
ABSTRACT

YONG, YICONG. Portfolio Optimization for Stock with Delays. (Under the direction of
Tao Pang.)

We consider a portfolio optimization problem over an infinite time horizon. Our prob-

lem extends the classical Merton’s model by capturing infinite historical memory. We

formulate the problem as a stochastic control problem with delay where the goal is to

choose the optimal investment and consumption controls that maximize total expected

discounted logarithmic and hyperbolic absolute risk aversion (HARA) utility functions

of consumption. Dynamic programming method is used to derive the Hamilton-Jacobi-

Bellman (HJB) equation and we then prove the existence and uniqueness of a viscosity

solution to the problem for each case. Finally, we show that the solution to each corre-

sponding HJB equation is equivalent to each value function in the verification theorems.
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Chapter 1

Introduction

Optimal investment and consumption problems with delay capturing the entire historical

performance of portfolios are studied in this dissertation. We use the utility function

criterion to model the behavior of an investor who distributes his or her wealth between

a risky and a riskless asset while also consuming part of his or her wealth. The investor

seeks to select the optimal investment and consumption rate so that the total discounted

expected utility is maximized. We look at two cases of utility function: logarithmic utility

and hyperbolic absolute risk aversion (HARA) utility.

1.1 Background and Literature Review

In the classical Merton’s portfolio problem, an investor’s initial wealth is allocated be-

tween a risky asset and a riskless asset. At each point in time, he or she must decide the

amount of his or her wealth to consume and the amount to invest in the two types of

assets. The goal is to choose an optimal consumption rate that maximizes total expected

utility over finite or, theoretically, infinite lifetime of the investor. The price of the risky

asset is usually governed by a geometric Brownian motion, where historical price infor-

mation is not described. Interest rate and volatility are held as fixed constants in the

model.

A number of extensions to the Merton’s model to make it more realistic have been

done since the publication of Merton’s papers in 1969 [43] and 1971 [44]. Stochastic

interest rate, stochastic volatility, and/or stochastic returns are considered in Fleming and

Hernandez-Hernandez [22], [23], as well as in Pang and Varga [57]. Stochastic volatility

1



with stochastic dividends is incorporated in Pang and Varga [58]. Fleming and Pang

[24] and Pang [52] have developed models with correlated interest rate and risky asset

price. Noh and Kim [47] combined both stochastic volatility and correlated interest rate

into their model. Transaction costs are taken into account in Magill and Constantinides

[42], Davis and Norman [13], and Shreve and Soner [62]. Bielecki and Pliska [3], as well

as Fleming and Sheu [26] have considered models where the mean returns of individual

assets are affected by underlying economic factors such as dividend yields, return on

equity, interest rates, and unemployment rates. Karatzas, Lehoczky and Shreve [35] and

Lehoczky, Sethi, and Shreve [39] have modeled bankruptcy in their extension of the

Merton’s model. Fleming and Pang [25] also applied the Merton’s model to an economic

production and consumption problem.

In these extensions, the models still only depend on the current information. This is

not very realistic since historical performance of the risky asset could impact its future

performance. In reality, the investor makes his or her decision not only based on the

current price information but also on historical trend. For example, stocks that have

performed well consistently in the past are more likely to be purchased than ones that

did not perform so well. To remedy this shortcoming of the original Merton’s model, many

researchers have started to incorporate past information into the model by introducing a

delay component that captures memory of past asset information. Many of these models

involve memory variables modeled as an exponential moving average function of historical

wealth and a function that contains the historical wealth at a specific point in time

before the present time. This type of model gives rise to an infinite dimensional problem

which poses some difficulty. However, Elsanosi and Larssen [14] as well as Larssen and

Risebro [38] have shown that it is possible to reduce such a problem into finite dimensions

under certain conditions. Most papers such as Chang, Pang, and Pemy [4],[5],[6], Chang,

Pang and Yang [7], as well as Pang and Hussain [54],[56] have only considered delay

variables that only capture finite or bounded memory. In Pang and Hussain [55], they

have considered delay variables that capture the complete memory of past information

in the wealth dynamics of an investment portfolio.

Models with delay have vast range of applications in the real world in addition to

optimal investment and consumption problems in finance. Bauer and Rieder [1] studied

a deterministic fluid problem with delay arising from admission control in ATM commu-

nication networks. Chen and Wu [8], Oksendal and Sulem [50] and Oksendal, Sulem and
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Zhang [49] Oksendal and Sulem used maximum principle to analyze stochastic optimal

control problems with delay. Elsanosi, Oksendal and Sulem [15] as well as Larssen and

Risebro [38] studied harvesting problems with delayed dynamics. Federico [17] modeled

the management of a pension fund with surplus depending on past performance of the

fund’s wealth. Gozzi and Marinelli [29] and Gozzi, Marinelli and Savin [30] studied a class

of dynamic advertising problems allowing dynamics of the product goodwill to depend

on past values and previous advertising levels. Many more references can be found in the

references section and the references therein.

1.2 Contribution and Outline

In this dissertation, we consider an optimal investment and consumption problem incor-

porating delay that captures complete memory of the historical price and wealth infor-

mation. We look at a model that is different and more complex than the one presented

in Pang and Hussain [55], as we want to incorporate delay directly into the dynamics of

the risky asset’s price itself, rather than just into the dynamics of the wealth process.

In chapter 2, we present some mathematical preliminary knowledge before diving into

the problem we will study.

Chapter 3 presents the formulation of our infinite delay problem. A derivation of the

Hamilton-Jacobi-Bellman (HJB) equation with a general utility function of consumption

is also included in this chapter.

The special case of logarithmic utility function of consumption is studied in chapter

4. Optimal controls are obtained and the corresponding HJB equation is transformed

into a form with desirable properties. A perturbed elliptic equation is used to facilitate

the establishment of existence and uniqueness of a viscosity solution. The method of

sub/supersolutions is used to obtain the lower and upper bounds of the solution which

are crucial pieces for the verification theorem. Lastly, the verification theorem is proved.

Chapter 6 continues with the case of HARA utility function of consumption, where

existence and uniqueness of a viscosity solution are also presented, concluding with its

verification theorem.
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Chapter 2

Preliminaries

2.1 Merton’s Portfolio Optimization Problem

We briefly present statement of the well-known classical Merton’s portfolio optimization

problem, which originally gave rise to this vast research area, and its main results. This

problem is important as its results have many applications in continuous-time finance.

In Merton’s formulation, the investor invests his or her wealth in one riskless asset and

one risky asset. The price of the risky asset S(t) follows

dS(t) = µS(t)dt+ σS(t)dB(t), (2.1)

where µ and σ are return and volatility of the risky asset respectively and B(t) is a

Brownian motion. The price of the riskless asset P (t) follows

dP = rP (t)dt, (2.2)

where r is the risk-free rate. It is assumed that r < µ and σ > 0. Let π(t) ∈ [0, 1] be the

proportion of investor’s wealth in the risky asset and c(t) ≥ 0 be the consumption rate.

Then the investor’s wealth X(t) ≥ 0 follows

dX(t) = (1− π(t))X(t)rdt+ π(t)X(t)(µdt+ σdB(t))− c(t)X(t)dt. (2.3)
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The control is (π(t), c(t)) and the investor looks to maximize his or her total discounted

expected utility of consumption over a finite time horizon. The value function is given by

V (x) = max
(π(t),c(t))

J(x, π, c) = max
(π(t),c(t))

E

[∫ T

0

e−βtU(c(t)X(t))dt

]
, (2.4)

where U(·) is the utility function. The Hamilton-Jacobi-Bellman (HJB) equation for this

problem is of the form

βV = max
π

[
σ2π2x2

2
Vxx + (µ− r)πxVx

]
+ rxVx + max

c≥0
(U(cx)− cxVx). (2.5)

Assuming hyperbolic absolute risk aversion (HARA) type utility function

U(C) =
1

γ
Cγ,

where 0 < γ < 1 and C represents consumption, and suppose the solution is of form

V (x) = Kxγ,

the corresponding optimal controls are given by

π∗ =
(µ− r)

(1− γ)σ2
, (2.6)

c∗ = (γK)
1

γ−1 . (2.7)

It turns out that K can be solved and has a positive solution if

β >
(µ− r)2γ

2σ2(1− γ)
+ rγ.

Merton’s portfolio optimization problem is intriguing in that it unexpectedly has a closed

form solution. However, the explicit solutions to many optimal control problems cannot

be found analytically. Now we will discuss some of the recent developments that extend

Merton’s model to one that models delayed information.
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2.2 Existing Delay Models

As previously mentioned, Merton’s model does not capture the memory of historical

price information, creating an overly simplistic view of the market in real life. In order

to incorporate historical price information into the problem, a delay component needs to

be considered. However, most existing models with delay give rise to infinite dimensional

problems that are difficult to solve. One technique has been formulated to successfully

reduce these infinite dimensional problems into finite dimensional, of which its ideas are

presented in the next subsection.

2.2.1 Reduction from An Infinite Dimension Problem

Consider a general 1-dimensional stochastic control problem with delay of the following

form 
dX(t) = µ(t,X(t), Y (t), Z(t), α(t))dt

+ σ(t,X(t), Y (t), Z(t), α(t))dB(t), t ∈ [0, T ],

X(t) = ϕ(t), t ∈ [−δ, 0],

(2.8)

where

Y (t) =

∫ 0

−δ
eλθX(t+ θ)dθ, (2.9)

Z(t) = X(t− δ). (2.10)

Y (t) describes a weighted average of recent information while Z(t) describes the historical

value at a particular time in the past. In addition, δ > 0, ϕ ∈ C[−δ, 0], B(t) is a standard

Brownian motion and α is the control in an admissible control space A. Let the value

function beV (t, ϕ) = supα∈A J(t, ϕ, α), (t, ϕ) ∈ [0, T ]× C([−δ, 0]),

V (T, ϕ) = g(X(0), Y (0)), ϕ ∈ C([−δ, 0]),
(2.11)
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where

J(t, ϕ, α) = E

[∫ T

t

f(t,X(t), Y (t), α(t))dt+ g(X(T ), Y (T ))

]
. (2.12)

Because C[−δ, 0] is infinite dimensional, it is very complicated to solve such a problem.

However, if the value function only depends on ϕ through

X(0) = ϕ(0), Y (0) =

∫ 0

−δ
eλθϕ(θ)dθ, Z(0) = ϕ(−δ),

then it is possible derive the HJB equation for the value function, thus reducing the

infinite dimension problem to a finite dimension problem. This is proved by Larssen and

Risebro in [38]. Note that the above problem only contains finite memory information.

For the problem that we consider in this dissertation, we capture the entire history of

price information by using the delay variable

Y (t) =

∫ 0

−∞
eλθX(t+ θ)dθ.

Because complete memory is described in this delay variable, there is no need for the

variable Z(t). This type of model is also studied in [56]. However, we consider a model

that is different from the one presented in their paper. We note here that an additional

benefit of considering complete memory is that it is a generalization of the finite memory

case where we can essentially obtain the finite memory case by adding an indicator,

Y (t) =

∫ 0

−∞
eλθX(t+ θ)1[−δ,0]dθ.

The original approach of considering a fixed window of [−δ, 0] was also very restricting

in that if it was needed to start from a different historical value, the window would then

be shifted. Our method provides much more flexibility in this regard. In the next section,

we introduce the main method used to derive HJB equations for the type of problems we

study.
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2.3 Dynamic Programming Principle and HJB Equa-

tion

Bellman introduced the dynamic programming approach in the early 1950s to solve op-

timal control problems. We here consider a standard formulation of a stochastic control

problem, which can be found in any standard textbook, such as [60]. Let

dX(t) = µ(X(t), α(t))dt+ σ(X(t), α(t))dB(t), (2.13)

whereB(t) is a d-dimensional Brownian motion on a filtered probability space (Ω,F , P ;F)

with F = {F t, t ≥ 0} being the P -augmented natural filtration generated by {B(t), t ≥
0}. α = (α(t)) is the control and is F-progressively measurable and takes its values in

A ⊂ Rm. Functions µ : Rn×A→ Rn and σ : Rn×A→ Rn×d are measurable and satisfy

|µ(x, a)− µ(x̂, a)|+ |σ(x, a)− σ(x̂, a)| ≤ K|x− x̂|

for some K ≥ 0 and ∀x, x̂ ∈ Rn and ∀a ∈ A.

Let us first consider a finite horizon problem where we have 0 < T < ∞. Let A be

the set of controls α such that

E

[∫ T

0

|µ(0, α(t))|2 + |σ(0, α(t))|2dt
]
<∞. (2.14)

Suppose f : [0, T ]× Rn × A→ R and g : Rn → R are two measurable functions where g

is bounded from below or g satisfies

|g(x)| ≤ C(1 + |x|2), ∀x ∈ Rn

for some constant C. Let A(t, x) ⊂ A be a subset of controls such that for (t, x) ∈
[0, T ]× Rn

E

[∫ T

t

|f(τ,X(τ), α(τ))|dτ
]
<∞. (2.15)
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Then for α ∈ A(t, x), the value function is defined as

V (t, x) = sup
α∈A(t,x)

J(t, x, α), (2.16)

where

J(t, x, α) = E

[∫ T

t

f(τ,X(τ), α(τ))dτ + g(X(T ))

]
.

The function g represents a terminal condition for the finite horizon problem. This func-

tion is not needed when we formulate the infinite horizon problem.

For an infinite horizon problem, (2.15) is replaced by

E

[∫ ∞
0

e−βτ |f(X(τ), α(τ))|dτ
]
<∞, (2.17)

for β > 0 and the value function then changes to

V (x) = sup
α∈A(x)

J(x, α), (2.18)

where

J(x, α) = E

[∫ ∞
0

e−βτf(X(τ), α(τ))dτ

]
.

Finally, dynamic programming principle for these problems are stated separately below.

Theorem 2.3.1. For a finite horizon problem, let (t, x) ∈ [0, T ]×Rn. Denote Tt,T as the

set of stopping times taking values in [t, T ] and T = T0,∞. Then

V (t, x) = sup
α∈A(t,x)

sup
θ∈Tt,T

E

[∫ θ

t

f(τ,X(τ), α(τ))dτ + V (θ,X(θ))

]
= sup

α∈A(t,x)

inf
θ∈Tt,T

E

[∫ θ

t

f(τ,X(τ), α(τ))dτ + V (θ,X(θ))

]
. (2.19)
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For an infinite horizon problem, let x ∈ Rn. Then

V (x) = sup
α∈A(x)

sup
θ∈T

E

[∫ θ

0

e−βτf(X(τ), α(τ))dτ + e−βθV (X(θ))

]
= sup

α∈A(x)

inf
θ∈T

E

[∫ θ

0

e−βτf(X(τ), α(τ))dτ + e−βθV (X(θ))

]
. (2.20)

By applying dynamic programming principle to an optimal control problem, along with

Ito’s formula, we can get a Hamilton-Jacobi-Bellman Equation (HJB) equation which

establishes relationship among a family of optimal control problems with different initial

times and states. For the finite horizon problem, the HJB equation is a partial differential

equation of the form

−∂V
∂t

(t, x)− sup
a∈A

[LaV (t, x) + f(t, x, a)] = 0,

which implies−∂V
∂t

(t, x)−H(t, x,DxV (t, x), D2
xV (t, x)) = 0, ∀(t, x) ∈ [0, T ]× Rn,

V (T, x) = g(x), ∀x ∈ Rn,
(2.21)

where

LaV = µ(x, a)DxV +
1

2
tr(σ(x, a)σ(x, a)>D2

xV )

The function H is the Hamiltonian of the optimal control problem. And for an infinite

horizon problem, the HJB equation is of the form

−βV (x)− sup
a∈A

[LaV (x) + f(x, a)] = 0,

leading to

−βV (x)−H(x,DxV (x), D2
xV (x)) = 0, ∀x ∈ Rn. (2.22)

If the HJB equation is solvable, then verification technique obtains optimal control from

the maximizer or minimizer of the Hamiltonian in the HJB equation and verifies that

value function is the unique solution to the HJB equation. Note that the above theory
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applies to stochastic control problems without delay. In [37], Larssen has proved that

dynamic programming principle can also be applied to stochastic control problems for

systems with delay. We now present the notion of a solution to the HJB equation in the

next section.

2.4 Classical Solution

In the case of a stochastic optimal control problem, the HJB equation we study is a

nonlinear second order partial differential equation, usually in the following form:

Lu = f(x, u), (2.23)

where

Lu =
n∑

i,j=1

aij(x)Diju+
n∑
j=1

bi(x)Diu

and

0 < λ(x)|ξ|2 ≤ aij(x)ξiξj ≤ Λ(x)|ξ|2 (2.24)

for all ξ = (ξ1, ..., ξn) ∈ Rn − {0}. The classical solution, if exists, solves the partial

differential equation and satisfies regularity properties, which then gives the solution to

the original stochastic optimal control problem. Subsolutions and supersolutions play an

important role in the existence of classical solutions and we will introduce them briefly

in the next subsection.

2.4.1 Method of Subsolutions and Supersolutions

The notion of having subsolution and supersolution facilitates the approximation of a

classical solution by formulating a comparison theorem. We reference [28] and [59] for

definition and some main results relating to sub/supersolutions.

Definition 2.4.1. A function u ∈ C2
loc(Rn) is a sub(super)solution of (2.23) if

Lu ≥ (≤)f(x, u).
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In addition, if û is a subsolution and ũ is a supersolution, and û ≤ ũ, then 〈û, ũ〉 is an

ordered pair of sub/supersolutions.

Here, C2
loc(Rn) denotes the class of functions in C2(Ω) for every bounded domain Ω ∈ Rn.

The operator L is assumed to be uniformly elliptic, that is Λ
λ

is bounded in (2.24). The

coefficients of L are in Cα(Ω) and f is locally Hölder continuous in x and Lipschitz

continuous in u. In fact, a sequence of subsolutions converging to a minimal solution

and a sequence of supersolutions converging to a maximal solution can be constructed.

Details of such construction can be found in [59]. The following theorems are Theorem

5.1 and Theorem 5.3 from [59] respectively.

Theorem 2.4.1. Let 〈û, ũ〉 be an ordered pair of sub/supersolutions of (2.23) and let f

be Lipschitz continuous in 〈û, ũ〉. Then (2.23) has a maximal solution u ∈ C2+α
loc (Rn) and

a minimal solution u ∈ C2+α
loc (Rn) such that

û(x) ≤ u(x) ≤ u(x) ≤ ũ(x) in Rn.

Theorem 2.4.2. Let 〈û, ũ〉 be an ordered pair of sub/supersolutions of (2.23) and let f be

Lipschitz continuous and nonincreasing in 〈û, ũ〉. If the maximal and minimal solutions

u, u possess the same limit, then u = u and is the unique solution of (2.23) in 〈û, ũ〉.

The unique solution is the classical solution to (2.23). Thus we see that classical solution

is bounded in between an arbitrary pair of sub/supersolutions. This will be very useful

in the analysis of our problem.

2.5 Viscosity Solution

In the dynamic programming approach, the HJB equation ideally has a classical solution.

A classical solution is one that not only satisfies the HJB equation, but is also smooth.

However, for most problems, this cannot be achieved. For example, the problem that we

will consider is of degenerate form, which means it may not have a classical solution at all.

