ABSTRACT

SHRIVASTAVA, RACHIT. Building a Large Display Interface for Manual Labeling & Classification in Machine Learning Training. (Under the direction of Benjamin Watson.)

Labeling data for training Machine Learning (ML) models has always been tedious and error-prone. Training interaction often reduces to filling out hundreds or even thousands of spreadsheet cells. Training interfaces should be much more understandable, engaging and reliable. We propose a classification training interface based on the decades-old practice of manual classification: qualitative coding (QC). Traditionally, qualitative coders create and manipulate large collections of physical tokens (e.g. cards or Post-Its), each representing a portion of the data. Tokens grouped into piles are in the same class. This physical manipulation engages the entire body and physically represents the state of the classification task, reducing cognitive demand. In this thesis, we create and evaluate a user interface for large touch displays that recreate this QC interaction for ML training. We compare it to a traditional spreadsheet interface, measuring inter-coder agreement and obtaining subjective measures of preference.
Building a Large Display Interface for Manual Labeling & Classification in Machine Learning Training

by
Rachit Shrivastava

A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Science

Computer Science

Raleigh, North Carolina
2018

APPROVED BY:

Andrew Rhindos
Patrick FitzGerald

Benjamin Watson
Chair of Advisory Committee
DEDICATION

I would like to dedicate this thesis to my parents.
BIOGRAPHY

Rachit Shrivastava was born in a town called Dewas in Madhya Pradesh, India on April 4th, 1991. He graduated with B.Tech in Computer Science & Engineering from VIT University, Vellore, India in 2013. He was fond of creating graphical user interfaces for applications and soon ended up in a firm where he could develop interfaces for casino slot games. He began his graduate studies in North Carolina State University, Raleigh, USA in Fall 2016 and started off with his thesis work from Summer 2017 under supervision of Dr. Benjamin Watson.
ACKNOWLEDGEMENTS

I would like to thank my mother, father and sister for their constant support and encouragement.

I would also like to thank North Carolina State University and James B. Hunt Jr. Library for giving me an opportunity and providing me resources to pursue academic excellence.

I would like to extend my gratitude to Dr. Benjamin Watson for giving me this opportunity to work on this exciting project. It’s because of his constant feedback and guidance that I was able to make the prototype for an immersive interface and complete this research. I would also like to thank Andrew Rhindos and Patrick FitzGerald for consenting to being a part of my thesis committee.

I would to thank James Herrick and Patrick Cronin from Institute of Emerging Issues, NCSU for lending me with the Surface Table to test my prototype.

I would like to thank Kriti Shrivastava for giving me inputs on visualization techniques for my prototype and all of my friends for being with me on this remarkable experience of working on a thesis. I would especially like to thank Johanne Christensen, on whom I relied upon for inputs on my prototype design, keeping in mind the challenges faced by Machine Learning Algorithm Trainers at IBM.
Table of Contents

List of Figures ... vi

Chapter 1 INTRODUCTION ... 1
 1.1 Proposed Solution .. 2

Chapter 2 RELATED WORK .. 3
 2.1 Machine Learning Training Process 3
 2.1.1 The Data Labeling Problem 4
 2.2 Qualitative Coding ... 4
 2.3 Immersive Interfaces .. 5
 2.4 Tangible UI ... 7

Chapter 3 ML TRAINING INTERFACE 9
 3.1 QC-ML Interaction .. 9
 3.2 Interface Design .. 11
 3.2.1 Model Visualization .. 11
 3.2.2 Derived Data ... 12
 3.2.3 Data Display .. 12
 3.2.4 Classification Interaction 12
 3.3 Tools & Technology ... 12
 3.4 QC-ML Prototype Interface .. 13
 3.5 Input/Output Assumptions ... 23
 3.5.1 Input JSON Data Format ... 23
 3.5.2 Output JSON Data Format 23

Chapter 4 EVALUATION ... 27
 4.1 Study Process .. 27
 4.1.1 Participants .. 27
 4.1.2 Data Preparation .. 28
 4.1.3 The Study .. 28
 4.2 Results ... 30
 4.2.1 Positive Comments ... 31
 4.2.2 Negative Comments .. 31
 4.3 Inference from study comments 32

