
ABSTRACT

VIEL, SHIRA COLEMAN POLSTER. Cluster Algebras and Mutation-Linear Algebra: Folding,
Dominance, and the Orbifolds Model. (Under the direction of Nathan Reading.)

We study folding and dominance relationships between exchange matrices and the impli-

cations thereof on a variety of associated cluster algebra and mutation-linear algebra objects.

The orbifolds model serves as a primary tool.

This dissertation begins by examining the folding of an arbitrary exchange matrix B to

another exchange matrix C under a symmetry: we show that the mutation fan for B folds to a

refinement of that for C and that symmetric bases for the mutation-linear structures defined by

B fold to spanning sets for those defined by C. Furthermore, we prove that the folded mutation

fan for B coincides with that for C if and only if a symmetric positive basis for RB folds to a

positive basis for RC , and establish that these results hold when B is of finite type.

Next, we study the orbifolds model of cluster algebras, a generalization of the marked

surfaces model to skew-symmetrizable exchange matrices. We broaden the construction, from

the marked surfaces setting, of mutation fans, mutation-linear bases, and universal geometric

coefficients for orbifolds that satisfy certain properties. We then establish these properties for

particular classes of orbifolds, including those of finite and affine type. Finally, we use the

combinatorics of the model, which encompass the notions of folding and unfolding, to prove

that the mutation fan and positive bases fold in this context.

We conclude the dissertation by using the orbifolds model to prove examples of several

phenomena associated with a dominance relationship between exchange matrices B and B′.

In particular, we show that these phenomena arise as a consequence of resection, a simple

combinatorial operation on orbifolds which both broadens and extends the notion of surface

resection. We prove that when B and B′ are realized in this manner, the mutation fan for B

refines that for B′ and the identity map from QB to QB′ is mutation-linear. If B is acyclic and

arises from a triangulation of a disk with one orbifold point, we further establish an explicit

injective, g-vector preserving homomorphism from the principal-coefficients cluster algebra for

B′ into that for B.
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Chapter 1

Introduction

1.1 Cluster algebras

A cluster algebra is a commutative ring of rational functions with a certain distinguished set

of generators. Rather than being presented at the outset in their entirety, the generators are

recursively defined.

Cluster algebras were introduced in [10] by Fomin and Zelevinsky, who noticed that the

coordinate rings of many algebraic varieties carry a cluster algebra structure. (Two archetypal

examples of cluster algebras which are subrings of fields of rational functions in one variable are

C[SL2] and C[SL3/N ], where SLk denotes the group of k × k matrices over C with determi-

nant 1, and N is the maximal unipotent subgroup of all unipotent upper triangular matrices.

More general examples include the homogeneous coordinate rings of Grassmanian and Schu-

bert varieties.) Although the conception of cluster algebras in [10–13] was as an algebraic and

combinatorial framework for studying total positivity and dual canonical bases in semisimple

groups, connections and applications beyond Lie theory and algebraic geometry have arisen

in areas of mathematics as diverse as combinatorics, quiver representations, tropical geometry,

Teichmüler theory, mirror symmetry, Poisson geometry, and integrable systems.

This dissertation focuses on the rich intrinsic combinatorial structure of cluster algebras,

and in particular, of cluster algebras of geometric type . Detailed background is provided

in Section 2.2.1, but we give a brief outline of the definition here. A cluster algebra of geometric

type of rank n is a subring of an ambient field K of rational functions in n variables, uniquely

determined by a choice of an initial seed . A seed consists of two pieces of data: first, a collection

of n distinguished, algebraically-independent elements of K, called cluster variables, and

second, an extended exchange matrix B̃, formed from an n×n skew-symmetrizable integer

matrix B, called an exchange matrix , extended by a collection of coefficient rows which

specify coefficients. New seeds are constructed iteratively from the initial seed through a
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process called mutation : from any seed, one can mutate in any direction k ∈ [n] (where [n]

denotes the set {1, . . . , n}). This produces another seed, obtained from the first by replacing

the kth cluster variable with a new element of K and replacing B̃ with a new extended exchange

matrix µk(B̃). (The equation relating the new cluster variable to the old is called an exchange

relation : it involves only the cluster variables and coefficients in the old seed and is fully

determined by the old extended exchange matrix B̃. The operation µk on B̃ by which the new

extended exchange matrix is obtained is called matrix mutation in direction k.) The cluster

algebra is defined to be the subring of K generated by the complete set of cluster variables in all

seeds. These generators are all rational functions in the initial cluster variables with coefficients

given by monomials in the initial coefficients, and are grouped into clusters of size n (one in

each seed): overlapping, algebraically-independent subsets of K. Up to isomorphism, the algebra

is completely determined by the extended exchange matrix B̃, so is often denoted by A(B̃).

A cluster algebra is of finite type if it has finitely many cluster variables: a complete

classification of such cluster algebras is achieved in [11]. Whether or not a given cluster algebra is

of finite type depends exclusively on the exchange matrix, so exchange matrices are referred to as

being of finite type themselves. As proven in [11], these finite type exchange matrices correspond

to to (generalized) Cartan matrices of finite type. (Specifically, if an exchange matrix is of finite

type, then one can find a sequence of matrix mutations such that the resulting exchange matrix

B is acyclic (that is, the rows and columns may be reindexed so that bij > 0 whenever i > j).

One then passes to the corresponding Cartan matrix by placing 2’s along the diagonal and

making all off-diagonal entries negative.) The classification of cluster algebras of finite type

therefore coincides with the Cartan-Killing classification of semisimple Lie algebras and finite

root systems by (directed) finite Dynkin diagrams. (For example, the literature often refers to

cluster algebras of type An, Bn, Cn, or Dn, meaning the (finite type) cluster algebras whose

exchange matrices correspond to Cartan matrices of the given type.) More generally, [6, 11]

describe how every (skew-symmetrizable) exchange matrix can be encoded by a diagram , a

generalization of a quiver or directed graph. An exchange matrix (and any associated cluster

algebra) is of affine type if there exists a sequence of matrix mutations such that the resulting

acyclic exchange matrix corresponds to a Cartan matrix of affine type.

1.1.1 Folding

Given the correspondence between Dynkin diagrams and cluster algebras of finite and affine

type, it is natural that the tools from Kac-Moody Lie theory of folding a diagram or root system

under an automorphism (see, for example, [16, 27]) extend to cluster algebras. The literature

on cluster algebra folding includes [1–4,6, 15,18].

This dissertation takes its conventions from [4] in defining exchange matrix folding : de-
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tails are provided in Section 2.3, but the key ideas are as follows. Suppose B = [bij ] is an n×n
exchange matrix equipped with an automorphism σ ∈ Sn. That is, bσ(i)σ(j) = bij for each

i, j ∈ [n]. If the symmetry σ satisfies two admissability criteria on B, and furthermore, these

criteria are preserved under symmetric sequences of mutations, then σ is a stable automor-

phism and B admits a folding under σ. The folding of B under σ, denoted by πσ(B), is again

an exchange matrix, with rows and columns indexed by σ-orbits ı̄ of [n] and entries defined by

taking sums down columns of B within a given σ-orbit. (The matrix B is also referred to as

the unfolding of πσ(B) under σ: indeed, [1, 6, 15] are formulated in terms of unfolding.)

It is proven in [4] that there is a nice relationship between the coefficient-free cluster al-

gebras A0(B) and A0(πσ(B)), with the latter arising as a cluster-structure preserving quotient

of a subalgebra of the former. (The coefficient-free cluster algebra A0(B) is defined by taking

B̃ = B, with no coefficient rows.) This relationship is extended to the principal-coefficients

cluster algebras A•(B) and A•(πσ(B)), where the coefficient rows of the initial extended ex-

change matrices are taken to be the identity matrix, in [1].

Some classical Lie foldings include the finite type foldings A2n−1 → Cn and Dn+1 → Bn,

and the affine type foldings A
(1)
2n−1 → C

(1)
n and D

(1)
n+1 → B

(1)
n (notation from [17, Tables Fin and

Aff 1]). It is proven in [2] that every admissable automorphism on an acyclic exchange matrix

is stable, so these classical foldings all extend to foldings of exchange matrices.

1.1.2 Questions of interest

Among the many areas of interest in the study of cluster algebras, we highlight three addressed

herein.

Models of cluster algebras

The recursive mutation process is complex, so much effort has been dedicated to building

models. In [8, 9], Fomin, Shapiro and Thurston developed the idea of cluster algebras aris-

ing from marked surfaces, whereby the combinatorics of an algebra are modeled using the

geometry/topology of certain types of curves on a surface with marked points. Cluster vari-

ables correspond to curves which connect marked points, called arcs, and clusters correspond

to maximal pairwise-compatible collections of arcs, called triangulations. Exchange matrices

are given by the skew-symmetric signed-adjacency matrices of triangulations, with muta-

tion corresponding to flips of arcs in the triangulation. Coefficients are specified by another

special class of curves in the surface, called allowable curves.

The marked surfaces model was extended by Felikson, Shapiro, and Tumarkin in [5,7] to orb-

ifolds as a way to provide geometric realizations of cluster algebras with skew-symmetrizable

exchange matrices. Roughly speaking, one might think of an orbifold in this setting as the
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quotient space, or “folding,” of a marked surface under action by a symmetry of the surface.

This results in both marked points as well as a new collection of points called orbifold points,

the images of fixed points of the symmetry. Indeed, the orbifolds model was introduced in the

context of [6], which classified cluster algebras of finite mutation type using a notion of ex-

change matrix folding. One can also fold orbifolds to other orbifolds, and it is shown in [5] that

this topological folding corresponds to the folding of the associated signed-adjacency matrices.

(For example, the finite type folding A2n−1 → Cn corresponds to the folding of a disk with 2n

points on its boundary (and no marked points or orbifold points in its interior) under a central

2-fold symmetry to a disk with n points on its boundary and one orbifold point in its interior.)

Detailed background on the marked surface and orbifold models is provided in Section 3.2;

orbifold folding is covered in depth in Section 3.5.

This dissertation advances the development of the orbifolds model by describing the gen-

eralization of two properties of surfaces introduced in [22], the Curve Separation Property

and the Null Tangle Property , to the orbifolds setting (see Section 3.4.) We establish both

properties for certain classes of orbifolds in Theorems 3.4.5 and 3.4.22, respectively, and confirm

that, as for surfaces, the allowable curves on triangulated orbifolds with these properties can be

used to construct various objects of interest associated to the corresponding signed-adjacency

matrices and cluster algebras (see Sections 1.1.2 and 1.2 below).

Relationships between cluster algebras

A common goal in mathematics is to define and exploit relationships between objects of interest:

here, we consider both relationships among cluster algebras with the same exchange matrix as

well as between cluster algebras with different exchange matrices. An example of the former type

of relationship is discussed in the next section. One example of the latter type of relationship is

when one exchange matrix is a folding of the other (see Section 1.1.1 above); another example,

which we now discuss, is when one exchange matrix dominates the other.

Given two n × n exchange matrices B = [bij ] and B′ = [b′ij ], the matrix B dominates

B′ if the entries bij and b′ij weakly agree in sign and |bij | ≥ |b′ij | for each i, j ∈ [n]. The

dominance relationship is introduced in [24], which describes several interesting phenomena

that may occur as consequences thereof. One such phenomenon is the explicit realization of

an injective, g-vector preserving ring homomorphism from the principal-coefficients cluster

algebra A•(B′) into A•(B). (The g-vector is a Zn-grading of the cluster algebra.)

This dissertation contributes to the very new study of dominance phenomena by describing

a simple combinatorial operation on triangulated orbifolds, called resection , which induces a

dominance relationship on the associated signed-adjacency matrices. Resection involves both

an extension of a similar operation on marked surfaces from [24] to orbifolds as well as the
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introduction of a new operation unique to the orbifold setting. Consider an orbifold consisting

of a disk with n marked points on its boundary and a single orbifold point in the disk’s interior.

We show in Section 4.4 that any exchange matrix B′ dominated by the acyclic signed-adjacency

matrix B of a triangulation of such an orbifold can be obtained by resection. Theorem 4.1.5

then establishes the explicit injective, g-vector preserving ring homomorphism from A•(B′)
into A•(B). This completes the proof of [24, Expected Theorem 1.17], which claims that such

homomorphisms may be established for any exchange matrix B′ dominated by an acyclic ex-

change matrix B of finite type. We also use the resection operation in Theorems 4.1.1 and 4.1.2

to prove examples of two other dominance phenomena (see Section 1.2 below).

Universal geometric cluster algebras

Continuing the vein of relationships between cluster algebras, there is a desire to find a universal

object among all cluster algebras with the same exchange matrix B. That is, does there exist

a choice of coefficient rows (with entries in some subring R of R) determining an extended

exchange matrix B̃un such that any other cluster algebra A(B̃) with exchange matrix B may

be obtained from A(B̃un) by coefficient specialization? If so, then Aun(B) = A(B̃un) is

called the universal geometric cluster algebra for B (over R) and the coefficient rows

of B̃un are called universal geometric coefficients. The definition originates in [13], and is

broadened in [21] to encompass the possibilities of both infinitely many coefficient rows as well

as coefficient entries in subrings R of R other than Z.

Theorem 3.4.17 of this dissertation shows that given a triangulation of an orbifold with the

Null Tangle Property, universal geometric coefficients for the associated signed-adjacency matrix

(over Z or Q) are given by the shear coordinates of allowable curves. (Shear coordinates are

integer vectors encoding the interaction between a curve and the arcs in a triangulation.) This

generalizes the analogous result for marked surfaces in [22]. Thanks to the establishment of the

Null Tangle Property for certain classes of orbifolds in Theorem 3.4.22, classes that include the

orbifolds of finite and affine type, this provides a means for constructing universal geometric

coefficients in these cases. (An orbifold of finite (resp. affine) type is one whose triangulations

have finite (resp. affine) type signed-adjacency matrices.) While the finite type cases are known

[21, Section 10], the realization in affine type is new, and provides significant evidence towards

[21, Conjecture 10.15]. Furthermore, we show in Corollary 3.6.3 that if one orbifold folds to

another and both have the Null Tangle Property, then the set of shear coordinates of allowable

curves on the first orbifold fold to universal geometric coefficients for the signed-adjacency

matrix of the second.
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1.2 Mutation-linear algebra

Closely related to cluster algebras of geometric type is the notion of mutation-linear algebra .

Although the study of mutation-linear algebra was initiated in [21] and continued in [22], it was

not explicitly named until [24].

Let B be an n×n exchange matrix, and given an arbitrary vector a ∈ Rn, define B̃ to be the

exchange matrix B extended by a single coefficient row a. Recall that one can perform matrix

mutation on B̃ in any sequence k of directions in [n]: reading off the coefficient row of the

resulting matrix defines a map ηBk on Rn which is continuous, piecewise linear, and invertible.

The collection of all such homeomorphisms from Rn to itself (as k varies) is called the set

of mutation maps associated to B. Mutation-linear algebra is the study of B-coherent

linear relations, linear relations among vectors which are preserved under the application of

mutation maps. The name comes from the analogy with linear algebra, which can be thought

of as the study of linear relations with no restrictions. Given a ring R ∈ {Z,Q,R}, we write

RB to indicate the mutation-linear structure on Rn provided by restricting from all linear

relations on Rn to the subset of B-coherent linear relations with coefficients in R.

As in linear algebra, there are mutation-linear algebra notions of bases for RB, collections

of vectors in Rn which are spanning and independent with respect to B-coherent linear relations,

and mutation-linear maps from RB to RB
′
, maps between mutation-linear structures given

by different exchange matrices which preserve B-coherent linear relations. Another important

object in mutation-linear algebra is the mutation fan FB, a complete fan in Rn which encodes

the combinatorics and piecewise-linear geometry of the mutation maps associated to B. This

dissertation makes use of many of the explicit connections between the mutation-linear algebra

of RB and geometric cluster algebras with exchange matrix B and coefficients in R established

in [21, 22, 24]. For example, the fan of g-vectors for BT is a subfan of the mutation fan FB,
and a collection of vectors in Rn constitute universal geometric coefficients for B over R if and

only if they form a basis for RB. Detailed background on mutation-linear algebra is provided

in Section 2.2.2; the connections with cluster algebras are discussed in Section 2.2.3.

We further the study of mutation-linear algebra by exploring the questions of whether bases

for RB and the mutation fan FB fold when the exchange matrix B folds, and by generalizing

to orbifolds the constructions for marked surfaces of bases for RB and the mutation fan FB.

In particular, given that B folds to πσ(B) = C under a certain symmetry σ, Theorems 2.4.9

and 2.4.15 show that in general, symmetric bases for RB fold to spanning sets for RC , and the

mutation fan FB folds to a refinement of the mutation fan FC . We then prove in Theorem 2.4.23

that in fact the folding of FB coincides with FC if and only if a symmetric positive basis for

RB folds to a positive basis for RC . Theorem 2.4.24 establishes both of these results when B is

of finite type, and Section 3.6 establishes both results when B and C are the signed-adjacency

6



matrices of orbifolds with a suitable folding relationship. (The finite type results can be deduced

in the setting of Cambrian fans, as in [25], using the folding of root systems, or in the cluster

algebra setting using the folding of g-vectors: for example, see [1]. However, the proofs provided

here are geometric in nature and were obtained independently.) Connections between mutation-

linear algebra and the orbifolds model are drawn in Theorems 3.4.3 and 3.4.17. These results

respectively show that the shear coordinates of allowable curves may be used to construct the

rational part of the mutation fan if the orbifold has the Curve Separation Property, and bases

for RB if the orbifold has the Null Tangle Property (or is a null orbifold).

Finally, as mentioned above in Section 1.1.2, we prove examples of two mutation-linear

dominance phenomena. Namely, Theorems 4.1.1 and 4.1.2 state that if B is the signed-adjacency

matrix of an orbifold and B′ is the signed-adjacency matrix of another orbifold obtained by

resection of the first, then FB refines FB′ . If furthermore both orbifolds have the Null Tangle

Property (or are null orbifolds), then the identity map from QB to QB′ is mutation linear.
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Chapter 2

Folding and mutation-linear algebra

2.1 Introduction

This chapter studies the folding of exchange matrices in the context of mutation-linear algebra.

An exchange matrix B is an n × n skew-symmetrizable integer matrix: the fundamental

combinatorial datum specifying a cluster algebra. Recall from Section 1.2 that the term ‘mu-

tation’ in ‘mutation-linear algebra’ refers to matrix mutation in the sense of cluster algebras

(see Definition 2.2.4). Whereas linear algebra is the study of linear relations among vectors

in a module over a ring, mutation-linear algebra, a subject which originated in [21] and was

named in [24], is the study of B-coherent linear relations: essentially, linear relations which are

preserved under mutation (see Definition 2.2.19). As in linear algebra, there is a corresponding

notion of bases: sets of vectors which are spanning and independent in a mutation-linear sense

(see Definition 2.2.22). Such a basis is positive if it is spanning with non-negative coefficients

only. Furthermore, finding such a set, which we refer to as a basis for RB, is equivalent to

constructing the universal geometric cluster algebra over B [21, Theorem 4.4]. Closely related

to these constructions is a complete fan FB in Rn called the mutation fan for B, which encodes

the geometry of mutation (see Definition 2.2.29).

An automorphism of the exchange matrix B = [bij ] is a permutation σ ∈ Sn which satisfies

bσ(i),σ(j) = bij for each i, j ∈ [n]. If the σ-orbits of entries of B satisfy two ‘admissability’

conditions (see Definition 2.3.2) then σ is admissable on B; if in addition these conditions

are preserved under orbit-mutation, then σ is stable (see Definition 2.3.4). (Orbit-mutation is

mutation in all indices in a given σ-orbit: see Definition 2.3.3.) There is no guarantee that

a given admissable automorphism on B is stable, and stability can be difficult to check as

there may be infinitely many matrices obtained by mutation of B. However, if σ is a stable

automorphism of B, then, as described in [4], one can fold B under σ to obtain a new exchange

matrix πσ(B) with rows and columns indexed by the σ-orbits of [n]. In particular, the entries
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of πσ(B) are given by sums, over σ-orbits, of entries of B. Most importantly, matrix mutation

of the folded matrix πσ(B) corresponds to orbit-mutation of B (see (2.13)). We address the

questions of whether the mutation-linear notions of bases for RB, the mutation fan FB, and

universal geometric coefficients for B “fold” under σ to bases for Rπσ(B), the mutation fan

Fπσ(B), and universal geometric coefficients for πσ(B), respectively.

The main results of this chapter are stated below. While there are limitations to our folding

arguments in the general case, the equivalence between positive basis folding and mutation fan

folding provided by Theorem 2.1.3 is a powerful tool, as for all exchange matrices for which

bases have been constructed save one, these bases are positive bases. We show in this chapter

that the mutation fan (and therefore positive bases) fold when B is of finite type; in Chapter 3,

we show that this is also the case when B and πσ(B) are modeled by surfaces and orbifolds in

the sense of [5,8]. (As noted in Section 1.2, our proofs of the finite type results are geometric in

nature, but these results can alternatively be deduced using root system folding in the setting

of Cambrian fans as in [25], or using g-vector folding as in [1].)

Given an n × n exchange matrix B with stable automorphism σ ∈ Sn and a choice of

ring R ∈ {Z,Q,R}, let πσ(B) denote the exchange matrix obtained by folding B under σ.

Viewing σ as a linear map on Rn acting by coordinate permutation, let V σ denote the fixed-

point subspace under this action, and let φ : V σ
∼=−→ Rdim(V σ) denote a naturally defined vector

space isomorphism (see (2.23)). For any σ-symmetric collection of vectors B ⊆ Rn (that is, a

collection B satisfying σ(B) = B), let B̄ denote the set of σ-orbits b̄ of B, and reuse πσ : B̄ → V σ

to denote the map taking sums over σ-orbits: πσ(b̄) =
∑

bi∈b̄ bi. Finally, recall that FRB denotes

the R-part of the mutation fan FB when a positive basis for RB exists.

Theorem 2.1.1. If B = (bi : i ∈ I) ⊆ Rn is a σ-symmetric (positive) basis for RB, then

φ(πσ(B̄)) is a (positive) spanning set for Rπσ(B).

Theorem 2.1.2. The folded mutation fan φ(FB ∩ V σ) refines the mutation fan Fπσ(B).

Theorem 2.1.3. Suppose that B = (bi : i ∈ I) is a σ-symmetric positive basis for RB and

let B̄F ⊆ B̄ denote the subset of σ-orbits of B which span cones in FRB . Then φ(πσ(B̄F )) is a

positive basis for Rπσ(B) if and only if φ(FRB ∩ V σ) = FRπσ(B).

Theorem 2.1.4. Suppose B is of finite type. Then φ(FB ∩ V σ) = Fπσ(B). If a positive basis

exists for RB, then so too does a σ-symmetric positive basis B, and the following collection is

a positive basis for Rπσ(B) that constitutes universal geometric coefficients for πσ(B):

{
φ(πσ(b̄)) : b ∈ B̄ spans a cone in FB

}
The chapter is organized as follows. We present technical background on cluster algebras

and mutation-linear algebra in Section 2.2 and then define exchange matrix folding in Sec-
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tion 2.3. We state consequences of applying the latter to the former in Section 2.4.1, whereby

we deduce Theorem 2.1.1 (see Theorem 2.4.9 and Corollary 2.4.10). We then consider the same

consequences from the geometric standpoint of the mutation fan in Section 2.4.2, yielding The-

orem 2.1.2 and Theorem 2.1.3 (see Theorems 2.4.15 and 2.4.23, respectively). We conclude the

chapter by using polyhedral geometry to prove the finite-type results of Theorem 2.1.4 (see

Theorem 2.4.24, Corollary 2.4.25, and Corollary 2.4.26).

2.2 Background

In this section we define the basic notions of cluster algebras of geometric type and mutation-

linear algebra. These definitions will be referenced throughout this chapter and later chapters.

While cluster algebras of geometric type were first introduced in [13], Section 2.2.1 presents

the broadened definition given in [21]. This is done with an eye towards the subsequent dis-

cussion of mutation-linear algebra in Section 2.2.2, which is also drawn from [21]. However, we

intentionally mode our exposition after [21, Section 2], which in turn was intentionally modeled

after [13, Section 2], so that readers may easily compare the definitions here directly with the

original source material. (Readers may also wish to refer to Remark 2.2.7, which discusses the

two adjustments made in detail.)

2.2.1 Cluster algebras of geometric type

Fix a ring R (either the integers Z, the rationals Q, or the reals R), henceforth referred to as

the underlying ring .

Remark 2.2.1. For maximal generality, [21, Definition 2.1] permits the underlying ring R to be

either Z or any subfield of R which contains Q as a subfield. However, we restrict our attention

here to the three primary cases of interest.

Definition 2.2.2 (Tropical semifield over R). Let (ui : i ∈ I) be a collection of formal symbols

indexed by the set I. We call I the indexing set and permit it to be infinite, and call the

symbols ui tropical variables. Let P = TropR(ui : i ∈ I) denote the abelian group with

elements given by formal products of the form
∏
i∈I u

ai
i for ai ∈ R and multiplication defined

as ∏
i∈I

uaii ·
∏
i∈I

ubii =
∏
i∈I

uai+bii .

Note that there is group isomorphism P = TropR(ui : i ∈ I) ∼=
∏
i∈I R. Endow the underlying

ring R with the discrete topology and P with the product topology as a product of copies of R.

(The imposition of these topologies is necessary to define the coefficient specialization which is
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featured in Definition 2.2.9 of universal geometric coefficients: see [21, Section 3] for details.)

Observe that P = TropR(ui : i ∈ I) is uniquely defined by the cardinality of I.

Let the triple (TropR(ui : i ∈ I),⊕, ·) denote the tropical semifield built by defining an

auxiliary addition ⊕ in TropR(ui : i ∈ I) as∏
i∈I

uaii ⊕
∏
i∈I

ubii =
∏
i∈I

u
min(ai,bi)
i .

This auxiliary addition is commutative, associative, and distributive with respect to multipli-

cation.

Let ZP denote the group ring, over Z, of P = TropR(ui : i ∈ I): that is, the ring of

Laurent polynomials in the variables ui with coefficients in Z. This ring will play the role of

the coefficient ring for a cluster algebra A of geometric type (see Definition 2.2.6). Likewise,

let QP denote the group ring of P over Q; QP will be the coefficient ring for the ambient

field K of A. In particular, we take K to be isomorphic to the field of rational functions in n

independent variables with coefficients in QP, and refer to n as the rank of A. Note that these

definitions consider P as a multiplicative group: the auxiliary addition ⊕ is ignored. Given its

role in defining coefficient rings, we call P = TropR(ui : i ∈ I) the coefficient semifield .

Definition 2.2.3 (Labeled geometric seed of rank n). A (labeled) geometric seed of rank

n in K is a pair (x, B̃) defined as follows:

• x = (x1, . . . , xn) is an n-tuple of elements of K which freely generate K: that is, the entries

xi are algebraically independent and K = QP(x1, . . . , xn). We refer to x as the cluster

of the seed, and its entries xi as cluster variables.

• B̃ is a function from ([n] ∪ I)× [n] to R, called an extended exchange matrix , whose

top rows indexed by [n] form a square skew-symmetrizable integer matrix B. (By skew-

symmetrizable, we mean that there exists a skew-symmetrizing diagonal matrix D with

positive integer entries di such that DB is skew-symmetric: that is, dibij = −djbji for

all i, j ∈ [n].) We refer to B as the exchange matrix or principal part of B̃, and to

the rows of B̃ indexed by I as the coefficient rows, or complementary part of B̃.

The complementary part of B̃ determines the coefficients y = (y1, . . . , yn) of the seed as

follows. For each i ∈ I, denote the coefficient row of B̃ indexed by i as bi = (bi1, . . . , bin).

Then for each j ∈ [n], define yj ∈ P by yj =
∏
i∈I u

bij
i .

Definition 2.2.4 (Mutation of geometric seeds). Each index k ∈ [n] defines an involution µk,

called seed mutation in direction k, on the set of labeled geometric seeds of rank n by setting

µk(x, B̃) = (x′, B̃′) defined as follows. (For a ∈ R, the notation [a]+ represents max(a, 0).)
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• The new cluster x′ = (x′1, . . . , x
′
n) is defined by setting x′j = xj for j 6= k and defining x′k

by the following exchange relation :

xkx
′
k =

yk
∏n
i=1 x

[bik]+
i +

∏n
i=1 x

[−bik]+
i

yk ⊕ 1

=
∏
i∈I

u
[bik]+
i

n∏
i=1

x
[bik]+
i +

∏
i∈I

u
[−bik]+
i

n∏
i=1

x
[−bik]+
i .

(2.1)

• The new extended exchange matrix B̃′ = (b′ij)i∈([n]∪I), j∈[n] has entries

b′ij =

−bij if i = k or j = k;

bij + sgn(bkj)[bikbkj ]+ otherwise

=



−bij if i = k or j = k;

bij + bikbkj if j 6= k, bik ≥ 0, and bkj ≥ 0;

bij − bikbkj if j 6= k, bik ≤ 0, and bkj ≤ 0;

bij otherwise.

(2.2)

Observe that the new extended exchange matrix B̃′ does not depend on the cluster x, and

its principal part B′ is skew-symmetrizable with the same skew-symmetrizing matrix as the

principal part B of B̃. We therefore also use µk to denote (extended) matrix mutation in

direction k, and write µk(B̃) = B̃′ and µk(B) = B′ (see Example 2.2.17).

For any finite sequence k = kq, . . . , k1 of indices in [n], the notation µk stands for the

following composition of mutations:

µk = µkq ◦ µkq−1 ◦ · · · ◦ µk1 . (2.3)

Likewise the notation µk−1 stands for the composition µk1◦µk2◦· · ·◦µkq , so that the compositions

µk−1 ◦ µk = µk ◦ µk−1 denote the identity map.

Definition 2.2.5 (Cluster and Y -patterns of geometric type). Fix a vertex t0 in Tn, the n-

regular tree whose edges are labeled by the integers in the set [n] such that each vertex is

incident to precisely one edge of each label. A cluster pattern (of geometric type) is a map

t 7→ (xt, B̃t) on Tn uniquely specified by an assignment of a given initial seed (xt0 , B̃t0) to t0

and the requirement that whenever two vertices t and t′ are connected by an edge labeled k, the

map satisfies (xt′ , B̃t′) = µk(xt, B̃t). Recalling that the definition of extended matrix mutation

is independent of an associated cluster, we may also define a Y -pattern (of geometric type):

a map t 7→ B̃t uniquely specified by an assignment of a given extended exchange matrix B̃ to
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t0 and the same requirement that edges with label k correspond to mutation in direction k.

The cluster variables, matrix entries, and coefficients of the seed (xt, B̃t) associated to vertex

t ∈ Tn are denoted by xt = (x1;t, . . . , xn;t), B̃t = (btij), and yt = (y1;t, . . . , yn;t), respectively.

Definition 2.2.6 (Cluster algebra of geometric type). Given a cluster pattern t 7→ (xt, B̃t), we

define the associated cluster algebra (of geometric type) A to be the ZP-subalgebra of K
which is generated by all cluster variables which occur in the pattern: A = ZP[X ] where

X = {xi;t : t ∈ Tn, i ∈ [n]}.

Since the cluster pattern is uniquely determined by the initial seed (xt0 , B̃t0) = (x, B̃), we

write A = AR(x, B̃) (the subscript R is an indication of our underlying ring). Indeed, up to

isomorphism, the cluster algebra is uniquely determined by just the extended exchange matrix

B̃, so we also write simply A = AR(B̃). If the subscript R is omitted, it is understood that the

underlying ring is Z.

Remark 2.2.7. Definitions 2.2.3, 2.2.4, 2.2.5, and 2.2.6 appear as [21, Definitions 2.3, 2.4, 2.7,

and 2.8] respectively, and as noted in [21, Remark 2.9], are respectively comparable to [13, Def-

initions 2.3, 2.4, 2.9, and 2.11] restricted to the the special case of cluster algebras of geometric

type described in [13, Definition 2.12]. The broadening of the definition of cluster algebras of ge-

ometric type remarked upon at the start of the section comes into play through Definition 2.2.2,

which is precisely [21, Definition 2.2]. As compared to [13, Definition 2.2], this definition allows

for an extended exchange matrix B̃ to have infinitely many coefficient rows, and permits these

rows to have non-integer entries if the underlying ring R is choen to be Q or R. These adjust-

ments, along with the imposition of the product topology on the tropical semifield P, lead to

the following definitions of coefficent specialization and universal geometric coefficients, which

appears as [21, Definitions 3.1 and 3.2] and are comparable to [13, Definitions 12.1 and 12.3].

Definition 2.2.8 (Coefficient specialization). Suppose (x, B̃) and (x′, B̃′) are seeds of rank n

with the same exchange matrix B = B′ whose tropical semifields P and P′ are defined over the

same underlying ring R. A coefficient specialization from AR(x, B̃) to AR(x′, B̃′) is a ring

homomorphism ϕ : AR(x, B̃)→ AR(x′, B̃′) which satisfies the following conditions:

(i) ϕ(xi) = x′i for all i ∈ [n];

(ii) the restriction of ϕ to P is continuous (with respect to the product topology) and linear

(with respect to R);

(iii) ϕ(yj;t) = y′j;t and ϕ(yj;t ⊕ 1) = y′j;t ⊕ 1 for all j ∈ [n] and t ∈ Tn.
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Definition 2.2.9 (Cluster algebra with universal geometric coefficients). Let B̃ be an extended

exchange matrix with principal part B. We say that B̃ is universal over R, that its coefficients

rows are universal geometric coefficients for B over R, and that the associated cluster

algebra of geometric type A = AR(B̃) is the universal geometric cluster algebra for B

over R, denoted Aun(B), if A satisfies the following condition: For every other cluster algebra

A′ = AR(B̃′) of geometric type with underlying ring R and the same initial exchange matrix

B, there exists a unique coefficient specialization from A to A′.

On the opposite end of the spectrum from the universal geometric cluster algebra for B is

the coefficient-free cluster algebra.

Definition 2.2.10 (Coefficient-free cluster algebra). We define the coefficient-free cluster

algebra A0(B) for exchange matrix B by taking B̃ = B as our initial extended exchange matrix

in Definition 2.2.6. In particular, this implies we are choosing as our coefficient semifield (see

Definition 2.2.2) the trivial semifield consisting of a single element 1. Thus the ambient field K
is isomorphic to Q[x±1

1 , . . . , x±1
n ], the field of rational functions in n independent variables with

coefficients in Q, and A0(B) is a Z-subalgebra of K.

Somewhere in between the universal geometric cluster algebra Aun(B) and the coefficient-

free cluster algebraA0(B) isA•(B), the cluster algebra with principal coefficients. The definition

below is drawn from [13, Section 3 and Section 6].

Definition 2.2.11 (Cluster algebra with principal coefficients and g-vectors). Given an n× n
exchange matrix B, let B̃ denote the 2n× n extended exchange matrix whose top n rows (the

principal part) are the exchange matrix B and whose bottom n rows (the complementary part)

are the n×n identity matrix. A cluster pattern (or Y -pattern) with B̃ in its initial seed t0 is said

to have principal coefficients at the initial seed, and we denote by A•(B) the cluster algebra

with principal coefficients whose initial exchange matrix is B. The set of cluster variables in

A•(B) is denoted by Var•(B).

Let t 7→ (xB;t0
t , B̃t) denote the cluster pattern associated to A•(B), with initial cluster

xB;t0
0 = (x1, . . . , xn), initial extended exchange matrix B̃0 = B̃ as described above, and initial

coefficients yB;t0
0 = (y1, . . . , yn), where by construction, yj = uj for each j ∈ [n]. Then A•(B)

is a Zn-graded subalgebra of Z[x±1
1 , . . . , x±1

n ; y1, . . . , yn] under the Zn-grading given by

deg(xi) = ei, deg(yj) = −bj , (2.4)

where e1, . . . , en are the standard basis vectors for Zn, and b1, . . . ,bn are the columns of B.

Each cluster variable xB;t0
i;t ∈ Var•(B) is homogeneous with respect to this grading, with (multi-)

degree given by the g-vector gB;t0
i;t = deg(xB;t0

i;t ).
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Before moving on to the the basics of mutation-linear algebra, we define several special

classes of cluster algebras and exchange matrices. As discussed in Section 2.1, we obtain

the strongest form of our mutation-linear folding results in this chapter for exchange matri-

ces/cluster algebras of finite type. Further, the exchange matrices/cluster algebras modeled by

surfaces and orbifolds which are the topic of Chapter 3 and also yield strong folding results are

mutation-finite, and for some of the results in Chapter 4 we assume acyclicity. We then conclude

our presentation of geometric cluster algebra background by discussing a relationship between

exchange matrices and the (generalized) Cartan matrices associated to semisimple Lie algebras

and root systems (see [16, 17]). Recall from Section 1.1 that Lie theory was the motivation for

the definition and study of cluster algebras initiated in [10]: the relationship also provides the

definition for another special class of cluster algebras, those of affine type.

Definition 2.2.12 (Finite type). A cluster algebra AR(B̃) is of finite type if and only if its

associated cluster pattern has finitely many non-equivalent seeds. Otherwise, it is of infinite

type . Being of finite type is a property that depends only on the principal part B of the

initial extended exchange matrix B̃ and is independent of the choice of coefficient rows by [11,

Theorem 1.4]. Thus we say an exchange matrix B is of finite type if and only if any cluster

algebra AR(B̃) with initial exchange matrix B is of finite type.

Definition 2.2.13 (Mutation equivalence and mutation finite type). We say that two n × n
exchange matrices are mutation equivalent if there exists a sequence k of indices in [n] such

that applying µk to one matrix yields the other. The mutation class of an exchange matrix is

the set of all matrices which are mutation equivalent to it. If this set is finite, we say the matrix

is mutation-finite or of finite mutation type . A cluster algebra AR(B̃) is mutation-finite if

and only if the principal part B of B̃ is a mutation-finite exchange matrix. Exchange matrices

and cluster algebras of finite type are by necessity mutation-finite.

Definition 2.2.14 (Acyclicity). An n × n exchange matrix B is acyclic if, possibly after

applying a permutation σ ∈ Sn to reindex the rows and columns, it satisfies the following

condition: if bij > 0 then i < j.

Definition 2.2.15 (Cartan companion of B). The Cartan companion of an n×n exchange

matrix B is the n× n matrix A = A(B) with entries defined as follows.

aij =

2 if i = j;

−|bij | otherwise.

Observe that DA is symmetric, where D is the skew-symmetrizing matrix for B (see Defini-

tion 2.2.3). Thus A is symmetrizable , and is a Cartan matrix in the usual sense of [16,17].
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A Cartan matrix is of finite type if it is positive-definite (all eigenvalues are positive), and

of affine type if it is positive-semidefinite (all eigenvalues are non-negative) and every proper

principal submatrix is of finite type (see [17, Section 4.3]). The classification of cluster algebras

of finite type was achieved in [11, Theorem 1.4] by showing that an exchange matrix B (and any

geometric cluster algebra AR(B̃) with initial exchange matrix B) is of finite type if and only

if it is mutation equivalent to a matrix B′ with finite type Cartan companion A(B′). Thus in

particular, every exchange matrix of finite type is mutation equivalent to an acyclic matrix. We

say that an exchange matrix B (and any geometric cluster algebra AR(B̃) with initial exchange

matrix B) is of affine type if B is mutation equivalent to an acyclic exchange matrix B′ with

affine type Cartan companion A(B′).

2.2.2 Mutation-linear algebra

Fix an n× n exchange matrix B (see Definition 2.2.3) and an underlying ring R ∈ {Z,Q,R}.

