
ABSTRACT

SMITH, NIKKI SHAVON. A Comparison of Physiologically-Based Pharmacokinetic
(PBPK) Models of Methyl-Tertiary Butyl Ether (MTBE). (Under the direction of Hien T.
Tran and Marina V. Evans.)

Methyl-tertiary-butyl ether (MTBE) is a gasoline additive that gained widespread use
after the passage of the Clean Air Act Amendments of 1990 designed to help reduce urban
air pollution and toxic air emissions. Reports of water contamination and adverse health
affects from inhalation exposure to MTBE also grew. We review MTBE carcinogenicity
studies conducted in rodents and complete physiologically-based pharmacokinetic (PBPK)
inhalation model comparisons, parameter estimation, and an assessment of design elements
that help fit available human data.

PBPK models are mathematical constructs that consider different organs and tis-
sues as compartments and make it possible to obtain a quantitative characterization
of concentration-time profiles in the respective compartments. We specifically test a
hypothesis whether complexity should be added to the lung compartment for substances
with a large blood:air partition coefficient. Further, since rats exposed to MTBE exhibited
renal tumors, we consider metabolism as a mode of action for that endpoint and we include
a kidney metabolism pathway, which is generally not used in PBPK models, in our model.
Finally, we use sensitivity analysis and model validation and comparison techniques to
assess the lung complexity hypothesis, draw conclusions about the inclusion of the kidney
metabolism pathway, and drive model design iterations by removing parameters, and
thus, metabolism pathways that are not significant to the models’ results.

Initial model analysis outcomes indicate that model simplicity prevails and adding
lung complexity for the test case high blood:air partition coefficient substance (in this
case MTBE’s metabolite, tert-Butyl-alcohol) is not desirable. Additionally, we find that
kidney metabolism parameters have a strong influence on each of the models’ results. This
significant influence suggests a meaningful relationship between—and further consideration
for—kidney metabolism and the development of renal tumors in rodents.
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CHAPTER 1

Introduction

In 1990, the Clean Air Act Amendments (CAAA) required the addition of oxygenates
in reformulated gasoline. Oxygenates added to gasoline make it burn cleaner and boost
octane (a measure of gasoline’s resistance to uncontrolled combustion). Methyl-tertiary
butyl ether (MTBE) is one such oxygenate. Its primary use in the 1970s was to prevent
engine "knocking" and performance loss. By the 1980s, since MTBE reduces carbon
monoxide levels caused by automobile emissions, it was used to meet state and federal
winter oxygenate requirements for areas that had not yet met air quality standards for
carbon monoxide. During that same time, its usage rose as a result of the phase-out of
leaded gasoline along with an increased demand for premium gasoline.

Further, because of MTBE’s ease of production and low cost, its use was significantly
boosted after the CAAA’s passage. This widespread use led to an increase in groundwater
contamination near underground storage tanks (USTs) across the country with the US
Geological Survey (USGS) reporting in 1999 a 27% incidence of groundwater in urban
areas contaminated with MTBE.

Years before the USGS report and groundwater crisis, though, people lodged health
complaints related to MTBE exposure. These complaints included dizziness, nausea,
disorientation, and eye irritation among others and were often the result of inhalation
exposure at pumping stations, occupational exposure from regular handling of MTBE,
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and other means.
In the years following the CAAA, a number of animal studies were conducted on

exposure to MTBE. Select studies are summarized in Section 2.1. The studies cover
oral (gavage) and inhalation exposure, both routes representative of drinking water
contamination by leaking USTs and inhalation exposure at gas pumps and tanks. These
studies led to conclusions about MTBE’s carcinogenicity (animal and human) and its
eventual ban from use in the US starting in 2006. The US still exports MTBE, however,
and its use is quite prevalent in places like Asia, Latin America, and Europe [1, 29, 36] so
its potential health and environmental risks persist.

The limited number of studies on humans focused on the kinetics of MTBE rather
than its carcinogenicity. While more information is known about how MTBE affects
animals’ health (specifically rodents for this paper), information from those studies can be
gathered for use in assessing the potential effects on humans. This information, coupled
with the human kinetics, is the center of interest for the work going forward in this paper.

In this paper, physiologically-based pharmacokinetic (PBPK) models represent the
complex biological processes related to the disposition (absorption, distribution,
metabolism, and elimination [ADME]) of chemical compounds in the body. The models
typically consider a body organ or tissue as a "compartment" and may be as simple or as
complex as is required to adequately describe the ADME processes. This determination
is made based on the definition and derivation of PBPK models discussed in Sections 4,
5, and 6.

One concept under consideration is the complexity of the lung compartment. One
viewpoint is to use a lung representation that considers alveolar dead space, diffusion
between the pulmonary tissue and the upper respiratory tract (URT), and fractional
chemical retention in the URT during gas exchange. This realization requires multiple
lung sub-compartments. Another viewpoint is to consider a far simpler lung where the
conducting airways carry the compound directly to the alveolar region where gas exchange
occurs. The use of one lung representation over the other is postulated based upon the
chemical’s solubility in blood. This hypothesis is discussed further in Section 3.

A second concept under consideration, also discussed in Section 3, takes the information
about the kidney endpoints in rodent studies and uses that information to guide PBPK
model development. Specifically, we claim that the kidney tumors observed in rodents can
be explained by the inclusion of a Michaelis-Menten metabolism pathway in the kidney.
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With available data from inhalation studies with human subjects (Section 7), PBPK
models are calibrated and validated using identifiability, estimability, and sensitivity
analysis techniques described in Section 8. The results of these analyses are discussed in
Section 9 and, finally, conclusions about the results and proposals for future work are
presented in Section 10.
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CHAPTER 2

Methyl-Tertiary-Butyl-Ether (MTBE)

Methyl-Tertiary-Butyl-Ether (MTBE, CAS 1634-04-4) is a fuel oxygenate used to make
gasoline burn better and decrease carbon monoxide (CO) emissions [87]. The Clean
Air Act Amendments (CAAA, 1990) required the use of oxygenated gas in areas that
exceeded the federal CO air quality standard (i.e., had high levels of pollutants). Gas
refiners chose MTBE over other oxygenates in reformulated gasoline (RFG) for its ease in
meeting emission standards set forth by the CAAA; it was the most economical and the
easiest to blend (e.g., versus ethanol) during the refining process.

Due to leaking underground storage tanks or spillage or other means, MTBE was found
in groundwater and reservoirs [34]. These discoveries suggested its widespread use made it
a potential large-scale hazard, in this case as a drinking water contaminant, since MTBE
is highly soluble in water, not easily adsorbed to soil, and not easily biodegradable. In
addition to drinking water exposure (oral), people could also be exposed by swimming or
showering in MTBE-contaminated water (dermal exposure). Lastly, inhalation exposure
may occur in a number of ways and is our primary focus.

The general public may come into contact with MTBE via inhalation while pumping
gas or pouring it into containers or gas-fueled machinery. Individuals whose exposure
routes included pumping gasoline, driving their cars, or working in gas stations reported
having headaches, nausea, and dizziness. Those who worked with MTBE and had regular
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exposure to it also complained of both eye and respiratory tract irritation. According
to the Agency for Toxic Substances and Disease Registry, breathing small amounts of
MTBE for short periods may cause nose and throat irritation [2]. These effects and
MTBE’s widespread use prompted a number of studies to be conducted to determine the
immediate and long-term effects on rodents, humans, and the environment.

2.1 MTBE Studies in Rats and Mice

Subchronic and chronic exposure studies in laboratory animals have been conducted to
assess the health hazard potential of MTBE on humans. The most common effect in test
animals was to the nervous system. Other effects were kidney disease, larger-than-normal
livers, liver tumors, testicular cancer, leukemia, lymphomas, and death [2]. While some
of these effects were repeatable in independent studies, it is not readily known whether
those effects have meaning for humans.

We examine some of the studies conducted on rats and mice and later outline their
findings and human carcinogenic assessments.

2.1.1 Robinson, et al. (1990): Oral Gavage; Sprague-Dawley

Rats

Oral gavage (tube feeding) studies were conducted over 14 and 90 days in male and female
Sprague-Dawley rats [84]. Daily dose levels ranged from 0 to 1428 mg/kg body weight for
the 14-day study and 0 to 1200 for the 90-day study.

No deaths were attributed to MTBE toxicity but diarrhea was common across all groups.
Subjects at or above 1200 mg/kg dose levels experienced MTBE-induced anesthesia for
approximately two hours.

In the 14-day study, males and females both experienced increased cholesterol while
females experienced decreased blood-urea nitrogen (BUN) and creatinine. In the 90-day
study, females experienced increased cholesterol and decreased BUN while males in the
high dose range experienced decreased creatinine. Depending on the creatinine levels, a
low BUN could indicate impaired kidney function.

Robinson et al. reported no significant pathophysiological effects where the dose was
less than 1200 mg/kg. Males in the 1200 mg/kg MTBE group exhibited renal changes
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compatible with α2µ-globulin nephropathy (kidney disease/damage). Any kidney tumors
are possibly attributed to the accumulation of the α2µ-globulin protein.

2.1.2 Burleigh-Flayer (1992): Inhalation; CD-1 Mice

Over an 18-month study, 50 male and female CD-1 mice were exposed to MTBE at
concentrations of 400, 3000, and 8000 parts per million (ppm) for six hours per day, five
days per week. [26]

At the highest exposures, the study indicated a statistically significant increase in liver
adenomas in female mice and liver carcinomas in male mice. These tumors, according to
the Environmental Epidemiology Section of the NC Department of Environment, Health,
and Natural Resources, provided evidence supporting MTBE carcinogenicity.

2.1.3 Chun (1992): Inhalation; Fischer-344 Rats

In this study, male and female Fischer-344 rats were exposed to the same concentrations
as the CD-1 mice in the Burleigh-Flayer study: 400 (low-dose), 3000 (mid-dose), and
8000 (high-dose) ppm, for 104 weeks, 97 weeks, and 82 weeks, respectively [26, 28].

Early mortality was caused by toxicity effects in the high-dose group. In male rats, a
statistically significant increase in interstitial cell testicular tumors were observed in mid-
and high-dose groups. Additionally, there was a statistically significant increase in kidney
tumors for the mid-dose group. Kidney tumors were also observed in the high-dose group
but its statistical significance could not be determined because high morality rates led to
early termination (at 82 weeks) for this group.

As in the Robinson study [84], kidney tumors are associated with the accumulation
of α2µ-globulin. Following an EPA review of the Chun bioassay and according to EPA
criteria for renal toxicity [11], the protein accumulation did not appear to occur with
MTBE, thus the kidney tumors provided evidence supporting MTBE carcinogenicity.

2.1.4 Belpoggi, et al. (1995, 1998): Oral Gavage; Sprague-Dawley

Rats

Sixty male and 60 female rats were exposed to 250 mg/kg (low-dose) and 1000 mg/kg
(high-dose) once daily, four times per week, for two years [16].
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The rats did not develop renal tumors but there were increased observations of Leydig
cell (testicular) tumors for the high-dose administration and increased incidences of
leukemias and lyphomas in females for both low- and high-dose administrations. These
responses provide evidence to support MTBE carcinogenicity.

Belpoggi, et al., repeated this study in 1998 administering MTBE by stomach tubes
with results that strengthened the findings of the 1995 study [15].

2.1.5 Bird (1997): Inhalation; CD-1 mice and Fischer-344 Rats

In this study, male and female CD-1 mice were exposed to 400, 3000 or 8000 ppm MTBE
for six hours per day, five days per week for 18 months while Fischer-344 rats were exposed
for 24 months [17].

This study produced results of toxicity at inhalation exposure to 3000 and 8000 ppm
MTBE. For CD-1 mice, chronic exposure to 8000 ppm MTBE resulted in increased
incidence of hepatocellular (liver) adenomas. For the Fischer-344 male rats, exposure to
3000 and 8000 ppm MTBE resulted in increased incidences of renal tubular cell tumors
and Leydig cell adenomas. These tumors were not observed in the female rats. Also, in
the male Fischer rats exposed to both 3000 and 8000 ppm MTBE, there were incidences
of increased testicular interstitial cell adenomas. Male and female CD-1 mice did not
develop renal tumors following exposure.

2.1.6 Alpha-2µ Globulin

In some of the MTBE rodent studies, there were observations of kidney tumors in male
rats: Bird et al., 1997; Chun et al., 1992; Robinson et al., 1990. The tumors found in
rodent studies are not necessarily predictive of similar risks in human, particularly if it
can be shown that a mode of action exhibited for the rodent does not operate in humans.
In such case, the rodent response is not relevant for human cancer risk assessment [30].

Chemically-induced α2µ-globulin nephropathy is one mechanism for the development
of kidney tumors that is not considered a predictor of carcinogenic risk to humans. This is
because there is no production of an analogous protein in humans [35]. What was found for
the rodents in the three studies listed above is that the increased kidney tumor response
was not related to α2µ-globulin accumulation. Additionally, there was no evidence to
indicate that MTBE caused α2µ-globulin accumulation.
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Borghoff et al. established evidence that α2µ-globulin exhibits an indirect connection
to the formation of male rat kidney tumors from MTBE [22, 23, 75, 78]. Since there
is no clear explanation for the disproportion between the accumulation of α2µ-globulin
and renal cell proliferation, we consider the possibility that male rat kidney tumors are
induced by some other mode of action not specific to any species.

2.1.7 Overall Study Conclusions for Rats/Mice

At, or near, lethal doses of MTBE, animals experienced eye and mucous membrane
irritation and central nervous system depression. At relatively high doses not typical for
human environment exposure, the rat kidney was found to be a target of toxicity. Further,
carcinogenic effects were observed in studies of doses administered via oral and inhalation
routes.

Burleigh-Flayer et al. [26] reported increases in hepatocellular carcinomas in male
CD-1 mice as well as adenomas and carcinomas in female mice. Chun et al. observed
increases in tumors in male Fisher-344 rats including renal tumors in rats exposed via
inhalation. And Belpoggi et al. results showed increases in tumor incidences for both
male and female Sprague-Dawley rats. These incidences included male kidney tumors
and female liver tumors.

Each study showed evidence of carcinogenic activity in the liver and kidney which led
to inclusion of the liver (typically included) and the kidney (less often included) as target
organs for model consideration in this paper. The kidney is further included as a target
organ given the weak relationship between kidney tumor proliferation and α2µ-globulin
accumulation and the need to consider an alternate mode of action (e.g., metabolism) to
explain the induced tumors.

2.2 MTBE Studies in Humans

Animal carcinogenicity studies for MTBE raised a number of concerns for the potential
human health risk. A number of those discussed earlier confirmed carcinogenic effects in
rodents.

Not surprisingly, far fewer studies have been conducted on humans than on rats/mice.
Those that have been conducted primarily focused on the kinetics of MTBE and its blood
concentrations in healthy volunteers [27, 42, 54, 77, 82, 94] but none of these studies
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reported on chronic toxicity for MTBE. However, since the differences in reaction to
MTBE between species is negligible, the extensive knowledge on toxicokinetic properties
obtained from studies in rats/mice can be extended to humans [60].

2.3 Carcinogenicity and Classification

Data from a number of animal studies show that MTBE causes an abnormal proliferation
of cells in several tissue sites independent of exposure route. The neoplasms occurred in
both males and females across different species and rodent strains. The cancer effects
in both rats and mice led to discussions on whether there was carcinogenic relevance to
humans with varying conclusions and recommendations based on the evidence at the
time:

• Not a carcinogen

– The International Agency for Research on Cancer (IARC) evaluated MTBE as
"not classifiable as to its carcinogenicity to humans" in 1999 [6, 37].

– The National Toxicology Program (NTP) reviews but does not list MTBE
in the 9th Report on Carcinogens (RoC), 1999 [66] with the motion to list
defeated 6-5 with one abstention.

• Possibly a carcinogen

– "The U.S. Environmental Protection Agency (USEPA) concludes that ’MTBE
poses a potential for human carcinogenicity at high doses’ based on animal
data" but "these animal data ’do not support confident, quantitative estimation
of risk at low exposure.’" [6, 90]

– National Science and Technology Council (1996), Office of Science and Tech-
nology Policy (1997), USEPA (1997), and California Environmental Protection
Agency (1999) "have published reports indicating that MTBE should be re-
garded as posing a potential carcinogenic risk to humans based on animal
cancer data" [90].

– Based on criteria established by national and international health agencies for
classifying an agent in the absence of human data:
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∗ IARC classifies MTBE as a "probable human carcinogen" (2006). [44]

∗ NTP classifies MTBE as "reasonably anticipated to be a human carcinogen"
(2011). [67]

∗ USEPA finds MTBE "likely to be carcinogenic to humans" (2005). [93]

Based on the substantial evidence of carcinogenesis available from multiple studies
showing carcinogenic effects at multiple sites across multiple species, the studies’ conclu-
sions indicate MTBE is likely to be a human carcinogen and human exposure to MTBE
should be minimized.

2.4 Controversy and Bans

MTBE environmental concerns began with drivers feeling dizzy when filling their tanks
with gasoline blended with MTBE. Coupled with reports of MTBE seeping into ground-
water from underground storage tanks (USTs) and, to a lesser extent, pipelines, health
concerns grew. These concerns were exacerbated by the oil industry’s inability to stop
the leaking storage tanks. Though MTBE met the criteria for the 1990 Clean Air Act
and was relatively inexpensive to blend, its contamination of groundwater supplies led
to legislation that would impose a voluntary nationwide phase-out by 2006, less than 10
years after its introduction and wide acceptance. [8, 43, 55, 92]

2.5 Alternatives To MTBE

MTBE’s use is set to expand in the Middle East and Asia Pacific with China’s increased
market development leading to it projected as being the largest MTBE consuming market
by 2020 [40]. This is in direct contrast to MTBE use in other countries. Though MTBE
easily met emissions standards, its risk to the environment and study results led to
legislation banning its use in the United States, Canada and other developed nations.
Ethyl tert-butyl ether (ETBE, CAS 637-92-3) is one alternative gasoline additive. It has a
higher relative cost than MTBE but it has lower water solubility and was possibly less of
a threat to the environment than MTBE. Ethanol, Tertiary amyl methyl ether (TAME),
and gasoline with alkylates [31, 73] were other such alternatives.
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CHAPTER 3

Research Motivation

"Everything and anything is questionable and these questions make way for a research."
Dr. S.N. Sridhara

In this work, questions were boundless; however, we explore only three:

1. Is upper respiratory tract (URT) required to fit data?

In PBPK models for volatile gases, it is often suggested that a model that includes
the upper respiratory tract for the lung can provide more accurate data fits [47].
This is attributed to the washin-washout effect where some of an inhaled chemical is
absorbed in the respiratory tract during inhalation and desorbed during exhalation.
During this process, less of a chemical reaches the blood stream as compared to the
amount when washin-washout is absent. When washin-washout is not considered,
chemical concentrations in the organs can be predicted using the much simpler inert
tube PBPK model. The inert tube serves as a passageway for the inhaled substance
to the alveoli [47] and then to the blood where the substance is distributed to the
organs.

