ABSTRACT

CASTLE, LUCAS CULLEN. Well-Posedness and Control in Moving Boundary Fluid-
Structure Interactions. (Under the direction of Lorena Bociu.)

In the field of partial differential equations (PDEs), there are many problems in
which the domain is unknown and must be determined as part of the solution process.
These PDE systems, known as moving boundary problems in the unsteady case, present
themselves in a wide variety of applications ranging from engineering to biology. The
particular class of moving boundary problems we consider in this work are fluid-structure
interactions (FSIs), which describe the evolution of a movable or deformable solid as it
interacts with a surrounding fluid flow. In this work, we discuss two PDE-constrained
optimization problems: one in which the solid equation is governed by the equations of
elastodynamics and another where the solid is modeled by a damped linear wave equation.

Due to the strong nonlinearity and the coupling of hyperbolic and parabolic phases
in FSIs, the basic question of existence of solutions had been unresolved until recently.
We build upon the work of [31, 32, 33| in order to construct a unique, global-in-time
solution for a FSI modeled by the incompressible Navier-Stokes equations coupled with
a damped wave equation. More specifically, we use a series of fixed point arguments to
construct local solutions with sufficient regularity to take advantage of decay estimates
on a-priori solutions. These decay estimates permit us to extend the time of existence up
to any time 7" > 0.

Using this well-posedness theory, we establish the existence of an optimal distributed
control acting on the system in order to minimize (within a specified control class) the
vorticity of the fluid flow surrounding the elastic solid. A similar analysis is also done using
the local well-posedness theory developed in [18] for the case of quasilinear elasticity. In
both scenarios, the existence of the control is not limited to the minimization of turbulence
in the fluid flow. The theory holds for a general cost functional provided it is similar in

structure to that considered in this thesis.
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Chapter 1

Introduction

1.1 Fluid-Structure Interactions

A fluid-structure interaction (FSI) describes the interplay between some movable and/or
deformable structure with either an internal or surrounding fluid flow. FSIs, which are
typically modeled by partial differential equations (PDEs), are ubiquitous in medical
and engineering applications, ranging from blood flow in stenosed arteries and heart
valve dynamics to the design of small-scale unmanned aircrafts and morphing aircraft
wings. Due to the fact that the shared interface between the fluid and solid is unknown
in advance, FSIs fall into the category of moving boundary problems. Consequently,
the unknown boundary must be determined alongside any state variables as part of the
solution process.

From a mathematical viewpoint, fluid-structure interactions involve the coupling of
(possibly) nonlinear equations describing the motion of the fluid with the displacement
of an elastic solid. Therefore, these coupled systems are highly nonlinear due to the
nonlinear state equations and the presence of the moving boundary. Furthermore, a PDE
system modeling an FSI is characterized by a mismatch in regularity at the common
interface, a feature resulting from the coupling of parabolic (fluid) and hyperbolic (solid)
phases. These challenges have left the questions of the well-posedness in FSI systems
(existence and uniqueness of solutions, and continuous dependence of solutions on initial
and boundary data) open for a long time. Furthermore, problems of controllability, which
depend on the aforementioned solutions and their properties, also were unattainable as a

result. Many advances have been made recently in terms of the solvability [9, 10, 11, 15,



17,18, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 40, 48, 49, 50, 54] and the numerical study
20, 24, 25, 26, 30, 52, 53] of fluid-structure interactions.

The first breakthrough in moving-boundary parabolic-hyperbolic interactions was
provided in [17, 18], where the local well-posedness of smooth solutions was obtained
in the case of linear and quasilinear hydro-dynamics for small, highly regular initial data
and sufficiently regular distributed sources. Subsequent results on local theory with im-
proved requirements on the smoothness of initial data were obtained in [31, 38, 39] for
the case of an incompressible flow, and similar results appeared in [11, 12, 40] for the
case of compressible flows in the absence of source terms.

More recently, the first global in time existence result for an FSI system was provided
in [31] in the case of an incompressible fluid coupled with a linear, damped wave equation
under the assumption of small initial data and homogeneous source terms. For quasilinear
dynamics, it is known that global existence is connected to the asymptotic decay of
solutions, which depends on damping mechanisms. The authors of [31] focussed first on
the case of boundary interface damping and star shaped domains. In the subsequent
work [33], they showed that frictional damping in the structure permits the removal of
restrictions based on geometry. The proof is a clever combination of a-priori estimates
that close at the desired level of regularity and a construction of global solutions that
depends heavily on hidden trace regularity results for the wave equation [41] and maximal
regularity for the Stokes operator [51], which allow the transfer of regularity (without
any loss of derivatives) from the fluid to the solid across the common interface.

From the perspective of controllability, we limit our focus on distributed forces acting
on the body of the system (such as gravity or an electromagnetic field). Electromagnetic
fields have been shown to mitigate turbulent fluid flows through a 2D channel (or 3D
duct) [4, 13, 19, 21], which is of interest in optimizing pumping power in transporting
fluid through pipelines, the design of non-mechanical mamicropumps, and the laminar-
ization of submerged jets. Electromagnetic fields are also of interest in using magnetic
nanoparticles to target tumors, and studies on the influence of such fields on blood flow
revealed an appreciable effect on the flow velocity, fluid temperature, and the skin fric-
tion and rate of heat transfer at the vessel walls in both laminar and turbulent flows
(61, 62]. These effects have also been demonstrated in the presence of multiple stenoses
[56, 59, 63].

In this thesis, we consider the scenario in which an elastic body is submerged in a



viscous fluid subjected to the influence of a body force. This system is governed by the
fluid-structure model considered in [33] with the addition of a source term on the body of
the system. Our goals are as follows: first, we seek to prove the global well-posedness of
the FSI in the case of small initial data and small distributed sources (i.e. the body forces
applied to the system). Secondly, we aim to optimize a given quantity of interest using
the distributed sources as our control. For example, we can establish the existence of a
distributed control that minimizes turbulence in the fluid flow induced by the motion of
an elastic solid submerged within. Though we focus primarily on the case of minimizing
turbulence, this work is largely independent of the desired quantity to be optimized. The
results for optimal controllability therefore hold in a variety of settings and applications.

The contributions of this thesis can be summarized as follows:

1. The existence, uniqueness, and decay of global-in-time solutions for a non-homoge-
neous moving boundary fluid-structure interaction under sufficiently regular initial
and forcing data. Tools utilized include the use of the flow mapping and Lagrangian
framework to deal with the moving domains, multiplier and barrier methods to
obtain decay of a-priori solutions, and the use of the contraction mapping theorem in
the construction of solutions. Several regularity results, such as maximal parabolic
regularity and the sharp trace regularity of the Dirichlet-Neumann map, were used

in the fixed point arguments described herein.

2. The existence of an optimal distributed control acting upon the body of two sep-
arate FSI systems: one in which the solid is governed by a quasilinear elasticity
model and another in which it is described by a damped linear wave equation. In
both scenarios, we use weak limits of a minimizing sequence of controls for a given
cost functional to reconstruct the functional evaluated at its minimizer. We require
strong convergence of our weakly convergent subsequences in the nonlinear terms
that appear in our coupled systems. Lions-Aubin compactness results are used to

provide this convergence.

1.2 Notation

Throughout this thesis, we use the following notation and conventions:

e For a given matrix a € M3, the ij-component of a is denoted by aé, 1,7 =1,2,3.



e The Einstein notation for double indices is used. For example, the divergence of a

scalar field f : R? — R3 is denoted by divf = 0;f;.
e For a given matrix a, the transpose of a is denoted by a”.

e For a given tensor field T' : R® — M?3, the divergence of T is denoted by DivT.
Furthermore, the i-th component of Div7 is given by BjTj.

e Bold-face symbols will indicate spaces of R3-valued functions with the components

in the indicated topology.
e In estimates, it is assumed that any constant C' adjusts line-to-line.

e We suppress the notation L*(Q2;) and L*(Q.) to L? when the spaces are obvious

based on context. We use a similar notation for various Sobolev spaces.

1.3 Outline
The rest of this thesis is outlined below:

e Chapter 2 describes the relationship between a given fixed reference configuration
of the FSI system and a deformed configuration at time ¢t > 0 and the derivation

of the PDE system considered from conservation laws within this framework.

e Chapter 3 provides the energy estimates and decay of energy norms necessary for
the construction of global solutions in a fluid-structure interaction in which the

solid is governed by a damped linear wave equation.

e Chapter 4 investigates the well-posedness of the coupled systems described in Chap-
ter 2. It describes in detail the construction of a local-in-time solution (which can
be extended to be global-in-time) to the PDE system via a series of fixed point
arguments. In this process, we address the mismatch of regularity using sharp trace

regularity and maximal parabolic regularity results.

e Chapter 5 proves the existence of an optimal control in that minimizes the turbu-

lence in the fluid flow in the FSI systems considered.



e Chapter 6 summarizes the work found in the previous chapters and provides a

synopsis of ideas for future work.

e The appendix contains proofs of auxillary lemmas used throughout this thesis.



Chapter 2

The Equations of FSI

In this chapter, we derive the state equations for a general fluid-structure interaction

system. We follow the work of [26] in our derivation.

2.1 The Deformation of a Static Domain

Consider a bounded domain Q C R? with smooth boundary 9 filled with a continuum
medium, such as a viscous fluid or elastic solid. This domain, which is known, will be
referred to as the reference configuration for our fluid-structure system. We define a
deformation of 2 as a smooth, injective (one-to-one) map 7 : Q@ — n(€2), where 7(€2) is

known as the deformed or current configuration of our medium, such that

z — n(z) € Q.

In words, the mapping 1 associates each point x in the current configuration n(2) with
a unique point z in the reference domain Q. Often, we refer to the points = and n(z) as
the material points and spatial points of the medium, respectively. In some calculations,
we are concerned with with the displacement w : Q — 7(2) of the material point z,

which is defined in terms of the deformation via the relation
w(z) =n(z) —z, x €. (2.1.1)

Another quantity of interest is the deformation gradient (with respect to the material



coordinates) Dn : Q) — R3*3, which is the second order tensor field given by

3(77(95)2) .

D’ =

We assume that the determinant of the deformation gradient, known as the Jacobian
of the deformation, has the property that J(x) = detDn(x) > 0 for all z € Q, i.e. the

mapping 7 is orientation preserving.

2.2 The Motion of a Time-dependent Domain

Up to this stage, we have only considered a static domain 2. In many applications, the
medium in question moves and deforms in time. To describe this phenomenon, we define

a motion, which is a smooth map n: Q x RT — R3,
(,t) = n(x, )

with the property that at any ¢ > 0, g, = (-, ) is a deformation. That is, a motion is a
one-parameter family of deformations (in time). For a given material point z, the point
n(x,t) is its position at time ¢, and n(x,t) = n(z,t) — x is its displacement at time t.

Furthermore, the domain Q(t) = n(€2,¢) is the current configuration of the medium at

Figure 2.1 Transformation of a material volume through deformation.



time ¢ > 0. In applications, we often choose the initial configuration 2 = ©(0) as the
prescribed reference configuration (though it can be selected arbitrarily). As defined in
the static case, we define Dn(z,t) to be the deformation gradient at time ¢ with Jacobian

J(z,t) = det(Dn(z,t)). Finally, the velocity v of a given medium is given as follows:

v(x,t) = —=n(x,t) = —w(z,t). (2.2.1)

2.3 The Lagrangian and Eulerian Formulations

All physical quantities in an FSI system can be defined either on the reference or on
the current configuration. When working in the reference configuration €2, we focus on
the evolution of an individual particle of medium x. This framework is known as the La-
grangian formulation of the system. By viewing the system from the current configuration
Q(t), we observe particles of a continuum medium flow through a point n(z,-) in space,
and we work in what is known as the Eulerian formulation of the system. The use of a
particular framework depends on the physical properties and desired method of analyzing
a given system. For example, in fluids, displacements of individual particles are large and
usually irrelevant. Instead, we are more often interested in the velocity field of the fluid
and choose to work in the Eulerian frame. On the other hand, displacements of particles
in solids are, in general, relatively small. Working in the the Lagrangian formulation is
thus more natural in this setting.

To resolve the difference between the descriptions of the fluid and solid dynamics
in FSI systems, we utilize the deformation 7, and its inverse 1, ' to move between the
material space €2 and physical space €2(t) as needed.

For example, consider the material particle occupying the point x in the reference
domain Q. Suppose that p : @ x RT — R3 describes the pressure at the point n;(z) € Q(t)
occupied by the material particle x at time ¢. Then, we can express the pressure at time

t in the material point x by composing p with the deformation mapping 7, i.e.

Q(x7t> =pon = p(nt(x)7t>'

In this example, we call p and ¢ the Eulerian pressure and Lagrangian pressure, respec-

tively. We will adopt this convention when describing any state variables in this thesis.



2.4 FEulerian and Material Derivatives

In this section, we consider an Eulerian field ¢ with associated Lagrangian description p;

that is, p = ¢ o n. Then the Eulerian time derivative of ¢ is given by

Jdq
E(m,t), x € Q(t). (2.4.1)

For p, the material time derivative of p is defined by

Dq
Dt

Ip _
(‘7 t) = a(ﬂﬁ SR/ 17 (242)
By rewriting (2.4.2) and applying the chain rule, we can derive the relationship be-

tween the Eulerian and material derivatives, that is

Dq_
Dt

dq

U'vqﬁ—g,

(2.4.3)

where u is the velocity of the medium expressed in Eulerian coordinates.

2.4.1 The Reynolds Transport Formula

Recall that for a given deformation 7, J = det(Dn) is the Jacobian of the deformation

written in Lagrangian coordinates. If we define Jg to be J written in the Eulerian frame,

Mt

TN

Figure 2.2 Transport between Lagrangian and Eulerian Configurations.



then we the following expression for the material derivative of Jg (the so-called Euler

expansion formula):

DJg

Formula (2.4.4) helps us to differentiate integrals of Eulerian fields over a material
domains €2(¢) with reference configuration €. If f is a continuously differentiable material

field, then
d B Df ) B of .
p / fdx = / <E+fd1vu> dx = / <E +d1v(fu)) dx. (2.4.5)
Q(t) Q(t) Q(t)

This useful result is known as the the Reynolds transport formula.

2.5 Derivation of Equations

2.5.1 Conservation of Mass

Consider a continuum medium occupying an arbitrary domain Q(¢) with density p. Then

the mass of Q(¢) at time ¢ is given by

/ p dz. (2.5.1)

Q(t)

The principle of mass conservation states that the mass of a body cannot change

during motion, that is

d

— dr = 2.5.2
dt/pxo, (2.5.2)
Q(t)

at any time ¢ > 0. Applying the Reynolds transport formula (2.4.5) in (2.5.2), we have
that

/ (% + div(pu)) dz = 0. (2.5.3)

Q(t)

10



Furthermore, since Q(t) was arbitrary, we can express (2.5.3) in a pointwise form, that is

dp . -
5% + div(pu) = 0, (2.5.4)

in Q(¢) for all ¢ > 0.

2.5.2 Conservation of Momentum

The momentum of an arbitrary domain §2(¢) at time ¢ is given by

/ pu dz. (2.5.5)

Q(t)

The law of conservation of linear momentum states that the rate of change in the
momentum of an object is equivalent to the resultant of the external forces F' acting

upon it. In terms of our material domain €(¢), this can be expressed as

d
pril L de = F. (2.5.6)
o)

The external force F' can be decomposed into a volume force F,,, which acts throughout
the body of the material domain (such as gravity or an electromagnetic field), and a
surface force F acting through the boundary I'(¢) = 02(t). The volume force is given in

terms of a specific force f through the relation

FU:/pfd-ra

Q(t)

and the surface force is given in terms of the Cauchy stress tensor o : Q(t) — R3*3 via

F, = /an dr(t).

I'(t)

Using the tools we’ve built up so far and the divergence theorem, we can express the

11



momentum conservation law (2.5.6) as

d
il L dx = / pf dx + / on dI'(t) = / pf + Diveo dzx. (2.5.7)

Q(t) Q(t) r'(t) Q(t)

Since €(t) is arbitrary, we can conclude the following pointwise representation of
(2.5.7):

ou

s + p(Du)u — Dive = pf. (2.5.8)

2.5.3 The Fluid Equations

As mentioned previously, fluid displacements are large and usually irrelevant. As a re-
sult, one is mostly interested in the velocity field. To describe the fluid, we work from the
current configuration (¢) in Eulerian coordinates. We now consider an incompressible
Newtonian fluid occupying €2(¢) that has constant density. By applying the mass conser-
vation law (2.5.4), we can conclude that divu = 0 in Q(¢) (since the density p independent
of time). This characterization is known as the divergence-free or incompressibility con-
dition.

Next, we apply the law of conservation of momentum. The Cauchy stress tensor o
for a Newtonian incompressible fluid depends linearly on the rate of deformation rather
than the deformation itself. This is due to the fact that fluids can fill any shape; however,
the time it takes to fill a given shape depends on the fluid itself (the higher the viscosity,
the more time it takes). As a result, the Cauchy stress tensor o depends linearly strain

rate tensor D(u) = (Du + Du”) and the fluid pressure p, i.e.
o = o(u, P) = —PI +2uD(u) = —PI + pu(Du + Du"). (2.5.9)

To proceed, we compute the divergence of the stress tensor (2.5.9) term in (2.5.8).
To accomplish this, we require the following formula that describes the divergence of the

product of a scalar function P with a tensor field A:

Div(PA) = AVP + PDivA. (2.5.10)

12



Applying (2.5.10) to (2.5.9), we obtain

Div(o(P,u)) = Div( — PI 4 2uD(u))
= —Div(PI) + uDiv(Du + Du")
= —VP + pAu + Div(Du")
= —VP + pAu,

where the divergence-free property was used in the final step above. We denote the fluid

source term by f; and conclude that

ou

i uDiv(Du) + p(Du)u + VP = pf;. (2.5.11)

We now rescale. Let p = %P and v = %/L. Here, p is the scaled pressure and v is

known as the kinematic viscosity. Then,

0
pa—? — pvDiv(Du) + p(Du)u+ pVp = pfy,
which implies that
ou ,
5 vDiv(Du) 4+ (Du)u + Vp = f;. (2.5.12)

Equation (2.5.12) is the classical Navier-Stokes equation. Taken together with the diver-
gence-free condition, we have the following equations that characterize an incompressible

fluid occupying a domain §(t):

ou

e UDiv(D D - 2

5, — vDiv(Du) + (Duju+Vp = fr. Q(t), (2.5.13)
divu = 0, ().

2.5.4 The Solid Equation

In solids, the displacement 7 is often relatively small. We thus work from the perspective
of the reference configuration €2 in Lagrangian coordinates. We first write the law of

conservation of mass (2.5.2) on the reference configuration 2.

13



(pJ) dz = 0.

SJEN
B
<y
S
I
Sl
SR
)
<
<y
S
I
SE
Sl

d
Due to the fact that € is arbitrary, we conclude that %(pJ ) = 0. We now use this fact
in the momentum conservation law (2.5.7). First, we transport each side to the reference
domain €). Let v = won be the Lagrangian velocity and p = p on be the Lagrangian

density of the solid material. Then %tz = v, and we have that

d 817
7 pvd dx = (,%Jda:
Q Q
B d P on P 9n
Q
2
= /pJ% dz. (2.5.14)
Q

Furthermore, we express the source term f = f on in Lagrangian coordinates and

write the complete law of conservation of momentum.

. 0% : o
pr — J((Dive)on) de = [ pJf dz,

Q Q
which allows us to conclude that

0n 5
Ajw — J((Dive)on) = pJf. (2.5.15)
We now observe that the divergence taken in (2.5.15) is carried out in Eulerian co-
ordinates before it is transported to the Lagrangian frame via composition with the
deformation mapping. As a result, the solid equation is in a “mixed” form. To resolve

this issue, we use the Piola transformation P : Q — R3*3 of the second order tensor o

14



associated with the deformation 7, given by
P = (Py(0)) (&) = J(@)(o 0 6(x))(Dn(a)) ™. (2.5.16)
We now use the following relationship between P and o:
Div, P = J((Divo) o n), (2.5.17)

where Div,P denotes the divergence of P computed with respect to the Lagrangian
coordinates. Substituting (2.5.17) into (2.5.15) and setting py = pJ, we obtain

0%n

oo — Div, P = pof in ©, (2.5.18)

which is known as the equation of elastodynamics. We observe that P is in fact not
symmetric. To remedy this, we introduce the symmetric second Piola-Kirchhoff stress

tensor
Y = Dn 'P. (2.5.19)

On €, (2.5.18) can be re-expressed as

d%n _ A
Pog ~ Div, (DnX) = pof, (2.5.20)

In this work, we consider a homogeneous and isotropic hyperelastic material. In an
elastic body, the stress depends on the deformation but is independent of time. A homo-
geneous and isotropic material has mechanical properties that do not depend on space
and respond to deformation independent of direction. In this case, the constitutive law
is typically written in terms of the Green-Lagrange strain tensor

E=_(Dn"Dn-1I). (2.5.21)

N | —

We can use (2.1.1) to express E in terms of the displacement w, i.e.

1
E =3 (Dw+ Du") + SDw' Dw. (2.5.22)

DO | —

15



The constitutive relation for a hyperelastic material is given in terms of a given density

of elastic energy W : R®*3 — R through the relation

oW

R(E) = 5

(E). (2.5.23)

A homogeneous isotropic material with the natural state (i.e. a configuration in which
the Cauchy stress tensor is identically zero everywhere) as its initial configuration can be
described using the Saint-Venant Kirchoff model. In this case, the elastic energy density

is given by
W(E) = %(TI(E))Q + uTr(E)?, (2.5.24)

where A and p denote the Lamé parameters. Using (2.5.24) in (2.5.23), we obtain the

following expression for the second Piola-Kirchhoff tensor:
Y(E) = Tr(E) + 2uTr(E). (2.5.25)

Equation (3.2.1) supplemented with the constitutive relation (2.5.25) provide a com-

plete characterization of the displacement of a homogeneous isotropic material.

2.6 Configuration and Domain

In this thesis, we consider a fluid-structure interaction governed by the coupling of the
Navier-Stokes equation (2.5.13) with an equation governing the motion of a moving and
deforming elastic solid under the influence of a distributed control. Our goals are to
(1) establish global well-posedness of the fluid-structure interaction in the case of small
distributed sources and small initial data and (2) minimize the turbulence inside the fluid
induced by the motion of the solid moving and deforming within it. The latter will be
achieved using a body force applied to the system, which appears as a source term on
the right-hand side of the fluid and solid equations.

Let Q C R? be a bounded domain containing both the fluid and the elastic structure.
At time ¢ > 0, the elastic body is located in domain €.(¢), with boundary I'.(¢). The
structure is surrounded by fluid, which occupies domain Q(¢) = Q\ Q.(¢), with smooth
boundary I'.(t) UT's, where I'; is fixed in time. We assume that I'.(t) N T'; = ), and we
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define the control volume D = Q(t) U Q. (¢) for all ¢ > 0.

Figure 2.3 Current configuration for a general FSI with the solid immersed in the fluid on a
bounded domain.

When coupling fluids and solids, one has to accommodate both Lagrangian and Eule-
rian frameworks. In order to match the two frameworks, we transport the fluid equation
to the reference configuration using the following set-up [33]: Let n(-,t) : Q@ — Q be the
flow map under which the reference configurations Qy = Q,(0) and €2, = Q.(0) evolve in
time, i.e. n(Qf,t) = Q(t) and (2, t) = Qe(1).

=T &

Figure 2.4 The evolution of the fluid and solid domains via the flow mapping 7.
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2.7 Equations of Fluid and Structure

We now write the fully coupled system for an elastic solid immersed in a viscous fluid. To
describe the interaction between the fluid and solid components at the common interface
['.(t), we use the flow mapping 7 to express the fluid in terms of the reference configuration
2. With this in mind, we require the continuity of the fluid and solid velocities and

normal stresses across the reference interface I'.:

won=uw, T, -

S-n=[o(u,p)onDyTn, T,

where n is the outward unit normal to I'. with respect to €2,.

In summary, we arrive at the following PDE model for a fluid-structure interaction:

(
%u _ yDiv(Du) + (Du)u+Vp = f7, Q(t),
divu = 0, Q(t),
ot — Divy (D) = pof, e, (2.7.2)
U0 N = W, Ie,
S n = lo(u,p)onDnTn, L,
\U/ — 07 Ff
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Chapter 3
Energy Estimates

In this chapter, we use multiplier methods to derive a-priori estimates at six energetic
levels for the case of a solid modeled by a damped linear wave equation. Using these
estimates, we demonstrate the decay of solutions, which hinges on the damping terms
in the system. This decay will be used in later sections to extend local solutions for the
non-linear problem for all times ¢ > 0. We begin by expressing the fluid equations in

Lagrangian coordinates.

3.1 Lagrangian Formulation of the PDE System

Recall from (2.7.2) that the only components of the coupled system written on the cur-
rent configuration €2(¢) are the fluid equations. Let v(x,t) = m(x,t) = u(n(x,t),t) and
q(x,t) = p(n(z,t),t) denote the Lagrangian fluid velocity and pressure in Q; x (0,7).
The elastic displacement is given as the difference between the flow map and identity:
w(z,t) = n(z,t) — x. We define the matrix a(x,t) = (Dn)~!, and use a/ as notation for
the 75 entry of a for 7,5 = 1,2, 3. The matrix a solves the following initial value problem
(IVP):

ay = —a(Dv)a, Qf x (0,7),
a(xz,0) =1, Q.

(3.1.1)

Assuming the no-slip condition for the fluid velocity on the fixed boundary I', the fluid
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equation can be expressed in Lagrangian coordinates as follows:

vy — Div((Dv)aa®) + a*Vq = fron, Q;x(0,7),
div(av) =0, Qr x (0,7, (3.1.2)
v=0, T; % (0,T).

Due to the composition with 1, we define f; on the whole domain 2 and write f; o7 in
Q.

3.2 Energy Estimates: Global Theory

In studying a global-in-time solution for an FSI system, we choose to work with a simpli-
fied model for the solid. Instead of using the elastodynamics equation (2.5.18), we utilize

a damped linear wave equation under the influence of a distributed source f. given below:
wy — Aw + aw; + fw = f. in €).. (3.2.1)

In order to further simplify the analysis, we will consider the case of initially flat

subdomains, i.e.
Qp ={o = (21,22,23) | by <3 < hg or hg < x5 < ha}
and
Qe ={z = (21,22, 23) | ho < x5 < hs},

with periodic boundary conditions with period 1 in the lateral directions. See Figure 3.1

below for a schematic 2D cross section representation of the interaction.

Remark 3.2.1. The assumption of initially flat subdomains, which is not essential, is
for the sake of exposition and cleaner proofs. It allows us to bypass the use of commu-
tators in the a-priori tangential estimates. The proofs can be adjusted to genmeral initial

configurations (such as in Figure 2.4) using the strategy of [37].
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Ly

Ly

- e -

L. Le(t)

Figure 3.1 The evolution of the fluid and solid domains via the flow mapping 7 in the case
of initially flat domains.

We again assume continuity of the velocity and normal stresses across [, i.e.

wy =, [.x(0,7),

(3.2.2)
g—: = (Dv)aaTn —qga'n, T, x (0,7,

where n denotes the unit outward normal vector to §2.. For simplicity, we use the strain
tensor Dv instead of £(v) in the matching of the stress tensors on the common bound-
ary. We also use the classical spaces H = {v € L*(Qy) | divo = 0,v - n|p, = 0} and
V ={ve H(Qy) | divo = 0, v|p, = 0} for the fluid velocity. The Lagrangian Formula-

tion of the full coupled system can be expressed as follows:

(
vy — Div((Dv)aa®) + a"Vq = fron, Qp x(0,7T),
div(av) =0, Qf x (0,7,
v =0, Ty % (0,7),
4 s> (0.1) (3.2.3)
wy — Aw + aw; + pw = fe, Q. x (0,7),
wy = v, I'.x(0,7),
\‘g—: = (Dv)aa™n — qa’'n, L. x (0,7).

In the analysis, we will make extensive use of the component-wise version of (3.2.3)
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given below:

.

v — O;(ajaforv’) + O(alq) = fion, Qp x(0,7),
afopvt = 0, Qp x (0,7,
wi, — Aw' + aw} + fw’ = [ Q. x (0,7),
wi = v L. x (0,7),
djw'N; = a@a’j@kviNj — afq Ny, . x (0,7),
v =0, T % (0,7).

Here, i = 1,2, 3 indicates the i-th entry of a vector in R3.

(3.2.4)

Our well-posedness analysis for (3.2.4) relies heavily on a priori estimates on the

energy for the original system and its temporal and tangential derivatives. We will use

the following lemma given in [31] in our analysis.

1

Lemma 3.2.2. Assume that || Dv||re(po,r); m2(q)) < o0. With T € [0, 537

sufficiently large constant, the following statements hold:
(i) |Vl < C fort €[0,T].

(ZZ) ||a||H2(Qf) S O fO’f't c [O,T]

(iii) for every e € [0,3] and allt < T* = min{ 5z, T}, we have

10 — a%f”%ﬂ(m) <e k=123
and
105 — ai“%ﬂ(nf) <e j,k=123.

In particular, the form aZa’ggfg,i satisfies the ellipticity estimate

hekei o 1 n2
@ap§e > Sl LR,

for allt € [0,T*] and x € Qy, provided € < % with C sufficiently large.
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3.2.1 First Level Estimates
Define the first level energy F(t) and dissipation D(t) by

1

(IIv(t)Iliz +Blw®)Ze + lw @)l + IIVw(t)II%z>, (3.2.8)

D(t) = afw(t)]z. + éHW(t)II%m (3.2.9)

where a and (3 are as in (3.2.4). Our objective is to derive an estimate on the first level

energy for the coupled system. We have the following lemma:

Lemma 3.2.3. The energy inequality

t

t
E(t) + / D(s) ds < E(0) + Cullfr ol xioiry + Cell folBaonory + € / ol ds,
0 0

(3.2.10)

holds for all t € [0,T].

Proof. Multiply the fluid equation by v, the solid equation by w;, and integrate by parts

in space as follows:

/vivi — 0j(a)afopv v’ 4 Ok (akqv’ dQ; = /(f} on)v' dSdy. (3.2.11)
Q 5

Focusing on the left-hand side of (3.2.11), we have for the first term

/vai dQy = /%@(vi)Z dQds

Qf Qf

1 .
= atQHUZH%% (3.2.12)
In the second term on the left-hand side, we apply the stress-matching condition to obtain

/@-(aia'j@kvi)vi dQdy = —/a?af@kviajvi dQdy — /aéaf@kvivai dr’.

Q Q T.
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= — /a?af@kviﬁjvi dQdy —/ (ajwiNj + aquk>vi dr’..

Qf FC
(3.2.13)
In the third term, we apply the divergence-free condition to obtain
/8k(afq)vi dQy = —/afq@kvidﬁf - /aqukvi dr,
Q Q T.
= —/aqukvi dr.. (3.2.14)
Ie

Using (3.2.12), (3.2.13), and (3.2.14) in (3.2.11), we obtain
(9t§\|UZH%2 +/aéa§8kvlajv’ dQdy + /@w’valch = /(f} on)v' dQy.(3.2.15)
Qf Te Qf
By the ellipticity of a (A.1.6), we have
Lo 1 NI i i
8t§|]v |72 + EHV?}HLz + [ Qw'Np'dl. < [ (ffon)v' dQy. (3.2.16)
r. Q;

We follow a similar approach with the solid to obtain

L (i : B i ouw' i i i
org (Wl + IV + Sl ) - [ Gcut dre+ alull = [ it do.

c Qe

(3.2.17)

Applying the velocity matching condition to (3.2.17) yields

2 ON

T. Qe

1 i i B o 8wii i i
oug (Tl + 190 + Sl ) = [ G0t dr v alullts = [ fiwt do

(3.2.18)
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Adding (3.2.16) and (3.2.18), summing in 7, and integrating in time yields

E(t)—i—/tD(s) ds < E(O)—l—/t/(ffon)-vdxds—i—/t/fe-wtdxds.
0 o o (3.2.19)

Note that the velocity matching condition was used to cancel the terms on the boundary.