Chapter 5 FUTURE WORK & DISCUSSION 35

Chapter 6 CONCLUSION .. 37

Bibliography ... 38

APPENDIX .. 40
 Appendix A Beginner's Guide to ML .. 41
LIST OF FIGURES

Figure 2.1	Qualitative Coding Methods [Sal16]	5
Figure 2.2	Manual Coding using Post-its on Tabletop	6
Figure 2.3	Interactive Tabletops used as a collaboration tool	6
Figure 2.4	Pinch-Zoom vs Conventional GUI Buttons	7
Figure 2.5	TUI GUI Interaction Model [Ish08b]	8
Figure 3.1	Possible Interface for a QC structured ML as proposed by CW	11
Figure 3.2	Affinity Mapping	13
Figure 3.3	Digital cards/post-its	14
Figure 3.4	Home Screen	15
Figure 3.5	Classification Categories - The Classification Board	16
Figure 3.6	Detailed Description on Post-Its/Cards	17
Figure 3.7	ML Training Progress Bar	17
Figure 3.8	Total Machine Learning Training Progress	18
Figure 3.9	Inter-Coder Agreement Matrix	18
Figure 3.10	Codebook	19
Figure 3.11	History	20
Figure 3.12	History - Undo	20
Figure 3.13	Information Button	21
Figure 3.14	An Early Moment in ML Training	22
Figure 3.15	The prototype running on a Microsoft Surface Table	22
Figure 3.16	The prototype running on a large wall display	23
Figure 3.17	Input JSON example	25
Figure 3.18	Output JSON example	26
Figure 4.1	A Traditional Spreadsheet Interface	28
Figure 4.2	The Evaluation Process	29
Figure 4.3	Participants average familiarity with different aspects of the study	31
Figure 4.4	Ratings for both the interfaces by the 7 participants	33
Figure 4.5	Average Ratings for both the interfaces by the 7 participants	33
Figure 4.6	Representation of Number of labels agreed upon by the participants with the two interfaces vs Number of participants agreeing	34
Figure 4.7	A pre-subtracted unanimity amongst participants	34
Figure A.1	Machine Learning Process	42
The User Interface (UI) has been continuously evolving since the 1960s, from using command line interface on UNIX machines to having icon based interfaces in smart-phones and tablets. UI provides a medium of interaction between the application and the end user. However many feel that significant opportunities for improved interfaces are being lost to stagnation [Mye00]. Researchers point out that for many applications, the Graphical User Interface (GUI) will be a poor fit [Wei93]. Human interactions don't always happen over a desk in front of a Personal Computer (PC) or a laptop. GUIs maybe designed for specific vertical market; like for ATM machines, Kiosks at museums & airports. But they fail to serve the purpose when features like hand gestures and speech recognition are a natural medium of interaction. Such areas have always been a focus of study for researchers.

In particular, Machine Learning (ML) has never translated its interaction into the physical world, making it difficult for those without great digital fluency to use ML. Although there has been some development in creating visualizations in ML, those are for aiding those with ML rather than domain expertise. Fails and Olsen [FO03] mention about involving both machine and humans by creating an interface amongst them with the focus on training the model, they term it as ‘Human-in-the-loop’. Such a system helps the users to increase the efficiency of the ML model/algorithm by constantly providing it a feedback based on human expertise. ML algorithms are known for being difficult to train and understand, specially for people without ML background or knowledge. The need for a more natural and intuitive dialog between ML classification algorithms and domain experts motivates our work. We aim to implement a simple and efficient UI for ML trainers (domain experts)
to easily label and classify data, thereby making ML more trainable, understandable, reliable and explainable, and greatly broadening its use case.

1.1 Proposed Solution

Our goal is increase the utility and accessibility of ML classifiers by making interaction with them straightforward and efficient enough to allow domain experts to train them, and to explain their results to their peers. To achieve this, we will hide algorithmic detail with interaction based on Qualitative Coding (QC) [Sal16] and focused around data. QC is a research method used for decades by the humanities and behavioral sciences to extract meaningful information from non-numeric data such as text, videos or imagery.

To meet this goal, we created an application based on QC methodology that would ease this labeling process and provide qualitative feedback to domain expert trainers. The application not only makes labeling easy and even fun but also provides feedback to the trainer on how much of the data they have labeled and how their work compares to other trainers. [Stu07] paper discusses the importance of having feedback in the ML training process and how it help trainers to collaborate effectively.

In the subsequent chapters I will introduce you to machine learning training, how ML algorithm training takes place, and the role our prototype plays in the entire process. We will introduce qualitative coding, and explain how we make use of its methodology in our prototype to support interaction between non-ML experts and ML algorithms during training. We'll also discuss different alternative UI technologies, including immersive and tangible interfaces, their use cases and how they're helpful in creating rich, collaborative applications. This thesis also portrays our entire process in creating a solution for ML classification & training.
This chapter describes some of related work in the field of interaction for Machine Learning Training. It also provides evidence of work towards development of a user feedback-driven ML model in some form, along with some insights about Qualitative Coding, Immersive and Tangible Interfaces, and how these technologies can be used to create a natural dialog between the domain experts and the ML Algorithm.

There has been little research into resolving the communication gap between domain experts and ML algorithms. Simone Stumpf and colleagues carried out a think-aloud study asking ML users to provide feedback to the explanations of machine learning predictions to help it improve [Stu07]. Users provided suggestions for re-weighting of features, some even proposed adding new features, feature combinations, relational features, and wholesale changes to the learning algorithm.

2.1 Machine Learning Training Process

A complete ML scenario starts with a problem to be solved and ends with a mechanism or an algorithm that can make predictions about new instances of similar data. In this thesis our focus is on supervised learning (with manually labeled examples). ML in general involves certain stages, details of which have been mentioned in the Appendix-A [Gar15],

- Data Exploration and Preparation
- Data Preprocessing
• Model Development and Training

• Model Testing and Deployment

The first stage is collection of data from various resources. Next comes removal of redundant data, transformation of data per requirements (e.g., normalization of numeric data to a common scale), and most importantly in our context, data labeling, by asking domain experts to make judgments about the unlabeled data. Some of this labeled data is used to train the model, which predicts labels by fitting complex functions to data features. The model is then evaluated by comparing the results produced by the model and the remainder of the labeled data.

2.1.1 The Data Labeling Problem

A crucial ingredient for machine learning is labeled data. Unfortunately manual labeling of ML data is tedious, especially when the trainer is not familiar with ML algorithms. Labeling lacks an interface that could help non-ML trainers perform their task data easily. There have been certain applications which help domain experts to cluster these datasets, but few have built interfaces supporting labeling. One such application is mentioned in [FO03], it also refers to the training problem itself: https://www.oreilly.com/ideas/creating-large-training-data-sets-quickly.

