cycle length in a connected graph G. Then b ≤ v −M + 1.

Proof. Suppose there exists such a graph G with b > v −M + 1 or, equivalently, b − 1 > v −M.

By assumption, there is a cycle of length M in G, call it PM . The number of vertices in the set

V (G) \ V (PM ) is v −M , and the number of blocks in G that do not contain PM is b − 1. Each

vertex in V (G) \V (PM ) can contribute at most one additional block to G; i.e., v−M ≥ b− 1. But

this contradicts our initial assumption.

Lemma 4 holds true if we replace M with the length of any cycle in G, including the girth. We

will use the inequality with `(G) to prove Theorem 35.

Theorem 35. The homological span of chromatic homology hspan(HAm(G)) goes to infinity as the

girth `(G) goes to infinity.

Proof. By Theorem 26 and Lemma 4: hspan(HAm(G)) ≥ v − b ≥ v − (v − `+ 1) = `− 1.

Theorem 36. The homological span of Khovanov homology hspan(Kh(L)) goes to infinity as the

girth gr(L) goes to infinity.

As a corollary, we get that the girth of any link can not be infinite, since we know the span of

Khovanov homology.

Theorem 37. The girth gr(L) of any link L is finite.

In particular, the span of Khovanov homology provides an upper bound on girth of a link. In

the case where Khovanov homology of a knot is thick, the number of non-trivial i-gradings before

homology becomes thick gives an upper bound on girth of L, since chromatic homology is always

thin.

Example 11 (Family of links with arbitrarily large girth). Consider the mirror of the 12-crossing

non-alternating knot 12n888 [CL17, LS17] shown in Figure 5.1(a) and denoted 12n888. The Kho-

vanov homology of this knot has minimal homological grading i = −12. The homological width

of Kh(12n888) is three but the homology is supported on two diagonals for −12 ≤ i < −5,

where the width increases to 3 diagonals. This implies that the girth of 12n888 lies in the range

3 ≤ gr(12n888) ≤ 7.
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(a)
(b)

-n

-n

-n

-n

(c)

Pn Pn

Pn Pn

(d)

Figure 5.1: (a) Mirror of the link 12n888; (b) Graph G+(D3) corresponding to diagram in (a); (c)
Infinite family Dn = −(n;n)(n;n); (d) Graph G+(Dn) corresponding to diagram in (c).

The Conway notation for the standard diagram of 12n888 is −(3; 3)(3; 3) [CL17]. Let D3 =

−(3; 3)(3; 3) be the diagram corresponding to the mirror of 12n888. The graph G+(D3) consists of

four triangles joined at a single vertex; see Figure 5.1(b).

Let LDn denote a link determined by diagram Dn = −(n;n)(n;n) obtained from D3 by simulta-

neously increasing the number of twists corresponding to each parameter in Conway symbol [JS07];

see Figure 5.1(c). The family of graphs associated to these diagrams consists of vertex gluing of

four n-gons G+(Dn) = Pn ∗ Pn ∗ Pn ∗ Pn; see Figure 5.1(d). Thus the girth `(G+(Dn)) = n and

the range of homological degrees where the isomorphism of Theorem 7 holds goes to infinity as n

increases. However, the Khovanov homology of these links LDn is thick with much larger span, and

we can only describe a portion of the thin part. Tables 5.1 and 5.2 contain partial computations for

Khovanov homology of LD4 and chromatic homology of G+(D4) = P4 ∗ P4 ∗ P4 ∗ P4 with boldface

entries denoting matching homology groups.
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Table 5.1: Khovanov homology of the link LD4 = −(4; 4)(4; 4) with boldface entries denoting
matching homology with chromatic homology.

Khp,q(D4)
p

-16 -15 -14 -13 -12 -11 -10 · · ·

q

... . .
.

. .
.