Definition 2.2.16 (Mutation maps ηBk ). Each index k ∈ [n] defines a continuous, piecewise

linear, invertible map ηBk on Rn as follows. Let a = (a1, . . . , an) ∈ Rn and define B̃ to be the

(n+ 1)× n extended exchange matrix with principal part B and single coefficient row a. Then

a′ = ηBk (a) is the coefficient row of B̃′ = µk(B̃) with entries a′j = b′(n+1)j given by (2.2), or

equivalently, by

a′j =

−ak if j = k;

aj + sgn(ak)[akbkj ]+ otherwise
for each j ∈ [n].

Likewise, for each finite sequence k = k1, . . . , kq of indices in [n], define a′ = ηBk (a) to be the

coefficient row of µk(B̃): that is, setting B1 = B and Bi+1 = µki(Bi) for each i ∈ [q],

ηBk = η
Bq
kq
◦ ηBq−1

kq−1
◦ · · · ◦ ηB1

k1
. (2.5)

(See (2.3) and Example 2.2.17.) We refer collectively to all such homeomorphisms ηBk from Rn

to itself as the mutation maps associated to B.

Example 2.2.17. We demonstrate the results of performing matrix mutation on a given 4 × 3

extended exchange matrix B̃ with principal part B and coefficient row a as an illustration of

Definitions 2.2.4 and 2.2.16.
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B̃ =


0 0 −1

0 0 −1

1 1 0

−2 3 4

 µ1−→


0 0 1

0 0 −1

−1 1 0

2 3 2

 µ3−→


0 1 −1

−1 0 1

1 −1 0

2 5 −2

 = µ31(B̃)

a = [−2, 3, 4]
ηB1−−→ [2, 3, 2]

η
µ1(B)
3−−−−→ [2, 5, −2] = ηB31(a)

Remark 2.2.18. The use of the real numbers R rather than the underlying ring R in Defini-

tion 2.2.16 (and below in Definition 2.2.19) is intentional, as later in this section we will use

these mutation maps to build a complete fan in Rn which encodes their geometry, called the

mutation fan (see Definition 2.2.29). Observe that since our underlying ring R is a subring of

R, each mutation map ηBk restricts to a piecewise-linear homeomorphism from Rn to itself.

Definition 2.2.19 (B-coherent linear relation). Given collections of vectors (ai : i ∈ S) in Rn

and scalars (ri : i ∈ S) in the ring R, both indexed by the same finite set S, the formal sum∑
i∈S riai is a B-coherent linear relation with coefficients in R (briefly, B-coherent) if

the following two equalities hold for every finite sequence k of indices in [n], including the empty

sequence, where the notation min(a,0) represents the vector (min(a1, 0), . . . ,min(an, 0)):∑
i∈S

riη
B
k (ai) = 0. (2.6)∑

i∈S
rimin(ηBk (ai),0) = 0. (2.7)

The collection of all B-coherent linear relations with coefficients in R is denoted by VηB . A

B-coherent linear relation
∑

i∈S riai is trivial if it is an empty relation (S = ∅) or if the

scalars ri = 0 for all i ∈ S.

Remark 2.2.20. Observe that a B-coherent linear relation is in particular a linear relation in

the usual sense due to the requirement that (2.6) hold when k is the empty sequence. Likewise,

a trivial B-coherent linear relation is in particular a trivial linear relation. We also note that

(2.7) essentially requires that the relation respect sign: for example, the relation v + (−v) is

not B-coherent for v 6= 0 since it fails to satisfy (2.7) when k is the empty sequence.

Proposition 2.2.21. [21, Proposition 4.12] Let
∑

i∈S riai be a B-coherent linear relation.

Suppose, for some i ∈ S, for some j ∈ [n], and for some sequence k of indices in [n], that the

jth entry of ηBk (ai) is strictly positive (resp. strictly negative) and that the jth entry of every

vector ηBk (ai′) with i′ ∈ S \ {i} is nonpositive (resp. nonnegative). Then ri = 0.
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Partial linear algebra

Let Rel(Rn, R) denote the set of linear relations on the module Rn with coefficients in R.

That is, the collection of formal expressions
∑

i∈S riai that evaluate to 0, where ri ∈ R and

ai ∈ Rn for each i in some finite indexing set S. Linear algebra can be viewed as the study of such

relations: for example, a set A ⊆ Rn is independent if every linear relation among vectors in A is

trivial, and spanning if for every a ∈M , there exists a linear relation a+
∑

i∈S⊆A(−ri)xi. In this

light, mutation-linear algebra is the study of the subset VηB ⊆ Rel(Rn, R) consisting of the

B-coherent linear relations of Definition 2.2.19. More precisely, it is the study of the mutation-

linear structure RB = (Rn, R,VηB ) given by B-coherent linear relations among vectors in

Rn with coefficients in R. This structure, introduced in [21], is formalized in [24, Section 2] as

(the only known interesting example of) a more general notion called partial linear structure.

We describe the general setting here, as we will later add an additional example, that of orbit-

mutation-linear structure (see Remark 2.4.3).

Definition 2.2.22 (Partial linear structure). Given a module M over an arbitrary ring R with

identity and a subset V ⊆ Rel(M,R) of the linear relations on M with coefficients in R, the

triple (M,R,V) is a partial linear structure if and only if it satisfies the following conditions:

(i) (Empty relation.) The set V contains the empty relation.

(ii) (Irrelevance of zeros.) Let 0 denote the zero element in R. Then for any x ∈ M , the

relation 0x+
∑

i∈S rixi is in V if and only if
∑

i∈S rixi is in V.

(iii) (Combining like terms.) For any element c = a+b of R, the relation ax+bx+
∑

i∈S rixi

is in V if and only if cx+
∑

i∈S rixi is in V.

(iv) (Scaling.) If c ∈ R and if
∑

i∈S rixi is in V, then
∑

i∈S uixi is in V, where each ui = cri.

(v) (Formal addition.) If
∑

i∈S rixi and
∑

j∈T ujyj are in V, then so too is the formal sum∑
i∈S rixi +

∑
j∈T ujyj .

The relations in V ⊆ Rel(M,R) are called valid linear relations: by replacing Rel(M,R) by V,

we obtain partial linear-algebraic versions of the usual linear-algebraic definitions. In particular,

a set A ⊆ M is independent in (M,R,V) if every valid linear relation among elements of

A is trivial, spans (M,R,V) if for every a ∈ M , there exists a valid linear relation a +∑
i∈S⊆A(−ri)xi, and is a basis for (M,R,V) if it is both independent and spanning. If there is

a notion of positivity in R (as there is in our context, where R is a subring of R), we say A is

a positive spanning set for (M,R,V) if for every a ∈ M , there exists a valid linear relation

a +
∑

i∈S⊆A(−ri)xi with positive scalars ri > 0, and a positive basis if it is also independent.
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The standard non-constructive proof, using Zorn’s Lemma, of the existence of a basis for an

arbitrary vector space can be used to prove the following generalization of [21, Proposition 4.6] to

all partial linear structures over fields. The first part of the result appears as [24, Theorem 2.4].

Theorem 2.2.23. Suppose R is a field. There exists a basis for the partial linear structure

(M,R,V), and given a spanning set A for (M,R,V), there exists a basis for (M,R,V) contained

in A.

Remark 2.2.24. Specializing Definition 2.2.22 to the mutation-linear structureRB = (Rn, R,VηB )

where the set of valid relations VηB consists of B-coherent linear relations with coefficients in

R, we obtain the notions of an independent set for RB, a (positive) spanning set for

RB, and a (positive) basis for RB. When these objects were introduced in [21], they were

referred to as an “R-independent set for B”, a “(positive) R-spanning set for B”, and “(pos-

itive) R-basis for B”, respectively. (Similar language was used when referring to cone bases:

see Definition 2.2.34.) We use the newer terminology, from [24], as it is more suggestive of the

partial linear structure introduced there.

Observe that any module homomorphism λ : M → M ′ between two modules M and M ′

over the same ring R induces a map λ : Rel(M,R)→ Rel(M ′, R) on linear relations by defining

λ

(∑
i∈S

rixi

)
=
∑
i∈S

riλ(xi). (2.8)

Definition 2.2.25 (Morphism of partial linear structures). Given partial linear structures

(M,R,V) and (M ′, R′,V ′), a module homomorphism λ : M → M ′ is linear with respect to

the partial linear structures if the induced map on linear relations defined by (2.8) preserves

valid relations: that is, if λ
(∑

i∈S rixi
)
∈ V ′ for every

∑
i∈S rixi ∈ V.

If λ is bijective and λ−1 : M ′ → M is also linear, then we say that λ is an isomorphism

of partial linear structures. Specializing to mutation-linear structures, given two exchange

matrices B and B′ we call a linear map λ : RB → RB
′

mutation-linear and a bijective linear

map with linear inverse a mutation-linear isomorphism .

The mutation fan

As mentioned in Remark 2.2.18, the combinatorics of the piecewise-linear mutation maps ηBk
associated to an n × n exchange matrix B (defined in Definition 2.2.16) are encoded by the

mutation fan FB, a geometric object in Rn which we now define. We also quote an assortment

of associated results from [21, Section 5]. Before defining the mutation fan itself, we recall some

definitions from convex geometry.
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Definition 2.2.26 (Convex set, cone, face, fan). A subset of Rn is convex if every line segment

connecting two points in the set is fully contained in the set. The convex hull of a collection

of points is the smallest convex set which contains it. A convex cone is a subset of Rn that is

closed under addition and positive scaling: in particular, a convex cone is a convex set. Every

closed cone can be defined as the nonnegative R-linear span of a collection of vectors; such a

cone is polyhedral if this collection of vectors is finite. A polyhedral cone is rational if these

vectors are integer vectors, and simplicial if the vectors are linearly independent. A subset

F of a convex set is called a face if it is convex and if any line segment in the set whose

relative interior intersects F is fully contained in F . Each face of a cone is itself a cone, and the

intersection of an arbitrary set of faces is a face. A one-dimensional face of a cone is called a

ray of the cone: in particular, a cone is the convex hull of its rays, and if a cone is polyhedral,

it has finitely many rays. A fan is a collection F of closed convex cones such that if F ∈ F and

G is a face of F , then G ∈ F , and such that the intersection of any two cones in F is a face of

each of the two. The one-dimensional cones in F are called rays of the fan.

Remark 2.2.27. While in some contexts a fan is required to have finitely many cones, here we

follow [21] and allow infinitely many. Also, note that the requirement that a pairwise intersection

between cones in a fan must be a face of each implies that the same is true for arbitrary

intersections. That is, if F is a fan, A is some indexing set, and for each α ∈ A, Fα is a cone in

F , then
⋂
α∈A Fα is a face of Fα for each α ∈ A. This is because for any β ∈ A we may rewrite⋂

α∈A Fα =
⋂
α∈A(Fα ∩Fβ). Each pairwise intersection Fα ∩Fβ must be a face of Fβ since F is

a fan, and the intersection of an arbitrary set of faces of Fβ is again a face of Fβ.

Definition 2.2.28 (Fan characteristics). A fan is complete if the union of its cones is the

entire ambient space. A fan is polyhedral if all its cones are polyhedral. Similarly, a polyhedral

fan is simplicial if all its cones are simplicial, and rational if all its cones are rational. A

subfan of a fan F is a subset of F that is itself a fan. If F and F ′ are complete fans such that

every cone in F ′ is a union of cones in F , or equivalently, if F and F ′ are complete and every

cone of F is contained in a cone of F ′, then we say that F refines F ′ and F ′ coarsens F .

A cone is maximal in a fan if it is not strictly contained in any other cones in the fan, and

full-dimensional if it is of the same dimension as the ambient space. Given a fan F in Rn

and a subspace V of Rn, the restriction of F to V defined by F ∩ V = {F ∩ V : F ∈ F} is a

fan in V .

Definition 2.2.29 (The mutation fan FB). Define an equivalence relation ≡B on Rn by setting

a ≡B b if and only if sgn(ηBk (a)) = sgn(ηBk (b)) for every finite sequence k of indices in [n].

(Given a vector a = (a1, . . . , an) ∈ Rn, the notation sgn(a) represents the vector of signs

(sgn(a1), . . . , sgn(an)), where sgn(ai) = ai/|ai| for ai 6= 0 and sgn(0) = 0.) The equivalence

classes of Rn under ≡B are called B-classes, and the closures of these classes, which are closed
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convex cones, are called B-cones. By [21, Theorem 5.13], the collection of B-cones together

with their faces form a complete fan in RB. This fan is called the mutation fan for B and

denoted by FB. Note that all known examples of mutation fans are polyhedral; however the

possibility of a non-polyhedral B-cone has not been ruled out.

Proposition 2.2.30. [21, Proposition 5.3] Every mutation map ηBk is linear on every B-cone.

Proposition 2.2.31. [21, Proposition 5.30] A set C ⊆ Rn is contained in some B-cone if and

only if the set ηBk (C) is sign-coherent for every sequence k of indices in [n]. (That is, if their

kth coordinates weakly agree in sign for each k ∈ [n].)

Proposition 2.2.32. [21, Proposition 7.2] Given any σ ∈ Sn, let σ(B) denote the exchange

matrix whose (ij)th entry is bσ(i)σ(j) and for a = (ai)i∈[n] ∈ Rn let σ(a) = (aσ−1(i))i∈[n]. Then,

Fσ(B) = σ(FB)

where σ(FB) denotes the collection of cones σ(F ) = {σ(a) : a ∈ F} where F is a cone in FB.

Proposition 2.2.33. [21, Proposition 7.3] Fµk(B) = ηBk (FB), where ηBk (FB) denotes the

collection of cones ηBk (F ) = {ηBk (a) : a ∈ F} such that F is a cone in FB.

Definition 2.2.34 (Cone basis for RB). A collection of vectors (bi : i ∈ I) in Rn indexed by

some set I is a cone basis for RB if and only if the following two conditions hold:

(i) If F is a B-cone, then Rn ∩ F is contained in the R-linear span of {bi : i ∈ I} ∩ F .

(ii) The collection (bi : i ∈ I) is an independent set for RB.

The following is a combination of [21, Propositions 5.9 and 6.4] and [24, Proposition 2.18]:

Proposition 2.2.35. If (bi : i ∈ I) is a cone basis for RB, then it is a basis for RB. Fur-

thermore, for each a ∈ RB, there exists some finite subset S ⊆ I such that a +
∑

i∈S(−ri)bi is

a B-coherent linear relation with coefficients in R where the basis vectors {bi : i ∈ S} are all

contained in some common B-cone.

Proposition 2.2.36. [21, Proposition 6.7] Given a collection (bi : i ∈ I) of vectors in Rn,

the following conditions are equivalent:

(i) (bi : i ∈ I) is a positive basis for RB.

(ii) (bi : i ∈ I) is a positive cone basis for RB.

(iii) (bi : i ∈ I) is an independent set for RB with the following property: If F is a B-cone,

then Rn ∩ F is contained in the nonnegative R-linear span of {bi : i ∈ I}.
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Definition 2.2.37 (R-part of a fan). Suppose F is a fan in Rn. We call a fan F ′ the R-part

of F if it satisfies the following conditions:

(i) Each cone in F ′ is the non-negative linear span of finitely many vectors in Rn. (Thus in

particular, F is polyhedral. If the underlying ring R is Z or Q, then F is rational.)

(ii) Every cone in F ′ is contained in a cone of F .

(iii) For each cone F of F , there is a unique largest cone (under containment) among cones

og F ′ which are contained in F , and this largest cone contains Rn ∩ F .

While the R-part F ′ of a fan F in Rn need not exist, if it does it is unique. Furthermore,

every cone of F spanned by vectors in Rn is a cone in F ′, and the full-dimensional cones in F
and F ′ coincide by [21, Proposition 6.10]. We now prove a straightforward lemma about the

R-part of the restriction of a fan to a subspace (see Definition 2.2.28).

Lemma 2.2.38. Let F be a fan in Rn with R-part F ′ and let V be a subspace of Rn defined

by a (finite) system of homogenous linear equations with coefficients in R. Then the R-part of

the fan F ∩ V is given by F ′ ∩ V .

Proof. We show that since F ′ satisfies each of the three conditions of Definition 2.2.37 with

respect to F , then F ′ ∩ V satisfies them with respect to F ∩ V . Let F ′ ∩ V be any cone in

F ′ ∩ V . By Condition (i), F ′ is the non-negative linear span of finitely many vectors in Rn,

and by hypothesis V is defined by (finitely many) linear equations with coefficients in R, so

G = F ′∩V is the non-negative linear span of finitely many vectors in Rn∩V . By Condition (ii),

F ′ is contained in a cone F in F ; thus G = F ′ ∩ V is contained in the cone F ∩ V of F ∩ V .

Finally, let F ∩ V be any cone in F ∩ V . By Condition (iii), there is a unique largest cone F ′

among cones in F ′ contained in F , and F ′ ⊇ Rn ∩F . It follows that F ′ ∩ V is a cone in F ′ ∩ V
contained in F ∩V , and furthermore that F ∩V ⊇ Rn∩F ∩V . Suppose H ′∩V is another cone

of F ′ ∩ V which is contained in F ∩ V . Then as established earlier, H ′ ∩ V is the non-negative

linear span of finitely many vectors in Rn ∩ V , and in particular of finitely many vectors in

Rn ∩ F ∩ V . Since all such vectors are contained in F ′ ∩ V , it follows that H ′ ∩ V is contained

in F ′ ∩ V as well.

Definition 2.2.39 (FRB ). Suppose (bi : i ∈ I) is a positive basis for RB. Define FRB to be

the collection of all cones spanned by sets of the form {bi : i ∈ I} ∩ F for some B-cone F ,

together with all the faces of such cones. Then FRB is a simplicial fan and is the R-part of FB
by [21, Proposition 6.11]. The construction does not depend on the choice of (bi : i ∈ I), as

by [21, Proposition 6.2], positive bases are unique up to scaling by positive units.
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Proposition 2.2.40. [21, Corollary 6.12] If a positive basis exists for ZB, then it is unique

and consists of the smallest nonzero integer vector in each ray of FZ
B. If R is a field and a

positive basis exists for RB, then a collection of vectors is a positive basis for RB if and only if

it consists of exactly one nonzero vector in each ray of FRB , or equivalently, one nonzero vector

in each ray of FB ∩Rn.

In addition to the various properties of the mutation fan from [21] cited above, we will

eventually need one additional result, an easy corollary to Proposition 2.2.32 which follows

from the application of Definition 2.2.37. We omit the details of the proof: it suffices to verify

the three conditions of the definition.

Corollary 2.2.41. For σ ∈ Sn, let σ(B) and σ(a) be as in Proposition 2.2.32. Let F ′ denote

the R-part of FB and let σ(F ′) denotes the collection of cones σ(F ) = {σ(a) : a ∈ F} such that

F is a cone in F ′. Then σ(F ′) is the R-part of σ(FB), and if a positive basis exists for RB,

FRσ(B) = σ(FRB )

2.2.3 Connections

We conclude this discussion of background material by providing explicit connections from [21]

between the studies of geometric cluster algebras and mutation-linear algebra, both of which

rely fundamentally on the mutation of exchange matrices.

Remark 2.2.42. At the time of the publication of [21], several of the results which are referenced

here relied on the assumption of the “Standard Hypotheses” on B: namely, that for every

exchange matrix B′ in the mutation class of either B or −B, the non-negative orthant On =

(R≥0)n is a B′-cone. However, [21, Proposition 8.9] shows that these hypotheses hold for B if and

only if B satisfies the standard conjecture known as the “sign-coherence of c-vectors” [19, (1.8)],

which is proven in [14, Corollary 5.5] to hold for all exchange matrices. Thus we omit any

references to the Standard Hypotheses when quoting from [21].

Recall that in this section we have taken as given both an n × n exchange matrix B and

an underlying ring R ∈ {Z,Q,R}. The first result is that universal geometric coefficients for B

over R (Definition 2.2.9) and bases for RB (Remark 2.2.24) are equivalent.

Theorem 2.2.43. [21, Theorem 4.4] Let B̃ be an extended exchange matrix with principal part

B whose coefficient rows have entries in R. Then these coefficient rows are universal geometric

coefficients for B over R if and only if they form a basis for RB.

The next few results relate g-vectors for BT , the matrix transpose of B (Definition 2.2.11)

to the mutation fan FB for B (Definition 2.2.29).
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Definition 2.2.44 (g-vector cones). For each cluster xB;t0
t in A•(B), define the associated g-

vector cone ConeB;t0
t to be the nonnegative linear span of the g-vectors

{
gB;t0
i;t′ : i ∈ [n]

}
∈ Zn

of the cluster variables in xB;t0
t .

Definition 2.2.45 (g-vector fan). The set of g-vector cones
{

ConeB;t0
t : t ∈ Tn

}
together with

their faces form a simplicial fan in Rn, called the g-vector fan for B [21, Definition 8.6

and Theorem 8.7]. In particular, the g-vector fan for BT is the subfan F0
B of the mutation

fan FB formed of all full-dimensional cones F in FB that are transitively adjacent to the

nonnegative orthant On. (We say F and On are transitively adjacent if there is a sequence

On = F0, F1, . . . , Fq = F of full-dimensional cones in FB (possibly with q = 0) such that Ci−1

and Ci are adjacent for each i ∈ [q]: i.e., have disjoint interiors but share a face of codimension

1). If t0, t1, . . . , tq = t is a path in Tn where for each i ∈ [q] the edge from ti−1 to ti is labeled

ki ∈ [n], then ConeB
T ;t0

t = η
µkq,...,k1

(B)

k1,...,kq
(On) [21, Proposition 8.13].

When B is of finite type, the g-vector fan is complete (see, e.g., [21, Theorem 10.6]). Thus the

following result is an immediate consequence of Definition 2.2.45 and the results cited therein:

Proposition 2.2.46. [21, Section 10] When B is of finite type, the mutation fan FB coincides

with the g-vector fan for BT , and is therefore rational and simplicial. Furthermore, all maximal

cones in FB are full-dimensional and correspond bijectively with clusters in A•(BT ), where the

spanning rays of a maximal cone are precisely the rays in the g-vectors of the cluster variables

in the corresponding cluster.

Remark 2.2.47. Recall from Definition 2.2.37 that the full-dimensional cones in FB are precisely

the full dimensional cones in FRB : thus for B of finite type, Proposition 2.2.46 implies that

FRB = FB for any choice of underlying ring R.

Theorem 2.2.48. [21, Theorem 10.12] When B is of finite type, the g-vectors associated to

BT constitute a positive basis for RB.

2.3 Folding

This section begins with a precise definition of the folding of an exchange matrix under an

automorphism, following [2, 4, 18]. We then provide several known results about the folding of

the associated coefficient-free and principal coefficients cluster algebras from [1,4].

Matrix folding

Definition 2.3.1 (Orbits). Let σ ∈ Sn. The σ-orbits of [n] are the equivalence classes defined

by the relation i ∼ j if and only if i = σk(j) for some k ∈ Z. The notation ı̄ = {j ∈ [n] : i ∼ j}
represents the σ-orbit containing i ∈ [n].
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Definition 2.3.2 (Admissable automorphism). Let B be an n × n exchange matrix and let

σ ∈ Sn. We call σ an automorphism of B (or equivalently, say that B is symmetric with

respect to σ) if bσ(i)σ(j) = bij for all i, j ∈ [n]. If furthermore,

(i) the ı̄× ı̄ block of B is a zero matrix for each i ∈ [n], and

(ii) all entries in the ı̄× ̄ block of B agree weakly in sign for all i, j ∈ [n],

then we say that σ is a admissable automorphism of B (see Example 2.3.5).

As a consequence of Condition (i) in Definition 2.3.2 and the definition of matrix mutation

in (2.2), if σ is an admissable automorphism of B then the result of applying a composition of

matrix mutations µki over a given σ-orbit k̄ = {k1, . . . , k`} of [n] is independent of order:

µk` ◦ · · · ◦ µk1(B) = µkτ(`)
◦ · · · ◦ µkτ(1)

(B) for any τ ∈ S`. (2.9)

Indeed, the same reasoning implies that matrix mutations within a given σ-orbit k̄ = {k1, . . . , k`}
commute for any extended exchange matrix B̃ with principal part B:

µk` ◦ · · · ◦ µk1(B̃) = µkτ(`)
◦ · · · ◦ µkτ(1)

(B̃) for any τ ∈ S`. (2.10)

Thus the product Πk∈k̄µk is well-defined. (See [4, Lemma 2.12] for a proof of (2.9) that is easily

extended to prove (2.10).)

Definition 2.3.3 (Orbit-mutation). Given an admissable automorphism σ of B and σ-orbit k̄

of [n], the σ-orbit-mutation µσ
k̄

in direction k̄ is the composition

µσk̄ =
∏
k∈k̄

µk. (2.11)

As in (2.3), given a finite sequence k̄ = k̄1, . . . , k̄q of σ-orbits, we use the notation µσ
k̄

to denote

the composition µσ
k̄

= µσ
k̄q
◦ · · · ◦ µσ

k̄1
.

Definition 2.3.4 (Stable automorphism). An automorphism σ of B is stable if it is admissable

and remains so under orbit-mutation. That is, if and only if σ is admissable on µσ
k̄
(B) for any

finite sequence of σ-orbits k̄. It is easily checked that if σ is a stable automorphism of B, so too

is σq for any q ∈ Z.

Example 2.3.5. Consider the 5×5 exchange matrix B below left with admissable automorphism

σ = (12)(3)(45). For convenience in checking Conditions (i) and (ii) of Definition 2.3.2, we have

divided B into blocks indexed by the three σ-orbits 1̄ = {1, 2}, 3̄ = {3} and 5̄ = {4, 5}.
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B =

1̄

3̄

5̄


0 0 −1 2 0

0 0 −1 0 2

1 1 0 −1 −1

−2 0 1 0 0

0 −2 1 0 0


µ3̄=µ3−−−−→

1̄

3̄

5̄


0 0 1 1 −1

0 0 1 −1 1

1 1 0 −1 −1

−1 1 −1 0 0

1 −1 −1 0 0

 = B′

When we perform orbit-mutation on B in direction 3̄, the resulting exchange matrix B′ no

longer satisfies Condition (ii) with respect to σ: in particular, the entries in the 1̄× 5̄ block of

B′ do not agree weakly agree in sign. (Skew-symmetrically, neither do the entries in the 5̄× 1̄

block.) Thus σ is not a stable automorphism of B.

Remark 2.3.6. As mentioned in Section 2.1 and illustrated in Example 2.3.5, not all admiss-

able automorphisms are stable. Furthermore, if an exchange matrix B is not mutation-finite

(see Definition 2.2.13), then it is impossible to prove the stability of a given admissable auto-

morphism computationally. However, every admissable automorphism on an acyclic exchange

matrix (see Definition 2.2.14) is stable [2, Theorem 3.1.11], which implies, in particular, that

the classical foldings from Lie theory of finite and affine-type root systems all extend to foldings

of the corresponding acyclic exchange matrices.

If a given admissable automorphism σ ∈ Sn of exchange matrix B is stable, then it defines

a new, “folded” exchange matrix πσ(B) with rows and columns indexed by the σ-orbits of [n]

in a natural way:

Definition 2.3.7 (Matrix folding). Given stable automorphism σ ∈ Sn of exchange matrix B,

define the folding πσ of B under σ as follows:

πσ(B) =(cı̄̄)σ-orbits
ı̄,̄ of [n]

where

cı̄̄ =
∑
i∈ı̄

bij for any j ∈ ̄.
(2.12)

The following simple computation shows that the matrix entries cı̄̄ =
∑

i∈ı̄ bij of πσ(B) in

(2.12) are well-defined because σ is an automorphism of B: Let j1, j2 ∈ ̄. Then j2 = σq(j1) for

some q ∈ N, and we have the following chain of equalities, where the last equality is obtained

by reindexing the sum over the orbit ı̄ by setting i′ = σq(i):∑
i∈ı̄

bij1 =
∑
i∈ı̄

bσq(i)σq(j1) =
∑
i∈ı̄

bσq(i)j2 =
∑
i′∈ı̄

bi′j2 .

Clearly the folded matrix πσ(B) is an integer matrix; it is also skew-symmetrizable and therefore
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an exchange matrix. (See [4, Lemma 2.5] for the proof of skew-symmetrizability.) The matrix B

is also referred to as the unfolding of πσ(B) under σ. We write m for the number of σ-orbits,

so that πσ(B) is m×m.

The key feature of folding an exchange matrix B under a stable automorphism σ is the re-

lationship between orbit-mutation of B and mutation of πσ(B). Roughly speaking, the stability

of σ ensures that matrix mutation commutes with folding. More precisely, for any sequence k̄

of σ-orbits, σ is a stable automorphism of µσ
k̄
(B), and

πσ(µσ
k̄
(B)) = µk̄(πσ(B)). (2.13)

This equality follows from the fact that µσ
k̄
(B) satisfies Condition (ii) of Definition 2.3.2 (see [4,

Theorem 2.24] for the complete proof). We show in the next section that an analogous folding

relationship holds for the mutation maps associated to B and πσ(B) (see (2.24)).

Cluster algebra folding

Before proceeding to consider the consequences of folding on mutation-linear algebra, we relate

some known facts about cluster algebra folding. The description of the folding of coefficent-free

cluster algebras comes from [4], and the extension to cluster algebras with principal coefficients

is from [1]. Suppose that B is an n × n exchange matrix which folds to the m ×m exchange

matrix πσ(B) under σ ∈ Sn.

LetA0(B) denote the coefficient-free cluster algebra for B with initial seed
(
(xi)i∈[n], B

)
, and

let A0(πσ(B)) denote the coefficient-free cluster algebra with initial seed

(
(xı̄)σ-orbits

ı̄ of [n]
, πσ(B)

)
.

Define an action σ on the ambient field Q[x±1
1 , . . . , x±1

n ] of A0(B) by setting

σ(xi) = xσ(i). (2.14)

Now reuse the symbol πσ for the following map, where ı̄ denotes, as usual, the σ-orbit of i:

πσ : Q[x±1
i ]i∈[n] → Q[x±1

ı̄ ]σ-orbits
ı̄ of [n]

xi 7→ xı̄.

(2.15)

Let Aσ0 (B) denote the subalgebra of A0(B) generated by all clusters in seeds µσ
k̄

(
(xi)i∈[n], B

)
reachable from the initial seed by orbit-mutation. The following is a rephrasing of [4, Theo-

rem 2.24 and Corollary 2.25]:

Theorem 2.3.8. The action of σ on Q[x±1
i ]i∈[n] defined by (2.14) induces an action on the
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cluster algebra A0(B), where for each seed ((xi;t)i∈[n], Bt) in the cluster pattern for A0(B),

σ
(
(xi;t)i∈[n], Bt

)
=
(
(xσ(i);t)i∈[n], σ(Bt)

)
.

Then for every sequence k̄ of σ-orbits ı̄ of [n], the seed µσ
k̄

(
(xi)i∈[n], B

)
=
(
(xi;t)i∈[n], Bt

)
is

fixed under action by σ. If for each such seed we define

πσ
(
{xi;t}i∈[n], Bt

)
=
(
(πσ(xi;t))i∈[n], πσ(Bt)

)
,

where the action of πσ on cluster variables is given by (2.15), then

πσ
(
µσk̄
(
(xi)i∈[n], B

))
= µk̄

(
(xı̄)σ-orbits

ı̄ of [n]
, πσ(B)

)
. (2.16)

Thus every seed in A0(πσ(B)) is the folding of a σ-invariant seed in A0(B), and hence A0(πσ(B))

can be identified with a Z-subalgebra of πσ(A0(B)). Specifically, πσ(Aσ0 (B)) = A0(πσ(B)).

In general, πσ(A0(B)) is larger than πσ(Aσ0 (B)): there are some seeds in A0(B) which do

not fold to seeds in A0(πσ(B)). However when B is of finite type, πσ(A0(B)) and πσ(Aσ0 (B))

coincide. The following is [4, Theorem 3.13]:

Theorem 2.3.9. If B is of finite type, then

πσ(A0(B)) = πσ(Aσ0 (B)) = A0(πσ(B)).

In particular, πσ(B) is also of finite type.

Let A•(B) denote the principal-coefficients cluster algebra for B with initial cluster (xi)i∈[n],

and let A•(πσ(B)) denote the principal-coefficients cluster algebra for πσ(B) with initial cluster

(xı̄)σ-orbits
ı̄ of [n]

. Extend (2.14) to define the action of σ on the ambient field Q[x±1
i ; yj ]i,j∈[n] of A•(B)

by setting σ(yj) = yσ(j), and extend (2.15) to define πσ : Q[x±1
i ; yj ]i,j∈[n] → Q[x±1

ı̄ ; y̄]σ-orbits
ı̄,̄ of [n]

by setting πσ(yj) = y̄. Continuing the extension of the coefficient-free case, let Aσ• (B) denote

the subalgebra of A•(B) generated by all clusters in seeds µσ
k̄
((xi)i∈[n], B̃) reachable from the

initial seed by orbit-mutation. The following is a rephrasing of [1, Theorem 2.9]:

Theorem 2.3.10. The action of σ on Q[x±1
i ; yi]i∈[n] induces an action on A•(B), and every

seed µσ
k̄
((xi)i∈[n], B̃) = ((xi;t)i∈[n], B̃t) is σ-invariant, where, if B̃t has principal part Bt and

complementary part Dt, we define

σ(B̃t) = σ

[
Bt

Dt

]
=

[
σ(Bt)

σ(Dt)

]
.
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Defining πσ(B̃t) =

[
πσ(Bt)

πσ(Dt)

]
analogously, the restriction of πσ to Aσ• (B) is a Zn-graded surjec-

tive homomorphism which preserves cluster structure:

πσ : Aσ• (B)→ A•(πσ(B))

((xi;t)i∈[n], B̃t) 7→ ((xı̄;t)σ-orbits
ı̄ of [n]

, πσ(B̃t))

2.4 Mutation-linear algebra folding

Throughout this section let R ∈ {Z,Q,R} be the underlying ring, let B be an n× n exchange

matrix with stable automorphism σ ∈ Sn and let C = πσ(B) be the m×m folding of B under

σ, with rows and columns indexed by the m σ-orbits ı̄ of [n].

2.4.1 Basis folding

We begin by defining orbit-mutation maps ησ,B
k̄

analogous to the matrix orbit-mutations µσ
k̄

of

Definition 2.3.3, and an m-dimensional subspace V σ of Rn on which these orbit-mutation maps

act essentially the same as the mutation maps ηCk on Rm. Our main result, Theorem 2.4.9, is

that any basis for RB which is preserved under the action of σ folds to a spanning set for RC

by taking sums over σ-orbits. We conclude the section by discuss our conjecture that to obtain

a basis for RC , one must restrict consideration to a certain subset of σ-orbits: namely, those

which are contained in B-cones. Further justification for this conjecture is then provided in

Section 2.4.2.

Recall from Definition 2.2.16 that ηBk (a) is the coefficient row of µk(B̃), where B̃ is the

extended exchange matrix with principal part B and single coefficient row a. It therefore follows

immediately from (2.10) that for any σ-orbit k̄, the composition of all mutation maps ηBk for

k ∈ k̄ is independent of order, so we may write this composition as a product.

Definition 2.4.1 (Orbit-mutation map). The σ-orbit-mutation map ησ,B
k̄

in direction k̄ is

the composition

ησ,B
k̄

=
∏
k∈k̄

ηBk . (2.17)

Analogously to Equation (2.3), given a finite sequence k̄ = k̄1, . . . , k̄q of σ-orbits, we use the

notation ησ,B
k̄

to denote the composition ησ,B
k̄

= η
σ,Bq
k̄q
◦ ησ,Bq−1

k̄q−1
◦ · · · ◦ ησ,B1

k̄1
where B1 = B and

Bi+1 = µσ
k̄i

(Bi) for each i ∈ [q]. We refer collectively to all such maps as the σ-orbit-mutation

maps associated to the pair (B, σ).

Definition 2.4.2 (Orbit-B-coherent linear relation). Let (vi : i ∈ S) be a set of vectors in Rn

and let (ri : i ∈ S) be a set of scalars in R, both indexed by the same finite set S. Analogously
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to Definition 2.2.19, the formal sum
∑

i∈S rivi is an orbit-B-coherent linear relation with

coefficients in R (briefly, orbit-B-coherent) if the following equalities hold for every finite

sequence k̄ of σ-orbits, including the empty sequence:∑
i∈S

riη
σ,B

k̄
(vi) = 0, and (2.18)∑

i∈S
rimin(ησ,B

k̄
(vi),0) = 0. (2.19)

Denote the collection of all orbit-B-coherent linear relations with coefficients in R by Vησ,B .

Remark 2.4.3. Define Rσ,B = (Rn, R,Vησ,B ). It is easily checked, in the same manner as for

RB = (Rn, R,VηB ), that Rσ,B is a partial linear structure in the sense of Definition 2.2.22: we

refer to is as an orbit-mutation-linear structure . Futhermore, since an orbit-mutation map

ησ,B
k̄

is in particular a mutation map in the usual sense (namely, ηBk1,...,k`
where k̄ = {k1, . . . , k`}),

the identity map from RB to Rσ,B is linear with respect to partial linear structures in the sense

of Definition 2.2.25.

While thus far we have viewed σ ∈ Sn as acting on the entries of B, as described in the

hypotheses of Proposition 2.2.32 and Corollary 2.2.41, we may also view σ as a linear map on

Rn acting via coordinate permutation as follows:

σ : Rn
∼=−→ Rn

(a1, . . . , an) 7−→ (aσ−1(1), . . . , aσ−1(n))
(2.20)

Employing the terminology introduced in Section 2.1, we refer to a set of vectors A ⊆ Rn as

symmetric with respect to σ, or σ-symmetric, if σ(A) = A. While (2.20) may seem more

like a definition of the map σ−1 : Rn → Rn, this formulation matches [21,24] and the adjustment

is harmless; if the set A ⊆ Rn is σ-symmetric, then it is σ−1-symmetric as well. Indeed, the set

A is σq-symmetric for any q ∈ Z, so we may define the following generalized version of the map

in (2.20):

σq : Rn
∼=−→ Rn for q ∈ Z

(a1, . . . , an) 7−→ (aσ−q(1), . . . , aσ−q(n))
(2.21)

The following is a weaker version of [24, Proposition 2.26]:

Proposition 2.4.4. For each q ∈ Z, the map σq|RB : RB → RB defined by restricting the map

σq of (2.21) to Rn is a mutation-linear isomorphism.

Definition 2.4.5 (Fixed space and module). Define the σ-fixed space V σ to be the 1-
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eigenspace of σ under the coordinate permutation action defined in (2.20). That is,

V σ = {a ∈ Rn : σ(a) = a} (2.22)

Suppose v = (vi)i∈[n] is a vector in V σ. Then for each of the m σ-orbits ı̄ of [n], the coordinates

vi for i ∈ ı̄ are all equal to one another: call this common scalar vı̄. It follows that V σ has

dimension m, and we use φ to denote the following natural vector space isomorphism:

φ : V σ ∼=−→ Rm

v 7−→ (vı̄)σ-orbits ı̄

(2.23)

Denote the inverse linear transformation by φ−1 : Rm
∼=−→ V σ, where for each i ∈ [n] the ith

coordinate of v = φ−1(w) is defined by vi = wı̄ for each i ∈ ı̄.

Our next goal is to to give a mutation map analog of (2.13), which established a folding

relationship between matrix orbit-mutation of B and matrix mutation of C = πσ(B). We first

verify that the subspace V σ of Rn is closed under orbit-mutation maps, and then show that the

orbit-mutation maps ησB
k̄

“upstairs” on V σ correspond to mutation maps ηC
k̄

“downstairs” on

Rm under the vector space isomorphism φ defined in (2.23).