Applying the Cauchy-Schwartz and Young’s inequality, we have that
t t t
B0+ [ D) ds < BO)+ [Ironllole ds+ [ 1l d
0 0 0
t
< E(0) + Cl fronllZa g, (o) + 6/ [oll22 ds + Ccll fell 22 (0. xj0.10)
0

t
+ e/ |we||32 ds. (3.2.20)
0

Absorbing the last term into the integral on the left-hand side, we obtain:

t t
B(0)+ [ D) ds < BO)+ Cllfs ol iory + Col ooy + ¢ [ ol ds
0 0
(3.2.21)

]

In order to obtain a complete characterization of the first level energy norms, we

require an estimate for Vw.

Lemma 3.2.4 (Equipartition of Energy). We have
t t
o 1
J 19wl ds+8 [l ds+ @I + FIT00,0 - o)
0 0

t t
gcmm+/mm;w+mw@@+mwmm+/mmds
0 0
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t

+ /(R(s),n(az, s) —x) ds+ Cc[[fy o 77”%,2(Qf><[0,T]) + CGerH%Q(QEX[O,T])

0
t
0

for all t € ]0,T], where

t t

[~y ds = 5 [ [oaa)on - o~ o) oy ds

0 0 Qf

t s
—|—//q(s) /8taf8k(ni —2') dr dQy ds. (3.2.23)
0 Qf 0

Proof. We multiply the wave equation in (3.2.4) by w and integrate over €.

/witwi — Aw'w' + awlw' + fw'w’ dQ, = /f;wZ ..

Qe Qe

Integrating by parts and noting that

Or(ww) = wpw +w? = wyw = O (waw) — w?,

we obtain
i i i i iw i, X 2 i i duw'’ i
O(wyw') — wyw; + Vw'Vuw' + Eat(w )"+ fw'w' dQ. = N Y dr’,
Qe Fc
—i—/feiwi dsl..
Qe

Integrating in time yields

t

t
/(/le|2+6|w|2 ds) +%|w|2 Q. = /%|w0|2 dQe+//|wt|2 dQ ds
0 Qe

Qe Qe 0
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—/wzwi s, —|—/w§wé s,
Qe
+//f;‘uﬁ' dQ. ds. (3.2.24)
0 Qe

To estimate the boundary term, we multiply the stress-matching condition by w® = 1’ —a,

and integrate in time and space.

//@-wiwiNj — a)abv'N;(n' — 2%) + aFgN (' — ') dT. ds = 0, (3.2.25)

0 I¢

which implies

t
//ijiwiNj dl'. ds = //aeagfulN (n' — 2') — abqNi(n' — 2%) dT. ds.

0T
(3.2.26)

Next, we multiply the fluid equation by (n° — 2*) and integrate over ;.

[ it = o) = ay(adaton o — o) + et~ o) dsy
Qf
~ [Uront - doy.

Qf

We write 9,(v'(n' — 2')) = vi(n' — ') + v'n} to obtain

[ o =) = i+ dlakonoyt — o)~ abgdutol ) do

Qf

+ / aya; O’ (' — ' )Nj = aiq(n' = )Ny, dl'e = /(f} on)(n — ') dS;.

r. Q
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Integrating in time yields

/ v'(n — a)

//agagﬁkv — 2 )N; — a¥q(n’ — 2")N,, dT', ds

0 I'¢

- /t/(f} on)(n' — ') dQy ds.

0 Qf

t

¢
/v n 4 a)afOv'0;(n' — a') — afqok(n' — ') dQU ds

0

0

Recall that 7, = v and n(x,0) = x. These facts imply

/ ‘(' — 2" de—//\ijLae FORv'0;(n" — 2') — afqOk(n' — 2') dQy ds

0 Qf

//afafﬁkv n' — 2 YN; — afq(n' — 2)Ny, dl,. ds

z//(f}on)(n"—xi) d€dy ds.

Moving all terms on the interior of the domain to the right-hand side, we have that

//agagakv n' — 2" YN; — afq(n' — 2')Ny, dU,. ds

//ffon i —x)dﬂfds—/ Vi — o) d

OQf

+ // <\v|2 — a)akopv'0;(n' — 2') + akqon(n’ — xl)) ds dSdp. (3.2.27)

0 Qf
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Plugging (3.2.27) into (3.2.26) yields

t
//G-wiwiN- dl', ds
//ffon n' —w)dﬂfds—/ o'(n' — ') dQy

OQf

+ // v|? — a)aforv'0; (' — ') + afqok(n' — ') ds dy.  (3.2.28)

0 Q

Observe that v = 7, = (n — ). Furthermore,

O [ayagd(n' — ")0;(n' —a')] = Bi(agaf)dh(n’ — )05 — )
+agagi(n’ — a')0;(n' — o)
+ayagdh (' — 2)0;(n' — '),

= Oi(ayay)O(n’ — 2")9;(n' — ')
+2ajafor(n' — x),0;(n' — )

Solving for aakdy(n' — z%),0;(n — ') = alabdv'd;(n' — 27), we have

ajafOpv'0;(n' — ') = 28 [azaeak( 2')0;(n" — z')]

—§3t(aia§)ak(77i —a")9;(n' — ')
This implies that

' —2)0;(n' —2')]

t t
. , : . 1 ;
[ [ty -, - [ [ (Gatsiad
0 Q 0 Q

1
—§8t(aeaz)0k(n - )) ds dSdy

1 ) )
= [ Setatont oyt — o) dey

Qy
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t

1 ; . )
—//5&(@;61’;)@(77’ —x")ds dS.

0 Qf

Substituting into (3.2.28), we obtain

t t
//@-wiwi]\fj dl', ds = //(f}on)(ni—xi) dQds ds—/viwi_xi) ddy
0 T.
/ ~a)ak o (' — 2H0;(n' + ale~|—//(|v|2

0
+§8t(a§a§)8k(n" — 2)ds + a¥qop(n' — xl)) ds dS2;.
(3.2.29)

We apply (3.2.29) to the boundary term in (3.2.24) to obtain

t
/ </|vw|2 + Bluf? ds) + 2 de,
Qe
/ lwo|? d€2. +//|wt| dQ. ds — /w;'wi dQe+/w§wg dQ.

0 Qe Qe
//ffon n—x)deds—/ o'(n' — ') dSYy
0 Q

—/§@ﬁww—w@W+ﬂwmf
Qs

t
1 . , . . .
w [ [+ Soutadabiantn - o) + dbadnt’ - o) ds doy

0 Q

t
—I—//f;wZ dQ2, ds,

0 Q

30



which can be used in (3.2.28) to write

t
// IVw|? + Blwl? d. ds+%/|w|2 ds,
0 Q. Qe
t
- %/\wD]Q dQe+//]wt|2 dS2. ds—/wfwi dQe—l—/wiwé dS2.
Q. 0 Q. &

e

t
- /v’(n’ — ') dQy + // [v|* dSYy ds — 3 /a%af@k(n’ —2")0;(n' + ") dQy

Qf 0 Q Q;

t t
1 ‘ o S
+§//8t(a%a’j)8k(771 —z')ds + //afq@k(nZ — ') dQy ds

0 Q 0 Qf

¢ ¢
+//(f} on)(n' —z') dQy ds + //f;wz dQ. ds. (3.2.30)
0 Q 0 Q.

Next, we differentiate a¥dy(n' — 2%) in time to obtain
OOyl — )] = DOyl — o) + Ok — )

Solving for a¥d,(n' — z%) yields
a¥ O (n’ — %) /ata O(n' — ') + aFop(n' — 2%, ds.

Integrating in time and space, we have

t
//afq@k(ni —2') dQy ds

0 Qf

// JafO(n' — ') dQy ds

0 Qf
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t
://q (/@a O(n' — 2% 4+ aFop(n' — 2%, dr de> ds

OQf

// /(9ta8kn—ac)d7'dﬂfds

0 Qf

where the divergence-free condition was used. Substituting into (3.2.30), we obtain

t t
//le|2—|—B//|w|2 dS, ds+%/|w|2 ds,
0 Qe 0 Qe Qe

+§/aéalgak(772 — SCl)aj(T]l + LUZ) de
Q

¢
= %/|wo|2 dQeﬁL//|wt|2 dQe ds—/wzwi dQe—i—/wiwé dQe

e

/ (n—x)dﬂf+//]v|2dﬂfds+ //atam Ol — ai)ds

0 Q 0 Q
// /8tak8kn—x deQfd8+//ffon (n' — ") dy ds
0 Q
+//f§wi dQ. ds. (3.2.31)
0 Qe

For the fourth term on the left side of (3.2.31), we use the ellipticity of a to obtain

t t
1
[ [wukss [ [k ao ds+ S [updo. 5 [1v6 -0 a0
0 Qe 0 Qe Qe Qy
t
<5 [luk doos [ [P aods— [ujut a0+ [ uju do,
Qe 0 Q. Qe

Qe
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t t
—/vi(ni—xi) de+//]112 dSdy ds~|—%//@(a?af)ak(ni—xi)ds

0 Qf
// /8ta3kn—x deQfd8+//ffon (n' — ") dQy ds
0 Qf
+ / / flaw® dSY, ds. (3.2.32)
0 Q
For the pointwise terms on the right-hand side, we use
i) i « 2 1 2
— [ wiw' d2. < Z||w(t)||L2 + a||wt(t)||L2. (3.2.33)
Qe
and
- /”i(ﬂi —a') dQ < elln(,t) — 2|72 + Celu(t)]| 7. (3.2.34)

Qy

Since n —x = 0 on I'y, we can apply the Poincaré inequality to absorb the first term on
the right side of (3.2.34) into the left side of (3.2.32). Thus,

t t
o 1
J 19wl ds+ 5 / Jwls ds+ @) + F1V 000 - D
0

< CE(0 / %2 ds + Cllw ()| + Cllo(@)|a + / ol ds

+/(R(5) n(x,s) —x d8+//ff07] N —a' deds—i-//f’wldQ ds.

0 0 Qf

(3.2.35)

Using Cauchy-Schwarz and Young’s inequality, and then absorbing terms, we obtain the
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desired result
t t 1
@]
/ IVl ds+ 8 / Jls ds + Gl + SI9G0, 1)~ 23
0
< CE( / il ds + Cllu (B3 + ClolRs + / ol ds
+ /(R(S), n(,s) —x) ds+ C| fro 77||%2(Qf><[0,T]) + C€||f6||%2(QeX[O,T])

t
0

Remark 3.2.5. The equipartition estimate (3.2.36) will be necessary in establishing the
decay of solutions required to extend the time of existence for all t > 0. We note that
Lemma 3.2.4 is given for the interval [0,t], and a change is required for the general case
of [to,t] due to the fact that the initial data differs from the data at to > 0. We refer the

reader to [36] for the adjustments for the general case.
[

In order to have a complete characterization of the first energy level, we multiply
(3.2.22) by a small parameter € > 0 and add it to (3.2.10) to give

t t t
+ [ D) dsve [ [Vl ds 8 [ Juls ds+ 5 @]
0 0 0
€
+EI 0 - o)l

< CE(0 / w22 ds + Cellw,(8) 22 + Cellu()]% + / ol ds

+C / w,) = o) ds + Cl g ol oy + Collflsaor)
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t t
+6/Hn—w\liz(gf) d8+6/HvH%z ds. (3.2.37)
0 0

We apply the Poincaré inequality to bound D(t) below, i.e.

t

¢
1
/5||v||%2 —|—0z||wt||%2 ds < /D(s) ds
0

0

We also absorb the energy norms appearing on the right-hand side into the energy terms
on the left-hand side. This yields

B()+ [ BG)ds < CEQ +c/' e.s) — ) ds + Gl fy o nll a0, oy
0 0
+ CGHJC&H%?(Q@X[O,T]) + 6/ I — m\’%?(gf) ds. (3.2.38)

Summing (3.2.21) and (3.2.38) and absorbing the integral of the velocity term, we obtain

E(t) + /t E(s) ds + ] D(s) ds

< CE© +0/' 0(@,5) = ) ds + Colfy o ety + Col e oy

+e/ |n — 2|3, ds. (3.2.39)
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3.2.2 Second Level Estimates

We repeat the above analysis at the second level energy. Differentiate (3.2.4) in time to

obtain

vh — 010 (aqafdv’) + 0,0k (afq) = di(from), @ x (0,7),
aFopvl + OsalOpv® = 0, Q; x (0,7), (3.2.40)
Wiy — Awj + awy, + fwi = O, f;, Qe x (0,T).

Define the second level energy E™M(t) and dissipation D™ (t) as follows:

1

5 (0@ 13 + Blwc®) 13 + Bllwu®IZ: + IV ®):),  (3:241)

E(l)(t) 5

1
DW(t) = allwa(®)l|7: + Fl Veult) 72 (3.2.42)

Lemma 3.2.6. The energy inequality
t t
EO@) + [ DV ds < EWO)+ [(RY()uls)) ds+ CIaSr o e, o)
0 0

t
FC 0l + € / loe|22 ds, (3.2.43)
0

holds for all t € [0, T, where

t t t

[V ds = = [ [ aadaboes dds+ [ [ oatadi ds as
0 0 Q 0 &y
t

—//@af@t(]@kvi dx ds. (3.2.44)
Qy

0

Proof. In (3.2.40), multiply the fluid equation by v, the solid equation by w,, and inte-

grate in time and space. Following the strategy used in the first level energy estimates,
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we obtain

t

¢
EW (1) +/D(1)(s) ds < EW(0) —//&(aia?)@wi@vi dx ds
0

0 Q

t
4 / / Dulatq)dhvi dx ds + COfy o m)xca oy
0 Q

t
OO Loy + € / o2 ds
0

IN

t
EW(0) — //&(aia?)@kvi@jvf dx ds
0 Q

t

t
+//8tafq8kv§ dx ds—i—//afqt&kvé dx ds
0 Q

0 Qf

+Cel|O:(ff 0 77)||2L2(Qfx[0,:r’]) + C€||atfe||%2(QEX[O,T])

t
+e/||vt\|§2 ds. (3.2.45)
0

Using the divergence-free condition, we can express
ko i _ ko i
a; Opv; = —0a; Opv",

which allows us to conclude

t t
EO(t) + / DW(s)ds < EM(0)+ / (RO (s),u(s)) ds+ Culor(fy o)l xiou
0 0

t
+ CgHﬁtfeHiz(QeX[O’T]) + E/ Hvtﬂiz ds. (3246)
0

]

Next we provide estimates for w; and Vw; to completely characterize the second level

37



energy.

Lemma 3.2.7. We have

t t
a 1
S0l dst [l ds+ Sl + Z190(0)1E:
0 0

t t
< CEW(0) + Cllwn()|2 + Cllun(®)|2 + / lewullZ ds + / 2 ds
0 0
t
4 / (RO (3), 14(s)) ds + CIVoO)s + Cl ol a0
0

t
OO 0 ) xpo) + € / ol (3.2.47)
0

t t

//&(aia?)@kviajvi dSQdy ds + //&afqﬁkvi dSdy ds.

0 Q 0 Q

(3.2.48)

The constant C' depends on «.

Proof. We multiply the solid equation in (3.2.40) by w!, sum in ¢, and integrate in time

and space to obtain

t

t
//wtttwt — Awtwt + awywy + B'UJ? dQe ds = //8tfewt dQe ds. (3249)
0 Qe

Qe 0

We write 0 (wiw;) = wyw; + w?, which implies

wiwy = O (wywy) — wt2t'
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Using this fact in (3.2.49), we obtain

t t
//@(wttwt) —w? — Aww, + awyw, + fw? dQ. ds = //@fewt dQ, ds.

0 Q

Integrating by parts in space, we arrive at the following:

/Mvaﬂm+5/MWWd&+wmxmm

=—mwm+/mmy%—/wmtau //—ﬂmﬂds

+ / / O, fowy dQY, ds. (3.2.50)
0 Qe

Next, we multiply the fluid component of (3.2.40) by v*, sum in 7, and integrate in

time and space, i.e.

t
//vttv d;(alak v v + 9,0 (akq)v’ dQy ds = //@(f} on)v' dQy ds.
0 Qf
Using a similar approach as with the wave equation, we have

/vzvZ ds—// vi)? dSYy ds—l—//@t ajaf )00 — 9, (aFq) o’ dQ ds

Qf 0

//Ot azagakv UN dr’. ds+//8taq W'Ny, dT, ds
0
://@(f}on)vi dQy ds.

0 Qf

We observe that 8,(alakdpv'0,v") = 9,(a)abd,v’)0v" + (alakdpv')d;vi, which allows us to
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write

O (a)ak oo’ = O(a)afOrv' o’ — ajaf v O, (3.2.51)
and

O (a)ak oo’ = Oy(a)al) OOt + ajalOhvion’. (3.2.52)
Taking (3.2.51) and (3.2.52)

LTIV IN 1 ko oig. iy o L kN i i

Oi(aja;Opv*) 0" = éat(aiagakv o;v") + 58,5(@;&[)0;@1) o',
Also,
8t(afq)3kvi = O,afqop’

by the divergence-free property of v. Therefore,

i
/vtv

Qy

t
t
ds — //(v§)2 + 5&(%@?3;@1}’@112) + 5&(@%@?)@#@2}’ — Oyl g’ dSYy ds
0
0

t t t

—//@(aéa?@wi)vi]\fj dr’. ds+//8tafqvi]\fk dl'. ds = //@(f}on)vi dSy ds.
0 T, 0 T. Q;

(3.2.53)

Next, we sum (3.2.53) and (3.2.50). First, we focus on the boundary terms. Using the

velocity and stress matching conditions, we have

t t

t
/@-wiwiNj dl'. ds — //&(aia’j@kvi)vil\fj dl'. ds + //@afqviNk dl'. ds
0
t

0 T. 0 I'c

t t
= /@-wiviNj dl'. ds — //8t(a§a§8kvi)viNj dl'. ds + //&gafqviNk dl'. ds
0 0 T, 0 I.

= 0. (3.2.54)
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Therefore, we obtain

t t
Q 1 : . .
/Hwtu; ds + 5/ ol d€2 ds + 5 (D)3 + 5/@(@;@’;@@1@@%) a0,
0 0 o

t ¢ t t
IeY L o
= St + [ ol ds = [uiod) et [oi] dst [ [ s
0

Qe Q 0 Q

+§/aja§8kv‘8jvl dSds

— 5/@(@@@?)@1}‘@1}’ dQdy ds
q =0 °d
t

t t
+//8tafq8kvi dQy ds +//3tfewt dQ, ds + //@(f} on)v’ dSy ds.
Qe

0 Qf 0 0 Qf
We also use the following estimates for the two piecewise terms on the right-hand side:
o «a 1
— [ wif a0 < S @)+
Qe

and

- [ oio' 0y < ATUO)Ee + Culul,

Qf

where € > 0 is sufficiently small. Using ellipticity of a, estimating forcing terms, and

absorbing terms onto the left-hand side, we obtain the desired result, i.e.
t t
2 2 a 2 1 2
IVwellze ds + [ llwellze ds + L llwe(®)llz> + I Vo@)liz:
0 0

t t
< CED(0) + Cllwa(t)ls + Clu®)+ [ lwalls ds-+ [ ol ds
0 0

t

+ /(R(l)(é’% v(s)) ds + C[[Vo(0)[72 + CllOfellZ . o)
0
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t
OB Fr o) 22 w0z + € / ol (3.2.55)
0

O

Multiplying (3.2.47) by a small parameter and adding it to (3.2.43) (similarly to how
we derived (3.2.38)), we obtain

EW(t) + / EW(s)ds < CEV(0) + C||Vo(0)]2. + / (R (s),v,(s)) ds

t
4 / (BD(s), 0(s)) ds + Car(fy oM 220, o)
0

t
OOl ooy + € / [o]12s ds. (3.2.56)
0

Summing (3.2.43) and (3.2.56) and absorbing the integral of the velocity term, we obtain

t t
EW(t) + / EW(s) ds + / DW(s) ds
0 0
t

< CED(0) + C|[Vo(0)[22 + C / (RO (s), un(s)) ds + / (BD(s), v(s)) ds

0

t
+ Cel|0y(fy On)H%Z(QfX[O,T]) + O€||8tfe||%2(QEX[O,T]) + 6/ o7 ds
0

t
+6/Hv|y§2 ds. (3.2.57)
0
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3.2.3 Third Level Estimates

We now differentiate (3.2.4) twice in time to obtain

Uiy — Ou0;(alafOrv’) + 0udi(alq) = Oufi, Qs x (0,7),
akopvl, + 20,aF 0! + Opal ot = 0, Qp x (0,7), (3.2.58)
wittt - Awét + awgtt + 5“};5 = attfeia Qe x (0,7).

Define the third level energy £E®)(t) and dissipation D®)(t) as follows:

1

—<Hvtt(t)\|i2 + Bllwa ()72 + Bllwee(t)l|7> + I\tht(t)lliz), (3.2.59)

E®(t) = 5

1
D(t) = allwi(t)lI + 1 Veu(®)z: (3.2.60)
Then we have the following energy inequality.

Lemma 3.2.8. The energy inequality

B /D(2 )ds < E® —|—/ d8+CHatt(ff077)||L2(Qfx[0T])
0

+C€||6ttfe||%2(gex[0ﬂ) +€/ ||Utt||%2 dS, (3261)

holds for all t € [0,T], where

t

t t
[P ) ds = 2 [ [awidiowion, dds+ [ [ oo, ds ds
0 0 Q 0 Q

t
—//@ﬂafq)@kvzt dx ds. (3.2.62)

0 Q

Proof. In (3.2.58), we multiply the fluid equation by v}, and the solid equation by w},
and integrate in time and space. The desired estimate is obtained via a similar argument

as the previous energy levels. ]
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As before, we also require estimates on wy; and its gradient.

Lemma 3.2.9. We have

t t
Q 1
J 19wl ds+ 6 [ ol ds + Glunto)l+ 17w
0 0

t

< CE®(0) + Cllwue(t) 72 + Clloa(t)]|72 + /(1:3(2)(8),%(8)) ds + C|[Vu(0)]|Z2

0
t
+C100fellZ20, 0. + CllOu(F5 0 M) 2, 50 + € / oellze, (3:2:63)
0
where
t t
B 3 , o
/(R(2)(s),vt(8)) ds = —5//@(@%01';)8;@@;8]@; dQdy ds
0 0 Qf

t

—//Gtt(agalg)ﬁkviajvi dQy ds
0 Qp
t

—i—//@tt(afq)(?kvi dSdy ds. (3.2.64)

0 Qf

Proof. In (3.2.58), we multiply the fluid equation by v{ and the solid equation by w}, and
integrate in time and space. The derivation of the estimate follows a similar argument to

the previous energy levels. O

Multiplying (3.2.63) by a small parameter and adding to (3.2.61) yields
t t
E(Q)(t) + /E(Q)(s) ds < CE(Q)(O) + C||Vvt(0)||%2 + /(R(Q)(s),vtt(s)) ds
0 0

+C/<R(2)(S),Ut(s>) ds

+C |0 (fy 0 77>||%2(Qf><[0,T])
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t
+C’H6ttfeH%2(QeX[0,T]) +€/ H’UtH%2 ds. (3265)
0

Summing (3.2.61) and (3.2.65) and absorbing second time derivative of the velocity term,

we obtain

t t
EX(t) + / E®(s) ds + / DP(s) ds
0 0
t

t

< C’E(Q)(O) + C|| Vv (0) |32 + /(R@)(S),Ut(s)) ds + C’/(R(Z)(s),vt(s)) ds

t
+ Cel|On(f 0 n)"%Q(QfX[O,T}) + CHatthH%Z(QEX[O,T}) + 6/ [oill72 ds. (3.2.66)
0

3.2.4 First Order Tangential Energy Estimates

We differentiate (3.2.4) in the lateral spatial directions and define the first order tangential

energies E,,(t) and dissipations D,,(t) for m = 1,2 as follows:

En(t) = %(Hamv(t)lliz + Bl Omw(t) 72 + 10mw: (8) 172 + HVf?mw(t)Hiz>7 (3.2.67)

0(Opw)
ON

2

(3.2.68)

1
Dalt) = all O Ol + E 19000 5| 550

L2(Tc)
We have the following first level tangential energy bound:

Lemma 3.2.10.

Enlt) + / Do(s) ds < En(0)+ / (Bon(5), Ot(5)) ds + Cellom(f5 M) 22y o)
0

t
4O L Eotomy + € [ 10wl ds. (3260
0
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for all t € ]0,T], where

t

¢
/(Rm(s),amv(s)) ds = —//&Aa@af — 0,3) 00" 0,0 0" dx ds
0 0
¢
—//@m(a’;€ — 8i)qOxv" dx ds
0 QO

t
—i—//@m(af — 0i1) @0k O dx ds. (3.2.70)
0 Q

Proof. Apply 9y, (3.2.58) and multiply the fluid equation by 9,,v" and the wave equation
by O,wi. Integrate by parts, estimate, and sum the resulting inequalities to obtain the
desired result. ]

Next we provide an estimate for VJ,,w to complete the characterization of the first

order tangential energy.

Lemma 3.2.11. We have

t t
a 1
[ 190wl ds+ [ 1wl ds+ S 1omut)+ 1900z, t) - o) -
0 0

t
< CE,(0) + / 10mwi]|32 ds + Cl|Omwi(t)||72 + Cl|Omv(t) |72
0

t

t
T / 10022 ds + / (Bon(5), 00, 5) — 2)) 5 + CollOun Lol 2ot nior)
0 0

t
01 0 Mo oy + € / 10m( — 2|22 ds (3.2.71)
0

for t € [0,T], where
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t

= —//&n(aialz — 01) Ok 0,0, (0" — 2*) dQYy ds

0 Qf

1 . S S
—i—i//@t(aéa?)ak@m(nz — 2")0;0p(n' — ') dQdf ds

OQf

//8 a¥ — 0;1)qOk0m(n' — ') dQy ds

0 Qf

t
+//af8mq8k8m(ni —2') dSYy ds. (3.2.72)

0 Qf

This result is proven similarly to the previous equipartition estimates.

Using a small parameter €, we can use (3.2.69) and (3.2.71). to obtain

t t t

E,.(t) +/Em(s) ds < CE,(0) +/(Rm(s),3mv(s)) ds+/(fm’m(s),8m(n —x)) ds
0 0 0
+Ce|[Om(fr 0 77)||%2(Qf><[0,T]) + CEHamfeH%Q(QGX[O,T])
+ 6/ 10 (0" — 2%)||32 ds. (3.2.73)
Proof. The proof is analogous to that of Lemma 3.2.4. [

Summing (3.2.71) and (3.2.73), we obtain
Eo(t) + / Eo(s) ds + / Din(s) ds
< CE,(0) + (J/(Rm(s), Omu(s)) ds + C/(Rm(s),am(n(g;, s)—x)) ds

0 0

+CellOm (f5 0 L2y xjo27) T CellOm fellZ20, <0,y + 06/ 10 (0" — 2")I[72 ds.
0

(3.2.74)

47



3.2.5 Second Order Tangential Energy Estimates

We differentiate (3.2.4) twice in the lateral spatial directions and define the first order

tangential energies F,,,(t) and dissipations D,,,,(t) for m = 1,2 as follows:

1
Bun() = 5 (10mnv D112 + Bl1Owmw )32 + [0mmtoe(8) 22 + IV O (D132,
(3.2.75)
1
Dy (t) = a||@mmwt(t)||%2 + Envammv(t)HiQ. (3.2.76)

We have the following bound on the second order tangential energy:

Lemma 3.2.12.

Epm(t) —i—/Dmm(s) ds < Emm(0)+/(Rmm(s), Ommv(8)) ds

+Cel[ O (fr © n)H%Q(QJcX[O,T}) + CEHammfe”%?(Qex[O,T})

t
+6/H8mmvH%2 ds, (3.2.77)
0
for all t € [0,T], where
¢ ¢
/(Rmm(s),ﬁmmv(s)) ds = —2//8m(a%alg - 5jk)8k8mvi8j8mmvi dx ds
0 0 Qy

t
—//8mm(a§alg — §jk)8kvi8j8mmvi dx ds

0 Qf
¢
+//3mm(af — 0i) @Ok O’ dax ds
0 Q
t
+2//8m(af — 0i1) O @O0k O " da ds

0 Q
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t

+//af8mmq8k8mmvi dx ds. (3.2.78)
0 Q

Proof. Apply O to (3.2.4) and multiply the fluid equation by 9,,v° and the wave equa-

tion by 9,,w!. Integrate by parts, estimate, and sum the resulting inequalities. O
Next we provide an estimate for V0,,,w, which is obtained similarly as (3.2.71)

Lemma 3.2.13. We have

t t
o 1
J 1900wl ds+ [ 10l ds + G10mmu (Ol + &IV 0mmn(z. O]
0 0

t
< CEmm(0) + / Hammwt”%2 ds + CHammwt(t)”%? + CHammU(t)H%Z
0

t

t
T / 1BumvlZa ds + / R (), 002, 5) — 2)) d + CollBunmn o220z
0

0

t
+CellOmm (fr © M2y xpo.7) + 6/ O (" = &) 72 ds (3.2.79)
0

for t € [0,T], where
[ Ron(5). B, 5) = ) s

¢
= — //&nm(aéalg — 01 )OKV" 00 (0 — ') dSYy ds

0 Qf

t
—2//8771(@;&]; — 5jk)8kvi8j8mm(ni — ") dQy ds

0 Qf
t

1 . ‘ . . .
—i—é//@t(aéaf)akamm(n‘ — 2)0;0mm (0’ — ') dQy ds

0 Qf
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t
—i—//amm(a’-C — 5jk)q8k8mm(ni — ") dQy ds

+2//8 — i) Om @OkOmm (0" — ") dQdy ds
0 Q
t

+//af6mmq8k8mm(ni — ") dQQy ds. (3.2.80)
0 Q

Using a small parameter €, (3.2.69) and (3.2.71) imply

t t

Eyn(t) + / Ey(s) ds < CBum(0) + / (Roum(5), B (s)) dis

0 0

+Cel|Omm (fr 0 77)”%2(Qfx[o,:r])
+C HammfGH%?(Qex[O )

te / 1O (7 — 2125 ds. (3.2.81)

Summing (3.2.79) and (3.2.82), we obtain

t

Em() + / Ern(s) ds + /t Dy () ds

0
t

< CEnm(0) + /(Rmm(s) m(8)) ds +/ v (8)s O (n — 1)) ds
0 0

+ Cel| O (ff 0 77)||%2 (Q5x[0,T]) + C€||ammfe||L2(Qe><[0,T])

/ O — 2)|22 . (32.8)
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3.2.6 Mixed Time Tangential Energy Estimates

We now differentiate (3.2.4) once in the lateral spatial directions and once in time. Define

the mixed tangential energies Ey,,(t) and dissipations Dy, (t) for m = 1,2 as follows:

1
Bun(t) = 5 (10:0n0 @132 + Bl1ODmw (DlIE2 + |00mw(Dl[E2 + [ VO0mw )32 ).
(3.2.83)
1

We have the following mixed tangential energy bound:

Lemma 3.2.14.

t

t
Eon(t) + / Din(s) ds < Epn(0) + / (R (), 0,0mv(s)) ds
0 0
+Cel[010(ff o 77)||2L2(Qfx[o,T]) + C€||atamfe||%2(ﬂe><[0,ﬂ)

t
+6/H8t8mvH%2 ds, (3.2.85)
0
for all t € [0,T], where
t t
/(Rtm(s),@@mv(s)) ds = —//at(aialg)@makviatﬁmé?jvi dx ds
0 0 Q

t
— / / Om(a)al — §;1)0,000'0,0,,0;0" dx ds
0 Qf
t

—//8tam(a§alg)8kvi8tamajvi dx ds
0
t

+//8t8mafq8t8m8kvi dx ds

0 Q
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t
—l—//@tafamq(?tam@kvi dx ds

0 Q

¢
—l—//(?m(af — 6i1)0:q0OmOkv" dx ds

0 Q

t
+ / / % 0,090,000’ da ds. (3.2.86)

0 Q

Next we provide estimates for V0,0,,w.

