ABSTRACT

PITTMAN, RANDALL BENJAMIN. Exploring Flexible Communications for Streamlining DNN Ensemble Training Pipelines. (Under the direction of Dr. Xipeng Shen.)

Parallel training of a Deep Neural Network (DNN) ensemble on a cluster of nodes is a common practice to train multiple models in order to construct a model with higher prediction accuracy. Existing ensemble training pipelines perform a great deal of redundant operations, resulting in unnecessary CPU usage, or even poor pipeline performance. In order to remove these redundancies, we need pipelines with more communication flexibility than existing DNN frameworks can provide. This project investigates a series of designs to improve pipeline flexibility and adaptivity, while also increasing performance. We implement our designs using Tensorflow with Horovod, and test it using several large DNNs in a large scale GPU cluster, the Titan supercomputer at Oak Ridge National Lab. Our results show that with the new flexible communication schemes, the CPU time spent during training is reduced by 2-11X. Furthermore, our implementation can achieve up to 10X speedups when CPU core limits are imposed. Our best pipeline also reduces the average power draw of the ensemble training process by 5-16% when compared to the baseline.
© Copyright 2018 by Randall Benjamin Pittman

All Rights Reserved
Exploring Flexible Communications for Streamlining DNN Ensemble Training Pipelines

by
Randall Benjamin Pittman

A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Science

Computer Science

Raleigh, North Carolina
2018

APPROVED BY:

______________________________ ________________________________
Dr. Guoliang Jin Dr. Hung-Wei Tseng

Dr. Xipeng Shen
Chair of Advisory Committee
DEDICATION

To my fiancée.
ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Dr. Shen for his unwavering assistance and encouragement in the development of this project. I would also like to thank Dr. Seung-Hwan Lim at Oak Ridge National Laboratory for his support of the project, providing the tools necessary for its completion.
TABLE OF CONTENTS

List of Tables .. vi

List of Figures .. v

Chapter 1 Introduction ... 1
 1.1 Background ... 2
 1.1.1 Deep Neural Networks ... 2
 1.1.2 Deep Neural Network Training Pipeline 3
 1.1.3 Heterogeneous GPU-CPU cluster for DNN training pipelines ... 4
 1.2 Overview ... 5
 1.2.1 Motivation ... 6
 1.2.2 Key Challenges .. 7
 1.2.3 Our Solution .. 9

Chapter 2 Related Work .. 11
 2.1 Ensemble Learning .. 11
 2.2 Training Large DNNs on Distributed Systems 12
 2.3 Distributed Machine Learning Interfaces 13
 2.4 Storage Systems for DNN Training on Image Datasets 14

Chapter 3 Ensemble Performance ... 15
 3.1 Duplicated Pipelines and the Implementation 15
 3.2 Settings for Testing .. 16
 3.2.1 Workloads ... 16
 3.2.2 Datasets ... 16
 3.3 Baseline .. 17
 3.3.1 Single Node .. 17
 3.3.2 Multiple Nodes ... 20

Chapter 4 Optimized Pipelines .. 22
 4.1 Problem statement .. 22
 4.2 Horovod groups .. 24
 4.3 All-Shared ... 25
 4.4 Single-Broadcast ... 26
 4.5 Multi-Broadcast .. 26

Chapter 5 Metrics for Evaluation .. 28
 5.1 Peak Preprocessor Throughput 28
 5.2 CPU Usage ... 29
 5.3 Core Usage Limits ... 29
 5.4 Energy Usage ... 30
Chapter 6 Experiments and Results ... 32
 6.1 Methodology ... 33
 6.2 Peak Throughput ... 35
 6.3 CPU ... 36
 6.4 Energy Consumption .. 38
 6.5 Summary .. 41

Chapter 7 Discussion ... 42
 7.1 Broader Description ... 42
 7.2 Future Work ... 43

Chapter 8 Conclusion ... 45

References .. 46
LIST OF TABLES

Table 3.1	Statistics comparing the total run time for 50 solo runs and a parallel run of 1000 nodes for 2000 Alexnet steps.	21
Table 5.1	Average core usage when using simulated 3 core allocation on a Titan node.	30
Table 6.1	Titan cluster specifications.	32
Table 6.2	Characteristics of the DNNs used in our tests. The layers and parameters data was obtained from [19, 18, 34, 29]. The compute rate, in units of images-per-second, is our measurement of the rate at which each DNN can consume preprocessed data when using the specified batch size.	33
Table 6.3	Slowdowns under a 1-core limitation, measured relative to the 16-core performance of the same DNN and pipeline.	38
Table 6.4	Jobs launched during an 8AM - 2PM reservation on one power metered cabinet on Titan. Times are formatted as `hh:mm:ss`.	39
Table 6.5	The minimum energy usage for one of Titan's metered cabinets, averaged over 45 minutes of idle time with 1-second interval sampling.	40
Table 6.6	Average energy consumption during training for each of AS and the baseline on Alexnet, Inception, and VGG.	41
LIST OF FIGURES

Figure 1.1 Shallow and deep networks are distinguished primarily by the number of hidden layers they contain. .. 2
Figure 1.2 A typical pipeline for DNN training. .. 3
Figure 1.3 Illustration of the inference stage of a DNN ensemble of size 3 for an image of a sailboat. ... 6
Figure 3.1 For the default single pipeline, the preprocessing queue is always full, while the compute queue empties quickly. Thus the preprocessing task is the bottleneck. .. 18
Figure 3.2 Default single pipeline core utilization for each of the 16 cores on a single Titan node when training Alexnet. The average core utilization over the entire graph is 94.3%. When the startup phase is excluded, the average is 96.0%. .. 19
Figure 3.3 Duplicated pipelines that can be used to concurrently train DNNs. 20
Figure 4.1 Visualization of the MPI all-gather collective. 24
Figure 4.2 Illustration of the All-Shared (AS) pipeline. The dataset D is divided into n partitions for each reader. .. 25
Figure 4.3 Illustration of the Single-Broadcast (SB) pipeline. The dataset D is divided into p partitions for each reader instead of n, since there are now p readers feeding their own preprocessor. .. 26
Figure 4.4 Illustration of the Multi-Broadcast (MB) pipeline. Similar to the Single-Broadcast design, the dataset is divided into p partitions. Each D_i for $1 \leq i \leq p$ is broadcasted to all nodes with the i’th preprocessor node as the root. 27
Figure 6.1 Illustration of peak(n) for each pipeline. The number of preprocessors is changed between 5 and 20 when supported by the pipeline. The horizontal lines indicate the measured compute demand of a GPU on Titan. 34
Figure 6.2 CPU usage for SB and MB on Alexnet normalized to the CPU usage for AS. .. 35
Figure 6.3 CPU usage reduction for the All-Shared pipeline compared to the baseline. Each network/n combination was trained over 1000 steps. 36
Figure 6.4 Runtime improvement of AS over the baseline when CPU-core limits are imposed. The ensemble contained 100 networks, each trained over 1000 steps. 37
Figure 6.5 Total power draw over entire cabinet reservation period. The 12 jobs run during this time are described in Table 6.4. 39
Figure 6.6 Power draw comparison between AS and the baseline running 80 nodes of Alexnet. ... 40
Chapter 1

Introduction

The latest innovations in science and technology are being powered by Deep Learning. Virtually any field that collects large amounts of data stands to benefit from this revolution. While the mathematics behind neural networks has been known for decades, computing power has been insufficient to materialize useful results. With the increased performance provided by hardware accelerators, training Deep Neural Networks (DNNs) to learn datasets has become a viable option for industry.

Nevertheless, the most intelligent neural systems are still limited by the computing power of a single device. The common resolution for this problem is to utilize many devices in parallel. Training a group of DNNs over many devices is known as ensemble training. Therefore, the new question is how to distribute the training task over many devices in a scalable manner. The issue with parallel training is not in the power of each accelerator, but the rate at which data can be transferred between them. A DNN pipeline is the set of tasks that moves data to the accelerator(s) for training. At present, DNN pipelines can be a severe limitation on the potential performance and scalability of large training tasks [17].