-33 Z13 Z15⊕Z15
2

-35 Z10 Z15⊕Z13
2

-37 ZZZ6 Z13⊕ZZZ10
2

-39 ZZZ4 ZZZ10⊕⊕⊕ZZZ6
2

-41 ZZZ6⊕⊕⊕ZZZ4
2

-43 ZZZ ZZZ4

-45 ZZZ

Table 5.2: Chromatic homology of G = G+(D4) = P4 ∗P4 ∗P4 ∗P4 with boldface entries denoting
matching homology with chromatic homology.

H i,j
A2

(G)
i

0 1 2 3 4 · · ·

j

13 ZZZ
12 ZZZ ZZZ4

11 ZZZ6⊕⊕⊕ZZZ4
2

10 ZZZ4 ZZZ10⊕⊕⊕ZZZ6
2

9 ZZZ6 Z9 ⊕ ZZZ10
2

8 Z10 . . .

...
. . .

5.3 Computational results

The description of the Jones coefficients in Theorem 25 provides an upper bound for the girth of

homologically thin links. If the first n− 1 coefficients follow the pattern 1,−b,
(
b+1
2

)
,−
(
b+2
3

)
, . . . for

some b ∈ Z≥0, but the nth coefficient is not equal to (−1)n
(
b−1+n
n

)
, then we know that gr(L) cannot

be greater than n. Using Mathematica and the KnotTheory package [Kat], we computed the Jones

polynomials and determined these upper bounds for all prime alternating knots (and their mirror

images) with crossing number less than or equal to 16. The results are displayed in Table 5.3.
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Table 5.3: Upper bounds for girth of alternating knots (up to 16 crossings), based on Jones poly-
nomial coefficients.

Upper bound for gr(K), K alternating

2 3 4 5 6 7 8 9 10 11 12 13 14 15

c(K)

≤ 10 4 271 76 29 8 3 0 1 0 0 0 0 0 0

11 1 566 108 51 5 2 0 0 0 1 0 0 0 0

12 0 1949 503 99 21 4 0 0 0 0 0 0 0 0

13 1 7580 1555 569 47 2 1 0 0 0 0 1 0 0

14 0 30681 6629 1656 97 7 1 1 0 0 0 0 0 0

15 1 133803 29736 6681 291 10 2 0 1 0 0 0 0 1

16 0 607412 119148 32131 876 25 2 3 1 0 0 0 0 0

Note that for knots with odd crossing numbers in Table 5.3, there is a single knot for which

the upper bound on girth is equal to the minimal crossing number, and a single knot for which the

upper bound is equal to 2. These are the positive (2, n) torus link and its mirror, respectively. After

11 crossings, the distribution of the upper bounds seems to stabilize, with the proportion of knots

with girth 2, 3, or 4 staying consistently close to 95 percent of the total. The girth of an alternating

knot will never be equal to 1, because any alternating knot has a reduced diagram.
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Chapter 6

Future directions

Here we list some open problems directly related to our results and some of the methods we will

use to attack them, organized by topic.

6.1 Chromatic graph homology over A2

Through results about the structure of chromatic homology over A2, we can prove statements

about Khovanov homology and the Jones polynomial. Future work may build on results in Chapter

3 to describe how various operations on graphs affect their chromatic homology. This investigation

might lead to simpler proofs of chromatic polynomial results and allow us to explicitly describe

Khovanov homology for links with certain families of diagrams.

We would like to investigate how torsion in Khovanov homology is related to classical link in-

variants and topological properties of links. It is interesting to note that the reduced version of

the standard Khovanov homology has very little torsion, and none at all for knots with fewer than

13 crossings. However, the reduced odd version may have torsion of order 3 or higher for rela-

tively small knots [Shu11]. These computations suggest that some torsion may arise from algebraic

considerations rather than the topological properties of a link.

