
ABSTRACT 

GIUFFRE, CARL JOHN. Technological Methods in the Health Assessment of Western 

Honey Bees (Apis mellifera). (Under the direction of Dr. David R. Tarpy and Dr. Sharon R. 

Lubkin). 

 

 

The Western honey bee (Apis mellifera), one of the most important pollinators 

worldwide, has been faced with many recent health challenges. Important health issues, such 

as the invasive mite Varroa destructor, are well-documented, but significant scientific 

opportunities remain in describing their role as a vector for disease. Other pressing health 

issues, such as Colony Collapse Disorder, have yet to be fully described, due to the many 

behavioral and environmental variables at play in the honey bee system. 

In this dissertation, we hope to exploit novel advances in computer algorithms and 

imaging technology, by presenting methods in three current topics of bee health: grooming, 

parasites, and nutrition. We developed methods in image analysis to describe time-continuous 

grooming behavior of known commercial honey bee stocks. We analyzed grooming videos 

using a differential equation model to parameterize bee grooming rates, then used statistics to 

draw comparisons between the stocks. We used video object tracking to describe the behavior 

of the important bee parasite, Varroa destructor in vitro. By corroborating mite phenotypical 

behavior with genotypical data, we proved that viral count nontrivially changes mite behavior. 

Finally, we used digital imaging, colorimetry, and machine learning to determine plant source 

for corbicular pollen, a very important component of bee nutrition. We provide some initial 

sensitivity analysis of the pollen imaging system, and describe future directions, opportunities, 

and applications as a framework for larger pollen studies.  
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CHAPTER 1.  

Introduction 

Honey bees (Apis mellifera) are indigenous to Europe and Africa, but they have been 

exported worldwide because of the important pollination services that they provide. Apiculture 

is estimated to contribute 162 billion USD to the global economy annually (Gallai et al., 2009). 

The true economic estimate of bee services is difficult to measure, especially since a foraging 

bee can range up to 3 km or more from the nest site (Winston, 1987).  Furthermore, unmanaged 

bee populations contribute to both local and exotic pollination, which cannot be accurately 

measured (Ricketts et al., 2004). The honey, pollen, wax, textiles, and produce industries are 

all directly impacted by honey bee populations. 

Unfortunately, honey bee populations are on the decline worldwide, and recently U.S. 

beekeepers have been losing roughly one third of their colonies over winter (Ellis et al., 2010; 

Neumann and Carreck, 2010).  Colony Collapse Disorder (CCD), although sensationalized by 

the media, has mysteriously facilitated these negative population trends; pesticides, microbes, 

viruses, parasites, and genetics have all been implicated for playing a role in its cause (Oldroyd, 

2007; Evans et al., 2009; Guzmán-Novoa et al., 2010; Dainat et al., 2012; Cox-Foster et al., 

2007). Regardless of the specific factors causing CCD, it is clear from diminished health and 

productivity that honey bee populations are under threat. 

Recent advances in image processing have proven empirically relevant in behavioral 

sciences and industry. Object recognition and colorimetry have paved the way for high-

throughput, observational studies, that objectively reduce human error. Studying bee behavior, 
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using image processing as a vehicle, would offer deeper perspectives on the larger issues in 

bee health sciences. 

 

1.1 Levels of honey bee health and defense 

Honey bee health is complicated to study, as there are five levels of defense relevant to 

honey bee health: individual, pairwise, colony, structural, and environmental (Evans and 

Spivak, 2010). Individual bees have their own immune systems, uniquely determined by their 

genetics. Since a queen mates multiply (and therefore her workers are sired by different males), 

individual innate-immunity in a single colony can be quite varied (Winston, 1987). 

Undertaking (removal of dead adults), hygienic behavior (removal of dead or diseased brood), 

and autogrooming (self-grooming) are all behavioral traits that preventatively protect a honey 

bee from pathogens (Evans and Spivak, 2010). 

Pairwise defense is the result of honey bee social interactions, resulting in elevated 

immunity, also known as social immunity. Trophallaxis, although primarily a mechanism for 

food exchange and communication, also exchanges beneficial gut microbiota, which has been 

shown to be important in bee immunity (Martinson, 2012). Allogrooming (grooming of 

another individual) is such an important pairwise defense that honey bees evolved a specialized 

dance to initiate grooming from another bee (Land and Seeley, 2004). 

Since healthy bee colonies are comprised of one reproductive female and ~50,000 of 

her offspring, immunological traits within the colony are quite interrelated and present a 

unique set of challenges (Evans and Schwarz, 2011). Thus, it is often advantageous to think in 

terms of colony health and colony immunity. Colony health, or the health of the 
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“superorganism,” is a complex combination of individual and pairwise defenses (Seeley, 1989; 

Winston, 1987). Stinging behavior is the most obvious form of an adaptive suicide-mechanism 

that benefits the health of the superorganism. In fact, immunologically compromised bees have 

been shown to altruistically remove themselves from the hive (Rueppell et al., 2010). Colony 

immunity, or the immune responses collectively pooled in a population, has been examined in 

several important studies using both behavioral (Wilson-Rich et al., 2009) and genetic (Evans 

and Pettis, 2005) approaches. Task allocation and age polyethism are behavioral manners by 

which individual bees perform individual tasks (Winston, 1987). These tasks are determined, 

in part, by the current health needs of the colony. 

Evans and Spivak (2010) highlight a nuanced difference between structural and 

environmental defenses. Environmental defenses are methods that bees use to exploit their 

surroundings for protection. The hive entrance functions as a structural bottleneck for 

intruders, such as parasites or diseased bees (Seeley, 1989). Bees also sanitize the hive using 

propolis from tree resins to create an antiseptic “envelope” that protects the colony from 

foreign microbes (Simone-Finstrom and Spivak, 2009). Amino acids from various pollen 

sources reduce oxidative stress and enhance bee longevity (Herbert and Shimanuki, 1978; 

Huang, 2012). 

 

1.2 The Vector Manipulation Hypothesis 

Studies of disease vectors and vector behavior are equally important in describing the 

health of the host species they affect. Many traditional studies in parasitism explore the host-

vector relationship as it relates to behavior, immunology, and prevention. Others study disease-
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host interactions, usually at the microscopic or viral level, in efforts to interrupt key moments 

of the disease’s life cycle, or to determine candidate cures. Several studies have recently 

revealed that in the vector-disease relationship, vector behavior may be altered based on the 

viruses they harbor; this is known as the Vector Manipulation Hypothesis (Ingwell et al., 2012; 

Cator et al., 2012). 

 The Vector Manipulation Hypothesis contends that vectors for disease perform a host-

preference shift from their infected hosts to their uninfected counterparts (Ingwell et al., 2012, 

Cator et al., 2012). This train of thought is quite important, since it suggests that diseases 

asymptomatically and facilitatively modify vector behavior to ensure reproductive success of 

the virus. 

 

1.3 The problem with connecting bee phenotypes and genotypes 

 Since the mapping of the honey bee genome in 2006, many efforts have been made to 

integrate macro- and molecular-level characteristics of bee health. Molecular-level 

contributions have proven effective, and as technology has advanced, the price for these 

methods has decreased over the past 10 years, while the quality of analysis has increased 

(Everett et al., 2010). Genetics has revolutionized the scientific approach in studies of bee 

behavior, immunology, and nutrition (DeGrandi-Hoffman et al., 2010). Even though the price 

of genetic analysis has decreased, most methods are still quite costly and time-consuming 

(Everett et al., 2010). Genetic data are also limited by reducing the temporal complexities of 

bee society into a single snapshot and removing live individuals from future studies. 
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 Genetics have been important in advancing our understanding of bee health, but 

behavioral studies of honey bees are equally complicated. Behavioral studies require hours of 

direct human observation, often in vitro or outside the context of a typical colony environment 

(Camazine, 1991; Robinson, 1987; Peng et al., 1987). Behavioral studies are nonetheless 

important, as they can capture social dynamics that have the potential to correlate with the 

ever-growing body of genetic honey bee data. This creates an unfortunate gap between bee 

behavioral and genetics literature. 

 

1.4 Computer vision and color space 

 Image processing is at the core of this thesis. The subtleties of colorimetry are 

especially important in Chapter 4. Pixel data from an m x n color image are stored on a 

computer in the form of an m x n x 3 matrix, with three color spaces typically used in their 

analysis: the RGB, HSV, and CIE-Lab color spaces. Coordinates for all three spaces depend 

on the software and language interpreting the image; numerical values are appropriately scaled 

in practice, and the values below are provided to assist with familiarity in understanding a 

critical component of this present work. 