This work explores the benefits that optimized pipelines can provide for DNN ensemble training. We will begin by demonstrating that standard ensemble pipelines can result in reduced training performance, and also cause unnecessary CPU utilization. The root cause of these issues is the computational redundancies present in the early stages of the training pipeline. We will explore
Figure 1.1: Shallow and deep networks are distinguished primarily by the number of hidden layers they contain.

various techniques that can be used to effectively eliminate these redundancies, allowing for far more efficient ensemble training.

1.1 Background

1.1.1 Deep Neural Networks

Neural networks are often quantified in terms of the number of layers that make up the network. This number is also the primary method of distinguishing between shallow and deep networks (or DNNs), as illustrated in Figure 1.1. Increasing the number of layers allows more complex datasets to be represented, but also increases the computational complexity of training the network.

In recent years we have seen neural networks grow in size to accommodate demands for higher accuracy and more complex datasets. This growth is due in part to the wide range of applications that have been discovered for neural networks in nearly every field of study that gathers large quantities of data. DNNs are presently one of the best methods to separate data into different classes.
1.1.2 Deep Neural Network Training Pipeline

A typical deep neural network training pipeline contains three stages: reading the data from storage systems, preprocessing the data, and training the model (see Figure 1.2). Data is first read into a queue, and is then run through various transformations known as preprocessing. Afterwards, the data is queued again and arranged into *batches*. The *batch size* is the number of data the network trains simultaneously per step. When training DNNs, it is important not to overfit to a particular dataset. The goal of training is ultimately to adjust the weights to accept arbitrary elements of classes that the input dataset is characterizing. Preprocessing typically helps with this goal by modifying input data to be more generic.

![Figure 1.2: A typical pipeline for DNN training.](image)

The standard preprocessing that is performed for most data is called “zero mean unit variance”, which refers to the process of shifting and scaling input data to ideally approximate a normal Gaussian distribution. Note that this process is performed collectively over the entire dataset, and not on specific points. Such collective scaling eliminates the arbitrary nature of pixel values, for
example, while maintaining the relationship between each data point.

Aside from such collective operations, many expensive data preprocessing operations are performed on a point by point basis. For example, image preprocessing allows us to flip, rotate, blur, and resize images to allow for more general cases than what is being provided by the dataset. While this increases the computational complexity of the input pipeline, it also increases the generality of the final DNN. Many other preprocessing techniques exist for other datatypes, not exclusively images. Both audio [10] and sensor [13] data have a wide range of preprocessing techniques that can be applied.

Preprocessing techniques can further be divided into online and offline preprocessing. In the offline case, preprocessed data is saved to storage, then loaded directly into the pipeline when training begins. This can help decrease the length of the pipeline and allow data to move directly to the GPU for computation. Unfortunately, it also feeds the same data into the DNN when training for multiple epochs\(^1\), thereby reducing generality. On the other hand, online preprocessing techniques are used every time the dataset is loaded. Online is particularly useful when randomized preprocessing techniques are used. Images may be flipped, rotated, or cropped in random ways, allowing a single image to provide a vast array of possible inputs to a DNN. Online preprocessing is the method commonly used in DNN training as its dynamic nature makes it more effective in preventing overfitting a dataset, allowing much more general applications for the network. In modern implementations of DNN training, online preprocessing typically serves as one stage in the training pipeline; the pipeline structure helps hide its runtime overhead.

1.1.3 **Heterogeneous GPU-CPU cluster for DNN training pipelines**

The modern high performance computing cluster has evolved into a hybrid architecture that houses CPUs and GPUs on each node in order to handle other computationally heavy workloads with high energy efficiency [7, 36, 38]. One of the most prominent large-scale examples of such an architecture is the Titan supercomputer located at Oak Ridge National Laboratory. Each of Titan's 18,688 nodes

\(^1\)An epoch is complete when the entire training dataset has been fed to the DNN once. DNNs are typically trained over many epochs.
features both a 16-Core AMD CPU and a K20X Nvidia GPU [1]. The next supercomputer that will soon be replacing Titan is called Summit, which is anticipated to be ready for researchers in 2018. Summit will contain 2 IBM Power9 CPUs and 6 Nvidia Volta GPUs [2]. With this level of computing power, researchers can use each node to either train larger networks, or train smaller networks faster using techniques such as batch parallelism.

Heterogeneous GPU-CPU clusters are particularly well suited towards DNN training, since the CPU and GPU can work together to accelerate the training pipeline. In heterogeneous GPU-CPU clusters, the GPU is generally given the training task and the CPU is in charge of reading and preprocessing data into batches that the GPU can quickly use, ideally with as little idle time as possible. Such a division of pipeline steps is largely to achieve maximal training throughput on the GPU, since GPUs are generally able to process machine learning kernels to train DNN models with a higher throughput than multi-core CPUs [11]. To achieve maximal training throughput, it is generally best to preserve cache and memory states on the GPU. If the GPU were to attempt preprocessing as well as training, the CPU would need to perform additional copies to GPU memory depending on how well the fusion of the preprocessing and training stages is performed. Furthermore, extra memory would need to be allocated on the GPU for the preprocessing stage, which constrains the maximum batch size that can be used on a large network. The general goal is to make the GPU's training stage as efficient as possible, while the preprocessing on the CPU side attempts to saturate GPU resources.

1.2 Overview

Machine learning enables the discovery of actionable knowledge from large quantities of data. In the training of machine learning models, including Deep Neural Networks (DNNs), machine learning algorithms process a few samples of data in each training iteration for multiple iterations to cover the entire data set until convergence [14]. As machine learning techniques evolve, more advanced usages have appeared such as the *ensemble* of machine learning models [23, 14], where different models learn from the same data set and aggregate their prediction results to produce a
more accurate final prediction, as demonstrated in Figure 1.3. Such ensemble training multiplies the I/O and CPU demand on an already burdened system, since it duplicates model training pipeline across different nodes.

1.2.1 Motivation

The DNN training pipeline is an iterative process that consists of reading, preprocessing, and computing/training stages. Data is first read from a storage system, then prepared for training using the CPU, and lastly is sent to the GPU for DNN training. A common implementation of an ensemble training pipeline is constructed by duplicating this pipeline onto multiple machines to train models in parallel. Such a simple parallelization scheme inherently creates redundancies, particularly for the preprocessing stage.

Since each DNN model is trained over the same data, the preprocessing operations (e.g., resizing and cropping) being performed for each DNN are redundant. This stage can be CPU-intensive depending on the type of operations being performed, the dataset being used, and the DNN model to be trained. The result is unnecessarily high CPU usage for every compute node in the ensemble training, slowing-down the DNN training time. It is because the rate of preprocessing on the CPU
side cannot keep up with the demand from the GPU to train a model over prepared data. In addition, the excessive CPU usage is likely to increase the power consumption of the ensemble training.

Little work has been performed that relates directly to ensemble pipelines. Kurth et al. [20] is the most closely related to this study, where the authors considered DNN training in high performance computing environments. They focused on optimizing the communication of DNN model parameters, thereby allowing them to scale the training process to thousands of nodes. The study also considered various communication methods in distributing training data, including preprocessing and I/O from the storage systems, in the context of machine learning pipelines. However, this study was performed on a cluster of Xeon-Phi processors, while our work uses a large scale GPU cluster.

While most of the related research focuses on training large DNNs, some has provided some background on the problem of heavy preprocessing workloads. Microsoft researchers have produced a tool called Adam [9] that is designed to scale large DNNs to potentially thousands of nodes. While the tool primarily deals with accelerating larger networks over distributed nodes, their pipeline has some elements in common with our current work. They mention concerns with heavy preprocessing tasks caused by complex image transformations. They offload these tasks to a set of nodes dedicated to queuing preprocessed data to feed worker nodes more efficiently. Such an allocation of work requires extra nodes to perform the preprocessing. Our work does not use such a mechanism, but instead distributes preprocessing only on the nodes that are being used to train DNNs. In this case, no extra nodes are needed.

1.2.2 Key Challenges

The difficulty in resolving these redundant operations is the lack of flexibility in model training pipelines. Since most present frameworks (e.g. TensorFlow, Caffe, and Torch) focus on training a single model, they do not provide sufficient flexibility to allow pipelines to fit the demands of parallel ensemble training in distributed environments. The overarching goal of the research direction presented here is to add flexibility into existing DNN frameworks to enable customizable communications in parallel ensemble training, and further to identify the communication schemes
that best suit DNN ensembles in both training time and power consumption.

