ABSTRACT

DAS, DEBOSMITA. Time Series Analysis & Visualization: Forecasting and Detection of the Abnormal Changes in Data. (Under the direction of Dr. Christopher Healey).

Analyzing time series data is an essential part of data forecasting. With the plethora of data we produce every day, its importance has increased dramatically. An effective visualization of time series data can help in rapidly drawing insightful inferences. Through my research work, I aim to explore this domain further to gain relevant information on past trend changes and use forecast techniques to understand changes in patterns.

Early detection in shifts and changes in time series data can be instrumental in making decisions and implementing changes. For example, the EPA has set standards for levels of Sulphur dioxide (SO₂) in the atmosphere. Too much SO₂ can cause detrimental health conditions. In monitoring SO₂, a significant upward trend of the gas would be of concern and warrant investigation. Early identification of this shift or change may help save lives. Another example where identifying shifts or patterns could be helpful is in stock prices. Someone who has shares of a particular stock would be very interested in identifying whether this stock is experiencing a down turn in prices. There are many other instances where pattern and trend identification can be informative and useful.

In the past years, there has been significant interest in time series analysis. My research attempts to provide an approach to address: (1) characterizing a time series sequence using time series modeling, and (2) identifying points where the model changes in a significant way due to changes in the model’s parameters. This represents a model that can dynamically adjust while analyzing a time series sequence to predict future data points. In summary, my research goals are:

(1) Identifying model inflection points in a time series.
(2) Retrieving further information from these pattern changes to predict future changes.

(3) Providing a uniform approach to analyze and forecast different time series.

To find the answers to these issues we constructed a prototype that will learn from a given time series to identify pattern changes and forecast future data values. Once completed, the results are presented in visualizations designed to make the time series data and inflection points more readable and understandable.

Our prototype implements a rolling window hyper parameter grid search using an Auto-Regressive Integrated Moving Average (ARIMA) time series model. Experimental results confirm that abnormal changes in data patterns can be identified using our system.
Time Series Analysis & Visualization: Forecasting and Detection of the Abnormal Changes in Data

by
Debosmita Das

A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Master of Science

Computer Science

Raleigh, North Carolina

2018

APPROVED BY:

_______________________________ _______________________________
Dr. Christopher Healey Dr. Susan Simmons
Committee Chair

Dr. Rada Chirkova
DEDICATION

To my family.
BIOGRAPHY

Debosmita Das completed her undergraduate degree in Computer Science from West Bengal University of Technology in 2011. She joined North Carolina State University in 2016 to pursue her Master’s degree after working in India as a Database Programmer for four years. After graduation, she will continue her studies to earn Master of Science in Analytics (MSA) degree.
ACKNOWLEDGMENTS

I would like to thank Dr. Christopher G. Healey and Dr. Susan Simmons for their constant support and guidance towards my thesis. Getting the chance of working under their guidance has been an honor for me.

I would also like to thank my thesis committee member Dr. Rada Chirkova for her precious time. A special thanks to Dr. Aric LaBarr for his valuable guidance regarding time series during the early phase of the research.
TABLE OF CONTENTS

LIST OF TABLES ... vi
LIST OF FIGURES ... vii

Chapter 1 .. 1
 1.0 Introduction ... 1
 1.1 Thesis Problem ... 3
 1.2 Proposed Approach .. 3

Chapter 2 .. 6
 2.0 Background .. 6
 2.1 Exponential Smoothing ... 6
 2.1.1 Holt’s Linear Trend Method .. 6
 2.1.2 Holt-Winters Seasonal Method ... 7
 2.2 ARIMA Model .. 8
 2.3 Visualization ... 14

Chapter 3 .. 18
 3.0 Approach .. 18

Chapter 4 .. 26
 4.0 Implementation ... 26
 4.1 Minimum Estimation Sample Size .. 26
 4.2 Hyperparameter Limits for SARIMAX .. 29
 4.3 Visualizing Data .. 32

Chapter 5: Results .. 33
 5.1 Data Preprocessing ... 33
 5.2 Practical Implementation .. 34
 5.2.1 Monthly temperature dataset of Ireland .. 35
 5.2.2 Daily stock price of JP Morgan Chase & Co. ... 35
 5.2.3 Simulated dataset .. 35
 5.3 Performance Measurement .. 36
 5.3.1 Performance Measurement with Statistical Estimators 36
 5.3.2 Performance Measurement through Visualization 39
 5.3.3 Temperature dataset of Ireland ... 41
 5.3.4 Stock price of JP Morgan Chase & Co. ... 42
 5.3.5 Simulated Dataset .. 43

Chapter 6: Conclusion .. 49
 6.1 Limitations .. 49
 6.2 Future Work ... 49
LIST OF TABLES

Table 1 Dataset and properties found ... 35
Table 2 Simulated model details ... 37
Table 3 Mean absolute error for each of the tests .. 40
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seasonal, trend and remainder decomposition of time series data for Gilroy, CA, USA for the years 2008-2012</td>
</tr>
<tr>
<td>2</td>
<td>Extensions to tubular visualization: Rings to help user evaluate time and duration of events (a); Optional time axis with labels that represent the time steps (b) [17]</td>
</tr>
<tr>
<td>3</td>
<td>The user can move forward/backward along the time axis [17]</td>
</tr>
<tr>
<td>4</td>
<td>Figure 1 Temporal stress profile of participant P4. Each bar represents stress for a day. Colors represent stress intensity (red = high stress, green = low stress, yellow = moderate stress, grey = unknown) [18]</td>
</tr>
<tr>
<td>5</td>
<td>Temporal stress profiles of four participants. Colors represent stress intensity (red = high stress, green = low stress, yellow = moderate stress, grey = unknown). Each bar represents a day’s stress data, which are grouped by participants. [18]</td>
</tr>
<tr>
<td>6</td>
<td>Process in each iteration of rolling window analysis</td>
</tr>
<tr>
<td>7</td>
<td>Rolling window analysis</td>
</tr>
<tr>
<td>8</td>
<td>Flow chart of this study's algorithm</td>
</tr>
<tr>
<td>9</td>
<td>Line plot of actual values, predicted values, and 95% confidence interval boundaries of Temperature Data</td>
</tr>
<tr>
<td>10</td>
<td>Close up of the line plot of figure 9</td>
</tr>
<tr>
<td>11</td>
<td>Snapshot of the structural details of the temperature input data and the time series model</td>
</tr>
<tr>
<td>12</td>
<td>Line plot of actual values, predicted values, and 95% confidence interval boundaries of Stock Price Data</td>
</tr>
<tr>
<td>13</td>
<td>Snapshot of the structural details of the stock price input data and the time series model</td>
</tr>
<tr>
<td>14</td>
<td>Plot of Actual Values</td>
</tr>
<tr>
<td>15</td>
<td>Plot of Actual Values and Pattern Changes</td>
</tr>
<tr>
<td>16</td>
<td>Closer snapshot of the simulated dataset graph</td>
</tr>
</tbody>
</table>
Figure 17 Snapshot of the structural details of the simulated input data and the time series model.. 48
Figure 18 Snapshot of the structural details for the second and third pattern changes.......... 49
CHAPTER 1

1.0 Introduction

This thesis studies the problem of time series modeling and visualization. A time series is a series of data points indexed in temporal order. Examples of such sequences include daily stock prices of a company, monthly maximum temperature of a region, hourly concentrations of SO₂ and so on. Studying time series involves two components: (1) time series analysis; and (2) time series forecasting. Time series analysis includes methods for analyzing data to extract meaningful statistics and other characteristics of the data. For example, in Figure 1 we have plotted the daily maximum temperatures of Gilroy county in California for the years 2008 to 2012 and extracted seasonal and trend patterns. The last graph in Figure 1 is the remainder which is simply the fluctuations of the data after the trend and seasonality have been removed. Thus, the remainder component helps us to understand the underlying structure of the data series and the changes in its pattern, if any.

The next component of time series study, time series forecasting, is the use of a model to predict future values based on previously observed values.

![Time Series Decomposition of Gilroy, CA US](image)

Figure 2 Seasonal, trend and remainder decomposition of time series data for Gilroy, CA, USA for the years 2008-2012.
The question may arise, “Why do we need time series analysis and forecasting?” As per recent statistics, provided by the World Meteorological Organization, the number of vulnerable people exposed to heatwave events has increased by approximately 125 million between 2000 and 2016. Such a change in temperature will not only affect the environment but also disturb socio-economic structures [1]. If we shift our focus to a different domain, for example, the stock market, we can see how the prices of each stock change over time. These datasets have one thing in common – they are dependent on time. A plot of data points against time provides insight into how the concerned topic has evolved. While standard time series data is less of a concern, sudden changes in patterns help us to infer valuable understanding from these trends. For example, from the time series analysis and forecast of the evolution of a company, we might understand how the business is performing and if we should invest in it.

Time series data provides us with the opportunity for insight into how patterns have changed over time. Such an arrangement of statistical data in chronological order allows us to retrieve highly valuable information, for example, to (1) probe whenever we see any abnormal change; (2) understand current trends; or (3) forecast future trends for supporting decision-making processes.

In this thesis, we have included all of these primary components to explore the information gained from a time series and to find solutions to the following questions:

1. Can we retrieve information from pattern changes in a series and predict future changes?
2. Can we provide a uniform approach to analyze and detect data points where the pattern changes in different type of time series?
(3) Can we visualize the pattern changes in the time series and provide a visual representation of information related to the pattern changes in the data?

