
ABSTRACT

CHEN, XIAOHONG. Some Advances and Applications of Immersed Interface Methods. (Under
the direction of Zhilin Li.)

In this thesis, two different types of Immersed Interface method (IIM), augmented IIM and

direct IIM, are proposed for interface problems and followed by applications of these two meth-

ods. Both approaches are originally used to solve elliptic interface problems with a piecewise

variable coefficient that has a finite jump across a smooth interface and provide not only a

second order accurate solution in the entire domain but also second order accurate gradients

from each side of the interface. In the augmented IIM, the partial differential equation (PDE) is

reformulated and an augmented variable of co-dimension one is introduced and solved through

a Schur complement system. Second order convergence proof is completed for both the solution

and the gradient. Combined with Alternating Direction Implicit (ADI) method, the augmented

IIM is extended to solve multi-scale parabolic PDE problems in which the coefficient is dis-

continuous, and the domain has many inclusions with different material parameters. Two ADI

methods based on augmented approaches are studied. The introduced augmented variable along

the interface enables us to get dimension by dimension jump conditions in a scale needed to get

accurate discretization in the coordinate directions. With the new ADI methods, not only is

the solution second order accurate globally, but also the augmented variable, which is validated

through various examples.

Unlike the augmented approach, the direct IIM discretizes the system directly without using

the augmented variable and, hence, is easier to implement and computationally more efficient.

For elliptic interface problems, the resulting finite difference scheme is the standard five-point

central scheme at regular grid points, while it is a compact nine-point scheme at irregular

grid points. The computed solution is second order accurate and will be used to recover the

gradient from each side of the interface to the same accuracy. While second order convergence

for solutions can be proved by enforcing a discrete elliptic maximum principle, the theoretical

convergence proof for the gradient is still an open question. An application of the direct IIM

is also presented to solve two-phase incompressible Stokes equations with an interface and a

piecewise constant viscosity on staggered grids. In this application, the velocity components and

the pressure are placed at different grid points. The Marker and Cell (MAC) scheme is used

for discretizing the momentum and continuity equations at regular grid points. The computed

numerical solutions are second order accurate in the L∞ norm for both the velocity and pressure,

which is demonstrated in numerical tests.

© Copyright 2018 by Xiaohong Chen

All Rights Reserved

Some Advances and Applications of Immersed Interface Methods

by
Xiaohong Chen

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Applied Mathematics

Raleigh, North Carolina

2018

APPROVED BY:

Mansoor Haider Kazufumi Ito

Donald E. K. Martin Zhilin Li
Chair of Advisory Committee

DEDICATION

In memory of my Grandfather Xianjin Yang.

ii

BIOGRAPHY

Xiaohong Chen was born in 1991, Quanzhou, Fujian province, P. R. China and grew up in

Lianyungang, Jiangsu province. He attended Nanjing University of Aeronautics and Astronau-

tics from 2009 to 2013 and graduated with a B.E. in Aircraft Design and Engineering.

After undergraduate school, the author joined the graduate program at North Carolina

State University in Raleigh, and in 2015 received his Master of Financial Mathematics. After

graduation, he entered the Ph.D. program in Applied Mathematics at the same university.

Under the advisorship of Zhilin Li, the author started to research and publish in numerical

methods for partial differential equations.

iii

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Dr. Zhilin Li for the

continuous support of my Ph.D. study and research, for his patience, motivation, enthusiasm,

and immense knowledge. His guidance helped me in all the time of research and writing of this

thesis.

I would also like to thank the rest of my thesis committee: Dr. Mansoor Haider, Dr. Kazufumi

Ito, and Dr. Donald E. K. Martin, for their encouragement, insightful comments, and hard

questions.

Last but not the least, I would like to thank my parents, Rongkai Chen and Qingzhen Wu,

and my girlfriend, Xun Ma, for their care and support over the years.

iv

TABLE OF CONTENTS

List of Tables . vii

List of Figures . x

Chapter 1 Introduction . 1
1.1 The model problems . 1

1.1.1 Elliptic interface problems . 1
1.1.2 Parabolic interface problems . 2
1.1.3 Two-phase Stokes equations . 3

1.2 A brief overview of the numerical methods for interface problems 4
1.3 Comparisons among finite difference based methods for interface problems 8
1.4 Outline of the thesis . 11

Chapter 2 An Augmented Method for Accurate Solution and Gradient Com-
putations for Elliptic Interface Problems 13

2.1 The one-dimensional algorithm . 14
2.1.1 Discretization of the flux jump condition 16

2.2 Convergence analysis of the 1D algorithm . 17
2.2.1 An example of the 1D Stefan problem . 20

2.3 The algorithm for two dimensional problems . 22
2.3.1 The jump relations in the local coordinates 22
2.3.2 The finite difference scheme for the 2D problem 24
2.3.3 Discretizing the flux jump condition . 27
2.3.4 Computing the gradient on the interface 28
2.3.5 A new preconditioning strategy . 29

2.4 Convergence proof for the 2D problems . 29
2.5 Numerical examples . 34

2.5.1 An example for more general self-adjoint elliptic interface problems 37

Chapter 3 A Direct Method for Accurate Solution and Gradient Computa-
tions for Elliptic Interface Problems . 41

3.1 The one-dimensional algorithm . 42
3.1.1 Interpolation schemes for [ux] and [uxx] 43

3.2 Convergence analysis of the 1D algorithm . 45
3.3 The algorithm for two dimensional problems . 49

3.3.1 The finite difference scheme in 2D . 51
3.3.2 Jump relations and the coordinate transformation 53
3.3.3 The approximation of correction terms . 55
3.3.4 Discrete maximum principle and error analysis 57
3.3.5 An outline of the algorithm . 63

3.4 Numerical examples . 63

v

Chapter 4 On Multi-scale ADI Methods for Parabolic PDEs with a Discon-
tinuous Coefficient . 72

4.1 Two augmented formulations and jump relations 74
4.1.1 Setting [βu] as an augmented variable . 75
4.1.2 Setting d[βu]/dτ as an augmented variable 76

4.2 The ADI algorithms using different augmented variables 77
4.2.1 The ADI method using [βu] as the augmented variable 79
4.2.2 The ADI method using d[βu]/dτ as the augmented variable 80

4.3 Discretization of the augmented equation and the Schur complement 83
4.3.1 Discretization of an augmented variable 84
4.3.2 The ADI method in the matrix-vector form given an augmented variable 84
4.3.3 The discrete augmented equation in the matrix-vector form 84
4.3.4 The interpolation scheme when d[βu]/dτ is the augmented variable 86
4.3.5 Outline of the new ADI methods . 87
4.3.6 Convergence discussions . 87

4.4 Numerical examples . 87
4.4.1 An example from the literature . 88
4.4.2 An example with a variable dynamic flux jump condition 92
4.4.3 An example in which the solution has a jump discontinuity 95
4.4.4 An application example . 96
4.4.5 A moving example . 96

Chapter 5 A Direct IIM Approach for Two-phase Stokes Equations with Dis-
continuous Viscosity on Staggered Grids 99

5.1 Finite difference method using staggered grids . 100
5.1.1 Classification of grid points . 100
5.1.2 The marker and cell scheme . 102
5.1.3 Jump relations and the coordinates transformation 106
5.1.4 The approximation of correction terms . 109
5.1.5 Solving the discrete Stokes equations . 112
5.1.6 An outline of the algorithm . 114

5.2 Numerical examples . 114

Chapter 6 Conclusions and future work .131
6.1 Conclusions . 131
6.2 Future work . 132

References .133

vi

LIST OF TABLES

Table 2.1 A grid refinement analysis for the Stefan problem at the final time t = 3.
The computed solution, the first order derivative u−x (α(t)), and the free
boundary α(t) all have average second order convergence. 21

Table 2.2 A grid refinement analysis for Example 2.1 with a modest variable jump
in the coefficient. 35

Table 2.3 A grid refinement analysis for Example 2.1 with a large variation in the
jump ratio of the coefficient. 36

Table 2.4 A grid refinement analysis with a different jump condition c(X)u+
n −

d(X)u−n = v(X). 36
Table 2.5 A grid refinement analysis for Example 2.2 with a piecewise constant co-

efficient β+ = 1000 and β− = 1 and a complicated interface. 37
Table 2.6 A grid refinement analysis for Example 2.3 for a general elliptic interface

problems with the interface (x/0.6)2 + (y/0.4)2 = 1. 38
Table 2.7 A grid refinement analysis for Example 2.3 for a general elliptic interface

problems with the interface x2 + (y/0.25)2 = 1. 39
Table 2.8 A grid refinement analysis for Example 2.3 for a general elliptic interface

problems with a five-star interface, see Figure 1.1. 40

Table 3.1 A grid refinement analysis for Example 3.1 with a modest variable jump in
the coefficient, where E(u) is the error of the solution and E(un), E(uτ) are
the errors of normal and tangential derivatives at the interface respectively.
All the errors are presented in L∞ norm. 65

Table 3.2 A grid refinement analysis for Example 3.1 with a large variation in the
jump ratio of the coefficient. 65

Table 3.3 A grid refinement analysis for Example 3.2 with β− = 1 and β+ = 1000. . 67
Table 3.4 A grid refinement analysis for Example 3.2 with β− = 1000 and β+ = 1. . 67
Table 3.5 A grid refinement analysis for Example 3.3 with a large variation in the

jump ratio and a complicated interface using the algorithm without the
optimization. 68

Table 3.6 A grid refinement analysis for Example 3.3 with a large variation in the
jump ratio and a complicated interface using the algorithm with the opti-
mization. 68

Table 3.7 A grid refinement analysis for Example 3.4 for a general elliptic interface
problem with a complicated interface using the algorithm without the op-
timization. 69

Table 3.8 A grid refinement analysis for Example 3.4 for a general elliptic interface
problem with a complicated interface using the algorithm with the opti-
mization. 70

Table 4.1 A grid refinement analysis of the new ADI method at the final time T = 1
with modest jumps. (a) β− = 10, β+ = 2, (b) β− = 2, β+ = 10. 89

vii

Table 4.2 A grid refinement analysis of the new ADI method at T = 1 with large
jump ratios. (a) β− = 1000, β+ = 1, (b) β− = 1, β+ = 1000. 89

Table 4.3 Condition number of the Schur complement matrix and the CPU time for
the case of β− = 1000; β+ = 1. 90

Table 4.4 A grid refinement analysis of the new ADI method using the [βu] as the
augmented variable at T = 1 with large jump ratios. The second to fourth
columns are the results for β− = 1000, β+ = 1. The average convergence
rate is 2.257; The fourth and seventh columns are the condition numbers of
the Schur complement matrix. The fifth to seventh columns are the results
for β− = 1, β+ = 1000. The average convergence rate is 2.0778. 91

Table 4.5 The grid refinement analysis for the steady state solution with T = 2 with
β− = 1, β+ = 1000. 92

Table 4.6 The grid refinement analysis for Example 2 with T = 1. (a): β− = 2, β+ =
10. The average convergence order for the solution and the augmented
variable are 1.9898 and 2.1013 respectively. (b): β− = 10, β+ = 2. The
average convergence order for the solution and the augmented variable are
2.4904 and 1.7774, respectively. 93

Table 4.7 The grid refinement analysis for Example 2 with T = 1 with large jump
ratios 1 : 1000 and 1000 : 1. (a): β− = 0.033, β+ = 33. The average
convergence order for the solution and the augmented variable are 2.2817
and 2.5749 respectively. (b): β− = 33, β+ = 0.033 so the jump ratio is
1000 : 1. The average convergence order for the solution and the augmented
variable are 1.9381 and 1.9675, respectively. 94

Table 4.8 The grid refinement analysis for Example 4.4.2 with T = 0.2 with very
large jump ratios 1 : 105 in (a) and 105 : 1 in (b). The average convergence
order for the solution and the augmented variable are 2.0707 and 2.1739
respectively for (a) while they are 2.0005 and 1.7608, respectively for (b). . 95

Table 4.9 A grid refinement analysis for Example 4.4.3 in which the solution has a
finite jump discontinuity. 96

Table 5.1 A grid refinement analysis for Example 5.1 with µ− = 1, µ+ = 0.5 and
Ω = [−2, 2]× [−2, 2]. 116

Table 5.2 A grid refinement analysis for Example 5.1 with µ− = 0.5, µ+ = 1 and
Ω = [−2, 2]× [−2, 2]. 117

Table 5.3 A grid refinement analysis for Example 5.1 with µ− = 1, µ+ = 0.5 and
Ω = [−1.99, 1.99]× [−1.99, 1.99]. 117

Table 5.4 A grid refinement analysis for Example 5.1 with µ− = 0.5, µ+ = 1 and
Ω = [−1.99, 1.99]× [−1.99, 1.99]. 118

Table 5.5 A grid refinement analysis for Example 5.2 with µ− = 10 and µ+ = 1. . . . 119
Table 5.6 A grid refinement analysis for Example 5.2 with µ− = 1 and µ+ = 10. . . . 120
Table 5.7 A grid refinement analysis for Example 5.2 with µ− = 10 and µ+ = 0.01. . 123
Table 5.8 A grid refinement analysis for Example 5.2 with µ− = 0.01 and µ+ = 10. . 124
Table 5.9 A grid refinement analysis for Example 5.3 with µ− = 1 and µ+ = 0.001. . 126
Table 5.10 A grid refinement analysis for Example 5.3 with µ− = 0.001 and µ+ = 1. . 127

viii

Table 5.11 A grid refinement analysis for Example 5.4 with µ− = 1, µ+ = 0.1 or
µ− = 0.5, µ+ = 1. 129

ix

LIST OF FIGURES

Figure 1.1 A diagram of a rectangular domain Ω = Ω+ ∪ Ω− with an interface Γ.
The coefficient β(x) has a finite jump across the interface Γ. 2

Figure 1.2 (a): A diagram of an arbitrary interface immersed in a uniform grid. (b):
A diagram of the multiscale problem with multi-inclusions. The plot is
the coefficient β(x) ≥ β0 > 0 which is a piecewise constant. 4

Figure 1.3 A diagram of a rectangular domain Ω = Ω+ ∪ Ω− with an interface Γ.
The coefficient µ(x) has a finite jump across the interface Γ. 5

Figure 2.1 A diagram of an irregular grid point (xi, yj), its orthogonal projections on
the interface (Xk, Yk), and the local coordinates at (Xk, Yk) in the normal
and tangential directions. 23

Figure 2.2 (a): The solution plot of Example 2.1. (b): The error plot of the com-
puted solution. The error seems to be piecewise smooth as well which is
important for accurate gradient computation. 35

Figure 2.3 (a): The computed solution plot of Example 2.2. (b): The solution plot of
Example 2.3. 39

Figure 2.4 Electric potential in a domain containing a thin elliptic object. (a) The
conductivity of the object is large (1 : 1000); (b) The conductivity of the
object is small (1000 : 1). 40

Figure 3.1 A diagram of regular, irregular, and control points in a square domain
with uniform mesh and circle interface. 50

Figure 3.2 A diagram of an irregular grid point (xi, yi), its control point (Xk, Yk)
on the x-axis, and the local coordinates at (Xk, Yk) in the normal and
tangential directions, where θ is the angle between the x-axis and the
normal direction. 53

Figure 3.3 A diagram of the grid points involved in the optimization problem. 59
Figure 3.4 (a) The largest magnitude of the coefficients γik,jk versus jump ratio ρ.

(b) The size of variable R versus jump ratio ρ. 59
Figure 3.5 (a): The solution plot of Example 3.1 with modest jump. (b): The error

plot of the computed solution. The error seems to be piecewise smooth as
well, which is important for accurate gradient computation. 64

Figure 3.6 (a): Plot of the largest eigenvalue versus the number of grid points for
Example 3.1 with modest jump using the algorithm without the opti-
mization. (b): Plot of the largest eigenvalue versus the number of grid
points for Example 3.1 with large jump using the algorithm without the
optimization. 66

Figure 3.7 (a): The computed solution plot of Example 3.3. (b): The error plot of
Example 3.3. The error seems to be piecewise smooth. 69

Figure 3.8 (a): The computed solution plot of Example 3.4. (b): The error plot of
Example 3.4. The error seems to be piecewise smooth. 70

x

Figure 3.9 (a): Plot of the largest eigenvalue versus the number of grid points for
Example 3.3 using the algorithm without the optimization. (b): Plot of
the largest eigenvalue versus the number of grid points for Example 3.4
using the algorithm without the optimization. 71

Figure 4.1 A diagram of the local coordinates system (ξ, η) at a point (X∗, Y ∗) on
the interface Γ and the geometry in the neighborhood. 74

Figure 4.2 Plot of the computed solution for Example 4.4.1. (a), and the error (b)
with N = 64, β− = 2, β+ = 10. 90

Figure 4.3 Plot of the errors withN = 64 and different jump ratios for Example 4.4.2.
(a): β− = 10, β+ = 2; (b): β− = 0.033, β+ = 33 whose jump ratio is 1:1000. 93

Figure 4.4 Snap contour plots (T = 2π) of the computed solution with N = 80,
different jump ratios 1 : 1000 or 1000 : 1, and different geometries. (a)
β− = 0.033, β+ = 33, (b) β− = 0.033, β+ = 33, (c) β− = 33, β+ = 0.033,
and (d) β− = 100, β+ = 0.1. In the top plots, the permeability inside
particles are large so flow get saturated while in the bottom plots the
flow is hardly getting in due to small permeability. 97

Figure 4.5 Contourplot of the solution in the flow situation with very large jump
ratio β− : β+ = 1/105 or β− : β+ = 105/1. 97

Figure 4.6 A moving interface driven by the mean curvature in the flow. 98

Figure 5.1 A diagram of the distribution of u, v, p-grid points inside a rectangular
staggered grid mesh. 101

Figure 5.2 (a): MAC scheme for the x-direction momentum equation. (b): MAC
scheme for the y-direction momentum equation. (c): MAC scheme for
the continuity equation. 104

Figure 5.3 A diagram of an irregular grid point (xi, yi), its control point (Xk, Yk)
on the x-axis, and the local coordinates at (Xk, Yk) in the normal and
tangential directions, where θ is the angle between the x-axis and the
normal direction. 106

Figure 5.4 A diagram of the distribution of u, v, p-grid points involved in the inter-
polation scheme for the correction terms. 109

Figure 5.5 The solution plots of the transformed x-component velocity û, the x-
component velocity u and the pressure p for Example 5.1 with jump ratio
µ− = 1 and µ+ = 0.5 when N = 64 and Ω = [−2, 2]× [−2, 2]. 115

Figure 5.6 The eigenvalue plots of the Schur complement S in Example 5.1 when N
= 64 and Ω = [−2, 2] × [−2, 2]. (a) µ− = 1 and µ+ = 0.5. (b): µ− = 0.5
and µ+ = 1. 116

Figure 5.7 The solution plots of the transformed x-component velocity û, the x-
component velocity u and the pressure p for Example 5.2 with jump ratio
µ− = 10 and µ+ = 1 when N = 64. 118

Figure 5.8 The eigenvalue plots of the Schur complement S in Example 5.2 when N
= 64. (a) µ− = 10 and µ+ = 1. (b): µ− = 1 and µ+ = 10. 119

xi

Figure 5.9 The solution plots of the transformed x-component velocity û, the x-
component velocity u and the pressure p for Example 5.2 with jump ratio
µ− = 10 and µ+ = 0.01 when N = 64. 121

Figure 5.10 The solution plots of the transformed x-component velocity û, the x-
component velocity u and the pressure p for Example 5.2 with jump ratio
µ− = 0.01 and µ+ = 10 when N = 64. 121

Figure 5.11 The error plots of the transformed x-component velocity û, the x-component
velocity u and the pressure p for Example 5.2 with jump ratio µ− = 10
and µ+ = 0.01 when N = 64. 122

Figure 5.12 The error plots of the transformed x-component velocity û, the xcomponent
velocity u and the pressure p for Example 5.2 with jump ratio µ− = 0.01
and µ+ = 10 when N = 64. 122

Figure 5.13 The eigenvalue plots of the Schur complement S in Example 5.2 when N
= 64. (a) µ− = 10 and µ+ = 0.01. (b): µ− = 0.01 and µ+ = 10. 123

Figure 5.14 The solution plots of the transformed x-component velocity û, the x-
component velocity u and the pressure p for Example 5.3 with jump ratio
µ− = 1 and µ+ = 0.001 when N = 64. 124

Figure 5.15 The solution plots of the transformed x-component velocity û, the x-
component velocity u and the pressure p for Example 5.3 with jump ratio
µ− = 0.001 and µ+ = 1 when N = 64. 125

Figure 5.16 The error plots of the transformed x-component velocity û, the x-component
velocity u and the pressure p for Example 5.3 with jump ratio µ− = 1
and µ+ = 0.001 when N = 64. 125

Figure 5.17 The error plots o thef transformed x-component velocity û, the x-component
velocity u and the pressure p for Example 5.3 with jump ratio µ− = 0.001
and µ+ = 1 when N = 64. 126

Figure 5.18 The eigenvalue plots of the Schur complement S in Example 5.3 when N
= 64. (a): µ− = 1 and µ+ = 0.001. (b): µ− = 0.001 and µ+ = 1. 127

Figure 5.19 The solution plots of the transformed x-component velocity û, the x-
component velocity u and the pressure p for Example 5.4 with jump ratio
µ− = 0.5 and µ+ = 1 when N = 64. 128

Figure 5.20 (a): A complicated star-shaped interface used in Example 5.4. (b): The
configurations of the interface at different times in Example 5.5 when
N = 32. 128

xii

Chapter 1

Introduction

In this thesis, two different types of Immersed Interface method (IIM), augmented IIM and

direct IIM, are proposed for elliptic interface problems and followed by their applications in

solving parabolic interface problems and two-phase Stokes equations.

1.1 The model problems

1.1.1 Elliptic interface problems

We first consider the elliptic interface problem

∇ · (β(x)∇u(x)) = f(x), x ∈ Ω \ Γ, Ω = Ω+ ∪ Ω−, (1.1)

[u](X) = w(X), [βun](X) = v(X), X ∈ Γ, (1.2)

in one and two space dimensions, where for example, [u] = [u]Γ(X) = u+(X) − u−(X) is the

difference of the limiting values of u(X) from Ω+ and Ω− sides, respectively, un = n · ∇u = ∂u
∂n

is the normal derivative of solution u(X), and n(X) is the unit normal direction at a point X on

the interface pointing to Ω+ side, see Fig. 1.1 for an illustration. We use x to represent a point

in the domain while X a point on the interface Γ. Since a finite difference discretization will

be used, we assume that f(x) ∈ C(Ω±), β(x) ∈ C1(Ω±), excluding Γ; and Γ ∈ C2, w ∈ C2(Γ),

v ∈ C1(Γ). All the parameters and ∂β
∂x and ∂β

∂y are assumed to be bounded. For the regularity

requirement of the problem, we also assume that β(x) ≥ β0 > 0 and f(x) ∈ Cν(Ω\Γ), for a

constant ν > 0 so that u(x) ∈ C2+ν(Ω±), see [17, 2]. For the error analysis, piecewise higher

regularity assumptions are needed for the solution.

Many free boundary and moving interface problems can be modelled by differential equations

involving not only the solution to the governing equations, but also the gradient of the solution

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Γ

β−(x)

Ω−

β+(x)

Ω+

Ω = Ω+ ∪Ω−

Figure 1.1: A diagram of a rectangular domain Ω = Ω+∪Ω− with an interface Γ. The coefficient
β(x) has a finite jump across the interface Γ.

at the free boundary or moving interface from each side. Such examples include the Stefan

problem and crystal growth modeling the interface between ice and water in which the velocity

of the interface depends on the temperature of the heat equation and its gradient at the interface

(called the Stefan condition), [9, 42]; the Hele-Shaw flow [25, 27]; the coupling between a Darcy’s

system and Stokes or Navier-Stokes equations [32]; and open and traction problems [43, 50].

The most expensive part of simulations from our research on those problems is to solve one

or several elliptic interface problems, for example, two generalized Helmholtz and one Poisson

equations when we solve the 2D incompressible Navier-Stokes equations involving an interface

using the projection method [43].

1.1.2 Parabolic interface problems

The second model problem in this thesis is a two-dimensional parabolic equation

ut = (βux)x + (βuy)y − f, (x, y) ∈ Ω+ ∪ Ω− \ Γ,

u(x, y, 0) = u0(x, y), Given BC on ∂Ω+,
(1.3)

with a fixed interface Γ ∈ C2, where ut = ∂u
∂t , ux = ∂u

∂x and so on, BC stands for a boundary

condition along ∂Ω+ which can be Dirichlet, Neumann, or mixed along different parts of the

boundary ∂Ω+ (see Fig. 1.2 for an illustration). Two more conditions are needed at the interface

Γ to close the system, typically the natural jump conditions which state that both the solution

and the flux are continuous across the interface Γ. We assume that the coefficient β has a finite

jump across the interface Γ corresponding to different materials or states and with a source

2

term along the interface, as in the Peskin’s Immersed Boundary model [57],

ut = (βux)x + (βuy)y − f(x, t)−
∫

Γ
v(X(s), t) δ(x−X(s)) ds,

x ∈ Ω = Ω+ ∪ Ω−, X(s) ∈ Γ,

(1.4)

where x = (x, y) is a point in the domain, X(s) = (X(s), Y (s)) is a parametric form of the

interface Γ. Note that the equation above is defined in the entire domain including the interface

Γ while (1.3) is defined in each sub-domain Ω+ or Ω− excluding Γ.

We use the expression (1.3) instead of (1.4) to avoid using a discrete delta function so that

we can design accurate numerical schemes. We assume that f(x, t) is piecewise continuous in the

domain with a possible finite discontinuity across the interface Γ. Thus the solution of u(x, t)

is a piecewise C2(Ω±) function in the interior of each sub-domain but coupled together across

the interface Γ by two jump conditions (also called internal boundary conditions),

[u]X∈Γ = w(s, t),

[
β
∂u

∂n

]
X∈Γ

= v(s, t), (1.5)

where for example,

[βun]X∈Γ =

[
β
∂u

∂n

]
X∈Γ

= lim
x→X,x∈Ω+

β(x)
∂u(x)

∂n
− lim

x→X,x∈Ω−
β(x)

∂u(x)

∂n

= β+∂u
+

∂n

∣∣∣∣
X

− β−
∂u−

∂n

∣∣∣∣
X

= [βun]X ,

and so on, ∂u∂n = ∇u ·n = un is the directional derivative in the normal direction n with |n| = 1

pointing to the Ω+ side. We use τ as the tangential direction following the right-hand side

rule. Thus ∂u
∂τ = ∇u · τ = uτ is the tangential derivative of the solution u. When w ≡ 0 and

v ≡ 0, the jump conditions are called natural jump conditions. Due to the discontinuity in β,

the normal derivative un is typically discontinuous even with natural jump conditions.

1.1.3 Two-phase Stokes equations

Last, we consider the following two-phase Stokes equations

∇p = ∇ · µ(∇u + (∇u)T) + g + F, x ∈ Ω, (1.6)

∇ · u = 0, x ∈ Ω, (1.7)

u |∂Ω= ub, (1.8)

3

a) b)

-20

2

-1

1

0

50

0

1
-1

100

2-2

150

Figure 1.2: (a): A diagram of an arbitrary interface immersed in a uniform grid. (b): A diagram
of the multiscale problem with multi-inclusions. The plot is the coefficient β(x) ≥ β0 > 0 which
is a piecewise constant.

where u = (u, v)T is the fluid velocity, p is the fluid pressure, µ is the fluid viscosity, ub is a

Dirichlet boundary condition for the velocity, g = (g1, g2)T is the body force and F is a singular

source defined as

F =

∫
Γ

f(s)δ(x−X(s))ds. (1.9)

Here X(s) is a parametric form of the interface Γ with s being the parameter, for example,

the arc-length, δ(·) is the Dirac delta function, and f = (f1, f2)T is the density function of the

surface force along the interface. The problem is illustrated in Figure 1.3, where the domain Ω

is divided into two subdomains, Ω+ and Ω−, by the interface Γ.

For the regularity requirement of the problem, we also assume that µ ≥ µ0 > 0, Γ ∈ C2,

and f ∈ L2. The divergence free condition (5.2) combined with divergence theorem leads to the

compatibility condition for ub, i.e. ∫
∂Ω

ub · nb = 0, (1.10)

where nb is the unit normal vector pointing to the outside of ∂Ω.

1.2 A brief overview of the numerical methods for interface

problems

Naturally, finite element methods can be and have been applied to solve the interface problem.

It is well known that a second order accurate approximation to the solution of an interface

4

Figure 1.3: A diagram of a rectangular domain Ω = Ω+∪Ω− with an interface Γ. The coefficient
µ(x) has a finite jump across the interface Γ.

problem with w ≡ 0 and v ≡ 0 can be generated by the Galerkin finite element method with

the standard linear basis functions if the triangulation is aligned with the interface, that is, a

body fitted mesh is used, see for example, [1, 5, 12, 69]. Some kind of posterior techniques or

at least quadratic elements are needed in order to get second order accurate gradients from

each side of the interface. The cost in the mesh generation coupled with unstructured linear

solver is uncompetitive with the algorithm proposed in this thesis in our opinion. There are

also quite a few finite element methods using Cartesian meshes. The immersed finite element

(IFEM) was developed for 1D and 2D interface problems in [36] and [40], respectively. Since

then, many IFEM methods and analyses have appeared in the literature, see for example,

[14, 21], with applications in [48, 70]. The IFEM distinguishes from other FE methods in terms

of degree of the freedom and structure of the coefficient matrix, for example, the extended

finite element method (XFEM) in which enrichment functions are added near the interface

[61]; unfitted finite element method based on the Nitsche’s method in [20]. Related work in

this direction can be found in [7, 30, 18, 23] and others. Note that, the methods developed in

[24, 26] use a Petrov-Galerkin finite element discretization in which the non-conforming IFE

space and the standard linear finite element space are used as the trial and test functional spaces,

respectively. A partially penalty IFE method has been proposed in [49]. Another type of method

is based on discontinuous Galerkin [68, 53] or weak Galerkin[65] methods with some penalties.

In those methods, some parameters are chosen to achieve the optimal convergence. In general,

discontinuous or weak Galerkin methods are flexible because there are more choices of the

degree of freedom, which in turn implies these types of methods may be computationally more

expensive. Those methods are usually better suited for hyperbolic problems and conservation

laws.

5

Finite difference methods have also played a very important role in scientific computing

and solving engineering problems. Advantages of finite difference methods based on Cartesian

meshes include simplicity, ease to programming, and ability to utilize many existing fast solvers.

Note that error estimates from finite element methods are based on integral forms which may

not exactly predict the actual errors near the interface compared with that from finite difference

methods that are based on the point-wise (L∞) norm.

Many new finite difference methods based on a Cartesian mesh have been developed for

interface problems, see for example, the matched interface and interface method (MIB) [73],

the virtual node method [22, 3]. The MBI methods share the same basic idea with IIM to

construct the fictitious grid values of the solution near the interface. The IIM achieved this by

adding an additional correction term to the original stencil and the correction term is determined

either by direct interpolation or the augmented variable. In contrast, the MBI methods assume

the fictitious grid values are known and use them to interpolate the limiting values at the

interface. The real fictitious grid values are determined when the limiting values satisfy all the

jump conditions. This procedure does not involves deriving jump relations and strongly depends

on the shape of the interface. And, as a result, the finite difference stencil at the grid point

near the interface is not confined and well structured. The virtual node method adapts ideas

from finite element methods. It tries to construct the basis functions at the grid points near

the interface or irregular boundary to discretize the energy minimization form. The resulted

coefficient matrix or the stiffness matrix is symmetric positive semi-definite. However, it only

produces a first-order accurate gradient.

Most numerical methods for interface problems based on structured meshes are between

first and second order accurate for the solution but the accuracy for the gradient is usually

one order lower. Note that the gradient recovering techniques for example, [64, 71], are not

suitable for structured meshes because of the arbitraries of the interface and the underlying

mesh. The mixed finite element approach and a few other methods that can find accurate

solutions and the gradient simultaneously in the entire domain often lead to a saddle problem

and are computational expensive, which are not ideal choices if we are only interested in the

accurate gradients near the interface or boundary.

For Poisson equations with singular source along an interface, it has been proved in [2] that

both the computed solution and gradient are second order accurate by a factor of log h in the

infinity norm. In [44], an augmented immersed interface method (AIIM) is proposed to solve

the elliptic interface problems with piecewise constant coefficients. For more general elliptic

interface problems, an augmented IIM [46] that provides both a second order accurate solution

and the gradient on the interface has been developed and analyzed. In [45], a maximum principle

preserving scheme is proposed for variable discontinuous coefficients. A quadratic optimization

is used to determine the finite difference coefficients at grid points near the interface so that the

6

coefficient matrix is diagonally dominant. Based on this maximum principle preserving scheme,

a new direct IIM [10] without using augmented variables was proposed which produces both

second order accurate solution and the gradient.

For heat equations with a constant heat conductivity but singular sources, a second order

ADI method was developed In [41]. Since only the source term has a singularity, it is possible

to modify only right-hand sides in the ADI method. The method is further generalized to

discontinuous coefficient cases with a special, but less common flux jump condition [un] (not

[βun]) in [47]. The ADI approach is also applied to a non-linear convection-diffusion equation

with a continuous coefficient in [51]. In [72], a matched interface and boundary (MIB) based

ADI method is proposed for heat equations with a discontinuous coefficient, which is a step

forward in this direction. However, the method is only first order accurate in time and does

not have the same structure as that of the classical ADI method. In each directional sweep,

one needs to solve a penta-diagonal system of equations if the grid line involves points from

each side of the interface which makes the ADI method less attractive. The stability and error

analysis are also open questions. A similar splitting technique for elliptic interface problems

can be found in [13] in which the second order version would destroy the ADI structure and

compromise the stability of the algorithm. Some other related research for heat and parabolic

interface problems can be found in [4, 28]. It is challenging to develop ADI schemes for problems

with a discontinuous coefficient because one cannot in general decouple the flux jump condition

in coordinate directions.

The immersed interface method is first extended to solve Stokes flow with constant viscos-

ity in [34]. Later on, an augmented IIM was developed for incompressible 2D Stokes flow with

discontinuous viscosity in [39] and similar problems with a moving immersed boundary in [31].

All these methods decompose the incompressible Stokes equations into three separate Poisson

equations with the same interface and the pressure is computed first to recover the velocity.

Since the standard uniform grid is adapted, it is also challenging to design a numerical bound-

ary condition for the pressure using a uniform grid. An alternative way to solve incompressible

Stokes equations is to discretize momentum and continuity equations together as a whole sys-

tem. In [63], an augmented IIM is combined with the Marker and Cell (MAC) scheme and

an efficient algorithm is designed to solve two-phase incompressible Stokes equations. In [11],

a direct IIM based on MAC scheme was proposed to solve the same problem. Both methods

produce second order solution for both velocity and pressure.

7

1.3 Comparisons among finite difference based methods for in-

terface problems

In this section, we use a simple one-dimensional elliptic interface problem to illustrate the

differences among some finite difference based methods. Consider the following problem with a

piecewise constant coefficient

βuxx(x) = f(x),

[u] = w, [βux] = v.

The key to solve this problem is to derive finite difference schemes at irregular grid points, and

more specifically schemes for uxx term at xi and xi+1. Let us assume α is the interface (a point)

located between the two irregular grid points xi and xi+1.

