ABSTRACT
GIUFFRE, CARL JOHNTechnological Methods in the Health Assessment of Western

Honey Bes (Apismellifera). (Under the direction of Dr. David. Tarpy and Dr. Sharon R.
Lubkin).

The Western honey beégdis melliferg, one of the most important pollinators
worldwide, has been faced with many recent health challenges. Important health issues, such
as the invasive mité/arroa destructor are weltdocumented, but significant scidit
opportunities remain in describing their role as a vector for disease. @é#ssinghealth
issues, such as Colony Collapse Disorder, have yet to be fully described, due to the many
behavioral and environmental variables at play in the honey bessyst

In this dissertationwe hope to exploit avel advances in computer algorithms and
imagingtechnology, by presenting methods in three current topics of bee health: grooming,
parasites, and nutritiolVe developed methods in image analysis to desdnteedontinuous
grooming behavior of known commercial honey bee stocks. We analyzed grooming videos
using a differential equation model to parameterize bee grooming rates, then used statistics to
draw comparisons between the stodke used video object tcking to describe the behavior
of the important bee parasitéarroa destructoiin vitro. By corroborating mite phenotypical
behavior with genotypical data, we proved that viral count nontrivially changes mite behavior.
Finally, we used digital imaging, myimetry, and machine learning éetermine plansource
for corbicular pollen, a very important component of bee nutrition. We provide some initial
sensitivity analysis of the pollen imaging system, and describe future directions, opportunities,

and appkations as a framework for larger pollen studies.
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CHAPTER 1.
Introduction

Honey beesApis melliferg are indigenous to Europe and Africa, but they have been
exported worldwide because of the important pollination services that they provide. Apiculture
is estimated to contribute 162 billion USD to the global economy annually (&&dgi2009).

The trie economic estimate of bee services is difficult to measure, especially since a foraging
bee can range up to 3 km or more from the nest site (Winston, 1987). Furthermore, unmanaged
bee populations contribute to both local and exotic pollination, whichotdre accurately
measured (Rickettst al, 2004). The honey, pollen, wax, textiles, and produce industries are

all directly impacted by honey bee populations.

Unfortunately, honey bee populations are on the decline worldwide, and recently U.S.
beekeeperbave been losing roughly one third of their colonies over winter (@&lbs, 2010;
Neumann and Carreck, 2010). Colony Collapse Disorder (CCD), although sensationalized by
the media, has mysteriously facilitated these negative population trendsgpsstiticrobes,
viruses, parasites, and genetics have all been implicated for playing a role in its cause (Oldroyd,
2007; Evanst al, 2009;GuzmanNovoaet al, 2010; Dainatt al, 2012; CoxFosteret al.,

2007). Regardless of the specific factors aay€iCD, it is clear from diminished health and
productivitythat honey bee populations are under threat.

Recent advances in image processing have proven empirically relevant in behavioral
sciences and industry. Object recognition and colorimetry have paved the way for high

throughput, observational studies, that objectively reduce human error. Studyinpéaerhe



using image processing as a vehicle, would offer deeper perspectives on the larger issues in

bee health sciences.

1.1 Levels of honey bedealth and defense

Honey bee health is complicated to study, as there are five levels of defense relevant to
honey bee health: individual, pairwise, colony, structural, and environmental (Evans and
Spivak, 2010)Individual bees have their own immune systems, uniquely determined by their
genetics. Since a queen mates multiply (and therefore her workers aly siiferent males),
individual innateimmunity in a single colony can be quite varied (Winston, 1987).
Undertaking (removal of dead adults), hygienic behavior (removal of dead or diseased brood),
and autogrooming (setfrooming) are all behavioral traitsat preventatively protect a honey
bee from pathogens (Evans and Spivak, 2010).

Pairwise defensds the result of honey bee social interactions, resulting in elevated
immunity, also known as social immunity. Trophallaxis, although primarily a mechanism fo
food exchange and communication, also exchanges beneficial gut microbiota, which has been
shown to be important in bee immunity (Martinson, 2012). Allogrooming (grooming of
another individual) is such an important pairwise defense that honey bees evepesialized
dance to initiate grooming from another bee (Land and Seeley, 2004).