We examine the inconsistency when models include the upper respiratory tract
or not. A hypothesis exists that the upper respiratory tract should be included
to accurately explain the data when the blood:air partition coefficient is large
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[47] or, more specifically, that an inert tube model is insufficient to describe the
inhalation and exhalation kinetics for gases with high blood:air partition coefficients.
Anderson et al. [7] state that gases that exchange in the airways "are very water
soluble and have a high blood solubility (Pb:a > 1000)." They also conducted tests
that show gases with Pb:a < 10 exchange predominantly in the alveoli, gases with
10 < Pb:a < 100 exchange partially with the alveoli and partially with the airways,
while gases with Pb:a > 100 exchange almost exclusively in the airways. The results
of their tests indicate that gases with blood:air partition coefficients as low as 100

would require models that include the upper respiratory tract.

We use Methyl-Tertiary-Butyl-Ether (MTBE, CAS 1634-04-4), a fuel oxygenate used
to make gasoline burn better and decrease carbon monoxide emissions, as a test case
for the hypothesis. We seek to prove that inclusion of the upper respiratory tract is
not required to estimate the parameters that adequately fit the observed data. [The
water:air and blood:air partition coefficients are 15.2 and 17.7, respectively [48]. (At
steady-state, there’s a direct relationship between water:air and blood:air partition
coefficients.)] We also use tert-Butyl alcohol (TBA, CAS 75-65-0), a metabolite of
MTBE, which has a larger blood:air partition coefficient, Pb:a = 462, to test the
hypothesis.

2. Does including kidney metabolism help explain renal carcinogenicity [in humans]?

PBPK models do not often/always include metabolism in the kidney compart-
ment. MTBE has been known to cause kidney damage in rodents (Bird, et al.
[17], Chun et al. [28], Belpoggi et al. [15, 16], etc.). Humans and rodents have
equivalent cytochrome P450 enzymes that metabolize MTBE [41], so metabolism
is an important consideration even at low concentrations; damage can occur by
different mechanisms at different doses. We look at a range of human exposure
concentrations (1.7 - 75 ppm) and examine the relevance of kidney metabolism to
the PBPK model. We include kidney metabolism with the expectation that its
inclusion will have a compelling influence toward predicting MTBE’s concentration
levels using experimental data of venous blood and exhaled breath.

3. Could using sensitivity analysis drive model design?

Several important decisions must be made when designing toxicokinetic and phar-
macokinetic studies [83]: (i) animal species and strain, (ii) dose regimen, (iii) time
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points for collection, (iv) tissues that will be collected, and (v) appropriate methods
for sample preparation and storage.

From a mathematical modeling perspective, the analysis of a descriptive or predictive
model that fits the data collected from a study may provide some information that
could possibly drive the design of future kinetic studies. The factors that determine
which tissues will be collected ((iv) above) also play a role in the design of the model
used to describe the data. Blood data is always necessary for kinetic and model
design. Sites of metabolism are typically included (liver, kidney, lungs) as well as
target tissues (sites where specific effects have been observed). Properties of the
chemical also drive the design. For example, if a chemical is known to collect in
adipose tissue (fat), that tissue is an area of interest for both the kinetic and model
design.

Once results of a mathematical model are found, a number of analysis techniques are
performed (error, sensitivity, etc.). We discuss these techniques in detail later but
focus momentarily on sensitivity analysis. In short, it is a process of investigating
potential changes and errors in parameter values and assumptions of a model and
the impact of these changes and errors on the conclusions that can be drawn from
the model.

One such impact is model simplification: fixing inputs that have no effect on the
output or removing redundant characteristics of the model structure. Sensitivity
analysis can provide a quantitative assessment of which parameter values and/or
state variables (or tissue sites under consideration), if any, can be eliminated from
the current model. If it is determined that a state variable does not affect the
outcome of a model, the corresponding tissue site could potentially be excluded
from collection in later kinetic studies design.
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CHAPTER 4

Physiologically-Based Pharmacokinetics (PBPK): Establishing
Baseline Concepts

Pharmacokinetics (PK) is the study of the movement of a chemical compound or drug
within the body from the time of its administration to its elimination. It quantitatively
describes the time-course behavior of chemicals and the processes influencing absorption,
distribution, metabolism, and elimination (ADME) of a compound in the body. Early PK
arose as a way to make comparisons, evaluations and predictions of chemical disposition
based on a set of parameters used to describe pharmacokinetic behavior. These parameters
then allow us to understand the factors that affect ADME and thus determine the
concentration of the compound throughout various organs of the body.

In early PK modeling, time-course curves were analyzed by estimating a small number
of parameters. All ADME processes were treated as first-order rates, that is, the rate
values were directly proportional to a chemical’s concentration. These models also assumed
a data-based compartmental model structure that later came into question due to their
ability to account for (i) "saturation of elimination pathways, and (ii) the possibility
that blood flow, rather than metabolic capacity, might limit the clearance of a chemical."
[57] When an elimination pathway becomes saturated, then the PK model is no longer
first-order and exact solutions to the model questions become more difficult to obtain.

For our disposition predictions to be as sound as possible, the pharmacokinetic models
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we build should be as biologically realistic as possible while also realizing the simplest
formulation of the model. Models that include biologically relevant parameters are called
physiologically-based pharmacokinetic (PBPK) models. These parameters are typically
compound- or species-specific. Species-specific values include organ volumes and blood
flow rates and allow for extrapolation to other species whereas compound-specific values
include lipophilicity, partitioning and metabolic clearance.

4.1 Absorption, Distribution, Metabolism, and Excre-

tion

Absorption, distribution, metabolism, and excretion are known collectively as ADME
processes. The concentrations of chemical substances in the blood and tissues and the
length of time that it remains in the blood/tissue are dependent upon these processes.
[83, 85]

Absorption. Once a substance is administered, either by inhalation, oral ingestion,
intravenous injection, etc., it is transferred into the bloodstream. The rate and extent of
this absorption process is dependent upon the route of administration and the physio-
chemical properties of the substance, for example, whether the compound is lipophilic
("fat loving"), volatile vs. nonvolatile, hydrophilic ("water loving"), soluble vs. insoluble,
etc.

Distribution is the process of carrying a compound throughout the body once it is
absorbed. Once in the blood, the compounds are taken up into the organs and tissues
but blood flow to each of these is different and we have the least vitally important tissues
(e.g. fat) receiving the least amount of blood whereas the greatest amount of blood flows
to the more important organs (e.g., brain and liver).

Metabolism. Physiochemical properties of a compound further determine whether
the compound will have a tendency to undergo metabolic activation. These biochemical
reactions typically occur in the liver but can also occur in other tissues like the kidneys or
gastrointestinal tract. The enzymes that metabolize the compounds fall into two major
metabolism phases:

• Phase I: Oxidation-reduction reactions. These reactions are often catalyzed by the
cytochrome P450 enzyme system. The amount of available enzyme dictates the
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rate of metabolism. The reaction rate is accelerated by the presence of enzymes
and the rate of conversion will continue for as long as the enzyme is present. When
the enzyme is used up, metabolism slows until the enzyme becomes available again.
This rate dependence upon the amount of available enzyme makes this metabolism
case a saturable process.

• Phase II: Conjugation reactions. The compound is joined with another substance
such as glutathione, glucuronic acid or sulfate, making it more water soluble and
thus easier for it to be excreted in the urine or feces.

Metabolism is a particularly important concept for our PBPK modeling and we turn
our attention later specifically to the Michaelis-Menten model of enzyme kinetics.

Elimination is the complete removal of a chemical substance from the body. The
physiochemical properties mentioned earlier also determine how quickly a compound will
be cleared from the body. In the case of repeated exposures to a substance, the body must
remove the substance or concentrations of the substance will rise with each exposure. The
primary routes for elimination are urinary excretion, fecal elimination, and exhalation. A
compound may be eliminated unchanged (through the kidneys, exhalation, or into bile)
or may be metabolized (e.g., by the liver clearing toxins from the body). If a substance is
not made more water soluble (via a metabolism process), it will be reabsorbed into the
bloodstream and recycled through the body.

Overall, the ADME process starts with absorption of a substance into the bloodstream.
The substance is then distributed to the tissues (or other fluids) or passed again to the
bloodstream. Those particles of the substance in the bloodstream that are available to
undergo metabolism (in the kidney, liver or other tissues) do so while the remaining
particles may be cycled again through the body where, ultimately, the substance and
its metabolites are eliminated from the body (through metabolism or excretion in urine,
exhaled breath, etc.)

4.2 Michaelis-Menten Kinetics

For all our models, we rely upon enzyme kinetics to describe the metabolism processes.
The general idea is that the body wishes to convert a substrate (S), the substance being
observed in a chemical reaction, into a product (P ), the substance formed in a chemical
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reaction. The substrate and enzyme (E), the substance (catalyst) added to the system to
cause a reaction, form an enzyme-substrate complex (ES) which can then form a product
plus the initial enzyme. The reactions are represented by Equation (4.1)

S + E
k1−−⇀↽−−
k−1

ES
k2−→P + E, (4.1)

where k1 is the rate in which the enzyme and substrate react to form the complex; k−1 is
the rate in which the complex converts back to the initial substrate and enzyme; and k2
is the rate in which the complex forms the product.

In 1913, Leonor Michaelis and Maud Menten [49, 61] published their work on a
mechanism for the catalysis of chemical reactions in biological systems. They described
the mechanism of enzyme-catalyzed reactions and gave a relationship between the reaction
rates and the concentrations of enzyme and substrate. First, define the production rate
of product, P , at a given substrate concentration, S, as

v0 = v(S) =
dP

dt
=

VmaxS

Km + S
. (4.2)

This is the well-known Michalis-Menten kinetics equation where Vmax is the maximum
production rate of P (or the maximum rate of elimination or the maximum velocity
of reaction) and Km is Michaelis-Menten constant, the affinity of the enzyme for the
substrate, defined as

Km =
k−1 + k2

k1
, (4.3)

the sum of the reaction rates from the enzyme-substrate complex divided by the reaction
rate to the enzyme-substrate complex. Km also satisfies v(Km) = Vmax/2. That is, when
the substrate concentration is equal to Km, the reaction velocity is one-half of Vmax.
Conversely, when the reaction velocity is one-half Vmax, we know that the substrate
concentration is equal to Km. (See Appendix C for the full Michaelis-Menten equation
derivation.)

Figure 4.1 shows the graphical relationship between the production velocity/rate
and the substrate concentration. As the substrate increases, the production velocity
approaches, but never exceeds, Vmax. Thus Vmax is the limiting value where all enzyme
molecules form an enzyme-substrate complex and any additional substrate added to the
reaction has no effect on the rate of reaction. In other words, Vmax is the value where
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Figure 4.1: Michaelis-Menten reaction velocity vs. substrate concentration

the reaction process is using all the enzyme all the time but there is no increase in the
reaction rate beyond Vmax.

The kinetics of a model are described by "orders" which are given in terms of the
concentration since this is the main factor for kinetics. A zero-order process has an
elimination rate which is independent of the concentration, that is, the elimination of the
substance is a constant quantity of the substance per unit time, thus the rate of change
of mass of substance per unit time is given by:

dA

dt
= k0.

A first-order process exhibits elimination of a constant fraction of the substance present per
unit time, that is, the process elimination is proportional to the substance concentration
and is given by

dA

dt
= k1CV.

A second-order process is proportional to two concentrations giving

dA

dt
= k2C1C2V,

where V is the volume of the compartment with concentration C, C1, or C2 above.
Nonlinear kinetics arises when saturation occurs in one of the pharmacokinetic mech-

anisms (e.g., hepatic metabolism). Saturation occurs when a first-order process at low
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concentrations transitions to a zero-order process at high concentrations [83]. During
saturable elimination, the elimination rate tends to reach a maximal value when the
concentration exceeds a certain value. The kinetics for each of the models represented for
this research is described by Michaelis-Menten kinetics. We saw by Equation (4.2) that
the Michaelis-Menten rate of metabolism is given by

Metab =
VmaxC

Km + C
,

where Vmax is the maximum rate of elimination and Km is the enzyme affinity, the
concentration of substance that gives an elimination rate of one-half Vmax. When the
concentration, C, is much larger than the affinity constant, Km (C � Km), saturation
of the enzymes occurs, the rate of elimination approaches a fixed value equal to Vmax,
and the elimination becomes a zero-order process thereby satisfying the properties of a
saturable process.
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CHAPTER 5

Physiologically-Based Pharmacokinetic (PBPK) Modeling

Models that are good at prediction are referred to as "models of data" (versus "models of
systems") by DiStefano and Landaw (1984) [20, 32, 52]. These models are empirical in
nature, require "few assumptions about the data generating mechanism," and are useful
when the data is not accompanied by knowledge of the underlying processes from which
it is generated. Allometric scaling, a scaling based on body size, is one example of this
type of model.

Models of systems, on the other hand, are based on physical and physiological principles
and should include as many systems features as the data will support. This is the basis
of physiologically based pharmacokinetic (PBPK) models, characterized in part by the
transport into and out of tissues being modeled as a function of blood flow and permeability
between the blood and tissue.

A PBPK approach to modeling is based on the use of a physiologically realistic
representation of the biological system. This representation is a quantitative description
of the ADME of a compound and includes information about the biochemical and
physiological interactions that occur. The ADME determinants include blood flow rates,
rates of absorption, tissue-to-blood partition coefficients, diffusion across membranes, and
tissue volumes. They are one of either physiological, physiochemical or biochemical type.
These parameters are also classified as either species- or drug-specific. Replacing the
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species-specific data, allows for extrapolation to different species or to human.
Extrapolations play an important role in the application of PBPK modeling. They

convert from one exposure route of administration to another, from high dose to low
dose, and from one population to another. When PBPK models are based on animal
data, one clear extrapolation would be from animals to humans. These extrapolations are
understandably necessary when we have studies that indicate evidence of toxicity of a
substance in one environment and we wish to predict the conditions that could lead to
similar outcomes in another environment.

PBPK models, due to their ability to increase toxicity testing efficiency, significantly
boost the accuracy of extrapolations. By using biologically relevant model parameters,
PBPK models also reduce uncertainty in high-to-low dose extrapolations.

5.1 Principles of PBPK Modeling

Models represent the system under study [20]. Modeling is a process that requires
iteration. Our initial structure was determined by identifying the important kinetic
processes driving the chemical behavior (in this case, metabolism), target sites of interest
(e.g., endpoints for toxicity), the availability of parameter data obtained from the literature,
and most importantly, the availability of experimental data (the outputs of the system).
Model parameters are fitted to the measured data, maintaining realistic biochemical,
physiological, and biological properties. For example, partition coefficients and chemical
concentrations are always positive values. The model is then tested against the data and,
oftentimes, an updated model is developed.

Best practices in PBPK model development are always to start with the simplest
model possible, including only compartments of interest, for example, those for which
experimental data is available (e.g., blood plasma) or those which are endpoints for
toxicity (e.g., liver). While this might not always be possible, model designers should keep
in mind that the number of input parameters increases as more model compartments are
added [83]. Further, these parameters must be estimated from experimental data, thus
the availability of data is a limiting factor in the model’s design.

Experimental data aside, first, consider tissue grouping. How many compartments
are needed? Can certain organs be grouped into a larger compartment if they are
not identified as data or target compartments? Yes. A minimal PBPK model might
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have rapidly perfused tissues (heart, kidney, liver, brain, etc.) grouped into a single
compartment and slowly perfused tissues (muscle, fat, skin, etc.) grouped into another.
This "lumping" can be achieved when tissues are pharmacokinetically and toxicologically
similar. In contrast, tissues which are pharmacokinetically and toxicologically dissimilar
or distinct must be separated. [80]

Next, we consider the processes controlling kinetics and other compartments that
contribute to the distribution, elimination, and toxicity of a substance. For example, is
distribution flow-limited or diffusion-limited? In a flow-limited system, the amount of
substance reaching a tissue is dependent upon the blood flow rate to that tissue. The
amount can be increased if the blood flow rate is increased. Further, equilibrium for this
compartment can be reached, an important property in the definition of partition coeffi-
cients (discussed in Section 5.3). In a diffusion-limited system, the amount of substance
entering a tissue is dependent upon the tissue’s barrier and its rate of diffusion (movement
of a substance from a region of high concentration to a region of low concentration). Thus
the amount crossing the tissue’s membrane can not be increased with blood flow. The
models presented in this paper are all flow-limited systems.

Finally, what are the uptake routes? Do we have dermal exposure to the substance? Is it
inhaled? Ingested? Injected? Each of these exposure routes indicates the requirement of an
associated compartment: skin, lung, gastrointestinal (GI) tract, and/or blood, respectively.
The exposure routes represent the perturbation to the system. The associated amounts
along with duration are the inputs to the system.

When all these considerations have been made, it is important to also maintain mass
balance for the system. That is, the sum of the tissue blood flows must equal the total
cardiac output:

∑
iQi = Qtotal. If a compartment is split from a larger compartment (e.g,

separating kidney from the rapidly perfused tissue compartment), that compartment’s
blood flow and volume must also be separated from the total for the larger compartment.

5.2 Gas Exchange in the Lung: the Wash-in Wash-out

effect

Washin-washout is a phenomenon where some of a chemical is retained in the upper
airways during respiration [80]. It is the process where a chemical is diffused into the
lung’s mucous layer during both inhalation and exhalation. During inhalation (washin),
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less of the chemical participates in gas exchange with the alveoli, thus less of the chemical
reaches the blood stream to be distributed to the rest of the body. Upon exhalation, some
fractional component of the chemical is desorbed from the respiratory airway (washout)
and removed in expired air.

When washin-washout is not considered, chemical concentrations in the organs can
be predicted using the much simpler inert tube PBPK model. The inert tube serves
as a conducting passageway to transport the inhaled substance to the alveoli [47] and
then to the blood where the substance is distributed to the organs. PBPK models for
highly soluble substances that treat the airways as an inert tube have been shown to
underestimate the exhaled values anticipated [50].

The washin-washout effect is most dramatic when the blood:air (or water:air) partition
coefficient is high. A high partition coefficient (Pb:a > 1000 [7]) indicates a highly water
soluble substance and is therefore more likely to be absorbed into the mucous lining of
the lung and upper airways whereas low blood-soluble gases (Pb:a < 10) exchange via
inert tube in the alveoli.

5.3 Partition Coefficients

Key parameters in any PBPK model are the tissue-to-blood partition coefficients. They
measure the steady-state chemical concentration between two compartments. Modeling
pharmacokinetics requires detailed information about the partition coefficients for each
organ. The most-used partition coefficients for our model are the tissue:blood coefficients
given by the ratio of the tissue concentration to the blood concentration

Pt:b =
Ct
Cb
.

The greater the partition coefficient, the greater the affinity of the chemical for the
tissue compared to the blood. For example, if Pt:b = 5, then the affinity of the chemical
toward the tissue is five times greater than its affinity toward blood. We represent the
concentration leaving a tissue, Cvt , and entering the venous blood compartment as

Cvt =
Ct
Pt:b

,

thus, the greater the partition coefficient, the smaller the tissue’s contribution to the
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venous blood compartment.
Since partition coefficients are a steady-state measure, the coefficients for some rela-

tionships may be determined from other known quantities. For example, the blood:air
partition coefficient of a compound can be computed from the ratio of tissue:air and
tissue:blood partition coefficients. (We make use of this when determining the lung:air
partition coefficient for our models.)

