
ABSTRACT

BOYLE, KRISTEN JOHNSON. On Derivations of Leibniz Algebras. (Under the direction
of Dr. Kailash Misra and Dr. Ernest Stitzinger.)

Leibniz algebras are non-commutative generalizations of Lie algebras. Since the intro-

duction of Leibniz algebras in 1993, researchers have been working to determine which

properties of Lie algebras have analogs for Leibniz algebras. In this work we study the

properties of derivations of Leibniz algebras. We determine a basis for the derivation alge-

bra of an n-dimensional cyclic Leibniz algebra. Based on George Seligman’s work on Lie

algebras we investigate characteristic ideals of Leibniz algebras. By modifying the proof

techniques for Lie algebras we are able to prove the invariance of the radical and nilradical

under derivations of a Leibniz algebra over fields of characteristic 0 and over some finite

fields. We introduce the notion of completeness for Leibniz algebras, and prove that all

semisimple Leibniz algebras are complete. It is known that nilpotent Lie algebras are not

complete. However, there exist nilpotent Leibniz algebras which are complete. We define

the holomorph for a Leibniz algebra, and study properties of the holomorph for complete

Leibniz algebras. We also introduce the notion of semicompleteness for Leibniz algebras.

We show that all complete Leibniz algebras are semicomplete, but not conversely.
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Chapter 1

Introduction

Lie algebras have been studied since the mid-nineteenth century, appearing in connection

with the study of Lie groups. Lie algebras are a widely researched area of mathematics,

and have applications in applied mathematics and physics. Jean-Louis Loday, known for

his work in Lie algebra homology, proved in 1989 that the Chevalley-Eilenberg boundary

map on the exterior algebra of a Lie algebra can be lifted to the tensor algebra into a

new boundary map. In [11], Loday shows that this lift gives rise to a new complex whose

homology is called non-commutative homology of the Lie algebra. Loday noticed that

the Leibniz identity was the only property necessary for the chain complex to be well-

defined. This discovery motivated him to define Leibniz algebras as non-commutative

generalizations of Lie algebras.

Since the introduction of Leibniz algebras in 1993, researchers have been working to

determine which properties of Lie algebras can be extended to Leibniz algebras. Among

the results which have been proven for Leibniz algebras are analogs of Lie’s Theorem,

Engel’s Theorem, Levi decomposition, and Cartan’s criterion [8]. Classification of finite

dimensional Leibniz algebras is a difficult open problem. Many researchers are working

to classify finite dimensional Leibniz algebras which are not Lie [1], [3], [7], [9], [17]. An

important class of non-Lie Leibniz algebras are the cyclic Leibniz algebras generated by

a single element [5]. We use cyclic Leibniz algebras and other low-dimensional examples

to illustrate important concepts for Leibniz algebras throughout this work.

In this work we study the properties of derivations of Leibniz algebras. In Chapter

2 we recall important notions for Leibniz algebras in the same manner as Demir, Misra,

and Stitzinger in [8]. In Chapter 3 we discuss cyclic Leibniz algebras. We compute the
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derivation algebras of cyclic Leibniz algebras up to dimension 5, and find their bases. We

determine a basis for the derivation algebra of an n-dimensional cyclic Leibniz algebra.

Since the cyclic Leibniz algebras are significant examples of algebras which are not Lie,

having a basis for the derivation algebra is useful to investigate properties of derivations

of Leibniz algebras.

George Seligman [19] studied the properties of characteristic ideals of Lie algebras. In

Chapter 4, we prove corresponding results for Leibniz algebras. We use techniques similar

to those shown by Petravchuk [16] and Maksimenko [13] to prove the invariance of the

radical and nilradical under derivations of a Leibniz algebra over fields of characteristic

0 and over some finite fields.

In Chapter 5, we introduce the notion of completeness for Leibniz algebras generalizing

the notion of completeness for Lie algebras. In particular, any complete Lie algebra is

also complete as a Leibniz algebra. We prove that all semisimple Leibniz algebras are

complete. Using our results from Chapter 2, we show that a cyclic Leibniz algebra is not

complete. Demir, Misra, and Stitzinger in [8] and [9] provide lists of all 3-dimensional non-

Lie Leibniz algebras, and all 4-dimensional non-split non-Lie nilpotent Leibniz algebras,

up to isomorphism. We determine which of these Leibniz algebras are complete and which

are not complete. Jacobson proves in [10] that all nilpotent Lie algebras are not complete.

We give an example of a nilpotent Leibniz algebra which is complete. We also define the

holomorph for a Leibniz algebra. We show that the holomorph of a Leibniz algebra is a

Leibniz algebra. In [14], Meng proves that a Lie algebra L is complete if and only if the

holomorph of L is a direct sum between L and the centralizer of L in the holomorph.

When A is a complete Leibniz algebra, we provide a decomposition of the holomorph, and

show by example that this decomposition does not imply that A is a complete Leibniz

algebra.

In Chapter 6 we introduce the notion of semicompleteness for Leibniz algebras. We

prove that all cyclic Leibniz algebras are semicomplete. We show that all complete Leibniz

algebras are semicomplete, but not all semicomplete Leibniz algebras are complete.
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Chapter 2

Preliminaries

Leibniz algebras are non-commutative generalizations of Lie algebras. In particular, a

(left) Leibniz algebra is a vector space over a field F equipped with a bilinear product

(, ) : A×A→ A that satisfies the Leibniz identity, a(bc) = (ab)c+b(ac) for all a, b, c ∈ A.

Recall, it is the alternativity of the Lie bracket that yields the antisymmetry of the

product. So, when a Leibniz algebra A also satisfies the condition a2 = 0 for all a ∈ A,

the Leibniz algebra is a Lie algebra and the Leibniz identity becomes the Jacobi identity.

Example 2.0.1. Let A =span{a, b, c} with nonzero multiplications defined by a2 = b

and ab = c. A is not a Lie algebra since a2 6= 0. Let x, y, z ∈ A where

x = α1a + α2b + α3c, y = β1a + β2b + β3c, and z = γ1a + γ2b + γ3c for αi, βi, γi ∈ F,

1 ≤ i ≤ 3. Then

x(yz) = (α1a+ α2b+ α3c)(β1γ1b+ β1γ2c) = α1β1γ1c.

And

(xy)z + y(xz) = (α1β1b+ α1β2c)(γ1a+ γ2b+ γ3c) + (β1a+ β2b+ β3c)(α1γ1b+ α1γ2c)

= 0 + β1α1γ1c

= α1β1γ1c.

Thus, the Leibniz identity holds; and A is a Leibniz algebra.

A linear map δ : A→ A is a derivation of a Leibniz algebra A if δ(ab) = δ(a)b+aδ(b)

for all a, b ∈ A. For any derivation δ of a Leibniz algebra A, define δ0(A) = A and
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δk(A) = δ(δk−1(A)). We denote Der(A) to be the set of all derivations of A.

Example 2.0.2. Let A be a Leibniz algebra. Der(A) is closed under linear combinations,

so it is a subspace of gl(A), the algebra of all linear operators on A with the product

given by composition. Let δ1, δ2 ∈ Der(A), x, y ∈ A, and consider the commutator of δ1

and δ2 applied to the product xy.

[δ1, δ2](xy) = δ1δ2(xy)− δ2δ1(xy) = δ1(δ2(x)y + xδ2(y))− δ2(δ1(x)y + xδ1(y))

= δ1(δ2(x)y) + δ1(xδ2(y))− δ2(δ1(x)y)− δ2(xδ1(y))

= δ1(δ2(x))y + δ2(x)δ1(y) + δ1(x)δ2(y) + xδ1(δ2(y))

− δ2(δ1(x))y − δ1(x)δ2(y)− δ2(x)δ1(y)− xδ2(δ1(y))

= δ1(δ2(x))y + xδ1(δ2(y))− δ2(δ1(x))y − xδ2(δ1(y))

= δ1δ2(x)y + xδ1δ2(y)− δ2δ1(x)y − xδ2δ1(y)

= [δ1, δ2](x)y + x[δ1, δ2](y).

Therefore, [δ1, δ2] ∈Der(A). Hence, Der(A) of any Leibniz algebra A is a Lie algebra.

For a Leibniz algebra A, and for any a ∈ A, we define the left multiplication operator

La : A→ A by La(b) = ab for all b ∈ A.

Remark 1. Left multiplication La is a derivation.

Let a, b, c ∈ A. La(bc) = a(bc) = (ab)c+ b(ac)︸ ︷︷ ︸
by Leibniz identity

= La(b)c+ bLa(c).

We denote L(A) =span{La|a ∈ A}. Since all left multiplications are derivations, for

every Leibniz algebra we have the containment L(A) ⊆Der(A). For a Leibniz algebra A,

and for any a ∈ A, we define the right multiplication operator Ra : A→ A by Ra(b) = ba

for all b ∈ A.

Remark 2. Right multiplication Ra is not a derivation.

Let a, b, c ∈ A. Ra(bc) = (bc)a = b(ca)− c(ba)︸ ︷︷ ︸
by Leibniz identity

= bRa(c)− cRa(b) 6= Ra(b)c+ bRa(c).

We defined the Leibniz identity in such a way that left multiplication is a derivation.

Notice that the derivation property is exactly Leibniz’s rule for the product of derivatives.

This is one of the reasons Leibniz algebras were named for Gottfried Leibniz. A right

Leibniz algebra is a vector space over a field F equipped with a bilinear product such
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that right multiplication is a derivation. In this paper, a Leibniz algebra always refers to

a left Leibniz algebra.

For any subspace I of a Leibniz algebra A, if I2 ⊆ I, then I is a subalgebra of A. I

is a left ideal of A if A · I ⊆ I, and I is a right ideal of A if I · A ⊆ I. I is an ideal of

A if it is both a left ideal and a right ideal. A particularly important subalgebra of A is

Leib(A) =span{a2|a ∈ A}.

Remark 3. Leib(A) is an ideal of A.

Let a ∈ A and let b′ ∈Leib(A). Then b′ = b2 for some b ∈ A.

Consider b′a = b2a = (bb)a = b(ba)− b(ba) = 0 ∈Leib(A); thus, Leib(A) is a right ideal.

Now consider the element (a+ b2)(a+ b2)− a2 ∈Leib(A).

(a+ b2)(a+ b2)− a2 = a(a+ b2) + b2(a+ b2)− a2 = a2 + ab2 + b2(a+ b2)− a2

= ab2 + (bb)(a+ b2) = ab2 + b(b(a+ b2))− b(b(a+ b2))

= ab2 = ab′.

Thus, ab′ ∈Leib(A), which implies Leib(A) is a left ideal. Therefore, Leib(A) is an ideal

of A.

For any ideal I of A, we define the quotient Leibniz algebra A/I by a 7→ a+I. Leib(A)

is the minimal ideal such that A/Leib(A) is a Lie algebra, since the quotient by Leib(A)

implies a2 = 0 for every a ∈ A.

Example 2.0.3. Let A =span{a, b, c, d} with nonzero multiplications defined by a2 = d,

ab = c, ac = d, ba = −c, and ca = −d. Let x ∈ A where x = α1a+ α2b+ α3c+ α4d.

Then

x2 = (α1a+ α2b+ α3c+ α4d)(α1a+ α2b+ α3c+ α4d)

= α2
1d+ α1α2c+ α1α3d− α2α1c− α3α1d

= α2
1d.

Thus, Leib(A) =span{d}. Hence, A/Leib(A) =span{a+Leib(A), b+Leib(A), c+Leib(A)}
=span{a, b, c} with [a, b] = c, the 3-dimensional Heisenberg Lie algebra.

Let A be a Leibniz algebra. The left center of A is Z l(A) = {x ∈ A|xa = 0 for all

a ∈ A}. The right center of A is Zr(A) = {x ∈ A|ax = 0 for all a ∈ A}. The center of
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A is Z(A) = Z l(A) ∩ Zr(A). By definition, the center of a Leibniz algebra is an abelian

ideal.

Remark 4. Let A be a Leibniz algebra, and let a, b ∈ A. By the Leibniz identity,

a(ab) = (a2)b+ a(ab). Therefore, a2b = a(ab)− a(ab) = 0.

Since left multiplication by any square element of A is zero, we have the containment

Leib(A) ⊆ Z l(A) for every Leibniz algebra. The derived series of a Leibniz algebra A is

the sequence of ideals A ⊇ A(2) ⊇ A(3) ⊇ . . . where A(1) = A2 and A(n) = A(n−1) · A(n−1)

for all n ≥ 1. A Leibniz algebra A is solvable if A(k+1) = 0 for some k + 1 ≥ 0 such that

A(k) 6= 0. In this case, we say the derived length of A is k.