Lemma 2.4.6. Let k̄ be a finite sequence of σ-orbits. The orbit-mutation map ησ,B
k̄

fixes V σ

as a set, and

φ(ησ,B
k̄

(v)) = ηC
k̄

(φ(v)) for all v ∈ V σ (2.24)

Proof. We argue by induction on the length q of the sequence k̄ = k̄1, . . . , k̄q, our primary

method of proof in this chapter. The result holds trivially when k̄ is the empty sequence. If

q > 0, then for each vector v ∈ V σ and index i ∈ [n], consider the ith entry [ησ,B
k̄1

(v)]i of ησ,B
k̄1

(v).

By Definitions 2.3.2 and 2.4.5, for each k ∈ k̄1 all matrix entries bki are of weakly the same sign

and all vector entries vk are equal. Thus by Definition 2.2.16 and (2.2),

[ησ,B
k̄1

(v)]j =



−vj if j ∈ k̄

vj +
∑

k∈k̄ vkbkj if j 6∈ k̄1, vk ≥ 0, and bkj ≥ 0 for each k ∈ k̄1

vj −
∑

k∈k̄ vkbkj if j 6∈ k̄, vk ≤ 0, and bkj ≤ 0 for each k ∈ k̄1

vj otherwise

Employing the notation vk̄1
= vk for each k ∈ k̄1 from Definition 2.4.5 and applying Defini-

tion 2.3.7 of matrix folding, we obtain the following:
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[ησ,B
k̄1

(v)]j =



−v̄ if ̄ = k̄1

v̄ + vk̄1
ck̄1 ̄

if ̄ 6= k̄1, vk̄1
≥ 0, and ck̄1 ̄

≥ 0

v̄ − vk̄1
ck̄1 ̄

if ̄ 6= k̄1, vk̄1
≤ 0, and ck̄1 ̄

≤ 0

v̄̄ otherwise

Clearly ησ,B
k̄1

(v) ∈ V σ and φ(ησ,B
k̄1

(v)) = ηC
k̄1

(φ(v)). The result then follows by induction: the

sequence k2, . . . , kq has length less than q, and by (2.13), µσ
k̄1

(B) folds to µk̄1
(C) under stable

automorphism σ. Thus

φ(ησ,B
k̄

(v)) = φ

(
η
σ,µσ

k̄1
(B)

k̄2,...,k̄q

(
ηBk̄1

(v)
))

= η
µk̄1

(C)

k̄2,...,k̄q

(
φ
(
ηBk̄1

(v)
))

= η
µk̄1

(C)

k̄2,...,k̄q

(
ηCk̄1

(φ(v))
)

= ηC
k̄

(φ(v))

Since V σ is closed under the application of orbit-mutation maps, by restricting Vησ,B to

B-coherent linear relations (with coefficients in R) among vectors in V σ one obtains a partial

linear structure (V σ, R,Vησ,B ). Clearly, V σ ∩Rn = {a ∈ Rn : σ(a) = a} is also closed under the

application of orbit-mutation maps; thus restricting Vησ,B to B-coherent linear relations (with

coefficients in R) among vectors in V σ∩Rn yields the partial linear structure (V σ∩Rn, R,Vησ,B ).

We show that restricting the vector space isomorphism φ : V σ → Rn of (2.23) to V σ ∩ Rn

yields an isomorphism of partial linear structures in the sense of Definition 2.2.25 between

(V σ ∩Rn, R,Vησ,B ) and RC = (Rm, R,VηC ).

Proposition 2.4.7. The map φ|V σ∩Rn : (V σ∩Rn, R,Vησ,B )→ RC is an isomorphism of partial

linear structures.

Proof. Clearly, φ|V σ∩Rn is a bijection between V σ ∩ Rn and Rm. Thus it suffices to show that

both φ and φ−1 (and therefore φ|V σ∩Rn and φ−1|Rm) are linear with respect to partial linear

structure. Let S be a finite indexing set and consider the linear relation
∑

i∈S rivi among vectors

(vi : i ∈ S) ⊆ V σ with coefficients (ri : i ∈ S) ⊆ R. We show that
∑

i∈S rivi ∈ Vησ,B if and only

if φ
(∑

i∈S rivi
)
∈ VηC .

Let k̄ be any finite sequence of σ-orbits. Applying Lemma 2.4.6,

φ

(∑
i∈S

riη
σ,B

k̄
(vi)

)
=
∑
i∈S

riφ
(
ησ,B
k̄

(vi)
)

=
∑
i∈S

riη
C
k̄

(φ(vi)) .

Since φ is injective, its kernel is trivial. Thus
∑

i∈S rivi satisfies (2.18), the first condition of

orbit-B-coherence, if and only if
∑

i∈S riφ(vi) satisfies (2.6), the first condition of C-coherence.

We verify the equivalence of satisfying (2.19) and (2.7), the second conditions of orbit-B-

and C-coherence, respectively, in a similar manner. Note that for any v ∈ V σ, min(v,0) ∈ V σ,
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and it is easy to check that the map v 7→min(v,0) commutes with φ. Applying Lemma 2.4.6,

φ

(∑
i∈S

rimin(ησ,B
k̄

(vi),0)

)
=
∑
i∈S

rimin(φ(ησ,B
k̄

(v)),0) =
∑
i∈S

rimin(ηC
k̄

(φ(vi)),0).

Again, the fact that φ has a trivial kernel yields the desired result.

We are now ready to provide a constructive proof that a σ-symmetric basis for RB (that

is, a basis for RB which is fixed as a set under the action of σ) folds to a spanning set for

RC . The construction is natural: just as the folded exchange matrix C = πσ(B) was built by

taking sums of entries of B over σ-orbits, we build our spanning set for RC by taking sums over

σ-orbits of basis vectors for RB. In particular, recall from Section 2.1, that for each a ∈ Rn the

notation ā represents the σ-orbit of a, and given a σ-symmetric set A = (ai : i ∈ I) of vectors

in Rn, the notation Ā represents the collection of σ-orbits of A. We then reuse πσ to denote the

following map from Ā to the σ-fixed subspace V σ:

πσ : Ā→ V σ

ā 7→
∑
ai∈ā

ai.
(2.25)

Remark 2.4.8. As an alternative to (2.25), the map πσ could have been defined on the σ-

symmetric set A rather than on the collection Ā of its σ-orbits. An advantage of this setup

would be the view of the map πσ : Rn → V σ as orthogonal projection without normalization

for vector length. However the choice to define πσ on the collection of σ-orbits was made with

an eye towards the primary goal of this section, to fold a σ-symmetric basis for RB to a basis for

RC . Had πσ been defined on the full σ-symmetric basis, there would be no hope of independence

since any two vectors in the same σ-orbit would have the same image.

Theorem 2.4.9. Let B = (bi : i ∈ I) ⊆ Rn be a σ-symmetric basis for RB with set of σ-orbits

B̄. Then φ(πσ(B̄)) is a spanning set for RC .

Proof. Let a ∈ Rm. Since B spans RB, by Definition 2.2.22 there exist a finite subset of indices

S ⊆ I and a collection of scalars (ri : i ∈ S) ⊆ R such that the following is a B-coherent linear

relation (with coefficients in R) among vectors in B:

φ−1(a) +
∑
i∈S

(−ri)bi

Define B̄S = {b̄i : i ∈ S} ⊆ B̄, the set of orbits of vectors in B indexed by S, and for each

orbit b̄ ∈ B̄S define Sb̄ = {i ∈ I : b̄i = b̄}, the subset of I indexing vectors in B in the σ-orbit

b̄. Finally, define S′ =
⋃

b̄∈B̄S Sb̄. For each index i ∈ S′, define the scalar ti ∈ R by ti = ri if

33



i ∈ S, and ti = 0 otherwise. Then
∑

i∈S(−ri)bi =
∑

i∈S′(−ti)bi, and furthermore, this equality

is preserved under the application of mutation maps ηBk . Thus the following is a B-coherent

linear relation (with coefficients in R) as well:

φ−1(a) +
∑
i∈S′

(−ti)bi (2.26)

Now, we argue that because B is an independent set for RB, for each orbit b̄ ∈ B̄S , each

vector bi ∈ b̄ appears with the same coefficient in (2.26). Consider two distinct indices i1, i2 ∈
Sb̄. Since bi1 and bi2 are elements of the common orbit b̄, there exists some q ∈ N such that

σq(bi1) = bi2 . For each i ∈ S′, let iσq ∈ S′ denote the index of σ−q(bi): for example, (i2)σq = i1.

By (2.26),
∑

i∈S′(−ti)bi = −φ−1(a) = φ−1(−a). Since φ−1(−a) ∈ V σ is fixed under action by

σq, so too is
∑

i∈S′(−ti)bi. Thus,

∑
i∈S′

(−ti)bi = σq

(∑
i∈S′

(−ti)bi

)
=
∑
i∈S′

(−ti)σq(bi) =
∑
i∈S′

(−tiσq )bi

Grouping like terms and isolating bi2 , we obtain the following linear relation:

(−ti2 + ti1)bi2 +
∑
i∈S′
i 6=i2

(−ti + tiσq )bi (2.27)

In fact, the relation in (2.27) is B-coherent as it is obtained as the difference between two other

B-coherent linear relations: namely, φ−1(a) −
∑

i∈S′(−ti)bi from (2.26), and its image under

action by σq, φ−1(a)−
∑

i∈S′(−tiσq )bi. (The latter relation is B-coherent by Proposition 2.4.4.)

But the only vectors (bi : i ∈ S′) appearing with non-zero coefficients in (2.27) are elements

of B, a basis for RB: hence since B is independent, this B-coherent relation must be trivial. In

particular, ti1 = ti2 .

Thus for each orbit b̄ ∈ B̄S , we may define, without ambiguity, the coefficient tb̄ = ti for

each i ∈ Sb̄, and rewrite the B-coherent linear relation given in (2.26) as follows:

φ−1
σ (a) +

∑
b̄∈B̄S

∑
i∈Sb̄

(−tb̄)bi.

Rewriting once more using the definition of πσ from (2.25) yields

φ−1
σ (a) +

∑
b̄∈B̄S

(−tb̄)πσ(b̄).

Finally, applying φ gives the relation below among vectors in φ(πσ(B̄)), and this relation is
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C-coherent (with coefficients in R) by Proposition 2.4.7:

a +
∑

b̄∈B̄S

(−tb̄)φ(πσ(b̄)).

We thereby conclude by Definition 2.2.22 that φ(πσ(B̄)) spans RC .

The following corollary, on the folding of a positive basis for RB (see Definition 2.2.22) is

immediate from the proof of Theorem 2.4.9:

Corollary 2.4.10. If B = (bi : i ∈ I) ⊆ Rn is a σ-symmetric positive basis for RB, then

φ(πσ(B̄)) is a positive spanning set for RC .

Recall from Theorem 2.2.23 that for any exchange matrix B and underlying ring R ∈ {Q,R},
there exists a basis for RB. It is natural, in light of Theorem 2.4.9, to ask if a σ-symmetric

basis for RB also exists. While we cannot prove existence in general using the non-constructive

argument from the proof of Theorem 2.2.23, we can show existence (for any choice ofR, including

Z) so long as we have a positive basis for RB.

Proposition 2.4.11. If B = (bi : i ∈ I) is a positive basis for RB, then there exists a σ-

symmetric positive basis Bσ for RB:

Proof. Proposition 2.2.40 implies that B must consist of a nonzero vector in each ray in FB∩Rn.

By Proposition 2.2.32, σ(FB) = FB, and therefore σ(FB ∩ Rn) = FB ∩ Rn. In particular, the

set of rays in FB ∩ Rn is fixed under action by σ. If R = Z, then B is unique and consists of

the smallest nonzero integer vector in each ray: thus B must be σ-symmetric itself, and we take

Bσ = B. Otherwise, there exist nonzero scalars ti ∈ R such that the collection Bσ = (tibi : i ∈ I)

is σ-symmetric, and since Bσ consists of a single nonzero vector in each ray, by Proposition 2.2.40

it forms a positive basis for RB.

Another natural question arising from Theorem 2.4.9 is whether, given a σ-symmetric basis

B for RB, the set φ(πσ(B̄)) is independent in RC and therefore a basis. We suspect that the

answer in general is no, and that a better candidate for a basis for RC is the following subset

of φ(πσ(B̄)): {
φ(πσ(b̄)) : b̄ ∈ B̄ is contained in a B-cone

}
. (2.28)

The first justification for this conjecture is provided below in Corollary 2.4.12, which shows

that this set is a spanning set for RC if B is a σ-symmetric cone basis for RB. As mentioned

in [21, Remark 6.5], for every exchange matrix B for which a basis for RB has been constructed,

the basis is a cone basis. An even stronger justification is provided in the next section, where

we prove in Theorem 2.4.23 that this set is a positive basis for RC if and only if the R-part of
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FB folds to the R-part of FC . So while we cannot show, in general, that a σ-symmetric basis

folds to a basis, we can prove positive basis folding as a consequence of mutation fan folding.

This will provide valuable consequences when B is of finite type and when B arises as the

signed-adjacency matrix of a triangulated orbifold, as we show that the mutation fan folds in

both cases.

Corollary 2.4.12. Let B = (bi : i ∈ I) ⊆ Rn be a σ-symmetric cone basis for RB with set of

σ-orbits B̄. Then the subset of φ(πσ(B̄)) defined in (2.28) is a spanning set for RC .

Proof. Let a ∈ Rm. By the proof of Theorem 2.4.9, there exists a finite subset S′ = ∪b̄∈B̄SSb̄

of I such that the following relation among vectors (bi : i ∈ S′) is B-coherent:

φ−1
σ (a) +

∑
b̄∈B̄S

(−tb̄)πσ(b̄).

Furthermore, since B is a basis for RB and therefore independent, this relation is unique: that

is, it is the only B-coherent relation (with coefficients in R) of the form φ−1(a) +
∑

i∈S(−ri)bi
for some finite subset S ⊆ I. It therefore follows from Proposition 2.2.35 that the basis vectors

indexed by S′ must all be contained in some common B-cone. In particular, each σ-orbit b̄ ∈ BS
is contained in a B-cone, so φ(BS) is contained in the subset of φ(πσ(B̄)) defined in (2.28).

2.4.2 Mutation fan folding

The first result of this section establishes a geometric analog of the mutation-linear basis folding

of Theorem 2.4.9 by showing that (the R-part of) the mutation fan FB folds to a refinement of

(the R-part of) the mutation fan FC . The second result shows that the folded (R-part of) FB
coincides with (the R-part of) FC if and only if a σ-symmetric positive basis for RB (resp. RB)

folds, in the sense of (2.28), to a positive basis for RC (resp. RC). Finally, we prove that the

two fans coincide when B is of finite type, and thereby deduce various associated results about

the folding of mutation-linear bases and universal geometric coefficients.

The general case

We start by defining an orbit-mutation version ≡σ,B of the equivalence relation ≡B on RB from

Definition 2.2.29. Namely, set a1≡σ,Ba2 if and only if sgn(ησ,B
k̄

(a1)) = sgn(ησ,B
k̄

(a2)) for every

finite sequence k of indices in [n]. The following observation is immediate from the fact that

every orbit-mutation map ησ,B
k̄

is in particular a mutation map ηBk (see Remark 2.4.3):

Lemma 2.4.13. Let a1,a2 ∈ Rn. If a1≡Ba2, then a1≡σ,Ba2.

It is likewise immediate from (2.23) that for any v1,v2 ∈ V σ, sgn(v1) = sgn(v2) if and

only if sgn(φ(v1)) = sgn(φ(v2)). Thus, we may also make the following observation:
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Lemma 2.4.14. Let v1,v2 ∈ V σ. Then v1≡σ,Bv2 if and only if φ(v1)≡Cφ(v2).

Theorem 2.4.15. The fan φ(FB ∩ V σ) refines FC . Further, the R-part of φ(FB ∩ V σ) refines

the R-part of FC .

Proof. It suffices to prove the first part of the theorem: the second part then follows easily by

application of Definition 2.2.37.

Observe that since FB is a complete fan in Rn and φ : V σ → Rm is a vector space isomor-

phism (see (2.23)), φ(FB ∩ V σ) is complete in Rm, and we know that the mutation fan FC is

complete. Thus by Definition 2.2.28, we must show that each cone in φ(FB ∩ V σ) is contained

in a cone in FC . It suffices to show such containment for each maximal cone F ′ of φ(FB ∩ V σ),

which, by construction of FB in Definition 2.2.29, is of the form F ′ = φ(F ∩ V σ) for some

B-cone F . By definition, F is the closure of some B-class Fa = {v ∈ Rn : v ≡B a}. Then,

Fa ∩ V σ = {v ∈ V σ : v ≡B a} ⊆ {v ∈ V σ : v ≡σ,B a} (2.29)

where the set inclusion is a consequence of Lemma 2.4.13. Applying φ : V σ → Rm to (2.29) and

appealing to Lemma 2.4.14,

φ(Fa ∩ V σ) ⊆ φ
(
{v ∈ V σ : v ≡σ,B a}

)
= {φ(v) : v ∈ V σ with v ≡σ,B a}

= {φ(v) : v ∈ V σ with φ(v) ≡C φ(a)}

= {φ(v) ∈ Rm : φ(v) ≡C φ(a)}

Taking closures yields the desired result: letting G denote the C-cone obtained by taking the

closure of the C-class containing φ(a), a C-cone, we have F ′ = φ(F ∩ V σ) ⊆ G ∈ FC .

For the remainder of this section, we will work with simplicial fans, so qw take a moment

to present a few additional definitions and results from convex geometry to complement those

introduced in Definitions 2.2.26 and 2.2.28. Proofs of the first two facts below are found, for

example, in [26, Corollary 18.1.3] and [26, Theorem 18.2].

Definition 2.4.16 (Relative interior). The affine hull of a convex set F is the union of all

lines defined by two distinct points of F . The relative interior of F , written relint(F ), is the

interior of F as a subset of its affine hull, and the relative boundary of F , written relbd(F ),

is the set difference between the closure and relative interior of F .

Lemma 2.4.17. Any proper face of a convex set in is contained in its relative boundary.

Lemma 2.4.18. Let F be a non-empty convex set. The collection of all relative interiors of

non-empty faces of F form a partition of F .
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Lemma 2.4.19. The relative boundary of a closed convex set is the union of its proper faces.

Proof. Let U denote the union of the proper faces of a convex set F . By Lemma 2.4.17, U

is contained in the relative boundary of F . For the reverse containment, let x ∈ relbd(F ).

Then since F is closed, x ∈ F , so by Lemma 2.4.18, x ∈ relint(T ) for some face T of F . Since

x /∈ relint(F ), T must be a proper face, and hence x ∈ U .

Recall from Definition 2.2.28 that a complete fan F refines another complete fan G if and

only if every cone of F is contained in a cone of G. In particular, this implies that every ray of

F is a ray of G. Recall as well from Definition 2.2.26 that if F is a simplicial fan, every cone of

F is the convex hull of finitely many rays spanned by linearly independent vectors.

Proposition 2.4.20. Let F and G be complete fans in some module V with F refining G. If G
is simplicial and every ray in F is a ray in G, then F = G.

Proof. It suffices to show that G is a subfan of F by showing every cone in G is a cone in F .

Let G ∈ G and x ∈ relint(G). Because F refines G, there exists some cone F ∈ F such that

x ∈ F ⊆ G. The cone F is the convex hull of some (a priori, possibly infinite) subset S of rays

in V . Thus each ray r ∈ S is a face of F and therefore a ray in F , implying, since F refines

G, that r ∈ G. But F ⊆ G implies r ⊆ G, so r = r ∩ G is in fact a 1-dimensional face, or ray,

in G. Thus F is the convex hull of some set of rays in G, implying that F is a face of G since

G is simplicial. But x ∈ F ∩ relint(G), so by Lemma 2.4.19, F cannot be a proper face. Thus

G = F is a cone in F .

Thus equipped with tools from convex geometry, we prepare to characterize the rays in the

R-part of the folded mutation fan φ(FB ∩ V σ), assuming the R-part of FB is simplicial. This

implies in turn, that the R-part of FB ∩V σ, which coincides with the intersection of the R-part

of FB with V σ, is simplicial, as is the R-part of φ(FB ∩ V σ). Recall that σ(B) = B, so by

Proposition 2.2.32 (resp. Corollary 2.2.41), the set of rays R in the R-part of FB is fixed under

the action of σ on Rn. Therefore for each ray r ∈ R, we may choose a non-zero vector ar in r

such that the set AR = {ar : r ∈ R} is a σ-symmetric subset of Rn (resp. Rn). Denote by ār

and ĀR the σ-orbit of each vector ar ∈ AR and the set of all such orbits, respectively.

Lemma 2.4.21. Suppose that the R-part of FB is simplicial and let AR be a σ-symmetric

collection of non-zero vectors in the rays R of the R-part of FB. For each σ-orbit ā ∈ ĀR,

define sā to be the non-negative R-linear span of πσ(ā) =
∑

ai∈ā ai. Then the rays S of the

R-part of the fan FB ∩ V σ are given by

S = {sā : ā ∈ ĀR spans a cone in the R-part of FB}. (2.30)

Thus the rays of the R-part of φ(FB ∩ V σ) are given by φ(S).
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Proof. Let s be a ray of the R-part of FB ∩ V σ. Since by Lemma 2.2.38 the R-part of FB ∩ V σ

is given by the intersection of the R-part of FB with V σ, s is in particular the one-dimensional

intersection of a cone in the R-part of FB with V σ. Choose F to be the minimal such cone (under

containment): that is, such that there does not exist a proper face F ′ of F with s = F ′ ∩ V σ.

By the minimality of F , s ⊆ relint(F ). Since s ∈ V σ, s = σ(s) ⊆ relint(σ(F )), so Lemma 2.4.18

implies that F = σ(F ). In particular, RF = σ(RF ), where RF ⊆ R denotes the rays of F .

Let ARF ⊆ AR denote the associated σ-symmetric collection of spanning vectors. We claim

by simpliciality that ARF consists of a single σ-orbit ā, as otherwise either the dimension of

s = F∩V σ must be greater than one or F must not be minimal, both of which are contradictions.

Thus since s ∈ relint(F ) and ā = ARF spans F , we must have s = sā, the non-negative linear

span of πσ(ā) =
∑

ai∈ā ai.

For the reverse inclusion, suppose ā ∈ ĀR is a σ-orbit of vectors in AR which spans a cone

F in the R-part of FB. Since sā denotes the non-negative R-linear span of πσ(ā) =
∑

ai∈ā ai,

clearly sā ⊆ F ∩ V σ. We show that F ∩ V σ ⊆ sā, and thereby conclude that sā = F ∩ V σ is

a ray in the R-part of FB ∩ V σ. Suppose v ∈ F ∩ Vσ. Then v =
∑

ai∈ā viai for some scalars

vi ∈ R. Since v ∈ V σ and ā is a σ-orbit, all the vi must be equal: thus v ∈ sā.

Now, suppose a positive basis for RB exists. Then by Definition 2.2.39, the R-part of FB
is given by FRB , a simplicial fan. Further, by Proposition 2.4.11, there exists a σ-symmetric

positive basis for RB, which we denote by B. By Proposition 2.2.36, B is in particular a positive

cone basis. Thus the subset of φ(πσ(B̄)) given in (2.28) consisting only of the foldings of σ-orbits

b̄ ∈ B̄ which are contained in B-cones is a spanning set for RC by Corollary 2.4.12. As the last

necessary preliminary result before we show that positive bases fold if and only if the mutation

fan folds, we give an equivalent formulation of this set.

Lemma 2.4.22. Suppose that B = (bi : i ∈ I) is a σ-symmetric positive basis for RB with set

of σ-orbits B̄. Then the vectors in a given σ-orbit b̄ ∈ B̄ are contained in a common B-cone if

and only if they span a cone in FBR .

Proof. Clearly, if the vectors in a σ-orbit b̄ ∈ B̄ span a cone in the R-part of FB, then they are

contained in a cone in FB, and therefore a B-cone.

Conversely, suppose all the vectors in a given σ-orbit b̄ ∈ B̄ are contained in some common

B-cone F . Recall from Proposition 2.2.40 that each vector in b̄ spans a unique ray in FRB .

By Definition 2.2.37, there exists a unique largest cone F ′ in FRB which is contained in F and

contains F ∩ Rn. Thus the vectors in b̄ are contained in F ′, and therefore span rays of F ′ by

Definition 2.2.26. But FRB is simplicial, so b̄ spans a face of F ′, and therefore a cone in FRB .

Theorem 2.4.23. Suppose that B = (bi : i ∈ I) is a σ-symmetric positive basis for RB and

let B̄F ⊆ B̄ denote the subset of σ-orbits of B which span cones in the R-part of FB. Then

39



φ(πσ(B̄F )) is a positive basis for RC if and only if φ(FRB ∩ V σ) = FRC .

Proof. Suppose first that φ(FRB ∩ V σ) = FRC . By Proposition 2.2.40, B consists of a non-zero

vector in each ray of FRB . It is easily checked by applying Definition 2.2.37 that since FRB is

the R-part of FB, the fan φ(FRB ∩ V σ) is the R-part of φ(FB ∩ V σ). Both are simplicial since

a positive basis for RB exists. Thus by Lemma 2.4.21, the set φ(πσ(B̄F )) consists of one non-

zero vector in each ray of φ(FRB ∩ V σ). Once more invoking Proposition 2.2.40, it follows that

φ(πσ(B̄F )) is a positive basis for RC .

Conversely, suppose that φ(πσ(B̄F )) is a positive basis for RC . By Definition 2.2.39, FRB is

simplicial, implying φ(FRB ∩ V σ) is simplicial, and since a positive basis exists for RC , FRC is

simplicial as well. Both φ(FRB ∩ V σ) and FRC are complete fans in with φ(FRB ∩ V σ) refining

FRC as a consequence of Theorem 2.4.15. Thus by Proposition 2.4.20 to show that every ray

in φ(FRB ∩ V σ) is a ray in FRC . By Lemma 2.4.21, the rays in φ(FRB ∩ V σ) are spanned by the

vectors in φ(πσ(B̄F )). But these vectors precisely span the rays in FRC by Proposition 2.2.40

since φ(πσ(B̄F )) is a positive basis for RC .

Finite type

We now restrict our attention to the case when B is of finite type. By Proposition 2.3.9,

this implies that C = πσ(B) is of finite type as well. Proposition 2.2.46 gives us a powerful

tool: in this case, the mutation fans FB and FC coincide with the g-vector fans for BT and

CT , respectively, rational simplicial fans all of whose maximal cones are full-dimensional and

obtained via mutation maps from the respective non-negative orthants On = (R≥0)n and Om =

(R≥0)m, themselves maximal cones in FB and FC (see Definition 2.2.45). There is no need to

consider R-parts: for any choice of R ∈ {Z,Q,R}, the “R-part” of the mutation fan for a finite

type exchange matrix is simply the mutation fan itself.

Theorem 2.4.24. If B is of finite type, then φ(FB ∩ V σ) = FC .

Proof. By Theorem 2.4.15, we know that φ(FB ∩ V σ) refines FC . Furthermore, since B is of

finite type, Proposition 2.2.46 implies that FB is simplicial, so by Proposition 2.4.20, it suffices

to show that every ray in φ(FB ∩ V σ) is a ray in FC . In particular, we show that every ray in

FB ∩ V σ is a ray in φ−1(FC): since φ is a vector space isomorphism, this is equivalent.

Suppose by way of contradiction that r is a ray in FB ∩ V σ but is not a ray in φ−1(FC).

Then r is contained in, but not a face of, some cone in φ−1(FC), implying that φ(r) is contained

in, but not a face of, some cone in FC . By Proposition 2.3.9, C is of finite type, and hence by

Proposition!2.2.46, FC coincides with the complete, simplicial, g-vector fan for CT . So φ(r) is in

fact contained in, but not a face of, some full-dimensional coneG in FC , and by Definition 2.2.45,

there exists a sequence k̄ of σ-orbits such that ηC
k̄

(G) = Om, the non-negative orthant in Rm.

Thus ηC
k̄

(φ(r)) is contained in, but not a ray of, Om.
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By (2.24), φ−1(ηC
k̄

(φ(r))) = ησ,B
k̄

(r), and clearly, φ−1(Om) = On ∩ V σ. Hence ησ,B
k̄

(r) is

contained in, but not a ray of, On ∩ V σ. On the other hand, since r is a ray in FB ∩ Vσ,

by Proposition 2.2.33 ησ,B
k̄

(r) must be a ray in Fµk(B) ∩ V σ. But On is a cone in Fµk(B) by

Remark 2.2.42, implying that On ∩ V σ is a cone in Fµk(B) ∩ V σ. This is a contradiction: by

Definition 2.2.26, since both ησ,B
k̄

(r) and On ∩ V σ are cones in Fµk(B) ∩ V σ, their intersection

ησ,B
k̄

(r) ∩ (On ∩ V σ) = ησ,B
k̄

(r) must be a face of both.

The following results are immediate from Theorems 2.4.23 and 2.2.43, respectively.

Corollary 2.4.25. If B is of finite type and B = (bi : i ∈ I) is a positive basis for RB, then

there exists a σ-symmetric positive basis Bσ for RB, and the following collection is a positive

basis for RC , where B̄σ denotes the set of σ-orbits ā of Bσ:

(
φ (πσ(ā)) : ā ∈ B̄σ spans a cone in FB

)
(2.31)

Corollary 2.4.26. If B is of finite type and B = (bi : i ∈ I) is a positive basis for RB, then

the set in (2.31) constitutes universal geometric coefficients for C over R.
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Chapter 3

Marked surfaces, orbifolds, and

folding

3.1 Introduction

An orbifold O = (S,M,Q) consists of an oriented surface S and two disjoint, finite sets of

points in S: marked points M and orbifold points Q. If Q = ∅, then O is a marked surface.

(There are some additional technical restrictions on O: see Definition 3.2.1.) We consider two

special classes of curves in O, called (tagged) arcs (see Definition 3.2.6), and (allowable) curves

(see Definition 3.2.10). A maximal compatible collection of (tagged) arcs, always of the same

cardinality n, is called a (tagged) triangulation, and a compatible collection of curves with

positive weights is called a (quasi-)lamination. The interaction between a given lamination L

and the arcs in a given triangulation T is encoded by a shear coordinate vector b(T, L) ∈ Qn.

Together, these components define a cluster algebra of geometric type (see Section 2.2.1), where

T determines an n × n exchange matrix B(T ), arcs in T correspond to cluster variables, arc

“flips” defining new triangulations of O (see Definition 3.2.5) correspond to matrix mutation,

and coefficients rows are given by shear coordinates of laminations.

The goals of this chapter are two-fold. First, we consider mutation fans, mutation-linear

bases, and universal geometric coefficients for cluster algebras arising from orbifolds, generaliz-

ing many constructions and results for marked surfaces from [22]. In particular, in Sections 3.2

and 3.3, we use [5,7–9] to describe cluster algebras arising from a triangulated orbifold O, T in

detail, and then extend the notions of rational quasi-laminations on a surface and the rational

quasi-lamination fan FQ(T ) from [22] to the orbifold setting (see Definitions 3.2.10 and 3.3.19).

In Section 3.4, we generalize two properties of surfaces, the Curve Separation Property (see

Definition 3.4.1) and Null Tangle Property (see Definition 3.4.9), to orbifolds, and prove the

following results, which appear in the text as Theorems 3.4.5 and 3.4.22, respectively.
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Theorem 3.1.1. If an orbifold O has either no punctures and no orbifold points, a unique

puncture and no orbifold points, or no punctures and a unique orbifold point, then O has the

Curve Separation Property.

Theorem 3.1.2. If O is a sphere with b boundary components, p punctures, and q orbifold

points with b+ p+ q ≤ 3, then O has the Null Tangle Property.

The next three results are generalizations of [21, Theorems 4.10, 4.12, and 7.3], respectively,

from marked surfaces to orbifolds, and their proofs are nearly identical. These appear in the

text as Theorems 3.4.3, 3.4.4, and 3.4.17, respectively. One consequence of these results is a

geometric realization of the universal geometric coefficients of classical affine type conjectured

in [21, Conjecture 10.15].

Theorem 3.1.3. Suppose T is a tagged triangulation of O, with all arcs tagged plain if O has

no boundary components and exactly one puncture. The rational quasi-lamination fan FQ(T )

is a rational, simplicial fan. FQ(T ) is the rational part of the mutation fan FB(T ) if and only if

O has the Curve Separation Property.

Theorem 3.1.4. Suppose T is a tagged triangulation of O, with all arcs tagged plain if O has

no boundary components and exactly one puncture. Let R be either Z or Q. If O has the Curve

Separation Property,

1. The shear coordinates of allowable curves in O form a positive basis for RB(T ) so long as

they are an independent set for RB(T ).

2. The shear coordinates of allowable curves in O form a positive basis for RB(T ) so long as

a positive basis for RB(T ) exists.

Theorem 3.1.5. Suppose T is a tagged triangulation of O, with all arcs tagged plain if O has

no boundary components and exactly one puncture. Let R be either Z or Q. If O is not a null

orbifold, then the following are equivalent:

1. O has the Null Tangle Property.

2. The shear coordinates of allowable curves form a basis for RB(T ).

3. The shear coordinates of allowable curves form a positive basis for RB(T ).

4. The shear coordinates of allowable curves form universal geometric coefficients for B(T )

over R.

If O is a null orbifold, then it fails Conclusion 1 and satisfies Conclusions 2, 3, and 4.
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The second part of this chapter is dedicated to using the combinatorics of the orbifolds

model to prove that the mutation-linear notions established above fold in the sense of Chapter 2.

Section 3.5 follows [5] in describing the folding of orbifolds and its correspondence with exchange

matrix folding (see Definitions 3.5.1, 3.5.2, and 3.5.3). The desired results, stated below, are

then proven in Section 3.6. Our primary result appears in the text as Theorem 3.6.1.

Theorem 3.1.6. Let O = (S,M,Q) be an orbifold with tagged triangulation T which folds,

under the symmetry σ, to orbifold πσ(O) with tagged triangulation πσ(T ). Then FQ(T ) folds to

FQ(πσ(T )) under σ.

As consequences of Theorems 3.1.4 and 3.1.5, respectively, Theorem 3.1.6 then gives us the

following two results, which appear in the text as Corollaries 3.6.2 and 3.6.3.

Corollary 3.1.7. Suppose both O and πσ(O) have the Curve Separation Property and that T

has all arcs tagged plain if O has no boundary components and exactly one puncture. Then the

rational part of FB(T ) folds to the rational part of FB(πσ(T )) under σ.

Corollary 3.1.8. 5 Suppose both O and πσ(O) have the Null Tangle Property, that T has all

arcs tagged plain if O has no boundary components and exactly one puncture, and R is Z or

Q. Then the set of shear coordinates of allowable curves in O folds to a positive (cone) basis

for RB(πσ(T )), and therefore to universal geometric coefficients for B(πσ(T )) over R.

3.2 Marked surfaces and orbifolds

We begin by describing cluster algebras arising from triangulated surfaces and orbifolds, fol-

lowing [5,7–9]. An orbifold is a topological space which is specified by local conditions: broadly,

where a manifold looks locally like Euclidean space, an orbifold looks locally like the quotient

space of Euclidean space under the linear action of a finite group [28, Chapter 13]. In the cluster

algebra context discussed here we take a very specific view of orbifolds as generalizations of

marked surfaces. Indeed, the orbifold definitions below are adapted from [5], where they were in-

troduced to generalize the marked surfaces model of [8,9] to accommodate skew-symmetrizable

exchange matrices.

Throughout, we note the specialization of each orbifold definition to the more familiar realm

of marked surfaces. Assertions left unproven here are proven in [5,8,9]. Differences between our

approach and [5, 8, 9], most of which correspond to the differences between [22] and [8, 9], are

described in Remarks 3.2.8, 3.2.11, and 3.3.5.

Definition 3.2.1 (Orbifolds and marked surfaces). An orbifold is a triple O = (S,M,Q)

where S is an oriented surface with (possibly empty) boundary ∂S and M and Q are disjoint,
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finite sets of points in S. In particular, we view S as arising from a compact, oriented surface

without boundary by removing a finite collection of open disks with disjoint closures, so that

the boundary ∂S, if it exists, is a finite collection of circles called boundary components, one

for each deleted disk. By the boundary ∂O of O, we mean ∂S.

We require that M, the set of marked points, be nonempty, with at least one marked point

in each boundary component of O. Marked points in the interior of O are called punctures.

On the other hand, the set Q of orbifold points may be empty, and must be fully contained

in the interior of O. Each orbifold point q ∈ Q has a weight w(q) of either 2 or 1/2. We denote

the sets of points of each type as Q2 and Q1/2, respectively, and use the respective symbols

and × to represent them. The symbol denotes an orbifold point of arbitrary weight.

We forbid the connected components of O without orbifold points from being any of the fol-

lowing marked surfaces: unpunctured monogons, digons, or triangles, or once-punctured mono-

gons. Furthermore, we require all spheres (with no boundary components) to have at least 4

points in M t Q. If such a sphere has exactly four points in M t Q, then at least two of

them must be punctures in M. (Note that this explicitly excludes the four exceptional cases

in [5, Table 3.5].) We also require that every connected component of O contain at least one

marked point, and forbid monogons which contains a single orbifold point and no punctures. A

null orbifold is an empty quadrilateral or a digon containing a unique point in M tQ in its

interior (a generalization of the null surfaces defined in [24]).

If Q = Q2 tQ1/2 = ∅, then the pair (S,M) is a bordered surface with marked points, as

in [8, Definition 2.1], or equivalently, a marked surface .

Remark 3.2.2. Generally, S is considered to have a Riemannian structure. While the surfaces

described above admit a Riemann metric, we do not need it here. We also do away with the

usual convention that S be connected. This is a criterion for “irreducibility” and again, is not

needed for our applications. Further, Chapter 4 will introduce an operation on O which may

disconnect it, so we must explicitly permit disconnected surfaces.

3.2.1 Arcs and triangulations

Definition 3.2.3 (Arcs and triangulations). An arc γ in an orbifold O = (S,M,Q) is a curve

in S, considered up to isotopy relative to MtQ, whose endpoints are in MtQ. In particular,

either both endpoints of γ are points in M, in which case γ is called an ordinary arc, or one

endpoint belongs to M while the other is an orbifold point q ∈ Q = Q2tQ1/2, in which case γ

is called a non-ordinary arc. Note that arcs cannot have both endpoints in Q. A non-ordinary

arc is referred to as a double arc if q ∈ Q2, and a pending arc if q ∈ Q1/2. The weight of

an arc γ is 1 if γ is ordinary and the weight of its unique orbifold endpoint if it is not. That

is, the weight of a double arc is 2 and the weight of a pending arc is 1/2. (To emphasize the
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Figure 3.1: Types of triangles admissable in a triangulation of a marked surface (two or three
of the vertices of the lefthand triangle may coincide; if two edges coincide, one obtains the
self-folded triangle on the right)

difference between ordinary and non-ordinary arcs, we render non-ordinary arcs in bold. See,

e.g., Figure 3.2.)

We forbid γ from intersecting either itself or ∂O ∪M ∪Q except possibly at its endpoints,

and further forbid γ from being contractible into a single boundary segment. (That is, if γ is

contractible into ∂O, then γ has two distinct endpoints and the portion of ∂O between these

endpoints must contain at least 1 marked point.) If γ bounds a monogon, then this monogon

must contain a puncture or at least two orbifold points in its interior.

Two arcs are compatible if (there is an isotopy representative of each such that) the two

do not intersect, except possibly at shared endpoints in M. Thus in particular, two compatible

non-ordinary arcs cannot share an orbifold point. A triangulation T is a maximal collection of

pairwise compatible arcs. The arcs which define T divide the orbifold into triangles with three

vertices and three edges, some of which may coincide. If two (by necessity, ordinary) edges of a

triangle coincide, we refer to it as a self-folded triangle (see the second image in Figure 3.1).