The RGB color space, which is standard for digital photography and displays, 

represents color on a cube by assigning integer values between 0 and 255 on red, green, and 

blue (RGB) axes. These numbers translate to saturation values on a computer monitor, with 0 

representing unsaturated ([0 0 0] = white) and 255 completely saturated ([255 255 255] = 

black). This coordinate system is very straightforward to use, since the brain can easily 

visualize values on a cube. However, this ease-of-use does not translate well in analytical 
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studies; monitors, printers, and other imaging devices cannot display every RGB color 

combination (known as the device’s gamut), and images themselves are highly dependent upon 

how the imaging device stores pixel data numerically. At the data level, the three color 

channels are highly correlated with one another, making the measurement of differences in 

color difficult (Tkalcic and Tasic, 2003; Cheng et al., 2001; Ford and Roberts, 1998). 

 

Figure 1-1. Visualization of the RGB color space. (source: 

https://upload.wikimedia.org/wikipedia/commons/a/af/RGB_color_solid_cube.png) 

 

HSV—or hue, saturation, and value—is the color space used widely in generating 

computer graphics. In this conic color space, hue represents the rotation about a central axis, 

saturation the normalized unit distance vector from the central axis, and value the unit vector 

from 0 (= black) to 1 (= white) vertically along the axis. Although the coordinate system is 

https://upload.wikimedia.org/wikipedia/commons/a/af/RGB_color_solid_cube.png
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harder to visualize, this color space is very useful for imaging techniques (such as image 

thresholding), since value can easily be employed to detect reflections or shadows in an image. 

HSV inherits the same color-correlation issues as RGB, since it is simply a nonlinear 

transformation of that space. The HSV space also suffers from gamut and device dependence 

issues, as a result. 

 

Figure 1-2. Visualization of the HSV color space. (source: 

https://upload.wikimedia.org/wikipedia/commons/f/f1/HSV_cone.jpg) 

 

In 1976, the Commision Internationale de l’Eclairage (CIE) proposed a color space 

where the Euclidean distance between two colors is strongly correlated to human perception 

of color, a term known as perceptual uniformity (Tkalcic and Tasic, 2003). The space's axes 

are called L, a, and b, so the space was named CIE-Lab. CIE-Lab colors are represented on a 

sphere, where L ranges from 0 (= black) to 100 (= white), a ranges along a -50 (= green) to 50 

(= red) axis, and b ranges along a -50 (= blue) to 50 (= yellow) axis. Unlike its RGB and HSV 

https://upload.wikimedia.org/wikipedia/commons/f/f1/HSV_cone.jpg
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counterparts, CIE-Lab is device independent, making it a useful tool in many current analytical 

studies on color and computer vision. 

 

Figure 1-3. Visualization of the CIE-Lab color space. (source: 

https://openclipart.org/download/218708/joede--cie-color-space-coordinate-system-B3.svg) 

  

https://openclipart.org/download/218708/joede--cie-color-space-coordinate-system-B3.svg
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1.5 Aim 

The goal of this thesis is to address important behavioral components relevant to 

the more global problem of honey bee health, using digital imaging technology and 

behavioral modeling. 

In this thesis, I bridge the gap between genotypic and phenotypic honey bee studies by 

alleviating the financial burdens of genetics studies and the time pressures of behavioral ones. 

This thesis outline methods and results relevant to the individual, colony, and environmental 

levels of bee defense and honey bee health. 

 Chapter 2 highlights honey bee autogrooming, an important behavioral defense 

mechanism in individual bee health. Chapter 3 approaches bee health indirectly, focusing on 

the behavior of varroa, and tests the Vector Manipulation Hypothesis. Chapter 4 combines 

machine vision and colorimetry to study honey bee pollen, important in honey bee nutrition 

and environmental defenses. All three chapters are important in advancing our understanding 

of specific components of honey bee health. 
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CHAPTER 2.  

Automated assay and differential model of Western honey bee (Apis mellifera) 

autogrooming using digital image processing 
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CHAPTER 3 

Viral load alters behavior of bee parasite Varroa destructor 
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Abstract 

The invasive mite Varroa destructor has negatively impacted global apiculture, by 

being a vector for many viruses of the honey bee (Apis mellifera). Until now, most studies have 

been limited to varroa-honey bee or virus-honey bee interactions. The aim of this study is to 

bridge the important research gap of varroa-virus interactions by correlating varroa behavior 

with viral load. Ten-minute video recordings of 200 varroa mites were analyzed, and average 

speeds of the mites were compared to individual qPCR viral loads for deformed wing virus 

(DWV) and sacbrood virus (SBV). Statistical models reveal that colony, DWV, and SBV all 

play a significant role in mite behavior, suggesting that the varroa-virus interaction needs to be 

an integral part of future studies on honey bee pathogens. 
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3.1  Introduction 

 The invasive mite Varroa destructor has negatively impacted apiculture worldwide 

(Oldroyd, 2007). Varroa experienced an evolutionary host-shift from the Asian honey bee 

(Apis cerana) to the European honey bee (Apis mellifera) as early as 1960, and has been 

strongly implicated for playing a role in Colony Collapse Disorder and reduced health of bees 

in general (Odroyd, 2007; Winston, 1987). These ectoparasites go through two major phases 

in their life cycle—the reproductive and phoretic stages. During the reproductive stage, a single 

varroa female infests the cell of an immature honey bee (pupa), feeding on the hemolymph of 

the developing bee. In doing so, the parasite can directly vector several viruses within honey 

bee colonies (Rosenkranz et al., 2010; de Miranda et al., 2013). During the phoretic stage, 

varroa mites emerge with the enclosed bee and continue to feed on adult honey bee hemolymph 

for sustenance (Rosenkranz et al., 2010) and continue to spread viral pathogens horizontally 

among nestmates (Chen et al., 2006). Honey bee colonies can exceed 50,000 bees, with only 

one female reproductive (the queen) (Winston, 1987). When a queen is infected with viral 

pathogens, the health of the entire colony can be compromised as she then has the potential to 

vertically transmit virus to her offspring through oviposition (Chen et al., 2006). 

 The Vector Manipulation Hypothesis suggests that pathogens can modify the motility 

behavior or host preference for vector organisms, aiding in the spread of pathogens to the target 

hosts (Ingwell et al., 2012). There are many known examples in arthropods of viruses or 

parasites altering vector behavior (Ingwell et al., 2012; Cator et al., 2012). The Vector 

Manipulation Hypothesis supports the possibility that infected mite vectors could exhibit 

higher motility than uninfected individuals. Such behavioral modifications could determine the 
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success or failure for certain viruses to spread within and among honey bee colonies, and it 

could have significant consequences for global bee health and the means to mitigate disease. 

 The study of varroa is important for the future success of honey bee management. The 

introduction of varroa to the United States has heavily impacted colony health, honey bee 

economics, and integrated pest management (Oldroyd, 2007; Spreafico et al., 2001; Pettis, 

2004). The mode of action for many pesticides is similar for both insects and arachnids, both 

belonging to the same phylum, Arthropoda (Thrasyvoulou et al., 1988). Thus, treating for 

varroa can have negative implications on honey bee colony health, even leading to mortality 

within or of the colony (Thrasyvoulou et al., 1988). On the other hand, mites themselves impact 

colony health by vectoring pathogens (Tentcheva et al., 2004). This tradeoff forces beekeepers 

to make difficult decisions, and optimal varroa treatment strategy is not always clear. 

As a further complication, varroa have developed resistance to common pesticide treatments 

(Spreafico et al., 2001; Pettis, 2004), which has influenced modern studies emphasizing 

behavioral treatments over chemical ones. Since the introduction of varroa to honey bees has 

presumably modified bee behavior, most previous studies focus on how honey bees behave 

toward varroa or bee grooming (Ibrahim and Spivak, 2006; Harris, 2007; Giuffre et al., 2017). 

Most of these assays examine some indirect artifact of honey bee behavior, such as the freeze-

brood and sticky-board assays. One assay more directly measured the ability for a honey bee 

to bite and damage the exoskeleton or legs of varroa, rendering them dead or useless (Hunt et 

al., 2016). 

 More than 18 honey bee viruses have been identified, with six major viruses at the 

center of global scientific interest: deformed wing virus, sacbrood virus, black queen cell virus, 
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Kashmir bee virus, acute bee paralysis virus, and chronic bee paralysis virus (Chen and Siede, 

2007; Genersch and Aubert, 2010; de Miranda et al., 2013). Due to the bees available for the 

present study, focus is narrowed onto two major players in honey bee virology: deformed wing 

virus (DWV) and sacbrood virus (SBV). DWV, in particular, has been of scientific interest 

because of its connection with varroa transmission. Although DWV can be spread to larvae by 

vectored mites, physiological differences in infected individuals are not apparent until the adult 

stage of the honey bee (Chen and Siede, 2007; Genersch and Aubert, 2010; Gisder et al., 2009). 