In the early 1980s, to overcome the difficulty of not being able to analytically solve for a

regular classical solution, Crandall and Lions introduced the notion of viscosity solutions,

which are allowed to be non-smooth and even discontinuous. Definition and main results

on viscosity solutions below are taken from [27] and [65]. Consider the following HJB
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equation for a stochastic optimal control problem over a finite horizon−vt(t, x) + supu∈U G(t, x, u,−vx(t, x),−vxx(t, x)) = 0, (t, x) ∈ [0, T )× Rn,

v|t=T = h(x), x ∈ Rn,
(2.25)

where

G(t, x, u, p, P ) ≡ 1

2
tr(Pσ(t, x, u)σ(t, x, u)>) + 〈p, b(t, x, u)〉 − f(t, x, u),

∀(t, x, u, p, P ) ∈ [0, T ]× Rn × U × Rn × Sn.

U is a metric space and Sn denotes the set of all n×n symmetric matrices. Here we give

one way of characterizing viscosity solutions.

Definition 2.5.1. A function v ∈ C([0, T ] × Rn) is a viscosity sub(super)solution to

(2.25) if

v(T, x) ≤ (≥)h(x), ∀x ∈ Rn,

and for any ϕ ∈ C1,2([0, T ]× Rn), whenever v − ϕ attains a local maximum (minimum)

at (t, x) ∈ [0, T )× Rn, we have

−ϕt(t, x) + sup
u∈U

G(t, x, u,−ϕx(t, x),−ϕxx(t, x)) ≤ 0.

The function v is a viscosity solution if it is both a viscosity subsolution and a viscosity

supersolution.

The reason viscosity solution can be considered as a generalized solution to the HJB

equation is due to the following proposition, which is Proposition 5.8 from [65].

Proposition 2.5.1. v ∈ C1,2([0, T ]× Rn) is a viscosity solution of (2.25) if and only if

it is a classical solution of (2.25).

2.5.1 Singular Perturbations and Vanishing Viscosity

Suppose (2.25) is a degenerate partial differential equation. We can turn it into non-

degenerate form by perturbing and adding a viscosity term, which will eventually vanish.
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To illustrate this, we consider−vεt + ε∆vε + supu∈U G(t, x, u,−vεx,−vεxx) = 0, (t, x) ∈ [0, T )× Rn,

vε|t=T = h(x), x ∈ Rn,
(2.26)

Now this equation is no longer degenerate, which means that it admits a unique classical

solution under some conditions. The next proposition, which is Proposition 5.10 from

[65], shows that we can actually approximate viscosity solution to the degenerate partial

differential equation using a sequence of classical solutions to the corresponding non-

degenerate partial differential equations as the viscosity term ε∆vε vanishes.

Proposition 2.5.2. Let vε be a classical solution to (2.26) and v0 be a viscosity solution

to (2.25). Then there exists a constant K > 0 such that

|vε(t, x)− v0(t, x)| ≤ K
√
ε, ∀(t, x) ∈ [0, T ]× Rn, ε > 0.

The method of vanishing viscosity would prove to be a crucial tool to use in our study,

due to the complexity of our formulated stochastic optimal control problem. Now that

we have given a full overview of existing models and methods in this field, we will present

our research problem in the next section.
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Chapter 3

Problem Formulation

We begin the optimal portfolio problem by defining the return of a risky asset. At time

t ≥ 0, let

Y (t) = ln(S(t)) (3.1)

be the return of a risky asset, where S(t) is the price of the risky asset. Let {B(t), t ≥ 0}
be a 1-dimensional standard Brownian motion defined on a complete filtered probability

space (Ω,F , P ;F), where F = {F t, t ≥ 0} is the P -augmented natural filtration generated

by {B(t), t ≥ 0}. To capture historical price information, we include a delay component

Z(t) in the drift term of the price process. Assume the price process follows

dS(t) =

(
µ1 + µ2(Z(t)) +

σ2

2

)
S(t)dt+ σS(t)dB(t), (3.2)

where µ1 > 0, σ > 0 and |µ2(Z(t))| < M and Lipschitz continuous for all t ≥ 0. Applying

Itô’s Lemma to dY (t) and substituting (3.2) for dS(t), we obtain

dY (t) = d(ln(S(t)))

=
1

S(t)
·
[(
µ1 + µ2(Z(t)) +

σ2

2

)
S(t)dt+ σS(t)dB(t)

]
−1

2
· 1

(S(t))2
· σ2(S(t))2dt.
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This implies that the return process Y (t) followsdY (t) = (µ1 + µ2(Z(t)))dt+ σdB(t),

Y (0) = y ∈ R.
(3.3)

Initial value of the return can be positive or negative, depending on the price of the risky

asset. The delay variable Z(t) is defined asZ(t) =
∫ 0

−∞ e
λθY (t+ θ)dθ,

Z(0) = z > 0,
(3.4)

where λ > 0, giving more weight to the most recent history. This variable represents the

weighted average of the past returns. Its dynamics follows

dZ(t) = (Y (t)− λZ(t))dt. (3.5)

The initial value of the delay variable is chosen to be positive so that it has an impact

on the price process as soon as any historical information is captured. Now the bounded

function containing the delay component is in the drift term of the return process. Di-

rection of the risky asset’s return will depend on this bounded function of delay variable.

We consider a bounded function of delay to mean that the historical performance may

only influence the return to a certain extent. In addition, the lower integral bound of the

delay variable starts from negative infinity to incorporate the entire history of the risky

asset price into our model.

Let π(t)X(t) represent the proportion of investment on the risky asset and (1 −
π(t))X(t) be the proportion of investment on the riskless asset, where X(t) is the total

wealth of the investor. The proportion π(t) is assumed to be finite and can take on values

that are negative or greater than one. When π(t) > 1, the investor has borrowed money

to invest. And when π(t) < 0, the investor is short selling his investments. The riskless

assets earns a fixed interest rate r > 0 and a nonnegative but finite rate of consumption

c(t) is assumed to be from the riskless asset. Lower bound on the consumption assumes

that our investor has a minimum consumption for everyday life necessary expenses such

as paying for food, clothing, or housing. On the other hand, the upper bound means that

the investor sets a limit on how much he or she spends at any time. Thus, riskless portion
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of the investor’s wealth follows

d((1− π(t))X(t)) = [r(1− π(t))− c(t)]X(t)dt. (3.6)

For the risky portion of the investor’s wealth, we assume the change in this portion of

wealth is proportional to the change in the risky asset’s price. Using (3.2), we have

d(π(t)X(t))

π(t)X(t)
=
dS(t)

S(t)
=

(
µ1 + µ2(Z(t)) +

σ2

2

)
dt+ σdB(t).

Thus, the risky portion follows

d(π(t)X(t)) = π(t)X(t)

[(
µ1 + µ2(Z(t)) +

σ2

2

)
dt+ σdB(t)

]
. (3.7)

Finally, combining (3.6) and (3.7),

dX(t) = d((1− π(t))X(t)) + d(π(t)X(t)),

the investor’s total wealth followsdX(t) = X(t)
[
r +

(
µ1 + 1

2
σ2 − r + µ2(Z(t))

)
π(t)− c(t)

]
dt+ σπ(t)X(t)dB(t),

X(0) = x > 0.
(3.8)

We note here that if we have positive initial wealth, that is x > 0, this leads to X(t) > 0

for all t ≥ 0. This is easily seen by applying Itô’s Lemma on d ln(X(t)) with

d ln(X(t)) =
1

X(t)
dX(t)− 1

2(X(t))2
(dX(t))2

=

(
r +

(
µ1 +

1

2
σ2 − r + µ2(Z(t))

)
π(t)− c(t)

)
dt

+ σπ(t)dB(t)− σ2π(t)2

2
dt,
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and then integrating both sides and using properties of logarithm to get

ln(X(t))− ln(x) =

∫ t

0

(
r +

(
µ1 +

1

2
σ2 − r + µ2(Z(τ))

)
π(τ)− c(τ)− σ2π(τ)2

2

)
dτ

+

∫ t

0

σπ(τ)dB(τ),

ln

(
X(t)

x

)
=

∫ t

0

(
r +

(
µ1 +

1

2
σ2 − r + µ2(Z(τ))

)
π(τ)− c(τ)− σ2π(τ)2

2

)
dτ

+

∫ t

0

σπ(τ)dB(τ).

After taking natural logarithm on both sides and rearranging the terms, we obtain

X(t) = xe

∫ t
0

(
r+(µ1+ 1

2
σ2−r+µ2(Z(τ)))π(τ)−c(τ)−σ

2π(τ)2

2

)
dτ+

∫ t
0 σπ(τ)dB(τ)

, (3.9)

which is always positive given that the initial wealth x > 0. This means that our investor

will not go bankrupt.

Now let U(·) be a general utility function that measures utility of consumption of

our investor and let Π be the admissible control space for (π(τ), c(τ)). Then the value

function V is given by

V (x, y, z) = sup
(π(τ),c(τ))∈Π

J(x, y, z, π, c), (3.10)

with

J(x, y, z, π, c) = E

[∫ ∞
0

e−βτU(c(τ)X(τ))dτ

]
. (3.11)

Assuming successors of the current investor can keep investing his total wealth, we wish

to choose the optimal investment and consumption that maximizes the expected total

discounted utility of consumption over infinite time horizon. Together with (3.3)-(3.4),

(3.8) and (3.10)-(3.11), we have formulated our stochastic optimal control problem. We

proceed to derive its HJB equation in the next section.
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3.1 Derivation of HJB Equation

Now we derive the Hamilton-Jacobi-Bellman (HJB) equation for our stochastic optimal

control problem. To proceed, we first fix x, y, z, π and c to find dV (x, y, z), which is of

the following form:

dV =
∂V

∂t
dt+

∂V

∂x
dx+

1

2

∂2V

∂x2
(dx)2 +

∂V

∂y
dy +

1

2

∂2V

∂y2
(dy)2 +

∂V

∂z
dz +

1

2

∂2V

∂z2
(dz)2

+
∂2V

∂x∂y
(dx) · (dy) +

∂2V

∂x∂z
(dx) · (dz) +

∂2V

∂y∂z
(dy) · (dz) (3.12)

Substituting the respective components from (3.8), (3.3), and (3.5) for dx, dy and dz into

(3.12), then simplify and rearrange, we can get

dV = 0 + Vx ·
[
x

(
r +

(
µ1 +

1

2
σ2 − r + µ2(z)

)
π − c

)
dt+ σπxdB(t)

]
+

1

2
Vxxσ

2π2x2dt+ Vy · [(µ1 + µ2(z))dt+ σdB(t)] +
1

2
Vyyσ

2dt+ Vz · (y − λz)dt

+ 0 + Vxy · σ2πxdt+ 0 + 0,

dV =

([
x

(
r +

(
µ1 +

1

2
σ2 − r + µ2(z)

)
π − c

)
dt+ σπxdB(t)

]
Vx + (µ1 + µ2(z))Vy

+ (y − λz)Vz +
1

2
Vyyσ

2 +
1

2
Vxxσ

2π2x2 + Vxyσ
2πx

)
dt

+ (Vyσ + Vxσπx) dB(t). (3.13)

Now note that dV appears in

d(e−βtV ) = d(e−βt)V + e−βtdV

= (−βe−βtdt)V + e−βtdV. (3.14)

Substituting (3.13) into (3.14), we obtain

d(e−βtV ) =

[
−βe−βtV + e−βt

([
x

(
r +

(
µ1 +

1

2
σ2 − r + µ2(z)

)
π − c

)]
Vx

+ (µ1 + µ2(z))Vy + (y − λz)Vz +
1

2
Vyyσ

2 +
1

2
Vxxσ

2π2x2 + Vxyσ
2πx

)]
dt

+ e−βt(Vyσ + Vxσπx)dB(t).
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Rearranging the terms, we have

d(e−βtV ) = e−βt
(
−βV +

[
x

(
r +

(
µ1 +

1

2
σ2 − r + µ2(z)

)
π − c

)]
Vx

+ (µ1 + µ2(z))Vy + (y − λz)Vz +
1

2
Vyyσ

2 +
1

2
Vxxσ

2π2x2 + Vxyσ
2πx

)
dt

+ e−βt(Vyσ + Vxσπx)dB(t). (3.15)

We see that when we take the following limit, we would have

lim
δ→0

1

δ
E

[∫ δ

0

d(e−βτV (X(τ), Y (τ), Z(τ)))

]
= lim

δ→0

1

δ
E
[
e−βδV (X(δ), Y (δ), Z(δ))− V (X(0), Y (0), Z(0))

]
. (3.16)

And also when (3.15) is substituted for d(e−βtV ), the limit becomes

lim
δ→0

1

δ
E

[∫ δ

0

d(e−βτV (X(τ), Y (τ), Z(τ)))

]
= lim

δ→0

1

δ
E

[∫ δ

0

e−βτ
(
−βV +

[
x

(
r +

(
µ1 +

1

2
σ2 − r + µ2(z)

)
π − c

)]
Vx

+ (µ1 + µ2(z))Vy + (y − λz)Vz +
1

2
Vyyσ

2 +
1

2
Vxxσ

2π2x2 + Vxyσ
2πx

)
dτ

+

∫ δ

0

e−βτ (Vyσ + Vxσπx)dB(τ)

]
= −βV +

[
x

(
r +

(
µ1 +

1

2
σ2 − r + µ2(z)

)
π − c

)]
Vx

+ (µ1 + µ2(z))Vy + (y − λz)Vz +
1

2
Vyyσ

2 +
1

2
Vxxσ

2π2x2 + Vxyσ
2πx. (3.17)

In (3.17), we have assumed that

E

[∫ δ

0

e−βτ (Vyσ + Vxσπx)dB(τ)

]
= 0.
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We will check the validity of this statement in the verification theorem sections. Com-

bining (3.16) and (3.17),

lim
δ→0

1

δ
E
[
e−βδV (X(δ), Y (δ), Z(δ))− V (X(0), Y (0), Z(0))

]
= −βV +

[
x

(
r +

(
µ1 +

1

2
σ2 − r + µ2(z)

)
π − c

)]
Vx

+ (µ1 + µ2(z))Vy + (y − λz)Vz +
1

2
Vyyσ

2 +
1

2
Vxxσ

2π2x2 + Vxyσ
2πx. (3.18)

By the dynamic programming principle and by definition of the value function, we have

that

V (x, y, z) (3.19)

= sup
(π(τ),c(τ))∈Π

(
E

[∫ δ

0

e−βτU(c(τ)X(τ))dτ +

∫ ∞
δ

e−βτU(c(τ)X(τ))dτ

])
,

and using change of variable ω = τ − δ in (3.19), we get

V (X(0), Y (0), Z(0))

= sup
(π(τ),c(τ))∈Π

(
E

[∫ δ

0

e−βτU(c(τ)X(τ))dτ + e−βδ
∫ ∞

0

e−βωU(c(ω)X(ω))dω

])
= sup

(π(τ),c(τ))∈Π

(
E

[∫ δ

0

e−βτU(c(τ)X(τ))dτ + e−βδV (X(δ), Y (δ), Z(δ))

])
. (3.20)

Dividing (3.20) by δ and taking the limit as δ approaches zero, then using (3.18), we

obtain

0 = lim
δ→0

1

δ
sup

(π(τ),c(τ))∈Π

(
E

[∫ δ

0

e−βτU(c(τ)X(τ))dτ + e−βδV (X(δ), Y (δ), Z(δ))

− V (X(0), Y (0), Z(0))]) ,

0 = sup
(π,c)∈Π

(
U(cx)− βV +

[
x

(
r +

(
µ1 +

1

2
σ2 − r + µ2(z)

)
π − c

)]
Vx

+ (µ1 + µ2(z))Vy + (y − λz)Vz +
1

2
Vyyσ

2 +
1

2
Vxxσ

2π2x2 + Vxyσ
2πx

)
.
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Finally after rearranging the terms, we have

βV = sup
π∈Π

(
xπ

(
µ1 +

1

2
σ2 − r + µ2(z)

)
Vx +

1

2
Vxxσ

2π2x2 + Vxyσ
2πx

)
(3.21)

+
1

2
Vyyσ

2 + sup
c∈Π

(U(cx)− cxVx) + xrVx + (µ1 + µ2(z))Vy + (y − λz)Vz.

Equation (3.21) is our HJB equation for a general utility function U(·). Next, we will

consider widely used special isoelastic utility functions that have constant relative risk

aversion, namely the logarithmic utility function and the hyperbolic absolute risk aversion

(HARA) utility function for the problem in (3.21).
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Chapter 4

Logarithmic Utility

4.1 Logarithmic Utility

The logarithmic utility function is defined as

U(C) = log(C), (4.1)

where C represents consumption. It is a limiting case when γ = 0 in the HARA utility

defined later in (5.2). In this special case, the investor has constant relative risk aversion,

which is measured by the Arrow-Pratt relative risk aversion measure

R(C) =
−CU ′′(C)

U ′(C)
. (4.2)

We see that R(C) = 1 is a constant in the case of using the logarithmic utility function.

We now define the admissible control space for the logarithmic utility case as follows:

Definition 4.1.1. A control (π(t), c(t)) is said to be in the admissible control space Π if

it satisfies

1. (π(t), c(t)) is Ft - progressively measurable;

2. |π(t)| ≤ Γ <∞ for all t ≥ 0;

3. 0 < εc ≤ c(t) ≤ Λ <∞, for all t ≥ 0.
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As we will see in the subsequent sections, Γ and Λ are any constant that satisfy

Γ ≥
µ1 + σ2

2
− r +M

σ2
, Λ ≥ β.

Here we note that the condition εc ≤ c(t) is necessary to ensure the logarithmic utility

function will be defined. We now proceed to define the value function and HJB equation

for the logarithmic utility case.

4.2 Value Function and HJB Equation

To derive the value function and HJB equation for the logarithmic utility case, we replace

the generic utility function U(·) with the logarithmic utility function defined in (4.1).

Then the value function defined in (3.10)-(3.11) becomes

J(x, y, z, π, c) = E

[∫ ∞
0

e−βτ log(c(τ)X(τ))dτ

]
,

V (x, y, z) = sup
(π,c)∈Π

J(x, y, z, π, c). (4.3)

By applying dynamic programming principle to the value function, the resulting HJB

equation transforms from (3.21) into

βV = sup
π∈Π

(
xπ

(
µ1 +

1

2
σ2 − r + µ2(z)

)
Vx +

1

2
Vxxσ

2π2x2 + Vxyσ
2πx

)
+

1

2
Vyyσ

2

+ sup
c∈Π

(log(cx)− cxVx) + xrVx + (µ1 + µ2(z))Vy + (y − λz)Vz. (4.4)

We observe that the HJB equation (4.4) currently depends on x, y, and z, which can be

simplified to only exhibit dependence on y and z if we let

V (x, y, z) =
1

β
log(x) +W (y, z). (4.5)

Then using the fact that

Vx =
1

βx
, Vxy = 0, Vxx = − 1

βx2
,

Vy = Wy, Vyy = Wyy, Vz = Wz,
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the HJB equation (4.4) becomes

log(x) + βW = sup
π∈Π

(
1

β

(
µ1 +

1

2
σ2 − r + µ2(z)

)
π − σ2π2

2β

)
+

1

2
Wyyσ

2 (4.6)

+ sup
c∈Π

(
log(c) + log(x)− c

β

)
+
r

β
+ (µ1 + µ2(z))Wy + (y − λz)Wz.