2.2 Qualitative Coding

QC is a manual classification method widely used in the humanities and behavioral sciences. It has been used as a tool to extract meaningful information from non-numeric data such as text, videos or images for decades. Let’s consider some of the common terms used in QC. Users are referred to as ‘Coders’ and a ‘Code’ is mostly a word or short phrase that symbolically assigns a summative, salient, essence-capturing, and/or evocative attribute for a portion of language-based or visual data [Sal16]. Coders work independently in a highly iterative process to review data, label it with codes, group these codes into categories, draw themes from categories, and finally build theory from themes.

The first cycle of QC coding labels data with codes. Here researchers or domain experts perform high-volume work, making few high level inferences. The remainder of the process is second cycle coding, during which researchers group the codes into different categories and generate theoretical conclusions based on the patterns found from first cycle, Figure 3.1.

In QC, multiple coders can work together to process data on the same data set. Not only does this share the workload, it also allows for verification of their work among themselves. When multiple coders collaborate, a measure of intercoder agreement [Gwe01], such as Cohen’s kappa or Krippendorff’s alpha, is used to evaluate the robustness of the labeled data. If the coders’ agreement is low, they repeat the first cycle of coding. QC coders often make use of cards or post-its on a large
board or table to display the raw data, group it, and label it with codes (Figure 2.2). This offloads much of the cognitive work of recalling and organizing large data collections.

As a very well established methodology for manual data labeling, we believe that QC can form the basis for an effective ML training interface. Christensen and Watson [CW] have discussed this in more detail, we offer our own in depth discussion in the next chapter.

2.3 Immersive Interfaces

Immersion is the subjective impression that one is participating in a comprehensive, realistic experience [Ded09]. Computing in the late 90s usually involved a single user sitting in front of a screen, with a keyboard and mouse interacting with applications through Internet. Our use of computers has vastly changed since then. With the emergence of smartphones, tablets and touch-enabled large screens [Ni06], our interaction with computers has become more diverse, and some say, more natural [WW11]. Motion and gesture have begun to play an important role in how users perceive any application; now one just uses two fingers to enlarge an image by pinching and zooming as compared to the conventional GUI using zoom in-out buttons repetitively (Figure 2.4). Large, touch-enabled tabletop and wall displays (Figure 2.3) are appearing, which support full-body and

![Figure 2.1 Qualitative Coding Methods [Sal16]](image-url)
collaborative interaction. Though often overlooked in favor of virtual and augmented reality, these large interfaces are also quite immersive, engaging a fuller range of our senses than traditional desktops.

One of the earliest examples of a large-screen immersive interface is *Put That There* by Bolt [Bol80] https://youtu.be/RyBEyEtXQo, which used voice and gesture combined with a large wall display to manipulate geometric shapes. [CN92] mentions about a closed room (called CAVE) where
walls and ceiling surrounded a viewer by projected images to provide a viewer-centric perception. [Win01] describes various types of interactive workspaces such as Barehands, PointRight which help users collaborate without using conventional methods. Such systems provide not only touch, but also spatial interactions to the user, increasing user engagement by filling most of their visual field and interacting with more of their body.

![Figure 2.4 Pinch-Zoom vs Conventional GUI Buttons](image)

Immersive interfaces could enable us to create a digital interface for labeling and categorization of ML data that mirrors the post-it data displays used by QC coders. Sitting around a large tabletop touch display, users might move and group these digital post-its to label corresponding data items. The interface could visualize task completion, monitor their agreement with other coders, offer detail about the data represented by each card, and support annotation about certain data and codes.

2.4 Tangible UI

Tangible user interfaces (TUIs), earlier known as graspable user interfaces, support user interaction with the digital world through a physical media [Ish08a]. Humans tend to grasp and manipulate physical objects much more easily than tapping a flat screen; interaction with a physical object provides immediate sensory feedback to the user. TUIs are generally built from systems of physical artifacts that are digitally coupled with computation.

As an example, Ishii and colleagues developed Urp [Ish08b] and [UI00], an urban planning simulator for modeling the interaction between buildings and their environment, including shadows and wind flow. Urp is an instance of a new *MCRpd interaction model* (Model-Control-Representation-physical-digital), which differs from the GUI’s well-known Model-View-Controller (MVC) model by renaming the MVC model’s View component to Representation, and dividing it into two parts (Figure 2.5. The first part, *physical representations* (rep-p) is the physically embodied artifacts, while the second, *digital representation* (rep-d) is the computationally mediated (e.g. projected) components of TUIs. This model describes several properties of TUIs:

- Physical representations (*rep-p*) are computationally coupled to underlying digital information
(to the model).

- Physical representations embody mechanisms for interaction (enabling control).
- Physical representations are perceptually coupled to actively mediated digital representations (rep-d).
- The state of physical representations embodies key aspects of the digital state (the model).

Many TUIs have been developed since the introduction of Tangible Interfaces in early 1990s. Urp [UI99], mediaBlocks [Ull98] and SandScape [Wan02] were some of the initial projects. TUIs have a major limitation: they are tailored for certain applications, and cannot easily be reused for others. Despite this, TUIs can support a wide range of applications, including visualization, education, system management, simulation and construction.

What heuristics should guide the design of a tangible UI? Sharlin, Watson and others suggest three [Sha04]:

- Intuitive spatial mapping to the application.
- Unification of input and output to improve action-perception coupling.
- Support for trial-and-error, exploratory tasks, enabling learning.

Ultimately, TUIs might enable domain experts to label data not only with "soft" interaction through data tokens displayed using pixels, but also with actual physical post-its or cards, enabling a much more intuitive interaction.
A product’s development life-cycle involves rapid iteration, with frequent design changes. This prototype ML training application was no exception. Improvements made for each iteration involved software and hardware constraints, modifications to requirements, as well as software and visualization effectiveness and aesthetics.