Since healthy bee colonies are comprised of one reproductive female and ~50,000 of
her offspring, immunological traits within theolony are quite interrelated and present
unique set of challenges (Evans and Schwarz, 2011). Thus, it is often advantageous to think in

terms of colony health and colony immunity. Colony health, or the health of the



Asuperorgani sm, 0 is a compl ex corBBeelepy 8% on of
Winston, 1987). Stinging behavior is the most obvious form of an adaptive smeitieanism

that benefits the health of the superorganism. In fact, immunologically compromised bees have
been shown to altruistically remove themselves fromhthe (Rueppelkt al, 2010). Colony

immunity, or the immune responses collectively pooled in a population, has been examined in
several important studies using both behavioral (WiRah et al, 2009) and genetic (Evans

and Pettis, 2005) approaches. K aiocation and age polyethism are behavioral manners by

which individual bees perform individual tasks (Winston, 1987). These tasks are determined,

in part, by the current health needs of the colony.

Evans and Spivak (2010) highlight a nuanced differdmeveenstructural and
environmental defenses. Environmental defenses are methods that bees use to exploit their
surroundings for protection. The hive entrance functions as a structural bottleneck for
intruders, such as parasites or diseased bees (SE@89), Bees also sanitize the hive using
propolis from tree resins to create an ant.
foreign microbes (SimonrEinstrom and Spivak, 2009). Amino acids from various pollen
sources reduce oxidative stress anbaeice bee longevity (Herbert and Shimanuki, 1978;

Huang, 2012).

1.2  The Vector Manipulation Hypothesis
Studies of disease vectors and vector behavior are equally important in describing the
health of the host species they affect. Many traditional stuliparasitism explore the hest

vector relationship as it relates to behavior, immunology, and prevention. Others study disease



host interactions, usually at the microscopic or viral level, in efforts to interrupt key moments
of t he di s e asedetermiheicéndidate gucsdeeeral stodies haveecently
revealed that in the vectdiseaseelationslip, vector behavior may be ales based on the
viruses they harbothis is known as the Vector Manipulation Hypoth¢bigwell et al,, 2012;
Catoret al, 2012).

The Vector Manipulation Hypothesis contends that vectors for disease perform a host
preference shift from their infected hosts to their uninfected counterparts (Iegakl2012,
Catoret al, 2012). This train of thought is quite impant, since it suggests that diseases
asymptomatically and facilitatively modify vector behavior to ensure reproductive success of

the virus.

1.3  The problem with connecting bee phenotypes and genotypes

Since the mapping of the honey bee genome in 2006, many efforts have been made to
integrate  macro and moleculatevel characteristics of bee health. Molecud&vel
contributions have proven effective, and as technology has advanced, the price for these
methods has decreased over the past 10 years, while the quality of analysis has increased
(Everettet al, 2010). Genetics has revolutionized the scientific approach in studies of bee
behavior, immunology, and nutrition (DeGrastdiofimanet al, 2010). Everthough the price
of genetic analysis has decreased, most methods are still quite costly ammdrisuming
(Everettet al, 2010). Genetic data are also limited by reducing the temporal complexities of

bee society into a single snapshot and removingndwiduals from future studies.



Genetics have been important in advancing our understanding of bee health, but
behavioral studies of honey bees are equally complicated. Behavioral studies require hours of
direct human observation, oftemvitro or outsde the context of a typical colony environment
(Camazine, 1991; Robinson, 1987; Peagal, 1987). Behavioral studies are nonetheless
important, as they can capture social dynamics that have the potential to correlate with the
evergrowing body of genetiboney bee data. This creates an unfortunate gap between bee

behavioral and genetics literature.

14  Computer vision and color space

Image processing is at the core of this thesis. The subtleties of colorimetry are
especially important in Chapter Rixd datafrom anm x n color imageare stored on a
computer in the form ofram x n x 3 matrix, with three color spaces typically used in their
analysis: the RGB, HSV, and ClEab color spacegoordinates for all three spaces depend
on the software and language interpreting the image; numerical values are appropriately scaled
in practice, and the values below are provided to assist with familiarity in understanding a
critical component of thipresent work.