Two distinct arcs which form the edges of (at least one) common triangle are called adjacent .

The types of triangles containing non-ordinary arcs are depicted in Figure 3.2. We at times refer

to these as non-ordinary triangles in contrast to those depicted in Figure 3.1. Examples of

orbifold triangulations are provided in Figures 3.3, 3.4, and 3.5. Every orbifold point q ∈ Q is

incident to exactly one non-ordinary arc in T , and each non-ordinary arc is an edge of exactly

one triangle. On the other hand, each ordinary arc in T is contained in exactly two triangles

unless it constitutes the fold edge of a self-folded triangle.

If O is a marked surface, these definitions specialize to [8, Definitions 2.2, 2.4, 2.6].

Definition 3.2.4 (Signed adjacency matrix). Suppose T is a triangulation of an orbifold O
consisting of n arcs γ1, . . . , γn. The signed adjacency matrix B(T ) = (bij) is an n×n integer

matrix with rows and columns indexed by the arcs in T , where each entry bij for i, j ∈ [n]

encodes the adjacency of arcs γi and γj and is defined as follows.

If γi constitutes two sides of a self-folded triangle (the arc with two distinct endpoints in

a triangle of the type depicted on the right in Figure 3.1), set πT (γi) to be this triangle’s
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Figure 3.2: Types of non-ordinary triangles admissable in a triangulation of an orbifold (orb-
ifold points of arbitrary weight are denoted by ; non-ordinary arcs are rendered in bold)

remaining side (the enclosing loop). Otherwise, set πT (γi) = γi. Let wi denote the weight of

arc γi: since the two arcs in a self-folded triangle are ordinary, wi is also the weight of πT (γi).

Likewise for γj .

Now, for each non-self-folded triangle ∆ in T , define ε∆ij to be 0 unless ∆ has sides πT (γi)

and πT (γj), in which case ε∆ij = 1 if πT (γj) follows πT (γi) in the clockwise order, and ε∆ij = −1

if πT (γj) follows πT (γi) in the counter-clockwise order. Further, define

b∆ij =



1 if wi < wj

1 if wi = wj = 1

2 if wi = wj 6= 1

wi/wj if wi > wj

Finally, define the matrix entry bij to be the sum, over all non-self-folded triangles ∆ in T ,

of the signed contributions ε∆ijb
∆
ij :

bij =
∑

non-self-folded
∆ in T

ε∆ijb
∆
ij

By construction, the integer matrix B = B(T ) is skew-symmetrizable : that is, there

exists a (unique) diagonal matrix D with positive integer entries (d1, . . . , dn) (each a power

of 2) such that BD is skew-symmetric (i.e., the transpose of BD equals its negative) and

such that the greatest common divisor of the entries of D is 1. Thus B(T ) is an exchange

matrix. Furthermore, all entries bij ∈ {0,±1,±2,±4}, and if O is a marked surface so that

all of the arcs in T are ordinary, then the definition specializes to [8, Definition 4.1] and all

entries bij ∈ {0,±1,±2}. If the orbifold O has multiple connected components, then B(T ) is

a block-diagonal matrix with a diagonal block for each such component. The matrix B(T ) is

the zero matrix if and only if B(T ′) is the zero matrix for every triangulation T ′ of O, which

is true if and only if every connected component of O is a null orbifold. Examples of orbifold

triangulations and the associated signed adjacency matrices are provided in a later section: see
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←→

Figure 3.3: An ordinary arc flip

←→ ←→

Figure 3.4: Flips of non-ordinary arcs

Figures 3.21 and 3.22.

Definition 3.2.5 (Arc flips). Given a triangulation T of an orbifold O, for each arc γ ∈ T that

does not constitute two sides of a self-folded triangle, there exists a unique arc γ′ 6= γ such that

γ′ ∪ (T \ γ) forms a new triangulation T ′ of O. The operation of replacing γ with γ′ is called

an arc flip. A flip of an ordinary arc contained in two non-self-folded triangles is depicted in

Figure 3.3. Non-ordinary arc flips are depicted in Figure 3.4, and flips of ordinary arcs adjacent

to non-ordinary arcs are depicted in Figure 3.5.

Ordinary arcs which constitute two sides of a self-folded triangle cannot be flipped, but

passing to tagged arcs and triangulations as in [8, Definitions 7.1,7.2] resolves this issue:

Definition 3.2.6 (Tagged arcs and tagged triangulations). A tagged arc in O = (S,M,Q) is

an arc that does not cut out a once-punctured monogon, with each end of the arc (a location

near an endpoint) tagged either plain or notched (IJ). We require that an arc be tagged plain

at any marked point endpoints in the boundary ∂O as well as at any orbifold point endpoints

←→ ←→

Figure 3.5: Flips of ordinary arcs adjacent to non-ordinary arcs
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IJ IJ IJ IJ

Figure 3.6: Additional types of triangles admissable in a tagged triangulation of an orbifold
(the left and righthand images depict two triangles, one of which is self-folded; the central image
depicts three triangles, two of which are self-folded)

in Q = Q2 tQ1/2, and that both ends of an arc with coinciding endpoints be tagged the same

way. Two tagged arcs are compatible if either the underlying untagged arcs are distinct and

compatible and any shared endpoints have the same tagging, or if the underlying untagged arcs

are ordinary and identical, with their tagging agreeing at exactly one endpoint. Arcs satisfying

the second condition are referred to here as a conjugate pair . (We emphasize again that

compatible arcs cannot share an orbifold point, so in particular, only ordinary tagged arcs can

be part of a conjugate pair.)

A tagged triangulation is a maximal collection of distinct pairwise compatible tagged

arcs. In addition to the non-self-folded ordinary triangle depicted on the left in Figure 3.1 and

the non-ordinary triangles depicted in Figure 3.2, a tagged triangulation of an orbifold may also

contain triangles of the type depicted in Figure 3.6. Arc taggings can be assigned arbitrarily

at any marked point vertex which is neither in a boundary component nor incident to the

oppositetly-tagged ends of a conjugate pair.

There is a canonical map τ from (untagged) arcs to tagged arcs in surfaces described in [8,

Definition 7.2] which extends easily to orbifolds. Given an (untagged) arc γ in O, τ(γ) is the

same curve tagged plain at both ends unless γ bounds a once-punctured monogon. In the

latter case, γ must be ordinary, and if the coinciding endpoints of γ are at a ∈ M and the

bounded puncture is b ∈M, then τ(γ) is the arc connecting a to b inside the mongon, tagged

plain at a and notched at b. Applying τ to each arc in an (untagged) triangulation yields a

tagged triangulation, where (untagged) self-folded triangles of the type depicted on the right in

Figure 3.1 are mapped, under τ , to self-folded triangles formed by a conjugate pair as depicted

in Figure 3.6.

Define the signed-adjacency matrix B(T ) of a tagged triangulation T as follows. First,

everywhere there is a puncture in M incident only to notched ends of arcs in T , change all of

these notched ends to plain ends. The resulting triangulation T ′ has no notched endpoints on

arcs except on those which are members of conjugate pairs, and therefore T ′ = τ(T 0) for some

(untagged) triangulation T 0. Then. set B(T ) = B(T 0) as defined in Definition 3.2.4.
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IJ

←→
IJ

IJ

IJ IJ
←→

IJ

IJ

←→

Figure 3.7: Flips of arcs in a conjugate pair

All tagged arcs in a tagged triangulation can be flipped: in particular, flips of arcs in a

conjugate pair are depicted in Figure 3.7.

Remark 3.2.7. LetO be an orbifold. By [5, Theorem 4.2], any two (untagged) triangulations ofO
are related by a sequence of (untagged) arc flips. This is a generalization of [8, Proposition 3.8],

which establishes the same result for marked surfaces. In addition, [8, Proposition 7.10] states

that any two tagged triangulations of a marked surface are related by a sequence of tagged arc

flips, unless the surface has no boundary components and exactly one puncture. In this case,

the collection of tagged triangulations is split into two disjoint sets: any two triangulations in

which all arcs are tagged plain are related by a sequence of arc flips, and likewise for any two

triangulations in which all arcs are tagged notched. However, there is no sequence of arc flips

that will relate a plain triangulation to a notched one.

While tagged arc flips in orbifolds are not explicitly addressed in [5], we quickly verify that

the same issue arises in this more general setting. That is, if O has no boundary components and

exactly one puncture, then regardless of its number of orbifold points there is no sequence of arc

flips that will relate a triangulation of O with all arcs tagged plain at the puncture to one with

all arcs tagged notched. (Recall that arcs must be tagged plain at orbifold point endpoints.)

The tagging at the puncture can be switched if and only if there exists a tagged triangulation

of O which contains a conjugate pair of arcs with opposite taggings at that puncture. Since

arcs in a conjugate pair are by necessity ordinary and incident to two distinct marked points,

no such tagged triangulation may be constructed. Thus, as with surfaces with no boundary and

exactly one puncture, the collection of tagged triangulations of O is split into two disjoint sets,

where there is no way to obtain a triangulation in one from a triangulation in the other through

a sequence of tagged arc flips. However, it is easy to use [5, Theorem 4.2] to verify that the

triangulations within each set are all related to one another by a sequence of tagged arc flips,
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and furthermore, that if one instead assumes that O has at least one boundary component or

more than one puncture (or both), any two tagged triangulations of O are related in this way.

Hence whenever we wish to ensure that two tagged triangulations T and T ′ on a given orbifold

O are related to one another by a sequence of tagged arc flips, we specify that both T and T ′

have all arcs tagged plain if O has no boundary components and exactly one puncture.

Remark 3.2.8. Before proceeding, we stop to reconcile some differences between our approach

and [5], wherein the orbifold model is introduced. The object O = (S,M,Q) which we call

an orbifold in Definition 3.2.1 is a “weighted orbifold” Ow in the language of [5, Section 4],

which initially defines an “orbifold” as the same object but with no weights on the orbifold

points in Q. Given a weighted orbifold Ow with tagged triangulation T , [5, Section 5] then

constructs an additional object, Ô, called the “associated orbifold,” with triangulation T̃ , by

replacing each orbifold point q ∈ Q of weight 2 by a “special marked point,” and replacing

the unique (non-ordinary) arc in T which was incident to q by a conjugate pair of (ordinary)

arcs tagged differently at this point which must be flipped simultaneously. The final step in the

construction is to replace this conjugate pair of arcs by a single “double arc” tagged plain at

the special marked point. For simplicity, we forego all of these distinctions, and introduce the

term “double arcs” from the outset to denote non-ordinary arcs incident to orbifold points of

weight 2. Further, we use the same symbol, , for orbifold points of weight 2 that [5] uses for

special marked points. We reserve the symbol × for orbifold points of weight 1/2, and the term

“pending arcs” for non-ordinary arcs incident to such points. We further introduce the symbol

for an orbifold point of arbitrary weight. (In [5], × is used to denote any orbifold point, and

all non-ordinary arcs are called pending.) None of these changes are substantive, and essentially

amount to changes in notation and terminology: all of the underlying definitions in Section 3.2.1

coincide with those here.

Translating terminology as explained in Remark 3.2.8, the following result is equivalent

to [5, Theorem 4.19]:

Theorem 3.2.9. Let T be a tagged triangulation of an orbifold O. Then the triangulation T ′

of O is obtained from T by a flip at an arc γ ∈ T if and only if B(T ′) = µγ(B(T )), where the

indexing of the exchange matrices by arcs in the triangulations is maintained. Furthermore, an

exchange matrix B′ is mutation-equivalent to B(T ) if and only if B′ = B(T ′) for some tagged

triangulation T ′ of O obtained from T by a sequence of arc flips.

3.2.2 Allowable curves and quasi-laminations

In addition to tagged arcs and triangulations, we will need an additional class of curves in

orbifolds, called allowable curves, and a corresponding notion of pairwise compatibility. If O is

a marked surface the definitions below specialize to [22, Definition 4.1]. Just as the collections
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defined there are almost, but not quite, the unbounded measured laminations on surfaces of [9,

Definition 12.1], the collections defined here can be thought of as a similar adjustment to

the laminations on orbifolds described in [5, Definition 6.1]. We discuss this adjustment in

Remark 3.2.11 after presenting the definitions.

Definition 3.2.10 (Allowable curves and quasi-laminations). An allowable curve λ in an

orbifold O = (S,M,Q) is a non-self-intersecting curve in S, considered up to isotopy relative

to M tQ, which is either

• a closed curve , or

• a non-closed curve which at each end does one of the following:

– spirals into a puncture in M (in either a clockwise or counterclockwise direction: we

call this a spiral point),

– terminates in an unmarked point in the boundary ∂O, or

– terminates in an orbifold point in Q.

We forbid λ from having any self-intersections, from being contractible in S \ (MtQ), and

from being contractible to either a puncture, an orbifold point, two orbifold points of weight 1/2

(see the leftmost image in Figure 3.8), or a portion of the boundary ∂O containing zero or one

marked points. Mirroring our terminology for arcs, we refer in general to a curve λ with an end

terminating in an orbifold point as non-ordinary (and render it in bold), and all other curves

as ordinary . If λ terminates in an orbifold point at both ends, we require these orbifold points

to be distinct and both of weight 1/2, and refer to λ as a semi-closed curve . If λ terminates

in an orbifold point q at exactly one end, we refer to it as a pending curve if q ∈ Q1/2 or as

a double curve if q ∈ Q2.

Finally, we also forbid λ from cutting out, either by itself or together with a portion of the

boundary not containing a marked point, a disc containing a unique point in M tQ. (See the

second through fifth images Figure 3.8 for pictures of these forbidden non-closed curves.) Note

that while only clockwise spiraling is depicted in the fourth and fifth images, counterclockwise

spiraling is forbidden as well. (Closed curves which cut out a disk containing a unique point in

MtQ are already forbidden, since allowable curves cannot be contractible to a puncture or an

orbifold point.)

Two allowable curves are compatible if and only if they satisfy one of following conditions:

(i) there is an isotopy representative of each such that the two representatives do not intersect

(where coinciding spiral points in the same direction are considered non-intersecting), or
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× ×

Figure 3.8: Excluded curves for quasi-laminations

× ×

Figure 3.9: Allowable curves and curve intersections for quasi-laminations

(ii) the two curves are ordinary and the same (up to isotopy) except that their spiral direction

disagrees at exactly one end (for example, see the first and third images in Figure 3.9).

Again mirroring our terminology for arcs, we refer to such curves as a conjugate pair .

Note that in particular, two compatible curves cannot share an orbifold endpoint.

An integral quasi-lamination L is a collection of pairwise compatible allowable curves λ,

distinct up to isotopy, each with a positive integer weight wλ. A rational quasi-lamination

is defined in the same way, but the positive weight wλ need only be rational. The set of curves

appearing in a given quasi-lamination L is called the support of L, and usually denoted ΛL.

(In general, Λ is used to denote a collection of (unweighted) pairwise compatible allowable

curves.) We speak of both wλλ ∈ L and λ ∈ L. For k ∈ Z+, kL denotes the quasi-lamination

{kwλλ : wλλ ∈ L}.

Remark 3.2.11. Returning to the discussion of Remark 3.2.8, we pause to reconcile the differ-

ences between the notions of allowable curves and quasi-laminations in O described in Def-

inition 3.2.10 and the curves and laminations given in [5, Definition 6.1]. In contrast to the

discrepancies in terminology of the previous section, there are substantive changes here: how-

ever, as mentioned in this section’s introduction, they are still fairly minor and are analogous

to the adjustments which [22, Definition 4.1] makes to [9, Definition 12.1]. Given an (integral

unbounded measured) lamination L, one may obtain an integral quasi-lamination in the follow-

ing manner. First, replace the curves depicted in Figure 3.8, which are not allowable but satisfy

the conditions placed on curves in [5], by the corresponding (collections of) allowable curves

depicted in Figure 3.9. If the resulting collection contains k copies of the same curve, replace
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them with a single copy with weight k. It is clear from Figures 3.8 and 3.9 that these distinct

allowable curves with integer weights are pairwise compatible, and therefore form an integral

quasi-lamination.

3.3 Shear coordinates on orbifolds

The final ingredient of the orbifolds and marked surfaces model for cluster algebras is a means

of encoding the interaction between a tagged triangulation and a quasi-lamination on O: this

is a map from quasi-laminations to rational vectors is called shear coordinates.

3.3.1 Computing shear coordinates

The definition below is [9, Definition 13.1], except we apply it to quasi-laminations on orbifolds

rather than laminations on marked surfaces.

Definition 3.3.1 (Shear coordinates of quasi-laminations). Let T be a tagged triangulation

of an orbifold O and let L be a quasi-lamination. The shear coordinate vector (or simply

shear coordinates) of L with respect to T is a vector b(T, L) = (bγ(T, L) : γ ∈ T ) indexed

by arcs γ ∈ T , where each entry bγ(T, L) is defined as a weighted sum of quantities bγ(T, λ) for

allowable curves λ ∈ L. Specifically,

bγ(T, L) =
∑
λ∈L

wλbγ(T, λ) (3.1)

where wλ is the weight of the curve λ in the quasi-lamination L and bγ(T, λ) is a quantity that

we now describe.

Select an isotopy-class representative of λ which minimizes the number of points at which

λ intersects γ. Define bγ(T, λ) as the sum, over each intersection of γ with λ, of a number in

the set {0,±1,±2,±4}:

• If γ is ordinary, an intersection of λ with γ contributes 0 unless λ intersects the two

triangles sharing γ as shown in Table 3.1. If γ is part of a conjugate pair, we indicate the

contribution to bγ(T, λ) for both tagging possibilities on γ.

• If γ is non-ordinary, an intersection of λ with γ contributes 0 unless λ intersects the single

triangle containing γ as shown in Table 3.2.

Intersections which contribute non-zero amounts are called non-trivial intersections. Simi-

larly, those which contribute zero are called trivial .

Tables 3.1 and 3.2 introduce the color convention of [22, Figure 2], whereby we color λ

black, color γ purple, and color the other relevant arcs in T red and blue so that, when traveling
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clockwise along a triangle, we meet the colors in the order blue, purple, red. We further introduce

the following additional conventions:

• Non-ordinary arcs and curves are drawn in bold. Unless specified, all other arcs and curves

may be ordinary or non-ordinary.

• The images in the top two rows of Table 3.1 each contain two marked points: these need

not be distinct.

• The latter rows of Table 3.1 handle the cases when γ is part of a conjugate pair: while

the contributions for both tagging possibilities are given, the coloring shown assumes γ

is tagged notched. (In particular, to emphasize the connection to [22, Figure 2], we color

the arc with a notched tagging purple and color the arc with plain tagging both red and

blue, since it is playing the role of two sides of the self-folded triangle.)

• An intersection between dashed portions of an arc γ (rendered in green) and a curve λ

(rendered in black) may be one of 6 possible types, as illustrated in Figure 3.10.

λ

γ

∈{ , , , , , }
Figure 3.10: Convention for curve and arc intersections used in Tables 3.1 and 3.2

Remark 3.3.2. Observe from Tables 3.1 and 3.2 that whether or not an arc or curve is ordinary

has no impact on the sign of the shear coordinate contribution arising from their intersection,

just the magnitude. That is, an intersection between an allowable curve λ and a tagged arc γ

in a tagged triangulation T contributes positively, negatively, or zero regardless of whether λ

and γ are ordinary or non-ordinary.

3.3.2 Properties of shear coordinates

The following observations about shear coordinates in orbifolds follow easily from examination

of Tables 3.1 and 3.2. We use them both to reconcile Definition 3.3.1 with [5, Definition 6.2]

(see Remark 3.3.5), as well as to prove the primary result of this subsection, that there ex-

ists a bijection between rational (resp., integral) quasi-laminations and Qn (resp., Zn) (see

Theorem 3.3.6).
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Arc γ Curve λ Positive intersection Negative intersection

ordinary
ordinary,
pending, or
semi-closed

+1 −1

ordinary double +2 −2

ordinary
conjugate pair

ordinary,
pending, or
semi-closed

IJ+1
+1

notched:

plain:

IJ−1
−1

notched:

plain:

ordinary
conjugate pair

double IJ+2
+2

notched:

plain:

IJ−2
−2

notched:

plain:

ordinary
conjugate pair

ordinary or
pending

IJ+1
0

notched:

plain:

IJ0
+1

notched:

plain:

IJ−1
0

notched:

plain:

IJ0
−1

notched:

plain:

ordinary
conjugate pair

double

IJ+2
0

notched:

plain:

IJ0
+2

notched:

plain:

IJ−2
0

notched:

plain:

IJ0
−2

notched:

plain:

Table 3.1: Shear coordinate computation, ordinary arcs: ends of arcs at punctures not incident
to a conjugate pair of arcs with opposite taggings can be tagged arbitrarily; in the latter rows
shear coordinates are given with respect to both members of a conjugate pair, but coloring
shown is with respect to the arc tagged notched
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Arc γ Curve λ
Positive

intersection
Negative

intersection

pending or
double

pending,
double, or
semi-closed

+1 −1

pending
ordinary,
pending, or
semi-closed

×+2 ×−2

pending double ×+4 ×−4

double
ordinary,
pending, or
semi-closed

+1 −1

double double +2 −2

Table 3.2: Shear coordinate computation, non-ordinary arcs: ends of arcs at punctures not
incident to a conjugate pair of arcs with opposite taggings can be tagged arbitrarily
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Lemma 3.3.3. Let T be a tagged triangulation of orbifold O = (S,M,Q) with conjugate pair

of arcs γ′, γ′′ ∈ T tagged differently at puncture v ∈M.

1. Let L be a quasi-lamination on O.

(a) bγ′(T, L) = bγ′′(T, L) if and only if the set of curves in L which spiral into v is either

empty or consists of a conjugate pair λ′, λ′′ with the same weight wλ′ = wλ′′ = wλ.

(b) |bγ′(T, L) − bγ′′(T, L)| = 1 if and only if the set of curves in L which spiral into v

consists of either a single curve with weight 1 or a conjugate pair λ′, λ′′ with weights

satisfying |wλ′ − wλ′′ | = 1.

2. Let λ′, λ′′ be a conjugate pair of curves in O with opposite spiral directions at v.

(a) bγ(T, λ′) = bγ(T, λ′′) for all γ ∈ T \ {γ′, γ′′}.

(b) bγ′(T, λ
′), bγ′′(T, λ

′), bγ′(T, λ
′′), and bγ′′(T, λ

′′) all weakly agree in sign, and each pair-

wise difference among them is of absolute value 1.

(c) The following four sums are equal:

bγ′(T, λ
′) + bγ′′(T, λ

′) = bγ′(T, λ
′′) + bγ′′(T, λ

′′)

bγ′(T, λ
′) + bγ′(T, λ

′′) = bγ′′(T, λ
′) + bγ′′(T, λ

′′).

Lemma 3.3.4. Let T be a tagged triangulation of orbifold O = (S,M,Q) and let q ∈ Q. Then

q is incident to exactly one non-ordinary arc: choose an indexing γ1, γ2, . . . , γn of the arcs in T

such that this non-ordinary arc is γn. Form a new orbifold O′q = (S,M∪{q},Q\{q}) with tagged

triangulation T ′q from O, T by replacing the orbifold point at q with a puncture, and substituting

the non-ordinary arc γn incident to q with a conjugate pair of arcs γ′n, γ
′′
n that coincide with γn

except γ′n is tagged notched at q′ and γ′′n is tagged plain. Let λ be a curve in O.

1. If λ does not terminate in q, then λ is an allowable curve in O if and only if it is an

allowable curve in O′q. Further,

(a) If q ∈ Q2,

bγi(T, λ) =

bγi(T ′q, λ) if i 6= n

bγ′n(T ′q, λ) = bγ′′n(T ′q, λ) = 1
2

(
bγ′n(T ′q, λ) + bγ′′n(T ′q, λ)

)
if i = n.

(b) If q ∈ Q1/2,

bγi(T, λ) =

bγi(T ′q, λ) if i 6= n

bγ′n(T ′q, λ) + bγ′′n(T ′q, λ) = 2bγ′n(T, λ) = 2bγ′′n(T, λ) if i = n.
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2. If λ terminates in q, then let λ′, λ′′ be the (unique) pair of curves in O′q that coincide with

λ except that they spiral into q in opposite directions. Then λ is an allowable curve in O
if and only if λ′ and λ′′ both allowable curves in O′q. Further,

(a) If q ∈ Q2, then λ is a double curve, λ, λ′′ are a (compatible, ordinary) conjugate pair

of curves, and

bγi(T, λ) =

bγi(T ′q, λ′) + bγi(T
′
q, λ
′′) = 2bγi(T

′
q, λ
′) = 2bγi(T

′
q, λ
′′) if i 6= n

bγ′n(T ′q, λ
′) + bγ′′n(T ′q, λ

′) = bγ′n(T ′q, λ
′′) + bγ′′n(T ′q, λ

′′) if i = n.

(b) If q ∈ Q1/2 and λ is a pending curve, then λ′, λ′′ are a conjugate pair of curves. If

λ is semi-closed, then λ, λ′′ are non-compatible pending curves. Regardless,

bγi(T, λ) =

bγi(T ′q, λ′) = bγi(T
′
q, λ
′′) if i 6= n

bγ′n(T ′q, λ
′) + bγ′′n(T ′q, λ

′) = bγ′n(T ′q, λ
′′) + bγ′′n(T ′q, λ

′′) if i = n..

3. If λ terminates in q and is semi-closed, with its other end terminating in distinct orbifold

point r 6= q (recall by necessity that both q, r ∈ Q1/2), then let λ′′′ be the (unique) closed

curve in O′q separating q and r from the other points in M tQ. Then λ is an allowable

curve in O if and only if λ′′′ is an allowable curve in O′q. Further,

bγi(T, λ) =

1
2bγi(T

′, λ′′′) if i 6= n

bγ′n(T, λ′′′) = bγ′′n(T, λ′′′) if i = n.

Remark 3.3.5. A more concisely stated (albeit less direct) method for computing shear coor-

dinates on orbifolds may be adapted from [5, Definition 6.2], with a few small adjustments to

account for our use of quasi-laminations rather than laminations. We describe this method in

the following paragraph; application of Lemma 3.3.4 shows that it yields precisely the same

vectors as Definition 3.3.1.

Let O = (S,M,Q) be an orbifold with tagged triangulation T and quasi-lamination L.

Construct a surface O′ with tagged triangulation T ′ by substituting each digon or monogon in

T containing an orbifold point by a digon or monogon containing only marked points as shown

in Figure 3.11. Note that this amounts to constructing O′q, T ′q as in Lemma 3.3.4 successively

for each q ∈ Q: each ordinary arc γ ∈ T is also an arc in T ′, while each non-ordinary arc

γ ∈ T corresponds to a conjugate pair of arcs γ′, γ′′ ∈ T ′. Construct a lamination L′ on

O′ by substituting each pending or semi-closed curve in supp(L) by a curve with the same

weight that coincides with it except for spiraling counterclockwise into the marked point(s)

corresponding to its orbifold endpoint(s), and substituting each double curve in supp(L) by a
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IJ IJ

↓ ↓ ↓ ↓

IJ IJ IJ IJ IJ IJ IJ

Figure 3.11: Constructing the surface O′ and triangulation T ′ to compute shear coordinates
on O with respect to T as in Remark 3.3.5.

pair of conjugate pair of curves, both with the same weight, that coincide with it except for

spiraling in opposite directions into the marked point corresponding to its orbifold endpoint.

Then the shear coordinates bγ(T, L) may be defined in terms of the shear coordinates of the

quasi-lamination L′ on the surface O′ with tagged triangulation T ′ as follows, where the latter

terms are computed using [9, Definitions 12.2 and 13.1].

• If γ is ordinary, bγ(T, L) = bγ(T ′, L′).

• If γ is pending, bγ(T, L) = bγ′(T
′, L′) + bγ′′(T

′, L′).

• If γ is double, bγ(T, L) = 1
2

[
bγ′(T

′, L′) + bγ′′(T
′, L′)

]
.

If the quasi-lamination L contains neither conjugate pairs of curves nor double curves, which are

not permissable in the laminations of [5, Definition 6.1], then this definition coincides with [5,

Definition 6.2] (after making the adjustments described in Remarks 3.2.8 and 3.2.11.) Further-

more, it is easy to check that if all conjugate pairs of curves and double curves in the quasi-

lamination L (as depicted in Figure 3.9) are replaced with the corresponding curves which are

permissable in [5] (as depicted in Figure 3.8) to produce a lamination L̃, then b(T, L) = b(T, L̃).

We are now ready to prove the main result of this section, a generalization of [22, Theo-

rem 4.4] to orbifolds. Just as [22, Theorem 4.4] was a reframing of [9, Theorem 13.6] in terms

of quasi-laminations, our result may be thought of as a similar reframing of [5, Theorem 6.7].

Due to the differences between our definitions and those in [5], we prove the result from scratch,

although the method is identical.
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Theorem 3.3.6. Fix a tagged triangulation T of orbifold O = (S,M,Q), where T has n

arcs. Then the map L 7→ b(T, L) is a bijection between integral (respectively, rational) quasi-

laminations and Zn (respectively, Qn).

Proof. We proceed by induction on |Q|, the number of orbifold points on O. If Q = ∅, then

O = (S,M) is a marked surface, and the result follows from [22, Theorem 4.4].

Assume |Q| > 0 and the result holds for all orbifolds with fewer than |Q| orbifold points.

Let q ∈ Q and choose an indexing γ1, γ2, . . . , γn of the arcs in T such that the unique non-

ordinary arc incident to q is γn. We make use of the triangulated orbifold O′q = (S,M∪{q},Q\
{q}), T ′q = T \ {γn} ∪ {γ′n, γ′′n} constructed from O, T in Lemma 3.3.4 and deal with the cases

q ∈ Q2, q ∈ Q1/2 separately, first showing that the map L 7→ b(T, L) is surjective and then

showing it is injective.

Suppose that q ∈ Q2 and let (k1, . . . , kn) ∈ Zn (respectively, Qn). By inductive assumption,

there exists a unique quasi-lamination L′q on O′q such that

bγi(T
′
q, L
′
q) = ki for i ∈ [n− 1],

bγ′n(T ′q, L
′
q) = kn, and

bγ′′n(T ′q, L
′
q) = kn

By Lemma 3.3.3, the set of curves in L′ which spiral into q consists of a conjugate pair λ′, λ′′

with the same weight w (where we use w = 0 to mean that no curves spiral into q′). Let λ be

the (unique) non-ordinary allowable curve in O that terminates in q but otherwise coincides

with λ′ and λ′′, and set L = L̃∪{wλ}, where L̃ = L′ \{wλ′, wλ′′}. (If w = 0, then L = L̃ = L′.)

Applying Lemma 3.3.4, we conclude that L is a quasi-lamination on O with shear coordinate

vector b(T, L) = (k1, . . . , kn):

bγi(T, L) = bγi(T, L̃) + wbγi(T, λ) for all i ∈ [n− 1]

= bγi(T
′
q, L̃) + w

[
bγi(T

′
q, λ
′) + bγi(T

′
q, λ
′′)
]

= bγi(T
′
q, L
′
q)

= ki.

bγn(T, L) = bγn(T, L̃) + wbγn(T, λ)

=
1

2

(
bγ′n(T, L̃) + bγ′′n(T, L̃)

)
+ w

[
1

2

(
bγ′n(T ′q, λ

′) + bγ′′n(T ′q, λ
′) + bγ′n(T ′q, λ

′′) + bγ′′n(T ′q, λ
′′)
)]

=
1

2

(
bγ′n(T, L′q) + bγ′′n(T, L′q)

)
= kn.
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We now show that L is unique, thereby proving injectivity. Suppose L1, L2 are quasi-

laminations on O with b(T, L1) = b(T, L2). We build (unique) quasi-laminations L′1, L
′
2 on

O′q with b(T ′q, L
′
1) = b(T ′q, L

′
2) as follows:

• If Li does not contain a non-ordinary curve terminating in q, then take L′i = Li. Lemma 3.3.4

imply that L′i is indeed a quasi-lamination on O′q, and that

bγ′i(T
′
q, L
′
i) = bγi(T, Li) for all i ∈ [n− 1],

bγ′n(T ′q, L
′
i) = bγn(T, Li), and

bγ′′n(T ′q, L
′
i) = bγn(T, Li).

• Otherwise, Li = L̃i ∪ {wλ} for double curve λ, and we take L′i = L̃i ∪ {wλλ′, wλ′} where

λ′, λ′′ are the conjugate pair of curves with opposite spiral directions at q′. Lemma 3.3.4

implies that L′i is once more a quasi-lamination on O′q, and that it has the same shear

coordinates as the construction above:

bγ′i(T
′
q, L
′
i) = bγi(T

′
q, L̃i) + wbγi(T

′
q, λ
′) + wbγi(T

′
q, λ
′′) for all i ∈ [n− 1]

= bγi(T, L̃i) + w · 1

2
bγi(T, λ) + w · 1

2
bγi(T, λ)

= bγi(T, L̃i) + wbγi(T, λ)

= bγi(T, Li).

bγ′n(T ′q, L
′
i) = bγ′n(T ′q, L̃i) + wbγ′n(T ′q, λ

′) + wbγ′n(T ′q, λ
′′)

= bγn(T, L̃i) + wbγn(T, λ)

= bγn(T, Li).

bγ′′n(T ′q, L
′
i) = bγ′′n(T ′q, L̃i) + wbγ′′n(T ′q, λ

′) + wbγ′′n(T ′q, λ
′′)

= bγn(T, L̃i) + wbγn(T, λ)

= bγn(T, Li).

By this construction, L1 and L2 are distinct quasi-laminations on O if and only if L′1 and

L′2 are distinct quasi-laminations on O′q. However since b(T ′q, L
′
1) = b(T ′q, L

′
2), our inductive

assumption implies that L′1 = L′2. Thus L1 = L2, and we conclude that the desired result holds

when q ∈ Q2.

Alternatively, suppose that q ∈ Q1/2, and again let (k1, . . . , kn) ∈ Zn (respectively, Qn). By

inductive assumption, there exists a unique quasi-lamination L′q on O′q such that

bγi(T
′
q, L
′
q) = ki for i ∈ [n− 1],
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bγ′n(T ′q, L
′
q) =

⌊
kn
2

⌋
, and

bγ′′n(T ′q, L
′
q) =

⌈
kn
2

⌉
.

If kn is even so that bγ′n(T ′q, L
′
q) = bγ′′n(T ′q, L

′
q), then Lemma 3.3.3 implies as above that the

set of curves in L′ which spiral into q consists of a conjugate pair λ′, λ′′ with the same weight

w. Again, let λ be the (unique) non-ordinary allowable curve in O that terminates in q but

otherwise coincides with λ′ and λ′′, and set L = L̃∪ {2wλ}. Application of Lemma 3.3.4 shows

that L is a quasi-lamination on O and b(T, L) = (k1, . . . , kn):

bγi(T, L) = bγi(T, L̃) + 2wbγi(T, λ) for all i ∈ [n− 1]

= bγi(T
′
q, L̃) + 2wbγi(T

′
q, λ
′)

= bγi(T
′
q, L̃) + wbγi(T

′
q, λ
′) + wbγi(T

′
q, λ
′′)

= bγi(T
′
q, L
′
q)

= ki.

bγn(T, L) = bγn(T, L̃) + 2wbγn(T, λ)

= bγ′n(T, L̃) + bγ′′n(T, L̃) + 2w
(
bγ′n(T ′q, λ

′) + bγ′′n(T ′q, λ
′)
)

= bγ′n(T, L̃) + bγ′′n(T, L̃)

+ w
(
bγ′n(T ′q, λ

′) + bγ′′n(T ′q, λ
′)
)

+ w
(
bγ′n(T ′q, λ

′′) + bγ′′n(T ′q, λ
′′)
)

= bγ′n(T, L′q) + bγ′′n(T, L′q)

= kn.

If kn is odd, then |bγ′n(T ′q, L
′
q) − bγ′′n(T ′q, L

′
q)| = 1, and Lemma 3.3.3 implies that the set of

curves in L′ which spiral into q′ consists of a conjugate pair λ′, λ′′ with wλ′′ = wλ′ + 1. Once

more, let λ be the (unique) non-ordinary allowable curve in O that terminates in q but otherwise

coincides with λ′ and λ′′, and set L = L̃ ∪ {(wλ′ + wλ′′)λ}. Application of Lemma 3.3.4 shows

that L is again a quasi-lamination on O and b(T, L) = (k1, . . . , kn):

bγi(T, L) = bγi(T, L̃) + (wλ′ + wλ′′)bγi(T, λ) for all i ∈ [n− 1]

= bγi(T, L̃) + wλ′bγi(T, λ) + wλ′′bγi(T, λ)

= bγi(T
′
q, L̃) + wλ′bγi(T

′
q, λ
′) + wλ′′bγi(T

′
q, λ
′′)

= bγi(T
′
q, L
′
q)

= ki.

bγn(T, L) = bγn(T, L̃) + (wλ′ + wλ′′)bγn(T, λ)
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= bγ′n(T, L̃) + bγ′′n(T, L̃) + (wλ′ + wλ′′)
(
bγ′n(T ′q, λ

′) + bγ′′n(T ′q, λ
′)
)

= bγ′n(T, L̃) + bγ′′n(T, L̃) + wλ′
(
bγ′n(T ′q, λ

′) + bγ′′n(T ′q, λ
′)
)

+ wλ′′
(
bγ′n(T ′q, λ

′′) + bγ′′n(T ′q, λ
′′)
)

= bγ′n(T, L′q) + bγ′′n(T, L′q)

= kn.

Finally, we show that L is unique, thereby proving injectivity in this case. Suppose L1, L2

are quasi-laminations on O with b(T, L1) = b(T, L2). Then b(T, 2L1) = b(T, 2L2), where for

each i = 1, 2, we let 2Li denote the quasi-lamination {2wλλ : wλλ ∈ Li}, so that b(T, 2Li) =

2b(T, Li). We build (unique) quasi-laminations L′1, L
′
2 on O′q with b(T ′q, L

′
1) = b(T ′q, L

′
2) as

follows:

• If Li does not contain a non-ordinary curve terminating in q, then take L′i = 2Li.

Lemma 3.3.4 imply that L′i is indeed a quasi-lamination on O′q, and that

bγ′i(T
′
q, L
′
i) = bγi(T, 2Li) for all i ∈ [n− 1].

bγ′n(T ′q, L
′
i) =

1

2
bγn(T, 2Li) = bγn(T, Li).

bγ′′n(T ′q, L
′
i) =

1

2
bγn(T, Li) = bγn(T, Li).