To find the answers to these problems we have constructed a prototype which learns from a given time series and detects pattern changes. Once complete, the predictions are presented in a user-friendly manner through effective visualizations to make them readable and understandable.

1.1 Thesis Problem

The primary goal of this thesis is to generate a model to analyze a time series and visualize data and time series transition points where the underlying model changes, as well as to forecast future trends. One critical step to achieve this is to collect accurate and diverse data. We decided to collect data from various sources to validate the generality of our approach. We started with data on temperature, collected by the International Panel on Climate Change. Since tracking data pattern changes is the main goal of our project, we focused on data that are claimed to have changed over time.

Next, we analyzed the collected data to identify time series transitions and predict future trends. Given a target audience from various domains, this can include people from different backgrounds and expertise. Hence, it is essential that we present our findings through an easily understandable representation to facilitate the decision-making process.

1.2 Proposed Approach

We introduce a prototype that reads a given time series, marks data points where the time series model adjusts to new changes and predicts future events. The model operates in a rolling window mode, i.e., it performs the analysis and forecasting over a subsample of the full data. In our framework, the model works on a short span of initial data, predicts the next data point, and
rolls through the sample one observation at a time. This procedure enables our model to work on a smaller size of data to detect the transitions and future data points, possibly in real-time.

For our implementation, we use the Seasonal Auto-Regressive Integrated Moving Average with eXogenous regressors (SARIMA) [2] algorithm in Python. This is a model that can be fit to time series data in order to better understand patterns or predict future points in the series. The advantage of this model over other time series algorithms is that it considers a variety of factors that influence a series, helping us to model different types of time series. SARIMA uses the following properties when creating a model:

1. Past values of the predicted variable.
2. Past errors in the forecasted values of the predicted variable.
3. Presence of seasonality, a regular, repetitive value change pattern in the data.
4. Presence of trends, a monotonic increase or decrease in values in the data.

Another aspect that we have also considered is stationarity. Stationarity is defined as a mean, and variance that do not change over time. If a time series is non-stationary, then an appropriate differencing is determined and then performed on the series to make the series stationary.

To ensure that the model dynamically fits itself with changes in series, we have included a Hyperparameter Grid Search [3] for tuning parameters of the SARIMAX model. In our prototype, the model is created and remains unchanged until a consecutive set of time series predictions falls outside the 95% confidence interval of the predicted data. If there is an abnormal change in the pattern of the time series that is not captured by the model for consecutive steps, we assume the current model no longer accurately predicts future values. We
mark the field of the out of range values as a transition point, then recreate our model based on both the past and new, out of range values.

We continue this process until all the data in the time series is analyzed. The result is a time series divided into subsets of data, each with a specific time series model that accurately predicts that data. This allows viewers to observe both areas with similar patterns, and areas of significant difference that cause the time series to change, often dramatically.

Through this research we have worked to achieve the following:

(1) A method to identify time series model transitions.

(2) A technique to visualize model parameters and transition points within the time series.

(3) Continuous searching for model transitions in real-time as new time series data values arrive.

The primary uniqueness of this tool is it does not attempt to remodel whenever a new time series value arrives. Rather, we append the actual time series values to our training dataset window, predict, and continue until a transition occurs in the time series. This enables us to save considerable computational time without compromising prediction accuracy, and to effectively classify when and how the underlying time series pattern changes.
CHAPTER 2

2.0 Background

We can forecast future data points in a series of temporal data series, from the past values of the variable of interest. Two common approaches are often employed: Exponential Smoothing and autoregressive integrated moving average (ARIMA).

2.1 Exponential Smoothing

Exponential Smoothing is a technique of forecasting temporal data using weighted averages of past observations, with the weights decaying exponentially as the observations get older, i.e., the most recent observations are assigned the most importance in forecasting [4]. This framework serves as the basis for numerous advanced time series forecasting algorithms. Holt’s linear trend method is one example of an exponential smoothing algorithm.

2.1.1 Holt’s Linear Trend Method

Holt’s linear trend algorithm [4] uses Exponential Smoothing to forecast data with a trend. It consists of three components: (1) level smoothing equation \(l_t \); (2) trend smoothing equation \(b_t \); and (3) forecasting equation. These components can be expressed mathematically in the following way:

Level smoothing equation: \(l_t = \alpha y_t + (1 - \alpha)(l_{t-1} + b_{t-1}) \) \hspace{1cm} (1)

Trend smoothing equation: \(b_t = \beta (l_t - l_{t-1}) + (1 - \beta)b_{t-1} \) \hspace{1cm} (2)

Forecasting equation: \(y'_{t+h|t} = l_t + hb_t \) \hspace{1cm} (3)

where \(l_t \) denotes an estimate of the level of the series at time \(t \), \(b_t \) denotes an estimate of the trend (slope) of the series at time \(t \), \(\alpha \) is the smoothing parameter for the level, \(0 \leq \alpha \leq 1 \), and \(\beta \) is the smoothing parameter for the trend, \(0 \leq \beta \leq 1 \). Given data up to time \(t \), \(y'_{t+h|t} \) is the forecast value of the variable of interest \(y \) at time \(t + h \).
Holt’s trend method cannot forecast data which have the effects of seasonality, a repetitive cyclic pattern of fixed length in a time series. To deal with this effect, an extension to this algorithm known as the Holt-Winters seasonal method was developed.

2.1.2 Holt-Winters Seasonal Method

In Holt-Winters seasonal method [4] a new component was added for including seasonality along with the level and trend components. This algorithm has four components: (1) level smoothing equation \(l_t \); (2) trend smoothing equation \(b_t \); (3) seasonal smoothing function \(s_t \); and (4) the forecasting equation. There are two variations of this algorithm: (1) additive model; and (2) multiplicative model. An additive model is used when the seasonal variation is near-constant over time. If the seasonal variation tends to vary with the level of the series, the Holt-Winters multiplicative model is used. Mathematically, Holt-Winters additive seasonal method can be expressed as:

Forecasting equation:
\[
y'_{t+h|t} = l_t + hb_t + m_{t-s+h_s^+}^\star
\]

Level smoothing equation:
\[
l_t = \alpha(y_t - m_{t-s}) + (1 - \alpha)(l_{t-1} + b_{t-1})
\]

Trend smoothing equation:
\[
b_t = \beta(l_t - l_{t-1}) + (1 - \beta)b_{t-1}
\]

Seasonal smoothing equation:
\[
m_t = \gamma(y_t - l_{t-1} - b_{t-1}) + (1 - \gamma)m_{t-s}
\]

where \(h_s^+ = [(h - 1) \mod s] + 1 \), i.e., the seasonal estimates are only taken from the last observation of the estimation sample. Like Equation 1, \(l_t \) denotes an estimate of the level of the series at time \(t \), but it also includes the seasonally adjusted observation \(y_t - m_{t-s} \). The trend method does not consider any seasonal effect and is the same as Equation 2. The seasonal smoothing equation is a weighted average between the current seasonal index, \(y_t - l_{t-1} - b_{t-1} \), and the seasonal index of the same season last year (i.e., \(s \) time periods ago). Here \(s \)
denotes the number of observations in a season, i.e., the period of seasonality. For example, for monthly data \(s = 12 \), and for quarterly data, \(s = 4 \).

Following the same concept as the Holt-Winters additive method in Equations 4 – 7, the Holt-Winters multiplicative method is expressed as:

Forecasting equation:
\[
y'_{t+h|t} = (l_t + hb_t)m_{t-s+h_s^+}
\]
(8)

Level smoothing equation:
\[
l_t = \alpha \left(\frac{y_t}{m_{t-s}} \right) + (1 - \alpha)(l_{t-1} + b_{t-1})
\]
(9)

Trend smoothing equation:
\[
b_t = \beta (l_t - l_{t-1}) + (1 - \beta)b_{t-1}
\]
(10)

Seasonal smoothing equation:
\[
m_t = \gamma \left(\frac{y_t}{l_{t-1}-b_{t-1}} \right) + (1 - \gamma)m_{t-s}
\]
(10)

Holt-Winters, due to its capability of considering both trend and seasonality in a time series, has been used widely by researchers to predict future data points of a temporal data series in various domains. The research paper “River catchment rainfall series analysis using additive Holt-Winters method [5] applied additive Holt-Winters to find trends in rainfall. In the paper, the authors multiplied the smoothing parameter \(\beta \) to the trend of the most recent observation \(y_t - y_{t-1} \) and \((1 - \beta) \) to the previous estimated value of the trend to detect sudden shifts in rainfall trends effectively. A mean absolute error (MAE) of 25.25% on the seasonal rainfall trend predictions of different stations proved the effectiveness of this algorithm in detecting trends in the presence of seasonality.

2.2 ARIMA Model

Another noteworthy algorithm for time series forecasting is the AutoRegressive Integrated Moving Average (ARIMA) model. ARIMA [6] and Exponential Smoothing are two of the most widely-used approaches in time series forecasting. Similar to Exponential Smoothing algorithms like Holt-Winters that can model trend and seasonality in the data, ARIMA models can also model this information as well as autocorrelations in the time series data for predicting
future data points. ARIMA combines two models—AutoRegressive and Moving Average, together with differencing.