5.4 Assumptions and Constraints

PBPK models, in general, follow some basic rules and assumptions. The first assumption is
that each organ can be modeled as a single well-stirred compartment. Further, we assume
the blood-tissue exchange is flow limited, that is, the transportation of a substance into
one tissue depends on its blood supply. Under this type of transport, equilibrium between
blood and tissue could be reached instantly. Thus, substance distribution is assumed to
occur instantaneously and homogeneously and the tissue concentration and the venous
concentration exiting the tissue quickly achieve a steady-state ratio. Finally, elimination
is typically assumed to occur based on either a linear or a saturable Michaelis-Menten
process.

The following constraints must be adhered to for a PBPK model to be complete. First,
the sum of blood flow rates to all tissues making up the model compartments should add
up to the cardiac output. The weights of individual tissues making up the compartments
should be less than or equal to the body weight and the sum of the weights of these tissues
should equal total body weight. Last, the mass balance of the compound of interest
should be maintained. That is, the total amount of a compound and its metabolites in
the body at any time and the amount of compound and its metabolites eliminated by
that time should add up to the initial dose administered [72].

5.5 Parameters and Estimation

For each metabolism pathway, we estimate Michaelis-Menten parameters, Vmax (the
maximum enzymatic reaction rate achieved by the kinetic system) and Km (the measure
of the affinity of the enzyme for the substance and the substrate concentration at which
the reaction rate is half of Vmax).
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MATLAB (The MathWorks, Inc.) was used for simulation with fminsearch used for
optimization. Where initial "guesses" are required, we use Blancato’s published values [18].
Blancato, however, does not specify Vmax or Km parameter values for kidney metabolism.
In this case, the author uses an arbitrary initial value for both parameters.

Data fitting and parameter estimation are done via a two-stage method (Section 8.2).
That is, we estimate the model parameters for each subject in the data set then compute
the mean of the estimates which is then used as the common predictor set for all data.
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CHAPTER 6

Model Development/Derivation

The structure of a model is determined by the question one is attempting to answer and by
the availability of data to validate the model. Not all data are sufficient for validation but
a useful model is one that is mathematically and biologically realistic, can be validated,
and is used to make a decision. On the path to its usefulness, a model must have an
appropriate level of detail but must also be parsimonious, that is, be as simple as possible.
This requires a delicate balance since increased detail decreases simplicity.

The general process of creating a mathematical model is to analyze the problem;
formulate a model; fit the model to experimental data; validate the model; reformulate,
refit, and revalidate the model as often as is required; then interpret and communicate
the results [20].

At the forefront of model development is making assumptions about the processes
needed to determine the form of the model to fit the data. The general process laid out
above assumes data have already been collected and that the data is fit for use across
candidate models. If this is not the case and new data is needed to fit the model, then a
typical recommendation is to design a new experiment to collect new data; however, this
is not always feasible since data collection can be time- and cost-intensive. We continue
with the assumption that the data is sufficient for candidate models.

Once assumptions have been deemed valid (and data is presumed accurate and
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unbiased), we next identify and formulate a candidate model. The model is then evaluated
and verified. Is the model built right? Are the input parameters correctly represented? Is
the logical structure correct? This step is followed by fitting the model and estimating
unknown parameters.

Next is validating the model. Was the correct model built? The answer to this is
achieved by comparing the model to the actual system behavior (i.e., comparing the
model to reality) and using the differences between them to modify and improve the
model. This process of formulating, fitting, and validating the model is repeated until
its accuracy (the differences between the model output and actual system behavior) is
acceptable.

The final step is to communicate the results, interpretations, and conclusions of the
model. Its usefulness rests on its fit for purpose. For example, Does the model predict the
"important" aspects of the data? Does it guide experiment design? Once the model and
its results are accepted, any number of events may cause the model to be revisited. New
data may be obtained or basic assumptions may be shown later to be incorrect. These
examples point to the dynamic nature of models: They can—and should—change as new
information is obtained.

6.1 PBPK Models

The most common methods used for pharmacokinetic analysis estimation are noncom-
partmental analysis (NCA), classical compartmental analysis, and physiologically-based
pharmacokinetic models. Noncompartmental analysis involves calculations that are model-
independent and requires fewer assumptions than model-based approaches. However, the
results of NCA calculations cannot be used to extrapolate to other exposure routes or
conditions [83]. Classical compartmental models overcome this limitation and allow data
generated from one exposure condition to simulate a different exposure condition. For
example, predictions on the behavior of a repeated exposure event can be made using a
compartmental model with parameters obtained from data from a single exposure event.
While these models can extrapolate across exposure conditions, they cannot be used to
extrapolate to a different exposure route or to a different species since the parameters
and the compartments of these models have no physiological meaning.

Physiologically-based pharmacokinetic models are classified as lumped systems. That
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is, the dependent variables are a function of time alone versus distributed1 systems where
the dependent variables are functions of time and one or more other variables. In this
system, processes are lumped together based on time, location or a combination of the
two.

6.2 PBPK Model Parameters

A number of parameters are required when considering a PBPK model. Specifically, we in-
clude the use of physiochemical tissue:blood partition coefficients, Pt:b, and a blood:air par-
tition coefficient, Pb:a. These parameters are species-, substance-, and tissue-specific. The
Michaelis-Menten kinetics parameters, Vmax and Km, are dependent upon the metabolic
pathway(s) primarily involved in biotransformation.

Other parameters in a PBPK model are purely physiological as well as species-specific.
These include body weights, BW/bw; tissue weights/volumes, volt, typically given as
fractions of body weight; and tissue blood flow rates, Qi, typically given as fractions of
total cardiac output, Qtot, measured in liters per hour (L/hr).

The physiological parameters are well-documented in the literature. These values were
almost exclusively obtained from Brown, et al. [25]. We note that body weights are often
provided in units of mass but tissue values are often represented as volumes. These terms
appear to be interchangeable in most literature but a major assumption for PBPK models
is that tissues exhibit "unit density." Thus, one kilogram of mass is equivalent to one liter
of volume for tissues.

The physiochemical values for MTBE and TBA were obtained from various sources
(e.g., [63, 64]). See Tables B.1 and B.2 for values and descriptions.

6.3 PBPK Model Equations

Section 5.1 covers the principles and structure of a PBPK model. We now turn our
attention to building the PBPK model by obtaining deterministic model equations that
represent the biological properties of the model. We discussed earlier that target tissues
and other representative compartments should be identified as well as routes of exposure.

1Distributed systems require solutions to partial differential equations and are rarely seen in the
pharmacokinetics field.
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Figure 6.1: Eight-compartment PBPK model

We incorporate appropriate physiological properties of the system such as tissue volume,
blood flows, and clearance pathways for the substance and its metabolites. Finally, we
include relevant biochemical constants, those specific to the substance under study, namely,
tissue affinities or partition coefficients.

In practice, model design should include only compartments that add significantly
to the model. Here, we start with a relatively simple model (Figure 6.1) that includes
arterial and venous blood compartments, the connective conduits for other compartments;
non-metabolizing compartments (adipose/fat, rapidly perfused tissues, slowly perfused
tissues); a metabolizing compartment (liver, kidney); and the lung as an intake (via
inhalation) compartment.

Each compartment is described with a mass-balance differential equation based on
Fick’s law of perfusion, a process in which the rate a substance moves across a tissue mem-
brane is dependent upon the blood flow to that tissue. Recall, this is the perfusion-limited
process briefly described in Section 5.1. This process assumes that the compartments
are well-stirred. It further assumes a rapid equilibrium of tissue along with steady-state
conditions. In fact, we established that the tissue:blood partition coefficients are defined as
the steady-state ratio of concentration of a substance in a compartment to concentration
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of the substance in the blood leaving the compartment.

6.3.1 Non-elimination Compartment

We define the rate of change for the amount of substance,

dA

dt
,

in a compartment as "what goes in" minus "what goes out." To write this as a differential
equation, we start with adipose as a representative compartment (Figure 6.2). The rate
of substance (mg/hr) entering the adipose tissue ("what goes in") is

QfatCart,

the product of the concentration of substance leaving the arterial compartment, Cart
(mg/L), and blood flow rate to the adipose/fat compartment Qfat (L/hr). The rate of

Figure 6.2: Non-elimination compartment

substance (mg/hr) exiting the adipose tissue ("what goes out") is

QfatC
∗
fat = QfatCvfat ,

where Cvfat is the concentration of substance leaving the adipose compartment entering
the venous blood compartment. This concentration is not simply the concentration of
substance inside the adipose compartment, but is the concentration inside the compartment
divided by the unitless tissue:blood partition coefficient for the compartment. Thus, the
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concentration exiting the adipose compartment is

Qfat
Cfat

Pfat:blood
. (6.1)

Putting everything together, we have

dAfat
dt

= QfatCart −QfatCvfat (6.2)

= QfatCart −Qfat
Cfat

Pfat:blood
(6.3)

= Qfat

(
Cart −

Cfat
Pfat:blood

)
, (6.4)

where:

• Qfat is the blood flow rate to/from the adipose compartment (L/hr),

• Cfat is the concentration of substance inside the adipose compartment (mg/L), and

• Cvfat is the concentration of substance in venous blood leaving the adipose compart-
ment (mg/L).

Equation (6.4), then, is the general form of a PBPK equation for a non-elimination
compartment (adipose tissue, rapidly perfused tissue, slowly perfused tissue, etc.).

Notice we have an inconsistency in variables amount (Afat) and concentration (Cfat).
This is a simple remedy by noting that concentration is defined as amount per volume,
thus we have

Cfat =
Afat
Vfat

=⇒ Afat = CfatVfat, (6.5)

where Vfat (L) is a constant and Equation (6.4) becomes

d(CfatVfat)

dt
= Qfat

(
Cart −

Cfat
Pfat:blood

)
(6.6)

Vfat
dCfat
dt

= Qfat

(
Cart −

Cfat
Pfat:blood

)
(6.7)

dCfat
dt

=
Qfat

Vfat

(
Cart −

Cfat
Pfat:blood

)
, (6.8)
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where this final form of the equation is written in terms of concentrations.

6.3.2 Elimination Compartment

To derive the equations for an elimination compartment (Figure 6.3), liver in this case,
we follow similar steps as in Section 6.3.2. The "what goes in" (mg/hr) is again

Figure 6.3: Elimination compartment

QlivCart.

The "what goes out" (mg/hr) starts with

QlivC
∗
liv = QlivCvliv ,

but must also consider an elimination process. The elimination process used exclusively
in this paper is Michaelis-Menten kinetics. (See Appendix C for derivation details.) The
Michaelis-Menten rate of metabolism, Metliv (mg/hr), is given as

Metliv =
VmaxCvliv
Km + Cvliv

, (6.9)

where:

• Vmax is the maximum enzymatic reaction rate achieved by the kinetic system
(mg/hr),

• Km is the substrate concentration at which half the enzyme’s active sites are occupied
by substrate and is also the substrate concentration at which the reaction rate is
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half of Vmax (mg/L); and

• Cvliv is the concentration of substance in venous blood leaving the liver compartment
(mg/L).

Putting it all together, we have

dAliv
dt

= QlivCart −QlivCvliv −Metliv (6.10)

= QlivCart −QlivCvL −
VmaxCvL
Km + CvL

(6.11)

= Qliv (Cart − CvL)− VmaxCvL
Km + CvL

, (6.12)

where CvL is similarly defined as in Equation (6.1) where we divide instead by the unitless
liver:blood partition coefficient and consistency in variables is obtained similarly as in
Equation (6.5). If there were other routes of elimination, these would be included as
"what goes out."

6.3.3 Intake Compartment

Routes of exposure come in various forms: inhalation, oral/ingestion, dermal, injection
(e.g., intravenous), and others. These routes dictate the inclusion of the compartments
which are directly affected by the exposure. For example, one would include a skin
compartment for dermal exposure or include the gastrointestinal tract for oral exposure.
For our model, we have only inhalation to consider and thus include the lung in our model.

Figure 6.4: Intake compartment
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In Figure 6.4, the "what goes in" are the concentration of the substance being inhaled
with a ventilation/respiration rate of Qresp,

QrespCinh,

and the concentration of the substance in the venous blood compartment carried by the
lung’s blood flow rate, Qlung (which is equal to the total cardiac output rate, Qtot)

QlungCv.

"What goes out" is the concentration of substance exhaled again with a ventilation rate
of Qresp,

QrespCexh,

and the concentration of substance entering the arterial blood compartment

QlungC
∗
lung.

As we saw with other tissue compartments, the concentration leaving the lung is based
on the partition coefficient for that tissue, thus we have

Qlung
Clung

Plung:blood
.

We turn our attention the exhaled concentration, Cexh. It is again the concentration of
substance leaving the lung but rather than having blood on the other side of the tissue
membrane, we have air. Thus, we require a lung:air or blood:air partition coefficient
(Sections 5.3 and 6.2).

Putting it all together, the equation representing the lung compartment is

dAlung
dt

= QrespCinh +QlungCv −Qlung
Clung

Plung:blood
−Qresp

Clung
Plung:air

. (6.13)

The uptake in the lung and distribution to the arterial compartment equilibrates rapidly
[5, 12] and one may see the equation derivation for this exchange written for the arterial

34



compartment, rather than the lung, as follows:

dAart
dt

= QrespCinh +QtotCv −QtotCart −Qresp
Cart

Pblood:air
. (6.14)

Assuming a rapid equilibrium in the arterial compartment means there is no change
over time in the amount of substance in the arterial blood, thus dAart

dt
= 0 and one may

compute the concentration of the arterial blood compartment, Cart, algebraically

Cart =
QrespCinh +QtotCv

Qtot + Qresp

Pblood:air

. (6.15)

This form of the equation can be found in many PBPK articles with inhalation as a route
of exposure.
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CHAPTER 7

PBPK Data

7.1 Cain, 1.7 ppm

The subjects for this study consisted of two males and two females, aged 18-26 years.
Volunteers were exposed to 1.7 ppm of substance in air for 1 hour. Six venous blood
samples per subject were collected during exposure (at t = 2, 5, 10, 20, 30, and 60
minutes). Seven venous blood samples were collected over 1.5 hours post-exposure (at tpost
= 2, 5, 10, 20, 40, 60, and 90 minutes or t = 62, 65, 70, 80, 100, 120, and 150 minutes).
The exposures were carried out in two controlled environmental chambers measuring
18.5m3 each.

Measurements were performed by gas chromatography/mass spectroscopy (GC/MS)
using purge and trap extraction of MTBE and TBA from blood.

7.2 Pleil, 3 ppm

The subjects for this study consisted of fourteen males, aged 20-30. Volunteers were
exposed to 3 ppm (10.8 mg/m3) of substance in air for 1 hour. Venous blood samples
were collected over 24 hours before, during and after exposure (one baseline measurement
and others at t = 5, 15, 30, 45, 60, 65, 75, 90, 120, 180, 240, 360, and 1440 minutes).
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Exhaled breath samples were collected from seven of the 14 subjects and were obtained
at the same time as blood samples. The exposures were carried out in a converted body
plethysmograph measuring 1.75m3.

As with the Cain study, measurements were performed by GC/MS using purge and
trap extraction of MTBE and TBA from blood. Breath analysis was performed via
GC/MS using protocols derived from EPA Method TO-14 which tests ambient air for
toxic organic compounds.
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CHAPTER 8

Model Analysis

8.1 Parameter Estimation

A classical inverse problem is one given by the system of equations,

f(x;q) = d, (8.1)

where a vector of system parameters, q, characterizing the model is estimated given data,
d; f is the forward function relating q and d; and x is the vector of state variables for
the system [10, 62, 88]. Forward modeling allows us to make predictions on the results of
measurements on some observable parameters (i.e., find d given q) whereas parameter
estimation is the process of using empirical data to approximate model parameter values
(i.e., find q given d). It is the basis for solving inverse problems, assuming a solution
exists.

One of the most common techniques for parameter estimation is the least squares
method. It is an iterative process requiring an initial set of values that leads to estimates
close to the real values of the parameters. We apply a criteria function based on the
differences between the observed values and the predicted values obtained from using
the estimated parameters in the model. These differences are called residuals and are
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discussed further in Section 8.3.1 but are defined here as

e = d− f(x; q̃), (8.2)

where q̃ is the vector of estimated parameters and f(x; q̃) is the vector of predicted values
that ultimately lead to an optimum q̃. At each step, we seek to find a q̃ that minimizes
the distance between the observed values and the predicted values, ‖e‖2= ‖d− f(x; q̃)‖2.
Thus, the least squares objective (or cost) function is defined as

Cost =
∑
i

[di − f(xi; q̃)]2 (8.3)

and this is the quantity we wish to minimize. In practice, we use a variation of this
equation,

Cost =
∑
i

[log di − log f(xi; q̃)]2 , (8.4)

to reduce the dispersion of the data set and reduce the effect of extreme values.
We generally assume that there are no constraints on the model’s parameter values,

q; they can range from −∞ to ∞. While this may be valid for some parameters, it is
not true for our pharmacokinetic parameters. For example, all rate constants (Q, Vmax,
etc.) are positive values. Additionally, the Michaelis-Menten affinity constant, Km, is a
positive value. Therefore, these constraints must be considered in the data-fitting process.
We address this in practice by using MATLAB’s constrained optimization option for
fminsearch, limiting all applicable estimated parameters to [0,∞) and, in a few cases,
limiting some parameter values to those that are biologically plausible, [0, qmax].

8.2 Data Fitting Via Two-Stage Method

In pharmacokinetic studies, data are often obtained from multiple subjects. Individual
data can be used in a model to obtain parameter estimates for each subject. Repeatedly
applying the model will yield a vector of parameters for each subject. The logical next
step is to determine statistical properties about the collection of parameters to make
a generalization about the population. This is the general idea behind the two-stage
approach for data-fitting:

1. First, estimate model parameters for each individual in the data set.
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2. Then, use individual estimates to compute statistical properties about the popula-
tion.

These values may then be used to validate the model against the population, to draw
conclusions about the population, or any number of other uses.

Given a collection of parameter estimates, natural estimators for the population are
mean and variance. Let N be the number of subjects or pharmacokinetic profiles; let Λ be
the parameter set being estimated for each subject with p parameters per subject/profile;
and let qi be the estimated parameters for each subject, i = 1 . . . N . If we consider a
matrix,

Q̂ = [q1,q2, · · · ,qN ],

where the columns are qi for each subject, with entries qi,j , then the p rows each represent
a parameter estimate from each model run. This p × N matrix can then be used to
compute the mean,

µi =
1

N

N∑
j=1

qi,j i = 1, . . . , p, (8.5)

and the variance,

σ2
i =

1

N

N∑
j=1

(qi,j − µi)2 i = 1, . . . , p, (8.6)

with standard deviation σi. In estimating the variance of a population, it is generally
assumed that each entry involved in the variance’s computation is known with certainty.
This is not the case here and each individual’s parameter has some degree of bias associated
with it. As a result, the two-stage method does not take into account the variability in
the parameter estimation and thus inflates any variance based on these estimates [13, 20].
Mixed-effect models (Section 10.2.1) are not hindered by this variance inflation and tend
to produce both mean and variance estimates that are unbiased.
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8.3 Model Validation

8.3.1 Residuals and Residual Analysis

Residuals represent part of the data that a model could not reproduce. Their values
and trends allow us to assess the validity of a model and improve upon it. They are the
difference between the observed y-value and the predicted y-value of a model approximating
the data provided:

ei = yi − f(xi;q), (8.7)

where yi is the ith response of observed values, q is the vector of estimated parameters, f
is the regression function and xi denotes the explanatory/predictor variables.