The host bee pupates and often develops with deformed wings, rendering adults unable to 

contribute to foraging duties in the colony (Chen and Siede, 2007). SBV targets the brood cycle 

of honey bees, preventing a brood from pupating and thus resulting in larval death. Both these 

viruses have been found in varroa, though it appears varroa are only vectors for DWV and not 

SBV (Chen and Siede, 2007; de Miranda et al., 2013). The low mortality and virulence of 

DWV benefits both virus prevalence and varroa dispersal, whereas SBV increases the chance 

of varroa mortality alongside the dead honey bee brood (Mondet et al., 2014). The aim of this 

study is to test the Vector Manipulation Hypothesis by correlating mite behavioral phenotypes 

to their viral status, identifying the role this interaction plays in the entire honey bee system. 

 

3.2 Methods 

3.2.1  Mite collection 

 Mites were collected at the Lake Wheeler Honey Bee Research facility located in 

Raleigh, NC. Once varroa infestations were identified in a colony, mites were gathered using 

the sugar shaking method, a process that safely dislodges live mites off their honey bee hosts 



 

27 

(Dietemann et al., 2013). The mites were subsequently gently rinsed in phosphate-buffered 

solution, removing excess sugar from their exoskeleton (Dietemann et al., 2013). Mites were 

then placed in a 60 mm-diameter petri dish, creating a small arena for the mite to explore over 

the course of the experiment. Fifty mites were gathered from each of four unrelated colonies, 

yielding 200 experimental subjects. 

 

 

Figure 3-1. Experimental setup. A camera was mounted 27 cm directly above a collection of 10 petri dishes, 

with one varroa mite per dish. Two utility lamps were mounted in a square surrounding the recording area, 

angled to minimize glare off the dish and maximize illumination of the recording area (figure not to scale). 

Once the footage was recorded, mites were individually transferred to micropipette tubes and placed in a -80 °C 

freezer for subsequent analysis of viral loads. 
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All recordings were taken in a dark room with one Sony Handycam mounted approximately 

10 ⅝ inches (27 centimeters) above the dishes containing the mites (Fig 3-1). Two utility light 

clamps (Coleman) were installed with 10W (60W-equivalent) LED light bulbs (Lighting 

Science) and placed on the perimeter of the recording arena to provide uniform lighting. 

Beneath the dishes was a sheet of white paper. Individual mites were recorded for 10 minutes 

at 30 frames per second with 1 minute of buffering at the beginning of each video, for a total 

recording time of 11 minutes. A total of 40 videos were recorded over the span of three days, 

with ten dishes per recording. 

 

3.2.2  Quantitative PCR 

RNA was extracted from individual varroa mites (de Miranda et al., 2013) using the BioBasic 

EZ-10 Spin Column Total RNA Mini-Preps Kit, resuspended in water, and tested for Vbeta-

actin and Vdes-28s as reference genes (Evans, 2006) and for the same viral targets via real-

time PCR on the same machine using KAPA SYBR FAST One-Step qRT-PCR ABIPrism Kit. 

The reaction mix contained 2.5 L of SYBR, 0.25 L of primer, 0.2 L of KAPA RT Mix, 

1.25 L of water and 1L of sample for a final reaction volume of 5.2 L. The qPCR program 

ran at 42 °C for 5 min, 52 °C for 3 min, 95 °C for 3 min, then cycled 40 times through 95 °C 

for 3 sec, 58 °C for 25 sec, and 72 °C for 1 sec, then performed a melt curve step. Results were 

verified by melt curve temperature and normalized (Pfaffl, 2001) via GeNorm. 

  



 

29 

3.2.3  MATLAB 

 Videos were processed using a custom algorithm written in MATLAB R2105b (The 

Math Works Inc., Natick, Massachusetts, United States). This algorithm follows four steps, 

requiring minimal user intervention only on the first step: (1) Dish partitioning, (2) Frame 

extraction and thresholding, (3) Centroid calculation, and (4) Metric calculation. Steps 1-3 of 

the algorithm are visualized in Figure 3-2. 

 Because multiple dishes were filmed simultaneously, individual dishes had to be 

identified and segmented from the videos. The manual partitioning step forces the user to 

define boundaries on each dish using the first frame from the video and the MATLAB R2015b 

Image Processing Toolbox command imcircle (The Math Works Inc., Natick, Massachusetts, 

United States). This step serves a dual purpose in the context of this experiment. First, it 

enables the centroids calculated in step 3 to be joined and identified as belonging to the same 

varroa mite, then centered at the origin, irrespective of where the dish was placed in the 

recording area. Second, it allows for quick conversion between pixel and metric data, using the 

diameter of the petri dish as a scale. 

 Video frames were converted to grayscale. ImageJ (National Institutes of Health, 

Bethesda MD – USA) was used to estimate the proper binary thresholding value of (65 of 255 

or ≈ 0.26, 255 = white) for the mites, which was applied uniformly across every image 

sequence. It was important to ensure that the thresholding value was low enough to distinguish 

the mite from the background, but high enough to avoid tracking shadows cast by mites or dish 

edges. The result was a discrete sequence of images containing an isolated cluster of pixels, 

representative of a single varroa mite. On occasion, pixel values were misinterpreted in the 
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thresholding step. The MATLAB command regionprops (The Math Works Inc., Natick, 

Massachusetts, United States) computed the convex hull for candidate clusters of pixels that 

may have been the mite. If the cluster size was lower than the expected pixel area of a mite, it 

was eliminated as background noise. The centroid of the remaining pixel cluster was then 

interpreted as the Euclidean coordinate location of the mite, which was used to determine 

behavioral parameters that might be of interest. 

 

Figure 3-2. Visualization of the steps for the mite detection algorithm. For each video frame, (A) Petri dish 

edges were determined then (B) the images were converted to grayscale and binary images were produced using 

a threshold value of 0.255 on a 0-1 scale. Finally, (C) the convex hull of the mite was used to compute a centroid 

in the Cartesian plane. 

 

Standard measurements such as velocity and average speed are useful in analyzing 

complete, continuous, and smooth data. Within each mite’s movement track, there are isolated 

instances where a mite may have disappeared due to the mite crawling on the side of the petri 

dish. Varroa are extremely flat organisms, and therefore they appear as an ellipse when viewed 
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dorsally but only as a sliver when viewed laterally. Since any mite can be hard to detect if it 

turns edge-on, careful consideration had to be made in regards to how behavioral metrics were 

calculated in the presence of discontinuities in mite tracks. Furthermore, centroid calculation 

can introduce small perturbations in coordinate data. These perturbations improperly skewed 

typical rate-of-change calculations such as instantaneous speed and velocity. 

 To compensate, a surrogate metric for average speed was calculated in step 4 of the 

processing algorithm. Because the mites are approximately 1 mm in width, dividing the total 

track area covered by a mite per unit time by the mite width yields a reasonable estimate of the 

mite average speed. Each dish was gridded with 1 mm2 squares and treated as a binary 60 by 

60 “visitation matrix” (Figure 3-3). If a mite centroid was found in any given grid square, it 

was assigned a value of one, otherwise zero. The total area traveled, in square millimeters, 

could then be divided by the amount of time the mite was successfully tracked, resulting in the 

following estimate of average speed S: 

𝑆 (𝑚𝑚/𝑚𝑖𝑛) =  
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1 𝑚𝑚2 𝑠𝑞𝑢𝑎𝑟𝑒𝑠)

(𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑟𝑎𝑐𝑘𝑒𝑑 𝑖𝑛 𝑚𝑖𝑛𝑠)
×

1

1 𝑚𝑚
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Figure 3-3. Cartoon for average speed metric. The petri dish space was covered with a 60 mm by 60 mm 

logical square grid. When the varroa mite visits a square, a value of 1 is assigned to the square, otherwise, the 

default value for each square is 0. The logical matrix is summed, and that value is divided by the total number of 

minutes the mite was tracked. 
 

3.3 Results 

 The behavioral and qPCR data were statistically analyzed using JMP Pro 11.0 (SAS 

Institute, Cary, NC, USA). Mites were tested for a suite of 8 common honey bee viruses, 

however the collected mites only tested positive for DWV and SBV. Of the 200 total mites, 

194 remained for statistical analysis after accounting for various technical errors or small 

representation in categories (Table 3-1). Of those 194, whose tracks are displayed in Figure 3-

4, 120 tested negative for infection (Figure 3-4A). Colonies 1 and 2 were primarily uninfected, 

with only two mites from each colony testing positive for both DWV and SBV. In contrast, 

colonies 3 and 4 displayed a variety of infection patterns: uninfected (Fig 3-4A), infected with 

DWV only (Figure 3-4B), and infected with both DWV and SBV (Figure 3-4C). 
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Table 3-1. Breakdown of processed data set and exclusions. 