Time series data often does not have a constant mean and variance. Such a time series is termed as non-stationary. Stationarity matters because it provides a framework in which averaging methods (AutoRegressive and Moving Average processes) can be applied to analyze the time series behavior correctly [7]. Differencing [7] helps to stabilize the mean of a time series by removing changes in the level of a time series, thus removing trend and seasonality. Transformations are used to stabilize the variance.

The differenced series is the change between consecutive observations in the original series, and can be expressed as the following:

\[y'_t = y_t - y_{t-1} \] \((12) \)

The differenced series will have \(t - 1 \) values since there cannot be any differenced component for the first observation. Occasionally the differenced series might not look stationary after first order differencing. In that case differencing can be applied \(n \) times to obtain a stationary time series with \(t - n \) values.

The second part of the ARIMA model is the Autoregressive model [8]. In an autoregressive model the variable of interest is forecast from a linear combination of past observations of the variable. Hence, an autoregressive model of order \(p \) can be written as:

\[y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \phi_3 y_{t-3} + \cdots + \phi_p y_{t-p} + e_t \] \((13) \)

where \(c \) is a constant, \(e_t \) is white noise, and \(\phi_1, \phi_2, ..., \phi_p \) are the coefficients of the \(y \) terms. Equation 13 is of the same form as a multiple linear regression equation, but with lagged values of \(y_t \) as predictors. An autoregressive model with \(p \) lagged terms can be denoted as an \(AR(p) \) model.
Like autoregression, the moving average [9] model uses the same form of the regression equation, but considers past forecasted errors instead of past actual values of the variable of interest. A moving average model of order q can be written as:

$$y_t = c + \theta_1 e_{t-1} + \theta_2 e_{t-2} + \theta_3 e_{t-3} + \cdots + \theta_q e_{t-q} + e_t$$ \hspace{1cm} (14)

where c is a constant, e_t is white noise, and $\theta_1, \theta_2, \ldots, \theta_q$ are the coefficients of the error terms. A moving average model with q lagged error terms can be specified as an $MA(q)$ model.

In a non-seasonal ARIMA [10], the models obtained in Equation 13 and 14, $AR(p)$ and $MA(q)$, are combined after an optional differencing phase of the time series. The combined model can be written as:

$$y'_t = c + \theta_1 y'_{t-1} + \theta_2 y'_{t-2} + \theta_3 y'_{t-3} + \cdots + \theta_p y'_{t-p} + \theta_1 e_{t-1} + \theta_2 e_{t-2} + \theta_3 e_{t-3} + \cdots + \theta_q e_{t-q} + e_t$$ \hspace{1cm} (15)

where y'_t is the differenced series. Equation 15 can be expressed as

$$ARIMA(p, d, q)$$ \hspace{1cm} (16)

where $p =$ number of lagged terms in the Autoregressive model, and $q =$ number of lagged error terms in the Moving Average model, and $d = 0$ or 1 where 1 indicates first order differencing.

Like Holt-Winters, ARIMA is equally popular among researchers. Since both models provide a forecasting technique, different studies have been conducted to compare the two. For example, the paper “Time Series Analysis and Forecast of Annual Crash Fatalities” [10] compared the performance of these two algorithms by forecasting the crash fatalities of 2002 from crash data of 1975 – 2001 and fatalities in 2003 using data from 1975 – 2003. They found that the forecasted values obtained from the Holt-Winters method were more accurate than from the ARIMA model. However, when relative forecast errors were calculated for the year 2002, both the models’ forecast values were found to be good. Tularam and Saeed [11] showed in their
research paper that the ARIMA model outperforms Holt-Winters or Exponential Smoothing for oil price prediction. In their experiment, they measured the accuracy of the models with a number of error measurement methodologies including mean absolute error (MAE), mean squared error (MSE), and mean absolute percentage error (MAPE). In all the measurement, ARIMA’s accuracy was better than Holt-Winters or Exponential Smoothing. It can be said, as Brighton and Gigerenzer [12] noted, “no one predictive model is inherently superior to any other; the assumptions implicit in a model must to one degree or another match the characteristics of the problem at hand in order to yield accurate inference”.

To address seasonality, the ARIMA model was extended to the SARIMA or Seasonal ARIMA model [13]. A seasonal ARIMA model is formed by combining the general ARIMA model with seasonal terms. It can be expressed as:

\[ARIMA(p, d, q)(P, D, Q)_s \] (17)

where \((p, d, q)\) is the trend component, \((P, D, Q)_s\) is the seasonal component, and \(s\) is the number of observations in a season. For example, for monthly data, \(s = 12\) and for quarterly data \(s = 4\).

The seasonal component of SARIMA follows the same concept as ARIMA modeling. Here \(P\) denotes the number of seasonal lagged terms for the AutoRegressive term where each term is separated from another by \(m\) seasons. Similarly, \(Q\) denotes the number of seasonally lagged error terms for the Moving Average component where each term is separated from another by \(m\) seasons. Mohammad Valipour [14] presents a detailed comparative study of various ARIMA and SARIMA models in his paper with different periodic terms for the seasonal component of SARIMA. He began with a short-term forecast for the runoff data for the year 2011 in each US state using data from 1901 – 2010 and the SARIMA algorithm. Following this,
he performed a long-term runoff forecast for the years 2001 – 2011 by using average annual runoff data from 1901 – 2000. In the second case, he performed the prediction using both SARIMA and ARIMA. While in the first stage the performance of SARIMA showed a relative error of less than 5%, which is commendable, in the second case a value of $R^2 = 0.91$ for SARIMA and $R^2 = 0.86$ for ARIMA showed that SARIMA outperformed ARIMA. The seasonal parameter m of the SARIMA algorithm helped to test the prediction accuracy with different combinations of the climatic conditions by using different lengths of seasons. This paper demonstrates different ways of manipulation of the parameters of SARIMA to achieve the best result, and, is a good resource for understanding the application of this algorithm.

As we can see, ARIMA, SARIMA or the Holt-Winters method all performed equally well [5] [10] [14] in several studies. Their performance is largely dependent on the structure inherent in the data [12]. Most of the research [12] comparing Holt-Winters and ARIMA has labeled the former method to be simpler since in Holt-Winters we only need to estimate three smoothing parameters. ARIMA’s implementation is more complex. This claim was challenged by Hyndman and Kostenko [15] in their paper “Minimum Sample Size Requirements for Seasonal Forecasting Models”. In this study, the authors compared the two techniques and their complexity. They showed that the number of initial parameters required to implement Holt-Winters is not three as per popular belief, but more than that. For example, according to Equation 4 and 8, if we consider a monthly time series dataset, we would require the estimation of up to three smoothing parameters for the level, seasonal, and trend components. It is not often discussed that the starting values for each of these components should also be considered. If this is done, from the Equations 5 – 6, 9 – 10, we can argue that the initial level and trend components require two parameters. However, the seasonal component in Equation 7 and 11
shows that for monthly data, the value of seasons is $s = 12$, so there will be eleven extra parameters for the initial seasonal component. As a result, we can say that in general, for data with s seasons per year, the number of initial values is $s + 1$ and number of smoothing parameters is three making the total number of parameters $s + 4$ in the Holt-Winters method [15]. On the other hand, as per Equation 17, a seasonal ARIMA, i.e., the SARIMA model is of the form $(p, d, q)(P, D, Q)_s$ and requires $p + q + P + Q + d + sD$ parameters [15]. For example, for an SARIMA model of $(1,1,1)(0,1,1)_{12}$, the number of parameters is $1 + 1 + 0 + 1 + 1 + (12 * 1) = 16$. It should be noted that the number of parameters required for the SARIMA model is less than that of Holt-Winters for monthly data. Therefore, unlike the common belief, the truth is that the latter needs more knowledge of parameters and could be seen as more complex than SARIMA.

Another related algorithm is SARIMAX, which is same as SARIMA but with the capability to consider multiple explanatory variables. For example, if we analyze a time series data of rainfall, wind is a probable explanatory variable in this case. Considering the effects of explanatory variables increases the prediction effectiveness of a time series model. The non-seasonal variation of SARIMAX is termed ARIMAX, and is same as the ARIMA model discussed in Equation 15, but with a component to explain explanatory variables. Cools, Moons, and Wets [16] compared the SARIMA, ARIMAX, and SARIMAX modeling techniques in their research study of daily traffic counts with “holiday” as an explanatory variable. Their results [16] showed that, compared to the other models, ARIMAX performed best in explaining the variability of a forecast of daily traffic counts. This finding suggests that SARIMAX and the non-seasonal ARIMAX modeling approaches are valid frameworks for identifying and quantifying possible influencing effects.
2.3 Visualization

Visualization is a powerful technique to analyze trends, patterns and anomalies in a dataset. Many visualizations have been proposed for the visual explorations of time series datasets, paves the way for newer types of knowledge discovery from seemingly cryptic data. While widely used plots like line charts serve the purpose of visualization for most time series data, some datasets need special types of visual exploration to retrieve contextual information. One innovative and interactive time series visualization is tubular visualization [17]. The principles of such a representation consist of using the axis of a tube to represent the time and the sides of the tube to represent evolution of the data attributes. The tubular visual presents an overview of the data as well as contextual details with respect to time. In one related study [17], the tubular representation of time series was extended to make it interactive and applicable to large datasets. The authors Bouali, Devaux, and Venturini [17] represented time series data in a tube with each ring of the tube denoting a time step (Figure 2). As seen in Figure 3, the tubular representation was then made interactive by adding different information like duration of events in each ring and allowing the user to provide the option to move forward or backward along the time axis to follow the evolution of different events in time. Unlike other commonly used time series plots, the presence of time axes is optional in this study and the user can choose the visibility of the time axes, events one wants to see (i.e., to change the focus or context area). This interactivity and flexibility also helps to study patterns and correlations between different event attributes over time.
Figure 3 Extensions to tubular visualization: Rings to help user evaluate time and duration of events (a); Optional time axis with labels that represent the time steps (b) [17].