The lower central series of a Leibniz algebra A is the sequence of ideals A ⊇ A1 ⊇
A2 ⊇ . . . where A1 = A · A = A2, Ak+1 = A · Ak. A Leibniz algebra A is nilpotent if

Ak+1 = 0 for some k ≥ 0 such that Ak 6= 0. In this case, we say the nilpotency class of

A is k. We have the containment A(n) ⊆ An for all n. Therefore, every nilpotent Leibniz

algebra is a solvable Leibniz algebra. But every solvable Leibniz algebra is not nilpotent,

as seen in Example 2.0.5

Example 2.0.4. Let A be the Leibniz algebra with basis B = {a, b, c} and nonzero

multiplications defined by a2 = b and ab = c. Then Z l(A) =span{b, c} =Leib(A),

Zr(A) =span{c}, and Z(A) =span{c}. Let us also consider the ideals in the derived

series of A: A(1) =span{b, c}, A(2) = 0. Thus, A is solvable with derived length 1. Now

consider the ideals in the lower central series of A: A1 =span{b, c}, A2 =span{c}, A3 = 0.

Thus, A is nilpotent with nilpotency class 2.

Example 2.0.5. Let A be the Leibniz algebra B = {a, b, c} with nonzero multiplications

defined by a2 = b, ab = c, and ac = c. The terms in the derived series of A are:

A(1) =span{b, c}, A(2) = 0. Thus, A is solvable of derived length 1. The terms in the lower

central series of A are: A1 =span{b, c}, A2 =span{c} = A3. Therefore, Ak =span{c} for

all k ≥ 2. Hence, A is not nilpotent.
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Chapter 3

Derivations of Cyclic Leibniz

Algebras

3.1 Cyclic Leibniz Algebras

Consider A =span{a, a2, . . . , an} with multiplications a · ai = ai+1, 1 ≤ i ≤ n − 1, and

a · an = α1a + α2a
2 + . . . + αna

n for some α1, . . . , αn ∈ F. Then A is generated by the

single element a, and A is called a cyclic Leibniz algebra. Cyclic Leibniz algebras are not

Lie algebras since a2 6= 0.

Example 3.1.1. Let A be an n-dimensional cyclic Leibniz algebra. Consider a2 · ak for

1 ≤ k ≤ n. By the Leibniz identity, a2 · ak = (a · a) · ak = a · (a · ak) − a · (a · ak) = 0.

Therefore, multiplication on the left by a2 is zero. Now assume ai ·ak = 0 for 2 ≤ i ≤ n−1

and 1 ≤ k ≤ n. Then ai+1 · ak = (a · ai) · ak = a · (ai · ak) − ai · (a · ak) = a · 0 − 0 = 0.

Therefore, multiplication on the left by any basis element other than a is zero.

Example 3.1.2. Let A be an n-dimensional cyclic Leibniz algebra. Since an · a = 0,

a · (an · a) = a · 0 = 0. And, by the Leibniz identity, a · (an · a) = (a · an) · a+ an · (a · a) =

(α1a+α2a
2 + . . .+αna

n) ·a+0 = α1a ·a+α2a
2 ·a+ . . .+αna

n ·a = α1a
2. Thus, α1a

2 = 0,

which implies α1 = 0.

It follows from Example 3.1.2 that for any n-dimensional cyclic Leibniz algebra A,

Leib(A) = A2 =span{a2, a3, . . . , an}. And in fact, for any Leibniz algebra A, the

dimension of A2 is n− 1 if and only if A is cyclic.
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Note: the multiplications a · ai = ai+1, 1 ≤ i ≤ n− 1 are defined in the same way for

every cyclic Leibniz algebra. Thus, we only need to describe the multiplication for a · an

when defining a cyclic Leibniz algebra.

3.2 Nilpotent Cyclic Leibniz Algebras

Consider the n-dimensional cyclic Leibniz algebra A with basis {a, a2, . . . , an} and multi-

plication a ·an = 0. The terms in the lower central series of A are: A1 =span{a2, . . . , an},
A2 =span{a3, . . . , an}, . . . , An =span{an}, An+1 = 0. Thus, A is nilpotent with nilpo-

tency class n+ 1.

Example 3.2.1. Let A be the cyclic Leibniz algebra with basis B = {a, a2, a3} and

multiplication a · a3 = 0. Let δ ∈Der(A) and define the action of δ on the basis elements

as follows: δ(a) = α1a+α2a
2 +α3a

3, δ(a2) = β1a+β2a
2 +β3a

3, δ(a3) = γ1a+γ2a
2 +γ3a

3.

Therefore, [δ]B =

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

.

By the derivation property, δ(a · a) = δ(a)a+ aδ(a)

= (α1a+ α2a
2 + α3a

3)a+ a(α1a+ α2a
2 + α3a

3) = 2α1a
2 + α2a

3.

And δ(a · a) = δ(a2) = β1a+ β2a
2 + β3a

3.

Hence, by the linear independence of the basis vectors, β1 = 0, β2 = 2α1, and β3 = α2.

Continuing this process for every combination of basis vectors yields:

[δ]B =

α1 0 0

α2 2α1 0

α3 α2 3α1

 = α1

1 0 0

0 2 0

0 0 3

+ α2

0 0 0

1 0 0

0 1 0

+ α3

0 0 0

0 0 0

1 0 0

.

Therefore, Der(A) =span{δ1, δ2, δ3}, where

• δ1(a) = a, δ1(a
2) = 2a2, δ1(a

3) = 3a3

• δ2(a) = a2, δ2(a
2) = a3, δ2(a

3) = 0

• δ3(a) = a3, δ3(a
2) = 0, δ3(a

3) = 0.

Example 3.2.2. Let A be the cyclic Leibniz algebra with basis B = {a, a2, a3, a4} and

multiplication a · a4 = 0. Let δ ∈Der(A) and define the action of δ on the basis

8



elements as follows: δ(a) = α1a+ α2a
2 + α3a

3 + α4a
4, δ(a2) = β1a+ β2a

2 + β3a
3 + β4a

4,

δ(a3) = γ1a+ γ2a
2 + γ3a

3 + γ4a
4, δ(a4) = ω1a+ ω2a

2 + ω3a
3 + ω4a

4.

Therefore, [δ]B =


α1 β1 γ1 ω1

α2 β2 γ2 ω2

α3 β3 γ3 ω3

α4 β4 γ4 ω4

.

By applying δ to the product of every combination of basis vectors, we can show:

[δ]B =


α1 0 0 0

α2 2α1 0 0

α3 α2 3α1 0

α4 α3 α2 4α1



= α1


1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

+ α2


0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

+ α3


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

+ α4


0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

 .

Therefore, Der(A) =span{δ1, δ2, δ3, δ4}, where

• δ1(a) = a, δ1(a
2) = 2a2, δ1(a

3) = 3a3, δ1(a
4) = 4a4

• δ2(a) = a2, δ2(a
2) = a3, δ2(a

3) = a4, δ2(a
4) = 0

• δ3(a) = a3, δ3(a
2) = a4, δ3(a

3) = 0, δ3(a
4) = 0

• δ4(a) = a4, δ4(a
2) = 0, δ4(a

3) = 0, δ4(a
4) = 0

Example 3.2.3. Let A be the cyclic Leibniz algebra with basis B = {a, a2, a3, a4, a5} and

multiplication a·a5 = 0. Let δ ∈Der(A) and define the action of δ on the basis elements as

follows: δ(a) = α1a+α2a
2 +α3a

3 +α4a
4 +α5a

5, δ(a2) = β1a+β2a
2 +β3a

3 +β4a
4 +β5a

5,

δ(a3) = γ1a + γ2a
2 + γ3a

3 + γ4a
4 + γ5a

5, δ(a4) = ω1a + ω2a
2 + ω3a

3 + ω4a
4 + ω5a

5,

δ(a5) = λ1a+ λ2a
2 + λ3a

3 + λ4a
4 + λ5a

5.

Therefore, [δ]B =


α1 β1 γ1 ω1 λ1

α2 β2 γ2 ω2 λ2

α3 β3 γ3 ω3 λ3

α4 β4 γ4 ω4 λ4

α5 β5 γ5 ω5 λ5

.
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By applying δ to the product of every combination of basis vectors, we can show:

[δ]B =


α1 0 0 0 0

α2 2α1 0 0 0

α3 α2 3α1 0 0

α4 α3 α2 4α1 0

α5 α4 α3 α2 5α1



= α1


1 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 4 0

0 0 0 0 5

+ α2


0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

+ α3


0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0



+ α4


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

+ α5


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

 .

Therefore, Der(A) =span{δ1, δ2, δ3, δ4, δ5}, where

• δ1(a) = a, δ1(a
2) = 2a2, δ1(a

3) = 3a3, δ1(a
4) = 4a4, δ1(a

5) = 5a5

• δ2(a) = a2, δ2(a
2) = a3, δ2(a

3) = a4, δ2(a
4) = a5, δ2(a

5) = 0

• δ3(a) = a3, δ3(a
2) = a4, δ3(a

3) = a5, δ3(a
4) = 0, δ3(a

5) = 0

• δ4(a) = a4, δ4(a
2) = a5, δ4(a

3) = 0, δ4(a
4) = 0, δ4(a

5) = 0

• δ5(a) = a5, δ5(a
2) = 0, δ5(a

3) = 0, δ5(a
4) = 0, δ5(a

5) = 0

By completing enough examples of derivations of low-dimensional nilpotent cyclic

Leibniz algbebras, we establish a pattern among the basis vectors for the derivation

algebras. We generalize the result to define the derivation algebra of any n-dimensional

nilpotent cyclic Leibniz algebra.
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Theorem 1. Let A be a nilpotent cyclic Leibniz algebra with basis B = {a, a2, . . . , an}.
Let δ ∈Der(A), and let (dij)n×n be the representation matrix of δ with respect to the

basis B. Then (dij)n×n =
∑n−1

k=0 αkE
(k) where

• E(0) = (e
(0)
ij ) =

{
i i = j

0 i 6= j

• E(k) = (e
(k)
ij ) =

{
1 i = j + k

0 i 6= j + k
, 1 ≤ k ≤ n− 1.

Proof. Let B = {a, a2, . . . , an} be a basis for cyclic Leibniz algebra A, and let a · an = 0.

Let δ ∈Der(A), and consider [δ]B = (dij)n×n.

To check for linear independence, consider
∑n−1

k=0 αkE
(k) = 0.

Observe column one in E(k). Column one of E(k) is a column of zeros with a one in the

ak+1,1 entry for every 0 ≤ k ≤ n− 1.

Thus, column one in the matrix
∑n−1

k=0 αkE
(k) is


α0

α1

...

αn−1

, and


α0

α1

...

αn−1

 =


0

0
...

0


implies α0 = α1 = . . . = αn−1 = 0. Hence, the vectors E(k) are linearly independent.

Now we need to show spanning. Let δ be any derivation in Der(A).

We need to show [δ]B = (dij)n×n can be written as a linear combination of the E(k). δ(a)

is a linear combination of the basis elements of A, so let δ(a) =
∑n−1

i=0 βia
i+1.

Note [δ]B =
(

[δ(a)]B| [δ(a2)]B| . . . | [δ(an)]B

)
n×n

.

Thus, column one in the matrix [δ]B is


β0

β1
...

βn−1

.
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This implies:

[δ(a)]B = β0


1

0
...

0

+ β1



0

1

0
...

0


+ . . .+ βn−1


0
...

0

1



= β0


e
(0)
11

e
(0)
21
...

e
(0)
n1

+ β1


e
(1)
11

e
(1)
21
...

e
(1)
n1

+ . . .+ βn−1


e
(n−1)
11

e
(n−1)
21

...

e
(n−1)
n1

 =


∑n−1

k=0 βke
(k)
11∑n−1

k=0 βke
(k)
21

...∑n−1
k=0 βke

(k)
n1

 .

Assume [δ(ai)]B =


∑n−1

k=0 βke
(k)
1i∑n−1

k=0 βke
(k)
2i

...∑n−1
k=0 βke

(k)
ni

 for i ≥ 1.

By definition,


∑n−1

k=0 βke
(k)
1i∑n−1

k=0 βke
(k)
2i

...∑n−1
k=0 βke

(k)
ni

 =



0
...

0∑n−1
k=0 βke

(k)
ii∑n−1

k=0 βke
(k)
i+1,i

...∑n−1
k=0 βke

(k)
n,i


=



0
...

0

i · β0∑n−1
k=0 βke

(k)
i+1,i

...∑n−1
k=0 βke

(k)
n,i


.

Since δ is a derivation δ(ai+1) = δ(a · ai)
= δ(a) · ai + a · δ(ai)
= (
∑n−1

i=0 βia
i+1) · ai + a · (i · β0ai +

∑n−1
k=0 βke

(k)
i+1,ia

i+1 + . . .+
∑n−1

k=0 βke
(k)
ni a

n)

= β0a
i+1 + i · β0ai+1 +

∑n−1
k=0 βke

(k)
i+1,ia

i+2 + . . .+
∑n−1

k=0 βke
(k)
n−1,ia

n

= (i+ 1) · β0ai+1 +
∑n−1

k=0 βke
(k)
i+1,ia

i+2 + . . .+
∑n−1

k=0 βke
(k)
n−1,ia

n.
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This implies [δ(ai+1)]B =



0
...