Of 200 mites, 6 were not included in statistical analysis: 1 mite was only infected by SBV, 3 mites were not 

analyzed by qPCR, and 2 mites could not be tracked for any portion of the ten-minute video. Infection types for 

the remaining 194 mites (uninfected/DWV-only/both) are also provided. 

 

colony 

analyzed not analyzed 

total uninfected 

infected SBV 
only 

qPCR 
failure 

video 
failure DWV both 

1 48 0 2 0 0 0 50 

2 46 0 2 0 0 2 50 

3 19 18 10 0 3 0 50 

4 7 20 22 1 0 0 50 

totals 120 38 36 1 3 2 200 
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Figure 3-4. Mite tracks grouped by colony and viral status. (a) Uninfected mites grouped by colony and sorted 

by average speed. (b) Mites only infected by DWV, grouped by colony and sorted by average speed. (c) Mites 

infected with both DWV and SBV, sorted by SBV viron count. 

(a) 

Colony 1 

Colony 2

 

Colony 3 

Colony 4 

Colony 3 

Colony 4 

(b) 

(c) 
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Table 3-2. Statistical models. Models were combinatorially tested across multiple levels. The leading rows of the table provides quick identification 

for the model and parameters of interest for that model (i.e., Model CD uses parameters α, β, and γ). Poor parameter estimates are highlighted (light 

red). AICc and BIC metrics were normalized according to the expression ∆IC = IC - min(IC), then color-coded on a scale from 0 (green, strong 

information criterion model selection) to max(∆IC) (red, unfavorable information criterion model selection) so that model selection could be quickly 

verified. Models with IC = 0 are boldfaced. Additional rejected models (p > .05) not shown. 

  

est SE low high SE est SE p est SE p est SE p D0 S0

37.4 2.1 -11.8 7.9 3.7 - - - - - - - - - - - C 0.009 1.1 0.0 3

37.5 2.2 - - - -0.045 0.1 0.66 - - - - - - - - D 0.658 8.4 1.0 1

37.3 2.2 - - - - - - -0.02 0.11 0.82 - - - - - S 0.820 8.6 1.1 1

37.9 2.2 -12.4 8.4 3.7 -0.11 0.1 0.27 - - - - - - - - CD 0.013 2.0 4.0 4

37.6 2.2 -12 8 3.7 - - - -0.07 0.11 0.53 - - - - - CS 0.018 2.8 4.9 4

38.1 2.2 -12.5 8.7 3.8 -0.24 0.2 0.26 0.15 0.22 0.50 - - - - - CDS 0.022 3.7 8.8 5

36.2 2.3 - - - -0.16 0.2 0.44 1.06 0.4 0.01 -4.6 1.6 0.005 5.2 3.5 DSN 0.040 4.3 3.2 3

36.4 2.2 -10.8 6.3 3.7 - - - 0.66 0.35 0.06 -3.6 1.6 0.028 5.2 3.5 CSN 0.005 0.0 5.1 5

37.0 2.2 -11.4 7.1 3.7 -0.25 0.2 0.22 0.91 0.4 0.02 -3.7 1.6 0.025 5.2 3.5 CDSN 0.006 0.6 8.8 6

C D S N

α (intercept) + β*colony + γ*kDWV + δ*SBV + θ*(kDWV-D0)*(SBV-S0) = average speed (mm/min)

parameter estimates model evaluation

α β γ δ θ

model 

terms

model 

p DAICc DBIC

num 

dof

mm/min mm/min mm/min/kDWV mm/min/SBV 1e-3 mm/min/(kDWV*SBV)



 

36 

The statistical model 

Average Speed (S) =  α (intercept) +  β ∗  Colony +  γ ∗  kDWV +  δ ∗  SBV 

 + θ ∗  (kDWV −  D0)  ∗  (SBV −  S0) 

includes terms for intercept, colony (C), DWV (D), SBV (S), and a nonlinear interaction (N) 

between viruses. We combinatorially tested models containing or omitting each of these terms, 

e.g. Model CD contains only the intercept, colony, and DWV dependence. Additionally, we 

tested models with nonlinear dependence on DWV or SBV. Fits for parameters are shown in 

Table 3-2. Since the order of magnitude of DWV virons was significantly larger than of SBV 

virons, we use kilo-DWV virons (kDWV) as a unit of DWV viral count. Fits of statistical 

models were tested, with average speed (mm/min) as a response variable, and colony, kilo-

DWV virons, and SBV virons as the effect variables. In general, models were rejected at a 

level of α = 0.05; additional rejected models are not shown. 

Colony effects are not the major effects of interest in this study. However, it was 

important to establish whether colony-level effects were present before building up more 

complicated models. Model C was accepted with a p-value < 0.01 (numerator d.f. = 3), 

indicating that the colony of origin influences average speed of the mite. 

 The main effects of viral loads (kDWV, SBV) on average speed were explored in 

Models D and S, ignoring colony-level effects. Model D (p = 0.66, d.f. = 1) and Model S (p = 

0.82, d.f. = 1) were both rejected. However, addition of the nonlinear viral interaction yielded 

Model DSN, which was accepted with a p-value of 0.04 (d.f. = 3). Finally, Model CDS (p = 

0.02, d.f. = 5) and Model CDSN (p < 0.01, d.f. = 6) were both accepted. 

 



 

37 

 Selection of appropriate and parsimonious statistical models was done using Bayesian 

information criterion (BIC) and corrected Akaike information criterion (AICc), two 

philosophically different approaches for model selection (Table 3-2). Both metrics attempt to 

maximize goodness-of-fit, while minimizing the number of parameters used to avoid 

overfitting the data. BIC and AICc are reported in Table 3-2. 

 

3.4 Discussion 

It is not the aim of this paper to philosophically discuss merits of BIC versus AICc, as 

other contributions can be found discussing this issue (Burnham and Anderson, 2004; Link 

and Barker, 2006). Instead, model selection will be supported using biological arguments, and 

emphasize the need for future work to be done using similar assays. 

 BIC favors selection of Model C (smallest BIC) which suggests that mite viral load 

seems to be unrelated to mite behavior. At the colony level, phoretic mites may modify their 

behavior based on environmental conditions, such as bee population, brood availability, hive 

temperature, or even bee grooming. Although none of these variables were measured in the 

current study, environmental conditions clearly play a direct role in virus’ ability to spread by 

impacting vector motility. It could be argued that colonies have different viral profiles 

responsible for these global effects. Unfortunately, four colonies were not enough to determine 

such effects. 

 AICc selects Model CSN, which also has the lowest p-value. The estimates of γ 

(mm/min/kDWV) have high variability between models, are nearly centered at zero, and have 

high p-values, bringing to question the kind of impact DWV has on mite behavior. However, 
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the selection of statistical models that include cross-terms without also including the related 

linear terms has been a topic of debate in the statistical community (Nelder, 1998; Rindskopf, 

1990). 

The most complicated Model CDSN also performs very well, but its AICc is higher 

than Model CSN's AICc. Nonetheless, Model CDSN is of interest, because while DWV is 

known to replicate in varroa, SBV is not (Chen and Siede, 2007; de Miranda et al., 2013). SBV 

should not be modifying varroa RNA, and therefore, should have no interactive relationship 

with their behavior (de Miranda et al., 2013). One possible explanation for this might be that 

SBV plays a more important role in colony-level effects, which indirectly changes their 

behavior, however the Model CS(C*S) with colony and SBV crossed was rejected at level α = 

0.05. Recent studies show that viruses can interact with one another in nontrivial ways, 

including altered host susceptibility due to a breakdown in physical barriers in both plants and 

animals, which may be true for vectors, as well (DaPalma et al., 2010; Syller, 2012; Celum et 

at., 2004). Although SBV does not modify varroa RNA, it could be that SBV-bearing mites 

are more susceptible to effects from DWV, or that SBV replication occurs in the presence of 

DWV, but this possibility will require further study. Our data indicate that the DWV-SBV 

interaction generally causes mites to move more slowly. SBV encourages faster mite 

movement, except in Models S, CS and CDS, where the p-values for δ (mm/min/SBV) 

estimation are high (Table 3-2). 

Many questions remain, such as how or why DWV and SBV interact. This study had 

mite selection and tracking performed blind to the types and levels of infection: it was possible 

that none of the mites were infected, or that they had a suite of viruses with even more 
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complicated levels of cross-infection. The limited results of this study suggest the need for a 

more controlled experiment, where varroa are inoculated with specific virus levels and types, 

or where varroa are gathered from more than four colonies over a longer timeframe, with 

greater knowledge of colony phenotypes or environments. 