Figure 4 The user can move forward/backward along the tube axis. [17].

Bar charts are also considered to be a good representation by different researchers. For example, in a study to design just-in-time adaptive stress interventions for managing stress in human beings [18], bar charts, line charts and scatter plots have been used extensively for plotting stress levels against time. In this research, the authors used several coloring techniques to represent each stress level and the location of the subject or person during that time. While bar, line and scatter plots are easy to understand, the coloring technique enabled the user to retrieve contextual knowledge on the issue of stress management. For example, in one of the
plots (Figure 4) a bar chart represented levels of stress in a person on different days of week, while in another (Figure 5) the authors plotted the level of stress in different people on Thursday during different weeks. The authors also randomly chose different Thursdays from different weeks for each person and represented different levels of stress by different colors. The visual representation of the time series data for stress levels of a single individual enabled within-person comparison, while data from different participants supported between-person comparison and helped to find possible patterns or trends in the occurrence of stress.

Figure 5 Temporal stress profile of participant P4. Each bar represents stress for a day. Colors represent stress intensity (red = high stress, green = low stress, yellow = moderate stress, grey = unknown) [18].

Figure 6 Temporal stress profiles of four participants. Colors represent stress intensity (red = high stress, green = low stress, yellow = moderate stress, grey = unknown). Each bar represents a day’s stress data, which are grouped by participants. [18].
From the studies that we discussed here we can see that while visualization is an integral part of time series data analysis, enabling a user to retrieve relevant contextual information is also important. The visual exploration of temporal data should be equipped with relevant information so that it can facilitate mining tasks [16] like pattern searching, anomaly detection, and trend analysis.
3.0 Approach

Time series analysis and forecasting methods usually take up a considerable amount of time and require huge amounts of data to analyze structural patterns and detect anomalies. However, these processes do not detect the structural changes in the time series in real-time. The performance of the present tools available for time series analysis is not uniform across all kinds of temporal datasets. To achieve good performance across different types of dataset with low time complexity and real-time analysis capability, we chose the following properties to address through our algorithmic approach:

1. A model with real-time data prediction capability.
2. A methodology to assess pattern changes as they come.
3. A generalized uniform model to analyze different time series dataset.
4. Accurate visualization of the data points to deliver meaningful insights to users.

To achieve real-time prediction capability, we used rolling window analysis. In a rolling window analysis [19], a model is fit using the estimation sample and predictions \(h \) step ahead are made for a prediction sample. The estimation sample is then rolled ahead a given increment and the estimation and prediction exercise is repeated until it is not possible to make additional \(h \) step predictions. A graphical demonstration of rolling window analysis is shown in the Figures 6 and 7. The statistical properties of the collection of \(h \) step ahead predictions can be used to determine errors in the model or to assess if the actual data points corresponding to the predicted points are outliers with respect to the past data. Since the window is constantly rolled forward after the prediction of \(h \) steps, the size of training data sample remains constant.
Rolling window analysis [19] deals with another vital issue—space complexity. In real-life, businesses often face space constraints and it is necessary to execute several processes in parallel with optimum space usage. Because of the constant input size in rolling window analysis, this methodology helps us to achieve a constant in-memory space usage while executing the model. As a result, issues like memory space exhaustion, deadlock due to parallel execution of multiple processes, and so on are unlikely to occur.

Time series models will generally have different structures in terms of trend, seasonality, and correlation. For example, a climate dataset might have a monotonic increasing or decreasing trend with a repetitive cyclic pattern. Whereas, stock market data is unlikely to have long
monotonic increasing or decreasing trends. Instead, the effects of market volatility cause the pattern to appear random. This variation in time series data causes its mean and variance to vary over time. If future data points are detected during estimation that contain these effects, it can be difficult to differentiate true changes in an underlying pattern from effects that are merely seasonal trends. A technique to deal with these is to make the mean of the estimation sample constant over time and generate a stationary dataset [7]. As discussed briefly in the last chapter, this can be implemented through differencing.

Differencing is a technique to compute differences between consecutive observations [7]. It helps to stabilize the mean of a time series by removing the changes in the time series’s level, to eliminate trend and/or seasonality. The differenced series can be expressed as:

\[y_t' = y_t - y_{t-1} \] \hspace{1cm} (18)

where \(y_t \) is the actual value at time \(t \) and \(y_{t-1} \) is the actual value at time \(t - 1 \). If the operation of Equation 18 is applied over the time series, it will leave \(t - 1 \) elements, since it is not possible to calculate a difference for the first observation.

The process of differencing of one \((y_t - y_{t-1}) \), in Equation 18, usually removes trend. To remove seasonality, we take the difference of the seasonal terms \((y_t - y_{t-s}) \), \(s \) being the number of seasons. Occasionally, non-stationary properties can still remain. In that case we may need to apply differencing for a second time, which is generally termed “second-order differencing” and can be expressed in the following way:

\[y_t'' = y_t' - y_{t-1}' \] \hspace{1cm} (19)

In “second-order differencing”, expressed in Equation 19, the number of data points would be \(t - 2 \). So, as we can see, the number of data points decreases with every order of differencing. This can be considered a drawback, especially if the estimation sample is small.
However, the advantage of inducing stationarity in time series data overshadows this shortcoming and with appropriate preprocessing of the data, we can avoid any problems that might occur due to a decrease in number of data points.

Another type of differencing is seasonal differencing [7]. This technique is needed if the time series contains non-stationarity due to a seasonality or repetitive cyclical pattern over a set length of time (usually denoted by s). Formally it can be defined as an observation and a corresponding observation from the previous time period [7]. Mathematically it is expressed as:

$$y'_t = y_t - y_{t-s}$$ (20)

where s equals number of observation in a season.

Since one of our goals is to develop a uniform model to detect pattern changes in any general time series, we have addressed the following aspects in the estimation sample of a given time series:

1. Constant mean and variance.
2. Removal of seasonal affects.

In order to achieve these three requirements, our approach considers both first-order differencing and seasonal differencing. Implementing both type of differencing sequentially can be cumbersome and involves manual intervention as the presence of seasons or the number of seasons will vary depending on the time series data. To handle this problem in a systematic way, we use the SARIMAX algorithm.

As per Equation 17, discussed in the “Background” chapter, SARIMAX [13] has two components. The first component’s differencing handles non-stationarity generated from trends. The differencing mechanism of the second component deals with seasonal non-stationarity. The
mathematical equation of SARIMAX model, according to Equation 17, at a high level is specified as:

$$ARIMA(p, d, q)(P, D, Q)_s$$

where p, d, q, P, D, Q are measures in the SARIMAX machine learning model to help generalize data patterns. Technically, these measures are known as hyperparameters. This flexibility in SARIMAX allows us to handle both trend and seasonality in a time series simultaneously. It should also be noted that we simulate a real-time data stream through the rolling window implementation and hence, it is not possible for us to know the values of the hyperparameters of SARIMAX apriori as the estimation sample changes at each iteration. This requires the implementation of a technique known as Hyperparameter Grid Search Optimization [20].

Hyperparameter optimization finds a tuple of hyperparameters to generate an optimal model that minimizes prediction error or residual. The traditional way of performing hyperparameter optimization has been grid search, or a parameter sweep, which is an exhaustive search through a manually specified subset of the hyperparameter space. In our approach, we have manually specified a subset for the hyperparameters p, q, P, Q of SARIMAX to locate their optimal values with the grid search mechanism.

While SARIMAX, when implemented, worked well to predict future data points through the rolling window mechanism, it cannot provide the exact location of pattern changes in the data. If we look closely at how SARIMAX works, we can see that its performance depends on the lookback hyperparameters supplied to the model. This algorithm predicts future data points well if the hyperparameters are appropriate. However, it has been found through our experimental results that with incorrect hyperparameters, its forecasting power degrades rapidly.
We will discuss this in detail in the later chapters. The behavior of exhibiting degraded performance can be manipulated to detect the points where the pattern of the data is changing.

In this thesis, we are defining pattern changes in time series data as situations where at least one of the following happens:

1. Autocorrelation properties change, specifically, the number of lookback periods for predicting the dependent variable changes.
2. Need for differencing changes depending on the stationarity or non-stationarity of the data sample.
3. Order of differencing changes if we need to generate stationarity in the time series data.

In real life, temporal data points have been found to depend on previous data points [21]. For example, a temperature measurement on a winter day depends on that of the day before. It is unusual to observe a temperature that differ wildly from the last few days, for example, a temperature like a day in summer. Therefore, we can say that temporal data points depend on one or more past data points of the same time series. This number of data points that influences the present data’s value determines the autocorrelation or lookback property of the time series data set. When the number of lookback periods needed for accurate data point prediction changes, we can consider it a probable change in pattern. A single different behavior from a single data point may be due to an outlier (e.g. a mistake in measuring or recording the point). To confirm this change, we check for consecutive data points exhibiting the same behavior. This is the approach we use to detect pattern changes. Changes in lags and moving averages cause the hyperparameters of the model to change as well. Hyperparameters [20], as discussed in the previous paragraph, determine the structure of a model and any change will require the model to
change itself to fit to the input data. If a pattern change is detected, it also requires a change in hyperparameters of the model [20].