The RGB color space, which is standard for digital photography and displays,
represents color on a cube by assigning integer values between 0 and 255 on red, green, and
blue (RGB) axes. These numbers translate to saturation values on aeyomguitor, with O
representing unsaturated ([0 0 0] = white) and 255 completely saturated ([255 255 255] =
black). This coordinate system is very straightforward to use, since the brain can easily

visualize values on a cube. However, this ezsese doesiot translate well in analytical



studies; monitors, printers, and other imaging devices cannot display every RGB color
combination (known as the devicebds gamut), a
how the imaging device stores pixel data nuoadly. At the data level, the three color
channels are highly correlated with one another, making the measurement of differences in

color difficult (Tkalcic and Tasic, 200 heng et al., 200Ford and Roberts, 1998

Figure 1-1. Visualization of the RGB color space(source:

https://upload.wikimedia.org/wikipedia/commons/a/af/RGB_color_solid_cubg.png

HSVA or hue, saturation, and vafués the color space usedidely in generating
computer graphics. In this conic color space, hue represents the rotation about a central axis,
saturation the normalized unit distance vector from the central axis, and value the unit vector

from O (= black) to 1 (= white) verticallglong the axis. Althougthe coordinate system is


https://upload.wikimedia.org/wikipedia/commons/a/af/RGB_color_solid_cube.png

harder to visualize, this color space is very useful for imaging techniques (such as image
thresholding), since value can easily be employed to detect reflections or shadows in an image.
HSV inherits the sae colorcorrelation issues as RGB, since it is simply a nonlinear
transformation of that space. The HSV space also suffers from gamut and device dependence

issues, as a result.

Figure 1-2. Visualization of the HSV color space(source:

https://upload.wikimedia.org/wikipedia/commons/f/f1/HSV_coné).jpg

In 1976, the Commision Inten at i onal e d e prdpdsédcalcalar spacg e ( C|
where the Euclidean distanbetween two colors is strongly correlated to hanperception
of color, a term known as perceptual uniformitikélcic and Tasic, 2003)The space's axes
are called., a, andb, so the space was named €l&b. CIELab colors are represented on a
sphere, WereL ranges from O (= black) to 100 (= white)tanges along &0 (= green) to 50

(= red) axis, and ranges along &0 (= blue) to 50 (= yellow) axis. Unlike its RGB and HSV


https://upload.wikimedia.org/wikipedia/commons/f/f1/HSV_cone.jpg

counterparts, CIEab is device independent, making it a useful tool in ntamgent analytical

studies on color and computer vision.

Figure 1-3. Visualization of the CIE-Lab color space.(source:

https://openclipart.org/downbhd/218708/joedecie-color-spacecoordinatesystemraB3.svg



https://openclipart.org/download/218708/joede--cie-color-space-coordinate-system-B3.svg

1.5 Aim

The goal of this thesiss to addressmportant behavioral componentsrelevant to
the more global problem ofhoney bee health, using digitaimaging technology and
behavioral modeling

In this thesis, | bridge the gap between genotypic and phenotypic honey bee studies by
alleviating the financial burdens of genetics studies and the time pressures of behavioral ones.
This thesis outline methods and results relevant tomtheidual , colony, andenvironmental
levels of bee defense and honey bee health.

Chapter 2 highlights honey bee autogrooming, an important behavioral defense
meclanism in individual bee healt&hapter 3 approaches bee health indirectly, focusing on
the behavior of vamwa, and testthe Vector Manipulation Hypothesi€hapter 4 combines
machine vision and colorimetry to studoney bee pollen, important honey bee nutibn
and environmental defensedl three chapters are important in advancing our understanding

of specific components of honey bee health.
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In animals, self-grooming is an important component of their overall hygiene because it reduces the risk
of disease and parasites. The European honey bee (Apis mellifera) exhibits hygienic behavior, which refers
to the ability of the members of a colony to remove diseased or dead brood from the hive. Individual
grooming behavior, however, is when a bee grooms itself to remove parasites. While both behaviors
are critical for the mitigation of disease, hygienic behavior is overwhelmingly more studied because,
unlike grooming behavior, it has a simple bioassay to measure its phenotype. Here, we develop a novel

g?;‘;%‘f; behavior bioassay to expedite data collection of grooming behavior by testing different honey bee genotypes
Honey beges (stocks). Individual worker bees from different commercial stocks were coated in baking flour, placed

in an observation arena, and digitally recorded to automatically measure grooming rates. The videos were
analyzed in MATLAB, and an exponential function was fit to the pixel data to calculate individual groom-
ing rates. While bees from the different commercial stocks were not significantly different in their groom-
ing rates, the automation of grooming measurements may facilitate future research and stock selection