Lemma 3.2.15. We have

t t
« 1
/ IVl ds + / 0l ds + FNomwe(t) 3 + SIV:Bnn(0)
0 0

t
1
< CEum(0) + —[|0mwu(t)22 + CllOmvi()lI72 + / 10mweel| 72 ds
0

t

t
+/ |0 vel|72 ds + /(Rtm(s),amv(s)) ds + C||V0,v(0)||3.
0 0

+C€H|atamf€’|%2(ﬂex[0,T]) + Cel|0:0m (fy © 77)”%2@%[01])

t
e / 10mv]12 ds (3.2.87)
0

fort € [0,T], where

t t

/(Rtm<5>7am'v<5)) ds = —//&t&n(aZaf)akvi@m&jvi de ds

0 0 Qf

t
—//8,”(@;@? - 5jk)6t8kvi8m8jvi de ds
0 Qy

t
1 . . )
—5//8t(a§a§)8m8kv’8m8jvl dSQy ds

0 Qf
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t
—i—//(?t@mafq(?m@kvi dQdy ds

0 Q

t
—i—//(?tafamq@m@kvi de ds

0 Q

+//8m(af - 5zk)8tq8m8kvl de ds

0 Q

t
—i—//af(?m@tq@makvi dQy ds. (3.2.88)

0 Q

Using a small parameter €, we can use (3.2.85) and (3.2.87). to obtain

t t

Eun(t) + /Etm(s) ds < CEu,(0) + C||VO,v(0)||3: + /(Rtm(s),ﬁtﬁmv(s)) ds

0 0
t

n / (Bun(5), 80(5)) ds + ClODnlf7 0 D220 o)

0

+C€||atamfe||%2(QEX[O’T]) + 6/ ||8mv||%2 ds. (3289)

Summing (3.2.87) and (3.2.89), we obtain

t

Eun(t) +/Etm(s) d8+/tDtm(s) ds

0
t

< CEpm(0) + C[VOm0(0)|2 + C / Ry (), O40(s)) ds + C / (B (5), O ds
0

0
t
+ Cel|0:0m (fy © 77)||%2(Qf><[0,T}) + CEHatamfeH%?(Qex[O,T]) + 06/ [0mvl|72 ds.
0

(3.2.90)
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3.3 Energy Estimates with a Close to Identity

We now construct an energy norm by summing the energy estimates obtained in the

previous section. Denote

X(t) = E@t)+EY()+EX(@) +ZE +ZEmm +ZEtm
+HE[[Vot) |72 + €[Vt )Hm + EHV&nv( )HLQ’ (3.3.1)

where € > 0 is a small parameter. We also define the dissipative term

2 2

D(t) = D(t)+ DY)+ DP(t) + > Du(t) + Y Dum(t) + > Dynlt)

(3.3.2)

The fluid-velocity terms are controlled by the dissipation terms

IVo@®)IlZ: < [[Vo(0)]Z2 +C/ s) + DW(s)) ds,

t

Vo (t)|I72 < [[Vor(0)]7: + C/(D(”(S) +DP(s)) ds,
0
and

t

IV0,0(8)[2 < [VOm0(0)]2: + C / (Don(s) + Dom(s) ds

0

arise from integrating Vuv;, Vv, and V0,,v; with respect to time and applying the triangle

inequality. We also have the following estimates on 7 and the matrix a:

2o ds, (3.3.3)

t t
V0 — )13 < ¢ / IVl ds < Ct / I
0 0
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t t
la¥ — 6 l|3s < t/ 10:a (|3 ds < Ct/ |v||57e01 ds, ik =1,2,3, (3.3.4)
0 0
with s = 0, 1, 2. Similarly,
t
|ajal — §i1l|%2 < Ct/ |v||3s ds, i,k =1,2,3. (3.3.5)
0

We now seek an a priori bound on X (¢) in the scenario where a = a(z,t) is close to

identity in the following sense:
CL(O) = Ia akCL? - 07 kaj - ]-7 27 37 (336)
in addition to the conditions

la = Il = ozy20), laa™ = Tlqormz,), 10(aa”) Lo,

laell Lo o,mym2 0,y lawlleqoim @y, llawllLeomizz@,) <€ (3.3.7)

Under these assumptions, we refine our energy bounds to be in terms of the norm X (t)

Lemma 3.3.1. With R defined in (3.2.23), we have

t t t
/\(R,n —x)| ds < Cetz/X(s) ds+C’et2/Hff onl|Fz + || fell72 ds (3.3.8)
0 0 0

fort € [0,T].
Proof. Recall (R,n — x):

(Rt o) ~2) = 5 [ aadabyoutn’ - o500 = o) do

Qy

t
+/q(t)/8taf8k(ni — 2') ds dSY.
0

Qy

%)



We estimate using Holder’s inequality

(F(t.te.0) =) = |3 [ oadabionts - o0 o) any

Qy

t
+/q(t)/8taf8k(77i — ') ds de‘
0

Qy

1 A . A . A
< §||8t(a%a§)||m||5k(nl — ') || o105 (0" — 2*) || s
¢
+‘ //q(t)@tafak(ni —xi) ds de‘
0 Qp
< Clloaiay) | m|IV(n—z)ll3n
t
+/HQ(t)HLGHatafHLSH@k(ni —2')||> ds
0
< Cloaia)lm|V(n— )30

t
+C/Mmmm4wmmvm—xmmd& (3.3.9)
0

Consider the V(n — z) terms. By the Holder, Sobolev, Bochner, and Cauchy-Schwarz

Inequalities, we have

t
2
V-l = | [voar
0 He
B 2
< (/nwm dT)
0
t t
< </ dT)(/HVﬂzs dT)
0

s dr. (3.3.10)

0
t

< t/HVv\
0

o6



Using (3.3.10) with (3.3.7) n (3.3.9), we have

t

t s

(R(), (1) — 2)| < cez/uwuzl ds+oe/s%|yq(t)|ym(/||WH§2 dT> ds.
0 0 0

(3.3.11)

Integrating in time, we have

t s
/| n(z,t) —x)| ds < CE/S/HU”%pdeS
0 0

S

t - .
+Ce / la(s) lan / Té( / 1ol du) dr ds
0 0
t

< C'e/ /HU”Hz dr ds
/Hq ||H1/32(/HUHH1 du) dr ds
< C’e(/s ds) </||UH§{2 dT)
0 0
t s L
e [sHtan ([ 1oty an) ([ ar) as
0 0 0
< C’et2/||v||12qz dr ds
¢ s .
ce [ st [ 1ol dn) as
0 0
<

C’et2/||v||i12 dr ds
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IN

IN

VAN

VAN

t

+C /SHC] HH13;</HUHH1 du) ds
0

Cet2/||v||H2 dr ds—l—Ce/ 2lg(s)|[%n ds

0

/ / ol du ds

Cet2/||v||H2 dr ds+06t2/||q Man ds

t

—i—C’e/s/HvH%{l du ds
0

0

cet2/||v||§,2 dr ds+cet2/||q<s)||§,l ds
0 0

ree( / sas) / ol dn)

t t
cet2/||v||§,2 dr ds+cet2/||q(s)||§,l ds
0 0

L Oet? / ol du.

Applying (A.2.14) to (3.3.12) completes the proof.

Combining (3.2.39), (3.3.8), and (3.3.10), we have the following:

E(t)+/tE(s) ds+/tD(s) ds

< CE(0) + Cet® /(X(S) +fronllze + 1fellz2) ds + Cell fr o nllza, xpom)

0
+Ce|l fell 720 x o)

o8

(3.3.12)

(3.3.13)



We repeat this analysis for the second, third, first and second order tangential, and

mixed order tangential energy estimates.

Lemma 3.3.2. With R defined in (3.2.48), we have

t

t t
JirO.wlds < ce [ x(s) ds e [ (1ronli+ 1515
0 0 0

HIa oI+ 113 ds (3314
fort €0,T7.
Proof. Recall (R, v):
I((RW(s),v(s))| = —/Gt(azaif)@kviajvf d:v+/8tafq0kv§ dx
Qy Qf
—/&af’@tqé?kvi dx. (3.3.15)
Qf

We estimate the right-hand side of (3.3.15) using Holder’s, Sobolev, Young’s inequal-
ity, and the fact that a is close to identity. This yields the following inequality:

(B0 < | [ oo acl +| [ oo a
Qf Qy

—1—‘ /@af@tq@kvi dx
Qf

< l0u(azag)llze | 0kv' |z 1 05vill s + 10w | allgll sl 9oyl o
+10ea | a1 Oegl| 2 | O’ | s

< Cldwga; + ayduag | | Vollm [[Vodllm + Cllacm lalla Vo
+Claxll [l gell V0]

< Cllallglladllm vl m2l[oill 2 + Cllall e gl e vl ez (3.3.16)

We now integrate in time, use (3.3.7), and apply Young’s inequality and Stokes estimates
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(A.2.14)-(A.2.15) to obtain

/,Rm V)| ds < a/uvnzﬁuquzl+Hvtuz2+||qtu?ql ds
t t
< o [ X as+ce [ (||ffon||%2+ A
0 0
10y o2 + ||fe||i2> ds. (33.17)
Il

Lemma 3.3.3. With R, defined in (3.2.48), we have

/| ) u)| ds < C’e/X ds—l—C’e/HffonHLz+||fe||Lz ds  (3.3.18)

fort €[0,T].

Proof. Recall (RM, v,):

1 . o ,
(RO(t),v,) = —5/8t(aéalg)0kv’8jvl de—i-/@tafq@kvz dy. (3.3.19)

We estimate the right-hand side of (3.3.19) using Holder’s, Sobolev, Young’s inequality,

and the fact that a is close to identity, i.e.

- 1 . . . .
‘(R(l) (t),vt)’ = ‘ — 5/815(@%@?)8}6’018]'1)7' de + /atafqakqﬂ de’
< ||at(azae)\|L3HﬁkUiHLSHa'UiHLS + [10uai || s ll gl o | O’ | o
< CHat(aeaZ)”HlnvvnHl + CllOall m gl m Vol
< Celolltn + Celalip. (33.20)
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Note that (3.3.7) is used in the last line of (3.3.20). Integrating in time yields

t

t
SR @ ds < e [ ol + Ll ds
0

0

t t
< CE/X(S) ds+Ce/||ffon||iQ + || fell72 ds, (3.3.21)
0 0

where (A.2.14) was used.
[

Combining (3.2.43), (3.3.14), and (3.3.20), we have the following second level energy
bound:

< CEO©)+ Ce [(X(5)+ Iy onlf + I1L1E2) ds -+ ColaSr 2 D0, om)
0
+C€||atfe|’%2(ﬂe><[0,T])' (3.3.22)

Lemma 3.3.4. With R® defined in (3.2.62), we have

t
/|(R(2)7vtt)| ds < CeX(t)+Ce(llfyonllis + IfellZe + 10(f5 o m)lZ2 + 191 fellZ2)
0

+CeX(0) + Ce([[(fr o m(O) Iz + e O) [z + 19:(f5 0 m)(0)][Z

t

10 (0)[22) + Ce / X(s) ds + Ce / (fy ol + 1£.]122) ds
0

0
t t

+ce/<uat(ff o )12 + 18:fs 12) ds+Ce/D(2)(s) ds.
0 0
(3.3.23)

forte[0,T].
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Proof. We estimate (3.2.62) using Holder’s, Sobolev, Young’s inequality, and the fact

that a is close to identity:

JE @) ds < / 100 aa)l s Nkl Nyl s

0

/Ilatt apag)|l o 10wl s l|9jvi, |12 ds

—l—‘//@tt(afq)akvzt dz ds

0 Qf

< c/||at )| [V oullr [Voull e ds

+C/ ”8&@4@? + 23,5@%815(1? —+ 3,5,5@;@?”1{1 HV'UHHl vattHLQ ds

¢
+‘//@tt(afq)8kv§t dx ds

0 Qf

< C/Hat CZZCZE HH1HVU,5HH1HVUttHL2 ds

+C/(IIOLIIHzllattIIH1 + Cllacllz) [vllz2 || Vsl 2 ds

’//att a;q 8kvtt dx ds

0 Qf

06/ [l 2 [V ol 2 + o]l a2 | Vowl| 2 ds

t
+‘//8tt(afq)8kvit dx ds

0 Qf
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t
< Ce / lonllZe + [Vl + ol ds

0
t
+‘ //@t(afq)@kvit dx ds|. (3.3.24)
0 9
Consider the last term in (3.3.24).
t t t
//@Aafq)@kv,ft dr ds = //attafqakvzt dx ds—l—//@tafqt@kvgt dx ds
0 0 0 O
t
+//afqtt8kv§t dx ds. (3.3.25)
0 Q
The first two terms in (3.3.25) can be estimated similarly as (3.3.24), i.e.
t t
//ﬁttafqakvzt dx ds + //atafqtﬁkv,ft dx ds
0 0
t
< ce/uquzl FllgelZn + [V oul 2 ds. (3.3.26)
0

We focus on the last term on the right side of (3.3.25). Using the time-differentiated

divergence—free condition
ttt; Uk tQ; Ok Uy Q; OgUy = Y,

and integrating by parts (to remove a time derivative from the pressure terms), we have
that

t t

t
//afqttﬁkvft dx ds = —2//8tafqtt8kv§ dx ds — //@tafqttﬁkvi dx ds
0 Q

0 Qf 0 Q

= 2/8taf(t)qt(t)8kvf(t) dz+/8ttaf(t)qt(t)8kvi(t) dx
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—2 [ 9,a¥(0)q(0)0,0"(0) dz — | 9,a¥(0)q,(0)0xv"(0) dx
/ /

t t
+3//8ttafqt8kvi dx ds + 2//8tafqt8kvft dx ds

0 Qf 0 Q
t

—i—//@tttafqtﬁkvi dx ds. (3327)

0 Qf
Every term in the inequality (3.3.27) can be estimated similarly as (3.3.24), i.e.

t
//afqttﬁkvft dr ds < Ce||qt||§{1 +C’e||vt||%{z —I—Ce||v||fql
0

+Cel|q(0) I3 + Cellve(0) 72 + Cellv(0) I3

t
Ce / N2 + ol + Vol ds
0

t
+c/Hamaup\|qty\L6|yaku\|L3 ds. (3.3.28)
0

Combining (3.3.24), (3.3.26), and (3.3.28), and using (A.2.14)-(A.2.15), we obtain the

following result:

t
/|(R(2)7vtt)l ds < CeX(t) + Ce(ll fronliz + Ifell72 + 10:(f5 o 72 + 10cfel72)
0

+CeX(0) + Ce([|(fr o m(O)IZ2 + e (O)IIZ2 + 10:(f o m) (0|72

t

+0:£e(0)]172) + CE/(X(S) + 1 onllZe + [1fellZ:
0
HO:(fr o mlZ2 + 10 fell12) ds. (3.3.29)
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Lemma 3.3.5. With R, defined in (3.2.64), we have

t
/’(é@),vtt)l ds < CeX(t)+ Ce(llfyonlis + Ifellze + 10:(f o MLz + 10ufellZ2)
0

+CeX(0) + Ce(l|(fr 0 m(O)IZ2 + I fe(O)IIZ2 + 10:(f o m)(0)]I7:

t

+H0:fe(0)]172) + 06/(X(8) +Ifr onllz: + £z
0
+H0:(fr o MZ2 + 10 fell72) ds (3.3.30)

fort € [0,T].
Proof. We follow a similar argument as Lemma 3.3.4. Analogues to (3.3.24) and (3.3.25)
are given by

t

t
J1E21ds < e [ful+ ol ds

0 0
t
—i—‘ //&t(afq)akvtit dx ds|. (3.3.31)
0 Q
t t t
//&Aafq)@k,vi dr ds = //attafqakvi dx ds—i—//@tafqt@kvit dx ds
0 Q 0 Q 0 Q
t
+//afqtt8kv§ dx ds. (3.3.32)

0 Qf

The first two terms in (3.3.32) can be estimated similarly as (3.3.26), i.e.

t

t t
/ / O g dz ds + / / b g dr ds < Ce / lalZn + laeliZe + loell2e ds.
Qf 0 Qf 0

0

(3.3.33)
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For the last term in (3.3.32), we integrate by parts to obtain

t
//afqttﬁkvf dx ds = /afqtakvi dx — /af(O)qt(O)(?ka(O) dx
0 O

Qy Qf

t t
—//@afqt@kvz dx ds — //afqt@kvi dx ds.
0 Q 0 Q

(3.3.34)

By the time differentiated divergence-free condition

O,k o’ + aFopvl = 0, (3.3.35)
we have
t
//afqttakvti dx ds = —/&afqﬁkvi dx—i—/@taf(O)qt(O)@kvi(O) dx
0 Q Qf Qf
t t
—//ﬁtaf”qt@kvi dx ds+//8tafqt8kvi dx ds.
0 Q 0 Qf
(3.3.36)

Estimating, we obtain

t
//afqﬁ@kvi dods < Cl0wa;|zellael 210" [ls + CllOwas (0)]allge (0) [ [ Ov* (0 | s

0 Qf

t
+0 [ 0wt sl s oneiloo ds
0

t
+C/W@ﬁMﬂ%Mﬁ%st%
0

< Clladla llgellz 1ol + Cllai0) [ 2l g (0} a1 [[0(0) | 2
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t t
c / aclla el el e ds + C / laall e gl ol ds
0 0
< Cellglly + Cello]%n + Celau(O) 2 + Cello(0) %

t
+C’e/ gl + llvel 22 + ||l ds. (3.3.37)
0

Combining (3.3.33) and (3.3.37) with (A.2.14)-(A.2.15) yields

/I(R(”,vtt)l ds < CeX(t)+ Ce(llfyonlis + IfellZe + 10:(fr o MLz + 10efellZ2)
0
+CeX(0) + Ce([|(f5 o m(O)IZ2 + e (O)IIZ2 + 10:(fr o m) (0|72
t
+0:fe(0)1Z2) + CE/(X(S) + 1 onllZe + 1 fellZ:
0

H0:(fr oMLz + 10 fell2)-

Combining (3.2.66), (3.3.24), and (3.3.30), we have the following:

t t

EO(#) + / E®(s) ds + / DE(s) ds

0
< CX(0) + CeX(t) + Ce(|l fr omlliz + [l fellZz + 10:(f5 0 mIIZ2 + 10efellZ2)

+Ce(|(fy o MO)IIZz + 1fe(O)IZ2 + 10(F7 0 m)(O)IZ2 + 100 fe(O)172)

t

t
Ce / X(s) ds + Ce / (1Fs 0 mls + IR + 10Fs o )2 + 10 fol22) ds
0

0

t t
+Ce [ Do) ds-t e [l ds +Cllouss o I, o)
0 0

+C€‘|attfe|’%2(QeX[O,T})' (3.3.38)
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Lemma 3.3.6. With R,, defined in (3.2.70), we have

t t t
[ 1Rt as < Ce [ X(5) dsCe [Ufronlie s I ds (3339
0 0 0

fort €[0,T].

Proof. We estimate using the Holder, Sobolev, and Young’s inequalities similarly to the

previous arguments to obtain

t t
/ (R 00} ds < C / 10 (aat — Su)l125110k]1 5 19,80 2
0 0

t

4 / 10 (e — 801125 lall s 10505 2

0
t

+/H3m(a? = Gje) 22 llgll 2 [10;0mv" || 2

0

IN

t
¢ [ Nomelat = )l |06 106001
0
t
+ [ omlat = 830l lalm 0,060
0
t
+ [ 10nat = 830l il 10,001
0
t t
< ¢ [ aa® = 1ol + [ la = Tlalim ol
0 0

t
4 / la = Illellall s oo
0

IA

t
ce [ ol + Nl (3:3.00
0
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where (3.3.7) was used. We conclude by applying (A.2.14), i.e.

t t t
/ (ROl — )| ds < Ce / X(s) ds + Ce / 1y onlZa + 1112 ds.
0 0 0

Lemma 3.3.7. With R, defined in (3.2.72), we have
t t
/y(ém,amv)\ ds < (C+Ct2)e/X(s) ds
0 0

t
HC+OP)e [ty ol + 1Al ds
0

fort €]0,T7].
Proof. We estimate (3.2.72) similarly as (3.2.70), that is

t

[ (Ruts). 0 tu5) ~ ) ds

0

t
< C/H@m(aiﬁa’z = 02810k [[2110;0m (0" — 2")|12 ds

0
t
+C/Hat(aﬁia?)llmllakam(ni—fvi)HLzH@j@m(ni—xi)HLZ ds
0

t
c / 10m(at — 8,0) ool 2l 9uun (1 — )| dis
0
t
—i—//af@mq@kﬁm(ni —2') dQy ds
0 Q
t

< 0/ 10 (azaf — &) | Vol s [Vl — )|z ds
0
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+C/M@mfwmwva4n—xw;ds

+0/Ma 50 e gl [ 90y — )l ds
//aamqak (n' —2") dQy ds
OQf

sc/wa—mmwmmW%m—mmds
+c/wamfwmwvaAn—mw;ds
0

+C/|IG—IIIH2||(1||H1||V3 (n —)|2 ds

// a¥0,,q0k0m (0" — %) dSdy ds
0 Qf
SCg/wmp+mmﬂ+mman—wmgw

t
—i—//af@mqﬁkam(ni —2') dSy ds. (3.3.43)

0 Q

We apply (3.3.10) to the V0,,(n — x) term in (3.3.43) to obtain

t t
C’e/\|V8m(n—x)||2L2 ds < ca?/uwnﬁp dr < oet2/||v||§13 dr. (3.3.44)
0 0 0

Next consider the last term in (3.3.43). We rewrite this term using the divergence-free

condition

6maf6kvi + af@kﬁmvi =0. (3.3.45)
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This implies that
af@kﬁmvi = —&nafakvi.

Integrating in time yields

t

t
/af@kﬁmvi ds = —/amafﬁkvi ds.
0

0

We now integrate by parts:

¢ ¢ ¢
af@kﬁm/vi ds — /8ta§8k3m(n —1x)ds = —/0maf6kvi ds.
0 0 0

t

Since n — x = [ v ds, we conclude
0

t t

ak OO (n' — 2°) — /&af@kam(n —x)ds= —/8mafakvi ds.

0 0

Using (3.3.49) in the last term on the right side of (3.3.43) we have

t
//af@mqak(?m(ni —2') dQy ds

0 Qf

t s
— / [ / amq( / 0,05 0,0, (n' — 2%) — Onak o’ dT) dx

0 Lo 0

(3.3.46)

(3.3.47)

(3.3.48)

(3.3.49)

] ds.  (3.3.50)

We estimate the terms inside the time integral using the Holder and Sobolev inequalities.

t
/af@mqakam(ni - x’) dQly = //(8mq(t)8taf8k8m(ni = .I'Z)
0 Q

Qy
—Onq(t)OmatO’) ds da
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IN

c / 10 (&) 251100t 51040 (7 — 7)1 dis

c / 10m(®) 12219l 1040l s ds

IA

t
C/HQ(t)HHzHatHHlHV(n—IL’)HHI ds
0

c / ()l 22 10mall o 0] dis
0

IN

t
ce [ a@lI V- o)l ds
0

t
Ce / @)l ds
0

¢ s .
e [ a0 est ([ 1ol ar) " as
0 0

t
C’e/||q(t)||H2||v||H2 ds, (3.3.51)
0

IA

where (3.3.10) was used. Integrating in time results in the following:

t
//af@mqakam(ni—xi) dQp ds < //Hq ||H27'2</||v||H1 d{) dr ds

0 Q
+C’e//||q Wazl|v]| gz dr ds

0
t

Ce [ Hats)le / ( / ol dg) dr ds

0 0

IA
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/M!W/Mmﬁm
< Ce /82||q ||H2/(/H 12,1 d§> dr ds
/Hq Hst2(/HvHHz dT) ds.
< / s3g(s ||H2( / e df) s
0
+C€/HQ HHQS;(/”UHHQ dT) ds.
t
< / llas ||st%( / ol df) s
0
+Ce / oo [t ) s
0 0

(3.3.52)

Next, we apply Young’s inequality to obtain

0 Q

t

t t S
//af@mqﬁkam(ni—x") dQy ds < 06/82”q(8)|’12q2 +Ce/s</\|@Hle d§> ds
0 0

0

t t s
C’e/||q(s)||%12 d8+06/s/||v||%12 dr ds.
0 0 0

t S
< Cet? / la(s) 1% + Cet? / o2 de
0 0

t t ot
Ce/||q(s)||%12 dS+C’e/s/||v||%12 dr ds.
0 0 0
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t s
< Ce? / la()|e ds + Cet? / ol de
0 0

t t
o€/||q(s)|y§p ds+cet2/||vy|§,2 ar.
0 0

(3.3.53)

Combining (3.3.43), (3.3.44), and (3.3.53), we arrive at the following result:
¢
J 10 ds < Ce [Nl + lalFye ds+ Cet? [ ol + ol ds
0
< (C+ Ctz)e/X(s) ds

+<c+0t2>e/\|ffon|yzl Ll ds. (3.3.54)

Combining (3.2.73), (3.3.39), and (3.3.54), we arrive at the following inequality:

En(t) + / ds+/D

< OFE,(0) + (C + Ct*)e /X ) ds + (C + Ct?)e /Hffo77||H1+||fe||H1ds

+Ce|[Om(f5 0 77)||L2(Qe><[O,T]) + C€||amfe||L2(Qe><[0,T])' (3.3.55)

Lemma 3.3.8. With R, defined in (3.2.78), we have

t

t t
/ (R (5), () ds < Ce / X(s) ds + Ce / Vs o nln + £l ds.
0 0 0

(3.3.56)
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fort € ]0,T7].
Proof. We estimate (3.2.78) using the Holder, Sobolev, and Young inequalities to obtain

t

/(Rmm(s),ammv(s)) ds
0
< C/ 10m (aga; — 65i) | Lo | OkOm v || 51|03 O L2 dis
+C/ |Omm (@ af — 65| 21| 0k0° | oo |0 Ot [| 2 ds

+C/ 10mm (a5 — 0ix) | 2 |l o | OO 2 dis

—|—C’/||8 — 85) 126 11 Om @O || 13 | O V|| 22 s
//a Ormm @Ok Ommv® dx ds
0 Q

SC/W%%%—MMW%WNWW@WWH%
0

+C/W%M%ﬁ—%whﬁ@ﬂmw@%MWst

+c/ﬁamwﬁ—&wmmﬂmwmmmwmzw

+c/wa = 8Ol 14D

+ / / af@mmqakﬁmmvi dx ds
0 Q
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<c / Ja” = Il ol ds +C / o™ = 1l s

e / la — Illsllglla ol s ds +C / la = Illeliglelfollas ds

//a Omm@OkOmmv® dx ds

< CG/ ol Zs + gl ds + //af@mmqﬁkﬁmmvi dx ds. (3.3.57)
0

Consider the last term on the right side of (3.3.57). We use the divergence-free condition

8mmaf8kvi + 28maf8k0mvi + af@kﬁmmvi =0

to write
t t
//afammqak(‘)mmyi dr ds = —//8mmaf8mmq8kvi dx ds
0 Q 0
t
—2//6maf0mmq8k8mvi dx ds
0 Q

< C [ 10wtz 0mmal 000 s

t
c / 10 25 | Brudl 2 0Bt 15 s
0

IA

¢ [ 10mmalellalleols ds
0

c / 10mallan llglle o]l ds
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t
< Ce [ ol + Nl ds.
0

(3.3.57) and (3.3.58) together with (A.2.14) imply

t

t
/ (R (5), () ds < Ce / lolZs + gl ds
0

0

t
< Ce/X(s) ds
0
t

e / 1y 0l + |l ds.
0

Lemma 3.3.9. With R,.,, defined in (3.2.80), we have

t

/ (Boum(5), Domto(s)) ds < (C' + C#2)e / X(s) ds

0

(3.3.58)

(3.3.59)

t
H(C+ OP)e / 1 0l + £l ds, (3.3.60)
0

fort e [0,T].

Proof. We estimate (3.2.80) using the Holder, Sobolev, and Young inequalities.

t

/ (RS, O (1 8) — ) dis

t
< C/ 1O (@paf — Oju) 211060 | Lo 10;0mm (0" — &)= ds
0

t
+C/ 10 (agag — 8) |6 10407 | 21100 (0" — 2|2 ds
0

7



t
e / 10 (@) 2 10k (7 — 30 2By (17 — )22 s
0
t
e / 10 (@ — 830) 2l |OuBoun (7 — )| dis
0
t
c / 10 (@ — 83112510 2| Oy (1 — )|z dis
0
t
+//af(9mmq8k3mm(77i —xi) dQy ds
0 Q
t
<c / laa” — e ol |V (7 — 2) 2 ds
0
t
c / laa” — e ol |V (7 — 2) e ds
0
t
+C [ oaa®)l [V (0 — o) B s
0
t
c / la — Izllgll |V (7 — 2) = ds
0
t
c / la = Nl gV (7 — )l ds
0
t
+//af(f‘)mmq8k8mm(ni — ') dQy ds
0 Q

t
< Ce [ ol + ol + 190 - )| ds
0

t
+//af8mmq8k@mm(ni —2') dQy ds. (3.3.61)
0
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We use the divergence-free condition similarly as in (3.3.57)-(3.3.58) in order to conclude

t
//af@mmqakﬁmm(ni —2') dQy ds

0 Q

t S
_ / / O, / (ata;?&kamm(ni—xi)

0 Q 0

—8mmafﬁkvi — 28maf(9k8mvi dT) dx ds

t s
= ///8mmq(s)8taf8k8mm(ni —a") dx dr ds
0

0 Qf

t s
—///Gmmq(s)ammafakvi dx dr ds
0 0

t s
—2///8mmq(s)8maf8k8mvi dx dr ds

0 0 Q

t s
<C [ [ 1omnt(s) 2100~ 10Dn ' = )1 s
0 0
t s
-M{//nmmw@Mﬂmm@mmmmmwdT@
0 0

t S
+c///Hammq(s)HLg|yamaf||m|yakamvium dr ds
0

0 Qf
t

<c [ [l wladwel T - o)l dr ds
0

0
t

4 [ [ el Gumal elll s dr ds
0

0
t s

+0//M@mw%wmmmuhw. (3.3.62)
0

0
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We use Holders inequality with (3.3.10) to write

t
//af@mmqakﬁmm(ni —2') dQy ds

0 Q

t S
_ / / O, / (ata;?&kamm(ni—xi)

0 Q 0

—8mmafﬁkvi — 28maf(9k8mvi dT) dx ds

t s
= ///8mmq(s)8taf8k8mm(ni —a") dx dr ds
0

0 Qf

t s
—///Gmmq(s)ammafakvi dx dr ds
0 0

t s
—2///8mmq(s)8maf8k8mvi dx dr ds

0 0 Q

t s
<C [ [ 1omnt(s) 2100~ 10Dn ' = )1 s
0 0
t s
-M{//nmmw@Mﬂmm@mmmmmwdT@
0 0

t S
+c///Hammq(s)HLg|yamaf||m|yakamvium dr ds
0

0 Qf
t

<c [ [l wladwel T - o)l dr ds
0

0
t

4 [ [ el Gumal elll s dr ds
0

0
t s

40 [ [l lomalimlol s dr ds
0

0
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t s
<e [ [ el T =)l dr ds
0 0
t s
ce [Nats i [ ol dr ds
0 0
t s T 1
CE//HCI(S)HHWé(/HUH%{s df) dr ds
0 0 0

t s 1
C’e/”q(s)Hst;(/HvH%{g dT) ds. (3.3.63)
0 0

The Cauchy-Schwarz inequality implies that

t
[ [ ittt ~ o) dey as

0 ¢
t s s 1
ce [atsaast [ ([l de)” ar as
0 0 0
t t s
Oe/Hq(s)ll?p ds+ce/s/||v||§,3 dr ds
0 0 0
t s .
<o f Jo(s)s? [ 1 i€)” as
/||q )72 ds+ce/ /||v||H3 dr ds
sca/ﬂqumé(/WMmdQ s
0

+Ce/||q 3 ds+Cet2/||v||H3 dr

t t

< e [ #1atoe 0 [ o [ 1l i
0

0 0
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t t
ce/uq(s)ﬁp ds+oet2/Hvu§,3 dr
0 0
t t t
< C’et2/||q(s)||§{2 —i—Ce/s/Hlezqg d¢ ds
/Hq s ds+Cet2/HvHH3 i

< Cat? / la(s) 132 + Cet? / ol de
e / la(s) e ds + Cet? / lol%s dr
0 0

< Cet?/llvllfw + llglf + Cé/ lg(s)lz2 ds. (3.3.51)
0

Using (3.3.61) and (3.3.51) together with (A.2.14) implies

t

/(]zimm(s),@mmv(s)) ds < (C+ C’t2)€/X(s) ds

0

+(C+Ct2)e/\|ffo77||§,1 + | fell3 ds. (3.3.51)

]
Combining (3.2.82), (3.3.56) and (3.3.60) yields
t t
+ / Epn(s) ds + / Dy (s) ds
0 0
t
< CEn(0) + (C'+ e [(X(5) 4 fy ol + 1) ds
0
+ CGHamm(ff © 77)”%2(Qf><[O,T]) + CeHammfeH%%QeX[oj])- (3352)
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Lemma 3.3.10. With Ry, defined in (3.2.86), we have

t t

t
/!(Rtm,aﬁmv)\ ds < Ce/X(S) dS+C€/(HffO77HJ2LII + {1 fellzn
0

0 0
HO:(fr o m)l72 + 10 fell72) ds (3.3.53)

fort e [0,T].