This chapter describes some of the design decisions taken, tools and technology used, challenges faced and how we overcame those to arrive at our final prototype application. We also describe how qualitative coding methodology guided the development of an interface for ML labeling, and in particular how that methodology motivated our use of an immersive interface.

3.1 QC-ML Interaction

Our goal is to improve the interface for ML algorithm training, supporting a natural dialog between algorithm and domain experts without ML expertise. Below we describe how QC can help solve many of the problems addressed by Nielsen and Molich’s heuristics [NM90]:

1. **Recognition, not Recall.** Manually creating an ML training dataset and evaluating the resulting ML model place significant demand on the memory of domain experts. Not only must they remember individual data items and how they were labeled, they must also keep in mind how labels and data features are associated. QC and our interface ease this task by providing:
(a) **Codebooks.** Indexing the codes being used (remember that QC’s *codes* are ML’s *labels*). They include the codes themselves, their definitions, inclusion and exclusion criteria, typical examples and boundary cases.

(b) **Data Displays.** Visualizing coder/labeler work by organizing data tokens on on tables or walls.

(c) **Memos.** Capturing coder/labeler reasoning: notes about why a data item was coded as it was, and any broader implications.

(d) **Histories.** Recording item-by-item coding history, permitting rollback of a series of labels that must be redone.

2. **Error Correction.** Most ML classifiers consider the training data to be correct, but since the data are prepared by humans, error is likely. QC relies on iteration, histories and multiple coders to rectify these errors. In ML labeling, we support histories and multiple expert trainers, and display the classes domain experts define, and plan to visualize data item goodness of fit and model impact.

3. **Iteration and Visibility.** Qualitative coding limits the number of coding iterations with measures of success such as inter-coder agreement, and by a focus on key examples. Collaborative coding has little value if coding partners cannot code similarly, so QC iteration continues until they do, as measured by percent agreement (similar to ML’s error rate), or improved measures Cohen’s kappa and Krippendorff’s alpha (which account for chance agreement and differences in coding distribution [Gwe01]). Our interface treats ML classifiers as coding partners, assessing manual/automated agreement using these improved measures.

4. **Collaboration.** Both QC coders and ML domain experts regularly collaborate with peers. In QC, this supported by shared data displays. Similarly, our ML training interface visualizes data being classified by partner domain experts, while inter-coder agreement measures how similarly partners code. Interaction with ML based automated partners will be supported similarly, with data displays permitting experts to compare ML work to their own, inter-coder agreement measures succinctly indicating the similarity of that work, and examples making any differences concrete.

5. **Efficiency and Expertise.** Qualitative Coding does not assume that humans already know how to code examples, allowing exploration, iteration and correction while codes emerge. It also allows simultaneous coding as expertise grows, with more than one code attached to a data item at a time. In our ML interface, data displays show the effect of domain expert training, and histories support changes in that training. Ultimately it will also allow simultaneous labeling.
6. **Real World System Match.** QC often relies on manipulation of physical objects to improve coding, and to monitor its state. As a typical digital technology, ML has never approximated this real world interaction, making it difficult for those without great digital fluency to use ML. Our interface displays data in the form of 'Digital Post-its'. To classify data items, an expert simply drags its 'Digital Post-it' into the desired color-coded category. By bridging this divide, our interface makes ML more efficient, accessible, and collaborative.

3.2 Interface Design

As we have already noted, qualitative coding (manual classification) has many similarities to machine learning (automated classification). Both involve labeling of data items, and building theories (or models in ML) from the data [Mul16]. We used Christensen and Watson's idea [CW] that QC’s manual classification experience can be recreated in an immersive interface. They proposed three key elements: Model Visualization, Derived Data, and Data Display.

![Figure 3.1 Possible Interface for a QC structured ML as proposed by [CW]](image)

3.2.1 Model Visualization

This element summarizes the organization of the data in the model so far. It updates interactively as domain experts interact with the application. This summary helps users monitor their labeling/coding progress as they work with a data set that is much larger than in traditional QC. Christensen and Watson propose making unclassified data gray, data that fits well in the current model green, and data that does not fit beige.
3.2.2 Derived Data

Derived data is obtained through the process of classification. As data is classified, the system builds a classification history, updates inter-coder agreement, and supports label indexing in a codebook. The history can either be stored as the global step-by-step process of training the model, or sorted by the different sets of categories by which the data is being classified. Inter-coder agreement is displayed as a color-mapped matrix, with values determined by Cohen's kappa or Krippendorff's alpha [Gwe01]. The codebook automatically compiles a list of all the labels used, and supports both automated and manual explanation of code use with illustrative examples.

3.2.3 Data Display

The data display shows the data items with which the domain expert has been working, and sorts them by class. This is the workspace where experts classify uncategorized labels interactively. As in QC, labels can be predetermined or generated by experts on the fly.

3.2.4 Classification Interaction

Christensen and Watson [CW] suggest that training interaction might follow these steps. The expert:

- Determines the label for a data item by going to its detailed view and understanding the item's features.

- Assigns a label to the item by dragging it to a category.

- The model visualization updates automatically, reflecting both the labeling of the data item itself, and the effect of that training on the ML model.

- Derived data also updates automatically. The history now shows the latest classification. The inter-coder agreement matrix is updated slightly by that classification. If the last classification introduced a new label, it is added to the codebook.