• The classical IIM [35] is based on Taylor expansion, and the method of undetermined

coefficient. This approach assumes the finite difference scheme at xi has the form

uxx(xi) ≈ c1ui−1 + c2ui + c3ui+1 + c4, (1.11)

where c1− c4 are undetermined coefficients. Unlike the standard central difference stencil

which apply Taylor expansion about the center point, the IIM expands ui−1, ui and

ui+1 about the control point α, or the interface in the 1D case. This is because Taylor

expansion requires the continuity and the solution in our problem has a jump across the

interface. The standard method of undetermined coefficients then regards u, ux and uxx

as a basis, and sets the coefficients of these basis equal zero to determine the scheme.

In our case, we have two sets of basis to use, namely {u−, u−x , u−xx} and {u+, u+
x , u

+
xx},

which are related by jump relations. One can then choose either set of basis and apply

the method of undetermined coefficients to derive the scheme.

The classical IIM is a very general and well-studied approach. The finite difference stencil

at a irregular grid point is confined involving three grid values in 1D and six to nine grid

values in 2D problem. However, the original IIM approach does not generate second order

accurate gradient.

• The MIB method [73] introduces a useful concept called fictitious value which is a hypo-

thetical grid value extended from the opposite subdomain. For example, we know ui ∈ Ω−

and ui+1 ∈ Ω+. Now let ûi and ûi+1 be the fictitious values of ui and ui+1 respectively.

Then ûi is a hypothetical value of the solution at xi in Ω+ assuming we can extend the

solution from Ω+ smoothly to xi. In the same way, ûi+1 is a hypothetical value of the

8

solution at xi+1 in Ω−.

Now we have a set of grid values ui−1, ui, and ûi+1 in Ω− subdomain and another set of

grid values ûi, ui+1, and ui+2 in Ω+ subdomain. Since the function value is continuous

in each set or subdomain, we can use standard method of undetermined coefficients to

determine the finite difference scheme for limiting values at the interface. For example,

we will know

u− ≈ c−1 ui−1 + c−2 ui + c−3 ûi+1,

u+ ≈ c+
1 ûi + c+

2 ui+1 + c+
3 ui+2,

u−x ≈ d−1 ui−1 + d−2 ui + d−3 ûi+1,

u+
x ≈ d+

1 ûi + d+
2 ui+1 + d+

3 ui+2,

where all the coefficients {c±i } and {d±i } are known. These limiting values have to satisfy

two given jump conditions, i.e.,

u+ − u− = w,

β+u+
x − β−u−x = v.

(1.12)

Here we have two equations (1.12) and two unknowns, ûi and ûi+1, and hence can deter-

mine the schemes for these two fictitious values.

Unlike IIM, the MIB method does not derive the jump relations (more specifically jump

relations for second and higher order derivatives), and this is also true for high-order

dimensional problems. As a result, some interface information like curvature is not incor-

porated into the algorithm and it seems unable to produce second-order accurate gradient.

Another feature of MIB is that the form of its stencil at irregular grid point highly

depends on the shape of the interface. This can also be observed in 1D problem that

the two fictitious values ûi and ûi+1 are coupled together, see (1.12), and their schemes

involve four grid values instead of three in IIM. If we further assume another interface γ

located between xi+1 and xi+2, the scheme at irregular grid points will involve total six

grid values. But in IIM, the scheme uses three grid values for all cases. This phenomenon

becomes more common in two dimensional problems. The stencil is not confined and may

involve quite a lot of grid values. As a result, the coefficient matrix is not well structured.

The advantage of MIB is that it can deal with nonsmooth interface with sharp points.

This has not been done for any IIM approach.

• The new direct IIM [10] is based on classical IIM. The main idea is that the resulted

coefficient matrix for interface problem should be close to the coefficient matrix gener-

9

ated by the same problem without the interface. To achieve this, we rewrite the finite

difference scheme at irregular grid points as the standard central difference scheme plus

a perturbation term, i.e.,

uxx(xi) ≈
ui−1 − 2ui + ui+1

h2
+ C, (1.13)

where C is the correction term and has the formula

C =
1

h2

(
[u] + (xi+1 − α)[ux] +

(xi+1 − α)2

2
[uxx]

)
. (1.14)

The direct IIM assumes the interpolation scheme for the correction term C has the form

C = c1ui + c2ui+1 + c3, (1.15)

where the coefficients c1 − c3 are determined by the method of undetermined coefficients

using jump relations as illustrated for the classical IIM. One small difference here is

that the direct IIM takes advantages of an additional jump relation from the PDE itself

(the PDE provides two jump relations instead of one), which is the key to construct the

interpolation scheme (1.15) and prove the convergence.

It will be more obvious to see why we prefer the formulation (1.13) over (1.11) in two

or higher dimensional problems. In two-dimensional problem, usually the scheme at the

irregular grid point involves nine gird values. The IIM determines these coefficients by

calling SVD (singular value decomposition) solver which generates the minimum norm

solution. If we use the formulation (1.11), the weights for the involved nine grid values

have the same level of the magnitude. Notice that in (1.15), the coefficients c1 and c2 are

O(1
h2) in general but actually far smaller than 1

h2 in magnitude in the numerical tests.

So we can consider that the formulation (1.13) puts more weights on the five grid values

used in the standard central difference stencil. In this case, the correction term C can

be regarded as a small perturbation and the eigenvalues of the coefficient matrix still

remain in the stability region as demonstrated in our numerical tests. This is also the

main reason, as we believed, for gettiing second order accurate gradient.

Another benefit from using formulation (1.13) is that it is more suitable for convergence

analysis especially for the augmented approaches.

• The augmented IIM [46] uses the formulation (1.13) to derive the finite difference scheme

at the irregular grid points. The main idea of AIIM is to introduce an augmented vari-

able, [ux] = q, and solve a new model problem consist of the original PDE, the solution

jump condition, and the jump condition for the augmented variable. The benefit of using

10

augmented variable to solve a new model problem is that the formulations for the jump

conditions become very simple and concise, especially for high dimensional problems, see

(2.32)-(2.33). The solution computed from the new model is also the solution for the

original model only if the flux jump condition is satisfied, i.e.,

v = [βux]

= β+u+
x − β−u−x

= [β]u+
x + β−[ux]

= [β]u−x + β−q.

Combined with the system for the new model, we have[
A B

C D

][
U

Q

]
=

[
F1

F2

]
.

Eliminating U gives the Schur complement equation for Q

(D − CA−1B)Q = F2 − CA−1F1, or SQ = F. (1.16)

We solve for Q first and then use the computed augmented variable to recover the solution.

Compared with direct IIM, one can consider the augmented IIM derive the interpolation

scheme for the correction term C (1.14) implicitly. This approach produces second order

accurate gradient and have complete proof for the convergence for both the solution and

the gradient. The disadvantage is that it involves solving an additional Schur complement

system (1.16).

1.4 Outline of the thesis

The rest of the thesis is organized as follows

• In Chapter 2, we proposed a new augmented immersed interface method for general

elliptic interface problems with variable coefficients that have finite jumps across a general

interface, and non-homogeneous jump conditions. In Section 2.1, we develop the algorithm

in one-dimension since it is easy to understand and explain followed by the convergence

proof. In Section 2.3, we extend the algorithm to two dimensions followed again by the

convergence analysis in Section 2.4. In Section 2.5, we present some two dimensional

numerical examples.

• In Chapter 3, we proposed a new direct immersed interface method for general elliptic

11

interface problems with a variable coefficient that have finite jumps across a general in-

terface, and non-homogeneous jump conditions. In Section 3.1, we develop the algorithm

in one-dimension since it is easy to understand and explain followed by the convergence

proof. In Section 3.3, we extend the algorithm to two dimensions and prove its conver-

gence. The stability and convergence of our method for general problems will be shown

numerically in Section 3.4 by presenting some two dimensional numerical examples.

• In Chapter 4, we proposed two new ADI methods using some augmented variables to solve

the heat equation with a interface. In Section 4.1, we explain the idea using augmented

strategies and derive needed jump relations in coordinate directions. In Section 4.2, we

develop two ADI methods using different augmented variables in detail. In Section 4.3, we

explain how to discretize the augmented variable using the Schur complement system and

other implementation details. The Schur complement matrix just needs to be generated

initially for a fixed interface. In Section 4.4, we present numerical examples to validate

our analysis and algorithms along with an application.

• A new direct immersed interface method for solving two-phase incompressible Stokes

equations with an interface and a piecewise constant viscosity is proposed in Chapter 5.

In Section 5.1, we derive the finite difference scheme, set up the linear system solver, and

describe how to implement the algorithm. In Section 5.2, we will present some numerical

examples and perform grid refinement and eigenvalue analysis to show the second-order

convergence of our method. We conclude in the last section.

• Conclusions and future work are presented in Chapter 6.

12

Chapter 2

An Augmented Method for

Accurate Solution and Gradient

Computations for Elliptic Interface

Problems

In this chapter, we develop an efficient augmented IIM to solve the elliptic interface problem

∇ · (β(x)∇u(x)) = f(x), x ∈ Ω \ Γ, Ω = Ω+ ∪ Ω−, (2.1)

[u](X) = w(X), [βun](X) = v(X), X ∈ Γ, (2.2)

in one and two space dimensions. where for example, [u] = [u]Γ(X) = u+(X) − u−(X) is the

difference of the limiting values of u(X) from Ω+ and Ω− sides, respectively, un = n · ∇u = ∂u
∂n

is the normal derivative of solution u(X), and n(X) is the unit normal direction at a point X on

the interface pointing to Ω+ side, see Fig. 1.1 for an illustration. We use x to represent a point

in the domain while X a point on the interface Γ. Since a finite difference discretization will

be used, we assume that f(x) ∈ C(Ω±), β(x) ∈ C1(Ω±), excluding Γ; and Γ ∈ C2, w ∈ C2(Γ),

v ∈ C1(Γ). All the parameters and ∂β
∂x and ∂β

∂y are assumed to be bounded. For the regularity

requirement of the problem, we also assume that β(x) ≥ β0 > 0 and f(x) ∈ Cν(Ω\Γ), for a

constant ν > 0 so that u(x) ∈ C2+ν(Ω±), see [17, 2]. For the error analysis, piecewise higher

regularity assumptions are needed for the solution.

13

2.1 The one-dimensional algorithm

A model interface problem in one dimension has the following form

(βux)x = f(x), x ∈ (a, α) ∪ (α, b),

u(a) = ua, u(b) = ub, [u]α = w, [βux]α = v,
(2.3)

where a < α < b is an interface (a point). We assume that conditions for β(x), f(x) described

in the introduction section hold with Ω− = (a, α) and Ω+ = (α, b). We will drop the subscripts

α in the jump expressions such as [u]α and [βux]α and simply use [u] and [βux].

Let xi = a + ih be a uniform mesh with h = (b − a)/N and i = 0, 1, · · · , N . We define

q = [ux]α as the augmented variable. Assume that xj ≤ α < xj+1. We call xj and xj+1 as

irregular grid points while others are called regular grid points. The finite difference scheme at

a regular grid point xi, i 6= j and i 6= j + 1 can be written as

βi−1/2 Ui−1 − 2β̄i Ui + βi+1/2 Ui+1

β̄ih2
=
f(xi)

β̄i
, (2.4)

where

βi−1/2 = β(xi − h/2), βi+1/2 = β(xi + h/2), β̄i =
βi−1/2 + βi+1/2

2
. (2.5)

At the irregular grid points xj and xj+1, we use the following equivalent differential equation

uxx +
βxux
β

=
f

β
. (2.6)

This is one of the key ideas of the new augmented approach. In this way, we can obtain the

second jump conditions [uxx] in terms of lower order jump conditions and derivatives of the

solution.

If we know the jump [ux] = q in addition to the original jump conditions [u] and [βux], then

we know the following jump relations

[u] = w, [ux] = q,

[uxx] =

[
f

β

]
− β+

x u
+
x

β+
+
β−x u

−
x

β−
=

[
f

β

]
−
[
βx
β

]
u−x −

β+
x

β+
q.

(2.7)

If βx(xj)/β(xj) ≥ 0, then the finite difference discretization at the irregular grid point xj

14

can be written as

Uj−1 − 2Uj + Uj+1

h2
+ CFD(Uj−1, Uj , Uj+1) +

βx(xj)

β(xj)

(
Uj+1 − Uj

h
+ C

)
=
f(xj)

β(xj)
, (2.8)

where C is a correction term, see [38]

C = − [u]

h
− (xj+1 − α)[ux]

h
= −w

h
− (xj+1 − α) q

h
, (2.9)

and CFD(Uj−1, Uj , Uj+1) is part of the finite difference equation,

CFD(Uj−1, Uj , Uj+1) = − [u]

h2
− (xj+1 − α)[ux]

h2
− (xj+1 − α)2[uxx]

2h2

= − w
h2
− (xj+1 − α) q

h2
− (xj+1 − α)2[uxx]

2h2
,

(2.10)

in which [uxx] is discretized by, see (2.7),

[uxx] =

[
f

β

]
−
[
βx
β

]
u−x −

β+
x

β+
q

≈

[
f

β

]
− β+

x

β+
q −

[
βx
β

]
Uj − Uj−1

h
if

[
βx
β

]
≤ 0,[

f

β

]
− β+

x

β+
q −

[
βx
β

](
Uj+1 − Uj

h
+ C

)
otherwise.

The case when βx(xj)/β(xj) < 0 can be treated in a similar way. We omit the details here. We

can derive a similar finite difference scheme at the irregular grid point xj+1. The finite difference

scheme has the following properties.

• It is consistent. The local truncation errors at regular grid points are O(h2), and O(h) at

irregular grids points xj and xj+1.

• The finite difference scheme can be written as

AhU +BQ = F1 (2.11)

where the coefficient matrix Ah is irreducible, tri-diagonal, and diagonally dominant, U

is the column vector formed by the finite difference solution, and B is a column vector

with at most two nonzero entries at j-th and (j + 1)-th locations, Q is the approximate

value of q = [ux]. Note that Ah is invertible and the two component of Fj and Fj+1 have

been modified.

15

2.1.1 Discretization of the flux jump condition

Next we discuss the interpolation scheme to approximate the interface condition [βux] = v.

First we re-write the jump condition as follows

[βux] = β+u+
x − β−u−x = β+(u−x + q)− β−u−x

=⇒ β+ − β−
β+

u−x + q =
v

β+
.

(2.12)

This can be discretized as

β+ − β−
β+

(
γ1Uj−1 + γ2Uj + γ3Uj+1 + C3

)
+ q =

v

β+
, (2.13)

where γ1, γ2, γ3, and the correction term C3 are determined again using the idea of the IIM so

that the interpolation scheme is a second order approximation of (2.12), that is,

β+ − β−
β+

(
γ1u(xj−1) + γ2u(xj) + γ3u(xj+1) + C3

)
+ [ux]− v

β+
= O(h2).

In the matrix-vector form, the above equation can be written as

SU +GQ = F2 (2.14)

where S is a row vector whose sum is zero.

We define the residual of the flux jump condition given an approximation Q as

R(Q) = SU +GQ− F2, (2.15)

which is the discrete form of r(q) = [βux] − v. If we put the two equations (2.11) and (2.14)

together, we get [
Ah B

S G

][
U

Q

]
=

[
F1

F2

]
. (2.16)

Eliminating U in equation (2.16) gives the Schur complement equation for Q

(G− SA−1
h B)Q = F2 − SA−1

h F1. (2.17)

The equation (2.17) can be solved if the Schur complement is nonsingular. Once Q is computed,

one can substitute it in equation (2.11) to solve for U. The cost of computation in this process

is to solve linear systems with the form Ahx = b three times, A−1
h F1, A−1

h BQ, and finally

(2.11). Since matrix Ah is tridiagonal and row diagonally dominant, the Thomas algorithm is

16

guaranteed to be stable and the solution can be obtained in O(N) operations.

2.2 Convergence analysis of the 1D algorithm

In this section, we demonstrate second order convergence of the solution globally and its first

order derivative at the interface, as well as the augmented variable of the proposed new method.

The proof is simpler than that in the two dimensional case but serves the purpose of under-

standing the tools used in the proof.

We use the following notations. We denote the errors as Eu = U− u with Eu
i = Ui − u(xi)

for the solution and Eq = Q−q for the augmented variable, respectively, where u(xi) is the true

solution at xi. We use C to represent a generic error constant. We start with the analysis by

assuming that the coefficient β(x) is a piecewise constant, the domain is (0, 1), and a Dirichlet

boundary condition at the two end points for simplicity.

Theorem 2.1. Assume that β(x) is a piecewise constant and u(x) is in piecewise C4 excluding

the interface α. If Q is a second order accurate approximation to q, i.e. |Eq| ≤ Ch2, then we

also have ‖Eu‖∞ ≤ Ch2.

Proof: Let Tu be the local truncation error of system (2.11), that is,

Ahu +Bq = F1 + Tu, (2.18)

where u is the vector formed by the true solution at the grid points xi, q is the jump of the

derivative of the solution [ux] across the interface α. Subtracting equation (2.18) from (2.11)

yields

AhE
u = F̃u, (2.19)

where F̃u = −Tu − BEq. Notice that |Tu
i | ≤ Ch2 and Bi = 0 at regular grid points while

|Tu
j | ≤ Ch and |Tu

j+1| ≤ Ch, and Bj ∼ O(1
h), Bj+1 ∼ O(1

h). Since |Eq| ≤ Ch2, we have

F̃ ui ≈ O(h2) at regular points while F̃ uj ∼ O(h), F̃ uj+1 ∼ O(h). Also when β is piecewise

constant, the matrix Ah can be simplified as

Ah =
1

h2

−2 1

1 −2 1

.

1 −2

 .

17

From [33], we have

(Ah)−1
ij = hG(xi;xj) =

h(xj − 1)xi, i = 1, 2, ..., j,

h(xi − 1)xj , i = j, j + 1, ..., N − 1,
(2.20)

where

G(x; x̄) =

(x̄− 1)x, x ≤ x̄,
(x− 1)x̄, x ≥ x̄,

is the Green’s function that is the solution of the following

∆xG(x; x̄) = δ(x− x̄), 0 < x < 1, 0 < x̄ < 1,

G(0; x̄) = 0, G(1; x̄) = 0.

The global error of u then can be represented as

Eui = h
N−1∑
j=1

F̃ uj G(xi;xj). (2.21)

Since 0 ≤ G(xi;xj) ≤ 1, we have the inequality

|Eui | ≤

∣∣∣∣∣∣h
N−1∑
j=1

F̃ uj

∣∣∣∣∣∣ ≤ h
|F̃ uj |+ |F̃ uj+1|+

j−1∑
k=1

|F̃k|+
N−1∑
k=j+2

|F̃k|

∼ h

(
O(h) + (N − 2)O(h2)

)
∼ O(h2),

since N ∼ 1/h. This shows that ‖Eu‖∞ ≤ Ch2, hence the proof is completed. �

Next, we show that the Schur complement system is non-singular.

Theorem 2.2. With the same assumptions as in Theorem 2.1 and β− 6= β+, then the coefficient

matrix (a number for the 1D problem) of the Schur complement is non-singular.

Proof: Note that from (2.11), that is, AhU(Q) + BQ = F1, we have A−1
h BQ = A−1

h F1 −
U(Q) and the Schur complement can be re-written as

(
G− SA−1

h B
)
Q = GQ− SA−1

h BQ = GQ− SA−1
h F1 + SU(Q)

= (SU(Q) +GQ)− (SA−1
h F1 +G · 0)

= (SU(Q) +GQ)− (SU(0) +G · 0)

= R(Q)−R(0).

18

If Q 6= 0 and β− 6= β+, then R(Q) 6= R(0). For the one-dimensional problem, we have(
G− SA−1

h B
)

=
(
G− SA−1

h B
)

1 = R(1)−R(0) 6= 01. �

Now we are ready to show that the augmented variable Q is also second order accurate.

Theorem 2.3. With the same assumptions as in Theorem 2.1 and β− 6= β+, then we have

|Eq| = |Q− q| ≤ Ch2.

Proof: Similarly to the definition of the local truncation error Tu, we define the local

truncation T q of q as

Su +Gq = F2 + T q, (2.22)

where u and q are defined as before. From (2.16), we know that[
A B

S G

][
Eu

Eq

]
=

[
−Tu

−T q

]
. (2.23)

Eliminating Eu, we get the Schur complement system for Eq

(G− SA−1B)Eq = −T q + SA−1Tu. (2.24)

We already know that the (G−SA−1B) is non-singular and ‖T q‖∞ ≤ Ch2. The key is to show

that ‖SA−1Tu‖∞ ≤ Ch2.

Let b = A−1Tu, from the definition of the Green function in (2.20), we can write

bi = h
N−1∑
l=1

Tu
j G(xi;xl). (2.25)

At first glance, it seems that Eq ∼ O(h) since the interpolation operator ‖S‖∞ ∼ 1/h. Nev-

ertheless, the following analysis shows that the terms of O(1/h) are cancelled out to O(1) and

thus Eq ∼ O(h2) is true. Let ∆i = bi − bi−1, i = 2, ..., N − 1. Then we have (note that both

SA−1Tu and S b are scalars for the 1D problem)

SA−1Tu = S b = Sj−1bj−1 + Sjbj + Sj+1bj+1

= Sj−1(bj −∆j) + Sjbj + Sj+1(bj + ∆j+1)

= (Sj−1 + Sj + Sj+1)bj − Sj−1∆j + Sj+1∆j+1

= −Sj−1∆j + Sj+1∆j+1.

Notice that the term bj is cancelled out. This is because the interpolation operator is for the

1Note that some of the proof is similar to the contents in Section 6.1.2 in [38].

19

first order derivative of u(x), and the consistency condition requires that Sj−1 +Sj +Sj+1 = 0.

Now what is left to prove is that ∆j ∼ ∆j+1 ∼ O(h3), which leads to Eq ∼ h2 Since Sj−1 ∼
Sj+1 ∼ O(1/h). The final step of the proof is explained below.

|∆i| = |bi − bi−1| = h
N−1∑
l=1

|Tu
l | · |G(xi;xl)−G(xi−1;xl)|

≤ h2
N−1∑

l 6=j,j+1

|Tu
l |+ h2

(
|T uj + |T uj+1|

)
from the continuity of G(xi, xl),

≈ O(h3).

This completes the proof. �

As a result of Theorem 2.1-Theorem 2.3, we conclude that the solution U is also second

order approximation to u, which is summarized in the following theorem.

Theorem 2.4. With the same assumptions as in Theorem 2.1 and β− 6= β+, and β is piecewise

constant, then ‖Eu‖∞ = ‖U− u‖∞ ≤ Ch2.

Proof: Since the Schur complement matrix is a constant independent of h and |T q| ≤ Ch2,

and we just proved |SA−1Tu| ≤ Ch2, from (2.17), we have the conclusion. �

Not only do we obtain a second order accurate solution and the augmented variable, but

also second order accurate derivative u−x and u+
x if the derivative is computed using the scheme

(2.12), that is,

u−x =
β+

β+ − β−
(
v

β+
− q
)
, (2.26)

assuming that β− 6= β+. Since the computed Q is second order accurate, we immediately have

the following theorem.

Theorem 2.5. Assume β is piecewise constants and U−x is computed using the above formula

with q being replaced by Q, the computed augmented variable. Then |U−x − u−x | ≤ Ch2, where

u−x = lim
x→α−

du

dx
(x).

2.2.1 An example of the 1D Stefan problem

Our numerical experiments in one-dimension have confirmed our theoretical analysis that both

the solution U ≈ u(x) and the augmented variable Q ≈ [ux] are second order accurate in the

L∞ norm. We show an example of a 1D Stefan problem, see for example, [8, 16], in which the

20

Table 2.1: A grid refinement analysis for the Stefan problem at the final time t = 3. The
computed solution, the first order derivative u−x (α(t)), and the free boundary α(t) all have
average second order convergence.

N ‖u− U‖∞ r |[ux]−Q| r |α−A| r

16 2.3160× 10−2 3.9232× 10−4 4.0734× 10−2

32 6.4260× 10−3 1.8496 3.0046× 10−4 0.3849 1.1473× 10−2 1.8280
64 1.9403× 10−3 1.7276 1.2357× 10−5 4.6038 3.5210× 10−3 1.7042
128 4.8957× 10−4 1.9867 1.8056× 10−7 6.0967 8.8986× 10−4 1.9843
256 1.0044× 10−4 2.2852 7.3479× 10−8 1.2971 1.7986× 10−4 2.3067

free boundary α(t) is moving. The governing equations are

∂u
∂t = ∂2u

∂x2 , for 0 < x < α(t), t > 0,

u(x, t) = 0, for x ≥ α(t), t > 0,

where α(t) is subject to the Stefan condition

dα

dt
(t) = −∂u

∂x
(α(t), t) , α(0) = 0.

The boundary and initial conditions are

∂u

∂x
(0, t) = f(t), u(α(t), t) = 0, u(x, 0) = 0.

The model is from [54]. We can find an analytic solution listed below,

u(x, t) = 1− erf
(
x/(2
√
t)
)

erf(ω)
, α(t) = 2ω

√
t,

where erf is the error function and ω is the solution of the transcendental equation
√
π ω ·

erf(ω)eω
2

= 1. The function f(t, α(t)) is determined from the analytic solution.

We use a second order time splitting technique to solve the problem, that is, we solve

the differential equation with α(t) fixed, then update the new location of α(t). The augmented

equation now is the boundary condition at α(t). In Table 2.1, we show a grid refinement analysis

of the errors in the solution at all grid points, and the free boundary α(t), and the first order

derivative u−x (α(t)), at the final time t = 3. We use lower case for the analytic solution, and

upper case for the computed solutions. We observe that all of them have average second order

convergence.

21

2.3 The algorithm for two dimensional problems

In this section, we present the algorithm for two dimensional problems. The key is the mod-

ification of the finite difference scheme at irregular grid points. We first discuss the interface

relations using an equivalent representation of the interface problem.

2.3.1 The jump relations in the local coordinates

As explained in the introduction section, we re-write the elliptic interface problem near the

interface as

∆u+
βx
β
ux +

βy
β
uy =

f

β
, (2.27)

[u]Γ = w, [un]Γ = q, (2.28)

where q(X) is the augmented variable only defined along the interface Γ which should be chosen

such that the flux jump condition

[βun]Γ (X) = v(X)

is satisfied. In this way, the Laplacian term ∆u has been separated from β(x, y) which makes

the discretization easier with our proposed augmented method. This is one of the key ideas of

the new method.

From the description of Section 3.1 in [35, 38], we restate some theoretical results on the

reformulated elliptic interface problem (2.27)-(2.28). Assume that the interface in parametric

form is

Γ =
{

(X(s), Y (s)) , X(s) ∈ C2, Y (s) ∈ C2
}
, (2.29)

where s is a parameter, for example, the arc-length. At a point of the interface (X,Y), the local

coordinate system in the normal and tangential directions is defined as (see Figure 2.1 for an

illustration), ξ = (x−X) cos θ + (y − Y) sin θ

η = −(x−X) sin θ + (y − Y) cos θ,
(2.30)

where θ is the angle between the x-axis and the normal direction, pointing to the Ω+ sub-

domain. Under such new coordinates system, the interface can be parameterized as

ξ = χ(η) with χ(0) = 0, χ′(0) = 0. (2.31)

22

The curvature of the interface at (X,Y) is χ′′(0).

θ

ξ

η

(xi, yj)

(Xk, Yk)

Figure 2.1: A diagram of an irregular grid point (xi, yj), its orthogonal projections on the
interface (Xk, Yk), and the local coordinates at (Xk, Yk) in the normal and tangential directions.

If we know the jump in the solution [u] = w and the normal derivative [un] = q (not the

original flux jump condition [βun] = v), then we can have the following jump relations at a

point (X,Y) on the interface which is necessary to derive the accurate finite difference method.

Theorem 2.6. For the elliptic interface problem (2.27)-(2.28), given [u] = w and [un] = q,

then at the interface, the following jump relations hold

[u] = w, [uη] = w′, [uξ] = q,

[uηη] = −qχ′′ + w′′, [uξη] = w′χ′′ + q′,

[uξξ] = q

(
χ′′ −

β+
ξ

β+

)
− w′′ −

[
βξ
β

]
u−ξ −

[
βη
β

]
u−η −

β+
η

β+
w′ +

[
f

β

] (2.32)

where w′, g′ and w′′ are the first and second order surface derivatives of w and g on the interface,

which are all evaluated at (ξ, η) = (0, 0).

Here we skip the derivation which is similar to those derived in equation (3.5) in Section 3.1

in [38] assuming that [u] = w and [βun] = v are given. Note also that we can express the jump

conditions in terms of u+, u+
η , and u+

ξ .

Once we have the jump relations in the local coordinates, we can get back the jump relations

in the x- and y- directions according to (9.47) in [38]

[ux] = [uξ] cos θ − [uη] sin θ, [uy] = [uξ] sin θ + [uη] cos θ,

[uxx] = [uξξ] cos2 θ − 2[uξη] cos θ sin θ + [uηη] sin2 θ,

[uyy] = [uξξ] sin2 θ + 2[uξη] cos θ sin θ + [uηη] cos2 θ.

(2.33)

23

2.3.2 The finite difference scheme for the 2D problem

For simplification of discussion, we use a uniform a mesh

xi = a+ ih, i = 0, 1, · · ·M ; yj = c+ jh, j = 0, 1, · · · , N, (2.34)

assuming Ω = (a, b)× (c, d). The interface Γ is represented by the zero level set of a Lipschitz

continuous function ϕ(x, y), that is

Γ =
{

(x, y), ϕ(x, y) = 0, (x, y) ∈ Ω
}
. (2.35)

In the neighborhood of the interface, we assume that ϕ(x, y) ∈ C2. In implementation, the level

set function is defined at the grid points as {ϕij} corresponding to ϕ(xi, yj). At a grid point

(xi, yj), we define

ϕmaxij = max {ϕi−1,j , ϕij , ϕi+1,j , ϕi,j−1, ϕi,j+1} , (2.36)

ϕminij = min {ϕi−1,j , ϕij , ϕi+1,j , ϕi,j−1, ϕi,j+1} . (2.37)

A grid point (xi, yj) is called regular if ϕmaxij ϕminij > 0, otherwise it is called irregular.

The set of orthogonal projections (Xk, Yk), k = 1, 2, · · · , Nb of all irregular grid points on

the interface from a particular side, say Ω+ side, forms a discretization of the interface Γ. We

refer the reader to Section 1.6.4 in [38] on how to find approximate orthogonal projections. Then

the discrete augmented variable Qk of the continuous one q(s) is defined at those orthogonal

projections. Given a discrete quantity along the interface, we can interpolate the quantity at

the discrete points to get its value, the tangential derivative anywhere along the interface. For

example, assume that (xi, yj) is an irregular grid point, and the interface cuts the grid line at

(x∗ij , yj) corresponding to the orthogonal projection Xk = (Xk, Yk). We need to get the values

of Q and its tangential derivative at (x∗ij , yj). We first reconstruct the interface in the local

coordinates as ξ ≈ Cη2 + Dη3 with error O(η4). We refer the readers to Section 11.1.5 in [38]

about how to find C and D. We then approximate Q(η) as Q(η) = Qk+ω1η+ω2η
2 locally with

error O(η3) and Q′(η) = ω1 + 2ω2η with error O(η2). The coefficient ω1 and ω2 are determined

from Q values at the two closest orthogonal projections.

The finite difference scheme at a regular grid point

At a regular grid point (xi, yj), the finite difference scheme is the classic conservative one with

the scaling

βi−1/2,jUi−1,j + βi+1/2,jUi+1,j + βi,j−1/2Ui,j−1 + βi,j+1/2Ui,j+1 − β̄ijUi,j

h2β̄ij
=
fij
β̄ij

(2.38)

24

where fij = f(xi, yj), βi−1/2,j = β(xi − h/2, yj) and so on, and

β̄ij = βi−1/2,j + βi+1/2,j + βi,j−1/2 + βi,j+1/2. (2.39)

The finite difference scheme at an irregular grid point

We assume that we know the jump conditions [u] = w and [un] = q, not the original flux

jump condition [βun] = v. This makes it easier to derive an accurate and stable finite difference

scheme. At an irregular grid point, we discretize the re-written equation (2.27) using a dimension

by dimension approach, and an upwinding discretization for the first order derivative terms.

Let (xi, yj) be an irregular grid point. If the interface does not cut through the interval

(xi−1, xi+1) along the line y = yj , that is, (xi, yj) is regular in the x-direction, then the finite

difference approximation for (βux)x before the scaling is

(βux)x ≈
βi−1/2,jUi−1,j + βi+1/2,jUi+1,j − (βi−1/2,j + βi+1/2,j)Ui,j

h2
. (2.40)

The final finite difference equation will be scaled in a similar way as those at regular grid points.

Now assume the interface cuts the grid line y(x) = yj in the interval (xi−1, xi+1), say at

(x∗ij , yj), with x∗ij = xi + αxij h, 0 ≤ |αxij | < 1. Without loss of generality, we assume that

(xi, yj) ∈ Ω−. We discretize the reformulated equation (2.27), that is,

u−xx + u−yy +
β−x u

−
x

β−
+
β−y u

−
y

β−
=
f−

β−
, (2.41)

where f−, β−, · · · , are the limiting values at (x∗ij , yj) from Ω− side. We use an upwinding scheme

for the first order term β−x u
−
x /β

−, that is,

β−x u
−
x

β−
≈

β−x
β−

(
Ui,j − Ui−1,j

h
+
C̃xij
h

)
if

β−x
β−
≤ 0,

β−x
β−

(
Ui+1,j − Ui,j

h
+
C̄xij
h

)
otherwise,

(2.42)

where for example, C̃xij = 0 if (xi−1, yj) ∈ Ω−. Otherwise we have

C̃xij = −
(

[u] + [ux]
(
1− |αxij |

)
h
)
, where αxij =

x∗ij − xi
h

, (2.43)

see Lemma 10.6 in [38] for the formulas of the correction, where the jumps again are defined

at (x∗ij , yj). Similarly, for the second order term uxx, the finite difference approximation for uxx

25

can be written as

u−xx(xi, yj) ≈
Ui−1,j − 2Ui,j + Ui+1,j − Cxij

h2
, (2.44)

where the correction term Cxij is

Cxij = [u] + [ux]
(
1− |αxij |

)
h+ [uxx]

(1− |αxij |)2h2

2
. (2.45)

Approximating [uxx] and [uyy]

Given [u] = w and [un] = q along the interface, from (2.33) and (2.32) we have the following

[ux] = cos θ [uξ]− sin θ [uη] = q cos θ − w′ sin θ,

[uy] = sin θ [uξ] + cos θ [uη] = q sin θ + w′ cos θ,

[uxx] = cos2 θ [uξξ]− 2 sin θ cos θ [uξη] + sin2 θ [uηη]

= −2 sin θ cos θ (w′χ′′ + q′) + sin2 θ (−qχ′′ + w′′)

+ cos2 θ

{
q

(
χ′′ −

β+
ξ

β+

)
− w′′ −

β+
η

β+
w′ +

[
f

β

]
−
[
βξ
β

] (
cos θ u−x + sin θ u−y

)
−
[
βη
β

] (
− sin θ u−x + cos θ u−y

)}
,

[uyy] = sin2 θ [uξξ] + 2 sin θ cos θ [uξη] + cos2 θ [uηη]

= 2 sin θ cos θ
(
w′χ′′ + q′

)
+ cos2 θ

(
−qχ′′ + w′′

)
+ sin2 θ

{
q

(
χ′′ −

β+
ξ

β+

)
− w′′ −

β+
η

β+
w′ +

[
f

β

]
−
[
βξ
β

] (
cos θ u−x + sin θ u−y

)
−
[
βη
β

] (
− sin θu−x + cos θ u−y

)}
,

where w′ and q′ are the first order, and w′′ is the second order, derivatives along the interface,

respectively. In the derivation above, we have used the following formulas

uξ = ux cos θ + uy sin θ, uy = −ux sin θ + uy cos θ. (2.46)

Most of terms in [uxx] and [uyy] are computable except terms of u−, u−x and u−y . Note that

these functions are defined on the interface. Using Taylor expansion, we have u−(X,Y) =

u−(xi, yj) +O(h), u−x (X,Y) = u−x (xi, yj) +O(h) and u−y (X,Y) = u−y (xi, yj) +O(h). We simply

26

replace u− with Uij and treat u−x and u−y using the upwinding scheme to increase the diagonal

dominance of the resulting linear system of finite difference equations. For example, for the

terms containing u−x in [uxx] we use

([
βη
β

]
sin θ −

[
βξ
β

]
cos θ

)
cos2 θ u−x =

Atmp

(
Ui+1,j − Ui,j

h
+
C̃xij
h

)
if Atmp ≥ 0,

Atmp

(
Ui,j − Ui−1,j

h
+
C̄xij
h

)
otherwise,

where Atmp =

([
βη
β

]
sin θ −

[
βξ
β

]
cos θ

)
cos2 θ,

and once again, for example, C̃xij = 0 if (xi−1, yj) ∈ Ω−. Otherwise

C̃xij = −
(

[u] + [ux]
(
1− |αxij |

)
h
)
. (2.47)

The linear system of finite difference equations can be written as

AhU +BQ = F1, (2.48)

where U is the vector formed by the finite difference approximation {Uij} to the solution

{u(xi, yj)}, Q is the vector formed by the discrete augmented variable {Qk} to the augmented

variable { [∂u∂n(Xk, Yk)] }, F1 is the modified right hand side, B is a sparse matrix corresponding

to the correction terms for the [un] term.