Proof. This follows from similar arguments above combined with the divergence-free

condition

010 ak v 4 Opal ot + 0,aF 0,0 V" + aF 0,0, vi = 0.

O]
Lemma 3.3.11. With Ry, defined in (3.2.88), we have
t t t
[ 1 dne)l ds < e [ X(s) ds-+ e [yl + 11
0 0 0
+0u sty 0 ) + 1015l ds (3350

fort e [0,T].

Proof. This follows from similar arguments above combined with the divergence-free

condition

Omat v’ + aF oo, v = 0.

Combining (3.3.55) with (3.3.39) and (3.3.54), we have

Eim(t) + /tEtm(s) ds + /tDtm(s) ds

t

t
< CEpm(0) + C|[V0mv(0) |2 + Ce / X(s) ds + Ce / 17 ol + 1 follZ ds
0 0
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t
+06/ 10(f5 0 Iz + 10efellZz ds + Cell 0D (f5 © 12, <01y
0

t
O 0Dt 2o + C / 1802 ds. (3.3.55)
0

Summing the energy bounds obtained in Section 3.2, using estimates (3.3.13)-(3.3.55),
and absorbing the small terms that appear on the right-hand side yields

X(t)+/tX(s) ds—i—/tf?(s) ds

< CX(0) + Ce(1 +17) /(X(S) +Ifronllze + I1fellz2) ds + C€(||ff o 7|l

0

%ﬂﬂﬁp+WMﬁwnwé+H@ﬁﬁo+4%(Whomww%+Wﬂ®W%

H:(fr om)(O)IZ + ||(9tfe(0)||i2> + C/(Hff onllz: + 1 fellzz + 19:(f5 o m)lIZ:
0

2 t
O fell72 + 10u(fron)ll7e + 10ufeliz) ds+C (/ 10 (f5 0 M) 122
m=1 0

HOm fell 2 + 10mm(fr o MLz + 10mm fellZ2 + 10:0m (f5 0 m)IZ2

+1|0Om fe| 72 dS)- (3.3.56)

3.4 Decay of the Energy Norm X ()
We denote F(t) by
Ft) = (frem@Iinoy + £l o, + 100fr 0 M)z, + 10 fe()l[20.)

2
104 (f5 0 ) (0)1Z20,) + 1S F 2@y + D 10mm(fr 0 M) ()72,

m=1

O e ()6, + 1000 (Fr 0 MO0, + 10D fe (D E20y (3:41)
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and re-express (3.3.56) in terms of F(t) as follows:
¢ ¢ t
X+ [X(s)ds+ [Fio)ds < Cx(@+ 01+ 8) [(X(s) + Fls)) ds
0 T 0

+C / F(s) ds + CF(t) + CF(0). (3.4.2)

Shifting in time, we obtain

X(t)+/X(s) ds—l—/]:(s) ds < CoX(7)+e(Co+ Co(t —7)%) /(X(s)—l—]:(s)) ds

T

for 0 < 7 <t. We now prove the decay of the norm X (t).

Lemma 3.4.1. Suppose that X : [0,00) — [0,00] is continuous for all t such that
X(t) is finite and assume it satisfies (3.4.3) for 0 < 7 < t where C > 1. Assume
X(0)+ F(0) < M, M >0, and F € WH(RT). Then there exists C > 0, w > 0, and
T > 0 all depending on Cy such that

X(t) < CMe ¢ + C/e‘w(t_s) (F(s) + F'(s)) ds + CF(t). (3.4.4)

0

Proof. Let T' > 0 such that

2Cy + T > 4C} (3.4.5)
and € > 0 such that
<1 (3.4.6)
€ G T2 4.

85



Then we can write

CoeT? < }l. (3.4.7)

Then, when ¢t — 7 < T, we have that Coe(t — 7)* < 1. We can thus rewrite (3.4.3) as

X(t)+/tX(s) ds+/t]-"(s) ds < C’OX(T)+%/tX(s) ds

+<CO+%) /tJ—“(s) ds

+CoF(t) + CoF (1), (3.4.8)

which implies

X(t)—i—%/X(s) ds—i—%/]:(s) ds < COX(T)—l—CO/.F(S) ds
' ' FCOF (1) +TCOI(T). (3.4.9)

Multiplying by 2 and bounding below, we have

X(t)—i—/X(s) ds—l—/f(s) ds < 2Co[X(1)+ F(7)] +2C’0/f(5) ds + 2Cy F(1).

(3.4.10)

For 7 € [0, 7], we have

X(T)—l—/X(s) ds—l—/]:(s) ds < QCO[X(T)+f(T)]+QCO/f(S) ds +2CyF(T).

T T

(3.4.11)
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We move all but the first term on the right-hand side to the left of the inequality, i.e.

200 /F ) ds = F(T) < X(7)+F(7). (3.4.12)

Then on [0, 7], we have from (3.4.11)
X(T) +/ (200 /]—" ) ds — )) dr < 20,[X(0) + F(0)]

T
—i-ZC'o/]:(s) ds
0

+2C,F(T).  (3.4.13)

This implies that

N

X(T)+2%0X(T) < QC’O[X(O)+]-"(O)]+QC’O/]-" ds+200//]-" ) ds dr

=]

T

+(2Co + T)F(T)

< 2CH[X(0) + F(0)] + 2Cy

St~

F(s) ds+ (2Co + T) /]-"
+(2C, + T)F(T). 0 (3.4.14)

Combining like terms yields

(2020 O+0 T) X(T) < 2G[X(0)+ F(0)] +(2Co+T) / F(s) ds + (2C, + T)F(T).

(3.4.15)

Thus,
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X(T) < (2 CjiCET>[X() 1+ 20, / F(s) ds + 2CoF(T).  (3.4.16)

By (3.4.5), we have that

4C3 <1
2Cy + T
Choose k = 20 2. Then,
T
0
We now apply these steps on intervals of the form [T, 271, [27,3T],.... We obtain
the following bound on X (nT), n=1,2,...:
. (T
X(nT) < K"[X(0)+ F(0)] +2Co Y # / F(s) ds
= (n—j—1)T
n—1
+(2Co + 1) > K F((n - §)T). (3.4.18)
=0
Consider the second term above. We have that
n—1 (TL—])T n—1 (f—‘rl)
Z K / F(s)ds = K / F(s) ds
=0 (-i-jr =0 r
- (t+1)T
= Z nl / K F(s) ds
=0 o
Since k < 1, there is an w > 0 such that
k=e T (3.4.19)
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This implies that k¢ = T and k"' = e (DT = evTe=wnT This implies that

(n—3)T +1nT

n—1 n—1
Z/{j / F(s)ds = e TewnT / eI F(s) ds.
=0 (—1-j)T =0 T
- (e+1)T
< e TewnT / e“*F(s) ds [since s > (T
=0 o
nT
<

ewTe_w”T/ews}"(s) ds.
0

Thus,

X(nT) < k"[X(0)+ F(0)]+ QCO(iWTe_“”T/e“S}"(s) ds

0

+(2Co + 1) i K F((n—5)T).
< K"[X(0) + F(0)] + 2COGWT/€_w(nT_S)f(S) ds
+(2Co + 1) nz K F((n—5)T). (3.4.20)

Next let ¢ > 0. Then there exists an integer n such that ¢t € [nT, (n + 1)T]. By (3.4.10),

we have

X(t) < 2Co[X(nT) + F(nT)] + 2Co / F(s) ds + 2CoF (1)

nT
nT t
< 2Cok"[X(0) + F(0)] + 40026“T/e_w(”T_5).F(s) ds + 200/.7-"(3) ds
0 nT
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n—1

+2C0(2C0 +2) Y W F((n — §)T) + 2CoF(t). (3.4.21)

=0

In the last integral on the right hand side of (3.4.21), we have

nl’'<s — —nl > —s
— 0>nT —s
= 0< —w(nT —s)
— 1 < e w9
— F(s) < .F(s)e_w("T_S).

We also make the observation that 2Cy < 4C3¢*T. These inequalities together allow us

to express (3.4.21) as

nT t
X(t) < 20oR"[X(0) + F(0)] + 4C2eT / 0T ) F(5) ds + 40267 / F(s) ds
0 nT
n—1
+2C0(2C0 +2) Y W F((n — §)T) + 2CoF(t)
§=0

< 2Cok"X(0) + F(0)] + 4C5e~T / F(s) ds

+2C(2C, + 2) nz_i KF((n—4)T) 4+ 2CoF(t). (3.4.22)

J=0

We now make the following observations:

=

T for t € (nT,(n+1)T)

=7
— K"< KT sincek < 1,
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which implies
K< T = e T 2 ()]~ (3.4.23)

Furthermore,

n > fortE(nT,(n+1)T) = nT —s>t—T —s
— —wnT —s) < —w(t—T—25)

— efw(anS) S e*W(t*Tfs)_ (3424)

Using (3.4.23) and (3.4.24) in (3.4.22), we obtain

¢
+4C§e“’T/e_“’(t—T_s)]:(s) ds
0

[1n(x)|
-7t

X(t) < 20,em®IX(0)+ F(0)]e

1204(2C, + 2) i W F((n— §)T) + 2CoF(t)

< 2CO€ln(n)[X(O)+f(O>]eIln}n)t+40362wT/€w(tS)F(S> ds

0

n—1
+2C0(2Co +2) Y W F((n — §)T) + 2CoF(t). (3.4.25)
=0
n—1
Now we consider the Y /F((n — j)T) term in (3.4.25). First, we express £ as an
j=0

exponential and re-index the sum by setting r = j + 1.

.Z_: f-cj]:((n — j)T) = X_: e"”jT}"((n — j)T)
— En: e VT E((n — (r — 1)T). (3.4.26)

We set f(r) =e 0" VTF((n— (r —1))T), and we denote
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n

Sp = Z_: KF((n—j)T) = Z f(r). (3.4.27)

r=1

Following the strategy of [64], we apply Abel’s partial summation formula to (3.4.27) to

obtain

sn = f(1) —|—/f(7“) d7“+/f'(r) dr. (3.4.28)

We now seek to bound each term on the right side of (3.4.28). We observe that
f(1) = F(nT). Since F € WH(RT), we know that F is absolutely continuous. This
implies that

F(t) = F(nT) + / F(s) ds (3.4.29)

on [nT, (n + 1)T]. Therefore,

FnT) = Ft) - / F(s) ds
< ]-"(t)—i—/]—"’(s) ds. (3.4.30)

We also make the following observation: for s € [nT, (n + 1)T],

nl'<s<n+1)T = 0<—-w(nl —s)
= 1< e w9, (3.4.31)

Using (3.4.31) and (3.4.24) in yields
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F(nT) < F(t) +/6_‘“("T_S)}"'(s) ds.

nT
t

< F(t)+Cp / e =) F(s) ds. (3.4.32)
nT

Next, we bound the /f(r) dr term in (3.4.28). Using the change of variable s =
1

(n— (r —1))T, we obtain

/nf('r) dr = /ne“(rl)T}"((n —(r— 1))T) dr

nT

= C’T/e“’(ts)}"(s) ds. (3.4.33)
T

n

We follow a similar approach with the / f'(r) dr term in (3.4.28) to obtain

1

n nT nT

/ f'(rydr = Cr / e F(s) ds + Cr / eI F(s) ds. (3.4.34)
T T
Using (3.4.32), (3.4.33), and (3.4.34) in (3.4.28), we obtain

t nT nT

S, < f(t)—f—CT/e—w(t—s)}-/(S) ds—i—CT/@_w(t_s)F(S) dS+CT/€_w(t_S)f,(S) ds
¢ t

< FO)+Cr / e "I F(s) ds + Cr / e F(s) ds. (3.4.35)
0 0
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Using (3.4.35) in (3.4.25), we obtain the following bound on X (t), ¢t > 0:

t
X(t) < 2CemMIX(0) + F(0)]e " + (4C2e>T + ) / eI F(s) ds

0
t

+Cr / e U= Fl(s) ds + (2Cy 4 1) F(2). (3.4.36)

0

Let C; = max{2Cqe!™®)I, %, 4C2e*T 4+ O, Cr}. Then,

X(t) < CG[X(0)+ .7:(())]6_CLl +Cy /ew(ts)}"(s) ds

0
t

+Cy / e~ =9 F/(s) ds + O\ F(t). (3.4.37)

0

]

Remark 3.4.2. Lemma 3.4.1 also holds in the case where F(t) decays exponentially, i.e.
F(t) < CrF(0)e 05, t > 0. (3.4.38)

In this case, we do not require F'(t) € L*(RY). We adjust the proof of the lemma by
applying (3.4.38) to (3.4.22) to obtain a bound of

Ql+

X(t) < CMe ¢, (3.4.39)

where X (0) + F(0) < M.
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Chapter 4

Well-posedness Theory for FSI

The goal for this section is to investigate and build upon the current well-posedness
theory for free-boundary fluid structure interactions. As previously mentioned, the main
challenges associated with studying the existence of solutions for F'SI models include the
nonlinear nature of the equations, the time-dependence of the domains, and the coupling
of parabolic and hyperbolic phases. These difficulties have left the question of existence
and uniqueness of solutions open until recently. At this stage, we divide our attention
between two cases: local and global theory. In both cases, the first step in obtaining a
solution for the coupled system is to write the equations on a fixed reference configuration

using the flow mapping 7. This configuration is known as the Lagrangian framework.

4.1 Local Theory: Quasilinear Elasticity

The analysis of an FSI model from the perspective of optimal control heavily relies on the
existing well-posedness results in the literature. We thus consider the following simplified

model proposed in [18] to address the existence of a local-in-time solution for a fluid-
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structure problem:

(ut—yAujLDu-u—l—Vp:ff, Qr(1),

divu = 0, Qe(t),

n, — Divy = f.., Q. x (0,7), L)
won! =1, Lo x(0,7),

XN = [o(u,p) on’][(Dnf)~"N], Tex (0,T),

(=0, Ty x (0,7).

Here, n®(x,t) = n(z,1t)

the material point = in €. and €2, respectively. That is

q. and 1/ (z,t) = n(z,t)|q, as the positions at time ¢ > 0 of

n°: Qe — Qe(t), nf 1 Qe — Qp(2).

Let F' = (Fy, F,) denote the external forcing in the material frame on the coupled
system (note: in the context of (3.1.2), F¥ = f;on and F€ is the external force restricted
to the solid domain €2.). In this framework, the full coupled system can be written

componentwise in Lagrangian coordinates as follows:

(

vl — 0;(a)alorv?) + Op(akq) = F, Qp x (0,7,

akopvt = 0, Qr x (0,7,

vy — IO (Om - Ojm — i) Okm] = F., Q. x (0,7),

IR Dm - Oim — 8 )Okm' Ny = l/algagﬁkviNj — aquj I.x(0,7), (4.1.2)
v =0, Ty % (0,7),

v(z,0) = up, D,

n(x,0) = x, D,

where N is the normal field pointing inward to the fluid domain and ¢7** is the fourth

order tensor (2.5.25) expressed componentwise, i.e.

TNkt + 1(Oir e + Sueh).
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Local Well-posedness

To obtain the existence and uniqueness of a local solution for (4.1.2), we consider the

following functional framework: define

VAT) = {¢ e L*0,T;H" Q)| 0;¢ € L*(0,T;H""(Qf)),n =1,2,3},

VHT) = {¢eL*0,T;H* ()| 0/¢ € L*(0, T;H(Q.)),n =1,2,3},

on the fluid and solid domains, respectively. On the entire domain D, we introduce the

space
L, (D) = {¢ e L*(D) | divi) =01in Qp, ¢ -n =0 on dD}.

Next, we define the set of fluid and flow velocities:
©)
X = {U € L*(0,T; Hy(D)) | (vf,/ v°) € VH(T) x vj(T)}.
0
We note that X is a separable Hilbert space, and it is endowed with its natural norm

([

In order to specify additional regularity on the solid, we define the following subspace of
XTI

3 2
HngfT = ||U||i2(0,T;H(1)(D)) + Z [“allvfHi?(O,T;H“‘”(Qf)) T ‘ ] '
n=0 L2(0,T;H ()

)
Wy = {v € Xr | v € L=(0,T; L*(D)), af/ v¢ € L0, T; H*"(2,)),
0

n = 0,1,2,3}, (4.1.3)

with the norm given by

3

Wl = Iolk, + lvuel2e o rzzon + 3
n=0

2

Lo (0,T;HA™"(Q))

)
oy / V¢
0
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For the pressure regularity on the fluid domain, let
Yr = {qeL*(0,T;H*(Qy)) | 0fq € L*(0,T; H* (), n=1,2}, (4.14)

endowed with its natural Hilbert norm

2
HQH%T = Z||atnq||%2(0,T;H3*”(Qf))'

n=0

Furthermore, we consider its subspace
Zr = {q€Yr | g€ L®0,T;L*(Q))} = Yr nW>(0,T;L*(Qy)), (4.1.5)

with norm given by

HQ||2ZT = ||€I||§fT + ”atqu%O"(O,T;L?(Qf))'
We now state the assumptions imposed on the source f and its initial data:

Assumption 4.1.1. Suppose that source term f(t) is defined on [0,T]. Assume
f € Ep:={¢pec L*0,T; H(D)) | 0}¢ € L*(0,T; H*"(D) forn =1,2,3}, (4.1.6)

f(0) € HY(D), fi(0) € H'(D).
The following existence and uniqueness result is provided in [18]:

Theorem 4.1.2. Let D C R? be an open bounded domain of class H*, and let Q. C D be
an open set of class H* such that Q. C D. Suppose ug € H°(Q)NH’(Q.)NHy(D)N LY, ;-
Let QO = DN ()", and let v > 0, A > 0, u > 0 be given. Under Assumption 4.1.1
and necessary compatibility conditions on the initial data (provided in [18, Thm. 1)),
there exists T € (0,T) depending on ug, f, and Qy, such that there is a unique solution
(v,q) € Wy x Zp of the problem (4.1.2). Furthermore,

n € C([0,T); H () N H(Q.) N H'(D)). (4.1.7)
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4.2 Lemmas for the Construction of a Global Solu-
tion

Our goal for this section is to establish the existence of a unique, global in time solution
for the coupled system (3.2.4). We follow the strategy outlined in [33] for the proof of well-
posedness. First, we obtain the existence and uniqueness of solutions for an associated
linear problem in which the coefficient matrix a is given and close to the identity matrix.
It is at this stage that we address the mismatch in regularity between the parabolic and
hyperbolic phases in the fluid-structure system. Using the maximal parabolic regularity
of the Stokes system [51] in conjunction with the sharp trace regularity for the wave
equation given in [41], we can transfer the regularity properties of the fluid across the
common interface without losing derivatives.

The construction of the solution for the nonlinear problem arises from an iteration
scheme based on the well-posedness results for the linear problem, energy estimates that
yield a Gronwall-type inequality for lower order norms of the iterate solutions, and the
contraction mapping theorem.

We now state the main result, which will be proven in Section 4.3:

Theorem 4.2.1. Let a, f > 0. Assume that vy € V N H%(Qf), v (0) € VN H%(Qf),

ve(0) € V, wy € HT9(), and wy € H17°(Q,) for 6 € (0, 1) satisfying the compati-

bility conditions
w1 = Vo,
Awy — aw; — Pwy + fe(0) = Avg — Vo + f(0),
Awy — awy(0) — fwy + Oy fe(0) = Awvy(0) — Vg (0) + @(@a?(())akvi(()))
—0,a¥(0)9kq(0) + D f(0)vo + 0:.££(0),

and
Owo __ Ovo
oN T TN T
8w1 . 8
7T o (S Vw10 7
Owy (0) 0 ;
atztv T = a—N(Avt(O) — V¢ (0) + 9;(0,:a%(0) 0" (0)) — ;af (0)0rq(0)
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+fo(0)2)0 + 3tff(0)) - T,
on I'c, where T 1s a unit tangential vector. Furthermore
Vo = 07

AU() — V(]o + ff(O) =

—0;(0,ak(0)9v" (0)) — Ad' (0) + 0,aF(0)0,q(0) + 0irq(0) + D f(0)vg + 0, f£(0) = 0

on I'y. Assume, in addition, that

[voll 25 + 1ve(O) |z + [vwe(0) |2 + l[wol[ s + [lwn ]|z < e

where € > 0 is a sufficiently small constant. Let f = (fy, fe) satisfy

(

fr € ([0, T, H3(Q)); Oufy € L([0,T), H*()), Oufy € L*([0,T], H'(Q)),
fer € WHH((0,T], H2 (2)) N W21((0,T], LA(Q0)),
attfeyeLl([O’T] %( e))v 8tttfe l<[07 ]’H % 6(98))7 <4'2'1)

O fer € LM(0,T), H (Q0)) N W2'((0,T), L*(Q0)).
| Oubnfe € LY([0,T], H-3 (),

form = 1,2 and lie in the ball

{f = (fr. fo) | Wfrllzzqomsmspyy + 19cf sl oo mimzo,)) + 10 frllLz o))

+”fe||W1»1([O7T];H%( + ||fe||W§ (OTLI2( + ||attfe||L1 ([0,T);H? ()

Ot fell 1 o 7.5~y T Z (HamfellLl (0,173 (00)

+”8mf€H OT] L2(Q)) + Hatt mfeHLl ([0,T7; Hﬁf*é(ﬂ )) ) S HyOHY/(O)}

(4.2.2)
If the norm

5 (O 3y + 10cf ()| z20) + O fr ()| ) + 1fe() | a1 () + 10 fe ()] 220
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2
HOufe 2@ + > 10mmfe)lz2() + 110:0m fe(t) [l 22(0;) (4.2.3)

m=0

is sufficiently small in H*(RT)NLY(RY), then, for any T > 0, there exists a unique global
solution (v,w,q) to (3.2.4) in the space

Y = {(v,qw) | ve L*([0,T]; H () N H'([0,T); H*(%)),
v € HY([0,T); H*(Qy)), ve € H'([0,T]; L*(2y)),
q € L*([0,T]; H*(Qy)) N H'([0,T); H* (), ¢ € H'([0,T]; H'(2y)),
Fwe L2(0,T]: HZ 079 (Q,)), j=0,1,2,3}.
(4.2.4)

First, we construct a local solution to a linear problem with given coefficient matrix a
that is close to identity in some sense. It’s at this stage that we address the mismatch in
regularity between the parabolic and hyperbolic phases using the sharp trace regularity
of the Dirichlet-Neumann map given by [41] and the maximal parabolic regularity of [51].
Unfortunately, the solution obtained will not be sufficiently regular to take advantage of
the decay obtained via Lemma 3.4.1. Thus we construct higher regularity solutions that
allow us to take advantage of the decay mechanism of Lemma 3.4.1 in extending local

solutions for all times ¢ > 0.

4.2.1 Linear Stokes

We begin this analysis by looking at a linear Stokes system with Neumann boundary
condition. The following result, given in [51], provides the maximal parabolic regularity

used to pass regularity information from the fluid to the solid across the boundary T'..

Lemma 4.2.2. Consider the system

ok — AP + Vb = fF Qp x (0,7T),

| (4.2.5)
&-zﬂ =g, Qf X (O,T),
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subject to the mixzed boundary conditions

O NI — gN¥ =hk T, x (0,T),

(4.2.6)
P =0, I'r x(0,7),
for k =1,2,3 and subject to the compatibility conditions
/g(O) dr = /vo - N drl.,. (4.2.7)
of r.
and the assumption
g = divA+ B, (4.2.8)

where A, B € L*(Q; x [0,T]). Let vg € H' (). If the terms obey f € L*(Qy x [0,T]),
g € L*([0,T}; H'()), and h € LQ([O,T];H%(QJ:)) N Hi([O,T];Lz(FC)), then there is a

unique solutions y = (v,q) on [0,T] to the non-homogeneous system which satisfies

lyll < C(HUOHHl(Qf) + 2@y <o,y + 9l 2o,y m0p)) + Al E20,73502(0)))

Bl 2 o.riz2 @, + 17l P 4.2.9)

L2([0,T);H3 (0 Hi OT]LQ(F))) (

where C' > 0 is a constant and the norm ||y|| is given by

lyll = lvllz2qorymz@p) + Ivllcqommrzep) + llallz2qomm@))

Hlall 4 (0,720 vl z2q0.2:220))- (4.2.10)

We now apply Lemma 4.2.2 to the following system that couples the linear Stokes
equations (4.2.5)-(4.2.7) with the damped wave equation (2.5.18).

o — Av+Vq = fy, Qp x(0,7),
dive = g, Qr x (0,7), (4.2.11)
wy — Aw + awy + fw = fo, Q. x (0,7T),
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with boundary conditions

v = wy, ['.x(0,7),
V= 07 I-‘f X (OvT)7 (4212>
2 _gN=23%1+h, T.x(0,T).

Here, the functions f¢, f., g, and h are given data.
The following lemma provides the existence and uniqueness of solutions (v, ¢, w) sat-
isfying (4.2.11)-(4.2.12).

Lemma 4.2.3. Consider (4.2.11) - (4.2.12). Suppose that the initial data satisfies (vy, wo,

wi) € (VN H? Q) x Hi5(Q,) x Hi7%(Q,) for § € (0,1), and

Av(0) — Vq(0) + £1(0) € H' () (4.2.13)

with q(0) determined from the elliptic system (4.2.18). Additionally, let fr, fe, g, and h
satisfy

fre L([0,T); H'(Qy),

Oify € L*([0,T]; L*(Qy),

fe € LMN[0,T); H=(Q)) N W= ([0, TT; L2(Q)),

8:f. € LY([0,T): Hz()),

Oufe € LM[0,T); H-57°(Q)),

g € L*([0,T]; H*(y),

ge € L*([0,T); H' (),

he L*([0,T); H2(T,),

he € H7((0,T); L*(T.)) N L*([0, T); H2(T.)),

A, B € L*([0,T); L*(Qy)), (4.2.14)

and

g = divA+ B, (4.2.15)
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for some time T > 0. Assume the following compatibility conditions

wy = Vo, Fc’
% ST = % -7+ h(0) - T, L, (4.2.16)

Awy — awy — Pwy + fe(0) = Avg — Vo + f£(0), T,

and
vg =0, Iy,
0 ! (4.2.17)
AUO_VqO—i_ff(O) :07 Ffv
hold where qo solves
Agy = —gt(O) + Ag(O) + d’iUff(O), Qf, (4.2.18)
with boundary conditions
% — Avy- N + f(0) - N, Ty, (42.19)

go=2%0.-N—2%%.N—h0)-N, T.

Assume also wg = 0 on I'.. Then there exists a solution (v,q,w) on (0,T) which belongs
to'Y where

Y = {(v,q,w) | ve L*[0,T}; H*(Qy)), v, € L*([0,T]; H* (),
vie € L2([0, T} LA(y)), q € L*(10,T); H* (%)), ¢ € L*([0,T]; H'(y)),
Gelr, € H3((0,T); L*(T.)), &jw € L=([0,T]; HT (), j =0,1,2}.
(4.2.20)

Proof. Step 1: a priori Bounds on the Solution

We apply Lemma 4.2.2 to obtain estimate (4.2.9) for the time derivative of the coupled
system (4.2.11) - (4.2.12). We set y = (v;, ¢;) as in Lemma (4.2.2). Then we have

vl = lvellezqomsmzi0,) + velleqomimze,) + gl 2o m@y))
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+||%||sz (0.T):L2(T)) + lveell 22 o,/m1:22 0, ) -

which satisfies

Iyl < C(||Ut(0)||H1(Qf) + 10 frll 2y <10, + 1 gell 2o, ) + 1Al 220,71 22(02,)
+| Bl z20,11:2(25)) + Hh‘tHLQ + Al 1

o

([0,T);H3 (T

v

HE(0,T;L2 (1))

(4.2.21)

L2(10,T};H 2 (T.)) H%f([O,T];LQ(Fc)))'

Our objective is to bound the terms on the left-hand side of (4.2.21) by the initial
data, boundary data, and source terms. To estimate the normal derivative terms, we

apply the sharp trace regularity result of [41] to obtain

aUJt awt
Jov 5wl < (il + 101,
L2((0.T}:H? (1)) HE((0,T};L2(T.))
IOl oozt ey + 10t orzoeny
+||3tfe||L1 ([0,T]:H 2 (2.))
+||at2.fe”Ll([O,T];LQ(Qe))), (4.2.22)

where the velocity matching condition w; = v on I', was used. Next, we estimate the trace
of v on the right-hand side of (4.2.22). Trace, interpolation, and Young’s inequalities yield

the following estimates:

100 ooty < elvllzqomus@n + Cellollzqorymiap, € € (0,1] (4.2.23)

and

13 oz = €Wlmqomiizn) + Cellvllzqomimzy), € € (0,1].(4.2.24)

Furthermore, if we use (4.2.23) and (4.2.24) in (4.2.22), we obtain

H 3wt

H awt

L2((0,T);H? ( HT(0,T);L2(T.))

< c(nwlqu(Qe) 0,V ., + llolezozsarsinyy
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+6||U||H2 ([0,17; L2(Qf + ||U||L2(OT] H2(Qf + ||8tf€||L1 ([0,T); HQ(Q ))

+||at2fe||L1([0,T];L2(Qe))>' (4.2.25)

Applying (4.2.25) to (4.2.21) yields the following estimate.

Iyl < C(Hvt(O)HHl(Qf) + 1 fell 2y xj0,1) + l19ell 2o, 1.m12)) + 1Al 220, 10:22(02)

Bl 201320, + 1] + 1 ll 4 )l

L2([0,T);H3 (T2)) HT([0,T:L2(Te)) H3 Q)

+1Jwy (0, )Hm +6HvHL2 (o3 + €llvlm2o.r02(0)

+Celvll 2o i@ + 106 fell oo 7y, ) T ||(9ffeHLl([o,T];L?(Qe)))-

(4.2.26)

We also require the elliptic Stokes estimate (see [3]) in order to obtain the full regu-

larity for the fluid velocity and pressure, i.e.

vl 220,13 0,) + gl 20,0520

< C<||J"“HL2 (o @p) F Vel 20,715 @) + N9lle2ozim200) + 101 oo 11003 )

). (4.2.27)
12(0,;HE ()

A second application of the sharp trace regularity for the wave equation provides an

|

estimate on the normal derivative of w on the right side of (4.2.114), i.e

I

. <
L2([0,T];H 2 (T.)) H H3(S,)

< C(HUJHHg(EC) + ||wo||Hg(Qe) + ||w1||H%(Q
+||f6||Ll([O,T],Hg(Qe)))‘ (4-2.28)

Here we take ¥, = ['. x [0, 7] and H*(X.) := L*([0,T]; H*(T.)) N H*([0,T]; L*(T'.)). Using
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the norm on H*(X,) as defined in as in [46], we have

Hw”H2 T, X[UT]) = ”77_:CHL2([0,T];H%(F + Hw”H?(OT] L2( ))
t
< /v ds el (4.220)
H / L2((0,T);H 3 (T)) H2 (0.TELA(Te)
For the first term on the right hand side of the inequality above, we write
1 ] a2
2([o,17 H2(F H2

We apply the Bochner inequality (given in [55]) and the Cauchy-Schwarz inequality to
the integral term on the right side of (4.2.30) as follows:

T t 9 t 9
v ds ol 5. ds| dt
H2(T)
0 0 0

H3(T.)
t t
/ ds/HvH2 s dsdt
H2 (D)
0
T
t/||v||2 s dsdt
H3 ()
0

T
< ol / tdt
L2([0,T);H3 (T2))
0

2 2

dt <

A
T — g T — 5 T —

Next we apply the trace inequality to obtain

¢ 2
H/vds
0

HE(T.)

dt < CT*|vll72q0mpm30,)
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Therefore,

. S CT|ollzqoryas@p)-
L2([0,T);H2 (T.))

[

Next, we consider the ||w]| s

term. By the definition of the fractional order
HE ([0,T);L2(T.))

Sobolev norm, we may write

w5 = |lwl 3 + [lwull 1

Hf ([0,T);L2(T.)) H7 ([0,T);L2(T.)) H? ([0,T);L2(T.))"

