
ABSTRACT 

GIUFFRE, CARL JOHN. Technological Methods in the Health Assessment of Western 

Honey Bees (Apis mellifera). (Under the direction of Dr. David R. Tarpy and Dr. Sharon R. 

Lubkin). 

 

 

The Western honey bee (Apis mellifera), one of the most important pollinators 

worldwide, has been faced with many recent health challenges. Important health issues, such 

as the invasive mite Varroa destructor, are well-documented, but significant scientific 

opportunities remain in describing their role as a vector for disease. Other pressing health 

issues, such as Colony Collapse Disorder, have yet to be fully described, due to the many 

behavioral and environmental variables at play in the honey bee system. 

In this dissertation, we hope to exploit novel advances in computer algorithms and 

imaging technology, by presenting methods in three current topics of bee health: grooming, 

parasites, and nutrition. We developed methods in image analysis to describe time-continuous 

grooming behavior of known commercial honey bee stocks. We analyzed grooming videos 

using a differential equation model to parameterize bee grooming rates, then used statistics to 

draw comparisons between the stocks. We used video object tracking to describe the behavior 

of the important bee parasite, Varroa destructor in vitro. By corroborating mite phenotypical 

behavior with genotypical data, we proved that viral count nontrivially changes mite behavior. 

Finally, we used digital imaging, colorimetry, and machine learning to determine plant source 

for corbicular pollen, a very important component of bee nutrition. We provide some initial 

sensitivity analysis of the pollen imaging system, and describe future directions, opportunities, 

and applications as a framework for larger pollen studies.  
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CHAPTER 1.  

Introduction  

Honey bees (Apis mellifera) are indigenous to Europe and Africa, but they have been 

exported worldwide because of the important pollination services that they provide. Apiculture 

is estimated to contribute 162 billion USD to the global economy annually (Gallai et al., 2009). 

The true economic estimate of bee services is difficult to measure, especially since a foraging 

bee can range up to 3 km or more from the nest site (Winston, 1987).  Furthermore, unmanaged 

bee populations contribute to both local and exotic pollination, which cannot be accurately 

measured (Ricketts et al., 2004). The honey, pollen, wax, textiles, and produce industries are 

all directly impacted by honey bee populations. 

Unfortunately, honey bee populations are on the decline worldwide, and recently U.S. 

beekeepers have been losing roughly one third of their colonies over winter (Ellis et al., 2010; 

Neumann and Carreck, 2010).  Colony Collapse Disorder (CCD), although sensationalized by 

the media, has mysteriously facilitated these negative population trends; pesticides, microbes, 

viruses, parasites, and genetics have all been implicated for playing a role in its cause (Oldroyd, 

2007; Evans et al., 2009; Guzmán-Novoa et al., 2010; Dainat et al., 2012; Cox-Foster et al., 

2007). Regardless of the specific factors causing CCD, it is clear from diminished health and 

productivity that honey bee populations are under threat. 

Recent advances in image processing have proven empirically relevant in behavioral 

sciences and industry. Object recognition and colorimetry have paved the way for high-

throughput, observational studies, that objectively reduce human error. Studying bee behavior, 
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using image processing as a vehicle, would offer deeper perspectives on the larger issues in 

bee health sciences. 

 

1.1 Levels of honey bee health and defense 

Honey bee health is complicated to study, as there are five levels of defense relevant to 

honey bee health: individual, pairwise, colony, structural, and environmental (Evans and 

Spivak, 2010). Individual bees have their own immune systems, uniquely determined by their 

genetics. Since a queen mates multiply (and therefore her workers are sired by different males), 

individual innate-immunity in a single colony can be quite varied (Winston, 1987). 

Undertaking (removal of dead adults), hygienic behavior (removal of dead or diseased brood), 

and autogrooming (self-grooming) are all behavioral traits that preventatively protect a honey 

bee from pathogens (Evans and Spivak, 2010). 

Pairwise defense is the result of honey bee social interactions, resulting in elevated 

immunity, also known as social immunity. Trophallaxis, although primarily a mechanism for 

food exchange and communication, also exchanges beneficial gut microbiota, which has been 

shown to be important in bee immunity (Martinson, 2012). Allogrooming (grooming of 

another individual) is such an important pairwise defense that honey bees evolved a specialized 

dance to initiate grooming from another bee (Land and Seeley, 2004). 