We have integrated the benefits of both rolling window analysis [19] and SARIMA [13], as discussed above, to accomplish the goal of identifying model transitions in real-time time series data. We emulate the real-time scenario of streaming data by using rolling window analysis and predicting the next data point based on an estimation sample. Every time a new data point arrives, the window is rolled over 1-point and the SARIMA model predicts the next data point outside the window. Traditionally we build a new time series model whenever a new set of data arrives. But as we know, time series data is autocorrelated[21] and it is unlikely that a data point will have no correlation to its preceding ones. If this happens repeatedly, then the pattern of the data points is assumed to be changing. If the dependent variable’s values are closely correlated, then their properties also would be similar. This means the same model which predicted the first point, would be capable of predicting future data points. Once a model is built, it should not be necessary to rebuild it until the properties of the data points or their autocorrelation changes. This approach helps us address another drawback of time series implementations. Time series algorithms like ARIMA, or SARIMA, if implemented with a Hyperparameter Grid Search Optimization to fine tune the parameters, produce high time complexity proportional to the number parameters required for building the model. Being able to defer rebuilding the model only when the data points’ pattern changes can decrease running time significantly. For the first estimation sample, we build an SARIMA model with Hyperparameter Grid Search Optimization and predict the next data point, recording its error relative to the actual data point. If the error is within the 95% confidence interval obtained from the model estimation, the predicted point is considered within acceptable bounds to be attached to the correct model.
This process continues as the rolling window moves forward and predicts new points. If the algorithm finds actual points falling outside the predicted points’ 95% confidence interval for some consecutive points, the SARIMA model is rebuilt and the next predicted point is marked with a pattern transition label.

Implementing the above algorithms and explaining the mathematical mechanisms involved requires domain knowledge. However, a good visualization [22] provides us with a tool to present the processed time series for further analysis by users in more efficient terms. It helps in facilitating mining tasks like pattern searching, trend analysis, and so on. As discussed in the previous chapters, another goal of our project is to make results presentable and usable for a wide range of people or businesses. This can only be realized when we can explain our findings in an easy-to-understand way. Over many years, visualization has proved itself to be a successful tool to serve this purpose. It is known that an effective visualization can provide insights to a viewer in a way that is more efficient and effective than a written explanation. We have integrated visualization techniques with our algorithmic approach in this research.

While we have discussed several visualization techniques in the “Background” chapter, to represent temporal data graphically, a simple line chart has been found to be extremely effective. As we have discussed throughout this paper, one of our main goals is to detect the times where pattern changes. Apart from our algorithm results, our visualization tries to highlight these pattern transitions accurately so the viewer can obtain a clear picture of how values are changing and other data relevant to these changes. We have implemented a technique that will not only give users a snapshot of the data, but also a visual representation of the data flow together with pattern transitions represented as highlighted markers on the graph.
CHAPTER 4

4.0 Implementation

The goal of this research is to implement an algorithm that identifies a shift or change in a time series data set. In order to accomplish this goal, our algorithm will:

1. Define an appropriate dataset size required for estimation.
2. Choose correct hyperparameter values for the SARIMA algorithm.
3. Construct an effective way to visualize the data.

4.1 Minimum Estimation Sample Size

The size of the training dataset depends on the number of model coefficients or hyperparameters we are required to estimate and if the data is seasonal [15]. Statistically, the number of observations needs to always be more than the parameters to estimate. As discussed in the previous chapter in Equation 21, SARIMA is usually described as $ARIMA(p, d, q)(P, D, Q)_s$ [13], where p and q denote the terms for the autoregressive and moving average components of the time series data and P and Q denote the terms for the seasonal autoregressive and moving average components of the same data. The parameters d and D denote the differencing order that is needed to convert the time series data and its seasonal component into stationary formats, respectively, s denotes the number of data points to consider in each seasonal cycle. Thus, six parameters are needed in a typical SARIMA model. In the SARIMA equation, the hyperparameters p, q, P and Q are termed estimated parameters, since we need to estimate them in order to build a model. However, we do not need to estimate the parameters d and D. Rather, their values are determined depending on the number of differencing operations needed to convert the given time series to a stationary form. These parameters are termed effective parameters. For stationary time series data, we do not need differencing and the list of
parameters or coefficients include only p, q, P and Q. In summary, the total number of effective parameters for SARIMA [15] is:

$$p + q + P + Q, \text{ if no differencing is required} \quad (21)$$

$$p + q + P + Q + d + sD, \text{ if differencing is required} \quad (22)$$

For example, according to Equation 22, the number of parameters for a monthly SARIMA model of the order $(2,0,3) \times (3,1,2)^{12}$ will be $2 + 3 + 3 + 2 + 0 + (12 \times 1) = 22$. This implies the number of observations must be at least 23.

To implement SARIMA we are using the Python package `sarimax` in the library of `statsmodels.tsa.statespace`. While the main features of SARIMA are the same, some features are different due to implementation techniques during the package development phase. Ideally the maximum lookback period or the maximum number of lags should never be more than the number of observations available in the training data. For the seasonal component of SARIMA, the number of observations is determined by the number of season cycles. For example, in case of temperature, one seasonal cycle is formed by one year of data. If we have monthly temperature data for five years or 5×12 months = 60 data points, the number of seasonal observations is five or given one year as one season. As per the SARIMA algorithm, the maximum seasonal lags allowed in the SARIMA algorithm, should be four for a monthly dataset of five years. However, in the python `sarimax` library, the maximum allowed lookback period for the seasonal component is always calculated with the following equation:

$$\text{maxlag} = 12 \times \left(\frac{\text{number of observations}}{100} \right)^{1/4}$$ \quad (23)

As a result, if we consider five years of monthly temperature data, the number of seasonal observations will be five and Equation 23 will give an output of 5.67, which is greater than five. This highlights the error in the Python SARIMA implementation. If we try to forecast based on
five years of monthly training samples with a seasonal component, the model will fail and produce high error margins, even if we specify the value of the seasonal lags to be less than five. Due to this error, if our estimation sample has seasonality and its frequency is monthly, we must use at least eight years of monthly data to ensure that the maximum lookback period is never greater than the total number of seasonal observations. This represents a minimum sample size of 8 years * 12 months = 96 data points for monthly seasonal data. Note that the amount of data required is highly dependent on the type of data we are analyzing. For example, for data with no seasonal component, we can work with a smaller dataset. But, if we have daily temperature data then 365 data points will give us one seasonal observation. To have eight seasonal observations we would need 365 * 8 = 2920 data points or eight years of daily data. Since one of our goals is to develop a uniform model for time series data of different structures, we recommend that the minimum input size for seasonal data should be at least eight seasonal cycles. This limitation is not a part of the original SARIMA algorithm, but a part of Python’s SARIMA implementation.

The ARIMA Python package used to have this drawback, but it has been corrected. This has not happened in SARIMA. We can see the number of data points that includes eight seasonal cycles varies on the type and frequency of data. In our project, we have kept this term user-defined. This gives the program the flexibility to work with data of any frequency, for example, yearly, monthly, quarterly, or daily.

Given our minimum sample, we next consider how to incorporate it in the algorithm that we developed in the previous chapter. As discussed in the “Approach” chapter, the rolling window mechanism enables us to maintain a constant size training dataset by rolling the sample one time step forward after each forecast. Given a way to estimate the minimum sample size for any kind of time series data, for forecasting in each iteration, we can consider the minimum
sample size to be the rolling window size. This will result in constant space complexity for the input training data. In summary, we are completing the following processes to prepare the training sample and forecast future data points:

1. Fix the minimum size of the training dataset depending on the nature of the data. If it is seasonal, we choose a minimum dataset that consists of eight seasonal cycles (8 * s observations).

2. Build the SARIMA model and forecast the next data point based on the supplied training data. For example, if there are 96 data points in the training sample, we forecast the 97-th data point.

3. Roll the training sample one point forward to repeat the operation.

4.2 Hyperparameter Limits for SARIMA

Another important aspect of our algorithm is the hyperparameter grid search optimization step. From the previous chapter, we know that this is used to find the optimum value of each of the hyperparameters of a machine learning model through grid search among a range of supplied values [2]. This enables us to change our time series model dynamically as the statistical structure of the dataset changes. In this implementation, we search for optimum values for the following hyperparameters of an SARIMA model of the format \((p, d, q)(P, D, Q)_s\) (Equation 17):

1. Trend part of SARIMA
 a. The autoregressive term \(p\)
 b. The moving average term \(q\)
 c. The differencing terms \(d\)

2. Seasonal part of SARIMA
a. The autoregressive term \((P)\)
b. The moving average term \((Q)\)
c. The differencing terms \((D)\)

There are a total of six hyperparameters. To find the optimal combination, grid search optimization requires a set of values to be considered for each of the hyperparameters. For SARIMA, it has been found that the \(p, q, P, Q\) range mainly from 0 to 7, where 0 denotes no autocorrelation. On the other hand, trend and seasonal differencing are usually of first order, if the dataset is non-stationary. Of course, this range can vary depending on the dataset that we use.