Remark 2.1. • The finite difference stencil is still the standard five-point centered stencil.

This is different from the maximum principal preserving scheme [45] in which the finite

difference stencil is a nine-point one.

• Ah is diagonally dominant and invertible. No optimization is needed compared to [45]

because we assume that [un] is given instead of [βun], which makes it easier to discretize the

interface problem. The trade-off is that we also need to solve for the augmented variable.

2.3.3 Discretizing the flux jump condition

At every approximate orthogonal projection of all irregular grid points on the interface, we use

the same least squares interpolation described in Section 4 in [44] to interpolate the flux jump

condition [βun] = v.

At one orthogonal projection Xk = (Xk, Yk) corresponding to an irregular grid point (xi, yj),

the second order accurate least squares interpolation scheme approximating [βun] = v can be

27

written as ∑
|xij−Xk|≤δh

γijUij + Lk (β(x),W,Q,V) = 0 (2.49)

where δh is a parameter of 2h ∼ 3h, Lk stands for a linear relation of its augmenters, the

discrete form of w(X), q(X), and v(X). The consistency condition requires that∑
|xij−Xk|≤δh

γij = 0. (2.50)

Note that the interpolation coefficients should depend on the index k as well, we omit it for

simplicity of notations.

In matrix vector form, the interpolation at all projections of irregular grid points from one

particular side can be written as

SU +GQ = F2, (2.51)

for some sparse matrices S and G. If we put (2.48) and (2.51) together we get[
Ah B

S G

][
U

Q

]
=

[
F1

F2

]
. (2.52)

Eliminating U in equation (2.52) gives the Schur complement equation for Q

(G− SA−1
h B)Q = F2 − SA−1

h F1, or Aschurh Q = Fschur. (2.53)

We use the GMRES iterative method to solve the Schur complement system and do not explic-

itly form the matrices Ah, B, S, G, and Aschurh . The matrix and vector multiplication Aschurh Q

needed for the GMRES iteration involves two consecutive steps: the first step is to solve the

interface problem (2.48) given Q; the second step is to find the residual of the flux jump con-

dition, that is, R(Q) = [β(X)Un(Q)] − V. We refer the reader to Section 5.1 in [44] for the

details.

2.3.4 Computing the gradient on the interface

At one orthogonal projection Xk corresponding to an irregular grid point (xi, yj), we use a

similar (two-sided SVD) interpolation to approximate the normal derivative at Xk from Ω−

28

side

u−n (Xk) =
∑

|xij−Xk|≤δh

γ̃ij Uij + L̃k (β(x),W,Q,V) (2.54)

to get one of u−n (Xk) or u+
n (Xk), then use q(Xk) to get the other, say u+

n (Xk) = q(Xk)+u−n (Xk).

The linear system of equations has the same coefficient matrix as that in (2.49) for γij ’s, so

there is almost no additional cost. The term L̃k (β(x),W,Q,V) is again a correction term due

to the jumps in the involved quantities.

If needed, at a grid point, the partial derivatives ux and uy can be calculated using the

standard 3-point central finite difference formula with (at an irregular grid point) or without

(at a regular grid point) a correction term. Beadle and Layton [2] have shown that the computed

derivatives using IIM are second order accurate in the L∞ norm at all grid points.

2.3.5 A new preconditioning strategy

The number of GMRES iterations grows linearly with the mesh size N if there is no precon-

ditioning technique employed. The preconditioning technique proposed in [44] works well for a

piecewise constant coefficient but not for a variable coefficient. The idea of the new precondi-

tioning technique is more like a diagonal preconditioning technique for the Schur complement.

At an orthogonal projection Xk = (Xk, Yk) where the augmented variable is defined, we use

the re-scaled residual of the flux jump condition

Rrescaled(Xk) =
β+(Xk)U

+
n (Xk)− β−(Xk)U

−
n (Xk)− v(Xk)

β̄(Xk)
, (2.55)

where β̄(Xk) = (β−(Xk) + β+(Xk))/2, to discretize the flux jump condition.

2.4 Convergence proof for the 2D problems

In this section, we provide a convergence proof for two dimensional problems. For simplicity, we

assume that a Dirichlet boundary condition is prescribed along the boundary ∂Ω. We use U and

u to represent the vectors of approximate and exact solution at grid points; Tu and Eu = U−u

are the vectors of the local truncation errors and the global error. We have Eu|∂Ωh
= 0 for the

values at grid points on the boundary. Similarly, we define Tq and Eq = Q− q as the vectors

of the local truncation error and the global error for the augmented variable. According to the

29

definition, we have

AhU +BQ = F1, AhE
u +BEq = Tu, (2.56)

SU +GQ = F2, SEu +GEq = Tq, (2.57)

where the local truncation error vector Tu is defined as Tu = F1 −Ahu−Bq and so on.

Lemma 2.1. Assume that u(x) is in piecewise C4(Ω \Γ) excluding the interface Γ. If the

augmented variable is a second order approximation to [∂u∂n(X)], that is, ‖Eq‖∞ ≤ Ch2, then

the computed solution of the finite difference equations (2.48) is also second order accurate, that

is, ‖E‖∞ ≤ Ch2.

Proof: From the construction of the numerical scheme we know that a component of BEq

is zero at a regular grid point xij and bounded by Ch at an irregular grid point xij since

‖Eq‖∞ ≤ Ch2 as one of the conditions in the theorem. Note that Ah is an M-matrix and

AhE
u = −BEq + Tu that is bounded by Ch2 at regular grid points and Ch at irregular grid

points. From Theorem 3.3 in [38] or the convergence analysis of IIM in [2], we conclude that

the global error is bounded by Ch2. Also from [58, 59], the partial derivatives using the IIM is

also second order accurate. �

The next step is to show that the computed augmented variable is also second order accurate

by a factor of log h. In this case, we first assume that the coefficient is piecewise constant so

that we can apply some theoretical results from [37].

Theorem 2.7. Assume that u(x) is in piecewise C4(Ω\Γ) excluding the interface Γ, and the

coefficient β(x) is a piecewise constant β− and β+, then computed augmented variable is second

order accurate by a fact of | log h|, that is ‖Eq‖∞ ≤ Ch2| log h|.

Proof: From (2.56)-(2.57), we have

(
G− SA−1

h B
)
Eq = −Tq + SA−1

h Tu. (2.58)

Note that solvability of the above linear system has been shown in [44]. We first prove that the

right hand side above is bounded by Ch2. Since the interpolation for the flux jump condition is

a second order one, we have ‖Tq‖∞ ≤ Ch2. For the second term, from the interpolation scheme

30

in (2.49), we consider one component and carry out the derivation(
SA−1

h Tu
)
k

=
∑

|xij−Xk|≤δh

γij
(
A−1
h Tu

)
ij

=
∑

|xij−Xk|≤δh

γi,j
∑
l, r

Gh(xlr,xij)h
2 τlr

=
∑
l, r

h2 τlr

 ∑
|xij−Xk|≤δh

γi,jG
h(xlr,xij)

 ,

(2.59)

where Gh(xlr,xij) is the discrete Green function defined as

Gh (xij ,xlm) =

(
A−1
h elm

1

h2

)
ij

, Gh (∂Ωh,xlm) = 0, (2.60)

where elm is the unit grid function whose values are zero at all grid points except at xlm =

(xl, ym) where its component is elm = 1, see for example [19]. Note that in the neighborhood

of |xij −Xk| ≤ δh, the points involved in the interpolation is close to Xk, we can continue to

derive

(
SA−1

h Tu
)
k

=
∑
l, r

h2 τlr

 ∑
|xij−Xk|≤δh

γi,j

(
GhI (xlr,Xk) + h

Gh(xlr,xij)−GhI (xlr,Xk)

h

)
=

∑
l, r

h2 τlr

 ∑
|xij−Xk|≤δh

γi,jG
h
I (xlr,Xk)

+
∑
l, r

h3 τlr

 ∑
|xij−Xk|≤δh

γi,j

(
∂GhI (xlr,Xk)

∂x

)
+O(h)

=

∑
l, r

h3 τlr

 ∑
|xij−Xk|≤δh

γi,j

(
∂GhI (xlr,Xk)

∂x

)
+O(h)

 .

The first term in the top line above is zero due to the consistency of the interpolation scheme

for the flux jump condition. We have |τlr| ≤ Ch2 and at regular grid points, and |τlr| ≤ Ch at

31

irregular grid points, from the estimate of
∂Gh

I
∂x (3.16) in [37] we further derive

∣∣(SA−1
h Tu

)
k

∣∣ ≤ ∑
l, r

h3 |τlr|

 ∑
|xij−Xk|≤δh

|γij |
(

C

(‖xlr −Xk‖2 + h)

)
+O(h)

≤

∑
l, r,Ωreg

h

h3 |τlr|

 ∑
|xij−Xk|≤δh

|γij |
(

C

(‖xlr −Xk‖2 + h)

)
+O(h)

+

∑
l, r,Ωirr

h

h3 |τlr|

 ∑
|xij−Xk|≤δh

|γij |
(

C

(‖xlr −Xk‖2 + h)

)
+O(h)

≤

∑
l, r,Ωreg

h

h4

 ∑
|xij−Xk|≤δh

(
C

(‖xlr −Xk‖2 + h)

)
+O(h)

+

∑
l, r,Ωirr

h

h3

 ∑
|xij−Xk|≤δh

(
C

(‖xlr −Xk‖2 + h)

)
+O(h)

≤ h2

∑
|xij−Xk|≤δh

 ∑
l, r,Ωreg

h

(
C

(‖xlr −Xk‖2 + h)

)
h2 +O(h3)

+ h2

∑
|xij−Xk|≤δh

 ∑
l, r,Ωirr

h

(
C

(‖xlr −Xk‖2 + h)

)
h+O(h3)

≤ Ch2| log h|+ Ch2,

where Ωirr
h and Ωreg

h are the sets of all irregular and regular grid points, respectively. In the

derivation above we have used the facts that |γij | ∼ 1/h, |τlr| ≤ Ch2 at regular grid points

and |τlr| ≤ Ch at irregular grid points, respectively. We have also used the estimate of the

Riemann sum for the double integral
∫∫

1/(x2 + y2 + h)dxdy ≤ C| log h|. Note also that the

total number of regular grid points is O(1/h2) while the total number of irregular grid points is

O(1/h). It has been shown that Schur complement matrix Aschurh is non-singular, thus we have

‖Aschurh Eq‖∞ ≤ Ch2| log h|.
We have shown that the right hand side for the error of the augmented variable has the

order of h2 log h. From Section 6.1.2 in [38], we know that the left hand side of (2.58) is

Aschurh Eq =

[
β
∂Ũ

∂n
(Eq)

]
−
[
β
∂Ũ

∂n
(0)

]
, (2.61)

where Ũ(Eq) can be regarded as the solution of the numerical method applied to the following

32

problem

∇ · (β∇ũ) = Tu
I (x); ũ|∂Ω = 0, (2.62)

[ũ]Γ = 0,

[
β
∂ũ

∂n

]
Γ

= Tq
I(X), (2.63)

where Tu
I (x) ∈ C is an interpolation function of Tu on the entire domain while Tq

I(X) ∈ C
is an interpolation function of Tq along the interface. From the maximum principle, we know

that |ũ| ≤ Ch2 and |∂ũ±∂n | ≤ Ch2. Therefore the second term in (2.61) is bounded by Ch2. Thus

we have

Aschurh Eq =

[
β
∂Ũ

∂n
(Eq)

]
= β+∂Ũ

∂n

+

(Eq)− β−∂Ũ

∂n

−

(Eq) +O(h2)

= β+Eq − [β]
∂Ũ

∂n

−

(Eq) +O(h2),

since β is a piecewise constant that has been divided by, from [2], we know that the solution

and the derivative are both second order accurate when the IIM is applied, which implies

that ‖∂Ũ∂n
−
(Eq)‖∞ ≤ Ch2. We have already proved that ‖Aschurh Eq‖∞ ≤ Ch2, this leads to

‖Eq‖∞ ≤ Ch2. �

Remark 2.2. In the preconditioning strategy, we can write, for example, equation (6.24) in

[38],

∂Ũ

∂n

−

(Eq) = γ

[
β
∂Ũ

∂n
(Eq)

]
+ FΓ +O(h2), (2.64)

where γ is a constant, and FΓ is a vector, then we have

Aschurh Q =

[
β
∂U

∂n
(Q)

]
−
[
β
∂U

∂n
(0)

]
= β+∂U

∂n

+

(Q)− β−∂U

∂n

−
(Q)−

[
β
∂U

∂n
(0)

]
=

(
β+ − β−γ

)
Q− β−FΓ −

[
β
∂U

∂n
(0)

]
+O(h2),

which means that the Schur complement matrix is nearly a diagonal. This may explain why

the number of the GMRES iterations is independent of the mesh size and the jump in β. For

variable coefficient β(x), with the new preconditioning strategy, we would have

Aschurh Q = = D(β̄(x))Q + F̃Γ +O(h2),

where D(β̄(x)) is a diagonal matrix whose entries are (β+
k − β−k)/β̄k, β̄k = (β+

k + β−k)/2.

33

Remark 2.3. While the proof above is for piecewise constant coefficients, the conclusion is also

true, or at least asymptotically in terms of h, for variable coefficient β(x) ≥ β0 > 0 assuming

that β(x) ∈ C∞(Ω±) since those terms involved are lower order terms of h. This is because

the coefficient matrix Ah(β) = Ah(I + Bh) and ‖Bh‖ → 0 as h → 0, where Ah is the discrete

Laplacian. This is another advantage of using the reformulated PDE.

2.5 Numerical examples

We present a variety of numerical experiments to show the performance of the new augmented

method for accurate solutions and its first order gradient at the interface. All the experiments

are computed with double precision and are performed on a desktop computer with Pentium(R)

Dual-Core CPU, 2.59 GHz, 4GB memory. We also list the CPU time (s) in tables. We present

errors in L∞ norms and estimate the convergence order using

r =
1

log 2
log
‖E2h‖∞
‖Eh‖∞

. (2.65)

The tolerance of the GMRES iteration is set to be 10−6 and the initial value is set to be 0 in

all computations. In all tables listed in this section, we use “Iter” to represent the number of

GMRES iterations, “Nb” the number of control points, “N” the number of the grid lines in

each direction of the rectangular domain and “CPU(s)” the run time in seconds.

Example 2.1.

u(x) =

 sin(x+ y) in Ω−,

log(x2 + y2) in Ω+,
β(x) =

 sin(x+ y) + 2 in Ω−,

cos(x+ y) + 2 in Ω+,
(2.66)

where the interface is the zero level set of ϕ(x, y) =
√
x2 + y2 − 0.5, and Ω = [−1, 1]× [−1, 1].

The source term f(x), and the interface jump conditions: [u] and [βun] are derived from the

exact solution.

This is an example with a genuine piecewise smooth non-linear solution, and a variable

coefficient with a variable discontinuity along the interface. We present a grid refinement analysis

in Table 2.2. The second column is the maximum error of the solution while the third column is

the approximate convergence order. The fourth and sixth column are the errors of the normal

derivatives at the interface from Ω− and Ω+ sides, respectively. The fifth and seventh columns

are the approximate convergence order of the computed normal derivative. The eighth column is

the number of is the number of GMRES iterations, and the last but one is orthogonal projections

of irregular grid points from Ω+ side. The last column is the total CPU time in seconds. We

34

(a)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1.5

−1

−0.5

0

0.5

1

x
y

(b)

1

0.8

0.6

0.4

0.2

0

-0.2

x

-0.4

-0.6

-0.8

-1-1

-0.5

y

0

0.5

×10
-4

1

2

4

6

8

0

Figure 2.2: (a): The solution plot of Example 2.1. (b): The error plot of the computed solu-
tion. The error seems to be piecewise smooth as well which is important for accurate gradient
computation.

can observe from Table 2.2 that the new augmented IIM is second order accurate both in the

solution globally and the gradient at the interface from each side. The total CPU time also

shows that the method is very fast with the optimal computational complexity O(N2 log(N2)).

We also observe that the number of GMRES iteration is a constant independent of the mesh

size.

Table 2.2: A grid refinement analysis for Example 2.1 with a modest variable jump in the
coefficient.

N E(u) r E(u−n) r E(u+
n) r Iter Nb CPU(s)

32 3.1245×10−3 1.5905×10−2 2.1712×10−2 4 48 0.01
64 7.0327×10−4 2.15 4.4752×10−3 1.82 5.5256×10−3 1.97 4 92 0.03
128 1.1565×10−4 2.60 1.1182×10−3 2.00 1.3993×10−3 1.98 4 184 0.11
256 2.7720×10−5 2.06 2.9096×10−4 1.94 3.7998×10−4 1.88 4 364 0.46
512 6.2087×10−6 2.15 7.3489×10−5 1.98 9.8004×10−5 1.95 4 728 2.45

Now we use the same exact solution and interface but with a large jump in the coefficient

along the interface

β(x) =

{
10e10x in Ω−,

sin(x+ y) + 2 in Ω+.
(2.67)

The jump ratio varies from 1 : 10 to 1.45 : 1482 along the interface, a quite dramatic change.

The results are shown in Table 2.3. We observe that the errors are larger than that in Table 2.2.

This is due to the variations of the coefficient. Since the re-scaled PDE has the form ∆u +

35

1
β∇β(x) · ∇u+ · · · , we would expect the error term contains βx

β ux and
βy
β uy that are O(1) for

Table 2.2 and O(102) for Table 2.3 due to the term 10e10x. This explains well in the difference

in the errors. Nevertheless, all the nice features are the same as the previous example.

Table 2.3: A grid refinement analysis for Example 2.1 with a large variation in the jump ratio
of the coefficient.

N E(u) r E(u−n) r E(u+
n) r Iter Nb CPU(s)

32 6.0115×10−1 3.9014 1.7570 11 48 0.02
64 1.4706×10−1 2.03 8.6974×10−1 2.16 4.2479×10−1 2.04 10 92 0.07
128 4.3411×10−2 1.76 2.5265×10−1 1.78 1.2537×10−1 1.76 10 184 0.27
256 1.1266×10−2 1.94 6.5293×10−2 1.95 3.2493×10−2 1.94 10 364 1.24
512 2.9178×10−3 1.94 1.6916×10−2 1.94 8.4205×10−3 1.94 10 728 7.85

An example with more general jump conditions

There are some applications in which we may have more general jump conditions. Here we

consider an example with a more general jump condition, c(X)u+
n − d(X)u−n = v(X) with

c(X) = x2 +1, d(X) = y2 +1. Our method still can work with the modified augmented equation

(2.51) (now it is c(X)u+
n − d(X)u−n = v(X)) and different preconditioning techniques. The

convergency analysis may not apply directly anymore. In Table 2.4, we list the grid refinement

analysis which has the same predicted convergence and efficiency.

Table 2.4: A grid refinement analysis with a different jump condition c(X)u+
n−d(X)u−n = v(X).

N E(u) r E(u−n) r E(u+
n) r Iter Nb CPU(s)

32 1.0220×10−2 2.4784×10−2 2.5529×10−2 4 48 0.047
64 2.9257×10−3 1.80 6.5909×10−3 1.91 6.2884×10−3 2.02 4 92 0.172
128 7.9724×10−4 1.87 1.7941×10−3 1.87 1.5052×10−3 2.06 4 184 0.578
256 2.0781×10−4 1.93 4.6908×10−4 1.93 3.7353×10−4 2.01 4 364 2.531
512 5.3324×10−5 1.96 1.2033×10−4 1.96 9.5584×10−5 1.96 4 728 10.141
1024 1.3253×10−5 2.00 3.7729×10−5 1.67 3.0206×10−5 1.66 4 1452 44.281

Example 2.2. A general interface example with piecewise constant coefficient.

36

The example is from [44]. The interface is the zero level set function

ϕ(x) = r − (0.5 + 0.2 sin(5θ)), (2.68)

and the true solution is

u(x) =

r2

β−
x ∈ Ω−,

r4 + C0 log(2r)

β+
x ∈ Ω+.

(2.69)

The interface is complicated and has relatively large curvature at some places, see Figure 1.1.

We repeat this example with the new preconditioning technique with β+ = 1000 and β− = 1 on

the domain Ω = [−1, 1]× [−1, 1]. The results are shown in Table 2.5 that are almost the same

as the original fast IIM in [44]. Once again we observe that both the solution and the gradient

are second order accurate and the number of GMRES iterations is independent of the mesh

size. For this example, the interface has large curvature at some places. We need a reasonable

fine mesh to resolve the interface.

Table 2.5: A grid refinement analysis for Example 2.2 with a piecewise constant coefficient
β+ = 1000 and β− = 1 and a complicated interface.

N E(u) r E(u−n) r E(u+
n) r Iter Nb CPU(s)

32 1.2880×10−1 3.0969 3.0971×10−3 14 78 0.04
64 1.9431×10−1 -0.59 4.0397 -0.38 4.0396×10−3 -0.38 14 154 0.13
128 1.8734×10−2 3.37 4.9723×10−1 3.02 4.9765×10−4 3.02 11 308 0.28
256 2.3009×10−3 3.02 1.2096×10−1 2.03 1.2352×10−4 2.01 10 612 0.99
512 3.6351×10−4 2.66 2.2790×10−2 2.40 2.4786×10−5 2.31 9 1226 21.50

2.5.1 An example for more general self-adjoint elliptic interface problems

With some modifications, the method developed in this paper has been generalized to more

general interface problems

∇ · (β(x)∇u(x))− σ(x)u(x) = f(x). (2.70)

The regularity requirement for the existence of the solution includes additional conditions

σ(x) ∈ C(Ω±) and σ(x) ≥ 0. While we still get second order accuracy both in the solution

and the gradient, the coefficient matrix from the modified algorithm may not be an M-matrix

37

anymore. Nevertheless, those affected entries are of O(1) compared O(1/h2) when σ(x) = 0,

that is, Aσ 6=0
h = Aσ=0

h (I+Bh) with ‖Bh‖ ≤ Ch2. Thus we have asymptotic convergence as those

presented in the paper as h→ 0.

Example 2.3. A general example with σ(x) 6= 0. We present a more general example with a

non-zero σ(x) term with different interfaces, an ellipse and a five-star. The true solution and

coefficient are

u(x) =

{
− x3 + 2y3 in Ω−,

sin(x+ y) in Ω+,
β(x) =

{
1 + ex+2y in Ω−,

sin(2x− y) + 3 in Ω+,
(2.71)

σ(x) =

{
cos(xy) + 2 in Ω−,

x2 + y2 + 1 in Ω+,
, (2.72)

where again Ω = [−1, 1] × [−1, 1]. This is a very general example for a self-adjoint elliptic

interface problem with non-linear solution. We test our method for two different interfaces.

In Table 2.6, we show a grid refinement analysis for an elliptic interface ϕ(x, y) = (x/0.6)2 +

(y/0.4)2 − 1. We observe once again second order convergence for the global solution and the

gradient at the interface.

Table 2.6: A grid refinement analysis for Example 2.3 for a general elliptic interface problems
with the interface (x/0.6)2 + (y/0.4)2 = 1.

N E(u) r E(u−n) r E(u+
n) r Iter Nb CPU(s)

32 8.4180×10−3 9.0987×10−2 8.0826×10−2 4 48 0.10
64 9.0036×10−4 3.22 2.3473×10−2 1.95 1.9611×10−2 2.04 4 96 0.20
128 1.5842×10−4 2.50 4.1771×10−3 2.49 3.6921×10−3 2.40 4 188 1.60
256 3.7209×10−5 2.09 1.0639×10−3 1.97 9.4238×10−4 1.97 4 372 3.02
512 9.3380×10−6 1.99 3.2952×10−4 1.69 2.4187×10−4 1.96 4 740 15.02

In Table 2.7, we show a grid refinement analysis for a skinny ellipse ϕ(x, y) = x2+(y/0.25)2−
1 in the domain [−1.5, 1.5] × [−1.5, 1.5]. Once we have the mesh fine enough to resolve the

interface (here N ≥ 64), we observe once again second order convergence for the global solution

and the gradient at the interface although the largest error often appears near the tips of the

longer axis of the ellipse.

If we increase the aspect ratio of the ellipse further, we can approximate the situations in

which the domain has cracks, see Figure 2.4 in which we tried to find the electric potential in

a domain containing an approximated crack ϕ(x, y) = (x/0.5)2 + (y/0.0625)2 − 1 within the

38

(a)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.2

0

0.2

0.4

0.6

(b)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−3

−2

−1

0

1

2

3

Figure 2.3: (a): The computed solution plot of Example 2.2. (b): The solution plot of Exam-
ple 2.3.

Table 2.7: A grid refinement analysis for Example 2.3 for a general elliptic interface problems
with the interface x2 + (y/0.25)2 = 1.

N E(u) r E(u−n) r E(u+
n) r Iter Nb CPU(s)

32 8.2459×10−2 1.3352 1.2700 5 44 0.078
64 4.7769×10−2 0.78 8.9448×10−1 0.57 6.7590×10−1 0.90 5 88 0.156
128 6.5830×10−3 2.85 1.6557×10−1 2.43 1.5748×10−1 2.10 5 176 1.250
256 9.2772×10−4 2.82 7.1232×10−2 1.21 4.7413×10−2 1.73 5 352 2.250
512 1.7125×10−4 2.43 1.4364×10−2 2.31 1.1780×10−2 2.00 5 704 19.703
1024 4.5859×10−5 1.90 3.3351×10−3 2.10 2.7234×10−3 2.11 5 1408 77.812

39

domain [−1, 1]× [−1, 1]. In this case, we have the PDE ∇· (β∇u) = 0, [u]Γ = 0 and [βun] = 0,

where β is the conductivity. The potential is given at the boundary with high potential on the

right. Figure 2.4 (a) is the case with the ratio β+ : β− = 1 : 1000, while Figure 2.4 (b) the ratio

is β+ : β− = 1000 : 1. Note that, we have tested the code against the analytic solution (2.71)

for which we get the same convergence order. More sophisticated techniques and analysis can

be found in [15, 67, 55, 52, 66].

(a)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.4: Electric potential in a domain containing a thin elliptic object. (a) The conductivity
of the object is large (1 : 1000); (b) The conductivity of the object is small (1000 : 1).

In Table 2.8, we show a grid refinement analysis for the five-star interface ϕ(x, y) = r−(0.5+

0.2 sin 5θ) in polar coordinates (r, θ), 0 ≤ θ < 2π. While we still observe average second order

convergence for the global solution and the gradient at the interface, the errors are fluctuated

more even though the average convergence rate is the same, compared with the elliptic interface.

We do observe that again, for complicated interfaces, we need to resolve the interface to obtain

an accurate solution and its gradient.

Table 2.8: A grid refinement analysis for Example 2.3 for a general elliptic interface problems
with a five-star interface, see Figure 1.1.

N E(u) r E(u−n) r E(u+
n) r Iter Nb CPU(s)

32 9.7746×10−1 2.8683×101 4.7767 11 78 0.03
64 6.5486×10−2 3.89 1.9417 3.88 3.2336×10−1 3.88 10 154 0.10
128 1.5688×10−2 2.06 6.4504×10−1 1.58 1.0623×10−1 1.60 9 308 0.29
256 1.8890×10−3 3.05 1.6617×10−1 1.95 3.6157×10−2 1.55 9 612 1.07
512 3.8770×10−4 2.28 2.9833×10−2 2.47 6.7852×10−3 2.41 9 1226 19.22

40

Chapter 3

A Direct Method for Accurate

Solution and Gradient Computations

for Elliptic Interface Problems

In this chapter, we propose a direct IIM for the elliptic interface problem

∇ · (β(x)∇u(x)) = f(x), x ∈ Ω \ Γ, Ω = Ω+ ∪ Ω−, (3.1)

[u](X) = w(X), [βun](X) = v(X), X ∈ Γ, (3.2)

in one and two space dimensions. where for example, [u] = [u]Γ(X) = u+(X) − u−(X) is the

difference of the limiting values of u(X) from Ω+ and Ω− sides, respectively, un = n · ∇u = ∂u
∂n

is the normal derivative of solution u(X), and n(X) is the unit normal direction at a point X on

the interface pointing to Ω+ side, see Fig. 1.1 for an illustration. We use x to represent a point

in the domain while X a point on the interface Γ. Since a finite difference discretization will

be used, we assume that f(x) ∈ C(Ω±), β(x) ∈ C1(Ω±), excluding Γ; and Γ ∈ C2, w ∈ C2(Γ),

v ∈ C1(Γ). All the parameters and ∂β
∂x and ∂β

∂y are assume to be bounded. For the regularity

requirement of the problem, we also assumed that β(x) ≥ β0 > 0 and f(x) ∈ Cν(Ω\Γ), for a

constant ν > 0 so that u(x) ∈ C2+ν(Ω±), see [17, 2]. For the error analysis, piecewise higher

regularity assumptions are needed for the solution.

41

3.1 The one-dimensional algorithm

The model problem in one dimension has the following form

(βux)x − σ(x)u = f(x), x ∈ (a, α) ∪ (α, b), (3.3)

u(a) = ua, u(b) = ub, [u]a = w, [βux]α = v, (3.4)

where a < α < b is an interface (a point). We assume that the conditions for β(x), σ(x), and

f(x) described in the introduction section hold in Ω− = (a, α) and Ω+ = (α, b).

Let xi = a + ih be a uniform mesh with h = (b − a)/N and i = 0, 1, · · · , N . Assume that

xj ≤ α < xj+1. We call xj and xj+1 irregular grid points while others are called regular grid

points. The finite difference scheme at a regular grid point xi, i 6= j and i 6= j+1 can be written

as
βi−1/2Ui−1 − 2β̄iUi + βi+1/2Ui+1

β̄ih2
− σi
β̄i
Ui =

f(xi)

β̄i
, (3.5)

where

βi−1/2 = β(xi − h/2), βi+1/2 = β(xi + h/2), β̄i = (βi−1/2 + βi+1/2)/2. (3.6)

At the irregular grid points xj and xj+1, we use the following nonconservative equivalent dif-

ferential equation

uxx +
βx
β
ux −

σu

β
=
f

β
. (3.7)

If βx(xj)/β(xj) ≥ 0, then the finite difference discretization at the irregular grid point xj can

be written as

Uj−1 − 2Uj + Uj+1

h2
+ C1 +

βx(xj)

β(xj)

(Uj+1 − Uj
h

+ C2

)
− σ(xj)

β(xj)
Uj =

f(xj)

β(xj)
, (3.8)

where C2 is the correction term for the upwind scheme

C2 = − [u]

h
− xj+1 − α

h
[ux], (3.9)

and C1 is the correction term for the central difference scheme

C1 = − [u]

h2
− xj+1 − α

h2
[ux]− (xj+1 − α)2

2h2
[uxx]. (3.10)

The case when βx(xj)/β(xj) < 0 can be treated in a similar way. We omit the details here. We

can derive a similar finite difference scheme at the irregular grid point xj+1.

Remark 3.1. The choices of the upwind scheme for ux are based on the sign of its coefficient

βx/β. Our intention is to make the coefficient matrix A diagonally dominant when the correction

42

terms C1, C2 are zero. For problems with nonzero correction terms, it is still possible to use

optimization techniques to manipulate the formulation of C1, C2, such that this matrix structure

is preserved. This approach is applied to design a maximum principle preserving scheme in the

2D algorithm and will be explained later.

Remark 3.2. At regular grid points, the local truncation error is O(h2). While at irregular

gird points, it is easy to show that the local truncation error is O(h) by applying the Taylor

expansion. Thus we only need to find a second order approximation of [ux] and a first order

approximation of [uxx] to keep the local truncation error at irregular grid points to be O(h). The

finite difference schemes we derived are consistent.

3.1.1 Interpolation schemes for [ux] and [uxx]

In this section, we discuss how to derive interpolation schemes for [ux] and [uxx]. First from the

jump conditions (3.4), we can get the following jump relations

u+ = u− + w, u+
x =

β−

β+
u−x +

v

β+
. (3.11)

Note that the differential equation (3.7) also provides additional two relations, which are

u+
xx =

f+

β+
+
σ+u+

β+
− β+

x u
+
x

β+
, (3.12)

u−xx =
f−

β−
+
σ−u−

β−
− β−x u

−
x

β−
. (3.13)

Let xk be an irregular point, where k = j, j + 1. The Taylor expansion of u(xk) about the

interface α is

u(xk) = u± + (xk − α)u±x +
1

2
(xk − α)2u±xx +O(h3), (3.14)

where the “+” or “−” sign is chosen depending on whether xk lies on the “+” or “−” side of

α. Using jump relations (3.11)-(3.13) to rewrite the limiting values u+, u+
x , u+

xx, and u−xx shown

in (3.14) in terms of u−, and u−x , we obtain

u(xj) = ξ1u
− + ξ2u

−
x + ξ3 +O(h3), (3.15)

u(xj+1) = η1u
− + η2u

−
x + η3 +O(h3), (3.16)

43

where

ξ1 = 1 +
σ−

2β−
(xj − α)2,

ξ2 = xj − α−
β−x
2β−

(xj − α)2,

ξ3 =
f−

2β−
(xj − α)2,

(3.17)

and

η1 = 1 +
σ+

2β+
(xj+1 − α)2,

η2 =
β−

β+
(xj+1 − α)− β−β+

x

2β+2 (xj+1 − α)2,

η3 = w +
v(xj+1 − α)

β+
+
β+(f+ + σ+w)− β+

x v

2β+2 (xj+1 − α)2.