Moving log(x) to the right-hand side of (4.6), we arrive at

βW = sup
π∈Π

(
1

β

(
µ1 +

1

2
σ2 − r + µ2(z)

)
π − σ2π2

2β

)
+

1

2
Wyyσ

2

+ sup
c∈Π

(
log(c)− c

β

)
+
r

β
+ (µ1 + µ2(z))Wy + (y − λz)Wz. (4.7)

From (4.7), we find extrema for the supremum expressions and determine the candidates

for optimal controls to be

π∗ =
µ1 + 1

2
σ2 − r + µ2(z)

σ2
, c∗ = β. (4.8)

Plugging (4.8) in (4.7) and simplify we get

βW =
1

βσ2

(
µ1 +

1

2
σ2 − r + µ2(z)

)2

− σ2

2β
·
(

(µ1 + 1
2
σ2 − r + µ2(z))

σ2

)2

+ log(β)− 1 +
r

β
+ (µ1 + µ2(z))Wy + (y − λz)Wz +

σ2

2
Wyy,

=
1

2βσ2

(
µ1 +

1

2
σ2 − r + µ2(z)

)2

+ log(β)− 1 +
r

β

+ (µ1 + µ2(z))Wy + (y − λz)Wz +
σ2

2
Wyy. (4.9)

Rearranging the terms in (4.9), we get the following simplified equation:

σ2

2
Wyy = βW − (µ1 + µ2(z))Wy − (y − λz)Wz

− 1

2βσ2

(
µ1 +

1

2
σ2 − r + µ2(z)

)2

− log(β) + 1− r

β
. (4.10)
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If we define

f1(z) =
1

2βσ2

(
µ1 +

1

2
σ2 − r + µ2(z)

)2

+ log(β)− 1 +
r

β
, (4.11)

f2(z) = µ1 + µ2(z). (4.12)

Then we can rewrite (4.10) as

σ2

2
Wyy = βW − f1(z)− f2(z)Wy − (y − λz)Wz. (4.13)

We will use the form in (4.13) throughout the sections below.

4.3 Perturbed Elliptic Equation and Viscosity Solu-

tion

Previously in (4.13), the term y−λz is not bounded, which leads to difficulty in analyzing

the problem. Thus we would like the coefficients to be bounded. We will let

g(y, z) = y − λz, (4.14)

and do the following modification to (4.13):

0 = − σ2Wyy

2(1 + g(y, z)2)
+

βW

1 + g(y, z)2
− f1(z)

1 + g(y, z)2

− f2(z)Wy

1 + g(y, z)2
− g(y, z)Wz

1 + g(y, z)2
. (4.15)

Equation (4.15) is essentially the same as equation (4.13) in that they should share the

same solution. However, this equation has better properties than the original now that

the coefficients are all bounded. We want to show existence of solution to (4.15). But

with its current form, we have a degenerate elliptic partial differential equation, which

still poses some difficulties. To overcome this, let us consider the following perturbed
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non-degenerate equation that has an additional viscosity term ε∆W ε to (4.15):

0 = −
σ2W ε

yy

2(1 + g(y, z)2)
− ε∆W ε +

βW ε

1 + g(y, z)2
− f1(z)

1 + g(y, z)2

−
f2(z)W ε

y

1 + g(y, z)2
− g(y, z)W ε

z

1 + g(y, z)2
, (4.16)

where ε > 0. If we let

H(y, z,W ε
y ,W

ε
z ) =

f1(z)

1 + g(y, z)2
+

f2(z)

1 + g(y, z)2
W ε
y +

g(y, z)

1 + g(y, z)2
W ε
z , (4.17)

we can rewrite (4.16) as

0 = − σ2

2(1 + g(y, z)2)
W ε
yy − ε∆W ε +

β

1 + g(y, z)2
W ε −H(y, z,W ε

y ,W
ε
z ), (4.18)

Here we briefly note that adding the viscosity term in (4.18) results in a very similar

non-degenerate equation as the result from having the following approximate problem

formulation to (3.3)-(3.8),

dY (t) = (µ1 + µ2(Z(t)))dt+ σdB(t) + εdB1(t),

dZ(t) = (Y (t)− λZ(t))dt+ εdB2(t),

dX(t) = X(t)
[
r +

(
µ1 + 1

2
σ2 − r + µ2(Z(t))

)
π(t)− c(t)

]
dt

+ π(t)X(t)(σdB(t) + εdB1(t)),

(4.19)

whereB1(t) andB2(t) are 1-dimensional standard Brownian motions independent ofB(t).

Thus, solving our problem is very similar to solving the approximate problem (4.19). In

the subsequent sections, we will first study the existence of solution to (4.18) inside a ball

in R2 and then extend it to the entire space of R2, which eventually obtains the existence

of solution to (4.15) when ε→ 0.
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4.3.1 Existence and Uniqueness in BR

We begin with a smaller problem in a small ball in R2. For R > 0, let BR = {(y, z) ∈
R2 : ||(y, z)||2 ≤ R}. We consider the following problem− σ2

2(1+g(y,z)2)
W ε
yy − ε∆W ε + β

1+g(y,z)2
W ε −H(y, z,W ε

y ,W
ε
z ) = 0,

W ε|∂BR = K,
(4.20)

where K > 0 is a bounded constant that is determined in the subsequent sections as

K =
1

2β2σ2

[(
µ1 +

σ2

2
− r
)2

− 2

(
µ1 +

σ2

2
− r
)
M

]
+ log(β)− 1 +

r

β
,

to ensure that the solution to this problem is bounded below by K (this is needed in

the verification theorem later on). We clarify here that the existence of the solution itself

only requires K to be a positive constant. The problem in (4.20) is a non-degenerate

partial differential equation boundary value problem with properties such that available

results in the literature can be used to show the existence and uniqueness of its solution.

To show this, we first define strict ellipticity.

Definition 4.3.1. Denote Lu = aij(x)Diju + bi(x)Diu + c(x)u = f(x), where aij = aji

and coefficients and f are defined in an open set Ω ⊂ Rn. L is strictly elliptic if

aij(x)ξiξj ≥ λ|ξ|2, ∀x ∈ Ω, ξ ∈ Rn,

for some positive constant λ.

Then, we know that Theorem 6.13 from [28] states

Theorem 4.3.1. Let L be strictly elliptic in a bounded domain Ω, with c ≤ 0, and let

f and the coefficients of L be bounded and belong to Cα(Ω). Suppose that Ω satisfies an

exterior sphere condition at every boundary point. Then, if ϕ is continuous on ∂Ω, the

Dirichlet problem,

Lu = f in Ω, u = ϕ on ∂Ω,

has a unique solution u ∈ C0(Ω) ∩ C2,α(Ω).

This theorem then leads to our theorem.
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Theorem 4.3.2. The system (4.20) has a unique solution W ε(y, z) ∈ C0(BR)∩C2,α(BR).

Proof. For our problem, we have

LW ε =

(
σ2

2(1 + g(y, z)2)
+ ε

)
W ε
yy + εW ε

zz −
β

1 + g(y, z)2
W ε

+
f2(z)

1 + g(y, z)2
W ε
y +

g(y, z)

1 + g(y, z)2
W ε
z , (4.21)

and

f = − f1(z)

1 + g(y, z)2
, (4.22)

where f1, f2 and g are as defined in (4.11)-(4.12) and (4.14). L is strictly elliptic if we

take λ = ε in Definition 4.3.1. We have

c(y, z) = − β

1 + g(y, z)2
≤ 0. (4.23)

Coefficients of L and f are clearly bounded. They also belong to Cα(BR) since their partial

derivatives are bounded and thus Lipschitz and α-Hölder continuous. The exterior sphere

condition is satisfied since we are only considering Ω = BR ⊂ R2, where BR is a ball of

radius R. Our boundary condition K is a positive constant, thus continuous. Hence by

Theorem 4.3.1, (4.20) has a unique solution W ε ∈ C0(BR) ∩ C2,α(BR).

Now that we have shown existence in a small ball, we want to extend this result to R2.

First we need to show that W ε and its first partial derivatives are uniformly bounded on

R2.

4.3.2 L∞ Estimate of W ε

We give the uniform upper bound of W ε in the next lemma.

Lemma 4.3.3. Let f1(z) and g(y, z) be the functions defined in (4.11) and (4.14). Con-

sider the problem in (4.18). If

H(y, z, 0, 0) =
f1(z)

1 + g(y, z)2
∈ L∞(R2),
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then

|W ε(y, z)|L∞(R2) ≤
||f1||L∞(R2)

β
+K, ∀(y, z) ∈ R2.

Proof. We first check that

H(y, z, 0, 0) =
f1(z)

1 + g(y, z)2
∈ L∞(R2). (4.24)

This is true since µ2(z) is bounded and Lipschitz continuous for all z ∈ R2, we know that

there exists M1 > 0 such that |f1(z)| < M1. Also f1(z) is Lipschitz continuous. Then,

|f1(z)|
1 + g(y, z)2

≤ |f1(z)| ≤M1 <∞

and H(y, z, 0, 0) ∈ L∞(R2). Note that when (4.24) is satisfied for all (y, z) ∈ R2, it is also

satisfied for all (y, z) ∈ BR. There exists (y0, z0) ∈ BR such that W ε(y0, z0) ≥ W ε(y, z)

for all (y, z) ∈ BR, then 
W ε
y (y0, z0) = W ε

z (y0, z0) = 0,

W ε
yy(y0, z0) ≤ 0,

W ε
zz(y0, z0) ≤ 0.

(4.25)

Using (4.25), we have

β

1 + g(y0, z0)2
W ε(y0, z0) =

σ2

2(1 + g(y0, z0)2)
W ε
yy(y0, z0) + ε∆W ε(y0, z0)

+ H(y0, z0,W
ε
y (y0, z0),W ε

z (y0, z0))

≤ |H(y0, z0, 0, 0)|

=
|f1(z0)|

1 + g(y0, z0)2

≤
||f1||L∞(R2)

1 + g(y0, z0)2
.

This implies that

W ε(y, z) ≤ W ε(y0, z0) ≤
||f1||L∞(R2)

β
. (4.26)
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Similarly, there exists (y1, z1) ∈ BR such that W ε(y1, z1) ≤ W ε(y, z) for all (y, z) ∈ BR,

then 
W ε
y (y1, z1) = W ε

z (y1, z1) = 0,

W ε
yy(y1, z1) ≥ 0,

W ε
zz(y1, z1) ≥ 0.

(4.27)

Then

β

1 + g(y1, z1)2
W ε(y1, z1) =

σ2

2(1 + g(y1, z1)2)
W ε
yy(y1, z1) + ε∆W ε(y1, z1)

+ H(y1, z1,W
ε
y (y1, z1),W ε

z (y1, z1))

≥ −|H(y1, z1, 0, 0)|

= − |f1(z1)|
1 + g(y1, z1)2

≥ −
||f1||L∞(R2)

1 + g(y1, z1)2
.

This then implies

W ε(y, z) ≥ W ε(y1, z1) ≥ −
||f1||L∞(R2)

β
. (4.28)

Combining (4.26) and (4.28), and then noting that W ε|∂BR = K, we would have

|W ε(y, z)|L∞(BR) ≤
||f1||L∞(R2)

β
+K, ∀(y, z) ∈ BR. (4.29)

We see that the upper bound is independent of R. Thus, it is true for all (y, z) ∈ R2 that

|W ε(y, z)|L∞(R2) ≤
||f1||L∞(R2)

β
+K.

Now that we have shown that W ε is bounded almost surely on R2, we still need to show

that its first order partial derivatives are also bounded.
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4.3.3 Estimate of W ε
y and W ε

z

In this section, we denote

H∗(y, z, p1, p2) = f1(z) + f2(z)p1 + g(y, z)p2, (4.30)

where f1, f2 and g are as defined in (4.11)-(4.12) and (4.14).

Lemma 4.3.4. Let H∗(y, z, p1, p2) be as defined in (4.30), where f1(z) and f2(z) are

as defined in (4.11)-(4.12). Consider the problem in (4.18). Assume β > 1 + C1, where

C1 = max(L1, L2, λ) and L1, L2 are Lipschitz constants for f1(z), f2(z) respectively. If

|H∗(y, z, p1, p2)−H∗(y, ẑ, p1, p2)| ≤ C1|z − ẑ|(1 + |p1|+ |p2|),

and

|H∗(y, z, p1, p2)−H∗(ŷ, z, p1, p2)| ≤ |y − ŷ||p2|,

then

|W ε
y (y, z)|L∞(R) + |W ε

z (y, z)|L∞(R) ≤
C1

β − C1 − 1
.

Proof. We first check

|H∗(y, z, p1, p2)−H∗(y, ẑ, p1, p2)|

≤ |f1(z)− f1(ẑ)|+ |f2(z)− f2(ẑ)||p1|+ λ|z − ẑ||p2|

≤ L1|z − ẑ|+ L2|z − ẑ||p1|+ λ|z − ẑ||p2|

≤ C1|z − ẑ|(1 + |p1|+ |p2|), where C1 = max(L1, L2, λ). (4.31)

Next, define

W
ε
(y, z) = W ε(y, z + ξ), ∀(y, z) ∈ R2, (4.32)

and also define

H(y, z, p1, p2) = H∗(y, z + ξ, p1, p2), ∀y, z, p1, p2 ∈ R. (4.33)
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We consider the problem in (4.18) and let

Φ(y, z) = W ε(y, z)−W ε
(y, z). (4.34)

Since W ε,W
ε ∈ L∞(R2), we know that Φ ∈ L∞(R2). Then for any δ > 0 there exists a

z0 such that Φ(y, z0) ≥ supz∈R Φ(y, z)− δ. Let ζ(·) ∈ C∞0 (R) be a function such that
ζ(z0) = 1,

0 ≤ ζ(z) < 1, ∀z ∈ R�{z0},

|ζz(z)| ≤ 1, |ζzz(z)| ≤ 1, ∀z ∈ R.

(4.35)

It is easy to see that such a function does exist. Then let

Ψ(y, z) = Φ(y, z) + 2δζ(z), (4.36)

and let G be a bounded region such that ζ(z) = 0 for z ∈ R�G. Then we would have

Ψ(y, z0) = Φ(y, z0) + 2δζ(z0)

= Φ(y, z0) + 2δ

≥ sup
z∈R

Φ(y, z)− δ + 2δ

= sup
z∈R

Φ(y, z) + δ

> sup
z∈R

Φ(y, z)

= sup
z∈R�G

Φ(y, z). (4.37)

We know that on R�G, Ψ(y, z) = Φ(y, z). Having Ψ(y, z0) > supz∈R�G Φ(y, z) implies

that supz∈R Ψ(y, z) = maxz∈G Ψ(y, z). Thus there exists a z1 ∈ G such that Ψ(y, z1) ≥
Ψ(y, z) for all z ∈ R. This means

Ψy(y, z1) = 0, Ψz(y, z1) = 0,

Ψyy(y, z1) ≤ 0,

Ψzz(y, z1) ≤ 0,

Ψyy(y, z1) + Ψzz(y, z1) ≤ 0,

(4.38)
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and by the definition of Ψ from (4.36), these imply

W ε
y (y, z1)−W ε

y(y, z1) = 0,

W ε
z (y, z1)−W ε

z(y, z1) + 2δζz(z1) = 0,

W ε
yy(y, z1)−W ε

yy(y, z1) ≤ 0,

W ε
zz(y, z1)−W ε

zz(y, z1) + 2δζzz(z1) ≤ 0,

∆W ε(y, z1)−∆W
ε
(y, z1) + 2δζzz(z1) ≤ 0.

(4.39)

Since Ψ(y, z) = W ε(y, z) − W
ε
(y, z) + 2δζ(z), Ψ(y, z1) ≥ Ψ(y, z) for all z ∈ R and

ζ(z1) ≤ 1, we then have

β(W ε(y, z)−W ε
(y, z)) ≤ βΨ(y, z)

≤ βΨ(y, z1)

= β(W ε(y, z1)−W ε
(y, z1) + 2δζ(z1))

≤ β(W ε(y, z1)−W ε
(y, z1)) + 2δβ. (4.40)

Then using (4.16) to substitute for β(W ε(y, z1) −W ε
(y, z1)) on the right-hand side, we

obtain

β(W ε(y, z)−W ε
(y, z)) (4.41)

=
σ2

2
W ε
yy(y, z1)− σ2

2
W

ε

yy(y, z1)

+ ε(1 + g(y, z1)2)∆W ε(y, z1) +H∗(y, z1,W
ε
y (y, z1),W ε

z (y, z1))

− ε(1 + g(y, z1 + ξ)2)∆W
ε
(y, z1)−H(y, z1,W

ε

y(y, z1),W
ε

z(y, z1)) + 2δβ.

From (4.39), we know that W ε
yy(y, z1)−W ε

yy(y, z1) ≤ 0 and ∆W ε(y, z1)−∆W
ε
(y, z1) ≤

−2δζzz(z1). Thus equation (4.41) becomes

β(W ε(y, z)−W ε
(y, z))

≤ ε(max{1 + g(y, z1)2, 1 + g(y, z1 + ξ)2})(∆W ε(y, z1)−∆W
ε
(y, z1))

+ H∗(y, z1,W
ε
y (y, z1),W ε

z (y, z1))−H(y, z1,W
ε

y(y, z1),W
ε

z(y, z1)) + 2δβ

≤ −2εδζzz(z1)(max{1 + g(y, z1)2, 1 + g(y, z1 + ξ)2})

+ H∗(y, z1,W
ε
y (y, z1),W ε

z (y, z1))−H(y, z1,W
ε

y(y, z1),W
ε

z(y, z1)) + 2δβ.
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Dividing both sides by β and taking the norm, we have

|W ε(y, z)−W ε
(y, z)|

≤ 1

β
| − 2εδζzz(z1)(max{1 + g(y, z1)2, 1 + g(y, z1 + ξ)2})

+ H∗(y, z1,W
ε
y (y, z1),W ε

z (y, z1))−H(y, z1,W
ε

y(y, z1),W
ε

z(y, z1))|+ 2δ

≤ 2εδ

β
·max{1 + g(y, z1)2, 1 + g(y, z1 + ξ)2} (4.42)

+
1

β
|H∗(y, z1,W

ε
y (y, z1),W ε

z (y, z1))−H(y, z1,W
ε

y(y, z1),W
ε

z(y, z1))|+ 2δ.