3.3 Tools & Technology

We used a suite of web technologies to develop our prototype. As interactive technologies diversify, browsers have become responsive, working well on both small phones and large touch displays. Today, progressive web applications [Goo17] are nearly indistinguishable from native apps. As an open, portable and nearly universally accessible platform, the web was a natural software choice for our work.
Our prototype ML training UI was therefore developed using a range of web technologies including HTML5, CSS3 and JavaScript (JS). Some of the JS libraries that we explored during the prototyping of this large screen interface were:

- React
- Bootstrap 4
- d3
- p5
- CreateJS
- node

To recreate the physical experience of qualitative coding using cards or Post-Its, we tested our software on a Microsoft Surface Table, in particular Samsung’s Interactive Display SUR40, a large screen, tabletop, touch-enabled display.

3.4 QC-ML Prototype Interface

Christensen and Watson [CW] propose a structure for QC-enabled ML interfaces, as seen in Figure 3.1. This section describes the layout and features of the QC-enabled, immersive prototype interface we developed. In particular, the interface simulates the physical setup QC coders use while labeling (i.e. Affinity Mapping, Figure 3.2).

![Figure 3.2 Affinity Mapping](image_url)

To approximate the physical cards or Post-Its QC coders use, our prototype uses digital cards or Post-Its. These display and contain the information ML domain experts need to classify the cards and drag them to desired categories 3.3.
Figure 3.4 shows an overview of our QC-enabled UI. It is a home screen consisting of four major sections: the classification board (approximating QC's data display), the inter-coder agreement visualization and history (both part of QC's derived data), and ML training progress (model visualization).

The classification board is equally divided into a pie structure (Figure 3.5), with one "slice" per data category/class. Each category has a distinct color. As domain expert trainers move a data item into a pie slice, it is classified and takes on the category's color (Figure 3.6), while the prototype updates the ML training progress bars (Figure 3.7). For example, in the given figure, we have four categories, namely Unclassified (in Gray), Irrelevant (in Red), Relevant (in Green) and Unknown (in Blue). At the initial load, the data items to be classified appear as digital Post-Its/cards in the center unclassified section of the classification board.

Tapping on the digital Post-Its (Figure 3.6) provides domain experts with a pop-up describing the corresponding data item features in detail. Normally, the post-it merely displays is a brief heading/summary of this information.

The stacked bar in Figure 3.7 represents domain expert progress in classifying data items for the current set of categories. Here, the categories in the set are defined with respect to a certain question about the data ("Is Dirt 3 a racing game?"). Note that the colors here correspond to those
in the classification board, and again represent the categories in the current set.

The set of stacked bars in Figure 3.8 shows ML training progress made by all collaborating domain experts across all category sets, defined here by several questions against the data). The current category set is highlighted with the red-marked border. A simple swipe up or down scrolls through category sets/questions. Tapping on any progress bar brings that question in the current view and populates all of its label into the staging area.

The matrix in Figure 3.9 displays inter-coder (or inter-rater) agreement, such as Cohen's kappa or Krippendorff alpha, and is used to evaluate the robustness of the data labeling. Each entry in the matrix specifies the agreement between two coders or domain experts working on the same data, with white indicating strong agreement, and darker blues indicating disagreement. We have also shown the machine learning algorithm as one of the raters in order to evaluate its agreement with domain experts. To avoid biasing domain experts, the matrix is not updated after every data item classification. Instead, it is updated infrequently (e.g. at 10 minute intervals).

Figure 3.10 shows the codebook, an index of the codes used in classification. Each entry includes the code itself, its definition, inclusion and exclusion criteria, as well as typical examples and boundary cases.

Every classification move made by the user is displayed in the history (Figure 3.11). Each move appears as a Post-It with its pre- and post-classification category colors. The moves are listed in
Figure 3.5 Classification Categories - The Classification Board
Figure 3.6 Detailed Description on Post-Its/Cards

Brings back memories.

You know, I remember playing this game as a kid. I couldn’t find it on GameCity, and I didn’t want to continue playing the Anniversary or the Windows version, so I decided to buy this game as a Mac. It has a great storyline, and for everyone who likes Indiana Jones, then you’d love this game. Pros (or cons): Easy to maneuver, challenging puzzles in which you have to think. Don’t worry because it’s not like Baldur’s Gate or anything that brainwashing... Unique storyline involving Atlantis (Cons): Low-quality graphics then again it is from the 90s, so don’t expect 32K bit graphics. The music except for select portions where there are orchestral themes is not real. Unconstant element of surprise. Personally, I like most of the coins but those are most of the things people have shown complained about. Also, if anyone buys this game, then I have to tell you this: Please, if you’re gonna use cheat... Then at least beat the game before doing so. _>_

Figure 3.7 ML Training Progress Bar

<table>
<thead>
<tr>
<th></th>
<th>45.45%</th>
<th>18.18%</th>
<th>9.09%</th>
<th>27.27%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is Dirt 3 a Racing Game?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3.8 Total Machine Learning Training Progress

Figure 3.9 Inter-Coder Agreement Matrix
<table>
<thead>
<tr>
<th>Codebook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question: Is "Red Sparrow" a violent movie?</td>
</tr>
<tr>
<td>Relevant</td>
</tr>
<tr>
<td>The data which resembles most to the given question can be considered in this category…</td>
</tr>
<tr>
<td>Eg: If you're looking for a movie that is truly fantastic then you've met your match. This movie has everything in it. Just sit back and have a cinematic blast. I was so into this movie. My trade is making images and I don't think I</td>
</tr>
<tr>
<td>Irrelevant</td>
</tr>
<tr>
<td>Those codes/data which provide some detail about the query made, but aren't sufficient enough are considered to be irrelevant data.</td>
</tr>
<tr>
<td>Eg: At times hard to follow but this made it more interesting for me. Made me come back to see it again to try to figure out what I missed. I didn't read the book but realize visualizing in 90 min to 2 hours what a book creates in our minds is not an easy challenge. The one question for me is did I find it</td>
</tr>
<tr>
<td>Unknown</td>
</tr>
<tr>
<td>Any detail which is completely vague in terms of the information it provides is considered to be in 'unknown' set.</td>
</tr>
<tr>
<td>Eg: Confusing, vulgar, and deeply horrifying. Do not waste your time.</td>
</tr>
</tbody>
</table>

Figure 3.10 Codebook
a stack sorted in reverse temporal order, with the most recent move listed first. Each category set (here defined by a question against the data) has its own history stack maintained throughout the session.