Residuals, like other error measures, are assumed to be normal and independently
distributed. Further, they have zero mean and some constant variance. When the residual
values of a model are plotted against the predicted values, indications of an accurate
model are that the residuals are symmetrically distributed (about zero) throughout the
range of fitted values and there are no clear patterns or trends. Ultimately, for a regression
model to be "valid," we require randomness and unpredictability of the residuals. If these
are not present, it would suggest that the model may need improvement. For example,
there may be missing variables or existing terms in the model are missing some type of
interaction.

Most residual analyses involve examination of graphs that allow you to identify patterns
that are either poorly fit by the model or have a strong influence upon the estimated
parameters. Interpretations of these graphical diagnostics are helpful to understand
potential problems with the model.

Table 8.1 [20] lists plots that are often examined for systematic trends or departures
from the expected values. Any trends indicate model misspecification, correlation of the
residuals, or inaccurate prediction of the time trend.

8.3.2 Akaike Information Criterion

Goodness-of-fit is a measure of how well a model approximates data. In the case of multiple
models, we are interested in determining which model provides the best goodness-of-fit.
The Akaike Information Criterion (AIC) [4] is a model selection tool that ties together
Kullback-Liebler’s (1951) divergence measure to represent the amount of information
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Table 8.1: Types of Graphical Analysis Plots

Vertical axis
("y" axis)

Horizontal axis
("x" axis)

What to look for

Predicted value Residuals Should show no systematic trend in the resid-
uals with data appearing as a shotgun blast

Absolute or
squared residuals

Predicted values Should show no systematic trend in the resid-
uals with data appearing as a shotgun blast

Residuals Time Should show random variation centered
around zero and show no systematic trends

Observed values Predicted values Should show random variation about the line
of unity

ek, k = 1 . . . (n −
1)

ek+1 Should show no trend in the "lag" plot

lost when approximating data and the maximum value of the log-likelihood1 function
for a model. The resulting combination is a measure of the relative goodness-of-fit of a
statistical model.

In the general case, AIC is defined as

AIC = −2Lmax + 2p, (8.8)

where Lmax is the maximized value of the log-likelihood function for the estimated model
and p is the number of estimated parameters. The 2p here is a penalty term that effectively
avoids overfitting.

In practice, we find the AIC index for each of our candidate models, then select the
model with the smallest AIC value among all models. It is important to note that the
AIC index does not provide any indication of whether a model is "good" or "bad;" it
simply provides a means to quantitatively compare a pool of candidate models.

For analyses with least squares regression,

AIC = n ln

(
σ̂2

n

)
+ 2p, (8.9)

1Likelihood theory - the probability that one observes a set of data given that a particular model were
true
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where n is the sample size (total number of data points), and

σ̂2 =
n∑
i=1

(yi − f(xi;q))2 . (8.10)

We modify this slightly by scaling by the maximum value of the experimental data over
all time points, maxj(yj), thus

σ̂2 =
1

maxj(yj)

n∑
i=1

(yi − f(xi;q))2 , (8.11)

for j ∈ [1, . . . , n].

8.4 Existence and Uniqueness of Solutions

For any system of ordinary differential equations for which we seek a solution, we must
determine if there first exists a solution and we must also determine if that solution is
unique. We begin with an initial-value problem

x′ = f(t,x), (8.12)

x(t0) = x0. (8.13)

Our system is autonomous, thus f(t,x) = f(x). This system will have a solution and
that solution will be unique if it satisfies the Lipschitz Uniqueness Theorem [3, 9, 19].
Definition 1. f(x) is Lipschitz continuous if there exists a constant L such that

‖f(x)− f(y)‖≤ L‖x− y‖, (8.14)

for all x,y ∈ Rn

Theorem 1 (Lipschitz Uniqueness Theorem). Suppose f(x) is Lipschitz continuous
in some open set containing the initial data x0. Then a unique solution x(t) of Equation
(8.12) exists in some interval t ∈ (t0 − ε, t0 + ε), satisfying ((8.12)) and ((8.13)).

We begin our proof with a sample model (Figure 8.1). The model has at least one
representative compartment for any of the four models we have. It includes:
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Figure 8.1: Representative PBPK system

• a compartment that has a constant input and an output (lung).

• a compartment that feeds almost all other compartments (arterial blood)

• a non-metabolizing compartment (e.g., slowly perfused, rapidly perfused, fat)

• a metabolizing compartment (e.g., liver, kidney); and

• a compartment that collects from almost all other compartments (venous blood).

We assume there is a partition coefficient, Pi, associated with each compartment.
There is a blood flow rate, Qi, for each compartment and a respiratory rate, Qp for the
lung compartment. Compartment volumes would include a constant for each equation
but there is no loss of generality by ignoring them (or, rather, by assuming voli = 1). Qi

and Pi are non-zero, non-negative, and factored, where applicable, into the coefficients Ai,
Bij, Cik, Dil, Eil, Fim, and Gim in the generalized system of equations (Equation (8.15)).
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Finally, xi is non-negative since it represents compartment concentrations.

voli
dxi
dt

= Ai+
n∑
j=1

Bijxj−
n∑
k=1

Cikxk−
np∑
p=1

n∑
l=1

Dilxl
Kpl + Eilxl

+

np∑
p=1

n∑
m=1

Fimxm
Kpm +Gimxm

(8.15)

To continue, let fi(x) = voli
dxi
dt
, then

|fi(x)− fi(y)|

=

∣∣∣∣∣
(
Ai +

n∑
j=1

Bijxj −
n∑
k=1

Cikxk −
np∑
p=1

n∑
l=1

Dilxl
Kpl + Eilxl

+

np∑
p=1

n∑
m=1

Fimxm
Kpm +Gimxm

)

−

(
Ai +

n∑
j=1

Bijyj −
n∑
k=1

Cikyk −
np∑
p=1

n∑
l=1

Dilyl
Kpl + Eilyl

+

np∑
p=1

n∑
m=1

Fimym
Kpm +Gimym

)∣∣∣∣∣
=

∣∣∣∣∣
n∑
j=1

Bij(xj − yj)−
n∑
k=1

Cij(xk − yk)−
np∑
p=1

n∑
l=1

Dil

(
xl

Kpl + Eilxl
− yl
Kpl + Eilyl

)

+

np∑
p=1

n∑
m=1

Fim

(
xm

Kpm +Gimxm
− ym
Kpm +Gimym

)∣∣∣∣∣
=

∣∣∣∣∣
n∑
j=1

Bij(xj − yj)−
n∑
k=1

Cij(xk − yk)−
np∑
p=1

n∑
l=1

Dil

[
Kpl(xl − yl)

(Kpl + Eilxl)(Kpl + Eilyl)

]

+

np∑
p=1

n∑
m=1

Fim

[
Kpm(xm − ym)

(Kpm +Gimxm)(Kpm +Gimym)

]∣∣∣∣∣
≤

n∑
j=1

|Bij(xj − yj)|+
n∑
k=1

|Cij(xk − yk)|+
np∑
p=1

n∑
l=1

∣∣∣∣∣Dil

[
Kpl(xl − yl)

K2
pl

]∣∣∣∣∣
+

np∑
p=1

n∑
m=1

∣∣∣∣Fim [Kpm(xm − ym)

K2
pm

]∣∣∣∣
≤

n∑
j=1

|Bij| |xj − yj|+
n∑
k=1

|Cij| |xk − yk|+
np∑
p=1

n∑
l=1

∣∣∣∣Dil

Kpl

∣∣∣∣ |xl − yl|
+

np∑
p=1

n∑
m=1

∣∣∣∣ FimKpm

∣∣∣∣ |xm − ym| .
(8.16)

By definition ‖x− y‖=
∑n

i |xi− yi|, thus any |xi− yi|≤ ‖x− y‖. Continuing ((8.16)),
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|fi(x)− fi(y)|

≤
n∑
j=1

|Bij| ‖x− y‖+
n∑
k=1

|Cij| ‖x− y‖+

np∑
p=1

n∑
l=1

∣∣∣∣Dil

Kpl

∣∣∣∣ ‖x− y‖+

np∑
p=1

n∑
m=1

∣∣∣∣ FimKpm

∣∣∣∣ ‖x− y‖

≤

(
n∑
j=1

|Bij|+
n∑
k=1

|Cij|+
np∑
p=1

n∑
l=1

∣∣∣∣Dil

Kpl

∣∣∣∣+

np∑
p=1

n∑
m=1

∣∣∣∣ FimKpm

∣∣∣∣
)
‖x− y‖ .

(8.17)
In Equation (8.17), Bij, Cik, Dil, and Fim are all bounded. The Michaelis-Menten
constants, Kpl and Kpm, are positive, non-zero values, hence Dil

Kpl
and Fim

Kpm
are both

bounded and Equation (8.17) satisfies the Lipschitz condition,

|fi(x)− fi(y)|≤ L‖x− y‖,

with

L =
n∑
j=1

|Bij|+
n∑
k=1

|Cij|+
np∑
p=1

n∑
l=1

∣∣∣∣Dil

Kpl

∣∣∣∣+

np∑
p=1

n∑
m=1

∣∣∣∣ FimKpm

∣∣∣∣ .
Thus, the system of ordinary differential equations has a solution and that solution is
unique.

8.5 Sensitivity Analysis

When working with kinetic models, it is desirable to determine which parameters have
the greatest effect on the model output, that is, which parameters are most influential (as
well as those that have little impact). Sensitivity analysis, specifically local sensitivity
analysis, is a method that allows us to determine this influence by studying the change in
a model’s output variable with respect to its parameters or input variables.

We assume that the model is a sufficiently reasonable description of the process we
are modeling. We then compute the rate of change of the model responses with respect to
the parameters. These values are the sensitivity coefficients and are required to perform
parameter estimation procedures to completion. Since we wish to measure the change in
model output associated with the change (perturbation) in model input (e.g., in parameter
values), we determine the effects of parameters q on model states x, that is, we find ∂x

∂q .
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Consider the initial value problem

d

dt
x(t) = f(t,x(t),q), x(t0) = x0 (8.18)

y(t) = g(t,x(t),q), (8.19)

where x is an n-dimensional vector of state variables, q is the p-dimensional vector of
system parameters, y the measurement vector, and t is the independent variable. Then

d

dt

∂x
∂q

=
∂f
∂x

∂x
∂q

+
∂f
∂q
. (8.20)

Define the sensitivity coefficients,

S(t) =
∂x
∂q
, (8.21)

then (8.20) becomes
d

dt
S(t) =

∂f
∂x

S(t) +
∂f
∂q

(8.22)

with initial condition S(t0) = 0 since the initial conditions of the model are not dependent
upon the model parameters [96]. We now have a differential equation for the sensitivity
coefficients where both ∂f

∂x and ∂f
∂q can be computed using automatic differentiation, a

technique for systematically studying sensitivities that is completed by applying the chain
rule repeatedly to numerically obtain derivatives of a function.

8.5.1 Sensitivity Rankings

Once we have computed the sensitivity coefficients, we continue our effort to determine
the most (and least) influential model parameters by ranking the sensitivity coefficients.
Starting with ∂xi

∂qj
, we multiply by qj to non-dimensionalize the parameters. We then

divide by the maximum state variable, maxxi, over t0 to tf . Taking the L2 norm of this
expression gives the normalized sensitivity rankings, Ci,j, for the model

Ci,j =

∥∥∥∥∂xi∂qj

qj
maxxi

∥∥∥∥2
2

=

∫ tf

t0

∣∣∣∣∂xi∂qj

qj
maxxi

∣∣∣∣2 dt ∈ R. (8.23)

We rank these parameter sensitivity values from largest to smallest, in order of most
to least important in the model.
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8.5.2 Sensitivity Coefficient Matrix

We begin by defining parametric sensitivity coefficients of the yth output of the pth
parameter as [97]:

∂yr(tn, xn, q)

∂qp
; p = 1, 2, . . . P. (8.24)

These coefficients indicate the magnitude of change in the response y due to perturbations
in the values of the parameters and are analytically obtained as detailed in Section 8.5.

We form a sensitivity coefficient matrix, S, from the individual coefficients:

S ≡



∂y1
∂q1

∣∣∣
t=t1

· · · ∂y1
∂qP

∣∣∣
t=t1... . . . ...

∂yR
∂q1

∣∣∣
t=t1

· · · ∂yR
∂qP

∣∣∣
t=t1

∂y1
∂q1

∣∣∣
t=t2

· · · ∂y1
∂qP

∣∣∣
t=t2... . . . ...

∂yR
∂q1

∣∣∣
t=tN

· · · ∂yR
∂qP

∣∣∣
t=tN


. (8.25)

Scaling each element of the sensitivity matrix is required to ensure that the elements
are dimensionally consistent and that some parameters do not dominate their subsequent
ranking due to their large numerical values. Prior to estimability calculations, the
coefficients are scaled as

q̂p
ŷr|tn

∂yr
∂qp

∣∣∣∣
tn

, (8.26)

where q̂p is either an initial guess or the best value of the pth parameter from a previous
parameter estimation study, and ŷr|tn is the value of the rth response variable at time tn.

If an initial guess for a parameter is zero, an altered scaling procedure is required [51].
For our purposes, this is a scaling by max ŷr, the maximum value of the rth response
variable over t0 to tf . Henceforth, the sensitivity matrix used for identifiability and
estimability analyses will contain entries in the form of Equation (8.26) scaled by max ŷr.

Model parameters can be estimated if the sensitivity coefficients are not linearly
dependent. If the coefficients defined in Equation (8.24) (alternatively Equation (8.26))
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form columns of S that are linearly independent for a particular set of parameters, q̃, then
there exists only one unique set of optimal parameter values. If, however, the sensitivity
functions are linearly dependent at all values of q, then the model parameters are cannot
be estimated. [97]

8.6 Identifiability

In biological systems, the model complexity along with the difficulty to make informative
measurements are often at the core of parameter identifiability problems. A model is
identifiable if and only if there is an unique input-output behavior for every parameter
set. If a model has more parameters than what can be uniquely determined under ideal
experimental conditions then it is unidentifiable.

Model predictions depend on the model parameters, some which must be estimated
from experimental data. For inverse problems, estimation of parameters depends on
the structure of the model as well as on the experiment performed to gather data. A
model may perfectly fit the data but have unidentifiable parameters. However it still
may be possible to uniquely identify a subset of parameters; not all the parameters
of an unidentifiable model are unidentifiable [53]. Generally speaking, "identifiability"
answers whether unique model parameters can be obtained given certain data. There are,
however, four classes of identifiability: structural, theoretical, numerical, and practical
[39, 53, 76, 81].

Structural identifiability is related to the structure of the underlying mathematical
model and does not take into account the available experimental data. It is concerned
with the algebraic properties of the structural model and whether the parameters of a
model can be exactly identified from a given experiment with perfect input-output data.
A structurally unidentifiable model means that the problem is ill-posed, whereby we can
find different parameter vectors qi and q′i that produce the same structural predictions,
i.e., qi 6= q′i with f(t; qi) = f(t; q′i) for any t ≥ 0. A system’s structural identifiability can
be determined by analyzing the modeling equations before an experiment is conducted.

Theoretical identifiability is the case where different parameter values lead to non-
identical probability distributions. Different values of the model parameters generate
different probability distributions of the observable variables.

Numerical identifiability is defined as the inability to obtain proper parameter estimates
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from the data even if the experiment is structurally identifiable. When the data matrix
(Section 8.8.1) is close to singular, we experience an inability to obtain good paramater
estimates from the data. This condition is possible even when structural identifiability
exists for the experiment and is associated with a deficiency in the richness of the data,
referred to as ill-conditioned2 data.

Practical identifiability is the ability to estimate a given set of parameters along with
the accuracy that can be hoped (within the context of the study). It depends on the
model structure and is related to the experimental conditions together with the quality
and quantity of the measurements. Then, a parameter that is structurally identifiable
may be practically unidentifiable given a limited amount and quality of experimental
data. Additionally, a model may be theoretically identifiable but the design of the
experiment may make parameter estimation difficult and imprecise. Further, if theoretical
identifiability is assessed, the practical identifiability is not guaranteed since practical and
theoretical parameter identifiability don’t necessarily correspond to one another due to
poor data quality and/or quantity that may exist and which directly affects practical
identifiability.

As mentioned briefly earlier, if a model has some, but not all, unidentifiable parameters,
it still may be possible to uniquely identify a subset of parameters. We discuss parameter
subset selection more in Section 8.9. If it is not possible to generate additional datasets,
a good mitigation scheme is to systematically eliminate the nonsensitive parameters from
the estimation. This method is not completely fail-safe since parameter correlation also
contributes to identifiability issues. For example, the Michaelis-Menten parameter pairs
are rarely identifiable from limited data [58].

2Data is said to be ill-conditioned when the regressor variables of a model are highly correlated
with each other. The condition number provides a measure of the relationship among these regressors
and tells the extent to which an uncertainty in x is magnified by f(x). A value of 1 indicates that the
function’s relative error is identical to the relative error in x. Numerically, functions with very large
condition numbers are ill-conditioned and parameter estimations that use ill-conditioned data may yield
unreliable parameter estimates with large standard errors [81]. Further, the literature suggests evidence
of collinearity when condition numbers exceed 15 and corrective action is necessary when the condition
number is around 30 or more.
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8.7 Estimability

Identifiability and estimability are closely linked but are separate ideas. Identifiability
is answered by the question "Are the observations sufficient to specify the parameters?"
whereas estimability considers the effects of errors in measurements on the parameter
estimates [45]. Specifically, it is the ability to compute parameters accurately from a
given data set and experimental conditions [97] and is an often neglected first step in
mathematical modeling. Both identifiability and estimability are important analysis steps
that lead to estimations which include only the most important parameters to the model(s)
under assessment.

To determine if the parameters can be estimated from a data set, we perform an
estimability analysis from which there are three possible outcomes [38, 81]:

• The model parameters can be estimated uniquely, i.e., the model is globally identifi-
able;

• A finite number of alternative estimates of model parameters is possible; the model
is locally identifiable (see Appendix D for Shotwell’s [86] computational treatment
of local identifiability); and

• An infinite number of model parameter estimates are possible and the model is
unidentifiable from the data (the over-parameterized case, where a model has
more parameters than what can be uniquely determined under ideal experimental
conditions [46]).

