
ABSTRACT

MURAD, NEHA. Quantitative Modeling and Optimal Control of Immunosuppressant Treatment
Dynamics in Renal Transplant Recipients. (Under the direction of H.T. Banks.)

Individuals undergoing kidney transplants are put on a lifetime supply of immunosuppression

to prevent an allograft rejection. However suboptimal immunosuppressive therapy can put a

renal transplant recipient at a risk of infection. The key to a successful transplant is finding the

optimal balance between over-suppression and under-suppression of the immune response, a task

which is difficult to achieve in renal transplant patients due to the narrow therapeutic index of

immunosuppressants. BK virus is a pathogen known to be a leading cause of kidney failure in renal

transplant recipients. This pathogen has no antiviral therapy and can only be controlled by the

body’s immune response. This sole dependance on the immune system to curb BKV infections

makes optimization of the immunosuppression therapy an even more pertinent problem to solve.

In this dissertation, we first examine uncertainty in clinical data from a kidney transplant recipient

infected with BK virus and investigate mathematical model and statistical model misspecification

in the context of least squares methodology. A difference-based method is directly applied to data

to determine the correct statistical model that represents the uncertainty in data. We then carry

out an inverse problem with the corresponding iterative weighted least squares technique and use

the resulting modified residual plots to detect mathematical model discrepancy. This process is

implemented using both clinical and simulated data. Our results demonstrate mathematical model

misspecification when both simpler and more complex models are assumed compared to data

dynamics. Our ultimate goal is to apply control theory to adaptively predict the optimal amount of

immunosuppression in renal transplant recipients; however, we first need to formulate a biologically

realistic model. The process of quantitively modeling biological processes is iterative and often

leads to new insights with every iteration. We illustrate this iterative process of modeling for renal

transplant recipients infected by BK virus. We analyze and improve on the current mathematical

model by modifying it to be more biologically realistic and amenable for designing an adaptive

treatment strategy. We use the improved model to design our feedback control loop applying

Receding Horizon Control (RHC) methodology. Since data is not available for all model states

we use Non Linear Kalman Filtering (specifically Extended Kalman Filter (EKF)) to estimate the

non-measurable states. Combining RHC and EKF we design an adaptive treatment plan which

predicts the optimal immunosuppression therapy for renal transplant recipients.
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CHAPTER

1

INTRODUCTION

Abbreviations

BKV BK virus

CKD Chronic Kidney Disease

ESRD End Stage Renal Disease

GvHD Graft-Versus-Host Disease

GFR Glomerular Filtration Rate

HCMV Human Cytomegalovirus

HIV Human Immunodeficiency Virus

PVAN Polyomavirus type BK-associated Nephropathy

SOT Solid Organ Transplantation

1



1.1 Thesis Outline

The rest of this chapter is dedicated to explaining the motivation, previous works and some back-

ground biology for modeling immune response in renal transplant recipients. Chapter 2 explains a

method to choose the correct statistical model directly from a set of observations and then identify

any mathematical model misspecification in context to the problem defined in Chapter 1. Chapter

3 is dedicated to illustrating the iterative process of modeling biological systems by improving the

existing model introduced in Chapter 2 and making it biologically more realistic. Using the model

developed in Chapter 3, we present in Chapter 4, the algorithm and tools used in the development of

an optimal treatment schedule for renal transplant recipients and the consequent results. In Chapter

5, we explore future directions in the field of renal pharmacogenomics and specific drug dynamics

of immunosuppressants as it applies to personalized medicine. A summary and conclusion is given

in Chapter 6.

1.2 Motivation

According to the Organ Procurement and Transplantation Network (OPTN) as of March 11, 2018,

kidney transplants are the highest number of solid organ transplants, comprising of 428,298 trans-

plants between January 1, 1988 to February 28, 2018 [92]. There are currently 114,949 people waiting

for lifesaving organ transplants in the U.S. Of these, 95,301 await kidney transplants [78]. Glomerular

Filtration Rate (GFR) is often used as an indicator for kidney health and function; it measures the

rate at which the kidney clears toxic waste from the blood. A GFR number of 90 or less in adults is

used as an indicator for kidney disease [30]. Chronic kidney disease (CKD), also commonly known as

chronic kidney failure, is characterized by gradual but progressive loss of kidney function. The fifth

stage of CKD, called End Stage Renal Disease (ERSD), occurs when kidney function reduces to less

than 15% and leads to permanent kidney failure [30]. Patients with ESRD have two choices of therapy

- dialysis or kidney transplantation. Kidney transplantation is often chosen since transplants (grafts)

can improve survival and lower healthcare costs compared to dialysis [44].

While most talk about the success rate of kidney transplants, the National Kidney foundation [91]

points out that although the official statistics is that at the the end of the first month 97% of total

renal transplant recipients have a working transplant, that number decreases to 93% by the end of

the first year and becomes 83% by the end of 3 years. At 10 years, only 54% of transplant kidneys are

still working. In fact, over 20% of kidney transplants every year are re-transplants. (Note that the

transplant statistics are the most recent overall numbers from the Scientific Registry of Transplant

Recipients [1]. The results are different for deceased donors and living donors. More details on the

2



results from a particular transplant program is available at [1].) The authors in [89] studied kidney

transplants that progressed to failure after a biopsy for clinical indications and narrowed down the

top three causes for renal failure. The most prevalent cause for failure was due to organ rejection,

followed by glomerulonephritis caused in patients with infections in the throat or skin. The third

most prevalent cause for kidney rejection is polyomavirus-associated nephropathy (PVAN) (7%).

PVAN is mainly caused by high-level replication of the human polyomavirus type 1, also called BK

virus (BKV), in renal tubular epithelial cells [35]. Currently there are no BKV-specific antiviral therapy,

but in some cases, BKV replication may be controlled by reducing the level of immunosuppression

[48].

In order to prevent the body from rejecting the transplant, patients are usually put on a lifetime

regime of immunosuppressive medications to prevent the body from rejecting the allograft [51].

However these immunosuppressive treatments often leave the recipient susceptible to oppor-

tunistic bacterial and viral pathogens and can even reactivate latent viruses preexisting in the

recipient and/or donor’s organ. Common viruses that impact transplant recipients include human

cytomegalovirus (HCMV), Epstein-Barr virus (EBV), human herpes virus (HHV)-6, HHV-7, and

human polyomavirus 1 (BK virus) [8]. Thus for a renal transplant to be successful, a crucial but

fragile balance needs to be struck between over-suppression and under-suppression of the immune

system. While the former can weaken the body’s immune response making it susceptible to infec-

tions, the latter can cause the immune response to fight the renal graft leading to kidney rejection.

Currently, immunosuppressive treatment protocols in the United States are in a state of flux with

varying treatment regimens across different organ transplant centers. One possible reason for this

inconsistency is that centers are implementing individual or group based treatment protocols [22,

39].

The lack of consistent immunosuppressive treatment strategies across transplant centers and the

narrow therapeutic index of immunosuppressants motivates us to mathematically and statistically

model dynamics of the immune system in the context of BKV infections. Our goal is to build a

robust dynamical systems model which emulates the human immune response to the allograft and

BKV infection in the renal tubular epithelial cells of the transplanted kidney. We then aim to use

this model to formulate an adaptive personalized treatment strategy for renal transplant recipients

using feedback optimal control methods.

1.3 Recent Modeling Efforts in Kidney Transplantation

Several research groups have recently contributed to developing mathematical models to study

the mechanisms of the complex biological process involving solid organ transplantation (SOT),
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specifically kidney transplantation.

Funk et al., [37] use simple mathematical equations to investigate the relationship between BKV

replication and polyomavirus type BK-associated nephropathy (PVAN), one of the most common

viral complications to develop in renal transplant recipients. It is a prominent cause of renal

transplant dysfunction and graft loss. Since PVAN was first reported in 1995, an occurrence rate

from 1% to 10% has been reported [47]. Prevalence of PVAN is mainly attributable to BK virus.

The authors in [37] assume the BK virus grows and decays exponentially and then present the

corresponding equations to calculate the viral doubling times and half-lives. The generation time

and basic reproductive ratio (R0) equations are also given. The authors then perform a retrospective

mathematical analysis on 15 individual patient datasets with the given equations. Their results

indicate rapid replication of the BK virus, elucidating the progressive nature of PVAN, contrary to

the general perception in clinical practice. The authors also propose the use of R0 as a measure of

the efficiency of anti-viral interventions in future studies.

The authors of [35] extend this work and first perform statistical analysis on datasets from 223 kidney

transplant recipients to help understand the relationship between BKV in the plasma and urine. The

authors present a dynamical model that considers four cell populations and two virus populations:

uninfected kidney tubular epithelial cells, infected tubular epithelial cells, plasma virus, uninfected

urothelial cells, infected urothelial cells, and urine virus. Antiviral interventions are represented as

a time-dependent function that affects the growth of both viral populations. The basic reproductive

ratio for the kidney and urinary compartments are determined and used in parameter sensitivity

analysis. The authors simulate the mathematical model to explore the dynamics of BKV for various

scenarios and compare simulation results to 7 individual kidney transplant patient datasets. The

scenario that best matches the clinical data assumes viral replication starts in the kidney, infects

urothelial cells, and then a bidirectional viral flux increases replication in both compartments. The

results provide insights into the relationship between the two compartments with respect to BKV

replication and suggest further awareness into PVAN progression.

Kepler et al., [55]also consider the effect of the immune response on the viral infection in the presence

of immunosuppression therapy. The authors specifically consider human cytomegalovirus (HCMV)

infection (one of eight known human herpes viruses) in SOT recipients and present a model that

describes the dynamics of the viral load, immune response, actively-infected cells, susceptible

cells, and latently-infected cells. The authors show that the model can describe the three types of

infection: primary, latent, and reactivation. Model simulations are given for varying amounts of

immunosuppression. Due to the limited amount of corresponding data in literature, the authors do

not compare their model to patient data. However, the authors state how inverse problems can be

performed with individual datasets to estimate parameter values for individual patients, providing
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insights into the heterogeneity in disease progression.

Banks et al., [7]modify the model in [55] to include the body’s immune response to a donor kidney.

Their model considers susceptible cells, infected cells, free HCMV, HCMV-specific CD8+T-cells,

allospecific CD8+T-cells that target the donor kidney, and serum creatinine, a biological marker

for renal function. Due to a lack of data, model validation is not provided; model simulations with

varying antiviral and immunosuppressive drug efficacy are produced only to verify that results

match clinical trends. The authors then use simulated data to demonstrate an optimal control

problem to design an adaptive anti-viral and immunosuppressant treatment schedule that balances

over-suppression and under-suppression of the immune system. Banks et al., [8] further modify this

model to consider BKV infection and partially validate the resulting model using clinical data. Due

to the large number of parameters and limited data, the authors implement an iterative process to

identify the most sensitive model parameters to be estimated.

1.4 The Immune System and BK Virus in Context of Kidney Transplants

BK Virus was first detected in 1971 in a Sudanese kidney transplant recipient with initials “BK” [4, 17,

84]. This virus is found in over 80% of the world’s population, but infection doesn’t cause illness in

healthy immunocompetent people [4], replication of the virus often occurs during states of immune

suppression [17]. BKV belongs to the polyomaviridae family which also includes JC virus (JCV)

and simian virus (SV40) [84]. BK Virus is the primary etiologic agent in most cases where patients

exhibit symptoms of PVAN, although JC virus can also cause PVAN. BK Virus is a more recently

recognized viral infection that can affect the renal graft early and late after transplantation. It’s

detection and treatment are best managed in a transplantation center. It is a ubiquitous virus that

remains in a latent state. About 30% to 60% of kidney transplant recipients develop BK viruria after

transplantation, and 10% to 20% develop BK viremia. Among those who develop BK viremia, 5%

to 10% develop BK nephropathy; of these, approximately 70% lose the allograft and the remainder

exhibit some kidney dysfunction. BK infection may be associated with ureteral stenosis and possible

obstruction, tubulointerstitial nephritis, and a progressive rise in the serum creatinine level, with

ultimate allograft failure. Such infection must be evaluated in any episode of renal dysfunction and

prospectively evaluated approximately every 3 to 6 months in the first year after transplantation

[50]. Reactivation and/or spike in BKV load in renal transplant recipients is often due to the high

dosage of the potent immunosuppressants prescribed to decrease the odds of graft rejection. There

is currently no approved antiviral drug therapy available to fight BKV; vigilant screening for early

detection and monitoring the immunosuppressant dosage are the only prevention methods for

symptomatic BKV nephropathy [47].
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Figure 1.1: Urothelial cell infected by BKV
Copyright ©2011 Michael Bonert

The immune response can be divided into two kinds, innate immune response (natural, same

with each encounter) and acquired immune response (adaptive, improves on repeated exposure).

Some cells that depict innate immune response are phagocytic cells (neutrophils, monocytes,

macrophages), inflammatory mediator cells ((basophils, mast cells, and eosinophils) and natural

killer cells. The acquired immune response on the other hand is responsible for the proliferation

of antigen-specific B and T cells. B cells create immunoglobulins (antigen specific antibodies

responsible for eliminating foreign microorganisms). T cells help B cells to make antibodies and can

annihilate intracellular pathogens by activating macrophages and killing virally infected cells. White

blood cells (WBCs), (also called leukocytes), are the cells of the immune system that are involved

in protecting the body against both infectious disease and foreign invaders. A CD8+ T-cell (also

known as cytotoxic T cell or killer T-cell) is a type of white blood cell that kills cancer cells, cells that

are infected (particularly with viruses), or cells that are damaged in other ways. A CD4 T-cell (also

known as mature T helper cell) is a type of WBC that sends signals to other types of immune cells,

including CD8+ T-cells. All compartments of the immune system seem to be involved in keeping

pathogens like BKV at bay, virus-specifc T-cells being of particular importance [2].

As mentioned earlier in Section 1.2, Glomerular Filtration Rate(GFR) is used to measure kidney

health and function [29]. The compound serum creatinine is produced as a byproduct of muscle

metabolism (breakdown of a product called phosphocreatine in the muscle) and excreted in the

urine. Low levels of creatinine in the blood is an indicator of good renal health and is often used
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as a surrogate to assess GFR. Thus the two biomarkers that can be readily measured to ascertain

kidney health and infection status from blood plasma samples in a renal transplant patient are the

BKV load and creatinine.

7



CHAPTER

2

MATHEMATICAL AND STATISTICAL

MODEL MISSPECIFICATION IN

MODELING IMMUNE RESPONSE IN

RENAL TRANSPLANT RECIPIENTS

2.1 Introduction

Mathematical and statistical models are useful tools to investigate the mechanisms of any complex

biological process. In Chapter 1 we introduced our problem and our motivations behind building

a mathematical model for the immune response and formulating an adaptive treatment regimen

for renal transplant recipients. In the presence of data, a statistical model is necessary to account

for the discrepancy between the actual phenomenon and the observation process. In this chapter,

in context of the problem introduced in Chapter 1, we build on the work of Banks et al., [8] and

investigate the uncertainty in clinical data from a BKV infected kidney transplant recipient.

The standard protocol for choosing the correct statistical model is to make an informed guess for the

statistical model, solve an inverse problem and fit the mathematical model to data. Then using the
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predictions from the mathematical model, compute and plot residuals or modified residuals against

time and predictions to see if they are random. If residual plots are not randomly distributed around

the horizontal axis a new statistical model is chosen and the process repeated [9]. There are two

major disadvantages of this method, first that it is time consuming and computationally expensive,

as it might take several attempts of performing an inverse problem to identify the correct statistical

model associated with the observation process. Second, it determines the correct statistical model

under the tacit assumption that one has a correct mathematical model, which when modeling

complex biological systems, may not always be the case.