 This assay is a novel attempt at exploring varroa behavior, in addition to tying results 

to the Vector Manipulation Hypothesis. The AICc values for all models suggest that viral loads 

play a key role in how varroa explore their surroundings, supporting this hypothesis and akin 

to findings in other areas of entomology (Ingwell et al., 2012; Cator et al., 2012). Varroa 

behavior should be studied more for the role that it plays in the host-vector-disease interaction, 

and this study provides a framework for such future studies. 

The bioassay developed in this paper attempts to facilitate data gathering by making it 

high-throughput and easy-to-track. It could be modified, e.g. by using particle image 

velocimetry, or restricting the mite to the upper or lower surface of the dish. 

Finally, this study opens the door for a host-preference study on varroa. Honey bee 

pheromones are notably vital for communication in the dark environment of a hive (Winston, 

1987). Using a similar experimental design, one could test viral effects on host preference for 

A. mellifera drones, versus workers, versus A. cerana. Perhaps mite viral ethology could better 

explain this evolutionary jump, or further support it. Testing and measuring mite behavior in 

vitro may could help untangle the more complicated vector-disease dynamics of the hive. 
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CHAPTER 4 

A classification algorithm for honey bee (Apis mellifera) corbicular pollen using digital 

colorimetry 
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Abstract 

Pollination is an important ecosystem service for agriculture, and pollen is the main protein 

source for bees that promotes their health and productivity. Understanding the source(s) of 

pollen collected by foraging bees is thus important for understanding foraging ecology and bee 

health. Many modern techniques for identifying pollen loads brought back to colonies of 

Western honey bee (Apis mellifera) are either time-consuming, expensive, or both. We present 

a naïve Bayes classification algorithm that uses pollen pellet color as the main identifying 

feature, and we develop a cheap, fast method for identifying species of honey bee pollen loads 

using a flatbed scanning device for data acquisition. This method could be combined with 

additional information such as time of year, geographical location, or other pollen databases to 

further expand our knowledge of pollinator services. We identify procedures to standardize the 

construction of a common color-library that links pollen type, plant source, and other 

information (e.g., genetic sequence, chemical analysis) to facilitate pollen identification in a 

rapid, objective manner. 
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4.1 Introduction 

Pollen is the male gamete of flowering plants that is necessary for sexual reproduction. 

Angiosperms often require animal vectors for cross-pollination, and the Western honey bee 

(Apis mellifera) has historically been the most important managed pollinator in natural and 

agro- ecosystems (Winston, 1987). Angiosperm flowers from Europe and Asia have developed 

a wide array of colors, patterns, and scents to advertise resource abundance, and are known to 

have coevolved with honey bees as their primary pollinator (Menzel, 1985; Hill et al., 1997; 

Raguso, 2008). As such, since bee services are so critical, beekeepers from across the United 

States transport their colonies to various crops to perform pollination services (Almond 

Almanac, 2015), including citrus, squash, and almonds (Winston, 1987; Aizen and Harder, 

2009; Morse and Calderone, 2000; Gallai et al., 2009). One recent study evaluated global 

pollinator services at $162 billion USD annually (Gallai et al., 2009), a significant portion of 

which is provided by honey bees. 

 Pollen is the primary source of protein for developing larvae and young adult honey 

bees less than four days old (Winston, 1987; Crailsheim et al., 1992). Honey bees are 

opportunistic and generalist foragers, but an individual forager collects food from only one 

plant source at a time (floral constancy) (Winston, 1987). This behavioral fidelity results in 

pollen grains on the surface of the visiting forager being deposited on the female structures of 

subsequent flowers, facilitating cross pollination and therefore the reproductive success of the 

plant (Winston, 1987; Dai and Law, 1995). At the colony level, however, different foragers 

can collect pollen from many different plant sources, often bypassing species that could 

potentially be more rewarding (Winston, 1987). Excluding abundance and availability, factors 
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such as pollen grain size, shape (Nicholls and Hempel de Ibarra, 2016), and olfactory cues 

(Arenas and Farina, 2012) all seem to influence the selection of certain plants over others, 

though some studies debate the specifics of their relative importance (Pernal and Currie, 2002).  

Honey bees do not consume raw pollen brought back to the hive directly. When honey 

bees return to the hive with pollen in their corbiculae (or pollen-baskets), they seek out the 

areas within the nest, directly adjacent to the developing brood, where pollen is stored, then 

directly deposit their pollen load into a cell. Subsequently, middle-aged food-processor bees 

tightly pack the pollen into the cell, which over time may contain pollen from a variety of 

different plants. Honey, nectar, and glandular secretions are added by the processor bee, which 

facilitates beneficial microbes (mostly yeasts and fungi) fermenting the packed pollen into 

what is known as “bee bread” (Herbert and Simanuki, 1978). Bee bread is the final product 

consumed by developing brood and young adult bees, and it provides not only the main protein 

source but also sugar, starch, lipids, fiber, and pectin (Herbert and Simanuki, 1978). 

Despite the nutritional importance of honey bee pollen, there has been a surprising lack 

of emphasis on quickly and accurately identifying a given pollen’s source. Most scientific 

studies either assume plant sources based on pollen grains found in honey (González-Miret et 

al., 2005) or were done before personal computers became widely accessible (Hodges, 1974; 

Kirk, 1994). A major reason for this scientific gap is that manual identification of a relatively 

small sample (< 1000) of pollen pellets can take many hours, requiring a high level of skill or 

equipment. To complicate matters further, only a handful of individuals have written honey 

bee pollen color keys, likely due to the labor required to produce a thorough and accurate 

pollen key (Hodges, 1974; Kirk, 1994; Pollen Color Chart, 2014; Sheffield Beekeepers' 
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Association, 2014). Recent studies on pollen have used financially or time-expensive 

techniques, such as chemical composition (Almeida-Muradian et al., 2005), spectroscopy 

(Pappas et al., 2003), and microimaging (France et al., 1997). 

Many algorithms for digital color imaging have proven successful in several industries. 

In textiles, for example, quality control for color in fabrics has been digitized, reducing the 

need for human intervention on defects (Anagnostopoulos et al., 2001). In agriculture, 

colorimetry has been used to test produce for freshness and pests (Brosnan and Sun, 2004). 

With interest in pollinator health in general and honey bee nutrition in particular, there is a 

great opportunity to incorporate colorimetry into pollen identification based on established 

technologies available in other industries. The goal of this study is to develop a high-

throughput system of pollen identification based on color to more thoroughly process and 

describe the foraging efforts of individual honey bee colonies. 

 

4.2 Materials and methods 

4.2.1 Pollen collection 

Pollen samples were gathered from individual colonies using pollen traps on during the 

summer of 2014, in Newark, Delaware, then stored in bags in a -80 oC freezer until further 

processing. Pollen pellets gathered in this manner average approximately 3 mm in diameter. 

Pollen samples were manually sorted by genera into piles and characterized based on their 

colors. Sorting was verified microscopically using other pellets from the same pile. In all, eight 

different pollen species were manually determined as an accurate overall-majority of the pollen 

gathered by the colony that day. Fifty individual pellets were randomly subsampled from each 
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of the eight species. Each subsample was scanned using a Canon LiDE 120 scanner at 600 dpi, 

then saved in uncompressed .tif image format. These eight images are defined in this paper as 

the “pollen library images.” 

 Two types of “pollen data images” were then fashioned similarly as described above: 

non-blind, where the pollen pellets were manually sorted then scanned; and blind, where pollen 

pellets from that day were randomly spread out and scanned, without any manual sorting 

performed. In the blind scans, one image was characterized as “wet” pollen, or pollen scanned 

directly from the -80 oC freezer, and one image was characterized as “dry” pollen, the same 

pollen from the wet sample, but heated at 30 oC for two hours. 

 

4.2.2 Image analysis 

First, all scanned images were color-corrected in the RGB color-space using an X-Rite 

Color Checker® with polynomial regression analysis (Figure 4-1a) (Hardeberg, 2001). Then, 

pollen pellet edges were detected using a thresholding-and-clustering algorithm (Figure 4-1b). 

In the process of arranging pollen pellets to be scanned, small flecks of pollen can break off 

and be seen in the resulting image. At a resolution of 300 dpi, the mean pixel area for the pollen 

pellets was approximately 867 pixels (≈ 2.8 mm diameter) with a standard deviation of 311 

pixels. All clusters smaller than 100 pixels in area were interpreted as noise, and thrown out 

(Figure 4-1c). Many studies in colorimetry have established the device dependence, correlation 

of color channel components, and poor performance of mathematical operations in the RGB 

and HSV color spaces (Tkalcic and Tasic, 2003; Cheng et al., 2001; Ford and Roberts, 1998). 

In 1976, the Commision Internationale de l’Eclairage (CIE) proposed a color space  
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Figure 4-1. Steps in image processing. (a) Images were cropped and colors calibrated to color checker. Pollen pellets were segmented by thresholding. 