We focus on the second term. Recall that wy = 0 on I'.. Then, by the Cauchy-Schwarz

inequality, we have

N

t
w2y < /||U||L2(rc)
0

< COrljv]lrzr,)-
This implies that

lwllzzo.re2ey < Crllvllzqoryezway < Crllvll s o myie )

Furthermore, the boundary condition w; = v on I'. implies

[l 5 = [lvll 3

H3 ([0,T);L2(T.)) HE3 ([0,TL2(T,))

Thus,

[well 5 = [lvll 3

H3 ([0,T);L2(T.)) HE3 ([0,TL2(T,))

To estimate ||v]| 3 we first estimate ||v||z2(r,) using the following trace in-

H3 ([0,T1:02(Te))’
equality [23]:

[0z < Cllvllar@y < Clloll

Thus,
< Cllvll, 5

o]l 3

H? ((0,T);L2(T.)) HE ([0.77:H 2 (2))"
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We also utilize the following interpolation inequality given in [45]:

ol 3 (4.2.31)

3 1
wdomatay = CllEegmzem Iz mm e,

We estimate the right hand side of (4.2.31) using Young’s Inequality with p = % and
q = 4 to obtain

3 1
1ol fr20 17,2200, 19 N2, 102000y S €Vl 20, m122000)) + Cellvll 201302002 -
Substituting back into (4.2.29), we have

1ol 3 oiiory S CTIVN 20300 + €llvllazqomyezem + Cellvllz2qoryazop)-

(4.2.32)
We now use (4.2.28) and (4.2.32) in (4.2.114) to obtain

ollL2o,rm30,) + lall 2o rpm2@,) < C(HffHLQ([OvT]%Hl(Qf))+HUt||L2([07T]§H1(Qf))

+lgll 2o 20, + 1A
+lwoll 5 + [lwall 3

L2(0,T):H 3 (1))

H3 (Tex[0,T)) H3 (90)

+T||v| 2 ([0,T);H3(Q2y)) T ellvllm2 (10,T]5L2(2y))

+T | vell 20,1120 )) + ||fe||L1 (0.1):H3 0 ))>

(4.2.33)
Summing (4.2.26) with (4.2.33) and using the inequality

[ollz2qo,m7;2005)) < CT |[vollm20y) + CT ||vell 2(0,m3:m2(05)),

we obtain

[vell z2omm200p)) + 10elleqo 2@y + @l 2qom;m @) + HQt!|H4(0T] L2(1)

([0,T];H3(Qy)) +HQHL2(O,T];H2(Qf))

< (CT + O)ve(O) |l ey + C(Hfme([o,T};Hl(ﬂf)) + 10 frll L2 (2 x[0,17)

+HUttHL2 ([0.T):L2(2) T v
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gl z2 om0y + 9ell 2o )y + 1Al 2o,z + 1Bl L2qo,riz2@)))
+[[h ||L2(0T]H2 , | e | , [ Rell 1
+|[wol|

L2([0,T};H% (T.)) HE ([0,T];L2(T.))
3 () + Hw1||H2(Q + [Jwe (0, )HHj(Qe) + ef[vl| 2 ([0,T];H3(Qy))
—i—THvHLz ([0,T);H3(Q)) T THUtHL2(0T];H2(Qf + 6H'U”H2 ([0,T];L2(2))

+ Ol iz + 1ell ot oy + 10

+Hat2feHLl([O,T];LQ(Qe))>- (4.2.34)

LY([0T]:H? (20))

Taking € and T sufficiently small, we absorb the last four terms on the left-hand side, i.e.

[vell 207312 0020)) + velloqorimzip) + gl 2o, ms @) + 196l 4 0 22y

Hvullrzqomcz@p)) + 1vllezqorms @) + gl L2qo.rym20)))
< (CT + O)lve(O) || a1 @) + C(||ff||L2([0,T];H1(Qf)) + 110ef1ll 22y x10,77)

gl 2omym200p)) + 9l 20,130 (2,)) + 1Al 220,71:2209,)

HBllz2 o, + HhtHLQ(OT] aday T HhtHH4 (07122 lwoll 5
+||atfeHL1 (0T (90) + H@ fellz1o.13;22(020 ))> (4.2.35)

We also require the interior regularity of the wave equation [41], which gives

[|we | ) + [[wee ]|

Lo (0.T);HE % (9.))
< Cllodl 3

Lo ([0, T H ™1 ()

+ [lwi (0 )HHT(;(QE) + ||wttt(0)||Hfz{f75

Hi-9(T.x[0,1])
+ Ha“feHLl ([0,T1:H~179(2,))
< C(H'UtHL2 ([0, H2(Qf +C||Ut|| [OT] L2(T + Hwtt( )HH 75(95)
+||we (0) - + Hattfe”Ll([OT,H 1,5(96)), (4.2.36)

where T' < % was used (without loss of generality). We also have the following interpo-

lation trace inequality

3 1
Hoell 113 o ryiz2 ey < ClMotlEn oryzap 10l 22 itz 0 (4.2.37)
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Using (4.2.37) and Young’s inequality in (4.2.36), we have

[|we| + [|wese|

Loo([0,T;H % (9 L=([0,T);H- 1% (Q))

< lvell 2o, msm20,)) + N0ell r omiz2ep) + [Jwee (0) ] + [|we (0)

+[Ope fe |

H-17%(0,)

(4.2.38)

Hi7 %)

LY(0 T H-173(Q0))"

By elliptic regularity (using 7" < %) for w and wy, respectively, we obtain

G e ||wtt(t)||Lm([0T} it sy T OO o mat o)
wc| / T
(0,7 H T (1)) PUOTRIE0e)
< lwu(t >||L°° (0.13:HT (e )+Ca|’wt(t)”Loo([o,T];H%*fs(Qe))
O ooy -0, T Well o pent-seanyy (42:39)
and
Fol o zi-say < ”wt“(t)”m([w] 150 T OO oo 11500,
—i—C’H/vt ds G
Loo([O’T];Hiffé(rc)) H4 (FC)
+H&”feHLl (0.T:H-173(Q))
< |we(t )”L"O(O,T);H_Z_S(Qe) + Ca”wt(t)HLoo(o,T);H—%—é(Qe)
+Cloill 2o 200 + Cllwnll -5,
We set
ol = 10 o iy *+ 1O e o=y + 160 oo myari-sca

Fllwell o o ry-1-5(00)

and sum estimates (4.2.36), (4.2.39), and (4.2.40) to obtain

kol < Clvll oo 0,550,y T Cllvell 2oz + Cllvellam qomrizacey)
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—|—C’||w1|| T-s + ||wtt(0)||H%7 5(02e) + ||wttt(0)”H71ra(Qe)
+||f€||L1 OT] Hzfé _|_ ||attf€||L1([0T 1 6(96))' (4241)

Step 2: The Fixed Point

Next we describe the construction of the solution using a contraction mapping ap-
proach. Let Y, be the space defined by

{v ] ve L2(0,T); H (), v € L2(0.T): H*())), v € L2(0,T); L2(Q)) ).

(4.2.42)
Define the mapping 7 : Y, — Y, as follows: given v € Y,,,
0
b s Blr, a% v, (4.2.43)

i.e. T(0) = v. Given v € Y,, consider the following modified coupled system (4.2.11) —
(4.2.12):

(

o — Av + Vg = fy, Qe(2),

V.-v=y, Qr x(0,7T),

oy 2 0.T) (4.2.44)
Vo-N—gN=Vw-N+h, T'.x(0,7T),
lv=0, T x (0,7),
and
wy — Aw + awy + pw = fo, Q. x (0,7T),

Wt = @, Fc-

We follow the following scheme: given 0, we solve the wave equation with Dirichlet
data w; = v on I';, i.e. we solve (4.2.45). We first estimate the trace of © on I'. by v on
the interior of Q. Using (4.2.23) — (4.2.24), we have

10 o oy = €llolzzqomsms@p) + Celloll 2oy megy, € € (0,1] (4.2.46)
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and

H/U”H2 [0 T} LQ(F )) S EH@HHQ([O,T};LQ(QJC)) + CE|’1/)HL2([O7T];H2(Qf)), € E (0, 1} (4247)

The sharp trace regularity estimates on the normal derivatives of the displacement
of the solid yield bounds on w and w; in terms of ¥ on the common interface. In the
following, the notation (data) will stand for the contribution of the initial conditions and

given source terms to the a-priori estimates. (4.2.28) — (4.2.29) yield

[ < ¢ (ata) + Tl uanantogy + lolmgoarasinyy

L2([0,T:H 3 (T.))

0| L2 jo,13; 2 (25)) + [ el (4.2.48)

LA(O.T)H (ne»)'

Furthermore, (4.2.22) — (4.2.25) with (4.2.23) — (4.2.24) give the following bound in

terms of v on the interior (through the trace inequality)

H (9wt

H (9wt

L2((0,T};H? (T H([0,T);L2(T.))

< C((data) + €||@||L2<{0,T1;H3<Qf>> + €l|0l| m2o,1;22(0,) + CellOll 20182029
1
HIOSell 1 o 3 )y T 197 fe||L1<[0,T];L2(Qe)))~ (4.2.49)

We now solve (4.2.44) with Neumann data. Using the standard Stokes estimate (see
[3]) on (4.2.44) yields

o[l 2o, rm39,) + lall2qorpmz@,) < C(data>+||vt||m (0,TJ:H (9))

. (4.2.50)

H(’)N L2([0,T];H 3 (T, )))

which, when combined with Lemma (4.2. 2) applied to the time-differentiated system,

provides estimates on v and v; in terms of ~ and %‘1’(;, ie.

[vell z2omym2005)) + lvelleqomymzp)) + @l 2qorsm @,

Hlaell 3 o ry.z20yy T N10ellz2q0m12200)
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9, 9,
< C((data H ot H o > (4.2.51)
L2(0,T:H 3 (T.)) Nk o2
We now sum (4.2.50) and (4.2.51) to obtain
[l 2o, im0 + lall 2o,z + vl 2oz + lvellcqoaazey)
+||qt||L2 ([0,T);HY(S2y)) ) T+ ||qt||HZI ([0,7]:L2(T + ||Utt||L2(0T]~L2(Qf))
0 0 0
< C((data) + o H L H il ),
N L2([0,T);H3 (T.)) L2([0,T};HE (T.)) H([0,T);L2(T.))
(4.2.52)

where we estimated vy 220,711 (2;)) Dy (4.2.51). Using (4.2.48) — (4.2.49) in (4.2.52),

we obtain

vl ez, m3 (9,0 + @l 2o msm29,) + el 2oy m2@p)) + vell ooz,

Hllaellzzqomyr@py + 14l 41 o .20y T Illzqomyizz@p))

<C ((data) + D10l 2o,13m305)) + €ll Ol m2(0,13:02(09)

+T||Ut||L2 ([0,7] H2(Qf + ||F ||L1 ([0,T7; Hg( ) + EHW[)HL2 [OT]iHB(Qf))

el 0l z2j0,1:2202,5)) + 101 220,112 025)) + 1O ||L1 (0.T:H % (20))

+]02 fe||L1<[o,T1;L2(Qe>>)

<C ((data) + (CT + )9l 20,3m3(02,)) + €0l m20,35020)))

+CT2 |0l 2oy 20 + I fell y Tl fel

L(] ()T]Hz Li([0o,7);H %(Qe))

+1107 feHLl([O,T];LQ(Qe)))- (4.2.53)

We concern ourselves with the bounds on v only and add e||9¢|c(o,r);m2(0,)) to the

right hand side, i.e.

vllr2qo, a3 90 + Vel 2o,y m200,) + [vell oz, + vl 2o,y r20))
< C((data) + (CT + ) [0l 20,13 (25)) + €llOl m20,m122(0,)) + T8 £2(0,73:12(90,)

Fellodleqorsaz@m + 1ell o myat oy T 196 Fell promyad o)
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1
+[|0¢ feHLl([O,T];LQ(Qe))> . (4.2.54)
We also absorb [|0|| g2 (jo,71:22(0,)) into the 9, 9, and 9 on the right side of (4.2.55).

vl 2o, m395)) + Vel 2oy m2000) + Vel cqorsmz,) + vl 2oy r2@))
N 1.
< C((data) + (CT + )0l 2o, m302)) + CT2 ([ 0e|| 20,1122 (02,

+ellodll e oz, + €Vl 2o,z p)) + er||L1([07T];Hg(Qe))

1
Aoy + 198 Hlsomasan ) .

We now show that 7 is a contraction from Y, into Y,. Let 9; and 0y be two elements

in Y,. Then vy = 701 and vy = T 9. We consider the system satisfied by V' = v; — vs:

(
8V — AV +VQ =0, Q x (0,7),
V-V =0, Qr x (0,7,
sx0.1) (4.2.56)
VV-N-QN=VW-N, T,x(0,7T),
\U:O, FfX(O,T),
and
Wy — AW 4+ aW, + W =0, Q. x (0,7T),
o t+ 5 0.7) (4.2.57)

Wt = V, Fc X (O,T)
Here Q) = ¢1 — q2 and W = w; — wy. Applying (4.2.55), we obtain

IVllz2qomm20p)) + [Ville2qo, a0, + 1 Villeqo i) + Vel 2o, ryr2@;))

. L )
= C((CT +OlVI2qoaims@yy + CT2 Vil 2orimz ) + €lVilloqoraz@y)
+€\"7itHLQ([O,T];L?(Qf))), (4.2.58)
ie.,

[01r = v2ll 20,1113 (04)) + 18rv1 = Bpval| 2o,
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+[0pv1 — Orvalloqomm2p)) + 1001 — Owvall L2 (0,122

gc(mﬂwfmm—@mpmﬂﬂmmy+aTw@m—%wmmmmﬂmm>
+€[|0s01 — Oy || e o.11;12(02)) + €l Oren — 6tt®2||Lz([07T];Lz(Qf))). (4.2.59)
Thus we can write
T —Tosolly, < C(T,€)||01 — 2|y, (4.2.60)

where we can take ¢ and T sufficiently small to insure that 7 is a contraction from Y,
onto itself. Thus there exists a unique fixed point 7v = v, and (4.2.11) — (4.2.12) has a

unique solution (given v, we can solve the wave equation for w).

O
Define the space of initial data
Y(0) = {(vo,wo,wi) € (VO H2(Qy)) x Hi Q) x Hi~%(Q,),
Av(0) — Vq(0) + £(0) € H'(Qf) with compatibility
conditions (4.2.16) — (4.2.17) }, (4.2.61)

where ¢(0) satisfies (4.2.18).

Remark 4.2.4. We note that the space of reqularity Y (0) is invariant under the dynam-
ics, that is given initial data (vo, wo, wq) € Y (0), the associated solution (v, w,w;) € Y
satisfiesv € C([0,T7; Hg(Qf)) and v, € C([0,T]; H(Qy)). This fact allows us to continue
the solution for all times T > 0.

We also define D to be the space of regularity requirements given by (4.2.14):

D = {(f, feg.h) | fr € LX([0,T]; H(Qy)), 0.fy € L*([0,T]; L* (),
fe € LN[0,T); HE () N W2L([0, T LX), duf. € LM([0,T); H? (D)),
Oufe € LMN[0,T); HT572(Q0)), g € LA([0,T); HX (), gt € LQ( 0,T7; H' (),
he L([0,T); H2(T,)), he € H3((0,T); L*(T.)) N L*([0, T; H2(T.)),
A, B € L*([0,T); L*(Q))} (4.2.62)
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Lemma 4.2.3 states that given initial data yy = (vg, wo, wy) € Y(0), for any T > 0,
and for d = (fy, fe,9,h) € D, there exists a unique solution y(t) = (v(¢), ¢(t), w(t)) such
that

lylly < Crllyollvo) + Crlldllp- (4.2.63)

4.2.2 Linear Stokes with Given Coefficients ¢« Coupled with a

Damped Linear Wave Equation

Next, we prove the existence of a global solution for (3.2.4) in the case of given coefficients

a close to identity. Note that the PDE remains linear under these assumptions.

Lemma 4.2.5. Consider the linear system (written component-wise)

&tvi — 3j(aga’59kvi) + ak;(an) = Fi? Qf X (07T)’
wit_Awi—l—awg—l—ﬁwi = ei, Qe x (O7T)>

with boundary conditions

vt = wy, L. x (0,7),
v' =0, Iy x (0,7), (4.2.65)
ajafov'N; — afq' Ny, = 0;w'N; + H',  T.x (0,T).

where the coefficient matriz a = a(x,t) is given such that
a(0) =1, dpal =0, k,j=1,2,3, (4.2.66)
in addition to the conditions

la = Il Loz, laa”™ = Il qomymz,y)s 10(aa™) || Lo o,y m20,))-

HatGHLoo([o,T};H2(Qf)), HattaHLoo([O,T};Hl(Qf)) <e€ (4.2.67)

for some sufficiently small €, where € < ¢y € (0,1), and T' > 0. Assume that the initial

data (vy, wo, wy) satisfies the assumptions and compatibility conditions in Lemma 4.2.5.
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We also assume that (F, fo,G, H) € D, where D is the topology given by (4.2.62). Then
there ezists a unique solution (v, q, w,w;) to the system (4.2.64) with boundary conditions
(4.2.65)-(4.2.65) on (0,T) belonging to the space Y. More precisely, for any T > 0,
€ < +Cr (where Cp is determined by (4.2.63)), data yo = (vo,wo,w1) € Y(0), and
d=(F,G,H, f.), the solution y € Y satlisfies the estimate

lylly < 2C7(lvolly ) + lldllp)- (4.2.68)
Proof. The proof is based on a fixed point argument for the system

ov—Av+Vq=f, Qp x (0,7,
V-v=y, Qr x (0,7, (4.2.69)
wy — Aw + aw + fw = fo, Q. x (0,7T),

with boundary conditions

wy = u, . x (0,7),
v=0, I'; % (0,7), (4.2.70)
Vo-N—gN=23%+h T.x(0,T),

where f, g, h are given by

fi == 8]((6] - aéa’g’)aku’) + (5m - af)@kp + Fi,
g = (0 — a¥)Opu? + G, (4.2.71)
h' = (0, — aZalg)E)kuiNj — (6gi — aF)pNy + H,

with (u,p) € Y,,, where

Yo = {(v,q) | ve L*[0,T]; H*(Qy)), v, € L*([0,T]; H*(2y)),
v € L*([0,T); L*(92)),q € L*([0,T); H*(2)), ¢ € L*([0,T]; H'(2y)),
Gilr, € Hi([0,T); LA(T.))}. (4.2.72)
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Step 1: Estimates on the given data

For simplicity, take G = H = 0. We now show that f, g, and h satisfy the regularity

requirements of Lemma 4.2.3. Since a(0) = I, we have

Av(0) — Vg(0) + £(0) = Av(0) — Vg(0) + F(0) € H'(%y).

First, we show f € L*([0,77; H'(£2)). To this end, we rewrite the pressure component

in divergence form (making use of the divergence-free condition 8ka§? =0for j=1,2,3):
(0ki — af)Okp = O ((0gs — af)p).
Estimating f in H'(Q;) yields,

Il < 10565 — ajag)Ocu’) e,y + 10k((0ki — af)p)lme,) + [1Flm @)
< 105(650 — adap)Opu’ | () + 1G5k — ajay)0;0ku’ | qy)

10k (515 — al)p) 1)) + 1 F |11 y)- (4.2.73)

For the first term in (4.2.73), we write

10;(05% — G%QIZ)akUiHHl(Qf)
= 1|0;(d;x — aiaf)akuiHLZ(Qf) + || D(0; (01 — aia’})@kui)HLz(Qf)
< 110585 — aa8) O’ || 20 + [1D(05(850 — agaf)) O’ [l 12(0,)
+0; (85 — agag) D(9ku') | z2ay)- (4.2.74)

We apply Holder’s inequality and Sobolev’s imedding theorem to all three terms in
(4.2.74) and obtain

10; (656 — ajap) Ot |,y < 105(65% — ajay)| oo 10wy’ || o))
HID(0;(851 — ajay)) | 2 106w’ | Lo (o))
1105 (651 — ajay) | a1 D(Oku’) || oo,y
< Ol = aa"|| ey 1l oy, (4.2.75)
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We follow this procedure for the second and third terms in (4.2.73), i.e.

1650 — ajag) ;060 | 0,y + 10k ((0ki — af)p) I (e
< C”I - aaTHHQ(Qf)HUHHS(Qf) + CHI — CLHHQ(Qf)HpHHQ(Qf). (4276)

Applying (4.2.75)-(4.2.76) to (4.2.73) and using Holder’s inequality (in time), we have
that

HfHLQ([OxT}%HI(Qf)) < C|I- aaTHLOO([O,T};H2(Qf))"U”L2([0,T];H3(Qf))
+C|I = all oz 1P 2oy 2000
+C| Fl| 20,181 2p))- (4.2.77)

Using (4.2.67) in (4.2.77), we conclude

[fll2qorymayy < Cellullzzqoryms@py) + Cellpllrzqo sz, + ClE 2o m @)
(4.2.78)

Following a similar argument, we can conclude that f; € L*([0,T] x Q;), g € L*([0,T};
H?(Qy)), and ¢, € L*([0,T); H'(24)) via the following estimates:

[ fellz2qorixa,y < Cellud|zeqommzep) + Cellpill oo, @)

+I el 22 o,m1x0)) (4.2.79)
lgllzzqommzry < ellullLzqorymas ;) (4.2.80)
lgell 2o,y < ellwellezoryaz@,y) + Cellull 2o @) (4.2.81)

Next we show A € L*([0,T7; L*(£y)). We write

By setting Ay, = 0y ((0x; — a?)uj) for k =1,2,3 and B = 0, we can use a similar approach
as in (4.2.78)-(4.2.81) to conclude

[Allz2qomizee,) < Cellullp o) + Cellullrzomxay) + Celluwllz2qorixa;)-
(4.2.83)
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Next we show h € L2([0,T); H2(T,) and h, € Hi([0,T); L3(T.) N L2([0,T); H2(T,).
By the trace inequality, we have that

177

L2([0,T):H 3 (1))
< OG0 — adag)Ont’|| 2o, mysm2(0,5)) + Cll(Oki — i)l 2o 202,
(4.2.84)

for i = 1,2, 3. Thus, if we follow the procedure used in (4.2.77) — (4.2.81), we obtain
HhHL?([O,T];H%(FC)) < ellull 2o s + €llpll2qoryimz @) (4.2.85)
and

Celluellz2(o.rym2(0,.) + Cellull 2oz 9p)) + Cellpell 2o,y 0p))

+C€||p||L2([O,T];H1(Qf))~ (4.2.86)

||htHL2([Q7T];H%(FC)) S

Also, we use Kato-Ponce type estimates as in [33] to write

Cllaa™ — I|| oo (o1 fo)||VUt||
+C|laa”™ I||

HhtHHZlI([O,T};LQ(FC)) H((0,T];L2())

4([0,T],L5° () ||vut||L4([0,T];L2(FC))

OO0y kum o

+C||0y(aa” Mt o1y, IV ell o 732900
+CHCL - IHLOO ([0,7]x%2y) ||ptHH4 ([0,T);L2(Te))
+Clla—1|| 1

H1(0,T],L>(T.)) HptHHZI ([0,T);L2(Te))

+C|0val| o= (jo,11x ) ||10||HZI (0.71:22(1)

+C||8ta||H7xf([O,T},L‘L(FC)) ||p||L<>o ([0,T);L4(T.)) - (4287)

We also use the space-time interpolation inequalities for v (and similar inequalities

for p):

Ve[ 1 < €ol[uell i oryzare)) + Coolluel L2 o200 (4.2.88)

H1([0,T];L2(T))
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and

[Vl zagomizz ey < €olluel m o, iz ey + Ceolluel 2o, m;0205) (4.2.89)

as well as

IVull e oszara)) < €olluell z2qorymzr.)) + Coollull 2o rysmz))) (4.2.90)

for ey € (0, 1]. We thus obtain

el 4 o ey = Celuelmpmizan + Celludlr2qomyzey)
+Cellullaoryr2p + Cellull2orim @)

JrOEHpt||L2([07T];H1(Qf)) + OGHPHL?([O,T};Hl(Qf))- (4.2.91)

These bounds show that f, g, h and their time derivatives satisfy the conditions of
Lemma 4.2.3. Since € € (0, 1] is small, the estimates (4.2.35) and (4.2.41) lead to the
existence and uniqueness of the solution to the system (4.2.69) — (4.2.71).

Step 2: The Fixed Point

Consider the map T : Y,, — Y,, following the diagram of transfer (4.2.43). Given
(u, p), (@, p) € Yoq with (v, q) = T (u,p) and (2, q) = T (a,p), we define

U:U—fb, P:p_ﬁ7 v:fu_@a Q:q_q

The variables U, P, V, and @ satisfy the following PDE:

( A~

Vi—-AV+VQ=F, Q;x(0,7),

V-V =3G, Qs x (0,7), (42.92)
N _QN=2 L[, T.x(0,T -
ON Q 8N+ ’ cx(: )a

\V = 0, Ff X (O,T),

122



and

th—AW‘i‘OéWt—FﬂW:O, Qe X (O,T),
Wt:U, FCX (O,T),

(4.2.93)

where,

F' = 0;((0% — aaf)0xU") + (6r; — af) O P,
é = (5@' - a?)akUja
Hi = (06 — aiaﬁ?)@kUiNj — (Opi — a?)PNkv

for i = 1,2,3. We apply estimates (4.2.46) — (4.2.55), noting that we need to include
the specific terms generated right-hand side (that appear as “(data)”). We begin by
solving (4.2.93). To this end, we require the analogues to (4.2.46) — (4.2.49). First, we
use (4.2.23) — (4.2.24), to write

Ul ooty S NUNzqomims@p + ClUllzqo iy, € € (0,1];

HU“H? ([0,T};L2(Te)) < dlUlluomryez@p + CellUll 2oz, € € (0,1]:

Next we use the sharp trace regularity estimates (4.2.28) — (4.2.29) on the normal deriva-

tives of the solid displacement

ow
ON

3 < O<T‘|U||L2([0,T};H3(Qf)) + €||U||H2([O,T];L2(Qf))
L2([0,T);H2 (T¢))
+T”Ut“LQ([O,T];HQ(Qf))>- (4.2.94)

Furthermore, (4.2.22) — (4.2.25) with (4.2.23) — (4.2.24) give the following bound on

the normal derivative of W, in terms of U on the interior:

oW,

o

L2([0,T):H % (T0)) H N ik qomyzeroy

< C(€||U||L2<[0,T1;H3(ﬂf>> + €l|Ull a2o,11:22(04)) + ||U!|L2([0,T};H2<Qf)>)-
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(4.2.95)

Next, we solve (4.2.92) with Neumann data, using (4.2.114) to obtain

ow
ON

IV llz2qo.mizs ) + QN 2 om0 < C(||‘4||L2<0T1 H1(Q)) T H
L2([0,T);H3 (T2))

HIE 2o ) + G lzqory a2y

|| H (4.2.96)

o et >>>'

We combine (4.2.96) with Lemma 4.2.3 applied to the time derivative of (4.2.92) to obtain

an estimate on V' and V; in terms of the normal derivatives of W and W;.

Villz2qomsmzp) + IVilleqorsmz@p) + Qe 2o i @)
+HQtHHi( [0,T]:L2(T)) + ”Vtt”LQ([UyT];LQ(Qf))

< C( oW, oW,

+||Gt||L2(0T] HY(Q)) T ||A||L2(0T] L2(Q)) T ”HtH

£l 2 xpor)
HE((0,T];L2(T,))

L2([0,T;H? (T.))

+||H, (4.2.97)

HHZlI([O,T};L?(FC))) ’

where A = A — A. Combining these estimates gives the following on (v, ¢) in terms of
(u,p) in Y,,. Sum (4.2.96) and (4.2.97) to obtain

IVl z2qommeepy) + 1@l 2o, rim200)) + IVell 2oy mzp)) + [1Villoqo.rymzy))
+||Qt||L2(OT]'H1 (Qf)) + ||QtHH71I([O,T];L2(FC)) + ||Utt||L2([0:T]ZL2(Qf))

<c([av o o

ON ON
|2 oo + 1Gllzqoryaz@yy + 1F 2@, xpoan + 1Gell2qorya @)

L2([0,T];H 3 (T.)) L2([0,T];H 2 (T.)) HE([0,T);L2(T.))

+[|Al[ 2 (0.T:L2()) T | H, | ,+ |Hy|| 1 (4.2.98)

L2([0,T);H? (T HA ([0,T;L2(D )))'

Using (4.2.94) — (4.2.95) in (4.2.98), we obtain

IVllz2qomme0p)) + (1@l 2o, 20000 + Vel 2o,y m20p)) + [Velloqo,rymzy))
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HQell 2o,y 10 + 11Qe roy T lvellzzqoarizzp)

HE((0,T):L3(
< C(T||U||L2([07T];H3(Qf)) + U mr2qo,my2200,)) + TNUel 20,73, m2(0)
LUl 2oy + elUllz2qormeep + elUllazqomyza@p)
HUlzzorim @) + 1E 2oy @ + Gl 2qorimz@p) + 1 Fll 2@ x 0
+||GtHL2 ([0,T};HY () T ||AHL2 ([0,7};L2(2)) T+ I tH

L2(0,T);H 3 (L))

LI

< C((T + Ul 2o 0p)) + U m2qo,ry02000)) + TN U 220,77:82(0)
N E N 220,00y + Gl e2o,mym2000)) + 1 el 2200, x0,11) + 1 Gell 20,7711 25

+All z2o,r1:z202,)) + || He ,F | H,

Nz gomyatr ”Hiqom?(rc)))

< o(<T + Uy + T zsqopae@,y + 1l orsa oy

HNGlleeqorymz@p)) + 1 Fill2@pxor) + |1Gell 2oy mpy) + 1Al L2o.ryL2@p))

+ e )T [Pz e (4.2.99)

L2([0,T);H 3 (T2) HA ([0,T);L2 (T )))

Add €||Ut||co,m:m2(0)) to the right hand side to obtain

IV z2qo,msm305)) + QL2 o.1:m2(05)) + Vel L2qo,mm2 000 + Vil ooz )

Q| 2o, () + Q4] 1 r) + [[veell 2o, 13522025

H([0,T);L2(
< C((T + Ul 2oy sy + TIU 20,1320 + Uil oqorymz @)
I 2o,y + G 2oy + 1E 20 xpory + Gl 2o y81 0,
+HAll 2 o320 + I1H: |

A, (4.2.100)

L2([0,T:H? (T HA ([0,T);L2( )))'

Next, we estimate F', G, and H using (4.2.73) — (4.2.91) to obtain

”F||L2([0,T];H1(Qf)) < OEHUHLQ([O,T];H?’(Qf))+OGHPHL?([O,T];HQ(QJ()), (4.2.101)
HEHLQ([O,T}XQf) < Cel|Uillrzqommzp)) + Cell Pl 2o,y gy, (4.2.102)
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G2z < elUllromums @), (4.2.103)
G2y < elUll2qoanmey + CelUll2qoaums@,y,  (4.2.104)
HHHL2([0 TIH3 (Te)) — < ellUlz2 o1y H¥ Q) T €llPll 22 or; H2(Q))> (4.2.105)

el 2oty < CelUllzqoanaa) + CellUllsaomm@))
+C¢l| B[ 2o,y m1(0p)) + Cell Pl 2oy @)

(4.2.106)

el 3 oyzoey S CelUelmqanzaan + CelUdlzqoryn)
+Ce|\Ulmqor2200,) + CelUll 20,1y, m2(0)))
+CelPl 3 opzeeny T CElPllLzo i @)

+C¢l| Pyl 20,7111 (02 )) - (4.2.107)

We also estimate A using (4.2.83).

[Allz2qomize,) < CellUllpeqorimzi,)) + CellUtllze o<, + C€l|Usll e (or1x0,)-
(4.2.108)

Using (4.2.101) — (4.2.107) in (4.2.100), we conclue that

7 (u, p) = T (@ P)llvig < C(T, [, p) = (@ 5) v

where we can take e and 7' sufficiently small to insure that 7 is a contraction from Y,
onto itself. Thus there exists a unique fixed point 7 (v,q) = (v,q), and (4.2.64) has a
unique solution (given v, we solve the wave for w).

O

Due to the invariance of the regularity of the initial data under the dynamics, the

solution obtained above can be continued indefinitely.
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4.2.3 Higher Regularity Solutions

The space Y (see (4.2.20)) provides sufficient regularity to accommodate the topological
restrictions (4.2.67) for the matrix a(x,t). Furthermore, we will use the decay estimate
(3.4.4) for the norm X(t) to control the regularity of a(x,t). Unfortunately, the topology
of the space Y is insufficient in using this decay to construct solutions for the full nonlinear
coupled system. We must therefore construct solutions for the linear problem with higher

regularity.