To overcome these drawbacks, in this chapter, we introduce a second order difference-based method

to identify the correct statistical model directly from the time series data, without making any

assumptions about the accuracy of the mathematical model. After performing an inverse problem

with this appropriate statistical model, we demonstrate how modified residual or residual plots can

reveal error in the mathematical model if any. The remainder of the chapter is as follows. Section 2.2

contains an overview of the BKV model and clinical data. The inverse problem and difference-based

methodologies are given in Sections 2.3 and 2.4, respectively. Section 2.5 includes our results using

both clinical and simulated data. Lastly, we present our conclusions in Section 2.6.

2.2 Mathematical Model and Clinical Data

2.2.1 Mathematical Model Synopsis

We consider the following BKV model in [8], which describes the dynamics of the free BK viral load

(V ), susceptible cells (HS ), BKV infected cells (HI ), BKV-specific CD8+ T cells (EV ), allospecific

CD8+ T cells (EK ), and the surrogate for GFR, serum creatinine (C )

ḢS =λH S

�

1−
HS

κH S

�

HS −βHS V (2.1a)

ḢI =βHS V −δH I HI −δE H EV HI (2.1b)

V̇ =ρV δH I HI −δV V −βHS V (2.1c)

ĖV = (1−εI )[λE V +ρE V (V )EV ]−δE V EV (2.1d)

ĖK = (1−εI )[λE K +ρE K (HS )EK ]−δE K EK (2.1e)

Ċ =λC −δC (EK , HS )C (2.1f)
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where

ρE V (V ) =
ρ̄E V V

V +κV
, (2.1g)

ρE K (HS ) =
ρ̄E K HS

HS +κK H
, (2.1h)

δC (EK , HS ) =
δC 0κE K

EK +κE K
·

HS

HS +κC H
, (2.1i)

and initial conditions,

(HS (0), HI (0), V (0), EV (0), EK (0), C (0)) = (HS0, HI 0, V0, EV 0, EK 0, C0). (2.1j)

Susceptible cells proliferate logistically at a maximum rate λH S with carrying capacity κH S . Sus-

ceptible cells and free virions are both lost due to interacting with each other at rate β , resulting in

infected cells. Infected cells lyse at rate δH I due to the cytopathic effect of the virus and produce

pV virions. BKV-specific CD8+ T cells also eliminate infected cells at rate δE H . The free virus is

naturally cleared at rate δV . Both the BKV-specific CD8+ T cells and the allospecific CD8+ T cells

are inversely related to the immunosuppressant dosage efficiency εI . The source rates for EV and

EK are given by λE V and λE K respectively. The BKV-specific CD8+ T cells proliferate in the presence

of free virions at maximum rate ρ̄E V with half saturation level κV . Similarly, the allospecific CD8+ T

cells proliferate in the presence of susceptible cells at maximum rate ρ̄E K with half saturation level

κK H . Both EV and EK die at constant rates δE V and δE K respectively. Creatinine is produced at

rate λC . The clearance rate for C is dependent upon both EK and HS with a maximum clearance

rate of δC 0 and saturation levels κE K and κC H . The efficiency of the immunosuppressant εI is

approximated by the following piecewise constant function

εI (t ) =



























ε1 t ∈ [0, 21]

ε2 t ∈ (21, 60]

ε3 t ∈ (60, 120]

ε4 t ∈ (120, 450].

(2.1k)

The state variable descriptions and units can be found in Table 2.1. The diagrammatic representation

of model (2.1) is given in Figure 2.1. Table 2.2 contains the description of the model parameters and

fixed values. Note that these values that we treat as fixed parameters are estimated in [8] using an

initial guess obtained from literature or through simulation (for more details, see [8]). A value of est.

indicates a free parameter to be estimated in the current chapter.
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Table 2.1: Description of state variables.

State Description Unit
HS Concentration of susceptible host cells cells/mL
HI Concentration of infected host cells cells/mL
V Concentration of free BKV copies/mL
EV Concentration of BKV-specific CD8+ T cells cells/mL
EK Concentration of allospecific CD8+ T cells that target kidney cells/mL
C Concentration of serum creatinine mg/dL

Table 2.2: Description of model parameters and corresponding fixed values

Parameter Description Unit Value
λH S Proliferation rate for HS 1/day 0.030
κV Saturation constant copies/mL 180.676
κH S Saturation constant cells/mL 1025.888
λE K Source rate of EK cells/(mL·day) 0.002
β Infection rate of HS by V mL/(copies·day) est.
δE K Death rate of EK 1/day est.
δH I Death rate of HI by V 1/day 0.085
λC Production rate for C mg/(dL·day) 0.007
ρV # Virions produced by HI before death copies/cells 4292.398
δC 0 Maximum clearance rate for C 1/day 0.014
δE H Elimination rate of HI by EV mL/(cells·day) 0.002
κE K Saturation constant cells/mL 0.200
δV Natural clearance rate of V 1/day 0.372
κC H Saturation constant cells/mL 10.000
λE V Source rate of EV cells/(mL·day) 0.001
ρ̄E K Maximum proliferation rate for EK 1/day est.
δE V Death rate of EV 1/day est.
κK H Saturation constant cells/mL 84.996
ρ̄E V Maximum proliferation rate for EV 1/day est.
εI Efficacy of immunosuppressive drugs

2.2.2 Log-scaled Model

Due to a scale difference among model states and model parameters as well as to ensure that state

variables do not become negative, we use log transformation to resolve any scaling issues during

numerical simulations and implementation of the inverse problem (see [8] for details). We can

rewrite model (2.1) as the vector system,

d y

d t
=h(y, q, y0)
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Figure 2.1: Model diagram of the BKV virus affecting renal cells [8].

where

y= [HS , HI , V , EV , EK , C ]T ,

q= [λH S ,λE K ,λE V ,λC ,β ,δE H ,δV , ρ̄E V ,δE V ,δE K ,δC 0,δH I ,κC H ,κK H ,κH S ,κE K ,κV ,ρV , ρ̄E K ,

ε1,ε2,ε3,ε4]
T ,

and

y(0) = y0.

We make the afore-mentioned log transformation by defining variables

xi = log10(yi ), i = 1, 2, 3, 4, 5

x6 = y6,

x0i = log10(y0i ), i = 1, 2, 3, 4, 5

x06 = y06,

q j = log10(q̄ j ), j = 1, 2 . . . 19

q j = q j , j = 20, . . . , 23.
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Then the log-scaled model becomes
d x

d t
= g(x, q, x0),

where g i (x, q, x0) is given by

g i (x, q, x0) =
d xi

d t
=

d xi

d yi

d yi

d t
=

1

yi l n (10)
hi (y, q, y0), i = 1, 2, 3, 4, 5

=
1

10xi l n (10)
hi (10(x1,x2,...,x5), x6, 10(q1,q2,...,q19), q20, q21, . . . , q23, 10(x01,x02,...,x05), x06),

and

g6(x, q, x0) = h6(y, q, y0)

= h6(10(x1,x2,...,x5), x6, 10(q1,q2,...,q19), q20, q21, . . . , q23, 10(x01,x02,...,x05), x06).

2.2.3 Clinical Data

We investigate uncertainty in the clinical data [8]. This data set consists of eight BK viral plasma

load (DNA copies/mL) measurements and sixteen plasma creatinine level (mg/dL) measurements

for patient TOS003 from Massachusetts General Hospital. The patient was diagnosed with BKV

infection in the first 3 months of transplantation. With every visit, dosage and combination of

immunosuppressants were updated. Figure 2.2 contains the plots of the data.

(a) BK viral load data (b) Creatinine data

Figure 2.2: Patient TOS003 BKV viral plasma loads and plasma creatinine levels.
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2.3 Inverse Problem Method and Statistical Model Selection

We follow standard inverse problem procedures to estimate parameters in our mathematical model

[9, 11, 25, 88]. Consider a general N -dimensional dynamical system with parameter vector q,

dx

d t
(t ) = g(t ,x(t ); q),

x(t0) =x0,

with an m dimensional observation process

f (t ;θ) =Cx(t ;θ),

where θ = (qT,xT
0 )

T is the vector of parameters along with the initial conditions to be estimated

andC is the m ×N observation matrix.

Our data set consists of observed values for the plasma viral load and creatinine levels. Thus our

observation matrix is the following

C =

�

0 0 1 0 0 0

0 0 0 0 0 1

�

,

as x= [log10 HS , log10 HI , log10 V , log10 EV , log10 EK , C ]T and f = [log10 V , C ]T .

Let y 1
i represent the free BK viral load measurements and y 2

j represent the plasma creatinine load

measurements at time points t 1
i , i = 1,2, . . . , n1 and t 2

j , j = 1,2, . . . , n2 respectively. Here n1 = 8

and n2 = 16. We note that there is some discrepancy between the actual phenomenon, which is

represented through the data, and the above observation process. We account for this uncertainty

with the statistical models,

Y 1
i = f1(t

1
i ;θ0) + f1(t

1
i ;θ0)

γ1E 1
i , i = 1, 2, . . . , n1,

Y 2
j = f2(t

2
j ;θ0) + f2(t

2
j ;θ0)

γ2E 2
j , j = 1, 2, . . . , n2,

where γ ≥ 0 and the p × 1 vector θ0 ∈ Ω is the “true” or nominal parameter set. Here f1(t 1
i ;θ0) =

x3(t 1
i ;θ0) and f2(t 2

j ;θ0) = x6(t 2
i ;θ0). The n1×1 and n2×1 random error vectors E 1 and E 2 respectively

are assumed to be independent and identically distributed (i.i.d) with mean zero and Var(E 1
i ) =σ

2
01
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and Var(E 2
j ) =σ

2
02. The corresponding realizations are,

y1
i = f1(t

1
i ;θ0) + f1(t

1
i ;θ0)

γ1ε1
i , i = 1, 2 . . . , n1,

y2
j = f2(t

2
j ;θ0) + f2(t

2
j ;θ0)

γ2ε2
j , j = 1, 2 . . . , n2.

This multiplicative structure of the observational error in the above statistical model exists because

often in biological models the size of the observation error is proportional to the size of the observa-

tions. For γ ≥ 0, a generalized least squares method or an iterative weighted least squares method

as used below is appropriate to perform the inverse problem. In order to estimate θ0, we want to

minimize the distance between the collected data and mathematical model, where the observables

are weighted according to their variability and, for each observable, the observations over time are

weighted unequally.

The iterative weighted least squares estimate θ̂I W LS is numerically determined by iteratively solving

the following system :

θ̂I W LS = argmin
θ∈Ω

� n1
∑

i=1

[y 1
i − f1(t

1
i ;θ)]

T
V̂ −1

1 (t 1
i )[y

1
i − f1(t

1
i ;θ)] (2.2)

+
n2
∑

j=1

[y 2
j − f2(t

2
j ;θ)]

T
V̂ −1

2 (t 2
j )[y

2
j − f2(t

2
j ;θ)]

�

V̂1(t
1
i ) =

ω̂1
i

n1−p

n1
∑

i=1

(y 1
i − f1(t 1

i ; θ̂I W LS ))2

ω̂1
i

(2.3)

V̂2(t
2
j ) =

ω̂2
j

n2−p

n2
∑

j=1

(y 2
j − f2(t 2

j ; θ̂I W LS ))2

ω̂2
j

, (2.4)

where ω̂1
i = f1(t 1

i , θ̂I W LS )2γ1 and ω̂2
j = f2(t 2

j , θ̂I W LS )2γ2 .

We use the following iterative procedure [9, 11, 25, 88] :

1. Estimate θ̂(0)I W LS using (2.2) with V̂1(t 1
i ) = 1 and V̂2(t 2

j ) = 1. Set k = 0.

2. Compute weights ω̂1(k )
i = f1(t 1

i , θ̂(k )I W LS )
2γ1 and ω̂2(k )

j = f2(t 2
j , θ̂(k )I W LS )

2γ2 .

3. Solve for V̂1(t 1
i )
(k )

and V̂2(t 2
j )
(k )

using θ̂(k )I W LS , ω̂1(k )
i , and ω̂2(k )

j in equations (2.3) and (2.4) re-

spectively.

4. Estimate θ̂(k+1)
I W LS using V̂1(t 1

i )
(k )

and V̂2(t 2
j )
(k )

in equation (2.2).
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5. Set k := k +1 and return to step 2. Terminate when two successive estimates for θ̂I W LS are

sufficiently close.

Note that this is not the same as taking the derivative of the argument in the right side of (2.2) and

setting it equal to zero. For more details see page 63 of [9] and page 89 of [88].

The estimated variances for each observableσ2
01 andσ2

02 are approximated by the following:

σ̂2
01 =

1

n1−p

n1
∑

i=1

� y 1
i − f1(t 1

i ; θ̂I W LS )

f1(t 1
i ; θ̂I W LS )γ1

�
2

σ̂2
02 =

1

n2−p

n2
∑

j=1

� y 2
j − f2(t 2

j ; θ̂I W LS )

f2(t 2
j ; θ̂I W LS )γ2

�

2

.

If we assume γ = (γ1,γ2) = (0, 0), then our statistical model is called an absolute error model and an

ordinary least squares method is appropriate for parameter estimation. Banks et al. [8] consider

an absolute error model and additionally assume that the variances for each observable are equal

(i.e.,σ2
01 =σ

2
02). While the statistical model choice in [8] yields good results, we believe it is more

biologically realistic to assume the variance in observation errors are not equal and the size of the

observation error is proportional to the size of the observed quantity.

2.4 Difference-based Methods and Modified Residuals

We use a second order difference-based method to determine the correct statistical model (γγγ value)

[6, 13]. Another method often implemented consists of performing an inverse problem with some γγγ

value and computing the modified residuals

Mk l =
y k

l − fk (t k
l ; θ̂)

fk (t k
l ; θ̂)γk

, (2.5)

for each observable k at time tl , l = 1, . . . , nk . The plots ofMk l vs. tl should be randomly scattered

around the horizontal axis. If an undesired non-random shape is present (e.g., a megaphone or

inverted megaphone shape), then a different γγγ value is chosen and the process is repeated until

a γγγ value produces the desired random scatter plot. However, this method does not consider

both the mathematical model and statistical model misspecifications; it determines the correct

statistical model under the tacit assumption that one has a correct mathematical model. It is also

time consuming as it might take several attempts of performing an inverse problem (each of which
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may be computationally expensive) and plotting the modified residuals until a good statistical

model is chosen.

We follow [6] and first apply the second order difference-based method directly to the data to

determine the correct γγγ value, which is both computationally economical as well as time efficient

and independent of any assumed correct mathematical model. We first calculate the following

pseudo measurement errors for observable k at time tl , l = 1, . . . , nk

ε̂k
l =











































1
p

2
(y k

l+1− y k
l ) for l = 1

1
p

6
(y k

l−1−2y k
l + y k

l+1) for l = 2, . . . , nk−1

1
p

2
(y k

l − y k
l−1) for l = nk .