Segmented objects with area < 100 pixels were discarded. (b) Segmented pellets for each known species form pellet image libraries. (c) For each pellet, 

RGB color values are converted to CIE-Lab values. (d) Pixels from each pellet are averaged. (e) Each known species is represented by 50 pellets’ 

individual color measurements. 
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where the Euclidean distance between two colors is strongly correlated to human perception 

of color, also known as perceptual uniformity (Tkalcic and Tasic, 2003). The CIE-Lab (or, 

more simply, Lab) color space is the industry standard in many current applications of color 

science. Since the goal of this study was to actively compare the observed pixel colors between 

the library and data images, all pixel data were numerically converted from the RGB to the 

Lab color space. 

 

4.2.3 Naïve Bayes classification 

 The naïve Bayes (NB) classification algorithm has many applications in image 

recognition, email spam filtering, and document classification (Mitchell, 1997). One reason 

for its popularity is that it can decouple multivariable input distributions and independently 

estimate each variable as a one-dimensional distribution. Since images are represented in three 

dimensions (or channels, i.e., Lab color space has variables L, a, and b), NB interprets each 

channel independently. 

 There are two core components in a NB classification scheme: the training model and 

the prediction step. Rigorous proof and details of this process can be found in (Mitchell, 1997). 

Presented here are generalized steps (modified from Mitchell, 1997) in the context of image 

analysis and pollen. 

 Given an unknown pollen sample’s Lab color values  

X = (L, a, b) (or, without loss of generality, X = (x1, x2, x3)),  

and a known discrete set of pollen classifications, by genera,   

C = (clover, sumac, corn, …) = (C1,C2,…,Ck), k = number of known pollen sources, 
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we wish to classify the unknown pollen X as y into one of our known sources, or equivalently, 

find the maximum probability that a pollen sample belongs to a class, given its Lab values, 

𝑝(𝐶𝑘|𝑿). Applying Bayes’ theorem, we have 

𝑝(𝐶𝑘|𝑿) =  
𝑝(𝐶𝑘)𝑝(𝑿|𝐶𝒌)

𝑝(𝑿)
  . 

The term 𝑝(𝑿) represents the probability that pixel values belong to a pollen sample, which 

assumed to be true, and therefore, is equivalent to 1. The term 𝑝(𝐶𝑘) represents the underlying 

distribution of the pollen classes; ideally, this would be the true distribution of pollen samples 

that bees bring back to the hive. This distribution is sensitive to many external factors such as 

weather or time of year. For simplicity, we assume that 𝑝(𝐶𝑘) is the uniform distribution 

(𝑝(𝐶𝑘) = 1/𝑘). 

Assuming the three color channels are conditionally independent, the underlying 

distributions of the Lab values, given their class, can be decomposed as a product: 

  𝑝(𝑿|𝐶𝒌) =  𝑝(𝑥1, 𝑥2, 𝑥3|𝐶𝒌) 

     = 𝑝(𝑥1| 𝐶𝒌)𝑝(𝑥2| 𝐶𝒌)𝑝(𝑥3| 𝐶𝒌)  

     = ∏ 𝑝(𝑥𝑖| 𝐶𝒌)𝑖 . 

Replacing this result and the underlying assumptions into the equation from Bayes’ theorem, 

we have, 

𝑝(𝐶𝑘|𝑿) =  
1

𝑘
 ∏ 𝑝(𝑥𝑖| 𝐶𝒌)𝑖  . 

This equation is also known as the NB training model. Since we wish to maximize the 

probability 𝑝(𝐶𝑘|𝑿) over the classes 𝐶𝑘, the final classification scheme for y is 

 𝒚 = 𝑝(𝐶𝑘|𝑿) =
1

𝑘
 argmax𝐶𝑘

 ∏ 𝑝(𝑥𝑖| 𝐶𝒌)𝑖 . 
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This equation is also known as the NB prediction step. 

 

4.2.4 Pollen lookup table and data analysis 

 Images of 50 manually sorted pollen pellets from 8 plant species were scanned at the 

above specifications (Figure 4-1). Pollen color was measured as the mean tristimulus Lab value 

of all pixels within the boundary of a single pellet, then stored as a 1x3 vector in a pollen 

lookup table, or “pollen library”. Thus, the resulting library was a 400x3 matrix of mean Lab 

values. The MATLAB (The Math Works Inc., Natick, Massachusetts, United States) routine 

fitcnb was used on the library to train the NB model. Pollen color for both sorted and unsorted 

data images were similarly converted into Nx3 matrices. The routine predict compared these 

data to the library model. 

 

4.3 Results 

4.3.1 Presorted pollen image 

 One image of presorted pollen was used as verification for the classification scheme 

(Figure 4-2). In this image, 12 pollen clusters were sampled and compared to the NB model. 

Altogether, this image had pollen from 11 plant species, with 8 of the 11 stored in the library 

matrix, and 3 from species not in the library. The last of the 12 clusters was used as a blind test 

to ensure there was no human confirmation bias in development of the classification algorithm. 
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Figure 4-2. Performance of naïve Bayes 

classification on a presorted data set. Pollen 

samples were presorted and compared against the 

known library (L1-8) of pollen species by color. 

U1-3 were three unknown pollen samples not 

present in the known library. Resulting 

classifications, Type-I and II errors, and error rates 

(green <= 10% incorrect, yellow <= 30%, red > 

30%) are highlighted. 
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L1 clover  

T2E = 5/26 (19%) 

L2 sumac  

T2E = 1/16 (6%) 

L3 corn 

T2E = 2/17 (12%) 

   

L4 willow  

T2E = 0/16 (0%) 

L5 blind-type A  

T2E = 0/26 (0%) 

L6 dandelion  

T2E = 3/21 (14%) 

   
L7 blind-type B  

T2E = 2/30 (7%) 

L8 blind-type C  

T2E = 0/20 (0%) 

U1  

T1E = 28/28 (100%) 

   
U2  

T1E = 29/29 (100%) 

U3  

T1E = 19/19 (100%) 

U4 sumac  

T2E = 5/20 (25) 

   



 

56 

We define a Type I error (false positive) as the incorrect classification of a pollen 

sample that is not part of the pollen library. Similarly, we define a Type II error (false negative) 

as the classification of a pollen sample as one species, when it belongs to another. Overall, the 

NB predictor had a within-species Type-II error rate of 25% or less. Across the whole known 

pollen data set, approximately 9.4% (results not shown) of the pollen was misclassified. Since 

NB is a closed-set classification algorithm, data for pollen not already in the library results in 

a 100% Type-I error rate. Although the highest Type-II error rate happened to occur within our 

blind cluster sample, it should be noted that this was consistent with pollen 2 being improperly 

classified as pollen 6 (Figure 4-2). Principal component analysis (PCA) on the pollen library 

also revealed that the 95% confidence ellipses for pollens 2 and 6 have substantial overlap 

(Figure 4-3). 
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Figure 4-3. Pollen libraries against principal components and confidence ellipses. Principal component 

analysis was performed on the 8 pollen libraries. The resulting 95% confidence intervals on the principal 

component coordinates are indicated with ellipses. 

 

For NB models, there is an important assumption of independence for the variables 

used to train the model. The angles between vectors on the PCA biplot (Figure 4-4, Table 4-1) 

indicate correlation between the L, a, and b, color channels in the pollen library. Although 

these correlation values indicate a violation of the independence assumption, empirical work 

has been done to show that often this violation does not matter, in practice (Domingos and 

Pazzani, 1997; Zhang, 2004).  
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Figure 4-4. Biplot for the principal components. The original Lab axes are projected onto the first two principal 

component axes, using the eigenvectors from the first two components. The angles between the three vectors (θ) 

determine the correlation levels between the L, a, and b channels according to the relationship r = cos(θ). 

Correlations are provided in Table 4-1. 
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Table 4-1. Lab tristimulus channel correlation values. Angle measurements between the L, a, and b vectors 

from Figure 4-4. These angle measurements are used to calculate the correlation between the original tristimulus 

image channels. Since the L-a and a-b channels are 60% correlated, the NB independence assumption (Section 

4.2.3) is violated. Since L and b are the least correlated of the three variables, pollen comparisons should be made 

on these two channels when PCA is unavailable on an unknown data set. 

 

 

 

 

4.3.2 Unsorted pollen images 

Several unsorted pollen images were also scanned for analysis. However, constructing 

a complete pollen library for hundreds of geographically and seasonally relevant plant species 

is an onerous task. As such, one important underlying assumption in the analysis of these data 

images is that the pollen library is complete. 