0

0

(i+ 1)β0∑n−1
k=0 βke

(k)
i+1,i

...∑n−1
k=0 βke

(k)
n−1,i


.

Since n− 1 = i+ k if and only if n = (i+ 1) + k we can shift the indices to show:

[δ(ai+1)]B =



0
...

0

0

(i+ 1)β0∑n−1
k=0 βke

(k)
i+1,i

...∑n−1
k=0 βke

(k)
n−1,i


=



0
...

0

0∑n−1
k=0 βkei+1,i+1∑n−1
k=0 βke

(k)
i+2,i+1

...∑n−1
k=0 βke

(k)
n,i+1


=


∑n−1

k=0 βke
(k)
1,i+1∑n−1

k=0 βke
(k)
2,i+1

...∑n−1
k=0 βke

(k)
n,i+1

.

Hence, [δ(aj)]B =


∑n−1

k=0 βke
(k)
1j∑n−1

k=0 βke
(k)
2j

...∑n−1
k=0 βke

(k)
nj

 for 1 ≤ j ≤ n, which implies [δ]B =
∑n−1

k=0 βkE
(k).

Therefore, the vectors E(k) form a basis for Der(A).

Each of the basis vectors E(k) corresponds to a representation matrix for a derivation

in Der(A) with respect to the given basis B.

Corollary 1. Let A be a nilpotent cyclic Leibniz algebra with basis B = {a, a2, . . . , an}.
Then Der(A) =span{δ1, δ2, . . . , δn}, where

• δ1(a
i) = iai for 1 ≤ i ≤ n

• δk(a
i) = ai+k−1 if i+ k − 1 ≤ n and δk(a

i) = 0 if i+ k − 1 > n for 1 < k ≤ n.
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3.3 Nonnilpotent Cyclic Leibniz Algebras

Consider the n-dimensional cyclic Leibniz algebra A with basis {a, a2, . . . , an} and

multiplication a·an = α1a
2+. . .+αn−1a

n, where at least one of the αi 6= 0 for 1 ≤ i ≤ n−1.

The terms in the derived series of A are: A(1) = span{a2, . . . , an}, A(2) = 0. Hence, A is

solvable of derived length 2. However, A is nonnilpotent since a · an 6= 0 implies there is

not an ideal in the lower central series equal to 0.

Example 3.3.1. Let A be the cyclic Leibniz algebra with basis B = {a, a2, a3} and

multiplication a · a3 = b1a
2 + b2a

3 for b1, b2 ∈ F. Let δ ∈Der(A) and define the action of

δ on the basis elements as follows: δ(a) = α1a+ α2a
2 + α3a

3, δ(a2) = β1a+ β2a
2 + β3a

3,

δ(a3) = γ1a+ γ2a
2 + γ3a

3.

Therefore, [δ]B =

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

.

By the derivation property, δ(a · a) = δ(a)a+ aδ(a)

= (α1a+ α2a
2 + α3a

3)a+ a(α1a+ α2a
2 + α3a

3)

= 2α1a
2 + α2a

3 + α3(b1a
2 + b2a

3) = (2α1 + α3b1)a
2 + (α2 + α3b2)a

3.

And δ(a · a) = δ(a2) = β1a+ β2a
2 + β3a

3.

Hence, by the linear independence of the basis vectors,

β1 = 0, β2 = 2α1 + α3b1, and β3 = α2 + α3b2.

It is important to note that δ(a · a3) = δ(a) · a3 + a · δ(a3) and

δ(a · a3) = δ(b1a
2 + b2a

3) = b1δ(a
2) + b2δ(a

3).

This equality yields the relationships 2α1b1 = 0 and α1b2 = 0.

If α1 6= 0, then b1 = b2 = 0, which implies A is nilpotent.

Thus, for the nonnilpotent case, α1 = 0.

Continuing this process for every combination of basis vectors yields:

[δ]B =

 0 0 0

α2 α3b1 α2b1 + α3b2b1

α3 α2 + α3b2 α2b2 + α3(b1 + b22)

 = α2

0 0 0

1 0 b1

0 1 b2

+ α3

0 0 0

0 b1 b2b1

1 b2 b1 + b22

.

Therefore, Der(A) =span{δ1, δ2}, where

• δ1(a) = a2, δ1(a
2) = a3, δ1(a

3) = b1a
2 + b2a

3

• δ2(a) = a3, δ2(a
2) = b1a

2 + b2a
3, δ2(a

3) = b2b1a
2 + (b1 + b22)a

3.
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Example 3.3.2. Let A be the cyclic Leibniz algebra with basis B = {a, a2, a3, a4} and

multiplication a · a4 = b1a
2 + b2a

3 + b3a
4 for b1, b2, b3 ∈ F. Let δ ∈Der(A) and define the

action of δ on the basis elements as follows: δ(a) = α1a+ α2a
2 + α3a

3 + α4a
4,

δ(a2) = β1a+ β2a
2 + β3a

3 + β4a
4, δ(a3) = γ1a+ γ2a

2 + γ3a
3 + γ4a

4,

δ(a4) = ω1a+ ω2a
2 + ω3a

3 + ω4a
4.

Therefore, [δ]B =


α1 β1 γ1 ω1

α2 β2 γ2 ω2

α3 β3 γ3 ω3

α4 β4 γ4 ω4

.

By applying δ to the product of every combination of basis vectors, we can show:

[δ]B =

( 0 0 0 0
α2 α4b1 α3b1+α4b1b3 α2b1+α3b1b3+α4(b1b2+b1b23)

α3 α2+α4b2 α3b2+α4(b1+b2b3) α2b2+α3(b1+b2b3)+α4(b22+b1b3+b2b
2
3)

α4 α3+α4b3 α2+α3b3+α4(b2+b23) α2b3+α3(b2+b23)+α4(b1+2b2b3+b33)

)

= α2


0 0 0 0

1 0 0 b1

0 1 0 b2

0 0 1 b3

+ α3


0 0 0 0

0 0 b1 b1b3

1 0 b2 b1 + b2b3

0 1 b3 b2 + b23



+ α4


0 0 0 0

0 b1 b1b3 b1b2 + b1b
2
3

0 b2 b1 + b2b3 b1b3 + b22 + b2b
2
3

1 b3 b2 + b23 b1 + 2b2b3 + b33

 .

Therefore, Der(A) =span{δ1, δ2, δ3}, where

• δ1(a) = a2, δ1(a
2) = a3, δ1(a

3) = a4, δ1(a
4) = b1a

2 + b2a
3 + b3a

4

• δ2(a) = a3, δ2(a
2) = a4, δ2(a

3) = b1a
2 + b2a

3 + b3a
4,

δ2(a
4) = b1b3a

2 + (b1 + b2b3)a
3 + (b2 + b23)a

4

• δ3(a) = a4, δ3(a
2) = b1a

2 + b2a
3 + b3a

4,

δ3(a
3) = b1b3a

2 + (b1 + b2b3)a
3 + (b2 + b23)a

4,

δ3(a
4) = (b1b2 + b1b

2
3)a

2 + (b1b3 + b22 + b2b
2
3)a

3 + (b1 + 2b2b3 + b33)a
4

By completing enough examples of derivations of low-dimensional nonnilpotent cyclic

Leibniz algbebras, we establish a pattern among the basis vectors for the derivation al-
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gebras. We generalize the result to define the derivation algebra of any n-dimensional

nonnilpotent cyclic Leibniz algebra. In particular, it is important to note from the pre-

vious example that:

[δ1]
2
B =


0 0 0 0

1 0 0 b1

0 1 0 b2

0 0 1 b3


2

=


0 0 0 0

0 0 b1 b1b3

1 0 b2 b1 + b2b3

0 1 b3 b2 + b23

 = [δ2]B

and

[δ1]
3
B =


0 0 0 0

1 0 0 b1

0 1 0 b2

0 0 1 b3


3

=


0 0 0 0

0 b1 b1b3 b1b2 + b1b
2
3

0 b2 b1 + b2b3 b1b3 + b22 + b2b
2
3

1 b3 b2 + b23 b1 + 2b2b3 + b33

 = [δ3]B.

Theorem 2. Let A be a cyclic Leibniz algebra with basis B = {a, a2, . . . , an} and let

a · an =
∑n−1

i=1 bia
i+1, where at least one of the bi 6= 0. Let δ ∈Der(A), and let (dij)n×n be

the representation matrix of δ with respect to the basis B. Then (dij)n×n =
∑n−1

k=0 αkE
(k)

where

• E(1) = (e
(1)
ij ) =


1 i = j + 1

bi−1 j = n

0 otherwise

• E(k) = (e
(k)
ij ) =


(e

(k−1)
i,j+1 ) 1 ≤ j ≤ n− 1∑n−1
l=1 ble

(k)
i,l j = n

0 otherwise

= (E(1))k, 2 ≤ k ≤ n− 1.

Proof. Let B = {a, a2, . . . , an} be a basis for cyclic Leibniz algebra A, and let

a ·an =
∑n−1

i=1 bia
i+1, where at least one of the bi 6= 0. Let δ ∈Der(A), and [δ]B = (dij)n×n.

To check for linear independence consider
∑n−1

k=1 αkE
(k) = 0.

Column one in E(k) is a column of zeros with a 1 in the ak+1,1 entry for 1 ≤ k ≤ n− 1.

Thus, column one in the matrix
∑n−1

k=1 αkE
(k) is


0

α1

...

αn−1

.
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Therefore,


0

α1

...

αn−1

 =


0

0
...

0

 implies α1 = α2 = . . . = αn−1 = 0.

Hence, the vectors E(k) are linearly independent. Now we need to show spanning.

Let δ be any derivation in Der(A). We need to show [δ]B = (dij)n×n can be written as a

linear combination of the vectors E(k), 1 ≤ k ≤ n− 1.

δ(a) is a linear combination of the basis elements of A, so let δ(a) =
∑n

i=1 βia
i.

Thus, column one in the matrix [δ]B is


β1

β2
...

βn

. Which implies

[δ(a)]B = β1


1

0
...

0

+ β2



0

1

0
...

0


+ . . .+ βn


0
...

0

1



= β1


1

0
...

0

+ β2


e
(1)
11

e
(1)
21
...

e
(1)
n1

+ . . .+ βn


e
(n−1)
11

e
(n−1)
21

...

e
(n−1)
n1

 =


β1 +

∑n−1
j=1 βj+1e

(j)
11∑n−1

j=1 βj+1e
(j)
21

...∑n−1
j=1 βj+1e

(j)
n1

 .

Since δ is a derivation δ(a2) = δ(a · a) = δ(a) · a+ a · δ(a)

= (
∑n

i=1 βia
i) · a+ a · (

∑n
i=1 βia

i)

= β1a
2 +

∑n−1
i=1 βia

i+1 + βn
∑n−1

i=1 bia
i+1

= (2β1 + βnb1)a
2 + (β2 + βnb2)a

3 + . . .+ (βn−1 + βnbn−1)a
n
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This implies

[δ(a2)]B =



0

2β1 + βnb1

β2 + βnb2
...

βn−1 + βnbn−1



= β1



0

2

0
...

0


+ β2



0

0

1

0
...

0


+ . . .+ βn−1


0
...

0

1

+ βn



0

b1

b2
...

bn−1



= β1



0

2

0
...

0


+ β2



e
(1)
12

e
(1)
22

e
(1)
32
...

e
(1)
n2


+ . . .+ βn


e
(n−1)
12

e
(n−1)
22

...

e
(n−1)
n2

 =


∑n−1

j=1 βj+1e
(j)
12

2β1 +
∑n−1

j=1 βj+1e
(j)
22

...∑n−1
j=1 βj+1e

(j)
n2

 .

Assume [δ(ai)]B =



∑n−1
j=1 βj+1e

(j)
1i∑n−1

j=1 βj+1e
(j)
2i

...

iβ1 +
∑n−1

j=1 βj+1e
(j)
ii

...∑n−1
j=1 βj+1e

(j)
ni


for 2 ≤ i ≤ n.

Then, by the derivation property, δ(ai+1) = δ(a · ai) = δ(a) · ai + a · δ(ai)

= (
∑n

i=1 βia
i) · ai + a(

∑n−1
j=1 βj+1e

(j)
1i a+

∑n−1
j=1 βj+1e

(j)
2i a

2 + . . .+
∑n−1

j=1 βj+1e
(j)
ni a

n)

= β1a
i+1 +

∑n−1
j=1 βj+1e

(j)
1i a

2 +
∑n−1

j=1 βj+1e
(j)
2i a

3 + . . .