Next we calculate the modified pseudo errors

ηk
l =

ε̂k
l

|y k
l − ε̂

k
l |
γk

for observable k at time tl , l = 1, . . . , nk for different values of γk . (For derivation of modified pseudo

errors see Appendix A.1.) We plot these modified pseudo errors vs. time for different γk values to find

the γk value that produces a random scatter plot. Once the correct observational error is accounted

for, we perform the inverse problem with this statistical model and compute the modified residuals

in (2.5). If the modified residual plots are not randomly distributed around the horizontal axis, then

the error must be due to mathematical model misspecification, implying another iteration of the

modeling process is needed. Note that just using modified residuals is insufficient in detecting

mathematical model misspecification; using modified pseudo errors in combination with modified

residuals as described above would assist in identifying any discrepancies in mathematical model

formulation.
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2.5 Results

2.5.1 Clinical Data

Using second order differencing, we plot the modified pseudo errors for both viral load and creatinine

versus time and visually assess the plots to choose an appropriate γ value. Figure 2.3 contains the

graphs of the viral load modified pseudo errors vs. time for various γ1 values. As can be seen due to

the limited amount of data, it is difficult to determine the correct γ1 value through visual assessment.

The value γ1 = 0.5 provides an approximately symmetric distribution around the horizontal axis with

relatively small modified pseudo error values. The creatinine modified pseudo errors for different

γ2 values are given in Figure 2.4. The modified pseudo errors with γ2 = 0 appear to be randomly

distributed whereas the modified pseudo errors with γ2 = 1 reveal a slight non-random (megaphone)

shape. Even though we visually assess the plots to pick a suitable γ value to the best of our ability,

the sparseness of the data set makes it difficult to make a stronger case for a particular statistical

model.

(a) γ1 = 0 (b) γ1=0.5

Figure 2.3: Viral load modified pseudo errors vs. time for various γ1 values.
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(c) γ1=1

Figure 2.3 (cont.): Viral load modified pseudo errors vs. time for various γ1 values.

(a) γ2 = 0 (b) γ2=1

Figure 2.4: Creatinine modified pseudo errors vs. time for various γ2 values.

With our best guess of the correct statistical model, γ = (0.5,0), we next perform an inverse prob-

lem for the 5 most sensitive parameters [8] and obtain the modified residuals in order to detect

the presence of mathematical model error. We perform the inverse problem using the MATLAB

function fmincon. The initial guesses for the parameters are those used in [8] and lower and upper

bounds are set for each of the 5 parameters for computational efficiency. The estimated parameters,

[log10β ,log10 ρ̄E V ,log10δE V ,log10δE K ,log10 ρ̄E K ] = [−7.061, −0.632,−1.007, −0.92, −0.704]. We can

see from Figure 2.5 that the model solution fits the data well and the corresponding modified resid-
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uals in Figure 2.6 appear to form a random band around the horizontal axis. This suggests that the

mathematical model accurately describes the biological process, although again it is difficult to

conclude this with conviction due to the limited amount of data.

(a) BK virus model solution and data (b) Creatinine model solution and data

Figure 2.5: Model (2.1) solution and clinical data with γ=(0.5, 0).

(a) Modified residuals for BK virus (b) Modified residuals for creatinine

Figure 2.6: Modified residuals for V and C with γ = (0.5, 0).
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2.5.2 Simulated Data

When using the second order difference-based method with sparse clinical data, it is not very easy

to pick a statistical model or make a strong case for the presence/absence of mathematical model

misspecification. To illustrate the need for a denser data set, we repeat the above process with the

following simulated data created by adding noise to the “true” model solution

Vi = f1(t
1
i ;θ0) + f1(t

1
i ;θ0)

γ1ε1
i , (2.6a)

C j = f2(t
2
j ;θ0) + f2(t

2
j ;θ0)

γ2ε2
j , (2.6b)

where E1 ∼N (0, 0.3), E2 ∼N (0, 0.03), γ = (0.5, 0), and the estimated parameters

[log10β , log10 ρ̄E V , log10δE V , log10δE K , log10 ρ̄E K ] = [−7.067,−0.601,−0.964,−0.995,−0.785]. We as-

sume that “data" is collected every week for ttt 1 = ttt 2 = [0, 7, 14, ..., 448]. As expected, the second order

differencing method produces the desired scatter plot for γγγ = (0.5,0) and undesired megaphone

shapes for other γγγ values (see Appendix A.2 for corresponding figures). The modified residual plots

also exhibit no mathematical model misspecification, which is expected since the data was created

using the mathematical model (see Appendix A.3 for modified residual plots).

We now demonstrate how the modified residual plots can detect mathematical model error or

misspecification by performing an inverse problem with a simpler version of model (2.1), given in

(2.7). While the original model (2.1) assumes the susceptible population grows logistically where

cell proliferation and the eventual plateauing of the population is dependent on the susceptible

population size, the simpler model (2.7) assumes a growth rate of λH S −δH S HS , where HS cells are

produced at a constant rate λH S (cells/(mL·day)) independent of the cell population and die at a

rate proportional to HS with a proportionality constant or death rate of δH S (1/day). The simpler

model is given by the following

ḢS =λH S −δH S HS −βHS V (2.7a)

ḢI =βHS V −δH I HI −δE H EV HI (2.7b)

V̇ =ρV δH I HI −δV V −βHS V (2.7c)

ĖV = (1−εI )[λE V +ρE V (V )EV ]−δE V EV (2.7d)

ĖK = (1−εI )[λE K +ρE K (HS )EK ]−δE K EK (2.7e)

Ċ =λC −δC (EK , HS )C (2.7f)
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where

ρE V (V ) =
ρ̄E V V

V +κV
, (2.7g)

ρE K (HS ) =
ρ̄E K HS

HS +κK H
, (2.7h)

δC (EK , HS ) =
δC 0κE K

EK +κE K
·

HS

HS +κC H
, (2.7i)

and initial conditions,

(HS (0), HI (0), V (0), EV (0), EK (0), C (0)) = (HS0, HI 0, V0, EV 0, EK 0, C0). (2.7j)

The immunosuppressant efficiency is defined by the piecewise constant function (2.1k).

We perform the inverse problem using γγγ= (0.5,0) to estimate the 6 parameters β , ρ̄E V , δE V , δE K ,

δH S , ρ̄E K and obtain the solutions in Figure 2.7. The estimated parameters, [log10β ,log10 ρ̄E V ,

log10δE V ,log10δE K ,log10δH S ,log10 ρ̄E K ] = [−7.061,−0.632,−0.632,−1.007, −0.92, −0.704]. Even

though the simpler model produces a reasonable fit to the data, the modified residuals produce

a strong non-random pattern (Figure 2.8). Since we already eliminated statistical error model

discrepancy (through the difference-based method), these non-random modified residuals indicate

a mathematical model misspecification. That is, the simpler model (2.7) is unable to accurately

capture the dynamics represented in the data.

(a) BK virus model solution and simulated data (b) Creatinine model solution and simulated data

Figure 2.7: Model (2.7) solution and simulated data created from model (2.1) with γ=(0.5, 0).
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(a) Modified residuals for BK virus (b) Modified residuals for creatinine

Figure 2.8: Modified residuals for V and C with γ = (0.5, 0).

We next investigate mathematical model misspecification when a more complex model than war-

ranted is assumed. To do so, we create a new simulated data set for t1 = t2 = [0, 7, 14, . . . , 448] using

(2.6) wheref1 andf2 now represent log10 V and C in model (2.7),γγγ= (0, 0.7),E1 ∼N (0, 0.5), andE2 ∼
N (0, 0.02). Parameter values from Table 2.2 are used to create the new simulated data set with free pa-

rameters [log10β ,log10 ρ̄E V ,log10δE V ,log10δE K ,log10 ρ̄E K ]= [−7.067,−0.601,−0.964,−0.995,−0.785]

and additional parameter δH S = 0.003/day [35].

As expected, the difference-based method with γγγ = (0,0.7) produces random scatter plots (see

Appendix A.3). We perform the inverse problem with this data set and the original model (2.1). The

estimate values for the 5 parameters are, [log10β , log10 ρ̄E V ,log10δE V ,log10δE K , log10 ρ̄E K ]=[−8.020,

−0.744, −0.223, −0.863, −0.675]. The model (2.1) solutions and corresponding modified residu-

als are plotted in Figure 2.9 and Figure 2.10. Even though the fit between the model and data

looks acceptable, the modified residuals display a strong non-random pattern, indicating incorrect

mathematical model assumptions.
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(a) BK virus model solution and simulated data (b) Creatinine model solution and simulated data

Figure 2.9: Model (2.1) solution and simulated data created from model (2.7) with γ=(0, 0.7).

(a) Modified residuals for BK virus (b) Modified residuals for creatinine

Figure 2.10: Modified residuals for V and C with γ = (0, 0.7).

2.6 Conclusion

We investigate mathematical model and statistical model misspecifications in the context of least

squares methodology using a BKV model and both clinical and simulated data. Banks et al.,[8] use

ordinary least squares techniques to perform an inverse problem with clinical data. We build on

this work and assume what we believe is a more biologically realistic statistical error model; we
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consider different variances for different observables and allow the error to depend on the size of the

observables (measurements). We follow [6] and demonstrate how difference-based methods can be

applied directly to data to determine the correct statistical model and further, we illustrate the use

of modified residuals to detect mathematical model discrepancy. The presence of mathematical

model error suggests possibly another iteration of modeling might be needed. However, due to the

limited amount of clinical data, no strong conclusion can be reached.

We thereby demonstrate these methods using dense simulated data. We first create data using

the BKV model (2.1) with an associated statistical model. The difference-based method correctly

identifies the assumed γ value. Using this statistical model, we perform an inverse problem using a

simpler model (2.7) where the nonlinearity is removed from the susceptible cell population growth

dynamics. While the model (2.7) solution fits the data reasonably well, the modified residual plots

depict a strong pattern, identifying the mathematical model discrepancy. We then repeat the process

by creating data using the simpler model (2.7) and perform an inverse problem with the original

model (2.1). That is, we now assume a more complex dynamical system in comparison to the

biological process represented by the data. Again, the modified residuals indicate error in the

mathematical model. Therefore this method can reveal mathematical model misspecification when

either simpler or more complex models are assumed as compared to the data dynamics.

Previously, modified residual plots were solely used to determine the correct statistical model by

iteratively performing multiple inverse problems until the correct statistical model was chosen

[9]. Using both the difference-based method as well as modified residual plots is computationally

more efficient; the difference-based method can be applied directly to the data and thus multiple

inverse problems need not be performed. However, and even more notably, the previous method

(using only modified residual plots) determines the statistical model under the possibly uninformed

assumption of a correct mathematical model; the use of both the difference-based method and

modified residuals accounts for both types of error in the inverse problem without prior model

assumptions.
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CHAPTER

3

IMMUNOSUPPRESSANT TREATMENT

DYNAMICS IN RENAL TRANSPLANT

RECIPIENTS: AN ITERATIVE MODELING

APPROACH

3.1 Introduction

A patient undergoing a solid organ transplantation is usually put on a lifetime regime of immuno-

suppressive medications to prevent the body from rejecting the allograft [51]. However, these

immunosuppressive treatments often leave the recipient susceptible to opportunistic pathogens

including viruses. Achieving the delicate balance between under-suppression and over-suppression

of the immune system is key to successful and sustainable transplantation. Mathematical and

statistical models can be important and beneficial tools that contribute to the improvement and

optimization of treatment protocols. Modeling of any biological process is an iterative one, as seen

in Figure 3.1. The biologist first presents a research question about some biological process as well

as knowledge about biological relationships and mechanisms, often depicted by a schematic or

diagram. The mathematician then represents the biological hypothesis of the relationships through
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a mathematical model. Analytic or numerical analysis of the model produces results which are in-

terpreted and compared to the biological system, possibly leading to a change in the understanding

of the biological relationships. The process is continuously repeated, sometimes through multiple

research efforts, using the resulting biological insights (See [11] for more details on the iterative

process of modeling).

In this chapter we first explain and analyze the exisiting model (2.1) seen in Chapter 2 which captures

the biological mechanisms of the immune response in renal transplantation patients with respect

to infection caused by the human polyomavirus type 1, named “BK virus” (BKV) [8]. Our results

show evidence of the lapses in biological understanding and implementation of the corresponding

mathematical model. We then attempt to address and correct for the discrepancies between the

mathematical model and the biological system by revising components of the mathematical model,

thereby illustrating the iterative process of modeling. Once a mathematical model is developed, it

could in turn be used for control theory applications to predict optimal drug regimens, an important

problem we will address in the coming chapters.

Figure 3.1: Schematic of the iterative modeling process [11].
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3.2 Iteration I: Preliminary Model

3.2.1 Data Collection and Biological Model

Data used to fit the model and obtain some of the model parameters in [8]was collected at Mas-

sachusetts General Hospital from a renal transplant patient TOS003 diagnosed with BKV in the first

3 months of kidney transplantation. (This data was collected with approval of the MGH human

subjects (IRB) committee. Furthermore data was shared with NCSU in a de-identified manner.)

Eight BK viral plasma load (DNA copies/mL) measurements and sixteen plasma creatinine level

(mg/dL) measurements were collected (See Chapter 3, Figure 2.2 for plot of datasets). Creatinine

levels are used as a surrogate for GFR (Glomerular Filtration Fate), to measure kidney function. Due

to the sparsity of data collected, we do not estimate parameters for Iteration II and Iteration III of

our modeling efforts, instead we use most of the parameters from literature.

The authors in [8] describe a model schematic of the compartmentalized biological model as shown

in Figure 2.1 in Chapter 2.

Since no effective anti-viral treatment exists for BKV, the authors in [8]modify the model in [7] to

only consider the efficiency of immunosuppressant treatment. Additionally, the authors model the

effect of the susceptible cells on creatinine clearance and on the allospecific CD8+T-cell population

growth. As opposed to Funk et al. [35], the authors in [8] do not consider the urothelial cells and only

consider infection in tubular epithelial cells, in part due to the availability of data. While this makes

the model more specific, one can hope to expand the current model scope to include urothelial

cells once relevant data becomes available.

3.2.2 Mathematical Model

The mathematical model as seen in Chapter 2, Equation (2.1), describes the concentrations of

susceptible cells (HS ), infected cells (HI ), free BKV (V ), BKV-specific CD8+T-cells (EV ), allospecific

CD8+T-cells (EK ) that target the kidney, and serum creatinine (C ), by the following system of

ordinary differential equations [8]:
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ḢS =λH S

�

1−
HS

κH S

�

HS −βHS V (3.1a)

ḢI =βHS V −δH I HI −δE H EV HI (3.1b)

V̇ =ρV δH I HI −δV V −βHS V (3.1c)

ĖV = (1−εI )[λE V +ρE V (V )EV ]−δE V EV (3.1d)

ĖK = (1−εI )[λE K +ρE K (HS )EK ]−δE K EK (3.1e)

Ċ =λC −δC (EK , HS )C , (3.1f)

where

ρE V (V ) =
ρ̄E V V

V +κV
, (3.1g)

ρE K (HS ) =
ρ̄E K HS

HS +κK H
, (3.1h)

δC (EK , HS ) =
δC 0κE K

EK +κE K
·

HS

HS +κC H
. (3.1i)

The initial conditions are given by,

(HS (0), HI (0), V (0), EV (0), EK (0), C (0)) = (HS0, HI 0, V0, EV 0, EK 0, C0). (3.1j)

εI (t ) =



























ε1 t ∈ [0, 21]

ε2 t ∈ (21, 60]

ε3 t ∈ (60, 120]

ε4 t ∈ (120, 450].

(3.2)

Detailed explanation of the dynamics of the model and model states can be found in Subsection

2.2.1 of Chapter 2.
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3.2.3 Statistical Error Model

The authors in [8] assume the simplest statistical error model, an absolute error model, where the

variances of the error for each observable (viral load and creatinine) are equal and constant over

time. That is, the authors account for the uncertainty in the dataset by the following statistical error

model

Y 1
i = f1(t

1
i ;θ0) +E 1

i , i = 1, 2, . . . , n1,

Y 2
j = f2(t

2
j ;θ0) +E 2

j , j = 1, 2, . . . , n2.