To enable pattern prediction for a wide range of temporal datasets, we grid search the autoregressive and moving average terms from the set \(\{0,1,2,3,4,5,6,7\}\) if no user-defined range of values is found for these hyperparameters. Likewise, we will also choose the differencing terms from the set \(\{0,1\}\) by default, if no other user-defined range of values is specified. Once the grid search optimization method is given the set from which to choose hyperparameters, it fits each value of a parameter and searches for an optimal combination with the highest prediction accuracy. Programmatically we can achieve this by executing six nested loops for each hyperparameter. Time series forecasting through SARIMA is itself a time-consuming process. To overcome this shortcoming, even if we take a relatively small dataset, the six nested loops will increase the program’s time complexity to \(O(n^6)\). As discussed in the last chapter, our approach to handle this high time complexity is to ignore selection for certain forecasts. In the first iteration, we execute all loops and find the optimum combination of hyperparameters that results in the highest accuracy. As discussed earlier, there is a factor of autocorrelation that exists between consecutive data points arranged in temporal order. Ideally, the first model should be able to forecast relatively accurately at least a few of the succeeding data points. Thus, as the
rolling window moves forward, we reuse the same model and do not execute a grid search to forecast the next data point. This scenario changes when we predict a value where its true value is outside a 95% confidence interval. Every time the training dataset window rolls one step forward, two things happen:

(1) Forecast the next data point outside the estimation window.

(2) Calculate the 95% confidence interval for the next data point.

If the actual value of the next data point lies outside its 95% confidence interval, we flag it as a possible transition point and check to see if a certain number of consecutive points are also behaving this way. If not, we consider this flagged point as an outlier. Otherwise, we assume the pattern of the data is changing, since such behavior should not be reflected in consecutive data points. In our program, by default we are checking three consecutive data points. The choice of the number of consecutive data points to check depends on the type of data we are using. While three points has been found to be a good pattern tracker in most datasets, there can be others where values fluctuate often and to detect a real pattern change, more consecutive data points should be examined. To address this, the number of consecutive data points to be checked has been kept as a user-defined number, with a default of three.
Following the detection of a pattern change, we build the SARIMA model by using the grid search optimization technique, fit the model according to the new data and repeat the process discussed above until another change in pattern is found. Figure 8 explains the implementation diagrammatically.

Figure 9 Flow chart of this study's algorithm.
4.3 Visualizing Data

Once we have detected pattern changes in the data stream, we move to the visualization segment of our implementation. We know that visualization is helpful to explain complex terms or processes in a more accessible way through clear and informative diagrams. As we have discussed, our goal is also to present our implementation to a broader audience using a more intuitive explanation. Excel is an easy to use, commonly available, and an efficient tool for basic visualization. We implement line charts to show raw data points. To highlight the pattern transitions we emphasize data points where the pattern is changing and provide structural details like the autoregressive and moving average terms of the transition points. Additionally, it should be noted that during the pattern transitions, the predicted value or confidence interval boundaries do not match the data pattern well. Hence, the time series model is rebuilt at those data points. To denote this mismatch in the patterns of the actual and predicted values, we show a discontinuity in the prediction line plot for the predicted values. For any pattern change in the data, a user can see graphically where it is changing. However, a graph cannot provide all the kinds of information that one might need regarding a pattern change or the data stream. In addition to the graphical representation, we also provided a detailed snapshot of the vital properties of each forecast. The snapshot includes raw data values, forecasted values, upper and lower bounds of the 95% confidence interval, the autoregressive and moving average terms for the model used during that window, and if a certain point is within or outside the confidence interval by highlighting its rows. The snapshot provides a detailed view of the individual steps in the process, and highlighted rows to make it easier to detect pattern changes. One can also match the pattern changes in the graphs with their corresponding changes in the tabular snapshot to see how the related data and time series model has shifted during the pattern transition.
CHAPTER 5

5.0 Results

To evaluate the performance of our tool, we implemented our algorithm on various types of dataset. We examined the results both in terms of visualization and statistical accuracy. The primary parameters which were considered to measure performance on different datasets are:

1. Seasonality.
2. Trend.
3. Frequency of data i.e. yearly, monthly, weekly etc.

The current algorithm can process data streams in real-time. To simulate the input of streaming data to our test environment, we selected the first few data points of the input dataset as the starting estimation sample, forecasted the next data point outside the estimation sample, and continued rolling our training window through the remaining data by feeding one data point at a time. In order to ensure the algorithm was working as proposed, we maintained three phases for every training dataset. The phases are the following:

1. Data preprocessing.
2. Practical implementation.

5.1 Data Preprocessing

Our algorithm is concerned with the analysis of the structural pattern of a temporal data series and detection of the points where the pattern changes. To focus on these goals, we have fixed a specific format for the input data. The input dataset is in the format of a CSV or a text file, with 2 columns: the first one represents an index or date column, and the second one holds the raw value of the data points. To evaluate the performance of our algorithm, we tested with
different datasets. This required preprocessing of the data files to convert them to the general format that our tool accepts. For example, the monthly temperature data file of Ireland was available in a text file and the data were arranged horizontally for each year. The values of the file also needed to be divided by 10 to get a corresponding Celsius equivalent. To convert the data to a two-column format we performed the following:

1. From each row, the monthly temperature is extracted for each year.
2. The raw text file data is converted to a dataset containing columns of Index (date in YYYY-MM format) and Value (temperature of that month).

Now that the format of the converted dataset is as expected, if we feed the resultant file to our tool, it will process it successfully.

5.2 Practical Implementation

For evaluating the working procedure of the algorithm, we tested it with various kinds of datasets with a variety of parameter combinations. Table 1 shows the major datasets and the different properties we tested with our tool.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Properties Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly temperature dataset of Ireland</td>
<td>Seasonality, Trend, Monthly data frequency</td>
</tr>
<tr>
<td>Daily stock price of JP Morgan Chase & Co.</td>
<td>Trend, No seasonality, Daily data frequency</td>
</tr>
<tr>
<td>Simulated dataset</td>
<td>Strong Seasonality, Strong Trend, Monthly data frequency</td>
</tr>
</tbody>
</table>

For all the above datasets, we followed a uniform algorithmic structure to evaluate its ability to handle different time series. As discussed in the “Implementation” chapter, we allowed all the sample parameters of trend and seasonal components to vary between one to seven to find
the best fit. Hence, for the model of the form \((p, d, q)(P, D, Q)_s\), (Equation 17), \(p, q, P,\) and \(Q\) are allowed to vary from one to seven and \(d, D\) to vary between zero and one. The parameter \(s\) is adjusted based on the frequency of the given data. For example, for daily datasets, \(s\) has been set to 365 and for monthly datasets, \(s\) has been set to 12. On the other hand, datasets with no seasonality will have \(s\) and all other seasonal components set to zero.

5.2.1 Monthly Temperature Dataset of Ireland

We chose a monthly temperature dataset for Ireland to test datasets that contain both seasonality and trend. Temperature data usually shows the presence of strong seasonality with some trend patterns and is a perfect example of a dataset which is non-stationary with respect to time. Since the frequency of this dataset is monthly, as discussed in the previous paragraph, the number of seasons, denoted by the parameter \(s\), is initialized to twelve.

5.2.2 Daily Stock Price of JP Morgan Chase & Co.

It is also important to test the performance of the algorithm with data showing no seasonality. In this case, the algorithm is expected to operate only on the trend component. As a result, though we are using the same SARIMA model format for this data, it should operate without any seasonal component, like an ARIMA model of the format \((p, d, q)\), (Equation 16).

5.2.3 Simulated Dataset

While it is necessary to test datasets with real-life data streams, it is equally important to verify the algorithm is performing as expected. For real-life datasets, the major issue is we do not know beforehand the expected transition points of the SARIMA model. Since other time series algorithms do not handle both seasonality and trend as efficiently as SARIMA, verifying the results with other time series tools is not within the scope of this thesis. However, if we simulate a dataset with various trend and seasonal components of varying orders and feed this to our
algorithm, it is possible to check whether the tool is identifying these changes correctly. Hence, for cross-validation purpose, we simulated a monthly dataset with a combination of the different autoregressive and moving average terms. Table 2 represents the details of the different models used in the simulated dataset.

Table 2: Simulated model details.

<table>
<thead>
<tr>
<th>Trend Component (p, d, q)</th>
<th>Seasonal Component (P, D, Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 0, 1</td>
<td>2, 1, 1</td>
</tr>
<tr>
<td>2, 0, 1</td>
<td>2, 1, 1</td>
</tr>
<tr>
<td>1, 0, 1</td>
<td>2, 1, 1</td>
</tr>
</tbody>
</table>

The model configuration is changed after every 108 observations. Now that we know where to expect a pattern change, it will be possible for us to assess whether our model is detecting these changes correctly. Simulated datasets will introduce randomness in the data structure which the model might fail to predict properly, but if the algorithm is implemented correctly, it should detect a pattern change when it appears.

5.3 Performance Measurement with Statistical Estimators

We can observe graphically where the patterns are changing, but a more inferential method would be able to use a statistical procedure to identify these changing patterns. A statistical procedure will enable us to compare the true and forecasted values at any point during the real-time data stream prediction, which will help us to understand the algorithm’s overall performance. Choosing the proper tool for statistical accuracy measurements is complicated in our project as we have to consider a tool that can serve for a range of temporal data. In terms of statistical methodologies, there are several measures such as mean squared error, mean absolute
error, mean percentage error etc. available. To understand the different statistical measures, it is important to understand the properties of each.