We can isolate four research challenges from this direction:

1. What part of the ensemble training process should be focused on?

2. How can we add flexibility into existing DNN training frameworks?

3. What pipeline designs fit the needs of ensemble training?

4. How can pipelines adapt to cluster hardware and DNN constraints to maximize performance while minimizing cost?

Ensemble learning consists of reading, preprocessing, and training for each DNN. Which of these stages presents the most performance issues that could be solved through a more intelligent pipeline? We will analyze a series of queues used to buffer data between each of these stages, allowing us to isolate potential bottlenecks. This will narrow down problems within the pipeline.

Present frameworks do not provide sufficient flexibility in pipeline design on distributed systems. What additions can be made to current frameworks to allow for customizable and efficient pipeline construction? In this work we focus on the Tensorflow framework, utilizing external libraries to allow more adaptive and custom communication schemes.

With a flexible framework, what pipelines can we construct to remove computational redundancies? We will examine 3 pipeline designs, and show that one of them in particular provides a significant efficiency boost for ensemble training.

Beyond specific designs, is it possible to construct a pipeline that adapts to a particular architecture, thereby providing optimal performance in any environment? What metrics for performance should be used to establish the necessity of such a design? Such an analysis is beyond the scope of this work, but here we provide a foundation for the optimization potential of this direction. In particular, we provide techniques that show the differences in scalability, performance, and efficiency of pipeline designs.
1.2.3 Our Solution

In this study, we analyze a series of queues used to buffer data between each stage in the machine learning pipeline, allowing us to isolate potential bottlenecks. We discover a bottleneck in the preprocessing stage that can hinder DNN training speed. To add flexibility to present frameworks, we develop a group-based collective communication addition to the Horovod \[27\] library. Using this addition with Tensorflow, we examine three pipeline designs that we refer to as All-Shared, Single-Broadcast, and Multi-Broadcast.

The All-Shared pipeline shares the preprocessing step across all members in the ensemble, whereas Single-Broadcast and Multi-Broadcast share within a subset of the ensemble. Single-Broadcast elects a leader to broadcast the preprocessed data to other nodes, while Multi-Broadcast performs asynchronous broadcasts from multiple nodes. We examine these three cases as an initial study of different primitive pipeline communication schemes.

Among these pipelines, the All-Shared scheme provides significantly more efficient parallel ensemble training. Our experimental results show that the preprocessing stage can indeed form a bottleneck for the Alexnet DNN, producing 96% CPU usage with 34% degraded training time on Titan supercomputer, a large scale GPU cluster at Oak Ridge National Lab. Our best optimized pipeline can meet and exceed Alexnet’s preprocessing demand by up to 2X. We furthermore reduce CPU usage by 2-11X depending on the DNN being trained. Lastly, we provide experimental results on Titan showing that our best pipeline uses 5-16% less energy during training.

In summary, we present the following key contributions:

1. To our best knowledge, this is the first work that systematically characterizes performance issues present in parallel DNN ensemble training in large distributed environments. (Chapter 3)

2. It adds to existing DNN ensemble training pipelines with flexible communication controls. (Chapter 4)

3. It provides the first known exploration of distributed communication schemes for streamlining
parallel ensemble training pipelines in large distributed environments. (Chapter 4)

4. It offers a thorough performance analysis of the capabilities of these pipelines on the Titan supercomputer. (Chapter 6)

We will first introduce DNN pipelines, showing how they can be extended for ensemble training. After seeing the shortcomings of more simplistic designs, we will present our alternative pipelines. Lastly, we will provide detailed experiments to show the benefits our optimizations yield.
Chapter 2

Related Work

This chapter introduces some of the ongoing work in the machine learning fields closely related to distributed ensemble training. We will first look at some of the ensemble/multi-learner work that has been proposed. Beyond this narrow scope is much research in training large DNNs on clusters in a scalable manner. Towards this end, several machine learning APIs have been developed to assist in automatically distributing the training process over cluster systems. There is also a push to move more DNN training workloads from data-center clusters to the edge devices in the Internet of Things\(^1\). Researchers are thus developing neural network systems to train efficiently on low-end CPU/GPU architectures. Lastly, we will cover some of the work related to storage systems for DNN training on images, since our work uses the ImageNet dataset.

2.1 Ensemble Learning

Dr. Shiliang Sun’s research at East China Normal University has contributed several papers towards the theoretical characteristics of ensemble learning (see [32], [33], [39], and most recently [40]). These works survey the presently known mathematics behind multiple-view learners. Such learners use multiple views of the dataset to produce a neural network that is more generalizable and accurate.

\(^1\)The Internet of Things (IoT) refers to the set of devices that can be connected together wirelessly, typically through some cloud management system. Edge devices typically include personal computers, smart-phones, and other household devices.
Both multi-view and ensemble learning attempt to alleviate the problem of overfitting a dataset by introducing multiple intelligent systems, thereby making the overall system more generalizable. However, multi-view learners look at the problem starting from the input data, while ensembles introduce multiple learners on the same data. Sun et al. focus primarily on multi-view learning, providing a thorough survey of previous work and present challenges in [40]. Our work looks at ensemble learners when trained in parallel on distributed systems.

2.2 Training Large DNNs on Distributed Systems

In 2012 Google researchers (Dean et al. [12]) published a software framework called *DistBelief*, capable of utilizing compute clusters with possibly thousands of machines to train large DNN models. They introduce some of the basic training algorithms needed to train such a large system with reasonable scalability. The first technique they use is *Downpour SGD*, an asynchronous SGD model designed for a large number of model replicas. They also use Sandblaster, a distributed implementation of another popular training algorithm. These two techniques are proposed as mechanisms to share the changes in neurons within each DNN training device across the entire cluster, a necessary step when training large DNNs on many devices.

In 2014 researchers moved towards using parameter servers as dedicated devices that stored all the model's variables, while the backpropagation task was sent to other worker devices. Li et al. [21] in particular elaborate on this design, which is in some ways analogous to a master-worker model for Deep Learning applications. Additionally, Microsoft researchers proposed project Adam, a framework with similar goals to DistBelief which had been published 2 years earlier, but taking the parameter server approach. In fact, project Adam has some similarities with our work. Since they are training on the ImageNet dataset, they observe that preprocessing images quickly enough is an expensive task. They solve this by delegating several nodes to work on preprocessing tasks to

\[\text{2}\text{Stochastic Gradient Descent (SGD) is a common technique for training a neural network.}\]

\[\text{3}\text{DNN replicas are copies of the same neural network on different devices. These are typically used to allow different compute devices to calculate the gradients (an expensive operation) for the same DNN on different data in parallel.}\]

\[\text{4}\text{Specifically, L-BFGS, which is a limited memory implementation of the popular BFGS algorithm, where BFGS is designed as a more intelligent approach to gradient descent optimization.}\]
feed each model replica with data. Our work does not delegate extra nodes for this task, but instead shares the preprocessing load between each CPU of the DNN trainers.

More recently, Chung et al. in 2017 published their work adapting a special DNN optimization algorithm to the Blue Gene/Q cluster. This system is described as a large group of processors with fast inter-processor communication. They illustrate how their algorithm is well-suited to Blue Gene/Q’s architecture, and provide results demonstrating high scalability for large DNN training.

2.3 Distributed Machine Learning Interfaces

Many interfaces have been proposed for distributed machine learning over recent years. For example, in 2013 Sparks et al. [31] presented MLI, an interface designed to help write machine learning algorithms in a distributed setting. After the Tensorflow [5] framework began gaining traction and popularity, several research groups introduced add-ons to Tensorflow that provided better distributed capability. In 2017, MaTEx (Machine Learning Toolkit for Extreme Scale) was proposed in [35] to add distributed memory capabilities to Tensorflow using MPI.