Social insects
Image processing

for this important mechanism of social immunity.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The European honey bee (Apis mellifera) belongs to the insect
order Hymenoptera, which includes many of the highly eusocial
insect societies (ants, bees, and wasps). As in all organisms, honey
bees have their own individual immune defenses. However, social
groups increase the complexity of their relationships with para-
sites and pathogens (Schmid-Hempel, 1998). On the one hand,
pathogens can spread more readily when high concentrations of
susceptible host are in close proximity and (usually) in stable envi-
ronments. On the other hand, social insects may also exhibit so-
called social immunity (Cremer et al., 2007), which is the collective
ability of a society to deal with parasites either behaviorally or via
innate immune responses. In honey bees, allogrooming (Evans and
Spivak, 2010), resin collection (Simone et al, 2009), and the
removal of diseased or dead brood (Spivak and Reuter, 2001) have
all been identified as behavioral mechanisms of social immunity in
honey bee colonies. Techniques for improving both individual and

* Corresponding author.
E-mail address: cjgiuffr@ncsu.edu (C. Giuffre).

http://dx.doi.org/10.1016/j.compag.2017.02.003
0168-1699/@ 2017 Elsevier B.V. All rights reserved.

social immunity in honey bee stocks should, therefore, have strong
economic implications for commercial breeding programs.

Commercial honey bee stocks exhibit a spectrum of traits across
many important characteristics, such as honey production, winter
hardiness, disease resistance, hygienic behavior, and grooming
behavior (Winston, 1987). Different commercial stocks of bees
exist naturally and through artificial breeding (e.g., Minnesota
Hygienic, Italian, Russian, Carniolan, and Varroa Sensitive
Hygiene). In particular, the hygienic and grooming behaviors have
been the topics of interest for many beekeepers because of what
they imply for the longevity of the colony. Hygienic behavior in
the strict sense refers to the colony’s ability to mitigate diseases
by removing diseased or dead brood from the colony, varroa mites
from infested larvae, or foreign objects from the hive (Spivak and
Reuter, 2001). Grooming behavior, in contrast, refers to an individ-
ual bee grooming herself to remove parasites from the exterior of
her body or that of other honey bees (Winston, 1987).

Modern assays to measure hygienic behavior have proven use-
ful in breeding programs (Spivak and Reuter, 2001). One such assay
focused on manually distinguishing classes of observable behavior
of individual honey bees after being exposed to the external para-
site Varroa destructor (Aumeier, 2001; Guzman-Novoa et al., 2012).
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Manual observation assays have an unfortunately laborious bottle-
neck, requiring repeated human observation that can be very time
consuming. Other assays involve counting chewed mites dropped
onto sticky-board placed beneath the hive (Arechavaleta-Velasco
and Guzmdn-Novoa, 2001; Andino and Hunt, 2011). Exposure to
external parasites elicits a very confined set of behaviors, specific
to parasite response, which may not be indicative of grooming as
a function of pathology resistance in general. More recent studies
have explored grooming as a function of varroa control
(Pritchard, 2016), although very little has been done to study the
generalized act of self-grooming (also known as autogrooming)
in the absence of parasitic stimulus, which may play a key role in
colony-level disease pathology.

The seminal work done by Tu et al. (2016) has established both
the need for and the capability of technology in automated, behav-
ioral studies of pollinators. More broadly, the overall objective of
this study was to develop a novel bioassay that may alleviate the
severe bottleneck and constraints of acquiring precise data on
grooming behavior. By automating and accurately quantifying
grooming rates of individual bees without direct human observa-
tion (which is both time consuming and subject to inter-
individual measurement error), our aim is to address this impor-
tant—but largely neglected—behavioral mechanism of social
immunity in honey bees.

2. Materials and methods
2.1. Experimental colonies

Queens from commercial stocks of Italian, Russian, and Min-
nesota Hygienic honey bees were obtained through commercially
available queen breeders. The hives were located at the Lake
Wheeler Honey Bee Research facility located in Raleigh, NC.
Queens were introduced to their respective colonies using conven-
tional apicultural practices (Biichler et al., 2013). Since a full brood
rearing cycle lasts approximately three to four weeks, the colonies
were allowed 4 weeks to ensure that the emerging broods were
from the appropriate genetic source.