The functions f1(t 1
i ;θ0) and f2(t 2

j ;θ0) represent the model solution for viral load and creatinine at

times t 1
i and t 2

j respectively, assuming a “true" or nominal parameter set θ0. The existence of this

“true" parameter set is a standard assumption in statistical models [9].

The E 1
i , E 2

j terms represent the measurement error that causes the measurements to differ from the

model solution with the “true" parameter set. We assume the n1×1 and n2×1 random vectors E 1
i

and E 2
j respectively, are independent and identically distributed with mean zero and V a r (E 1

i ) =

σ2
01 and V a r (E 2

j ) = σ
2
02. The authors in [8] assume σ2

01 = σ
2
02 (Note the model is log scaled as

shown in Chapter 2). The corresponding method for parameter estimation is ordinary least squares

(OLS).

In Chapter 2, we build on the works of [8] and consider a more general (and possibly more biologically

realistic) statistical error model [13]. We assume the variances of observation errors are not equal

and allow for the errors to depend on the size of the observed quantity. That is, we assume the

following statistical error model, a relative error model, given by

Y 1
i = f1(t

1
i ;θ0) + f1(t

1
i ;θ0)

γ1E 1
i , i = 1, 2, . . . , n1,

Y 2
j = f2(t

2
j ;θ0) + f2(t

2
j ;θ0)

γ2E 2
j , j = 1, 2, . . . , n2,

for γk ≥ 0, k = 1, 2. The measurement error term now can depend on the size of the model solution

of the observables. Note that if both γ1 = 0 and γ2 = 0, the two statistical error models are equivalent.

The corresponding method, for parameter estimation, assuming a relative error model is iterative

weighted least squares (IWLS).

Recall in Chapter 2, we use a second order difference-based method to eliminate statistical error

model misspecification by selecting the correct statistical error model directly from the data. We

show how modified residuals from the inverse problem can then be used to detect discrepancies in
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mathematical model formulation. However, we also point out that due to sparsity of data available

to us, it is difficult to ascertain which statistical model is suitable for this specific dataset [13].

3.2.4 Model Analysis

The authors of [8] numerically analyze the model by performing an inverse problem with the data to

estimate parameters. That is, the authors seek to find a parameter set that minimizes the distance

between the collected data and mathematical model. However, the model has a large number of

parameters (29 parameters) and thus not all the parameters can be reliably estimated with such

a small dataset of 24 observations. Thus, the authors of [8] implement an iterative procedure to

determine the most sensitive parameters. An inverse problem is then performed to estimate the 5

most sensitive parameters, and the resulting model solutions provide a reasonable fit to the data

(see [8] for details). However, in Chapter 2 we present examples which illustrate that a good fit

is not necessarily enough to conclude the accuracy of a model. We conclude that further data

collection endeavors are needed to reduce the uncertainty in parameter choices made for the model

[13].

Our primary motivation of mathematically modeling the immune response to the allograft and BK

virus is to eventually formulate a control problem to adaptively predict patient specific optimal

immunosuppressant dosage as treatment progresses. Specifically, the immunosuppressant dosage

level should keep viral loads low (less than 10, 000 copies/ml [28, 63, 64]) and creatinine levels within

a healthy range (0.6−1.1 mg/dL [7]). Figure 3.2 depicts the general dynamics of both the BK virions

and CD8+ T-cells for varying amounts of immunosuppressants.

As a first step towards a feedback control strategy, we implemented a simple open loop control

problem (where the output has no influence or effect on the control input). The results (not shown)

provided inadequate validation to the mathematical model’s robustness for formulation and design

of the control. Hence, we considered a simpler test: to simulate model solutions for the highest and

lowest immunosuppressant dosage and observe the model dynamics. Note that, for all simulations,

we assume a constant immunosuppression efficiency (i.e., ε1 = ε2 = ε3 = ε4 in (3.2)), whereas the

authors in [8] considered different constant values for immunosuppression dosage, ε1 = 0.1009,ε2 =

0.3658,ε3 = 0.5999, and ε4 = 0.3649.

Recall that a drug efficiency of 0% (εI = 0) implies that the immune system is not compromised

and the body fights the virus effectively (i.e., BK viral loads are under control and there is negligible

infection); however the immune response treats the kidney transplant as a foreign object and attacks

it, killing the susceptible cells and causing the creatinine levels to increase. On the other hand, a

drug efficiency of 100% (εI = 1) causes the immune system to be significantly weakened (Note this is

31



Cell density vs treatment

Figure 3.2: Plot illustrating the balance between under and over suppression of the immune re-
sponse.

an extreme case of immunosuppression therapy and is usually not prescribed for individuals). While

it is no longer a threat to the allograft, the immune system is now unable to defend itself against

outside infections (in our case BKV infection), causing an increase in viral load. These dynamics are

summarized in Table 3.1.

Table 3.1: Summary of cell dynamics under influence of immunosuppression.

ε CD8+ T-cells BKV Infected cells Susceptible cells Creatinine
Low ↑ ↓ ↓ ↓ ↑
High ↓ ↑ ↑ ↓ ↑

The model solutions in Figure 3.3 depict that the viral load, the infected cells and the susceptible cells

are all fairly impervious to the immune response which is contradictory to the dynamics depicted

in Table 3.1. Furthermore, Figure 3.3b illustrates that creatinine is sensitive to the control where in

fact it should be increasing for both extremes of immunosuppression, a phenomenon not captured
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by the current model (3.1).

We also notice from the model solutions with εI = 1 in Figure 3.3, both the BK viral load and

infected cell population increase as expected, but then decrease. A large viral load indicates BK

virus-associated nephropathy (viral loads > 185, 000 copies/mL) [28], where the kidney susceptible

cells are damaged due to infection. The decrease observed in Figures 3.3a and 3.3d implies that

there are no more remaining susceptible cells for the virus to infect. However, we see in Figure

3.3c that the susceptible population remains around carrying capacity, suggesting a discrepancy

between the model and biological understanding.

These findings from our analysis prompted us to delve further in understanding the biological

interpretation and the parameter values for this model.

3.2.5 Biological Interpretation of Model and Changes in Understanding

Based on our findings in the previous section, we renewed our effort to understand the biological

interpretation of the mathematical model and analysis from [8]. Enumerated below is a list of

biological discrepancies in the model.

1. The mammalian kidney is a non-regenerative organ. While the kidneys can self-repair certain

small sections of the nephron, loss of nephrons due to chronic kidney injury is irreversible,

resulting in permanent damage and impaired renal function [19, 34, 49]. In model (3.1) the

logistic growth term represents the regeneration and proliferation of susceptible kidney cells.

This term is not representative of the true biological phenomenon.

2. The factors contributing to the decay in the susceptible cell population as seen in (3.1a) are

due to infection by the BK virus. However, a large population of allo-specific CD8+ T-cells

also attack susceptible cells, causing a decrease in both the total HS population and kidney

function (observed via creatinine levels). This biological mechanism is not captured in model

(3.1).

3. The estimated initial condition for viral load in [8]was approximately 50, 000 copies/mL which

is higher than the threshold viral load for initial detection of viremia (10, 000 copies/mL [28,

63, 64]). This would imply that the patient had an active viral infection just before and during

their kidney transplantation, which again represents an unusual situation.
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(a) BK viral load in blood. (b) Creatinine.

(c) Susceptible Cells. (d) Infected Cells.

Figure 3.3: BK viral load in blood, creatinine, susceptible and infected cell dynamics for highest
and lowest immunosuppressant dosages.

3.3 Iteration II: Improved Model

3.3.1 Mathematical Model

Based on our model analysis and our renewed biological understanding, we propose another itera-

tion of modeling which encapsulates our new observations. The updated BKV model is presented
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below:

ḢS =−χ(EK >EK
∗)β̃HS EK −χ(V >V ∗)βHS V (3.3a)

ḢI =χ(V >V ∗)βHS V −δH I HI −χ(EV >EV
∗)δE H EV HI (3.3b)

V̇ =ρV δH I HI −δV V −χ(V >V ∗)βHS V (3.3c)

ĖV = (1−εI )[λE V +ρE V (V )EV ]−δE V EV (3.3d)

ĖK = (1−εI )[λE K +ρE K (HS )EK ]−δE K EK (3.3e)

Ċ =λC −δC (HS )C (3.3f)

where

ρE V (V ) =
ρ̄E V V

V +κV
, (3.3g)

ρE K (HS ) =
ρ̄E K HS

HS +κK H
, (3.3h)

δC (HS ) =δC 0 ·
HS

HS +κC H
. (3.3i)

As before initial conditions are given by,

(HS (0), HI (0), V (0), EV (0), EK (0), C (0)) = (HS0, HI 0, V0, EV 0, EK 0, C0). (3.3j)

Following the justification presented in Section 3.2.5, the logistic term in (1a) has been removed.

The additional term β̃HS EK represents the loss of healthy susceptible cells when under attack from

allo-specific CD8 + T-cells. The parameter β̃ represents the death rate of HS by EK . The term βHS V

continues to represent the infection of susceptible cells by free virions. However, we additionally

assume that for trace levels of both allospecific CD8 + T-cells and viral load, the susceptible cells are

not destroyed and are constant. That is, at trace population levels there is negligible interaction.

We approximate this phenomenon mathematically with the following characteristic or indicator

function χ

χ(x>x ∗) =







1, for x > x ∗

0, otherwise.
(3.4)

Again we see the presence of the characteristic function with the infection term βHS V in equation

(3b), indicating that for low levels of viral load there is no infection. The infected cell population
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can also decrease due to elimination by the BK-specific CD8+T-cells at rate δE H only when there is

a sufficient number of immune cells present, hence the characteristic function. The dynamics of BK

virus remain the same as in (3.1) except for the additional characteristic term in (3c).

The parameter εI ∈ [0, 1] continues to represent the efficiency of immunosuppressive drugs where

we assume a drug efficiency of 0% (εI = 0) indicates that the treatment does not affect the immune

system and a drug efficiency of 100% (εI = 1) is the highest dose that curbs the immune response

fully. However, we also know that the dosage, type, and concentration of drugs often change over the

course of treatment. With devising a control problem formulation as our eventual goal in improving

this model, we replace the stepwise function from the previous iteration (3.2) with a single control

parameter, εI , which we aim to be able to control and predict over time.

In model (3.1) the loss of creatinine was assumed to be a function of both the susceptible cells and

the allo-specific CD8+T-cells that target the kidney. Our revised model more explicitly incorporates

the effect of allo-specific CD8+T-cells on the healthy susceptible cells in (3a), thus we do not need

the EK dependent decay function in (3i). Note that the model is very sensitive to the threshold

concentrations, V ∗, EK
∗ and EV

∗. We chose a V ∗ value that was significantly below detection level

for BK Virus related viremia (10, 000 copies/mL [28, 63, 64]). Thresholds EK
∗ and EV

∗ were deduced

from total populations of CD8+T-cells observed during numerical simulations.

A description of the state variables, parameters and initial conditions are given in Tables 2.1, 3.2 and

3.3 respectively.

36



Table 3.2: Original (Iteration I) and new model (Iteration II) parameters.

Parameter Description Unit Iteration I Iteration II Justification
λH S Proliferation rate for HS /day 0.03 -
κV Half saturation constant copies/mL 180 106 See A
κH S Saturation constant cells/mL 1025 -
β̃ Attack rate on HS by EK mL/(cells·day) - 0.0001
λE K Source rate of EK cells/(mL·day) 0.002 285 [7] See B
β Infection rate of HS by V mL/(copies·day) 8.22×10−8 8.22×10−8

δE K Death rate of EK /day 0.103 0.09
δH I Death rate of HI by V /day 0.085 0.085
λC Production rate for C mg/(dL·day) 0.01 0.01
ρV # Virions produced by HI before death copies/cells 4292.4 15000 3−44, 000 [36]
δC 0 Maximum clearance rate for C /day 0.014 0.2 [7]
δE H Elimination rate of HI by EV mL/(cells·day) 0.0018 0.0018
κE K Half saturation constant cells/mL 0.2 - .
δV Natural clearance rate of V /day 0.37 0.05 0.04−15.12 [8, 35, 36]
κC H Half saturation constant cells/mL 10 104 See A
λE V Source rate of EV cells/(mL·day) 0.001 285 [7] See B
ρ̄E K Maximum proliferation rate for EK /day 0.164 0.137
δE V Death rate of EV /day 0.11 0.17
κK H Half saturation constant cells/mL 84.996 103 See A
ρ̄E V Maximum proliferation rate for EV /day 0.25 0.36
V ∗ Threshold concentration of BKV copies/mL - 1000
EK
∗ Threshold concentration of Allospecific CD8+ T-cells cells/mL - 2500

EV
∗ Threshold concentration of BKV specific CD8+ T-cells cells/mL - 500

Table 3.3: Initial conditions both original (Iteration I) and new (Iteration II).

State Iteration I IC Iteration II IC Justification
HS 0 5×103 cells/mL 1025 cells/mL Assume HS 0 = κH S from [8]
HI 0 60 cells/mL 2×10−16 cells/mL Trace infection before transplant
V0 5×104 copies/mL 1200 copies/mL Minimal V of 10, 000 copies/mL for low BK viremia detection [28, 63, 64]

EK 0 0.04 cells/mL 2×10−16 cells/mL Negligible amounts of Allospecific CD8+ T-cells
EV 0 0.4 cells/mL 100 cells/mL Low level of BKV specific CD8+ T-cells
C0 1.07 mg/dL 0.7 mg/dL Range 0.6 -1.1 [7]
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Below are the detailed justifications for parameter value changes, as shown in Table 3.2.

A. The value for parameter κV changed from 180 to 106 copies/mL. Recall that κV represents the

half saturation constant in the term ρE V (V ) =
ρ̄E V V

V +κV
. In Figure 3.3, we notice that viral loads

reach approximately 4× 105 copies/mL. If κV << 4× 105, ρE V (V ) ≈ ρ̄E V , a constant. Similarly,

if κV ≈ 4× 105, ρE V (V ) ≈
ρ̄E V

2
. These choices for κV make the BK dependent growth rate of EV

impervious to viral load values. Thus we set κV = 106 in order to capture the sensitivity of the growth

rate of EV to V . Similarly we notice that susceptible cell populations are primarily between orders

of magnitude 102 cells/mL and 103 cells/mL, hence we chose κK H = 103 and κC H = 104.

B. The authors in [8] assume low source rates λE V and λE K for BKV specific and allospecific cells

respectively, resulting in the BKV load proliferating at a much higher rate compared to the CD8+T-

cells. Thus, the BKV dynamics become impervious to the immune response, rendering it insensitive

to the control over time. The authors in [7] consider λE V = λE K = 0.5 cells/µL-blood·day. Using the

conversion 1 cell/µL-blood·day = 570 cells/mL-plasma·day, we obtain λE V = λE K = 285 cells/mL-

plasma·day.