Since healthy bee colonies are comprised of one reproductive female and ~50,000 of 

her offspring, immunological traits within the colony are quite interrelated and present a 

unique set of challenges (Evans and Schwarz, 2011). Thus, it is often advantageous to think in 

terms of colony health and colony immunity. Colony health, or the health of the 
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ñsuperorganism,ò is a complex combination of individual and pairwise defenses (Seeley, 1989; 

Winston, 1987). Stinging behavior is the most obvious form of an adaptive suicide-mechanism 

that benefits the health of the superorganism. In fact, immunologically compromised bees have 

been shown to altruistically remove themselves from the hive (Rueppell et al., 2010). Colony 

immunity, or the immune responses collectively pooled in a population, has been examined in 

several important studies using both behavioral (Wilson-Rich et al., 2009) and genetic (Evans 

and Pettis, 2005) approaches. Task allocation and age polyethism are behavioral manners by 

which individual bees perform individual tasks (Winston, 1987). These tasks are determined, 

in part, by the current health needs of the colony. 

Evans and Spivak (2010) highlight a nuanced difference between structural  and 

environmental defenses. Environmental defenses are methods that bees use to exploit their 

surroundings for protection. The hive entrance functions as a structural bottleneck for 

intruders, such as parasites or diseased bees (Seeley, 1989). Bees also sanitize the hive using 

propolis from tree resins to create an antiseptic ñenvelopeò that protects the colony from 

foreign microbes (Simone-Finstrom and Spivak, 2009). Amino acids from various pollen 

sources reduce oxidative stress and enhance bee longevity (Herbert and Shimanuki, 1978; 

Huang, 2012). 

 

1.2 The Vector Manipulation Hypothesis 

Studies of disease vectors and vector behavior are equally important in describing the 

health of the host species they affect. Many traditional studies in parasitism explore the host-

vector relationship as it relates to behavior, immunology, and prevention. Others study disease-
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host interactions, usually at the microscopic or viral level, in efforts to interrupt key moments 

of the diseaseôs life cycle, or to determine candidate cures. Several studies have recently 

revealed that in the vector-disease relationship, vector behavior may be altered based on the 

viruses they harbor; this is known as the Vector Manipulation Hypothesis (Ingwell et al., 2012; 

Cator et al., 2012). 

 The Vector Manipulation Hypothesis contends that vectors for disease perform a host-

preference shift from their infected hosts to their uninfected counterparts (Ingwell et al., 2012, 

Cator et al., 2012). This train of thought is quite important, since it suggests that diseases 

asymptomatically and facilitatively modify vector behavior to ensure reproductive success of 

the virus. 

 

1.3 The problem with connecting bee phenotypes and genotypes 

 Since the mapping of the honey bee genome in 2006, many efforts have been made to 

integrate macro- and molecular-level characteristics of bee health. Molecular-level 

contributions have proven effective, and as technology has advanced, the price for these 

methods has decreased over the past 10 years, while the quality of analysis has increased 

(Everett et al., 2010). Genetics has revolutionized the scientific approach in studies of bee 

behavior, immunology, and nutrition (DeGrandi-Hoffman et al., 2010). Even though the price 

of genetic analysis has decreased, most methods are still quite costly and time-consuming 

(Everett et al., 2010). Genetic data are also limited by reducing the temporal complexities of 

bee society into a single snapshot and removing live individuals from future studies. 
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 Genetics have been important in advancing our understanding of bee health, but 

behavioral studies of honey bees are equally complicated. Behavioral studies require hours of 

direct human observation, often in vitro or outside the context of a typical colony environment 

(Camazine, 1991; Robinson, 1987; Peng et al., 1987). Behavioral studies are nonetheless 

important, as they can capture social dynamics that have the potential to correlate with the 

ever-growing body of genetic honey bee data. This creates an unfortunate gap between bee 

behavioral and genetics literature. 

 

1.4 Computer vision and color space 

 Image processing is at the core of this thesis. The subtleties of colorimetry are 

especially important in Chapter 4. Pixel data from an m x n color image are stored on a 

computer in the form of an m x n x 3 matrix, with three color spaces typically used in their 

analysis: the RGB, HSV, and CIE-Lab color spaces. Coordinates for all three spaces depend 

on the software and language interpreting the image; numerical values are appropriately scaled 

in practice, and the values below are provided to assist with familiarity in understanding a 

critical component of this present work. 