In a very recent work published in February of 2018, Sergeev et al. from Uber Technologies introduced Horovod [28], another Tensorflow add-on. Horovod enables scalable DNN training through its efficient GPU-based communication scheme that utilizes a ring-reduction technique to average gradients over model replicas very quickly. Horovod has quickly gained popularity in the research community for two reasons: (1) It is fast, using the latest known all-reduce techniques with the NCCL library from Nvidia for faster GPU communication, and (2) it is incredibly simple to install and use, requiring only a few lines of code to be modified.

In [28], the Horovod authors note that the concept of parameter servers had introduced challenges to researchers that made them more difficult to use. This technique required allocating some number of nodes to be parameter servers, and the rest of the nodes to be workers. Such an allocation is not straightforward in Tensorflow, and introduced an unpleasant learning curve for researchers. Additionally, it is not necessarily clear how many servers should be allocated in the first place. Thus Horovod removes this concept, replacing it with a ring-based all-reduce that is much easier to use.
and understand for users.

Our work uses Horovod for some of the MPI collective operations it supports, such as all-gather. This enables us to present our work in terms of a pre-existing framework that is easy to use, without unnecessarily developing a new distributed Deep Learning framework.

2.4 Storage Systems for DNN Training on Image Datasets

Image recognition is one of the more widely used applications for Deep Learning systems. With the need for larger image datasets for more intelligent learners, storing these large datasets can become a problem. Lim et al. [22] look at this problem for the ImageNet dataset using the Caffe deep learning framework. They analyze the training rate of Alexnet when five different storage schemes are applied, concluding that images cannot be stored individually, but must instead be allocated in a dataset file system to improve performance (e.g. LMDB or LevelDB). Our work used the TFRecords format to store the ImageNet dataset, since this was the technique recommended by Tensorflow. Our Titan tests encountered no I/O issues during training.
Ensemble Performance

In this chapter we discuss the scheme of the typical DNN ensemble training pipelines used in existing work. We refer to such pipelines as the duplicated pipelines scheme, and provide a Tensorflow implementation that is used to test and analyze its performance. We later use this implementation as a baseline against which other schemes may be compared.

3.1 Duplicated Pipelines and the Implementation

DNN ensemble training consists of the training of a number of DNN variants. These variants are independent from one another. The scheme commonly used in existing work, duplicated pipeline scheme, launches N duplicated pipelines with each running on one (or more) nodes training one DNN variant in the ensemble.

We implement the scheme based on Tensorflow.\footnote{All Tensorflow code is version 1.3.0.} We use the Slim module [4] as a starting point, since it includes the implementations of several popular networks, such as Inception, Alexnet, and VGG. Furthermore, Slim provides a robust set of preprocessing operations by default for the ImageNet dataset, which proved quite useful for our tests. In our experiments, each DNN runs on one Titan node.
3.2 Settings for Testing

We describe the settings used in our performance testing of various ensemble training schemes as follows. Some of these choices are designed to draw out problems of interest that may arise from an ensemble of DNNs.

3.2.1 Workloads

In general, parallel model training can be used as a fast method for hyper-parameter tuning \[37\], or it can be used to create multiple learners for increased classification accuracy, or to learn an ensemble model \[23, 14\]. An ensemble model is most effective when each DNN serves a useful and probably unique testing purpose, and has been modified appropriately to suit that purpose. As discussed earlier, the final result is intended to be more diverse than any single classifier could be. Towards this goal, our study investigates the system efficiency of parallel ensemble training.

The more complicated case arises when the differences between each DNN are substantial enough to cause significant changes in performance. For example, each model may contain varying numbers of hidden layers or different numbers of nodes within each layer. Since the number of layers in a network is a primary factor influencing training time \[14\], such changes could cause significant differences in training times between the members of the ensemble. While this area may be an interesting point for a future optimization study, managing the burst computational requirements from many concurrent model training pipelines poses the most urgent problem. In light of this, our experiments focus on the DNN variants in an ensemble that are of the same structure but differ in their learning rates, initial filter values, or other non-structural parameters.

3.2.2 Datasets

When considering the effects of preprocessing, computation, IO usage, network traffic, etc., it is reasonable to require that the input dataset dimension and the number of elements be large. Smaller datasets such as MNIST or Cifar-10\(^2\) will likely require very little resources and will train quickly.

\(^2\)Both datasets contain 60000 images. MNIST images have size \(28 \times 28\), and Cifar-10 images have size \(32 \times 32\)
The primary dataset used for this research is a subset\(^3\) of ImageNet\(^2\), where the entire dataset contains over 14 million images of size 224 × 224. With this dataset it is much easier to investigate the performance effects of DNN ensembles. For a given dataset, we also expect that every image will need to be processed by every DNN in an ensemble.

3.3 Baseline

In this section we provide data that characterizes the performance of individual DNNs, as well as DNN ensembles.

3.3.1 Single Node

We begin with a performance evaluation of the default pipeline shown in Figure 1.2 on a single node. Since the primary goal of the pipeline is to saturate the GPU with prepared data, we present a scenario in which the GPU can process data quickly. We use Alexnet for this purpose since it is a smaller network that uses a large batch size of 128\(^1\).

Since preprocessing occurs on the CPU, it is important to allow parallelism over all CPU cores. Multi-core execution can drastically speed up preprocessing, and can sometimes utilize all CPU resources for the task. The DNN computation is affected little by the high CPU usage since it executes on the GPU. Tensorflow allows such CPU parallelism by default, but in our case we needed to manually change the number of parallelism threads. We set `inter_op_parallelism_threads` and `intra_op_parallelism_threads` to 16 in order to maximize the usability of the 16-core CPUs available on each Titan node. The former enables parallelism between multiple operations, while the latter parallelizes individual operations if supported. We also needed to set a flag when launching the Titan job that enabled multi-core usage for each node\(^4\).

Since Tensorflow training requires that the graph be constructed symbolically, and is only executed within an API session call, it is difficult to obtain direct performance diagnostics at runtime.

\(^3\)Our subset contains approximately 1.3 million images.

\(^4\)Titan jobs are executed using the `aprun` command. Passing the number of allowed threads using the option `-d` allows multiple cores to be used by a single task. We used `-d16` to enable all cores to be used for each Tensorflow session.
Thus we use Tensorboard5 summaries on the various queue sizes in the pipeline to determine where bottlenecks might be occurring. Since the operation that saves summaries in Tensorflow can affect training performance, we save summaries every 20 steps and disable certain costly summary operations, such as preprocessed image viewing. We run Alexnet for 1000 steps on the ImageNet dataset, then analyze the relevant queues in Tensorboard.

Figure 3.1 shows the measured size of the preprocessing and compute queues during the training process. As shown before in Figure 1.2, the preprocessing queue is the data that is about to be preprocessed, and the compute queue is the preprocessed data being fed to the DNN. In this case, the preprocessing queue fills up quickly enough that the summary data for this queue reports that it is always full. On the other hand, the compute queue fills up during the startup phase, then empties out in the first few hundred steps. In Tensorflow, the first step of the training process is typically many times slower than the rest. This is primarily due to various initialization and optimization

5Tensorboard is a diagnostic tool designed to parse and display summary data produced during a Tensorflow training session.
routines that are being executed at runtime. The result is that the batch queue has time to fill while the first step is executing, but cannot keep up after the first step. The bottleneck in this case is therefore the preprocessing stage.

![Graph showing core utilization over time](image)

Figure 3.2: Default single pipeline core utilization for each of the 16 cores on a single Titan node when training Alexnet. The average core utilization over the entire graph is 94.3%. When the startup phase is excluded, the average is 96.0%.

It is important to show that the preprocessing uses the entire CPU. Figure 3.2 shows the utilization level for each of the 16 cores in our default single pipeline test. Once Tensorflow has finished initializing, we see the utilization reach peak levels and remain there. The average measured utilization for this test was 96.0% after startup. From these series of tests, we conclude that a heavy preprocessing load with a smaller DNN is capable of shifting the bottleneck from the model training to the preprocessing. More computationally intense models (e.g., GoogleNet with Inception modules) can also create similar issues on newer hardwares like NVIDIA V100 with TensorCore technology, where processing rate for deep learning workloads is 90 times improved [24].
3.3.2 Multiple Nodes

The natural extension to the single pipeline in Figure 1.2 is to duplicate each pipeline for each DNN in an ensemble. This duplicated pipeline is shown in Figure 3.3. In theory, each DNN could be an arbitrary network, but our present tests use the same network for the sake of analyzing optimization potential.