In theory one tests identifiability first and then proceeds to estimate the identifiable
parameters. In many cases, not all parameters can be estimated, leaving a subset of
parameters that have actual influence in the response variables of the model. Performing
this step first may give clues about whether the model structure is adequate, whether
re-parameterization is needed, or whether the experimental design used to gather data
is sufficient. For the latter, identifying estimable parameters before experimentation
begins can lead to experiment designs that allow those parameters to be more precisely
estimated.
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8.8 Identifiability and Estimability Assessment Tools

There are a number of ways to assess estimability. One is to conduct a sensitivity analysis
for a given input sequence which involves the computation of a sensitivity coefficient matrix
whereby all system parameters can be estimated if the columns of the matrix are full rank
[97]. Another is to plot sensitivity coefficients as functions of time [14]. One other is to
compute the eigenvectors corresponding to small eigenvalues of the Fisher Information
Matrix (Section 8.8.1) [46, 95]. When the normalized eigenvectors are ordered left to
right corresponding to the largest-to-smallest eigenvalue, elements in the eigenvectors
suggest combinations of parameters that go, in order, from easier to harder to estimate.
Specifically, the largest magnitude component in the eigenvectors correspond to the most
identifiable parameter.

The following sections describe additional ways in which identifiability and estimability
may be assessed.

8.8.1 Fisher Information Matrix

Identifiability and estimability analyses are carried out by evaluating the Fisher Infor-
mation Matrix (FIM) which is a digest of the sensitivity information and can be used
to select identifiable parameter combinations. A model or a set of parameters may be
identifiable but the Fisher matrix may be near singular, resulting in poor estimability.
One good suggestion of this is a small overall sum of squares, indicating a good fit to the
observations but with a very large standard deviation of the estimates of some parameters.
In this case, some of the parameters are unidentifiable or identifiable but very poorly
estimable.

We define the FIM, F = S>S with S (Equation (8.25)) evaluated at some fixed,
nominal parameter value q0. A model is locally identifiable if and only if det

(
S>S

)
6= 0,

or equivalently if and only if rank of S>S is equal to the number of estimated parameters,
m. The rank r tells us how many linearly independent and, consequently, how many
parameters can be uniquely identified. The question then becomes "which of the r
parameters do we choose to create an identifiable subset?"

Additional numerical properties of the FIM give substantive information about the
identifiable parameters of the model, which are selected accordingly. For example, the
condition number of the FIM (i.e., the ratio of its largest and smallest eigenvalues)
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indicates how numerically well-posed the estimation problem is and the rank of the FIM
indicates the number of parameters that can be theoretically estimated.

8.8.2 Sensitivity Plots: Visual Interpretation of Sensitivity Func-

tions

The sensitivity plot is a graphical method to assess estimability and design efficiency of a
model’s parameters. The sensitivity values are graphically arranged according to model
parameter so that their linear dependencies are easy to see. Sensitivity functions that
appear proportional indicate a correlation between the model parameters.

For simple models with few parameters and outputs, plots of sensitivity coefficients as
functions of time can be used to determine estimability. (See Beck and Arnold [14] for
details.) Plots of the values of the sensitivity coefficients with time can show whether there
is significant correlation among the effects of different parameter on model predictions.
For example, if the sum of the sensitivity coefficients for two parameters on the same
response variable is zero or near zero at all times, then there is a near perfect correlation
between the parameters, and these parameters cannot be estimated simultaneously [97].

8.8.3 Correlation

Yao et al. [97] used the rank of the sensitivity matrix to determine the number of estimable
parameters. These results don’t take in account the subsets of correlated parameters that
cannot be identified. A large condition number of the FIM indicates a strong correlation
between estimates and may indicate identifiability issues [53]. If parameters are correlated,
they cannot be determined uniquely and independently; hence, they are not identifiable
[24]. Quaiser and Mönnigmann [56, 79] proposed a ranking method of least-to-most
estimable for the parameters but this method also cannot identify parameter groups in
which more than two parameters are correlated together, i.e. the corresponding columns
in the sensitivity matrix are linearly dependent.

There are two features that govern the estimability of a parameter [97]:

• The strong influence of that parameter on one or more of the measured responses;

• The correlation between the effects of that parameter on model predictions and the
corresponding effects of all other estimable parameters.
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The first feature can be determined by examining the magnitude of the column of S
that corresponds to the particular parameter (See Algorithm 2). The second requires
determining whether the columns corresponding to the set of estimable parameters are
linearly dependent. Theoretically, the rank of S is equal to the number of estimable
parameters. But when the rank is less than the number of columns, we cannot readily
determine which subsets of parameters could be estimated. [97] To address this, we use
the algorithm outlined in Algorithm 2 to identify the subset of estimable parameters.

8.8.4 Parameter Ranking

As discussed in Section 8.7, not all parameters of a model can be estimated but we are
interested in knowing which are and to what degree. To do this, we use estimability
algorithms which are able to rank the parameters from most estimable to least estimable.

Algorithms 1-2 both start with the sensitivity coefficient matrix S and end with a
subset of estimable parameters.

However, singularity problems that might be encountered when ranking the later
parameters suggest that fewer than p parameters could be simultaneously estimated
using the available data, because estimating all p parameters would lead to numerical
conditioning problems. A low parameter rank number indicates a parameter that should
be easy to estimate because of the large amount of information in the available data
whereas high rank number indicates a parameter that cannot be readily estimated due to
a lack of parameter influence on the predicted responses or due to possible correlation
with the effects of parameters that appear earlier in the ranked list [89].

In the absence of parameter ranking, we would need to determine a cut-off point for
linear independence of the FIM. This can be done by computing the successive ratios of
the magnitudes of the diagonal terms of R in Algorithm 2

|r(i,i)|
|r(i+1,i+1)|

, i = 1 . . . (m− 1), (8.27)

where m is the number of model parameters. [This method of a qualitative cut-off does
not use R from the partitioned matrix V in Algorithm 2. Instead, the SVD steps in the
algorithm have been excluded and R is calculated directly from S>SΠ = QR where Π is
the permutation matrix.]

Both algorithms produced near identical results for parameter ranking up to the
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Algorithm 1 Proposed methodology for selecting a subset of parameters for estimation.
1: Compute the sensitivity matrix S using Equation (8.25) and calculate the magnitude

of each column of S.
2: Select the parameter whose column in S has the largest magnitude (the sum of squares

of the elements) as the first estimable parameter. This parameter is considered to
have the most effect on model predictions.

3: Mark the corresponding column as Xk (k = 1 for the first iteration).
4: Calculate Ŝk, the prediction of the full sensitivity matrix, S, using the subset of

columns Xk : Ŝk = Xk(X
T
k Xk)

−1XT
k S

5: Calculate the residual matrix Rk : Rk = S − Ŝk
6: Calculate the sum of squares of the residuals in each column of Rk. The column

with the largest magnitude corresponds to the next estimable parameter (among the
remaining parameters) which has the largest effect on response variables and which is
not correlated with the effects of parameters already selected.

7: Select the corresponding column in S, and augment the matrix Xk by including the
new column. Denote the augmented matrix as Xk+1.

8: Advance the iteration counter by one and repeat steps 4 through 7 until the column
of largest magnitude in the residual matrix is smaller than a prescribed cut-off value.

Algorithm 2 Subset selection using Singular Value Decomposition (SVD)-QR [70]
1: Given a set of parameters θ, compute the sensitivity matrix S using Equation (8.25)

and use singular value decomposition to rewrite as S = UΣV T , where Σ is a diagonal
matrix containing the singular values of S in decreasing order, and U and V are
orthogonal matrices with left and right singular vectors.

2: Determine ρ, the rank of the sensitivity matrix S.
3: Partition the matrix V of eigenvectors on the form V = [VρVq−ρ].
4: Determine a permutation matrix P by constructing a QR decomposition with column

pivoting after the maximal element for V T
ρ . (That is, determine P such that V T

ρ P =
QR, where Q is an orthogonal matrix and the first ρ columns of R form an upper
triangular matrix with diagonal elements in decreasing order.)

5: Use P to re-order the parameter vector θ according to θ̂ = P T θ.
6: Make the partition θ̂ = [θ̂ρθq−ρ]. The subset of identifiable parameters, θ̂ρ, is the first
ρ elements of θ̂.
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number of estimable and identifiable parameters.

8.8.5 Cross-validation

When too many parameters are estimated using limited data, the high levels of uncertainty
associated with the parameter estimates result in large variances for the model predictions.
We can lower these variances by estimating on a subset of the model parameters (keeping
the other parameters at their initial guesses or values found in the literature) but the
model predictions and parameter estimates then become biased due to the incorrect
values of the fixed parameters. We can decrease this bias by estimating more parameters.
The optimal number of parameters to estimate balances the trade-off between variance
and bias. A direct assessment of this trade-off is to use cross-validation which tests the
predictive ability of a model by removing data from the available data set. [89]. Model
parameters are then estimated and used to predict the removed data.

A low value of the objective function indicates good predictive ability of the model
and the parameters. One clear benefit of cross-validation is that it provides a measure of
how well the model can predict data that were not used for estimation. Another benefit is
that it provides information about the sensitivity of parameter values to particular data
points. [89]

8.9 Parameter Subset Selection

Low quality data or other issues may prevent some model parameters from being estimated.
In this case, a subset of parameters should be selected that can be estimated reliably
from the available data. The FIM can be used to decide which parameter subsets can
be uniquely estimated from a given data set. We accomplish this by computing the QR
decomposition of the FIM (a square matrix by definition), that is, compute orthogonal
matrix Q and upper triangular matrix R with permutation matrix Π such that

S>SΠ = QR. (8.28)
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From left to right, the columns of Π indicate the most linearly independent to least
independent columns of S>S. Finally, we compute

Π> · [1 . . .m]> (8.29)

to determine the parameters corresponding to these ordered columns. While this method
identifies the most-to-least important parameters in a model, it does not provide a
quantitative cut-off for selecting the subset of identifiable or estimable parameters. We
can, however, utilize the methods provided in Section 8.8.4 to accomplish this. Further,
we may consider the rank, r, of the FIM and take the first r parameters indicated in
Equation (8.29).

Recall that Algorithms 1-2 in Section 8.8.4 are additional methods that quantitatively
tell which parameters are most influential on the model. When the most estimable
parameters are identified, a follow-on procedure is to estimate that subset of parameters
while keeping the non-identifiable parameters at their initial estimates or reparameterize
the model to remove these parameters [97]. We can check the value of the objective
function to compare model fits before and after applying identifiability procedures to
verify that there is some improvement to the fit using our estimated subset of parameters.

By Algorithm 1, the most identifiable parameter is determined by the associated
column/vector of the sensitivity matrix, S, with the highest Euclidean norm, maxj‖sj‖.
The large norm with its effect on the model outcome vector makes the parameter θj
identifiable with the available data if all other parameters are fixed. By using a Gram-
Schmidt orthogonalization method, the algorithm includes identifiable parameters, one
at a time, in decreasing order of Euclidean norm but also removing the effect of linear
dependence of the column in the sensitivity matrix associated with the selected parameter.
Overall, this estimability technique ensures that the effects of the selected parameters are
not too highly correlated while also having a large impact on the measured responses.
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CHAPTER 9

Model Results

In our investigation, we examine four models where our ultimate goals are to (a) determine
whether the hypothesis that the inclusion of the upper respiratory tract for lung function
will better describe the data provided and (b) determine any impact that adding kidney
metabolism to the system(s) may have. PBPK models often include liver metabolism but
do not generally consider kidney metabolism.

We use MATLAB© R2016a [59] for all programming code and time course data from
Cain et al. [27] and Pleil et al. [74] to calibrate and validate the models. Initial "guesses"
of Michaelis-Menten parameters to run MATLAB’s fminsearch command were taken from
Blancato et al. [18] as were relevant partition coefficients for MTBE and TBA and human
physiological parameters. In the absence of given Michaelis-Menten parameters, arbitrary,
but biologically reasonable, initial conditions were used. Physiological parameters not
provided by the Blancato et al. paper were supplemented by Brown et al. [25].

All optimized parameter values can be found in Appendix G.

9.1 Model 1: Simple Lung

In the first model (Figure 6.1), we consider venous blood data and exhaled breath data
for MTBE only, collected from subjects’ constant exposure to 1.7 ppm (Cain) and 3 ppm
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(Pleil) of MTBE, both for a duration of one hour. This first iterate builds upon concepts
outlined by Blancato, et al. [18]. That is, we consider both a high- and low-affinity
metabolizing pathway in the liver for MTBE (Liv1 and Liv2, respectfully) and we also
consider a single metabolism pathway for MTBE in the kidney (Kid). This model also
includes fat/adipose tissue , slowly- and rapidly-perfused tissues, arterial and venous
blood compartments, and a lung compartment that assumes an inert tube model for
gas exchange. Initial guesses for Michaelis-Menten parameters Vmax and Km for each
pathway (VmaxLiv1

, VmaxLiv2
, VmaxKid

, KmLiv1
, KmLiv2

, and KmKid
) were also taken from

the Blancato et al. paper.
Figure 9.1 shows the fit to the Cain venous blood data using the mean for the optimized

parameters and the randomness of the scatter pattern of the residuals indicates a "good"
fit for the given data. We see also that this model has no sensitivity to the parameters for
the high-affinity liver pathway (Liv1). The model’s sensitivity to the kidney parameters
are considerably low, relative to the low-affinity liver pathway (Liv2) parameters, but its
value should not be discounted.

We perform a similar analysis for the Pleil data for which we have both venous blood
and exhaled breath measurements. In Figure 9.2, we see the optimized fits and residuals
for both data sets indicate that the model generally under-predicts breath data for the time
period during inhalation of MTBE and over-predicts breath data during post-exposure
to MTBE. We see generally opposite trends for the venous blood predictions for these
same time periods. The sensitivity rankings show that the model is most sensitive to the
Michaelis-Menten parameters for the kidney. Similar to the case for the Cain data, we
see that the high-affinity liver pathway (Liv1) is not sensitive in the model.
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(a) Optimized venous blood fit using param-
eter mean values

(b) Venous blood residuals

(c) Normalized sensitivity ranking; venous
blood

Figure 9.1: Cain (1.7 ppm), Simple lung (Model 1), MTBE-only; Venous blood fit
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(a) Optimized venous blood fit using param-
eter mean values

(b) Optimized exhaled breath fit using pa-
rameter mean values

(c) Venous blood residuals (d) Exhaled breath residuals

(e) Normalized sensitivity ranking; venous
blood

(f) Normalized sensitivity ranking; exhaled
breath

Figure 9.2: Pleil (3 ppm), Simple lung (Model 1), MTBE-only, Venous blood and exhaled
breath fit
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9.2 Model 2: Complex Lung (with Upper Respiratory

Tract)

Figure 9.3: Upper Respiratory Tract system

In this model (Figure E.2), we use the upper respiratory tract (URT) over a simple lung
(inert tube model). Specifically, the simple lung compartment of Figure 6.1 is replaced by
the sub-compartmented lung shown in Figure 9.3. We consider the washin-washout effect
where the substance gets diffused between the pulmonary tissue (PT) and the URT and
that some fraction, k, of the substance leaves the URT during inhalation and exhalation.
During inhalation, some amount of the substance is trapped in the alveolar dead space
while the rest gets passed to the perfused alveolar space and cycles through the remaining
compartments.

For the Cain data set (Figure 9.4), we have a fairly random pattern about zero for
the scatter plot of the residuals (Figure 9.4b). The model generally over-predicts the
data during exposure (see also Figure 9.4a) but the residual pattern does not exhibit
an obvious trend following termination of active exposure ("post-exposure"). The Pleil
residual patterns (Figure 9.5c and Figure 9.5d) exhibit less randomness compared to the
simple lung model. Specifically, the exhaled breath data points are heavily positively
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skewed for the hour during exposure and we observe a similar trend for the venous blood
data.

For each data set, we again find that there is no simultaneous sensitivity of the model
to both liver pathways. While the relative sensitivity ranking for the kidney pathway is
near zero for the Cain data, we see this is not the case for the Pleil data where the model’s
sensitivity is influenced by kidney parameters and we conclude that those parameters are
important for predicting MTBE concentration levels given the experimental data. This
could potentially be explained by kidney metabolism being more effective at higher initial
doses of MTBE (3.0 ppm vs. 1.7 ppm) but further exploration is left for future work
(Section 10.2) where data for 25 ppm and 75 ppm initial doses would be examined.

We defined k ∈ (0, 1) as the fraction of MTBE that leaves the upper respiratory tract
(URT) during inhalation and exhalation. The diffusion rate, D, is the rate at which
MTBE (and TBA) is passed between the URT and pulmonary tract (PT). These values
are most sensitive in the model for both sets of data, thus fluctuations in their values
result in more significant changes to the output than other parameters in the model.

9.3 Model 3: Simple Lung, MTBE-to-TBA Coupled

System

For this model, we have a coupled system representing MTBE metabolized to TBA
(Figure E.4). The data include venous blood and exhaled breath measurements for both
MTBE and TBA and the lung compartment is "simple" as in Model 1. Based on the
relative sensitivity rankings for the Pleil data in Models 1 and 2 (Figures 9.2e, 9.2f, 9.5e,
and 9.5f) indicating that the liver pathways for MTBE are not simultaneously sensitive,
this model iteration employs only one MTBE liver pathway. We again use the kidney
pathway for MTBE and we include a single metabolism pathway in the liver for TBA.

In Figure 9.6a, we see the model generally over-predicts the venous blood data for
MTBE during exposure but more closely matches the data following termination of active
exposure. The residuals here do not exhibit a random behavior. On the other hand, the
model matches the TBA venous blood data quite well (Figure 9.6a) with the TBA venous
blood residuals exhibiting a moderately random pattern (Figure 9.6c).

The optimized fit for the exhaled breath data is well-matched for MTBE (Figure 9.6b)
but poorly fit for TBA. The residuals (Figure 9.6d) for TBA’s exhaled breath data show
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(a) Optimized venous blood fit using param-
eter mean values

(b) Venous blood residuals

(c) Normalized sensitivity ranking; venous
blood

Figure 9.4: Cain (1.7 ppm), Complex lung (URT) (Model 2), MTBE-only
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(a) Optimized venous blood fit using param-
eter mean values

(b) Optimized exhaled breath fit using pa-
rameter mean values

(c) Venous blood residuals (d) Exhaled breath residuals

(e) Normalized sensitivity ranking; venous
blood

(f) Normalized sensitivity ranking; exhaled
breath

Figure 9.5: Pleil (3 ppm), Complex lung (URT) (Model 2), Venous blood and exhaled
breath, MTBE-only
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an obvious positive trend while the exhaled breath residuals are more random about zero.

9.4 Model 4: Complex Lung (with URT), MTBE-to-

TBA Coupled System

For the final model (Figure E.5), we again have a coupled system representing MTBE me-
tabolized to TBA. The data again include venous blood and exhaled breath measurements
for both MTBE and TBA but the lung compartment contains the upper respiratory tract.
Following the conclusion for Model 3 that the relative sensitivity rankings for the Pleil
data in Models 1 and 2 (Figures 9.2 and 9.5) indicate that the liver pathways for MTBE
are not simultaneously sensitive, this model iteration also employs only one MTBE liver
pathway. We again use the kidney pathway for MTBE and we include a single metabolism
pathway in the liver for TBA.

The model under-predicts the venous blood data for both MTBE and TBA for all
time points (Figure 9.7a). It over-predicts the exhaled breath data during exposure but
more closely matches the data post-exposure (Figure 9.7b). The residuals here do not
exhibit a random behavior for venous blood or exhaled breath (Figures 9.7c and 9.7d).
These conditions indicate a poor fit overall for venous blood and exhaled breath data for
both MTBE and TBA.