Lemma 4.2.6. Let the coefficient matriz a(x,t) be given such that (4.2.66) and (4.2.67)
hold with € < % for sufficiently large C. Assume

||a||L2([O,T];H3(Qf)) < 00, Hattt||L2([0,T];L2(ﬂf)) < o0.

Consider the linear system (4.2.64) with boundary conditions (4.2.65) — (4.2.65) where
F = f; and G = H = 0. Assume that the initial data satisfy vo € V N H%(Qf), Oy €
VNAHS(Qy), Auy(0) =V (0) € V, wy € HT (), wy € H3 () for some § € (0, 3.
with compatibility conditions (4.2.16) — (4.2.17). In addition,

Aw1 — Oé’wtt<0) — Bwl (O) + 8tfe<0> = A'Ut<0> — VC]t(O) + atff<0), FC,

0
ST = (Bt = Vao + £1(0)) - . ., (4.2.109)
—Av(0) + Vg (0) = f4(0), Ly.

Furthermore, we assume the forcing data satisfies (4.2.14) as well as

Oifr, Omfr € L0, T H (Qy)),

Ofr, OmOifr € L*([0,T1; L*(y)),

Oufer Omfe € LN[0,T); H2 () NW2([0, T); LX),

Outfer OmOcfe € LM([0,T); H2(Q)),

Oefe, OmOuf. € L([0,T); H™175(Q,)), (4.2.110)

form = 1,2. Then the unique solution (v,q,w) € Y from Lemma 4.2.5 obeys (vy, g, wy) €
Y and (0pv, Omq, Opw) € Y form = 1,2. Here 0, denotes the tangential derivative. The

obtained solution can be extended to arbitrary T > 0 with the estimates given at the end
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of the proof.

Proof. Consider the system

09" — 9;(ajafdrd’) + Oklafx) = ', (1),
a;e’ = g, Qf x (0,7), (4.2.111)

Vi — AY + oy + Y = O, fL, Qe x (0,7,

with boundary conditions

¢ =y, r.,
¢' =0, s x (0,7), (4.2.112)
ayafOp¢' Ny — afx'Ni = 9" N; + b, T x (0,T),

with f, g, and h are defined by

fi = 0;(0(apaf) ') — Duafdpq + i},
g1 = _atai'cakvia
hi = Oy(alak) O N; — ByalalNy,

where (v, q,w) € Y is the unique solution to the system (4.2.64) constructed in Lemma
4.2.5. Note that the PDE system above is obtained by differentiating (4.2.64) with respect
to t and moving all time-differentiated a terms to the right-hand side of the equations. We
take initial data ¢o = v,(0) € V N H2(Qy), ¢¢(0) = vy(0) € V, Yo = w,(0) € H5 (),
and 1;(0) = wy(0) € H1<(Q,) and observe that f,g, and h satisfy the requirements of

Lemma 4.2.5x. This allows us to conclude that (4.2.111) has a unique solution satisfying

¢ € L2([0,T]; H3(Yy)),
¢ € L2([0,T]; HX (),
X € L*([0,T]; H*(%y)),
xe € L*([0, TT; H'(2)),
€ L=([0,T]; H1%()),
e € L([0,T]; Hi7%(Q)).
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By uniqueness, ¢ = v, x = q;, and ¥ = w;. Thus (v, ¢, wy) € Y. For tangential

regularity, we apply the same procedure with forcing terms f, g, and h given by

f3 = 0;(Om(ajaf)Okv") — Omaf g + O [},
go = —3ma-8k7ﬂ
hy = O (a)al) v’ Nj — Onakay,

for m = 1,2 and initial data ¢y = 9,,0(0) € V N H3(), (Ado — Vo) € V, ¥y =
Omw(0) € Ha (), and 1,(0) = 8wy (0) € Hi<(£,). Using Lemma 4.2.5 and unique-
ness of solutions, we obtain (0,,v,0nq, Onpw) € Y for m = 1,2. As a consequence, we

obtain higher regularity for w through the elliptic estimate

@y = Clwallyz-sg,

eI

Jwll 25— + Cllwill 35, + Cllwll 35 g, + CID I3 g,

(4.2.113)

H1_5 HZ_5

()’

for t € (0,7, where D’ represents the tangential derivative. Using similar elliptic esti-

mates for the stationary Stokes operator, i.e.

vl 2o, 9000 + lall 2o 0p) < C(||ff||L2<[o,T1;H2<Qf>>+||Ut||L2<[o,T1;H2<Qf>>

Hlgllzzorims@p + 100 (0.7%;H 3 (1)

, (4.2.114)
H&N L2([0,7):H 3 (T ))>
we can conclude the higher regularity for v and ¢, i.e.
v € L*([0, T]; HY(y)),
q € L*([0,T); H?(2y)).
O

Note that the space Y given by (4.2.4) is the solution space obtained in Lemma 4.2.6.
Futhermore, we define the space of initial data Y (0) as

Y(0) = {(vo,wo,w1) € (VNH2(Q)) x HT5(Q,) x H1 (),
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Ao € VN H2 (), Av,(0) — Vg (0) € H'(y), with compatibility
conditions (4.2.16) — (4.2.17)}. (4.2.115)

and the space of regularity for the source terms D as

D = {(fr.f.) € D| fr € H'([0,T]; H'(y)), attffeLQ([Oa T}, L* (),
Omfr € LA([0, T HY (), fo € WH(0,T); H2 () N W2 ([0, T]; (),
Oufe € LM([0,T); H2 (), Oyuefe € LN[0,T); H-17°()),
Omfe € LN[0, T H2(Q0)) NW2L([0,T]; LA(S)),
OO f. € L([0,T); H™77%(Q,)), m = 1,2} (4.2.116)

4.3 Construction of a Solution for the Nonlinear Cou-

pled System

We now construct the solution to the coupled system (3.2.4). We assume that for § €
(0, 1), the initial data yo € (v, wo,w1) € Y(0) is small, i.e. [|yo]x) < € where

19ollx0) = llvollzs + lve(O)| e + [[ow(O) 22 + l[wol[ s + [Jwn] 2 (4.3.1)

Further, we assume yq satisfies the compatibility conditions of Lemma 4.2.3. We now

prove Theorem 4.2.1.

proof of Theorem 4.2.1. Let (u®,p® () be the unique solution to the linear, homo-
geneous problem (4.2.64) with boundary conditions (4.2.65) — (4.2.65), a\® = ) (z,1),
forcing terms F' = fy and G = H = 0, and initial data (vo,wo, w;). Assume that the
coefficient matrix a(? satisfies

a®(x,0) =1, 9,09 (z,0) = —Vu?(z,0) (4.3.2)

and (3.3.6) — (3.3.7), i.e. a?) is close to identity. We also assume that Div((a(®)T) = 0.
Given iterates y7) = (u\9) pl) ) for j =0,1,...,n — 1, we have that

m(j) = u®, n9)(z,0) = z. (4.3.3)
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We construct a(™ to be
(a™)T = cof(Dn{"=1), (4.3.4)

which guarantees that Div((a™)T) = 0. This is equivalent to

a™ = det(Dn"=D)(Dpn=D)~L,
Let J, = det(Dn™=Y). Then a™ satisfies the following ODE:

. d
a " (DY) 4 a2 [0 (D) = 0

which can be equivalently expressed as

S8

a™ (a™) ' + o™ [

We then obtain

By Jacobi’s identity, we have

dJ, d
% =J,Ir ((Dn(n—l))—laDn(n—l)) — Tr(a(n)Du(n—l))

Thus, the ODE satisfied by a™ becomes
al" = J e (a™ Du™ =)™ — J-1a™ Dy~
Furthermore, we define H, = J;'. Then a™ and H,, satisfy the following IVPs:

a!” = —H,a™ DuVa™ + H,Tr(a™ Du™)a™,

P (4.3.5)
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O H, = —H*Tr(a™ Du"=Y),

(4.3.6)
H,(0) =1.
Given a™, we solve the linear system for the new iterate
Yy = (u(n),p(n)7 Qﬁ(n))'
Denote (v, ¢, w) = (u™, p™ (™). Then,
O’ — 9;((a™);(a!™)for’) + O((a™)Fq) = fron™ Y, Qs x (0,T),
(a™)kdt = 0, Qp x (0,7), (4.3.7)

wiy — Aw' + aw; + fu’ = f, Qe x (0,7),
with boundary conditions

v' =w! on T, x (0,T),
v'=0onT; x(0,7), (4.3.8)

(a™))(a™) ko' N; — (a™)kg' Ny, = 0;w'N;j on T, x (0,T).
7 is Close to x

Using definition (4.3.3), we first show that 1®(z,t) remains close to x for all time. We

have

Estimating in H3, we obtain

t
179 — 2llmsay) < / 4@ 2 ds.
0
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Using (4.2.3) and Lemma 3.4.1 with 7 taken as identity yields

t

7 sl < [ (COXO)+ FOLee 4.0 [ F) 4 F ) ar

0
1

+C]-"(s)> S ds

()

N|=

IN

CIX(0) + F(0)]

t
+o |
0

( / e (F(r) + F'(7)) dT)é ds + j F(s)? ds.

(4.3.9)

Thus for sufficiently small initial data and source terms satisfying (4.2.2)-(4.2.3), we

conclude

I =l < e

Composition Estimates for f; o7

(4.3.10)

In order to apply Lemma 4.2.6 to the iterated system (4.3.7), we require estimates on

the composite function f;on™~Y in the spaces given by (4.2.14)-(4.2.110). We focus our
attention first on the first iterate fr o n(®). To estimate f; on® in L2([0,T]; H'(Qy)), we
first obtain a bound on f; o n® — f; in L2(Q) following the strategy in [18, p. 329]:

Hf} © 77(0) - f}“m(m

<

/ O £ O, t) + £ (O (. t) — 2),8) dt' (1) (1) — )

[ o509t + ¢ 6lat) — a).) de

0

< CH(U(O)Y - xi”H2(Q)Hf}HH1(Q)a
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L2(Q)

()i (2, t) = || 1 (q)
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where Holder’s inequality and the Sobolev embedding theorem were used. The reverse

triangle inequality combined with (4.3.50) implies

Nz, < CIN = zllmz@ll fellme + | 1l

< Cellfrllao) + 1 frllz2@)- (4.3.12)

| fron

Next, we measure D(f;on®) € L?(2). We begin by estimating the difference D(f; o
n) — Df; € L*(Q). Using the chain rule, Holder and Sobolev inequalities, and (4.3.50),

we obtain

ID(fron®) = Dftllrz = I1(Dfron®)Dn® — Dffll 12
= |(Dffon® — Dfs)Dn©
+Dfi (D' = I)| 120

< [[(Dfson® = Dfr) D 2
+|ID (D' — D2

< NDfron® = Dfill a1 D0 =0
HID frll 2@ (D0 = 1) (o

< |IDfron = Dfell 2@ lPn | a2 o)
H el @ 1D = )| 20

< |Dfron® = Dl D'l a2
H el @ 1D = )| 20

< ClIDfron® = Dfslli2) + Cell fellu-

Next we write ||Df; on® — D f||12(q) component-wise, i.e.
IDfron® — Dfyllra) = /Z(ajf} o' —8;f7)? d)
o
= Z/(ajf} on©® —9;f})* dQ

i7j (9]

= D 11055 o n® = 0if} 11320
i
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We again apply the strategy used in [18, p. 150] to obtain

10;:£7 00 = 0 fillZe) < Ol — 2l 10 f I
CGHff”l%I?(Q)'

IA

Thus,

IDfron™ — Dfillre) < Cellfrllaee,

and

ID(fron'™) = Dffllre@) < Cellfllmzy + Cell frllmoy-

The reverse triangle inequality implies

ID(fron iz < Cellfllmaw + Cell frllme- (4.3.13)

Summing the squares of (4.3.12) and (4.3.13), integrating in time, and applying Young’s
inequality yields

Ifr o nllzzoman@y < Celfrllzquaymy + Cllfsllzaomim@). (4.3.14)

We follow the same procedure for the time and tangential derivatives of f; o 7. In
the derivation of the estimates, we make use of the decay of ||[u(¥||x given by (4.3.25).
We obtain

10:(f7 0 n' 2oy < Cell frllrzqorymsiany + Cell frllzqormz@p)
OO, frll 2 (o,rsm20,)) + CellOeS sl 2o, 04
+C0: frll 2o 0p)) + CllOcf sl L2 o,11:2202,)5
(4.3.15)

10 (fr o 1 r2qoryrey < Cell frll oz ey + Cell f1lln2o.1:m20)
+Cel| fll 2o () + CellOe 1l L2011 (2p)
+Cel|0: frllL2o,mm2()) + CellOwe frll L2011 2)
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+C|0u f1 2 o,11:22(9,)). (4.3.16)

Ham(ff o 7’](0))”L2([0,T];H1(Q)) S Ce”ffHLz([O,T];H3(Q)) + C”ffHLz([QT];HQ(Q))
+C| frll 20,111 (2) - (4.3.17)

Inequalities (4.3.14)-(4.3.17) imply that f;on® is sufficiently regular for the existence
of solutions to (4.3.7) provided f; € L*([0,T); H3(2)), 0.f; € L*([0,T]; H*(Q2)), and
Oufr € L*([0,T); HY(S2)). Furthermore, the norm F(t) given (3.4.1) with n = n(© is
small in W11(R"). In fact, this norm is bounded in terms of the square of the norm
(4.2.3) (which is small in L*(RT)), and therefore satisfies the requirements of Lemma
3.4.1.

4.3.1 a" is Close to Identity

We want to show that the iterate a(™ given by (4.3.4) — (4.3.8) satisfy (3.3.6) — (3.3.7),
which places us within the framework of Lemma (4.2.6). We proceed by induction. As-
sume that we can construct iterates y), a¥), and =Y | j = 0,1,...,n — 1 satisfying
(3.3.6) — (3.3.7) with [|[nU™Y — 2 ys(q,) < € for € > 0.

a™ Close to Identity in H?

We now show that |1 — a™ ()| 2o ;) < €a, where €, > 0 is sufficiently small. We have
by the ODE (4.3.5) that

(3t(a(n) — [) = 3t(1(”)

— Ha™ Dy Va® 1 H, Tr(a™ Dy)g)

— (H, — 1)a™ Dy D™ _ g Dy g
+(H, — 1)Tr(a™ Du™ )™ + Tr(a™ Du=D)a™

= —(H, - 1)(a™ —)Du""Ya™ — (H, — 1) Du™ V™
(@™ — [)Dua® — pyt=D g
+(H, — 1)Tr((a™ — 1) Du™DYa™ + (H, — 1)Tr(Du™D)a™
+Tr((a™ — I)Du™)a™ + Tr(Du™)a™
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This implies that

—(H, — 1)(a™ — I)Du™ Y (a™ — 1) - (H, — 1)(a"™ — I)Du
—(H, — 1)Du" VY (a™ - I) - (H, — 1)Du""
—(a (n) _ I)Du(”_l)(a(") — 1) - (a(n) — I)Du(”‘l)

— Du™ 1)( (n) _ [) _ Du(nﬂ)
+(H, — 1)Tr((a™ — “Dy(a™ — )
+(H,, — 1)Tr((a(") — Du™ )
+(H, — 1)Tr(

Du™Y (a (n) _ I +Tr(( n) _ ])Du(n—l))

I)Du
)
Tr(Du V) (@™ = I) + (H, — 1)Tr(Dul*Y)
)
al = I) + Te(Du" ). (4.3.18)

t
- / Du" V(@™ —T) ds — / Du™Y ds
0

+ / (H, — 1)Tx((a™ — I)Du™ V) (a™ — 1) ds

0
t

+ [~ m(@ ~ ) as

0
t

—i—/(Hn — 1)Tr(Du(”_1))(a(") — 1) ds
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+

o —_ _

—|—/Tr (™ — I)Du™V) ds+/TrDu"1 )(a@™ — 1) ds

0

T / Tr(Du V) d
0

Using the Sobolev product estimate ||uv|| gz < ||u||gz||v|| g2, we have
@ = DOl < € [ [1Ha = el = T DtV ds
+C [ Ha = imlla® = 1| DU ds
+0 [, = il DU s

+(J/||a<n> 1|2 Dut e ds

t
(H — DTr(Du™Y) ds + /Tr((a(”) — )Du" V) (a™ —

I) ds

e / Ja®™ — I|| 2| Du™D| = ds + C / | Dut D2 ds

< C/Q(Ila(")—fl\m, 1Ho = L g2) [ Dut™ |2 ds,

(4.3.19)

where () is a cubic function in the indicated norms. Similarly, we have from the ODE

(4.3.6) that

O (H, —1) = —H>*Tr(a™ DuY)

= —(H,—1)*Tr(a (")Du(”’l)) — 20, Tr(a™ Du"V) 4 Tr(a™ Du™)

= —(H, — D*Tr((a"™ — I)Du""Y) — (H, — I)*Tr(DuY)
~2(H, — 1)Tr(a<">Du‘"—1>> — Tr(a™ Du"V)
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= —(H, - D*Tr((a™ — I)Du"Y) — (H, — I)*Tr(Du"Y)
—2(H, — 1)Tr((a™ — I)Du""Y) — 2(H, — 1)Tr(Du™"V)
~Tr((a™ — I)Du™V) — Tr(Du™=V). (4.3.20)

Integrating in time, we have

t t
H,-1 = - /(Hn — D*Tr((a"™ — I)Du"Y) ds — /(Hn — I)*Tr(Du™V) ds

0 0
t t

—2/(Hn — DTr((a™ — I)Du""Y) ds — 2 /(Hn — DTr(Du™V) ds

0 0
t t

_ / Tr((a™ — I)DuDY ds — / Tr(Du™ V) ds. (4.3.21)

0 0

Estimating in H?(Qy), we have

t
[ Hn — 1|gz < C/ |Hy — I3 llat™ = 1| g2 | Du™ V| g2 ds
0
¢
£ [ 1, 1 DU s
0
¢
—|—C/ \|H, — I||H2||a(”) — I||H2||Du("_1)||H2 ds
0
¢
+C/ |H, — [HHQHDU("*DHHQ ds
0
¢ ¢
+C/ ||a(") — ]||H2||Du(”_1)||Hz d$+C'/ ||Du("_1)||H2 ds
0 0

t
< C/Q(Ha(") —1||s2, |[Hp = I||g2)|| Du™ V|| 2. ds (4.3.22)
0

139



Combining (4.3.19) and (4.3.23), we have
lat™ (t) = |2 + | H(t) = 1|2

t
< C/Q(Ha(") — 1|2, |[|Hy = I||g2)||Du™ V|| g2 ds, (4.3.23)
0

where @ is a cubic polynomial in [|a™ — I||g2 and ||H, — I||z2. Denote X (t) and F(t)
to be the norms (3.3.1) and (3.4.1) derived from (4.3.7) for the (n — 1)-st iterate y("~1).
Using the smallness of (4.2.3) in L'(R™), we can show that F(t) satisfies the requirements
of Lemma 3.4.1 (following a similar argument for f; o =2 as that used for f; o n®
in (4.3.14)-(4.3.17). since [[n""™? — z||ys(q,) < €). Then the Stoke’s estimate (A.2.14)

combined with (3.4.37) implies

IDu™ V|2, < OX (1) + | fron™ 2|4 + || £l
< CX(t)+ F(t)

IN

CIX(0) + F(0)]eF + C / =) (F(s) + (F)(s)) ds
+CF(t). (4.3.24)

Recall that X(0) + F(0) = X(0) + F(0). Assuming X (0) + F(0) < ¢, € > 0 sufficiently

small, we conclude that
t
|Du V|2, < Cee @ 4 C / e U (F(s) + F'(s)) ds + CF(t). (4.3.25)
0

Using (4.3.25) in (4.3.23), we have

la™ () — |z + || Ha(t) — 1|2

s

t
<c [ QU™ -t |1, —1f|!Hz>(06€é +C [ 7
0

0

N =

+F (1)) dr + C’f"(s)) ds
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t 1 s

<c [ QU -, 17, —IHH2>((ee-é)2 w( e

0 0

2

+F(1)) dT) +ﬁ(s)%> ds. (4.3.26)

Let 2(t) = max{||a™ () — I||g2, ||[H.(t) — I||z2} and set 2(t) = sup (7). Then,

T<t

t

z = CQ(Z)(/ee w0 ds+/</e‘”<3 (F(r) + F(7)) dr)l ds+/]—" )

0
t

< 0Q) (eu—e-m [([eemEm s 7 m)l s + / (s )

0
t s

ca(z) <e+ / < / T (F(7) + F(7) dff ds + / F(s)} ds>. (4.3.27)

0 0

IN

We now consider the integral

j ( / e (F(7) + F(7)) dT)% ds. (4.3.28)

0 0

Consider the innermost integral in (4.3.28). We integrate by parts as follows:

IN
Q)
|
7N
—
€
3
AR
S
I~
\]

_|_
—
Q)

€

‘1

!
N

< e-“(we“f(s%éﬁ(())—i / T F(r) dr + / o ))
< e‘“s(ée“’s./%(s) _ £ﬁ<o> _ (i _ 1> / e F(7) d7>. (4.3.29)
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In addition to (3.4.5), we assume that 7" is taken sufficiently large such that 0 < w < 1
(see (3.4.19)). Then £ —1 > 0, and

w w w

e—w(lewsﬁ(s) L0 - (1 - 1) / ¢ F(7) dT) < é]}(s). (4.3.30)

Using (4.3.30) in (4.3.28), we obtain

t s 1 t

/(/ew(sT)(ﬁ(r)Jrﬁ’(r)) dT>2 ds < L/J;—:@; ds. (4331)

0 0

Using (4.3.31) in (4.3.33), we have
: < Q) <e+ / F(s)? ds>. (4.3.32)
0

Using analogous composition estimates to (4.3.14)-(4.3.17) for f;on("=2 and the fact that
7™ — 2|l ps(,) < €, we see that F(t)2 is bounded by the norm (4.2.3) and therefore
is small in L'(R*). We thus conclude

z < CeQ(z). (4.3.33)

Then, referring back to (4.3.18) to more specifically characterize Q, we can write down

the following:

w
IA

Ce(2® +32° +32+1)

Ce(z+1)°

Ce(2* 4+ 1)

Cez® + Ce, (4.3.34)

IN A

IN

where the inequality |a + b|P? < 2P7!(]alP + |b|P) was used in the third line. Furthermore,
we observe that z(0) = 0. Then, by Proposition A.3.1, we conclude

a®(t) ~ Tl + | Hat) = Ul <, 0. (13.35)
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a™(a™)T Close to Identity in H?

We now show a™ (a™)7 is close to identity, i.e. [|[a™ (™) —I| z2 < €,. Using the ODEs
(4.3.5), we obtain

(@@ = 1) = (@) + 0 (a")"

= (=H,a™Du"Ya 4 HnTr(a(")Du(”_l))a("))(a(”))T
+a"(—H,a"™ Du""Ya™ + H,Tr(a™ Du™1)a)(a™)T

= —H,a™Du"Ya" ("N + 2H,Tr(a™ Du™)a™ (a™)T
—H,a™ (a(n))T(Du(n—I))T(a(n))T

— (= 1)a™ Du Ve ()T _ g Dy g ()T
+2(H,, — D)Tr(a™ Du"D)a™ (a™)T
+2Tr(a™ Du™ 1) a™ ()T
—(H, — 1)a(n)(a(n))T(Du(n—l))T(a(n))T
_a(n)(a(n))T(Du(nfl))T(a(n))T

= —(H, —1)(a™ — I)Du Vg™ (¢™)T
—(H, — 1)Du(”_1)a(")(a("))T _ (a(n) — ])Du(n—l)a(n)(a(n))T
_Du(n—l)a(n)(a(n))T
+2(H,, — DTr((a™ — I)Du"")a™ (a™)T
+2(H, — 1)Tr(DuD)a™ (a™)T
+2Tr((a™ — I)Du"Y)a™ (o)
+2Tr(Du™D)a™ (a™)T

= (Hy = )[a" (@) = 1)(Dul"=) ()7
~(Hy = 1)(Dul"=) ()7
_[a(n)(a(n))T I](Du(”_l))T(a(”))T — (Du(n—l))T(a(n))T

= —(H, —1)(a"™ — 1) Du" V[ (a™)T - 1]
—(H, —1)(a™ — I) Dy
—(H, — 1)Du" VY [a™(a'"T — 1] — (H, — 1)Du"V
_(a(n) — ])Du(nfl)[a(n) (a(n))T — 1] - (a(n) _ [)Du(nfl)
—Du(”‘l)[a(”)(a(”))T — 1] - Du1
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+2Tr((a(”) I)Du (n— 1))[ (n)( ( )) — 1
+2Tr((a™ — 1) Du™ V) 4 2Te(Du™ D) [a™ (a™)T — ]
+2Tr(Du™ V) — (H, — 1)[a™ (@™)T — 1](Du™ N (™ — )T
—(H, = D]a™ (@) = 1](Dul*)"
—(H, = H(Du"" V)T (o™ — 1)T
—(H, — 1)(Du ) — [a(")(a(”))T — I](Du(”_l))T(a(") — [)T
~[a® (@")" = [(Dul" )T~ (Dul )T (@) — )T
—(Dum=T, (4.3.36)

Integrating from 0 to t and estimating in H?, we obtain
la™ (™) = 1|42
t

= [, = U la® = 1| D g (@)~ T s
+C [ I1H, = U6 = T D ds
40 [, = U | Dl el @) = 1] e ds
+0 [, = 1| D s ds
40 [ Ja® = 1] | DU oo @) D s

+C/ |a™ — I||g2|| Du™ V| g2 ds
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t t
_|_C/”Du(n—l)HHQHG(n)(a(n))T_[HH2 ds—i—C'/HDu("_l)HHz ds
0 0

t
+0/ 1 = Ulzella™ = Iz | Du® g2 at™ (@) = 12 ds.
0

t
= C/ ((Ce + 1)Ha(”)(a("))T —I||g2 + (Ce+ 1)) HDu(”’l)HHz ds,
0

where (4.3.35) was used. Let z = sup ||a™ (a™)7(7) — I||g>. Then,

T<t

¢
z < C((C€+1)Z+(Ce+1))/||Du(”_1)||H2 ds.
0

Following the procedure used in (4.3.24) -(4.3.33), we obtain

z < Cez+Ce.

Recall that z(0) = 0 and z > 0. Then,

Ce
0<z2< )
_2_1—06

which is small for e sufficiently small. Therefore,

of?

|a™ (a™)T(t) = 1|2 < €q, t > 0.

is Small in H?

We now show a\™ is small. Recall from (4.3.18) that

"

= —(H, - 1D(a™ - 1Du™ V(@™ —T) - (H, — 1)(a™ — I)Du™Y
—(H, — 1)Du™ V(™ —T) - (H, — 1)Du*"
_(a(n) — [)Du("_l)(a(") — 1)
—(a™ — I)Du"™Y — Du™ Y (a%w(n) — I) — Du™=Y
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(4.3.38)

(4.3.39)

(4.3.40)

(4.3.41)



+(H, — DTr((a™ — I)Du™ ) (0™ — T) + (H, — 1)Tr((a™ — I)Du™Y)
+(H, — )Tr(Du N(a™ = 1)+ (H, — 1)Tr(Du""Y)

+Tr((a™ — I)Du™ ) (a™ — I) + Tr((a™ — I)Du™ )1

+Tr(Du™ V) (@™ — I) + Tr(Du )T

Estimating in H?, we have

laf 2 < CllHn = 1 g2lla™ — I3 ]| Dut ] 12
+C|| Hyy = U2 |a®™ — Il g2 | Du™ = | 1
+C | Hy = 1| 12| Dut™ | g2 + Clat™ — 1|3 | Dul™=|
+Clat™ — I|| g2 || Dut™ | g2 + C| Du || 2
+C|| Du™ V]| . (4.3.42)

Recall that the source term F in (4.3.25) lies in W' (R™T). Then F is absolutely contin-

uous, and for any ¢ > 0 we can write

F(t)=F /F ) ds < F(0 /F (4.3.43)

Since F(0) and || F'|[z1r+ are both small, we may conclude that ai”) is small in H? by

using (4.3.35), (4.3.25), and (A.2.14) in (4.3.42).
(a™(a™)T), is Small in H?
We now show (a™ (a(™)7), is small. We have that

(@@ = @ (@) +a" (@)
=" (@ = DT+ 0"+ (@ = D)+ (@)

Estimating in H?, we have

(@™ (@) )llgz < Cllal ||z ]|la™ — I||sz + Cllai™ |-
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We now use the fact that a is close to identity and a; is small to write
1@ @) < e

ay is Small in H!