Water content of the nectar a forager mixes with pollen grains in the corbicula mostly 

determines pollen moisture (Winston, 1987; Reiter, 1947). Other factors, such as time in a 

pollen trap, exposure to heat, and evaporation/condensation in the freezer, can change pollen 

moisture, resulting in nontrivial color changes on the surface of the pellet. Therefore, it was 

important to characterize the color changes that might be observed in a data set. Approximately 

650 pollen samples were taken directly from the freezer, spread out on a piece of paper, and 

imaged. Then, the paper was transferred to a hot plate, heated at 30 oC for two hours, 

transferred back to the scanner, and imaged again.  

In our library, L and b are the least correlated color channels (Table 4-1), suggesting 

that L-b plane may be the best ℝ2 -projection for visualization of the data samples. L-b 

coordinates for wet versus dry are visualized in Figure 4-5, and changes in the NB prediction 

L 

θ = angle (radians) correlation = cos(θ) 

L a b L a b 

x 2.22 1.28 x -0.60 0.28 

a  x 0.93  x 0.60 
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are quantified in Table 4-2. Pollen types 5 and 8 experienced the largest net change in their 

classifications, with approximately 170 pellets directly transferring from one class to the other. 

Since the color change because of drying out is inconsistent, a constant color shift for moisture 

would not correct the discrepancies. Therefore, this pilot comparison highlights the necessity 

to control pellet moisture, in both library and data image acquisition.  
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Figure 4-5. L-b scatterplot of wet and dehydrated pollen pellets. Wet pollen pellets were spread out, scanned, 

and classified using the Bayes model trained by the library (red). The same pellets were dehydrated and 

reclassified (blue). Shifts in the L-b plane are indicated by black arrows. Moisture level affects classification in 

some pollen data (8 to 5), but not others. The average norm for above data shifts was ~2.9 units, with a standard 

deviation of ~1.7 units. For visualization purposes, this figure contains only a random subsample (155 pellets) of 

the original image (648 pellets). Full data set is outlined in Table 4-2. 
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Table 4-2. Wet versus dehydrated pollen classification. The trained NB model predictions for a wet and 

dehydrated pollen data image. Predicted class counts are colored from low (blue) to high (yellow), and ∆count is 

colored from net loss (red) to net gain (green). One pollen sample was lost when transferring between the hot 

plate and the scanner. 

 

  

 

Predicted class 
Wet  

counts 
Dehydrated 

count 
 

∆count 

1 8 5 -3 

2 132 147 15 

3 38 46 8 

4 2 0 -2 

5 66 242 176 

6 31 12 -19 

7 201 188 -13 

8 170 7 -163 

Total 648 647  
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4.4 Discussion 

 Pollen identification is difficult to study, as the process can be onerous, expensive, and 

subjective rather than empirical. Nonetheless, there are many important reasons to empirically 

quantify pollen loads for their plant of origin. For example, growers contract honey bee 

colonies for their pollination services to improve yield, but verifying that the bees are actively 

foraging on the target crop is often anecdotal (Waller, 1980). One suggested method is 

quantifying the number of bees per 100 flowers (Waller, 1980), even though abiotic factors 

such as weather or time of day may skew these data. It would be much easier and statistically 

reliable to trap, image, and interpret pixel data from pollen loads to quickly confirm the 

percentage of pollen deriving from target versus non-target plant species. This method, 

therefore, has the potential to be developed into a simple and convenient app on a mobile phone 

that can quickly ascertain such information in the field and in real time. 

 

4.4.1 Limitations 

NB is a closed-set classification scheme; all data must be cast into an existing 

classification, even when it results in Type-I errors. Type-I errors are very difficult to deal 

with, since catching them requires manual identification, which fundamentally conflicts with 

the purpose of this study. Open-set recognition techniques, such as the 1-class SVM, 1-vs-set-

machine algorithms, and the nearest non-outlier algorithm, attempt to address this problem by 

allowing the rejection of samples from a class, but current applications are limited to many 

spatial features in an entire image, not tristimulus pixel color (Wilber et al., 2013; Bendale and 

Boult, 2015). Unfortunately, open-set algorithms are very computationally expensive 
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compared to closed-set techniques such as NB, and require a substantially-sized training set to 

succeed (Wilber et al., 2013; Bendale and Boult, 2015; Joshi et al., 2009). So-called “active 

learning” or “deep learning” models are relatively new, and beyond the scope of this study 

(Joshi et al., 2009; Rakotomamonjy et al., 2007). NB performs very well with a relatively small 

training set, and despite the independence assumption violation (common in image analysis), 

has become the modern standard in many face recognition and classification studies (Wold et 

al., 1987; Turk and Pentland, 1991; Kim et al., 2002; McCann and Lowe, 2012). Variables 

such as time of year, location, or weather might further improve pollen classification precision 

within the NB framework, and storing these informational variables is financially cheaper than 

storing the pollen itself. 

Of course, the quality of pollen libraries is just as important as the data analysis. Such 

databases are only as strong as the level of manual verification that goes into constructing 

them, a labor-intensive process that would benefit from the contributions of many individuals, 

across multiple disciplines. This study has established the need for broader pollen color 

databases and the standardization of color by first dehydrating pollen samples. 

Finally, much more work needs to go into the colorimetry of pollen, particularly 

sensitivity analysis of the Lab color space in distinguishing commonly encountered pollen 

colors, such as yellows and oranges. 
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4.4.2 Future work 

Honey bees are known to fly up to 3 km from the hive in their foraging efforts. Time 

of year, resource abundance, and local ecology all play important roles in the plant species that 

a pollen forager might encounter, and therefore, the quality of the pollen library. To capture 

some of these complicated dynamics, a set of 4 images, spanning 4 days and 2 geographical 

locations, were also classified using the NB model. Unfortunately, due to the small data set, 

no strong connections between time of year and geographical location to pollen collection can 

be drawn in this study, but may be of interest to the reader (Figures 4-6 and 4-7), and is left for 

future work.  

 

Figure 4-6. NB classification for four pollen images by hive and date. Each data sample came from 2 hives, 

across 4 unique images taken on different dates.  
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 Another important application for rapid pollen identification could help mitigate the 

negative effects of environmental contaminants and therefore improve bee health. Previous 

studies have demonstrated that pollen contains numerous pesticides and other chemical toxins 

from the environment (e.g., Traynor et al., 2016; Mullin et al., 2010). Because corbicular pollen 

can contain up to ~5.5% lipids (Herbert and Simanuki, 1978), many lipophilic classes of 

pesticides and herbicides are inadvertently brought back to the colony and sequestered in the 

wax comb (Škerl et al., 2009; Chauzat et al., 2006; Johnson et al., 2010; Mullin et al., 2010). 

It would be beneficial to beekeepers if they could scan pollen loads to quickly diagnose what 

types of plants the bees are visiting, particularly when a colony dies suddenly or exhibits 

symptoms of an acute pesticide exposure.  

Along with pesticide residues, it has been shown that pollen can be used as a 

bioindicator for pollution levels in the surrounding environment, which may have a subtle 

effect on bee health via oxidative stress and negatively influence average age in a colony 

(Kevan, 1999; Metcalfe and Alonso-Alvarez, 2010). The effects of urbanization on 

biodiversity have recently come forward as an important area of research in understanding the 

environment, particularly in applied entomology (Pompeu et al., 2005; McKinney, 2002; 

Pećarević et al., 2010; Meineke et al., 2013). Bees are an excellent system for studying plant 

biodiversity in any environmental setting, as they bring information about local plant diversity 

to a centralized location. If the current bottlenecks in pollen identification can be overcome, it 

would broaden the types of urbanization studies that could be done, and thus our approach may 

facilitate this process. 
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Other studies have suggested pollen choice may involve nutritional difference in 

protein (Di Pasquale et al., 2013; Herbert and Shimanuki, 1978) or amino acid (Di Pasquale et 

al., 2013; Cook et al., 2003) content of the host plant. One known aspect of pollen nutrition is 

that honey bee colonies sourcing pollen from monocultures perform worse than colonies with 

multiple pollen sources (Di Pasquale et al., 2013; Goulson et al., 2015; Vaudo et al., 2015; 

Bretagnolle and Gaba, 2015). This is likely because different pollen sources vary in their amino 

acid content, which bolsters the immune response towards oxidative stress in honey bees (Di 

Pasquale et al., 2013; Huang, 2012). 
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4.5 Conclusion 

We have established a framework to study the color of pollen in the CIE-Lab color 

space using a closed-set NB training model. Our method demonstrated the ability to classify a 

known pollen data set (~ 9.4% Type-II error rate) with a minimal training set (50 pellets per 

species in the pollen library). We emphasize a need for data standardization procedures, 

particularly with the moisture levels during image capture. An open-set classification 

algorithm might prove more useful with the overwhelming number of plant species on which 

honey bees forage, but NB is the standard in most classification studies. Therefore, it remains 

crucial that colorimetric data are correlated with other variables, such as time of year or 

geographic location, and corroborated with other, more expensive, and time-consuming pollen 

databases. By developing a common, vetted database of pollen sources, our technique may 

alleviate a severe bottleneck in data processing and pollen identification that could have 

profound implications to a wide variety of applications. 
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CHAPTER 5 

Conclusion 

 How can we bridge the gap between behavioral and genetic studies with respect to 

honey bee health? Computer vision is a fast-growing field of research, and it features 

inexpensive, high-throughput techniques that remove certain limitations inherent to the latter 

two fields of study. Although the studies presented in this thesis have their own limitations, 

every assay is novel, and with further refinement they will continue to enhance the way we 

connect the behavioral phenotype to genotype and bee health. 