3.3.2 Model Analysis and Biological Interpretation

Figure 3.4 contains model solutions with parameter values and initial conditions in Tables 3.2 and

3.3 respectively. We examine the solutions for both models for varying levels of immunosuppres-

sant efficiency to determine if our current mathematical model more accurately represents the

biological process. The simulations show higher sensitivity to drug dosage with the modified model

in Iteration II. We also notice that for the improved model for both higher and lower dosages of

immunosuppressant, the kidney function fails, as seen from the rise in creatinine levels (either due

to infection or rejection). There are intermediate values of immunosuppressant dosages for which

the creatinine levels stay low. Lastly, we pick a low initial viral load as we assume that the transplant

recipient does not have an active BKV infection just before and during transplantation. We can

see that the modified model solutions are more biologically representative of the true dynamics as

described in Table 3.1. In Figure 3.4 we consistently use the following line markers to depict the

curves :
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(a) Susceptible cells (Iteration I) (b) Susceptible cells (Iteration II)

(c) Infected cells (Iteration I) (d) Infected cells (Iteration II)

(e) BK Viral load in blood (Iteration I) (f) BK Viral load in blood (Iteration II)

Figure 3.4: Model simulations for both Iteration I and II of modeling for different εI values.
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(g) BK specific CD8+ T-cells (Iteration I) (h) BK specific CD8+ T-cells (Iteration II)

(i) Allospecific CD8+ T-cells (Iteration I) (j) Allospecific CD8+ T-cells (Iteration II)

(k) Creatinine (Iteration I) (l) Creatinine (Iteration II)

Figure 3.4 (cont.): Model simulations for both Iteration I and II of modeling for different εI values.

40



3.4 Iteration III: Further Prospective Improvements

3.4.1 Mathematical Model

The mathematical model (3.3) presented in Iteration II has an indicator or characteristic function

which makes the system of differential equations used to represent the biological system discon-

tinuous. While all our robustness tests (more details of these tests can be seen in Chapter 4) to

corroborate the suitability of the model to build a feedback control loop were successful, we still

wanted to verify if indeed the discontinuity had little affect on the model outcomes. We replaced

each of the discontinuous characteristic functions in model (3.3) (and the associated parameter)

with a smooth function as seen below in model (3.5) and Figure 3.5. Recall from Table 3.2 that when

using the characteristic functions in model (3.3) the threshold parameter values for E ∗K ,V ∗ and E ∗V
were 2500 cells/mL,1000 copies/mL and 500 cells/mL respectively.

ḢS =−ζ1(EK )HS EK −ζ2(V )HS V (3.5a)

ḢI = ζ2(V )HS V −δH I HI −ζ3(EV )EV HI (3.5b)

V̇ =ρV δH I HI −δV V −ζ2(V )HS V (3.5c)

ĖV = (1−εI )[λE V +ρE V (V )EV ]−δE V EV (3.5d)

ĖK = (1−εI )[λE K +ρE K (HS )EK ]−δE K EK (3.5e)

Ċ =λC −δC (HS )C (3.5f)

where

ζ1(EK ) =
β̃

2

�

1− e (−EK +2500)

1+ e (−EK +2500)
+1

�

, (3.5g)

ζ2(V ) =
β

2

�

1− e (−V +1000)

1+ e (−V +1000)
+1

�

, (3.5h)

ζ3(EV ) =
δE H

2

�

1− e (−EV +500)

1+ e (−EV +500)
+1

�

, (3.5i)
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and

ρE V (V ) =
ρ̄E V V

V +κV
, (3.5j)

ρE K (HS ) =
ρ̄E K HS

HS +κK H
, (3.5k)

δC (HS ) =δC 0 ·
HS

HS +κC H
. (3.5l)

As before initial conditions are given by,

(HS (0), HI (0), V (0), EV (0), EK (0), C (0)) = (HS0, HI 0, V0, EV 0, EK 0, C0). (3.5m)

3.4.2 Model Analysis and Inference

We next use the new model (3.5) to observe model simulations for varying immunosuppressant

efficiency levels. Observe in Figure 3.6 the model simulations for Iteration II and Iteration III are

identical. We conclude that the use of the characteristic functions in model (3.3) in Iteration II is

valid and Iteration III, while a good test need not necessarily be considered as the most improved

version of the model (owing to the indistinguishable model dynamics observed in Figure 3.6).
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(a) Step function β̃χ(EK >EK
∗) (b) Smooth approximation ζ1(EK )

(c) Step function βχ(V >V ∗) (d) Smooth approximation ζ2(V )

(e) Step function δE Hχ(EV >EV
∗) (f) Smooth approximation ζ3(EV )

Figure 3.5: Figures showing the step functions used in Iteration II model (3.3) and their smooth
approximations used in Iteration III model (3.5).
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(a) Susceptible cells (Iteration II) (b) Susceptible cells (Iteration III)

(c) Infected cells (Iteration II) (d) Infected cells (Iteration III)

(e) BK Viral load in blood (Iteration II) (f) BK Viral load in blood (Iteration III)

Figure 3.6: Model simulations for Iteration II and III of modeling for different εI values.
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(g) BK specific CD8+ T-cells (Iteration II) (h) BK specific CD8+ T-cells (Iteration III)

(i) Allospecific CD8+ T-cells (Iteration II) (j) Allospecific CD8+ T-cells (Iteration III)

(k) Creatinine (Iteration II) (l) Creatinine (Iteration III)

Figure 3.6 (cont.): Model simulations for Iteration II and III of modeling for different εI values.
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3.5 Discussion

To illustrate the iterative modeling process, we analyze and modify a mathematical model of the

immune response in renal transplant recipients infected with BK virus. Motivated by the problem of

implementing a control strategy for individual patients, our investigation of the preliminary model

indicates a discrepancy between the model and the biological process, prompting another iteration

of modeling. The modified model (3.3) now represents the biological process of infection and organ

rejection more accurately, as seen in Figure 3.4.

Next to ensure that the discontinuous nature of the characteristic functions in model (3.3) introduced

in Iteration II does not hinder model performance, we performed another iteration of modeling. In

Iteration III, we approximated the discontinuous characteristic functions with smooth functions. We

analyzed the new model’s (3.5) solutions for varying levels of immunosuppression and concluded

based on the undifferentiated nature of the model plots from Iteration II and Iteration III, that the

model in Iteration II is sufficient to design our optimal control upon. Henceforth all simulations in

Chapter 4 will be done using model (3.3) from Iteration II of the iterative modeling process.

Future work involves possible further improvements to model (3.3). For instance, as more data

(viral load and creatinine measurements) become available we should obtain more confidence in

the parameters. Using a diverse data set spanning over several patients one would also be able to

conduct further analysis to see if the parameters change substantially for different patients. We are

currently exploring the specific effects of individual immunosuppressant drugs on the mechanisms

of the immune response by understanding how each of these drugs individually and in combination

with others inhibit the functioning of the CD8+ T-cells (some of which is presented in Chapter

5). This might lead to an improvement in the understanding of how immunosuppressed CD8+

T-cells grow and decay in the presence of foreign cells, and in turn might lead to another iteration of

modeling.

With this new model (3.3), we will next develop the adaptive optimal control problem to determine

the optimal level of immunosuppressive therapy for individual patients to balance over-suppression

and under-suppression, as seen in Chapter 4.
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CHAPTER

4

OPTIMAL CONTROL OF

IMMUNOSUPPRESSANTS IN RENAL

TRANSPLANT RECIPIENTS SUSCEPTIBLE

TO BKV INFECTION

4.1 Introduction

Personalized medicine investigators attempt to find subgroups of similar patients who may need

a different course of action or adaptively treat an individual patient based on their response to

treatment [82]. One example, among many, of using mathematical models to enhance personalized

treatment is the application of control theory to determine an optimal treatment strategy. There are

several related biomedical applications of modeling and control theory [12], such as determining

the optimal treatment regimen for cancer patients undergoing chemotherapy in order to minimize

tumor density as well as treatment side effects [65]. The authors in [65] also apply control theory

to human immunodeficiency virus (HIV)-infected patients undergoing chemotherapy and also

to determine the optimal insulin injection level to better regulate blood glucose levels in diabetic

patients. Further applications of control theory to HIV therapy strategies are presented in [3, 10,
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52]. The authors in [87] present control problems related to cancer therapies, such as antiangio-

genic treatments. There are several diseases that require immunosuppressant treatment, besides

solid organ transplantation, in which control theory could potentially be beneficial. Allogeneic

hematopoietic stem-cell transplant recipients receive immunosuppression therapy to diminish the

risk of developing graft-versus-host disease (GvHD), the attack of donor T-cells on the host tissues

[90]. Immunosuppression therapy is also one of the current treatment options for autoimmune

diseases, which result from the body’s immune system attacking its own body [20]. The authors in

[7] present a control problem in the context of HCMV-infected kidney transplant recipients. Unlike

HCMV infection, the lack of an approved antiviral therapy for symptomatic BKV nephropathy makes

the task of carefully monitoring the level of immunosuppression an even more challenging but

imperative one.

Quantitative measurements of BK virus in the blood can strongly suggest BK nephropathy, but a graft

biopsy with in situ hybridization or immunohistochemical techniques is required for a definitive

diagnosis. Because there is no proven drug treatment for BK nephropathy, current therapy relies on

careful reduction of immunosuppression (with the unavoidable risk of rejection) and options to use

intravenous gamma globulin (IVIg) and/or low-dose cidofovir.

While reducing the level of immunosuppression might help keep infections caused by BKV at bay

preventing the occurrence of PVAN (which leads to kidney failures), it also makes the immune

response stronger. A stronger immune response in turn leads to allograft rejection. Thus the task

of achieving the optimum immunosuppression level so that the body reaches the fragile balance

between being under-suppressed (and prone to organ rejection) and over-suppressed (and suscep-

tible to infections) is a difficult one (see Figure 3.2 in Chapter 3). In this chapter our goal is to use

the improved mathematical model (3.3) developed from Chapter 3 to design an optimal control

problem which would find the ideal amount of immunosuppressant dosage required to help achieve

both the goal of fighting BKV infection as well as not rejecting the transplant.

The two biomarkers that can be readily measured to ascertain kidney health and infection status

from blood plasma samples in a renal transplant patient are the BKV load and creatinine. We will use

these two measurements to determine the optimum amount of immunosuppressant dosage.

When designing a control problem there are two broad classifications to consider, an open-loop

control and a closed-loop control. An open-loop optimal control is one where the control problem

is formulated in a way that the optimization is based on just the initial observations. So for our

problem, we would devise a control formulation based on just the initial creatinine and BKV load

then predict the optimal amount of immunosuppressant a transplant recipient would need for the

rest of his life. As can be expected the body, especially one that had undergone organ transplantation,

is an unstable and unpredictable system and making predictions for drug dosage based on just an
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initial observation of biomarkers is not a feasible medical strategy.

A closed-loop optimal control problem on the other hand would be more practically suited for our

problem as it is formulated in a way that the optimization is based on the most current observations

which are updated periodically. Measurements of BKV load and creatinine are usually taken every

time a renal transplant patient comes for a check up; such data gets updated routinely with every

doctor’s visit. Thus using a closed loop optimal control formulation (also called a feedback optimal

control formulation), the optimal level of immunosuppression is adjusted at each visit based on the

current measurements of viral load and creatinine.

With the model (3.3) from Chapter 3, we formulate in Section 4.3 an optimal feedback control

strategy for a simulated transplant recipient susceptible to BKV infection. We first present the

model and parameters and then formulate an open loop control to demonstrate the feasibility of

eventually designing a feedback control. Next since we want to design a feedback optimal control

as opposed to an open loop optimal control we choose to use a Receding Horizon Control (RHC) or

Model Predictive Control (MPC) methodology [23, 24]. Implementing a feedback control requires

knowledge of all state variables. Since our model is a non-linear dynamical system and we do not

have observations for all our model states, we use a state estimation technique such as non-linear

filtering to estimate the missing model states. Thus in Section 4.4 we introduce the concept of

Non-Linear Kalman Filtering, specifically Continuous Discrete Extended Kalman Filtering as it

pertains to our problem. We next present our results which include a cohesive algorithm for optimal

control and state estimation to predict the optimal immunosuppression regimen for a transplant

recipient in the context of BKV infection. Our last section presents our conclusions.

4.2 Mathematical Model

The current updated BKV model in Chapter 3 which describes the dynamics of the immune response

(BKV-specific CD8+T-cells (EV ) and allospecific CD8+T-cells (EK ) that target the kidney) in response

to concentrations of susceptible cells (HS ), infected cells (HI ), free BKV (V) and the biomarker serum
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creatinine (C) is presented below [73]:

ḢS =−χ(EK >E ∗K )β̃HS EK −χ(V >V ∗)βHS V (4.1a)

ḢI =χ(V >V ∗)βHS V −δH I HI −χ(EV >E ∗V )δE H EV HI (4.1b)

V̇ =ρV δH I HI −δV V −χ(V >V ∗)βHS V (4.1c)

ĖV = (1−εI )[λE V +ρE V (V )EV ]−δE V EV (4.1d)

ĖK = (1−εI )[λE K +ρE K (HS )EK ]−δE K EK (4.1e)

Ċ =λC −δC (HS )C , (4.1f)

where

ρE V (V ) =
ρ̄E V V

V +κV
, (4.1g)

ρE K (HS ) =
ρ̄E K HS

HS +κK H
, (4.1h)

δC (HS ) =δC 0 ·
HS

HS +κC H
. (4.1i)

As described in [73] initial conditions are given by,

(HS (0), HI (0), V (0), EV (0), EK (0), C (0)) = (HS0, HI 0, V0, EV 0, EK 0, C0). (4.1j)

We define the characteristic or indicator function χ as

χ(x>x ∗) =







1, for x > x ∗

0, otherwise.
(4.2)

For more details about the detailed mechanisms of the model refer to Chapter 3. The model states,

parameters and initial conditions are given in Tables 2.1, 3.2 and 3.3 respectively.

50



4.3 Optimal Control

Let us suppose we have a non-linear dynamical system

d x (t )
d t

= f (x (t ), u (t ), t ), x (t0) = x0, (4.3)

with state variable x (t ) ∈Rn and the control input u (t ) ∈U ⊂Rm (U is a control set).

Next let us define a performance index or cost functional associated with the system in (4.3),

J (u (t )) =φ(x (T ), T ) +

∫ T

t0

L (x (t ), u (t ), t )d t , (4.4)

where [t0, T ] is our defined time interval. The terminal costφ(x (T ), T ) depends on the final state

and time. The running cost or weighting function L (t , x (t ), u (t )) depends on the intermediate state

and control at times in [t0, T ].

The optimal control problem is to find the control u∗(t ) on our time interval of interest [t0, T ] that

drives the system through the trajectory x ∗(t ) such that the cost function in (4.4) is minimized and

such that the final state constraint function given byψ(x (T ), T ) is fixed at zero [57, 66],

ψ(x (T ), T ) = 0. (4.5)

For most complex real life problems solving the control problem analytically might not be a feasible

option as the closed form solution might not exist. Under such circumstances one must employ

numerical methods for solving optimal control problems. Numerical methods can be divided into

two broad categories: direct or indirect methods.

In direct methods the optimal control problem is transformed into a nonlinear programming

problems or a nonlinear optimization problem which involves the discretization of the original

optimal control problem (either just the optimal control or both the optimal control and model

states) and then numerically solving using well-established, pre-existing optimization methods.

This class of methods is known as direct transcription and is sometimes referred to as “discretize

then optimize" [16, 85].

The indirect methods are based on the calculus of variations or the Pontryagin’s minimum or

maximum principle to derive and solve for the necessary conditions for optimality [57, 66]. The

method employs the Hamiltonian function
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H (x (t ), u (t ),λ(t ), t ) = L (x (t ), u (t ), t ) +λ f (x (t ), u (t ), t )

and the optimal control problem is reduced to the solution of the following system equations given

in the form of a two-point boundary value problem (BVP):

State Equation : ẋ (t ) =Hλ(x (t ),λ(t ), u (t ), t ) = f (x (t ), u (t ), t )

Costate/Adjoint Equation :−λ̇(t ) =Hx (x (t ),λ(t ), u (t ), t )

where λ are additional Lagrange multiplier functions.