(3.18)

Solving the two equations above for u− and u−x yields the following interpolation schemes

u− = δ1uj + δ2uj+1 + δ3 +O(h3), (3.19)

u−x = γ1uj + γ2uj+1 + γ3 +O(h2), (3.20)

where

δ1 =
η2

ξ1η2 − η1ξ2
, δ2 =

−ξ2

ξ1η2 − η1ξ2
, δ3 = −δ1ξ3 − δ2η3,

γ1 =
−η1

ξ1η2 − η1ξ2
, γ2 =

ξ1

ξ1η2 − η1ξ2
, γ3 = −γ1ξ3 − γ2η3.

(3.21)

Note that if we assume β−x ≥ 0 and β+
x ≤ 0 which includes the case where β is piecewise

constant, according to (3.17)-(3.18) we have

ξ1 > 1, ξ2 < 0, η1 > 1, η2 > 0, (3.22)

which guarantees the denominator ξ1η2−η1ξ2 in (3.21) is positive and bounded away from zero,

i.e.

ξ1η2 − η1ξ2 >
β−

β+
(xj+1 − α) + (α− xj)

≥ min

{
β−

β+
, 1

}
h.

(3.23)

44

The inequality (3.22) is still satisfied when β−x < 0 or β+
x > 0 so long as the mesh step size h is

sufficiently small. A sufficient but not necessary condition on h for a nonzero denominator can

be easily derived as

|hβ±x | < 2β±. (3.24)

Using jump relations (3.11)-(3.13), one can then get

u+ = δ1uj + δ2uj+1 + δ3 + w +O(h3), (3.25)

u+
x = ργ1uj + ργ2uj+1 + ργ3 +

v

β+
+O(h2), (3.26)

u−xx =
f−

β−
+
σ−

β−
(δ1uj + δ2uj+1 + δ3)− β−x

β−
(γ1uj + γ2uj+1 + γ3) +O(h), (3.27)

u+
xx =

f+

β+
+
σ+

β+
(δ1uj + δ2uj+1 + δ3 + w)− β+

x

β+
(ργ1uj + ργ2uj+1 + ργ3 +

v

β+
) +O(h), (3.28)

where ρ = β−/β+ is the jump ratio. Hence, the schemes for derivative jumps can be set as

[ux] = u+
x − u−x and [uxx] = u+

xx − u−xx. Notice that the scheme for [ux] is second order accurate

while that for [uxx] is only first order.

Remark 3.3. The interpolation schemes we derived above only involve two grid points, which

will play an important role in the stability proof. Also in the case where σ = 0, we only need the

scheme of u−x to get approximations for [ux] and [uxx]. In this situation, we have η1 = ξ1 and

hence γ1 + γ2 = 0. We say the interpolation scheme is consistent if the sum of the coefficients

equals zero.

Substituting the interpolation schemes we derived for [ux] and [uxx] back into the finite

difference scheme (3.8) yields

AhU = F. (3.29)

The coefficient matrix Ah is tri-diagonal since the interpolation schemes only involve two irreg-

ular grid points. Hence, the system can be solved in O(N) operations.

3.2 Convergence analysis of the 1D algorithm

In this section, we show second order convergence of the finite difference solution and its first

order derivative at the interface in the case where β is a piecewise constant and σ = 0. With-

out loss of generality, we assume the domain is (0, 1) and a homogeneous Dirichlet boundary

condition at the two ends for simplicity.

Since β is piecewise constant, we can incorporate it into the source term f(x) on the right-

45

hand side of the equation. We begin by studying the Green’s function solution to the BVP

u′′(x) = f(x), x ∈ (0, α) ∪ (α, 1), (3.30)

with homogeneous boundary conditions and jump conditions

u(0) = 0, u(1) = 0, [u]α = 0, [βux]α = 0. (3.31)

For any fixed point x̄ ∈ [0, 1] and x̄ 6= α, the Green’s function G(x; x̄) is the function of x that

solves the particular BVP of the above form with f(x) = δ(x− x̄), where δ(x) is the Dirac delta

function.

Let us assume x̄ < α. A little algebra shows that the piecewise linear function G(x; x̄) has

the form

G(x; x̄) =

k1x for 0 ≤ x ≤ x̄,
k2x− x̄ for x̄ ≤ x ≤ α,
k3x− k3 for α ≤ x ≤ 1,

(3.32)

where k1, k2, k3 subject to the following constrains.
k2 − k1 = 1 from u′′(x) = δ(x− x̄),

(α− 1)k3 = αk2 − x̄ from [u] = 0

β+k3 = β−k2 from [βux] = 0.

(3.33)

Solving the above system of equations yields

k1 =
β+(x̄− α)− β−(1− α)

ω
,

k2 =
β+x̄

ω
,

k3 =
β−x̄

ω
,

(3.34)

where ω = β+α+ β−(1− α). The case where x̄ > α can be analyzed in the same way and the

proof is skipped.

Theorem 3.1. Let B be a matrix of the size of Ah from (3.29). Let Bij denote the entry at ith

row and jth column and let Bj denote the jth column of B. Define

Bij = hG(xi;xj). (3.35)

Then, B is the inverse of Ah, i.e. B = A−1
h .

46

Proof. We only need to show AhBj = ej , where ej is the jth column of the identity matrix. By

the way we construct the Green’s function, this is true if the following conditions are satisfied.

1. The interpolation scheme for the correction term C1 from (3.10) only involves the solution

at two irregular grid points and brings no error for piecewise linear solution.

2. The finite difference schemes (3.5) and (3.8) have zero truncation error for piecewise linear

solution if the first condition holds.

3. The interpolation scheme for correction term C1 from (3.10) does not involves any constant

terms. i.e. the scheme has the form C1 = ζ1uj + ζ2uj+1 for some constants ζ1, ζ2.

Note that AhU+C is the discrete form of the operation d2u
dx2 satisfying the Dirichlet homogeneous

boundary conditions and jump conditions, where C is a vector of constants contributed by jump

relations. For the problem we considered, the terms [u] and [uxx] are all zero and hence the

formula for the correction term C1 from (3.10) becomes

C1 = −xj+1 − α
h2

[ux]. (3.36)

For piecewise linear solution, the remainder term O(h3) in the Taylor expansion (3.14) dis-

appears. Since the scheme we derived for [ux] is second order accurate and only involves two

irregular grid points, the scheme for the correction term C1 brings no error and the first condi-

tion holds. (If the interpolation scheme involves solution at three grid points, say uj−1, uj , and

uj+1, and x̄ = xj , then the error term will not disappear. This is the reason why we derive a

two-point interpolation scheme.)

The second condition will be automatically satisfied if the first condition holds. This is

because the central difference scheme is second order accurate and hence brings in no error for

a piecewise linear solution. Hence, the second condition ensures that AhBj + C = ej .

To prove the third condition, we only need to show the scheme (3.20) for u−x involves no

constant term. i.e. γ3 = 0. Since the terms w, v, [uxx], f+, f− are all zero, the terms ξ3, and η3

in (3.21) are zero. Therefore, γ3 = 0 and the third condition holds. Because of the homogeneous

boundary conditions, we know AhBj = ej . This completes the proof.

Theorem 3.2. For the case where β is piecewise constant and σ = 0, the finite difference

scheme that we proposed is convergent and has second order accuracy.

Proof. Denote Eu = U− Û, where Û is the vector of true values of u evaluated at grid points.

Let Tu be the local truncation error of the system (3.29), that is,

AhÛ = F + Tu. (3.37)

47

Subtracting equation (3.37) from (3.29) yields

AhE
u = Tu. (3.38)

Notice that the magnitude of Tu is O(h2) at regular grid points and is O(h) at irregular ones.

By using the Green’s function, the global error of u can be represented as

Eu
i = h

N−1∑
j=1

Tu
jG(xi;xj). (3.39)

Since |G(xi;xj)| is uniformly bounded by a constant, let us say C, we have the inequality

|Eu
i | < C

∣∣∣∣∣h
N−1∑
j=1

Tu
j

∣∣∣∣∣
≤ Ch

(
|Tu

j |+ |Tu
j+1|+

j−1∑
k=1

|Tu
k |+

N−1∑
k=j+2

|Tu
k |
)

≈ Ch
(

2O(h) + (N − 2)O(h2)
)

≈ O(h2).

This shows that ‖Eu‖∞ ≤ Ch2, hence completing the proof.

Theorem 3.3. The scheme (3.20) generates a second order approximation for the first deriva-

tive of the solution from each side of the interface.

Proof. Let U−x be the numerical solution of u−x . Denote Eq = U−x − u−x and T q be the residual

of the equation (3.20), that is,

u−x = γ1uj + γ2uj+1 + γ3 + T q, (3.40)

where in this case

γ1 =
−1

(α− xj) + ρ(xj+1 − α)
, (3.41)

γ2 =
1

(α− xj) + ρ(xj+1 − α)
. (3.42)

Subtracting equation (3.40) from (3.20) yields

Eq = γ1E
u
j + γ2E

u
j+1 + T q. (3.43)

48

Notice that T q is O(h2), and Eu
j ,E

u
j+1 are O(h2). From (3.41)-(3.42), we know γ1, γ2 are O(1/h)

and γ1 + γ2 = 0. Hence,

|Eq| = |γ1E
u
j + γ2E

u
j+1 + T q|

= |γ2(Eu
j+1 −Eu

j) + T q|
≤ |γ2| · |Eu

j+1 −Eu
j |+ |T q|

≈ O(h2),

if |Eu
j+1 − Eu

j | ≈ O(h3). Notice that |G(xj+1;xk)−G(xj ;xk)| ≤ Ch for some constant C since

k1, k2, k2 from (3.34) are bounded for all different xk. Hence, we have

|Eu
j+1 −Eu

j | = h
N−1∑
k=1

|Tu
k | · |G(xj+1;xk)−G(xj ;xk)|

≤ Ch2
N−1∑
k=1

|Tu
k |

≈ O(h3).

Therefore, we have |Eq| ≈ O(h2). This completes the proof.

3.3 The algorithm for two dimensional problems

In this section, we present the algorithm for two dimensional problems. Assuming the space

domain is Ω = (a, b)× (c, d), for simplicity of discussion, we use a uniform mesh

xi = a+ ih, i = 0, 1, · · ·M ; yj = c+ jh, j = 0, 1, · · · , N, (3.44)

where h is the space step size. The interface Γ is represented by the zero level set of a Lipschitz

continuous function φ(x, y), that is

Γ =
{

(x, y), φ(x, y) = 0, (x, y) ∈ Ω
}
. (3.45)

The level set function φ(x, y) satisfies

φ(x, y) < 0 for (x, y) ∈ Ω−, (3.46)

φ(x, y) = 0 for (x, y) ∈ Γ, (3.47)

φ(x, y) > 0 for (x, y) ∈ Ω+. (3.48)

49

In the neighborhood of the interface, we assume that φ(x, y) ∈ C2. In implementation, the level

set function is defined at the grid points as {φij}. At a grid point (xi, yj), we define

φmaxij = maxφi−1,j , φi,j , φi+1,j , φi,j−1, φi,j+1, (3.49)

φminij = minφi−1,j , φi,j , φi+1,j , φi,j−1, φi,j+1. (3.50)

A grid point (xi, yj) is called regular if φmaxij φminij > 0, otherwise it is called irregular. The

intersections on the interface with the grid lines are called control points, see Figure 3.1 for an

illustration.

Figure 3.1: A diagram of regular, irregular, and control points in a square domain with uniform
mesh and circle interface.

The interface information, such as the normal unit vector and signed curvature, etc., can

be easily computed from

n =
∇φ
|∇φ| , (3.51)

κ =
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

. (3.52)

We next discuss how to derive the finite difference scheme.

50

3.3.1 The finite difference scheme in 2D

At a regular grid point (xi, yj), the finite difference scheme is the classic conservative one with

the scaling by discretizing equation (1.1)

βi− 1
2
,jUi−1,j + βi+ 1

2
,jUi+1,j + βi,j− 1

2
Ui,j−1 + βi,j+ 1

2
Ui,j+1 − 4β̄i,jUi,j

β̄i,jh2
− σi,j

β̄i,j
Ui,j =

fi,j

β̄i,j
, (3.53)

where fi,j = f(xi, yj), βi− 1
2
,j = β(xi − h

2 , yj) and so on, and

β̄i,j = (βi− 1
2
,j + βi+ 1

2
,j + βi,j− 1

2
+ βi,j+ 1

2
)/4. (3.54)

To derive a scheme at irregular grid point, we reformulate equation (1.1) as

uxx + uyy +
βx
β
ux +

βy
β
uy −

σ

β
u =

f

β
. (3.55)

We will discretize equation (3.55) dimension by dimension. The central difference scheme is

applied for the second order derivative terms while an upwind scheme is used for the first order

derivative terms.

Consider the discretization in x-direction. Let (xi, yj) be an irregular grid point. The finite

difference approximations for uxx and βx
β ux have the following forms respectively.

uxx ≈
Ui−1,j − 2Ui,j + Ui+1,j + Ĉxi,j

h2
, (3.56)

βx
β
ux ≈

βx
β

Ui,j − Ui−1,j + C̃xi,j
h

if
βx
β
≤ 0,

βx
β

Ui+1,j − Ui,j + C̃xi,j
h

otherwise .

(3.57)

Notice that the way we use upwind scheme depends on the sign of βx/β. As explained in

Remark 3.1, our intention is to make the coefficient matrix an M-matrix when all the correction

terms are zero. This makes it possible to design a maximum principle preserving scheme by

manipulating the formulation of the correction terms. Now let’s first suppose the interface does

not cut through the interval (xi−1, xi+1) along the line y = yj , that is, (xi, yj) is regular in the

x-direction, then the correction terms are zeros, i.e. Ĉxi,j = C̃xi,j = 0.

Next we assume the interface cuts the grid line y(x) = yj in the interval (xi, xi+1), say at

(x∗i , yj). Without loss of generality, we assume that (xi, yj) ∈ Ω−. By using Taylor expansion,

51

one can derive the formula for the correction terms.

Ĉxi,j = −[u]− (xi+1 − x∗i)[ux]− (xi+1 − x∗i)2

2
[uxx], (3.58)

C̃xi,j =

0 if
βx
β
≤ 0,

−[u]− (xi+1 − x∗i)[ux] otherwise.
(3.59)

In this particular case, the corrected values Ui+1,j + Ĉxi,j and Ui+1,j + C̃xi,j (when βx > 0) can be

interpreted as the smooth extensions of the solution at (xi+1, yj) from Ω− side. Combing these

two correction terms, the discretization in x-direction can be rewritten as

uxx +
βx
β
ux ≈

Ui−1,j − 2Ui,j + Ui+1,j

h2
+
βx
β

Ui+1,j − Ui,j
h

+ Cxi,j , (3.60)

where

Cxi,j =
Ĉxi,j
h2

+
βx
β

C̃xi,j
h
. (3.61)

In a similar way, we define Cyi,j as the correction term in the y-direction.

Remark 3.4. When we use a level set representation of the interface, it can only cut a grid

line once between two grid points. For example, in the above description, (x∗i , yj) should be the

only intersection point in the interval (xi, xi+1). But it is possible for the same irregular grid

point (xi, yj) to have another intersection point in the left interval (xi−1, xi). In this case, the

formulas (3.58)-(3.59) are still valid but only consider the corrections contributed by Ui+1,j. One

can simply modify them by adding the corrections contributed by Ui−1,j. E.g. using the same

assumption that (xi, yj) ∈ Ω−, the formula (3.58) will become

Ĉxi,j =− [u]R − (xi+1 − x∗i)[ux]R −
(xi+1 − x∗i)2

2
[uxx]R

− [u]L − (xi−1 − x∗i)[ux]L −
(xi−1 − x∗i)2

2
[uxx]L,

(3.62)

where [·]R and [·]L represent the jump values at the right and left intersection point respectively.

The other correction terms can be derived in a similar way.

The formula for the correction terms in other situations can be derived in a similar way.

Note that it is enough to have the local truncation errors of the finite difference scheme at

irregular grid points to be first order without affecting global second order accuracy. Hence, we

only need to have first order approximations of the correction terms Cxi,j , C
y
i,j . Before deriving

the interpolation schemes for correction terms, we need to study the jump relations.

52

3.3.2 Jump relations and the coordinate transformation

To be self-contained, the following contents are presented and cited from [35, 38]. Assume that

the interface in parametric form is

Γ = {(X(s), Y (s)), X(s) ∈ C2, Y (s) ∈ C2}, (3.63)

where s is a parameter, for example, the arc-length. At a point of the interface (X,Y), the local

coordinate system in the normal and tangential directions is defined asξ = (x−X) cos θ + (y − Y) sin θ,

η = −(x−X) sin θ + (y − Y) cos θ,
(3.64)

where θ is the angle between the x-axis and the normal direction, pointing to the Ω+ sub-

domain, see Figure 5.3 for an illustration. In the new coordinate system, the interface can be

parameterized by

ξ = χ(η) with χ(0) = 0, χ′(0) = 0. (3.65)

The signed curvature of the interface at (X,Y) is χ′′(0), the formula of which is provided by

(5.20).

Figure 3.2: A diagram of an irregular grid point (xi, yi), its control point (Xk, Yk) on the x-
axis, and the local coordinates at (Xk, Yk) in the normal and tangential directions, where θ is
the angle between the x-axis and the normal direction.

If we know the jump conditions [u] = w and [βun] = v, then we can have the following jump

relations at a point (X,Y) on the interface which are necessary to derive an accurate finite

53

difference method.

Theorem 3.4. For elliptic interface problem (1.1)-(1.2), given the curvature of the interface,

κ, the two jump conditions [u] = w, [βun] = v lead to the following jump relations in the local

coordinate.

[u] = w, (3.66)

[uη] = w′, (3.67)

[βuξ] = v, (3.68)

[uηη] = D1 = −κ[uξ] + w′′, (3.69)

[βuηξ] = D2 = κ[βuη]− [βηuξ] + v′, . (3.70)

The elliptic equation (1.1) itself gives additional two jump relations in Cartesian coordinates.

u+
xx + u+

yy = D3 = −β
+
x

β+
u+
x −

β+
y

β+
u+
y +

σ+

β+
u+ +

f+

β+
, (3.71)

u−xx + u−yy = D4 = −β
−
x

β−
u−x −

β−y
β−

u−y +
σ−

β−
u− +

f−

β−
. (3.72)

Here we skip the derivation which is similar to those derived in equation (3.5) in Section 3.1

in [38]. Through the coordinate transformation, one can get seven jump relations in Cartesian

coordinates and express the limiting values in terms of u−, u−x , u
−
y , u

−
xx, u

−
xy. Hence, we have the

following,

u+ = u− + w (3.73)

u+
x = (s2 + ρc2)u−x + (ρ− 1)scu−y − sw′ +

c

β+
v, (3.74)

u+
y = sc(ρ− 1)u−x + (ρs2 + c2)u−y + cw′ +

s

β+
v, (3.75)

u+
xx = [s4 + (4ρ− 2)s2c2 + c4]u−xx + 2(ρ− 1)(s3c− sc3)u−xy

+ (s2 − c2)D1 − (2sc/β+)D2 + c2D3 − [(2ρ− 1)s2c2 + c4]D4,
(3.76)

u+
xy = 2(ρ− 1)(s3c− sc3)u−xx + [ρs4 − (2ρ− 4)s2c2 + ρc4]u−xy

− 2scD1 + [(c2 − s2)/β+]D2 + scD3 − [ρs3c− (ρ− 2)sc3]D4,
(3.77)

u+
yy = −[s4 + (4ρ− 2)s2c2 + c4]u−xx − 2(ρ− 1)(s3c− sc3)u−xy

− (s2 − c2)D1 + (2sc/β+)D2 + s2D3 + [(2ρ− 1)s2c2 + c4]D4,
(3.78)

u−yy = −u−xx +D4. (3.79)

where ρ = β−/β+ is the jump ratio, β± are the limiting values from each side of the interface,

54

and s, c stand for sin θ and cos θ respectively. Notice that D1, D2, D3, and D4 can all be

expressed in terms of u−, u−x , u
−
y by using formula (3.73)-(3.75).

3.3.3 The approximation of correction terms

In this section, we describe how to interpolate the correction terms at the irregular grid points.

Here we derive the scheme for Cxi,j used in (3.60) as an example. We will use the jump relations

(3.73)-(3.79) to rewrite the correction term Cxi,j and the Taylor expansions of the solution at grid

points in terms of the limiting values u−, u−x , u
−
y , u

−
xx, u

−
xy. Using the method of undetermined

coefficients, a nine-point interpolation scheme can be derived.

Let (xi, yj) be an irregular point. Without loss of generality, we assume the interface cuts

through the interval (xi−1, xi+1) along the line y = yj and intersects at the point (x∗i , yj). We

will use the compact nine points (xi+ik , yj+jk) to derive the scheme, where ik, jk take values in

the set {0,±1}. The Taylor expansion of u(xi+ik , yj+jk) about (x∗i , yj) is

u(xi+ik , yj+jk) = u± + (xi+ik − x∗i)u±x + (yj+jk − yj)u±y +
1

2
(xi+ik − x∗i)2u±xx

+
1

2
(yj+jk − yj)2u±yy + (xi+ik − x∗i)(yj+jk − yj)u±xy +O(h3),

(3.80)

where the “+” or “−” sign is chosen depending on whether (xi+ik , yj+jk) lies on the “+” or

“−” side of Γ. Note that the right-hand side of the above equation can be expressed in terms

of u−, u−x , u
−
y , u

−
xx, u

−
xy by using the jump relations (3.73)-(3.79). Hence, we get the scheme

U(xi+ik , yj+jk) = c1
ik,jk

U− + c2
ik,jk

U−x + c3
ik,jk

U−y + c4
ik,jk

U−xx + c5
ik,jk

U−xy + c6
ik,jk

, (3.81)

for ik, jk = 0,±1. Similarly, the equation (3.61) can be reformulated as

Cxi,j = a1U
− + a2U

−
x + a3U

−
y + a4U

−
xx + a5U

−
xy + a6, (3.82)

where the coefficients a1-a6 are some constants determined by the model problem.

Assume the interpolation scheme for Cxi,j has the form

Cxi,j =
∑
ik,jk

γik,jkUi+ik,j+jk + γc, (3.83)

where ik, jk take values of 0,±1. The coefficients {γ′s} are determined by solving the linear

55

system

ui−1,j−1 ui,j−1 · · · ui,j+1 ui+1,j+1

u− c1

−1,−1 c1
0,−1 · · · c1

0,1 c1
1,1

u−x c2
−1,−1 c2

0,−1 · · · c2
0,1 c2

1,1

u−y c3
−1,−1 c3

0,−1 · · · c3
0,1 c3

1,1

u−xx c4
−1,−1 c4

0,−1 · · · c4
0,1 c4

1,1

u−xy c5
−1,−1 c5

0,−1 · · · c5
0,1 c5

1,1

γ−1,−1

γ0,−1

· · ·
γ0,1

γ1,1

=

a1

a2

a3

a4

a5

(3.84)

and setting

γc = a6 −
∑
ik,jk

c6
ik,jk
· γk (3.85)

Notice that the linear system (5.76) contains 5 equations with 9 unknown variables and

hence is underdetermined. One can then use SVD to get the minimum norm solution. In this

case, the scheme (3.83) derived for Cxi,j is first order accurate. At this point, the finite difference

scheme used to discretize the space at irregular grid point is fully determined. In practice, the

correction terms are part of coding of the numerical algorithm. The correction terms are only

needed at irregular grid points near the interface. Thus the additional cost in determining the

correction terms is O(N) instead of that for the linear solver of the finite difference equations

which is at least O(N2).

Denote U as the numerical solution of (1.1) at grid points from our approach. One can then

write down the discretization of equation (1.1) in matrix-vector form as

AhU = F, (3.86)

where Ah is the discrete elliptic operator, and vector F is assembled from source term f ,

boundary conditions, and correction terms. Notice that the coefficient matrix becomes the

discrete Laplacian when β is constant and σ = 0. In this case, the above system of equations

(3.86) can be easily solved by a fast Poisson solver and the solution is second order accurate.

For problems with piecewise constant β, the second order convergence of the solution can be

numerically proved by enforcing discrete maximum principle and is presented in the next section

3.3.4. For more general problems, the second order convergence for both solution and gradient

will be demonstrated by numerical examples in Section 3.4.

The solution will then be used to recover the gradient at the interface. For a control point

on the interface, let us assume (xi, yj) is its closest irregular grid point. The gradient in the

56

normal direction at this control point can be computed by using the formula

U−n = cos θU−x + sin θU−y , (3.87)

U+
n = ρ cos θU−x + ρ sin θU−y + v/β+, (3.88)

where the first equation (3.87) comes from the coordinate transformation defined in (3.64) while

the second one (3.88) is simply the result of expanding the flux jump condition in (1.2). In a

similar way, one can derive the formula for the tangential derivatives

U−τ = − sin θU−x + cos θU−y , (3.89)

U+
τ = − sin θU−x + cos θU−y + w′, (3.90)

where the second equation (3.90) comes from jump relation (3.67). Assume the interpolation

schemes for the gradients have the same forms as (3.83). Then take U−n and U+
n as examples.

They can be determined from the linear system (5.76) by replacing the right-hand side vec-

tor with [0, cos θ, sin θ, 0, 0, 0]T and [0, ρ cos θ, ρ sin θ, 0, 0, v/β+]T respectively. The interpolation

schemes for computing the gradients in other directions can be derived in a similar way.

3.3.4 Discrete maximum principle and error analysis

In this section, we propose an alternative discrete maximum principle preserving scheme to

solve the model problem. The difference from the original version is the way we solve the linear

system (5.76). In terms of performance, this alternative approach is no better than the original

one but has extra computational cost for solving the optimization problems. The only purpose

of introducing this method is for the error analysis. In general, if efficiency and simplicity are

preferred, the original algorithm will be the choice. Otherwise, if the theoretical convergence

proof is important, this method may be considered. The following are the details.

In this alternative method, we impose the sign restrictions on the coefficients {γ′s} from

the system (5.76)

γik,jk ≥ 0 if (ik, jk) 6= (0, 0),

γik,jk < 0 if (ik, jk) = (0, 0).
(3.91)

The coefficients are determined by the quadratic programming problem

min
γ
{1

2
γT Iγ}, s.t.

Cγ = a

γik,jk ≥ 0 if (ik, jk) 6= (0, 0),

γik,jk < 0 if (ik, jk) = (0, 0),

(3.92)

57

where I is identity matrix, Cγ = a is the linear system (5.76). We conjecture that the solution

for this optimization problem always exists when the mesh is sufficiently fine and verify it by

numerical tests.

Conjecture 3.1. If the mesh size h is small enough and β+ 6= β−, the optimization problem

(3.92) defined with five equalities and the sign constraints has a solution. The solution of the

coefficients {γik,jk} also satisfies

|γik,jk | ≤
Cu
h2

max

(
ρ,

1

ρ

)
, (3.93)

R = |R1|+ |R2| ≥
Cd|ρ− 1|

h2
> 0, (3.94)

where constant Cu and Cd are constants, and

R1 = γ−1,1 + γ0,1 + γ1,1 − γ−1,−1 − γ0,−1 − γ1,−1,

R2 = γ1,−1 + γ1,0 + γ1,1 − γ−1,−1 − γ−1,0 − γ−1,1.
(3.95)

The values R1, R2 defined above are the coefficients of the first derivative terms in the

Taylor expansion of the form
∑

ik,jk
γik,jkΦ(xi+ik , yj+jk) about the center point (xi, yj), and

Φ(x, y) ∈ C2(Ω) is a test function used to prove the stability in Theorem 3.5. Notice that when

the space step h is sufficiently small, the terms containing σ, κ, βx, and βy in (5.76) are higher

order terms and can be neglected. Hence, in the numerical verification, we only need to consider

the case where β is piecewise constant, σ = 0 and the curvature κ = 0 (the interface is a straight

line), see Figure 3.3. Now Let x∗ = xi + αh. The optimization problem only depends on three

variables α, θ, and ρ. We choose different values of these parameters to verify the conjecture.

αi = i∆α, ∆α =
1

M
, i = 0, 1, · · · ,M,

θj = j∆θ, ∆θ =
π

2N
, j = −N,−N + 1, · · · , N,

ρk = 10k∆ρ, ∆ρ =
H

L
, k = −L,−L+ 1, · · · , L.

(3.96)

We choose M = 100, N = 50, H = 5, and L = 50. The jump ratio ranges from 10−5 to

105, which should cover most applications. The numerical tests show that the solution to the

optimization problem always exists and the two conditions (3.93)-(3.94) hold. The results are

presented in Figure 3.4.

Remark 3.5. In the case where the mesh is coarse, the optimization solver may fail to give a

solution or provide a wrong solution. We can either add a few more grid points that are close

to the interface or loosen the equality restrictions by ignoring the last two equations in system

58

Figure 3.3: A diagram of the grid points involved in the optimization problem.

(5.76). The breakdown happens only at a few grid points when the jump ratio is large or the

grid is rather coarse. Loosening the equality restrictions at a few points does not affect global

second-order accuracy due to the nature of the ellipticity. The details can be found in section

3.5 from [38].

(a) (b)

Figure 3.4: (a) The largest magnitude of the coefficients γik,jk versus jump ratio ρ. (b) The
size of variable R versus jump ratio ρ.

Now in our algorithm, the following conditions hold.

59

1. The discrete elliptic operator Ah has the form

(AhU)i,j =
∑
ik,jk

cik,jkUi+ik,j+jk ,

where the indices ik, jk take values of 0,±1 and

cik,jk ≥ 0 if (ik, jk) 6= (0, 0), cik,jk < 0 if (ik, jk) = (0, 0).

2. The discrete elliptic operator Ah satisfies a discrete maximum principle, i.e.

|c0,0| ≥
∑

(ik,jk)6=(0,0)

cik,jk .

3. The discrete set of interior points JΩ is connected.

4. At least one of the equations from system (3.86) involves a boundary value given by

Dirichlet boundary condition.

The following lemma, which is similar to Theorem 6.2 of Morton and Mayer [56], is used to

prove second order convergence of the solution.

Lemma 3.1. Assume that the following conditions hold.

1. JΩ can be partitioned into two disjoint regions

JΩ = J1 ∪ J2, J1 ∩ J2 6= ∅. (3.97)

2. There exists a nonnegative mesh function Φ define on JΩ satisfying

(AhΦ)i,j ≥ C1 > 0 ∀(xi, yj) ∈ J1, (AhΦ)i,j ≥ C2 > 0 ∀(xi, yj) ∈ J2. (3.98)

3. The truncation error at a grid point (xi, yj) satisfies

|Ti,j | ≤ T1 ∀(xi, yj) ∈ J1, |Ti,j | ≤ T2 ∀(xi, yj) ∈ J2. (3.99)

Then the error is bounded by

|ei,j | ≤
[

max
A∈J∂Ω

ΦA

]
max

{
T1

C1
,
T2

C2

}
. (3.100)

60

In the following theorem, we will use Lemma 3.1 to prove the stability of the 2D algorithm

using an optimization solver for the case where β is piecewise constant and σ = 0. Let J1 and

J2 be the sets of regular and irregular grid points respectively. In our algorithm, the truncation

error T1 at regular grid point is O(h2) while that error T2 at irregular one is O(h). The key

idea is to find two lower bounds C1 ∼ O(1) and C2 ∼ O(1/h) such that T1/C1 and T2/C2 are

O(h2).

Theorem 3.5. For elliptic interface problem (1.1)-(1.2), assume the following.

1. The coefficient β is piecewise constant, β+ 6= β−, and σ = 0.

2. The quadratic programming problem has a solution {γik,jk} at every irregular grid point.

3. There exist constants C3 and C4 such that

|γik,jk | ≤
C3

h2
max

(
ρ,

1

ρ

)
, R ≥ C4|ρ− 1|

h2
> 0, (3.101)

where R is defined in (3.95).

Then the numerical method has second order convergence rate. i.e.

‖u(xi, yj)−Ui,j‖∞ ≤ C5h
2. (3.102)

Proof. Consider the nonnegative (not strictly) convex functions

Φ1(x, y) = x2, Φ2(x, y) = y2, (3.103)

and the nonnegative strictly convex function

Φ(x, y) = Φ1(x, y) + Φ2(x, y) = x2 + y2. (3.104)

Let J1 be the set of regular grid points and J2 be that of irregular grid points. We have

(AhΦ)i,j ≥ 4β± > 0 ∀(xi, yj) ∈ J1, (3.105)

where the “+” or “−” sign is chosen depending on whether (xi, yj) lines on the “+” or “−”

side of Γ. If (xi, yj) ∈ J2, then we have

(AhΦ)i,j ≥ 4β± +
∑
ik,jk

γik,jkΦ1
i+ik,j+jk

+
∑
ik,jk

γik,jkΦ2
i+ik,j+jk

, (3.106)

where 4β± is the result from the standard central difference stencil while the rest parts are the

correction terms. Applying the Taylor expansion on {Φ1
i+ik,j+jk

} about the center point (xi, yj)

61

yields ∑
ik,jk

γik,jkΦ1
i+ik,j+jk

=
∑
ik,jk

γik,jkΦ1
i,j + hR1(Φ1

x)i,j +O(1)

= hR1(Φx)i,j +O(1)

≥ 0,

(3.107)

where the second equality comes from the fact
∑

ik,jk
γik,jk = 0 and the last inequality is true

because Φ1 is convex and coefficients {γik,jk} also satisfy the discrete maximum principle, see

(3.92). In a similar way, we have∑
ik,jk

γik,jkΦ2
i+ik,j+jk

= hR2(Φy)i,j +O(1)

≥ 0.

(3.108)

Notice that γik,jk ∼ O(h2) and hence hR1(Φ1
x)i,j , hR2(Φy)i,j ∼ O(1/h), the size of which domi-

nates in the correction terms. Combining (3.107)-(3.108) yields

(AhΦ)i,j ≥ 4β± + hR1(Φx)i,j + hR2(φy)i,j +O(1)

≥ h ·R · |min(Φx,Φy)|+O(1)

≥ C4|ρ− 1|
h

|min(Φx,Φy)|+O(1)

>
C6

h
+O(1) > 0.

(3.109)

Now by Lemma 3.1 we have

|Ti,j |
(AhΦ)i,j

≤ C1h
2

4β±
∀(xi, yj) ∈ J1, (3.110)

|Ti,j |
(AhΦ)i,j

≤ C2

C6
h2 ∀(xi, yj) ∈ J2, (3.111)

and hence

‖u(xi, yj)−Ui,j‖∞ ≤ C5h
2, (3.112)

Remark 3.6. By Conjecture 3.1, the second and third conditions in Theorem 3.5 are satisfied

if the first condition hold. Hence, the second order convergence of the solution is proved for the

case where β is piecewise constant and σ = 0. For more general problems, σ, βx, and βy are

higher order terms in (5.76). So, the solution will be asymptotically second order convergent.

62

The second order convergence proof for the gradient is still an open question for the direct IIM,

and we only demonstrate it in the numerical tests.

3.3.5 An outline of the algorithm

In this section, we give an outline of our algorithm below.

Step 1: Generate a uniform mesh on the domain Ω = (a, b)× (c, d) and use level set function

to represent the interface.