+
∑n−1

j=1 βj+1e
(j)
n−1,ia

n + (
∑n−1

j=1 βj+1e
(j)
ni )(

∑n−1
i=1 bia

i+1)

18



=(
∑n−1

j=1 βj+1e
(j)
1i +b1

∑n−1
j=1 βj+1e

(j)
ni )a2 +(

∑n−1
j=1 βj+1e

(j)
2i +b2

∑n−1
j=1 βj+1e

(j)
ni )a3 + . . .+(β1 +

iβ1+
∑n−1

j=1 βj+1e
(j)
ii +bi

∑n−1
j=1 βj+1e

(j)
ni )ai+1+. . .+(

∑n−1
j=1 βj+1e

(j)
n−1,i+bn−1

∑n−1
j=1 βj+1e

(j)
ni )an.

Since e
(j)
1,i+1 = 0 for 1 ≤ j ≤ n− 1, and since e

(j)
k,i+1 = ek−1,i + bk−1en,i for 2 ≤ k ≤ n and

1 ≤ j ≤ n− 1, we have:

[δ(ai+1)]B =



0∑n−1
j=1 βj+1e

(j)
1i + b1

∑n−1
j=1 βj+1e

(j)
ni∑n−1

j=1 βj+1e
(j)
2i + b2

∑n−1
j=1 βj+1e

(j)
ni

...

(i+ 1)β1 +
∑n−1

j=1 βj+1e
(j)
ii + bi

∑n−1
j=1 βj+1e

(j)
ni

...∑n−1
j=1 βj+1e

(j)
n−1,i + bn−1

∑n−1
j=1 βj+1e

(j)
ni



=



∑n−1
j=1 βj+1e

(j)
1,i+1∑n−1

j=1 βj+1e
(j)
2,i+1∑n−1

j=1 βj+1e
(j)
3,i+1

...

(i+ 1)β1 +
∑n−1

j=1 βj+1e
(j)
i,i+1

...∑n−1
j=1 βj+1e

(j)
n,i+1



Therefore, by induction, [δ(ai)]B =



∑n−1
j=1 βj+1e

(j)
1i∑n−1

j=1 βj+1e
(j)
2i

...

iβ1 +
∑n−1

j=1 βj+1e
(j)
ii

...∑n−1
j=1 βj+1e

(j)
ni


for all 2 ≤ i ≤ n.

Now consider δ(a · an).

δ(a · an) = δ(a) · an + a · δ(an)

= (
∑n

i=1 βia
i) ·an+a ·(

∑n−1
j=1 βj+1e

(j)
1na+

∑n−1
j=1 aβj+1e

(j)
2na

2+ . . .+(nβ1+
∑n−1

j=1 βj+1e
(j)
nn)an)
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= β1(
∑n−1

i=1 bia
i+1)+

∑n−1
j=1 βj+1e

(j)
1na

2+
∑n−1

j=1 βj+1e
(j)
2na

3+ . . .+
∑n−1

j=1 βj+1e
(j)
n−1,na

n+(nβ1+∑n−1
j=1 βj+1e

(j)
nn)(

∑n−1
i=1 bia

i+1)

= [(n+ 1)β1b1 +
∑n−1

j=1 βj+1(e
(j)
1n + b1e

(j)
nn)]a2 + [(n+ 1)β1b2 +

∑n−1
j=1 βj+1(e

(j)
2n + b2e

(j)
nn)]a3 +

. . .+ [(n+ 1)β1bn−1 +
∑n−1

j=1 βj+1(e
(j)
n−1,n + bn−1e

(j)
nn)]an

Therefore, the coefficient of ai+1 can be written:

(n+ 1)β1bi +
∑n−1

j=1 βj+1(e
(j)
in + bie

(j)
nn)

= (n+ 1)β1bi +
∑n−1

j=1 βj+1(
∑n−1

l=1 ble
(j)
i,l ) +

∑n−1
j=1 βj+1(

∑n−1
l=1 bible

(j)
n,l)

= (n+1)β1bi+b1[
∑n−1

j=1 βj+1e
(j)
i1 +bi

∑n−1
j=1 βj+1e

(j)
n1 ]+b2[

∑n−1
j=1 βj+1e

(j)
i2 +bi

∑n−1
j=1 βj+1e

(j)
n2 ]+

. . .+ bn−1[
∑n−1

j=1 βj+1e
(j)
i,n−1 + bi

∑n−1
j=1 βj+1e

(j)
n,n−1]

= (n+ 1)β1bi + b1
∑n−1

j=1 βj+1e
(j)
i+1,2 + b2

∑n−1
j=1 βj+1e

(j)
i+1,3 + . . .+ bn−1

∑n−1
j=1 βj+1e

(j)
i+1,n

Also, δ(a · an) = δ(
∑n−1

i=1 bia
i+1) =

∑n−1
i=1 biδ(a

i+1).

Collecting the coefficients of ai+1 in
∑n−1

i=1 biδ(a
i+1) we have:

b1
∑n−1

j=1 βj+1e
(j)
i+1,2 + b2

∑n−1
j=1 βj+1e

(j)
i+1,3 + . . . + bi[(i + 1)β1 +

∑n−1
j=1 βj+1e

(j)
i+1,i+1] + . . . +

bn−1
∑n−1

j=1 βj+1e
(j)
i+1,n

= (i+ 1)β1bi + b1
∑n−1

j=1 βj+1e
(j)
i+1,2 + b2

∑n−1
j=1 βj+1e

(j)
i+1,3 + . . .+ bn−1

∑n−1
j=1 βj+1e

(j)
i+1,n

Since the ai are linearly independent for 1 ≤ i ≤ n, setting the two equations for δ(a ·an)

equal and collecting the coefficients of ai+1 on both sides of the equation yields:

(n+ 1)β1bi + b1
∑n−1

j=1 βj+1e
(j)
i+1,2 + b2

∑n−1
j=1 βj+1e

(j)
i+1,3 + . . .+ bn−1

∑n−1
j=1 βj+1e

(j)
i+1,n

= (i+ 1)β1bi + b1
∑n−1

j=1 βj+1e
(j)
i+1,2 + b2

∑n−1
j=1 βj+1e

(j)
i+1,3 + . . .+ bn−1

∑n−1
j=1 βj+1e

(j)
i+1,n.

Hence, (n− i)β1bi = 0.

Since 1 ≤ i ≤ n − 1, (n − i) 6= 0. Therefore, β1 = 0 or bi = 0 for all i. But we assumed

that at least one of the bi 6= 0. Hence, β1 = 0.

Thus, [δ(ak)]B =


∑n−1

j=1 βj+1e
(j)
1k∑n−1

j=1 βj+1e
(j)
2k

...∑n−1
j=1 βj+1e

(j)
nk

 for 1 ≤ k ≤ n.

Which implies [δ]B =
(

[δ(a)]B|[δ(a2)]B| . . . |[δ(an)]B

)
n×n

=
∑n−1

k=1 βk+1E
(k).
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As was true for the nilpotent case, each of the basis vectors E(k) corresponds to a

representation matrix for a derivation in Der(A) with respect to the given basis B.

Corollary 2. Let A be a cyclic Leibniz algebra with basis B = {a, a2, . . . , an}, and let

a·an =
∑n−1

i=1 bia
i+1, where at least one of the bi 6= 0 . Then Der(A) =span{δ1, δ2, . . . , δn−1},

where

• δ1(a
i) = ai+1 for 1 ≤ i ≤ n− 1, δ1(a

n) =
∑n−1

j=1 bja
j+1

• δk(a
i) = δk1(ai) for 1 ≤ i ≤ n and 1 < k ≤ n− 1.
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Chapter 4

Characteristic Ideals of Leibniz

Algebras

Definition 1. Let A be a Leibniz algebra. An ideal B of A is called characteristic if it

is invariant under all derivations of A.

Example 4.0.1. The derived algebra of A is characteristic.

Let a, b ∈ A and let δ ∈Der(A). δ(ab) = δ(a)b + aδ(b) ∈ A2. This implies δ(A2) ⊆ A2.

Thus, A2 is characteristic.

Using induction, we can show that every ideal in the lower central series and in the

derived series of A is characteristic.

Example 4.0.2. Z l(A) is a characteristic ideal of A.

Let δ ∈Der(A), and let x ∈ Z l(A), y ∈ A. Then xy = 0 for every y ∈ A, which implies

δ(xy) = δ(x)y + xδ(y) = δ(x)y = 0. Therefore, δ(x) ∈ Z l(A); and hence, δ(Z l(A)) ⊆
Z l(A). Thus, Z l(A) is characteristic.

Lemma 1. The sum of characteristic ideals is characteristic.

Proof. Let B1, B2, . . . , Bn be characteristic ideals of a Leibniz algebra A. Let δ ∈Der(A).

Then δ(B1 +B2 + . . .+Bn) = δ(B1) + δ(B2) + . . .+ δ(Bn) ⊆ B1 +B2 + . . .+Bn,

since δ is a linear operator.
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4.1 Properties of Derivations

In this section we study properties of derivations and ideals. These results will be useful

in determining under which conditions an ideal is characteristic.

Lemma 2. Let A be a Leibniz algebra over a field F, let I be any ideal of A, and let

δ ∈Der(A). Then A · δn(I) ⊆ I + δ(I) + . . .+ δn(I) and δn(I) ·A ⊆ I + δ(I) + . . .+ δn(I)

for all n ≥ 1.

Proof. Let x ∈ A and y ∈ δ(I). This implies y = δ(z) for some z ∈ I. Then

xy = xδ(z) = δ( xz︸︷︷︸
∈I

)− δ(x)z︸ ︷︷ ︸
∈I

∈ I + δ(I) and

yx = δ(z)x = δ( zx︸︷︷︸
∈I

)− zδ(x)︸ ︷︷ ︸
∈I

∈ I + δ(I).

Hence, A · δ(I) ⊆ I + δ(I) and δ(I) · A ⊆ I + δ(I).

Now assume A ·δn−1(I) ⊆ I+δ(I)+ . . .+δn−1(I) and δn−1(I) ·A ⊆ I+δ(I)+ . . .+δn−1(I)

for n− 1 ≥ 1. Let x ∈ A and let y ∈ δn(I) = δ(δn−1(I)). This implies y = δ(z) for some

z ∈ δn−1(I). Then

xy = xδ(z) = δ(xz)− δ(x)z

∈ δ(I + δ(I) + . . .+ δn−1(I)) + I + δ(I) + . . .+ δn−1(I)

⊆ I + δ(I) + . . .+ δn−1(I) + δn(I).

And

yx = δ(z)x = δ(zx)− zδ(x)

∈ δ(I + δ(I) + . . .+ δn−1(I)) + I + δ(I) + . . .+ δn−1(I)

⊆ I + δ(I) + . . .+ δn−1(I) + δn(I).

Therefore, by induction, A·δn(I) ⊆ I+δ(I)+. . .+δn(I) and δn(I)·A ⊆ I+δ(I)+. . .+δn(I)

for all n ≥ 1.
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Lemma 3. Let A be a Leibniz algebra over a field F, and let δ ∈Der(A). Then for any

ideal I of A, the F-subspace I + δ(I) + . . .+ δn(I) is an ideal of A for all n ≥ 1.

Proof. Let x ∈ A and let y ∈ I+δ(A). This implies y = z+δ(w) for some z, w ∈ I. Then

xy = x(z + δ(w)) = xz + xδ(w)

= xz︸︷︷︸
∈I

+δ( xw︸︷︷︸
∈I

)− δ(x)w︸ ︷︷ ︸
∈I

∈ I + δ(I) and

yx = (z + δ(w))x = zx+ δ(w)x

= zx︸︷︷︸
∈I

+δ( wx︸︷︷︸
∈I

)− wδ(x)︸ ︷︷ ︸
∈I

∈ I + δ(I).

Thus, I + δ(I) is an ideal of A. Assume I + δ(I) + . . .+ δn−1(I) is an ideal for n− 1 ≥ 1.

Note A · (I + δ(I) + . . .+ δn(I)) = A · (I + δ(I) + . . .+ δn−1(I)) + A · δn(I).

Also, by the induction hypothesis, A · (I+ δ(I)+ . . .+ δn−1(I)) ⊆ I+ δ(I)+ . . .+ δn−1(I),

and by Lemma 2, A · δn(I) ⊆ I + δ(I) + . . .+ δn(I).

Therefore, A · (I + δ(I) + . . .+ δn(I)) ⊆ I + δ(I) + . . .+ δn(I).

Similarly,

(I + δ(I) + . . .+ δn(I)) · A = (I + δ(I) + . . .+ δn−1(I)) · A+ δn(I) · A

⊆ (I + δ(I) + . . .+ δn−1(I)) + (I + δ(I) + . . .+ δn(I))

⊆ I + δ(I) + . . .+ δn(I).

Thus, I + δ(I) + . . .+ δn(I) is an ideal of A for all n ≥ 1.

Lemma 4. Let A be a Leibniz algebra over a field F, and let δ ∈Der(A). Then for every

x, y ∈ A the general Leibniz product rule holds:

δk(xy) =
∑k

s=0

(
k
s

)
δs(x)δk−s(y).