From (4.39) we know that W ε
y (y, z1) = W

ε

y(y, z1) and W
ε

z(y, z1) = W ε
z (y, z1) + 2δζz(z1)

and from (4.33) we can rewrite

H(y, z1,W
ε

y(y, z1),W
ε

z(y, z1)) = H∗(y, z1 + ξ,W ε
y (y, z1),W ε

z (y, z1) + 2δζz(z1)). (4.43)

Adding and subtracting H∗(y, z1+ξ,W ε
y (y, z1),W ε

z (y, z1)) on the right-hand side of (4.42)

then using the verified assumption in (4.31), the inequality in (4.42) becomes

|W ε(y, z)−W ε
(y, z)|

≤ 2δ

(
ε

β
·max{1 + g(y, z1)2, 1 + g(y, z1 + ξ)2}+ 1

)
+

1

β
|H∗(y, z1,W

ε
y (y, z1),W ε

z (y, z1))−H∗(y, z1 + ξ,W ε
y (y, z1),W ε

z (y, z1))

+ H∗(y, z1 + ξ,W ε
y (y, z1),W ε

z (y, z1))

−H∗(y, z1 + ξ,W ε
y (y, z1),W ε

z (y, z1) + 2δζz(z1))|

≤ 2δ

(
ε

β
·max{1 + g(y, z1)2, 1 + g(y, z1 + ξ)2}+ 1

)
+

1

β
C1|ξ|(1 + |W ε

y (y, z1)|+ |W ε
z (y, z1)|)

+
1

β
|H∗(y, z1 + ξ,W ε

y (y, z1),W ε
z (y, z1))

−H∗(y, z1 + ξ,W ε
y (y, z1),W ε

z (y, z1) + 2δζz(z1))|. (4.44)

Let δ → 0 and we have

|W ε(y, z)−W ε(y, z + ξ)| ≤ C1

β
(1 + |W ε

y (y, z1)|+ |W ε
z (y, z1)|)|ξ|. (4.45)
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Now, we go through a similar procedure for the y variable by letting

W ε(y, z) = W ε(y + ξ, z), ∀(y, z) ∈ R2, (4.46)

and

H(y, z, p1, p2) = H∗(y + ξ, z, p1, p2), ∀y, z, p1, p2 ∈ R. (4.47)

Similarly, we check the condition

|H∗(y, z, p1, p2)−H∗(ŷ, z, p1, p2)| = |(y − ŷ)p2|

≤ |y − ŷ||p2|. (4.48)

Let

Φ̂(y, z) = W ε(y, z)−W ε(y, z). (4.49)

Again since W ε,W ε ∈ L∞(R2), we know that Φ̂ ∈ L∞(R2) and for any δ > 0 there exists

a y0 such that Φ̂(y0, z) ≥ supy∈R Φ̂(y, z)−δ. Let η(·) ∈ C∞0 (R) be a function that satisfies

the following: 
η(y0) = 1,

0 ≤ η(y) < 1, ∀y ∈ R�{y0},

|ηy(y)| ≤ 1, |ηyy(y)| ≤ 1, ∀y ∈ R.

(4.50)

Again, it is easy to see that such a function does exist. Then let

Ψ̂(y, z) = Φ̂(y, z) + 2δη(y), (4.51)

and let G′ be a bounded region such that η(y) = 0 for y ∈ R�G′.
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Then we would have

Ψ̂(y0, z) = Φ̂(y0, z) + 2δη(y0)

= Φ̂(y0, z) + 2δ

≥ sup
y∈R

Φ̂(y, z)− δ + 2δ

= sup
y∈R

Φ̂(y, z) + δ

> sup
y∈R

Φ̂(y, z)

= sup
y∈R�G′

Φ̂(y, z). (4.52)

Inequality (4.52) implies that supy∈R Ψ̂(y, z) = maxy∈G′ Ψ̂(y, z). Thus there exists a y1 ∈
G′ such that Ψ̂(y1, z) ≥ Ψ̂(y, z) for all y ∈ R. This means

Ψ̂y(y1, z) = 0,

Ψ̂z(y1, z) = 0,

Ψ̂yy(y1, z) ≤ 0,

Ψ̂zz(y1, z) ≤ 0,

Ψ̂yy(y1, z) + Ψ̂zz(y1, z) ≤ 0,

(4.53)

which then implies 

W ε
y (y1, z)−W ε

y(y1, z) + 2δηy(y1) = 0,

W ε
z (y1, z)−W ε

z(y1, z) = 0,

W ε
yy(y1, z)−W ε

yy(y1, z) + 2δηyy(y1) ≤ 0,

W ε
zz(y1, z)−W ε

zz(y1, z) ≤ 0,

∆W ε(y1, z)−∆W ε(y1, z) + 2δηyy(y1) ≤ 0.

(4.54)

Since Ψ̂(y, z) = W ε(y, z) − W ε(y, z) + 2δη(y), Ψ̂(y1, z) ≥ Ψ̂(y, z) for all y ∈ R and
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η(y1) ≤ 1, we have

β(W ε(y, z)−W ε(y, z))

≤ βΨ̂(y, z)

≤ βΨ̂(y1, z)

= β(W ε(y1, z)−W ε(y1, z) + 2δη(y1))

≤ β(W ε(y1, z)−W ε(y1, z)) + 2δβ. (4.55)

Then using (4.16) to substitute for β(W ε(y1, z) −W ε(y1, z)) on the right-hand side, we

obtain

β(W ε(y, z)−W ε(y, z)) (4.56)

=
σ2

2
W ε
yy(y1, z)−

σ2

2
W ε

yy(y1, z)

+ ε(1 + g(y1, z)
2)∆W ε(y1, z) +H∗(y1, z,W

ε
y (y1, z),W

ε
z (y1, z))

− ε(1 + g(y1 + ξ, z)2)∆W ε(y1, z)−H(y1, z,W
ε
y(y1, z),W

ε
z(y1, z)) + 2δβ.

From (4.54), we know that W ε
yy(y1, z) − W ε

yy(y1, z) ≤ −2δηyy(y1) and ∆W ε(y1, z) −
∆W ε(y1, z) ≤ −2δηyy(y1). Thus equation (4.56) becomes

β(W ε(y, z)−W ε(y, z))

≤ −2δηyy(y1)

(
σ2

2

)
+ ε(max{1 + g(y1, z)

2, 1 + g(y1 + ξ, z)2})(∆W ε(y1, z)−∆W ε(y1, z))

+ H∗(y1, z,W
ε
y (y1, z),W

ε
z (y1, z))−H(y1, z,W

ε
y(y1, z),W

ε
z(y1, z)) + 2δβ

≤ −2δηyy(y1)

(
σ2

2

)
− 2εδηyy(y1)(max{1 + g(y1, z)

2, 1 + g(y1 + ξ, z)2})

+ H∗(y1, z,W
ε
y (y1, z),W

ε
z (y1, z))−H(y1, z,W

ε
y(y1, z),W

ε
z(y1, z)) + 2δβ

= −2δ

(
σ2

2
+ ε ·max{1 + g(y1, z)

2, 1 + g(y1 + ξ, z)2}
)
ηyy(y1)

+ H∗(y1, z,W
ε
y (y1, z),W

ε
z (y1, z))−H(y1, z,W

ε
y(y1, z),W

ε
z(y1, z)) + 2δβ.
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Dividing both sides by β and taking the norm, we obtain

|W ε(y, z)−W ε(y, z)| (4.57)

≤ 1

β
| − δ(σ2 + 2ε ·max{1 + g(y1, z)

2, 1 + g(y1 + ξ, z)2})ηyy(y1)

+ H∗(y1, z,W
ε
y (y1, z),W

ε
z (y1, z))−H(y1, z,W

ε
y(y1, z),W

ε
z(y1, z))|+ 2δ.

From (4.54) we know that W ε
z (y1, z) = W ε

z(y1, z) and W ε
y(y1, z) = W ε

y (y1, z) + 2δηy(y1)

and from (4.47) we can rewrite

H(y1, z,W
ε
y(y1, z),W

ε
z(y1, z)) = H∗(y1 + ξ, z,W ε

y (y1, z) + 2δηy(y1),W ε
z (y1, z)). (4.58)

Adding and subtracting H∗(y1+ξ, z,W ε
y (y1, z),W

ε
z (y1, z)) on the right-hand side of (4.57)

then using the verified assumption in (4.48), the inequality in (4.57) becomes

|W ε(y, z)−W ε(y, z)|

≤ δ(σ2 + 2ε ·max{1 + g(y1, z)
2, 1 + g(y1 + ξ, z)2})

β

+
1

β
|H∗(y1, z,W

ε
y (y1, z),W

ε
z (y1, z))−H∗(y1 + ξ, z,W ε

y (y1, z),W
ε
z (y1, z))

+ H∗(y1 + ξ, z,W ε
y (y1, z),W

ε
z (y1, z))

−H∗(y1 + ξ, z,W ε
y (y1, z) + 2δηy(y1),W ε

z (y1, z))|+ 2δ

≤ δ

(
σ2 + 2ε ·max{1 + g(y1, z)

2, 1 + g(y1 + ξ, z)2}
β

+ 2

)
+

1

β
|W ε

z (y1, z)||ξ|+ |H∗(y1 + ξ, z,W ε
y (y1, z),W

ε
z (y1, z))

−H∗(y1 + ξ, z,W ε
y (y1, z) + 2δηy(y1),W ε

z (y1, z))|. (4.59)

Let δ → 0 and we have

|W ε(y, z)−W ε(y + ξ, z)| ≤ 1

β
|W ε

z (y1, z)||ξ|. (4.60)

39



Adding (4.45) and (4.60) then simplify, we get

|W ε(y, z)−W ε(y, z + ξ)|+ |W ε(y, z)−W ε(y + ξ, z)|

≤
(
C1

β
(1 + |W ε

y (y, z1)|+ |W ε
z (y, z1)|) +

1

β
|W ε

z (y1, z)|
)
|ξ|

≤
(
C1

β
(1 + |W ε

y (y, z)|L∞(R2) + |W ε
z (y, z)|L∞(R2)) +

1

β
|W ε

z (y, z)|L∞(R2)

)
|ξ|

≤
(
C1

β
+

1 + C1

β

(
|W ε

y (y, z)|L∞(R2) + |W ε
z (y, z)|L∞(R2)

))
|ξ|. (4.61)

Dividing |ξ| on both sides of (4.61) and take the limit as ξ goes to zero, we arrive at

|W ε
z (y, z)|+ |W ε

y (y, z)| ≤ C1

β
+

1 + C1

β

(
|W ε

y (y, z)|L∞(R2) + |W ε
z (y, z)|L∞(R2)

)
, (4.62)

for all (y, z) ∈ R2, which leads to

|W ε
z (y, z)|L∞(R2) + |W ε

y (y, z)|L∞(R2) ≤
C1

β
+

1 + C1

β

(
|W ε

y (y, z)|L∞(R2) + |W ε
z (y, z)|L∞(R2)

)
.

Then rearranging the terms, we finally get

β − C1 − 1

β
(|W ε

y (y, z)|L∞(R2) + |W ε
z (y, z)|L∞(R2)) ≤

C1

β
,

|W ε
y (y, z)|L∞(R2) + |W ε

z (y, z)|L∞(R2) ≤
C1

β − C1 − 1
, (4.63)

for β > 1 + C1.

Now we have shown that both W ε and its first partial derivatives are uniformly bounded

in R2. These bounds will be needed in proving the existence result.

4.3.4 Existence and Uniqueness of Viscosity Solution in R2

Before we proceed to prove the existence and uniqueness of a viscosity solution to (4.15),

we first formally define what it means to be a viscosity solution to our problem.

Definition 4.3.2. W is a viscosity subsolution (supersolution) to the problem
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(4.15) if for every (y0, z0) ∈ R2 and every ϕ ∈ C2(R2) such that

ϕ ≥ (≤)W, ϕ(y0, z0) = W (y0, z0)

in a neighborhood of (y0, z0), we have

0 ≥ (≤) − σ2ϕyy
2(1 + g(y, z)2)

+
βϕ

1 + g(y, z)2
− f1(z)

1 + g(y, z)2

− f2(z)ϕy
1 + g(y, z)2

− g(y, z)ϕz
1 + g(y, z)2

.

In addition, when W is both a viscosity subsolution and supersolution, W is called a

viscosity solution to (4.15).

Now we are ready to present the following main result.

Theorem 4.3.5. Assume β > 1 + C1 as in the assumption of Lemma 4.3.4, then equa-

tion (4.15) has a unique viscosity solution (weak solution) W (y, z) in the Sobolev space

W 1,∞(R2).

Proof. Having

|W ε
y (y, z)|L∞(R2) + |W ε

z (y, z)|L∞(R2) ≤
C1

β − C1 − 1

implies that |∇W ε(y, z)| is also bounded and this bound is independent of ε. Then W ε

is Lipschitz continuous and thus uniformly continuous. W ε is uniformly bounded by
||f1||L∞(R2)

β
+ K, independent of ε. And W ε ∈ W 1,∞(BR), which is compactly embedded

in Cα(BR) for 0 < α < 1. For ease of notation, we regard Wn as the same sequence as

W ε except now that it is indexed by n (n −→ ∞ and ε −→ 0). We further denote WnR

as the sequence in BR. Since WnR is bounded, for a fixed R > 0, nR has a subsequence

nR(j) such that WnR(j), which is a subsequence of WnR in BR, converges uniformly to

W ∈ W 1,∞(BR) as j −→∞. Now consider the following diagonal argument:

Since Wn1 is bounded, n1 has a subsequence n1(j) such that Wn1(j) (a subsequence of

Wn1 in B1) converges uniformly to W ∈ W 1,∞(B1) as j −→∞. Note that B1 is contained

in B2 . We pick a subsequence n2(j) of n1(j) such that Wn2(j), which is a subsequence in

B2, converges uniformly to W ∈ W 1,∞(B2). We proceed and obtain subsequences nk(j)

of nk−1(j) such that Wnk(j), a subsequence in Bk, converges uniformly to W ∈ W 1,∞(Bk).

We pick Wnj(j) from Wnk(j) and this sequence converges uniformly to W in every Bj in
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R2 as j −→ ∞. Hence the subsequence Wnj(j) of the original sequence Wn converges

uniformly to W in R2 as j −→ ∞. Translating the notation back, we have that there

exists a subsequence of W ε that converges uniformly to W ∈ W 1,∞(R2) as ε −→ 0. Now

let us denote this subsequence of W ε as itself. Then we have that W ε that converges

uniformly to W ∈ W 1,∞(R2).

We can show that W is the viscosity solution to (4.15). Let ϕ(·, ·) ∈ C2(R2) where

ϕ ≥ W and W (y0, z0) = ϕ(y0, z0). Thus W −ϕ attains its local maximum at (y0, z0). Let

η be a function that satisfiesη(y0, z0) = 1,

0 ≤ η(y, z) < 1, (y, z) 6= (y0, z0).
(4.64)

Note that the local maximum of W − (ϕ− η) occurs at (y0, z0) and is now unique. Then

since W ε converges to W uniformly, there exists a sequence (yε0, z
ε
0) that converges to

(y0, z0) as ε goes to zero where W ε− (ϕ− η) attains its local maximum at (yε0, z
ε
0). Thus

we must have 

∂
∂y

(W ε − (ϕ− η))
∣∣
y=yε0

= 0,

∂
∂z

(W ε − (ϕ− η))
∣∣
z=zε0

= 0,

∂2

∂y2
(W ε − (ϕ− η))

∣∣
y=yε0
≤ 0,

∂2

∂z2
(W ε − (ϕ− η))

∣∣
z=zε0
≤ 0,

∆(W ε − (ϕ− η))
∣∣
(y,z)=(yε0,z

ε
0)
≤ 0.

(4.65)

And since the local maximum of η also occurs at (yε0, z
ε
0),

ηy(y
ε
0, z

ε
0) = ηz(y

ε
0, z

ε
0) = 0,

ηyy(y
ε
0, z

ε
0) ≤ 0,

ηzz(y
ε
0, z

ε
0) ≤ 0.

(4.66)

Additionally note that W ε − ϕ attains its local maximum at (yε0, z
ε
0), so we also have

(W ε − ϕ)yy(y
ε
0, z

ε
0) ≤ 0. (4.67)

Using (4.65), (4.67) and (4.18), we see that after adding and subtracting ∆ε(ϕ−η)(yε0, z
ε
0)
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and σ2

2(1+g(yε0,z
ε
0)2)

ϕyy(y
ε
0, z

ε
0) we get

−Hε(yε0, z
ε
0,W

ε
y (yε0, z

ε
0),W ε

z (yε0, z
ε
0)) +

β

1 + g(yε0, z
ε
0)2

W ε(yε0, z
ε
0)

=
σ2

2(1 + g(yε0, z
ε
0)2)

W ε
yy(y

ε
0, z

ε
0) + ε∆W ε(yε0, z

ε
0)

=
σ2

2(1 + g(yε0, z
ε
0)2)

(W ε − ϕ)yy(y
ε
0, z

ε
0) +

σ2

2(1 + g(yε0, z
ε
0)2)

(ϕ)yy(y
ε
0, z

ε
0)

+ ε∆(W ε − (ϕ− η))(yε0, z
ε
0) + ∆ε(ϕ− η)(yε0, z

ε
0)

≤ σ2

2(1 + g(yε0, z
ε
0)2)

ϕyy(y
ε
0, z

ε
0) + ε∆(ϕ− η)(yε0, z

ε
0). (4.68)

Also by (4.65) and (4.66), we have

W ε
y (yε0, z

ε
0) = ϕy(y

ε
0, z

ε
0),

W ε
z (yε0, z

ε
0) = ϕz(y

ε
0, z

ε
0).

Hence, (4.68) becomes

−Hε(yε0, z
ε
0, ϕy(y

ε
0, z

ε
0), ϕz(y

ε
0, z

ε
0)) +

β

1 + g(yε0, z
ε
0)2

W ε(yε0, z
ε
0)

≤ σ2

2(1 + g(yε0, z
ε
0)2)

ϕyy(y
ε
0, z

ε
0) + ε∆(ϕ− η)(yε0, z

ε
0),

and let ε→ 0, we obtain

−H(y0, z0, ϕy(y0, z0), ϕz(y0, z0)) +
β

1 + g(y0, z0)2
ϕ(y0, z0)

≤ σ2

2(1 + g(y0, z0)2)
ϕyy(y0, z0).

By definition, W is a viscosity subsolution. By a similar argument we can also show that

W is a viscosity supersolution. Therefore, W is a viscosity solution.

We can also show that the solution W is unique. Suppose that there are two different

solutions to (4.15), W1 and W2, where sup(y,z)∈R2(W1 −W2) > 0. Thus W1 −W2 attains

its maximum at some point (y1, z1) ∈ R2. With W1 and W2 being solutions to (4.15), we
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must have that

0 = −σ
2(W1 −W2)yy

2(1 + g(y, z)2)
+
β(W1 −W2)

1 + g(y, z)2
− f2(z)(W1 −W2)y

1 + g(y, z)2

−g(y, z)(W1 −W2)z
1 + g(y, z)2

. (4.69)

But since W1 −W2 attains its maximum at (y1, z1), we must also have that
(W1 −W2)yy(y1, z1) < 0,

(W1 −W2)y(y1, z1) = 0,

(W1 −W2)z(y1, z1) = 0.

Thus evaluating the right-hand side of (4.69) at (y1, z1) we have

β(W1 −W2)

1 + g(y, z)2

∣∣∣∣
(y,z)=(y1,z1)

< 0,

implying that W1−W2 < 0 at (y1, z1). This is a contradiction since sup(y,z)∈R2(W1−W2)

is greater than zero. Therefore W must be unique and we have completed the proof.

We have now shown that a viscosity solution exists. In the next section, we find the

subsolution and supersolution bounds for the solution in the classical sense, which will

be useful in the verification theorem.

4.4 Subsolution and Supersolution

From preliminary knowledge, we know that if there was a classical solution, it would be

sandwiched between its subsolutions and supersolutions. Here, we give definitions of a

subsolution and a supersolution in the context of our problem. We first define subsolution

and supersolution in R2.