Step 2: Determine the irregular grid points using equation (5.17)-(5.18) and calculate the

coordinates of the control points which are the intersection points of interface and grid

lines.

Step 3: Use the standard central difference scheme at the regular grid points.

Step 4: Solve the linear system (5.76) to determine the interpolation schemes for the correction

terms Cxi,j and Cyi,j in (3.61) and hence the finite difference stencil in equation (3.55)-(3.59)

at the irregular grid points. (The optimization can also be applied by solving the quadratic

programming problem (3.92) to get a discrete maximum principle preserving scheme.)

Step 5: Solve the system of linear equations (3.86) to get second order numerical solution

Step 6: Replace Cxi,j in (3.82)-(3.83) with U±n defined in (3.87)-(3.88) and the right-hand side

vector in (5.76) with [0, cos θ, sin θ, 0, 0, 0]T and [0, ρ cos θ, ρ sin θ, 0, 0, v/β+]T for U−n and

U+
n respectively. Then the solution {γik,jk} solved from linear system (5.76) is the set of

coefficients used to interpolate the normal derivatives at the interface. The interpolation

schemes for the gradients in other directions can be derived in a similar way.

3.4 Numerical examples

We present a variety of numerical experiments to show the performance of the new direct

IIM approaches. All examples are computed with the double precision and are performed

on a laptop with Intel(R) Core(TM) i7-4650U CPU, 1.70GHz, 8.00 GB memory. We

also list CPU time(s) in the tables. We present errors in L∞ norm and estimate the

convergence order r using (2.65). We use Algebraic Multigrid (AMG) preconditioned

GMRES iterative method to solve the discrete linear system. The tolerance is set to be

10−13 and the initial values is 0 in all computations. In all tables listed in this section,

we use “Iter” to represent the number of GMRES iterations, “Nb” the number of control

points, “N” the number of mesh intervals in each direction of the rectangular domain,

63

and “CPU(s)” the run time in seconds. In the following examples, we will test each of the

examples by using the original algorithm without the optimization. The grid refinement

analysis is performed to demonstrate the second order convergence for both solution and

gradient at the interface. We also conduct the eigenvalue analysis to show that the inverse

of the coefficient matrix Ah is norm-bounded in L2 norm and hence the method is stable.

For the modified algorithm using the optimization, we test it on Example 3.3 and 3.4

to compare with the original algorithm. Unless otherwise stated, the following numerical

results are from the original algorithm without the optimization.

Example 3.1.

u(x) =

sin(x+ y) in Ω−,

log(x2 + y2 + 1) in Ω+,
(3.113)

with

β(x) =

sin(x+ y) + 2 in Ω−,

cos(x+ y) + 2 in Ω+,
σ(x) = 0, (3.114)

where the interface is the zero level set of φ(x, y) =
√
x2 + y2 − 0.5, and Ω = (−1, 1) ×

(−1, 1). The source term f(x), and the interface jump conditions: [u] and [βun] are derived

from the exact solutions.

(a) (b)

Figure 3.5: (a): The solution plot of Example 3.1 with modest jump. (b): The error plot of
the computed solution. The error seems to be piecewise smooth as well, which is important for
accurate gradient computation.

64

Table 3.1: A grid refinement analysis for Example 3.1 with a modest variable jump in the
coefficient, where E(u) is the error of the solution and E(un), E(uτ) are the errors of normal
and tangential derivatives at the interface respectively. All the errors are presented in L∞ norm.

N E(u) r E(un) r E(uτ) r Iter Nb CPU(s)

16 1.04× 10−3 9.39× 10−3 5.59× 10−3 1 28 0.06
32 3.78× 10−4 1.46 2.41× 10−3 1.96 1.72× 10−3 1.70 1 60 0.10
64 8.00× 10−5 2.24 6.36× 10−4 1.92 7.98× 10−4 1.11 1 124 0.45
128 2.31× 10−5 1.79 1.89× 10−4 1.75 2.13× 10−4 1.91 17 252 0.34
256 5.65× 10−6 2.03 4.75× 10−5 1.99 4.94× 10−5 2.11 20 508 0.77
512 1.52× 10−6 1.89 1.35× 10−5 1.82 1.33× 10−5 1.89 19 1020 2.09

Table 3.2: A grid refinement analysis for Example 3.1 with a large variation in the jump ratio
of the coefficient.

N E(u) r E(un) r E(uτ) r Iter Nb CPU(s)

16 1.28× 10−2 5.31× 10−2 1.54× 10−2 1 28 0.05
32 3.37× 10−3 1.93 1.50× 10−2 1.82 4.39× 10−3 1.81 1 60 0.12
64 8.90× 10−4 1.92 4.07× 10−3 1.88 1.28× 10−3 1.78 1 124 0.47
128 2.49× 10−4 1.84 1.18× 10−3 1.79 3.58× 10−4 1.84 19 252 0.39
256 6.28× 10−5 1.99 3.03× 10−4 1.96 9.67× 10−5 1.89 22 508 0.86
512 1.54× 10−5 2.03 7.72× 10−5 1.97 2.85× 10−5 1.76 22 1020 2.30

This is an almost arbitrary example with a piecewise smooth non-linear solution, a variable

coefficient with discontinuity along the interface. We present a grid refinement analysis

in Table 3.1. The second column is the maximum error of the solution while the third

column is the approximate convergence order. The fourth and sixth column are the errors

of the normal and tangential derivatives at the interface respectively and are defined as

the averages of the L∞ errors from each side of the interface Ω+ and Ω−, i.e.

E(un) =
1

2
(‖E(u+

n)‖∞ + ‖E(u−n)‖∞), E(uτ) =
1

2
(‖E(u+

τ)‖∞ + ‖E(u−τ)‖∞).

The fifth and seventh columns are the approximate convergence order of the computed

normal and tangential derivatives. The last three columns are number of GMRES itera-

tions, number of control points, and the total CPU time in seconds, respectively. We can

observe from Table 3.1 that the new direct IIM has average second order accuracy in both

the solution globally and the gradient at the interface from each side of the interface. We

also see that it only takes one iteration to solve the linear system when the mesh is coarse

65

and the number of GMRES iterations is independent of the mesh size when N is large

enough. From Figure 3.6, one can see that the largest eigenvalue of the coefficient matrix

is negative and bounded away from zero. Therefore, the inverse of the coefficient matrix

Ah is bounded in L2 norm by a constant and the method is stable. The total CPU time

also shows the method is very fast.

Now we use the same exact solution and interface and σ = 0 but with a large jump in the

coefficient along the interface

β(x) =

e5x in Ω−,

sin(x+ y) + 2 in Ω+.
(3.115)

Notice that β− ranges from 6.7379× 10−3 to 1.4841× 102 along the interface, and hence

the jump ratio changes dramatically. Nevertheless, all the nice features are the same as

the previous example as shown in Table 3.2 and Figure 3.6.

(a) (b)

Figure 3.6: (a): Plot of the largest eigenvalue versus the number of grid points for Example
3.1 with modest jump using the algorithm without the optimization. (b): Plot of the largest
eigenvalue versus the number of grid points for Example 3.1 with large jump using the algorithm
without the optimization.

Example 3.2.

u(x) =

x2 − y2 in Ω−,

sin(x) cos(y) in Ω+,
(3.116)

66

Table 3.3: A grid refinement analysis for Example 3.2 with β− = 1 and β+ = 1000.

N E(u) r E(un) r E(uτ) r Iter Nb CPU(s)

16 3.21× 10−4 1.65× 10−3 7.60× 10−3 1 20 0.03
32 1.37× 10−4 1.23 7.45× 10−4 1.15 2.28× 10−3 1.74 1 44 0.13
64 3.97× 10−5 1.79 1.93× 10−4 1.95 6.86× 10−4 1.73 1 92 0.22
128 1.01× 10−5 1.98 6.01× 10−5 1.69 1.80× 10−4 1.93 20 188 0.29
256 2.63× 10−6 1.94 1.66× 10−5 1.86 5.22× 10−5 1.79 24 380 0.75
512 6.85× 10−7 1.94 4.00× 10−6 2.05 1.32× 10−5 1.98 25 764 2.23

Table 3.4: A grid refinement analysis for Example 3.2 with β− = 1000 and β+ = 1.

N E(u) r E(un) r E(uτ) r Iter Nb CPU(s)

16 8.42× 10−4 4.26× 10−3 9.77× 10−4 1 20 0.03
32 1.66× 10−4 2.35 1.37× 10−3 1.64 8.89× 10−4 0.14 1 44 0.11
64 4.66× 10−5 1.83 2.89× 10−4 2.24 3.15× 10−4 1.50 1 92 0.17
128 8.77× 10−6 2.41 7.15× 10−5 2.01 8.17× 10−5 1.95 25 188 0.32
256 2.21× 10−6 1.99 1.92× 10−5 1.90 1.85× 10−5 2.14 31 380 0.84
512 5.40× 10−7 2.04 5.11× 10−6 1.91 5.31× 10−6 1.80 33 764 2.81

β(x) =

1 in Ω−,

1000 in Ω+,
or

1000 in Ω−,

1 in Ω+,
σ(x) = 0, (3.117)

where the interface is an ellipse represented by zero level set as

φ(x, y) =
x2

0.52
+

y2

0.252
− 1, (3.118)

and the domain is Ω = [−1, 1] × [−1, 1]. The source term f(x), and the interface jump

conditions: [u] and [βun] are derived from the exact solutions.

These are two extreme cases where the piecewise function β(x) has a huge jump at the

interface. The jump ratio ρ = β−/β+ is 0.001 or 1000 in this example. The grid refinement

for these two cases are shown in Table 3.3 and 3.4. From the tables, we observe the average

second order convergence rate for both the solution globally and gradient at the interface.

Compared with Example 3.1, we find that it requires finer grid to resolve the problem for

extremely small jump ratio ρ.

Example 3.3. A general interface example with σ = 0 and a complicated interface.

67

Table 3.5: A grid refinement analysis for Example 3.3 with a large variation in the jump ratio
and a complicated interface using the algorithm without the optimization.

N E(u) r E(un) r E(uτ) r Iter Nb CPU(s)

16 1.50× 10−2 5.21× 10−2 3.25× 10−2 1 48 0.09
32 4.09× 10−3 1.87 1.59× 10−2 1.71 1.18× 10−2 1.46 1 108 0.21
64 1.18× 10−3 1.79 5.14× 10−3 1.63 3.82× 10−3 1.63 1 212 0.74
128 2.47× 10−4 2.26 1.24× 10−3 2.05 1.03× 10−3 1.89 21 428 0.81
256 6.40× 10−5 1.95 3.09× 10−4 2.00 3.02× 10−4 1.77 27 860 1.33
512 1.66× 10−5 1.95 8.51× 10−5 1.86 7.21× 10−5 2.07 25 1728 3.42

Table 3.6: A grid refinement analysis for Example 3.3 with a large variation in the jump ratio
and a complicated interface using the algorithm with the optimization.

N E(u) r E(un) r E(uτ) r Iter Nb CPU(s)

16 7.60× 10−3 3.72× 10−2 3.19× 10−2 1 48 0.09
32 3.76× 10−3 1.02 2.25× 10−2 0.73 1.12× 10−2 1.51 1 108 0.25
64 8.95× 10−4 2.07 6.44× 10−3 1.80 2.71× 10−3 2.05 1 212 0.79
128 2.13× 10−4 2.07 1.71× 10−3 1.91 7.78× 10−4 1.80 20 428 0.86
256 5.74× 10−5 1.89 4.42× 10−4 1.95 2.15× 10−4 1.86 30 860 1.46
512 1.44× 10−5 2.00 1.18× 10−4 1.91 5.40× 10−5 1.99 41 1728 4.56

In this example, we use the same exact solution in Example 3.1, but the interface is a

5-leaf rose shape, which is represented by zero level set function

φ(x) = (0.5 + 0.2 sin(5θ))− r, (3.119)

The interface is both convex and concave and has relatively large curvature at some

places. We choose the coefficient β(x) as the one used in Example 3.1, which is expressed

in equation (4.9). The domain is Ω = (−1, 1) × (−1, 1). Notice that, in this example, we

get a huge change in the jump ratio and the interface has large curvature at some places.

We test this example using both the algorithms with and without the optimization. The

grid refinement for these two cases are shown in Table 3.5 and 3.6. The results from both

algorithms look similar and once again we observe that when the mesh is sufficiently fine,

both the solution and the gradient are second order accurate. For the algorithm with

the optimization, it takes more GMRES iterations to solve the system when the mesh is

sufficiently fine. Although the coefficient matrix produced by this algorithm is M-matrix,

68

(a) (b)

Figure 3.7: (a): The computed solution plot of Example 3.3. (b): The error plot of Example
3.3. The error seems to be piecewise smooth.

it does not necessarily imply better computational efficiency. For the original algorithm

without the optimization, it runs faster in general. Also the largest eigenvalues of the

coefficient matrix produced by this algorithm is negative and bounded away from zero,

which is shown in Figure 3.9. This demonstrates the stability of the original algorithm in

L2 norm.

Table 3.7: A grid refinement analysis for Example 3.4 for a general elliptic interface problem
with a complicated interface using the algorithm without the optimization.

N E(u) r E(un) r E(uτ) r Iter Nb CPU(s)

16 5.03× 10−3 2.11× 10−2 2.24× 10−2 1 48 0.09
32 1.71× 10−3 1.56 6.30× 10−3 1.74 5.65× 10−3 1.99 1 108 0.22
64 4.41× 10−4 1.95 1.54× 10−3 2.03 1.40× 10−3 2.01 1 212 0.76
128 1.10× 10−4 2.01 4.32× 10−4 1.83 3.66× 10−4 1.94 16 428 0.67
256 2.78× 10−5 1.98 1.12× 10−4 1.95 8.53× 10−5 2.10 20 860 1.19
512 6.91× 10−6 2.01 2.87× 10−5 1.96 2.30× 10−5 1.89 19 1728 3.02

Example 3.4. A general example with σ 6= 0.

We present a more general example with a non-zero σ(x) term with the same general

69

(a) (b)

Figure 3.8: (a): The computed solution plot of Example 3.4. (b): The error plot of Example
3.4. The error seems to be piecewise smooth.

Table 3.8: A grid refinement analysis for Example 3.4 for a general elliptic interface problem
with a complicated interface using the algorithm with the optimization.

N E(u) r E(un) r E(uτ) r Iter Nb CPU(s)

16 6.75× 10−3 2.22× 10−2 2.35× 10−2 10 48 0.08
32 1.82× 10−3 1.89 6.36× 10−3 1.80 6.26× 10−3 1.91 11 108 0.23
64 4.79× 10−4 1.93 1.57× 10−3 2.02 1.56× 10−3 2.00 11 212 0.77
128 1.19× 10−4 2.01 4.58× 10−4 1.78 4.12× 10−4 1.92 11 428 0.92
256 3.03× 10−5 1.97 1.18× 10−4 1.96 9.83× 10−5 2.08 12 860 1.29
512 7.54× 10−6 2.01 3.01× 10−5 1.97 2.66× 10−5 1.89 12 1728 3.19

interface (a five-leaf rose) as in Example 3.3. The true solution is

u =

cos(x+ y) if (x, y) ∈ Ω−,

x3 + y3 if (x, y) ∈ Ω+,
(3.120)

with the coefficients

β =

x+ y + 3 if (x, y) ∈ Ω−,

sin(x+ y) + 2 if (x, y) ∈ Ω+,
σ =

x2 + y2 + 1 if (x, y) ∈ Ω−,

ex+y if (x, y) ∈ Ω+,
(3.121)

where again Ω = (−1, 1)× (−1, 1).

70

(a) (b)

Figure 3.9: (a): Plot of the largest eigenvalue versus the number of grid points for Example
3.3 using the algorithm without the optimization. (b): Plot of the largest eigenvalue versus the
number of grid points for Example 3.4 using the algorithm without the optimization.

This is a very general example for a self-adjoint elliptic interface problem with a non-

linear solution. The shape of the interface is complicated and σ has a finite discontinuity

at the interface. We test this example using both the algorithms with and without the op-

timization. The results from the grid refinement analysis are listed in Table 3.7 and Table

3.8. One can see that the performance of both algorithms is similar. Again, we observe

average second order convergence for the global solution and the gradient from each side

of the interface. We do see that the mesh needs to be fine enough to resolve the solution

and its gradient because of the complicated interface. Also, the number of GMRES itera-

tions is independent of mesh size when N is large. For the original algorithm without the

optimization, we plot the distribution of the largest eigenvalue of the coefficient matrix

in Figure 3.9. From that, one can see that all the eigenvalues locate in the left part of the

complex plane and the largest one is bounded away from zero. Numerically, we showed

the stability of our approach without using the optimization. For the algorithm using the

optimization, one can observe that its CPU time is slightly higher. Usually, this additional

computational cost by using the optimization is neglectable compared with the cost from

the linear solver.

71

Chapter 4

On Multi-scale ADI Methods for

Parabolic PDEs with a

Discontinuous Coefficient

In this chapter, two ADI methods based on augmented approaches are proposed to solve two-

dimensional heat equation

ut = (βux)x + (βuy)y − f, (x, y) ∈ Ω+ ∪ Ω− \ Γ, (4.1)

u(x, y, 0) = u0(x, y), Given BC on ∂Ω+, (4.2)

with a fixed interface Γ ∈ C2, where ut = ∂u
∂t , ux = ∂u

∂x and so on, BC stands for a boundary

condition along ∂Ω+ which can be Dirichlet, Neumann, or mixed along different parts of the

boundary ∂Ω+ (see Fig. 1.2 for an illustration). Two more conditions are needed at the interface

Γ to close the system, typically the natural jump conditions which state that both the solution

and the flux are continuous across the interface Γ. The coefficient is discontinuous and the

domain has many inclusions with different material parameters.

The key to an ADI method is to discretize the PDE dimension by dimension. For a heat

equation with a constant coefficient, say β = 1, this can be and has been done easily since we

know the jump relations [u], [ux], [uxx], and [u], [uy], [uyy] from the problem. That is, w, v, and

Γ directly, for example, we can write

u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj)

h2
≈ uxx(xi, yj)− (Cx)ij , (4.3)

where h2(Cx)ij = ±
(
[u] + [ux](xi+1 − x∗) + (xi+1 − x∗)2[uxx]/2

)
assuming that xi−1 and xi are

from the same side of the interface different from xi+1, x∗ is the intersection of the interface Γ

72

with the grid line y = yj . The correction term depends on known quantities w, v, and Γ linearly

and is similar to the Taylor expansion except with the jump conditions. Thus the ADI method

from time tk to tk+1 can be written in the matrix-vector form as

AUk+1 = Fk
1 −B1 [U]k

∗ −B2 [Un]k
∗

(4.4)

where A is the classical ADI operator, Uk+1 is the finite difference solution at tk+1, typically

k∗ = k + 1/2 is the time level between k and k + 1, and B1 [U]k
∗

and B2 [Un]k
∗

correspond

to the correction terms resulted from [u] and [un], respectively. Note that Uk term has been

absorbed into Fk
1, and the dimension of [U]k

∗
and [Un]k

∗
are O(N) compared with that of U

which is O(N2).

However, if β has a jump across the interface Γ, then we do not have the dimensional jump

relations anymore. the augmented strategy is to introduce one or several intermediate variables

so that we can still use the ADI method. For example, we can set Qk∗ = [Un]k
∗

as unknown to

have

AUk+1 +B2Q
k∗ = Fk

1 −B1[U]k
∗

(4.5)

where Qk∗ is an approximation to [Un]k
∗

which should be chosen to satisfy the interface condi-

tion [βun] = v. In discretization, often a local interpolation is used to approximate the [βun] = v

which can be written as another matrix-vector form

CUk+1 +DQk∗ = Fk
2 (4.6)

for some sparse matrices C and D. The solution (Uk+1,Qk∗) satisfies the following system of

equations, [
A B

C D

][
Uk+1

Qk∗

]
=

[
Fk

1

Fk
2

]
. (4.7)

The above system of equations provides a discretization process using the ADI method.

Another key of the augmented method is to solve the above system of equations efficiently.

Note that the Schur complement for Qk∗ is

(D − CA−1B)Qk∗ = Fk
2 − CA−1Fk

1 = F̄k, or SQk∗ = F̄k, (4.8)

where A−1Fk is the result of one step of the ADI for a regular problem. Often we can solve the

Schur complement system efficiently since the dimension of the unknown is O(N). For fixed

interface and time step size, we just need to form S and perform the LU decomposition once.

For time dependent problems and adaptive time step size, the GMRES method is recommended.

73

4.1 Two augmented formulations and jump relations

For simplicity of the discussion, we assume that the coefficient is a piecewise constant

β(x) =

{
β+ if x ∈ Ω+,

β− if x ∈ Ω−,
(4.9)

and β(x) ≥ β0 > 0. We also omit the time dependence at this moment but focus on the space

discretization. In order to use an ADI method efficiently with the Immersed Interface Method

(IIM) [35, 38], we need to get the jump relations in the coordinate directions such as [βu], [βux],

[βuxx], [βuy], [βuyy]. These jump relations are obtained using the original interface conditions

(1.5), the partial differential equation (1.3), and a carefully selected augmented variable.

Figure 4.1: A diagram of the local coordinates system (ξ, η) at a point (X∗, Y ∗) on the interface
Γ and the geometry in the neighborhood.

It is easier to derive jump relations using the local coordinates in the normal and tangential

directions. At a point X∗ = (X∗, Y ∗) on the interface Γ, we define the local coordinates as

ξ = (x−X∗) cos θ + (y − Y ∗) sin θ,

η = −(x−X∗) sin θ + (y − Y ∗) cos θ,
(4.10)

where θ is the angle between the x-axis and the normal direction at (X∗, Y ∗). In a neighborhood

of this point, the interface lies roughly in the η-direction, so we can parameterize Γ locally by

ξ = χ(η), η = η, with χ(0) = 0, χ′(0) = 0, and χ′′(0) = κ, (4.11)

74

where κ is the curvature at X∗, see Figure 4.1 for an illustration. For convenience we use

the same notation for the solution u(x, y, t) and other quantities involved both in the original

coordinates and the new local coordinates.

4.1.1 Setting [βu] as an augmented variable

Our first ADI method is to set [βu] as an unknown coupled with the original problem

ut = (βux)x + (βuy)y − f, (x, y) ∈ Ω+ ∪ Ω− \ Γ,

[βu]Γ = q, [βun]Γ = v, (X,Y) ∈ Γ.
(4.12)

The solution u(x, t) above is a functional of q(s) and can be denoted as uq(x, t). The solution

of the original problem corresponds to a particularly solution (q∗, uq∗(x, t)) such that

[uq∗]Γ = w. (4.13)

Now assume that we know the jump [βu] = q and [βun] = v, then we have almost immedi-

ately

[βux] = [βuξ] cos θ − [βu]η sin θ = v cos θ − dq

dη
sin θ,

[βuy] = [βuξ] sin θ + [βu]η cos θ = v sin θ +
dq

dη
cos θ.

(4.14)

To get second order jump relations in the original coordinates, we have the following theo-

rem.

Theorem 4.1. Let u(x, y) ∈ C2(Ω± \ Γ) be the solution to (1.3), (1.5) where Γ ∈ C2. Let

(X,Y) be a point on the interface with the local coordinates (ξ, η) as defined in (4.10). Assume

also that [u] = w, [βu] = q ∈ C2(Γ), and [βun] = [βuξ] = v ∈ C1(Γ), then we have the following

jump relations of the second order derivatives.

[βuηη] = −χ′′ v +
d2q

dη2
, [βuξη] = χ′′

dq

dη
+
dv

dη
, [βuξξ] = χ′′ v − d2q

dη2
+ [f] +

dw

dt
. (4.15)

Proof: From the governing equation (1.3), we have

[(βux)x + (βuy)y] = [f] + [ut] . (4.16)

Applying Theorem 3.1 in [38], we get the jump relations above. �

Remark 4.1. Usually we know [u] and [βun], but not [βu]τ = [βu]η = dq
dη . To utilize the

jump relations, we set [βu] or d[βu]
dτ = d[βu]

dη (see next sub-section) as an augmented variable to

75

decouple the two scales. The interface quantities have only one independent variable, say the

arc-length s, thus we use d(:)/dη, for example, for the surface derivatives.

With these jump relations, we can get the jump relations in the original coordinate directions

as the following,

[βuxx] = [βuξξ] cos2 θ − 2[βuξη] cos θ sin θ + [βuηη] sin2 θ,

[βuyy] = [βuξξ] sin2 θ + 2[βuξη] cos θ sin θ + [βuηη] cos2 θ.
(4.17)

4.1.2 Setting d[βu]/dτ as an augmented variable

Our second ADI method is to set d[βu]
dτ = q(s), the tangential derivative of u as an unknown

coupled with the original problem

ut = (βux)x + (βuy)y − f, (x, y) ∈ Ω+ ∪ Ω− \ Γ,

d[βu]

dτ

∣∣∣∣
Γ

= q, [βun]Γ = v, (X,Y) ∈ Γ.
(4.18)

The solution u(x, t) above is a functional of q(s) and can be denoted as uq(x, t). The solution

of the original problem corresponds to a particularly solution (q∗, uq∗(x, t)) such that[
d [uq∗]

dτ

]
Γ

=
dw

ds
. (4.19)

Note that d[βu]
dτ = [β∇u · τ] = [βuτ] if β is a piecewise constant. While this formulation is

only slightly different from the previous case, numerical results show dramatic differences in

performance. Now assume we know the jump d[βu]
dτ = q and [βun] = v, then we have almost

immediately

[βux] = [βuξ] cos θ − [βuη] sin θ = v cos θ − q sin θ

[βuy] = [βuξ] sin θ + [βuη] cos θ = v sin θ + q cos θ,
(4.20)

which are different from (4.14) in terms of the augmented variable and their surface derivatives.

It is advantageous to consider βu as a whole because the PDE in the spatial derivatives and

the flux jump conditions are given in this scale. To get second order jump conditions, we have

the following theorem.

Theorem 4.2. Let u(x, y) ∈ C2(Ω± \ Γ) be the solution to (1.3) and (1.5), where Γ ∈ C2. Let

(X,Y) be a point on the interface with the local coordinates (ξ, η) as defined in (4.10). Assume

also that [u] = w ∈ C2(Γ), [βu]η = q ∈ C1(Γ) and [βu]ξ = v ∈ C1(Γ), then we have the

76

following jump relations of the second order derivatives.

[βuηη] = −χ′′ v +
dq

dη
, [βuξη] = χ′′ q +

dv

dη
, [βuξξ] = χ′′ v − dq

dη
+ [f] +

dw

dt
. (4.21)

All those jump relations are somewhat similar. We only need to pay attention to which

interface variables are known and which one is the augmented one.

4.2 The ADI algorithms using different augmented variables

There are two major steps in the algorithm design. One is the ADI method given an augmented

variable q(s); and another step is to get the system of equations for the augmented variable

q(s). For more details about an augmented strategy, we refer the reader to [38, 44].

The domain Ω is assumed to be rectangular, say [a, b]× [c, d]. We use a uniform M ×N grid

with xi = a + ih, yj = c + jh, h = (b − a)/M = (d − c)/N , for simplicity of the presentation.

We use ukij ≈ u(xi, yj) as the finite difference solution at the grid point (xi, yj) and the time

level tk.

We use a level set representation for an interface Γ in the domain. That is, the interface is

the zero level of a Lipschitz continuous function ϕ(x, y). For example, for a unit circle interface

x2 + y2 = 1, one of (and the ideal) level set functions is ϕ(x, y) =
√
x2 + y2 − 1. In general,

the signed distance function is recommended for numerical computations. In discretization, the

level set function is determined explicitly by its values at the grid points ϕij = ϕ(xi, yj), for

example, for the unit circle interface, ϕij =
√
x2
i + y2

j − 1.

We classify a grid point (xi, yj) as a regular or irregular using the level set function. At a

grid point (xi, yj), define

ϕmax = max {ϕi−1,j , ϕi,j , ϕi+1,j , ϕi,j−1, ϕi,j+1} ,

ϕmin = min {ϕi−1,j , ϕi,j , ϕi+1,j , ϕi,j−1, ϕi,j+1} .
(4.22)

If ϕmaxϕmin > 0, the grid point (xi, yj) is called regular, otherwise it is irregular meaning the

interface cuts through the standard five point finite difference stencil. Note that, with the level

set function representation, the interface can only cut the grid line between two neighboring

grid points, for example, (xi−1, yj) and (xi, yj) once.

77

The ADI method is based on that described in [41] and can be written as

u
k+ 1

2
ij − ukij

∆t/2
= δhxxβ u

k+ 1
2

ij − (Cx)
k+ 1

2
ij −Qkij −Rkij + δhyyβ u

k
ij − (Cy)

k
ij − f

k+ 1
2

ij ,

uk+1
ij − uk+ 1

2
ij

∆t/2
= δhxxβ u

k+ 1
2

ij − (Cx)
k+ 1

2
ij −Qkij −Rkij + δhyyβ u

k+1
ij − (Cy)

k+1
ij − fk+ 1

2
ij ,

(4.23)

where ∆t is the time step size, δhxxβu
k+1/2
ij − (Cx)

k+1/2
ij is a finite difference approximation to

βuxx at (xi, yj) at the time level tk+1/2 and so on which are different for different choices of the

augmented variable.

The equivalent one-step form. If we eliminate u
k+1/2
ij in terms of ukij and uk+1

ij , we get

the one-step form below for purpose of discussion of the consistency and stability but not for

the implementation,

uk+1
ij − ukij

∆t
=

1

2
δhxx

(
(βu)kij + (βu)k+1

ij

)
− (Cx)

k+ 1
2

ij −Qkij −Rkij

+
1

2

(
δhyy(βu)kij − (Cy)

k
ij + δhyy(βu)k+1

ij − (Cy)
k+1
ij

)
+

∆t

4
δhxx

(
δhyy(βu)kij − (Cy)

k
ij − δhyy(βu)k+1

ij + (Cy)
k+1
ij

)
.

(4.24)

The derivation is almost the same except for the factor β as in [41]. In the expression above,

the right hand side in the first line is a discretization for (βux)x while the second line is for that

of (βuy)y, in which the sum is an approximation for ∇ · (β∇u) at the time level tk+1/2. Thus

it is possible to determine the correction terms at each time level tk and tk+1 or at the middle

level tk+1/2. Also as discussed in [41], if the solution is continuous [u] = 0, then we can simply

set the correction terms Qkij = 0 and Rkij = 0 in our ADI algorithms. Those two upper letters

Q and R may be used to represent other quantities in this paper.

At regular grid points where the interface does not cut the five-point finite difference stencil,

the standard ADI method is used, in which

(Cx)
k+ 1

2
ij = (Cy)

k
ij = Qkij = (Cy)

k+1
ij = Rkij = 0.

At each irregular grid point where the interface cuts through either between the grid lines

xi−1 and xi+1 or yj−1 and yj+1, we need to determine the finite difference discretization and

these correction terms.

Take Figure 4.1 as an example, and suppose that the interface cuts through the grid line

y = yj at (x∗, yj) ∈ Γ. Using the formula from [41, 38] and omitting the superscripts k for

simplicity, we have the following lemma.

78

Lemma 4.1. Assume that u ∈ C2(Ω±), i.e., u(x, y, t) is twice differentiable. Let xi ≤ x∗ < xi+1,

and (xi, yj) ∈ Ω−, (xi+1, yj) ∈ Ω+ then,

u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj)

h2
= u−xx(x∗, yj) +

[u]

h2

+ [ux]
(xi+1 − x∗)

h2
+ [uxx]

(xi+1 − x∗)2

2h2
+O(h)

= u−xx(x∗, yj)− (Cx)ij +O(h).

(4.25)

So the correction term Cx is given by

(Cx)ij = −
(

[u]

h2
+ [ux]

(xi+1 − x∗)
h2

+ [uxx]
(xi+1 − x∗)2

2h2

)
. (4.26)

There is a similar formula for the grid point (xi+1,j , yj) in the x-direction as well,

u(xi, yj)− 2u(xi+1, yj) + u(xi+2, yj)

h2
= u+

xx(x∗, yj)−
[u]

h2

− [ux]
(xi − x∗)

h2
− [uxx]

(xi − x∗)2

2h2
+O(h)

= u+
xx(x∗, yj)− (Cx)i+1,j +O(h).

(4.27)

So the correction term Cx is given by

(Cx)i+1,j =
[u]

h2
+ [ux]

(xi − x∗)
h2

+ [uxx]
(xi − x∗)2

2h2
. (4.28)

The correction terms in (4.23) are determined mostly from the above formulas (4.26) and (4.28).

Remark 4.2. If β is continuous across the interface, then we know [u] = w and [un] =

v/β. We have explicit expressions for [u], [ux], [uy], [uxx], [uyy]. The ADI method scheme is the

classical one with modified right hand sides. When β is discontinuous, we can not directly get the

dimension by dimension jump relations. The new ideas in this paper is to get those dimensional

jump relations through a carefully chosen augmented variable along the interface.

4.2.1 The ADI method using [βu] as the augmented variable

The ADI method with a known [βu] = q(s) is to discretize the original PDE directly. In the

spatial discretization, we treat βu as a whole. That is, we consider βu as the unknown variable.

With known values [βun] = v and [βu] = q, the augmented variable, we can find [βu], [βux],

[βuxx], and [βuy], [βuyy] from (4.14) and (4.17). Thus we can get the finite difference approxi-

mations for (βu)xx and (βu)yy easily. For example, assume that (xi−1, yj) ∈ Ω−, (xi, yj) ∈ Ω−,

79

but (xi+1, yj) ∈ Ω+, then the finite difference discretization for approximating βuxx is

β−ui−1,j − 2β−uij + β+ui+1,j

h2
− ˜(Cx)ij ≈ (βu)−xx where

˜(Cx)ij =

(
[βu]

h2
+ [βux]

(xi+1 − x∗)
h2

+ [βuxx]
(xi+1 − x∗)2

2h2

)
.

(4.29)

The ADI discretization (the coefficients of the unknown ukij ’s) remains the same with respect

to βu with different correction terms.

The advantage of this ADI method is that finite difference scheme is the same as the classical

one except that we treat βu as a whole.

The stability discussion

If the augmented variable is exact, then the modified ADI method is actually a Crank-Nicholson

scheme with a perturbation term ∆t uxxyytβ/4 from (4.24) if [u] = 0. Thus the method would

be asymptotically unconditionally stable. Nevertheless, the computed augmented variable can

affect the stability. The most conservative estimate using the growth factor assuming that the

augmented variable is at least first order accurate is that

∆t h

h2
≤ C βmin

βmax
, or ∆t ≤ C βmin

βmax
h, (4.30)

where C ≤ 5 is the width of the interpolation scheme.

4.2.2 The ADI method using d[βu]/dτ as the augmented variable

The ADI method with a known d[βu]
dτ = q(s) is a better one in our opinion because it takes into

account the two scales of two regions involved. It also allows larger time step size compared

with the previous one. The ADI discretization is applied to the original PDE with modified

finite difference coefficients in each coordinate direction. In the spatial discretization, we treat

βu as a whole and use the known jump conditions [u] = w and [βun] = v, and the augmented

variable d[βu]
dτ = q, in deriving the dimension by dimension finite difference discretization at

grid points where the interface cuts the 3-point stencil. We know the first and second order

derivative jump relations, [βux] and [βuxx], [βuy] and [βuyy] from (4.20), (4.21), and (4.17). We

derive the analytic expressions of the finite difference discretization below.