The boundary conditions are

x (t0) = x0

(φx +ψ
T
x ν−λ)

T |T d x (T ) + (φt +ψ
T
t ν+H )|T d T = 0 (4.6)

where ν is the Lagrange multiplier corresponding to the final state constraint in (4.5). The optimal

control is found by,

u∗(x (t ),λ(t ), t ) = argminu∈UH (x (t ),λ(t ), u (t ), t )

This problem can be solved analytically for a few simpler models but for most optimization problems

it must to be solved numerically.

4.3.1 Open Loop Control

An open-loop system is one where the output of the system has no consequence on the input

or control because the output is not re-evaluated based on updates on the state inputs. Thus an

open-loop control system blindly depends solely on its initial input and fixed path regardless of the

final result.

When solving an optimal open loop control problem the goal is to find the input u∗(t ) on the time

interval [t0, T ] that drives the system along a trajectory x ∗(t ) such that the cost function in (4.4) is

minimized, and such that the final state constraint in (4.5) is satisfied using just an initial input of

the model states [57, 66].
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For T fixed, solutions of the optimal control problem also solve the following set of differential

equations:

State Equation : ẋ =Hλ = f (x , u , t )

Costate Equation :−λ̇=Hx =
∂ L

∂ x
+λ
∂ f

∂ x

State initial condition : x (0) = x0

Co-state final condition :λ(T ) = (φx +ψν)|T .

The process of computing an optimal open loop control is given below [23]:

1. Given the initial guess for control and state conditions, solve the state equation forward in

time.

2. Given the above computed state and control, solve the costate equation backwards in time.

3. Using the x and λ computed above compute the cost function J (u ) and gradient Hu (note

that the first order approximation of∇J is Hu [81]).

4. Update the control using an optimization routine (we use MATLAB’s inbuilt solver fmincon

where we supply the gradient evaluations for greater speed and accuracy).

5. In the optimization routine we want Hu to converge to a certain tolerance or till a maximum

number of iterations are reached.

6. Repeat this process at each sampling time point using the current predicted control and model

states until time T .

4.3.2 Feedback Loop Control: Receding Horizon Methodology

A closed loop system or a feedback control system is a control system which is similar to open

loop except it now incorporates one or more feedback paths between its output and input giving

the system a way to re-evaluate itself based on periodically updated input. Unlike the open loop

control, a feedback loop has self knowledge of the output and can adapt to any disturbances that

occur.

Receding Horizon Control (RHC) is a feedback control formulation which also aims to make use of

the computational simplicity of the above mentioned calculus of variations approach. RHC solves

an open-loop optimal control problem at each sampling instant for a finite time horizon. Some
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factors that need to be considered in this method besides the model and the cost function are the

sampling period, the length of the finite time horizon, and the state estimation method to obtain the

state at each sampling time point. An advantage of using the RHC methodology is that by solving

the open loop control on a finite long time horizon one computes the control far into the future to

optimize the present control value (See Figure 4.1).

Figure 4.1: A sample plot showing the concept of RHC [24].

We then solve the receding horizon control problem using the following algorithm [24] and diagram

of the schematic is also given in Figure 4.2:

1. Given initial condition for state and control, solve the open loop control problem (as described

in the previous subsection) on the time interval [ti , ti + tc h ,i ]where tc h ,i is the length of the

control horizon at time ti .

2. Using the control defined only on the interval [ti , ti+1] determine the trajectory of the model

states on the same time interval (assumption being we get a data point or “feedback" at ti+1).

3. Use observations for all states if available or a state estimator to determine x (ti+1).

4. Repeat step 1 but now over the time interval [ti+1, ti+1+ tc h ,i+1]

5. Continue steps 1−4 until T is reached.
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Figure 4.2: A schematic diagram showing the RHC algorithm [24].

4.4 Filtering: Continuous-Discrete Extended Kalman Filter

Filtering is used to combine a set of observations (corrupted with some measurement noise, v ) with

a model (also corrupted by some noise, w ) to obtain an estimate for the true physical system. It

provides estimates in real time as data is collected and allows model errors to be taken into account.

The Kalman Filter can be extended for nonlinear problems, one such extension is known as the

Extended Kalman Filter (EKF). In this case we have a non-linear dynamic model with discrete

measurements; hence we use the Continuous-Discrete Extended Kalman Filter.

We use the algorithm described below with the same initial condition x0 as the open loop control,

and the ε∗I obtained and our new data point zk to obtain the state estimate x̂k .

We start with the continuous nonlinear dynamic model with discrete data points:

ẋ (t ) = f (x (t ),εI , t ) + g (t )w (t ), w (t )∼N (0,Q ) (4.7)

zk = h (x (tk ), k ) + vk , vk ∼N (0, R ) (4.8)

Here f (x (t ),εI , t ) is our log-scaled version of the model (4.1) and we assumed g (t ) = 1.

The term h (x (tk ), k ) is the observed part of the model solution defined as h (x (tk ), k ) =

�

Vk

Ck

�

.
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Q and R represent the variance of the error in the model and the data respectively. They are chosen

after a series of trials and errors. Note if we choose Q >> R , this is because we suspect that there

is more noise in the model and then the filter trusts the data more and will fit the data closely.

Meanwhile if R >>Q , implying that the data is significantly noisier than the model and then the

filter trusts the model more than the data and will fit the model more closely. (See Figures 4.9 and

4.10)
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Given below is the algorithm used for state estimation using the Continuous-Discrete Extended

Kalman Filter [53, 94]:

Initialization of state and covariance (k = 0):

Initialization of state and covariance (k = 0):

x̂0 = E [x (t0)]

P0 = E [(x (t0)−E [x (t0)])(x (t0)−E [x (t0)])
T ]

We chose x̂0 to be the first data point and P0 = I6.

For k = 1, 2, 3 . . .

Compute Jacobians:

A(x ,εI , t ) =∇ f (x ,εI , t ), C (x ) =∇h (x , k ).

Time Update:

For tk−1 ≤ t ≤ tk , integrate the differential equations

˙̂x = f (x̂ ,εI , t ).

Ṗ = PAT (x̂ ,εI , t ) +A(x̂ ,εI , t )P + g Q T g .

with the initial conditions x (tk−1) = xk−1 and P (tk−1) = Pk−1 to obtain x̂−k = x̂ (tk ) and Pk
− =

P (tk )

Measurement update:

Kk = Pk
−C T (x̂−k )[C (x̂

−
k )Pk

−C T (x̂−k ) +R ]−1.

Pk = [I −Kk C (x̂−k )]Pk
−.

x̂k = x̂−k +Kk [zk −h (x̂−k , k )].
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The above algorithm summarizes the process of state estimation using the Extended Kalman Filter for

a continuous model with discrete data points. The time update in the above algorithm is performed

over an interval of time when measurement or data will be available. When data becomes available

a measurement update will be performed, however in the absence of data the filter can still continue

to operate using the time update and the last available state estimate available until data becomes

available [42].

4.5 Numerical Results

The results [74] presented in this section are all using a log transformed version of the mathematical

model in Equation (4.1) as done in [8] and shown in Chapter 2. Due to sparsity of observational data

available, we created simulated data by adding noise to our model solutions as follows:

z=h(x) +η

where the noise η=

�

η1

η2

�

η1 ∼N (0,σ2
1), η2 ∼N (0,σ2

2) and h(x) =

�

V

C

�

.

The first subsection presents results for model dynamics if fixed immunosuppressant dosages

were prescribed to a transplant recipient. Next we show preliminary simulations for the control

problem, starting with open loop simulations to test the sensitivity of the model to the control

with respect to varying weights and initial immunosuppression values and feedback control when

perfect information is available. We follow with simulations testing the Extended Kalman Filter to

ensure it’s performance is robust. Lastly we show our results for feedback control with Extended

Kalman Filter as our method of choice for state estimation, thus creating an adaptive treatment

schedule for renal transplant recipients.

4.5.1 Numerical Results: Fixed Immunosuppressant Dosages

Here we show results for the dynamics of biomarkers of infection (BKV load) and kidney health

(Creatinine) when the immunosuppression regimen was not being optimized using an optimal

feedback control formulation. We suppose instead one was prescribing predetermined medication

to the patients based on the treatment schedule described in [8]. We see in Figure 4.3 that while the

viral load was within bounds (minimal viral load of 10,000 copies/ml must be present in plasma for

low BK viremia to be detected [28]), the creatinine levels showed that the kidney was undergoing

rejection because of the strong allo-specific immune response. As a reference, normal levels of

creatinine in the blood are approximately 0.6 to 1.2 mg/dL in adult males and 0.5 to 1.1 mg/dL in
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adult females. Usually females have a lower baseline for creatinine levels as they have less muscle

mass. Since creatinine is a by product of muscle metabolism, more muscle mass implies higher

creatinine levels. Individuals with only one kidney may have a normal creatinine level of about 1.8

mg/dL or 1.9 mg/dL. Since kidney transplant patients are usually individuals with one kidney we will

use 1.9 mg/dL as an upper bound baseline for normal creatinine levels [26]. We also define

εI (t ) =



























0.1009 t ∈ [0, 21]

0.3658 t ∈ (21, 60]

0.5999 t ∈ (60, 120]

0.3649 t ∈ (120, 450].

(4.9)

(a) BK Virus (b) Creatinine

Figure 4.3: Model dynamics when ε dosages are fixed. (Red dashed line is the upper bound on
healthy biomarker values.)
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BKV specific CD8+ T-Cells Allo-specific CD8+ T-Cells

Immunosuppressant

Figure 4.3 (cont.): Model dynamics when ε dosages are fixed. (Red dashed line is the upper bound
on healthy biomarker values.)
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4.5.2 Numerical Results: Open Loop Control

Our aim is to determine the optimal immunosuppressive drug efficiency over the time interval

[t0, T ] such that renal transplant recipients have a functioning kidney free of BKV infection. Since

we ascertain from before how far we want to control to be computed, the final time T is fixed. Since

we want to drive the viral load and creatinine low but do not want to fix the final outcome, the final

state x (T ) is free. We define the following cost function

J (t ) =

∫ T

t0

�

WV V (t )2+WC C (t )2
�

d t . (4.10)

Note that compared to the cost function we define in general, in Equation (4.4), we do not have a

terminal cost in our problem. The formulation of our cost function is under the assumption that

sustainable good kidney health under optimal doses of immunosuppression involves minimizing

BK viral load in the blood and effective clearance of creatinine from the blood (implying low serum

creatinine levels). The weighting terms WV and WC adjust how much we want to penalize the cost

function for not lowering viral loads and creatinine. Our control here is εI , the efficiency of the

immunosuppressant. Recall that the efficiency has to be a non-negative quantity less than 1. We

do not include the control in the cost functional because we do not wish to minimize immunosup-

pressant dosage. Our only aim is to have an infection-free, healthy kidney irregardless of how much

immunosuppressant is needed. Also due to the large differences in magnitude in model states we

use a log scaled model (see [8] for details).

We next use the MATLAB optimization solver fmincon and give it the cost and the gradient of the

Hamiltonian with respect toεI and performed open loop simulations for 500 days with varying initial

guesses of immunosuppressant dosage (for control estimation) ε0 with weights (WV , WC ) = (1,1).

Our goal before designing the feedback control was to test the robustness of the model in the context

of the control problem we are trying to design.

In Figures 4.4 and 4.5 we see the dynamics of our two biomarkers BKV load and Creatinine as we

change the initial guess for immunosuppression efficiency when running an open loop control.

In Figure 4.4 the control for ε0 = 0.5 looks almost like a straight line with little to none deviation.

To investigate it further we chose initial guesses close to ε0 = 0.5. Figure 4.5 confirms that for an

open loop control formulation an initial guess of ε0 = 0.5 gives the lowest BKV load and creatinine

dynamics seen, hence explaining minimal deviation in the immunosuppression values. Note

that ε0 is the initial guess for control estimation and not the initial immunosuppressant dosage

recommended to the patient.

Next for initial guess ε0 = 0.45 we observe changes due to varying weights WV and WC in BKV and
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creatinine dynamics as seen in Figures 4.6 and 4.7. We notice that as we increase the weight for one

biomarker the control works harder in lowering it even if it means compromising on minimizing

the other. Here again we point out, as seen in Figure 4.7 that on varying WC , i.e., penalizing to lower

creatinine dynamics, we see a dip in creatinine values as we increase WC soon to be followed by a

steady increase later. This is due to the increase in viral load (since we are penalizing heavier on the

creatinine than the BKV load), leading to infection and a damaged kidney in the later days.

(a) BK Virus dynamics (b) Creatinine levels

(c) Immunosuppressant dosage

Figure 4.4: Open loop control for weights (WV , WC ) = (1, 1)with varying ε0.
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(a) BK Virus dynamics (b) Creatinine levels

(c) Immunosuppressant dosage

Figure 4.5: Open loop control for weights (WV , WC ) = (1, 1)with varying ε0.
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(a) BK Virus dynamics (b) Creatinine levels

(c) Immunosuppressant dosage

Figure 4.6: Open loop control with varying WV with initial immunosuppressant, ε0 = 0.45.
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(a) BK Virus dynamics (b) Creatinine levels

(c) Immunosuppressant dosage

Figure 4.7: Open loop control with varying WC with initial immunosuppressant, ε0 = 0.45.
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4.5.3 Numerical Results: Feedback Control with Perfect Information

Our eventual aim is to design a feedback control formulation with state estimation to account for

the incomplete information of model states one receives during the data collection process. Namely,

data as it is currently collected would provide measurements for only BKV load and creatinine. In

a step by step build up to our final aim we tested for robustness and compatibility of our model

in context of designing a feedback control problem. Hence we first ran simulations for a feedback

control problems where perfect information for all states was available during every patient visit, in

this case we assume that to be every 20 days. We assume the finite control horizon length tc h ,i to be

60 days. We conclude from the low viral and creatinine levels in Figure 4.8 that under the condition

of acquiring perfect information, a working adaptive treatment schedule can be built.
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(a) BK Virus (b) Creatinine

(c) Immunosuppressant

Figure 4.8: Optimal immunosuppressant dosage for first 340 days of treatment with an initial
guess for control estimation ε0 = 0.45 when perfect information is available on the patient every 20
days.The blue dots are the daily recommended optimal dose. (Red dashed line is the upper bound
on healthy biomarker values.)
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4.5.4 Numerical Results: Extended Kalman Filter

Before combining Feedback control with Extended Kalman Filter as a state estimation method we

wanted to test if our Extended Kalman Filter algorithm is working robustly. Recall that in Equations

(4.7) and (4.8), Q and R represent the variance of the error in the model and the data respectively.

If we chose Q >>R we suspect that there is more noise in the model and then the Filter trusts the

data more and will fit the data closely. Meanwhile if R >> Q we expect the data is significantly

noisier than the model and then the Filter trusts the model more than the data and will fit the model

more closely. We can see that in Figures 4.9 and 4.10. Figure 4.11 shows the current settings where

we assume a comparable amount of noise in both our model and data (R ≈Q ). These variances

are picked under the assumption that usually there is insufficient information to conclude which

between the model or data is noisier.

(a) BK Virus (b) Creatinine

Figure 4.9: State estimation when Q >>R : Filter trusts data more.
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(a) BK Virus (b) Creatinine

Figure 4.10: State estimation when R >>Q : Filter trusts model more.