Figure 3.11 History

Figure 3.12 shows the undo option available for the domain expert users for each move in the history. This helps them remove an entry made through the classification process. This is particularly helpful when hundreds of data items have been classified, making it difficult to locate that item in the classification board. Ultimately, the history might also offer a rollback function, undoing all classifications after a certain point in time.

Figure 3.12 History - Undo
A small button on the right bottom corner of the ML training UI (Figure 3.13) introduces each section of the interface.

![Figure 3.13 Information Button](image)

Now we illustrate the ML training interface in use. Figure 3.14 shows an early moment in the ML training process, with only a few data items classified. Figure 3.15 shows the interface prototype being used for evaluation on a Microsoft Surface Table. To illustrate the potential of this prototype and its responsive portability, Figure 3.16 shows the interface prototype running on a very large touch wall display at the Game Room Lab in NC State’s James B. Hunt Jr. Library. The prototype does run on this platform, though Were we to begin using such an interface in earnest, we would obviously have to optimize the interface layout further.
Figure 3.14 An Early Moment in ML Training

Figure 3.15 The prototype running on a Microsoft Surface Table.
3.5 Input/Output Assumptions

Our ML training prototype accepts input and produces output in JSON files using our own custom format. This might later be customized to function with ML training APIs such as IBM Watson’s Discovery. For example, the Discovery API provides information one data item at a time; this could be used to retrieve the information for an item, and then it could be reorganized into our own input format.

3.5.1 Input JSON Data Format

Our input JSON format is made up of a unique user id, a count of the different classification categories and a list of their names (their index in the input array corresponds to their unique ids), the category set/questions count, and a detailed description for each question. This description for each category set/question consists of a unique question id, the question itself, number of data items to be labeled for this question and a brief heading and description of each data item. The input JSON format is as displayed in Figure 3.17. The values array consists of all the questions required for the training process.

3.5.2 Output JSON Data Format

As to our output format, each classification of a data item generates a JSON message. The message includes a unique ID corresponding to a coder/domain expert, the question ID, data item ID, and new classification category ID. Consider a label for question-1 being moved from the Unclassified to
the *Unknown* category. Then the corresponding output JSON file would look something like *Figure 3.18*. No data is stored as JSON output when a label is moved within the same classification category area.
```json
{
   "id": 12345,
   "classificationCategories": 3,
   "categories": [
      "Relevant",
      "Unknown",
      "Irrelevant"
   ],
   "questionsCount": 1,
   "values": [
      {
         "id": 1,
         "src": "This is a sample question?",
         "cardsCount": 2,
         "values": [{
            "head": "A",
            "description": ""
         },
         {
            "head": "B",
            "description": ""
         }
      },
      {
         "id": 2,
         "src": "This is second sample question?",
         "cardsCount": 2,
         "values": [{
            "head": "C",
            "description": ""
         },
         {
            "head": "D",
            "description": ""
         }
      }
   ]
}
```

Figure 3.17 Input JSON example
Figure 3.18 Output JSON example

```json
{
    "uid": 12345,
    "question_id": 1,
    "data_id": 4,
    "previous_category_id": 0,
    "current_category_id": 2
}
```
This chapter describes our usability evaluation of our immersive, QC-enabled ML training interface. We compared it to a traditional spreadsheet interface using a think-aloud methodology.

"Thinking aloud may be the single most valuable usability engineering method", mentions Jakob Nielsen [Nie94] in his book *Usability Engineering*. We used this direct observation approach for evaluating usability for the purpose of this study. We asked participants to think out loud while they performed any task upon the interface. This method is of great use to determine users’ expectations and figuring out good and bad facets of a product.

4.1 Study Process

4.1.1 Participants

We invited a small group of seven graduate students from Computer Science Department to participate and evaluate our large display interface for manual labeling and classification in machine learning training. Before the study began, each one of them were asked to rate their familiarity with machine learning, using large screen touch interfaces, and qualitative coding. They used a scale of 1 to 5, with 1 being least familiar and 5 most familiar.
4.1.2 Data Preparation

We wanted to keep our questions and labels as simple and familiar, so that our participants would not require an unusual expertise. We therefore chose product review data from Amazon as test data. We used a very small part of the data from [ML13]. It consists of product reviews and metadata from Amazon, including 142.8 million reviews spanning May 1996 - July 2014. We randomly chose seven different movie and computer game products, and formed our own questions against this data, considering what a buyer might ask about each movie or computer game. For example, one question was “Is Dirt 3 a racing game?” We arbitrarily chose 10-15 product reviews for each movie or game as data items for our evaluation. These data were displayed to participants using our prototype large screen UI, as well as a traditional spreadsheet interface (Figure 4.1).