• If Li = L̃i∪{wλλ} for pending curve λ, take L′i = 2L̃i∪{wλλ′, wλλ′}. Lemma 3.3.4 implies

that L′i is once more a quasi-lamination on O′q, and that it has the same shear coordinates

as the construction above:

bγ′i(T
′
q, L
′
i) = bγi(T

′
q, 2L̃i) + wλbγi(T

′
q, λ
′) + wλbγi(T

′
q, λ
′′) for all i ∈ [n− 1]

= bγi(T, 2L̃i) + wλbγi(T, λ) + wλbγi(T, λ)

= bγi(T, L̃i) + 2wλbγi(T, λ)

= bγi(T, 2Li)

bγ′n(T ′q, L
′
i). = bγ′n(T ′q, 2L̃i) + wλbγ′n(T ′q, λ

′) + wλbγ′n(T ′q, λ
′′)

=
1

2
· bγn(T, 2L̃i) + wλbγn(T, λ)

= bγn(T, Li).

bγ′′n(T ′q, L
′
i) = bγ′n(T ′q, 2L̃i) + wλbγ′n(T ′q, λ

′) + wλbγ′n(T ′q, λ
′′)

=
1

2
· bγn(T, 2L̃i) + wλbγn(T, λ)

= bγn(T, Li).
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• If Li = L̃i ∪ {wλλ} for semi-closed curve λ whose other end terminates at r ∈ Q1/2, take

L′i = 2L̃i ∪{wλλ′′′}. where λ′′′ is the closed curve in O′q separating q′ and r from all other

points in M ∪ Q. Lemma 3.3.4 implies that L′i is once more a quasi-lamination on O′q,
and that it has the same shear coordinates as the two cases above:

bγ′i(T
′
q, L
′
i) = bγi(T

′
q, 2L̃i) + wλbγi(T

′
q, λ
′′′) for all i ∈ [n− 1]

= bγi(T, 2L̃i) + 2wλbγi(T, λ)

= bγi(T, 2Li).

bγ′n(T ′q, L
′
i) = bγ′n(T ′q, 2L̃i) + wλbγ′n(T ′q, λ

′′′)

=
1

2
· bγn(T, 2L̃i) + wλbγn(T, λ)

= bγn(T, Li).

bγ′′n(T ′q, L
′
i) = bγ′n(T ′q, 2L̃i) + wλbγ′n(T ′q, λ

′′′)

=
1

2
· bγn(T, 2L̃i) + wλbγn(T, λ)

= bγn(T, Li).

By this construction, L1 and L2 are distinct quasi-laminations on O if and only if L′1 and

L′2 are distinct quasi-laminations on O′q. However since b(T ′q, L
′
1) = b(T ′q, L

′
2), our inductive

assumption implies that L′1 = L′2. Thus L1 = L2, and we conclude our desired result when

q ∈ Q1/2, and therefore in general.

3.3.3 The orbifold model of geometric cluster algebras

We conclude this section by summarizing the details of the orbifold model of geometric clus-

ter algebras (see Section 2.2.1) and previewing the connection to mutation-linear algebra (see

Section 2.2.2).

Let O be an orbifold. Define a multi-quasi-lamination L on O to be a collection of quasi-

laminations L = (Li)i∈I , indexed by some (possibly infinite) set I. For each tagged triangulation

T of O (consisting of n arcs), define B̃(T,L) to be the ([n]∪ I)× [n]) extended exchange matrix

with principal (top) part given by the signed-adjacency matrix B(T ) of T , and coefficient rows

(bottom part) given by bi = b(T, Li) for each i ∈ L.

This definition is [5, Definition 6.4], a generalization of [9, Definition 12.5] to orbifolds,

modified to use quasi-laminations and permit I to be infinite. (See Remarks 3.2.8, 3.2.11, and

3.3.5 for further details on the relationship between our approach and that in [5].) We thereby

obtain the following two results: the first is [5, Lemma 6.5], a generalization of [9, Theorem 13.5]

to orbifolds; the second is [5, Theorem 9.1 and Corollary 9.2], generalizations of [9, Theorem 15.6]
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to orbifolds.

Theorem 3.3.7. Fix a quasi-lamination L and multi-quasi-lamination L on O. If T and T ′

are tagged triangulations such that T ′ is obtained from T by a flip at an arc γ, then

b(T ′, L) = ηB(T )
γ (b(T, L)) and (3.2)

B̃(T ′,L) = µγ(B̃(T,L)), (3.3)

where η
B(T )
γ and µγ are the mutation map and the matrix mutation map, respectively, at the

index for the tagged arc γ in T .

Theorem 3.3.8. Let O be an orbifold. Fix a tagged triangulation T0 of O with n arcs and a

multi-quasi-lamination L = (Li)i∈I on O. (If O has no boundary and exactly one puncture, as-

sume T0 has all tags plain: see Remark 3.2.7.) There exists a unique cluster algebra of geometric

type A(B̃(T0,L)) with the following properties:

• the coefficient semifield is the tropical semifield PL = Trop(ui : i ∈ I);

• the cluster variables xL(α) are labeled by the tagged arcs γ on O (resp. the tagged arcs

with all tags plain if O has no boundary and exactly one puncture);

• the seeds (x(T ), B̃(T, L)) are labeled by the tagged triangulations T of O (resp. the trian-

gulations with all arcs tagged plain if O has no boundary and exactly one puncture);

• each cluster x(T ) consists of cluster variables xL(α) labeled by the tagged arcs α ∈ T ;

• the coefficient rows bi(T ) of B̃(T, L) are the shear coordinate vectors bi(T ) = b(T, Li);

• if two vertices t, t′ ∈ Tn are connected by an edge, then the tagged triangulations T and

T ′ which label the associated seeds are related by an arc flip.

Recall from Definition 2.2.11 that the cluster algebra A•(B(T0)) with principal coefficients

is constructed by taking initial extended exchange matrix B̃ whose principal (top) part consists

of the signed-adjacency matrix B(T0) and whose coefficient rows (the bottom part) are the n×n
identity matrix. In light of Theorem 3.3.6, we may realize A•(B(T0)) as A(B̃(T0,L

T0)) for some

particular choice of multi-quasi-lamination LT0 = (Lγ)γ∈T0 by choosing n quasi-laminations Lγ

on O indexed by the tagged arcs γ ∈ T0 such that b(T0, Lγ) satisfies

bγ(T0, Lγ) = 1 and

bα(T0, Lγ) = 0 for all other arcs α ∈ T.
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The quasi-laminations Lγ which comprise LT0 do not in fact depend on the tagged trian-

gulation T0, just on the arcs γ, and are called elementary quasi-laminations. They are

constructed for marked surfaces in [9, Definition 17.2], and for orbifolds with no punctures

and all orbifold points of weight 1/2 in [7, Section 3.3]. in which case they are in particular

laminations in the sense of [9, Definition 12.1] and [5, Definition 4.1], respectively, as they con-

sist of single (allowable) curves (of weight 1). The construction is easily extended to arbitrary

orbifolds: however, we must permit double curves (see Remark 3.2.11).

Definition 3.3.9 (Elementary quasi-laminations). Let α be a tagged arc in O. The elemen-

tary quasi-lamination Lα associated to O consists of a single allowable curve (which, for

simplicity, we also denote by Lα) that coincides with the arc γ except within (a) small neighbor-

hood(s) around the endpoint(s) of α. The behavior of Lγ within each endpoint neighborhood

is specified as follows:

• If the endpoint is a marked point p on a boundary component, then Lα terminates at

an unmarked point x on the same boundary component, such that the path along the

boundary from p to x, keeping O on the right, does not leave the small ball.

• If the endpoint is a puncture p, then Lα spirals into p, counterclockwise if α is tagged

plain at p and clockwise if α is tagged notched at p.

• If the endpoint is an orbifold point q, then Lα also terminates at q.

Taking the opposite orientation throughout Definition 3.3.9 (in particular, substituting the

three bold words by left, clockwise, and counterclockwise, respectively), we recover the

map κ from [22, Section 5]. One can think of the allowable curves Lα and κ(α) as being related

by a “reflection” about the arc α. Indeed, the shear coordinate vectors b(T0, κ(γ)) satisfy

bγ(T0, κ(γ)) = −1 and

bα(T0, κ(γ)) = 0 for all other arcs α ∈ T0.
(3.4)

The following lemma, an orbifold analog of [22, Lemma 5.1], is immediate.

Lemma 3.3.10. The maps α 7→ Lα and α 7→ κ(α) from tagged arcs to allowable curves are

both one-to-one and surjective onto the set of allowable curves that are neither closed nor semi-

closed. Furthermore, the following statements are equivalent:

• Tagged arcs α and γ are compatible.

• Allowable curves Lα and Lγ are compatible.

• Allowable curves κ(α) and κ(γ) are compatible.
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Remark 3.3.11. It is worth noting that Lemma 3.3.10 does not hold if one considers, rather than

the allowable curves of Definition 3.2.10, the set of curves that can participate in laminations

in the sense of [9, Definition 12.1] and [5, Definition 4.1]. In particular, the non-closed ordinary

curves depicted in Figure 3.8 cannot be realized as κ(γ) (or Lγ) for any tagged arcs γ in O.

This was a primary motivation for the introduction of allowable curves in [22], and the reason

we continue to use them here.

Corollary 3.3.12. If B(T ) is of finite type, then there are no allowable curves on O which are

closed or semi-closed. Thus the maps α 7→ Lα and α 7→ κ(α) are bijections between the set of

tagged arcs in O and the set of all allowable curves in O.

By Theorem 3.3.8, there is a bijection between the tagged arcs in O (resp. the tagged

arcs in O with all tags plain if O has no boundary and exactly one puncture) and the cluster

variables in A•(B(T0)) = A(B̃(T0,L
T0)). We write α 7→ xLT0 (α) for this bijection. Recall from

Definition 2.2.11 that each cluster variable xLT0 (α) has an associated vector in Zn called a g-

vector, which we may view as being indexed by the tagged arcs in T0 via the bijection between

tagged arcs in T0 and cluster variables in the initial cluster x(T0). We denote the g-vector of

xLT0 (α) by gLT0 (α). The following result is [22, Proposition 5.2]. We show that an analogous

result holds for orbifolds.

Proposition 3.3.13. Fix a tagged triangulation T0 of a marked surface (S,M) and let α

be a tagged arc, not necessarily in T0. (If (S,M) has exactly one puncture and no boundary

components, then take all tags on T0 and on α to be plain.) Then

gLT0 (α) = −b(T0, κ(α)). (3.5)

The proof of Proposition 3.3.13 relies on the following fact, which we state using the original

notation of A•(B(T0)) from Definition 2.2.11 rather than the orbifold notation of its geometric

realization via A(B̃(T0,L
T0)). (This result is a weak version of [13, Conjecture 7.12], which is

true for all skew-symmetrizable exchange matrices as a consequence of [14].)

Proposition 3.3.14. [22, Conjecture 5.3] Let t1, t2 ∈ Tn be two vertices connected by an edge

labeled k, and let B1 and B2 be exchange matrices such that B2 = µk(B1). For any t ∈ Tn and

i ∈ [n], the g-vectors gB1;t1
i;t and gB2;t2

i;t are related by

gB2;t2
i;t = η

BT1
k (gB1;t1

i;t ), (3.6)

where BT
1 is the transpose of B1.

The following is [7, Definition 8.3], rephrased with the adjustments of Remark 3.2.8.
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Definition 3.3.15 (Reversed orbifold). Let O = (S,M,Q) be an orbifold with tagged trian-

gulation T0. The reversed orbifold O∗ = (S,M,Q∗) is obtained from O by swapping the

weights on all orbifold points q ∈ Q (between 1/2 and 2). The corresponding triangulation T ∗0
on O∗ is obtained from T0 by swapping the types of all non-ordinary arcs γ ∈ T0 (between

pending and double).

By [7, Remark 8.4], the signed-adjacency matrix of the triangulation T ∗0 on the reversed

orbifold O∗ is the negative of the transpose of the signed adjacency matrix of T0 on O. That is,

B(T ∗0 ) = −B(T0)T . (3.7)

Furthermore, it is easily verified using Tables 3.1 and 3.2 that for any tagged arcs α, γ ∈ T0

with corresponding arcs α∗, γ∗ ∈ T ∗0 ,

bα∗(T
∗
0 , κ(γ∗)) = bα(T0, κ(γ)) = −δα,γ . (3.8)

Remark 3.3.16. Since all signed adjacency matrices B(T0) of triangulations T0 of marked sur-

faces are skew-symmetric, they satisfy the identity B(T0) = −B(T0)T . The same is not true

if T0 is a triangulation of an orbifold O. While the signed-adjacency matrix B(T0) is still

skew-symmetrizable, it generally has a non-identity skew-symmetrizing matrix D (see Defini-

tion 2.2.3). However,−B(T0)T is a rescaling of B(T0): that is, setting B′ = −BT , the respective

matrix entries satisfy the following two conditions:

sgn(bij) = sgn(b′ij) and bijbji = b′ijb
′
ji for all i, j ∈ [n]. (3.9)

Applying (3.8), we conclude that B(T ∗0 ) is a rescaling of B(T0). (See [21, Definition 7.4 and

Proposition 7.5] for the definition of rescaling.)

Let B be an exchange matrix. The following is [21, Equation (7.1)]:

ηBk (a) = −η−Bk (−a). (3.10)

The proof of Proposition 3.3.13 uses (3.10) to rewrite (3.6) as follows, in the case when B2 =

B(T2) and B1 = B(T1) are the (skew-symmetric) signed adjacency matrices of triangulations

T2 and T1 of a marked surface (S,M) and T2 is obtained from T1 by a flip of the arc γ:

−gB2;t2
i;t = ηB1

k (−gB1;t1
i;t ).

Or equivalently, for any tagged arc α in (S,M),

−gLT2 (α) = ηB(T1)
γ (−gLT1 (α)).
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It then applies (3.2) to show that the vectors −gLT0 (α) and b(T0, κ(α)) satisfy the same recur-

rence. Since (3.4) implies they are equal for tagged arcs α ∈ T0 corresponding to initial cluster

variables, the result follows that they are equal for all tagged arcs.

Similarly we may apply (3.10) to rewrite (3.6) as follows, in the case when B2 = B(T2) and

B1 = B(T1) are the (skew-symmetric) signed adjacency matrices of triangulations T2 and T1 of

an orbifold O, T2 is obtained from T1 by a flip of the arc γ, and B(T ∗1 ) = Σ−1B(T1)Σ:

−gLT2 (α) = η
B(T ∗1 )
γ (−gLT1 (α)) for any tagged arc α in O.

By (3.2), the vectors −gLT0 (α) and b(T ∗0 , κ(α∗)) satisfy the same recurrence, and by (3.8) they

are equal for tagged arcs α ∈ T0. We thereby obtain our desired orbifold analog of Proposi-

tion 3.3.13:

Proposition 3.3.17. Fix a tagged triangulation T0 of an orbifold O = (S,M,Q) and let α be a

tagged arc, not necessarily in T0. (If O has exactly one puncture and no boundary components,

then take all tags on T0 and on α to be plain.) Then,

gLT0 (α) = −b(T ∗0 , κ(α∗)). (3.11)

Remark 3.3.18. Proposition 3.3.17 corresponds to [7, Lemma 8.6], where the curve κ(α∗) is

denoted by L∗γ , the “reversed elementary lamination” on O∗. However, given the restricted

outlook of most of [7] to orbifolds with no punctures and all orbifold points of weight 1/2, we

felt it worthwhile to justify the conclusion directly. The result is asserted in [7] as a consequence

of the duality between c-vectors and g-vectors of cluster algebras, which corresponds to (3.6).

In light of the results above, which relate g-vectors to shear coordinates by way of the ac-

tion of mutation maps, it seems plausible that a relation exists between quasi-laminations on

an orbifold O with respect to a fixed triangulation T and the mutation-linear algebra notions

of Definition 2.2.2 associated to the signed-adjacency matrix B(T ). (Recall as well from Propo-

sition 2.2.46 that if B(T ) is of finite type, the g-vector fan for the transpose of B(T ) coincides

with the mutation fan for B(T ).) This connection is the subject of Section 3.4, and relies on

the following object, which we show is closely related to the mutation fan FB(T ).

Definition 3.3.19 (Rational quasi-lamination fan). Fix a tagged triangulation T of an orbifold

O. For each set Λ of pairwise compatible allowable curves in O, define CΛ be the nonnegative

R-linear span of the integer shear coordinate vectors {b(T, λ) : λ ∈ Λ}. The rational quasi-

lamination fan for T , denoted by FQ(T ), is the collection of all such cones CΛ. We call FQ(T )

the rational quasi-lamination fan for T .
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3.4 Orbifolds and mutation-linear algebra

The goal of this section is to relate quasi-laminations in an orbifold to the mutation-linear

algebraic notions associated to the exchange matrix B(T ) arising from a tagged triangulation.

Indeed, one might think of this section as an orbifold generalization of the primary results in [22],

which considered mutation fans and universal geometric coefficients for cluster algebras arising

from marked surfaces. To construct these respective objects using quasi-laminations, a marked

surface had to have the Curve Separation Property and Null Tangle Property, respectively. We

show that the same is true of orbifolds.

3.4.1 The Curve Separation Property

Let O be an orbifold with tagged triangulation T . Our main results are that if O has the Curve

Separation Property, then as in the surfaces case, the rational quasi-lamination fan FQ(T ) is

the rational part of the mutation fan FB(T ) (in the sense of Definition 2.2.37 with R = Q),

and shear coordinates of allowable curves have the potential to form positive bases for ZB(T )

and QB(T ). The implications of this conclusion are established at the end of the section, where

we prove that the Curve Separation Property holds for a particular class of orbifolds which

includes those of finite type. In fact, there are no orbifolds known not to have this property,

and we plan to establish it for additional classes in future work.

What follows are the respective generalizations of [22, Definition 4.8, 4.5, 4.9, and 4.6],

[22, Proposition 4.6], [22, Theorem 4.10], and [22, Theorem 4.12] to orbifolds. Note that the

statements of the results are identical to those in [22], except that we have substituted the more

general O = (S,M,Q) for (S,M). We even place the same hypothesis on the triangulation T

in the case when S has no boundary components and M consists of exactly one puncture. The

necessity for this hypothesis is addressed in Remark 3.2.7.

Definition 3.4.1 (Curve Separation Property). An orbifold O = (S,M,Q) has the Curve

Separation Property if for any incompatible allowable curves λ and ν in O, there exists a

tagged triangulation T (with all arcs tagged plain if O has no boundary components and exactly

one puncture: see Remark 3.2.7) and an arc γ in T such that the shear coordinates bγ(T, λ) and

bγ(T, ν) of λ and ν at γ have strictly opposite signs.

Proposition 3.4.2. Suppose O satisfies the Curve Separation Property, let T be any tagged

triangulation of O (with all arcs tagged plain if O has no boundary components and exactly one

puncture) and let Λ be a set of allowable curves. Then the curves in Λ are pairwise compatible

if and only if the vectors {b(T, λ) : λ ∈ Λ} are contained in some B(T )-cone.

Proof. We argue in an analogous manner as in the proof of [22, Proposition 4.6]. Suppose that

two allowable curves λ, ν ∈ Λ are not compatible. Then the Curve Separation Property implies
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that there exists a tagged triangulation T ′ of O (with all arcs tagged plain if O has no boundary

components and exactly one puncture) and an arc γ ∈ T ′ such that bγ(T ′, λ) and bγ(T ′, ν)

have strictly opposite signs. By Remark 3.2.7, T ′ may be obtained from T by a sequence

of tagged arc flips, so by Theorem 3.3.7, there exists some mutation map η
B(T )
k such that

η
B(T )
k (b(T, λ)) = b(T ′, λ) and η

B(T )
k (b(T, ν)) = b(T ′, ν). It then follows from Proposition 2.2.31

that because of the strict sign difference between the coordinates bγ(T ′, λ) and bγ(T ′, ν), the

vectors b(T, λ) and b(T, ν) are not contained in any common B(T )-cone.

Conversely, suppose that all allowable curves in Λ are pairwise compatible. Let λ, ν ∈ Λ, let

T ′ be any tagged triangulation of O, and let γ be any tagged arc in T ′. We show that bγ(T ′, λ)

and bγ(T ′, λ) weakly agree in sign, and then invoke Theorem 3.3.7 and Proposition 2.2.31 to

conclude that bγ(T, λ) and bγ(T, ν) must be contained in some common B(T )-cone. Referring

to Definition 3.3.1 and comparing the ‘Positive Intersection’ and ‘Negative Intersection’ columns

of Tables 3.1 and 3.2, we see that the only way for two curves to have shear coordinates of

strictly opposite signs at a given arc is if they intersect, either by crossing or sharing an orbifold

point. Since λ and ν are distinct and compatible, by Definition 3.2.10 they can only intersect if

they form a conjugate pair of curves. But in this case Lemma 3.3.3 says bγ(T ′, λ) and bγ(T ′, λ)

must still weakly agree in sign, as desired.

Theorem 3.4.3. Let T be any tagged triangulation of orbifold O = (S,M,Q) (with all arcs

tagged plain if O has no boundary components and exactly one puncture). The collection FQ(T )

is a rational, simplicial fan. Furthermore, FQ(T ) = FQ
B(T ), the rational part of FB(T ), if and

only if O has the Curve Separation Property.

Proof. Again, our proof follows that of the surfaces result we generalize, [22, Theorem 4.10],

first showing that the rational cones in FQ(T ) are simplicial, then showing they form a fan, and

finally establishing the equivalence between the Curve Separation Property and FQ(T ) being

the rational part of FB(T ). Assume T consists of n arcs.

To begin, suppose some cone CΛ ∈ FQ(T ) is not simplicial, where we recall from Defini-

tion 3.3.19 that Λ is a collection of pairwise compatible allowable curves in O. Then the shear

coordinate vectors {b(T, λ) : λ ∈ Λ} which span CΛ over R+ are not linearly independent. In

particular, because they are integer vectors, the set is not linearly independent over Q, so there

exists some rational point in CΛ which can be written as a Q+-linear combination of vectors

in {b(T, λ) : λ ∈ Λ} in two distinct ways. This point is therefore obtained as the shear coordi-

nate vector of two distinct rational quasi-laminations supported on a subset of Λ, contradicting

Theorem 3.3.6.

Next, consider any two cones CΛ, CΛ′ ∈ FQ(T ). We show CΛ ∩ CΛ′ is a cone in FQ(T ) as

well, namely, CΛ∩Λ′ , to conclude that FQ(T ) is a simplicial fan; it is rational by construction.

By definition, CΛ ∩ CΛ′ ⊇ CΛ∩Λ′ . For the reverse containment, let a ∈ CΛ ∩ CΛ′ ∩ Qn. By
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Theorem 3.3.6, a is the shear coordinate vector of some unique rational quasi-lamination which

is therefore supported on a subset Λ̃ ⊆ Λ∩Λ′ of pairwise compatible allowable curves. It follows

that CΛ ∩ CΛ′ ∩ Qn ⊆ CΛ∩Λ′ . Since CΛ ∩ CΛ′ is a rational cone, we thereby conclude that

CΛ ∩ CΛ′ = CΛ∩Λ′ .

Now, supposeO does not have the Curve Separation Property. Then there exist incompatible

allowable curves λ, ν in O such that the shear coordinates b(T ′, λ) and b(T ′, ν) have weakly

the same sign for all triangulations T ′. This implies by Theorem 3.3.7 that η
B(T )
k (b(T, λ)) and

η
B(T )
k (b(T, λ)) are of weakly the same sign for every sequence k of indices in [n], which in turn

implies by Proposition 2.2.31 that they are contained some common B(T )-cone. But since λ

and ν are incompatible, b(T, λ) and b(T, ν) span rays of FQ(T ) which are not contained in a

common cone of FQ(T ). This contradicts Condition (iii) of Definition 2.2.37, so FQ(T ) is not

the rational part of a fan.

Conversely, suppose O does have the Curve Separation Property. Since FQ(T ) is a rational

simplicial fan, it satisfies Condition (i) of Definition 2.2.37, and Condition (ii) holds by Propo-

sition 3.4.2. To establish Condition (iii), let C be an arbitrary B(T )-cone and let Λ denote the

set of allowable curves λ whose shear coordinates b(T, λ) are contained in C. By definition,

CΛ is contained in C since C is a convex cone, and by Proposition 3.4.2, the curves in Λ are

pairwise compatible, so CΛ is a cone in FQ(T ). Furthermore, if CΛ′ is any other cone contained

in C, then Λ′ ⊆ Λ by construction, so CΛ′ ⊆ CΛ and CΛ is the unique largest cone among cones

of FQ(T ) contained in C.

We conclude by showing that CΛ contains every rational point in C using induction on the

dimension of C. The assertion holds trivially when C is the zero cone: assume it holds when

C is of dimension no greater than k for some k ∈ Z≥0, and suppose C is of dimension k + 1.

Let a ∈ Qn ∩ C. By Theorem 3.3.6, a = b(T, L) for some rational quasi-lamination L in O.

Let Λ′ denote the support of L: by Condition (ii) of Definition 2.2.37, which we have already

established, CΛ′ is contained in some B(T )-cone C ′, and a ∈ C ∩ C ′. If C ′ = C, then by the

first part of Condition (iii), established above, a ∈ CΛ′ ⊆ CΛ. Otherwise, C ∩ C ′ is a B(T )-

cone since FB is a fan, and has dimension no greater than k. Again invoking the first part of

Condition (iii), let Cλ̃ be the largest cone of FQ(T ) contained in C ∩C ′. By induction, a ∈ Cλ̃,

and since Cλ̃ ⊆ C, we again conclude that a ∈ CΛ, as desired. a ∈ Cλ̃ ⊆ CΛ.

For the next result, which establishes the implications of the Curve Separation Property on

the connection between shear coordinate vectors and positive bases, we do not provide our own

rephrasing of the proof, rather referring the reader to the original proof in the surfaces case

in [22, Theorem 4.12]. However we note the necessity of invoking the following orbifold results

instead of their respective surface analogs:

• Theorem 3.4.3 rather than [22, Theorem 4.10]
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• Theorem 3.3.6 rather than [22, Theorem 4.4]

Note that [22, Proposition 2.10] and [22, Proposition 4.13] are general mutation-linear algebra

results from [21]; they are quoted here as Proposition 2.2.36 and Proposition 2.2.40, respectively.

Theorem 3.4.4. Let T be a tagged triangulation of O (with all arcs tagged plain if O has

no boundary components and exactly one puncture) and let R be Z or Q. If O has the Curve

Separation Property, then

1. If the collection of shear coordinate vectors of allowable curves in O are an independent

set for RB(T ), then they form a positive basis for RB(T ).

2. If a positive basis for RB(T ) exists, then the shear coordinate vectors of allowable curves

in O are a positive basis.

We finish this section by proving the following theorem, which is part of current work to

show that an orbifold O has the Curve Separation Property if it has one or more boundary

components or two or more punctures. The expected result generalizes [22, Theorem 6.1] to

orbifolds with the same set of hypotheses. In particular, the hypotheses rule out the case where

O = (S,M,Q) has no boundary components and exactly one puncture, regardless of the number

of orbifold points. One additional case of the Curve Separation Property is established in [20].

Theorem 3.4.5. If an orbifold O = (S,M,Q) has either no punctures and no orbifold points,

a unique puncture and no orbifold points, or no punctures and a unique orbifold point, then O
has the Curve Separation Property.

Our proof of Theorem 3.4.5 follows [22, Section 6] closely, and we will appeal often to

statements, constructions, and figures therein. The reader may find it helpful to have a copy

open for easy reference. Since we will be dealing with shear coordinates, the reader may also

appreciate having Tables 3.1 and 3.2 close at hand.

What follows is a summary of the methods and observations set forth in [22, Section 6]

which we employ here. To prove that O has the Curve Separation Property, we take as given two

incompatible allowable curves λ and ν in O, and construct a tagged triangulation T containing

tagged arc γ such that the shear coordinates bγ(T, λ) and bγ(T, ν) of λ and ν, respectively,

with respect to γ have strictly opposite signs. Since allowable curves may not have any self-

intersections, all contributions to these shear coordinates from intersections with γ have the

same sign. Thus it suffices to find one intersection of λ with γ and one intersection of ν with γ

that contribute opposite signs. We consider many possible cases on λ and ν: in most cases, we

construct, rather than a tagged triangulation T , an (untagged) triangulation T 0, in which case

we tacitly take T = τ(T 0) (see Definition 3.2.6). We also in general construct T or T 0 such that

bγ(T, λ) > 0 while bγ(T, λ) < 0; however, as in [22], at times we have to switch this convention.
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In many cases we include a figure to illustrate the salient part of the triangulation T or

T 0: these figures follow the color and shading conventions established in [22, Section 6]. In

particular, we continue to use the red and blue arcs and light-gray shading from Tables 3.1 and

3.2, and color the arc γ purple and the curve λ solid and black. When it appears, the curve ν

is dashed and green. Areas beyond the boundary are shaded dark gray, and we indicate that

a loop is not contractible by shading inside with a light gray striped pattern. Often, arcs in

T or T 0 are constructed by following closely along existing curves: a curve follows another

closely if there are no punctures, orbifold points, or boundary components between them. For

legibility in the figures, we often straighten such curves somewhat rather than drawing them

tightly next to one other. Finally, note that certain points and arcs which appear distinct in

the figures might possibly coincide: these possibilities are explicitly addressed in the proof, and

often appeal to the assumption, in Definition 3.2.1, that the surface S in O = (S,M,Q) is

oriented.

The following three cases are considered: these are directly comparable to the first three cases

considered in [22]. We have generalized them to our setting by replacing the original “spiral

point” with the more general “endpoint not on a boundary segment”, which is equivalent,

for orbifolds, to “spiral point or orbifold point.” Due to this generalization, we must consider

additional subcases. However, we maintain the numbering used in [22].

Case 1: Both endpoints of λ are on boundary segments.

Case 2: λ has exactly one endpoint on a boundary segment.

Case 3: λ is a closed curve.

We make a few general statements which will be used throughout.

Remark 3.4.6. As in [22], we must show that the given allowable curves λ and ν must interact

with our constructed triangulation T 0 in a specific manner. Namely, we often argue that a

given curve and arc must intersect. We explicitly use ‘intersect’ rather than ‘cross’ in light of

Figure 3.10, in order to encompass the case when a curve ν and an arc α share an common

orbifold point. For this same reason, when citing similar arguments from [22] generalized to our

orbifold setting, we implicitly read ‘crossing’ as ‘intersecting.’

Remark 3.4.7. Recall from Definition 3.2.3 that arcs in an orbifold are forbidden from defining

a digon containing no points in M ∪ Q, from bounding a monogon containing no points in

M ∪Q, and from bounding a monogon containing a unique orbifold point and no punctures.

(Note that (untagged) arcs are permitted to bound once-punctured monogons, as (untagged)

triangulations may contain self-folded triangles).

The first two configurations are also forbidden for arcs in surfaces; thus the arguments we

cite from [22] explicitly deal with these possibilities when constructing T 0. We handle the third
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Figure 3.12: An illustration for Remark 3.4.7: handling an arc α which, as originally con-
structed, bounds a monogon containing a unique orbifold point q and no punctures.
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Figure 3.13: Illustrations for Case 1a

forbidden configuration, where a constructed arc α bounds a “once-orbifolded” monogon ,

as follows: Since the endpoints coincide, the common endpoint must be a marked point p ∈M.

Replace α by the non-ordinary arc α′, in the monogon, which connects p and q. This operation

is illustrated in Figure 3.12: the result is a valid orbifold triangle (see Figure 3.6).

We now argue that if a curve crossed α, then it must intersect the newly defined arc α′. This

allows us to cite arguments from [22] about the necessity of a given curve interacting with the

constructed triangulation T 0 in a specific way even if we have replaced α by α′. This necessity

is clear when we recall from Definition 3.2.3 that arcs are considered up to isotopy relative to

M ∪Q. Referring, for example, to Figure 3.12, it the blue curve α in the lefthand triangle is

crossed by some other curve and this crossing cannot be removed by an isotopic deformation

relative to p, q, and p′, then the other curve must either cross between p and q or else terminate

at q. Regardless, the same curve intersects the blue arc α′ in the righthand triangle.

Case 1. Both endpoints of λ are on boundary segments.

Case 1a. λ has endpoints on two distinct boundary segments. Proceed as in [22, Case 1a]. We

need only rule out the possibilities that either or both of the blue arcs bound once-orbifolded

monogons, which we do by appealing to Remark 3.4.7. See Figure 3.13.

Case 1b. λ has both endpoints on the same boundary segment. Proceed as in [22, Case 1b],

invoking Remark 3.4.7 if the first blue arc constructed bounds a once-orbifolded monogon.
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Figure 3.14: Illustrations for Case 1b

Definition 3.2.10 implies that λ is not contractible to the boundary, and furthermore because

λ cannot be one of the forbidden curves of type illustrated in Figure 3.8, the purple arc γ

cuts out neither a once-punctured nor a once-orbifolded monogon. Thus we may construct a

triangulation T 0 in which there is a second triangle with the purple arc γ as an edge. In general

this triangle is ordinary as in the lefthand image of Figure 3.14; however, it may be non-ordinary.

For example, see the righthand image in Figure 3.14, which depicts the following case: O is a

sphere with one boundary component, a single marked point on the boundary, and 3 orbifold

points, and λ, together with a portion of the boundary, cuts out a digon with two orbifold

points. This case requires the application of Remark 3.4.7 as well as the necessity of the purple

arc γ being contained in both an ordinary and non-ordinary triangle. However, the arguments

of [22] regarding ν still apply, as all non-ordinary triangles are composed of three distinct arcs.

Case 2. λ has exactly one endpoint on a boundary segment.

Case 2a. The other endpoint of λ is a spiral point. Proceed as in [22, Case 2], invoking Re-

mark 3.4.7 if the first blue arc constructed bounds a once-orbifolded monogon. The purple arc

γ does not bound a once-orbifolded monogon. Notice, as in [22], that the only curve which

intersects λ but is also compatible with it is the curve with whom λ forms a conjugate pair,

and its shear coordinate with respect to γ is zero. See Figure 3.15.

Case 2b. The other endpoint of λ is an orbifold point. Begin as in [22, Case 2] by coloring the

boundary segment red and drawing the first blue arc (invoking Remark 3.4.7 if it bounds a

once-orbifolded monogon). Label the orbifold point as 3. Draw a purple non-ordinary arc γ

from point 2 to 3, following the red segment closely from point 2 to λ and then following λ

closely to 3. Complete these arcs to a triangulation T 0. As in [22], there are two possibilities

for ν. The first possibility is that some portion of ν intersects the blue arc (or originates on the

blue boundary segment) and then crosses the purple arc γ before intersecting the outer blue
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Figure 3.16: Illustrations for Case 2b

arc again (or terminating on the blue boundary segment). The second possibility is that after

ν intersects the blue arc (or originates on the blue boundary segment) it terminates at point 3,

the shared orbifold endpoint of λ and the purple arc γ. Regardless, ν picks up a negative shear

coordinate contribution at γ while the shear coordinate of λ is positive. See Figure 3.16.

Case 3. λ is a closed curve.

Case 3a. There exists a marked point left of λ and a marked point right of λ. Proceed as

in [22, Case 3a], invoking Remark 3.4.7 if the inner and/or outer blue arc bounds a once-

orbifolded monogon. (Possibly points 1 and 2 coincide, in which case the blue arcs may coincide

as well. However, this can only happen if the blue arc(s) are ordinary: otherwise, O is a sphere

with one puncture and one or two orbifold points, neither of which is permitted under Defini-

tion 3.2.1.) See Figure 3.17, which also illustrates some possibilities for ν.

Case 3b. λ is a closed curve not falling into Case 3a and ν is ordinary. By Definition 3.2.1, O
contains at least one marked point. Thus we may proceed as in [22, Case 3b], supposing, without

loss of generality, that all marked points are left of λ, so that O decomposes at λ as a connected

sum. In Figure 3.18, we depict the “left” summand, containing marked points, outside of λ and

the “right” summand, containing no marked points, inside λ. Since λ is not contractible, the
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Figure 3.18: Illustrations for Case 3b

right summand is either topologically nontrivial or is a disc with at least two orbifold points

(at least three if all are of weight 1/2: see Definition 3.2.10). If any of the blue, red, and purple

arcs bound once-orbifolded monogons, apply Remark 3.4.7. These arcs can be completed to

a triangulation T 0. In particular, if the purple arc did not bound a once-orbifolded monogon,

then there exists a triangulation T 0 in which there is a second, non-self-folded triangle having

the purple arc γ as an edge. The argument is then completed in [22] (see the lefthand image

in Figure 3.18). If the originally-constructed purple arc did bound a once-orbifolded monogon,

then the purple arc γ in T 0 is non-ordinary and therefore contained in a unique triangle (see the

righthand image in Figure 3.18). It is significantly easier to compute shear coordinates in this

case, and again ν picks up a negative shear coordinate contribution with respect to γ while the

shear coordinate of λ is positive. (The case when the blue and/or red arcs bound once-orbifolded

monogons are not pictured, but are easy to imagine.)

We remark that while surface examples O = (S,M) of Case 3b require that S has some

nontrivial topology, this is not the case for orbifolds. In particular, consider the digon with two

orbifold points of weight 2 depicted in Figure 3.19.
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Figure 3.19: An orbifold example of Case 3b
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Figure 3.20: Illustration for Case 3c

Case 3c. λ is a closed curve not falling into Case 3a and ν is non-ordinary. As in Case 3b,

we may again suppose, without without loss of generality, that all marked points are left of λ,

so that O decomposes at λ as a connected sum, depicted in Figure 3.20 in a similar manner

to Figure 3.18 with the same assumptions on the “left” and “right” summands. Choose some

marked point on the left and label it as 1. If both endpoints of ν lie in the left summand, then

we construct the triangulation described in Case 3b and use the same argument to complete

the proof. Otherwise, since ν and λ are incompatible, somewhere along its extent, ν crosses λ

to enter the right summand, and then terminates at an orbifold point in the right summand.

Label this orbifold point as 2. As in the previous cases, begin by drawing a blue arc from

1 to itself that closely follows λ, replacing it with a blue boundary segment if it defines an

unpunctured digon, and invoking Remark 3.4.7 if it bounds a once-orbifolded monogon. Next,

draw a purple arc γ from point 1 to point 2 that closely follows the blue arc to without crossing

it to its intersection with ν, then closely follows ν without crossing it to point 2. Complete

the triangle by drawing a red arc from point 1 to itself as in Figure 3.20 that closely follows γ

without crossing it to point 2, then turns to curve around point 2 and closely follow γ without

crossing it to λ, then turns to closely follow λ without crossing it until reaching the earlier part

of the red arc, then following the red arc closely back to point 1. The red arc cannot bound an

unpunctured monogon, as then λ is not allowable by Definition 3.2.10. If the red arc bounds a

once-orbifolded monogon, then we invoke Remark 3.4.7. Extend to a triangulation T 0.
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3.4.2 The Null Tangle Property

We define the Null Tangle Property in the orbifolds setting, and show, as for surfaces, that

it implies the Curve Separation Property. Furthermore, the strongest consequence of the Null

Tangle Property for surfaces, [22, Theorem 7.3], is easily shown to hold for orbifolds as well.

That is, if an orbifold has the Null Tangle Property, then the shear coordinates of allowable

curves with respect to any tagged triangulation T form a positive basis for RB(T ), and therefore

universal geometric coefficients for B(T ) over R. Finally, in the previous section we established

the Curve Separation Property for all but one class of orbifolds in Theorem 3.4.5. As discussed

in [22], while the complexity of the proof and the fact that the Null Tangle Property implies

the Curve Separation property suggest that it may be quite difficult to establish the former in

general, we extend [22, Theorem 7.4] by proving the Null Tangle Property holds for a family of

orbifolds which includes those of classical finite and affine type.

The following two definitions are comparable to [22, Definition 7.1 and Definition 7.2].

The propositions that follow, which connect null tangles to B(T )-coherent relations (see Def-

inition 2.2.19), the Curve Separation Property (see Definition 3.4.1), and finally to bases for

RB(T ) (see Remark 2.2.24), are comparable, respectively, to [22, Propositions 7.9-7.13], [22,

Corollary 7.14], and [22, Theorem 7.3], with the correction for null orbifolds given in [24, The-

orem 3.14] and discussed in [24, Remark 3.15]. The proofs thereof are nearly identical, and we

note any necessary adjustments.