Mean Squared Error measures the average of the squares of the errors or deviations—that is, the difference between the estimator and actual value [23]. Mathematically it can be expressed as:

\[
MSE = \frac{1}{n} (Y_i - Y'_i)^2
\]

(24)

where \(n \) = number of observations being predicted, \(Y_i \) = vector of actual or true values, and \(Y'_i \) = vector of predicted values.

Although mean squared error is an informative measure that is commonly used in describing accuracy in time series data, the squaring of each deviation places more weight on large errors than small errors. This causes the outliers to be heavily weighted which is not necessarily desired. Since our aim is to give equal importance to all errors to assess accuracy properly, we ruled out the use of Mean Squared Error as the estimator for measuring our test accuracies.

The next under consideration was **Mean Absolute Percentage Error** [24]. It expresses accuracy as a percentage and is defined by the formula:

\[
MAPE = \frac{100}{n} \sum_{t=1}^{n} \left| \frac{Y_i - Y'_i}{Y_i} \right|
\]

(25)

As we can see in the Equation 25, Mean Absolute Percentage Error first calculates the absolute difference between each of the actual and corresponding forecasted values. It then calculates the percentage of the error by summing up the absolute errors, multiplying by 100 and dividing the product by the number of fitted points \(n \).

Calculating the above estimator is simple and it does not give extra weight to large errors like Mean Squared Error. However, Mean Absolute Percentage error assigns large penalties to
negative errors versus positive ones. Consider two scenarios. In case 1, we have the value of $Y_t = 100, Y_t' = 150,$ and in case 2 we have $Y_t = 150, Y_t' = 100.$ Then using the Equation 25, the error for this single point will be:

\[
\text{Case 1: } 100 \times \left| \frac{Y_t - Y_t'}{Y_t} \right| = 100 \times \left| \frac{100 - 150}{100} \right| = 50\% \\
\text{Case 2: } 100 \times \left| \frac{Y_t - Y_t'}{Y_t} \right| = 100 \times \left| \frac{150 - 100}{150} \right| = 33.33\%
\]

As we can see, though both the forecasts deviate from the actual value by 50 units, MAPE assigned more penalty to the negative error. There is also a probability of the occurrence of division by zero. Since we are considering any type of temporal data in this thesis, getting a true value of zero is possible.

To overcome the above drawbacks, we considered Mean Absolute Error [25]. It is an estimator that measures the mean of absolute differences between the actual values and their corresponding forecasted values. Mathematically, it can be expressed as the following:

\[
MAE = \frac{1}{n} \sum_{t=1}^{n} |Y_t - Y_t'|
\]

(26)

As we can see, the mean absolute error gives equal importance to positive or negative errors and is simpler to interpret. If we apply Equation 26 on the scenarios that we discussed for Mean Absolute Percentage Error, we will get the following:

\[
\text{Case 1: } |Y_t - Y_t'| = |100 - 150| = 50 \\
\text{Case 2: } |Y_t - Y_t'| = |150 - 100| = 50
\]

MAE also provides an error scale in the range of the actual values, which makes error interpretation easier to compare versus the other estimators that we discussed above. Since Mean Absolute Error overcomes all the drawbacks of the previous estimators with an added advantage of easy interpretation, this was used as our accuracy estimator in this study.
Table 3: Mean absolute error for each of the tests.

<table>
<thead>
<tr>
<th>Dataset Name</th>
<th>Mean Absolute Error</th>
<th>Range of Data</th>
<th>Frequency of Data</th>
<th>Duration of Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature dataset of Ireland</td>
<td>1.303</td>
<td>2.2 – 22.5</td>
<td>Monthly</td>
<td>1950 – 2004</td>
</tr>
<tr>
<td>Stock price of JP Morgan Chase & Co.</td>
<td>0.191</td>
<td>8.09 – 14.56</td>
<td>Daily</td>
<td>07/12/1993 to 10/02/1995</td>
</tr>
<tr>
<td>Simulated dataset</td>
<td>13.31</td>
<td>-19.91 – 186.90</td>
<td>Monthly</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

5.4 Performance Measurement with Data Visualization

Visualization is a critical segment of this study. It provides important information about the structural patterns and changes in the data with respect to the fitted model. As discussed in the “Implementation” chapter, there are two types of visualization that our tool provides the user:

(1) Diagrammatic representation of the data stream and the data points causing pattern change along with the upper and lower 95% confidence interval boundaries.

(2) Snapshot of the model’s parameter details along with structural details regarding the pattern changes.
5.5 Performance Measurement—Temperature dataset of Ireland

Usually noticeable pattern changes in temperature can be detected when we compare the present day’s data with temperature of a few decades ago. In our problem statement, we are

<table>
<thead>
<tr>
<th>Actual value</th>
<th>Predicted value</th>
<th>Upper 95% CI Boundary</th>
<th>Lower 95% CI Boundary</th>
<th>AR term</th>
<th>MA term</th>
<th>Seasonal AR term</th>
<th>Seasonal MA term</th>
</tr>
</thead>
</table>
working with a real-life data stream scenario and trying to detect changes in data patterns in real-time. Since changes in temperature are observable when we study few decades or hundreds of years of data, it is difficult to detect transition points in real-time. Hence, as expected, the visualization of time series data, detected outliers, but never found any actual transitions. In Figure 9 we can see that the graph shows the upper and lower 95% confidence interval boundaries in dotted blue, actual values in pink, and predicted values in green. The different line charts in the graph can be understood well in Figure 10 which shows a close up of Figure 9 highlighting the points 1 to 236. We can see that the line plot for the actual values is overlapped by that of the predicted values. This suggests the prediction accuracy of our model is high. As expected, we do not see any pattern changes in the graph. However, Figure 11 does show some rows highlighted in blue i.e. the actual values for those rows are beyond the expected 95% confidence interval boundaries. This denotes that those true values might be outliers. Since consecutive data points do not display the same behavior, we do not observe any transition in the graph.

Unlike temperature data, stock prices are volatile and their pattern changes more frequently. It is expected we will see more data variations in a stock price data stream. In Figure 12 we can see that there are two transition points in the stock price data stream, highlighted by red square markers. Since our prediction results do not match with actual values during a transition, we show disconnected lines of prediction where the model is rebuilt. In the graph of Figure 12 we also label the structural details of the points showing pattern changes. This helps the user to obtain an initial overview on the structural details of the transition points and the time series model used when analyzing that point. If a user wants to explore further information about
these points, the neighboring points of the transitions, or the complete time series data, they can refer to the snapshot of the structural details of the time series data points and corresponding model(s). Figure 13 shows a part of the snapshot of the structural details for the stock price dataset. We can see that one of the rows has been highlighted with red when the “Actual Value” of the three previous rows fell outside the 95% confidence interval boundaries. As per our algorithm implementation discussed in the “Implementation” chapter, a pattern change in data occurs when certain number of consecutive data points fall beyond the expected upper or lower boundaries of the 95% confidence interval. For the stock market data, we are flagging the point as a transition point because three consecutive data points are found to be beyond the upper or lower 95% confidence interval boundary. Following the same logic, we can see in Figure 13, the red row is flagged as a transition only when our algorithm found the values of it and its previous two predictions are outside the permissible boundaries. This snapshot provides relevant statistical details to a user if one wants to know the pattern details of the data and how it is changing. The upper and lower 95% confidence interval boundaries, and AR and MA terms for the trend and seasonal component enables users to know if the time series model is changing over time with the change in data values. It should be noted here that since it is unlikely for a stock price data series to have seasonality, the seasonal AR and MA terms are zero in Figure 13.
The drawback of testing a time series model with real-world data is that we do not have any knowledge of what to expect. To address this, we simulated a dataset with three different

5.7 Performance Measurement—Simulated Dataset

The drawback of testing a time series model with real-world data is that we do not have any knowledge of what to expect. To address this, we simulated a dataset with three different
sets of parameters occurring after every 108th data point. From the “Approach” chapter we know that we must have eight seasonal cycles in a dataset with seasonality. We took 96 data points as the estimation sample size or the rolling window size since 96 monthly data points represents eight years of data with eight full seasonal cycles. If there are two pattern changes in the overall data stream, we can expect the pattern change to occur at approximately the 109th data point or the 13th point after the first estimation window, and at the 218th data point or the 122nd data point after the first estimation window. Since the simulated dataset has been designed with somewhat different structural specifications for each phase, if we plot all the true values of the dataset in a graph, we should detect the pattern changes very easily.