9.5 Akaike Results

Given a set of models, the Akaike Information Criterion (AIC) is used to make an
assessment on which of the models is "better" in comparison to the others. Recall, the
AIC does not give any indication as to whether a model is "good" or "bad," only that it
is better or worse than another. A model with the smallest AIC is considered to be the
"best" model of the candidate collection of models.

We assess each of our models using this criteria and provide the AIC values obtained
for each subject in Tables (9.1)-(9.3). Recall, these values are based on the cost function
(Equation (8.4)) for the optimization process but includes a penalty for models that
optimize several parameters compared to those that only optimize a few parameters. With
the exception of "Subject 5" from the Model 2 runs for Pleil data (Table 9.2), the "simple
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(a) Optimized venous blood fit using pa-
rameter mean values: MTBE, top. TBA,
bottom.

(b) Optimized exhaled breath fit using pa-
rameter mean values: MTBE, top. TBA,
bottom.

(c) Venous blood residuals: MTBE, top.
TBA, bottom.

(d) Exhaled breath residuals: MTBE, top.
TBA, bottom.

(e) Normalized sensitivity ranking; venous
blood

Figure 9.6: Pleil (3 ppm), Simple lung (Model 3), Venous blood and exhaled breath,
MTBE-to-TBA (Coupled system)
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(a) Optimized venous blood fit using pa-
rameter mean values: MTBE, top. TBA,
bottom.

(b) Optimized exhaled breath fit using pa-
rameter mean values: MTBE, top. TBA,
bottom.

(c) Venous blood residuals: MTBE, top.
TBA, bottom.

(d) Exhaled breath residuals: MTBE, top.
TBA, bottom.

(e) Normalized sensitivity ranking; venous
blood

Figure 9.7: Pleil (3 ppm), Complex lung (Model 4), Venous blood and exhaled breath,
MTBE-to-TBA (Coupled system)
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Table 9.1: AIC Indices: Cain data; MTBE-only models

AIC (Cain, MTBE-only) Subj 1 Subj 2 Subj 3 Subj 4
Simple lung (Model 1) -96.0783 -89.3240 -100.1247 -85.6269
Complex lung (Model 2) -79.9659 -75.2802 -81.5990 -77.7229

Table 9.2: AIC Indices: Pleil data; MTBE-only models

AIC (Pleil, MTBE-only) Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6
Simple lung (Model 1) 60.8029 58.0720 67.4135 42.0550 63.1668 77.5742
Complex lung (Model 2) 74.5630 68.1170 67.8261 73.7999 59.6890 92.1001

lung" for all other cases—both Cain and Pleil—is shown to be the better model since the
AIC values are for Model 1 are generally less than the AIC values for Model 2.

9.6 Validation and Residual Analysis

We discussed the patterns and trends of our models’ residuals versus time in Sections 9.1-
9.4. These residuals include only the subject data used to optimize the model parameters.
In this section, we extend the residual analysis to include subject data that was not
used to obtain the optimized parameters. Doing this is a method of model validation as
outlined in Section 8.3. Note that this validation and extended analysis is only done for
the Pleil data set since all subjects in the Cain data set were used to calibrate the model.

Of the methods provided, we turn our attention to one plot type in particular: observed
versus predicted data values. The closer the predicted values are to the observed values,

Table 9.3: AIC Indices: Pleil data; MTBE-to-TBA models

AIC (Pleil, MTBE-to-TBA) Subj 1 Subj 2 Subj 3 Subj 4
Simple lung (Model 3) -61.9364 -57.8143 -71.3504 -50.5250
Complex lung (Model 4) -48.7236 -53.7672 -46.0784 -49.4288
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the more the points align around the unity reference line in an observed data vs. predicted
data plot. This gives an indication of an accurate model since there is a strong correlation
between the model’s predictions and the actual data. We can, in fact, compute the
correlation coefficients for each subject to get a quantitative perspective on how well each
model’s observed data vs. predicted data plot exhibits a linear behavior.

We see in Figure 9.11 that the MTBE and TBA exhaled breath observed and predicted
values for Model 4 (complex lung, coupled system) are far less correlated than those for
Model 3 (Figure 9.10; simple lung, coupled system). The figures indicate a consistent
over-prediction by Model 4 for both MTBE and TBA exhaled breath. Additionally, the
figures indicate a consistent under-prediction by Model 4 for MTBE and TBA venous
blood. Based on Figures 9.8-9.10, models 1-3 provide predictions that generally fit well to
the data.

Referring to the computed correlation coefficients in Tables 9.4-9.7, there is no signifi-
cant quantitative difference across all models for the fits to MTBE venous blood exhaled
breath data. Contrast this with the correlation coefficients for TBA and we see a marked
difference in the fits between the simple and complex lung models for both TBA venous
blood and exhaled breath data. This suggests that a simple lung model for the coupled
MTBE-to-TBA system gives better overall fits to the observed data, and specifically to
the TBA data, than the complex lung model for the coupled MTBE-to-TBA system.

Where the correlation coefficients indicate how linear the relationship between observed
data and predicted data is, well-matched data points should show random variation about
the line of unity (m = 1). Given a set of observed-vs.-predicted data points, we need only
compute the slope of the line of best fit through those points and compare it to m = 1.
This is accomplished by a two-stage approach, first using MATLAB’s polyfit command
on each set of data points, then finding the average slope (and intercept) across sets.
These values are given in Table 9.8 and plots of the lines of best fit using the average
slope are superimposed along with the reference unity line in each of Figures 9.8-9.11.

Finally, we compute the relative error for each averaged slope value. These errors are
provided in Table 9.9. Comparing the error values between Model 1 and Model 2, we
see that Model 1 has the smallest error for both venous blood and exhaled breath fits,
indicating the best-fit line through the set of observed data values vs. predicted data
values for Model 1 is closer to unity than the best-fit line for Model 2. Comparing the
relative error values between Model 3 and Model 4, we see that Model 4 gives the best-fit
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Table 9.4: Model Correlation Values: Pleil MTBE Venous Blood Data

Venous blood, MTBE Correlation coeff. range mean std
Simple lung (Model 1) 0.8672− 0.9942 0.9523 0.0380
Complex lung (Model 2) 0.8701− 0.9847 0.9464 0.0375
Simple lung, coupled (Model 3) 0.8805− 0.9850 0.9511 0.0345
Complex lung, coupled (Model 4) 0.7104− 0.9469 0.8518 0.0731

Table 9.5: Model Correlation Values: Pleil MTBE Exhaled Breath Data

Exhaled breath, MTBE Correlation coeff. range mean std
Simple lung (Model 1) 0.9545− 0.9961 0.9751 0.0140
Complex lung (Model 2) 0.9730− 0.9949 0.9853 0.0088
Simple lung, coupled (Model 3) 0.9290− 0.9858 0.9573 0.0183
Complex lung, coupled (Model 4) 0.9461− 0.9803 0.9645 0.0132

line for MTBE venous blood data, but Model 3 is the overall better model, with best-fit
lines closer to unity, since the relative error provided by this model is smaller for MTBE
exhaled breath data and TBA data for both venous blood and exhaled breath.

9.7 Estimability and Sensitivity Plots

Algorithms 1-2 along with the ratio test in Equation (8.27) provide an abundance of
quantitative information about the identifiability and estimability of the parameters in
each of the four models. Where one algorithm was used to determine the most identifiable
or estimable parameters, another was used to validate the results. Recall from Section

Table 9.6: Model Correlation Values: Pleil TBA Venous Blood Data

Venous blood, TBA Correlation coeff. range mean std
Simple lung, coupled (Model 3) 0.9276− 0.9835 0.9619 0.0175
Complex lung, coupled (Model 4) 0.3876− 0.8364 0.6151 0.1341
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Table 9.7: Model Correlation Values: Pleil TBA Exhaled Breath Data

Exhaled breath, TBA Correlation coeff. range mean std
Simple lung, coupled (Model 3) 0.8675− 0.9798 0.9210 0.0504
Complex lung, coupled (Model 4) 0.6789− 0.8247 0.7674 0.0543

Table 9.8: Model Estimated Slope Values

MTBE TBA
Blood Breath Blood Breath

Simple lung (Model 1) 0.5586 1.3575 - -
Complex lung (Model 2) 0.5456 0.6078 - -
Simple lung, coupled (Model 3) 0.4726 1.1853 1.103 0.5799
Complex lung, coupled (Model 4) 1.1574 0.3134 2.2881 0.0917

Table 9.9: Model Estimated Slope Values: Relative Error

MTBE TBA
Blood Breath Blood Breath

Simple lung (Model 1) 0.4414 0.3575 - -
Complex lung (Model 2) 0.4544 0.3922 - -
Simple lung, coupled (Model 3) 0.5274 0.1853 0.103 0.4201
Complex lung, coupled (Model 4) 0.1574 0.6866 1.2881 0.9083
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(a) Venous blood data: observed vs. pre-
dicted

(b) Exhaled breath data: observed vs. pre-
dicted

Figure 9.8: Pleil (3 ppm), Simple lung (Model 1); (Validation) Data: observed vs.
predicted

(a) Venous blood data: observed vs. pre-
dicted

(b) Exhaled breath data: observed vs. pre-
dicted

Figure 9.9: Pleil (3 ppm), Complex lung (Model 2); (Validation) Data: observed vs.
predicted
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(a) MTBE Venous blood data: observed vs.
predicted

(b) MTBE Exhaled breath data: observed
vs. predicted

(c) TBA Venous blood data: observed vs.
predicted

(d) TBA Exhaled breath data: observed vs.
predicted

Figure 9.10: Pleil (3 ppm), Simple lung MTBE-to-TBA (Model 3); (Validation) Data:
observed vs. predicted
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(a) MTBE venous blood data: observed vs.
predicted

(b) MTBE exhaled breath data: observed
vs. predicted

(c) TBA venous blood data: observed vs.
predicted

(d) TBA exhaled breath data: observed vs.
predicted

Figure 9.11: Pleil (3 ppm), Complex lung MTBE-to-TBA (Model 4); (Validation) Data:
observed vs. predicted
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8.5.2 that the rank of the sensitivity matrix, S (Equation (8.25)), is a determination of
the number of identifiable parameters in a model while the rank of the Fisher Information
Matrix (FIM), S>S, gives the number of estimable parameters. We examine each of the
quantities to make qualitative assessments of the estimated parameters in the models.

In Model 1, we estimate six parameters: VmaxLiv1
, VmaxLiv2

, VmaxKid
, KmLiv1

, KmLiv2
,

and KmKid
.

• For the Cain 1.7 ppm data, Figure 9.12a is a visual representation of the estimability
order with the largest difference in the ratios occurring between the second and third
ordered parameters, thus, without any knowledge of parameter ranking, we would
make a qualitative cut-off after the second parameter. More effort, particularly
trial and error of parameter combinations, is required to determine which two
parameters to estimate. However, the subset selection algorithms indicate that,
prior to estimating any parameters, five of the parameters are identifiable and four
are estimable, ordered from most to least estimable: VmaxLiv2

, VmaxKid
, KmLiv2

, and
KmKid

.

• For the Pleil 3.0 ppm data, the largest difference in the ratios also occurs after the
second parameter (Figure 9.12b). The subset selection algorithms indicate that all
six parameters are identifiable, of which, five are estimable, ordered from most to
least estimable: VmaxKid

, VmaxLiv2
, KmLiv1

, KmKid
, VmaxLiv1

.

In Model 2, we estimate eight parameters: VmaxLiv1
, VmaxLiv2

, VmaxKid
, KmLiv1

, KmLiv2
,

KmKid
, k, and D.

• For the Cain 1.7 ppm data, Figure 9.12c shows the largest difference in the ratios
occurring between the fourth and fifth ordered parameters, thus, in the absence of
parameter ranking knowledge, we would make a qualitative cut-off and estimate
on four parameters. The subset selection algorithms generally agree with this
assessment, indicating five of the parameters are identifiable and four are estimable.
They are, ordered from most to least estimable: VmaxLiv2

, VmaxKid
, KmLiv2

, and
KmKid

.

• For the Pleil 3.0 ppm data (Figure 9.12d), the largest difference in the ratios also
occurs after the fourth parameter. The subset selection algorithms indicate that all
eight parameters are identifiable, of which, six are estimable, ordered from most to
least estimable: k, VmaxKid

, VmaxLiv1
, D, KmKid

, and KmLiv1
.
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(a) Cain 1.7 ppm; Simple lung; MTBE-only
(Model 1)

(b) Pleil 3.0 ppm; Simple lung; MTBE-only
(Model 1)

(c) Cain 1.7 ppm; Complex lung; MTBE-
only (Model 2)

(d) Pleil 3.0 ppm; Complex lung; MTBE-
only (Model 2)

(e) Pleil 3.0 ppm; Simple lung; MTBE-to-
TBA coupled system (Model 3)

(f) Pleil 3.0 ppm; Complex lung; MTBE-to-
TBA coupled system (Model 4)

Figure 9.12: Most-to-least estimable parameters (diagonal elements of R from QR
factorization labeled with estimability results of Algorithm 2)
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In Model 3, we estimate six parameters: VmaxLivM
, VmaxKidM

, VmaxLivT
,KmLivM

,KmKidM
,

and KmLivT
, where ’M ’ and ’T ’ indicate the pathways that process MTBE and TBA,

respectively. For the Pleil 3.0 ppm data, the largest difference in the ratios occurs after
the third parameter (Figure 9.12e). But the subset selection algorithms indicate that all
six parameters are identifiable, of which, all six are estimable.

Lastly, in Model 4, we estimate again eight parameters: VmaxLivM
, VmaxKidM

, VmaxLivT
,

KmLivM
, KmKidM

, KmLivT
, k, and D. For the Pleil 3.0 ppm data, the largest difference

in the ratios occurs after the fifth parameter (Figure 9.12f), indicating five parameters
are estimable. The subset selection algorithms indicate that all eight parameters are
identifiable, of which, seven are estimable, ordered from most to least estimable: VmaxLivM

,
k, VmaxKidM

, D, VmaxLivT
, KmLivM

, and KmKidM
.

For each subject, across all models, we completed an identifiability and estimability
check. In each case, the check included assessing the identifiability and estimability prior
to parameter estimation. That involved conducting the assessments using the "initial
guess" values. Once the most estimable parameters were identified, we ran the models
again to obtain the optimized parameters using only the most estimable parameters.
We defer further analysis of those results and computation of confidence intervals and
prediction intervals for future work.
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CHAPTER 10

Conclusions and Future Work

10.1 Summary of Results and Conclusions

"Pharmacokinetics is the quantitative study of factors that control the time course for
absorption, distribution, metabolism, and elimination of chemicals within the body
[33]." Physiologically-based pharmacokinetic (PBPK) modeling adds knowledge about
physiological processes along with physiochemical properties of the substance under study
in order to predict or simulate the time-course behavior in venous blood and tissues of
the substance that has been introduced into the body.

PBPK modeling involves the use of a number of substance-dependent and physiology-
dependent parameters: (a) species-specific physiologic parameters (e.g., body weight,
blood flow rate), (b) physiochemical properties of compounds of interest (tissue partition
coefficients), and (c) relevant kinetics parameters (Michaelis-Menten Vmax and Km values
for metabolism).

Many models consider each organ in the body as one or more compartments with the
following assumptions [68]:

• Only the essential tissues will be used;

• Each organ is a well-mixed compartment;
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• The substance is uniformly distributed in the plasma and tissues;

• The body represented by a series of tissues;

• The substance moves in and out of tissues and is satisfied with a system of ordinary
differential equations (ODEs) and conservation equations; and

• Groups of tissues have similar blood flow and substance affinity.

Generally, major organs of the body are represented in a PBPK model but some models
may use a "lumping" approach where different organs of the body are represented as a
single kinetic system. This may be useful where an organ is of particular interest (e.g., the
liver for metabolic processes) but kinetics in the remainder of the body is less important
and can be represented as one or two lumped compartments such as rapidly or slowly
perfused tissues. [91]

In Figure 10.1, each box corresponds to a well-mixed compartment and each arrow
represents an input or output to the compartment. The transport to/from each compart-
ment is determined by the blood flow, which for all models discussed, follows flow-limited
perfusion.

Methyl Tertiary-Butyl Ether and Tert Butyl Alcohol

Methyl tertiary-butyl ether is a fuel oxgenate that saw widespread use as a result of the
Clean Air Act Amendments of 1990. Its intended use was to make gasoline burn better
and decrease carbon monoxide emissions but individuals exposed to MTBE at gasoline
pumps, from occupational exposure, or other means reported having headaches, nausea,
and dizziness. Additonally, MTBE was contaminating groundwater and reservoirs due
to leaks in the underground containers used to store it. The adverse health effects and
the potential large-scale hazard due to groundwater contamination led to a number of
carcinogenicity studies to assess the risks and long-term effects of MTBE on animals
[15, 16, 17, 26, 28, 84]. The overall results of those studies were that MTBE is possibly a
human carcinogen [6, 44, 67, 90, 93].

Tert-butyl alcohol is a known metabolite of MTBE and has been shown to induce
tumors in both rats and mice [65]. According to EPA cancer guidelines [93], evidence
of carcinogenicity across species, sex, strain, site, or exposure route tends toward a
descriptor of "likely to be carcinogenic to humans." Thus MTBE and TBA pose a
potential carcinogenic risk to humans.

80



Figure 10.1: Eight-compartment PBPK model

Research Aims

We address three primary concerns with this work.
First, is the lung’s upper respiratory tract (URT) required to fit data for volatile

gases? There is general suggestion that, when the washin-washout effect (absorption in
the respiratory tract of a substance during both inhalation and exhalation) is present,
the URT is required to fit the data. During the washin-washin process, the full exposure
amount of a substance does not reach the blood stream, thus less substance is circulated
throughout the body. The hypothesis is that a substance that has a blood:air partition
coefficient greater than 1000 (Pb:a > 100) should be modeled with the inclusion of the
URT [47] versus a simple inert tube model.

Second, does including kidney metabolism help explain renal carcinogenicity endpoints?
Chemically-induced α2µ-globulin nephropathy is one mechanism for the development of
kidney tumors in rodents. However, there is no evidence to indicate that MTBE caused
α2µ-globulin accumulation in rodents and it was determined that the increased tumor
incidences was not related to the protein accumulation [35]. In the absence of this evidence
and since there is no production of an analogous α2µ-globulin protein in humans, we
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consider the possibility that the kidney tumors (seen primarily in male rats) were induced
by some other non-species-specific mechanism and we explore a PBPK model that includes
kidney metabolism.

Last, can we improve upon model design with results and interpretations from sensi-
tivity analysis techniques? A number of factors drive the initial design of a PBPK model,
most notably tissues of interest and biokinetics processes. After a model is constructed,
one should conduct analysis techniques on its results. One particularly relevant technique
is sensitivity analysis which ultimately leads to a parameter ranking process to assess
which model parameters and/or state variables, if any, can be eliminated from the model,
thus resulting in a simpler model.