![Figure 4.1 A Traditional Spreadsheet Interface](image)

4.1.3 The Study

Figure 4.2 describes the overall process we used in our study. At first, the participants were asked to rate themselves in terms of familiarity with machine learning, usage of large screen interfaces, and
qualitative coding (Figure 4.3). The participants were then debriefed the purpose of the study, what the interface does, and what role it plays in the machine learning training process. They shown a small clip of affinity mapping and how coders use this technique to classify labels.

The participants were next asked to work using both interfaces, labeling 10-15 reviews for each of six questions in our Amazon test data. Three participants were given the spreadsheet interface first, and four were given the large screen prototype interface first. This was done to make sure there is no ordering bias in the usability evaluation.

The study began by asking the participants to explore the interface for large screen displays and verbalize their understanding of the entire system. We probed participant thinking with questions like "What do you think a certain section informs you about?" as they did so. We next asked participants to begin classifying data items while thinking aloud. For instance, they might classify a set
of reviews into categories such as Relevant, Irrelevant, or Unknown with respect to the currently displayed question. We again probed their thinking with questions (listed below). We routinely asked them about their level of interest in the classification process while using both the interfaces. The questions asked to the participants while they were working with the large screen display interface were:

- **How can you find description for each data item?**
- **What do you infer from the charts at the top?**
- **How would you compare your results with others?**
- **Study the notes others have left about their classification work. Tell us what you think those notes mean.**
- **Try to undo one of your reviewed labels.**

Once the participants classified all the data items for each of the six questions, the study was completed. We learned their general opinion about the large screen interface by interviewing them, asking some more questions such as:

- **How would you rate your experience with this interface, can you compare and contrast the two interfaces you’ve interacted in the past hour?**
- **What was the most satisfying aspect of the large screen interface?**
- **What was the least satisfying aspect of the large screen interface?**
- **What was confusing in the application?**

4.2 Results

Recall that participants rated their familiarity on a scale of 1 to 5 (1 being lowest and 5 being highest) with machine learning, usage of large screen touch displays, and qualitative coding. Figure 4.3 shows average familiarity of the participants with each topic. Note that our participants knew very little about qualitative coding.

While working on the classification problem and simultaneously thinking out loud, participants gave both positive and negative feedback. We list common themes in that feedback below:
4.2.1 Positive Comments

- Participants preferred the QC-enabled UI to the spreadsheet
- They found dragging and dropping cards much easier than manipulating spreadsheet menus
- Participants found our QC-enabled interface more engaging (fun, game-like) than spreadsheets
- The sounds our interface made after classification of each card was satisfying to participants
- Participants appreciated being able to control the level of information depicted for each data item in our interface
- Participants found our interface’s consistent color coding of categories in data display, visualization and history useful
- They found our directional "pie" interaction useful

4.2.2 Negative Comments

- Participants found our interface overwhelming at first. However, they did seem to gain familiarity with it quickly.
- They found the inter-coder agreement display hard to understand, and were concerned about it causing bias in their classification. Recall that participant familiarity with QC and coder agreement was quite low. Participants were also unaware of the slow update rate of the agreement display meant to combat bias.
• Participants expected to see a heading/title at the top of our interface. This expectation may come from more complex applications with multiple screens; ours only has one.

• Participants didn’t notice the codebook. It was displayed minimally with a small button lower left. We might call it out along with other interface elements when users press the information button (lower right). Also, in even larger displays, we might display it continuously.

• Several participants noted that the undo option in the history section seemed redundant, given the ease of undoing individual classifications in the classification board. Because our experiment used a very small dataset, they may not have appreciated the value of the history to rollback changes in larger datasets.

4.3 Inference from study comments

Participants rated their overall experience with the interfaces on a scale of 1 to 5, where 1 was the worst and 5 was the best. The average rating given by the seven participants for our QC-enabled interface was 4.0 as compared to 2.1 for the traditional spreadsheet interface (Figure 4.5).

We received both positive and negative comments on our interface design and usability. The interface was appreciated for its aesthetics, but the participants failed to understand the importance of certain sections such as the undo option in history, and inter-coder agreement. They considered these two features as unnecessary and biasing respectively. Since these participants were not familiar with qualitative coding (see Figure 4.3), their appreciation of these interface elements may have been limited.

Addressing the participants concern with undo, they believed that undo could be easily performed by dragging back the data item from its current location to its previous one. Only one participant pointed out a convincing use case for undo, that it would be a helpful feature when there was a large number of post-its on the screen: one could easily go through history and do the needed rollback, while searching for data items in a big pile would be difficult. Indeed, the undo feature is similar to version control, it helps to bring back the state of the machine learning training process to a desired one, in cases of any wrongly trained data.

Another section that went unnoticed was the codebook. We often had to point it out to participants, but once they saw what was mentioned in the codebook, they understood how they could make use of it to classify data items. Thereafter, we observed that participants would visit the codebook before beginning classification with each question/set of categories.

We routinely asked participants about their level of interest in the classification task while using both interfaces, and noticed that participants indicated interest when using the large screen interface, and less interest when the spreadsheet. Although there were some unusual instances,
such as one participant who was more disposed towards using the spreadsheet, overall this trend held true.

Without using more formal measures of coder agreement, we can compare agreement counts by interface (our UI vs. spreadsheet). In our evaluation, seven participants each labeled 104 data items. Figure 4.6 shows frequency of agreement by interface. Participants were more likely to be using our QC-enabled UI when they agreed, and less likely to be using it when they disagreed. This trend is clearer in Figure 4.7, in which we show only the differences between interfaces in frequency of agreement. There does seem to be a correlation between domain expert agreement and the interface they use. We speculate that differences in error rates, supplementary information, and level of detail control may explain this trend.
Figure 4.6 Representation of Number of labels agreed upon by the participants with the two interfaces vs Number of participants agreeing

Figure 4.7 A pre-subtracted unanimity amongst participants
Our prototype was tested with a single static dataset, and was not coupled to any interactive ML algorithm. Future work might connect our front-end interface to such an algorithm, for example using Watson’s IBM Watson Discovery API.