(a) BK Virus (b) Creatinine

Figure 4.11: State estimation when R ≈Q : Current Settings.
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4.5.5 Numerical Results: Feedback Control with State Estimation

Finally we combine our RHC feedback control methodology and EKF state estimation method to

produce an optimal adaptive treatment for a simulated renal transplant recipient. The premise

is that the patient is started on an initial immunosuppressant efficiency level at the beginning

of treatment and then when they visit the doctor next there are some diagnostic tests performed

on them to measure BKV infection and creatinine. This information is then fed back to the RHC

algorithm and the remaining model states are estimated using EKF and a new immunosuppressant

efficiency is predicted. This efficiency is to be then used to predict dosage until the next patient

visit.

Following the below enumerated steps we obtained numerical results for optimal immunosuppres-

sant dosages for the first 340 days of treatment after transplant for ε0 = 0.45 as seen in Figure 4.12.

Note that in the model plots, the simulations for immunosuppressive therapy are plotted after the

initial treatment ε0 value.

1. Create simulated data as described above choosing a noise level for BKV load and creatinine

observations (we pickedσ1 = 0.3 andσ2 = 0.15 respectively).

2. Solve the Receding Horizon Control Problem from [ti , ti + tc h ,i ] (See subsection 4.3.2 for

detailed algorithm) and find an ε∗I , tc h ,i was chosen to be 200 days while |ti+1− ti |= 20 days.

3. Use the above obtained ε∗I to obtain state estimates for all model states for which we did not

have data, using Extended Kalman Filter (See section 4.4 for detailed algorithm). This would

then become our new initial condition and repeat steps 2 and 3.
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(a) BK Virus (b) Creatinine

(c) Immunosuppressant

Figure 4.12: Daily optimal immunosuppressant dosages for first 340 days of treatment with an
initial control guess ε0 = 0.45 when the patient visited the doctor every 20 days. The blue dots are
the daily recommended optimal dose. (Red dashed line is the upper bound on healthy biomarker
values.)
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4.6 Conclusion

Optimizing drug dosage regimens for immunosuppressed renal transplant recipients is of utmost

importance and is a task that is still complicated and difficult to achieve in a lot of cases. This is

especially true because the therapeutic index for most of the drugs are very narrow and a small

digression from the optimal dosage can very quickly go from beneficial to toxic. Hence finding an

individualized treatment schedule for renal transplant recipients is a very pertinent problem to

solve. Dosage regimens are highly patient specific and dependent on factors such as patient age,

weight, other medications and medical history and there also seems to be a lack of uniformity in

the exact immunosuppressive treatment protocols in the United States followed across different

organ transplant centers [22, 39].

In this chapter we designed a feedback control algorithm to predict the optimal amount of immuno-

suppression an individual undergoing a kidney transplant might need. We ran several diagnostics

tests to investigate the robustness of the control with respect to the mathematical model as well as

the state estimation method. We present results for all the robustness tests. Finally we present and

explain the algorithm used to build the adaptive optimal treatment schedule for renal transplant

recipients and depict results for the optimal treatment plan for a simulated transplant recipient.

In the future we hope to accrue further clinical data and use it to estimate the model parameters

with greater confidence. Then use these individual patient specific models in combination with our

feedback algorithm to predict optimal treatment schedules. This would be a major step towards

incorporating personalized medicine technology in the lives of renal transplant recipients.

The current model (4.1) treats immunosuppressant dosage as drug efficiency which would approx-

imately translate to the percentage of the maximum drug dosage usually prescribed to patients.

While modeling immunosuppressive therapy as a unit-less quantity is a good stepping stone in

modeling drug dosage, we wish to explore next the amalgamation of drugs that constitute the im-

munosuppressive therapy to help bridge the gap between efficiency and dosage. Transplant patients

are prescribed a cocktail of drugs as part of their therapy. Immunosuppressive drugs can be broken

into 3 broad categories: induction drugs, maintenance drugs and reversal drugs used to undo an

existing case of rejection [31, 43], a preliminary review of which is provided in Chapter 5. Our next

goal is to investigate the combination of most prevalent drugs and their prescribed proportions to

either further quantify the relationship between drug efficiency and drug dosage or to model specific

kinds of drugs in our existing model itself. Using this new updated model we would then aim to use

our adaptive optimal treatment algorithm to optimize drug dosages (instead of efficiencies) as it is

applied to individual renal transplant patients. Another possible direction we hope to take is to make

the model more representative of the dynamics in the body by incorporating further components of
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the human immune system, for example, the helper CD4+ T-cells. Lastly, incorporating specific

absorption, distribution, metabolism and excretion mechanisms of the immunosuppressant drugs

to build a more physiologically based pharmacokinetic model would be another way to incorporate

drug dosage in future efforts.
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CHAPTER

5

FUTURE DIRECTIONS

5.1 Dynamics of Immunosuppressive Treatments

While the current mathematical model (3.3) treats the immunosuppressive therapy as a unit-less

quantity meant to be a fraction of the total maximum drug dosage to be given to a patient, we wish

to explore further the amalgamation of drugs that constitute the immunosuppressive therapy. Im-

munosuppressive drugs can be broken into 3 broad categories: induction drugs, maintenance drugs

and reversal drugs used to undo an existing case of rejection [31, 43]. In this chapter we will focus

on induction and maintenance drugs as our mathematical model is based on preventing rejecting

and not reversing rejection (which is the case when one would prescribe reversal drugs).

5.1.1 Induction Therapy

Induction therapy which involves a severe amount of immunosuppression is primarily administered

to high risk patients pre and post transplantation [31, 43]. Currently induction immunosuppressive

drugs contain either polyclonal or monoclonal antibodies. Incase of polyclonal antibodies the two

antithymocyte globulins are derived by injecting horses (Atgam) or rabbits (Thymoglobulin) with

human lymphocytes or thymocytes respectively and then later extracting the immune serums [38,

50]. Polyclonal antibodies target a variety of T-cell markers and cause depletion of the lymphocytes
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from the peripheral blood [72]. One short term side effect of Thymoglobulin is cytokine release

syndrome which comprises of fever, chills, myalgias(muscle pains), and shortness of breath. In the

long term, Thymoglobulin is known to induce a persistent depletion of T-lymphocytes which in

turn increases the risk of infections, post-transplantation lymphoproliferative disorder (PTLD), and

even in extreme cases autoimmune disease. As an induction agent, antithymocyte globulin (equine)

is administered at a dosage of 10-30 mg/kg i.v. for 4-14 days and is generally infused over a period

of four to six hours per dose while Thymoglobulin doses range from 1 to 4 mg/kg/day for 3-10 days

after transplantation [15, 38, 46, 56, 75].

Some monoclonal antibodies like daclizumab (Zenapax) and basiliximab (Simulect) impair the

production and multiplication of lymphocytes and usually do not have too much side effects.

Alemtuzumab is another humanized murine monoclonal antibody which is anti-CD52 (a surface

protein expressed on T and B lymphocytes, monocytes, and macrophages) [38, 50, 72]. There is

no universally accepted dosage for alemtuzumab for induction therapy. Doses of 20-30 mg on

the day of transplantation and again on postoperative day 1 or 4 have been proven to work in the

past [33, 54, 58, 59, 93]. The side effects of of alemtuzumab can be very severe due to it’s strong

depletion of lymphocytes. Some effects include include neutropenia (70%), thrombocytopenia

(52%), anemia (47%), nausea (54%), vomiting (41%), diarrhea (22%), headache (24%), dysesthesias

(15%), dizziness (12%), and autoimmune hemolytic anemia (< 5%) [21, 38, 46]. Due to these adverse

affects corticosteroids, acetaminophen, and an antihistamine infusion are often co-administered

with the drug to combat the side affects [38].

5.1.2 Maintenance Therapy

Maintenance drugs are anti-rejection medications that are prescribed to patients for a long term.

There are usually 4 classes of maintenance drugs [31, 72]:

• Calcineurin Inhibitors: Tacrolimus and Cyclosporine

The calcineurin inhibitors (CNI) impair the expression of several critical cytokine genes that

promote T-cell activation. CsA(Cyclosporine) and TAC(Tacrolimus) are two commonly used

CNIs, each of which acts as a base immunosuppressant around which additional medica-

tions are prescribed to construct the complete immunosuppressant regimen [50, 72]. Since

Tacrolimus (Prograf) is mainly absorbed from the small intestine, it has large variability in

both inter and intra patient, especially for patients with gastro-intestinal diseases, it has

been known to have side effects such as anorexia, nausea, vomiting, diarrhea, abdominal

discomfort and frank alopecia(hair loss) [72]. CsA is known to have a narrow therapeutic index
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because of which it is pertinent to individualize the CsA dosage schedule for each patient so

as to optimize treatment by not only preventing rejection but also avoiding toxicity [71]. CNI

are highly nephrotoxic and some of the complications could lead to early post-transplant graft

dysfunction, a dose related reversible renal vasoconstriction, chronic interstitial fibrosis, acute

microvascular disease, hypertension and electrolyte abnormalities along with sometimes

non-renal toxicity(like gastrointestinal toxicity) to name a few [72].

• Antiproliferative agents: Mycophenolate Mofetil(MMF), Mycophenolate(MPA)

MMF is a prodrug which is the by product of fermentation of several Penicillium species.

It has an MPA active compound which is an antimetabolite that blocks growth of T and B

cells, prevents antibody formation and the generation of cytotoxic T cells. It can treat an

ongoing rejection and hinder the progress of proliferative arteriolopathy, a critical lesion in

chronic rejection. Gastro-intestinal side effects such as diarrhea, varying degrees of nausea,

bloating, dyspepsia, vomiting, gastritis are sometimes observed in patients when using MMF

(CellCept) and enteric-coated MPA (Myfortic) [72]. On the slightly brighter side unlike CNIs,

nephrotoxicity, neurotoxicity and hepatotoxicity have not been reported with MMF [27, 72].

• mTOR inhibitor: Sirolimus (Rapamune) and everolimus (Certican)

Mammalian target of rapamycin (mTOR) inhibitors, sirolimus and everolimus are antibiotic

compounds which inhibit mTOR, a key regulatory kinase in the process of cell division [72].

One main advantage mTOR inhibitors have over CNI is that they do not cause nephrotoxicity.

Though some other known adverse effects are thrombocytopenia, leukopenia, hypercholes-

terolemia, stomatitis, diarrhea, and, although rare, interstitial pneumonitis. mTOR inhibitors

are metabolized by cytochrome (CYP)-3A4/5 and CYP2C8 enzymes and have a narrow thera-

peutic index making drug monitoring all the more important [69]. Everolimus is a derivative

of rapamycin (sirolimus) but with shorter half life, and higher solubility and bioavailability

[69, 72].

Sirolimus is hydrophobic in nature and is rapidly absorbed with an average maximum blood

concentration (Cmax) of 40.5± 22.2 µg/L with an orally administered dose of 2.5 mg. The

maximum concentration is reached after 2.7± 2.1 hours (defined as Tmax, the time after

administration of a drug when the maximum plasma concentration is reached) and is dose

dependent [96]. As shown through the experimental study in [95], bioavailability of sirolimus

is greatly affected by food intake. The drug was absorbed more slowly when administered

after a high-fat meal than when administered after fasting and the oral availability of sirolimus

increased uniformly by 35%. The drug also has a high volume of distribution of 7-19 L/kg [68].

Everolimus is less hydrophobic in nature than Sirolimus but is also rapidly absorbed with an

76



average maximum blood concentration (Cmax) of 45±21 µg/L when orally administering a

dose of 2.5 mg. The maximum concentration is reached after 1.3±0.4 hours (Tmax) and is

dose dependent [77]. Very similar to sirolimus, bioavailability of everolimus is greatly affected

by food especially fatty food intake [60]. Interactions with the drug cyclosporine often leads

to an altered metabolism and even changes the volume of distribution [61, 69]. For instance

suppose if an estimated volume of distribution for a 71-kg patient at steady state is 110 L,

when considered in the presence of cyclosporine the volume of distribution is increased by

1.14 L for each kilogram increase in body weight [61]. In the absence of cyclosporine volume

of distribution is increased by 148 L [69, 70].

• Corticosteroids: Prednisone and Prednisolone

Corticosteroids are an anti-inflammatory drug which also suppresses the immune system

by inhibiting all stages of T-cell activation. The most prominent side effects of taking corti-

costeroids are cosmetic changes, growth impairment, osteonecrosis, osteoporosis, impaired

wound healing, cataracts, hyperlipidemia, glucose intolerance, psychological effects [72].

Prednisone and prednisolone are two compounds which are metabolically interconvertible,

with the latter being assumed to be the pharmacologically active one. They are both rapidly

absorbing drugs with Tmax between 1 to 3 hours and half lives of prednisone being 3.4 to 3.8

hours while that of prednisolone being a little shorter at 2.1 to 3.5 hours. Pharmokinetics shown

by prednisolone is highly dependent on the dosage, with dose being directly proportional

to volume of distribution and plasma clearance. Kinetics of the drug are also dependent on

age with a shorter half life in children. Liver disease could increase the fraction unbound and

prolong half life as well [80]. Dosage regimen for corticosteroids is very patient specific with

some patients being administered high intravenous or oral doses, or a low but steady daily

dose or an alternating day maintenance regimen, or a steadily decreasing oral dose spanning

over days or weeks [72].

5.1.3 Discussion

From the short review seen in this Chapter about the various dosage regimens and drug combina-

tions prescribed to renal transplant recipients, the three most important conclusions to draw were,

first that dosage regimens are highly patient specific and dependent on factors such as patient age,

weight, other medications and medical history. Second there also seems to be a lack of uniformity

in the exact immunosuppressive treatment protocols in the United States followed across different

organ transplant centers [22, 39]. Lastly based on our first and second point, optimizing the drug

dosage regimens for immunosuppressed renal transplant recipients is of utmost importance and is a
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task that is still complicated and difficult to achieve in a lot of cases especially cause the therapeutic

index for most of the drugs are very narrow and a small digression from the optimal dosage can go

very quickly from beneficial to toxic. Hence finding an optimal control individualized treatment

schedule for renal transplant recipients is a very pertinent problem to solve.

In Chapter 4 we design a adaptive treatment schedule for renal transplant recipients using the

model the mathematical model in Chapter 3. However the model (3.3) in Chapter 3 incorporates

immunosuppression therapy in the form of efficiency as opposed to dosage. We hope to use our new

findings from this chapter to bring changes to the mathematical model (3.3) and include individual

standard maintenance and induction drugs dosages and their specific effect on the immune system

and kidney. Using this new updated model we then aim to redo the control problem, this time to

optimize drug dosages as it is applied to individual renal transplant patients.

5.2 Role of Genetic Variation in the Optimal Control of Immunosuppres-

sants in Renal Transplant Recipients

While formulating the model (3.3) in Chapter 3 we encounter a large variability in certain parameter

values which in turn has an effect on the viral steady states achieved. We propose these variations

in parameter values (See Table 3.2) could be linked to the genetic variability in immune responses

and transplant outcomes. We thus next wish to explore the field of pharmacogenomics as it could

be potentially applied to personalized medicine in renal transplant recipients.

5.2.1 Genetic Variation as a Cause of Variability in Immune Responses and Transplant

Outcomes

On ranking long-term outcomes in graft survival it was found that for LD (Living donor) grafts,

donor age (28%), recipient race (15%), age (15%), transplant year (13%) and recipient sex (11%) play

an important role in the variation in results. Whereas for SCD (Standard care donor) allografts -

donor age (35%), recipient race (23%), transplant year(15%), recipient sex (8%) and age (5%) [41]. In

either case right after donor age the second most influential factor in graft survival is the race of

the recipient. This motivates us to look into the role that genetic diversity in individuals (especially

caused by race) plays in determining the outcomes of kidney transplants.