 

5.1  Summary 

 We automated the analysis of approximately 100 10-minute videos, which would take 

an observer roughly 17 hours to simply watch. In a scientific study, accurate observation of a 

data set this large would take much longer. Since we were controlling for age, time-of-year, 

and colony-level effects, gathering data was the most severe bottleneck in our design. We 

studied bee autogrooming as a continuous variable using time series pixel data, offering a 

strong alternative to the manual monitoring of discrete grooming events. We have established 

how differential models can be used in parameterizing bee grooming rates, and presented a 

comparative analysis of four commercial stocks. Although the stock comparison concluded 

that there were no differences in grooming rates between stocks, we saw different grooming 

rates among the different experiments. 

 This thesis offers one of the first comprehensive studies of the varroa-virus relationship 

by testing the Vector Manipulation Hypothesis with a digital tracking assay. We correlated 
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mite speed with blind qPCR viral data and discovered that varroa speed varies based on viral 

load and colony-level effects. Many of the statistical models we examined offered a unique 

perspective on the interplay between colony, deformed wing virus (DWV), and sacbrood virus 

(SBV). Using corrected Akaike’s information (AICc) and Bayesian information criterion 

(BIC), we were able to select three biologically and statistically relevant models, all of which 

open the door for future work. With the exception of DWV, model coefficient values were 

quite robust, signifying that their contributions were meaningful beyond a simple p-value. SBV 

and colony level effects were universally apparent across the models of interest. 

 Pollen is an important component of bee health, since both nutrition and environment 

are critical to a colony’s success. We constructed pollen library images using 400 pollen pellets 

spanning 8 plant genera, measured their color, and constructed a naïve Bayes (NB) model for 

these color features in the CIE-Lab color space. The NB model was able to successfully classify 

~90.6% of pollen from a known data set (~9.4% Type-II error rate). Color features of wet and 

dry pollen appear to change nonlinearly, and depend on the pollen species. Finally, principal 

component analysis revealed that the L and b channels have the weakest correlation, so future 

analysis and visualization methods should rely on these two channels to capture differences 

between data samples. 

 

5.2 Limitations 

The grooming assay started as a binary before-and-after concept, but this left too many 

mathematical questions that would be resolved with a time series. We did not adequately 

prepare for the statistical noise from a time-series approach to pixel analysis. We controlled 



 

78 

for certain factors by fine-tuning lighting conditions and the camera angle, yet some of the 

resulting data was still noisy. We pooled groups of five honey bees together with the 

expectation that we would broadly capture auto- and allogrooming dynamics. Our 

experimental design specifically instigated autogrooming behavior; allogrooming behavior 

was almost completely absent in our experiments. This created a somewhat skewed perspective 

of grooming, as pairwise defenses are important when addressing bee health. Pooling groups 

of honey bees made the pixel analysis more complicated than necessary, so we sacrificed data 

analysis in favor of unobserved behaviors. Finally, honey bee color varied significantly, 

ranging from darker black-browns to brighter orange-yellows. It would have been beneficial 

to calibrate our pixel data by prerecording a short 2-minute video of the bees before we coated 

them with flour. Although we marked thousands of bees to control for age, we experienced 

significant mortality over 2 weeks and the final number dwindled to hundreds. 

 Many advances in tracking technology have emerged in the past 5 years since this 

research began. Tracking work conducted on the fruit fly (Drosophila melanogaster) could 

have been applied to the varroa system (Branson et al., 2009). Scientific discoveries are 

sometimes accomplished in parallel; current ant- and bee-tracking research projects (Fletcher 

et al., 2011; Fasciano et al., 2013) compliment the current tracking studies, and may inform 

other disciplines of entomology and biology.  

Within the confines of the mite tracking algorithm we designed and used, there were 

other logistical hurdles. Measuring speed and velocity in an assay where mites were allowed 

to climb in three-dimensional space did not accurately represent our data set. Therefore, we 

had to conceptualize a surrogate metric for speed. Although this proved very useful for the data 
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we were trying to analyze, it limited our further exploration of differential models that may 

have contributed to our work. Since we conducted a blind study of varroa viral loads, we had 

no sense of the type of the data. This study would have benefitted greatly from a collection of 

varroa infected with only SBV or other single viruses, which would have simplified some of 

the interpretations in our results. Finally, model selection for AICc and BIC did not align, 

leaving some open statistical questions in our study. 

 Pollen research is very sensitive to the issue of scope. We described a simplified pollen 

library, completely uncharacteristic of the true diversity nature provides. We hope that our 

methods can be expanded and elaborated upon with a wider variety of pollen, but such a study 

would require the collaborative efforts of many scientific disciplines and individuals; 

thousands of hours of ground-truthing, trial, and error, are yet required to construct a pollen 

library that is representative of nature.  We believe our method will perform quite well in 

practice, based on analysis of the principal components from our pollen library. Subtle yellow-

orange-brown differences may not resolve in a NB model, but the precision and performance 

of NB on our data set has shown promise for future pollen research. Many studies of color rely 

on psychological experiments that match perceived color with numerical color, which is 

beyond the scope of this study. We anticipate that this research will be expanded or correlated 

with other (i.e., microscopic and pollen genetics) databases. 

 

5.3 Future work 

 

This thesis has established a foundation for future bee breeding programs where honey 

bees could be selectively bred for phenotypical grooming traits in the same manner Spivak and 
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Reuter (2001) established that bees selected for hygienic behavior showed improved resistance 

to disease. The scope of the grooming study (Chapter 2) is not limited to honey bees, and can 

more broadly be applied to other insects or pollinators, where grooming serves as a 

measurement of health, fitness, or immunology. There also is the pending question of the role 

grooming behavior plays in pollinator efficacy. For example, one study of five bumble bee 

species revealed no differences between grooming behavior and pollination (Asada and Ono, 

1996), yet comprehensive studies on the physiology of the subfamily Apinae suggest that both 

specialized and generalized anatomical adaptations play key roles in pollination services 

(Thorp, 1979; Waser et al. 1996). The methods in this grooming chapter could be used to 

comparatively study the behavior, anatomy, and efficacy of many pollinator species. 

The results from the mite assay (Chapter 3) conclusively supported the Vector 

Manipulation Hypothesis. None of the findings in this study were simple. They opened the 

door to many exciting questions about the varroa-virus relationship, which requires further 

exploration. Why does SBV, which is not known to replicate in varroa, modify varroa 

behavior? What sort of facilitative interaction is there between DWV and SBV, since this study 

at least hints that these viruses interplay on the behavioral level? Can we pinpoint the colony-

level effects modifying mite behavior, by exploring other factors that this thesis work could 

not explain? Pheromones are known to play a role in signaling that brood are ready to be 

capped, and in turn, pheromone tells a phoretic varroa mite where it needs to go for 

reproduction. Future work with this assay could explore mite spatial distributions in a bee 

pheromone landscape as a Poisson point process (Giuffre et al., 2011). There also is an 
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opportunity to control the viral loads that mites are exposed to, furthering our understanding 

of the dynamics of mite behavior in a three-dimensional environment. 

Future applications of the pollen study (Chapter 4) are quite broad. The extensive 

variability of pollen foraging patterns, resulting from factors such as climate, geospatial 

location, bee subspecies, crop management practices, and genetics, would make this an 

excellent citizen science project. Pollen color databases could be linked with existing 

microscopic, genetic, and spectrographic databases, thereby increasing the variable domain for 

deeper Bayesian models. Rigorous pesticide, bee nutrition, and urbanization studies could gain 

traction without the need for manual pollen sorting or expensive, genetic analysis. This 

proposed study would also be an excellent opportunity for development of a mobile phone 

application, making the technology available to any beekeeper who simply wants to know the 

pollen loads their honey bees are bringing back to the hive. 

 We have established several useful methods and applications of image science in the 

assessment of honey bee health. We analyzed bee health across many levels, ranging from 

individual bees up through the colony and the surrounding environment. We developed and 

interpreted bee observational data with mathematical and statistical models, making 

connections to genotypical data, when available. This thesis illustrates what important links 

can be made between computer vision and a wide range of bee studies. 
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