The RGB color space, which is standard for digital photography and displays, 

represents color on a cube by assigning integer values between 0 and 255 on red, green, and 

blue (RGB) axes. These numbers translate to saturation values on a computer monitor, with 0 

representing unsaturated ([0 0 0] = white) and 255 completely saturated ([255 255 255] = 

black). This coordinate system is very straightforward to use, since the brain can easily 

visualize values on a cube. However, this ease-of-use does not translate well in analytical 
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studies; monitors, printers, and other imaging devices cannot display every RGB color 

combination (known as the deviceôs gamut), and images themselves are highly dependent upon 

how the imaging device stores pixel data numerically. At the data level, the three color 

channels are highly correlated with one another, making the measurement of differences in 

color difficult (Tkalcic and Tasic, 2003; Cheng et al., 2001; Ford and Roberts, 1998). 

 

Figure 1-1. Visualization of the RGB color space. (source: 

https://upload.wikimedia.org/wikipedia/commons/a/af/RGB_color_solid_cube.png) 

 

HSVðor hue, saturation, and valueðis the color space used widely in generating 

computer graphics. In this conic color space, hue represents the rotation about a central axis, 

saturation the normalized unit distance vector from the central axis, and value the unit vector 

from 0 (= black) to 1 (= white) vertically along the axis. Although the coordinate system is 

https://upload.wikimedia.org/wikipedia/commons/a/af/RGB_color_solid_cube.png
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harder to visualize, this color space is very useful for imaging techniques (such as image 

thresholding), since value can easily be employed to detect reflections or shadows in an image. 

HSV inherits the same color-correlation issues as RGB, since it is simply a nonlinear 

transformation of that space. The HSV space also suffers from gamut and device dependence 

issues, as a result. 

 

Figure 1-2. Visualization of the HSV color space. (source: 

https://upload.wikimedia.org/wikipedia/commons/f/f1/HSV_cone.jpg) 

 

In 1976, the Commision Internationale de lôEclairage (CIE) proposed a color space 

where the Euclidean distance between two colors is strongly correlated to human perception 

of color, a term known as perceptual uniformity (Tkalcic and Tasic, 2003). The space's axes 

are called L, a, and b, so the space was named CIE-Lab. CIE-Lab colors are represented on a 

sphere, where L ranges from 0 (= black) to 100 (= white), a ranges along a -50 (= green) to 50 

(= red) axis, and b ranges along a -50 (= blue) to 50 (= yellow) axis. Unlike its RGB and HSV 

https://upload.wikimedia.org/wikipedia/commons/f/f1/HSV_cone.jpg
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counterparts, CIE-Lab is device independent, making it a useful tool in many current analytical 

studies on color and computer vision. 

 

Figure 1-3. Visualization of the CIE-Lab color space. (source: 

https://openclipart.org/download/218708/joede--cie-color-space-coordinate-system-B3.svg) 

  

https://openclipart.org/download/218708/joede--cie-color-space-coordinate-system-B3.svg
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1.5 Aim 

The goal of this thesis is to address important behavioral components relevant to 

the more global problem of honey bee health, using digital imaging technology and 

behavioral modeling. 

In this thesis, I bridge the gap between genotypic and phenotypic honey bee studies by 

alleviating the financial burdens of genetics studies and the time pressures of behavioral ones. 

This thesis outline methods and results relevant to the individual , colony, and environmental 

levels of bee defense and honey bee health. 

 Chapter 2 highlights honey bee autogrooming, an important behavioral defense 

mechanism in individual bee health. Chapter 3 approaches bee health indirectly, focusing on 

the behavior of varroa, and tests the Vector Manipulation Hypothesis. Chapter 4 combines 

machine vision and colorimetry to study honey bee pollen, important in honey bee nutrition 

and environmental defenses. All three chapters are important in advancing our understanding 

of specific components of honey bee health. 
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CHAPTER 2.  

Automated assay and differential model of Western honey bee (Apis mellifera) 

autogrooming using digital image processing 
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