Definition 4.4.1. W ε(y, z) is a subsolution (supersolution) to the problem (4.18)

in R2 if

σ2

2(1 + g(y, z)2)
W ε
yy + ε∆W ε ≥ (≤)

β

1 + g(y, z)2
W ε −H(y, z,W ε

y ,W
ε
z ).
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In addition, if Ŵ is a subsolution and W̄ is a supersolution, and Ŵ ≤ W̄ , then 〈Ŵ , W̄ 〉
is an ordered pair of sub/supersolutions.

Similarly, we can define subsolution and supersolution in the ball BR.

Definition 4.4.2. W ε(y, z) is a subsolution (supersolution) to (4.20) on BR if σ2

2(1+g(y,z)2)
W ε
yy + ε∆W ε ≥ (≤) β

1+g(y,z)2
W ε −H(y, z,W ε

y ,W
ε
z ), on BR,

W ε ≤ (≥) K, on ∂BR.

In addition, if Ŵ is a subsolution and W̄ is a supersolution, and Ŵ ≤ W̄ for all (y, z) ∈
BR, then 〈Ŵ , W̄ 〉 is an ordered pair of sub/supersolutions.

The next few lemmas give explicit forms to the subsolution and supersolution that we

seek.

Lemma 4.4.1. Assume µ1 + 1
2
σ2 − r > 0. Define

K1 ≡
1

2βσ2

[(
µ1 +

σ2

2
− r
)2

− 2

(
µ1 +

σ2

2
− r
)
M

]
+ log(β)− 1 +

r

β
. (4.70)

Then any constant K ≤ K1

β
= K̃1 is a subsolution of (4.18).

Proof. Let f1 be as defined in (4.11). With W = K ≤ K̃1, we have Wyy = Wzz = Wy =

Wz = 0. Since µ1 + 1
2
σ2− r > 0 and −M ≤ µ2(z) ≤M implying 0 ≤ µ2(z) +M , we then

have

β

1 + g(y, z)2
·K − f1(z)

1 + g(y, z)2

≤ K1

1 + g(y, z)2
− f1(z)

1 + g(y, z)2

=
1

1 + g(y, z)2
·

(
1

2βσ2

[(
µ1 +

σ2

2
− r
)2

− 2

(
µ1 +

σ2

2
− r
)
M

]
+ log(β)− 1 +

r

β

− 1

2βσ2

[(
µ1 +

σ2

2
− r
)2

+ 2

(
µ1 +

σ2

2
− r
)
µ2(z) + (µ2(z))2

]
+ log(β)− 1 +

r

β

)

= − 1

2βσ2(1 + g(y, z)2)

(
2

(
µ1 +

σ2

2
− r
)

[M + µ2(z)] + (µ2(z))2

)
≤ 0.
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Lemma 4.4.2. Assume µ1 + 1
2
σ2 − r > 0. Define

K2 ≡
1

2βσ2

(
µ1 +

σ2

2
− r +M

)2

+ log(β)− 1 +
r

β
. (4.71)

Then any constant K ≥ K2

β
= K̃2 is a supersolution of (4.18).

Proof. Let f1 be as defined in (4.11). Similarly, with W = K ≥ K̃2, we have Wyy =

Wzz = Wy = Wz = 0. Since µ1 + 1
2
σ2 − r > 0 and −M ≤ µ2(z) ≤ M (This implies

0 ≤ µ2(z) +M and 0 ≤M − µ2(z).), we then have

β

1 + g(y, z)2
·K − f1(z)

1 + g(y, z)2

≥ K2

1 + g(y, z)2
− f1(z)

1 + g(y, z)2

=
1

1 + g(y, z)2
·

(
1

2βσ2

(
µ1 +

σ2

2
− r +M

)2

+ log(β)− 1 +
r

β

− 1

2βσ2

(
µ1 +

σ2

2
− r + µ2(z)

)2

+ log(β)− 1 +
r

β

)

=
1

2βσ2(1 + g(y, z)2)

[
2

(
µ1 +

σ2

2
− r
)

+M + µ2(z)

]
[M − µ2(z)]

≥ 0.

Lemma 4.4.3. Assume µ1 + 1
2
σ2 − r > 0. Then 〈K̃1, K̃2〉 is an ordered pair of

sub/supersolutions to (4.18).

Proof. It is clear that K1 ≤ K2. Therefore, K̃1 ≤ K̃2 and 〈K̃1, K̃2〉 is an ordered pair of

sub/supersolutions to (4.18).

We note here that if we take K = K̃1 on ∂BR in (4.20), then any constant less than or

equal to K̃1 is a subsolution of (4.20) and any constant greater than or equal to K̃2 (since

K̃2 ≥ K̃1) is a supersolution of (4.20). This confirms the fact that solution to (4.20) is

indeed bounded by the sub/supersolution pair. In addition, since the solution to (4.20)

converges uniformly to the solution to (4.15) and that it is easy to see 〈K̃1, K̃2〉 is also an
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ordered pair of sub/supersolutions to (4.15), hence the ordered pair serve as lower and

upper bounds for the solution on R2 as well. This will be an important property needed

in the verification theorem in the next section. We now proceed to verifying the solution

to our problem.

4.5 Verification Theorem

Now let W̃ (y, z) be the classical solution to (4.15). Then

Ṽ (x, y, z) ≡ 1

β
log(x) + W̃ (y, z) (4.72)

would be the corresponding classical solution to (4.4). In the original derivation of the

HJB equation in (3.17), it requires that

E

[∫ T

0

σe−βt(Ṽy + xπ(t)Ṽx)dB(t)

]
= 0.

Here we verify this is indeed true.

Lemma 4.5.1. Assume β > 1 + C1 as in the assumption of Lemma 4.3.4.

If Ṽ (X(t), Y (t), Z(t)) ≡ 1
β

log(X(t)) + W̃ (Y (t), Z(t)), where W̃ is the classical solution

to (4.15), then

E

[∫ T

0

σe−βt(Ṽy +X(t)π(t)Ṽx)dB(t)

]
= 0.

Proof. Note that Ṽx = 1
βX(t)

. So for this condition to be valid, we must show that

E

[∫ T

0

σ2e−2βt(Ṽy +X(t)π(t)Ṽx)
2dt

]
= E

[∫ T

0

σ2e−2βt

(
Ṽy +

π(t)

β

)2

dt

]
< ∞. (4.73)

From our previous proofs in Lemma 4.3.4, we have

|W ε
y (y, z)|L∞(R2) ≤

C1

β − C1 − 1
.
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Note that the upper bounds are independent of ε. If we take ε→ 0, we would still have

|Wy(y, z)|L∞(R2) ≤
C1

β − C1 − 1
.

Thus, our classical solution Ṽ satisfies

|Ṽy|L∞(R2) = |W̃y|L∞(R2) ≤
C1

β − C1 − 1
. (4.74)

Then for a fixed T , using (4.74) and the property that

(a+ b)2 ≤ 2a2 + 2b2, (4.75)

for any functions a and b, we have

E

[∫ T

0

σ2e−2βt

(
Ṽy +

π(t)

β

)2

dt

]

≤ E

[∫ T

0

σ2e−2βt

(
2 · Ṽ 2

y + 2 · π(t)2

β2

)
dt

]
≤ E

[∫ T

0

σ2e−2βt

(
2 · |Ṽy|2 + 2 · π(t)2

β2

)
dt

]
≤ E

[∫ T

0

2σ2e−2βt

(
C2

1

(β − C1 − 1)2
+

Γ2

β2

)
dt

]
= E

[
σ2

(
C2

1

(β − C1 − 1)2
+

Γ2

β2

)(
1− e−2βT

β

)]
<∞,

as desired in (4.73).

We now want to verify that Ṽ (x, y, z) = V (x, y, z), our value function.

Theorem 4.5.2 (Verification Theorem). Assume β > 1 +C1 as in the assumption of

Lemma 4.3.4 and assume additionally that µ1 + 1
2
σ2− r > 0. Let W̃ (y, z) be the classical

solution to (4.15) and Ṽ (x, y, z) ≡ 1
β

log(x)+W̃ (y, z). Then Ṽ (x, y, z) = V (x, y, z), where

V (x, y, z) is the value function in (4.3). Moreover, the optimal control policy is given by

π∗(z) =
µ1 + 1

2
σ2 − r + µ2(z)

σ2
, c∗ = β.
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Proof. From (4.4) we know that for any (π(t), c(t)) ∈ Π we have

− log(c(t)X(t)) ≥ −βṼ +X(t)π(t)

(
µ1 +

1

2
σ2 − r + µ2(Z(t))

)
Ṽx

+
σ2π(t)2

2
X(t)2Ṽxx + σ2π(t)X(t)Ṽxy +

σ2

2
Ṽyy − c(t)X(t)Ṽx

+ rX(t)Ṽx + (µ1 + µ2(Z(t)))Ṽy + (Y (t)− λZ(t))Ṽz. (4.76)

Combining (4.76) with a similar calculation as in (3.15), we can get

d(e−βtṼ ) = e−βt
(
−βṼ +

[
X(t)

(
r +

(
µ1 +

1

2
σ2 − r + µ2(Z(t))

)
π(t)− c(t)

)]
Ṽx

+ (µ1 + µ2(Z(t)))Ṽy + (Y (t)− λZ(t))Ṽz +
σ2

2
Ṽyy +

σ2π(t)2

2
X(t)2Ṽxx

+ σ2π(t)X(t)Ṽxy

)
dt+ e−βt(Ṽyσ + Ṽxσπ(t)X(t))dB(t)

≤ e−βt (− log(c(t)X(t))) dt+ e−βt(Ṽyσ + Ṽxσπ(t)X(t))dB(t).

Integrating both sides and taking expectation then using Lemma 4.5.1 we have

E[e−βT Ṽ (X(T ), Y (T ), Z(T ))− Ṽ (x, y, z)]

≤ E

[∫ T

0

e−βt (− log(c(t)X(t))) dt+

∫ T

0

e−βt(Ṽyσ + Ṽxσπ(t)X(t))dB(t)

]
= −E

[∫ T

0

e−βt (log(c(t)X(t))) dt

]
.

This implies

Ṽ (x, y, z) ≥ E

[∫ T

0

e−βt (log(c(t)X(t))) dt

]
+ E[e−βT Ṽ (X(T ), Y (T ), Z(T ))]. (4.77)

We need to show that

lim sup
T→∞

E[e−βT Ṽ (X(T ), Y (T ), Z(T ))] ≥ 0. (4.78)
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Note that from (4.72) we have

E[e−βT Ṽ (X(T ), Y (T ), Z(T ))] = E

[
e−βT

(
1

β
log(X(T )) + W̃ (Y (T ), Z(T ))

)]
(4.79)

and by Itô’s Lemma,

d(log(X(t))) =
1

X(t)
dX(t)− 1

2
· 1

X(t)2
(dX(t))2

=

[
r +

(
µ1 +

1

2
σ2 − r + µ2(Z(t))

)
π(t)− c(t)

]
dt

+ σπ(t)dB(t)− 1

2
σ2π(t)2dt. (4.80)

Then integrating both sides of (4.80) and take expectation to obtain

E[log(X(T ))] (4.81)

= E

[∫ T

0

[
r +

(
µ1 +

1

2
σ2 − r + µ2(Z(t))

)
π(t)− c(t)− 1

2
σ2π(t)2

]
dt

]
+ log(x).

Clearly,

lim sup
T→∞

e−βT log(x) = 0,

and since −Γ ≤ π(t) ≤ Γ, εc ≤ c(t) ≤ Λ and µ1 + 1
2
σ2 − r > 0,

lim sup
T→∞

e−βTE

[∫ T

0

[
r +

(
µ1 +

1

2
σ2 − r + µ2(Z(t))

)
π(t)− c(t)− 1

2
σ2π(t)2

]
dt

]
≥ lim sup

T→∞
e−βTE

[∫ T

0

−
(
µ1 +

σ2

2
− r +M

)
Γ− Λ− σ2Γ2

2
dt

]
= 0.

Thus,

lim sup
T→∞

E[e−βT log(X(T ))] = lim sup
T→∞

e−βTE[log(X(T ))] ≥ 0. (4.82)
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Next notice that W̃ is bounded below by its subsolution K̃1 defined in (4.70). Thus,

lim sup
T→∞

E[e−βT W̃ ] = lim sup
T→∞

e−βTE[W̃ ]

≥ lim sup
T→∞

e−βTE[K̃1]

= lim sup
T→∞

e−βT K̃1

= 0. (4.83)

Hence combining (4.82) and (4.83),

lim sup
T→∞

E[e−βT Ṽ (X(T ), Y (T ), Z(T ))]

= E

[
e−βT

(
1

β
log(X(T )) + W̃ (Y (T ), Z(T ))

)]
≥ 0,

and we have shown (4.78). Now we need to show

lim sup
T→∞

E

[∫ T

0

e−βt log(c(t)X(t))dt

]
≥ E

[∫ ∞
0

e−βt log(c(t)X(t))dt

]
. (4.84)

Since εc ≤ c(t) ≤ Λ, then | log(c(t))| ≤ max{| log(εc)|, | log(Λ)|}, a clearly integrable

function, for all t ≥ 0. Using dominated convergence theorem, we have

lim sup
T→∞

E

[∫ T

0

e−βt (log(c(t))) dt

]
≥ lim

T→∞
E

[∫ T

0

e−βt (log(c(t))) dt

]
= E

[
lim
T→∞

∫ T

0

e−βt (log(c(t))) dt

]
= E

[∫ ∞
0

e−βt (log(c(t))) dt

]
. (4.85)

Next we want to check the conditions of stochastic Fubini theorem, which will be used

in the subsequent part. The integrability conditions we check for are taken from (1.3) in

[63]. First, it is clear that µ(Ω) = 1 <∞ and also the measure defined by∫ ∞
0

e−βtdt =
1

β
<∞.
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Second, we use (3.9) to get∫ T

0

E[|e−βt log(X(t))|2]dt (4.86)

≤
∫ ∞

0

E[|e−βt log(X(t))|2]dt

=

∫ ∞
0

E

[
e−2βt

∣∣∣∣∫ t

0

(
r +

(
µ1 +

1

2
σ2 − r + µ2(Z(τ))

)
π(τ)− c(τ)− σ2π(τ)2

2

)
dτ

+

∫ t

0

σπ(τ)dB(τ) + log(x)

∣∣∣∣2
]
dt

≤
∫ ∞

0

E

[
e−2βt

∣∣∣∣(r +

(
µ1 +

1

2
σ2 − r +M

)
Γ

)
t+ log(x) +

∫ t

0

σπ(τ)dB(τ)

∣∣∣∣2
]
dt.

Denote

h(x, t) =

(
r +

(
µ1 +

1

2
σ2 − r +M

)
Γ

)
t+ log(x). (4.87)

Then using Ito’s isometry and (4.75), for a fixed x we have

∫ ∞
0

E

[
e−2βt

∣∣∣∣h(x, t) +

∫ t

0

σπ(τ)dB(τ)

∣∣∣∣2
]
dt

≤
∫ ∞

0

E

[
e−2βt

(
2h(x, t)2 + 2

(∫ t

0

σπ(τ)dB(τ)

)2
)]

dt

=

∫ ∞
0

2e−2βt

(
h(x, t)2 + E

[∫ t

0

σ2π(τ)2dτ

])
dt

≤
∫ ∞

0

2e−2βt

(
h(x, t)2 +

∫ t

0

σ2Γ2dτ

)
dt

=

∫ ∞
0

2e−2βth(x, t)2 + 2e−2βtσ2Γ2tdt

=

∫ ∞
0

2e−2βt

((
r +

(
µ1 +

1

2
σ2 − r +M

)
Γ

)
t+ log(x)

)2

+ 2e−2βtσ2Γ2tdt

< ∞. (4.88)
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Combining (4.86) and (4.88) also implies that we can have∫ ∞
0

E[e−βt| log(X(t))|2]dt <∞. (4.89)

We use the fact that

| log(X(t))| ≤ 1 + | log(X(t))|2

2
, (4.90)

to get a dominating function ∣∣∣∣∫ T

0

e−βt log(X(t))dt

∣∣∣∣
≤

∫ T

0

e−βt| log(X(t))|dt

≤
∫ T

0

e−βt · 1 + | log(X(t))|2

2
dt

≤
∫ ∞

0

e−βt · 1 + | log(X(t))|2

2
dt.

And using stochastic Fubini theorem, we can show that this dominating function is

integrable

E

[∫ ∞
0

e−βt · 1 + | log(X(t))|2

2
dt

]
=

∫ ∞
0

E

[
e−βt · 1 + | log(X(t))|2

2

]
dt

=

∫ ∞
0

e−βt

2
+

1

2
E
[
e−βt| log(X(t))|2

]
dt

=
1

2β
+

1

2

∫ ∞
0

E
[
e−βt| log(X(t))|2

]
dt <∞.

Hence, by dominated convergence theorem, we get

lim
T→∞

E

[∫ T

0

e−βt log(X(t))dt

]
= E

[∫ ∞
0

e−βt log(X(t))

]
dt. (4.91)

And so finally we take limit superior on both sides of (4.77) and using (4.79), (4.85) and
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(4.91) to reach

Ṽ (x, y, z) ≥ lim sup
T→∞

E

[∫ T

0

e−βt log(c(t)X(t))dt

]
+ lim sup

T→∞
E[e−βT Ṽ (X(T ), Y (T ), Z(T ))]

≥ lim sup
T→∞

E

[∫ T

0

e−βt log(c(t))dt

]
+ lim sup

T→∞
E

[∫ T

0

e−βt log(X(t))dt

]
≥ E

[∫ ∞
0

e−βt log(c(t))dt

]
+ lim

T→∞
E

[∫ T

0

e−βt log(X(t))dt

]
= E

[∫ ∞
0

e−βt log(c(t))dt

]
+ E

[∫ ∞
0

e−βt log(X(t))dt

]
= E

[∫ ∞
0

e−βt log(c(t)X(t))dt

]
. (4.92)

The inequality in (4.92) holds for all admissible controls c(t) and π(t). Therefore

Ṽ (x, y, z) ≥ sup
(π(t),c(t))∈Π

E

[∫ ∞
0

e−βt log(c(t)X(t))dt

]
= V (x, y, z).