We first note two main concerns arising from the duplicated pipeline. First, each node reads its own copy of the dataset, which is highly redundant and places unnecessary strain on the storage systems. High IO usage could in theory lead to scalability problems. Second, the preprocessing operations are redundant since the same data is being modified. While this does not present scalability problems, it does result in unnecessary CPU usage. As shown earlier in Figure 3.2, the CPU usage could actually be quite high. This presents some opportunities for pipeline optimization.

In order to test potential scalability issues, we perform a test of the duplication pipeline on 1000 nodes of Titan and compare overall training time to that of nodes run individually. Table 3.1 shows the results of executing 2000 steps of Alexnet on 1000 nodes of Titan in parallel, as well as the results unless the file-system uses caches and each node is reading data from the same files in such a way that the cache scores successive hits.
Table 3.1: Statistics comparing the total run time for 50 solo runs and a parallel run of 1000 nodes for 2000 Alexnet steps.

<table>
<thead>
<tr>
<th></th>
<th>Avg</th>
<th>Std Dev</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solo</td>
<td>1132.3</td>
<td>1.429</td>
<td>1129.7</td>
<td>1134.5</td>
</tr>
<tr>
<td>Parallel</td>
<td>1132.2</td>
<td>1.962</td>
<td>1125.0</td>
<td>1139.0</td>
</tr>
</tbody>
</table>

of executing 50 nodes individually. While the 1000 nodes exhibited slightly higher variance in its runtimes, the overall runtime was not affected. This demonstrates that the storage systems in Titan did not suffer performance issues caused by the high number of data requests.
Optimized Pipelines

Keeping in mind the issues with the duplicated pipeline discussed in the previous chapter, we establish three objectives for designing pipelines to increase system efficiency:

1. Eliminate pipeline redundancies through data sharing.
2. Enable sharing by increasing pipeline flexibility.
3. Use increased flexibility to accelerate the pipeline.

Towards these goals, we focus on balancing the computational demand for preprocessing and model training. Fortunately, ensemble training provides access to more CPU power for the same data, thereby yielding an opportunity to accelerate the preprocessing stage.

4.1 Problem statement

Let n be the total number of DNNs being trained. Since each DNN uses a single compute node, n is also the number of nodes being used for the ensemble training. Let p be the number of nodes performing preprocessing operations, where $p \leq n$. Suppose the i'th preprocessor produces a data-block D_i. When designing a new pipeline, the goal is to have every node contain $D = [D_1, D_2, ..., D_p]$
after the communication stage. Note that for simplicity of notation, \(D \) refers to the dataset at any stage of the pipeline, either before or after being preprocessed.

Given a particular DNN and hardware system, let \(r_c \) be the GPU’s compute throughput, and let \(r_p \) be the CPU’s preprocessing throughput. Both can be measured in units of \textit{images/second}. In order to achieve maximum training speed, we need \(r_p \geq r_c \). However, this may not be the case, as we have already shown with Alexnet on Titan. A solution to this challenge is to share preprocessing steps across \(n \) machines for each data partition, which can raise the throughput of preprocessing up to \(n r_p \geq r_c \).

Taking this approach, the number of machines, \(n \) needed to satisfy \(n r_p \geq r_c \) was relatively small for our test cases. For example, our tests revealed that \(n = 2 \) is theoretically sufficient to saturate Alexnet’s compute rate. If more advanced preprocessing techniques are used to enhance model training, the computational requirements on the CPU will increase and may require larger \(n \) to satisfy the condition.

In practice, \(n r_p \) is only an upper bound on the possible preprocessing rate. After the data has been prepared, it must be shared over the cluster’s network to each training node. Therefore, the peak preprocessing throughput for each node becomes a function of \(n \), say peak\((n) \leq n r_p \). As \(n \) increases, the upper limits of peak\((n) \) depend on the communication pattern among nodes for preprocessing and the network capabilities of the cluster. To address this issue, we need to consider flexible pipeline designs in order to accelerate the progress of the pipeline. Later on, we will show detailed empirical results in this regard.

In the remainder of this chapter, we introduce our method for improving pipeline flexibility, and further explore different communication patterns as alternatives to the baseline of the duplicated pipelines.
4.2 Horovod groups

Horovod [27] is a distributed deep-learning library for Tensorflow. Although distributed Tensorflow [3] provides implicit tensor sends and receives, it does not provide collective operations.\footnote{A “collective” in MPI is an operation that sends a series of messages between usually more than 2 ranks, typically with the goal of efficient data sharing.} Horovod fills the gap by supporting collective operations, including all-gather, broadcast, and all-reduce. Thus, it allows tensor objects to be sent through MPI collectives.

However, one limitation in Horovod is its master-worker communication structure. It is designed to operate in “ticks”, each consisting in a series of operation requests to the master, followed by a done message. Such a structure forces all communication to occur on a global scale, specifically, using MPI_COMM_WORLD as the communicator for MPI messages. When designing custom pipelines, we need the ability to use MPI collectives within a subset of ranks.

To solve this issue, we developed Horovod Groups [25]. This modification allows the user to provide a list of groups that should be created upon initialization of the library. Whenever a collective tensor is created, a group index must then be provided indicating which communicator to use for the operation. At present, there are no known constraints on the memberships within these groups. For example, two groups need not be mutually exclusive. A particular rank launches a background MPI thread for each group to which it belongs. Communication can then occur asynchronously using multi-threaded MPI.

![Figure 4.1: Visualization of the MPI all-gather collective.](image)
4.3 All-Shared

To share preprocessed data with all nodes, one possible approach is to make every node a preprocessor \((n = p)\), and share each node’s data with all other nodes. The MPI all-gather operation (see Figure 4.1) is well suited to this purpose. We refer to this as the All-Shared (AS) pipeline, as depicted in Figure 4.2.

The first benefit of this design is its implementation simplicity. Horovod does not need to be modified since we can use the built-in all-gather operation, and the code changes required to implement it are minimal. These changes involve inserting an all-gather operation after the preprocessing stage, but before the compute stage. Inserting additional queuing stages before and after this operation may be recommended in order to avoid unwanted latency. A secondary benefit is its high potential efficiency. Since every node contributes to the preprocessing stage through a single collective operation, individual nodes may need to do very little work depending on the size of the ensemble.

The limitation of this design is its lack of flexibility. For training more computationally heavy
neural network models, it seems unnecessary to require that every node instantiate a data reader
and preprocessing stage, when a small number of nodes could provide enough preprocessed data
to training models. Our next two designs attempt to take advantage of this fact, thereby increasing
their flexibility.

4.4 Single-Broadcast

We now wish to allow the number of preprocessors p to be adjustable. Suppose nodes 1, …, p are
the preprocessor nodes, and $p + 1, \ldots, n$ are nodes that only contain the GPU’s compute stage.
Presumably $p < n$, since if $p = n$ we could use the All-Shared technique.

As a first step, we can perform an all-gather between the preprocessor nodes 1, …, p. Now each
of these nodes has access to all the data, but the remaining $n - p$ nodes have none. One method to
resolve this is to elect node p to broadcast its data out to nodes $p + 1, \ldots, n$. This process is shown in
Figure 4.3, and we refer to this pipeline as Single-Broadcast (SB).

The benefit of this pipeline is increased flexibility over AS. We can now control the value of p to
adjust the pipeline as necessary to our particular application. The primary downside to this design
is potentially degraded performance, since rank p now needs to perform two collective operations.
Additionally, Horovod Groups is needed for its custom MPI communicators.

4.5 Multi-Broadcast

Each node i in 1, …, p has its own data item D_i. Instead of running an all-gather between prepro-
cessors, each i could broadcast its D_i to all other nodes. In Multi-Broadcast, we avoid the initial
all-gather by performing asynchronous broadcasts from each preprocessor, as shown in Figure 4.4.