Proof. Let x, y ∈ A. Then

δ(xy) = xδ(y) + δ(x)y

=

(
1

0

)
δ0(x)δ1−0(y) +

(
1

1

)
δ1(x)δ1−1(y)

=
1∑
s=0

(
1

s

)
δs(x)δ1−s(y).
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Thus, the product rule holds when k = 1. Now assume:

δk−1(xy) =
k−1∑
s=0

(
k − 1

s

)
δs(x)δk−1−s(y).

Then

δk(xy) = δ(δk−1(xy)) = δ(
k−1∑
s=0

(
k − 1

s

)
δs(x)δk−1−s(y))

=
k−1∑
s=0

(
k − 1

s

)
δ(δs(x)δk−1−s(y))

=
k−1∑
s=0

(
k − 1

s

)
(δs+1(x)δk−1−s(y) + δs(x)δk−s(y))

=
k−1∑
s=0

(
k − 1

s

)
δs+1(x)δk−1−s(y) +

k−1∑
s=0

(
k − 1

s

)
δs(x)δk−s(y)

Taking the s = k − 1 term from the first summand and the s = 0 term from the second

summand yields:

= δk(x)y + xδk(y) +
k−2∑
s=0

(
k − 1

s

)
δs+1(x)δk−1−s +

k−1∑
s=1

(
k − 1

s

)
δs(x)δk−s(y)

Re-indexing the first summand yields:

= δk(x)y + xδk(y) +
k−1∑
s=1

(
k − 1

s− 1

)
δs(x)δk−s +

k−1∑
s=1

(
k − 1

s

)
δs(x)δk−s(y)

Recall
(
k−1
s−1

)
+
(
k−1
s

)
=
(
k
s

)
, which yields:

= δk(x)y + xδk(y) +
k−1∑
s=1

(
k

s

)
δs(x)δk−s(y) =

k∑
s=0

(
k

s

)
δs(x)δk−s(y).

Therefore, Leibniz’s product rule holds for all n ≥ 1.
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The previous result can be generalized to Leibniz’s rule for differentiation of several

multipliers:

δ(x1 · x2 · · · xm) =
∑

k1+k2+...+km=n
n!

k1!k2!...km!
δk1(x1) · δk2(x2) · · · δkm(xm).

Now we consider the action of derivations on ideals from the derived series of a Leibniz

algebra A.

Lemma 5. Let A be a Leibniz algebra over a field F, let I be any ideal of A, and let

δ ∈Der(A). Then δm(I(s)) ⊆ I for all m ≤ 2s − 1.

Proof. First consider s = 1. Then m ≤ 21 − 1 = 1, implies m = 1. And

δ(I(1)) = δ(I2) ⊆ δ(I) · I + I · δ(I) ⊆ I,

since I is an ideal of A. Thus, the base case holds. Assume δm(I(s−1)) ⊆ I for all

m ≤ 2s−1 − 1. Take an arbitrary m ≤ 2s − 1, and consider δm(I(s)) = δm(I(s−1) · I(s−1)).
For any elements x, y ∈ I(s−1), by Lemma 4,

δm(xy) =
m∑
i=0

(
m

i

)
δi(x)δm−i(y).

Since i+(m− i) = m ≤ 2s−1, and since 1
2
(2s−1) = 2s−1− 1

2
at least one of the numbers

i or m − i does not exceed 2s−1 − 1, since i,m ∈ Z. Thus, by the induction hypothesis,

either δi(x) or δm−i(y) is an element of I. Hence, δi(x)δm−i(y) ∈ I for each 1 ≤ i ≤ m.

Therefore, δm(I(s)) ⊆ I for all m ≤ 2s − 1.

Lemma 6. Let A be a Leibniz algebra over a field F, let I be any ideal of A, and let

δ ∈Der(A). If char(F) does not divide the binomial coefficient
(

2k

2k−1

)
, then

δ2
k−1

(I(k−1)) · δ2k−1
(I(k−1)) ⊆ δ2

k
(I(k)) + I.

Proof. Let x, y ∈ I(k−1). By Lemma 4, δ2
k
(xy) =

∑2k

s=0

(
2k

s

)
δs(x)δ2

k−s(y).

Taking the s = 2k−1 term from the summand yields:

δ2
k

(xy) =

(
2k

2k−1

)
δ2

k−1

(x)δ2
k−2k−1

(y) +
2k∑

s=0;s 6=2k−1

(
2k

s

)
δs(x)δ2

k−s(y)
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Since 2k − 2k−1 = 2k(1− 2−1) = 2k(1
2
) = 2k−1, we can simplify the exponent in the first

summand to get:

δ2
k

(xy) =

(
2k

2k−1

)
δ2

k−1

(x)δ2
k−1

(y) +
2k∑

s=0;s 6=2k−1

(
2k

s

)
δs(x)δ2

k−s(y).

Now, in the second summand, s+ (2k − s) = 2k and 1
2
(2k) = 2k−1, but s 6= 2k−1;

hence, either the number s or the number 2k − s does not exceed 2k−1 − 1.

Therefore, by Lemma 5, the second summand is in I.

Also, since char(F) -
(

2k

2k−1

)
, the first summand is not 0 and

(
2k

2k−1

)
has a multiplicative

inverse in F . Thus,

(
2k

2k−1

)
δ2

k−1

(x)δ2
k−1

(y) = δ2
k

(xy)−
2k∑

s=0;s 6=2k−1

(
2k

s

)
δs(x)δ2

k−s(y),

which implies

δ2
k−1

(I(k−1))δ2
k−1

(I(k−1)) ⊆ δ2
k

(I(k)) + I.

Lemma 7. Let A be a Leibniz algebra over a field of characteristic 0 or characteristic

p 6= 2, let I be an abelian ideal of A, and let δ ∈Der(A). Then δ(I) · δ(I) ⊆ I.

Proof. Let x, y ∈ I. I abelian implies xy = 0. Thus, δ2(xy) = 0. This implies

0 = δ2(xy) = δ2(x)y + 2δ(x)δ(y) + xδ2(y).

Thus,

2δ(x)δ(y) = −δ2(x)y − xδ2(y) ∈ I.

Since the characteristic of the field is not 2, and since x and y are arbitrary elements

from I, this implies δ(I) · δ(I) ⊆ I.

Now we consider the action of derivations on ideals from the lower central series of a

Leibniz algebra A.
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Lemma 8. Let A be a Leibniz algebra over a field F, let I be any ideal of A, and let

δ ∈Der(A). Then for any x1, . . . , xs ∈ I and for any nonnegative number m < s:

δm(x1 · · · xs) ∈ Is-m.

Proof. Denote l = s−m > 0. By Leibniz’s rule for differentiation of several multipliers,

δm(x1 · · · xs) =
∑

k1+...+ks=m

m!

k1! . . . ks!
δk1(x1) · · · δks(xs).

Since m < s, and since each ki is nonnegative, there must be at least l of the

ki = 0, 1 ≤ i ≤ s. Recall δ0(xi) = xi; thus, each term of the sum δk1(x1)···δks(xs) contains

at least l elements of I and m elements of A. Therefore, δm(x1 · · · xs) ∈ I l = Is-m.

Lemma 9. Let I be a nilpotent ideal with nilpotency class n of a Leibniz algebra A over

a field of characteristic 0 or characteristic p > n+ 1, and let δ ∈ Der(A).

Then (I + δ(I))n+1 ⊆ I.

Proof. Any term of (I+δ(I))n+1 with elements from I will be contained in I by definition.

So it is enough to show δ(I) · · · δ(I)︸ ︷︷ ︸
n+1

⊆ I. Since the nilpotency class of I is n,

x1 · · · xn · xn+1 = 0 for all elements x1, . . . , xn, xn+1 ∈ I.

By Leibniz’s rule for differentiation of several multipliers,

δn+1(x1 · · · xn+1) =
∑

k1+...+kn+1=n+1

(n+ 1)!

k1! . . . kn+1!
δk1(x1) · · · δkn+1(xn+1) = 0.

The sum of n+1 nonnegative integers to n+1 can be split into two cases: the case where

each ki = 1, and the case where at least one of the ki > 1. In the second case, this leaves

at least 1 of the ki = 0. Thus,

δn+1(x1 · · · xn+1) =

(n+ 1)!

1! . . . 1!
δ(x1) · · · δ(xn+1) +

∑
k1+...+kn+1=n+1

(n+ 1)!

k1! . . . kn+1!
δk1(x1) · · · δkn+1(xn+1) = 0.

and in each summand there is at least one δki(xi) = δ0(xi) = xi. Hence, each summand
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belongs to I. Therefore,

(n+ 1)!

1! . . . 1!
δ(x1) · · · δ(xn+1) = −

∑
k1+...+kn+1=n+1

(n+ 1)!

k1! . . . kn+1!
δk1(x1) · · · δkn+1(xn+1) ∈ I.

Since the characteristic of the field is zero or greater than n+1, δ(x1) · · · δ(xn+1) ∈ I.

Lemma 10. Let I be a nilpotent ideal of nilpotency class n from a Leibniz algebra A

over a field of characteristic 0 or characteristic p > n+ 1, and let δ ∈Der(A).

Then I · δ(I) · · · δ(I)︸ ︷︷ ︸
n+1

⊆ I2.

Proof. Let x1, . . . , xn+2 be arbitrary elements from I. For convenience, denote

ti = δ(x1) · · · xi · · · δ(xn+2) and

us = x1 · x2 · · · δ(xs) · · · xn+2

for 1 ≤ i, s ≤ n+ 2. Note us ∈ In+1 = 0 implies us = 0. Therefore,

0 = δn(us) = δn(x1 · x2 · · · δ(xs) · · · xn+2)

=
∑

k1+...+kn+2=n

n!

k1! . . . kn+2!
δk1(x1) · · · δks+1(xs) · · · δkn+2(xn+2).

All of the kj are nonnegative, so k1 + . . .+ kn+2 = n implies that at least 2 of the kj = 0.

• If more than 2 of the kj = 0, then at least 2 of the degrees of the derivations are 0

and the summand lies in I2.

• If exactly 2 ki, kj = 0 such that i, j 6= s, then, as before, the summand lies in I2.

So, we have left to consider the case when one of the indices i, j = s. Without loss

of generality, let ks = 0, kj = 0, j 6= s. This implies all other km = 1. Therefore, the

summand is equal to

n!

1! . . . 1!
δ(x1) · · · δ(xj−1) · δ0(xj) · δ(xj+1) · · · δ(xn+2) = n!tj.

Since i = s is fixed, j is arbitrarily chosen, and since all other cases can be reduced to
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an element in I2, we have

0 = δn(us) = n!(t1 + . . .+ ts−1 + ts+1 + . . .+ tn+2) + zs

for some zs ∈ I2. Define

vs = t1 + . . .+ ts−1 + ts+1 + . . .+ tn+2.

Since 0 = n!vs + zs, this implies n!vs = −zs. And since the characteristic of the field is

greater than n+ 1, this implies vs ∈ I2. Consider

v =
n+2∑
s=1

vs = (n+ 1)
n+2∑
k=1

tk.

Then v ∈ I2, since each vs ∈ I2. Thus, t = t1 + t2 + . . . + tn+2 ∈ I2, again because

p > n + 1. But then, since t = t1 + v1 and t, v1 ∈ I2, we have t1 ∈ I2. Also, x1, . . . , xn+2

were chosen arbitrarily and t1 = x1 ·δ(x2) · · ·δ(xn+2). Therefore, I ·δ(I) · · · δ(I)︸ ︷︷ ︸
n+1

⊆ I2.

Lemma 11. Let I be a nilpotent ideal of nilpotency class n from a Leibniz algebra A over

a field of characteristic 0 or characteristic p > n+1, and let δ ∈ Der(A). Then there exists

a function fn(m) such that fn(m) = fn(m− 1) +n−m+ 1 and Im · δ(I) · · · δ(I)︸ ︷︷ ︸
fn(m)

⊆ Im+1,

for 1 ≤ m ≤ n.

Proof. Let n be a fixed natural number. When m = 1, fn(1) = n+ 1.

Thus, by Lemma 10 we have the relation I · δ(I) · · · δ(I)︸ ︷︷ ︸
n+1

⊆ I2.

Assume the function fn(m− 1) satisfies the condition Im−1 · δ(I) · · · δ(I)︸ ︷︷ ︸
fn(m−1)

⊆ Im for some

m > 1.

We need to show Im · δ(I) · · · δ(I)︸ ︷︷ ︸
m(n+1)−m(m+1)

2
+1

⊆ Im+1.

For convenience, denote N = m(n+ 1)− m(m+1)
2

+ 2 and take arbitrary elements x1 ∈ Im

and x2, . . . , xN ∈ I.

Let s = fn(m− 1) + 1 and t = n−m+ 1. Note: N = t+ s.

30



Also, Im ⊆ Im−1, which implies x1 ∈ Im−1.
Therefore, by induction, x1 · δ(x2) · · · δ(xs) ∈ Im.

Thus, x1 · δ(x2) · · · δ(xs)︸ ︷︷ ︸
∈Im

·xs+1 · · · xN︸ ︷︷ ︸
n−m+1

∈ Im+(n−m+1) = In+1 = 0.