For the reverse inequality V (x, y, z) ≤ Ṽ (x, y, z), we first show that (π∗, c∗) ∈ Π. Both

are progressively measurable since their values are determined for all t. Since

|π∗| =

∣∣∣∣µ1 + 1
2
σ2 − r + µ2(z)

σ2

∣∣∣∣
≤

µ1 + 1
2
σ2 − r +M

σ2
,

If we choose

Γ ≥
µ1 + 1

2
σ2 − r +M

σ2
, (4.93)

then |π∗| ≤ Γ. Also c∗ = β > 0 for all t ≥ 0. Similarly, we can choose

Λ ≥ β. (4.94)
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Thus, (π∗, c∗) ∈ Π. Now using (π∗, c∗), we would have the following equality

Ṽ (x, y, z) = E

[∫ T

0

e−βt (log(c∗X(t))) dt

]
+ E[e−βT Ṽ (X(T ), Y (T ), Z(T ))]. (4.95)

Thus, we need to show

lim inf
T→∞

E[e−βT Ṽ (X(T ), Y (T ), Z(T ))] ≤ 0. (4.96)

Again using (4.79) and (4.81), we have that for a fixed x,

lim inf
T→∞

e−βT log(x) = 0,

and

lim inf
T→∞

e−βTE

[∫ T

0

[
r +

(
µ1 +

1

2
σ2 − r + µ2(Z(t))

)
π(t)− c(t)− 1

2
σ2(π(t))2

]
dt

]
≤ lim inf

T→∞
e−βTE

[∫ T

0

[
r +

(
µ1 +

1

2
σ2 − r +M

)
Γ

]
dt

]
= 0,

Thus,

lim inf
T→∞

E[e−βT log(X(T ))] = lim inf
T→∞

e−βTE[log(X(T ))] ≤ 0. (4.97)

Next notice that W̃ is bounded above by its supersolution K̃2 defined in (4.71). Thus,

lim inf
T→∞

E[e−βT W̃ ] = lim inf
T→∞

e−βTE[W̃ ]

≤ lim inf
T→∞

e−βTE[K̃2]

= lim inf
T→∞

e−βT K̃2

= 0. (4.98)

Hence by (4.97), (4.98) and (4.79),

lim inf
T→∞

E[e−βT Ṽ (X(T ), Y (T ), Z(T ))] ≤ 0,
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and taking limit inferior on both sides of (4.95) we obtain

Ṽ (x, y, z)

= lim inf
T→∞

E

[∫ T

0

e−βt (log(c∗X(t))) dt

]
+ lim inf

T→∞
E[e−βT Ṽ (X(T ), Y (T ), Z(T ))]

≤ lim inf
T→∞

E

[∫ T

0

e−βt (log(c∗X(t))) dt

]
. (4.99)

From assumptions in Lemma 4.3.4, we know that c∗ = β > 1 +C1 > 1. Thus, 0 < log(c∗)

and by monotone convergence theorem,

lim inf
T→∞

E

[∫ T

0

e−βt (log(c∗)) dt

]
≤ lim

T→∞
E

[∫ T

0

e−βt (log(c∗)) dt

]
= E

[
lim
T→∞

∫ T

0

e−βt (log(c∗)) dt

]
= E

[∫ ∞
0

e−βt (log(c∗)) dt

]
. (4.100)

Combining (4.99)-(4.100) with (4.91),

Ṽ (x, y, z) ≤ lim inf
T→∞

E

[∫ T

0

e−βt log(c∗X(t))dt

]
+ lim inf

T→∞
E[e−βT Ṽ (X(T ), Y (T ), Z(T ))]

≤ lim inf
T→∞

E

[∫ T

0

e−βt log(c∗)dt

]
+ lim inf

T→∞
E

[∫ T

0

e−βt log(X(t))dt

]
≤ E

[∫ ∞
0

e−βt log(c∗)dt

]
+ lim

T→∞
E

[∫ T

0

e−βt log(X(t))dt

]
= E

[∫ ∞
0

e−βt log(c∗)dt

]
+ E

[∫ ∞
0

e−βt log(X(t))dt

]
= E

[∫ ∞
0

e−βt log(c∗X(t))dt

]
= V (x, y, z).

Hence, we showed that Ṽ (x, y, z) = V (x, y, z).
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Chapter 5

HARA Utility

5.1 HARA Utility

We now turn to the HARA utility case that also models constant risk aversion, but for

different values of the parameter γ. The HARA utility function is defined as

U(C) =
1

γ
Cγ − 1

γ
, (5.1)

where C denotes consumption and γ 6= 0. The Arrow-Pratt measure of relative risk

aversion in (4.2) for the HARA utility function is R(C) = 1−γ, a constant. Note that for

the logarithmic utility case, measure of relative risk aversion is one as γ = 0. When γ = 1,

the investor is risk neutral; and when γ → −∞, the investor has infinite risk aversion.

We note here that the constant − 1
γ

does not actually have an impact on obtaining the

optimal solutions, thus it is usually omitted for technical simplicity. The HARA utility

to be used throughout the rest of this dissertation is defined as

U(C) =
1

γ
Cγ, (5.2)

where C denotes consumption, −∞ < γ < 1 and γ 6= 0. In this dissertation, we analyze

the case for when 0 < γ < 1. We will see in this chapter that using the HARA utility

function leads to a different problem than in the logarithmic utility case. We define the

admissible control space for the HARA utility case as follows:

Definition 5.1.1. A control (π(t), c(t)) is said to be in the admissible control space Π if
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it satisfies

1. (π(t), c(t)) is Ft - progressively measurable;

2. |π(t)| ≤ Γ <∞ for all t ≥ 0;

3. 0 ≤ c(t) ≤ Λ <∞, for all t ≥ 0.

The thresholds for positive constants Γ and Λ are given in the proof of the verification

theorem. Next we present the value function and HJB equation for the HARA utility

case.

5.2 Value Function and HJB Equation

Similar to the logarithmic utility case, we now replace the generic utility function U(·)
with the HARA utility function defined in (5.2). Then value function defined in (3.10)-

(3.11) becomes

J(x, y, z, π, c) = E

[∫ ∞
0

e−βτ
1

γ
(c(τ)X(τ))γdτ

]
,

V (x, y, z) = sup
(π,c)∈Π

J(x, y, z, π, c), (5.3)

where 0 < γ < 1. Applying dynamic programming principle, the corresponding HJB

equation then evolves into

βV = sup
π∈Π

(
xπ

(
µ1 +

1

2
σ2 − r + µ2(z)

)
Vx +

1

2
Vxxσ

2π2x2 + Vxyσ
2πx

)
+

1

2
Vyyσ

2

+ sup
c∈Π

(
1

γ
(cx)γ − cxVx

)
+ xrVx + (µ1 + µ2(z))Vy + (y − λz)Vz. (5.4)

We then find the candidates for optimal controls

π∗ =
−(µ1 + 1

2
σ2 − r + µ2(z))Vx − σ2Vxy

σ2xVxx
, c∗ =

V
1

γ−1
x

x
, (5.5)

by finding extrema of the supremum expressions in (5.4).
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Now plugging (5.5) in (5.4), we get

βV = x

(
µ1 +

1

2
σ2 − r + µ2(z)

)
Vx ·
−(µ1 + 1

2
σ2 − r + µ2(z))Vx − σ2Vxy

σ2xVxx

+
1

2
Vxxσ

2x2

(−(µ1 + 1
2
σ2 − r + µ2(z))Vx − σ2Vxy

σ2xVxx

)2

+ Vxyσ
2x ·
−(µ1 + 1

2
σ2 − r + µ2(z))Vx − σ2Vxy

σ2xVxx
+

1

2
Vyyσ

2

+
1

γ

V 1
γ−1
x

x
· x

γ

− V
1

γ−1
x

x
· xVx + xrVx + (µ1 + µ2(z))Vy + (y − λz)Vz.

Simplifying and rewriting leads to

βV =
−(µ1 + 1

2
σ2 − r + µ2(z))2V 2

x − σ2(µ1 + 1
2
σ2 − r + µ2(z))VxyVx

σ2Vxx

+
1

2
·

(−(µ1 + 1
2
σ2 − r + µ2(z))Vx − σ2Vxy)

2

σ2Vxx

+
−(µ1 + 1

2
σ2 − r + µ2(z))Vx · Vxyσ2 − σ4V 2

xy

σ2Vxx

+
1

2
Vyyσ

2 +
1

γ
V

γ
γ−1
x − V

γ
γ−1
x + xrVx + (µ1 + µ2(z))Vy + (y − λz)Vz. (5.6)

Note that in (5.6) we can complete the square and get

βV =
−(µ1 + 1

2
σ2 − r + µ2(z))2V 2

x − 2σ2(µ1 + 1
2
σ2 − r + µ2(z))VxyVx − σ4V 2

xy

σ2Vxx

+
1

2
·

(−(µ1 + 1
2
σ2 − r + µ2(z))Vx − σ2Vxy)

2

σ2Vxx
+

1

2
Vyyσ

2

+
1− γ
γ

V
γ
γ−1
x + xrVx + (µ1 + µ2(z))Vy + (y − λz)Vz

= −
((µ1 + 1

2
σ2 − r + µ2(z))Vx + σ2Vxy)

2

σ2Vxx

+
1

2
·

((µ1 + 1
2
σ2 − r + µ2(z))Vx + σ2Vxy)

2

σ2Vxx
+

1

2
Vyyσ

2

+
1− γ
γ

V
γ
γ−1
x + xrVx + (µ1 + µ2(z))Vy + (y − λz)Vz. (5.7)
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Combining like terms in (5.7) we finally reach

βV = −1

2
·

((µ1 + 1
2
σ2 − r + µ2(z))Vx + σ2Vxy)

2

σ2Vxx
+

1

2
Vyyσ

2

+
1− γ
γ

V
γ
γ−1
x + xrVx + (µ1 + µ2(z))Vy + (y − λz)Vz. (5.8)

We see that there are many nonlinear terms on the right-hand side of (5.8). We would

like to simplify our equation by some transformations. Let

V (x, y, z) = xγU(y, z). (5.9)

Then with

Vx = γxγ−1U, Vxy = γxγ−1Uy, Vxx = γ(γ − 1)xγ−2U,

Vy = xγUy, Vyy = xγUyy, Vz = xγUz,

equation (5.8) transforms into

βxγU = −1

2
·

((µ1 + 1
2
σ2 − r + µ2(z)) · γxγ−1U + σ2γxγ−1Uy)

2

σ2γ(γ − 1)xγ−2U
+

1

2
xγUyyσ

2 (5.10)

+
1− γ
γ

(γxγ−1U)
γ
γ−1 + xrγxγ−1U + xγ(µ1 + µ2(z))Uy + xγ(y − λz)Uz.

Dividing xγ on both sides of (5.10) and rearrange then simplify, we have

βU = −
((µ1 + 1

2
σ2 − r + µ2(z)) · γxγ−1U + σ2γxγ−1Uy)

2

2σ2γ(γ − 1)x2γ−2U
+

1

2
Uyyσ

2

+
1− γ
γ

(γU)
γ
γ−1 + rγU + (µ1 + µ2(z))Uy + (y − λz)Uz

0 = −
(µ1 + 1

2
σ2 − r + µ2(z))2γ2U2 + 2(µ1 + 1

2
σ2 − r + µ2(z))γUσ2γUy + σ4γ2U2

y

2σ2γ(γ − 1)U

+
1

2
Uyyσ

2 +
1− γ
γ

(γU)
γ
γ−1 + rγU + (µ1 + µ2(z))Uy + (y − λz)Uz − βU

0 = −
(µ1 + 1

2
σ2 − r + µ2(z))2γU

2σ2(γ − 1)
−

(µ1 + 1
2
σ2 − r + µ2(z))γUy

γ − 1
−

σ2γU2
y

2(γ − 1)U

+
1

2
Uyyσ

2 + (1− γ)γ
1

γ−1U
γ
γ−1 + rγU + (µ1 + µ2(z))Uy + (y − λz)Uz − βU.
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Then grouping like terms to get

0 =

(
rγ − β −

(µ1 + 1
2
σ2 − r + µ2(z))2γ

2σ2(γ − 1)

)
U

+

(
µ1 + µ2(z)−

(µ1 + 1
2
σ2 − r + µ2(z))γ

γ − 1

)
Uy

−
σ2γU2

y

2(γ − 1)U
+

1

2
Uyyσ

2 +
1− γ

γ
1

1−γU
γ

1−γ
+ (y − λz)Uz. (5.11)

To simplify (5.11) further, we consider the systemzθ = ∂z
∂θ

= y − λz,

z(y, 0) = 0.
(5.12)

Solving the differential equation (5.12) yields the solution

z(y, θ) =
y

λ
(1− e−λθ). (5.13)

Note that

Uθ = Uz · zθ = Uz · (y − λz). (5.14)

Plugging (5.14) into (5.11), we obtain

0 =

(
rγ − β −

(µ1 + 1
2
σ2 − r + µ2(y, θ))2γ

2σ2(γ − 1)

)
U

+

(
µ1 + µ2(y, θ)−

(µ1 + 1
2
σ2 − r + µ2(y, θ))γ

γ − 1

)
Uy −

σ2γU2
y

2(γ − 1)U

+
1

2
Uyyσ

2 +
1− γ

γ
1

1−γU
γ

1−γ
+ Uθ

Uθ =

(
(µ1 + 1

2
σ2 − r + µ2(y, θ))2γ

2σ2(γ − 1)
− rγ + β

)
U

+

(
(µ1 + 1

2
σ2 − r + µ2(y, θ))γ

γ − 1
− µ1 − µ2(y, θ)

)
Uy +

σ2γU2
y

2(γ − 1)U

− 1

2
Uyyσ

2 − 1− γ
γ

1
1−γU

γ
1−γ

. (5.15)
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Now U(·, ·) is a function of y and θ. Note that

(U
1

1−γ )y =
1

1− γ
U

γ
1−γUy, (5.16)

(U
1

1−γ )yy =
1

1− γ
U

γ
1−γUyy +

γ

(1− γ)2
U

2γ−1
1−γ U2

y . (5.17)

Using (5.15), we have

(U
1

1−γ )θ =
1

1− γ
U

γ
1−γUθ

=
1

1− γ
U

γ
1−γ ·

[(
(µ1 + 1

2
σ2 − r + µ2(y, θ))2γ

2σ2(γ − 1)
− rγ + β

)
U

+

(
(µ1 + 1

2
σ2 − r + µ2(y, θ))γ

γ − 1
− µ1 − µ2(y, θ)

)
Uy +

σ2γU2
y

2(γ − 1)U

− 1

2
Uyyσ

2 − 1− γ
γ

1
1−γU

γ
1−γ

]
. (5.18)

Multiplying through all terms and then plugging (5.16)-(5.17) into (5.18), we obtain

(U
1

1−γ )θ =
1

1− γ

(
(µ1 + 1

2
σ2 − r + µ2(y, θ))2γ

2σ2(γ − 1)
− rγ + β

)
U

1
1−γ

+
1

1− γ
U

γ
1−γUy

(
(µ1 + 1

2
σ2 − r + µ2(y, θ))γ

γ − 1
− µ1 − µ2(y, θ)

)
− σ2

2
· γ

(1− γ)2
U

2γ−1
1−γ U2

y −
σ2

2
· 1

1− γ
U

γ
1−γUyy −

1

γ
1

1−γ

=
1

1− γ

(
(µ1 + 1

2
σ2 − r + µ2(y, θ))2γ

2σ2(γ − 1)
− rγ + β

)
U

1
1−γ

+ (U
1

1−γ )y

(
(µ1 + 1

2
σ2 − r + µ2(y, θ))γ

γ − 1
− µ1 − µ2(y, θ)

)
− σ2

2
· (U

1
1−γ )yy −

1

γ
1

1−γ
. (5.19)

Lastly, set

W (y, θ) = U(y, θ)
1

1−γ . (5.20)
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Then we can rewrite and simplify (5.19) as

Wθ =
1

1− γ

(
(µ1 + 1

2
σ2 − r + µ2(y, θ))2γ

2σ2(γ − 1)
− rγ + β

)
W

+

(
(µ1 + 1

2
σ2 − r + µ2(y, θ))γ

γ − 1
− µ1 − µ2(y, θ)

)
Wy

− σ2

2
Wyy −

1

γ
1

1−γ

=

(
−

(µ1 + 1
2
σ2 − r + µ2(y, θ))2γ

2σ2(1− γ)2
− rγ − β

1− γ

)
W

+

(
−
(
µ1 +

1

2
σ2 − r

)
· γ

1− γ
− µ1 − µ2(y, θ) ·

(
γ

1− γ
+ 1

))
Wy

− σ2

2
Wyy −

1

γ
1

1−γ

=

(
−

(µ1 + 1
2
σ2 − r + µ2(y, θ))2γ

2σ2(1− γ)2
− rγ − β

1− γ

)
W

+

(
−
(
µ1 +

1

2
σ2 − r

)
· γ

1− γ
− µ1 − µ2(y, θ) · 1

1− γ

)
Wy

− σ2

2
Wyy −

1

γ
1

1−γ
. (5.21)

Rearrange (5.21) into standard form, we get

σ2

2
Wyy =

(
−

(µ1 + 1
2
σ2 − r + µ2(y, θ))2γ

2σ2(1− γ)2
+
β − rγ
1− γ

)
W −Wθ (5.22)

+

(
−
(
µ1 +

1

2
σ2 − r

)
· γ

1− γ
− µ1 − µ2(y, θ) · 1

1− γ

)
Wy −

1

γ
1

1−γ
.

Let

f1(y, θ) = −
(µ1 + 1

2
σ2 − r + µ2(y, θ))2γ

2σ2(1− γ)2
+
β − rγ
1− γ

, (5.23)

f2(y, θ) = −
(
µ1 +

1

2
σ2 − r

)
· γ

1− γ
− µ1 − µ2(y, θ) · 1

1− γ
, (5.24)

H(y, θ,Wy,Wθ) = Wθ − f2(y, θ)Wy +
1

γ
1

1−γ
. (5.25)
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So we can write (5.22) as

σ2

2
Wyy = f1(y, θ)W −Wθ + f2(y, θ)Wy −

1

γ
1

1−γ

= f1(y, θ)W −H(y, θ,Wy,Wθ), (5.26)

which is in a much simpler form than before and we will use this form throughout the

next sections.

5.3 Perturbed Elliptic Equation and Viscosity Solu-

tion

Like in the logarithmic utility case, the HARA utility case also leads to a degenerate

elliptic partial differential equation. Thus, we employ a similar approach as in the loga-

rithmic utility case and consider the following perturbed non-degenerate equation with

an additional viscosity term ε∆W ε,

0 = −σ
2

2
W ε
yy − ε∆W ε + f1(y, θ)W ε −H(y, θ,W ε

y ,W
ε
θ ), (5.27)

where ε > 0 and H, f1 and f2 are as defined in (5.23)-(5.25). Similar to the logarithmic

utility case, we will begin with the existence of a solution to (5.27) in a ball in R2.

5.3.1 Existence and Uniqueness in BR

For R > 0, let BR = {(y, θ) ∈ R2 : ||(y, θ)||2 ≤ R}. We consider the following problem−σ2

2
W ε
yy − ε∆W ε + f1(y, θ)W ε −H(y, θ,W ε

y ,W
ε
θ ) = 0,

W ε|∂BR = K,
(5.28)

where K > 0 is a bounded constant that is determined in the subsequent sections as

K =
1− γ

(β − rγ)γ
1

1−γ
.
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Again, the restriction on K is not required to ensure the existence of a solution, but to

ensure that the solution to this problem is bounded below by K, which is needed in the

verification theorem. Likewise, the problem in (5.28) is a standard non-degenerate elliptic

partial differential equation in which there are existing results we can use to show the

following existence theorem.

Theorem 5.3.1. Assume µ1 + 1
2
σ2 − r > 0 and β is large enough such that

M1 = −
(µ1 + 1

2
σ2 − r +M)2γ

2σ2(1− γ)2
+
β − rγ
1− γ

> 0. (5.29)

Then the system (5.28) has a unique solution W ε(y, θ) ∈ C0(BR) ∩ C2,α(BR).