The benefit of this design is its evenly distributed approach. Each preprocessing node has
identical work without the extra demand placed on rank p by Single-Broadcast. However, it is limited
in the number of preprocessing nodes it can create efficiently, since each broadcast operation needs
to occur within its own thread.
Figure 4.3: Illustration of the Single-Broadcast (SB) pipeline. The dataset D is divided into p partitions for each reader instead of n, since there are now p readers feeding their own preprocessor.

Figure 4.4: Illustration of the Multi-Broadcast (MB) pipeline. Similar to the Single-Broadcast design, the dataset is divided into p partitions. Each D_i for $1 \leq i \leq p$ is broadcasted to all nodes with the i'th preprocessor node as the root.
Chapter 5

Metrics for Evaluation

In this chapter we introduce some of the metrics used to compare the baseline and our alternate pipeline designs.

5.1 Peak Preprocessor Throughput

Previously we defined peak(n) as the function representing the maximum image throughput in a pipeline for a given number of nodes n. The peak function is a good method to measure the scalability of a pipeline, and provides the best mechanism for speed comparison to other pipelines.

While it is easy to think of peak(n) as a single function, it is actually defined by the throughput at each node in the ensemble. However, it turns out that for a queuing system with finite size, the long term average throughput for each node should be the same. Thus only one function is needed to define the entire pipeline's peak throughput.

Note that peak(n) is only a measure of preprocessing image throughput, and does not involve any DNN training. In order to test the value of this function for a specific pipeline, we construct the compute queue that stores batches ready to be trained, then we dequeue a batch. Repeating this

1The long term averages are identical simply due to the nature of the collective communication. All nodes in the pipeline receive all data. If node a gets ahead of node b in its computation, the images that b has not processed must be within a queue after the collective communication. Since these queues have finite size, the difference in progress between a and b must be less than this constant. Thus the long term average throughput must be the same.
operation quickly enough causes the pipeline to reach peak image throughput.

The importance of measuring peak(n) is apparent when the compute throughput r_c is also considered. As mentioned before, we must have peak(n) $\geq r_c$ in order to saturate GPU resources. Towards this end, we additionally gather the value of r_c for each DNN in our tests. To obtain r_c, we calculate the average step duration for a specific DNN, while also pausing between steps to allow all queuing systems to catch up. This ensures that the GPU will have data ready to be dequeued when the next step is timed. By averaging the seconds per step, we then invert and multiply by the batch size to obtain images per second, or r_c.

5.2 CPU Usage

As a standard, it is important for the optimized version to run with at least the same training rate as the baseline. However, it is not expected for the optimized pipeline to train DNNs faster than the baseline under normal conditions. We previously established that it is possible for preprocessing to form a bottleneck, but this is a more unusual case. If preprocessing is not a problem, our optimized pipeline should not increase the training rate. In most of our tests, the GPU performance was the limiting factor. Recall that this may change when Summit becomes available, since there are many more GPUs on the new node architecture. To measure overall CPU load, we use the `mpstat` command to obtain CPU utilization statistics on each compute node in 4 second intervals. After training is complete, we integrate CPU utilization statistics over time to obtain CPU usage for the job.

5.3 Core Usage Limits

Another useful metric is the runtime of the training process when a CPU core limit is imposed. Some cluster systems allow nodes to be shared by users who have requested few CPU cores for their job. The charge allocated to the user’s account for such a job is typically only charged for the number of cores allocated. In such a case, there is a clear benefit to allocating less cores if the job does not need them. We can therefore test our pipeline by first imposing limits on the number of
cores used, and then compare the overall runtime to the baseline under the same limits. Since Titan does not support node sharing nor partial core allocation, we simulate a limited CPU environment by controlling the number of threads allocated to each MPI rank\(^2\). Since each rank is allowed to use an entire node, the number of threads corresponds to the number of CPU cores allowed. Table 5.1 shows the average core usage when simulating 3 cores allocated on a single Titan node and training Alexnet on a basic pipeline.

Table 5.1: Average core usage when using simulated 3 core allocation on a Titan node.

<table>
<thead>
<tr>
<th>Core ID</th>
<th>Avg % Util</th>
<th>Core ID</th>
<th>Avg % Util</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>94.0181</td>
<td>8</td>
<td>0.0040</td>
</tr>
<tr>
<td>1</td>
<td>96.4045</td>
<td>9</td>
<td>0.0080</td>
</tr>
<tr>
<td>2</td>
<td>94.5611</td>
<td>10</td>
<td>0.0040</td>
</tr>
<tr>
<td>3</td>
<td>0.0436</td>
<td>11</td>
<td>0.0040</td>
</tr>
<tr>
<td>4</td>
<td>0.3789</td>
<td>12</td>
<td>0.1432</td>
</tr>
<tr>
<td>5</td>
<td>0.0080</td>
<td>13</td>
<td>0.0040</td>
</tr>
<tr>
<td>6</td>
<td>0.6070</td>
<td>14</td>
<td>0.0040</td>
</tr>
<tr>
<td>7</td>
<td>0.0079</td>
<td>15</td>
<td>0.1352</td>
</tr>
</tbody>
</table>

5.4 Energy Usage

A secondary benefit from decreased CPU usage is power savings. Most modern CPUs automatically decrease clock frequency\(^3\) in order to save power when no instructions are being fed. Therefore it seems reasonable to expect some energy savings if CPU usage is reduced significantly. While it is sometimes possible to obtain CPU or GPU power readings directly through software, Titan does not provide this capability.

Instead, we collect energy consumption data through 2 metered cabinets. Each of these cabinets includes 96 nodes, 8 of which are service nodes, leaving a total of 88 nodes for user jobs. The major limitation of these cabinets is that they only record the consumption of the entire cabinet, so

\(^2\)The number of MPI threads per rank is controlled by the \(-d\) option passed to the \texttt{aprun} command.

\(^3\)This is sometimes referred to as throttling.
distinguishing between the power usage of different devices within the cabinet is impossible. Thus the results we report are the power consumption of all devices in the cabinet, not just the CPU.

In order to eliminate possible power variances due to jobs executing on different systems, we reserved only one cabinet for all jobs. We submit each ensemble training job sequentially, with approximately 2 minute breaks between the job's end and the next launch. Additionally, we launch each type of job twice to obtain some measure of redundancy and confidence in our results.

Executing jobs within these cabinets requires a special reservation request filed through a webform, along with some setup from the OLCF staff. After the reservation, the technicians send the energy report containing the Kilo-Watt consumption at specific date-times. In order to accurately measure the usage of each job launched during the reservation, our program prints a time-stamp at the beginning and end of training. After receiving the data, we find all power entries that fall within the window recorded by the job output. In this way, we distinguish the power used by each job.
Experiments and Results

This chapter will provide experimental results to show the benefits that can be gained from alternative pipelines. We first measure the throughput capabilities of each pipeline architecture over varying numbers of ensemble nodes. Such a measurement provides a rough idea of the performance of each design, allowing us to remove those that are slow. For the best pipeline, we then measure the amount by which the CPU usage is reduced, which we refer to as CPU reduction. Additionally, we test the speedups obtained when the number of usable CPU cores is reduced. As a final measure, we provide data on the energy that a Titan cabinet consumes when training the baseline and our best pipeline.

Table 6.1: Titan cluster specifications.

<table>
<thead>
<tr>
<th>Processor</th>
<th>16-Core AMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU</td>
<td>K20X Kepler</td>
</tr>
<tr>
<td>Architecture</td>
<td>Cray XK7</td>
</tr>
<tr>
<td>Interconnect</td>
<td>Gemini</td>
</tr>
<tr>
<td>Number of cabinets</td>
<td>200</td>
</tr>
<tr>
<td>Number of nodes</td>
<td>18,688</td>
</tr>
</tbody>
</table>
Table 6.2: Characteristics of the DNNs used in our tests. The layers and parameters data was obtained from [19, 18, 34, 29]. The compute rate, in units of images-per-second, is our measurement of the rate at which each DNN can consume preprocessed data when using the specified batch size.