For example, assume that (xi−1, yj) ∈ Ω−, (xi, yj) ∈ Ω−, but (xi+1, yj) ∈ Ω+, then the finite

80

difference discretization for approximating βuxx at (xi, yj) is

γ1(β−ui−1,j) + γ2(β−ui,j) + γ3(β+ui+1,j) ≈ (βux)−x − Cx,

γ̂1(β−uij) + γ̂2(β+ui+1,j) + γ̂3(β+ui+2,j) ≈ (βux)+
x − Ĉx,

(4.31)

assuming that the interface cuts the grid line yj at x∗, or (x∗, yj) ∈ Γ. Note we have omitted

some index dependencies for simplification of notation. We explain only the derivation of the

first finite difference approximation here. The coefficients are determined so that the linear

combination minus the correction term (Cx) can approximate (βux)x at (x∗, yj) in the most

accurate way possible if the true solution is substituted in the finite difference formulas above.

Thus with the Taylor expansion at (x∗, yj) for each u(xl, yj), l = i− 1, i, i+ 1, we have

γ1β
−u(xi−1, yj) + γ2β

−u(xi, yj) + γ3β
+u(xi+1, yj)− Cx

= γ1β
− (u− + u−x (xj−1 − x∗) + u−xx(xj−1 − x∗)2/2

)
+ γ2β

− (u− + u−x (xj − x∗) + u−xx(xj − x∗)2/2
)

+ γ3β
+
(
u+ + u+

x (xj+1 − x∗) + u+
xx(xj+1 − x∗)2/2

)
− Cx +O

(
max
1≤l≤3

|γl|h3

)

= u−
(
β−γ1 + β−γ2 + β+γ3

)
+ γ3 β

+ [u]

+ (βu)−x

(
(xj−1 − x∗) γ1 + (xj − x∗) γ2 + (xj+1 − x∗)γ3

)
+ γ3 (xj+1 − x∗) [(βu)x] +

1

2
(βu)−xx

(
(x∗ − xj−1)2 γ1 + (x∗ − xj)2 γ2

+ (xj+1 − x∗)2 γ3

)
+ γ3 [(βu)xx] (xj+1 − x∗)2/2− Cx +O

(
max
1≤l≤3

|γl|h3

)
.

Thus we get the following system of equations.
β−γ1 + β−γ2 + β+γ3 = 0

(xj−1 − x∗) γ1 + (xj − x∗) γ2 + (xj+1 − x∗)γ3 = 0

1

2
(x∗ − xj−1)2 γ1 +

1

2
(x∗ − xj)2 γ2 +

1

2
(xj+1 − x∗)2 γ3 = 1,

(4.32)

and the correction term

Cx = γ3

(
β+ [u] + (xj+1 − x∗) [(βu)x] +

1

2
(xj+1 − x∗)2 [(βu)xx]

)
. (4.33)

81

The solution to the system above has a closed form below

γ1 = 2
β−h− [β](xj − x∗)

hDj

γ2 = −2
β−(xj+1 − x∗)− β+(xj−1 − x∗)

hDj

γ3 =
2β−

Dj
,

(4.34)

where

Dj = 2β−h2 + [β](xj−1 − x∗)(xj − x∗). (4.35)

The following theorem shows that the solution to the system of equations (4.32) is unique.

Theorem 4.3. If β−β+ > 0, then Dj > 0. Then, there is a unique solution to the system of

equations (4.32).

Proof: Without loss of generality, we assume β− > 0 and β+ > 0. Notice that (xj−1 −
x∗)(xj − x∗) ≥ 0, so if [β] ≥ 0, then Dj ≥ 2β−h2 > 0, hence the theorem is true. If [β] < 0, i.e.,

β− > β+, then since β−β+ > 0 we have∣∣∣∣β− − β+

β−

∣∣∣∣ < 1.

Hence

h2 +
[β]

2β−
(xj−1 − x∗)(xj − x∗) > h2 − 1

2
(xj−1 − x∗)(xj − x∗)

> h2 − 1

2
(2h)h = 0,

where we have used the fact that the interface point x∗ is between xj and xj+1, that is, xj ≤
x∗ < xj+1. This completes the proof. �

Similarly, the system of equations for {γ̂k}’s is
β−γ̂1 + β+γ̂2 + β+γ̂3 = 0

(xj − x∗) γ̂1 + (xj+1 − x∗) γ̂2 + (xj+2 − x∗)γ̂3 = 0

1

2
(x∗ − xj)2 γ̂1 +

1

2
(xj+1 − x∗)2 γ̂2 +

1

2
(xj+2 − x∗)2 γ̂3 = 1.

(4.36)

82

And we have a closed form for the coefficients,

γ̂1 =
2β+

Dj+1

γ̂2 = −2
β−(xj+2 − x∗)− β+(xj − x∗)

hDj+1

γ̂3 = 2
β+h− [β](xj+1 − x∗)

hDj+1
,

(4.37)

where

Dj+1 = 2β+h2 − [β](xj+2 − x∗)(xj+1 − x∗). (4.38)

We observe some sort of symmetry compared with {γk}’s as we can expect. With almost the

same process, it is easy to show that the system has a unique solution. The correction term is

Ĉx = −γ̂1

(
β− [u] + (xj − x∗) [(βu)x] +

1

2
(xj − x∗)2 [(βu)xx]

)
. (4.39)

The stability discussion

The stability of this ADI method is better than the first one because we have taken into

account the two scales in constructing the ADI scheme. If the augmented variable is exact,

then the modified ADI method is actually a Crank-Nicholson scheme with a perturbation term
β
4 uxxyyt ∆t from (4.24) if [u] = 0. Thus the method would be asymptotically unconditionally

stable. Nevertheless, the computed augmented variable can affect the stability. The most con-

servative estimate using the growth factor assuming that the augmented variable is at least first

order accurate is that

∆t h

h2
≤ C, or ∆t ≤ Ch, (4.40)

where C ≤ 5 is the width of the interpolation scheme. In numerical experiments, the scheme

does behave like asymptotically unconditionally stable. For small to modest jump ratios, or

large jump ratios with fine mesh, the ADI method works nicely.

4.3 Discretization of the augmented equation and the Schur

complement

The augmented strategy has been discussed in detail in [44, 38, 46]. The implementation of

course depends on different applications. Here we briefly explain some key details for the aug-

mented algorithms.

83

4.3.1 Discretization of an augmented variable

The augmented variable is defined at the computed orthogonal projections Xl = (Xl, Yl), l =

1, 2, · · · , Nb, of irregular grid points from one particular side (say ϕij > 0) to avoid possible

clustering, see [38] for more details.

4.3.2 The ADI method in the matrix-vector form given an augmented vari-

able

The finite difference solution {ukij} form a vector Uk whose dimension is O(NM), where M and

N are the number of grid lines in the x- and y-directions with M ∼ N , respectively. The discrete

augmented variable Qk
∗
l , l = 1, 2, · · · , Nb also forms a vector Qk∗ ∈ RNb , where k∗ = k + 1/2,

Nb ∼ O(N) is the number orthogonal projections of irregular grid points from one particular

side, say ϕij > 0.

Given Qk∗ , from the ADI method (4.23), we get {uk+1
ij }. The solution using the ADI method

with known augmented variable Qk∗ in the matrix-vector form can be written as

AUk+1 +BQk∗ = Fk
1 (4.41)

for some vector Fk
1 and sparse matrices A and B which do not need to be generated.

4.3.3 The discrete augmented equation in the matrix-vector form

We also need to discretize the augmented equation such as (4.13), or (4.19), to get a complete

system for Uk+1 and Qk∗ . This step involves local interpolations.

For the first augmented approaches, that is, select [βu] as the augmented variable, the

interpolation is similar to that used in [44, 46]. With the augmented equation (4.13) as an

example, we need to interpolate uk+1
ij to get U(Xl)

k+1 using [u]k+1 = wk+1 and [βuk+1] = qk
∗
,

here k∗ = k + 1. We use the least squares interpolation schemes for interface problems, see

Section 6.1.3 in [44].

The interpolation scheme for approximating u(Xl)
− can be written as

u(Xl)
− =

ks−1∑
k=0

γk ui∗+k, j∗+k − C, (4.42)

where ks is the number of grid points involved in the interpolation scheme, (xi∗ , yj∗) is the

closest grid point to Xl, C is a correction term.

The coefficients {γk} are determined by minimizing the interpolation error of (4.42) when

ui∗+k, j∗+k is substituted by the exact solution u(xi∗+k, yj∗+k). Using the local coordinate system

84

(4.10) centered at the point Xl or any point on the interface nearby, and denoting the local

coordinates of (xi∗+k, yj∗+k) as (ξk, ηk), we have the following from the Taylor expansion at

Xl = (Xl, Yl) , or (0, 0) in the local coordinates:

u(xi∗+k, yj∗+k) = u(ξk, ηk) = u± + ξku
±
ξ + ηku

±
η

+
1

2
ξ2
ku
±
ξξ + ξkηku

±
ξη +

1

2
η2
ku
±
ηη +O(h3),

(4.43)

where the ‘+’ or ‘−’ sign is chosen depending on whether (ξk, ηk) lies on the ‘+’ or ‘−’ side

of Γ, u±, u±ξ , · · · , u±ηη are evaluated at the local coordinates (0, 0), or Xl = (Xl, Yl) in the

original coordinate system.

The coefficients {γk}’s satisfy the following linear system of equations.

ks−1∑
k=0

γk = 1,

ks−1∑
k=0

γk ξk = 0,

ks−1∑
k=0

γk ηk = 0,
1

2

ks−1∑
k=0

γk ξ
2
k = 0,

ks−1∑
k=0

γk ξkηk = 0,
1

2

ks−1∑
k=0

γk η
2
k = 0.

(4.44)

Once {γk}’s are computed, the correction term C is determined from the following,

C = a2 [u] + a4 q + a6 [uη] + a8 [uξξ] + a10 [uξη] + a12 [uηη] , (4.45)

where a2 =
∑
k∈K+

γk, a4 =
∑
k∈K+

ξkγk, a6 =
∑
k∈K+

ηkγk, and so on, k ∈ K+ means that the

grid point involved in the interpolation (xi∗+k, yj∗+k) ∈ Ω+.

The discretization of the augmented equation (4.13) above can be written as

CUk+1 +DQk∗ = Fk
2 (4.46)

for some sparse matrices C and D. The solution (Uk+1,Qk∗) satisfies the following system of

equations, [
A B

C D

][
Uk+1

Qk∗

]
=

[
Fk

1

Fk
2

]
. (4.47)

The Schur complement for Qk∗ is

(D − CA−1B)Qk∗ = Fk
2 − CA−1Fk

1 = F̄k, or SQk∗ = F̄k, (4.48)

85

where A−1Fk is the result of one step of the ADI for a regular problem. Define the residual of

the augmented equation given Q as

R(Q) = CUk+1 +DQ− Fk
2. (4.49)

Note that R(0) = CUk+1(0)−Fk
2, and from (4.41), we have A−1BQ = A−1Fk

1 −Uk+1(Q),

thus the matrix-vector multiplication SQ is

SQ =
(
D − CA−1B

)
Q = DQ− CA−1BQ

= DQ + CUk+1(Q)− Fk
2 + Fk

2 − CA−1Fk
1

= R(Q)− (CUk+1(0) +D0− Fk
2)

= R(Q)−R(0)

(4.50)

since Uk+1(0) = A−1Fk
1. The right hand side of SQ = F̄k can be computed from −R(0) which

corresponds to the residual of the augmented equation with zero value of the components of

the augmented variable, which is obtained from one step ADI method.

For fixed interface Γ and time step ∆t, the Schur complement matrix S ∈ RNb×Nb is fixed.

So we form the matrix at the first step by using Q = ei, i = 1, 2, · · · , Nb. For moving interface

problem, or adaptive time steps, it is recommended to use the GMRES iterative method, see

for example [60].

4.3.4 The interpolation scheme when d[βu]/dτ is the augmented variable

Similar to the derivation of the ADI coefficients, the key to discretize the augmented equation

[
duq
dτ]Γ = q(s) is to treat [βu] as one scale while enforcing the [u] = w condition. The interpolation

scheme for approximating u(Xl)
−, for example, now is

u(Xl)
− =

ks−1∑
k=0

γk (β u)i∗+k, j∗+k − C. (4.51)

In other words, we interpolate (βu)ij instead of uij and the first equation in (4.44) now becomes

ks−1∑
k=0

γkβi∗+k, j∗+k = 1, (4.52)

while the rest of equations in (4.44) remain the same; and the correction term now is

C = â2 [u] + a4 v + a6 q + a8 [βuξξ] + a10 [βuξη] + a12 [βuηη] , (4.53)

86

where â2 =

ks−1∑
k=0

γk (β)i∗+k, j∗+k, and v = [βun] is the original flux jump condition. The remain-

ing ai’s have the same definition as before.

4.3.5 Outline of the new ADI methods

We outline the new ADI methods below.

Setup: Setup a grid {(xi, yj)}; the initial condition {u0
ij}, the level set function {ϕij};

classify grid points {(xi, yj)} as regular or irregular using (4.22).

Compute the Schur complement matrix: At every irregular grid point (xi, yj) with

ϕij > 0, find the orthogonal projection Xl at which the augmented variable is defined. The

process also generates an ordering of {Xl}, l = 1, 2, · · · , Nb. We also find and store the normal

(tangential can be determined from the normal) and the curvature information.

For i = 1, 2, · · · , Nb, set Qk∗ = ei, the i-th unit vector, and apply the ADI method. The

computed residual of the augmented equation is the i-th column of the Schur complement S.

Carry out the S = LU decomposition.

Apply the ADI method from tk to tk+1: Find the right hand side of the Schur com-

plement F̄k by setting Qk∗ = 0. Apply the stored LU decomposition to solve SQk∗ = F̄k to

get the augmented variable Qk∗ . Apply the modified ADI method with Qk∗ to get {uk+1
ij }, and

overwrite it to {ukij}.

4.3.6 Convergence discussions

The derived ADI methods are obviously consistent. If the solution is a piecewise quadratic

function, then the local truncation errors at all grid points are zero assuming the interface

quantities such as the projection, normal and tangential directions, and curvature are exact.

This is an indication of second order convergence if the ADI methods are also stable.

When we set [βu] as the augmented variable, we get clean time step constraint ∆t ≤
Ch/βmax. The constant C depends on the interpolation scheme and it is roughly between

5 ∼ 10.

We get better than expected stability when we set (d[βu]
dτ)k+1/2 as the augmented variable.

The ADI method behaves like asymptotically unconditionally stable. One possible cause may

be the right scale in the algorithm which absorbs β into the formulation as a whole.

4.4 Numerical examples

We first validate our method through problems with known analytic solutions. Most of com-

putations are done on a MAC Laptop with 2.6 Hz Intel Core i7 processor. Most of the results

87

shown here are using d[βu]
dτ as the augmented variable unless specified differently since we think

it is the better choice. We choose the time step size as ∆t = h/2 or ∆t = h/(2C) with

C = max{β+, β−}.

4.4.1 An example from the literature

The first example is taken from [72]. This is a good testing example since the solution, its flux,

and the source term, have two different scales and the problem is time invariant. The analytic

solution is given by

u(x, y, t) = cos(t)

(x2 + y2)3 − 1

β−
− 3

β+
if r ≤ 1,

− 3

β+(x2 + y2)
if r > 1,

(4.54)

where r =
√
x2 + y2. The source term is

f(x, y, t) =

(

(x2 + y2)3 − 1

β−
− 3

β+

)
sin t+ 36(x2 + y2)2 cos t if r ≤ 1,

− 3

β+(x2 + y2)
sin t− 12

(x2 + y2)2
cos t if r > 1.

(4.55)

In Table 4.1-4.3, we show numerical experiment results with the domain [−2, 2]× [−2, 2].

Table 4.1 shows the results of the grid refinement analysis with modest jump ratios β− = 10

and β+ = 2 in (a), and β− = 2 and β+ = 10 in (b). Table 4.2 shows the results for large jump

ratios β− = 1000 and β+ = 1 in (a), and β− = 1 and β+ = 1000 in (b). Table 4.3 shows the

CPU time and the condition number of the Schur complement system with β− = 1000 and

β+ = 1.

The first column in Table 4.1-4.3 is the mesh size in both x and y directions. The second

column is the error of the computed solution in the maximum norm (pointwise). The third

column is the approximate convergence order r obtained by (2.65). The fourth column is the

error of the computed augmented variable d[βu]
dτ at the computed orthogonal projections from

ϕij > 0 side in the maximum norm (pointwise). We can obtain the gradient or directional

derivative from each side of interface along any directions of the solution u(x, y, t) using the

augmented variable and the given flux jump condition [βun] = v. The fifth column is the

approximate convergence order of the augmented variable. We observe second order convergence

for all cases both for the solution and the augmented variable in the strongest norm. The

computed accuracy (or the error) seems to be independent of the jump ratios. This is somewhat

expected since the coefficient has been absorbed in the ADI method.

Figure 4.2 (a) shows a computed solution with N = 64, β− = 2, β+ = 10, and Figure 4.2 (b)

88

Table 4.1: A grid refinement analysis of the new ADI method at the final time T = 1 with
modest jumps. (a) β− = 10, β+ = 2, (b) β− = 2, β+ = 10.

(a): β− = 10; β+ = 2.

N ‖EN‖∞ r ‖Eaug‖∞ r

40 3.6656e-02 2.4534e-03

80 7.3944e-03 2.3095 6.5700e-03 1.9008

160 1.7855e-03 2.0501 1.6728e-03 1.9736

320 3.9268e-04 2.1849 4.5025e-04 1.8935

(b): β− = 2; β+ = 10.

N ‖EN‖∞ r ‖Eaug‖∞ r

40 1.1103e-02 7.1480e-03

80 2.8390e-03 1.9675 1.6853e-03 2.0845

160 7.6865e-04 1.8850 4.8657e-04 1.7923

320 1.9389e-04 1.9871 1.1757e-04 2.0491

Table 4.2: A grid refinement analysis of the new ADI method at T = 1 with large jump ratios.
(a) β− = 1000, β+ = 1, (b) β− = 1, β+ = 1000.

(a): β− = 1000; β+ = 1.

N ‖EN‖∞ r ‖Eaug‖∞ r

40 4.4455e-02 7.5757e-02

80 1.0921e-02 2.0252 1.7310e-02 2.1298

160 2.5155e-03 2.1182 5.4003e-03 1.6805

320 5.9963e-04 2.0687 1.2742e-03 2.0835

640 1.0906e-04 2.4590 3.4965e-04 1.8656

(b): β− = 1; β+ = 1000.

N ‖EN‖∞ r ‖Eaug‖∞ r

40 2.1571e-02 9.4754e-05

80 5.9738e-03 1.8524 2.2588e-05 2.0686

160 1.5718e-03 1.9262 6.3268e-06 1.8360

320 4.0456e-04 1.9580 1.5124e-06 2.0647

640 1.0248e-04 1.9811 3.9304e-07 1.9441

89

(a)

0

2

0.05

0.1

0.15

0.2

1 2

0.25

0.3

1

0.35

0

0.4

0

0.45

-1
-1

-2 -2

(b)

-2

2

-1.5

1.5

-1

1
2

-0.5

0.5

×10
-3

0

10

0.5

-0.5
0

-1

1

-1-1.5

1.5

-2 -2

Figure 4.2: Plot of the computed solution for Example 4.4.1. (a), and the error (b) withN = 64,
β− = 2, β+ = 10.

shows the corresponding error plot of the computed solution, which shows that the error is

piecewise smooth and no large sparks around interface. Similar behaviors are observed with

other computations as well.

In Table 4.3, we list the condition number of the Schur complement for one of the settings

with β− = 1000; β+ = 1. The condition number is between 5 ∼ 6 and decreases a little as the

mesh gets finer. Once again, this is true for all the test cases with different jump ratios.

The condition number of the Schur complement system when we use either [un] or [βu] is

slightly larger when the jump ratio gets larger. In all of our testing examples with the jump

ratio as large as 1 : 1000 or 1000 : 1, the condition number is under number 30.

Our computer code is not optimized, but it is still fast in terms of the CPU time from

Table 4.3. The CPU time is roughly the same for different jump ratios.

Table 4.3: Condition number of the Schur complement matrix and the CPU time for the case
of β− = 1000; β+ = 1.

N 40 80 160 320 640

cond(S) 6.5103 6.2896 6.1546 5.9063 5.8548

CPU(s) 0.45588 1.9964 10.100 61.148 438.26

To check the stability, we tried large ∆t, for example, ∆t = 1, T = 1000, β− : β+ = 1000 : 1;

and ∆t = 100, T = 106, β− : β+ = 1000 : 1. The code run to the final time with the

energy max{|ukij |} remains bounded in both cases. It looks like the developed ADI method is

90

unconditionally stable.

Note that there are few ADI methods for interface problems in the literature to compare

with except for the one in [72]. While our methods and the one in [72] are all second order

accurate in space, our methods are also second order in time and allow large jump ratios, larger

time step size. Note that ∆t = O(h2) is used in [72] and the linear systems from the ADI

method in [72] in each directional sweep are penta-diagonal instead of usual tri-diagonal which

is still true in our ADI methods.

A grid refinement analysis with [βu] as the augmented variable

Table 4.4: A grid refinement analysis of the new ADI method using the [βu] as the augmented
variable at T = 1 with large jump ratios. The second to fourth columns are the results for
β− = 1000, β+ = 1. The average convergence rate is 2.257; The fourth and seventh columns
are the condition numbers of the Schur complement matrix. The fifth to seventh columns are
the results for β− = 1, β+ = 1000. The average convergence rate is 2.0778.

N ‖EN‖∞(1000 : 1) r cond(S) ‖EN‖∞(1 : 1000) r cond(S)

40 9.8746e-03 9.6930 1.7179e-02 10.056

80 1.9708e-03 2.3249 10.314 5.6197e-03 1.6121 7.389

160 4.4039e-04 2.1620 13.944 8.2220e-04 2.7729 10.347

320 9.0273e-05 2.2864 18.883 2.2835e-04 1.8482 10.880

In Table 4.4, we show the grid refinement results using q = [βu] as the augmented variable

for the same example with large jump ratios β− = 1000, β+ = 1 and β− = 1, β+ = 1000. Once

again we see clearly second order convergence in the strongest norm. The average convergence

rates in the infinity norm are 2.257 and 2.0778, respectively. The condition number of the Schur

complement matrix is between 7 and 19. The advantage of this ADI is that it is relatively simpler

and the finite difference coefficients remain the same as the classical one. The disadvantage

compared with the ADI method with [βu]τ is that the time step constraint depends on the

jump ratio, ∆t ≤ Ch, where C ∼ 5/βmax. The constant C is between 5 ∼ 10 is from the width

of the interpolation for the interface conditions.

Find the steady state solution

We can use the developed method to find the steady state solution of the interface problem

numerically if it exists, or elliptic interface problems ∇ · β(∇u) − f using the PDE ut = ∇ ·
(β∇u) = f . In Table 4.5, we show the grid refinement analysis for the steady state solution

of (4.54)-(4.55) with cos t replaced by number one and sin t by zero. In this example β− = 1,

91

β+ = 1000. The initial condition is chosen randomly. It seems that it is enough to have final

time T = 2 to reach the steady state solution. Once again, we observe second order accuracy

in the maximum norm for both of the solution and the augmented variable.

Table 4.5: The grid refinement analysis for the steady state solution with T = 2 with β− = 1,
β+ = 1000.

N ‖EN‖∞ r ‖Eaug‖∞ r

40 1.7276 e-02 1.7908e-04

80 4.7260 e-03 1.8701 4.2691e-05 2.0686

160 1.2523 e-03 1.9161 1.1732e-05 1.8636

320 3.3064 e-04 1.9212 2.8043e-06 2.0647

640 9.3791 e-05 1.8177 7.2879e-07 1.9441

4.4.2 An example with a variable dynamic flux jump condition

In the first example, [βu] is a constant and the augmented variable [β∇u·τ] = 0. So the example

may not be general enough. In the second example, the true solution is

u(x, y, t) = g(t)

 xy
(
x2 + y2

)2
if r ≤ 1,

xy
(
x2 + y2

)
if r > 1,

(4.56)

where r =
√
x2 + y2. The source term f(x, y, t), the initial condition at t = 0, and the Dirichlet

boundary condition are determined from the true solution. This is a general example with a

continuous solution, that is, [u] = 0, but non-homogeneous non-constant flux jump condition

([βun] 6= 0), and both [βu] and [β∇u · τ] are varying along the interface,

[βun] = g(t)xy
(
4β+ − 6β−

)
,[

βu
]

= g(t)xy
(
β+ − β−

)
,

[
β∇u · τ

]
= g(t)

(
x2 − y2

) (
β+ − β−

)
.

(4.57)

Note that [βu] and [β∇u · τ] are not free variables. In our numerical tests, we set g(t) = cos t.

We first show the results of the grid refinement analysis with modest large jump ratios in

Table 4.6 and large jump ratios in Table 4.7. The results agree with that in Example 1 with

second order convergence for both of the solution (at all grid points) and the augmented variable

(at some points on the interface).

Figure 4.3 shows two error plots with N = 64, β− = 10, β+ = 2 in the left plot, and

β− = 0.033, β+ = 33 whose jump ratio is 1:1000 in the right plot. Once again, the errors are

92

Table 4.6: The grid refinement analysis for Example 2 with T = 1. (a): β− = 2, β+ = 10. The
average convergence order for the solution and the augmented variable are 1.9898 and 2.1013
respectively. (b): β− = 10, β+ = 2. The average convergence order for the solution and the
augmented variable are 2.4904 and 1.7774, respectively.

(a): β− = 10; β+ = 2.

N ‖EN‖∞ r ‖Eaug‖∞ r

40 7.0258e-05 1.4820e-02

80 2.2003e-05 1.6749 1.5871e-03 3.2231

160 5.1093e-06 2.1065 8.8556e-04 0.8418

320 1.1214e-06 2.1878 1.8758e-04 2.2391

(b): β− = 2; β+ = 10.

N ‖EN‖∞ r ‖Eaug‖∞ r

40 3.6527e-04 1.0443e-02

80 3.9449e-05 3.2109 2.8714e-03 1.8627

160 1.9328e-05 1.0293 1.0501e-03 1.4512

320 2.0585e-06 3.2310 2.5922e-04 2.0183

(a)

-5

2

1.5

1

20.5

0

×10
-4

0 1

-0.5
0

-1

-1-1.5

5

-2 -2

(b)

-6

2

-4

-2

1

0

×10
-4

0

2

2

4

1.5
1-1

0.5

6

0
-0.5

-1
-1.5-2

-2

Figure 4.3: Plot of the errors with N = 64 and different jump ratios for Example 4.4.2. (a):
β− = 10, β+ = 2; (b): β− = 0.033, β+ = 33 whose jump ratio is 1:1000.

93

piecewise smooth and no large sparks around the interface.

Next, we show the results with large jump ratios, 1 : 1000 and 1000 : 1. We re-scale the

problem to get more balanced jump ratio without changing the nature of the problem. This

can be done by multiplying the PDE by
√
βmin/βmax or

√
βmax/βmin. In this way, we can get

more balanced time step size. In Table 4.7, we show the grid refinement analysis results using

the modified ADI method. The average convergence order once again is quadratic or better.

Table 4.7: The grid refinement analysis for Example 2 with T = 1 with large jump ratios
1 : 1000 and 1000 : 1. (a): β− = 0.033, β+ = 33. The average convergence order for the solution
and the augmented variable are 2.2817 and 2.5749 respectively. (b): β− = 33, β+ = 0.033 so
the jump ratio is 1000 : 1. The average convergence order for the solution and the augmented
variable are 1.9381 and 1.9675, respectively.

(a): β− = 0.033, β+ = 33.

N ‖EN‖∞ r ‖Eaug‖∞ r

40 1.7240e-04 4.8628e-01

80 2.7064e-05 2.6713 2.0254e-02 4.5855

160 7.1346e-06 1.9235 1.1348e-02 0.83576

320 1.4994e-06 2.2504 2.2989e-03 2.3034

(b): β− = 33, β+ = 0.033.

N ‖EN‖∞ r ‖Eaug‖∞ r

40 6.8045e-04 3.0187e-02

80 1.8391e-04 1.8875 8.9924e-03 1.7471

160 6.4475e-05 1.5122 2.7157e-03 1.7274

320 1.2092e-05 2.4146 5.0469e-04 2.4279

A grid refinement analysis with very large jump ratios

We also tested very large jump ratios β−/β+ = 1 : 105 and β−/β+ = 105 : 1 as suggested

by one of referees. Both ADI method work well if ∆t ≤ Ch/βmax, as shown in Table 4.8

using the second ADI method. The second ADI method does allow large time step size but the

convergence behaves more erratically indicating the condition for asymptotic convergence may

not true any more. Also, we show simulations of such large jump ratios for a flow problem in

Figure 4.5.

94

Table 4.8: The grid refinement analysis for Example 4.4.2 with T = 0.2 with very large jump
ratios 1 : 105 in (a) and 105 : 1 in (b). The average convergence order for the solution and the
augmented variable are 2.0707 and 2.1739 respectively for (a) while they are 2.0005 and 1.7608,
respectively for (b).

(a): β− = 1, β+ = 105.

N ‖EN‖∞ r ‖Eaug‖∞ r

32 1.1659e-04 7.1125e-02

64 3.1996e-05 1.8655 1.2617e-02 2.4950

128 5.2947e-06 2.5953 3.0995e-03 2.0253

256 1.5727e-06 1.7513 7.7418e-04 2.0013

(b): β− = 105, β+ = 1.

N ‖EN‖∞ r ‖Eaug‖∞ r

32 2.4321e-01 7.5076e-02

64 3.9795e-02 2.6115 2.7540e-02 1.4468

128 8.1210e-03 2.2929 8.7106e-03 1.6607

256 3.7963e-03 1.0971 1.9290e-03 2.1750

4.4.3 An example in which the solution has a jump discontinuity

The developed ADI method in this paper can be applied to the case in which the solution has

a finite jump across the interface without correction terms such as Qkij and Rkij in (4.23). We

would expect that the computed solution is super-linear convergent (nearly second order). We

consider a general problem in which the analytic solution is

u(x, y, t) =

cos(t) + ex
2+y2

, if r ≤ 0.5,

cos(t) + sin(2x) cos(2y), if r > 0.5,
(4.58)

where r =
√

(x2 + y2) = 1
2 is the interface in the domain [−1, 1] × [−1, 1]. The source term,

the flux jump condition, the initial and boundary conditions are determined from the analytic

solution. The solution is not continuous across the interface,

[u] = w = sin(2x) cos(2y)− e1/4.

In Table 4.9, we show grid refinement results for two cases with large jump ratios. The

second and third columns are the results with β−/β+ = 1 : 0.001; while the fourth and fifth

columns are the results with β−/β+ = 0.001 : 1. The average convergence orders are 1.8181

and 1.8877, respectively.

95

Table 4.9: A grid refinement analysis for Example 4.4.3 in which the solution has a finite jump
discontinuity.

N ‖En‖∞ r ‖En‖∞ r

40 9.3882× 10−3 7.2805× 10−4

80 3.1509× 10−3 1.5751 1.8623× 10−4 1.9670

160 7.6708× 10−4 2.0383 4.7239× 10−5 1.9790

320 2.1412× 10−4 1.8410 1.4268× 10−5 1.7171

4.4.4 An application example

We present an example to mimic a flow passing objects to show that our second ADI method

can handle complicated geometries and multi-connected domains. In this example, we assume

an incoming Poiseuille flow profile with u = g(t)(4−y2) which is used as the boundary condition

in the domain [−2, 2] × [−2, 2]. The permeability of the material (domain) is 1/β which is

piecewise constant.

In Figure 4.4, we show the interface and contour plots of the computed solution with g(t) =

cos t and a large jump ratio either β− : β+ = 1/1000 or β− : β+ = 1000/1. In the top plots, the

permeability inside particles is large so flow get saturated while in the bottom plots the flow

is hardly getting in due to small permeability. The interface is general with both convex and

convex-concave. The results agree with physical reasoning and intuition.

We also tested a situation where the jump ratio is very large, β−/β+ = 105 : 1 and β−/β+ =

1 : 105. In this simulation, the Neumann BC, ∂u
∂n = 0 is used for the right boundary. The

convergence remains the same if the time step is ∆t ≤ Ch/βmax, see Table 4.8. But for larger

∆t, while the second ADI method still works, the convergence rate behaves more erratically

indicating that the error constant is large.

4.4.5 A moving example

Finally, we show a moving interface example in the same setting as in the flow problem. Once

again, the Neumann BC, ∂u
∂n = 0 is used for the right boundary. The motion of interface is

governed by the mean curvature with the normal velocity of the interface as Vn = α(κ − κ0).

The level set is evolved by the Hamilton-Jacobian equation ϕt + Vn|∇ϕ| = 0. We start with

a six-star shaped interface r = 1.2 + 0.4 sin(6θ) in polar coordinates. We set κ0 = 1.2. Thus

the interface will relax to a circle. The coefficient is β+ = 50 and β− = 1. In Figure 4.6,

we show the contour plots of the solution and the interface at different time. The result is as

expected. In this case, the Schur complement matrix is not a constant matrix anymore and

96

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(c)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(d)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 4.4: Snap contour plots (T = 2π) of the computed solution with N = 80, different
jump ratios 1 : 1000 or 1000 : 1, and different geometries. (a) β− = 0.033, β+ = 33, (b)
β− = 0.033, β+ = 33, (c) β− = 33, β+ = 0.033, and (d) β− = 100, β+ = 0.1. In the top plots,
the permeability inside particles are large so flow get saturated while in the bottom plots the
flow is hardly getting in due to small permeability.

(a)

-
=10

5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

1

2

3

4

5

6

7

8

(b)

+
=10

5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

1

2

3

4

5

6

7

8

Figure 4.5: Contourplot of the solution in the flow situation with very large jump ratio β− :
β+ = 1/105 or β− : β+ = 105/1.

97

its size also changes. We use the GMRES iterative method to solve the Schur complement

system. Corresponding to the four different snap shots of the interface, the size of the Schur

complement matrix is 462× 462, 314× 314, 264× 264, 254× 254, respectively, with condition

number being 3.3200, 2.7468, 3.3265, 2.9068. With the tolerance 10−6, the average number of

GMRES iterations is around 12.

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(c)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(d)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 4.6: A moving interface driven by the mean curvature in the flow.

98

Chapter 5

A Direct IIM Approach for

Two-phase Stokes Equations with

Discontinuous Viscosity on

Staggered Grids

In this chapter, we focus on solving the two-phase Stokes equations

∇p = ∇ · µ(∇u + (∇u)T) + g + F, x ∈ Ω, (5.1)

∇ · u = 0, x ∈ Ω, (5.2)

u |∂Ω= ub, (5.3)

where u = (u, v)T is the fluid velocity, p is the fluid pressure, µ is the fluid viscosity, ub is a

Dirichlet boundary condition for the velocity, g = (g1, g2)T is the body force and F is a singular

source defined as

F =

∫
Γ

f(s)δ(x−X(s))ds. (5.4)

Here X(s) is a parametric form of the interface Γ with s being the parameter, for example,

the arc-length, δ(·) is the Dirac delta function, and f = (f1, f2)T is the density function of the

surface force along the interface. The problem is illustrated in Figure 1.3, where the domain Ω

is divided into two subdomains, Ω+ and Ω−, by the interface Γ.