As per the diagram in Figure 14, our tool is expected to detect two pattern transition data points. In Figure 15 we have plotted the entire data stream. The red markers are data points where the data pattern is changing. We can see in Figure 15 that the first red marker occurs at the 16th data point as the first pattern change. If we match this diagram with the previous one, we can see that our input dataset does have a pattern change around this point. A closer snapshot of the first transition point on the graph is given in Figure 16, highlighted by the dotted black circle. It can be observed here that the dotted blue lines of the 95% confidence interval boundaries are increasing during a transition (marked by double-lined circle), as the model fails to predict accurate values, and hence the 95% confidence intervals, when the pattern is changing.
Moving forward to the second pattern change, from Figure 14 we observe that the model parameters have changed at the 121st data point and there is no other change in the structure of the time series data following that. However, in Figure 15 we can see that there are two highlighted points after the first one. One is at the 122nd data point and the next is at the 137th data point. While our model did detect the pattern change around the 122nd data point successfully, it also shows a third pattern change shortly after that. Since one of our main goals is to detect changes in the structure of the temporal data series, it may be appropriate if our tool tracks every structure change and the extra highlighted point represents a “mild” pattern change. To confirm this, we need to analyze the extra pattern changing point further to ensure our algorithm’s accuracy. We can do this by referring to the structural details of the data and the corresponding SARIMA model. In the second part of our visualization segment a snapshot of the details of the model’s parameters, along with the structural details regarding the pattern changes, enables us to look at these finer details.
In Figure 17, we can see that as discussed in the “Approach” chapter, our tool calculates the 95% confidence intervals and highlights points that are outside either the upper or lower confidence boundaries by coloring the row blue. It also tracks if there are three consecutive points that show the same behavior and highlights the fourth consecutive row with red to denote a data point where the SARIMA model is rebuilt. It should also be observed that when the model is rebuilt, for example in row number 17, the confidence interval calculation tends to degrade, but from the next point it restores the expected values and continues prediction of future data.
points with the rebuilt model. We can see in Figure 17 that the actual values, though normally within the confidence intervals, are often fairly different from the predicted data in absolute terms. This is happening because the data is a randomly generated, so the assumption of this thesis adjacent points are correlated, is violated. Due to this lack of prediction accuracy, the overall mean absolute error of this dataset becomes as high as 13.31 for data that ranges from -19.91 to 186.9.

![Figure 17 Snapshot of the structural details of the simulated input data and the time series model.](image)

Moving forward to the second pattern change, we detected an additional, third pattern change. As expected (Figure 18), the model did detect the pattern change at the 122nd data point.

If we refer to the trend and seasonal component details of the data in Table 2, we expected components of (1, 1) and (2, 1), respectively. Though the model detected the pattern change, it did not rebuild itself with the desired structural details. As a result, most of the actual values fell beyond the confidence interval boundaries, causing a model misfit. To fit itself to the data, the

![Table 2](image)
model rebuilt itself once again, caused the third pattern change. After the rebuild the model identified the actual trend and seasonal component parameters of (1, 1) and (2, 1).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Actual</td>
<td>Predicted</td>
<td>Upper Boundary</td>
<td>Lower Boundary</td>
<td>AR term</td>
<td>MA term</td>
<td>Seasonal AR term</td>
<td>Seasonal MA term</td>
<td>1</td>
</tr>
<tr>
<td>119</td>
<td>12.72429693</td>
<td>9.41257912</td>
<td>25.81820976</td>
<td>-9.39304852</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>120</td>
<td>20.86422357</td>
<td>14.81100967</td>
<td>29.07877797</td>
<td>0.683439591</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>121</td>
<td>25.13841975</td>
<td>26.67079313</td>
<td>40.35328026</td>
<td>13.588306</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>122</td>
<td>14.64046605</td>
<td>26.79151375</td>
<td>40.91568858</td>
<td>12.66733882</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>123</td>
<td>53.08468945</td>
<td>-23.18382384</td>
<td>-10.24124693</td>
<td>-36.12640075</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>124</td>
<td>48.12584887</td>
<td>-24.90518013</td>
<td>-3.132017484</td>
<td>-46.67834277</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>125</td>
<td>76.44164738</td>
<td>30.73435978</td>
<td>53.89589506</td>
<td>7.57290906</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>126</td>
<td>114.7457483</td>
<td>75.3671038</td>
<td>66089297.28</td>
<td>-64850976.93</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>127</td>
<td>87.68466297</td>
<td>80.99008052</td>
<td>103.1345012</td>
<td>58.8458598</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>128</td>
<td>24.04793501</td>
<td>94.06985482</td>
<td>116.9085677</td>
<td>71.229342</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>129</td>
<td>105.2780274</td>
<td>36.03322229</td>
<td>66.7812029</td>
<td>5.280324889</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>130</td>
<td>50.8744931</td>
<td>58.60053705</td>
<td>91.18527492</td>
<td>26.01579919</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>131</td>
<td>135.0989404</td>
<td>107.8335287</td>
<td>139.3726741</td>
<td>76.29518391</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>132</td>
<td>32.0859421</td>
<td>69.88674649</td>
<td>103.0720287</td>
<td>36.7014643</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>133</td>
<td>149.7450016</td>
<td>155.9911794</td>
<td>188.2618363</td>
<td>123.7205224</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>134</td>
<td>-2.04064684</td>
<td>19.79958876</td>
<td>51.90900435</td>
<td>-12.31072684</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>135</td>
<td>30.51416904</td>
<td>189.5444817</td>
<td>223.2824112</td>
<td>155.8065522</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>136</td>
<td>54.42911464</td>
<td>-89.21264094</td>
<td>-47.18832213</td>
<td>-131.2369597</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>137</td>
<td>41.76624235</td>
<td>90.89442956</td>
<td>138.072736</td>
<td>43.71612391</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>138</td>
<td>75.13933217</td>
<td>75.18982891</td>
<td>2.83296e+11</td>
<td>2.83296e+11</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>139</td>
<td>96.15597378</td>
<td>32.30024979</td>
<td>79.96671888</td>
<td>-15.3630895</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>140</td>
<td>49.20669398</td>
<td>48.39507144</td>
<td>98.41405555</td>
<td>-1.624062627</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>141</td>
<td>65.33623197</td>
<td>104.1317389</td>
<td>154.1377622</td>
<td>54.12571579</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>142</td>
<td>42.49617669</td>
<td>60.83850037</td>
<td>111.6815874</td>
<td>9.995413332</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>143</td>
<td>133.144767</td>
<td>79.03620773</td>
<td>130.025021</td>
<td>28.04763338</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>144</td>
<td>51.35666712</td>
<td>57.33858765</td>
<td>110.2174645</td>
<td>4.459710817</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>145</td>
<td>93.15478922</td>
<td>126.6228733</td>
<td>179.2202199</td>
<td>74.02552675</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>146</td>
<td>21.5747045</td>
<td>50.81553306</td>
<td>104.0161822</td>
<td>-2.385115911</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>147</td>
<td>62.74482821</td>
<td>72.48011652</td>
<td>126.0076749</td>
<td>18.95258811</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 18 Snapshot of Structural Details of Second and Third Pattern Changes.

As we have discussed previously, due to the randomness of the input data, the prediction accuracy is low for the simulated dataset. However, Table 3 shows that the algorithm’s prediction accuracy is high with a real-world dataset where data is not expected to be so random. This shows that our algorithm is capable of achieving high accuracy while detecting pattern changes as they occur in a real-world “random” dataset. In the same sense, the simulated dataset can be considered the worst possible case for our algorithm, where we feel it still performed well and detected all pattern transitions in the time series.
CHAPTER 6

6.0 Conclusion

This paper presents a general algorithm, for analyzing structural patterns in a time series data stream and detecting pattern changes in the series in real time. It also proposes visualization approaches for presenting the findings of the algorithm through clear and informative diagrams. The approach operates in a rolling window mode and applies the seasonal ARIMA (SARIMA) algorithm. To optimize time complexity while maintaining high prediction accuracy, our algorithm uses the novel approach of building a time series model with hyperparameter grid search optimization, only when it detects a transition in the data points. Following the successful detection of pattern changes, the findings are visualized in Excel with line charts and a snapshot of information regarding the time series data and its structural details for each data point. To test the accuracy of the algorithm’s transition detection capability, we have executed it with different real and simulated datasets.

6.1 Limitations

We used `sarimax` in the library of `statsmodels.tsa.statespace` to execute the algorithm. The major limitation that we encountered while developing the algorithm is that the Python package cannot perform as expectation if the number of seasonal cycles is less than eight when analyzing a seasonal data stream. This limitation prevented us from testing our model with very small data streams.

6.2 Future Work

In our algorithm, we have assumed that a transition or change in pattern occurs when the actual values of three consecutive points fall beyond the expected upper or lower 95% confidence interval boundary. As discussed in the “Approach” chapter, we build a time series
model at the start of the time series data stream and rebuild it only when there is a pattern change in the series. However, it should be noted that when we rebuild a model, there are only a certain number of data points from the new pattern in the training data window. Since a majority of the training data still have the structural specifications relevant to the previous time series model, it can decrease the prediction accuracy until the window has enough data points from the new pattern. If the randomness in the data stream is high, frequent pattern changes might occur over a short interval. For example, if a transition occurs and stays for two to three data points and then reverts back to its previous form, the model will be rebuilt two times unnecessarily. It should be studied further when it is appropriate to refit the model after a transition occurs. In addition to this, we also plan to further research the optimal number of new data points needed in the training window before a time series model is rebuilt.

Another area to consider is to extend our study to include multiple time series data streams to retrieve more information about the correlation between the data streams and to explore how the structural patterns of one series varies with the presence or change in properties of the other.
REFERENCES

[4] Rob J Hyndman, George Athanasopoulos, Forecasting: principles and practice, Otexts, Ch 7

[6] Rob J Hyndman, George Athanasopoulos, Forecasting: principles and practice, Otexts, Ch 8

[7] Rob J Hyndman, George Athanasopoulos, Forecasting: principles and practice, Otexts, Ch 8.1

[8] Rob J Hyndman, George Athanasopoulos, Forecasting: principles and practice, Otexts, Ch 8.3

[9] Rob J Hyndman, George Athanasopoulos, Forecasting: principles and practice, Otexts, Ch 8.5

[13] Rob J Hyndman, George Athanasopoulos, Forecasting: principles and practice, Otexts, Ch 8.9

[22] Tak-chung Fu, A review on time series data mining, 2011