Consider δn−m+1(x1 · δ(x2) · · · δ(xs) · xs+1 · · · xN) = δn−m+1(0) = 0.

Also, using Leibniz’s Rule, δn−m+1(x1 · δ(x2) · · · δ(xs) · xs+1 · · · xN) =∑
t!

k1!...kN !
δk1(x1) · δk2+1(x2) · · · δks+1(xs) · δks+1(xs+1) · · · δkN (xN) = 0, where k1, . . . , kN

are nonnegative and k1 + . . .+ kN = t = n−m+ 1.

Recall N = s+ t, so there are at least s of the ki = 0.

We will show that all summands of this sum either lie in Im+1 or have the form

t!δ0(x1) · δ(x2) · · · δ(xs) · δ(xs+1) · · · δ(xN). Consider the following possible cases:

1. There are exactly s of the ki = 0.

If these numbers are k1, . . . , ks, then ks+1 = . . . = kN = 1, which reduces the sum-

mand to t!δ0(x1) · δ(x2) · · · δ(xs) · δ(xs+1) · · · δ(xN).

If at least one of the numbers k1, . . . , ks is nonzero, then at least one of the numbers

ks+1, . . . , kN is 0. First assume that k1 = 0.

Then δk1(x1) = δ0(x1) = x1 ∈ Im and if at least one of the numbers ks+1, . . . , kN is

0, then the summand t!δ0(x1) · δ(x2) · · · δ(xs) · δ(xs+1) · · · δ(xN) ∈ Im+1.

Consider now the case where k1 = 1. If k2 = . . . = ks = 0, then δ(x1) ∈ Im−1, by

Lemma 8. Thus, δ(x1) · δ(x2) · · · δ(xs)︸ ︷︷ ︸
fn(m−1)

∈ Im.

And, since at least one of the numbers ks+1, . . . , kN is 0, then the element in this

case lies in Im+1.

2. There are exactly s+ j of the ki = 0, where j ≥ 1.

Since N = s+ t, we have at least j of the ks+1, . . . , kN equal to 0.

First assume there are exactly j such numbers.

This implies k1 = . . . = ks = 0. Thus, x1 · δ(x2) · · · δ(xs) ∈ Im.

Since j ≥ 1 at least one of the ks+1, . . . , kN is equal to 0, which means

t!x1 · δ(x2) · · · δ(xs) · δ(xs+1) · · · δ(xN) ∈ Im+1.

Now suppose at least j + 1 of the ks+1, . . . , kN are equal to 0.

Let the quantity of the ki = 0, s+ 1 ≤ i ≤ N , be called r.

Then according to our assumption r ≥ j + 1.
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Hence, the quantity of nonzero numbers among ks+1, . . . , kN is t− r.
Thus

∑N
s+1 ki ≥ t − r, which implies

∑s
1 ki ≤ t − (t − r) = r. In particular, this

implies k1 ≤ r. First, assume
∑s

1 ki < r.

Then k1 ≤ r − 1, and therefore, δk1(x1) ∈ Im−(r−1) = Im−r+1, by Lemma 8.

Since there are at least r of the ks+1, . . . , kN equal to 0, this implies

δk1(x1)︸ ︷︷ ︸
∈Im−r+1

·δk2+1(x2) · · · δks+1(xs) · δks+1(xs+1) · · · δkN (xN)︸ ︷︷ ︸
∈Ir

∈ Im−r+1+r = Im+1.

Now assume
∑s

1 ki = r.

If k1 ≤ r − 1, then, as above, one can show that the element lies in Im+1.

So let k1 = r.

Then k2 = . . . = ks = 0 and by induction δr(x1)︸ ︷︷ ︸
∈Im−r

· δ(x2) · · · δ(xs)︸ ︷︷ ︸
fn(m−1)

∈ Im−r+1.

Since at least r of the elements among δks+1(xs+1), . . . , δ
kN (xN) are in I, we have

δr(x1) · δ(x2) · · · δ(xs)︸ ︷︷ ︸
∈Im−r+1

· δks+1(xs+1) · · · δkN (xN)︸ ︷︷ ︸
∈Ir

∈ Im+1.

Therefore,
∑

t!
k1!...kN !

δk1(x1) · δk2+1(x2) · · · δks+1(xs) · δks+1(xs+1) · · · δkN (xN) =

xk + t!δ0(x1) · δ(x2) · · · δ(xs) · δ(xs+1) · · · δ(xN) = 0, for xk ∈ Im+1.

Since t = n−m+ 1 and the characteristic p > n+ 1, this implies

x1 · δ(x2) · · · δ(xs)︸ ︷︷ ︸
fn(m−1)

· δ(xs+1) · · · δ(xN)︸ ︷︷ ︸
n−m+1

∈ Im+1.

And since the elements x1 ∈ Im, x2, . . . , xN ∈ I can be chosen arbitrarily, this

implies

Im · δ(I) · · · δ(I)︸ ︷︷ ︸
fn(m−1)+n−m+1

⊆ Im+1, for 1 ≤ m ≤ n.

Thus, fn(m) = fn(m− 1) + n−m+ 1.

Remark An explicit formula can be written fn(m) = m(n+ 1)− m(m+1)
2

+ 1.
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4.2 Invariance of Solvable Ideals

Recall a Leibniz algebra A is solvable if A(k) = 0 for some k ≥ 0 such that A(k−1) 6= 0.

The sum of solvable ideals of a Leibniz algebra is solvable. Hence, the sum of solvable

characteristic ideals is a solvable characteristic ideal of A.

Definition 2. The characteristic radical, or c-radical, of A is the maximal solvable

characteristic ideal of A.

Definition 3. A Leibniz algebra A is characteristic semisimple if its c-radical is 0.

Equivalently, A is characteristic semisimple if its only solvable characteristic ideal is

0. Let J be a solvable ideal of A. Then J (i) = J (i−1) · J (i−1) = 0 for some i such that

J (i−1) 6= 0. Thus, J (i−1) is a nonzero characteristic ideal. And if we consider the first

term in the derived series of J (i−1), (J (i−1))(1) = J (i−1) · J (i−1) = 0, we can see that

J (i−1) is a nonzero solvable characteristic ideal. This implies J (i−1) is in the c-radical of

A. Therefore, A is characteristic semisimple if and only if the only abelian characteristic

ideal of A is 0.

Theorem 3. If R is the c-radical of A, then A/R is characteristic semisimple.

Proof. Let S be a solvable characteristic ideal of A/R,

and let Φ : A→ A/R be defined by Φ(a) = a+R, for all a ∈ A.

By the correspondence theorem, we know that the ideals of A/R are in 1− 1

correspondence with the ideals of A containing R.

Thus, S = S∗/R, for an ideal S∗ of A.

Furthermore, since S and R are both solvable, we know that S∗ is a solvable ideal of A.

Let δ be any derivation of A. We want to show S∗ is characteristic in A, so consider

δ : A/R→ A/R, the induced derivation in the quotient space defined by:

δ(a+R) = δ(a) +R.

Now consider δ : S → S, and let u∗ ∈ S∗.
This implies u∗ +R ∈ S, and since S is a characteristic ideal of A/R,

δ(u∗ +R) = δ(u∗) +R ∈ S = S∗/R.

Thus, δ(u∗) ∈ S∗, for all u∗ ∈ S∗. Hence, S∗ is a solvable characteristic ideal of A.

This implies S∗ ⊆ R. But we chose S∗ such that R ⊆ S∗; thus, S∗ = R.

Hence, S = S∗/R = S∗/S∗ = {0}, which implies A/R is characteristic semisimple.
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Lemma 12. If A is characteristic semisimple, then every characteristic ideal in A is

characteristic semisimple.

Proof. Let A be characteristic semisimple, and let B be a characteristic ideal in A.

Consider S, any solvable characteristic ideal of B.

Let δ be any derivation of A. Since B is a characteristic ideal of A, δ(B) ⊆ B;

so, δ : B → B is a derivation of B. Thus, δ(S) ⊆ S.

Hence, S is a characteristic ideal in A. Since A is characteristic semisimple, S = {0}.
Therefore, B is characteristic semisimple.

Definition 4. A Leibniz algebra A is called characteristic simple, or c-simple, if its only

characteristic ideals are A and 0, and if A2 = A.

A2 = A implies that A is not a solvable Leibniz algebra. Therefore, the only solvable

characteristic ideal of a c-simple Leibniz algebra is 0. Hence, every c-simple Leibniz

algebra is characteristic semisimple.

Definition 5. A Leibniz algebra A is called completely semisimple if A can be written

as A = A1 ⊕ A2 ⊕ . . .⊕ Ak where each Ai is a characteristic simple algebra.

It is not clear from the definition, but we can show that each Ai is a characteristic

ideal of A. Consider

UA2+...+Ak = {a ∈ A|a(A2 + . . .+ Ak) = (A2 + . . .+ Ak)a = 0},

the annihilator of A2 + . . .+Ak in A. Let a1 ∈ A1, and consider a1(A2 + . . .+Ak). Since

A is a direct sum of the Ai’s, AiAj = 0 when i 6= j. Thus,

a1(A2 + . . .+ Ak) = (A2 + . . .+ Ak)a1 = 0,

which implies a1 ∈ UA2+...+Ak . Hence, A1 ⊆ UA2+...+Ak . Now let

a = a1 + a2 + . . .+ ak ∈ UA2+...+Ak ,

such that ai ∈ Ai. Then aj ∈ Zj(Aj) for 2 ≤ j ≤ k. But, the center of a Leibniz algebra

is a characteristic ideal, and Aj characteristic simple implies Zj(Aj) = 0 for 2 ≤ j ≤ k.

Therefore, aj = 0 for 2 ≤ j ≤ k, which implies a = a1 ∈ A1. Thus, UA2+...+Ak ⊆ A1,
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which implies UA2+...+Ak = A1. Now let a1 ∈ A1, δ ∈Der(A), and y ∈ A2 + . . .+Ak. Then

δ(a1)y = δ(a1y)− a1δ(y) = −a1δ(y),

which implies δ(a1)y ∈ (A2 + . . .+Ak)∩A1 = 0. Therefore, δ(a1) ∈ UA2+...+Ak = A1; and

hence, δ(A1) ⊆ A1. Thus, A1 is a characteristic ideal of A, and the same holds for each

Ai.

Theorem 4. Every completely semisimple Leibniz algebra is characteristic semisimple.

Proof. Let A be a completely semisimple Leibniz algebra, and let B be a characteristic

ideal of A. Thus, A = A1 ⊕ . . .⊕ Ak, where each Ai is a characteristic simple ideal. Let

δ be any derivation of A. Then δ(BAi) ⊆ δ(B)Ai + Bδ(Ai) ⊆ BAi; hence, BAi is a

characteristic ideal in A for each i. Let δi be a derivation of Ai. By defining δi(Aj) = 0

when i 6= j, we can extend δi to be a derivation of A. Thus, BAi is a characteristic

ideal of Ai, and Ai characteristic simple implies BAi = Ai or BAi = 0. If BAi = 0,

then B ⊆ A1 + . . . + Ai−1 + Ai+1 + . . . + Ak, the annihilator of Ai. If BAi = Ai, then

Ai ⊆ B. Therefore, B is the direct sum of the Ai such that BAi = Ai, and in particular,

B2 = B. Thus, the only solvable characteristic ideal of A is 0. Hence, A is characteristic

semisimple.

For any ideal I of a Leibniz algebra A, recall by Lemma 3, I + δ(I) is an ideal of A.

Theorem 5. Let A be a Leibniz algebra over a field F, and let I be a solvable ideal of

A of derived length n. Then the ideal I + δ(I) is solvable and its derived length is ≤ 2n

in the following cases:

1. char(F) = 0

2. char(F) > 2n

Proof. If char(F) = 2, then 2 > 2n implies n = 0, and hence, I = 0.

So assume char(F) = 0 or char(F) = p > 2.

Let J = I + δ(I).

J (1) = J2 = (I + δ(I))(I + δ(I)) = I2 + Iδ(I) + δ(I)I + δ(I)δ(I)

⊆ I + δ(I)δ(I).
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Let x, y ∈ I. Then xy ∈ I2 = I(1).

Note: 1
2
(δ2(xy)− δ2(x)y − xδ2(y)) ∈ δ2(I) + I. And by Lemma 4,

δ2(xy) =

(
2

0

)
δ0(x)δ2(y) +

(
2

1

)
δ(x)δ(y) +

(
2

2

)
δ2(x)δ0(y)

= xδ2(y) + 2δ(x)δ(y) + δ2(x)y.

Thus,

1

2
(δ2(xy)− δ2(x)y − xδ2(y)) =

1

2
(xδ2(y) + 2δ(x)δ(y) + δ2(x)y − δ2(x)y − xδ2(y))

=
1

2
(2δ(x)δ(y)) = δ(x)δ(y).