Our prototype user interface works well for large screens or table top displays. A further improvement in this interface would transform it from touch to a tangible. Today’s touch user interfaces are ironically named, since they offer neither physical objects to manipulate, nor different textures to feel. Feedback through a touch interface is merely a digital one. Adding true tangibility to our UI should make it more intuitive and delightful.

A tangible user interface would offer familiar behaviors to domain experts used to working with qualitative coding, or even simply with manipulating their data in hardcopy form. Whenever an expert wishes to classify an example, he/she uniquely identifies that item by writing something on the Post-It (or a card), then places it in the category’s pile on the table or a wall display. Using a camera, the interface recognizes that the post-it represents that data item, and observes its classification into the matching pile. Experts can call up a projected view of the data item’s details by tapping or making any gesture on the post-it, or reclassify the example by moving the post-it to a new pile of post-its. Experts can label piles using differently sized post-its placed next to each pile, or can have text written in BLOCK LETTERS for camera to process and identify the a particular pile. Tapping on these pile post-its will highlight key, high leverage, and discordant examples. Response by the ML-based automated partner will remain virtual, with the table or wall displaying digital post-its.
The progress of training, history data, codebooks again can be shown digitally, so as to reduce the burden for the domain experts in remembering all these details.
Our work addresses the need for an improved interface for ML training. We observed that ML training lacks an intuitive UI, and described the need of such an interaction. We advocated ways for improving the classification and labeling for Machine Learning training data by implementation of a user interface. Qualitative coding played an important role in determining the design of this user interface for machine learning training. Some of its methodologies, such as keeping history logs, maintaining codebooks, representing the progress of partners, and data display helped in improving the training process for the domain experts with little knowledge about the underlying Machine Learning Algorithm.

We created a prototype interface for large touch displays, and evaluated it by performing a 'think-out-loud' usability test with a small group of participants. We received both positive as well as some negative feedback from the participants. We determine that the traditional spreadsheet interface lacks certain features, as the users felt the need of more interaction in making the classification and labeling process painless, understandable by comparing and contrasting it with the large screen display interface. Although the methods of qualitative coding were not of great usefulness to some of our participants, due to their limited knowledge in the field, we believe these methods would be more sensible for domain experts working over the long term.

From our results after the experimental study, we noticed that this large screen interface allowed users to actively participate in training a model, leveraging the more flexible and accurate human pattern matching; thereby helping in building more efficient algorithms.
BIBLIOGRAPHY

[CW] Christensen, J. & Watson, B. “Structuring Human-ML Interaction With an Immersive Interface Based on Qualitative Coding” ()

APPENDIX
The book *Machine Learning* by Tom Mitchell [Mit97] offers this definition of machine learning:

"A computer program is said to learn to perform a task T from experience E, if its performance at task T, as measured by a performance metric P, improves with experience E over time."

Suppose an algorithm has been given image and is asked to determine if it has a particular person’s face in it (task T). It could learn by comparing the images that have the person's face to those that do not (experience E). The algorithm’s performance (P) could be measured as the percentage of new images that the algorithm correctly identifies.

Machine Learning has many real world applications, including image processing, data mining, video games and analyzing text data. The ability of a self-driving car to process the images of road signs/blocks or other vehicles or people moving nearby comes from an ML algorithm that detects these objects. Facebook recognizes you in an uploaded image using an ML algorithm which learns from your previous tagged images. ML algorithms enable the characters in a video game to move around the environment without colliding with each other. Spam filtering, detecting fraudulent transactions from banks/cards, and recommending products on e-commerce sites are other ML applications.

[Gar15] discusses two general categories of machine learning algorithms: **supervised** and **unsupervised learning** algorithms. The main difference between both these approaches resides in the
way training examples are fed into the algorithms, how it uses them and the type of problems they solve. For supervised learning, you feed in the inputs and provide a corresponding target to train the algorithm, so that when test input is submitted algorithm provides a target output after sufficient training. Whereas, unsupervised learning is when you are training your machine learning task only with a set of inputs which will be able to find the structure or relationships between different inputs. In this thesis and QC-enabled interface development, we focus on supervised learning.

The entire process for ML is not automated, most of it involves human collaboration to reach to the designated solution. The steps are [Gar15],

1. **Data (or Feature) Exploration and Preparation**

 This is the stage in which data is collected to be used to represent as training and test examples. For example with a self-driving car, data might be objects in the camera frame, distance to each object, and type of object, including road signs, traffic cameras, etc.

2. **Data (or Feature) Preprocessing**

 Here, redundant data is removed and only required data is kept for the training the algorithm. Only the important features are extracted and transformed to meet the requirements of the algorithm to be trained.

3. **Model Development and Training**

 The machine learning algorithm is fed with training examples (tagged/labeled data), it could be thousands of examples, collected from various resources such as domain level experts or crowd-sourcing platforms over the Internet. The more quality training data you can gather,
the better results you may get. In the process a model develops capable of predicting labels for other input values.

4. **Model Testing and Deployment**

 This phase is completely automated, with the model validated against a new and labeled set of test data. The performance is measured in terms of the accuracy of the data correctly identified by the algorithm.

 If the results aren't good enough, the algorithm itself is not altered, but the algorithm modifies its model, and tests itself thoroughly again, Figure A.1.