Definition 3.4.8 (Weighted tangle of curves). A (weighted) tangle (of curves) Ξ in an

orbifold O = (S,M,Q) is a finite collection of allowable curves λ (see Definition 3.2.10) which

are distinct up to isotopy, each with an integer weight wλ ∈ Z. (In contrast with the quasi-

laminations of Definition 3.2.10, we do not require the curves in a tangle to be compatible, nor

do we require that they have positive weights.) The set of curves in Ξ with nonzero weights is

called the support of the tangle. A straight tangle is a tangle in which all curves are pairwise

compatible. (Again, this is a different object than a quasi-lamination as weights of curves in a

straight tangle are still permitted to be negative). A tangle is trivial if all curves have weight

zero. The weighted union of tangles Ξ1 and Ξ2 is built from the multiset union of Ξ1 and Ξ2

by doing the following: for each curve λ which appears in both Ξ1 (with weight w1
λ) and Ξ2

(with weight w2
λ), replace the two copies of λ in the union with a single copy of weight w1

λ+w2
λ.

The disorder of a tangle Ξ is the smallest number k such that, after deleting all curves of

weight zero, Ξ is a weighted union of k straight tangles.

Definition 3.4.9 (Shear coordinates and the Null Tangle Property). The shear coordinates

b(T,Ξ) = (bγ(T,Ξ))γ∈T of a tangle Ξ with respect to a tagged triangulation T of O are com-
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puted in an analogous manner to those of a quasi-lamination in Definition 3.3.1, by setting

bγ(T,Ξ) =
∑
λ∈Ξ

wλbγ(T, λ) for each arc γ ∈ T.

If O has one or more boundary components or two or more punctures (or both), then Ξ is a null

tangle if b(T,Ξ) = 0 for tagged triangulations T . Otherwise, O has no boundary components

and exactly one puncture, and we require only that b(T,Ξ) = 0 for all tagged triangulations

T in which all arcs are tagged plain. The orbifold has the Null Tangle Property if the only

null tangles in O are trivial tangles.

Proposition 3.4.10. Suppose that no component of O is a null orbifold. A tangle Ξ in O is

a null tangle if and only if for any tagged triangulation T of O (with all arcs tagged plain if O
has no boundary components and exactly one puncture), the linear relation

∑
λ∈Ξwλb(T, λ) is

B(T )-coherent.

Proof. By Theorem 3.3.7, a tangle Ξ is null if and only if
∑

λ∈Ξwλb(T, λ) satisfies the first

of the two requirements, (2.6), of B(T )-coherent linear relations (see Definition 2.2.19). The

remainder of the proof is identical to that of [22, Proposition 7.9]: since the signed adjacency

matrix of a triangulation of an orbifold which has no null component has no row consisting

entirely of zeros, [22, Proposition 2.3] implies that (2.6) is sufficient for B(T )-coherence. Thus

Ξ is null if and only if
∑

λ∈Ξwλb(T, λ) is B(T )-coherent.

Proposition 3.4.10 implies the following rephrasing of the Null Tangle Property in terms of

independence in RB(T ):

Proposition 3.4.11. Let T be a tagged triangulation of O (with all arcs tagged plain if O
has no boundary components and exactly one puncture) and let R be Z or Q. Then the shear

coordinates of allowable curves in O constitute an independent set for RB(T ) if and only if every

component of O either has the Null Tangle Property or is a null orbifold.

Remark 3.4.12. While Proposition 3.4.10 is true for any choice underlying ring R ∈ {Z,Q,R},
Proposition 3.4.11 does not hold for R = R. Recall from Definition 2.2.22 that the set A of

shear coordinates of allowable curves is independent in RB(T ) if and only if every B(T )-coherent

linear relation among them with coefficients in R is trivial. Clearly when R = Z, Definition 3.4.8

implies that every linear relation among elements of A is of the form
∑

λ∈Ξwλb(T, λ) for some

tangle Ξ, and Proposition 3.4.10 then says that such a relation is B(T )-coherent if and only if Ξ is

null. Furthermore, when R = Q, if
∑

λ∈A′ rλλ is a B(T )-coherent linear relation among elements

of some (by necessity finite) subset A′ ⊆ A, then there exists some scalar r ∈ Z such that rrλ ∈ Z
for all λ ∈ A′ (in particular, set r to be the least common multiple of the denominators of
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rλ ∈ Q). By the ‘Scaling’ property of partial linear structures (see Definition 2.2.22),
∑

λ∈A′ rrλ

is a B(T )-coherent linear relation among vectors in A with coefficients in Z, and can be realized

as
∑

λ∈A′ wλλ for some null tangle Ξ with support A′ and weights wλ := rrλ. On the other

hand, there is no guarantee that such a scalar r exists if the coefficients rλ ∈ R.

Using Proposition 3.4.10, we give a specialization of Proposition 2.2.21 in terms of tangles

rather than B(T )-coherent relations. As mentioned in the introduction to the section, this is a

generalization of [22, Proposition 7.11], with a correction of a small typo: Ξ must be taken to

be a null tangle.

Proposition 3.4.13. Let Ξ be a null tangle in O. Suppose there exists some tagged triangulation

T of O (with all arcs tagged plain if O has no boundary components and exactly one puncture),

some tagged arc γ ∈ T , and some curve λ ∈ Ξ such that bγ(T, λ) is strictly positive (respectively,

strictly negative) while bγ(T, ν) is nonpositive (respectively, nonnegative) for every other curve

ν ∈ Ξ. Then wλ = 0.

As a consequence of the ‘Irrelevance of zeros’ property of partial linear structures (see

Definition 2.2.22), it is sufficient in the hypotheses of Proposition 3.4.13 to consider only curves

ν ∈ Ξ with nonzero weights, yielding the following corollary.

Recall from Definition 3.4.8 that the disorder of a tangle Ξ is the smallest number k such

that, after deleting all curves of weight zero, Ξ is a weighted union of k straight tangles. Thus

the Null Tangle Property is equivalent to the statement that the disorder of every null tangle is

0: that is, if Ξ is a null tangle, after deleting all curves of weight zero, no curves are left. Hence

one method for establishing the property for a given orbifold O is to rule out the existence of

any null tangles of disorder k for all k ∈ Z+. Indeed, this is the method used in [22] which

we extend here in Theorem 3.4.22, because, as noted in [22], the Curve Separation Property is

closely related to ruling out null tangles with certain small disorders.

The proofs of the next four results are identical to those for the comparable assertions in

the surfaces case, which appear in [22]. However, we must invoke the following orbifold results

instead of their respective surface analogs:

• Theorem 3.3.7 rather than [22, Theorem 4.3]

• Proposition 3.4.2 rather than [22, Proposition 4.6]

• Theorem 3.4.3 rather than [22, Theorem 4.10]

• Theorem 3.4.4 rather than [22, Theorem 4.12]

• Proposition 3.4.11 rather than [22, Propostition 7.10]

• Corollary 3.4.16 rather than [22, Corollary 7.14]
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(Note that [22, Propositions 2.4 and 2.7] are results about arbitrary mutation fans from [21];

they are quoted here as Proposition 2.2.30 and Proposition 2.2.31, respectively.)

Proposition 3.4.14. Null tangles of disorder 1 do not exist in any orbifold. If an orbifold O
has the Curve Separation Property, then it does not admit any null tangles of disorder 2.

Proposition 3.4.15. If no null tangles of disorder 2 or 3 exist in O, then the orbifold has the

Curve Separation Property.

Corollary 3.4.16. If O has the Null Tangle Property it also has the Curve Separation Property.

Theorem 3.4.17. Suppose R is Z or Q and let T be a tagged triangulation of O = (S,M,Q)

(with all arcs tagged plain if O has no boundary components and exactly one puncture). If O is

not a null orbifold, then the following are equivalent:

1. O has the Null Tangle Property.

2. The shear coordinates of allowable curves form a basis for RB(T ).

3. The shear coordinates of allowable curves form a positive basis for RB(T ).

4. The shear coordinates of allowable curves form universal geometric coefficients for B(T )

over R.

If O is a null orbifold, then it fails Conclusion 1 and satisfies Conclusions 2, 3, and 4.

Remark 3.4.18. As mentioned at the start of the section, Theorem 3.4.17 is actually a direct

analog to [24, Theorem 3.14], a correction to [22, Theorem 7.3] which takes null surfaces into

account. Conclusion 4 in Theorem 3.4.17 is not included in [22, Theorem 7.3] and [?], however

it is equivalent to Conclusion 2 (and therefore Conclusions 1 and 3) by Theorem 2.2.43.

As noted in [22], while establishing the Null Tangle Property in general may be difficult, some

of the easier cases of the proof of Theorem 3.4.5 extend to statements about null tangles, which

we will use to establish the Null Tangle Property for a small class of orbifolds in Theorem 3.4.22.

The following results are comparable to [22, Propositions 7.15-7.17], and the proofs are also

similar.

Proposition 3.4.19. No curve in the support of a null tangle in an orbifold connects two

distinct boundary segments.

Proof. Let λ be an allowable curve which connects two distinct boundary segments. Construct

a tagged triangulation T with distinguished (purple) arc γ as described in Case 1a in the proof

of Theorem 3.4.5 (see Figure 3.13). Observe that λ is the unique allowable curve whose shear

coordinate at γ with respect to T is strictly positive. Thus by Proposition 3.4.13, λ cannot

appear in the support of a null tangle.
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Proposition 3.4.20. No curve in the support of a null tangle in an orbifold has exactly one

endpoint on a boundary segment.

Proof. Let λ be an allowable curve with exactly one endpoint on a boundary segment. If the

other endpoint of λ is a spiral point, construct a tagged triangulation T with distinguished

(purple) arc γ as described in Case 2a in the proof of Theorem 3.4.5 (see Figure 3.15). If the

other endpoint of λ is an orbifold point, construct a tagged triangulation T with distinguished

(purple) arc γ as described in Case 2b (see Figure 3.16). In both cases, we again observe that λ

is the unique allowable curve whose shear coordinate at γ with respect to T is strictly positive

and apply Proposition 3.4.13.

Proposition 3.4.21. If O = (S,M,Q) is a sphere with b boundary components, p punctures,

and q orbifold points with b+ p+ q ≤ 3, then no curve in the support of a null tangle in O has

both endpoints on the same boundary segment.

Proof. The hypothesis is that O is one of the following 10 orbifolds, 6 of which are in particular

marked surfaces since q = 0:

• A disk with either

O1: 0 punctures and 0 orbifold points, a marked surface (Type An),

O2: 1 puncture and 0 orbifold points, a marked surface (Type Dn),

O3: 0 punctures and 1 orbifold point (Types Bn and Cn),

O4: 1 puncture and 1 orbifold point,

O5: 2 punctures and 0 orbifold points, a marked surface (Type D̃n), or

O6: 0 punctures and 2 orbifold points (Types B̃n and C̃n).

• An annulus with either

O7: 0 punctures and 0 orbifold point, a marked surface (Type Ãn),

O8: 1 puncture and 0 orbifold points, a marked surface, or

O9: 0 punctures and 1 orbifold point.

• A sphere with

O10: 3 boundary components (a marked surface).

(Recall that spheres with no boundary components are required by Definition 3.2.1 to

have at least four points in M ∪Q: such orbifolds do not satisfy the hypothesis.)
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Let Ξ be a null tangle in O and let λ be a curve in Ξ with both endpoints on the same

boundary segment. Note that since λ is allowable and therefore not one of the forbidden curves

in Figure 3.8, O /∈ {O1,O2,O3}. The proof of [22, Proposition 7.17] handles the other marked

surface cases when O ∈ {O5,O7,O8,O10}. We handle cases O4,O6 and O9 below using the

method of [22].

Construct a tagged triangulation T of O with (purple) arc γ as described in Case 1b in

the proof of Theorem 3.4.5 and shown in Figure 3.14. Suppose by way of contradiction that

there exists a curve λ ∈ Ξ, distinct from ν, for which bγ(T, ν) > 0 and wν 6= 0. Then we observe

from the figure that ν must have an endpoint on the same boundary segment as λ, implying by

Propositions 3.4.19 and 3.4.20 that in fact both endpoints of ν must be on the same boundary

segment as λ.

If O = O4 is a disk with 1 puncture and 1 orbifold point or O = O6 is a disk with no

punctures and 2 orbifold points, then each boundary segment admits at most one allowable

curve with both endpoints on that boundary segment: namely, the one which, together with

the unmarked portion of the boundary between its endpoints, encloses the two interior points

in M ∪Q. (If O has only one marked point on its boundary, this curve is not allowable.) Thus

either λ (and ν) don’t exist or else λ is unique, both contradictions. Applying Proposition 3.4.13,

we conclude that λ is not in the support of Ξ.

If O = O9 is an annulus with 0 punctures and 1 orbifold point, then each boundary segment

admits at most two allowable curves with both endpoints on that boundary segment: namely,

those which, together with the unmarked portion of the boundary between their endpoints,

enclose either the other boundary component or both the other boundary component and the

orbifold point. (Similar to the case above, if one or both of the two boundary segments of O
has only one marked point, then one or both of these curves is not allowable.) Regardless of

which curve (if either exists) is λ, the construction of T ensures that the other curve has a shear

coordinate of zero at γ. Again, we have our desired contradiction and Corollary 3.4.13 implies

that λ is not in the support of Ξ.

Theorem 3.4.22. If O = (S,M,Q) is a sphere with b boundary components, p punctures, and

q orbifold points with b + p + q ≤ 3 and is not a null orbifold, then O has the Null Tangle

Property.

Proof. The hypothesis on O is a specialization of that in Proposition 3.4.21, and hence O is one

of the 10 types of orbifolds listed in its proof. All 10 have the Curve Separation Property by

Theorem 3.4.5. We further require that O not be a null orbifold, which, from Definition 3.2.1

means it is neither an empty quadrilateral nor a digon containing a unique point in M tQ in

its interior.

The result is established in the marked surfaces cases when O ∈ {O1,O2,O5,O7,O8,O10}
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by [22, Theorem 7.4]. If O = O3 is a disk with 0 punctures and 1 orbifold point, then Proposi-

tions 3.4.19 and 3.4.20 imply the Null Tangle Property. In the remaining three cases, Proposi-

tions 3.4.19, 3.4.20, and 3.4.21 show that the support of a null tangle cannot contain any curves

that involve boundary segments. Proposition 3.4.14 implies that null tangles of disorder 1 and

2 do not exist. We use the strategy laid out in the proof of [22, Theorem 7.4] and sort the

remaining allowable curves in O (see Definition 3.2.10 into 2 or fewer straight tangles. Since

Proposition 3.4.14 implies that null tangles of disorder 1 and 2 do not exist, null tangles must

therefore have disorder zero, and we conclude that the Null Tangle Property holds.

If O = O4 is a disk with 1 puncture and 1 orbifold point, then there are three remaining

allowable curves: one closed curve and two non-ordinary curves which spiral into the puncture

in opposite directions. The two non-ordinary curves form a conjugate pair and are therefore

pairwise compatible, so there are only two straight tangles.

If O = O6 is a disk with 0 punctures and 2 orbifold points, there is one remaining allowable

curve, and therefore only one straight tangle. Namely, if both orbifold points of O are of weight

1/2, there exists a unique semi-closed curve and no closed curves; otherwise, there exists a

unique closed curve.

If O = O9 is an annulus with 0 punctures and 1 orbifold point, there are two remaining

allowable curves: the closed curve which encloses just the inner boundary segment, and the

closed curve which encloses both the inner boundary segment and the orbifold point. These two

curves are compatible, so there is just one straight tangle.

Remark 3.4.23. In light of Theorem 3.4.17, it is highly desirable to establish the Null Tangle

Property for a given orbifold O. We may then conclude that the shear coordinates of allowable

curves in O with respect to a given tagged triangulation T (where all arcs in T are tagged

plain if O has no boundary components and exactly one puncture) form a (positive) basis for

RB(T ), and therefore constitute universal geometric coefficients for B(T ) over R. Recall from

Remark 3.3.16 that B(T ∗) is a rescaling of B(T ), where B(T ∗) is the signed adjacency matrix

of the reversed triangulation T ∗ on the reversed orbifold O∗ obtained from O, T by swapping

the weights on all orbifold points in O. By [21, Proposition 7.8(6)], there is an explicit bijection

between (positive) bases for RB(T ∗) and (positive) bases for RB(T ). Thus it is sufficient to

establish the Null Tangle Property and compute the shear coordinates of allowable curves in O
to construct (positive) bases for RB(T ∗) (and universal geometric coefficients for B(T ∗)).

3.5 Orbifold folding and unfolding

We now prepare for our use, in the next section, of the surface and orbifold models to attack the

folding questions of Chapter 2. Recall from Section 3.2 that in general, orbifolds are constructed
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as the quotient spaces of finite group actions on manifolds [28, Chapter 13]. In the very specific

setting of the cluster algebra model of [5] used in this paper, orbifolds can be thought of as the

quotients, or foldings, of marked surfaces under symmetries which are composed of two types

of involutions. These two involutions, called local symmetry and prime symmetry, correspond

to the two types of orbifold points, of weight 2 and weight 1/2, respectively. Note that only

prime symmetries are true geometric symmetries; local symmetries are combinatorial. There is

no reason to restrict folding to marked surfaces: any orbifold can be folded under a composition

of local and prime symmetries.

We consider, in particular, foldings of triangulated orbifolds O, T under symmetries σ (com-

posed of local and prime symmetries) of both the orbifold and the tagged triangulation, and

let πσ(O), πσ(T ) denote the folding of O, T under σ. We then reuse σ to denote the element of

the symmetric group Sn defined by taking σ(i) such that σ(γi) = γσ(i) for each of the n arcs

γi ∈ T . As described in [5, Section 12], σ is a stable automorphism of B(T ), and

πσ(B(T )) = B(πσ(T )). (3.12)

Definition 3.5.1 (Local folding). Let O = (S,M,Q) be an orbifold with puncture q̂ ∈ M

and let σ be the (combinatorial) symmetry on O which switches the tagging of any tagged arcs

incident to q̂ and the spiral directions of any allowable curves spiraling into q̂. Let T be a tagged

triangulation of O which is preserved under the action of σ: by necessity, T contains a conjugate

pair of arcs γ, γ′ which are tagged differently at q̂. We call T a σ-symmetric triangulation ,

and call σ a local symmetry (about q̂) of the triangulated orbifold O, T . Folding O, T under

σ results in the orbifold πσ(O) = (S,M \ {q̂},Q ∪ {πσ(q̂)}) with tagged triangulation πσ(T ),

where πσ(q̂) is an orbifold point of weight 2 in the location of q̂, and πσ(T ) is obtained from

T by replacing the conjugate pair of arcs γ, γ′ in T which form a single σ-orbit γ̄ by a double

arc πσ(γ̄) that coincides with γ and γ′ (including tagging) except that it terminates at πσ(q̂).

Figure 3.21 illustrates the portions of O, T and πσ(O), πσ(T ) near q̂ and πσ(q̂), respectively, in

a typical case, along with the associated portions of the signed-adjacency matrices.

Definition 3.5.2 (Prime folding). Let O = (S,M,Q) be an orbifold and let σ be a nontrivial,

involutive homeomorphism of S which fixes only a finite set Q̃ of points in S which satisfy

Q̃∩(M ∪Q ∪ ∂O) = ∅, and which permutes M and permutes Q, preserving weights on orbifold

points. Then σ acts as a two-fold rotation near each point in Q̃. Let T be a tagged triangulation

of O which is preserved under the action of σ. We call T a σ-symmetric triangulation , and

call σ a prime symmetry (about Q̃) of the triangulated orbifold O, T . The quotient space

identifying each point x in S with σ(x) is a manifold, and we let πσ denote the natural map

to this manifold. Assuming S is connected (and there is no harm in doing so), πσ is 2−to−1
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IJ

γ1 γ2

γ3γ4

q̂
πσ=π(34)7−−−−−−→ πσ(γ̄1) πσ(γ̄2)

πσ(γ̄3)

πσ(q̂)

1
2
3
4


0 1 −1 −1

−1 0 1 1

1 −1 0 0
1 −1 0 0

 1̄
2̄
3̄

 0 1 −1
−1 0 1
2 −2 0


Figure 3.21: A portion of O, T around q̂ ∈ M (and the associated portion of the signed-
adjacency matrix B(T )) under a local symmetry σ about q̂, and the image under πσ

everywhere except on Q̃. The application of πσ is called folding O, T under σ, resulting in

the orbifold πσ(O) = (πσ(S), πσ(M), πσ(Q) ∪ πσ(Q̃)) with tagged triangulation πσ(T ), where

each point in πσ(Q̃) is an orbifold point of weight 1/2, all orbifold points in πσ(Q) inherit their

weights in Q, each pair of arcs γ, γ′ ∈ T which form a single σ-orbit γ̄ folds to a single arc

πσ(γ̄) ∈ πσ(T ) with corresponding taggings, and each symmetric arc in T which is fixed by σ

folds to a pending arc with the inherited tagging at its non-orbifold endpoint. There are four

possible options for portions of the triangulated orbifold O, T which contain neighborhoods of

points q̃ ∈ Q̃. Figure 3.22 depicts representatives of the three where the two triangles containing

q̃ are both ordinary: the symbol denotes the point q̃ ∈ Q̃. The fourth option, when q̃ is

contained in two once-orbifolded digons, is easily visualized by substituting each conjugate pair

of arcs in the second row of Figure 3.22 by a single non-ordinary arc. Note that it is not possible

for q̃ to be contained in two monogons, each containing two points in M ∪Q in their interior,

as then q̃ would need to be the single marked point shared by the arcs bounding each monogon.

Definition 3.5.3 (Orbifold folding and unfolding). Let O = (S,M,Q) be an orbifold with

tagged triangulation T and let σ be a composition of local and prime symmetries of O, T . Then

we call σ a folding symmetry of O, T , and we say that O, T folds to πσ(O), πσ(T ) under

σ, and likewise that πσ(O), πσ(T ) unfolds to O, T under σ.

Remark 3.5.4. Note that [5] defines unfoldings of orbifolds rather than foldings, as the authors

were interested in proving that unfoldings to marked surfaces exist. Indeed, they construct such

(full) unfoldings of all orbifolds other than spheres with a unique orbifold point of weight 1/2

in [5, Theorem 12.9]. For our purposes of folding various mutation-linear algebra notions, we

begin with symmetric triangulated orbifolds O, T , and then define the associated quotient map

as folding. Our subsequent definition of unfolding agrees with that in [5], including the terms

‘prime’ and ‘local.’ Likewise, [5,6] define exchange matrix unfolding rather than the folding. The
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γ1 γ2

γ3

γ4

γ5

q̃
πσ7−−−−−→ ×πσ(γ̄1) πσ(γ̄3)

πσ(γ̄5)

πσ(q̃)

1
2
3
4
5


0 0 1 0 −1
0 0 0 1 −1

−1 0 0 0 1
0 −1 0 0 1

1 1 0 −1 −1


1̄
3̄
5̄

 0 1 −2
−1 0 2
1 −1 0



IJ

IJ

γ1 γ2

γ5

γ3

γ6

γ4
γ7

q̃ πσ7−−−−−→ ×
IJ

πσ(γ̄1)

πσ(γ̄7)
πσ(γ̄5)

πσ(γ̄3)

πσ(q̃)

1
2
3
4
5
6
7



0 0 1 0 1 0 −1
0 0 0 1 0 1 −1

−1 0 0 0 0 0 1
0 −1 0 0 0 0 1

−1 0 0 0 0 0 1
0 −1 0 0 0 0 1

1 1 0 −1 −1 −1 −1


1̄
3̄
5̄
7̄


0 1 1 −2
−1 0 0 2
−1 0 0 2
1 −1 −1 0



γ1

γ2

γ3γ4

q̃1 q̃2
πσ7−−−−−→ × ×

πσ(γ̄1)

πσ(γ̄4) πσ(γ̄3)

πσ(q̃1) πσ(q̃2)

1
2
3
4


0 0 1 −1
0 0 1 −1

−1 −1 0 2

1 1 −2 0

 1̄
3̄
4̄

 0 2 −2
−1 0 2
1 −2 0


Figure 3.22: Reading down the left, possible ordinary portions of O, T surrounding neighbor-
hoods of points q̃ ∈ Q̃ (and the associated portions of the signed-adjacency matrices B(T ))
where σ is a prime symmetry about Q̃, with their images under πσ on the right
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matrix unfolding of Definition 2.3.7, drawn from [4], can be thought of as a specialization of the

definitions of [5, 6] (which were communicated to the authors by Zelevinsky) as we explicitly

require a symmetry condition.

3.6 Orbifolds and mutation-linear algebra folding

Given an orbifold O with tagged triangulation T , recall from Definition 3.3.19 that FQ(T )

denotes the rational quasi-lamination fan for T , a rational fan in R|T | whose cones CΛ are

the non-negative spans of the shear coordinate vectors of collections Λ of pairwise compatible

allowable curves in O. The primary aim of this section is to prove the following theorem, that

FQ(T ) folds under a folding symmetry σ of O, T .

Theorem 3.6.1. Suppose O, T folds to πσ(O), πσ(T ) under folding symmetry σ. Recall from

Definition 2.4.5 that V σ denotes the fixed space of R|T | under coordinate permutation action by

σ, and φ denotes the vector space isomorphism between V σ and R|πσ(T )|. Then,

φ(FQ(T ) ∩ V σ) = FQ(πσ(T )).

The following two corollaries are then immediate as a consequence of Theorems 3.4.3 and

3.4.17, respectively, and are the respective orbifold analogs of the finite type results Theo-

rem 2.4.24 and Corollary 2.4.25.

Corollary 3.6.2. Suppose both O, T and πσ(O), πσ(T ) have the Curve Separation Property,

and let F ′B(T ) and F ′B(πσ(T )) denote the rational parts of the mutation fans FB(T ) and F ′B(πσ(T )),

respectively. Then,

φ(F ′B(T ) ∩ V
σ) = F ′B(πσ(T )).

Corollary 3.6.3. Suppose both O, T and πσ(O), πσ(T ) have the Null Tangle Property and R

is Z or Q. Let B denote the set of shear coordinates of allowable curves in O (which form a

positive (cone) basis for RB(T ) and universal geometric coefficients for B(T ) over R). Then, the

following collection is a positive (cone) basis for RB(πσ(T )) (and universal geometric coefficients

for πσ(B(T )) over R), where B̄ denotes the set of σ-orbits ā of B:

(
φ (πσ(ā)) : ā ∈ B̄ spans a cone in FQ(T )

)
.

We now prepare for the proof of Theorem 3.6.1. Suppose O, T folds to πσ(O), πσ(T ) under

folding symmetry σ. Let Λ be a collection of pairwise compatible allowable curves in O and

let L be a quasi-lamination supported on Λ. Define the action of σ on Λ and L in the natural
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q̃
λ σ(λ)

Figure 3.23: Allowable curve λ is not compatible with allowable curve σ(λ), where σ is the
prime symmetry about q̃ ∈ Q̃, denoted by the symbol (note that for local symmetries, λ and
σ(λ) are always compatible)

q̂
λ

σ(λ)
ν

q̃

ν

λ

σ(λ)

Figure 3.24: Allowable curves λ, ν in O are compatible, but σ(λ) and ν are not for, from left
to right, local and prime symmetries σ about q̂ and q̃

manner:
σ(Λ) = {σ(λ) : λ ∈ Λ}, and

σ(L) = {wλ · σ(λ) : wλλ ∈ L}.
(3.13)

It is clear from Definitions 3.5.1, 3.5.2, and 3.5.3 that λ is an allowable curve in O if and only

if σ(λ) is allowable, and that two allowable curves λ and ν in O are compatible if and only if

σ(λ) and σ(ν) are compatible. Thus σ(Λ) (resp. σ(L)) consists of pairwise compatible curves.

However in general, the curves in the full σ-orbit Λ̄ of Λ (resp. L̄ of L) need not be pairwise

compatible. (See Figure 3.23 for an example of a curve λ which is incompatible with σ(λ), and

Figure 3.24 for an example of compatible curves λ and ν with σ(λ) incompatible with ν.)

Define Λσ (resp. Lσ), the σ-symmetric part of Λ (resp. L), to be the unique maximal

subset of Λ (resp. L) which is fixed under action by σ, or equivalently, the union of all σ-orbits

of allowable curves which are fully contained in Λ (resp. L). It is possible that Λσ = ∅ (resp.,

Lσ = ∅). Furthermore, if Λσ = ∅ then by necessity Lσ = ∅, as Lσ is supported on Λσ. If Λσ = Λ

(resp. Lσ = L), then we say that Λ (resp. L) is σ-symmetric.

For each curve λ in Λσ, the σ-orbit λ̄ of λ must itself be a σ-symmetric collection of pairwise
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compatible allowable curves, which we refer to as a compatible σ-orbit . Thus we may define

πσ(λ̄) to be the quotient of λ̄ under the folding symmetry σ, a single allowable curve in πσ(O).

Observe that curves in the same σ-orbit λ̄ must appear with the same weight wλ̄ in Lσ. Extend

πσ to Λσ and Lσ in the natural way, by defining

πσ(Λσ) = {πσ(λ̄) : λ ∈ Λσ}, and

πσ(Lσ) = {wλ̄ · πσ(λ̄) : wλ̄λ ∈ Lσ}.
(3.14)

The key to the proof of Theorem 3.6.1 is establishing a correspondence between the shear

coordinates of σ-symmetric rational quasi-laminations on O, T and the shear coordinates of ra-

tional quasi-laminations on πσ(O), πσ(T ). Towards that goal, we first establish a correspondence

between the quasi-laminations themselves.

Proposition 3.6.4. The quotient map πσ is a bijection between σ-symmetric collections of

pairwise compatible allowable curves (resp. quasi-laminations) in O and collections of pairwise

compatible allowable curves (resp. quasi-laminations) in πσ(O).

Proof. Recall from Definition 3.5.3 that σ = σ1 ◦ σ2 ◦ · · · ◦ σk, where each σi is a single local or

prime symmetry. The claim holds trivially when σ is the identity (that is, when the sequence is

empty), so by induction on k, it is sufficient to consider the two cases when σ consists of either

a single local or prime symmetry.

We begin by establishing a bijection between compatible σ-orbits of allowable curves in

O = (S,M,Q) and allowable curves in πσ(O) = (πσ(S), πσ(M), πσ(Q)).

If σ is a local symmetry about some puncture q̂ ∈M, then all σ-orbits of allowable curves

in O are in particular compatible σ-orbits. These orbits come in two types:

1. A single curve in O which does not spiral into q̂.

2. A conjugate pair of curves in O which spiral into q̂ in opposite directions.

These (compatible) σ-orbits correspond, under πσ, to the two types of allowable curves in πσ(O),

listed below in the matching order:

1. A curve in πσ(O) which does not terminate at the orbifold point πσ(q̂) ∈ πσ(Q).

2. A double curve in πσ(O) with one endpoint at πσ(q̂).

If σ is a prime symmetry with fixed-point set Q̃, then it is possible that not all σ-orbits of

allowable curves in O are compatible (see, e.g., Figure 3.23). However, every compatible σ-orbit

is of one of six types. First, we list the three types of compatible orbits of curves which are not

closed, as these are easy to visualize:
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πσ7−−−−−→ × ×

Figure 3.25: A compatible prime σ-orbit of Type 5 (rendered in blue) and its image under πσ

IJ

IJ

πσ7−−−−−→ ×
IJ

Figure 3.26: A compatible prime σ-orbit of Type 6 (rendered in blue) and its image under πσ

1. Two disjoint non- or semi-closed curves in O neither of which intersects any points in Q̃.

2. A single non-closed ordinary curve in O whose interior intersects a unique point in Q̃.

3. A single semi-closed curve in O whose interior intersects a unique point in Q̃.

The latter three types of compatible orbits are obtained by examining the possible actions of σ

on closed curves in O. Such curves are topological circles, and hence σ, which by Definition 3.5.2

is an involutive homeomorphism which fixes only the points in Q̃, can act in one of three possible

ways: “swapping,” reflection, and rotation. (The key observation for the latter two actions, which

yield orbits of size one, is that a homeomorphism of a topological circle can have either zero or

two fixed points.) These actions yield the following respective types of orbits:

4. Two disjoint closed curves in O neither of which intersects any points in Q̃.

5. A single closed curve in O that intersects two distinct points in Q̃. (See Figure 3.25.)

6. A single closed curve in O that does not intersect any points in Q̃ and cuts out a disk

containing a point in Q̃. (See Figure 3.26.)

These six types of compatible σ-orbits correspond, under πσ, to each of the possible types of

allowable curves in πσ(O), listed below in the matching order:

1. A non- or semi-closed curve in πσ(O) which does not terminate at any of the orbifold

points in πσ(Q̃) ⊆ πσ(Q).
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2. A pending curve in πσ(O) with one endpoint at a point in πσ(Q̃).

3. A semi-closed curve in πσ(O) with exactly one endpoint at a point in πσ(Q̃).

4. A closed curve in πσ(O) that does not cut out a disk containing a point in πσ(Q̃).

5. A semi-closed curve in πσ(O) with both endpoints in πσ(Q̃). (See Figure 3.25. This cor-

respondence is the rationale behind the term ‘semi-closed’: see [7, Remark 4.3].)

6. A closed curve in πσ(O) that cuts out a disk containing a point in πσ(Q̃). (See Figure 3.26.)

By definition, a σ-symmetric collection of pairwise compatible allowable curves in O must

be comprised of compatible σ-orbits, each of which corresponds to an allowable curve in πσ(O)

by the work above. We now check that two allowable curves in πσ(O) are pairwise compatible if

and only if the union of their corresponding compatible σ-orbits in O is a pairwise compatible

collection of curves.

First, suppose σ is a local symmetry. Clearly, the pairwise-compatibility of the union of a

collection of orbits consisting of single curves is equivalent to pairwise-compatibility between

the curves themselves. More generally, any σ-symmetric pairwise compatible collection of curves

in O either contains no curves spiraling into q̂, or else contains a unique conjugate pair of curves

with opposite spirals at q̂ (a single compatible orbit). Likewise, a pairwise compatible collection

of curves in πσ(O) either contains no curves terminating at πσ(q̂) or else contains a unique

such curve. Curves in πσ(O) which are compatible with such a double curve correspond to

(compatible orbits of size one of) curves in O which are compatible with both members of the

conjugate pair to which it lifts.

When σ is a prime symmetry, we appeal to the fact that in this case, O is a ramified Galois

covering of πσ(O) with branching points in Q̃ of order two [5, Section 12.1]. Furthermore, two

compatible allowable curves cannot share an orbifold point. Thus, intersections among a σ-

symmetric collection of allowable curves in O correspond to intersections between their images

in πσ(O), which in particular implies that such a collection in O is not pairwise compatible if

and only if its image also not compatible.

Having established the result for σ-symmetric collections of pairwise compatible allowable

curves, we extend it to quasi-laminations by invoking (3.14), which ensures that all curves in a

compatible σ-orbit in a quasi-lamination have the same weight.

Turning our attention to shear coordinates, the following observation is immediate since σ

is a symmetry of O, T .

Lemma 3.6.5. Let L a quasi-lamination on O. Then,

bγ(T, L) = bσ(γ)(σT, σ(L)) = bσ(γ)(T, σ(L)). (3.15)
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Lemma 3.6.6. A quasi-lamination L on O is σ-symmetric if and only if b(T, L) ∈ V σ.

Proof. As discussed in the proof of Proposition 3.6.4, it suffices to consider the case when σ

consists of a single local or prime symmetry. In this case, σ is an involution onO, T , and therefore

also involutive when viewed as an element of Sn acting on Rn by coordinate permutation.

Suppose L is σ-symmetric, and for each tagged arc γ ∈ T , let [σ(b(T, L))]γ denote the

coordinate of σ(b(T, L)) indexed by γ. We show [σ(b(T, L))]γ = bγ(T, L) to conclude that

b(T, L) ∈ V σ:

[σ(b(T, L))]γ = [σ(b(T, σ(L)))]γ since L is σ-symmetric

= [b(T, σ(L))]σ−1(γ) by (2.20)

= bσ−1(γ)(T, σ(L))

= bσ(γ)(T, σ(L)) since σ is an involution

= bγ(T, L) by (3.15).

Conversely, suppose b(T, L) ∈ V σ and assume that L 6= σ(L). By Theorem 3.3.6, it follows

that b(T, L) 6= b(T, σL). In particular, there exists an arc γ ∈ T such that bγ(T, L) 6= bγ(T, σL).

However by Equation (3.15) and the fact that σ is an involution,

bγ(T, σ(L)) = bσ(γ)(T, σ
2(L)) = bσ(γ)(T, L).

Thus bγ(T, L) 6= bσ(γ)(T, L), contradicting the hypothesis that σ(b(T, L)) = b(T, L).

Recall from Proposition 3.6.4 that πσ induces a bijection between σ-symmetric quasi-

laminations on O and quasi-laminations on πσ(O). By Lemma 3.6.6, the shear cooordinates of

σ-symmetric quasi-laminations on O, T are themselves σ-symmetric: we show that they map,

under the isomorphism φ : V σ
∼=−→ Rm of (2.23), to the shear coordinates of the corresponding

quasi-laminations on πσ(O), πσ(T ).

Proposition 3.6.7. Let L be a σ-symmetric quasi-lamination on O. Then,

φ(b(T, L)) = b(πσ(T ), πσ(L)). (3.16)

Proof. As discussed in the proof of Proposition 3.6.4, it suffices to consider the case when σ

consists of a single local or prime symmetry. Furthermore, since L consists of a collection of

compatible σ-orbits where all the curves in a given orbit λ̄ appear with the same weight wλ̄ in

L, it suffices to prove the following:

bγ(T, λ̄) = bπσ(γ̄)(πσ(T ), πσ(λ̄)) for each tagged arc γ ∈ T. (3.17)
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First, suppose that σ is a local symmetry. We consider four cases, and appeal throughout to

the classification of compatible orbits and curves into types from the proof of Proposition 3.6.4.

(a) Suppose γ̄ = {γ} and λ̄ = {λ} is of Type 1. Then the contributions from intersections

between λ and the triangle(s) in T containing γ are of exactly the same interaction type,

sign, and magnitude as the intersections between πσ(λ̄) and the triangles(s) in πσ(T )

containing πσ(γ̄), since the open sets of O in which each intersection between λ and γ

occur are identical to their images in πσ(O), and both λ and γ are of the same type (e.g.,

ordinary, pending, etc.) as their images.

(b) Suppose γ̄ = {γ} and λ̄ = {λ, λ′} is of Type 2. Since λ and λ′, a conjugate pair, the two

curves coincide outside of a small neighborhood around q̂. Further, γ is disjoint from q̂,

so the intersections between λ and the triangle(s) in T containing γ are exactly the same

as those between between λ′ and the triangle(s) in T containing γ, and are of exactly

the same interaction type and sign as those between πσ(λ̄) and the triangles in πσ(T )

containing πσ(γ). However, since πσ(λ̄) is a double arc while λ and λ′ are ordinary, and

πγ(λ̄) and λ are of the same type, examination of Tables 3.1 and 3.2 shows that each

intersection in πσ(O) is of twice the magnitude as the corresponding intersection in O.

Thus,

bπσ(γ̄)(πσ(T ), πσ(λ̄)) = 2 · bγ(T, λ) = bγ(T, λ) + bγ(T, λ′) = bγ(T, λ̄).

(c) Suppose γ̄ = {γ, γ′} and λ̄ = {λ} is of Type 1. Use similar reasoning as above to to

establish an interaction- and sign-preserving correspondence between intersections of λ

with γ and of πσ(λ̄) with πσ(γ̄). Comparing the third and fourth rows of Table 3.1 with

the fourth and fifth rows, respectively, of Table 3.2, we see that this correspondence is

also magnitude-preserving.