Disease causing microorganisms have always played a very significant role in human mortality.

Hence it is reasonable to conclude that the human immune system has undergone evolution due to

strong selection from pathogens [14, 76]. The first form of humans are considered to be Homo habilis,
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who evolved in Africa over 2.4 million years ago. As humans started migrating out of Africa they

experienced various ranges of environmental factors like climate, diet, and pathogen environment.

These played a significant role in the genetic adaptations that followed. As they experienced different

selection pressures from different pathogens, their immune response started developing selectively

based on the pathogenic environment. Thus humans from different pockets of populations or

race show a variation in susceptibility and immune response to diseases. Nédélec et al., [76] in

an effort to understand how natural selection is responsible for this genetic variation, tested for

the effects of African versus European ancestry on the transcriptional response of primary large

phagocytes to live bacterial pathogens such as Listeria and Salmonella. The authors in [76] state that

several genes in the order of magnitude of thousands show differences in transcriptional response to

infection based of different populations, for instance populations with African ancestors have shown

stronger inflammatory response and reduced intracellular bacterial growth compared to individuals

with European ancestry. Thus it is clear that natural selection plays a strong role in differences in

immune response due to lineage which are a by product of gene regulation. The authors conclude

that even today selective agents continue to shape this genetic diversity which is responsible for

the variation in responses to infection. Héléne et al., [83] corroborates on the above findings and

uses RNA sequencing to test the transcriptional response of primary large phagocytes not only to

live bacterial pathogens but also viral infections. The authors identified a strong transcriptional

expression quantitative trait loci (eQTLs) that decreases expression of pro-inflammatory genes in

only Europeans. They also identified several cis-eQTLs that are also responsible for the genetic

variation in immune response to both viral and bacterial infections within and between populations.

They concluded that remnants of Neanderthal DNA might be responsible for responsiveness of the

immune system in individuals and is the reason for differences in regulatory responses of genes in

Europeans.

Now that genetic variation between immune responses to viral pathogens has been established we

narrow down our view to the role of genetic variation in kidney transplants. Bowden [18] provides a

review of all the latest research efforts in the genetic studies of renal disease. It states with reasonable

confidence through familial studies and comparison of ESRD rates of occurrence for people with

different racial backgrounds and ethnicity that the risk of an individual of developing end stage renal

disease (ESRD) has a very strong and significant genetic component attached to it. The authors in

[40] present that genetic composition of deceased kidney donors have a long-term impact on the

survival of the allograft. It also briefly talks about a recent breakthrough which states that lower copy

numbers of the complement 4 gene (C4) after receipt of deceased donor kidneys have improved

graft survival in transplant recipients. On the other hand, studies [32, 40] have also shown that

variation in the gene APOL1 in donor kidneys and individual recipients of African ancestry has lead

to lower survival rates of allografts compared to their European counterparts.
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5.2.2 Renal Pharmacogenomics

Given the role of genes and genetic variation in the outcomes of renal transplants in individuals of

different genetic backgrounds, it is only natural to next aim to see if one can tailor medication/ im-

munosuppressants based on individual genetic makeups. While the feedback control formulated in

Chapter 4 would be useful for the adaptive part of this medication process, being able to use genetic

information about a patient to decide what immunosuppressants or other drugs to prescribe would

definitely contribute to the personalized part (besides individually parametrized models).

Pharmacogenomics is a relatively new field in medicine which combines pharmacology (the science

of drugs) and genomics (the study of genes and their functions) to develop effective, safe medica-

tions and doses that will be custom made to a person’s genetic makeup. It is thus also the study of

how genes affect a person’s response to drugs [45]. Luttrop et al., [67] talks about the importance

of genetic polymorphisms in CKD. Not only would identifying the genetic components that are

responsible for the aggravation of CKD improve the process of understanding the causes and out-

comes of the disease but also because genetic factors are inherited, using them would bring a certain

stability to the prognosis of the disease which it otherwise lacks. Furthermore as mentioned earlier

by identifying transplant patients’ genetic background, it is possible that a more individualized

therapy could be designed. While the feedback optimal control formulation might aid with the

dosage of the immunosuppressant, pharmacogenomics would help make the decision of what

immunosuppressant would be best suited for the patient based on their genetic make-up.

The review by Kronenberg [62] discusses factors and markers for which there has been evidence

collected to support it’s association with the succession of CKD. The following factors and markers

are discussed: asymmetric dimethylarginine, factors involved in calcium-phosphate metabolism,

adrenomedullin, A-type natriuretic peptide, N-terminal pro-brain natriuretic peptide, liver-type

fatty acid binding protein, kidney injury molecule 1, neutrophil gelatinase-associated lipocalin,

apolipoprotein A-IV, adiponectin and some recently identified genetic polymorphisms. However in

the end the review does add that substantial amount of verification of these markers and factors

needs to be done using epidemiological and experimental data before they can be considered for

potential personalized medicine avenues in clinical interventional trials.

Ariadna et al., [79] also focuses on emerging markers to make a predictive association with CKD

elevation physiologically, pathologically as well immunologically. Some inhibitors addressed are

inhibitors of the renin angiotensin system (including angiotensin-converting enzyme inhibitors

and angiotensin II receptor blockers; the vitamin D receptor agonist; salt sensitivity hypertension;

and progressive kidney-disease markers with identified genetic polymorphisms). Candidate-gene

association studies and genome-wide association studies have assessed the genetic connection
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for common renal diseases, including CKD. These studies were conducted on a diverse group of

ethnic and racial backgrounds which makes a good case for studying genetic polymorphism with

respect to CKD or ESRD. The paper [79] has a table listing all the characteristics and results of

the main published studies, there are as many as 13 studies with many sub-studies all involving

gene polymorphisms and their effect on renal function. This solidifies our claim that genetic

polymorphism plays a substantial role in understanding the immune response in an individual and

in turn effects the outcomes for renal transplant recipients. Even though certain diseases like breast

cancer have diagnosis and determination of risk factors based on genotyping [86] there is no such

concrete definitive DNA-based diagnostics and risk prediction available yet for patients suffering

from CKD (Chronic Kidney Disease).

5.2.3 Discussion

Using the mathematical model quantifying the biological relationship of BKV infection and the

donor kidney in the presence of an immunosuppressant regime in Chapter 3, we use this model to

design a feedback control problem to find the optimum amount of immunosuppressant in renal

transplant recipients in Chapter 4.

During the process of improving the original model (3.1) we see that some parameter values have a

wide range in literature. Some of these parameters play a crucial role and affect the body’s immune

response to both the viral load and the kidney in the model (3.3). The existence of such a wide

range of parameter values in literature initiates this section to investigate any possible association

between these parameter ranges and genetic compositions of individuals. We claim and show

through evidence in literature of several studies by other research groups, that there exists a direct

connection between genetic diversity (especially that caused by racial and population differences)

and the immune response. We also point to studies that specifically show how genetic polymorphism

plays a big role in the outcomes of renal transplant procedures. Even though unlike certain diseases,

there is no diagnosis and determination of risk factors based on genotyping available yet for patients

suffering from CKD, when such genetic markers do become easily determinable, a natural next step

after genetic composition based diagnosis for renal transplant recipients (renal pharmacogenomics)

would be the regulation and control of these identified biomarkers. The application of control

theory to the process of gene regulation as seen in [5] could play a crucial role in shaping the future

of renal pharmacogenomics.
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CHAPTER

6

CONCLUSION

In this dissertation we show evidence of how mathematical and statistical modeling can be used

to model complex biological systems and answer pertinent questions as a result. Specifically, we

introduce a model representing the dynamics between the human immune response, a renal graft

and BK virus in kidney transplant recipients. Our eventual goal was to use the mathematical model

in combination with control theory to develop an optimal treatment plan for renal transplant

patients.

In the first chapter, we introduce the problem and show statistical evidence indicating why it is

pertinent to solve it. Some of the pressing problems were the high volume of kidney transplants

each year and the relatively high number of unfavorable outcomes (renal graft failure) for transplant

patients over the course of ten years post-transplant. The recurrent causes for graft failure were either

infection or allograft rejection, both of which were often a result of the narrow therapeutic index

of immunosuppressant drugs that renal transplant patients were prescribed. With the motivation

for modeling, analyzing and eventually addressing this concern, we next present a short survey of

previous research on this subject.

An existing model of the immune response in context of BK Virus is first described in Chapter 2.

Mathematical model and statistical model misspecification in the context of least squares method-

ology for this model is investigated using both clinical and simulated data. A difference-based

technique is used to determine the statistical model associated with the observation process directly
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from data. Now using the chosen statistical model we solve an inverse problem and plot modified

residuals. A non-random pattern for the modified residuals would now imply discrepancy in the

mathematical modeling process. The two significant advantages of this method were that it was

computationally efficient and that one did not need to make tacit assumptions about the correctness

of the mathematical model when choosing the statistical model.

With our goal of building an optimal feedback control based treatment, we next, in Chapter 3, set

forth analyzing the mathematical model introduced in Chapter 2. Further analysis led us to an

iterative process of modeling, when we realized that the current model had certain components

which could be improved and made more biologically representative of the true system, the evidence

of which is provided in the Chapter 3. We then present the updated model describing the dynamics

of BK virus and the immune response in renal transplant recipients under immunosuppressive

therapy, and provide evidence in the form of model simulations to support the improvements.

Personalized medicine is a pertinent field aiming to improve patient experience and outcomes with

individualized treatments scheduled towards every patient’s needs. In Chapter 4, we choose to now

use the improved model from Chapter 3 to build an adaptive treatment schedule for renal transplant

recipients. We first present numerous robustness tests to authenticate the new model’s relevance for

building an feedback control formulation. Finally we use Receding Horizon Control Methodology

and Extended Kalman Filter State Estimation techniques to build an algorithm which predicts

optimal immunosuppressive dosages for renal transplant recipients at every doctor’s visit and

present results to corroborate. The motivation for using Extended Kalman Filter State Estimation is

to provide estimates for model states for which data is not available and also to account for the noise

in both the mathematical model and the clinical data. The advantage of using Receding Horizon

Control Methodology for our feedback control loop is that this technique avails information from

the future to predict optimal solutions for the present.

Lastly, in Chapter 5, literature is presented on renal pharmacogenomics and pharmacodynamics of

immunosuppressants (to model specific drug dosage instead of efficiency) and the feasibility of

possible future work in personalized medicine for renal transplant recipients in these avenues.

Other avenues of future work contextual to model development specifically would involve acqui-

sition of more clinical data to estimate model parameters with high certainty and incorporating

a more elaborate representation of the immune response (for instance including helper CD4+

T-Cells). The work presented in this dissertation has formed a gateway towards development of

patient specific models and treatment schedules for individuals who have undergone solid organ

transplantations.
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APPENDIX

A

MATHEMATICAL AND STATISTICAL

MODEL MISSPECIFICATION IN

MODELING IMMUNE RESPONSE IN

RENAL TRANSPLANT RECIPIENTS

A.1 Derivation of Modified Pseudo Errors

Consider a general N -dimensional dynamical system with parameter vector q,

dx

d t
(t ) = g(t ,x(t ); q),

x(t0) =x0,

with an m dimensional observation process

f (t ;θ) =Cx(t ;θ),
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where θ = (qT, x̃T
0 )

T is the vector of parameters along with the initial conditions to be estimated

andC is the m ×N observation matrix.

Consider the following statistical model for observable k ,

Y k
i = fk (t

k
i ;θ0) + fk (t

k
i ;θ0)

γkE k
i , i = 1, 2, . . . , nk ,

where γk ≥ 0 and the vector θ0 ∈ Ω is the “true” or nominal parameter set. The nk × 1 random

error vector EEE k is assumed to be independent and identically distributed (i.i.d) with mean zero and

Var(E k
i ) =σ

2
0k . The corresponding realization is,

y k
i = fk (t

k
i ;θ0) + fk (t

k
i ;θ0)

γkεk
i , i = 1, 2 . . . , nk . (A.1)

Note that (A.1) can be rewritten as

fk (t
k
i ;θ0) = y k

i − fk (t
k
i ;θ0)

γkεk
i . (A.2)

The observation error is represented by the term fk (t k
i ;θ0)γkεk

i , which is proportional to the size of

the observations and quantifies the discrepancy between the model and the data.

We define

ε̂k
i ≡ | fk (t

k
i ;θ0)|γkεk

i . (A.3)

We use difference based methods to calculate this approximation of observation error (pseudo

measurement errors) by the following

ε̂k
i =











































1
p

2
(y k

i+1− y k
i ) for i = 1

1
p

6
(y k

i−1−2y k
i + y k

i+1) for i = 2, . . . , nk−1

1
p

2
(y k

i − y k
i−1) for i = nk .

Substituting the approximation (A.3) in (A.2) we obtain

fk (t
k
i ;θ0)≈ y k

i − ε̂
k
i . (A.4)
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Using (A.4), we can rewrite (A.3) as

εk
i ≈

ε̂k
i

| fk (t k
i ;θ0)|

γk

≈
ε̂k

i

|y k
i − ε̂

k
i |
γk

.

Thus we define modified pseudo errors given by the following

ηk
i =

ε̂k
i

|y k
i − ε̂

k
i |
γk

.

A.2 Simulated Data from the Original Model (3.1)

We apply the difference-based method to the simulated data set (2.6) created using the original

model (3.1) to determine the correct γ value. The modified pseudo errors for the viral load with

various γ1 values are given in Figure A.1. As expected, γ1 = 0.5 produces the desired scatter plot

whereas γ1 = 0 and γ1 = 1 produce undesired megaphone shapes. Figure A.2a contains the desired

modified pseudo errors for creatinine levels with γ2 = 0. While Figure A.2b with γ2 = 1.5 is similar, it

is not quite as symmetric and has larger modified pseudo error values.

We then solve the inverse problem using the original model (3.1) with γγγ= (0.5, 0) and plot the modi-

fied residuals to verify there is no mathematical model misspecification. The model solutions and

corresponding modified residuals are plotted in Figure A.3 and Figure A.4. As expected, the model

solutions fit the data well and the corresponding modified residuals appear to form a uniform band

around the horizontal axis. The five estimated parameters are, [log10β ,log10 ρ̄E V ,log10δE V ,log10δE K ,

log10 ρ̄E K ]=[7.0735,−0.6008,−0.9628,−0.9948,−0.7836].
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(a) γ1 = 0 (b) γ1=0.5

(c) γ1=1 (d) Enlarged image, γ1=1

Figure A.1: Simulated viral load modified pseudo errors vs. time for various γ1 values.
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(a) γ2 = 0 (b) γ2=1.5

Figure A.2: Simulated creatinine modified pseudo errors vs. time for various γ2 values.

(a) V model solution and simulated data (b) C model solution and simulated data

Figure A.3: Inverse problem model (3.1) solution and simulated data with γ = (0.5, 0).
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(a) Modified residuals for V (b) Modified residuals for C

Figure A.4: Modified residuals for V and C with γ = (0.5, 0).
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A.3 Simulated Data from the Simpler Model (2.7)

We apply the difference-based method to the simulated data set (2.6) generated using the simpler

model (2.7) to determine the correct γ value. The randomness in the modified pseudo errors for

both the viral load with γ1 = 0 (Figure A.5a) and the creatinine levels with γ2 = 0.7 (Figure A.5b)

reiterate that the difference-based method works as expected.

(a) Viral load, γ1 = 0 (b) Creatinine, γ2 = 0.7

Figure A.5: Modified pseudo errors for the viral load and creatinine with γγγ= (0, 0.7).
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