Frames of newly emerging workers were gathered from 18 dif-
ferent colonies (6 frames from each commercial stock), and stored
in an incubator set at brood nest conditions (34 °C and ~50% RH)
for approximately 12 h. Roughly 300 ‘callow’ honey bees from each
frame were then marked on their thorax with colored paint (Tes-
tors). The marks were color-coded so that they could be identified
for both the age and stock of each individual. The bees were then
introduced to separate, foreign colonies (“common gardens”),
thereby controlling for the effects of colony environment and social
dynamics on adult behavior. Approximately 3000 honey bees, in
total, were marked in this manner. To control for seasonal factors,
all cohorts were marked within a three-week window of time,
spanning from late June through early July.

Bees that are one week old are typically identified as ‘nurse
bees’ (Winston, 1987), as their behavior tends to focus on brood
rearing, nursery maintenance, pathogen defense, and grooming.
Thus, bees were gathered at approximately one week of age, when
their grooming behavior would be most prevalent.

2.2. Setup and recording

On recording day, the desired bees were collected from their
respective common gardens. Groups of five bees were collected
using soft forceps, and placed into a specially modified test tube
with multiple holes for ventilation. The tubes were kept in an incu-
bator, set at 34 °C, until it was time for that group to be recorded.
At that time, the group was taken from the incubator, and a small

quantity of all-purpose wheat flour (Gold Medal™) was added. The
bees were tossed in the flour for about one minute, or until fully
coated. Once the bees were fully coated in flour, they were quickly
transferred to a 125 mm petri dish using soft forceps. To facilitate,
the bees were temporarily dumped onto a coffee filter, where they
could more easily be gathered.

Honey bee grooming was then recorded. To expedite data col-
lection, two cameras simultaneously recorded two experiments
being run at the same time. All recordings took place in a dark
room with Sony Handycams mounted approximately 10% inches
(27 cm) above the petri dishes containing the experimental bees.
Four utility light clamps (Coleman) were installed with 10 W
(60 W-equivalent) LED light bulbs (Lighting Science) and arranged
in a square on the perimeter of both experiments. This provided
uniform lighting, which reduced both the reflective glare from
the tops of the petri dish and shadows generated by the bees.
Beneath the petri dishes was an even layer of the same flour in
which they had been coated. As this required separate recording
devices, it was important to color calibrate each video sequence,
and an X-Rite Color Checker was also present in the recording area,
which enabled pixel color calibration of the recordings (Fig. 1).

The bees were recorded for 10 min at 60 frames per second,
with 2 min of buffering at the beginning of each video, for a total
recording time of approximately 12 min. A total of 105 videos were
recorded in a span of three weeks. Of these, 9 of the videos were
discarded due to events such as defecation or bee death, leaving
a total of 96 videos for analysis.

2.3. Image analysis

Once the videos were recorded, an algorithm written in-house
in MATLAB (The MathWorks) was used to analyze the video data.
Our algorithm follows three steps which require minimal user
intervention: (1) Frame extraction, (2) Color correction, (3) Thresh-
olding/pixel counting and pixel-to-metric conversion (Fig. 2).

One goal of this study was to provide an algorithm that could be
performed across a variety of personal computers, recording
devices, and lighting arenas.

2.3.1. Color correction

Our setup enabled us to simultaneously record two experi-
ments in the same twelve-minute timeframe. However, once the
frames were extracted, it was important to color-correct across
the multiple recording devices, to ensure accurate data analysis.
Pixel data were compared to the expected color values of an X-
Rite Color Checker wusing polynomial regression analysis
(Hardeberg, 2001). This technique removes the device-
dependence of the data, and enables data to be compared, even
though separate recording devices were used. A third-degree poly-
nomial was chosen, since reduction in standard error was signifi-
cant compared to linear or quadratic fits.

2.3.2. Thresholding

Next, the corrected images were thresholded to obtain the bin-
ary pixel data. The images were examined using the HSV computer
color spectrum and thresholded on the V-channel. As honey bees
were recorded, they moved around the petri dish and cast shadows
against the flour background. Since shadow-colored pixels are
dark, and the goal of this assay was to measure dark pixels as a
function of grooming, it was important to estimate the threshold
based on the shadows being cast by the honey bees. Thresholding
on V at a value of 0.6275 enabled us to conservatively distinguish
between background flour, shadows, and the bees. This value was
obtained using Image] (Schneider et al.,, 2012) on selected frames
from the start and finish of prototypical experiments.
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