We now show ay is small. Recall from (4.3.18) that
ol = —H,a™Du"Va™ 1 H,Tr(a™ Du)a™
We have that

alV = —0,H,a™Du V™ — H,a™ Du Ve — H,q™ Dy{" Ve
—Hna(”)Du("’l)at +8tHnTr(a( )Du("’l))a(")
+H, Tr(a,g")Du("*l)) () +H Tr(a™ Dul"V)a™ + H, Tr(a™ Du )™
= —0,H,(a™ — I)Du" V™ — 8,H, Du Vo™ — H,al™ Du™ V(0™ — I)
—Hnain)Du(”_l) — (H, — 1)a(”)Du§n_1)a(”) — a(”)Dugn_l)a(”)
—(H, — 1)a™ Du V(™ — g™ Dy=Dg{™
+0,H,Tr((a"™ — I)Du™)a™ + 0,H, Tr(Du"")a™
(n

+(H, — 1)Tr(a§n)Du("’1))a ) 4 Tr(agn)Du("’l))a(”)
+(H, — 1)Tr(a(”)Du§"71))a(”) + Tr(a(”)Dugn 1))a(”)
+(H, — 1)Tr(a™ Du™)al™ + Tr(a™ Du™1)a(™
+(H, — 1)Tr(a!” Du™D)a™ + Tr(a{™ Du™1)a™
+(H, — 1)Tr(a™ Du{""")a™ + Tr(a™ Du{""")a™
+(H, — 1)Tr(a(”)Du(” Nal™ + Tr(a™ Du™)a!™

= —9,H,(a"™ — NDu"""Y(a™ —I) - 0,H,(a"™ — I)Du"
—atHnDu(”’l)(a(") — 1) = 8,H,Du"Y — (H, — D)a" Du™ Y (a™ —I)
—aﬁ")Du("’l)(a(”) —1I)—(H, — l)agn)Du(”’l) — (")Du(”’l)
—(H, — 1)(a™ = )Du{"Va™ — (H, — 1)Du{" Vo™
—(a™ = NDu{"Pa™ — Du"Va™ — (H, —1)(a™ — 1) Du Vg™
—(H, — 1)(a™ — 1)Du("_1)a§”) — (a™ — ])Du(”_l)ain) — Du" Vg™
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+0,H, Tr((a™ — I Du"")(a™ — I + 0,H, Tr((a"™ — I)Du"™V)
+0,H, Tr(Du" ") (a"™ — I) + 0,H, Tr(DuV)
+(H, — D)Tr(a{™ Du ) (a™ = I) + (H, — 1)Tr(a!” Du™ V)
+Tr(a§n)Du("*1))(a(”) -1+ Tr(agn)Du("*l))
+(H, — 1)Tr((a™ — I)Dugnfl))a(") + (H, — 1)Tr(Du£n71))a(")
+Tr((a™ — NDu™")a™ + Tr(Du{"V)a™
+(H, — )Tr((a™ — 1) Du™ Nl + (H, — 1)Tr(DuD)a!™
+Tr(a™ Du™)a{™ + Tr((a™ — I)Du™)a{™
+(H, — D)Tr(a{™” Du ) (a™ — I) + (H, — 1)Tr(a{” Du™V)
+Tr(a (")Du("_l))(a(”) —1) —|—Tr( (n)Du(n—l))
+(H, — 1)Tr((a(” NDu{™ Va™ + (H, — 1)Te(Du{")a™
+Tr((a™ — 1) D" V)a™ —i—Tr(Du(" TR
+(H, — 1)Tr((a(") DDu™M)a!" + (H, — 1)Tr((a™ — I)Du™ V)a{™
+Tr((a™ — I)Du™V)a} ™ 4 Tr(Du™ D)a™

= —9,H,(a™ — Du"Y(a™ —I) - 8,H,(a"™ — I)Du
—0,H, DuV(a"™ — I) - 0,H, Du""

—(H, = ay” Du" (@™ = T) — af" Du® (o™ — 1)

—(Hy = D)ot Dul"™) — i Du*™Y — (H, — 1)(a™ — 1) Du;" ™" (a™ — 1)
—(H, — 1)(a™ — 1)Du{"™" — (H, — 1)Du{""" (0™ — I) — (H, — 1) Du{"""
—(a™ = NDu{" (@™ = 1) = (™ = NDu" = Du" V(™ —T)

—Du§” Y (H, - 1)(a™ = 1)Du" Ve — (H, — 1)(a™ — 1)DuVa{™
—(a™ — ])Du("_l)aﬁn) — Du("_l)agn) + 0,H,Tr((a™ — 1) DuV)(a™ — TI)
+0,H,Tr((a"™ — I)Du™Y) + 9, H, Tr(Du""V)(a"™ — T) + 0, H, Tr(Du"")
+(H, — 1)Tr(a( Du™ D) (0™ — T) + (H, — 1)Tr(a{ Du")

+Tr(a (n)Du(” 1 )( — 1)+ Tr(a, () g, (n— 1))

+(Hy = 1)Tr((a I)DU§ N(a™ — 1)+ (H, — 1)Tr((a™ — I)Duf" V)
+(H, — 1)Tr(Du§" N@™ = 1)+ (H, — D)Tr(Du"™Y)

+Tr((a™ — 1) Duf"” ”)(a — )+ Te((a™ — I)Du"V)

+Te(Du™ V) (@™ = I) + Tr(Dul™ V)
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+(H, — 1)Tr(( ™ — 1) Du™Na™ + (H, — 1)Tr(Du<"*1>) (m)

+Tr((a™ — I)Du™ V), (n) + Tr(Du"Y)aj (n )—I—Tr(( — )Du D) (n)
+(Hn — 1) Tr(a ) Dy(n=D N(a™ — 1)+ (H, — 1)Tr(a,§n)Du("_1))

+Tr(a (n)Du(” 1 )( — 1) + Tr(aj (7) 1y, (n— D)

+(H, — 1) Tr((a™ f)Du§ (@™ = I) + (H, — 1)Tr((a™ — I)Duf" ™)
+(Hy — 1>Tr<Du§” @™ = 1)+ (H, = 1) Tr(Duy"™Y)

+Tr((a™ — 1) Du" V) (@™ — I) + Te((a!™ — I)Duf" V)

—i—Tr(Du(" N(@™ — 1)+ Tr (Dut" N4 (H, — DTr((a™ — I)Du™ D)™
+(H, — DTr((a™ — DDu™ D)a!" + Tr((a™ — I)Du*1)a(™

+Tr(Du Nal™. (4.3.44)

We observe from (4.3.20) that

OH, = —(H,—I1)>Tr((a™ — IDu" V) - (H, — I)*Tr(Du"Y)
—2(H, — 1)Tr((a™ — I)Du™ V) — 2(H, — 1)Tr(Du"Y)
~Tr((a™ — I)Du™Y) — Tr(Du™"Y). (4.3.45)

Estimating in H?, we have

|0:Holl s = CllHo = I32lla™ = |2 | Dut™ V|| g2 + C|| Hyy = 1| || Du™ V] 12
+C||Hy = [ az]|a"™ = Il ]| Dut™ D g2 + Cla™ — 1|2 | Du™ V]| 2
+C|| Du™ V|| . (4.3.46)

Using (4.3.35), (A.2.14), and (4.3.25) in (4.3.46), we have

Estimating (4.3.44) in H' and using (4.3.35), (A.2.14), (A.2.15), (4.3.25), and (4.3.47) in
(4.3.44), we conclude that

lai Nl < e (4.3.48)
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(n—1)

n is close to =

We now show that 7"~ with 7"~V (x,0) = = is close to z for all . We have

Estimating in H3, we obtain

t
17— s < / Ja™ V|| ds.
0

We have by Lemma 3.4.1

I~ el < [ (O[X«)) L FO)et

S

—l—C’/e”(ST) (F(r)+ F'(r)) dr + C’f(s)) ds

0
0

< C[X(0) + F(0)(1—e ) +C / F(r)+ F(r) dr. (4.3.49)

0

Thus for sufficiently small initial data, we conclude

™Y —zf|gs < e (4.3.50)

4.3.2 Tterate Solutions Lie in a Ball in YV

Next, we demonstrate that all iterates lie in a closed ball By, C Y that depends on

the initial data. Using the 1D Agmon inequality in time (see [35, Appedix A]), we may
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conclude that Y € X, where X is given by

X = {(v,qw) [ve L=([0,T]; H*(Qy)), v € L>([0,T]; H* (),
v € L2([0,T): L*(Qy)), Vo € L*([0,T1; L*(2y)),
q € L([0, T}, H* (), q € L=((0,T]; H'(Qy)),
dlwe O([0,T); H* (1)), 7=0,1,2,3}. (4.3.51)

Thus from the conclusion of Lemma 4.2.6, we obtain the following a-priori bound on the
solution y € Y to the system (4.2.64):

lylly < Crlllyllyo) + [1f115) + Crllall 2o ryas@p) + lladl 2oz,
Fllawllz2qorym@p) + a2 qorszzem)llyllx, (4.3.52)

which arises from applying the estimate (4.2.63) to the solution of the systems given in
(4.2.6).
We now apply (4.3.52) to the iterates y(™

Iy ™l < Cllyollyo) + CUla™ 2oz + llag™ e oz,
+Clai 22 qomy 2, + Cllai 2 qompzz ) 1™ llx + 1115
< Clyolly ) + Cella®™ N z2qomyaeey,y + Cellal™ || 2oy a2,y
+Cellai 2oz + Cellali 2oz + 15 (4.3.53)

on [0,7] where C' depends on T'. The space X is given by (4.3.51).
Consider the term ||al™]|2(jo.7y;(,) on the right side of (4.3.53). Using (4.3.5), we

may write

la™ |30,y < 0/HHnHHB(Qf)Ha(")\lqumf)HDu(”1)|\H3(Qf)+c-

Similarly, we have the following for || H,|| s q,):

”HnHH3(Qf) < C/”HnHJZLﬁ(Q,-)Ha(n)”H3(Qf)HDu(n1)HH3(ﬂf)+C'
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Summing [[a™ || ysq,) and || H, | g3(o,), we obtain

t
la"™ 2@y + | Hall ey < C/(IIHnHm(Qf)IIa(”)H?qa(gf)
0

HHull s @™ 5@ | Dut™ V| a3,y + C
t

< C/(||1T71n||H3(Qf) + la™ || 20,1 DUV || 3,y + C.
0

We apply a Gronwall-type inequality (see [22, Theorem 25]), the Cauchy-Schwarz in-
equality, and the fact that Du(™~V lies in L2([0,T]; H3(Q)) to obtain

C

t
1 - CZf ”Du(nil)HHB(Qf) ds
0
C

1a™ s,y + | Hallms,) <

IN

T
1= C? [[|[Du Y| g3, ds
0

C
1 - OQT% ||Du(n—1) ||L2([0,T];H3(Qf)) ’

for t € [0,T] with T < C’4||Du(”*1)||L2([07T];H3(Qf)). Here we take C' is sufficiently large to
accommodate T'. Then we may write

1a™ g0,y + 1 Hallgzo, < C

for t € [0,T7], and

la™lzqrimse,) < €< Crilwlly): (4.3:54)
For ||a,l(€n)||L2([0’T};H2(Qf)), we have (from (4.3.5) and (4.3.6))

lag™ |2,y + 10 H ™ 20,y < CUH 20 10 320,
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HIH 20 0™ 2@ DU 20
Using (4.3.54), we have
la 2,y < ClDU™ | g2y,
which implies
lof” oo < CIDU Dl g < Clly™ s

The remaining terms on the right side of (4.3.53) are obtained by differentiating
(4.3.5) and (4.3.6) the appropriate number of times and applying a similar argument as
above. Using the decay bound (3.4.37) with Proposition A.1.1, (A.2.14)-(A.2.15), and

reducing e (if necessary), we obtain

n 1 n—
ly™lly < Cllyo||s7<0)+§||y( Uy +1f15- (4.3.55)

Here, || f|| 5 is given by

Il = Ifron™ Dmqomsm@y + 10:(fr o 0™ 2oz

+||f€||W171([O,T];H%( + ||fe||W§ ([0.T):L2(2 + ||8ttfe||L1 ([0,T] H?(Q ))

0l g1 +Z(Ha (fr 0 1)l omyin o

+|Om [ ) T 0w fellyy 4

LL([0,T];H? (2

+Ha attfeHLl [OT __J(Qe))). (4356>

([0,T];L2(2))

Using (4.3.14)-(4.3.17), we obtain the following estimate for ™ in Y.

1 _
Iy 1y < Cllvolly +§H v Dy + Cell frllra [OT]'HS(Qf)+C€||8tff||L2 (10,7} H2(27))
OO frll 2o @) + 1 fell 51 o7, 0y T 196l

Sl s o.zr-3-22) T Z_l (Hamfe”Wg’l([o,T];Hl(sze))

L2([0,T):H 3 ()
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+|0m 0 fell by T 10mOufel

L2([0,T];H2 (

o5, ))). (4.3.57)

Repeating this process n — 1 more times, we obtain

ly™ Ny < Cliyolly) + Cllfsllzzqoryms@py + ClOfs I rqozimz@y)

+CHattff||L2(0T] HY(Qy)) T CerH L([0,T:H (Qe)) + Cllofell

FCNOSell s g0 11,4207 T € Z (HamfeHWgJ([o,T};Hlme))

m=1

L2([0,T;H3 (90))

H[Om O fe| + [|0mOu fe || (4.3.58)

L2([0,T;H? (9)) HL([0,T);H™17%(Q )))'

Therefore, if f belongs to the ball (4.2.2), then all the iterates belong to a ball By, in Y

on [0,Tp], where T} is a fixed constant (i.e. we can take Ty = 1). That is,
ly™ [l < Mllyollso)

4.3.3 Fixed Point Iteration

We now construct a solution on the interval [0, Ty]. Consider the map A : Y — Y between
the successive iterates, i.e. A(ul), p¥) ) = (uU+D pl+D 3(+) Denote

(u,p,p) = (w1, p=1 =)y,

with n, = "' = u on Q, and

(v,q,w) = (ut™, p™), ™).
t t

Also, let n = n»=b = /u(”_l) ds+x = /u ds+x on Q. Thus (v,q,w) = A(u,p, ) is

0 0
the solution to the system

—Av+Vg=f+fron, QFx(0,T),
V-v=y, Qp x(0,7),
wy — Aw = fo —aw, — fw, Q. x (0,7),
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with boundary conditions

wy = v, ['.x(0,7),
v =\, FfX(O,T),
D gN =2 +h, T.x(0,T),

where,

I = 0,05 — ajaf)one’) + (B — af)ha,
g = (0 — a5) 0’
h' = (0% — ajag) kv’ N; + (6x; — af)qNy,

for i = 1,2, 3. The matrix a(z,t) corresponds to u, and is found by solving

a; = —HaDua + HTr(aDu)a,
a(z,0) =1,

where the scalar-valued function H(z,t) is obtained from

OH = —H*Tr(aDu),
H(z,0) =1.

We now show that A is a contraction on the lower topological space

YO - {(UaQaw) “vE LQ([OaT];H2(Qf))7 vy € L2([O’T];L2(Qf))a

g € L*([0,T]; H(Qy)), q € HT([0,T]; L*(T.)),
w e L=([0,T]; H'(Q)), w, € L=([0,T]; L*(92.))}.

with T'= T and norm

[(v,q,w)llv, = llvllz2qom,m2ep) + [lvellr2qom,20,)) + llallz2qo,m,m@)))

(4.3.59)

(4.3.60)

(4.3.61)

Hlall 1 oay.r2mny) T €ollwllie o mi@o) + €ollwill e o1, 2200

155

(4.3.62)



Here ¢ is a sufficiently small constant determined below.
Let (u,p, ) and (1’1,]5,1;) be two elements in the ball By, in Y. We estimate the

difference between two solutions (v, ¢, w) and (v, ¢, w) arising from (u, p, ) and (@, p, )

in the topology of Yy. We define the differences of the old variables
U=u—t, P=p—p V=101

and the differences of the new variables
V=v—0 Q=q—q W=w—wu,

respectively. These variables obey the following equations:

(
Vi—-AV+VQ=F, Q5 x(0,7T),
V-V =G, Qr x (0,7,
sx0.1) (4.3.63)
M —QN=% +H, T.x(0,7),
V=0, T x (0,7),
and
Wy — AW + oW, 4+ W =0, Q. x (0,7),
" e+ 5 0.7) (4.3.64)
Wt - ‘/, Fc X (O7T)7
where,

F' = 0;((050 — @al)0d") — 0;((65 — ajaf)Opv’) + (6 — @¥)0kG — (Opi — af)Okq
+(fiop— fiod),
G = (6]6_] - d?)@kﬁ] - <6k] - af)@kvj = ak<(5kj - &?)f}] - (5kj — ag‘?)vj),

H' = (65, — a)af) 00" N; — (05 — alaf)Opv' N, + (6 — @¥)GNy, — (dps — alf)gNy,

\

for i =1,2,3, and

Gt = leA + B,
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with B = 0 and
Ay, = 0,((0i — @)V — (6 — ab)0?), k=1,2,3.

Here a is the matrix of coefficients associated with the flow map induced by u and a
is the matrix of coefficients associated with the flow map induced by . Note that the
forcing term f. cancelled when we subtracted iterates.

We apply Lemma 4.2.2 to the linear system (4.3.63) — (4.3.63) to obtain

IV llz2omym2c0p)) + Vel ooy + 1QN 2oz + QN 43 (019,20
+Vill 2o, ry20p))

< C(\|F!\L2(ﬂfx[o,ﬂ> + 1 Gllz2 oy + 1Al 2o, r220,) + 1 Bllz2 o,y r20)

+HIH]

We now estimate the terms on the right side of (4.3.65). For F', which we write as

+||H

L2([0TH (T) Lt oy + H N

L2([0,T];H 2 (T.))

(4.3.65)

H([0,T);L2(T. ))>.

F'o= 0;((05 — ayag)0k') — 05((0 — agaf)Ov’) + (6rs — @7 )0kG — (64s — af )Okq
+(ffod—fro9),
= —0; ((aé,ag k)00 + 0; ((aé,ag 5;1)Okv") — (aF — 04i)Okq + (aF — 61:)Okg
+<ffo¢_ffo¢)a
= 05((@ag — d;)0V") — 0;((apay — ayag) ') + (@5 — o) 0Q — (af — @;)Ohg
+(fiod—fod).

Estimating, we have

| E Nl L2 qo.1y:22(0,)

< CZ [(@)ak — 6;1)0k V| 2(0.17, H(92)) T (ajaf dgd?)akvi||L2([07T];H1(Qf))

+||(ai — 01i) Ok Q|| 20,1322 (2, + (@ — @)Okall 2o 50200,
+ o b= ff o dllzqoairae, -
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Applying Holder and Sobolev inequalities, we have

IFll20, < Cll@gag — djullmsseoplVIiaze,) + l@a; — ajag]m o)l Vol Lo,
Hllag = Spill s @p QN p + la] = @flls@n | VallLa@y)-

+ffo b= f}odlliz - (4.3.66)

Here we use that the coefficient matrices a and @ obey (3.3.6) and (3.3.7). Furthermore,

we use a similar approach used in Subsection 4.3.1 with Gronwall’s inequality to obtain

t
o=l < [ U ds. (4.3.67)
0
Similarly,
t
Jotaf ~ @l < C [ 1Vl ds. (4.3.68)
0

Using (4.3.67)-(4.3.68) in (4.3.66), we have

HFHLQ([O’T};LQ(QJ‘)) < CEHUHLQ([O:T];H2(QJ‘)) +C€HPHL2([O:T];H1(QH)
JrCEHVHL?([O?T};HZ(Qf)) + C€||Q||L2([O,T];H1(Qf))
+frod— frodllrapairae)): (4.3.69)

where T' < Tj is assumed, and we use that the coefficient matrices a and @ obey (3.3.6)
and (3.3.7).
We require an estimate on ||ffoqb_ffoqg||L2([0,T};L2(Qf)). Following the strategy outlined

in Subsection 4.3, we have

Ifrod— frodlzpomzey < Clfllezqomm @mllé — dll2qommz@,)-
(4.3.70)

Recall that F(t) is assumed to be small in W' (R*). This implies that || f;(t)[|m1 ;) is
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small for all ¢ > 0. Therefore,

Ifr 06— frodllizomzay < CelUlleqorynz,)-

For G, we use a similar strategy as with estimating F' to obtain

1Gllae,y < llaf = 6ikllee@pIVV m,) + Cllay — a5 llu@pll Vol

Thus,

G20y < CellUllzomme) + CellV lz2qomsmz@y)) (4.3.71)

For H, we write

H' = (8, — ajal)opv'N; —

(0 — azaz V' Nj + (8 — @ MYGNe — (Opi — a¥)g Ny,
= (65 — ajak) o' N; —

)
(G — afaé)akv 'Nj + (6x agag)(‘?kv N;
CL

_((5jk agae)ﬁkv N + (5k1 )qu + (5.1% )qu - (5kz - df)qu
_(6kl —a; )qu7

= (0jx — @jag) (Ox0" — Opv')N; + (ajaf — @jag)Opv' Ny + (0ri — a¥) (G — ) Ni
+(aj — af)qNy.

Estimating, we obtain

HHHLQ([O,T};H%(FC)) S HHHLQ([OvT}?Hl(Qf))'

Then, following the same process for estimating F' we obtain

M oo it gy < CelUNzzqomympy + CellPllzoarmep)
+Ce| VIl 2oryazp) + CellQll 2 orya @)

(4.3.72)
Using Kato-Ponce type estimes (see [33]), we have

3 oz < Clat ra=TIlleqoxay [VV]
HE(O.THEA(T.)

HT([0,T);L2(T.))
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+Clla" ra— 1|4 sqory =@ VV I @rzaeo)

+CHCL : — dT : CLHLoo ([0,T);LA(T.)) HVUHH4 ([0,T];L4(T'.))

+O]|aT ta—a" s al o e IVl 0,

+Cl|a — I jo,r1x0 [| Q]
+Clla — 1]

HT((0,T;:L2(T.))

Wz‘r 4([0,T],L= (2 ||Q||L4(0,T];L2( re))

+C||(l — CL”LOO ([0,77; L4(Qf ||q”HZI ([0,T];L4(T.))

+Clla - ||sz([0 T],L2(T HqHL ([0,T;L20(Te)) - (4.3.73)

For the [|[VV]| 1 term, we have by the trace inequality [45, p. 41-42]

HT([0,T);L2(T.))

IVVI o S IV < VIl

H([0,T);L2(T HT((0,7);HY(T HE(0,T)HE ()

Next we use the space-time interpolation inequality [45, p. 47) with X = L?(Qy), Y =
H?(Qy), s1 =1, s5=0, and § = 2, in combination with the interpolation inequality [45,
p. 43] with s; =0, s, = 2, and 49 = Z

IVVI[ 1 (4.3.74)

wromiey S CWV I om2em IV 20 m:m200,)-
Apply Young’s inequality with p =4 and ¢ = % to obtain

HVVHHZ (0.T):L2(T)) < €0||V||H1([07T};L2(Qf)) + CEO||V||L2([0’T];H2(Qf)), € € (0, 1].(4.3.75)

The Sobolev imbedding Hi — L* implies

1@l zaqory22wey < CNRN 1 o 1711201 (4.3.76)

We have for a” : a — a¥a and a — @ that

< C|VU|| .. (4.3.77)

|la —a

”H%([QT};LQ( HA([0,T:L2(T.))

and

< C|VU| 1 (4.3.78)

”Hzll([&T];Lz( HA([0,TL2(T.))’
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for T' < Ty. Thus,

0 3 ooy S CeElUlmomizzop) + CelUllr o))
+Ce|P| 3 (0.T1:L2(T.)) + CellV[[ g o/yz2(0,))

OV 2o + CellQl 1 oy z2qp,y (4379
Optimal trace regularity [41] for the wave equation yields
By |5 </,
L2([0.T):H 2 (T.) H((0,T);H(L)) 2([0,T);H 3 (V)
+CHWHH2 [OT LQ(F ))
< OT#|Vomyme@yy
+C|V|| 1 (4.3.80)

H? ([0,T);L2(T.))’

where W = / V ds on T'. was used. For the last term on the right side we use the

0
interpolation inequality

VI3 orpzeny < €llVillizqoryrzon) + CollVIl2o i @)

Thus,

o

To estimate G; = divA, we write

< ClVlezqommz@;))

L2([0,T);H 3 (Te) H Hflf([OvT];HQ(Fc))

+C|V; ||L2([0,T};L2(Qf)). (4.3.81)

Ay = (@ — 0)0,V7 — (@ — a)ow? + 0,5V — (9ak — 8ah)e

Then using Cauchy-Scwarz with p = 3 and ¢ = % (on the second and third terms), we

have

||f‘~1(t)||L2(Qf) < Clla—=Ilr=@plVillzep) + Clla = all s 10:v | s,
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+C|0sal| s IV s,y + Cllox(a — @)l 2@ 1ol Lo @) -
(4.3.82)

Using (4.3.67) and [|0;(a — @)||c2(o,13;22(05)) < ClIVV || z20,11:22(025)), We have
IAO 2@ < CelVIizqmimio + CellVill2qomyrz@yy.  (4:3.83)
We also have (by the interior regularity of the wave equation [41])
Wz oy o)) + [IWelles(o.ry2200)) < ClIW 1z (4.3.84)

Using the definition of the H'(X.) norm, we have

t
Wl = H/V H Wl o2
L2([0,T];HY(T.))
< OT? 1 e pl (L4 P HETE)
< ClIVlzzqorym2(9) (4.3.85)

for T' < Tjy. From the above estimates, we have

Vllz2omz@p + IVellz2qoryza@py + 1@l 2qorim @ + 1€ 1 o 11,0200

< Ce(|Ulle2qorymzep) + U 2 qorezep) + 1Pl 2o rism @)

+||P]| , 1 (4.3.86)

HE(0,7);L2(T. )))
and
HWHLOO([OvTLHl(Qf)) + HWtHLC’O([O,T];LQ(Qf)) < CHVHLZ([(),T};HZ)(QJ,)). (4.3.87)
If e > 0 and ¢y > 0 sufficiently small, we obtain
1
IV W)l < 1T P 0y, (4.3.89)

Therefore, A is a contraction on the space Y, and there exists a unique fixed point
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solution (v, ¢, w) in Yy that belongs to Y. The solution satisfies the bound
t
lo@)]% < Cee @ + C/e”(ts)(}"(s) + F'(s)) ds + F(t), 0 <t <Ty.
0

We now continue the argument on intervals [kTy, (k+1)Ty], k = 1,2, . ... Define Yy[T1, T3]
to be the space (4.3.61) with [0, T] replaced by [T3, T3] with the norm || - ||y, given
by (4.3.62) also with [0, T] replaced by [T1, T]. When k = 0, we have

1
H(‘/v Q7 W)”YO[O,TO] < Z“(U» P’ g’)”Yo[O,TO]‘ (4389)

Let k € N. Then, for t € [kTy, (k + 1)Tp], (4.3.67) is replaced by

kTo t
0 kT,

< GCullUllz2qopmoymzpy + CNU 2w, erymop 29,y (4:3.90)

Similarly, we split the integrals in the terms with the coefficient matrix a in (4.3.69) to

obtain

1] 2o,k nymolizze,)) < CrellUlL2qonmonmzp)) + Crell Pllz2qosrmo)m )
+Ce U L2 ey, b+ 1m0l 12(2)))
FC€l| Pl 2 (e, (o 1ym)s1 (02)
+fr 06— fr o Bllzrm.krymiiz @)
< Cre|lUll 2oz + Crell Pll 2o @p))
+Cel|U|| 2wy, (o110l 2(2))
+C€|| Pl 2 ey, (k+ 110017 (21))
HIfr 06— frodlpnwinmizey.  (43.91)

We have analogous replacements for the inequalities (4.3.69)-(4.3.85). Using these in-
equalities, we replace (4.3.88) with

1
1V, Q, W)llyo k1o, (k4 1)10) < Ck||(U7P>\IJ>HY0(0,kTo)+ZH(U’Pv\Ij)HYO(kTo,(kJrl)To)'
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(4.3.92)

We thus can write

n+1

n n n— 1 n n—
19" = " lvokro.k+1y1) < Crlly" —y 1||Y0(0J€T0)+Z||y — " Mo T, (k4 1) T0)

(4.3.93)

for all n. By induction, the first term on the right side of (4.3.93) converges to zero, which
allows us to conclude that the iterates converge to zero on the interval [kTy, (k4 1)T] as

n goes to infinity. We also have a generalization of (4.3.55), i.e.

n n 1 n—
Hy( )”Y(kTO,(k:H)TO) < CH?J( )(kTO)H?(o) + 5”9( 1)||17(kT0,(k+1)T0) + 1/l -

Here, Y (T, T) denotes the analogue of Y on the interval [T7, T5]. Thus the iterates lie in
a ball By in Y (kTp, (k4 1)Tp) for large enough M, allowing us to conclude the proof. [
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Chapter 5
Optimal Control

Using a body force, our objective is to minimize the vorticity inside a fluid in the case
of an elastic solid moving and deforming within it. In the stationary case, the drag force
in the direction of the leading velocity w is represented by a distributed integral of the
classical term Du..Du = 3}, /(Qiu;)?. Since Du..Du = [curl(u)[* + D(u)..D(u) (for the
symmetrized gradient D(u)), the dissipated energy will comprise the energy captured by
the wake (dependent on the curl), which measures the rate of turbulence in the flow.
We seek to reduce this turbulence using an external force acting upon the body of the
system.

Let u represent the velocity of the flow on the time-dependent domain €/ (¢) within
the control volume 2 which is comprised of both the fluid and the solid. Denote by U,
some set of admissible controls f acting on the system. Due to the movement of the

domains within Q, we proceed as in [18] to quantify the control as acting on all €.

Remark 5.0.1 (Control from the outer layer of the fluid). We can restrict the set of
admissible controls to a bounded closed convexr subset, comprised of functions supported
on a collar of D with an H'-extension by 0 into the rest of the domain. Then, at least
locally in time, the control affects only the outer layer of the fluid. The same minimization
analysis carries through in this context; though, of course, potentially resulting in a larger

mainimal attainable cost.

The cost functional can be expressed as

T
J(fiw) = / / a|V x ul* dr dt + CQHng'(O,T;Q), (5.0.1)
0 Qf (t)
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with «, 8 > 0. Denoting by u[f] the flow-field corresponding to the control f, the con-

strained drag minimization problem can be formulated in as mlijn J(f,u[f]). The control
EUqq

norm £(0,7;2) will be derived from the known well-posedness results for the control-to-
state map.

Our goal is to prove the existence of an optimal control for the above cost functional.
This result shows that the turbulence in the flow can be reduced by applying a force
on the domain, potentially only on a layer of the fluid as described in Remark 5.0.1.
One of the main challenges to optimal controllability is the limited well-posedness theory
for fluid-structure interaction problems. The optimality proof relies on sufficient regu-
larity and/or smallness conditions in order to take advantage of the available existence
results. Furthermore, the cost functional (5.0.1) must be reformulated to accommodate
the evolution of the domain using the deformation mapping.

Because V x u is the image of Du via a linear map £ : R? — R3, we can work the
following cost functional defined on v, n in the reference configuration, and the control
f on the domain {2

J(f,v,n) = /0 /Q |£[Dv(x) . cof(Dn(x))r ? dedt + HfH?g(O’T;Q), (5.0.2)

where, without loss of generality, we take the positive weights ¢y, ¢y = 1.

5.1 Quasilinear Elasticity

In the case of a fluid interacting with a solid modeled by quasilinear elasticity (as in
(4.1.2)), we recall the well-posedness result of [18] given in section 4.1. Provided that the
control f satisfies Assumption 4.1.1, we can conclude the existence and uniqueness of a
local in time solution via Theorem 4.1.2.

Consider the Hilbert space E7 in (4.1.6) with norm given by

3
HfHQET = HinQ(O,T,HS(Q)) _'_ Z Ha;linQ(QT,HS—n(Q)) .
n=1

According to Theorem 4.1.2, for each uy € H®(Q2;) "H®(,) N Hy(Q) N Lﬁi\,’f (satisfying
the necessary compatibility conditions) and f € Em, there exist a time T'(uq, f, Q) > 0
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with 7 < T such that (4.1.2) has a unique solution (v, q) € Wy x Zp.

Define the set of admissible controls in the Lagrangian formulation to be
Qu(T,R) := By o.r) =1{f € B | |fl|e- < R}, for some fixed R > 0.

Then for each f € Q.4(T, R), (4.1.2) has unique solution on [0, 7] with T = T(R, ug) < T.
From a priori estimates in [18] it follows that for a fixed R, the existence time 7T is at
worst non-decreasing as T decreases provided T < T. Thus, we may fix R and choose T
such that

T =T, and henceforth abbreviate FE := Ex, Q.4 = Q.a(T, R).

Let A : E — Wy X Zpy map an admissible control function to the solution of the
transported (to Lagrangian coordinates) state problem (4.1.2). Then for a given initial
condition ug, the optimization problem in Lagrangian framework reads: find f € Q.q such

that for the corresponding velocity v = v[f] and deformation 7] = 5[ f], the functional .J
in (5.0.2) satisfies

J(F.5,7) = win J(f,lf]nlf)). (5.1.1)

f€Qaa
Theorem 5.1.1. Let uy € H(Q)) N H*(Qg) N HX(Q) N L(Qﬁv)f satisfying the compatibility
conditions as in Theorem 4.1.2. Given R > 0, there is T > 0 such that the minimization
problem (5.1.1) has a solution, i.c. there is f € Quqa(T, R) and a solution (v,q) € Wy x
Zp with the associated deformation map 7 as in (4.1.7), so that the functional f
J(f,v[f],nlf]) attains its minimum on Quq at f, and (v,q) is the solution of (4.1.2) with
Lagrangian field 7 and forcing term f.

The strategy of the proof for Theorem 5.1.1 is as follows: using a (weakly convergent)
minimizing sequence of controls f, for J and the associated sequence of solutions for
the coupled system associated with f,, we reconstruct the cost functional evaluated
at its minimizer. We then use Lions-Aubin compactness arguments to obtain strong
convergence in the nonlinear terms in the PDE system, which implies that the weak

limits of these sequences satisfy the FSI coupled system.

proof of Theorem 5.1.1. The minimizing sequence: Let {f,} € Q.q be a minimizing
sequence for J, and set (vn, ¢, nn) = (v[fnl, ¢[fn], n[fn]) to be the associated solution of
(4.1.2) with right hand side f,. By the coercivity of J, we know that {f,} is a bounded
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sequence in E with weak subsequential limits residing in the closed convex subset ().q.

Now we use the following estimate given in [18, p. 328]:
||(Una C_In)HWTXZT < C [j\/b(u07 (wi)?:l) + Mo(fn) +N((q]')32':0)] for all n, (5'1'2)

where Ny (uo, (w;)?_;) and N'((¢:)%,) are smooth functions depending only on the norms

lws—illmia.) ws—illmiq.) and [|g2—j | miq,), and Mo(f,) is a smooth function depending

on || f,||g. Hence

(Un, ¢n) are bounded in Wrp x Zr.

Identifying weak and weak* limits: The space Wy (4.1.3) embeds continuously into
V(0,7T) := {u € L*(0,T; Hy()) | dPu € L*(0,T;L*(2))}, (5.1.3)
equipped with the Hilbert norm:

[ull3 0.7y = ’|U|‘i2(o,T;H5(Q)) + Ha?uHi%O,T;LZ(Q))'

Set Xr = X7 N V(0,T). The space Wy x Zr continuously embeds into X7 x Yr, and

thus we have the following convergence for a reindexed subsequence:
(Un,@n) converge weakly to (7,q) in Xr X Y.

Next we show that 7 € Wy and § € Z7. Since v, converge weakly to v in V(0,T), we

have that on a subsequence

Ov, — 0?0 weakly in  L*(0,T; L*(Q)) .
Moreover, 93(v,,) is bounded in W7, so on a subsequence

02 (v,) — 0 weakly* in  L>®(0,T;L*(Q)).