<table>
<thead>
<tr>
<th>DNN</th>
<th>Batch Size</th>
<th># Layers Deep</th>
<th># Parameters</th>
<th>Compute Rate (images/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexnet</td>
<td>128</td>
<td>8</td>
<td>60M</td>
<td>306</td>
</tr>
<tr>
<td>Inception V1</td>
<td>32</td>
<td>22</td>
<td>6.8M</td>
<td>69</td>
</tr>
<tr>
<td>VGG-A</td>
<td>32</td>
<td>11</td>
<td>133M</td>
<td>31</td>
</tr>
</tbody>
</table>

6.1 Methodology

All experiments reported in this chapter were performed on the Titan cluster at Oak Ridge National Laboratory using Tensorflow version 1.3.0. Titan’s specifications are provided in Table 6.1.

The input data for the pipeline was part of the ImageNet dataset, and included approximately 1.2 million images. Images sometimes have varying sizes, so the preprocessing stage resizes the images to 224×224, which is the required dimensions for the first layer in our test networks. We choose this dataset because preprocessing is more expensive on larger images.

The Slim module [4] provides the preprocessing mechanisms needed to prepare images for training. This module also provided Tensorflow implementations of the three DNNs used in our tests, namely Alexnet, Inception V1, and VGG-A. Some of the basic specifications of these DNNs are provided in Table 6.2. Different versions of these networks are commonly used by the research community for performance and accuracy benchmarks [5, 6, 8, 15, 16, 30].

The motivation for using these three networks is their varying compute rates. This is the rate at which each DNN consumes preprocessed images. We measure this value experimentally in units of images/sec on Titan. Note that the compute rate is the key factor that influences the preprocessing stage. A high rate will place extra demand on the CPU for image preprocessing, which will result in high CPU utilization. Alexnet is well-suited for this purpose. On the other hand, Inception and especially VGG require a smaller data rate, and so the CPU is used much less. In order to produce meaningful results, we must demonstrate that our pipelines will produce savings over such a range of CPU demands, especially when the CPU usage is already low.
Figure 6.1: Illustration of peak(n) for each pipeline. The number of preprocessors is changed between 5 and 20 when supported by the pipeline. The horizontal lines indicate the measured compute demand of a GPU on Titan.
6.2 Peak Throughput

In order to effectively compare each pipeline to find the best, we first observe differences in peak throughput of the preprocessing stage, or peak(n). Recall that this function is a measure of the steady state image throughput for the preprocessing stage, and does not include any DNN training.

Figure 6.1a shows the value of peak(n) for $n \leq 150$ for increments of 5 nodes. Since the SB and MB pipelines each also need p preprocessors, technically we need to illustrate peak(n, p). For simplicity, the figure shows peak$(n, 5)$ and peak$(n, 20)$. We observe that changing the number of preprocessors between 5 and 20 does little to affect the throughput as n increases. Furthermore, the SB and MB pipelines are incapable of saturating Alexnet, since they drop below its r_c line. Despite their poor performance, they still provide a viable mechanism to train larger networks, as both Inception and VGG are well within their compute demands.

In order to clarify this data when core usage is restricted, Figure 6.1b shows peak(n) for up to 50 nodes. The performance for SB and MB is markedly decreased, while AS remains unchanged. This confirms that AS is better in terms of peak throughput for both full-core and partial core training.

![Figure 6.2: CPU usage for SB and MB on Alexnet normalized to the CPU usage for AS.](image)
For SB and MB, these results point towards the broadcast operation as a performance problem. As \(n \) increases while \(p \) remains constant, the broadcast size also increases. This correlates to the slow decrease in throughput seen in Figure 6.1.

As a final test for the broadcasting pipelines, we compare the CPU usage for AS, SB, and MB in Figure 6.2. We vary the number of nodes in the ensemble between 10 and 50 and normalize the resulting CPU usage to the AS pipeline. The SB pipeline uses marginally more CPU than AS, while MB uses far more. This indicates that both of these pipelines are inferior to AS in both preprocessor throughput and CPU usage. Thus, our next series of tests are only performed on AS.

6.3 CPU

Figure 6.3 shows the reduced CPU usage provided by the AS pipeline. We see that the usage is reduced by up to 10.8X, 3.5X, and 2.4X for Alexnet, Inception, and VGG, respectively. We observe that the reduction is inversely proportional to the compute rate of the DNN being trained (compute rate data is provided above in Table 6.2). The compute rate is the primary indicator of how much

![Figure 6.3: CPU usage reduction for the All-Shared pipeline compared to the baseline. Each network/\(n \) combination was trained over 1000 steps.](image)

36
CPU time is needed to preprocess data for the GPU. Higher demanding networks like Alexnet will cause the preprocessing stage to use much more CPU, while Inception and VGG will use less. Thus we see smaller reductions for larger/slower networks.

Aside from measuring CPU usage reduction, we also test training time when CPU limits are imposed. Figure 6.4 shows the speedup that AS provides when both AS and the baseline are subjected to core restrictions. Recall that each Titan node has a 16 core CPU.

Alexnet sees a speedup of up to 10X for 1 core allocation on the AS pipeline. To understand this, Table 6.3 provides information on how each pipeline slows down under core limitations. From this table, we see that Alexnet’s speedup is due primarily to the dramatic slowdown that the baseline incurs (9.6X) from this limitation, since it relies on additional CPU power to preprocess data. In contrast, the AS pipeline only incurs a 54% slowdown due to the severe core limitation. While the AS pipeline's large number of individual processor cores should in theory be able to handle the

![Figure 6.4](image-url)

Figure 6.4: Runtime improvement of AS over the baseline when CPU-core limits are imposed. The ensemble contained 100 networks, each trained over 1000 steps.
Slowdowns under a 1-core limitation, measured relative to the 16-core performance of the same DNN and pipeline.

<table>
<thead>
<tr>
<th>Pipeline</th>
<th>DNN</th>
<th>1-core slowdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Alexnet</td>
<td>9.61X</td>
</tr>
<tr>
<td></td>
<td>Inception</td>
<td>3.49X</td>
</tr>
<tr>
<td></td>
<td>VGG</td>
<td>1.83X</td>
</tr>
<tr>
<td>All-Shared</td>
<td>Alexnet</td>
<td>1.54X</td>
</tr>
<tr>
<td></td>
<td>Inception</td>
<td>1.06X</td>
</tr>
<tr>
<td></td>
<td>VGG</td>
<td>1.02X</td>
</tr>
</tbody>
</table>

necessary preprocessing, having only 1 core limits other systems as well from executing efficiently, thus causing the slowdown. However, the AS pipeline is able to train Inception and VGG on 1 core incurring only a 6% and 2% slowdown, respectively. Since less preprocessing is needed for these networks, less competition for CPU resources is present, allowing near-full-speed training. As with the CPU-reduction results, the potential speedups under core limitations is inversely proportional to the size of the DNN being trained. To reiterate, this is simply because larger networks need less CPU for preprocessing since they train slowly.

6.4 Energy Consumption

Figure 6.5 shows the power usage of the 12 jobs launched during the 6 hour reservation of the metered cabinet on Titan. In order to accurately distinguish between each job, the ensemble program automatically notes the beginning and end time of the execution. We can then use these times, as shown in Table 6.4, to crop the data to each task run.

One important note for this data is the minimum and maximum energy recorded. We can observe in Figure 6.5 that there is a high minimum energy usage for the cabinet around 18-20KW. We used a different reservation left in an idle state (no jobs being run) to determine that the minimum energy usage is almost precisely 19KW, with very little deviation. We also observed that the maximum energy for the cabinet was exactly 32.767KW. This data is reported in Table 6.5. This indicates that the cabinet uses 58% of its maximum available power while idling. Such a large proportion skews energy
Figure 6.5: Total power draw over entire cabinet reservation period. The 12 jobs run during this time are described in Table 6.4.

Table 6.4: Jobs launched during an 8AM - 2PM reservation on one power metered cabinet on Titan. Times are formatted as hh:mm:ss.