Proof. Again using Theorem 4.3.1 we check that for

LW ε =

(
σ2

2
+ ε

)
W ε
yy + εW ε

θθ − f1(y, θ)W ε − f2(y, θ)W ε
y +W ε

θ (5.30)

and

f = − 1

γ
1

1−γ
, (5.31)

L is strictly elliptic if we take λ = ε in Definition 4.3.1. Since µ1 + 1
2
σ2 − r > 0, we have

c(y, θ) = −f1(y, θ) ≤ −M1 < 0. (5.32)

Coefficients of L and f are clearly bounded. They also belong to Cα(BR) since their

partial derivatives are bounded and thus Lipschitz and α-Hölder continuous. The exterior

sphere condition is satisfied since we are only considering Ω = BR ∈ R2, where BR is

a ball of radius R. Our boundary condition K is a positive constant, thus continuous.

Hence (5.28) also has a unique solution W ε ∈ C0(BR) ∩ C2,α(BR).

To extend the existence result to R2, we again need to find uniform bounds for W ε and

its first order partial derivatives on R2.
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5.3.2 L∞ Estimate of W ε

We now show W ε is uniformly bounded with the following lemma. Note that M1 defined

here is the same as in (5.29).

Lemma 5.3.2. Let H be as defined in (5.25) and consider the problem in (5.27). Addi-

tionally define the following:

A = µ1 +
1

2
σ2 − r, (5.33)

B =
γ

1− γ
, (5.34)

C =
β − rγ
1− γ

, (5.35)

D =
1

γ
1

1−γ
, (5.36)

M1 = −(A+M)2B

2σ2(1− γ)
+ C. (5.37)

Assume A > 0 and that β is large enough so that M1 > 0. If

H(y, θ, 0, 0) ∈ L∞(R2),

then

|W ε(y, θ)|L∞(R2) ≤
D

M1

+K, ∀(y, θ) ∈ R2.

Proof. Similar to the logarithm utility case, we check that

H(y, θ, 0, 0) =
1

γ
1

1−γ
∈ L∞(R2),

which is clearly true. We know that H(y, θ, 0, 0) ∈ L∞(R2) for all (y, θ) ∈ BR. Then there

exists (y0, θ0) ∈ BR such that W ε(y0, θ0) ≥ W ε(y, θ) for all (y, θ) ∈ BR, then
W ε
y (y0, θ0) = W ε

θ (y0, θ0) = 0,

W ε
yy(y0, θ0) ≤ 0,

W ε
θθ(y0, θ0) ≤ 0.

(5.38)

Note that additionally from our assumptions, since A = µ1 + 1
2
σ2−r > 0 and |µ2(y, θ)| <
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M we have f1(y, θ) ≥M1 > 0 for all (y, θ) ∈ R2.

Then using (5.38), we obtain

f1(y0, θ0)W ε(y0, θ0) =
σ2

2
W ε
yy(y0, θ0) + ε∆W ε(y0, θ0) +H(y, θ,W ε

y (y0, θ0),W ε
θ (y0, θ0))

≤ |H(y0, θ0, 0, 0)|

=
1

γ
1

1−γ
,

which implies

W ε(y, θ) ≤ W ε(y0, θ0) ≤ 1

f1(y0, θ0)γ
1

1−γ
≤ 1

M1γ
1

1−γ
. (5.39)

Similarly, there exists (y1, θ1) ∈ BR such that W ε(y1, θ1) ≤ W ε(y, θ) for all (y, θ) ∈ BR,

then 
W ε
y (y1, θ1) = W ε

θ (y1, θ1) = 0,

W ε
yy(y1, θ1) ≥ 0,

W ε
θθ(y1, θ1) ≥ 0.

(5.40)

Then we have

f1(y1, θ1)W ε(y1, θ1) =
σ2

2
W ε
yy(y1, θ1) + ε∆W ε(y1, θ1) +H(y, θ,W ε

y (y1, θ1),W ε
θ (y1, θ1))

≥ −|H(y1, θ1, 0, 0)|

= − 1

γ
1

1−γ
,

which implies

W ε(y, θ) ≥ W ε(y1, θ1) ≥ − 1

f1(y1, θ1)γ
1

1−γ
≥ 1

M1γ
1

1−γ
. (5.41)

Combining (5.39) and (5.41), then noting that W ε|∂BR = K, we would have

|W ε(y, θ)|L∞(BR) ≤
1

M1γ
1

1−γ
+K, ∀(y, θ) ∈ BR. (5.42)
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We see that in (5.42) the upper bound is independent of R. Thus, it is true for all

(y, θ) ∈ R2 that

|W ε(y, θ)|L∞(R2) ≤
1

M1γ
1

1−γ
+K =

D

M1

+K.

Next, we need to find uniform upper bounds for the first order partial derivatives of W ε

in order to proceed to proving the existence of solution.

5.3.3 Estimate of W ε
y and W ε

θ

The next lemma sets upper uniform bounds for the first partials of W ε.

Lemma 5.3.3. Let f1, f2 and H be as defined in (5.23)-(5.25) and consider the problem

in (5.27). Assume A > 0 and that β is large enough so that M1 > 2L > 0, where L is the

Lipschitz constant for f2(y, θ) and constants A and M1 are as defined in Lemma 5.3.2.

If

|H(y, θ, p1, p2)−H(ŷ, θ, p1, p2)| ≤ L|y − ŷ|(1 + |p1|+ |p2|),

and

|H(y, θ, p1, p2)−H(y, θ̂, p1, p2)| ≤ L|θ − θ̂|(1 + |p1|+ |p2|),

then

|W ε
θ (y, θ)|L∞(R2) + |W ε

y (y, θ)|L∞(R2) ≤
2L

M1 − 2L
.

Proof. Before we start, using the definition of H, we check

|H(y, θ, p1, p2)−H(ŷ, θ, p1, p2)|

=

∣∣∣∣∣
(
p2 − f2(y, θ)p1 +

1

γ
1

1−γ

)
−

(
p2 − f2(ŷ, θ)p1 +

1

γ
1

1−γ

)∣∣∣∣∣
= |f2(y, θ)− f2(ŷ, θ)||p1|

= |µ2(y, θ)− µ2(ŷ, θ)||p1| ·
1

1− γ
≤ L|y − ŷ||p1|

≤ L|y − ŷ|(1 + |p1|+ |p2|), (5.43)

where L is the Lipschitz constant for f2(y, θ).
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Similarly we also have

|H(y, θ, p1, p2)−H(y, θ̂, p1, p2)|

=

∣∣∣∣∣
(
p2 − f2(y, θ)p1 +

1

γ
1

1−γ

)
−

(
p2 − f2(y, θ̂)p1 +

1

γ
1

1−γ

)∣∣∣∣∣
= |f2(y, θ)− f2(y, θ̂)||p1|

= |µ2(y, θ)− µ2(y, θ̂)||p1| ·
1

1− γ
≤ L|θ − θ̂||p1|

≤ L|θ − θ̂|(1 + |p1|+ |p2|). (5.44)

Using a similar construction of W
ε
,W ε,Φ, Φ̂,Ψ, Ψ̂, ζ, η,H,H and regions G,G′ with θ

and H in place of z and H∗ respectively as in estimating first partials in the proof of

Lemma 4.3.4, we can also arrive at the following (borrowing the same notations but for

the current context):

1. Let G is a bounded region such that ζ(θ) = 0 for θ ∈ R�G. There exists a θ1 ∈ G
such that Ψ(y, θ1) ≥ Ψ(y, θ) for all θ ∈ R, where

Ψ(y, θ) = W ε(y, θ)−W ε
(y, θ) + 2δζ(θ), (5.45)

and 
ζ(θ0) = 1,

0 ≤ ζ(θ) < 1, ∀θ ∈ R�{θ0},

|ζθ(θ)| ≤ 1, |ζθθ(θ)| ≤ 1, ∀θ ∈ R.

(5.46)

2. Let G
′

be a bounded region such that η(y) = 0 for y ∈ R�G′. There exists a

y1 ∈ G
′

such that Ψ̂(y1, θ) ≥ Ψ̂(y, θ) for all y ∈ R, where

Ψ̂(y, θ) = W ε(y, θ)−W ε(y, θ) + 2δη(y), (5.47)

and 
η(y0) = 1,

0 ≤ η(y) < 1, ∀y ∈ R�{y0},

|ηy(y)| ≤ 1, |ηyy(y)| ≤ 1, ∀y ∈ R.

(5.48)
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Hence we have 

Ψy(y, θ1) = 0,

Ψθ(y, θ1) = 0,

Ψyy(y, θ1) ≤ 0,

Ψθθ(y, θ1) ≤ 0,

Ψyy(y, θ1) + Ψθθ(y, θ1) ≤ 0,

(5.49)

which implies 

W ε
y (y, θ1)−W ε

y(y, θ1) = 0,

W ε
θ (y, θ1)−W ε

θ(y, θ1) + 2δζθ(θ1) = 0,

W ε
yy(y, θ1)−W ε

yy(y, θ1) ≤ 0,

W ε
θθ(y, θ1)−W ε

θθ(y, θ1) + 2δζθθ(θ1) ≤ 0,

∆W ε(y, θ1)−∆W
ε
(y, θ1) + 2δζθθ(θ1) ≤ 0,

(5.50)

and 

Ψ̂y(y1, θ) = 0,

Ψ̂θ(y1, θ) = 0,

Ψ̂yy(y1, θ) ≤ 0,

Ψ̂θθ(y1, θ) ≤ 0,

Ψ̂yy(y1, θ) + Ψ̂θθ(y1, θ) ≤ 0,

(5.51)

which implies 

W ε
y (y1, θ)−W ε

y(y1, θ) + 2δηy(y1) = 0,

W ε
θ (y1, θ)−W ε

θ(y1, θ) = 0,

W ε
yy(y1, θ)−W ε

yy(y1, θ) + 2δηyy(y1) ≤ 0,

W ε
θθ(y1, θ)−W ε

θθ(y1, θ) ≤ 0,

∆W ε(y1, θ)−∆W ε(y1, θ) + 2δηyy(y1) ≤ 0.

(5.52)

Additionally note that with the assumption A > 0, we would have

0 < M1 ≤ f1(y, θ) ≤ β − rγ
1− γ

= C,

for all (y, θ) ∈ R2, where A and C are as defined in Lemma 5.3.2. Then since Ψ(y, θ1) ≥
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Ψ(y, θ) for all θ ∈ R and ζ(θ1) ≤ 1, we would get

f1(y, θ1)(W ε(y, θ)−W ε
(y, θ))

≤ f1(y, θ1)(W ε(y, θ)−W ε
(y, θ) + 2δζ(θ)) = f1(y, θ1)Ψ(y, θ)

≤ f1(y, θ1)(W ε(y, θ1)−W ε
(y, θ1) + 2δζ(θ1)) = f1(y, θ1)Ψ(y, θ1)

≤ f1(y, θ1)(W ε(y, θ1)−W ε
(y, θ1)) + 2δC. (5.53)

Substituting (5.27) into the right-hand side of (5.53) and using the third and the last

properties in (5.50),

f1(y, θ1)(W ε(y, θ)−W ε
(y, θ))

≤ σ2

2
W ε
yy(y, θ1) + ε∆W ε(y, θ1) +H(y, θ1,W

ε
y (y, θ1),W ε

θ (y, θ1))

− σ2

2
W

ε

yy(y, θ1)− ε∆W ε
(y, θ1)−H(y, θ1,W

ε

y(y, θ1),W
ε

θ(y, θ1)) + 2δC

=
σ2

2
(W ε

yy(y, θ1)−W ε

yy(y, θ1)) + ε(∆W ε(y, θ1)−∆W
ε
(y, θ1))

+ H(y, θ1,W
ε
y (y, θ1),W ε

θ (y, θ1))−H(y, θ1,W
ε

y(y, θ1),W
ε

θ(y, θ1)) + 2δC

≤ −2εδζθθ(θ1) +H(y, θ1,W
ε
y (y, θ1),W ε

θ (y, θ1))

−H(y, θ1,W
ε

y(y, θ1),W
ε

θ(y, θ1)) + 2δC. (5.54)

Divide both sides of (5.54) by f1(y, θ1) and take the norm, we have

|W ε(y, θ)−W ε
(y, θ)|

≤ 1

f1(y, θ1)
| − 2εδζθθ(θ1) +H(y, θ1,W

ε
y (y, θ1),W ε

θ (y, θ1))

−H(y, θ1,W
ε

y(y, θ1),W
ε

θ(y, θ1))|+ 2δC

f1(y, θ1)

≤ 2εδ

M1

+
1

M1

|H(y, θ1,W
ε
y (y, θ1),W ε

θ (y, θ1))−H(y, θ1,W
ε

y(y, θ1),W
ε

θ(y, θ1))|+ 2δC

M1

.

Adding and subtracting H(y, θ1+ξ,W ε
y (y, θ1),W ε

θ (y, θ1)) on the right-hand side and using
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the first two properties in (5.50), we get

|W ε(y, θ)−W ε
(y, θ)|

≤ 2δ(ε+ C)

M1

+
1

M1

|H(y, θ1,W
ε
y (y, θ1),W ε

θ (y, θ1))

−H(y, θ1 + ξ,W ε
y (y, θ1),W ε

θ (y, θ1)) +H(y, θ1 + ξ,W ε
y (y, θ1),W ε

θ (y, θ1))

−H(y, θ1 + ξ,W ε
y (y, θ1),W ε

θ (y, θ1) + 2δζθ(θ1))|

≤ 2δ(ε+ C)

M1

+
1

M1

· L(1 + |W ε
y (y, θ1)|+ |W ε

θ (y, θ1)|)|ξ|

+
1

M1

|H(y, θ1 + ξ,W ε
y (y, θ1),W ε

θ (y, θ1))

−H(y, θ1 + ξ,W ε
y (y, θ1),W ε

θ (y, θ1) + 2δζθ(θ1))|.

Now let δ → 0 and we have

|W ε(y, θ)−W ε
(y, θ)| ≤ L

M1

(1 + |W ε
y (y, θ1)|+ |W ε

θ (y, θ1)|)|ξ|. (5.55)

For the second part, since Ψ̂(y1, θ) ≥ Ψ̂(y, θ) for all y ∈ R and η(y1) ≤ 1 we have

f1(y1, θ)(W
ε(y, θ)−W ε(y, θ))

≤ f1(y1, θ)(W
ε(y, θ)−W ε(y, θ) + 2δη(y)) = f1(y1, θ)Ψ̂(y, θ)

= f1(y1, θ)(W
ε(y1, θ)−W ε(y1, θ) + 2δη(y1)) = f1(y1, θ)Ψ̂(y1, θ)

≤ f1(y1, θ)(W
ε(y1, θ)−W ε(y1, θ)) + 2δC.

Similarly substituting (5.27) into the right-hand side, we get

f1(y1, θ)(W
ε(y, θ)−W ε(y, θ))

≤ σ2

2
W ε
yy(y1, θ) + ε∆W ε(y1, θ) +H(y1, θ,W

ε
y (y1, θ),W

ε
θ (y1, θ))

− σ2

2
W ε

yy(y1, θ)− ε∆W ε(y1, θ)−H(y1, θ,W
ε
y(y1, θ),W

ε
θ(y1, θ)) + 2δC

=
σ2

2
(W ε

yy(y1, θ)−W ε
yy(y1, θ)) + ε(∆W ε(y1, θ)−∆W ε(y1, θ))

+ H(y1, θ,W
ε
y (y1, θ),W

ε
θ (y1, θ))−H(y1, θ,W

ε
y(y1, θ),W

ε
θ(y1, θ)) + 2δC.
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So it follows from using the third and the last properties in (5.52) that

f1(y1, θ)(W
ε(y, θ)−W ε(y, θ))

≤ −2δηyy(y1)

(
σ2

2

)
− 2εδηyy(y1) +H(y1, θ,W

ε
y (y1, θ),W

ε
θ (y1, θ))

−H(y1, θ,W
ε
y(y1, θ),W

ε
θ(y1, θ)) + 2δC

= −2δηyy(y1)

(
σ2

2
+ ε

)
+H(y1, θ,W

ε
y (y1, θ),W

ε
θ (y1, θ))

−H(y1, θ,W
ε
y(y1, θ),W

ε
θ(y1, θ)) + 2δC,

which leads to

|W ε(y, θ)−W ε(y, θ)|

≤ 1

f1(y1, θ)

∣∣∣∣−2δηyy(y1)

(
σ2

2
+ ε

)∣∣∣∣+
1

f1(y1, θ)
|H(y1, θ,W

ε
y (y1, θ),W

ε
θ (y1, θ))

−H(y1, θ,W
ε
y(y1, θ),W

ε
θ(y1, θ))|+

2δC

f1(y1, θ)
.

Again adding and subtracting H(y1 + ξ, θ,W ε
y (y1, θ),W

ε
θ (y1, θ)) on the right-hand side

and using the first two properties in (5.52), we get

|W ε(y, θ)−W ε(y, θ)|

≤ 2δ

M1

(
σ2

2
+ ε

)
+

2δC

M1

+
1

M1

|H(y1, θ,W
ε
y (y1, θ),W

ε
θ (y1, θ))

−H(y1 + ξ, θ,W ε
y (y1, θ),W

ε
θ (y1, θ)) +H(y1 + ξ, θ,W ε

y (y1, θ),W
ε
θ (y1, θ))

−H(y1 + ξ, θ,W ε
y (y1, θ) + 2δηy(y1),W ε

θ (y1, θ))|

≤ 2δ

M1

(
σ2

2
+ ε+ C

)
+

1

M1

· L(1 + |W ε
y (y1, θ)|+ |W ε

θ (y1, θ)|)|ξ|

+
1

M1

|H(y1 + ξ, θ,W ε
y (y1, θ),W

ε
θ (y1, θ))

−H(y1 + ξ, θ,W ε
y (y1, θ) + 2δηy(y1),W ε

θ (y1, θ))|.

Let δ → 0 and we have

|W ε(y, θ)−W ε(y, θ)| ≤ L

M1

(1 + |W ε
y (y1, θ)|+ |W ε

θ (y1, θ)|)|ξ|. (5.56)
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Adding (5.55) and (5.56), we get

|W ε(y, θ)−W ε
(y, θ)|+ |W ε(y, θ)−W ε(y, θ)|

≤ L

M1

(1 + |W ε
y (y, θ1)|+ |W ε

θ (y, θ1)|)|ξ|+ L

M1

(1 + |W ε
y (y1, θ)|+ |W ε

θ (y1, θ)|)|ξ|

≤ 2L

M1

(1 + |W ε
y (y, θ)|L∞(R2) + |W ε

θ (y, θ)|L∞(R2))|ξ|.

This implies

|W ε
θ (y, θ)|+ |W ε

y (y, θ)| ≤ 2L

M1

(1 + |W ε
y (y, θ)|L∞(R2) + |W ε

θ (y, θ)|L∞(R2)),

leading to

|W ε
θ (y, θ)|L∞(R2) + |W ε

y (y, θ)|L∞(R2) ≤
2L

M1

(1 + |W ε
y (y, θ)|L∞(R2) + |W ε

θ (y, θ)|L∞(R2)).

Then

M1 − 2L

M1

· (|W ε
θ (y, θ)|L∞(R2) + |W ε

y (y, θ)|L∞(R2)) ≤
2L

M1

|W ε
θ (y, θ)|L∞(R2) + |W ε

y (y, θ)|L∞(R2) ≤
2L

M1 − 2L
.

provided that M1 > 2L.

We are now ready to show the existence of a unique solution in R2.

5.3.4 Existence and Uniqueness in of Viscosity Solution in R2

Like in the logarithmic utility case, we first present the formal definition of a viscosity

solution to our problem.