(d) Finally, suppose γ̄ = {γ, γ′} and λ̄ = {λ, λ′} is of Type 2 so that both πσ(γ̄) and πσ(λ̄)

are double. Then, comparing the fifth row of Table 3.1 with the first row of Table 3.2,

the contribution of the intersection at q̂ between λ̄ and γ is the same as the contribution

of the intersection at πσ(q̂) between πσ(λ̄) and πσ(γ̄), either ±1. There is an interaction-

and sign-preserving correspondence between the remainder of the intersections of λ with

γ, λ′ with γ, and πσ(γ̄) with πσ(λ̄), where, comparing the third row of Table 3.1 with the

fifth row of Table 3.2, we see that each intersection in πσ(O) is of twice the magnitude as

the corresponding intersections in O, and therefore equal to their sum.

Now, suppose that σ is a prime symmetry. We have six cases to consider, again based on

the classification of compatible orbits and curves into types from the proof of Proposition 3.6.4.
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(a) Suppose γ̄ = {γ, γ′} and λ̄ = {λ, λ′} is of Type 1 or 4. Because O, T is a ramified covering

of πσ(O) [5, Section 12.1] and the intersections between the curves λ and λ′ with the

arc γ in O take place outside of neighborhoods of points in Q̃ (see Figure 3.22, there is

an interactions- and sign-preserving correspondence between intersections of πσ(λ̄) with

πσ(γ̄) and the union of intersections of λ with γ and intersections of λ′ with γ. Since

πσ(λ̄) is of the same type as both λ and λ′, and likewise πσ(γ̄) is of the same type as γ,

the correspondence is also magnitude-preserving.

(b) Suppose γ̄ = {γ, γ′} and λ̄ = {λ} is of Type 3 or 6. Then πσ(γ̄) is of the same type as

γ, and πσ(λ̄) and λ are of the same type. As in case (a), the intersections of λ with γ in

O take place outside of neighborhoods of points in Q̃ (see Figure 3.22), so we have an

interaction-, sign- and magnitude-preserving correspondence between these intersections

and intersections of πσ(λ) with πσ(γ).

(c) Suppose γ̄ = {γ, γ′} and λ̄ = {λ} is of Type 2 or 5. As in cases (a) and (b), the intersections

of λ with γ in O take place outside of neighborhoods of points in Q̃ (see Figure 3.22), so

we have an interaction- and sign-preserving correspondence between these intersections

and intersections of πσ(λ) with πσ(γ). While λ and πσ(λ̄) are not of the same type,

they are either ordinary and pending or ordinary (closed) and semi-closed, respectively,

examining Tables 3.1 and 3.2 confirms that none of these types affects the magnitude of

an intersection’s contribution.

(d) Suppose γ̄ = {γ} and λ̄ = {λ, λ′} is of Type 1 or 4. Then πσ(λ̄) is of the same type

as both λ and λ′, and πσ(γ̄) is a pending arc while γ is an ordinary arc. By (3.15),

bγ(T, λ) = bγ(T, λ′), and since O is a ramified covering of πσ(O), trivial intersections in

πσ(O) between πσ(λ̄) and πσ(γ̄) correspond to pairs of trivial intersections in O, between

λ and γ and λ′ and γ. Likewise for non-trivial intersections.

The non-zero contributions to bπσ(γ̄)(πσ(T ), πσ(λ̄)) come from intersections between the

curve and the arc in πσ(O) of the type shown in the second and third rows of Table 3.2,

in the neighborhood of the orbifold point πσ(q̃) at which πσ(γ̄) has an endpoint (see

Figure 3.22). Each such intersection in πσ(O) unfolds to two non-trivial intersections in

O of the type shown in the first two rows of Table 3.1 of the same sign and half the

magnitude: namely, a non-trivial intersection of λ with γ and a non-trivial intersection of

λ′ with γ. Thus bπσ(γ̄)(πσ(T ), πσ(λ̄)) = bγ(T, λ̄).

(e) Suppose γ̄ = {γ} and λ̄ = {λ} is of Type 6. As in case (d), πσ(γ̄) is a pending arc

while γ is an ordinary arc, and there is the same sign-preserving correspondence between

intersections in πσ(O) and pairs of intersections in O, with all non-trivial intersections
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in πσ(O) of the type shown in the second row of Table 3.2, corresponding to two non-

trivial intersections in O of the type shown in the first row of Table 3.1. In this case

the intersections in O are all of λ with γ, since λ̄ = {λ}, but the correspondence is still

magnitude-preserving as well since πσ(λ̄) and λ are both ordinary closed curves.

(f) Suppose γ̄ = {γ} and λ̄ = {λ} is of Type 2, 3, or 5 . As in case (e), πσ(γ̄) is a pending

arc while γ is an ordinary arc. While πσ(γ̄) and λ may not be of the same type, neither

is a double curve, so as noted in case (c), the type does not affect the magnitude of an

intersection’s shear coordinate contribution.

There are two types of intersections between πσ(λ̄) and πσ(γ̄): those in their interiors,

which are handled as in case (e), and those which occur at shared orbifold points πσ(q̃) ∈
πσ(Q̃). These latter intersections are all of the type shown in the first row of Table 3.2,

and are the foldings of intersections between λ and γ of the type shown in the first row

of Table 3.2, which have the same sign and magnitude.

We conclude that (3.17), and hence (3.16), hold.

Proof of Theorem 3.6.1. We begin by characterizing the cones in FQ(T ) ∩ V σ. Each is of the

form CΛ∩V σ for some cone CΛ in FQ(T ), where Λ is a collection of pairwise compatible allowable

curves in O. Recall from Definition 3.3.19 that CΛ ∩ Q|T | is the set of shear coordinates of all

rational quasi-laminations supported on subsets of Λ. Then by Lemma 3.6.6, CΛ ∩ V σ ∩Q|T | is

the set of shear coordinates of all σ-symmetric rational quasi-laminations supported on subsets

of Λ. But σ-symmetric quasi-laminations must have σ-symmetric support, so in particular

CΛ ∩ V σ ∩ Q|T | is the set of shear coordinates of all σ-symmetric rational quasi-laminations

supported on subsets of Λσ, the σ-symmetric part of Λ. Thus,

CΛ ∩ V σ ∩Q|T | = CΛσ ∩ V σ ∩Q|T |.

Since both CΛ ∩ V σ and CΛσ ∩ V σ are rational cones, CΛ ∩ V σ = CΛσ ∩ V σ.

Since φ is a vector space isomorphism, we have established a bijection between cones φ(CΛ∩
V σ) in φ(FQ(T ) ∩ V σ) and σ-symmetric collections Λσ of pairwise compatible curves in O. By

Proposition 3.6.4, the latter set is in bijection with collections πσ(Λσ) of pairwise compatible

curves in πσ(O), which by definition of the rational quasi-lamination fan are in bijection with

cones Cπσ(Λσ) in FQ(πσ(T )). In particular, applying Proposition 3.6.7,

φ(CΛ ∩ V σ) ∩Q|πσ(T )| = φ(CΛ ∩ V σ ∩Q|T |)

= φ(CΛσ ∩ V σ ∩Q|T |)

= {φ(b(T, L)) : L is a σ-symmetric quasi-lamination on O
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supported on ΛL ⊆ Λσ}

= {b(πσ(T ), πσ(L)) : πσ(L) is a quasi-lamination on πσ(O)

supported on πσ(ΛL) ⊆ πσ(Λσ)}

= Cπσ(Λσ) ∩Q|πσ(T )|.

Since both φ(CΛ ∩ V σ) and Cπσ(Λσ) are rational cones, we conclude that they are equal. Hence

the cones in φ(FQ(T )∩V σ) are precisely the cones in FQ(πσ(T )), and the two fans coincide.
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Chapter 4

Dominance and resection of orbifolds

4.1 Introduction

Given two n × n exchange matrices B = [bij ] and B′ = [b′ij ], we say that B dominates B′ if

the entries bij and b′ij weakly agree in sign and |bij | ≥ |b′ij | for each i, j ∈ [n]. The dominance

relationship is introduced in [24], which describes four interesting mutation-linear algebra and

principal-coefficients cluster algebra phenomena that often occur when B dominates B′.

Phenomenon I: In many cases when B dominates B′, the identity map from the mutation-

linear structure RB to the mutation-linear structure RB′ is mutation-linear.

See Section 2.2.2 for background on mutation-linear structures and mutation-linear maps.

Phenomenon II: In many cases when B dominates B′, the mutation fan FB refines the mu-

tation fan FB′.

See Definition 2.2.29 for the definition of the mutation fan for an exchange matrix.

Phenomenon III: In many cases when B dominates B′, the cluster scattering fan ScatFan(B)

refines the cluster scattering fan ScatFan(B′).

The cluster scattering fan is defined in [23] by the (principal coefficients) cluster

scattering diagram of [14]. The construction is reviewed in [24, Section 4].

Phenomenon IV: In many cases when B dominates B′, the map νz defined in Section 4.4 is

an injective, g-vector-preserving ring homomorphism from the principal-coefficients clus-

ter algebra A•(B′) into A•(B). In a smaller set of cases, this map further sends each ray

theta function for B′ to a ray theta function for B′.

See Section 2.2.1 for background on cluster algebras of geometric type, and Definition 2.2.11

for descriptions of cluster algebras with principal coefficients and g-vectors, respectively.
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Ray theta functions are defined in [24, Section 1.4] as a generalization of the set of

cluster variables in the principal-coefficients cluster algebra. If B is of finite type, the sec-

ond part of the phenomenon can be restated to assert that the map sends cluster variables

to cluster variables.

The goal of this chapter is to prove theorems which provide examples of these phenomena

using the orbifolds model of Chapter 3. In particular, [24, Definition 3.17] introduces a simple

operation, called resection, at arcs in triangulations of marked surfaces. This operation induces

a dominance relation on signed adjacency matrices, and provides examples of each of the Phe-

nomena in certain cases when B and B′ are related in this manner. In Section 4.2, we show that

this notion of resection can be broadened to encompass resection at ordinary arcs in orbifolds in

a natural way (see Definition 4.2.1), and introduce a new operation of resection at non-ordinary

arcs (see Definition 4.2.2). We then show in Proposition 4.2.8 that any composition of these

operations induces a dominance relation on signed-adjacency matrices.

Section 4.3 is devoted to proving the following two results, which generalize [24, Theorems 1.2

and 1.7] by providing examples of “rational versions” of Phenomena I and II, respectively. (The

bulk of the work is in proving Theorem 4.1.2; analogously to [24], Theorem 4.1.1 then follows

from the generalizations in Section 3.4 of results in [22] to orbifolds.)

Theorem 4.1.1. Let O = (S,M,Q) be an orbifold with tagged triangulation T consisting of n

arcs, and let O′ = (S′,M′,Q′) be obtained by a resection of O that is compatible with T . Let

T ′ denote the triangulation induced on O′ by T . If every component of O and O′ either has

the Null Tangle Property or is a null surface, then the identity map from QB(T ) to QB(T ′) is

mutation-linear.

Theorem 4.1.2. Let O be an orbifold with tagged triangulation T consisting of n arcs, and

let O′ be obtained by a resection of O that is compatible with T . Let T ′ denote the triangula-

tion induced on O′ by T . The rational quasi-lamination fan FQ(T ) refines the rational quasi-

lamination fan FQ(T ′). If every component of O and O′ has the Curve Separation Property,

then FQ
B(T ) ∩ Qn refines FQ

B(T ′) ∩ Qn, where FQ
B(T ) and FQ

B(T ′) denote the rational parts of the

mutation fans FB(T ) and FB(T ′), respectively.

When an exchange matrix is of finite type, it is known that both its cluster scattering

fan and its mutation fan coincide with the g-vector fan for its transpose. (The equality of

the cluster scattering fan with the g-vector fan for the transpose can be deduced from [14]

as discussed in [24, Section 1.3]. The equality of the mutation fan with the g-vector fan for

the transpose, proven in [21], appears here as Proposition 2.2.46.) Since the g-vector fan is

rational and all orbifolds of finite type have the Curve Separation Property by Theorem 3.4.5

and [22, Theorem 6.1], we obtain the following corollary to Theorem 4.1.2, a generalization

of [24, Corollary 1.15] which provides an example of Phenomenon III:
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Corollary 4.1.3. Let O be an orbifold with tagged triangulation T consisting of n arcs, and

let O′ be obtained by a resection of O that is compatible with T . Let T ′ denote the triangulation

induced on O′ by T . If O, and therefore O′, are of finite type, then the cluster scattering fan

ScatFan(B(T )) refines ScatFan(B(T ′)).

Remark 4.1.4. We hope in future work to understand ScatFan(B(T )) when B(T ) is the signed-

adjacency matrix of a triangulation T of an orbifold; current work is underway with Muller and

Reading to characterize the scattering fans of marked surfaces. By [24, Theorem 1.10], for any

exchange matrix B, ScatFan(B) refines FB.

We prove our third main result, an example of Phenomenon IV, in Section 4.4.

Theorem 4.1.5. Suppose O = (S,M,Q) is a disk with one orbifold point, no punctures, and

at least two marked points, and that T is a triangulation of O such that the signed-adjacency

matrix B = B(T ) is acyclic. If B(T ) dominates B′, then both parts of Phenomenon IV occur.

Theorem 4.1.5 completes the proof of the following result, which appears as [24, Expected

Theorem 1.17] by handling the cases when the exchange matrix B is of type Bn or Cn:

Theorem 4.1.6. Suppose B is an acyclic matrix of finite type, and suppose B′ is another

exchange matrix dominated by B. Then the map νz is an injective, g-vector preserving homo-

morphism from A•(B′) to A•(B) and sends each cluster variable in A•(B′) to a cluster variable

in A•(B).

4.2 Resection of orbifolds

In this section we define our primary tool, resection of orbifolds. Definition 4.2.1 is a general-

ization of the resection of marked surfaces in [24, Definition 3.17] to ordinary arcs in orbifolds.

We introduce resection at non-ordinary arcs in Definition 4.2.2; the remaining definitions then

generalize [24, Definitions 3.18, 3.19, and 3.20]. If the orbifold O under consideration is in

particular a marked surface, then the definitions coincide.

Definition 4.2.1 (Resection at an ordinary arc). Suppose α is an ordinary (untagged) arc in

orbifold O = (S,M,Q) with endpoints at p1, p2 ∈ M as in the lefthand image of Figure 4.1

(endpoints p1 and p2 need not be distinct). Add a new marked point pα in the interior of O
close to α, and then draw a curve in O which connects p1 to p2 and forms a digon whose interior

contains pα but no points in M ∪Q. Draw two additional curves inside the digon, connecting

p1 and p2 to pα. This cuts the digon into two triangles, neither of which has any marked or

orbifold points in its interior. Finally, remove the interior of the triangle that does not have α as

an edge: the result is illustrated in the righthand image of Figure 4.1. If neither endpoint p1 nor
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αp1 p2

resect at α−−−−−−→ pα

αp1 p2

Figure 4.1: Resection of an orbifold at an ordinary arc

p2 is on a boundary component, we are done. Otherwise, complete the procedure by cutting the

resulting surface at each endpoint pi which is on a boundary component in order to satisfy the

requirement in Definition 3.2.1 that the boundary components of an orbifold be circles. In this

case each such pi becomes two distinct marked points on the boundary. The resulting marked

surface is called a resection of O at α, and we follow [24] in using the verb “resect” and the

noun “resection” to describe passing from O to the resected orbifold, which we denote by O′.
Note that O′ may be disconnected even if O is connected; we explicitly permitted disconnected

orbifolds in Definition 3.2.1 for precisely this reason. In general, for each ordinary arc α in O
there are two possible resections at α, one for each side of the arc. However, we disallow any

resections on O that result in a connected component of O′ which is an empty triangle, as

these are not permitted for orbifolds in Definition 3.2.1. (The term “empty” means the triangle

contains no punctures orbifold points. None of the other forbidden connected components can

arise as a result of resection at an ordinary arc.)

Definition 4.2.2 (Resection at a non-ordinary arc). Suppose α is a non-ordinary (untagged)

arc in orbifold O = (S,M,Q) connecting marked point p ∈ M to orbifold point q ∈ Q as in

the lefthand image of Figure 4.2 . Cut O “inside” α, thereby eliminating q and turning α′ into

a regular arc with both endpoints at p. Glue a once-punctured monogon along the exposed side

of α′. Add a new marked point pα inside the monogon near the former location of q. Draw two

non-coinciding (although isotopic) curves inside the mongon, both connecting p to pα. This cuts

the monogon into a digon and a triangle, neither of which has any marked or obifold points in

its interior. Finally remove the interior of the digon: the result is illustrated in the righthand

image of Figure 4.2. If p is not on a boundary component, we are done. Otherwise, complete

the procedure by cutting the resulting orbifold at p to satisfy the requirement that boundary

components be circles. In this case p becomes two distinct marked points on the boundary. The

resulting orbifold O′ is called the resection of O at α. Observe that for each non-ordinary

arc α in O there is a unique resection at α.

Remark 4.2.3. Note that Definition 4.2.2 of resection at a non-ordinary arc does not depend

on whether the given arc α is double or pending (that is, if the orbifold endpoint q is of weight
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αp q
resect at α−−−−−−→

α′
p

pα

Figure 4.2: Resection of an orbifold at a non-ordinary arc

2 or 1/2, respectively). However, the idea of “cutting inside” α to turn it into an ordinary arc

with two coinciding endpoints at marked point p makes some intuitive sense in both cases,

which we now attempt to illuminate. Let T be a tagged triangulation of O containing the

arc α and suppose that O, T arises as a folding πσ(Õ), πσ(T̂ ) of some other orbifold Ô with

tagged triangulation T̂ under a folding symmetry σ (see Definition 3.5.3), where π−1
σ (q) is not

an orbifold point of Ô. (Recall from Remark 3.5.4 that full unfoldings to marked surfaces are

constructed in [5] for all orbifolds other than spheres with a unique orbifold point of weight

1/2, so this assumption is not unreasonable.) For simplicity, suppose σ consists of a single local

or prime symmetry about π−1
σ (q).

• If q is of weight 2 and σ is a local symmetry (see Definition 3.5.1), then π−1(q) is a single

puncture in Ô, π−1(p) is a single marked point in ÔO, and π−1(α) consists of a conjugate

pair of arcs in T̂ with opposite taggings at π−1(q). We then view α as being obtained

by removing those taggings and gluing the two arcs in π−1(α) together. By performing

resection on O at α, we are cutting those two pieces apart in their interior, turning the

double arc into an ordinary arc with coinciding endpoints.

• On the other hand, if q is of weight 1/2 and σ is a prime symmetry (see Definition 3.5.2),

then π−1(q) is a single unmarked interior point of Ô, π−1(p) consists of two distinct

marked points in Ô, and π−1(α) is an ordinary arc in T̂ connecting one element of π−1(p)

to the other, with its “midpoint” at π−1(q). We then view α as being obtained by folding

π−1(α) in half and then gluing the two halves together. By performing resection on O at

α, we are cutting those two halves apart in their interior, restoring the pending arc to a

‘full’ ordinary arc with coinciding endpoints.

Definition 4.2.4 (Resection at a collection of arcs). In general, a resection of an orbifold O =

(S,M,Q) is an orbifold O′ = (S′,M′,Q′) obtained by performing any number of resections at

ordinary arcs and oribfold-resections at non-ordinary arcs, possibly resecting the same ordinary

arc on both sides. We also use the term resection to refer to the operation itself. (Note that

M′ ⊃M while Q′ ⊆ Q, with strict containment Q′ ⊂ Q if any resections at non-ordinary arcs

were performed.) This operation is well-defined up to isotopy (that is, independent of the order of
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composition of resections at arcs) so long as the arcs which are resected are pairwise-compatible

and none of the resections at ordinary arcs are of the type forbidden in Definition 4.2.1 (which

result in O′ having an empty triangle as a connected component).

Definition 4.2.5 (Resection compatible with a triangulation). Let O be an orbifold with

(untagged) triangulation T . A resection of O is compatible with T if it satisfies the following

conditions:

1. The arcs that are resected are all arcs in T .

2. For each ordinary arc that is resected, the new marked point pα is placed in the interior of

a triangle of T which is bounded by α, and the new curves which define the resection are

also drawn in the interior of this triangle (with the possible exception of their endpoints).

3. If an ordinary arc α that is resected has an endpoint at a puncture p, then either both

endpoints of α are at p or else there exists at least one additional arc β with an endpoint

at p that is also resected. In the latter case, we further require that the new marked points

pα and pβ be placed in the interiors of different triangles of T .

Note that Definition 4.2.5 implicitly requires that a resection not cut off an empty triangle

(see Definition 4.2.1). Furthermore, these conditions, which all come directly from [24, Defi-

nition 3.19], imply that a resected ordinary arc α may not be the fold edge of a self-folded

triangle of T , and must therefore be contained in two distinct triangles of T . (Recall that non-

ordinary arcs are always contained in unique triangles with three distinct edges.) No additional

requirements are needed to accommodate orbifold-resection.

Definition 4.2.6 (Triangulation induced on the resected orbifold). Let O be an orbifold with

(untagged) triangulation T . If O′ is a resection of O that is compatible with T , then each

ordinary arc in T is an ordinary arc in O′, and each non-ordinary arc in T that was not

resected is a non-ordinary arc in O. Each non-ordinary arc in T that was resected corresponds

to a unique ordinary arc in O′. The collection of these arcs cut O into triangles, called the

triangulation induced on O′ by T .

Remark 4.2.7. While resection of O, T is defined with respect to (untagged) arcs and triangula-

tions (see Definition 3.2.3), the results of Section 3.4 relating quasi-laminations on O, T to the

mutation-linear algebra notions associated to the signed-adjacency matrix B(T ) are phrased in

terms of tagged triangulations. We therefore pause to recall the discussion in Definition 3.2.6

of the methods for moving from one to another.

There exists a bijective map τ between (untagged) triangulations and the set of tagged

triangulations where the only notched taggings occur at punctures incident to a conjugate pair
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of arcs with opposite taggings. (Recall that such pairs are the images, under τ , of self-folded

triangles in the (untagged) triangulation: see the central two images in Figure ??.) To transform

an arbitrary tagged triangulation into an untagged triangulation, simply reverse all taggings at

punctures incident only to arcs tagged notched at that puncture. The resulting tagged trian-

gulation satisfies the condition described above: the only notched taggings occur at conjugate

pairs of arcs with opposite taggings at that puncture. Replacing each conjugate pair of arcs with

the corresponding self-folded triangle under τ−1 results in the desired (untagged) triangulation.

Passing between a tagged triangulation and an (untagged) triangulation in this way does not

change the associated signed-adjacency matrix: indeed, the signed-adjacency matrix of a tagged

triangulation is defined as the signed-adjacency matrix of the (untagged) triangulation which

is obtained in the manner described above.

Define resection of O compatible with tagged triangulation T as any resection of O
compatible with the (untagged) triangulation obtained from T by the method described above.

(For convenience, we refer to the resulting (untagged) triangulation by T as well.) The tagged

triangulation induced on O′ is then obtained by first applying τ to the triangulation T ′, and

then, at any punctures in O′ which correspond to punctures in O at which all arcs were tagged

the same, applying those taggings to the arcs’ images in T ′. Again, we abuse terminology and

call the resulting tagged triangulation T ′.

The section concludes with a proof that resection on orbifolds induces a dominance rela-

tionship on signed adjacency matrices, generalizing [24, Proposition 3.23]. The argument here

is structured similarly: we can almost, but not quite, resect one arc at a time, but at times must

appeal to Condition 3 of Definition 4.2.5.

Proposition 4.2.8. Given an orbifold O with tagged triangulation T , perform a resection of

O compatible with T and let T ′ be the triangulation induced by T on the resected orbifold O′.
Then B(T ) dominates B(T ′).

Proof. We consider several cases for resection at an arc α in T which is not the fold edge of a

self-folded triangle. In each, we let T ′ be the triangulation obtained by resecting at α (as well

as, if required by condition 3 of Definition 4.2.5, resecting at an additional arc β ∈ T ), and show

that B(T ) dominates B(T ′). The conclusion, that B(T ) dominates B(T ′) for any resection of

O consisting of a collection of such resections at arcs, is actually stronger than the claimed

result, as it encompasses additional resections besides those which are compatible with T . In

cases (i)-(v), we assume α is ordinary, and in cases (vi) and (vii), we assume it is non-ordinary.

(i) Suppose α is ordinary and incident to neither the puncture in a once-punctured digon

nor the puncture in a monogon containing one puncture and one orbifold point in its

interior. Furthermore suppose that the new marked point pα is placed in the interior of a
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α

β

γ

δ

ε

resect at α−−−−−−→ α

β

γ

δ

ε

Figure 4.3: Illustration for case (i) in the proof of Proposition 4.2.8

α
β

γ

δ

resect at α,β−−−−−−−−→
α

β

γ

δ

Figure 4.4: Illustration for case (ii) in the proof of Proposition 4.2.8

triangle of T with distinct ordinary edges α, β, and γ. The parts of T and T ′ right around

α are illustrated in Figure 4.3 (cf. [24, Figure 6]), and the case is covered by the proof

of [24, Proposition 3.23]. While not explicitly mentioned there, it is possible that β and

or γ is the non-fold edge of a self-folded triangle: in this case, in addition to the entries of

B(T ) indexed by β (and or γ) decreasing in absolute value by 1 to obtain B(T ′), so too

do the entries indexed by the fold edge. Note as well that either or both of the arcs δ and

ε may be non-ordinary: this does not affect the proof.

(ii) Suppose α is ordinary and is incident to the puncture in a once-punctured digon. Then

by necessity, pα must be placed in the interior of a triangle with distinct ordinary edges

α, β, and γ, where β is also incident to the puncture. We again appeal to the proof

of [24, Proposition 3.23], which in this case invokes condition 3 of Definition 4.2.5 and

requires resection at β. The situation is illustrated in Figure 4.4 (cf. [24, Figure 7]).

Similarly to case (i), it is possible that γ and or δ is the non-fold edge of a self-folded

triangle: again, this would imply that the entries of B(T ) indexed by the fold edge(s) will

also decrease in absolute value by 1 to obtain B(T ′).

(iii) Suppose α is ordinary and is incident to the puncture in a monogon containing one

puncture and one orbifold point. T must contain two additional arcs inside the monogon

bounded by γ: an ordinary arc β and a non-ordinary arc δ. Since α is not the fold edge

of a self-folded triangle, there exists a unique ordinary arc β ∈ T which is also incident

to the puncture, and by condition 3 of Definition 4.2.5, both α and β must be resected

according to condition 2 with pα and pβ placed in the interiors of different triangles of

T . By symmetry, we may assume that pα is placed in the interior of the triangle with
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δ

γ

Figure 4.5: Illustration for case (iii) in the proof of Proposition 4.2.8

α
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β
γ

resect at α−−−−−−→ α

δ

ε

β
γ

Figure 4.6: Illustration for case (iv) in the proof of Proposition 4.2.8

distinct ordinary edges α, β, γ and pβ is placed in the interior of the triangle with non-

ordinary edge δ, and let T ′ denote the resulting resection. The situation is illustrated in

Figure 4.5. Then B(T ) dominates B(T ′), where B(T ′) is obtained from B(T ) as follows:

set the αδ- and αβ-entries equal to zero. If γ is an arc (rather than a boundary segment),

then decrease the absolute values of the βγ- and γβ-entries by 1. The αβ- and βα-entries

in both signed adjacency matrices are zero.

(iv) Suppose α is ordinary and not incident to the puncture in a monogon containing one

puncture and one orbifold point. Furthermore suppose that the new marked point pα is

placed in the interior of a triangle of T with ordinary edges α and β and non-ordinary

edge γ. (By necessity, α cannot be incident to the puncture in a once-punctured digon in

this case.) Then B(T ) dominates B(T ′). The situation is illustrated in Figure 4.6: let ε

and δ denote the edges of the other triangle containing α. If δ and β were to coincide, then

ε would bound a mongon containing one puncture and one orbifold point with α incident

to the puncture, a contradiction of our hypothesis. Likewise, ε and β can’t coincide. Thus

resection sets the αγ- and γα- entries of B(T ) equal to zero, and, if β is an arc, decreases

the absolute value of the αβ- and βα- entries by 1.

(v) For our last ordinary case, suppose α is ordinary and pα is placed in the interior of a

triangle with two non-ordinary edges. (By necessity, α cannot be incident to either the

puncture in a once-punctured digon nor the puncture in a monogon with one puncture

and one orbifold point in this case.) Then B(T ) dominates B(T ′), where resection sets

the αγ-, γα-, αβ-, and βα-entries equal to zero. The situation is illustrated in Figure 4.7.

(vi) Now, suppose α is non-ordinary and is the unique non-ordinary edge of a triangle in T .
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Figure 4.7: Illustration for case (v) in the proof of Proposition 4.2.8

β γ
α

resect at α−−−−−−→ α′β γ

Figure 4.8: Illustration for case (vi) in the proof of Proposition 4.2.8

Then B(T ) dominates B(T ′), where the row and column in B(T ) indexed by α corresponds

to the row and column in B(T ′) indexed by α′, the image of α in O′ under resection at

α. The situation is illustrated in Figure 4.8.

If α is a double arc, then the αβ-entry of B(T ) is 2 and the αγ-entry is −2, while the

βα-entry is −1 and the γα entry is 1. Resection affects only the αβ- and αγ- entries,

setting the corresponding α′β and α′γ-entries of B(T ′) to 1 and −1, respectively.

If instead α is a pending arc, then the αβ-entry of B(T ) is 1 and the αγ-entry is −1, while

the βα-entry is −2 and the γα entry is 2. Resection now affects only the βα- and γα-

entries, setting the corresponding βα′- and γα′-entries of B(T ) to −1 and 1, respectively.

(vii) Finally, suppose α is non-ordinary and is one of two non-ordinary edges of a triangle

in T . Then B(T ) dominates B(T ′), where again the row and column in B(T ) indexed

by α corresponds to the row and column in B(T ′) indexed by α′, the image of α in

O′ under resection at α. The situation is illustrated in Figure 4.9. (Note that while the

figure illustrates the case when, traveling around the triangle in a clockwise direction, one

encounters the arcs in the order α, β, γ, the written description below also applies to the

case when the other non-ordinary arc β follows α in the counterclockwise direction.)

If α is a double arc, then resection changes only the αγ- and αβ-entries of B(T ). In

particular, one obtains the α′γ- entry of B(T ′) by decreasing the absolute value of the

αγ-entry of B(T ) by 1. The α′β-entry is obtained by decreasing the absolute value of the

αβ-entry by 1 if β is a double arc or by 2 if β is pending.

If instead α is a pending arc, then resection changes only the γα- and βα-entries of B(T ).
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Figure 4.9: Illustration for case (vii) in the proof of Proposition 4.2.8

In particular, one obtains the γα′- entry of B(T ′) by decreasing the absolute value of the

αγ-entry of B(T ) by 1. The βα′-entry is obtained by decreasing the absolute value of the

βα-entry by 1 if β is a double arc or by 2 if β is pending.

Remark 4.2.9. Given a triangulation T of an orbifold O, it is generally not possible to obtain

every exchange matrix which is dominated by B(T ) by resecting O. One potential issue arises in

(ordinary) resection of surfaces [24, Remark 3.24], and carries over to resection at ordinary arcs

in orbifolds. In particular, in case (i) of the proof of Proposition 4.2.8, illustrated in Figure 4.3, if

both β and γ are (ordinary) arcs, rather than boundary segments, then the entries bαβ, bαγ , bβα,

and bγα of B(T ) are all changed by resection at α. It is impossible to change only the entries

bαβ and bβα through resection, even though the result would be an exchange matrix which is

dominated by B(T ).

A second issue arises which is particular to resection at non-ordinary arcs. As mentioned

in Definition 3.2.4, the signed adjacency matrix B(T ) of an orbifold triangulation always has

entries in the set {0,±1,±2,±4}, where an entry bαβ of absolute value 4 corresponds to an

adjacency between a double arc α ∈ T and a pending arc β ∈ T . (The entry bβα has absolute

value 1.) In such a situation, the only way to change the entry bαβ is by resection at α: however,

as discussed in case (vii) of the proof of Proposition 4.2.8 and illustrated in 4.9, such a resection

decreases the absolute value of bαβ by 2. It is impossible to decrease the absolute value of bαβ

by 1 to obtain an entry bα′β of B(T ′) of absolute value 3, even though the result would be an

exchange matrix dominated by B(T ).

4.3 Mutation fan refinement and mutation-linearity

In this section, we prove Theorem 4.1.2, and then use the result to prove Theorem 4.1.1.

Proof of Theorem 4.1.2. As a consequence of Theorem 3.3.6, there exists a bijective map from

rational quasi-laminations L on O to rational quasi-laminations L′ on O′ that preserves shear

coordinates. We determine this bijection, and then use it to construct, for each cone CΛ in

FQ(T ), a corresponding cone C ′Λ′ in FQ(T ′) such that CΛ ⊆ C ′Λ′ . In particular, recall from Defi-

nition 3.3.19 that CΛ∩Qn is the set of shear coordinates of all non-negative rational weightings
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Figure 4.10: Proceeding down each column, first steps in the identity map on quasi-laminations
for resection at a non-ordinary arc

on the collection Λ of pairwise-compatible allowable curves in O. We construct a collection Λ′

of pairwise-compatible allowable curves in O′ such that for any nonnegative rational weighting

on Λ (yielding rational quasi-lamination L), there exists a nonnegative rational weighting on

Λ′ (yielding rational quasi-lamination L′) such that b(T ′, L′) = b(T, L). This then implies that

CΛ ∩Qn ⊆ C ′Λ′ ∩Qn, and since CΛ and C ′Λ′ are both rational cones, that CΛ ⊆ C ′Λ′ , as desired.

Recall that the resection consists of a collection of resections at arcs of T satisfying conditions

2 and 3 of Definition 4.2.5, and these resections may be performed in any order. We may almost,

but not quite, construct Λ′ on O′, T ′ from Λ on O, T by resecting at one arc α ∈ T at a time;

we will at some point need to appeal to condition 3 of Definition 4.2.5. We consider resection

at a non-ordinary arc α first, and then at an ordinary arc.

Assume α is non-ordinary. Let q denote the orbifold point endpoint of α, and denote the

other edges of the unique triangle in T of which α is an edge by β and γ, respectively, as one

travels around the triangle in the clockwise direction. All of these edges are distinct, and we

refer to the triangle by its edges as triangle αβγ. Assume, as in Definition 3.3.1, that pairwise

compatible isotopy representatives of the allowable curves in Λ have been chosen to minimize

the number of intersections between Λ and the triangle αβγ, and consider all such intersections.
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Figure 4.11: Shear coordinates and resection: cf. Tables 3.1 and 3.2

Note that a single curve in Λ may intersect the triangle more than once, and possible infinitely

many times if it spirals into a vertex of the triangle.

In the first steps of constructing Λ′ from Λ, we only alter the portions of the allowable curves

in the interior of triangle αβγ. Up to isotopy, we may assume that the new marked point pα

placed when performing resection at α is situated as illustrated in the pictures in the top row

of Figure 4.10. (Note that there are other possibilities for ways in which a given compatible

collection of curves can intersect α non-trivially: for example, in the leftmost image, we could

have alternatively depicted the purple and orange curves as exiting the triangle through γ.

However, the four images are general enough to make clear where the point pα must be placed.)

We may further assume that, after performing resection at α and thereby obtaining arc α′ ∈ T ′,
that the curves intersect the new boundary component as illustrated in the corresponding

pictures in the middle row of Figure 4.10. Now, remove from each curve its intersection with the

new boundary component, as illustrated in the bottom row of Figure 4.10, thereby potentially

cutting it into smaller curves.

This procedure results in a collection Λ′ of curves inO′. If each curve in Λ′ inherits the weight

of the curve in L from whence it came, we obtain a collection of curves L′ with non-negative

rational weightings. These curves may not be allowable, nor are they necessarily pairwise-

compatible; however, if we permit ourselves to compute the shear coordinates of L′ with respect

to T ′ regardless, we would like to obtain the shear coordinates of the original collection L with

respect to T . For this to be the case, we claim that we must alter certain curves inside the

triangle to account for the fact that α ∈ T was non-ordinary while α′ ∈ T is ordinary. In

particular, if α was a double arc (q ∈ Q2), then we show that we need only alter one type of

curve in Λ′. If α was a pending arc (q ∈ Q1/2), then we show that we must alter a second

type of curve as well. Label the two boundary segments which make up the new boundary

component of O′: name as ε the segment encountered when traveling along the boundary from

pα keeping O′ on the left, and name as δ the other segment, encountered when traveling along

the boundary from pα keeping O′ on the right. (See the central image in Figure 4.11.)

113



β

γ

α

q resect at α−−−−−−−−−−−−−−−→
alter curves incident to q

β

γ

α′ε
δ

pα
=

β

δ

γ

ε

α′

pα

Figure 4.12: Adjustment of non-ordinary curves incident to q in the identity map on quasi-
laminations

• Let λ′ ∈ Λ′ be a curve arising from a non-ordinary curve λ ∈ Λ with endpoint at q. That

is, λ′ connects β (resp. γ) to a “floating end” on the arc α′. (For example, see the orange

and cyan curves in Figure 4.10.) Extend λ′ from this floating end by a short curve which

terminates at an unmarked point x on boundary segment ε (resp. δ) without intersecting

any arcs in T or curves in Λ′ as illustrated in Figure 4.12. Comparing the lefthand image

of the figure with the top row of Table 3.2 and the righthand image with the top row of

Table 3.1, we see that bα′(T
′, λ′) = bα(T, λ), and the shear coordinates of L′ with respect

to every other arc in the triangulation are unaffected by the adjustment.

• Suppose α is a pending arc, and let λ′ ∈ Λ′ be a curve which connects β to an unmarked

point y on boundary segment δ (resp. γ to an unmarked point on ε) after crossing α′, and

arose under resection from a curve λ ∈ Λ which intersected β, then α, then β (resp. γ,

then α, then γ). In particular, resection at α cut λ into two pieces: in addition to λ′, the

other curve created, λ′′, connects β to an unmarked point on ε. Replace the portion of λ′

between α′ and y by a short curve which terminates at an unmarked point x on boundary

segment ε (resp. δ) without intersecting any arcs in T or curves in Λ′ as illustrated in

Figure 4.13. Comparing the lefthand image of the figure with the bottom four rows of

Table 3.2 and the righthand image with the top two rows of Table 3.1, we see that

bα′(T
′, λ′) + bα′(T

′, λ′′) = bα(T, λ), and the shear coordinates of L′ with respect to every

other arc in the triangulation are unaffected by the adjustment. (We do not perform this

adjustment if α was a double arc.)

Reusing Λ′ for the collection of curves resulting from these alterations, and L′ for the weighted

collection, we now have b(T ′, L′) = b(T, L), as desired.

The next step is to alter any curves in Λ′ which are not allowable. Since the original collection

Λ consisted of pairwise compatible curves with isotopy representatives chosen to minimize

intersections with triangle αβγ, each such non-allowable curve must be one of the following:
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Figure 4.13: Further adjustment of curves if q ∈ Q1/2 in the identity map on quasi-laminations

• A curve with two endpoints on a boundary component that is contractible to a portion of

the boundary component containing one marked point. (For example, see the blue curves

in the second column of Figure 4.10 if either β or γ (or both) are boundary segments.)

• A curve with both endpoints on the same boundary segment that cuts out, together with

the portion of the boundary between its endpoints, a disc containing a unique point in

M∪Q. (For example, this will occur if the arc resected in the second column of Figure 4.10

is pending, after the purple closed curve is altered as described in the previous step.)