Model Simulation and Data Fitting

We developed a series of PBPK models for MTBE and TBA:

• Simple lung model for MTBE (Model 1, Figure E.1). Venous and arterial
blood compartments are always included in a PBPK model but are generally reduced
to an algebraic expression for the model. Because we have experimental data for
MTBE (and TBA) concentration in venous blood, we leave this compartment as a
differential equation expression. The lungs are the port of entry for MTBE and the
tissue of interest in our hypothesis. Addtionally, we have experimental data for the
concentration of MTBE (and TBA) in exhaled breath. Since MTBE is a liphophilic
substance, we include an adipose tissue compartment. The liver is generally the
primary organ for metabolism and we include a low- and high-affinity pathway to
model this metabolism. Finally, the kidney is an organ of interest in our hypothesis
and we include a single metabolism pathway.

• Complex lung model for MTBE (Model 2, Figure E.2). This model moves
from an inert tube for the lung to a lung that includes the URT and a diffusion
process between the URT and the pulmonary tissue to account for the washin-washin
effect. It also accounts for the loss of substance that gets trapped in alveolar dead
space. It further assumes that there is some fraction of the substance that remains
in the URT during inhalation and exhalation. All other tissues are included for the
reasons given for the simple lung model.

• Simple lung model for MTBE and its metabolite, TBA (Model 3, Figure
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E.4). This model takes the simple lung system provided for MTBE and duplicates
it for TBA. Based on sensitivity analysis results for the MTBE-only models above
(details in the following section), we reduce the liver pathways for MTBE in the
liver to a single pathway. Since TBA is a metabolite of MTBE, the system is a
coupled system, linked together by the liver pathways processing MTBE outputting
TBA into the venous blood compartment of the second system. We assume a single
metabolism pathway for TBA in the liver and no metabolism pathway for TBA in
the kidney.

• Complex lung model for MTBE and its metabolite, TBA (Model 4, Fig-
ure E.5). This final model replicates the MTBE-only complex lung model for TBA.
Again, based on sensitivity analysis results which showed no simultaneous sensitivity
for two metabolism pathways, we have a single metabolism pathway for MTBE in
the liver and continue with a single metabolism pathway for TBA in the liver and
no pathway for TBA in the kidney.

All parameters for our models were taken from the literature with the exception of
the Michaelis-Menten paramaters which were estimated using MATLAB’s fminsearch
command. "Initial guesses" required by fminsearch were either taken from the literature
or assigned an arbitrary, but biologically plausible, value.

Data values for concentration of MTBE and TBA in venous blood and exhaled breath
from the Cain et al. [27] and Pleil et al. [74] papers on inhalation exposure to MTBE
were used to calibrate and validate the models.

Conclusions

We performed a sensitivity analysis for each subject (results not provided) and for the
group of subjects with fitted parameters. We were particularly interested to see that
the kidney parameters were shown to be important to the model in one of four subjects
for the Cain (1.7 ppm) venous blood data set and five of six subjects for the Pleil data
set (3 ppm) with venous blood and exhaled breath data. The results indicate that the
inclusion of kidney metabolism in the model contributes meaningfully to further exploring
and explaining tumor development in the kidneys and affirm that kidney metabolism is
potentially a means for inducing these tumors.

Another significant result from the sensitivity analysis is that, in no individual subject,
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did the two-pathway liver models show simultaneous sensitivity to both pathways. That
is, we saw only a high sensitivity ranking for one pathway—either high affinity or low
affinity—at one time. These results drove model design for the coupled systems, reducing
kinetics from two pathways to one, thus allowing a simpler model and confirming that
sensitivity analysis can—and does—lead to improved model design. The results also
indicated that additional parameters could be reduced from the model(s) due to their low
sensitivity analysis rankings. Further considerations for those model reductions are left
for future work.

Finally, we address whether the inclusion of the upper respiratory tract (URT) is
required to fit data for volatile gases. The Akaike Information Criterion helps answer
this question. We saw in Section 9.5 and Tables (9.1)-(9.3) that the "simple lung" model
for all but one subject was the preferred model since the AIC values for each of those
were less than those for the "complex lung" models. This was expected for the models of
the Cain data since we only considered MTBE which has a blood:air partition coefficient
of 17.7. This is far lower than the suggested blood:air partition coefficient threshold for
gases with Pb:a > 100 to require the inclusion of the URT.

For the Pleil data, we have a coupled system that includes MTBE (Pb:a = 17.7) and
TBA (Pb:a = 462). The AIC values indicate that the URT is not needed to describe
the MTBE or TBA data. In this case, the available data is best explained by an inert
tube model thus not proving the hypothesis that gases with Pb:a > 100 require the upper
respiratory tract.

10.2 Future Work

10.2.1 Nonlinear Mixed Effect Models (NLME)

We established in Section 8.2 that the two-stage approach to parameter estimation may
fail to take into account the variability in the estimated parameter θ̂, particularly if few
samples are collected during the absorption phase of a concentration-time profile. Further
the variance and covariance for the parameter estimates are often exaggerated because the
variance of the average parameters depend on both intra- and interindividual variations.
[20, 21, 71]

We consider two types of models: fixed effects and random effects. Fixed-effect
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parameters represent the population typical value, or central tendency, of the model
parameter for the population. There is one true effect and the assumption is that all
differences in observed effects are due to sampling error. The fixed effects describe the
relationship between explanatory variables (e.g., age, body weight) and pharmacokinetic
outcomes (e.g., plasma or tissue concentration of a substance). The values for random-
effect parameters represent the variance of a distribution of some element of the model.
The random-effect parameters themselves help to quantify the magnitude of unexplained
variability in parameters or error in model predictions.

For population models, there are often levels of random effects. The first level
addresses the difference in the model parameters between subjects (intersubject) or
the differences between occasions (interoccasion) while second-level effects quantify the
differences between observed and predicted values of the dependent variable. [71]

The functions, f(x, θ), under consideration in nonlinear mixed effects (NLME) models
are nonlinear in the model parameters θ. Rather than model data from each individual
in a set, population pharmacokinetics studies the PK of the entire set simultaneously.
Nonlinear mixed effects models account for the intersubject, interoccasion and other
elements of variability and inherently consider both fixed and random effects analysis. As
a result, unlike two-stage estimation models, NLME models often produce unbiased mean
and variance estimates and are better at detecting and characterizing nonlinearities in
the physiological system [20]. Other advantages of NLME models are that rich data is
not required (e.g., the number of data points may be small for each individual), the data
may have irregular sampling times, and information from multiple individuals is used
simultaneously.

All parameter estimation techniques thus far used the two-stage approach. In order to
reduce the amount of variability in the parameter estimates, future work would include
employing NLME models.

10.2.2 Parameter Estimation and Subset Selection

In Section 9.7, we discussed assessing the identifiability and estimability of our model
parameters prior to estimation. Based on the estimability results of Algorithms 1-2 in
Section 8.8.4, we estimate model parameters using only the most estimable parameters.
Additional future work in this area would include analysis of the results (e.g., Is there an
improvement in fitting the data?) and computation of the associated confidence intervals
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and prediction intervals before and after parameter subset selection.

10.2.3 More Human Data: Vainiotalo, 25 ppm and 75 ppm

In addition to the Cain and Pleil data used to calibrate our models, we have available
venous blood data at initial MTBE concentrations of 25 ppm and 75 ppm.

The subjects for this study were four males, aged 21-24. Volunteers were exposed
on separate occasions to 25 ppm and 75 ppm of substance in air for 4 hours. Venous
blood samples were collected: one just before exposure; four during exposure; and 6-7
over 20 hours post-exposure (at t= 0, 35, 100, 160, 225, 255, 270, 290, 360, 620, and 1525
minutes for 25 ppm and at t= 0, 80, 150, 205, 270, 290, 305, 330, 355, 573, and 1360
minutes for 75 ppm). The exposures were carried out in a dynamically controlled chamber
measuring 15m3. Exposure sessions were separated by a time interval of at least one week.
Measurements were performed by gas chromatography using salting out technique.

Future work for these data sets would include parameter estimation via both two-stage
and NLME techniques.
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APPENDIX A

Table of Abbreviations and Symbols

Table A.1: Tissue/Organ/Compartment Abbreviations

Tissue/Organ/Compartment Abbreviations
K, Kid Kidney S, SPT Slowly perfused tissue

F Fat R, RPT Rapidly perfused tissue
L, Liv Liver URTinh Upper respiratory tract (inhalation)
Lu Lung URTexh Upper respiratory tract (exhalation)
PT Pulmonary Tissue alv(DS) Alveoli, dead space
v Venous alv(P) Alveoli, perfused
a Arterial
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Table A.2: Equation Abbreviations

Equation Abbreviations
Axi Amount of chemical x in compartment i (mg)
Cx
exh Concentration of chemical x in exhaled air (mg/L)
Cx
i Concentration of chemical x in tissue i (mg/L)

Cx
inh Inhaled concentration of chemical x during the exposure and zero after

the exposure ends (mg/L)
Cx
vi

Concentration of chemical x in venous blood from tissue i (mg/L)
k The fraction of chemical leaving the URT (0 < k < 1)

Kx
maxi

(Michaelis-Menten) Concentration of chemical x in tissue i (mg/L) at
1
2
V x
maxi

Metabxi Metabolism rate of chemical x in tissue i (mg/hr)
P x
b:a Blood:air partition coefficient for chemical x
P x
i Tissue:blood partition coefficient for chemical x in tissue i
Q Cardiac blood output (L/hr)
Qi Blood flow rate to tissue i (L/hr)
Qp Respiration rate (L/hr)
Vi Volume of tissue i (L)
V̇j Alveolar blood flow rates j ∈ {alv,DS} (L/hr)

V x
maxi

(Michaelis-Menten) Maximum velocity of enzyme reaction of chemical x
in tissue i (mg/hr/kg)

f Breathing frequency (breaths/hr)
VT Tidal volume (L)
VD Dead space volume (L)
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APPENDIX B

MTBE and TBA Properties

Table B.1: MTBE Properties

MTBE Property Value
Other names Methyl tertiary-butyl ether; Methyl tert-butyl ether;

Methyl t-butyl ether; tert-Butyl methyl ether; MTBE;
CAS Number 1634-04-4
Chemical formula C5H12O
Molecular Weight 88.15 g/mol
Color clear, colorless
Physical state liquid
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Table B.2: TBA Properties

TBA Property Value
Other names tert-Butyl alcohol; t-Butyl alcohol; tert-Butanol;

Trimethyl carbinol; 2-Methyl-2-propanol; TBA
CAS Number 75-65-0
Chemical formula C4H10O
Molecular Weight 74.12 g/mol
Color clear, colorless
Physical state liquid
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APPENDIX C

Michaelis-Menten Equation Derivation

The Michaelis-Menten kinetics equation begins with the following chemical reaction [69]:

S + E
k1−−⇀↽−−
k−1

ES
k2−→P + E (C.1)

where S is substrate, E is enzyme, P is product, and ES is enzyme-substrate complex.
k1 is the forward reaction rate where the substrate and enzyme form the ES complex.
k−1 is the backward reaction rate where the complex dissociates back to the substrate
and enzyme. Lastly, k2 is the rate for the creation of the product.

The following assumptions apply:

• The early stages of the reaction so little product is formed that the reverse reaction
can be ignored

• The concentration of the substrate is much greater than that of total enzyme
([S]� Et]) so it can be treated as a constant.

• For enzyme kinetics, the rate of change of enzyme-substrate is zero, that is, there is
a steady-state condition, d[ES]

dt
= 0. Alternatively stated, the rate of formation of

[ES] equals the rate of breakdown of [ES],

k1[E][S] = k−1[ES] + k2[ES] = (k−1 + k2)[ES]. (C.2)
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We start with the rate of product concentration,

dP

dt
= v = k2[ES]. (C.3)

[ES] is a generally unmeasurable so we need an alternative expression for it. Let Et be
the concentration of the total enzyme, [Et] = [ES] + [E] where [ES] is bound enzyme and
[E] is unbound enzyme. Then the fraction of bound enzyme [ES] to total enzyme [Et] is

[ES]

[Et]
=

[ES]

[ES] + [E]
. (C.4)

Rewriting Equation (C.4), we have

[ES] =
[Et]

1 + [E]
[ES]

, (C.5)

then substituting for the ratio [E]
[ES]

using Equation (C.2), we have

[ES] =
[Et]

1 + k−1+k2
k1[S]

. (C.6)

Define the Michaelis constant, a measure of the substrate concentration required for
effective catalysis to occur,

Km =
k−1 + k2

k1
, (C.7)

then, simplifying Equation (C.6), we have

[ES] =
[Et][S]

Km + [S]
. (C.8)

Substituting this into the product concentration rate, Equation (C.3),

v = k2[ES] =
k2[Et][S]

Km + [S]
, (C.9)

and considering the case when [S]� Km, we have v ≈ k2[Et] = kcat[Et] where k2 behaves
as the catalytic constant, kcat, called the "turnover number" (the number of substrate
molecules turned over per enzyme molecule per second) and gives a direct measure of the
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catalytic production of product under optimum conditions (saturated enzyme). When
[S] is "saturating," the enzyme is functioning as fast as it can (all enzyme molecules are
tied up with [S], or [ES] = [Et])and we can define k2[Et] = kcat[Et] = Vmax where Vmax is
the maximum production rate (maximum velocity) that can be obtained. Then Equation
(C.9) can be rewritten into the more familiar Michaelis-Menten equation,

v = k2[ES] =
Vmax[S]

Km + [S]
. (C.10)

Now, consider when v = 1
2
Vmax. Under this condition and simplifying Equation (C.10),

we find Km = [S]. In addition to the formal definition of Km as in Equation (C.7), Km is
also the substrate concentration that gives half-maximal velocity of the enzyme-catalyzed
reaction. Concluding, the Michaelis-Menten equation given by Equation (C.10) describes
the kinetic behavior of an enzyme that acts according to the simple model (Equation
(C.1)).
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APPENDIX D

Local Identifiability

According to Shotwell et al. [86], a model is locally identifiable at θ′ if y(·, θ) = y(·, θ)
implies θ = θ′ for all possible θ holds for θ in a neighborhood of θ′, which suggests that
the problem can be analyzed by linearization of y(x, θ) about θ′. The first-order Taylor
series approximation of y(x, θ) in a neighborhood of θ′ is

y(x, θ) ≈ y(x, θ′) + J(x, θ′)(θ − θ′),

where the elements of the Jacobian J(x, θ′) are

J(x, θ′) =

[
∂yi(x, θ)

∂θj

]
θ=θ′

, (D.1)

for i = 1, . . . ,m and j = 1, . . . , p. Thus, locally identifiability is verified when, for some x,
there are no nontrivial solutions (i.e., θ 6= θ′) to the linear system,

J(x, θ′)(θ − θ′) = 0.

By definition, this requires linear independence in the columns of J(x, θ′). Local
identifiability can then be verified by searching for two or more experiments that jointly
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ensure no nontrivial solutions to

J(x, θ′)(θ − θ′) = 0, (D.2)

where J(x, θ′) is an nm× p matrix consisting of n blocks of m× p Jacobians and x are
the n associated experimental conditions. Local identifiability about θ is then determined
by checking for column-wise linear independence in J(x, θ′), the sensitivity matrix, or
equivalently that F(x, θ′) = J(x, θ′)TJ(x, θ′), the FIM, is nonsingular.
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APPENDIX E

Models

E.1 MTBE-only system, SIMPLE lung.
Cain 1.7ppm, Pleil 3ppm

Lung:

Vlu
dClu
dt

= CvQ+ CinhQp − CexhQp −
Clu
Plu

Q (E.1)

Liver:

VL
dCL
dt

= QL(Ca − CvL)−
VmaxL1

CvL
KmL1

+ CvL
−

VmaxL2
CvL

KmL2
+ CvL

(E.2)

Kidney:

VK
dCK
dt

= QK(Ca − CvK )− VmaxKCvK
KmK

+ CvK
(E.3)

Fat, SPT, RPT:

Vi
dCi
dt

= Qi(Ca − Cvi) (E.4)
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Figure E.1: MTBE-only system with simple lung

Venous:

Vv
dCv
dt

= QLCvL +QKCvK +QFCvF +QSCvS +QRCvR −QCv (E.5)

Arterial:

Va
dCa
dt

= Q
Clu
Plu
− (QLCa +QKCa +QFCa +QSCa +QRCa) (E.6)

E.1.1 Assumptions

A1. There is no steady-state condition assumed for any compartment. Compartment
concentrations are determined solely from their differential equations.

A2. Metabolism/clearance takes place in both the kidneys and liver.

E.1.2 Additional Equations

E1. The outgoing concentration for each tissue is given by the concentration of the
chemical in the tissue divided by the tissue:blood partition coefficient for that
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chemical:
Cvi =

Ci
Pi

(E.7)

In each of (E.2)-(E.5), we can replace Cvi using (E.7).

E2. Total cardiac flow:

Q = QL +QK +QF +QS +QR (E.8)

which reduces ((E.6)) to

Va
dCa
dt

= Q

(
Clu
Plu
− Ca

)
(E.9)

E3. Total body volume:

V = VL + VK + VF + VS + VR + Vlu + Vv + Va (E.10)

E4. Exhaled concentration with Plu:air computed from Plung:blood and Pblood:air.

Cexh =
Clu
Plu:air

(E.11)
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E.2 MTBE-only system, COMPLEX lung.
Cain 1.7ppm, Pleil 3ppm, Vainiotalo 25ppm and
75ppm

Figure E.2: MTBE-only system with complex lung
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Figure E.3: Upper Respiratory Tract (URT) system

E.2.1 Equations

Upper Respiratory Tract (URT), inhalation:

VURT
dCURTinh

dt
= CinhQp + (CPT − kCURTinh)D − kCURTinhV̇alv − kCURTinhV̇DS

(E.12)

Pulmonary Tissue (PT):

VPT
dCPT
dt

= (kCURTinh + kCURTexh − 2CPT )D (E.13)

Upper Respiratory Tract (URT), exhalation:

VURT
dCURTexh

dt
= (CPT − kCURTexh)D − CexhQp + Calv(P )V̇alv + Calv(DS)V̇DS (E.14)

Alveoli with Perfusion:

Valv(P )

dCalv(P )

dt
= CvQ+ ĈURTinhV̇alv − CartQ− Calv(P )V̇alv (E.15)

Alveoli without Perfusion (Alveolar deadspace):

Valv(DS)
dCalv(DS)

dt
= kCURTinhV̇DS − Calv(DS)V̇DS (E.16)
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Liver:

VL
dCL
dt

= QL(Cart − CvL)−
VmaxL1

CL

KmL1
+ CL

−
VmaxL2

CL

KmL2
+ CL

(E.17)

Kidney:

VK
dCK
dt

= QK(Cart − CvK )− VmaxKCK
KmK

+ CK
(E.18)

Fat, SPT, RPT:

Vi
dCi
dt

= Qi(Cart − Cvi) (E.19)

Venous:

Vv
dCv
dt

= QLCvL +QKCvK +QFCvF +QSCvS +QRCvR −QCv (E.20)

Arterial:

Va
dCart
dt

= QCalv(P ) − (QLCart +QKCart +QFCart +QSCart +QRCart) (E.21)

E.2.2 Variable Relationships

V̇alv = f(VT − VD) (E.22)

V̇DS = f(VD) (E.23)

Λ = {F,R, S,K,L} (E.24)

E.2.3 Assumptions

A1. Metabolism/clearance takes place in both the kidneys and liver.