Definition 5.3.1. W is a viscosity subsolution (supersolution) to the problem

(5.26) if for every (y0, θ0) ∈ R2 and every ϕ ∈ C2(R2) such that

ϕ ≥ (≤)W, ϕ(y0, θ0) = W (y0, θ0)
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in a neighborhood of (y0, θ0), we have

σ2

2
ϕyy ≥ (≤) f1(y, θ)ϕ−H(y, θ, ϕy, ϕθ).

In addition, when W is both a viscosity subsolution and supersolution, W is called a

viscosity solution to (5.26).

Theorem 5.3.4. Let A and M1 be as defined in (5.33) and (5.37) and let L be the

Lipschitz constant for f2 as defined in (5.23). Assume A > 0 and that β is large enough

so that M1 > 2L > 0. Then equation (5.26) has a unique viscosity solution (weak solution)

W (y, θ) in the Sobolev space W 1,∞(R2).

Proof. Now that we have bounded partial derivatives with a bound that is independent

of ε, by a similar argument as in the logarithm utility case, the result holds.

We have now established the existence of a unique viscosity solution. In the next section,

we will find the subsolution and supersolution bounds for the solution in the classical sense

just as we did in the logarithmic utility case, which will be essential in the verification

theorem.

5.4 Subsolution and Supersolution

We first give formal definitions of a subsolution and a supersolution for our problem on

the ball BR and on R2.

Definition 5.4.1. W ε(y, θ) is a subsolution (supersolution) to the problem (5.27)

in R2 if

σ2

2
W ε
yy + ε∆W ε ≥ (≤) + f1(y, θ)W ε −H(y, θ,W ε

y ,W
ε
θ ).

In addition, if Ŵ is a subsolution and W̄ is a supersolution, and Ŵ ≤ W̄ , then 〈Ŵ , W̄ 〉
is an ordered pair of sub/supersolutions.

Definition 5.4.2. W ε(y, θ) is a subsolution (supersolution) to (5.28) on BR ifσ2

2
W ε
yy + ε∆W ε ≥ (≤) f1(y, θ)W ε −H(y, θ,W ε

y ,W
ε
θ ), on BR,

W ε ≤ (≥) K, on ∂BR.
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In addition, if Ŵ is a subsolution and W̄ is a supersolution, and Ŵ ≤ W̄ for all (y, θ) ∈
BR, then 〈Ŵ , W̄ 〉 is an ordered pair of sub/supersolutions.

The following lemmas show explicit forms of the sub/supersolution pair in which we look

for.

Lemma 5.4.1. Let A, B, C, D and M1 be defined as in Lemma 5.3.2 and also define

K1 ≡
1− γ

(β − rγ)γ
1

1−γ
=
D

C
. (5.57)

Assume A > 0 and β is large enough so that M1 > 0. Then any constant K ≤ K1 is a

subsolution of (5.27).

Proof. Let W = K ≤ K1. Note that A,B,C,D,M1 from (5.33)-(5.37) are all positive.

We have Wθ = Wy = Wyy = Wθθ = 0 and H(y, θ, 0, 0) = D. Also, with A > 0, we have

f1(y, θ) = −(A+ µ2(y, θ))2B

2σ2(1− γ)
+ C ≥M1 > 0.

Then,

f1(y, θ)K −H(y, θ, 0, 0)

≤ f1(y, θ) · D
C
−D

=

(
−(A+ µ2(y, θ))2B

2σ2(1− γ)
+ C

)
· D
C
−D

=

(
−(A+ µ2(y, θ))2BD

2σ2(1− γ)C
+D

)
−D

= −(A+ µ2(y, θ))2BD

2σ2(1− γ)C
< 0.

Lemma 5.4.2. Let A, B, C, D and M1 be defined as in Lemma 5.3.2 and define

K2 ≡
D

M1

, (5.58)
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Assume A > 0 and β is large enough so that M1 > 0. Then any constant K ≥ K2 is a

supersolution of (5.27).

Proof. Let W = K ≥ K2. Then we have Wθ = Wθθ = Wy = Wyy = 0. Since A > 0

implies that f1(y, θ) ≥M1 > 0,

f1(y, θ)K −H(y, θ, 0, 0)

≥ f1(y, θ) · D
M1

−D

=

(
−(A+ µ2(y, θ))2B

2σ2(1− γ)
+ C

)
· D
M1

−D

≥
(
−(A+M)2B

2σ2(1− γ)
+ C

)
· D
M1

−D

= M1 ·
D

M1

−D

= 0.

Lemma 5.4.3. Let A and M1 be defined as in Lemma 5.3.2. Assume A > 0 and β is

large enough so that M1 > 0. Then 〈K1, K2〉 is an ordered pair of sub/supersolutions to

(5.27).

Proof. Since A > 0 and 0 < γ < 1, we must have M1 < C. Then it is clear that K2 > K1.

Therefore, 〈K1, K2〉 is a pair of subsolution and supersolution (5.27).

We again note here that if we take K = K1 on ∂BR in (5.28), then any constant less than

or equal to K1 is a subsolution of (5.28) and any constant greater than or equal to K2 is a

supersolution of (5.28). This confirms that the solution to (5.28) is sandwiched between

the sub/supersolution pair found. Since the solution to (5.28) converges uniformly to

the solution of (5.26) and we can easily verify that 〈K1, K2〉 is also an ordered pair

of sub/supersolutions to (5.26), this ensures the solution to (5.26) is also sandwiched

between the sub/supersolution pair. Knowing this, we can now verify our solution is

indeed the value function.
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5.5 Verification Theorem

To begin the verifying process, we let W̃ (y, z) be the classical solution to (5.26). Then

Ṽ (x, y, z) ≡ xγW̃ (y, z)1−γ (5.59)

would be the corresponding classical solution to (5.8). We want to show that Ṽ (x, y, z) =

V (x, y, z), our value function. We clarify here that in the inverse transformations, we

have

θ(y, z) =
ln (1− λz

y
)

−λ
. (5.60)

So W̃ (y, θ) ≡ W̃ (y, z). Like in the logarithm utility case, the original derivation of the

HJB equation in (3.17) requires

E

[∫ T

0

σe−βt(Ṽy + xπ(t)Ṽx)dB(t)

]
= 0.

We will show this also true for the HARA utility case with help of the following lemma.

Lemma 5.5.1. Let (π(t), c(t)) ∈ Π. Then E[X(t)m] <∞ for all fixed t ≥ 0, m > 0 and

x > 0.

Proof. From (3.9), since X(t) = xe

∫ t
0

(
r+(µ1+ 1

2
σ2−r+µ2(Z(τ)))π(τ)−c(τ)−σ

2π(τ)2

2

)
dτ+

∫ t
0 σπ(τ)dB(τ)

and π(t), c(t) and µ2(Z(t)) are all bounded by constants,

E

[
e
m
∫ t
0

(
r+(µ1+ 1

2
σ2−r+µ2(Z(τ)))π(τ)−c(τ)−σ

2π(τ)2

2

)
dτ

]
≤ emΛ1t,

for some constant Λ1. In addition, by Lemma 2.1 (ii) in [64],

E
[
e
∫ t
0 σπ(τ)dB(τ)

]
<∞.

Hence, fixing x, t and m, the result holds.

Lemma 5.5.2. Assume the same set of assumptions as in Theorem 5.3.4.

If Ṽ (X(t), Y (t), Z(t)) ≡ X(t)γW̃ (Y (t), Z(t))1−γ, where W̃ is the classical solution to
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(5.26), then

E

[∫ T

0

σe−βt(Ṽy +X(t)π(t)Ṽx)dB(t)

]
= 0.

Proof. For the result to be hold, we must show that

E

[∫ T

0

σ2e−2βt(Ṽy +X(t)π(t)Ṽx)
2dt

]
<∞.

Note here by the definition of Ṽ , we have

Ṽx = γX(t)γ−1W̃ 1−γ (5.61)

Ṽy = (1− γ)X(t)γW̃yW̃
−γ. (5.62)

Additionally, we know from the proof of Lemma 5.3.2 and Lemma 5.3.3 that

|W ε(y, z)|L∞(R2) ≤
D

M1

+K, |W ε
y (y, z)|L∞(R2) ≤

2L

M1 − 2L
.

Again the upper bounds are independent of ε. If we take ε→ 0, we would still have

|W (y, z)|L∞(R2) ≤
D

M1

+K, |Wy(y, z)|L∞(R2) ≤
2L

M1 − 2L
.

Thus, our classical solution Ṽ satisfies

|Ṽx|L∞(R2) = |γX(t)γ−1W̃ 1−γ|L∞(R2)

≤ γX(t)γ−1

(
D

M1

+K

)1−γ

, (5.63)

|Ṽy|L∞(R2) = |(1− γ)X(t)γW̃yW̃
−γ|L∞(R2)

≤
2L(1− γ)X(t)γ

(
D
M1

+K
)−γ

M1 − 2L
. (5.64)

Since −Γ ≤ π(t) ≤ Γ and 0 < γ < 1, for any fixed T , using (4.75) and Lemma 5.5.1, we
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have

E

[∫ T

0

σ2e−2βt(Ṽy +X(t)π(t)Ṽx)
2dt

]
≤ E

[∫ T

0

σ2e−2βt(2 · Ṽ 2
y + 2 ·X(t)2π(t)2Ṽ 2

x )dt

]
= E

[∫ T

0

σ2e−2βt(2 · |Ṽy|2 + 2 ·X(t)2π(t)2|Ṽx|2)dt

]

≤ E

∫ T

0

σ2e−2βt

23 · L2(1− γ)2X(t)2γ
(
D
M1

+K
)−2γ

(M1 − 2L)2

+ 2 · Γ2γ2X(t)2γ

(
D

M1

+K

)2−2γ
)
dt

]

= σ2

23 · L2(1− γ)2
(
D
M1

+K
)−2γ

(M1 − 2L)2

+ 2 · Γ2γ2

(
D

M1

+K

)2−2γ
)∫ T

0

e−2βtE[X(t)2γ]dt

< ∞.

Hence the result holds.

Now we prove the main result of this section.

Theorem 5.5.3 (Verification Theorem). Assume the same set of assumptions as in

Theorem 5.3.4. Let W̃ (y, z) be the classical solution to (5.26) and Ṽ (x, y, z) ≡ xγW̃ (y, z)1−γ.

Then Ṽ (x, y, z) = V (x, y, z), where V (x, y, z) is the value function in (5.3). Moreover,

the optimal control policy is given by

π∗(x, y, z) =
−(µ1 + 1

2
σ2 − r + µ2(z))Ṽx − σ2Ṽxy

σ2xṼxx
, c∗(x, y, z) =

Ṽ
1

γ−1
x

x
.
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Proof. From (5.4) we know that for any (π(t), c(t)) ∈ Π we have

−1

γ
(c(t)X(t))γ ≥ −βṼ +X(t)π(t)

(
µ1 +

1

2
σ2 − r + µ2(Z(t))

)
Ṽx +

σ2π(t)2

2
X(t)2Ṽxx

+ σ2π(t)X(t)Ṽxy +
σ2

2
Ṽyy − c(t)X(t)Ṽx + rX(t)Ṽx

+ (µ1 + µ2(Z(t)))Ṽy + (Y (t)− λZ(t))Ṽz. (5.65)

By a similar calculation as in (3.15) and using (5.65), we also have the relation

d(e−βtṼ )

= e−βt
(
−βṼ +

[
X(t)

(
r +

(
µ1 +

1

2
σ2 − r + µ2(Z(t))

)
π(t)− c(t)

)]
Ṽx

+ (µ1 + µ2(Z(t)))Ṽy + (Y (t)− λZ(t))Ṽz +
σ2

2
Ṽyy + σ2π(t)X(t)Ṽxy

+
σ2π(t)2

2
X(t)2Ṽxx

)
dt+ e−βt(Ṽyσ + Ṽxσπ(t)X(t))dB(t)

≤ e−βt
(
−1

γ
(c(t)X(t))γ

)
dt+ e−βt(Ṽyσ + Ṽxσπ(t)X(t))dB(t).

Integrating both sides and taking expectation then using Lemma 5.5.2 we have

E[e−βT Ṽ (X(T ), Y (T ), Z(T ))− Ṽ (x, y, z)]

≤ E

[∫ T

0

e−βt
(
−1

γ
(c(t)X(t))γ

)
dt+

∫ T

0

e−βt(Ṽyσ + Ṽxσπ(t)X(t))dB(t)

]
,

which implies

Ṽ (x, y, z) ≥ E

[∫ T

0

e−βt
(

1

γ
(c(t)X(t))γ

)
dt

]
+ E[e−βT Ṽ (X(T ), Y (T ), Z(T ))]. (5.66)

Note that by definition we have

E[e−βT Ṽ (X(T ), Y (T ), Z(T ))] = E
[
e−βT

(
X(T )γW̃ (Y (T ), Z(T ))1−γ

)]
.

From (3.9), we know X(T ) > 0 since x > 0. Additionally, W̃ (y, z) is bounded below by
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its subsolution, which is a positive constant. It follows that

lim sup
T→∞

E[e−βT Ṽ (X(T ), Y (T ), Z(T ))] ≥ 0. (5.67)

With c(t) also being nonnegative, by monotone convergence theorem

lim sup
T→∞

E

[∫ T

0

e−βt
(

1

γ
(c(t)X(t))γ

)
dt

]
≥ lim

T→∞
E

[∫ T

0

e−βt
(

1

γ
(c(t)X(t))γ

)
dt

]
= E

[
lim
T→∞

∫ T

0

e−βt
(

1

γ
(c(t)X(t))γ

)
dt

]
= E

[∫ ∞
0

e−βt
(

1

γ
(c(t)X(t))γ

)
dt

]
. (5.68)

Hence taking limit superior on both sides of (5.66) and using (5.67)-(5.68) gives us

Ṽ (x, y, z)

≥ lim sup
T→∞

E

[∫ T

0

e−βt
(

1

γ
(c(t)X(t))γ

)
dt

]
+ lim sup

T→∞
E[e−βT Ṽ (X(T ), Y (T ), Z(T ))]

≥ E

[∫ ∞
0

e−βt
(

1

γ
(c(t)X(t))γ

)
dt

]
. (5.69)

Inequality (5.69) holds for all admissible controls c(t) and π(t). Therefore

Ṽ (x, y, z) ≥ sup
(π(t),c(t))∈Π

E

[∫ ∞
0

e−βt
1

γ
(c(t)X(t))γdt

]
= V (x, y, z).

For the reverse inequality V (x, y, z) ≤ Ṽ (x, y, z), we first show that (π∗, c∗) ∈ Π. Both

are progressively measurable since their values are determined for all t. Note by definition
Ṽx(x, y, z) = γxγ−1W̃ 1−γ,

Ṽxx(x, y, z) = γ(γ − 1)xγ−2W̃ 1−γ,

Ṽxy(x, y, z) = γ(1− γ)xγ−1W̃yW̃
−γ.

(5.70)

Again by Lemma 5.3.3 and since W̃ is bounded above and below by its subsolution and
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supersolution given in Lemma 5.4.1 and Lemma 5.4.2,

0 <
D

C
≤ W̃ ≤ D

M1

,

|W̃y| ≤
2L

M1 − 2L
,

we have

|π∗| =

∣∣∣∣∣−(µ1 + 1
2
σ2 − r + µ2(z))Ṽx − σ2Ṽxy

σ2xṼxx

∣∣∣∣∣
=

∣∣∣∣∣−(µ1 + 1
2
σ2 − r + µ2(z))γxγ−1W̃ 1−γ − σ2γ(1− γ)xγ−1W̃−γW̃y

σ2γ(γ − 1)xγ−1W̃ 1−γ

∣∣∣∣∣
=

∣∣∣∣∣−(µ1 + 1
2
σ2 − r + µ2(z))W̃ − σ2(1− γ)W̃y

σ2(γ − 1)W̃

∣∣∣∣∣
≤

(µ1 + 1
2
σ2 − r +M)( D

M1
) + σ2(1− γ) · 2L

M1−2L

σ2(1− γ)(D
C

)

= Γ1. (5.71)

We pick Γ such that Γ > Γ1. Thus |π∗| ≤ Γ. Similarly,

c∗ =
Ṽ

1
γ−1
x

x

=
(γxγ−1W̃ 1−γ)

1
γ−1

x

= (γW̃ 1−γ)
1

γ−1

≤

(
γ

(
D

M1

)1−γ
) 1

γ−1

= (γ
1

1−γ )−1

(
D

M1

)−1

= D · M1

D
= M1. (5.72)
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We pick Λ such that Λ > M1. In addition, we see that

c∗ = (γW̃ 1−γ)
1

γ−1 ≥

(
γ

(
D

C

)1−γ
) 1

γ−1

= C > 0.

Thus 0 ≤ c∗ ≤ Λ. Now using (π∗, c∗), we would have the following equality

Ṽ (x, y, z) = E

[∫ T

0

e−βt
(

1

γ
(c∗X(t))γ

)
dt

]
+ E[e−βT Ṽ (X(T ), Y (T ), Z(T ))]. (5.73)

By a similar reasoning as for checking (5.67) , the fact that

E[e−βT Ṽ (X(T ), Y (T ), Z(T ))] = E
[
e−βT

(
X(T )γW̃ (Y (T ), Z(T ))1−γ

)]
,

where W̃ (Y (T ), Z(T )) is bounded above by its supersolution and E[X(T )γ] < ∞ also

implies

lim inf
T→∞

E[e−βT Ṽ (X(T ), Y (T ), Z(T ))] ≤ 0. (5.74)

Having both X(t) > 0 and c∗ > 0, we can apply the monotone convergence theorem to

get

lim inf
T→∞

E

[∫ T

0

e−βt
(

1

γ
(c∗X(t))γ

)
dt

]
≤ lim

T→∞
E

[∫ T

0

e−βt
(

1

γ
(c∗X(t))γ

)
dt

]
= E

[
lim
T→∞

∫ T

0

e−βt
(

1

γ
(c∗X(t))γ

)
dt

]
= E

[∫ ∞
0

e−βt
(

1

γ
(c∗X(t))γ

)
dt

]
. (5.75)

Hence taking limit inferior on both sides of (5.73) and using (5.74)-(5.75) along with the

84



definition of our value function gives us

Ṽ (x, y, z)

= lim inf
T→∞

E

[∫ T

0

e−βt
(

1

γ
(c∗X(t))γ

)
dt

]
+ lim inf

T→∞
E[e−βT Ṽ (X(T ), Y (T ), Z(T ))]

≤ E

[∫ ∞
0

e−βt
(

1

γ
(c∗X(t))γ

)
dt

]
= V (x, y, z).

Hence, we showed that Ṽ (x, y, z) = V (x, y, z).
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Chapter 6

Conclusion and Future Work

In this dissertation, we have shown the existence and uniqueness of viscosity and classical

solutions to the problem presented for the case of logarithmic utility function of consump-

tion and HARA utility function of consumption with 0 < γ < 1. We have not considered

the case of HARA utility function with −∞ < γ < 0 and the exponential utility function.

In addition, variables such as interest rate and volatility are assumed to be fixed values,

which is not realistic in practice. Future works can include extending the current model

by considering stochastic interest rates and volatility, possibly involving delay in those

variables, as well as adding stochastic dividends to the risky asset. Numerical results for

the solution can also be developed for the cases studied in this dissertation.
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