The first type of non-allowable curve has shear coordinates of zero with respect to every arc

in T ′, so we can delete all such curves from the collection Λ′ without changing the shear

coordinate vector b(T ′, L′) of the corresponding quasi-lamination L′. The second type of non-

allowable curve cannot be dealt with in this manner, as it may make a nonzero contribution

to b(T ′, L′). Instead, as in [24], we replace each such curve which cuts out a once-punctured

disc, depicted in the second image in Figure 3.8, by the corresponding conjugate pair of curves

depicted in Figure 3.9, each endowed with the same weight as the curve that was replaced.

Similarly, we replace each curve which cuts out a disc containing one orbifold point q′ and no

punctures, depicted in the third image of Figure 3.8), by the corresponding non-ordinary curve

depicted in Figure 3.9 connecting the boundary to q′, endowed with the same weight as the

replaced curve if q′ ∈ Q2 and double the weight of the replaced curve if q′ ∈ Q1/2. In both

cases, the shear coordinates of the replacement curve(s) equal(s) the shear coordinates of the

non-allowable curve which was replaced. Furthermore, the replacement curve(s) are pairwise-

compatible with the non-altered allowable curves in the collection (and the conjugate pair of

curves are compatible with one another).

It is possible that distinct curves in the new collection may coincide up to isotopy, in which

case we delete any such repetitions and adjust weights accordingly. We again reuse Λ′ and L′

for the collection and weighted collection, respectively. All of these modifications preserve the

shear coordinates of L′, and now Λ′ consists solely of allowable curves in O. It remains only to
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show that the curves in Λ′ are pairwise compatible.

If all of the curves in the original collection Λ were pairwise non-intersecting, then the

images of those curves which comprise Λ′ will be as well, and are therefore pairwise compatible.

Potentially, however, Λ may contain a conjugate pair of curves. If the puncture at which they

have opposite spiral directions is not the marked point endpoint of α, then the image of the

pair in Λ′ is still a pairwise-compatible collection (which contains a conjugate pair of curves).

Even if this puncture is the marked point endpoint of α, the image of the pair in Λ′ is still

pairwise compatible, as in particular, all non-discarded curves are non-intersecting. We therefore

conclude, as desired, that Λ′ is a collection of pairwise-compatible allowable curves in O′, with

a non-negative rational weighting on these curves producing a rational quasi-lamination L′ such

that b(T ′, L′) = b(T, L).

Now, assume α is ordinary. If α falls into either case (i) or (ii) of Proposition 4.2.8 (as

illustrated in Figures 4.3 and 4.4, respectively) then the construction of Λ′ is almost entirely

handled by the proof of [24, Theorem 1.7], the analogous result for surfaces. The only adjustment

required for orbifolds is to also replace any non-allowable curve in Λ′ of which has both endpoints

on the same boundary segment and cuts out, together with the portion of the boundary between

its endpoints, a disc containing a single orbifold point q′ and no punctures. This replacement

is handled precisely as described above. Indeed, the entire construction in the proof of [24,

Theorem 1.7] is very similar to that described above, except that it does not require the step

where curves are altered to preserve shear coordinates. The proof also separately handles the

case when ordinary arcs β and γ coincide. Finally, if α falls into any of the remaining cases

of resection at ordinary arcs in Proposition 4.2.8, as depicted in Figures 4.5, 4.6, and 4.7, the

construction of Λ′ proceeds precisely as described above, except that again we may omit the

step where curves are altered to preserve shear coordinates.

Recall from Section 2.2.2 that given an n × n exchange matrix B and an underlying ring

R (which we take to be Z,Q or R), that the notation RB denotes the partial linear structure

RB = (Rn, R,VηB ) (see Definition 2.2.22) where the set of valid relations VηB consists of B-

coherent linear relations with coefficients in R (see Definition 2.2.19). Given a second n × n
exchange matrix B′, recall that a linear map λ : RB → RB

′
is mutation-linear if and only if it

maps B-coherent linear relations to B′-coherent linear relations.

We quote a result from [24] and then use it in conjunction with results from Chapters 2 and 3

to prove that a rational version of Phenomenon I holds in the case of resection of orbifolds as an

an immediate consequence of Theorem 4.1.2. The proof is identical to that of [24, Theorem 1.2]

with the relevant orbifold results substituted for the surface ones. However, we provide it here

as it is a nice illustration of the connection between Phenomena I and II.

Proposition 4.3.1. [24, Proposition 3.3] Suppose that B and B′ are n×n exchange matrices,
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and let FQ
B and FQ

B′ denote the rational parts of mutation fans FB and FB′, respectively. If the

identity map QB → QB′ is mutation-linear, then FQ
B ∩ Qn refines FQ

B′ ∩ Qn. Assuming also

that QB admits a cone basis, the identity map is mutation-linear if and only if FQ
B ∩Qn refines

FQ
B′ ∩Qn.

Proof of Theorem 4.1.1. By Theorem 3.4.17 and Proposition 2.2.36, QB(T ) admits a positive

basis and therefore a cone basis. Since the Null Tangle Property implies the Curve Separation

Property by Corollary 3.4.16, it follows from Theorem 3.4.3 that FQ(T ) is the rational part of

FB(T ) and FQ(T ′) is the rational part of FB(T ). Then by Proposition 4.3.1, the identity map

QB(T ) → QB(T ′) is mutation-linear.

4.4 Ring homomorphisms between cluster algebras

In this section, we prove Theorem 4.1.5: If O is a disk with a unique orbifold point and no

punctures, and T is a tagged triangulation of O such that B(T ) is acyclic, then if B = B(T )

dominates B′, the map νz defined below in (4.1) is an injective, g-vector preserving ring homo-

morphism from A•(B′) into A•(B) sending cluster variables to cluster variables.

We begin by reviewing the setup of [24, Theorem 1.20], quoted below as Theorem 4.4.1,

the analogous result for once-punctured and empty disks upon which our work is based. All of

the exchange matrices which arise in this way are of finite type (and thus any matrices they

dominate are as well). In particular, let T denote, respectively, a tagged triangulation of an

empty disk, a disk with one puncture, a disk with one orbifold point of weight 1/2, or a disk

with one orbifold point of weight 2. Then B(T ) is of respective finite type An, Dn, Cn, or Bn.

Recall from Section 2.2.1 that A•(B) denotes the principal-coefficients cluster algebra asso-

ciated to B. Assuming B is an n×n exchange matrix, let x = (x1, . . . , xn) denote the initial clus-

ter, and y = (y1, . . . , yn) the initial choice of (principal) coefficients. The cluster algebra A•(B)

is therefore a subring of the ring of Laurent polynomials in x1, . . . , xn with coefficients given by

integer polynomials in y1, . . . , yn. Likewise, let x′ = (x′1, . . . , x
′
n) and y′ = (y′1, . . . , y

′
n) denote

the initial cluster and choice of (principal) coefficients for A•(B′). Then a ring homomorphism

from A•(B′) to A•(B) is entirely determined by its values on the set {x′1, . . . , x′n, y′1, . . . , y′n}.
Recall from Definition 2.2.11 that g-vectors are a Zn grading on the principal-coefficients

cluster algebra. In the finite type setting we consider here, for each integer vector a ∈ Zn, there

exists a unique cluster monomial whose g-vector is a. (A cluster monomial is a monomial

in cluster variables which all belong to a common cluster.) For each k ∈ [n], set zk to be the

cluster monomial whose g-vector is the kth column of B minus the kth column of B′. Define

a ring homomorphism from A•(B′) to the ring of Laurent polynomials containing A•(B) by
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extending the following set map νz on {x′1, . . . , x′n, y′1, . . . , y′n}:

νz(x′k) = xk for each k ∈ [n]

νz(y′k) = ykzk for each k ∈ [n].
(4.1)

If we knew that νz sent every cluster variable in A•(B′) to a cluster variable ib, or any element

of A•(B), it would be enough to conclude that that the image of νz is contained in A•(B). It is

clear by construction that νz sends initial cluster variables of A•(B′) to (initial) cluster variables

of A•(B), and furthermore that the map is g-vector preserving on this set. Yet beyond the initial

cluster, there is no immediate reason why the image of νz should be contained in A•(B), let

alone send cluster variables to cluster variables with the same g-vectors. However, [24] shows

this is true when B is an acyclic signed adjacency matrix of type An or Dn:

Theorem 4.4.1. [24, Theorem 1.20] Suppose (S,M) is a once-punctured or empty disk and

suppose T is a triangulation of O = (S,M) such that B(T ) is acyclic. If B(T ) dominates B′,

then both parts of Phenomenon IV occur.

Since this result is not at all obvious a priori, we summarize the motivating ideas and

argument from [24] in our more general orbifold setting. Recall from Section 3.3.3 that cluster

variables in A•(B(T )) are in bijection with tagged arcs in O, where the initial cluster variables

{x} = {xγ : γ ∈ T} correspond to the tagged arcs in T . Furthermore, the initial choices

of coefficients correspond to the elementary quasi-laminations associated to T . That is, we

may write {y} = {Lγ : γ ∈ T} where Lγ is the elementary quasi-lamination associated to γ

consisting of a single allowable curve of weight 1. Thus elements of A•(B(T )) can be represented

as sums of terms, each term of which is a monomial in the variables xα for tagged arcs α

in O (all tagged arcs, not just those in T , and tagged plain when O has one puncture and

no boundary components) with “coefficient” given by a monomial in the elementary quasi-

laminations Lγ . Recall further that there is also a bijection, κ, between the set of tagged arcs in

T and allowable curves on O which are not closed or semi-closed. For the surfaces and orbifolds

under consideration in this section, namely, empty disks, disks with one puncture, and disks

with one orbifold point, there are no closed or semi-closed allowable curves, so κ is a bijection

between the set of tagged arcs in T and the complete set of allowable curves in T . Finally,

for each tagged arc α in O, by (3.11) the g-vector for the corresponding cluster variable xα

is given by −b(T ∗, κ(α∗)), where T ∗ denotes the reversed triangulation and α∗ denotes the

reversed arc. (Since “reversing” swaps the weights on all orbifold points, so if O is a surface as

in Theorem 4.4.1, then T ∗ = T and α∗ = α.)

If B′ = B(T ′) for some triangulation T ′ induced by a resection O′ of O compatible with

T , then all of the above holds for A•(B(T ′)) as well. Furthermore, by Theorem 4.1.2, the

118



rational quasi-lamination fan FQ(T ) refines FQ(T ′), so in particular, every ray of FQ(T ′) is

also a ray of FQ(T ). But rays in the rational quasi-lamination fan are spanned by the shear

coordinates of allowable curves, so this correspondence is a shear-coordinate-preserving injective

map from allowable curves on O′ to allowable curves on O. Thus, since allowable curves are in

bijection with tagged arcs, which in turn are in bijection with cluster variables, and g-vectors

are given by shear coordinates, we have a natural candidate for desired map from A•(B′) into

A•(B). Let χ denote this map: in particular, for each tagged arc α′ on O′, define χ(α′) = α

to be the tagged arc on O such that b((T ′)∗, κ((α′)∗)) = b(T ∗, κ(α∗)). Extend χ to a map

on Var•(B(T ′)) ∪ {y′} which agrees with νz as defined in (4.1) by setting χ(L′γ′) = Lγzγ .

Then χ maps every exchange relation in A•(B(T ′)) to an equation relating elements of A•(B):

if each such equation is a valid relation in A•(B) (that is, if the equation is true), then χ

is a ring homomorphism [24, Proposition 5.2]. Furthermore, since χ and νz agree on the set

Var•(B(T ′)) ∪ {y′}, they must coincide. Thus χ = νz is our desired g-vector-preserving ring

homomorphism mapping cluster variables to cluster variables. Injectivity can be checked using

another result from [24]:

Proposition 4.4.2. [24, Proposition 5.3] Suppose B dominates B′. If there is at most one

index k such that there exists an index i with bik < b′ik ≤ 0, then the homomorphism νz is

injective.

For any exchange matrix B′ dominated by B, there exists a sequence of exchange matrices,

starting at B and ending at B′, such that each matrix is obtained from the latter by either

(i) setting two non-zero symmetric entries in B to both equal zero in B′, or

(ii) decreasing the absolute value of a unique entry in B to obtain a non-zero entry in B′.

Both of these operations satisfy the hypotheses of Proposition 4.4.3, and we show below that

they correspond to resection operations. The following result from [24] then lets us factor νz

through these individual steps (the notation νB
′,B

z makes explicit the factor in question), so

that it is sufficient to check each case on its own.

Proposition 4.4.3. [24, Proposition 5.28] Suppose B is acyclic and dominates B′, which

dominates B′′. If νB
′′,B′

z sends cluster variables of A•(B′′) to cluster variables of A•(B′) and

νB
′,B

z sends cluster variables of A•(B′) to cluster variables of A•(B), then the composition

A•(B′′)
νz−→ A•(B′)

νz−→ A•(B) sends cluster variables of A•(B′′) to cluster variables of A•(B).

This composition equals νB
′′,B

z : A•(B′′)→ A•(B).

We next examine the hypotheses of Theorem 4.1.5, and let O be a disk with a unique orbifold

point q and no punctures (with n + 1 ≥ 2 marked points on its boundary), and T a tagged
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
Figure 4.14: Examples of triangulations of a disk with a unique orbifold point q and no punc-
tures which have acyclic signed-adjacency matrices

triangulation of O such that the n×n signed-adjacency matrix B = B(T ) is acyclic, as depicted

in Figure 4.14. (Since O has no punctures, T has all arcs tagged plain and therefore applying τ−1

yields an (untagged) triangulation with no self-folded triangles.) Since B(T ) is acyclic, every

triangle of T has at least one edge on the boundary, and the unique non-ordinary triangle in T

consists of a boundary segment, an ordinary arc, and a non-ordinary arc. For the remainder of

this paragraph, denote the ordinary arc by γ and the non-ordinary arc by ζ. If q is of weight

1/2 then |bγζ | = 2 and |bζγ | = 1, and if q is of weight 2 then |bγζ | = 1 and |bζγ | = 2. For all other

ordinary arcs in T besides γ, bαζ = bζα = 0, and for any α, β ∈ T \ {ζ}, either bαβ = bβα = 0

or else |bαβ| = |bβα| = 1. If resection is performed at a single ordinary arc α ∈ T \ {ζ}, then

O′ consists of two connected components: a disk containing q with m ≥ 2 marked points on

its boundary and an empty disk with n + 1 − m marked points. Under resection at ζ, the

new orbifold O′ is a single empty disk with n + 3 marked points on its boundary. Regardless,

T ′ is acyclic since resection does not introduce any new arc adjacencies, and furthermore each

component of O′ satisfies the hypotheses of both Theorem 4.1.5 or Theorem 4.4.1. We now show

that there exist resections of O compatible with T that result in the operations on exchange

matrices enumerated above as (i) and (ii).

(i) Suppose B′ is obtained by setting any pair bαβ = −bβα of nonzero symmetric entries in

B(T ) equal to zero in B′. Then B′ = B(T ′) may be realized as the signed adjacency

matrix of the induced triangulation T ′ on O′ obtained by ordinary resection at a single

arc in T . If both α, β ∈ T are ordinary, then the result is accomplished by resecting at

either α or β, placing the new marked point (pα or pβ) placed in the interior of the triangle

with edges α, β, and a boundary segment: choose the arc such that, after resection, it is

not in the same component of O as the orbifold point. (No other entries of B are affected

by the operation since T is acyclic.) If, without loss of generality, α is ordinary and β
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is non-ordinary, then perform resection at α, placing the point pα in the non-ordinary

triangle shared by α and β. Again, α is not in the same component of O as the orbifold

point.

(ii) Suppose B′ is obtained by decreasing the absolute value of a unique entry in B(T ) to

obtain a non-zero entry in B′. By our description of B(T ), there is only one way to do

this: either decreasing |bγζ | by 1 if q ∈ Q1/2, or decreasing |bζγ | by 1 if q ∈ Q2. Regardless,

B = B(T ′) is realized as the signed adjacency matrix of the induced triangulation T ′ on

O′ obtained by resection at ζ.

We handle the first case in Proposition 4.4.4 using folding ideas from Section 3.5 (orbifold

folding) and Section 2.3 (matrix and cluster algebra folding) and applying Theorem 4.4.1.

We handle the second case in Proposition 4.4.5, following the outline used in similar proofs

in [24, Section 5.4]: first explicitly describing the map χ on tagged arcs and elementary quasi-

laminations, and then showing that χ maps exchange relations to exchange relations.

Proposition 4.4.4. Suppose O = (S,M,Q) is a disk with one orbifold point q and no punctures

(and at least 2 marked points on its boundary). Let T be a (untagged) triangulation of O. Suppose

O′, T ′ are obtained from O, T by a resection compatible with T at a single ordinary arc α ∈ T
with distinct endpoints, both on the boundary. Suppose also that the point pα used to construct

the resection is in a triangle of T having exactly one edge on the boundary and that the orbfiold

point q is in the component of O′ not containing α. Then both parts of Phenomenon IV occur.

Proof. Regardless of the weight of the unique orbifold point q in O, there exists a marked

surface Ô = (Ŝ, M̂) with tagged triangulation T̂ and folding symmetry σ such that Ô, T̂ folds

to O = πσ(Ô), T = πσ(T̂ ) under σ (see Definition 3.5.3), and thus πσ(B(T̂ )) = B(T ) by (3.12).

These surfaces satisfy the hypotheses of 4.4.1: namely, if q is of weight 1/2, then Ô is an empty

disk and σ is a single prime folding about the (unmarked) center point, as depicted in the first

column of Figure 4.15. If q is of weight 2, then Ô is a once-punctured disk and σ is a single

local folding about the puncture, as depicted in the first column of Figure 4.16.

These figures also illustrate that unfolding and folding commute with the resection at an

ordinary arc α on O and the corresponding resection on O′ at all arcs in the preimage π−1
σ (α).

That is, letting T̂ ′ denote the induced triangulation on the orbifold Ô′ obtained by resecting Ô
under the lift of the resection on O, σ is a folding symmetry of Ô′, T̂ ′, and πσ(Ô′) = O′ and

likewise πσ(T̂ ′) = T ′. By Proposition 4.2.8, B(T̂ ) dominates B(T̂ ′), so by Theorem 4.4.1 we con-

clude that ν̂z : A•(B(T̂ ′))→ A•(B(T̂ )) is an injective, g-vector preserving ring homomorphism

sending cluster variables to cluster variables.

Let Aσ• (B(T̂ )) denote the subalgebra of A•(B(T̂ )) generated by all clusters in seeds reach-

able from the initial seed by orbit-mutation (see Definition 2.3.3), and likewise Aσ• (B(T̂ ′)) for
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Figure 4.15: Commutativity of prime folding and σ-symmetric resection at ordinary arcs
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q̂

IJ
α̂pα̂

resect at α̂−−−−−−→ IJ

ζ̂1 ζ̂2
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Figure 4.16: Commutativity of local folding and σ-symmetric resection at ordinary arcs
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A•(B(T̂ ))
ν̂z−−−−−−−−→ A•(B(T̂ ′))

⊆ ⊆

Aσ• (B(T̂ ))
ν̂z|Aσ• (B(T̂ ))−−−−−−−−→ Aσ• (B(T̂ ′))

π−1σ
∼= ∼= πσ

A•(B(T ))
νz A•(B(T ′))

�

Figure 4.17: Defining νz as a folding of ν̂z under σ

A•(B(T̂ ′)). By Theorem 2.3.10, πσ(Aσ• (B(T̂ ))) ∼= A•(B(T )) and πσ(Aσ• (B(T̂ ′))) ∼= A•(B(T ′)),

where πσ denotes the quotient map under the symmetry σ. Thus we may equivalently define

νz on Var•(B(T ′)) ∪ {y′} by the following composition:

νz = πσ ◦ ν̂z|Aσ• (B(T̂ )) ◦ π
−1
σ .

We conclude from the corresponding properties of ν̂z that νz is a g-vector preserving injective

ring homomorphism from A•(B(T ′)) into A•(B(T )) taking cluster variables to cluster variables.

The construction is summarized as a commutative diagram in Figure 4.17.

Proposition 4.4.5. Suppose O = (S,M,Q) is a disk with one orbifold point q, no punctures,

and at least 3 marked points on its boundary. Let T be a (untagged) triangulation of O. Suppose

O′, T ′ are obtained from O, T by a resection compatible with T consisting of resection along the

unique non-ordinary arc α ∈ T , where the unique triangle in T with edge α has exactly one

edge on the boundary. Then both parts of Phenomenon IV occur.

Proof. Throughout, we use the labels given in Figure 4.18, which depicts and labels some of

the arcs in T as well as the corresponding arcs in T ′. For generality, neither of the edges β and

γ of the unique triangle in T containing ζ is depicted as a boundary segment, although exactly

one is by hypothesis. The marked point labeled r is the point closest to p2, moving along the

boundary from p2 while keeping the orbifold on the right. (Note that if β is a boundary segment,

then r = p1.)

Let ζ ′ be any tagged arc in O′. Recall from (3.5) that the g-vector of xζ′ is given by

the negative of the shear coordinates of the curve κ((ζ ′)∗) with respect to (T ′)∗, where, by

Definition 3.3.15, (O′)∗, (T ′)∗ denotes the triangulated reversed orbifold obtained from O′, T ′

by switching the weights of all orbifold points in O′ and switching the types of all non-ordinary

arcs in T ′, and (ζ ′)∗ denotes the arc corresponding to (ζ ′) in (O′)∗.) We explicitly identify the

tagged arc ζ in O such that κ(ζ∗) has those same shear coordinates with respect to T ∗, and
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Figure 4.18: Resection at non-ordinary arc α in a disc with one orbifold point and no punctures
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p2

q ζ γ

p1
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p1
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q
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Figure 4.19: Illustrations of the map χ on tagged arcs ζ ′ in O′ with an endpoint at pα

define ζ = χ(ζ ′). (Note that α = χ(α′), where α′ is the new ordinary arc in O′ constructed in

the resection as depicted in Figure 4.18.)

• Suppose ζ ′ does not intersect the interior of the quadrilateral p1p2pαt2. (That is, neither

endpoint of ζ ′ is pα, if β is a boundary segment, neither endpoint is p2, and if γ is a

boundary segment, neither endpoint is t2.) Then ζ is obtained from ζ ′ by the natural

inclusion (preserving taggings) taking the closure of O′ minus the quadrilateral p1p2pαt2

into O. (Note that this case implies that γ = χ(γ) for all tagged arcs γ ∈ T \ {α}.)

• If an endpoint of ζ ′ is pα, delete the part of ζ ′ contained in the quadrilateral p1p2pαt2,

include what remains of ζ ′ into O, and extend as described below and illustrated in

Figure 4.19:

– Suppose the other endpoint of ζ ′ is r: regardless of whether β or γ is a boundary

segment, there is a unique such tagged arc since O′ is an unpunctured disk. (Recall

that r = p1 when β is a boundary segment.) Then ζ is obtained by attaching the

included arc to the orbifold point q as illustrated in the first column of Figure 4.19.

The dashed red curves are κ(ζ ′) and κ(ζ).
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Figure 4.20: Illustrations of the map χ on tagged arcs ζ ′ in O′ with an endpoint at p2 or t2

– Suppose the other endpoint of ζ ′ is not r and that β is a boundary segment. Then ζ

is obtained by attaching the included arc to r such that, together with the portion

of the boundary between its endpoints which contains p2, it cuts out an empty disc.

This case is illustrated in the second column of Figure 4.19 (recall r = p1).

– Suppose the other endpoint of ζ ′ is not r and that γ is a boundary segment. If q is of

weight 1/2, then ζ is obtained by attaching the included arc to r as described above.

If q is of weight 2, then ζ is obtained by attaching the included arc to q. These cases

are illustrated in the third and fourth columns of Figure 4.19, respectively.

• Suppose β is a boundary segment and one endpoint of ζ ′ is at p2, with the other at a point

other than t2, so that in particular ζ ′ 6= α′. (Recall χ(α′) = α.) Then, delete the part of

ζ ′ contained in the quadrilateral p1p2pαt2 and include what remains of ζ ′ into O. If q is

of weight 1/2, then ζ is obtained by attaching the included arc to p2 such that, together

with the portion of the boundary between its endpoints which contains p1, it cuts out

an empty disc. If q is of weight 2, then ζ is obtained by attaching the included arc to q.

These cases are illustrated in the first and second columns of Figure 4.20, respectively.

• Suppose γ is a boundary segment and one endpoint of ζ ′ is at t2, with the other at a point

other than p2 (i.e., ζ ′ 6= α′). Then delete the part of ζ ′ contained in the quadrilateral

p1p2pαt2 and include what remains of ζ ′ into O. We then obtain ζ by attaching the

included arc to p2 such that, together with the portion of the boundary between its

endpoints which contains p1, it cuts out an empty disc. This case is illustrated in the

third column of Figure 4.20.

Since O′ is a marked surface, (O′)∗, (T ′)∗ = O′, T ′, so to confirm that the g-vectors for the
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Figure 4.21: Illustrations of the arcs corresponding to elements zζ in the map χ(L′ζ′) = Lζzζ
on elementary quasi-laminations

cluster variables xζ′ ∈ Var•(B(T ′)) and xζ ∈ Var•(B(T )) agree one need only check that

b(T ′, κ(ζ ′)) = b(T ∗, κ(ζ∗)) for each tagged arc ζ ′ in O′.

In particular, one need only explicitly check that the shear coordinate vectors agree at the

coordinates corresponding to α and whichever of β or γ is not a boundary component: this is

easily done using Figures 4.18-4.20.

Next, we describe the map χ (i.e., νz), on {y′} = {L′ζ′ : ζ ′ ∈ T ′} by describing the elements

zζ , referring to Figure 4.21. We again have several cases: in each case, there is a unique entry of

B = B(T ) which differs from the corresponding entry in B′ = B(T ′), so zζ = 1 for all but one

unique arc ζ ∈ T ′. First, suppose β is a boundary segment. If q is of weight 2, then bαγ = −2

while b′α′γ = −1. Thus zγ = xα̃. If q is of weight 1/2, then bγα = 2 while b′γα′ = 1, so zα = xγ .

Now, suppose γ is a boundary segment. If q is of weight 2, then bαβ = 2 while b′α′β = 1, so

zβ = xα. If q is of weight 1/2, then bβα = −2 while b′βα′ = −1. Thus zα = xβ̃.

The final component of the proof, necessary to invoke [24, Propositions 5.2] and thereby

conclude that νz is a ring homomorphism, is to show that χ takes every exchange relation

of A•(B(T ′)) to a valid relation in A•(B(T )). Note that in the surfaces case of [24, Proposi-

tion 5.29], χ takes every exchange relation to an exchange relation: we will see that this does

not hold for the orbifolds considered here. To begin, we describe the exchange relations (2.1)

in A•(B(T ′)) pictorially by identifying cluster variables with tagged arcs and identifying coeffi-

cients with elementary quasi-laminations. For example, if two ordinary tagged arcs ε′ and δ′ on

O′ are being exchanged, the situation is as illustrated in Figure 4.22, and the exchange relation

is as follows, where T̄ ′ is any triangulation of O′ containing the arcs δ′, µ′η′, ν ′, and θ′:

x′ε′x
′
δ′ = x′µ′x

′
η′

∏
ζ′∈T ′

(L′ζ′)
[bε′ (T̄

′,L′
ζ′ )]+ + xν′xθ′

∏
ζ′∈T ′

(Lζ′)
[−bε′ (T̄ ′,L′ζ′ )]+ (4.2)

If neither of the tagged arcs in O′ being exchanged intersects the interior of the quadrilateral

p1p2pαt2, then none of the arcs involved in the exchange relation intersect it either. Thus the

126



δ′
ε′

ν′

θ′

η′

µ′

Figure 4.22: Arcs in exchange relations of ordinary arcs in ordinary triangles

corresponding arcs on O are all obtained, under χ, by the natural inclusion taking the closure

of O′ minus the quadrilateral p1p2pαt2 into O. Furthermore, neither L′α′ nor whichever of L′β
or L′γ is defined is involved in the exchange relation, and for all tagged arcs ζ ′ ∈ T ′ \ {α′, β, γ},
we have χ(Lζ′) = Lζ and bε′(T̄

′, L′ζ′) = bε(T̄, Lζ) (where T̄ = χ(T̄ ′)). Thus, mapping the

exchange relation (4.2) to O under χ, we obtain precisely the exchange relation that exchanges

the corresponding arcs in O. This treatment is recast pictorially in Figure 4.23: the first row

shows the exchange relation in O′, and the second row shows the image of the relation in O
under χ, itself an exchange relation since exchange relations among ordinary arcs in ordinary

triangles on orbifolds are the same as for surfaces [5, Section 5]. Possibly one of the endpoints of

ε′ coincides with p1 (or p2, if γ is a boundary segment) and likewise possibly one of the endpoints

of δ′ coincides with t2 (resp. p1 if γ is a boundary segment). The involved elementary quasi-

laminations L′ζ′ and Lζ are omitted from the illustration (recall from above that ζ /∈ {α, β, γ}):
since ζ = ζ ′, the quasi-laminations L′ζ′ and Lζ look nearly identical, with a slight adjustment if

an endpoint of ζ ′ is on the boundary segment t2pα if β is a boundary segment, or p2pα if γ is

a boundary segment. Figure 4.23 establishes a convention used for the remainder of the proof:

we denote the tagged arcs in O′ being exchanged by ε′ and δ′, and give the ‘positive’ summand

with respect to ε′ first, and the ‘negative’ summand second to match (2.1) and (4.2).

Before considering the remaining exchange relations on O′, we take a moment to illustrate

various relations among tagged arcs on O involving non-ordinary arcs. Figure 4.24 illustrates

the coefficient-free exchange relations among tagged arcs on O which involve non-ordinary arcs.

One then adds in whatever coefficients (indexed by elementary quasi-laminations) are necessary

to make the relations homogenous in the sense of g-vectors. For proofs of these relations,

see [5, Section 5]. Observe that two copies of a given tagged arc may arise in such an exchange

relation: for example, the relation illustrated in the first row of Figure 4.24 is xδxγ = x2
µ + x2

ν .

As mentioned earlier, not all exchange relations on O′ map to exchange relations on O under χ.

However, we will show that each exchange relation maps to a valid relation on O, and therefore

to a valid relation in A•(B(T )). Figure 4.25 illustrates the coefficient-free valid, non-exchange

relations among tagged arcs on O which we will encounter. (Again, one then adds in whatever

coefficients are necessary to make the relations homogenous in the sense of g-vectors.) For proofs
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Figure 4.23: The action of χ on exchange relations away from quadrilateral p1p2pαt2: reading
from left to right, the first row is an exchange relation in O′, and the second row its image in
O under χ, a convention continued throughout the section
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Figure 4.24: Exchange relations on O involving non-ordinary arcs
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Figure 4.25: Valid non-exchange relations on O involving non-ordinary arcs

of the relations when q is of weight 1/2, see [7, Section 5.2]. The relation when q is of weight

2 illustrated in the second row of the figure is easily verified as the image, under a single local

folding, of an exchange relation on a once-punctured disc.

We now turn to showing that the images of exchange relations are valid relations by con-

tinuing the pictorial treatment of Figure 4.23, and consider several cases. We have already

handled the exchange of any two tagged arcs in O′ which do not intersect the interior of the

quadrilateral p1p2pαt2; it remains to consider arcs which do. In particular, we consider in turn

exchange relations involving α′, exchange relations involving arcs other than α′ which have

an endpoint at p2 if β is a boundary segment or t2 is γ is a boundary segment, and finally

exchange relations involving arcs with an endpoint at pα. In our illustrations, we omit all ele-

mentary quasi-laminations other than those corresponding to the arcs α, α′, and whichever of β

or γ is not a boundary segment. As discussed above, for all other ζ ′ ∈ T ′, we have χ(Lζ′) = Lζ ,

and it is easily checked that b(T̄ ′, L′ζ′) = b(T̄, Lζ) for any tagged triangulation T̄ ′ of O and its

image T̄ under χ. We also generally handle separately each of the four combinations of weight

2 or 1/2 on orbifold point q and of β or γ being a boundary segment, although at times we are

able to group some together, or at least depict them in the same image.

Suppose one of the tagged arcs in O′ being exchanged is α′. Then the other arc, which we

will call δ′, must have one endpoint at pα and the other at some distinct marked point other

than p2 or t2. First, suppose the other endpoint of δ′ is r: the exchange relation on O′ (regardless

of the weight of q or which of β or γ is a boundary segment) is depicted in the first row of

Figure 4.26. (Recall that r = p1 when β is a boundary segment.) The second row of the figure
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Figure 4.26: The action of χ on exchange relations involving α′

.

depicts the image of the relation under χ: the blue arc, labeled both γ and β̃, only appears if

orbifold point q is of weight 1/2, as in this case zα = xγ if β is a boundary segment and zα = xβ̃
if γ is a boundary segment. (Both γ and β̃ coincide with µ.) Thus we have an exchange relation

on O, of the type displayed in the first row of Figure 4.24 if q ∈ Q1/2, and in the second row if

q ∈ Q2. Now, suppose that the other endpoint of δ′ is not r. The exchange relation on O′ when

β is a boundary segment is depicted in the first row of Figure 4.27. The second and third rows

of the figure depict the image of the relation under χ when q ∈ Q1/2 and q ∈ Q2, respectively,

and can be verified as valid non-exchange relations on O of the type illustrated in the first and

second rows, respectively, of Figure 4.25. The exchange relation on O′ when γ is a boundary

segment is depicted in the first row of Figure 4.28. The second and third rows of the figure

depict the image of the relation under χ when q ∈ Q1/2 and q ∈ Q2, respectively. The former

is a valid non-exchange relation on O of the type illustrated in the first row of Figure 4.25, and

the latter is an exchange relation on O of the type illustrated in the second row of Figure 4.24.

Next, suppose one of the tagged arcs in O′ being exchanged, ε′ 6= α′, has an endpoint at

p2 if β is a boundary segment or at t2 if γ is a boundary segment. Further suppose that the

other arc, which we will again call δ′, has one endpoint at pα. The exchange relation on O′

when β is a boundary segment and the other endpoint of δ′ is r is depicted in the first row of

Figure 4.29. The second and third rows of the figure depict the image of the relation under χ

when q ∈ Q1/2 and q ∈ Q2, respectively. The former is a valid non-exchange relation on O
of the type illustrated in the first row of Figure 4.25, and the latter is an exchange relation

of the type illustrated in the second row of Figure 4.24. The exchange relation on O′ when β

is a boundary segment and the other endpoint of δ′ is not r is depicted in the fourth row of

Figure 4.29. The fifth and sixth rows of the figure depict the image of the relation under χ
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Figure 4.27: The action of χ on exchange relations involving α′, contd., when β is a boundary
segment

.

when q ∈ Q1/2 and q ∈ Q2, respectively. They are valid non-exchange relations on O of the

type illustrated in the first and second rows of Figure 4.25, respectively. The exchange relation

on O′ when γ is a boundary segment is depicted in the first row of Figure 4.30. (In this case,

the other endpoint of δ′ cannot be at r, as otherwise it would be compatible with ε′ 6= α′.) The

second and third rows of the figure depict the image of the relation under χ when q ∈ Q1/2 and

q ∈ Q2, respectively. The former is an ordinary exchange relation on O; the latter is a valid

non-exchange relation of the type shown in the second row of Figure 4.25.

We continue with the case when one of the tagged arcs in O′ being exchanged, ε′ 6= α′, has

an endpoint at p2 if β is a boundary segment or at t2 if γ is a boundary segment. Now suppose

that the other arc, δ′, does not have an endpoint at pα. (Possibly δ′ has an endpoint at r; this

does not affect the argument below since neither arc has an endpoint at pα.) The exchange

relation on O′ when β is a boundary segment and δ′ has an endpoint at t2 is depicted in the

first row of Figure 4.31. The second and third rows of the figure depict the image of the relation

under χ when q ∈ Q1/2 and q ∈ Q2, respectively. The former is an exchange relation on O of

the type illustrated in the third row of Figure 4.24; the latter is a valid non-exchange relation

of the type illustrated in the second row of Figure 4.25. The exchange relation on O′ when β

is a boundary segment and δ′ does not have an endpoint at t2 is depicted in the fourth row
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δ
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+

Figure 4.28: The action of χ on exchange relations involving α′, contd., when γ is a boundary
segment

.

of Figure 4.31. The fifth and sixth rows of the figure depict the image of the relation under χ

when q ∈ Q1/2 and q ∈ Q2, respectively. The former is an ordinary exchange relation on O as

depicted in Figure 4.22; the latter is a valid non-exchange relation of the type illustrated in the

second row of Figure 4.25. The exchange relation on O′ when γ is a boundary segment and δ′

has an endpoint at p2 is depicted in the first row of Figure 4.32. The second and third rows of

the figure depicts the image of the relation under χ when q ∈ Q1/2 and q ∈ Q2, respectively,

and are exchange relations on O of the respective type illustrated in the third and fourth rows

of Figure 4.24. The exchange relation on O′ when γ is a boundary segment and δ′ does not have

an endpoint at p2 is depicted in the fourth row of Figure 4.32. The fifth row of the figure depict

the image of the relation under χ regardless of the weight of q, an ordinary exchange relation

on O.

We consider our final set of cases, when one of the tagged arcs in O′ being exchanged, ε′, has

an endpoint at pα. Once more, denote the other arc being exchanged by δ′: we may assume δ′

does not have an endpoint at p2 if β is a boundary segment or at t2 if γ is a boundary segment,

as these possibilities have already been handled. Thus we may also assume that ε′ does not have

an endpoint at r. Suppose first that β is a boundary segment. Then we may further assume that

the other endpoint of ε′ is not at r, as there are no remaining exchangeable arcs δ′ to consider.
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Figure 4.29: The action of χ on exchange relations involving one arc with an endpoint at p2

and another with an endpoint at pα when β is a boundary segment
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Figure 4.30: The action of χ on exchange relations involving one arc with an endpoint at t2
and another with an endpoint at pα when γ is a boundary segment

The exchange relation on O′ when β is a boundary segment and δ′ has an endpoint at p1 = r is

depicted in the first row of Figure 4.33. The second row of the figure depicts the image of the

relation under χ: the blue arc α̃ only appears if q is of weight 2. This is an exchange relation on

O of the type depicted in the third row of Figure 4.24 if q ∈ Q1/2 and the fourth row if q ∈ Q2.

The exchange relation on O′ when β is a boundary segment and δ′ does not have an endpoint

at p1 = r is depicted in the third row of Figure 4.33. The fourth row of the figure depicts the

image of the relation under χ regardless of the weight of q, an ordinary exchange relation in

O. Finally, suppose that γ is a boundary segment. The exchange relation on O′ when the other

endpoint of ε′ is at r is depicted in the first row of Figure 4.34. The second and third rows of

the figure depict the image of the relation under χ when q ∈ Q1/2 and q ∈ Q2, respectively.

The former is an exchange relation of the type illustrated in the third row of Figure 4.24; the

latter is a valid non-exchange relations of the type illustrated in the second row of Figure 4.25.

The exchange relation on O′ when the other endpoint of ε′ is not at r is depicted in the fourth

row of Figure 4.34. The fifth and sixth rows of the figure depict the image of the relation under

χ when q ∈ Q1/2 and q ∈ Q2, respectively. The former is an ordinary exchange relation on

O, and the latter is a valid non-exchange relation of the type illustrated in the second row of

Figure 4.25.
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Figure 4.31: The action of χ on exchange relations involving one arc with an endpoint at p2,
contd., when β is a boundary segment
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Figure 4.32: The action of χ on exchange relations involving one arc with an endpoint at t2,
contd., when γ is a boundary segment
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Figure 4.33: The action of χ on exchange relations involving one arc with an endpoint at pα
when β is a boundary segment
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Figure 4.34: The action of χ on exchange relations involving one arc with an endpoint at pα
when γ is a boundary segment
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