A2. Total cardiac flow: Q = QL +QK +QF +QS +QR which reduces ((E.21)) to

Va
dCart
dt

= Q
(
Calv(P ) − Cart

)
(E.25)

A3. Total body volume:

V = VL + VK + VF + VS + VR + VURT + VPT + Valv(P ) + Valv(DS) + Vv + Va (E.26)
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A4. The exiting concentration for each tissue is given by the concentration of the chemical
in tissue i divided by the tissue:blood partition coefficient for that chemical:

Cvi =
Ci
Pi
, i ∈ Λ (E.27)

In each of (E.17)-(E.20), we can replace Cvi using (E.27).

E.2.4 Further considerations

• EPA TCE paper also has clearance at the Pulmonary Tissue. No clearance at that
compartment is shown here.

• On inhalation and exhalation, some fraction of the chemical remains in the URT.
Since Amount = Concentration ∗ V olume and volume is constant, we define the
concentrations leaving the URT

ĈURTinh = kCURTinh (E.28)

and
Cexh = ĈURTexh = kCURTexh (E.29)

where k is the fraction of chemical leaving the URT (0 < k < 1). (Compare this use
of k to that of partition coefficients.)
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E.3 MTBE-to-TBA coupled system, SIMPLE lung.
Pleil 3ppm

Figure E.4: MTBE-to-TBA coupled system with simple lung

E.3.1 Equations

Lung:

Vlu
dCM

lu

dt
= CM

v Q+ CM
inhQp − CM

exhQp −
CM
lu

PM
lu

Q (E.30)

Vlu
dCT

lu

dt
= CT

v Q− CT
exhQp −

CT
lu

P T
lu

Q (E.31)
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Liver:

VL
dCM

L

dt
= QL(CM

a − CM
vL

)−MetabML (E.32)

VL
dCT

L

dt
= QL(CT

a − CT
vL

)−MetabTL (E.33)

Kidney:

VK
dCM

K

dt
= QK(CM

a − CM
vK

) (E.34)

VK
dCT

K

dt
= QK(CT

a − CT
vK

) (E.35)

Fat, SPT, RPT:

Vi
dCM

i

dt
= Qi(C

M
a − CM

vi
) (E.36)

Vi
dCT

i

dt
= Qi(C

T
a − CT

vi
) (E.37)

Venous:

Vv
dCM

v

dt
= QLC

M
vL

+QKC
M
vK

+QFC
M
vF

+QSC
M
vS

+QRC
M
vR
−QCM

v (E.38)

Vv
dCT

v

dt
= MetabML +QLC

T
vL

+QKC
T
vK

+QFC
T
vF

+QSC
T
vS

+QRC
T
vR
−QCT

v (E.39)

Arterial:

Va
dCM

a

dt
= Q

CM
lu

PM
lu

− (QLC
M
a +QKC

M
a +QFC

M
a +QSC

M
a +QRC

M
a ) (E.40)

Va
dCT

a

dt
= Q

CT
lu

P T
lu

− (QLC
T
a +QKC

T
a +QFC

T
a +QSC

T
a +QRC

T
a ) (E.41)

E.3.2 Assumptions

A1. There is no steady-state condition assumed for any compartment. Compartment
concentrations are determined solely from their differential equations.

A2. Metabolism/clearance takes place in both the liver and the kidneys.

A3. The lung does not have the upper respiratory tract (URT) included.
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E.3.3 Additional Equations

E1. The outgoing concentration for each tissue is given by the concentration of the
chemical in the tissue divided by the tissue:blood partition coefficient for that
chemical:

Cx
vi

=
Cx
i

P x
i

(E.42)

In each of (E.32)-(E.39), we can replace Cx
vi
using (E.42).

E2. Total cardiac flow:

Q = QL +QK +QF +QS +QR (E.43)

reduces (E.40) to

Va
dCM

a

dt
= Q

(
CM
lu

PM
lu

− CM
a

)
(E.44)

and reduces (E.41) to

Va
dCT

a

dt
= Q

(
CT
lu

P T
lu

− CT
a

)
(E.45)

E3. Total body volume:

V = VL + VK + VF + VS + VR + Vlu + Vv + Va (E.46)

E4. Exhaled concentration with P x
lu:air computed from P x

lung:blood and P x
blood:air.

CM
exh =

CM
lu

P x
lu:air

(E.47)

CT
exh =

CT
lu

P x
lu:air

(E.48)

E5. Liver metabolism (Michaelis-Menten kinetics)

MetabML =
V M
maxL

CM
vL

KM
mL

+ CM
vL

(E.49)

MetabTL =
V T
maxL

CT
vL

KT
mL

+ CT
vL

(E.50)
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E.4 MTBE-to-TBA coupled system, COMPLEX lung.
Pleil 3ppm

Figure E.5: MTBE-to-TBA coupled system with URT (complex lung)

E.4.1 Equations

Refer to Figures (E.3) and (E.4) for general route labeling.

Upper Respiratory Tract (URT), inhalation:

VURT
dCM

URTinh

dt
= CM

inhQp + CM
PTD − kCM

URTinh
V̇alv − kCM

URTinh
V̇DS − kCM

URTinh
D (E.51)

VURT
dCT

URTinh

dt
= CT

PTD − kCT
URTinh

V̇alv − kCT
URTinh

V̇DS − kCT
URTinh

D (E.52)
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Pulmonary Tissue (PT):

VPT
dCM

PT

dt
= kCM

URTinh
D + kCM

URTexh
D − 2CM

PTD (E.53)

VPT
dCT

PT

dt
= kCT

URTinh
D + kCT

URTexh
D − 2CT

PTD (E.54)

Upper Respiratory Tract (URT), exhalation:

VURT
dCM

URTexh

dt
= CM

PTD + CM
alv(P )V̇alv + CM

alv(DS)V̇DS − kCM
URTexh

D − CM
exhQp (E.55)

VURT
dCT

URTexh

dt
= CT

PTD + CT
alv(P )V̇alv + CT

alv(DS)V̇DS − kCT
URTexh

D − CT
exhQp (E.56)

Alveoli without Perfusion (Alveolar deadspace):

Valv(DS)
dCM

alv(DS)

dt
= kCM

URTinh
V̇DS − CM

alv(DS)V̇DS (E.57)

Valv(DS)
dCT

alv(DS)

dt
= kCT

URTinh
V̇DS − CT

alv(DS)V̇DS (E.58)

Alveoli with Perfusion:

Valv(P )

dCM
alv(P )

dt
= kCM

URTinh
V̇alv + CM

v Q− CM
alv(P )Q− CM

alv(P )V̇alv (E.59)

Valv(P )

dCT
alv(P )

dt
= kCT

URTinh
V̇alv + CT

v Q− CT
alv(P )Q− CT

alv(P )V̇alv (E.60)

Liver:

VL
dCM

L

dt
= QL(CM

a − CM
vL

)−MetabML (E.61)

VL
dCT

L

dt
= QL(CT

a − CT
vL

)−MetabTL (E.62)

Kidney:

VK
dCM

K

dt
= QK(CM

a − CM
vK

)−MetabMK (E.63)

VK
dCT

K

dt
= QK(CT

a − CT
vK

) (E.64)
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Fat, SPT, RPT:

Vi
dCM

i

dt
= Qi(C

M
a − CM

vi
) (E.65)

Vi
dCT

i

dt
= Qi(C

T
a − CT

vi
) (E.66)

Venous:

Vv
dCM

v

dt
= QLC

M
vL

+QKC
M
vK

+QFC
M
vF

+QSC
M
vS

+QRC
M
vR
−QCM

v (E.67)

Vv
dCT

v

dt
= MetabML +QLC

T
vL

+QKC
T
vK

+QFC
T
vF

+QSC
T
vS

+QRC
T
vR
−QCT

v (E.68)

Arterial:

Va
dCM

a

dt
= CM

alv(P )Q− (QLC
M
a +QKC

M
a +QFC

M
a +QSC

M
a +QRC

M
a ) (E.69)

Va
dCT

a

dt
= CT

alv(P )Q− (QLC
T
a +QKC

T
a +QFC

T
a +QSC

T
a +QRC

T
a ) (E.70)

E.4.2 Assumptions

A1. There is no steady-state condition assumed for any compartment. Compartment
concentrations are determined solely from their differential equations.

A2. Metabolism/clearance takes place in both the liver and the kidneys.

E.4.3 Additional Equations

E1. The outgoing concentration for each tissue is given by the concentration of the
chemical in the tissue divided by the tissue:blood partition coefficient for that
chemical:

Cx
vi

=
Cx
i

P x
i

(E.71)

In each of (E.61)-(E.68), we can replace Cx
vi
using (E.71).

E2. Total cardiac flow:

Q = QL +QK +QF +QS +QR (E.72)

reduces (E.69) to

Va
dCM

a

dt
= Q

(
CM
alv(P ) − CM

a

)
(E.73)
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and reduces (E.70) to

Va
dCT

a

dt
= Q

(
CT
alv(P ) − CT

a

)
(E.74)

E3. Total body volume:

V = VL + VK + VF + VS + VR + VURT + VPT + Valv(P ) + Valv(DS) + Vv + Va
(E.75)

E4. Blood flow rates for alv(P) and alv(DS)

V̇alv = f(VT − VD) (E.76)

where f is breathing frequency, VT is tidal volume, and VD is dead space volume.

V̇DS = f(VD) (E.77)

E5. Exhaled concentration: k is the fraction of concentration leaving the compartment,
0 < k < 1

CM
exh = kCM

URTexh
(E.78)

CT
exh = kCT

URTexh
(E.79)

E6. Liver metabolism (Michaelis-Menten kinetics), i ∈ {K,L}

MetabMi =
V M
maxi

CM
vi

KM
mi

+ CM
vi

(E.80)

MetabTL =
V T
maxL

CT
vL

KT
mL

+ CT
vL

(E.81)
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APPENDIX F

Data Values

Table F.1: Cain 1.7 ppm. MTBE venous blood measurements

MTBE (µg/L)
Time (min) S01 S02 S03 S04
0 1.1 0.5 0.4 1.4
2 4.5 6.3 6.8 4.1
5 6.8 7.1 7.9 4.8
10 13.9 8.3 9.8 5.7
20 10.3 10.4 11.5 6.8
30 13.6 15.8 17.1 14.2
60 16.7 14.9 17.4 19.7
62 16.3 15 13.4 17.4
65 13.2 13.6 13.7 18.9
70 13.6 14.7 11.4 15.4
80 12.8 11.9 11.4 13.5
100 8.6 10.5 5.40 14.4
120 6.2 7.6 7.4 4.1
150 6.1 6.3 6.5 10.7
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Table F.2: Pleil 3 ppm. MTBE venous blood measurements

MTBE (µg/L)
Time (hr) S08 S09 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21
-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.035
-0.92 5 6.1 1.5 8 10 5 - 4.9 6.9 3.6 11 12 6.3 4.1
-0.75 15 15 5 18 21 11 - 10 15 13 18 15 13 11
-0.5 17 22 13 - 19 17 20 17 25 14 25 20 21 14
-0.25 22 22 15 23 28 15 - 17 25 15 31 26 24 16
0 22 20 11 32 30 17 - 21 31 16 31 26 23 19
0.08 16 22 13 - 13 15 15 16 25 11 20 26 18 15
0.25 14 14 9.9 18 23 14 - 12 27 11 17 16 15 12
0.5 8.9 13 10 - 13 14 - 9.7 21 6.9 12 16 14 10
1 5.9 12 7.3 10 6.6 9.3 8.3 7.1 14 5.7 10 13 12 6.9
2 5.6 5.8 5 - 4.7 7.6 6.6 4.5 11 3.6 5.5 6.5 7.6 4.1
3 2.6 4.1 3.6 3.9 2.9 5.3 - 3.3 5.1 2.9 3.9 3.9 4.6 2.9
6 1.2 1.6 1.2 - 1.1 2.3 1.6 1.2 2.1 1.2 1.4 2.2 2.2 1.5
22 0.074 0.03 0.051 - 0.047 0.09 0.045 0.087 0.048 0.24 0.17 0.096 0.1 0.47
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Table F.3: Pleil 3 ppm. TBA venous blood measurements

TBA (µg/L)
Time (hr) S08 S09 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21
-1 0.54 0.56 1.1 1.1 0.7 3.3 2.5 1.4 1.2 0.56 0.61 0.7 0.82 0.36
-0.92 1.2 1.1 1.1 1.6 2.3 2.7 - 0.94 1.2 0.97 0.98 2.5 1.1 0.8
-0.75 3.7 3 2.2 4.7 5.4 4.1 - 2.4 2.1 3.4 2.7 4.1 3.2 2.5
-0.5 6.1 8.5 6.7 7.8 8.5 7.9 7.5 7 4.1 6.5 7.4 8.6 5.9 6.1
-0.25 12 8.4 9.6 9.6 12 7.7 - 8.2 5 5.6 12 12 8.4 7.5
0 14 8.9 10 15 15 9 20 12 7.2 7.9 14 16 13 13
0.08 16 13 11 15 14 12 14 12 8.7 7.7 14 18 14 12
0.25 15 12 11 12 16 9.2 13 11 8.4 11 12 16 12 11
0.5 13 13 15 14 14 13 17 11 11 10 12 16 14 11
1 13 14 16 14 15 14 15 12 11 11 12 18 12 11
2 14 14 16 15 17 16 15 14 13 9.9 11 16 13 10
3 13 15 20 16 17 - 15 13 12 9.9 12 16 13 11
6 15 15 16 15 14 14 16 13 11 8.7 9.9 20 11 12
22 4.3 6.4 5.6 5.5 4.7 6.3 6.4 4.9 5.7 6.3 3.5 8.5 3.2 5.5
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Table F.4: Pleil 3 ppm. MTBE and TBA exhaled breath measurements

MTBE breath measurements (ppbv)
Time (hr) S08 S09 S11 S15 S16 S19 S21
-1 0.08 0.15 0.4 0.14 0.18 0.12 0.45
-0.92 462.73 602.73 468.1 782.26 447.59 917.48 502.31
-0.75 791.15 736.05 488.67 892.65 705.58 1109.83 458.68
-0.5 704.34 923.04 853.64 928.41 750.14 1140.06 641.57
-0.25 914.11 977.39 669.31 1340.8 813.86 1609.18 687.09
0 996.94 1006.77 879.65 1438.35 924.57 1380.32 884.53
0.08 397.88 448.02 374.95 400.58 504.09 589.54 373.98
0.25 253.78 307.76 234.15 253.31 370.31 313.62 223.44
0.5 188.77 228.83 184.23 178.03 260.57 181.16 152.42
1 118.63 162.75 123.57 129.88 186.55 111.04 109.23
2 83.45 91.31 74.37 75.31 117.78 62.87 59.05
3 44.57 64.94 51.07 50.72 66.68 - 42.56
6 24.01 22.03 22.25 20.02 30.05 34.2 21.6
22 1.75 0.53 0.81 1.85 1.21 1.4 6.86

TBA breath measurements (ppbv)
Time (hr) S08 S09 S11 S15 S16 S19 S21
-1 0.3 1.76 0 0.51 0.65 0.17 0.35
-0.92 0.61 3.52 0.65 0.81 1.38 1.08 0.6
-0.75 1.73 5.22 2.86 2.17 1.48 2.71 1.63
-0.5 3.01 5.48 5.15 3.72 2.22 3.99 3.21
-0.25 6.01 6.28 4.82 5.34 3.32 6.29 4.81
0 6.29 5.83 6.18 6.61 4.34 8.57 6.12
0.08 6.2 5.84 6.09 7.11 4.81 9.45 6.97
0.25 5.74 5.51 5.12 6.8 4.51 6.81 5.62
0.5 6.9 6.14 5.19 5.2 4.13 6.52 4.35
1 5.11 8.85 4.56 6.2 4.22 7.05 4.58
2 5.79 5.31 5.09 6.38 4.7 6.37 4.3
3 5.49 - 5.65 5.96 4.38 - 4.62
6 5.78 4.82 4.95 5.38 4.18 - 4.42
22 2.18 2.49 2.55 2.44 2.45 3.85 2.73
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APPENDIX G

Optimized Parameters

Table G.1: Cain, Simple lung (Model 1), MTBE-only Optimized Parameters

mg/kg/hr Guess Mean std mg/L Guess Mean std
Vmax,livHi

0.4 0.2475 0.4624 Km,livHi
0.2 225.3374 439.8150

Vmax,livLo
44 74.9627 69.9288 Km,kidLo

110 57.5274 48.7685
Vmax,kid 10 20.0462 39.3053 Km,kid 10 110.8519 90.8109

Table G.2: Pleil, Simple lung (Model 1), MTBE-only Optimized Parameters

mg/kg/hr Guess Mean std mg/L Guess Mean std
Vmax,livHi

0.4 0.0350 0.07388 Km,livHi
0.2 2.3759 3.2250

Vmax,livLo
44 55.50001 50.6082 Km,kidLo

110 420.6519 457.4823
Vmax,kid 10 26.0400 40.1210 Km,kid 10 24.1377 28.0630
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Table G.3: Cain, Complex lung (Model 2), MTBE-only Optimized Parameters

mg/kg/hr Guess Mean std mg/L Guess Mean std
Vmax,livHi

0.4 17.3538 4.5014 Km,livHi
0.2 1869.3264 67.5791

Vmax,livLo
44 23.9530 27.4814 Km,kidLo

110 76.5274 80.7503
Vmax,kid 10 24.5989 49.0205 Km,kid 10 1648.0958 497.1423

k 0.62 0.9839 0.03187 D 0.802 997.9073 4.0154

Table G.4: Pleil, Complex lung (Model 2), MTBE-only Optimized Parameters

mg/kg/hr Guess Mean std mg/L Guess Mean std
Vmax,livHi

0.4 24.1705 16.2476 Km,livHi
0.2 780.8265 214.8892

Vmax,livLo
44 2.4324 3.8565 Km,kidLo

110 396.7448 143.8971
Vmax,kid 10 115.3580 13.3927 Km,kid 10 140.2041 58.8659

k 0.62 0.9999 1.20837E-06 D 0.802 999.9970 0.0059

Table G.5: Pleil, Simple lung (Model 3), MTBE-to-TBA Optimized Parameters

mg/kg/hr Guess Mean std mg/L Guess Mean std
Vmax,livMTBE

44 47.9650 13.4404 Km,livMTBE
110 140.1759 48.5721

Vmax,kidMTBE
10 35.0993 14.4730 Km,kidMTBE

10 31.2901 17.5617
Vmax,livTBA

0.4 2.7775 2.7222 Km,livTBA
0.2 36.8895 41.2321

Table G.6: Pleil, Complex lung (Model 4), MTBE-to-TBA Optimized Parameters

mg/kg/hr Guess Mean std mg/L Guess Mean std
Vmax,livMTBE

44 62.6879 66.6498 Km,livMTBE
110 139.9255 167.1362

Vmax,kidMTBE
10 0.7079 1.1626 Km,kidMTBE

10 536.7700 756.4230
Vmax,livTBA

0.4 0.0742 0.1044 Km,livTBA
0.2 1285.1121 362.0945

k 0.62 0.9999 3.09E-05 D 0.802 49.9998 0.0001
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