For the regularity requirement of the problem, we also assume that µ ≥ µ0 > 0, Γ ∈ C2,

and f ∈ C1. The divergence free condition (5.2) combined with divergence theorem leads to the

99

compatibility condition for ub, i.e. ∫
∂Ω

ub · nb = 0, (5.5)

where nb is the unit normal vector pointing to the outside of ∂Ω. The viscosity µ is assumed

to be piecewise constant,

µ(x) =

µ+, x ∈ Ω+,

µ−, x ∈ Ω−.
(5.6)

Under this assumption, the incompressible Stokes equations (5.1)-(5.2) can be rewritten as

−ûxx − ûyy + px = g1 x ∈ Ω±, (5.7)

−v̂xx − v̂yy + py = g2 x ∈ Ω±, (5.8)

−ûx − v̂y = 0 x ∈ Ω±, (5.9)

where (û, v̂)T is the transformed velocity field defined as

û = µu, v̂ = µv, û = µu. (5.10)

Remark 5.1. The viscosity µ is the coefficient for velocity terms but not for pressure and hence

cannot be scaled as what is done for elliptic interface problems [46]. Instead we introduce the

transformed velocity to incorporate the viscosity into the unknowns. This can help mitigate the

scaling effect. The original velocity field (u, v) will be recovered once (û, v̂) is computed.

5.1 Finite difference method using staggered grids

In this section, we will design a finite difference method which discretizes the above Stokes

equations (5.7)-(5.9) on staggered grids.

5.1.1 Classification of grid points

As illustrated in Figure 5.1, the idea of MAC (Marker and Cell) Scheme is to place the unknowns

(u, v, p) on different grid points. Specifically the pressure p is located in the center of each cell

(formed by thick lines) and the horizontal velocity u on the middle points of vertical edges and

the vertical velocity v on middle points of horizontal edges.

Assuming the domain is Ω = (a, b) × (c, d), for simplification of discussion, we use the

uniform mesh

xi = a+ ih, i = 0, 1, · · ·M ; yj = c+ jh, j = 0, 1, · · · , N, (5.11)

100

where h is the space step size. To be consistent with the grid indices used in (5.11), we keep

using ui,j , vi,j , pi,j to represent the horizontal velocity, vertical velocity and pressure at the

grid point (xi, yj) in the conventional way. However, ui,j , vi,j , pi,j are only defined on different

disjoint sets of grid points. We classify a grid point (xi, yj) in the following sense,

(xi, yj) is a u-grid point if (i mod 2) = 0 and (j mod 2) = 1,

(xi, yj) is a v-grid point if (i mod 2) = 1 and (j mod 2) = 0,

(xi, yj) is a p-grid point if (i mod 2) = 1 and (j mod 2) = 1,

(5.12)

where ”mod” is the modulus operator used to calculate arithmetic remainder. For example, we

only place horizontal velocity u on u-grid points where the index i is even and j is odd, see

Figure 5.1.

Figure 5.1: A diagram of the distribution of u, v, p-grid points inside a rectangular staggered
grid mesh.

The interface Γ in this paper is represented by the zero level set of a Lipschitz continuous

function φ(x, y), that is

Γ =
{

(x, y), φ(x, y) = 0, (x, y) ∈ Ω
}
. (5.13)

101

The level set function φ(x, y) satisfies

φ(x, y) < 0 for (x, y) ∈ Ω−, (5.14)

φ(x, y) = 0 for (x, y) ∈ Γ, (5.15)

φ(x, y) > 0 for (x, y) ∈ Ω+. (5.16)

In the neighborhood of the interface, we assume that φ(x, y) ∈ C2. In the implementation, the

level set function is defined at the grid points as {φi,j}. At a grid point (xi, yj), we define

φmaxij =

max{φi−2,j , φi,j , φi+2,j , φi,j−2, φi,j+2, φi−1,j , φi+1,j}, (xi, yj) is a u-grid point,

max{φi−2,j , φi,j , φi+2,j , φi,j−2, φi,j+2, φi,j−1, φi,j+1}, (xi, yj) is a v-grid point,

max{φi−1,j , φi,j , φi+1,j , φi,j−1, φi,j+1}, (xi, yj) is a p-grid point,

(5.17)

φminij =

min{φi−2,j , φi,j , φi+2,j , φi,j−2, φi,j+2, φi−1,j , φi+1,j}, (xi, yj) is a u-grid point,

min{φi−2,j , φi,j , φi+2,j , φi,j−2, φi,j+2, φi,j−1, φi,j+1}, (xi, yj) is a v-grid point,

min{φi−1,j , φi,j , φi+1,j , φi,j−1, φi,j+1}, (xi, yj) is a p-grid point.

(5.18)

A grid point (xi, yj) is called regular if φmaxij φminij > 0, otherwise it is called irregular. The

interface information, such as the normal unit vector and signed curvature, etc., can be easily

computed from

n =
∇φ
|∇φ| , (5.19)

κ =
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

. (5.20)

Remark 5.2. Notice that for the grid mesh introduced in (5.11), not every grid point is used

as one can see from the classification definition (5.12). The mesh interval size for the same type

of grid points is actually H = 2h, which is used in finite difference scheme.

5.1.2 The marker and cell scheme

The MAC scheme is to discretize the x-coordinate momentum equation (5.7) at vertical edges of

cells, the y-coordinate momentum equation (5.8) at horizontal edges of cells, and the continuity

equation (5.9) at cell centers using central difference schemes. In the following discussion, we

will use notation Ui,j , Vi,j , Pi,j Ûi,j , V̂i,j to represent the numerical solutions of u, v, p, û and

102

v̂ at the corresponding grid point (xi, yj) respectively. First we assume (xi, yj) is a regular grid

point. Using the index system introduced in Section 5.1.1, the MAC scheme can be written as

4Û i,j − Û i−2,j − Û i+2,j − Û i,j−2 − Û i,j+2

H2
+
P i+1,j − P i−1,j

H
= gi,j1 , (5.21)

4V̂ i,j − V̂ i−2,j − V̂ i+2,j − V̂ i,j−2 − V̂ i,j+2

H2
+
P i,j+1 − P i,j−1

H
= gi,j2 , (5.22)

− Û
i+1,j − Û i−1,j

H
− V̂ i,j+1 − V̂ i,j−1

H
= 0, (5.23)

for a u-grid point, a v-grid point and a p-grid point, where H = 2h. See Figure 5.2 for an

illustration. Next assume (xi, yj) is an irregular u-grid point. We will discretize the x-coordinate

momentum equation (5.7) term by term. The finite difference approximations for ûxx, ûyy and

px have the following forms respectively.

ûxx ≈
Ûi−2,j − 2Ûi,j + Ûi+2,j + Ĉui,j

H2
, (5.24)

ûyy ≈
Ûi,j−2 − 2Ûi,j + Ûi,j+2 + C̄ui,j

H2
, (5.25)

px ≈
Pi+1,j − Pi−1,j + C̃ui,j

H
, (5.26)

where Ĉui,j , C̄
u
i,j and C̃ui,j stand for some correction terms to be determined and the superscript

u indicates they are used at u-grid points.

Before deriving the formulas for the correction terms, we introduce the notation [·] for a

jump across the interface Γ and it is defined for an arbitrary function q(X) along the interface

at X by

[q] = [q]Γ(X) = q+(X)− q−(X), (5.27)

where q+(X), and q−(X) are the limiting values of q(X) from Ω+ and Ω− sides, respectively.

Now let us first assume that the interface does not cut through the interval (xi−2, xi+2) along

the line y = yj , but cuts the grid line x = xi in the interval (yj , yj+2) at (xi, y
∗
j), see Figure

5.2a for an illustration. In this case, (xi, yj) is regular in the x-direction but irregular in the

y-direction. Hence, we have zero x-direction correction terms and nonzero one for y-direction.

Without loss of generality, we assume that (xi, yj) ∈ Ω−. By using Taylor expansion, one can

derive the formula for the correction terms.

Ĉui,j = C̃ui,j = 0, (5.28)

C̄ui,j = −[û]− (yj+2 − y∗j)[ûy]−
(yj+2 − y∗j)2

2
[ûyy]. (5.29)

103

In this particular case, the corrected value Ûi,j+2 + C̄ui,j in (5.22) can be interpreted as the

smooth extension of the solution at (xi, yj+2) from Ω− side. Next we assume the interface does

not cut through the interval (yj−2, yj+2) along the line x = xi, but cuts the grid line y(x) = yj

in the interval (xi, xi+2) at (x∗i , yj), see Figure 5.2b for an illustration. This time, we assume

(xi, yj) ∈ Ω+. One can then derive the following formula for the correction terms in a similar

way.

Ĉui,j = [û] + (xi+2 − x∗i)[ûx] +
(xi+2 − x∗i)2

2
[ûxx], (5.30)

C̄ui,j = 0, (5.31)

C̃ui,j =

[p] + (xi+1 − x∗i)[px], if x∗i ∈ (xi, xi+1)

0, if x∗i ∈ (xi+1, xi+2),
(5.32)

where in (5.32), we intentionally choose open intervals to avoid confusion. It is possible to

have x∗i overlap the grid points. In the implementation, one can avoid this issue by simply

categorizing those on-interface points as either inside or outside of the interface.

(a)

(b)
(c)

Figure 5.2: (a): MAC scheme for the x-direction momentum equation. (b): MAC scheme for
the y-direction momentum equation. (c): MAC scheme for the continuity equation.

Now let us take a look at some irregular p-grid point (xi, yj) ∈ Ω−. The approximations for

104

ûx and v̂y have the following forms

ûx ≈
Ûi+1,j − Ûi−1,j + Ĉpi,j

H
, (5.33)

v̂y ≈
V̂i,j+1 − V̂i,j−1 + C̄pi,j

H
. (5.34)

Consider a extreme case where the interface cuts through the interval (xi−1, xi) at (x#
i , yj),

(xi, xi+1) at (x∗i , yj) and (yj , yj+1) at (xi, y
∗
j), see Figure 5.2c for an illustration. Then the

formula for the correction terms are

Ĉpi,j = (xi−1 − x#
i)[ûx]#u − (xi+1 − x∗i)[ûx]∗u +

(xi−1 − x#
i)2

2
[ûxx]#u −

(xi+1 − x∗i)2

2
[ûxx]∗u,

(5.35)

C̄pi,j = −(yj+1 − y∗j)[v̂y]∗v −
(yj+1 − y∗j)2

2
[v̂yy]

∗
v, (5.36)

where [·]#u , [·]∗u, [·]∗v represents jumps at the intersection points (x#
i , yj), (x∗i , yj) and (xi, y

∗
j)

respectively. The formula for the correction terms used in the y-coordinate momentum equation

(5.8) and all the other possible situations can be derived in a similar way. Combining all the

correction terms used at each grid point, the modified MAC schemes look like

4Û i,j − Û i−2,j − Û i+2,j − Û i,j−2 − Û i,j+2

H2
+
P i+1,j − P i−1,j

H
+ Cui,j = gi,j1 , (5.37)

4V̂ i,j − V̂ i−2,j − V̂ i+2,j − V̂ i,j−2 − V̂ i,j+2

H2
+
P i,j+1 − P i,j−1

H
+ Cvi,j = gi,j2 , (5.38)

− Û
i+1,j − Û i−1,j

H
− V̂ i,j+1 − V̂ i,j−1

H
+ Cpi,j = 0. (5.39)

Then (Û , V̂ , P) can be solved if the correction terms Cui,j , C
v
i,j , C

p
i,j can be determined at each

grid point.

Remark 5.3. To get a second order finite difference stencil for the second derivative (ûxx,

ûyy), the correction term needs the information of the third derivative jump. In the same way,

a second order finite difference stencil for the first derivative (ûx, ûy, px, py) requires the infor-

mation about second derivative jump. From the formulations of correction terms (5.28)-(5.32)

and (5.35)-(5.36), one can see that at the irregular grid points, the finite difference schemes for

the momentum equations have first order truncation error while that for the continuity equa-

tion is second order. Empirically, one lower order of truncation error at the interface or the

boundary will not affect overall second order accuracy of the solution.

105

5.1.3 Jump relations and the coordinates transformation

To be self-contained, the following contents are presented and cited from [35, 38]. Assume that

the interface in the parametric form is

Γ = {(X(s), Y (s)), X(s) ∈ C2, Y (s) ∈ C2}, (5.40)

where s is a parameter, for example, the arc-length. At a point of the interface (X,Y), the local

coordinate system in the normal and tangential directions is defined asξ = (x−X) cos θ + (y − Y) sin θ,

η = −(x−X) sin θ + (y − Y) cos θ,
(5.41)

where θ is the angle between the x-axis and the normal direction, pointing to the Ω+ sub-

domain, see Figure 5.3 for an illustration. Under the new coordinates system, the interface can

be parameterized by

ξ = χ(η) with χ(0) = 0, χ′(0) = 0. (5.42)

The formula for the signed curvature κ = χ′′(0) of the interface at (X,Y) is given by (5.20).

Given the angle θ, the unit normal and tangential vector at the point (X,Y) can be expressed

as

n = (cos θ, sin θ), τ = (− sin θ, cos θ). (5.43)

Figure 5.3: A diagram of an irregular grid point (xi, yi), its control point (Xk, Yk) on the x-
axis, and the local coordinates at (Xk, Yk) in the normal and tangential directions, where θ is
the angle between the x-axis and the normal direction.

106

Given the continuity conditions [u] = 0, ∇·u = 0 and momentum equations (5.7)-(5.8), one

can derive the following jump relations at a point (X,Y) on the interface which are necessary

to derive the accurate finite difference method.

Theorem 5.1. For Stokes equations (5.1) with piecewise constant coefficient (5.6), given the

interface information, κ = χ′′(0), and the continuity conditions [u] = 0, ∇ · u = 0, one can

derive the following jump relations for the velocity u in the local coordinates.

[u] = 0, (5.44)

[uη] = 0, (5.45)

[µuη] · τ + [µuξ] · n = 0, (5.46)

[µuη] · n + [µuξ] · τ + f̂2 = 0, (5.47)

[uηη] = −κ[uξ], (5.48)

[µuηη] · τ + [µuηξ] · n = 0, (5.49)

[µuηξ] · τ + [µuξξ] · n = 0, (5.50)

[µuηη] · n + [µuηξ] · τ = 4κ[µuη] · τ − f̂ ′2, (5.51)

3[µuηξ] · n− [µuξξ] · τ = [g] · τ − f̂ ′1 − 2κf̂2, (5.52)

where f̂1 = f · n and f̂2 = f · τ are used to represent the force densities in the normal and

tangential directions, respectively. The jump relations for the pressure p are more convenient to

be expressed in terms of jumps of the velocity u in the global coordinates and are given as the

following

[p] = 2

[
µ
∂u

∂n

]
· n + f̂1, (5.53)

[px] = [µuxx] + [µuyy] + [g1], (5.54)

[py] = [µvxx] + [µvyy] + [g2], (5.55)

which are proved in Theorem (10.2) in Section 10.1 in [38]. After some algebraic manipulations,

it turns out that given [û], [ûη], and [ûηη], all the jump relations for the scaled velocity û will

be known and are given below

[ûξ] = 2sc[ûη]− (c2 − s2)[v̂η] + sf̂2, (5.56)

[v̂ξ] = −(c2 − s2)[ûη]− 2sc[v̂η]− cf̂2, (5.57)

[ûηξ] = cD1 − sD2, [ûξξ] = −sD1 − cD2 + sD3, (5.58)

[v̂ηξ] = sD1 + cD2, [v̂ξξ] = cD1 − sD2 − cD3, (5.59)

107

where s, c stand for sin θ and cos θ respectively, which are defined in (5.41). The terms D1-D3

are expressed in terms of [ûη], and [ûηη] only and are given below

D1 = −[ûηη] · τ , (5.60)

D2 = −[ûηη] · n + 4κ[ûη]τ − f̂ ′2, (5.61)

D3 = 2[ûηη] · τ + [g] · τ − f̂ ′1 − 2κf̂2. (5.62)

Now the only unknowns are [û], [ûη] and [ûηη]. Although we do not know the exact values for

these terms, fortunately, they can be formulated in terms of the limiting values and derivatives

of û from only one side of the interface, i.e.

[û] = (1/ρ− 1)û−, [v̂] = (1/ρ− 1)v̂−, (5.63)

[ûη] = (1/ρ− 1)û−η , [v̂η] = (1/ρ− 1)v̂−η , (5.64)

[ûηη] = (1/ρ− 1)û−ηη + κ(1/ρ− 1)û−ξ − κ[ûξ], (5.65)

[v̂ηη] = (1/ρ− 1)v̂−ηη + κ(1/ρ− 1)v̂−ξ − κ[v̂ξ], (5.66)

where ρ = µ−/µ+ is the jump ratio. This makes it possible to write down the Taylor expansion

of a discontinuous function about a limiting jump point from another side of the interface

by utilizing the jump relations and hence derive the interpolation schemes for the correction

terms. Finally, since we are only interested in the jumps defined in global x-y coordinates, the

coordinate transformation matrices are provided below

[
Tη

Tξ

]
=

[
−s c

c s

][
Tx

Ty

]
,

TηηTηξ

Tξξ

 =

 s2 −2sc c2

−sc c2 − s2 sc

c2 2sc s2

TxxTxy

Tyy

 , (5.67)

where T is a function defined on Ω, s and c stand for sin θ and cos θ. Notice that both the

transformation matrices are involutory, which means they are their own inverses. Hence, they

can be applied for the transformation from local into Cartesian coordinates as well.

Remark 5.4. The idea of the IIM is to embed the jump relations into the approximation

schemes for the correction terms. It is known that an interpolation scheme can be derived by

the method of undetermined coefficients using Taylor expansion. In this approach, the solution

and its derivatives at a certain point are regarded as a basis to form a system of equations,

from which the coefficients of the interpolation scheme can be solved. However, if one expands

a variable, let us say û(x, y), about the point on the interface, there would be two possible sets

of basis to use based on whether (x, y) lies on the ”+” or ”−” side of the interface, say {û−,

û−x , û−y , û−xx, û−xy, û−yy} or {û+, û+
x , û+

y , û+
xx, û+

xy, û+
yy}. This is where the jump relations play

108

a role. One can apply the jump relations to convert one basis into another one. The details are

explained in the next section.

5.1.4 The approximation of correction terms

In this section, we describe how to interpolate the correction terms at the irregular grid points.

Here we derive the scheme for Cui,j used in (5.37) as an example. We will use the jump relations

explained in Section 5.1.3 to rewrite the correction term Cui,j and the Taylor expansions of the

solution (û, v̂, p) at irregular grid points in terms of the limiting values û−, û−x , û−y , û−xx, û−xy,

û−yy and v̂−, v̂−x , v̂−y , v̂−xx, v̂−xy, v̂
−
yy, p

−. Using the method of undetermined coefficients, a compact

33-point interpolation scheme can be derived.

Figure 5.4: A diagram of the distribution of u, v, p-grid points involved in the interpolation
scheme for the correction terms.

Let (xi, yj) be an irregular u-grid point. Without loss of generality, we assume the interface

cuts through the interval (xi, xi+2) along the line y = yj and intersects at the point (x∗i , yj).

The interpolation scheme for Cui,j involves total thirty-three grid points and has the form

Cui,j =
∑
iuk ,j

u
k

γiuk ,j
u
k
Ûi+iuk ,j+j

u
k

+
∑
ivk,j

v
k

γivk,j
v
k
V̂i+ivk,j+j

v
k

+
∑
ipk,j

p
k

h · γipk,jpkPi+ipk,j+jpk + γc, (5.68)

where

iuk = 0,±2, 4, juk = 0,±2, ivk = ±1, 3, jvk = ±1,±3, ipk = ±1, 3, jpk = 0,±2, (5.69)

see Figure 5.4 for an illustration. The interpolation scheme that we proposed involves twelve

109

u-grid points, twelve v-grid points and nine p-grid points, which contains enough points for

obtaining second order accuracy. Note that we put weight h for p-grid points (see Remark 5.5).

The Taylor expansions of û(xi+iuk , yj+j
u
k
) and p(xi+ipk

, yj+jpk
) about (x∗i , yj) have the forms

û(xi+iuk , yj+j
u
k
) = û± + (xi+iuk − x

∗
i)û
±
x + (yj+juk − yj)û

±
y +

1

2
(xi+iuk − x

∗
i)

2û±xx

+
1

2
(yj+juk − yj)

2û±yy + (xi+iuk − x
∗
i)(yj+juk − yj)û

±
xy +O(h3),

(5.70)

and

p(xi+ipk
, yj+jpk

) = p± + (xi+ipk
− x∗i)p±x + (yj+jpk

− yj)p±y +O(h3), (5.71)

where the ”+” or ”−” sign is chosen depending on whether (xi+iuk , yj+j
u
k
) and (xi+ipk

, yj+jpk
) lie

on the ”+” or ”−” side of Γ. Here the Taylor expansion of v̂(xi+ivk , yj+j
v
k
) is similar to (5.70)

and hence is ignored for simplicity. Note that the right-hand side of the above equations can be

expressed in terms of û−, û−x , û−y , û−xx, û−xy, û
−
yy and v̂−, v̂−x , v̂−y , v̂−xx, v̂−xy, v̂

−
yy, p

− by using the

jump relations (5.56)-(5.59) and (5.63)-(5.66). Take û(xi+iuk , yj+j
u
k
) for example, we will have

the following form

û(xi+iuk , yj+j
u
k
) = c1û

− + c2û
−
x + c3û

−
y + c4û

−
xx + c5û

−
xy + c6û

−
yy + c7v̂

−

+ c8v̂
−
x + c9v̂

−
y + c10v̂

−
xx + c11v̂

−
xy + c12v̂

−
yy + c13p

− + c14,
(5.72)

where the coefficients c1-c14 are determined by the jump relations. Applying the divergence-

free condition (5.9) and replacing û, its derivatives, and p by the numerical solution, the above

equation (5.72) can be simplified as

Û(xi+iuk , yj+j
u
k
) = c1

iuk ,j
u
k
Û− + c2

iuk ,j
u
k
Û−x + c3

iuk ,j
u
k
Û−y + c4

iuk ,j
u
k
Û−xx + c5

iuk ,j
u
k
Û−xy + c6

iuk ,j
u
k
Û−yy

+ c7
iuk ,j

u
k
V̂ − + c8

iuk ,j
u
k
V̂ −x + c9

iuk ,j
u
k
V̂ −xx + c10

iuk ,j
u
k
P− + c11

iuk ,j
u
k
,

(5.73)

where

c2
iuk ,j

u
k

= c2 − c9, c4
iuk ,j

u
k

= c4 − c11, c5
iuk ,j

u
k

= c5 − c12,

c9
iuk ,j

u
k

= c10, c10
iuk ,j

u
k

= c13, c11
iuk ,j

u
k

= c14, cliuk ,j
u
k

= cl for the others.
(5.74)

Similarly, V̂ (xi+ivk , yj+j
v
k
), P (xi+ipk

, yj+jpk
) have the same form as equation (5.73) but with dif-

ferent coefficient set {clivk,jvk} and {cl
ipk,j

p
k
} respectively. Using the same approach, the correction

term Cui,j given by (5.28)-(5.29) or (5.30)-(5.32) can be reformulated as

Cui,j = au1 Û
− + au2 Û

−
x + au3 Û

−
y + au4 Û

−
xx + au5 Û

−
xy + au6 Û

−
yy

+ au7 V̂
− + au8 V̂

−
x + au9 V̂

−
xx + au10P

− + au11.
(5.75)

110

Now substituting Û(xi+iuk , yj+j
u
k
), V̂ (xi+ivk , yj+j

v
k
), and P (xi+ipk

, yj+jpk
) specified in (5.73) back

into (5.68) and setting this equation equal to (5.75) yields the following system of equations

ûi−2,j−2 · · · v̂i+1,j+1 · · · h · pi+3,j+2

u− c1
−2,−2 · · · c1

1,1 · · · h · c1
3,2

u−x c2
−2,−2 · · · c2

1,1 · · · h · c2
3,2

u−y c3
−2,−2 · · · c3

1,1 · · · h · c3
3,2

u−xx c4
−2,−2 · · · c4

1,1 · · · h · c4
3,2

u−xy c5
−2,−2 · · · c5

1,1 · · · h · c5
3,2

u−yy c6
−2,−2 · · · c6

1,1 · · · h · c6
3,2

v− c7
−2,−2 · · · c7

1,1 · · · h · c7
3,2

v−x c8
−2,−2 · · · c8

1,1 · · · h · c8
3,2

v−xx c9
−2,−2 · · · c9

1,1 · · · h · c9
3,2

p− c10
−2,−2 · · · c10

1,1 · · · h · c10
3,2

γ−2,−2

...

γ1,1

...

γ3,2

=

au1
au2
au3
au4
au5
au6
au7
au8
au9
au10

. (5.76)

The linear system (5.76) contains 9 equations with 33 unknown variables and is underdeter-

mined. There are infinitely many solutions for this system. One can use singular value decom-

position (SVD) to get the solution {γik,jk} and set

γc = au11 −
∑
ik,jk

c11
ik,jk
· γik,jk , (5.77)

where (ik, jk) takes all the values from (iuk , j
u
k), (ivk, j

v
k), and (ipk, j

p
k). Note that using more points

than necessary for second order accuracy in (5.76) and then applying SVD are important for

accuracy of gradient and the stability. In this way, the SVD solution not only satisfies the

equations, but also has the minimum 2-norm among all possible solutions. In other words, the

magnitude of the interpolation coefficients are well balanced.

For the other situations, one can first find the closest p-grid point to the control point (in-

tersection point) and use nearby thirty-three points (see Figure 5.4) to derive the interpolation

scheme in the similar way. Up to this point, the finite difference scheme for the Stokes equations

(5.7)-(5.9) is fully determined

Remark 5.5. Notice that we add a factor of h to the coefficients of {Pi+ipk,j+jpk} in the in-

terpolation scheme (5.68). This is used to control the size of the coefficients {hγipk,jpk} for the

p-grid points. Since the system (5.76) is solved by SVD and all the coefficients {γik,jk} have

the same level of magnitude, the real coefficients of {Pi+ipk,j+jpk} in the interpolation scheme are

actually scaled down by a factor of h. This is consistent with the original MAC scheme where

the coefficients for Û are O(1/H2) and those for P are O(1/H) in the momentum equations.

111

5.1.5 Solving the discrete Stokes equations

The discrete Stokes equations can be written as the following matrix-vector form,[
A B

C D

][
Û

P

]
=

[
F1

F2

]
. (5.78)

Our goal in this section is to design an efficient solver for this linear system. Notice that the

coefficient matrix is rank-one deficient since no boundary condition for pressure p is used.

Hence the system (5.78) cannot be solved by regular linear solvers. If we simplify our problem

by making µ1 = µ2, then in (5.78) we will have C = BT , D = 0, A is block diagonal with

two blocks A1, A2, and A1, A2, CB are negative discrete Laplacian for −∆û, −∆v̂, and −∆p

respectively. In this case, the coefficient matrix is the same as what is obtained from the standard

discretization using MAC scheme for the saddle point problem, and the system can be solved

by Uzawa method. This motivates us to design a Uzawa type method to solve our problem.

The idea of the Uzawa method is to use Richardson method to solve the Schur complement

system

SP = G, (5.79)

where S = CA−1B − D, and G = CA−1F1 − F2. And then use the computed pressure P to

update the velocity Û by solving the momentum equations. One iteration of Uzawa method

has the form

Ûk+1 = A−1(F1 −BP k), (5.80)

P k+1 = P k + w(G− SP k)
= P k + w(CÛk+1 − F2 +DP k),

(5.81)

where w is some positive real number. The iteration starts with a given initial vector P 0 and

is stopped when ‖P k+1 − P k‖ is small enough. The error equation for Richardson method is

P − P k+1 = (I − wS)(P − P k), (5.82)

and the convergence result is given below.

Theorem 5.2. Suppose S is diagonalizable and that {λj} are the eigenvalues of S. The Richard-

son iteration (5.81) converges if and only if |1 − wλj | < 1 for all eigenvalues λj. In addi-

tion, if all the eigenvalues of S are positive real numbers, then the solution will converge if

112

0 < w < 2/λmax(S). The optimal choice of w is

wopt =
2

λmin(S) + λmax(S)
, (5.83)

and the corresponding convergence rate is

‖P − Pn‖ ≤
(
κ(S)− 1

κ(S) + 1

)n
‖P − P 0‖, (5.84)

where κ(S) is the condition number of the matrix S.

The proof of the theorem above can be found in most textbooks about numerical analysis,

for example see Chapter 1 in [29]. In our problem, we do not know much information about the

Schur complement S since its definition involves A−1. Fortunately, for the simplified problem

with µ+ = µ−, S is the same as what is obtained from the standard discretization using MAC

scheme and is symmetric positive definite. We know that the correction terms used in (5.37)-

(5.39) depend continuously on the jump ratio ρ = µ−/µ+ and the eigenvalues of S depend

continuously on its entries. So, if the corrections terms can be regarded as small perturbations

for the coefficient matrix, one can expect that the real part of λj is still positive for all eigenvalues

of S. We summarize our conjecture as the following.

Conjecture 5.1. The eigenvalues {λj} of the Schur complement S (excluding the zero eigen-

value) defined in (5.79) are located in the right half plane, i.e. Re(λj) > 0 for all eigenvalues.

Note that there is a zero eigenvalue for the Schur complement because the pressure is not

unique and can differ by a constant. We will verify the above conjecture in the numerical tests.

The rigorous theoretical proof is still an open question. Under this assumption, we have the

following theorem.

Theorem 5.3. Suppose S is diagonalizable and that {λj} are the eigenvalues of S (excluding

the zero eigenvalue) located in the right half plane, i.e. Re(λj) > 0. The Richardson iteration

(5.81) converges if and only if

0 < w <
2Re(λj)

|λj |2
for all λj . (5.85)

This result simply comes from the condition |1−wλj | < 1 in Theorem 5.2. In practice, the

imaginary part of the eigenvalue of S has a small magnitude compared with its real part, and the

equation (5.83) is still a solid choice for w. The largest eigenvalue λmax(S) can be approximated

by running power iterations, but finding the smallest eigenvalue λmin(S) is expensive. A more

113

practical choice for w is

w =
2

1 + λmax(S)
, (5.86)

where 1 is the largest eigenvalue of S in the standard discretization using MAC scheme.

Notice that in each Uzawa iteration, the equation (5.80) involves solving the systemA−1(F1−
BP k). This can be computed by Applying GMRES iterative method. Recall that (−A) is

the perturbed matrix of two-block Laplacian matrix. Hence the discrete Laplacian will be an

ideal preconditioner and can be solved by fast Fourier transforms in O(N log(N)) or multigrid

methods in O(N).

Remark 5.6. The solver we designed in this section consists of an outer Uzawa iteration and

inner GMRES iteration. In practice, one can set a small relative tolerance for GMRES method

to avoid computational cost, which is similar to inexact Uzawa solvers [6].

Remark 5.7. The numerical solution of pressure P solved from Uzawa method differs from the

exact solution by a constant due to the rank-one deficiency of the coefficient matrix.

5.1.6 An outline of the algorithm

In this section, we give an outline of our algorithm.

Step 1: Generate a uniform mesh on the domain Ω = (a, b) × (c, d) and use the level set

function to represent the interface.

Step 2: Determine the irregular grid points using equation (5.17)-(5.18) and calculate the

coordinates of the control points which are the intersection points of interface and grid

lines.

Step 3: Use the standard MAC schemes to discretize momentum equations (5.7)-(5.8) and

continuity equation (5.9) at the regular grid points.

Step 4: Solve the linear system (5.76) to determine the interpolation schemes for the correction

terms Cui,j , C
v
i,j and Cpi,j used in (5.37)-(5.39).

Step 5: Use the Uzawa method described in Section 5.1.5 to solve the system of linear equations

(5.78) to get second order numerical solutions for velocity and pressure.

5.2 Numerical examples

We present a variety of numerical experiments to show the performance of the new direct

IIM approach for solving Stokes equations on staggered grids. All the examples are computed

114

with double precision and are performed on a laptop with Intel(R) Core(TM) i7-4650U CPU,

1.70GHz, 8.00 GB memory. We present errors in L∞ norm in the following way,

E(u) =
1

2
(max
i,j
|U i,j − u(xi, yj)|+ max

i,j
|V i,j − v(xi, yj)|), (5.87)

E(p) = max
i,j

[
(P i,j −mean(P))− (p(xi, yj)−mean(p))

]
, (5.88)

where mean(·) represents the arithmetic mean of the values used on the given grid points. The

convergence order r is estimated by (2.65). We use the Uzawa method to solve the discrete linear

system with the choice of w defined in (5.86). In each Uzawa iteration, A−1 is solved by GMRES

iterative method preconditioned by the two-block Laplacian matrix. The preconditioning step

is completed by Algebraic Multigrid (AMG) solver. The absolute tolerance is set to be 10−6 for

the Uzawa method while for GMRES solver, we set the relative tolerance as 10−1. The initial

value is 0 in all computations. In all tables listed in this section, we use ”NU” and ”NG” to

represent the number of Uzawa and GMRES iterations respectively, ”N” the number of mesh

intervals for the same type of grid points in each direction of the rectangular domain (half

number of intervals in the big mesh defined in (5.11)), and ”λS”, ”λA” the smallest eigenvalue

of the Schur complement S (excluding the zero eigenvalue) and matrix A respectively. In the

following examples, a grid refinement analysis is performed to demonstrate the second order

convergence for both velocity u and pressure p. We also conduct an eigenvalue analysis to show

that the inverse of the Schur complement S and the inverse of the block A in the coefficient

matrix is norm-bounded in L2 norm and hence the method is stable.

(a) (b) (c)

Figure 5.5: The solution plots of the transformed x-component velocity û, the x-component
velocity u and the pressure p for Example 5.1 with jump ratio µ− = 1 and µ+ = 0.5 when
N = 64 and Ω = [−2, 2]× [−2, 2].

115

(a) (b)

Figure 5.6: The eigenvalue plots of the Schur complement S in Example 5.1 when N = 64 and
Ω = [−2, 2]× [−2, 2]. (a) µ− = 1 and µ+ = 0.5. (b): µ− = 0.5 and µ+ = 1.

Table 5.1: A grid refinement analysis for Example 5.1 with µ− = 1, µ+ = 0.5 and Ω =
[−2, 2]× [−2, 2].

N E(u) r E(p) r NU NG λS λA
32 8.87× 10−3 5.72× 10−3 27 8 0.25 0.75
64 2.12× 10−3 2.06 1.89× 10−3 1.60 33 12 0.23 0.75
128 5.49× 10−4 1.95 4.68× 10−4 2.01 37 18 0.21 0.76
256 1.46× 10−4 1.91 2.15× 10−4 1.12 41 22 0.21 0.76
512 3.30× 10−5 2.15 2.85× 10−5 2.92 45 32 0.21 0.76

Example 5.1. Consider the example with the following exact solution:

u(x) =

y(x2 + y2 − 1) if x ∈ Ω−,

0 if x ∈ Ω+,
(5.89)

v(x) =

−x(x2 + y2 − 1) if x ∈ Ω−,

0 if x ∈ Ω+,
(5.90)

p(x) =

1 if x ∈ Ω−,

0 if x ∈ Ω+,
(5.91)

116

Table 5.2: A grid refinement analysis for Example 5.1 with µ− = 0.5, µ+ = 1 and Ω =
[−2, 2]× [−2, 2].