<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Duration</th>
<th>Pipeline Version</th>
<th>DNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:05:37</td>
<td>08:18:06</td>
<td>00:12:29</td>
<td>All-Shared</td>
<td>Alexnet</td>
</tr>
<tr>
<td>08:21:35</td>
<td>08:40:24</td>
<td>00:18:48</td>
<td>Baseline</td>
<td>Alexnet</td>
</tr>
<tr>
<td>08:44:35</td>
<td>08:59:58</td>
<td>00:15:22</td>
<td>All-Shared</td>
<td>Inception</td>
</tr>
<tr>
<td>09:03:35</td>
<td>09:19:31</td>
<td>00:15:56</td>
<td>Baseline</td>
<td>Inception</td>
</tr>
<tr>
<td>09:23:38</td>
<td>09:36:05</td>
<td>00:12:26</td>
<td>All-Shared</td>
<td>Alexnet</td>
</tr>
<tr>
<td>09:39:41</td>
<td>09:58:22</td>
<td>00:18:41</td>
<td>Baseline</td>
<td>Alexnet</td>
</tr>
<tr>
<td>10:04:35</td>
<td>10:19:59</td>
<td>00:15:23</td>
<td>All-Shared</td>
<td>Inception</td>
</tr>
<tr>
<td>10:44:42</td>
<td>11:18:36</td>
<td>00:33:54</td>
<td>All-Shared</td>
<td>VGG</td>
</tr>
<tr>
<td>11:22:40</td>
<td>11:57:12</td>
<td>00:34:32</td>
<td>Baseline</td>
<td>VGG</td>
</tr>
<tr>
<td>12:00:38</td>
<td>12:34:32</td>
<td>00:33:53</td>
<td>All-Shared</td>
<td>VGG</td>
</tr>
<tr>
<td>12:38:37</td>
<td>13:13:09</td>
<td>00:34:31</td>
<td>Baseline</td>
<td>VGG</td>
</tr>
</tbody>
</table>
savings, and prevents an accurate comparison between the baseline and AS pipelines. Therefore, savings will be reported based on the relative increase in power above the idle threshold.

Figure 6.6 shows an overlay of the first two jobs run during the metered reservation, thus comparing Alexnet ensemble training for AS and the baseline. Note that the idle power has been subtracted from the data for this graph, providing a clearer comparison between the power usage of each. We can see that the baseline runs at peak power usage, while AS uses about 2.2KW less power on average. Lastly, since the baseline suffers from performance issues in its preprocessing, it takes more time to train its DNNs, and this is reflected in the figure.

Table 6.6 shows the average energy consumption in Kilo-Watts (KW) during training for Alexnet, Inception, and VGG on the baseline and AS pipelines. The energy demand for AS over the idle usage
Table 6.6: Average energy consumption during training for each of AS and the baseline on Alexnet, Inception, and VGG.

<table>
<thead>
<tr>
<th>Pipeline</th>
<th>DNN</th>
<th>KW</th>
<th>KW (without idle)</th>
<th>Savings %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexnet</td>
<td>32.745</td>
<td>13.760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>Inception</td>
<td>31.318</td>
<td>12.333</td>
<td></td>
</tr>
<tr>
<td>VGG</td>
<td>31.509</td>
<td>12.524</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-Shared</td>
<td>Alexnet</td>
<td>30.576</td>
<td>11.591</td>
<td>15.8%</td>
</tr>
<tr>
<td></td>
<td>Inception</td>
<td>30.084</td>
<td>11.099</td>
<td>10.0%</td>
</tr>
<tr>
<td></td>
<td>VGG</td>
<td>30.940</td>
<td>11.955</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

was 4.5%-15.8% less than for the baseline.

6.5 Summary

By observing preprocessing throughput, we found that the All-Shared pipeline was quite capable of saturating Alexnet’s compute demand. Unfortunately, the Single-Broadcast and Multi-Broadcast designs were unable to sustain this level of performance.

Further testing with the AS pipeline revealed that it reduces CPU usage by a minimum of 2X when at least 10 nodes are present in the ensemble, and for Alexnet can reduce usage up to 11X. When a single CPU core is used by each node in the ensemble, AS can provide 2-10X speedups over the baseline. Large networks like Inception and VGG can run with a single CPU core with less than 6% performance degradation. Lastly, our energy results indicate that AS draws 5-16% less power on Titan cabinets during training than the baseline.
Discussion

In this chapter we provide a more general description of the set of problems to which our work can be applied. We also discuss the future potential of this work and the challenges faced when some of our initial assumptions about the problem are removed.

7.1 Broader Description

While this work focuses on DNN ensemble training, the optimizations presented here can be applied in a more general manner. Our optimizations require the following:

1. A set of input data $D = \{d_1, d_2, ..., d_n\}$.

2. A transformation function p which produces $P = \{p(d_i) | d_i \in D\}$.

3. A set of functions $C = \{c_1, c_2, ..., c_k\}$, each of which take elements from P as input.

If the value of $S = \{c_i(P) | c_i \in C\}$ is needed, then our optimization can be applied. Our optimization from this higher level consists of merging the calculations done by the transformation function p.

When the above requirements are made specific to DNN ensemble training, we have the following:

1. An input dataset.

2. A preprocessing function that prepares the dataset for training.
3. An ensemble of DNNs to be trained on the preprocessed data.

In some sense the optimization presented in this work can be thought of as a cache. Many different levels of caching are present in modern hardware, but in general they are used to allow future accesses for the same data or operation to be performed faster. This is done either by storing the data in a better location, or by allocating storage for intermediate results that may be used later on. Our optimization is similar to the latter case: DNN ensembles require preprocessed data, and by caching the result of each preprocessing operation performed, we can save compute power on other devices. It turns out that these other devices typically need the same data at the same time as everyone else, which makes the problem shift focus from caching to data-sharing.

7.2 Future Work

The primary limitation of this work is the assumption that DNNs in the ensemble behave similarly to one other, with respect to both the training rate and prediction accuracy. In practice, these assumptions do not hold for ensemble training. First, if the structure of each DNN is different, then each one will likely train at a different rate. This poses a problem for our data-sharing pipelines, since the training will only be able to proceed at the rate of the slowest DNN. Second, if each DNN in the ensemble is set with different starting parameters, it is quite likely that the number of epochs required to make the DNN converge will be different. For example, if the learning rate is changed, it is very likely that convergence will be affected, perhaps significantly so. In such a scenario, some DNNs in the ensemble would converge while others need to continue training.

We can therefore see several challenging issues at play when DNNs vary significantly within an ensemble:

1. Enabling data-sharing without a) slowing down faster DNNs, or b) using excessive amounts of cached data.

2. Allowing converged DNNs to exit early.
3. Reallocationg hardware to remaining DNNs whenever a DNN exits training.

Accomplishing these tasks will require a great increase in the flexibility of our DNN training pipelines.

We also do not consider the effects of different cluster architectures in our work. Since the network, CPU, and GPU performance of every cluster can change drastically, it may be beneficial to allow ensemble pipelines to adapt to various cluster architectures. Overall, we envision that our research will align with the broader goal of creating an adaptive machine learning pipeline that provides portable performance across system architectures.
Conclusion

This research investigated the performance properties of DNN ensemble pipelines. We modified the Horovod library to provide additional communication flexibility to Tensorflow that is not present in other Deep Learning frameworks. Leveraging this tool, we developed a series of pipelines which eliminated redundant preprocessing operations. The best of these was selected based upon its ability to supply the most preprocessed data while requiring minimal CPU resources.

The All-Shared pipeline was able to reduce CPU usage by 2-11X when more than 5 nodes were present in the ensemble, while providing nearly twice the throughput that Alexnet demanded. Under CPU core restrictions, the AS pipeline was able to achieve up to 10X speedups over the baseline. Lastly, this pipeline uses 5-16% less energy on Titan than our baseline used.

Overall, we have demonstrated that ensemble training can greatly benefit from pipeline optimizations. Specifically, these optimizations become more important and valuable when smaller DNNs are being trained, and when heavier preprocessing is being used. Regardless of this fact, we always observed at least 2X more efficient CPU usage from our optimized pipeline, and at least 5% energy reduction. In conclusion, preprocessing data for ensemble training can be an expensive task, and we recommend using an alternative pipeline that effectively eliminates any redundancy in this task.
REFERENCES

30. Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, and Xiaowei Li. C-brain: A deep learning accelerator that tames the diversity of cnns through adaptive data-level parallelization. In Design Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE, pages 1–6. IEEE, 2016.