Therefore, for a test function ¢ € C°((0,T") x Qy), we have

/OT/(28?UH'¢—>/OT/§2835.¢and /OT/gzafv”'¢_>/0T/g)@'¢'
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This convergence holds for any smooth compactly supported ¢ on (0,7) X Qy, so © = 9}v

almost everywhere and hence
0¥ € L™(0,T; L*(Q)), (5.1.4)

which is the requirement for elements of Wy (4.1.3) on the entire domain €.
It remains to verify the rest of the conditions for Wpr-membership, which amount to
L regularity of time-derivatives. We have that v, — v weakly in X1 as well. Conse-

quently,
¢) )
85/ vy — 8;‘3/ (¥)* weakly in  L*(0, T; H**(Q.)), k=0,1,2,3.
0 0

From v,, being in W7 we may assume

n

()
af/ v = oF  weakly* in  L=(0,T;H*%(Q.)), k=0,1,2,3.
0

)
As above, using test functions ¢ € C°((0,7") x ), we obtain that 85/ ()" = Uy

0
a.e. in (0,7) x €, for 0 < k < 3. In combination with (5.1.4) and v € Xr it gives that
v e Wr.

Next we focus on the pressure term ¢,. Since ¢, — ¢ weakly in Y then
Oqn — Owq  weakly in  L*(0,T; H'(Qy)).
In addition, {9yq,} is bounded in L>(0,7T;L*(;)), hence
Ouqn — G weakly* in  L>(0,T; L*(2y)).

The duality argument with test functions ¢ € C°((0,7) x €f) implies that ¢ = 0,g

almost everywhere in (0,7") x €. Consequently the weak limit g is in Z7.

Convergence of {¢,}, {v,} and {n,} in various topologies: The following observa-
tions will be useful to establish convergence of the minimizing sequence to the solution
of the problem (4.1.2) which also minimizes the cost functional.

For the pressure term we have {¢,} a priori bounded in Zr which continuously embeds
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into L*(0,T; H3($2;)); moreover, d,q, are bounded in L?*(0,7; H*(£2;)). Hence Aubin’s
compactness result (see, e.g., [57, p. 67]) implies that for any ¢ > 0 we can assume (up
to the extraction of a subsequence) that {g,} converges strongly in L?(0,T; H>~¢(£2;)).

Likewise, with {9,¢,} bounded in L*(0,T; H*(Q;)) and {9u¢,} bounded in L?*(0,T;
H*(Qy)), we can for any fixed € > 0 assume that 9,g, converge strongly in L?(0,T;
H?*¢(Qy)). Consequently

qn converge strongly in H'(0,T; H*“(Qy)) < C([0, T]; H*~*(Qy)) . (5.1.5)

On the solid region 2., the bound on v, in Wy gives that {0yn,} is bounded in
L>®(0,T;H*(,)) and dyn, are bounded in L>(0,T; H'(€.)). Hence for any fixed € > 0

we can assume without loss of generality that
Oy converge strongly in L>°(0,T; H? ¢(€,)).

Using the definition of Wy, the same argument applied to 0;7, and 0yn, gives
O, converge strongly in L(0, T; H*7¢(€2,)),

and likewise, for 7, and 9,1, obtaining that 7, converge strongly in L°°(0,T; H*~*

(Qe)). In particular, we can assume
N, converge strongly in Wh(0, T; H*~¢(Q,)). (5.1.6)

On the fluid region Qy, the fact that {v,} is bounded in X7 C X implies kv, are
bounded in L?(0, T; H**(€)), for k = 0,1,2,3. These bounds imply that for any fixed

€ > 0 we may assume that
v, converge strongly in L*(0, T; H*(Qy)).

Hence
1, converge strongly in H*(0,7; H*“(Qy)).

From the 3D embedding H°*%2? — L[>, for any § > 0, we conclude that (up to a
subsequence)
N, converge strongly in C([0, T]; W»*(Q)). (5.1.7)
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We also get
v, converge strongly in H*(0,T; H* “(Qy)). (5.1.8)

v, converge strongly in H*(0, T; H*~(Q;))

On the entire domain €2, the uniform bound on v, in Wy gives that {v,} is bounded
in L2(0,T; H*(Q)) and {9,v,} is bounded in L>(0,T;L*(Q)). Then {,v,} is bounded
in L>°(0,T;L*(Q2)) and therefore, for any fixed ¢ > 0, we may assume

v,, converge strongly in L>(0,T; H'™¢(Q)) .

Convergence in the system (4.1.2): It suffices to focus on the convergence of nonlinear
terms in the interior and on the boundary.

On the fluid region ; we require the terms to converge in L*(Q; x (0,7)). Con-
sider the individual summands from the corresponding equation in (4.1.2). For the terms
Ok[(an)Fq,) it suffices to have the convergence of (a,)Fq, in L?(0,T; H(Qy)). In turn,

k

it is sufficient to have (a,)"

convergent in L>°(0,T; Wht>(€;)) and ¢, convergent in
L>(0,T; H(Qy)). Recalling that each (a,)¥ is a polynomial in first derivatives of 7, we
can use convergence (5.1.7) for the first requirement and (5.1.5) for the pressure.

Next, consider 9;[(an)] - (a,)F - Opvi] in L2(0,T; L*(;)). Tt is sufficient to have con-
vergence of (a,) components in L>=(0,T; W (€;)) which has already been established,
and of
Opvy, in L*(0,T; H' () .

From (5.1.8) we have that (9yv’) converge strongly in H'(0,T; H*¢(€2;)) which is suffi-
cient.

On the solid region €2, we focus on the terms 0, [(8mnn)(8jnn)(aknn)} in the topology
L2(0,T;L*(9.)). For that it certainly suffices to have convergence of (9,1,) (07 ) (k1)
in L>°(0,T; H'(€2,)), or that of 1, in L>(0,T; W**(Q,)) which holds by (5.1.7).

Interface: Next, consider the trace identity on the reference interface I'.. For the so-
lutions of considered regularity, the traces of the limiting problem can be identified in
LA(T. x (0,7)).

For the (a,)f(a,)] (Okvl) terms, the desired convergence result follows from the strong

convergence of these products in L*(0,T; H*(€2;)) and the continuity of the trace map
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HY(Qy) — HY2(T') C L*(T). The terms 0,0y, - 0jn, - Op1’, likewise feature convergence
in L>°(0,T; H*(2,)) which suffices for their traces to converge in L>(0,7;L*(€.)). The
analogous conclusion holds for the boundary product (an)g ¢» using the interior conver-
gence in L*(0,T; H*(y)).

Finally, since the reference configuration has I'. of class C* (in fact, of class H* by

assumption), then components N; of the normal vector do not affect the convergence in
LT, x (0,7)).

Attaining minimal cost: Some subsequence of controls {f,} goes weakly to f in F
(4.1.6), with the limit confined to the closed convex subset Q.q C E. By the weak lower-

semicontinuity of the norm

I£llz < liminf || £ %
n—oo

Furthermore, (5.1.7) and (5.1.8) together imply that subsequences {Dn,} and {Duv,}
converge strongly in L>((0,77) x €f). Thus,

T T
/ LD (x) - cot( D ()] dedt — / L[DB(x) - cot( D)) dedt.
0 Qf 0 Qp
Via the definition of the cost functional (5.0.2) it follows

J(7767ﬁ) S J(fav[f]ﬂﬂf]) for all f € Qad

completing the proof of Theorem 5.1.1.

5.2 Damped Linear Wave Equation

We now focus our attention on the case where the solid is governed by a damped linear
wave equation as in (3.2.4). Define the space of admissible controls £(0,T;2) to coincide
with the space of source terms satisfying the regularity, compatibility, and smallness
conditions given in Theorem 4.2.1 (note that this is a closed, convex space). Then for
f € &(0,T;9Q), we obtain a unique solution to the coupled system (3.2.4) associated with
the control f.
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Theorem 5.2.1. Let vy € VOH2(Qy), v:(0) € VAHZ (), v(0) € V, wo € HT5(Q,),

and wy € H%_‘S(Qe) for 6 € (0,3) satisfying the compatibility conditions given in Theo-

rem 4.2.1. Then there exists f € £(0,T;Q) and a solution (3,7, W) € Y and associated
deformation map 7 such that the functional f— J(f,v[f],n[f]), given by (5.1.1), attains
its minimum on (0, T;Q) at f, and (v,G, W) is the solution of (3.2.4) with Lagrangian
field 7 and forcing term f.

Proof. The minimizing sequence: Let {f,} € £(0,7;€2) be a minimizing sequence for
J, and set (vn, @, 1) = (V[ fu], @[ fn]s n]frn]) to be the associated solution of (3.2.4) with
right hand side f,. Recall from Theorem 4.2.1 that each f, € £(0,T,) lies in the ball
(4.2.2). Thus, {f,} is bounded in £(0,T,2) with weak subsequential limit f residing in
£(0,T, ). Furthermore, the bound (4.3.58) implies

lyally < Cllyoll + [ fulleo, i), (5.2.1)

implying that {y,} is bounded in the Hilbert space Y. Therefore,

v =1 € L2((0,T]; H'()) N H ([0, T]; H¥(©y))
(vn)e = T2 € H'([0,T]; H*(€y))
(vn)u — T3 € H'([0,T]; L*(2))
4o — T, € L*([0, T H(Qy)) N HY([0,T; H*(2))
(gn)t = G2 € H'([0,T1; H ().

Furthermore, we have

Hw, ;€ L=([0,T); H+079(0.))
&Hw, —w; € L*([0,T); H+ 279 (),

since L>([0,T]); H% 979 (Q,)) embeds continuously into L2([0,T]; H % ~°~7(£2.)). We may
again identify the weak limit w and weak® limit w using a duality argument to conclude
that &/w € L>([0,T); HT 579 (Q,)).

Convergence of {q,}, {v.}, {w,}, and {n,} in various topologies: We will use
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the following observations to establish convergence of the minimizing sequence to the
solution of the problem (3.2.4) associated with forcing term f.

Recall that the pressure {g,} is bounded in L?(0,T; H*(£;)) and its derivative {9,q,}
is bounded in L?(0,T'; H*(£2;)). Aubin’s compactness result (see, e.g., [57, p. 67]) therefore
implies that, for any € > 0, we can assume (up to the extraction of a subsequence) that
{gn} converges strongly in L*(0,T; H>¢(£2y)).

Similarly, {9;¢,} is bounded in L*(0,T; H*(Qy)) and {0ug,} is bounded in L?*(0,T;
H'(€y)). Then for any fixed € > 0, we may conclude that 9,g, converge strongly in
L*(0,T; H*<(£2)). Consequently

qn converge strongly in H'(0,T; H*“(Q)) < C([0, T]; H*~<(Qy)) . (5.2.2)

On the solid region 2., {Jyw,} is bounded in L*>(0,T; H%_‘S(Qe)) and Oyw, are
bounded in L>(0, T H%_‘;(Qe)) for 6 € (0,1). Hence for any fixed € > 0 we can assume
without loss of generality that

Opw,, converge strongly in L>°(0, T H%_‘S_E(QQ)).
The same argument applied to d;w,, and Jyw, yields
Oyw,, converge strongly in L>(0, T} H%_‘S_G(Qe)),

and likewise, for w,, and d;w,, obtaining that w, converge strongly in L*°(0, T} H7 0

(Qe)). In particular, we can assume
w, converge strongly in W (0, T leTl_‘s_E(Qe))‘ (5.2.3)

On the fluid region Qf, 9Fv, are bounded in L2(0,T; H**(;)), for k = 0,1,2, 3.
These bounds imply that for any fixed € > 0 we may assume that

v, converge strongly in L(0, T; H* (Qy)).

Hence
N, converge strongly in H'(0,T; H*™“()).

From the 3D embedding H%*%2 — L for any § > 0, we conclude that (up to a
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subsequence)
N, converge strongly in C([0, T]; W**(Q)). (5.2.4)

We also get
v, converge strongly in H'(0, T; H*~“(Qy)). (5.2.5)

v, converge strongly in H?(0,T; H> “(Qy)).

Convergence in the system (3.2.4): Again it’s enough to focus on the convergence
of nonlinear terms in the interior and on the boundary of the system. Note that the
fluid component of (3.2.4) is identical to that of (4.1.2). Furthermore, the fluid velocity
and pressure sequences and their derivatives are bounded in the same spaces of regularity
given in the proof of Theorem 5.1.1. We conclude with a similar argument that dy[(a,)¥q,]
and 9;[(a,)] (a,)Fo,vl] converge strongly in L2(0,T; L2(€)).

For the source term f,, on,, we have

oo —Ffolllzy < Ifuomm = faoTllizg,) + Ifa o= Fomllz))
< o= faoqllz@,) + 1 a0l — F oz,
< Moo = faodillzaey + I1(fa = F) 0 Tl z2ey
< Nfaom = faollzg,) + 1(fa—F) o= (fo = )2

o = Fllzz@)- (5.2.6)

We follow the strategy used in [18, p. 329] (similar to the derivation of estimate (4.3.11))
to estimate (5.2.6), i.e.

Cllnn = Nllze@pll fall ) + [1(fa = f) oMl 20
< Cllmn = llze@plfallar@y + ClT = Il @l fo = Fllano
I fo = Fllz), (5.2.7)

IN

||fn OMn — ?Oﬁ”LQ(Qf)

A

which implies

| fr 0 — ? © ﬁHL?([o,T};LQ(Qf)) < Clngn — ﬁ||Loo([o,T];Loo(Qf))an||L2([o,T];H1(Q))
+C17 = I oz @ 1o = fllz2qomym0)
+ fo = Fllz2qoryz2@)),
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< Clnn =0l oo qo.135250 (2 |l 20,1955 (02))
+C7 = Il (o2, fr = Fllz2o.m7:80 @)
+fu = Fll2qomi2@), (5.2.8)

Recall that { f, } is bounded in L*([0, T]; H3(€2)) and {9 f,, } is bounded in L*([0, T|; H?*(£2)).
By Aubin’s compactness result, we may conclude (for any ¢ > 0) that (up to a subse-
quence)

fn converge strongly in L*([0, T]; H*~¢(Q2)). (5.2.9)

Using (5.2.9) and (5.2.4) in (5.2.8) allows us to obtain the desired convergence of f,,on, —
Fomin LA(0,T); LA(2y)).

Interface and Attaining Minimal Cost: The strong convergence nonlinear terms
on the interface follows a similar argument as that presented in Theorem 5.1.1. Further-
more, we observe that a subsequence of controls {f,} goes weakly to f in £(0,7T;%).

Using the lower-semicontinuity of norm, we conclude

| Flleoroy < liminf || all20,r0)

In addition, (5.2.4) and (5.2.5) imply that subsequences {Dn,} and {Dwv,} converge
strongly in L>((0,7") x §¢). Thus,

/0 [ 21D ) -colDap ) dt /0 [ eiD(a) - cofl D) .

Via the definition of the cost functional (5.0.2) it follows

J(f,0,7) < J(f,0[f],nlf]) for all f € Qua

completing the proof of Theorem 5.2.1.
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Chapter 6

Conclusion

6.1 Summary

In this section, we briefly summarize the conclusions of this thesis regarding the well-

posedness and optimal control theory for fluid-structure interactions.

1. Local theory: Using the local well-posedness theory developed in [17, 18], we proved
the existence of a body force that minimizes the turbulence inside a fluid in the case
of an elastic body moving and deforming within it. Here, the elastic body is modeled
by the nonlinear equations of elasticity, and the existence of the control depends
upon the existence of a local solution to the model and an a-priori bound on the
control-to-state map established in [18]. This result necessitates high regularity for

the initial data and body forces, which were inherited from [18].

2. Global theory: The limitation of the existence and uniqueness result for an FSI given
in [33], from the viewpoint of optimization or control problems, is the fact that they
focus on homogeneous equations for both fluid and elastic structure. Therefore, the
first step towards control is developing a well-posedness theory that accommodates
sources, either distributed or located on the boundary. We proved global existence
of solutions for the moving boundary interactions in the case of small distributed
sources and small initial data. This is the first result on global well-posedness of
solutions and optimal control for moving boundary fluid-structure interactions with
distributed forces (i.e. controls). Furthermore, we demonstrated the existence of an

optimal distributed control for the problem of minimizing turbulence in the fluid
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flow.

6.2 Future Work

In this this, we demonstrated the existence of a distributed control in the case of a solid
immersed in a fluid. This framework ensures the no-slip condition on the fixed outer
boundary, which permits the use of the Poincaré inequality in our calculations. Using a
generalized Poincaré, we plan to adapt this work to fit the more physically relevant cases
of boundary control and of a solid surrounding the fluid flow. The latter is relevant in
the study of blood flow in a stenosed or stented artery [16, 56, 58], which is of interest in
the medical community. Furthermore, we worked with initially flat subdomains in order
to simplify the exposition. This assumption, which is not essential, bypasses the use of
commutators in the a-priori tangential estimates. We seek to generalize these results to
obtain global well-posedness and existence of an optimal control in the case of a smooth

domain with a general initial configuration.

The next step is to characterize the optimal control through deriving the first order
necessary conditions of optimality associated with the problems, paving the way for the
numerical study of the problems. In order to achieve this goal, a suitable adjoint problem
must be derived and used to explicitly compute the gradient of the cost functional we
seek to optimize. Due to the nonlinearity of the state equation and the moving domains,
the cost function gradient cannot reduce to the derivative with respect to the control of
the Lagrangian function at its saddle point. Optimality conditions must therefore be de-
rived from differentiability arguments on the cost functional with respect to the control.
The main challenge stems from the dependence of cost integrals on the unknown domain,

which also depends on the control.

From the application of the chain rule, the derivative with respect to the control of
the state variables will appear in the computation of the gradient of the cost functional.
To describe the the derivative of the state variables, we need to take the Gateaux deriva-
tive of the original coupled system, which was formally computed in [5, 6, 7] (in the
case of quasilinear elasticity) using a pseudo-shape derivative method. The sensitivity

system revealed the influence of the geometry of the common interface in the lineariza-
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tion through new terms that appeared on the boundary. In particular, the curvature of
the boundary plays a key role in the analysis of the linearized system. We seek to use
the resulting adjoint problem obtained from the linearization to derive the first order

necessary optimality conditions that characterize the optimal control.
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Appendix A

Auxillary Lemmas

A.1 Bounds on 7 and the Coefficient Matrix a

Proposition A.1.1. Let the coefficient matrix a = a(x,t), the scalar function H =
H(zx,t), and the deformation n = n(z,t) satisfy

a; = —HaDva + H Tr(aDv)a

, (A.1.1)
a(x,0) =1
OH = —H?*Tr(aDv)
: (A.1.2)
H(z,0)=1
=
" , (A.13)
n(z,0) =x
where v = v(z,t) is a vector function. Assume that ||Dvl|ze o1, m2(0,)). With T €

[0, 5z557], where C'is a sufficiently large constant, the following statements hold:
(1) anHHQ(Qf) S C fOI' t e [O,T]
(i) llallg2@,) + |1H || a2,y < C for t € [0,T).

(iii) H(ltHLp(Qf) + ||Ht||Lp(Qf) S C||DU||Lp(Qf) for t € [O,T]
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(1V> ||8iat||Lz(Qf) + ||81Ht||L2(Qf) S CHUHHZ(Qf) fOI‘ t - [O,T]
(V) H@ijatHLz(Qf) + H@-thHLz(Qf) < CHUHHJ for t € [O,T] for Z,j = 1,2,3 and t € [O,T]

(Vi) llawllc2p + [ Hillz2p) < CllDv||g2pllvllai@,) + CUIDV|Ia20)) + Dllvella @)
for t € [0,77.

(vii) [[Oiautllr20p) + 10i i r20p) < CUIDV 2e0)) + D(Iv]lH200)) + Vel 2(02))) for t €
0,7].

(viid) [lasllricay) < CIDVIEsq, [0l + ClDvlm@plollmiay) + CUIDv ]y +
1)||Utt||H2(Qf) for t € [O,T]

(ix) for every € € [0, 1] and all ¢ < T* = min{z5z, T}, we have

1655 — ajaf 2,y < € G,k =1,2,3 (A.1.4)
and
16,6 — all3r,) < € 4.k =1,2,3. (A.1.5)
In particular, the form aZa’gfjl?f,i satisfies the ellipticity estimate
dlafele] > ZIeP, € R, (A16)
for all ¢t € [0,77] and = € , provided € < % with C sufficiently large.
Proof. (i) Relation (2.2.1) implies that

t
Vn:/Dvds—l—]
0

for t € [0,T]. Estimating in H?(Qy) and using || Dv||z(o1]; #2(a,)), We obtain

t
IValle@, < / |Dollzay) ds + [Tl
0
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T
0

IN

C.

(ii) Integrating (A.1.1) and (A.1.2) in time yield

t

a= /—HaDva + HTr(aDv)a ds + I

0

and

t
H= —/HQTF(GD’U) ds+1
0

Thus we have

t
lallsz@y + | H ey < /(||HaDva||Hz+||HTr(aDv)aHHz
0

+||H2Tr(aDv)||Hz(Qf))ds +C
t
< ¢ [y laliin,
0
I H G2 llall z2@p) [ Dol a2y ds + C
t
C/(HGHHZ(Qf) + |H 12 (2,)* |1 Dol 2,y ds + C
0

IA

(A.17)

By the Gronwall lemma [22, Theorem 25], we conclude for T < M+M that

¢
1-203TM
< C, (A.1.8)

lall 2 + 1 Hl m2)) <
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where C is sufficiently large.

(iii) We apply Holder’s inequality, Sobolev’s inequality, and (ii), i.e.

lacllzriy) + [Hillery) < CUH | =(p llallzq,)
HIH | Zoe @ llall 2@ ) 1DV ()
C(||H||H2(Qf)||a||12q2(szf)

HH @) llall z2@) | DVl Loey)
< CDv[|zey)-

IA

(iv) We differentiate (A.1.1) and (A.1.2) with respect to the i-th spatial coordinate, i.e.

Oiay = —0;HaDva — HO;aDva — HaD(0;v)a — HaDvoyva + 0;HTr(aDv)a

+HTr(0;aDv)a + HTr(aD(0;v))a + HTr(aDv)0;a

and

0,0;H = —2H0; HTr(aDv) — H*Tr(d;aDv) — H*Tr(aD(0;v)).

We apply Holder’s inequality, Sobolev’s inequality, and (ii) to obtain

10sall 2 + 10:Hil 2y = CUI0iH |zsp llallZe [ Dvll s,
I H @) |0sal[ 2@ |1 DVl Lo llal L= o)
HHI| 2 |allF oo, 1D(0i0) [ 20p))
2| H ||z 10:H | o) llal o o) [ D] a0y
+||H||%°°(Qf)||8ia||L4(Qf)||DU||L4(QJ-)

HIH |7, llall oo @) 1D (i0) [ 220
g CH’UHHZ(Qf)

(v) Differentiate (A.1.1) and (A.1.2) once with respect to the i-th component and once

with respect to the j-th component. This result then follows from a similar argument
as (iv).
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(vi) Differentiate (A.1.1) and (A.1.2) with respect to time. We obtain

(vii)

(viii)

(ix)

ay = —H,aDva — HayDva — HaDva — HaDva, + HyTr(aDv)a + HTr(a;Dv)a
+HTr(aDvt)a + HTr(aDv)a, (A.1.9)

and
Hy = —2HHTr(aDv) — 2H?Tr(a;Dv) — 2H*Tr(aDv;).  (A.1.10)

We substitute (A.1.1) and (A.1.2) into (A.1.9) and (A.1.10), respectively. We obtain

ay = —2H*Tr(aDv)aDva + 2H?aDvaDva — HaDv,a
+H*Tr(aDv)?a — H*Tr(aDvaDv)a + HTr(aDv)a  (A.1.11)

and
Hy, = H*Tr(aDv)* + H*Tr(aDvaDv) — 2H*Tr(aDvy). (A.1.12)
Finally, we estimate using Holder’s inequality, Sobolev’s inequality, and (ii) to obtain

lawllzzp + 1Hill2y = ClDv|mz@p vl e @)

+C([[Dvll a2,y + Dllvil ey
Differentiate (A.1.11) and (A.1.12) with respect to the i-th component. The result
follows from a similar argument as (vi).

Differentiate (A.1.11) and (A.1.12) with respect to time. The result follows from a

similar argument as (vi)-(vii).

The proof is identical to that of Lemma 3.2.2 given in [31].
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A.2 Stoke’s and Elliptic Type Estimates

Proposition A.2.1. Assume v and q are solutions to the system

;

vi — Oj(ajafor’) + Biafq) = fiom, Qp x (0,T),
aka 'Ui = 0, Q )
o o ! (A2.1)
8]"UJZN]' = a@aﬁ@kvz]\fj — lequ, FC,
\U = 0, Ff,

for given coefficients az- with i,j = 1,2, 3 satisfying (3.3.6)-(3.3.7) for sufficiently small
e > 0. Then the estimate

|vllzsr2p) + lallms+ry < Cllvllas@,y + Cllfr onl

Hs( Qf HaN

H*" 3 (T,)

(A.2.2)

holds for s = 0,1 and for all t € (0,T). Moreover, the time derivatives v, and q; satisfy

vellz2py + N @ellmry) < C||Utt||L2 @p T Cllfronlzp + Clou(fr o)Lz
3]
3(r,)

(A.2.3)
Proof. Let ¢ be the solution to the elliptic problem
A¢p = —(8, — a%)’ in Q

with Dirichlet data ¢ = 0 on I':UI'y. Then the function u = v+V ¢ satisfies the stationary
Stokes problem

;

—Au' + 0iq = —A0ip — 0;((Sj, — alaf) ') + O((0u — ab)q) — vi + fiom, Qy,
Oyu? = 0, Qy,
u=Vo, Ty,
\ajuiNj — qN; = 0;w'N; + 050 N; + (8, — apa¥)Opv' N; — (851, — a¥)g Ny, ..
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(A.2.4)

Thus we have (see [31], for instance)

||u| Hs+2(Qy) + ||q| Hs+1(Qy)
3
< ClIAV || ms(ay) + ClIO; (55 — ajaf) v,y + C Y (G — af)gll sy
=1
(Vo)
+Cllallay + Oy onllway + €| 33 v A2
( f) f 3N H5+2(1—\) aN H5+%(1—\C)
+C||(6]k a/fag)akUN HHSJ'_? + CZ H ik — Q4 )qu‘ He-‘rg( )
+C\|V¢1HS+2 ry (A.2.5)

By the trace theorem, [VA®| gs < C|(d;x — a) O |

inequalities, and (3.3.7), we have

Hs+1(0;), the multiplicative Sobolev

[l

Hs+2(Qy) T lq] Hs+1(Qp)

3
< C[(65 — a0V’ | mresray) + C D (656 — ajag) O’ || e o))

=1
3
k
+C Z 16k — ai)all m=+10p) + Cllvell sy + Cllfr o nllmsoyp)
i,k=1
ow
+0|| o
aN Hs+%(rc)
3
< Cl65 — a2 060 | ey + C D 00 — afag]| 2|0’ | zre410 )
=1

3
+C Y 10w — af |2 llal

i k=1
ow
ON

Hs+1(Qp) T OHUtHHS(Qf) + CHff © 77||Hs(9f)

+C

1
H*F2(Te)

< C¢|| 2(0,) + Cellq]

o
+

me1 @) + Cllvdl s, + Cllfy ol

H#(Qy)
0

H* 3 (1)
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Absorbing terms on the left-hand side, we obtain the desired result

0]

H5+2(Qf) + ||q| H5+1(Qf) < C||Ut| Hs Qf + O”ff O 77| Hs Qf + CH

ON

Hs+2(1“ )'

(A.2.7)

For (A.2.3), we differentiate (A.2.4) with respect to time and repeat the analysis
above (making use of (A.2.2)) to obtain the desired result. O

Note that the normal derivative terms in (A.2.2) and (A.2.3) can be bounded using

the trace theorem, i.e.

< jul

Hs+2(Qe) (A28)

by

Hs+§(l“

and

2

H 8'(1],5

To obtain bounds on the right side of (A.2.8)-(A.2.9), we apply the elliptic regularity

result of [3] to the damped wave equation and its time derivative, i.e.

w20y < Cllwallrs@o + Cllwdllm@ + (D) wllas@) + Cllfellae@,)

(A.2.10)

and

lwillezny < Cllwaed 2. + Cllwwl 2. + ClD Wil 1@,y + ClOfell L2
(A2.11)

Here, D'w = (0w, Dyw) denotes the tangential derivative of w and (D’)? is the matrix
whose ij-entry is J;;w for i,7 =1, 2.

Applying (A.2.10)-(A.2.11) to (A.2.2)-(A.2.3) yields

0] ey < Cllodlmsep) + Cllwullra.) + Cllwdl| i)

+(DVwlla=,) + Cll fr o nllus,) + Cllfell=,)

ms+2(0p) + lq]
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and

[vella2) + @y < Cllvallezq,) + Cllwellz2@o) + Cllwell 2.

(A.2.12)

+C[[(D"w| 120,) + Cllwwell 2.y + Cllwull 2.
+|D'wil | g1,y + Cllfr o 2y + Cllifell 2y

+CN0(fr o2y + CllOfellL2(oy)-

(A.2.13)

Estimates (A.2.2)-(A.2.3) combined with the definition of the X (¢) norm given by

(3.3.1) yield the following estimates in the case where the coefficient matrix a is close to

identity:

0]

2o o,y < CXE) + Ol fronlfq, + Cllfel

and

||Ut||§12(ﬂf)+||Clt||§{1(9f) < CX(t)ﬂLCHffO??H%?(Qf)+C||fe||%2(ﬂf)

+C|0(ff o 77)||2L2(Qf) + C||atfe||%2(9f)-

A.3 Barrier Argument with Cubic Equation

Proposition A.3.1. Let C > 0 and € > 0, and let z(t) > 0 such such that

z(t) < Cez(t)* + Ce, 2(0) = 0.
Then there ezists € > 0 small such that z(t) < €.

Proof. We have
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Choose € sufficiently small such that

(1)° 1
— <0
4 27(Ce)?
Then the equation z3 — éz + 1 admits 3 real roots given by
20 = 2 cos 1 arccos _<3—C€)%
" VBCe [3 2
2 (1 (—<3ce)i> 27r]
21 = cos | = arccos | ——— | — —
3Ce 2 3
2 (1 —(3Ce)z\ 4w
= cos | - arccos | ————— | — —|.
2T ke 3 2 3

We use the identity arccos(z) = § — a
obtain
T
arccos(x) = 5~
o
o2

Consider the tail of the Taylor series Z o

the Taylor Remainder theorem, that i

arcsin(x), we have

[e.o]

(2n)!

— —xr —

resin(z) and the Taylor expansion of arcsin(z) to

i 2n+1
— 4 (n 2n +1)
f: (2n)! 2l
n 2
= 4"(n!)?*(2n +1)

)l
(n' 2(2n+1)

2n+1

x . We can bound this term using

S 1f Ti(zx) is the first order Taylor polynomial for

2n+1

= 4™(n!)*(2n + 1)

|arcsin(x) — T1(z)]

M
< 59:2 (A.3.1)

provided |- (arcsin(z))| = |\/1+7| < M for x close to zero. Let €; > 0 be small. Then

Vi1—e1—1

for |z] < /¥ A=

, we have that

l

1
V1—22

-1 <

€1 — <€+ 1.

1
V11— 22

195



Furthermore, |z| < /Y=t < /e

T 1 implies that z? < ¢;. Using these facts in (A.3.1),
we have

o (2n)! 2n+1 1
" = +1). A.3.2
n; 2 2n+ 1) yala+1) (4.3.2)
Thus if we let €; > 0 small and choose € small enough such that
(3C¢€)? VIi—e -1
2 Vite
we can write
—(3Ce)2\ 7  (3Ce):
— | ~ = = 1 A.3.
arccos( 5 ) 5 + 5 + 2€1<€1 +1), (A.3.3)
which implies
1 —(3Ce)? 3Ce)? 1
3 arccos (%) ~ % + ( 66)2 + 661(61 +1), (A.3.4)
Then
T (3Ce): 1 omi]
2 \/ECOS |ig+%+661<61+1)—? s 220,1,2. (A35)

For e sufficiently small, we have

20 <0< 21 < 2.

To satisfy the conditions z(¢) > 0 and z(0) = 0, we conclude that

0 S Z(t) < 21.
Furthermore,
2 T (3Ce)2 e+ 27
z7 o~ cos | — —€1(€ - —
1 e 6 G 1(€1
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Using the small angle approximation for sin, we conclude that 5

(3066)2 -+ %61(61 -+ 1) ~ g, (A36)

N

where € = max { (3066) , ge(er + 1)}
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