Hence, δ(x)δ(y) ∈ δ2(I(1)) + I for all x, y ∈ I.

Therefore, δ(I)δ(I) ⊆ δ2(I(1)) + I, which implies J (1) ⊆ δ2
1
(I(1)) + I.

Assume J (k−1) ⊆ δ2
k−1

(I(k−1)) + I, for k ≥ 2.

This implies

J (k) = J (k−1)J (k−1) ⊆ (δ2
k−1

(I(k−1)) + I)(δ2
k−1

(I(k−1)) + I)

= δ2
k−1

(I(k−1))δ2
k−1

(I(k−1)) + δ2
k−1

(I(k−1))I + Iδ2
k−1

(I(k−1)) + I2

⊆ δ2
k−1

(I(k−1))δ2
k−1

(I(k−1)) + I.

By a result from combinatorics, an odd prime number p does not divide the binomial

coefficients
(
2
1

)
,
(
22

2

)
, . . . ,

(
2n

2n−1

)
if and only if p > 2n.

Thus, p does not divide the binomial coefficients
(

2k

2k−1

)
. So, by Lemma 6,

δ2
k−1

(I(k−1))δ2
k−1

(I(k−1)) ⊆ δ2
k

(I(k)) + I.

This implies J (k) ⊆ δ2
k
(I(k)) + I for all k ≥ 1. Thus, when k = n =derived length of I,

we have

J (n) ⊆ δ2
n

(I(n)) + I = δ2
n

(0) + I = I.
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But, J (n) ⊆ I implies J (2n) ⊆ I(n) = 0. Hence, J = I + δ(I) is a solvable ideal of derived

length ≤ 2n.

Theorem 6. The radical of a Leibniz algebra A, denoted Rad(A), is a characteristic

ideal of A in the following cases:

1. char(F) = 0

2. char(F) > 2n

Proof. Let δ ∈Der(A), and assume the characteristic of the field meets the above criteria.

Rad(A) an ideal implies by Lemma 3 that Rad(A) + δ(Rad(A)) is an ideal. Rad(A) is a

solvable ideal so, by Theorem 5, the ideal Rad(A) + δ(Rad(A)) is a solvable ideal. Thus,

Rad(A) + δ(Rad(A)) ⊆Rad(A); and hence, δ(Rad(A)) ⊆Rad(A) for every δ ∈Der(A).

Therefore, Rad(A) is characteristic.

Thus, if the field has characteristic 0 or if char(F) > 2n where n is the derived length

of Rad(A), then the c-radical is equal to the radical of a Leibniz algebra A. It is unknown

whether the radical is a characteristic ideal for other characteristics of the ground field.

George Seligman [19] provides an example of a Lie algebra that has a radical which is

not characteristic when the field has prime characteristic > 2. Since all Lie algebras are

Leibniz algebras we can use this example to show that the radical of a Leibniz algebra is

not always a characteristic ideal.

4.3 Invariance of Nilpotent Ideals

Recall a Leibniz algebra A is nilpotent if Ak = 0 for some k ≥ 0 such that Ak-1 6= 0.

The sum of nilpotent ideals of a Leibniz algebra is nilpotent. Hence, the sum of nilpotent

characteristic ideals is a nilpotent characteristic ideal of A.

Definition 6. The nilradical of A is the maximal nilpotent characteristic ideal of A.

Theorem 7. Every proper ideal in a characteristic simple Leibniz algebra A is nilpotent.

Proof. Let I be a nonzero, proper ideal of A. Let δ : A → A be any derivation of A.

Since I is an ideal of A, it is a left ideal and a right ideal. Hence,

δ(I1) = δ(I2) ⊆ δ(I)I + Iδ(I) ⊆ AI + IA ⊆ I.
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Assume δ(Ik) ⊆ Ik-1. Then

δ(Ik+1) = δ(I · Ik) ⊆ δ(I)Ik + Iδ(Ik)

⊆ A · Ik + I · Ik-1 ⊆ Ik.

Therefore, by induction, δ(Ik+1) ⊆ Ik for all k ∈ Z+. Since the lower central series is a

descending chain of ideals, Im+1 = Im for some m ∈ Z+. This implies

δ(Im) = δ(Im+1) ⊆ Im.

Hence, Im is a characteristic ideal. But, A is characteristic semisimple and I is a proper

ideal, so Im = 0. Therefore, I is nilpotent.

Theorem 8. Let I be a nilpotent ideal of nilpotency class n of a Leibniz algebra A over

a field of characteristic 0 or characteristic p > n+ 1, and let δ ∈ Der(A). Then I + δ(I)

is a nilpotent ideal of the Leibniz algebra A of nilpotency class at most n(n+1)(2n+1)
6

+ 2n.

Proof. Let k =
∑n

m=1 fn(m). Using Lemma 11, we can show that

I · δ(I) · · · δ(I)︸ ︷︷ ︸
k

= I · δ(I) · · · δ(I)︸ ︷︷ ︸
fn(1)

· δ(I) · · · δ(I)︸ ︷︷ ︸
fn(2)

· · · δ(I) · · · δ(I)︸ ︷︷ ︸
fn(n)

= I · δ(I) · · · δ(I)︸ ︷︷ ︸
⊆I2

·δ(I) · · · δ(I)

︸ ︷︷ ︸
⊆I3

· · ·δ(I) · · · δ(I)

︸ ︷︷ ︸
⊆In+1

⊆ In+1 = 0.

By Lemma 9, (I + δ(I))k+n+1 = ((I + δ(I))n+1)k ⊆ (I)k = 0, since k ≥ n + 1. Recall:

fn(1) = n+ 1. Therefore, the ideal I + δ(I) is nilpotent of nilpotency class at most k+n.
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Direct calculation yields:

k + n = n+
n∑

m=1

m(n+ 1)−
n∑

m=1

(m− 1)(m+ 2)

2

= n+ (n+ 1)
n∑

m=1

m− 1

2
[
n∑

m=1

m2 +
n∑

m=1

m− 2
n∑

m=1

1]

= n+
n(n+ 1)2

2
− 1

2
[
n(n+ 1)(2n+ 1)

6
+
n(n+ 1)

2
− 2n]

= 2n+
n(n+ 1)(2n+ 1)

6
.

Theorem 9. Let A be a Leibniz algebra over a field F, let δ ∈Der(A), and let N(L) be

the nilradical of A with nilpotency class n. N(L) is characteristic in the following cases:

• char(F)=0

• char(F) = p > n+ 1.

Proof. N(L) is a nilpotent ideal, so when the conditions on the characteristic of the field

are met, by Theorem 8, N(L)+δ(N(L)) is a nilpotent ideal for any derivation δ ∈Der(A).

Therefore, N(L) + δ(N(L)) ⊆ N(L); and thus, δ(N(L)) ⊆ N(L).

Hence, N(L) is a characteristic ideal of A.
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Chapter 5

Complete Leibniz Algebras

A Lie algebra L is called complete if it has a trivial center and if all derivations are left

multiplications. Here we present a definition of complete Leibniz algebras that agrees

with the theory of complete Lie algebras when we consider A/Leib(A).

Definition 7. Let A be a Leibniz algebra. A is complete if the following conditions hold:

• Z l(A) =Leib(A)

• For every δ ∈Der(A) there is an element aδ ∈ A such that im(δ − Laδ) ⊆Leib(A)

• There is some δ ∈Der(A) such that im(δ) *Leib(A).

Recall that when Leib(A) = 0, A is a Lie algebra. So the first condition guarantees

Z(A) = 0 when A is a Lie algebra, the second condition is equivalent to im(δ) =im(Laδ)

when A is a Lie algebra, and the final condition guarantees the existence of a nontrivial

derivation of A when A is a Lie algebra.

Example 5.0.1. Let A be a complete Leibniz algebra. Then for every δ ∈Der(A) there

is an a ∈ A such that δ(b)−La(b) ∈Leib(A) for every b ∈ A. Let b ∈Leib(A) ⊆ A.

Then δ(b)−La(b) ∈Leib(A), which implies δ(b) − ab ∈Leib(A). But, ab ∈Leib(A) since

Leib(A) is an ideal. Hence, δ(b) ∈Leib(A) for every δ ∈Der(A) and for every b ∈ Leib(A).

Therefore, when A is a complete Leibniz algebra, Leib(A) is a characteristic ideal.

Theorem 10. Let A be a Leibniz algebra such that Leib(A) is a characteristic ideal. If

A/Leib(A) is a complete Lie algebra, then A is a complete Leibniz algebra.
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Proof. Let A be a Leibniz algebra such that Leib(A) is a characteristic ideal, and

assume A/Leib(A) is a complete Lie algebra. Let δ ∈Der(A). Since Leib(A) is invariant

under derivations, δ induces a derivation δ ∈Der(A/Leib(A)) defined by δ(a+Leib(A)) =

δ(a)+Leib(A) for every a ∈ A. Since A/Leib(A) is a complete Lie algebra, δ = Lx for

some x ∈ A/Leib(A) such that x = x+Leib(A) for some x ∈ A. This implies

δ(b) + Leib(A) = δ(b+ Leib(A))

= Lx(b+ Leib(A)) = Lx(b) + Leib(A) = Lx(b) + Leib(A).

Therefore, δ(b)− Lx(b) ∈Leib(A) for every b ∈ A. Thus, A is complete.

Recall, all semisimple Lie algebras are complete [14].

Corollary 3. All semisimple Leibniz algebras are complete.

Proof. Let A be a semisimple Leibniz algebra. Then

A = (S1 ⊕ S2 ⊕ . . .⊕ Sk) u Leib(A),

where Si is a simple Lie algebra for all 1 ≤ i ≤ k. This implies Leib(A) = Z l(A), which

is a characteristic ideal. Since

A/Leib(A) = S1 ⊕ S2 ⊕ . . .⊕ Sk

is a semisimple Lie algebra, A/Leib(A) is a complete Lie algebra. Thus, by Theorem 10,

A is a complete Leibniz algebra.

Example 5.0.2. Let A be an n-dimensional nilpotent Leibniz algebra. By Corollary 1,

Der(A) =span{δ1, δ2, . . . , δn}, where

• δ1(a
i) = iai for 1 ≤ i ≤ n

• δk(a
i) = ai+k−1 if i+ k − 1 ≤ n and δk(a

i) = 0 if i+ k − 1 > n for 1 < k ≤ n.

Thus, im(δk) ⊆Leib(A) for 1 < k ≤ n. But there is not an element b ∈ A such that

δ1(a)− Lb(a) ∈Leib(A) for all a ∈ A. Therefore, A is not complete.
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Example 5.0.3. Let A be an n-dimensional nonnilpotent Leibniz algebra. By Corollary

2, Der(A) =span{δ1, δ2, . . . , δn−1}, where

• δ1(a
i) = ai+1 for 1 ≤ i ≤ n− 1, δ1(a

n) =
∑n−1

j=1 bja
j+1

• δk(a
i) = δk1(ai) for 1 ≤ i ≤ n and 1 < k ≤ n− 1.

Thus, im(δk) ⊆Leib(A) for 1 ≤ k ≤ n− 1. Hence, A is not complete.

By these examples, all cyclic Leibniz algebras are not complete.

5.1 3-Dimensional Nilpotent Leibniz Algebras

Let A be a non-split non-Lie nilpotent Leibniz algebra, A =span{x, y, z}. Then, by

Demir, Misra, and Stitzinger [8], A is isomorphic to one of the following algebras defined

by the given nonzero multiplications. We will define a basis for Z l(A), Leib(A), L(A),

and Der(A) of each algebra to show all 3-dimensional nilpotent Leibniz algebras are not

complete.

Example 5.1.1. x2 = y, xy = z.

These nonzero multiplications define a nilpotent cyclic Leibniz algebra. Thus, Leib(A) =

Z l(A) =span{y, z}, and by Corollary 1, Der(A) =span{δ1, δ2, δ3} where

• δ1(x) = x, δ1(y) = 2y, δ1(z) = 3z

• δ2(x) = y, δ2(y) = z, δ2(z) = 0

• δ3(x) = z, δ3(y) = 0, δ3(z) = 0

We can write L(A)=span{Lx} =span{δ2}. Thus, im(δ2−Lx) = 0 ⊆Leib(A), and im(δ3−
L0) ⊆Leib(A); but there is not an element b ∈ A such that δ1(a) − Lb(a) ∈Leib(A) for

all a ∈ A. Therefore, A is not complete.

Example 5.1.2. x2 = z

By definition of the nonzero multiplications L(A) =span{Lx} and Z l(A)=span{y, z}. Let

a = α1x+α2y+α3z. Then a2 = (α1x+α2y+α3z)(α1x+α2y+α3z) = α2
1z, which implies

Leib(A) =span{z} 6= Z l(A). Hence, A is not complete.
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Example 5.1.3. x2 = z; y2 = z

By definition of the nonzero multiplications L(A) =span{Lx, Ly} and Z l(A) =span{z}.
Let a = α1x + α2y + α3z. Then a2 = (α1x + α2y + α3z)(α1x + α2y + α3z) = α2

1z + α2
2z,

which implies Leib(A) =span{z}. Let δ ∈Der(A), and define δ(x) = a1x + a2y + a3z,

δ(y) = b1x + b2y + b3z, and δ(z) = c1x + c2y + c3z. We will apply δ to the product of

every combination of basis vectors to find a basis for Der(A).