N E(u) r E(p) r NU NG λS λA
32 2.89× 10−3 3.33× 10−3 30 8 0.31 1.62
64 8.49× 10−4 1.77 1.51× 10−3 1.14 36 11 0.28 1.65
128 1.95× 10−4 2.12 4.71× 10−4 1.68 41 16 0.25 1.66
256 5.13× 10−5 1.93 1.08× 10−4 2.12 46 23 0.25 1.67
512 1.29× 10−5 1.99 2.83× 10−5 1.93 51 33 0.25 1.67

with viscosity

µ(x) =

1 if x ∈ Ω−,

1
2 if x ∈ Ω+,

or µ(x) =

1
2 if x ∈ Ω−,

1 if x ∈ Ω+.
(5.92)

The bounded external forcing term g is given by

g1(x) =

−8y if x ∈ Ω−,

0 if x ∈ Ω+,
and g2(x) =

8x if x ∈ Ω−,

0 if x ∈ Ω+,
(5.93)

which has a finite jump across the interface. The interface is the unit circle which is represented

by the zero level set of φ(x, y) =
√
x2 + y2 − 1 and Ω = [−2, 2] × [−2, 2]. The normal and

tangential force densities can be computed by the analytical solutions and jump relations (5.47)

and (5.53).

Table 5.3: A grid refinement analysis for Example 5.1 with µ− = 1, µ+ = 0.5 and Ω =
[−1.99, 1.99]× [−1.99, 1.99].

N E(u) r E(p) r NU NG λS λA
32 9.91× 10−3 5.12× 10−3 22 9 0.24 0.75
64 2.15× 10−3 2.20 2.71× 10−3 0.92 27 12 0.23 0.76
128 5.96× 10−4 1.85 4.00× 10−4 2.76 30 17 0.21 0.76
256 1.33× 10−4 2.16 1.90× 10−4 1.07 37 24 0.21 0.76
512 3.11× 10−5 2.10 2.49× 10−5 2.93 45 32 0.21 0.76

This is a simple example with a mild jump in the coefficient µ along the interface taken

from [39]. We present a grid refinement analysis in Table 5.1-5.2. In the tables, the second

117

Table 5.4: A grid refinement analysis for Example 5.1 with µ− = 0.5, µ+ = 1 and Ω =
[−1.99, 1.99]× [−1.99, 1.99].

N E(u) r E(p) r NU NG λS λA
32 3.05× 10−3 3.27× 10−3 27 8 0.30 1.63
64 8.42× 10−4 1.86 1.36× 10−3 1.27 32 11 0.27 1.65
128 2.07× 10−4 2.02 4.14× 10−4 1.72 37 16 0.25 1.66
256 4.62× 10−5 2.16 1.07× 10−4 1.95 42 23 0.25 1.67
512 1.28× 10−5 1.85 2.80× 10−5 1.93 48 34 0.25 1.67

(a) (b) (c)

Figure 5.7: The solution plots of the transformed x-component velocity û, the x-component
velocity u and the pressure p for Example 5.2 with jump ratio µ− = 10 and µ+ = 1 when N =
64.

column is the maximum error of the velocity u while the third column is the approximate

convergence order. The fourth column is the error of the pressure p and the fifth column is the

corresponding approximate convergence order. The sixth and seventh columns represent the

number of Uzawa and GMRES iterations respectively. The last two columns are the smallest

eigenvalue of the Schur complement S and that of the block matrix A in the coefficient matrix.

Compared with the previous augmented method in [39], we can observe that both methods

achieved average second order accuracy in the velocity and the pressure. However, unlike the

augmented approach, the main advantage of our direct IIM method is that we do not need to

set up the augmented variable and the additional Schur complement equation, which makes

the implementation much easier. The eigenvalue plots of the Schur complement S are given in

Figure 5.6. One can observe that all the eigenvalues are located in the right half plane and the

smallest one is bounded away as we increase the mesh size, which agrees with our conjecture

5.1. Combined with the fact that the smallest eigenvalue of the block matrix A is also bounded

away from 0, one can ensure that both the Uzawa and GMRES methods will converge to the

exact solutions and the method is stable at least in L2 norm.

118

(a) (b)

Figure 5.8: The eigenvalue plots of the Schur complement S in Example 5.2 when N = 64. (a)
µ− = 10 and µ+ = 1. (b): µ− = 1 and µ+ = 10.

Table 5.5: A grid refinement analysis for Example 5.2 with µ− = 10 and µ+ = 1.

N E(u) r E(p) r NU NG λS λA
32 1.41× 10−2 1.70× 10−2 31 14 0.14 0.22
64 3.26× 10−3 2.11 5.22× 10−3 1.70 34 22 0.13 0.21
128 8.39× 10−4 1.96 1.49× 10−3 1.81 30 33 0.13 0.21
256 2.26× 10−4 1.89 5.34× 10−4 1.48 34 43 0.13 0.21
512 5.11× 10−5 2.14 1.10× 10−4 2.28 35 65 0.13 0.21

Notice that in Table 5.1-5.2, the convergence rate for the pressure oscillates around number

two. This phenomenon has been observed and explained in the literature, see for example [45].

This is because the global errors obtained from the IIM depend on the relative location of

the underlying grid and the interface. This is can be seen from the Taylor expansion that the

largest error at a grid point behaves like O((xij − X∗ij)
2) instead of O(h2), where xij is the

grid point that has the largest error, and X∗ij is the corresponding intersection point on the

interface near xij . We also carried out a further study on the convergence orders by perturbing

the domain (or equally the mesh) for the same problem. We perturb the mesh slightly by

choosing Ω = [−1.99, 1.99]× [−1.99, 1.99]. The results of the grid refinement analysis are listed

in Table 5.3-5.4. The results again confirmed the explanations above that the errors do not

decline monotonically but the average convergence rates of the velocity and pressure remain to

be second order accurate.

119

Table 5.6: A grid refinement analysis for Example 5.2 with µ− = 1 and µ+ = 10.

N E(u) r E(p) r NU NG λS λA
32 3.18× 10−3 6.82× 10−2 10 20 0.26 1.80
64 8.19× 10−4 1.96 2.35× 10−2 1.54 25 15 0.24 1.84
128 1.63× 10−4 2.07 4.48× 10−3 2.39 31 22 0.23 1.89
256 3.75× 10−5 1.93 1.19× 10−3 1.91 33 35 0.23 1.89
512 1.04× 10−5 1.85 3.31× 10−4 1.85 34 53 0.23 1.89

Example 5.2. In the previous example, the force density is a constant. In this example, we

construct the exact solutions in such a way that all the jumps and their derivatives along the

interface are nonconstant functions. The exact velocity and pressure are given by

u(x) =

y

4
if x ∈ Ω−,

y

4
(x2 + y2) if x ∈ Ω+,

(5.94)

v(x) =

−x

4
(1− x2) if x ∈ Ω−,

−xy
2

4
if x ∈ Ω+,

(5.95)

p(x) =

(
−3

4
x3 +

3

8
x

)
y if x ∈ Ω−,

0 if x ∈ Ω+,

(5.96)

with viscosity

µ(x) =

10 if x ∈ Ω−,

1 if x ∈ Ω+,
or µ(x) =

1 if x ∈ Ω−,

10 if x ∈ Ω+.
(5.97)

The bounded external forcing term g is given by

g1(x) =

(
−9

4x
2 + 3

8

)
y if x ∈ Ω−,

−2µ+y if x ∈ Ω+,
and g2(x) =

−3
4x

3 + 3
8x−

3µ−

2 x if x ∈ Ω−,

µ+

2 x if x ∈ Ω+,

(5.98)

which is discontinuous across the interface. The interface is still the unit circle and Ω = [−2, 2]×
[−2, 2]. The normal and tangential force densities can be computed by the analytical solutions

and jump relations (5.47) and (5.53).

120

(a) (b) (c)

Figure 5.9: The solution plots of the transformed x-component velocity û, the x-component
velocity u and the pressure p for Example 5.2 with jump ratio µ− = 10 and µ+ = 0.01 when N
= 64.

(a) (b) (c)

Figure 5.10: The solution plots of the transformed x-component velocity û, the x-component
velocity u and the pressure p for Example 5.2 with jump ratio µ− = 0.01 and µ+ = 10 when N
= 64.

This is a general example with a medium jump in the viscosity along the unit circle. The

results for the grid refinement analysis are given in Table 5.5-5.6. The plots of the solutions

and the distribution of the eigenvalues of S are shown in Figure 5.7 and Figure 5.8. Again, we

observe second order accurate solutions for both the velocity and pressure. The eigenvalues of

the Schur complement and block matrix A are located in the right half plane and their smallest

one are bounded away from zero, which implies the stability of our method.

Now we use the same exact solution and interface but with a large jump in the coefficient

µ along the interface.

µ(x) =

10 if x ∈ Ω−,

0.01 if x ∈ Ω+,
or µ(x) =

0.01 if x ∈ Ω−,

10 if x ∈ Ω+.
(5.99)

Notice that the coefficient µ has a large jump size along the interface. Nevertheless, all the nice

121

(a) (b) (c)

Figure 5.11: The error plots of the transformed x-component velocity û, the x-component
velocity u and the pressure p for Example 5.2 with jump ratio µ− = 10 and µ+ = 0.01 when N
= 64.

(a) (b) (c)

Figure 5.12: The error plots of the transformed x-component velocity û, the xcomponent ve-
locity u and the pressure p for Example 5.2 with jump ratio µ− = 0.01 and µ+ = 10 when N
= 64.

features are the same as in the previous examples. The results of the grid refinement analysis

are given in Table 5.7-5.8 and the plots for the solution, error and eigenvalue distribution are

given in Figure 5.9-5.10, 5.11-5.12 and 5.13. We do observe that the smallest eigenvalue of

A is close to zero (but bounded away from it) when µ− = 10 and µ+ = 0.01, which causes

difficulty in solving the system by GMRES method. From the solution plots, we also observe

that the transformed velocity û has a relatively large jump across the interface for the case with

ρ = 1000 compared with the case where ρ = 0.001. As a result, the magnitude of the error for

the transformed velocity is relatively larger when ρ = 1000 compared with that in the second

case. This explains why it takes more computational efforts to solve the problem and needs a

finer grid to resolve the pressure for the first case.

Example 5.3. In this example, the interface is an elliptic shape, which is represented by the

122

(a) (b)

Figure 5.13: The eigenvalue plots of the Schur complement S in Example 5.2 when N = 64.
(a) µ− = 10 and µ+ = 0.01. (b): µ− = 0.01 and µ+ = 10.

Table 5.7: A grid refinement analysis for Example 5.2 with µ− = 10 and µ+ = 0.01.

N E(u) r E(p) r NU NG λS λA
32 1.56× 10−0 1.68× 10−2 42 22 0.10 0.003
64 3.86× 10−1 2.01 6.71× 10−3 1.32 40 36 0.09 0.003
128 9.82× 10−2 1.97 2.07× 10−3 1.70 21 55 0.09 0.003
256 2.64× 10−2 1.90 6.39× 10−4 1.70 26 74 0.09 0.003
512 6.09× 10−3 2.12 1.48× 10−4 2.11 33 101 0.09 0.003

zero level set function

φ(x, y) =

√
x2

12
+

y2

0.52
− 1. (5.100)

123

Table 5.8: A grid refinement analysis for Example 5.2 with µ− = 0.01 and µ+ = 10.

N E(u) r E(p) r NU NG λS λA
32 1.62× 10−1 8.19× 10−2 22 10 0.19 1.67
64 3.52× 10−2 2.20 2.64× 10−2 1.63 32 15 0.18 1.71
128 3.39× 10−3 3.38 5.22× 10−3 2.34 34 25 0.18 1.75
256 5.91× 10−4 2.52 1.51× 10−3 1.79 47 35 0.18 1.75
512 7.74× 10−5 2.93 3.56× 10−4 2.08 51 52 0.18 1.75

(a) (b) (c)

Figure 5.14: The solution plots of the transformed x-component velocity û, the x-component
velocity u and the pressure p for Example 5.3 with jump ratio µ− = 1 and µ+ = 0.001 when N
= 64.

The exact velocity and pressure are given by

u(x) =

y

4
if x ∈ Ω−,

y

4
(x2 + 4y2) if x ∈ Ω+,

(5.101)

v(x) =

− x

16
(1.0− x2) if x ∈ Ω−,

−xy
2

4
if x ∈ Ω+,

(5.102)

p(x) =

(
−3

4
x3 +

3

8
x

)
y if x ∈ Ω−,

0 if x ∈ Ω+,

(5.103)

124

(a) (b) (c)

Figure 5.15: The solution plots of the transformed x-component velocity û, the x-component
velocity u and the pressure p for Example 5.3 with jump ratio µ− = 0.001 and µ+ = 1 when N
= 64.

(a) (b) (c)

Figure 5.16: The error plots of the transformed x-component velocity û, the x-component
velocity u and the pressure p for Example 5.3 with jump ratio µ− = 1 and µ+ = 0.001 when N
= 64.

with viscosity

µ(x) =

1 if x ∈ Ω−,

0.001 if x ∈ Ω+,
or µ(x) =

0.001 if x ∈ Ω−,

1 if x ∈ Ω+.
(5.104)

The bounded external forcing term g is given by equation (5.98) and Ω = [−2, 2] × [−2, 2].

The normal and tangential force densities can be computed by the analytical solutions and jump

relations (5.47) and (5.53).

This is a general example with a large jump in the viscosity along an ellipse. Once again,

when the mesh get sufficiently fine, we observe second order convergence for the velocity u.

However, the pressure seems only sup-linear for the case where ρ = 1000 and one needs a finer

mesh to resolve it, see Table 5.9. This is in part due to the large jump size in the transformed

velocity û along the interface as shown in Figure 5.14. In contrast, the transformed velocity û

125

(a) (b) (c)

Figure 5.17: The error plots o thef transformed x-component velocity û, the x-component
velocity u and the pressure p for Example 5.3 with jump ratio µ− = 0.001 and µ+ = 1 when N
= 64.

Table 5.9: A grid refinement analysis for Example 5.3 with µ− = 1 and µ+ = 0.001.

N E(u) r E(p) r NU NG λS λA
32 2.15× 10−1 4.12× 10−3 32 30 0.20 0.003
64 4.16× 10−2 2.37 1.81× 10−3 1.19 35 38 0.18 0.003
128 9.67× 10−3 2.11 6.37× 10−4 1.51 53 58 0.17 0.003
256 2.18× 10−3 2.15 1.97× 10−4 1.69 60 88 0.17 0.003
512 5.28× 10−4 2.05 5.77× 10−5 1.77 65 105 0.17 0.003

has a relatively small jump across the interface as what is shown in Figure 5.15, and hence can

be easily resolved. This is also reflected in the error plots for the transformed velocity in Figure

5.16-5.17, where the magnitude of the error is relatively larger when ρ = 1000 compared with

that in the case where ρ = 0.001. One can actually observe super quadratic convergence in u

from the Table 5.10. The distributions of eigenvalues are given in Figure 5.18. The method is

stable since the smallest eigenvalues λS and λA are bounded away from zero.

Example 5.4. In this example, the interface is a complicated star-shaped interface see Figure

5.20a, which is described in the polar coordinates as

r(θ) = 0.5 + 0.15 sin(6θ), 0 ≤ θ < 2π. (5.105)

We assume that the singular force is the surface tension and the force strength f(s) is now given

by

f(s) = γ
∂2

∂s2
X(s), (5.106)

where γ is the coefficient of the surface tension between the two fluids and s is the arc length.

126

(a) (b)

Figure 5.18: The eigenvalue plots of the Schur complement S in Example 5.3 when N = 64.
(a): µ− = 1 and µ+ = 0.001. (b): µ− = 0.001 and µ+ = 1.

Table 5.10: A grid refinement analysis for Example 5.3 with µ− = 0.001 and µ+ = 1.

N E(u) r E(p) r NU NG λS λA
32 5.26× 10−1 2.19× 10−2 32 10 0.14 1.29
64 9.40× 10−2 2.48 5.19× 10−3 2.08 35 15 0.12 1.28
128 1.34× 10−2 2.81 1.39× 10−3 1.90 59 26 0.12 1.22
256 2.19× 10−3 2.61 5.09× 10−4 1.45 62 31 0.12 1.22
512 3.04× 10−4 2.85 8.77× 10−5 2.54 65 48 0.12 1.22

The vector ∂2X/∂s2 is normal to the interface with magnitude equal to the curvature. Assume

γ = 0.1 and the viscosity is

µ(x) =

1 if x ∈ Ω−,

0.5 if x ∈ Ω+,
or µ(x) =

0.5 if x ∈ Ω−,

1 if x ∈ Ω+.
(5.107)

The bounded external forcing term is set to be g = 0 and the homogeneous Dirichlet boundary

condition is assumed with the domain Ω = [−1, 1]× [−1, 1].

This is a general example with a complicated interface. Since the analytic solution is not

available, the error in velocity and pressure are measured by using a reference solution which

is obtained on a fine 1024× 1024 grid. The results of the grid refinement analysis are given in

Table 5.11. Due to the large curvature of the interface, it does require fine grids to get second

order convergence rate. The solution plots are provided in Figure 5.19.

127

(a) (b) (c)

Figure 5.19: The solution plots of the transformed x-component velocity û, the x-component
velocity u and the pressure p for Example 5.4 with jump ratio µ− = 0.5 and µ+ = 1 when N
= 64.

(a) (b)

Figure 5.20: (a): A complicated star-shaped interface used in Example 5.4. (b): The configu-
rations of the interface at different times in Example 5.5 when N = 32.

128

Table 5.11: A grid refinement analysis for Example 5.4 with µ− = 1, µ+ = 0.1 or µ− = 0.5,
µ+ = 1.

N E(u) r E(p) r NU NG λS λA
µ− = 1, µ+ = 0.5

64 6.50× 10−3 3.33× 10−1 25 14 0.23 3.09
128 1.40× 10−3 2.22 1.13× 10−1 1.56 31 20 0.22 3.14
256 8.27× 10−4 0.76 7.08× 10−2 0.67 39 27 0.22 3.14
512 2.06× 10−4 2.01 1.91× 10−2 1.89 44 39 0.22 3.14

µ− = 0.5, µ+ = 1
64 1.07× 10−2 3.49× 10−1 25 10 0.28 6.49
128 5.80× 10−3 0.88 2.59× 10−1 0.43 30 16 0.25 6.60
256 7.35× 10−4 2.98 5.98× 10−2 2.11 39 23 0.25 6.60
512 1.91× 10−4 1.94 1.64× 10−2 1.87 43 34 0.25 6.60

Example 5.5. (Ellipse-shaped bubble under Stokes flow). The purpose of this example is to

show that the present method can handle moving interface problem. The interface is an elliptic

shape, which is represented by the zero level set function

φ(x, y) =

√
x2

0.752
+

y2

0.52
− 1. (5.108)

Similar to the above example, we assume the singular force is provided by the surface tension

and the force strength f(s, t) is now time-dependent and given by

f(s, t) = γ
∂2

∂s2
X(s, t). (5.109)

Assume γ = 1 and viscosity is

µ(x) =

1 if x ∈ Ω−,

0.1 if x ∈ Ω+.
(5.110)

The bounded external forcing term is set to be g = 0 and the homogeneous Dirichlet boundary

condition is imposed with the domain Ω = [−1, 1]× [−1, 1].

This is a moving interface example. The evolution of the level set function is governed by

the Hamilton-Jacobi equation

φt + ∆φ · u = 0. (5.111)

We solve this equation by the ENO (essential nonoscillating) scheme described in [62]. Since we

129

assume zero gravity, the surface tension will bring the bubble back to a circular shape. In our

simulation, the interface becomes a circle around t = 0.9. The configurations of the interface at

different times are plotted in Figure 5.20b.

130

Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis, we developed two different types of immersed interface methods, augmented IIM

and direct IIM, to solve interface problems. The major contributions are the following:

• We proposed a new augmented immersed interface method for general elliptic interface

problems with variable coefficients that have finite jumps across a general interface, and

non-homogeneous jump conditions. Both the computed solution and its gradient from

each side of the interface are second order globally. The convergence of the method has

been proved both in one and two dimensions under appropriate regularity assumptions

and a piecewise constant β(x). For a variable coefficient β(x), the conclusions are still

true if h is small enough, that is, in the asymptotic sense.

• We proposed a new direct immersed interface method for general elliptic interface prob-

lems with a variable coefficient that have finite jumps across a general interface with

non-homogeneous jump conditions. Both the computed solution and its gradient from

each side of the interface are second order globally. The notable feature of this method

is that no augmented variable is needed. Thus, the method is easier and computationally

efficient. Our numerical experiments indicated that the condition number of the system

of finite difference equations is independent of the coefficient and the jump conditions.

The second order convergence of the method is theoretically proved in one-dimensional

case by using Green’s function. In two-dimensional cases, the second order convergence

of algorithm using the optimization is proved by enforcing the discrete elliptic maximum

principle. For the original algorithm without using the optimization, its second order

convergence is demonstrated in numerical tests.

• We proposed two new ADI methods using augmented variables to separate different

131

scales. The two ADI methods have the same structure and advantages of the classical

ADI method. Each directional sweep involves solving a sequence of tridiagonal system of

equations. If [βu] is used as the augmented variable, then the finite difference equations in

terms of the coefficients are almost the same in terms of βu as the classical ADI method

with added correction terms. The time step constraint is ∆t ≤ Ch/βmax which is not con-

sidered as a severe restriction. If d[βu]
dτ is chosen as the augmented variable, then the finite

difference coefficients will be modified with closed form of expressions and the method is

asymptotically unconditionally stable.

• We proposed a new direct immersed interface method for solving two-phase incompress-

ible Stokes equations with an interface and a piecewise constant viscosity. The computed

numerical solutions are second order accurate for both velocity and pressure. The eigen-

value analysis in our numerical experiments indicate that our method is stable and the

solutions computed from both Uzawa and GMRES iterative method converge to exact

solutions.

6.2 Future work

• Our proposed ADI methods are originally designed for solving two-dimensional models.

Using [βu] as the augmented variable, this approach can also be extended to solve three-

dimensional problems and we expect to get similar results.

• Our proposed ADI methods perform well for the problems with piecewise constant coeffi-

cients and continuous solution. But for more general problems, it will be better to use the

Crank-Nicolson method. We plan to design a direct IIM using the Crank-Nicolson scheme

to solve general parabolic interface problems.

• We also plan to extend our direct IIM based on MAC scheme to solve incompressible

two-phase Navier-Stokes equations.

132

REFERENCES

[1] I. Babuška. The finite element method for elliptic equations with discontinuous coefficients.

Computing, 5:207–213, 1970.

[2] J. T. Beale and A. T. Layton. On the accuracy of finite difference methods for elliptic

problems with interfaces. Commun. Appl. Math. Comput. Sci., 1:91–119, 2006.

[3] Jacob Bedrossian, James H Von Brecht, Siwei Zhu, Eftychios Sifakis, and Joseph M Teran.

A second order virtual node method for elliptic problems with interfaces and irregular

domains. Journal of Computational Physics, 229(18):6405–6426, 2010.

[4] François Bouchon and Gunther H Peichl. The immersed interface technique for parabolic

problems with mixed boundary conditions. SIAM Journal on Numerical Analysis,

48(6):2247–2266, 2010.

[5] J. Bramble and J. King. A finite element method for interface problems in domains with

smooth boundaries and interfaces. Advances in Comput. Math., 6:109–138, 1996.

[6] James H Bramble, Joseph E Pasciak, and Apostol T Vassilev. Analysis of the inexact uzawa

algorithm for saddle point problems. SIAM Journal on Numerical Analysis, 34(3):1072–

1092, 1997.

[7] B. Camp, T. Lin, Y. Lin, and W. Sun. Quadratic immersed finite element spaces and their

approximation capabilities. Adv. Comput. Math., 24:81–112, 2006.

[8] John R. Cannon and Mario Primicerio. A two phase Stefan problem with flux boundary

conditions. Ann. Mat. Pura Appl. (4), 88:193–205, 1971.

[9] S. Chen, B. Merriman, P.Smereka, and S. Osher. A fast level set based algorithm for Stefan

problems. 135:8–29, 1997.

133

[10] Xiaohong Chen, Xiufang Feng, and Zhilin Li. A direct method for accurate solution and

gradient computations for elliptic interface problems. Numerical Algorithms, pages 1–32,

2018.

[11] Xiaohong Chen, Zhilin Li, and Juan Ruiz Álvarez. A direct iim approach for two-phase

stokes equations with discontinuous viscosity on staggered grids. Computers & Fluids,

2018.

[12] Z. Chen and J. Zou. Finite element methods and their convergence for elliptic and parabolic

interface problems. Numer. Math., 79:175–202, 1998.

[13] I-Liang Chern and Yu-Chen Shu. A coupling interface method for elliptic interface prob-

lems. Journal of Computational Physics, 225(2):2138–2174, 2007.

[14] S. Chou, D. Kwak, and K. Wee. Optimal convergence analysis of an immersed interface

finite element method. Advances in Computational Mathematics, 33:149–168, 2010.

[15] X. Feng, Z. Li, and L. Wang. Analysis and numerical methods for some crack problems.

Int. J. Num. Anal. & Model., Series B, 2:155–166, 2011.

[16] R. M. Furzeland. A comparative study of numerical methods for moving boundary prob-

lems. J. Inst. Maths Applics, 26:411–429, 1980.

[17] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order.

Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[18] Yan Gong, Bo Li, and Zhilin Li. Immersed-interface finite-element methods for elliptic

interface problems with nonhomogeneous jump conditions. SIAM Journal on Numerical

Analysis, 46(1):472–495, 2008.

[19] W. Hackbusch. Elliptic Differential Equations: Theory and Numerical Treatment. Springer-

Verlag, 1992.

134

[20] A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche’s method,

for elliptic interface problems. Comput. Methods Appl. Mech. Engrg., 191:5537–5552, 2002.

[21] X. He, T. Lin, and Y. Lin. Immersed finite element methods for elliptic interface problems

with non-homogeneous jump conditions. Int. J. Numer. Anal. Model., 2010.

[22] Jeffrey Lee Hellrung, Luming Wang, Eftychios Sifakis, and Joseph M Teran. A second

order virtual node method for elliptic problems with interfaces and irregular domains in

three dimensions. Journal of Computational Physics, 231(4):2015–2048, 2012.

[23] S. Hou, Z. Li, L. Wang, and W. Wang. A numerical method for solving elasticity equations

with sharp-edged interfaces. Commun. Comput. Phys., 12:595–612, 2012.

[24] S. Hou and X. Liu. A numerical method for solving variable coefficient elliptic equation

with interfaces. 202:411–445, 2005.

[25] T. Hou, Z. Li, S. Osher, and H. Zhao. A hybrid method for moving interface problems

with application to the Hele-Shaw flow. 134:236–252, 1997.

[26] T. Hou, X. Wu, and Y. Zhang. Removing the cell resonance error in the multiscale finite

element method via a Petrov-Galerkin formulation. Comm. Math. Sci., 2:185–205, 2004.

[27] T. Y. Hou, J. S. Lowengrub, and M. J. Shelley. Removing the stiffness from interfacial

flows with surface tension. 114:312–338, 1994.

[28] Juri D Kandilarov and Lubin G Vulkov. The immersed interface method for two-

dimensional heat-diffusion equations with singular own sources. Applied numerical math-

ematics, 57(5-7):486–497, 2007.

[29] T Kelley, C. Iterative methods for linear and nonlinear equations. Raleigh NC: North

Carolina State University, 1995.

135

[30] Do Y Kwak, Kye T Wee, and Kwang S Chang. An analysis of a broken p 1-nonconforming

finite element method for interface problems. SIAM Journal on Numerical Analysis,

48(6):2117–2134, 2010.

[31] Anita T Layton. An efficient numerical method for the two-fluid stokes equations with a

moving immersed boundary. Computer Methods in Applied Mechanics and Engineering,

197(25-28):2147–2155, 2008.

[32] William J. Layton, Friedhelm Schieweck, and Ivan Yotov. Coupling fluid flow with porous

media flow. SIAM J. Numer. Anal, 40:2003, 2003.

[33] R. J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations,

Steady State and Time Dependent Problems. SIAM, 2007.

[34] R. J. LeVeque and Z. Li. Immersed interface methods for stokes flow with elastic boundaries

or surface tension. SIAM Journal on Scientific Computing, 18(3):709–735, 1997.

[35] Randall J Leveque and Zhilin Li. The immersed interface method for elliptic equations

with discontinuous coefficients and singular sources. SIAM Journal on Numerical Analysis,

31(4):1019–1044, 1994.

[36] Z. Li. The immersed interface method using a finite element formulation. Applied Numer.

Math., 27:253–267, 1998.

[37] Z. Li. On convergence of the immersed boundary method for elliptic interface problems.

Math. Comp., 84(293):1169–1188, 2015.

[38] Z. Li and K. Ito. The Immersed Interface Method – Numerical Solutions of PDEs Involving

Interfaces and Irregular Domains. SIAM Frontier Series in Applied mathematics, FR33,

2006.

[39] Z. Li, K. Ito, and M-C. Lai. An augmented approach for Stokes equations with a discon-

tinuous viscosity and singular forces. Computers and Fluids, 36:622–635, 2007.

136

[40] Z. Li, T. Lin, and X. Wu. New Cartesian grid methods for interface problem using finite

element formulation. Numer. Math., 96:61–98, 2003.

[41] Z. Li and A. Mayo. ADI methods for heat equations with discontinuities along an arbitrary

interface. In Proc. Symp. Appl. Math. W. Gautschi, editor, volume 48, pages 311–315.

AMS, 1993.

[42] Z. Li and B. Soni. Fast and accurate numerical approaches for Stefan problems and crystal

growth. Numerical Heat Transfer, B: Fundamentals, 35:461–484, 1999.

[43] Z. Li, L. Xi, Q. Cai, H. Zhao, and R. Luo. A semi-implicit augmented IIM for Navier-Stokes

equations with open and traction boundary conditions. 297:182–193, 2015.

[44] Zhilin Li. A fast iterative algorithm for elliptic interface problems. SIAM Journal on

Numerical Analysis, 35(1):230–254, 1998.

[45] Zhilin Li and Kazufumi Ito. Maximum principle preserving schemes for interface problems

with discontinuous coefficients. SIAM Journal on Scientific Computing, 23(1):339–361,

2001.

[46] Zhilin Li, Haifeng Ji, and Xiaohong Chen. Accurate solution and gradient computation for

elliptic interface problems with variable coefficients. SIAM Journal on Numerical Analysis,

55(2):570–597, 2017.

[47] Zhilin Li and Yun-Qiu Shen. A numerical method for solving heat equations involving

interfaces. In Electronic Journal of Differential Equations, Conf, volume 3, 1999.

[48] T. Lin and X. Zhang. Linear and bilinear immersed finite elements for planar elasticity

interface problems. J. Comput. Appl. Math., 236:4681–4699, 2012.

[49] Tao Lin, Yanping Lin, and Xu Zhang. Partially penalized immersed finite element methods

for elliptic interface problems. SIAM J. Numer. Anal., 53(2):1121–1144, 2015.

137

[50] J. Liu. Open and traction boundary conditions for the incompressible Navier-Stokes equa-

tions. 228:7250–7267, 2009.

[51] Jiankang Liu and Zhoushun Zheng. Iim-based adi finite difference scheme for non-

linear convection–diffusion equations with interfaces. Applied Mathematical Modelling,

37(3):1196–1207, 2013.

[52] Vincent Martin, Jérôme Jaffré, and Jean E. Roberts. Modeling fractures and barriers as

interfaces for flow in porous media. SIAM J. Sci. Comput., 26(5):1667–1691 (electronic),

2005.

[53] Ralf Massjung. An unfitted discontinuous galerkin method applied to elliptic interface

problems. SIAM Journal on Numerical Analysis, 50(6):3134–3162, 2012.

[54] S. L. Mitchell and M. Vynnycky. Finite-difference methods with increased accuracy and cor-

rect initialization for one-dimensional Stefan problems. Appl. Math. Comput., 215(4):1609–

1621, 2009.

[55] Fernando Morales and R. E. Showalter. The narrow fracture approximation by channeled

flow. J. Math. Anal. Appl., 365(1):320–331, 2010.

[56] K. W. Morton and D. F. Mayers. Numerical Solution of Partial Differential Equations.

Cambridge press, 1995.

[57] C. S. Peskin and D. M. McQueen. A general method for the computer simulation of

biological systems interacting with fluids. Symposia of the Society for Experimental Biology,

49:265, 1995.

[58] Michael Pruitt. Large time step maximum norm regularity of L-stable difference methods

for parabolic equations. Numer. Math., 128(3):551–587, 2014.

[59] Michael Pruitt. Maximum norm regularity of periodic elliptic difference operators. ESAIM,

2015.

138

[60] Y. Saad. GMRES: A generalized minimal residual algorithm for solving nonsymmetric

linear systems. 7:856–869, 1986.

[61] N. Sukumar, D. L. Chopp, and B. Moran. Extended finite element for three-dimensional

fatigue crack propagation. Engineering Fracture Mechanics, 70:29–48, 2003.

[62] Mark Sussman, Peter Smereka, and Stanley Osher. A level set approach for computing

solutions to incompressible two-phase flow. Journal of Computational physics, 114(1):146–

159, 1994.

[63] Zhijun Tan, KM Lim, and BC Khoo. An implementation of mac grid-based iim-stokes

solver for incompressible two-phase flows. Communications in Computational Physics,

10(5):1333–1362, 2011.

[64] Lars B. Wahlbin. Superconvergence in Galerkin finite element methods, volume 1605 of

Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1995.

[65] J. Wang and Y. Xiu. A weak Galerkin finite element method for second-order elliptic

problems. J. Comput. Appl. Math., 241:103–115, 2013.

[66] A. Wiegmann. Analytic solutions of a multi-interface transmission problem and crack

approximation. Inverse Problems, 16:401–411, 2000.

[67] A. Wiegmann, Z. Li, and R. LeVeque. Crack jump conditions for elliptic problems. Applied

Math. Letters, 12:81–88, 1999.

[68] H. Wu and Y. Xia. An unfitted hp-interface penalty finite element method for elliptic

interface problems. arXiv:1007.2893, 2010.

[69] J. Xu. Error estimates of the finite element method for the 2nd order elliptic equations

with discontinuous coefficients. J. Xiangtan University, No. 1:1–5, 1982.

[70] X. Yang, B. Li, and Z. Li. The immersed interface method for elasticity problems with

interface. Dynamics of Continuous, Discrete and Impulsive Systems., 10:783–808, 2003.

139

[71] Zhimin Zhang and Ahmed Naga. A new finite element gradient recovery method: super-

convergence property. SIAM J. Sci. Comput., 26(4):1192–1213 (electronic), 2005.

[72] Shan Zhao. A matched alternating direction implicit (adi) method for solving the heat

equation with interfaces. Journal of Scientific Computing, 63(1):118–137, 2015.

[73] YC Zhou, Shan Zhao, Michael Feig, and Guo-Wei Wei. High order matched interface

and boundary method for elliptic equations with discontinuous coefficients and singular

sources. Journal of Computational Physics, 213(1):1–30, 2006.

140