The coefficients of the Jones polynomial give an upper bound for the girth of a link. We would like

to determine whether every link has a diagram whose all-positive state graph realizes the maximum

possible girth. For specific families of links, results about the Jones polynomial (e.g., [Lan98] for

pretzel links) may provide new bounds or explicit formulas for girth. At present, Theorems 25

and 33 are stated only for homologically thin links. These results may potentially be generalized

by showing that there are no generators for Khovanov homology in the lowest quantum gradings,

so that the head of the Jones polynomial is determined entirely by gradings which correspond

to chromatic homology. Our approach will utilize a spanning tree model for Khovanov homology

[Weh08].
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6.2 Chromatic graph homology over Am, m > 2

The general form of the tail (last nontrivial homological grading) of chromatic homology over Am
is still unknown. In Section 4.2, we conjecture that the tail consists of some number of copies of

the tail of a cycle Pm, and that this number may vary depending on the structural properties of

the graph. In future work, we will find a precise characterization of the final grading and use it to

describe the homological span (Conjecture 1).

Other properties of chromatic homology do not have an explicit combinatorial description. For

instance, while the width of chromatic homology is known over all values of m (Theorem 27),

we do not have an analogous formula for the width of torsion. In [PPS09], part of the chromatic

homology of graph G over A3 is described using a cell complex that depends on the interactions

between cycles of G. There may be similar geometric realizations that describe a larger part of

chromatic homology.

General constructions for pairs of non-isomorphic graphs with the same chromatic polynomial

are described in [Chi88, DKT05]. It may be possible to distinguish all pairs generated by these

constructions using chromatic homology over A3. Chromatic homology over A3 is stronger than

the A2 version, but we do not know the relative strengths of chromatic homology for m > 2. For

instance, we are not aware of any examples which show whether A5 is stronger than A3. Future

work will determine whether such relationships exist and whether torsion is needed to distinguish

cochromatic graphs over Am.
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Appendix A

Proofs of combinatorial identities

The proof of Theorem 25 transforms the coefficients of chromatic polynomial to the coefficients of

the Jones polynomial. Two steps in the proof require the use of combinatorial identities which are

not immediately obvious and whose justification would interrupt the flow of the text.

Proposition 10.

n∑
i=0

(−1)i
(
x

i

)(
y − i
y − n

)
= (−1)n

(
x− y − 1 + n

n

)
.

Proof. We will use the formula
(
a
b

)
= (−1)a−b

(−(b+1)
a−b

)
as well as the Chu-Vandermonde identity∑n

k=0

(
a
k

)(
b

n−k
)

=
(
a+b
n

)
.

n∑
i=0

(−1)i
(
x

i

)(
y − i
y − n

)
=

n∑
i=0

(−1)i
(
x

i

)
(−1)n−i

(
−(y − n+ 1)

n− i

)

= (−1)n
n∑
i=0

(
x

i

)(
−(y − n+ 1)

n− i

)
= (−1)n

(
x− y + n− 1

n

)
.

Proposition 11.

n∑
i=0

(
x− 2 + i

i

)
=

(
x− 1 + n

n

)
.

Proof. For any positive integers a, b, we have
(
a−1
b−1
)

+
(
a−1
b

)
=
(
a
b

)
, and so

(
a
b

)
−
(
a−1
b

)
=
(
a−1
b−1
)
. We

take the difference of the two quantities above and apply this identity n times to show that the
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result is equal to zero.(
x− 1 + n

n

)
−

n∑
i=0

(
x− 2 + i

i

)
=

(
x− 1 + n

n

)
−
((

x− 2 + n

n

)
+

(
x− 2 + (n− 1)

n− 1

)
+ . . .+

(
x− 2

0

))
=

(
x− 1 + n

n

)
−
(
x− 2 + n

n

)
−
((

x− 2 + (n− 1)

n− 1

)
+ . . .+

(
x− 2

0

))
=

(
x− 2 + n

n− 1

)
−
((

x− 2 + (n− 1)

n− 1

)
+

(
x− 2 + (n− 2)

n− 2

)
+ . . .+

(
x− 2

0

))
=

(
x− 2 + n

n− 1

)
−
(
x− 2 + (n− 1)

n− 1

)
−
((

x− 2 + (n− 2)

n− 2

)
+ . . .+

(
x− 2

0

))
. . .

=

(
x− 1− n+ n

0

)
−
(
x− 2

0

)
=

(
x− 1

0

)
−
(
x− 2

0

)
= 0.
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