δ(x2) = (a1x+ a2y + a3z)x+ x(a1x+ a2y + a3z) = 2a1z = c1x+ c2y + c3z = δ(z).

=⇒ c1 = 0, c2 = 0, c3 = 2a1.

δ(xy) = (a1x+ a2y + a3z)y + x(b1x+ b2y + b3z) = a2z + b1z = 0.

=⇒ b1 = −a2.
δ(xz) = (a1x+ a2y + a3z)z + x(2a1z) = 0

δ(yx) = (−a2x+ b2y + b3z)x+ y(a1x+ a2y + a3z) = −a2z + a2z0

δ(y2) = (−a2x+ b2y + b3z)y + y(−a2x+ b2y + b3z) = 2b2z = 2a1z = δ(z)

=⇒ b2 = a1

δ(yz) = (−a2x+ a1y + b3z)z + y(2a1z) = 0

δ(zx) = (2a1z)x+ z(a1x+ a2y + a3z) = 0

δ(zy) = (2a1z)y + z(−a2x+ a1y + b3z) = 0

δ(z2) = (2a1z)z + z(2a1z) = 0

Thus,

[δ]B =

a1 −a2 0

a2 a1 0

a3 b3 2a1



= a1

1 0 0

0 1 0

0 0 2

+ a2

0 −1 0

1 0 0

0 0 0

+ a3

0 0 0

0 0 0

1 0 0

+ b3

0 0 0

0 0 0

0 1 0

 .

Therefore, Der(A) =span{δ1, δ2, δ3, δ4}, where

• δ1(x) = x, δ1(y) = y, δ1(z) = 2z

• δ2(x) = y, δ2(y) = −x, δ2(z) = 0

• δ3(x) = z, δ3(y) = 0, δ3(z) = 0

• δ4(x) = 0, δ4(y) = z, δ4(z) = 0
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We can write L(A)=span{Lx, Ly} =span{δ3, δ4}. Thus, im(δ3 − Lx) = 0 ⊆Leib(A),

and im(δ4 − Ly) = 0 ⊆Leib(A); but there is not an element b ∈ A such that δ1(a) −
Lb(a) ∈Leib(A) for all a ∈ A. Therefore, A is not complete.

Example 5.1.4. xy = z; yx = −z; y2 = z

Using techniques similar to those used in Example 5.1.3 we can show

Z l(A) =span{z} =Leib(A), and we can find a basis for the derivation algebra of A.

Der(A) =span{δ1, δ2, δ3, δ4} where

• δ1(x) = x, δ1(y) = y, δ1(z) = 2z

• δ2(x) = z, δ2(y) = 0, δ2(z) = 0

• δ3(x) = 0, δ3(y) = x, δ3(z) = 0

• δ4(x) = 0, δ4(y) = z, δ4(z) = 0

We can write L(A)=span{Lx, Ly} =span{δ4, δ4 − δ2} =span{δ2, δ4}. Hence, there is

not an element b ∈ A such that δ1(a)−Lb(a) ∈Leib(A) for all a ∈ A. Therefore, A is not

complete.

Example 5.1.5. xy = z; yx = αz, α ∈ F \ {−1, 1}
For all α ∈ F \ {−1, 1}, Leib(A) =span{z}. But, when α = 0, Z l(A) =span{y, z}, which

implies A is not complete. So assume α 6= {−1, 0, 1}. Then we can show

Der(A) =span{δ1, δ2, δ3, δ4} where

• δ1(x) = x, δ1(y) = 0, δ1(z) = z

• δ2(x) = z, δ2(y) = 0, δ2(z) = 0

• δ3(x) = 0, δ3(y) = y, δ3(z) = z

• δ4(x) = 0, δ4(y) = z, δ4(z) = 0

We can write L(A)=span{Lx, Ly} =span{δ4, δ2}. Hence, there is not an element b ∈ A
such that δ1(a)− Lb(a) ∈Leib(A) for all a ∈ A. Therefore, A is not complete.
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5.2 4-Dimensional Nilpotent Leibniz Algebras

Let A be a non-split non-Lie nilpotent Leibniz algebra, A =span{w, x, y, z}. Then, by

Demir, Misra, and Stitzinger [9], A is isomorphic to one of the following algebras defined

by the given nonzero multiplications. We will define a basis for Z l(A), Leib(A), L(A),

and Der(A) of each algebra to determine the completeness of all 4-dimensional nilpotent

Leibniz algebras.

Example 5.2.1. wy = z, yx = z

We can show Leib(A)=span{z} and Z l(A) =span{x, z}. Hence, Leib(A) 6= Z l(A), which

implies A is not complete.

Example 5.2.2. wy = z, x2 = z, xy = z, yw = z, yx = −z
We can show Leib(A) =span{z} = Z l(A), and Der(A) =span{δ1, δ2, δ3, δ4, δ5} where

• δ1(w) = w, δ1(x) = x, δ1(y) = y, δ1(z) = 2z

• δ2(w) = z, δ2(x) = 0, δ2(y) = 0, δ2(z) = 0

• δ3(w) = 0, δ3(x) = w − 2x, δ3(y) = x− 4y, δ3(z) = −4z

• δ4(w) = 0, δ4(x) = z, δ4(y) = 0, δ4(z) = 0

• δ5(w) = 0, δ5(x) = 0, δ5(y) = z, δ5(z) = 0

We can write L(A)=span{Lw, Lx, Ly} =span{δ5, δ4 + δ5, δ2 − δ4}. Thus, there is not an

element b ∈ A such that im(δ1 − Lb) ⊆Leib(A). Hence, A is not complete.

Example 5.2.3. wx = z, xw = −z, y2 = z

We can show Z l(A) =span{z} =Leib(A), and Der(A) =span{δ1, δ2, δ3, δ4, δ5, δ6, δ7} where

• δ1(w) = w − 1
2
y, δ1(x) = 0, δ1(y) = −1

2
x+ 1

2
y, δ1(z) = z

• δ2(w) = x, δ2(x) = 0, δ2(y) = 0, δ2(z) = 0

• δ3(w) = z, δ3(x) = 0, δ3(y) = 0, δ3(z) = 0

• δ4(w) = 0, δ4(x) = w, δ4(y) = 0, δ4(z) = 0

• δ5(w) = −1
2
y, δ5(x) = x, δ5(y) = −1

2
x+ 1

2
y, δ5(z) = z
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• δ6(w) = 0, δ6(x) = z, δ6(y) = 0, δ6(z) = 0

• δ7(w) = 0, δ7(x) = 0, δ7(y) = z, δ7(z) = 0

We can write L(A)=span{Lw, Lx, Ly} =span{δ3, δ6, δ7}. Thus, there is not an element

b ∈ A such that δ1(a)− Lb(a) ∈Leib(A) for all a ∈ A. Therefore, A is not complete.

Example 5.2.4. wx = z, xw = −z, x2 = z, y2 = z

We can show Leib(A) =span{z} = Z l(A), and Der(A) =span{δ1, δ2, δ3, δ4, δ5} where

• δ1(w) = w, δ1(x) = x, δ1(y) = y, δ1(z) = 2z

• δ2(w) = z, δ2(x) = 0, δ2(y) = 0, δ2(z) = 0

• δ3(w) = 0, δ3(x) = w, δ3(y) = 0, δ3(z) = 0

• δ4(w) = 0, δ4(x) = z, δ4(y) = 0, δ4(z) = 0

• δ5(w) = 0, δ5(x) = 0, δ5(y) = z, δ5(z) = 0

We can write L(A)=span{Lw, Lx, Ly} =span{δ4δ4−δ2, δ5}. Thus, there is not an element

b ∈ A such that im(δ1 − Lb) ⊆Leib(A). Hence, A is not complete.

Example 5.2.5. wx = z, xw = αz, y2 = z, α ∈ C/{−1, 1}
For all α ∈ C/{−1, 1}, Leib(A) =span{z}, but when α = 0, Z l(A) =span{x, z}, which

means A is not complete. So assume α ∈ C/{−1, 0, 1}. Then we can show

Leib(A) =span{z} = Z l(A), and Der(A) =span{δ1, δ2, δ3, δ4, δ5} where

• δ1(w) = w, δ1(x) = 0, δ1(y) = 1
2
y, δ1(z) = z

• δ2(w) = z, δ2(x) = 0, δ2(y) = 0, δ2(z) = 0

• δ3(w) = 0, δ3(x) = x, δ3(y) = 1
2
y, δ3(z) = z

• δ4(w) = 0, δ4(x) = z, δ4(y) = 0, δ4(z) = 0

• δ5(w) = 0, δ5(x) = 0, δ5(y) = z, δ5(z) = 0

We can write L(A)=span{Lw, Lx, Ly} =span{δ4, αδ2, δ5}. Thus, there is not an element

b ∈ A such that im(δ1 − Lb) ⊆Leib(A). Hence, A is not complete.
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Example 5.2.6. w2 = z, x2 = z, y2 = z.

We can show Leib(A) =span{z} = Z l(A), and Der(A) =span{δ1, δ2, δ3, δ4, δ5, δ6, δ7}
where

• δ1(w) = w, δ1(x) = x, δ1(y) = y, δ1(z) = 2z

• δ2(w) = x, δ2(x) = −w, δ2(y) = 0, δ2(z) = 0

• δ3(w) = y, δ3(x) = 0, δ3(y) = −w, δ3(z) = 0

• δ4(w) = z, δ4(x) = 0, δ4(y) = 0, δ4(z) = 0

• δ5(w) = 0, δ5(x) = y, δ5(y) = −x, δ5(z) = 0

• δ6(w) = 0, δ6(x) = z, δ6(y) = 0, δ6(z) = 0

• δ7(w) = 0, δ7(w) = 0, δ7(y) = z, δ7(z) = 0

We can write L(A)=span{Lw, Lx, Ly} =span{δ4, δ6, δ7}. Thus, there is not an element

b ∈ A such that im(δ1 − Lb) ⊆Leib(A). Hence, A is not complete.

Example 5.2.7. w2 = x, wx = y, wy = z.

These nonzero multiplications define a nilpotent cyclic Leibniz algebra. Thus, Leib(A) =

Z l(A) =span{x, y, z}, and by Corollary 1, Der(A) =span{δ1, δ2, δ3, δ4} where

• δ1(w) = w, δ1(x) = 2x, δ1(y) = 3y, δ1(z) = 4z

• δ2(w) = x, δ2(x) = y, δ2(y) = z, δ2(z) = 0

• δ3(w) = y, δ3(x) = z, δ3(y) = 0, δ3(z) = 0

• δ4(w) = z, δ4(x) = 0, δ4(y) = 0, δ4(z) = 0

We can write L(A)=span{Lw} =span{δ2}. Thus, im(δ2 − Lw) = 0 ⊆Leib(A), but there

is not an element b ∈ A such that δ1(a)− Lb(a) ∈Leib(A) for all a ∈ A. Therefore, A is

not complete.

Example 5.2.8. w2 = z, wx = y, xw = −y.

We can show Leib(A) =span{z}, but Z l(A) =span{y, z}. Hence, A is not complete.

Example 5.2.9. w2 = z, wx = y, xw = −y, x2 = z.

We can show Leib(A) =span{z}, but Z l(A) =span{y, z}. Hence, A is not complete.
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Example 5.2.10. w2 = z, wx = y, xw = −y, wy = z, yw = −z.

We can show Leib(A) =span{z} = Z l(A), and Der(A) =span{δ1, δ2, δ3, δ4, δ5, δ6} where

• δ1(w) = w, δ1(x) = 0, δ1(y) = y, δ1(z) = 2z

• δ2(w) = x, δ2(x) = 0, δ2(y) = 0, δ2(z) = 0

• δ3(w) = y, δ3(x) = 0, δ3(y) = 0, δ3(z) = 0

• δ4(w) = z, δ4(x) = 0, δ4(y) = 0, δ4(z) = 0

• δ5(w) = 0, δ5(x) = y, δ5(y) = z, δ5(z) = 0

• δ6(w) = 0, δ6(x) = z, δ6(y) = 0, δ6(z) = 0

We can write L(A)=span{Lw, Lx, Ly} =span{δ4 + δ5,−δ3,−δ4}. Thus, there is not an

element b ∈ A such that im(δ1 − Lb) ⊆Leib(A). Hence, A is not complete.

Example 5.2.11. wx = y, xw = −y, x2 = z, wy = z, yw = −z.

We can show Leib(A) =span{z} = Z l(A), and Der(A) =span{δ1, δ2, δ3, δ4, δ5} where

• δ1(w) = w, δ1(x) = 2x, δ1(y) = 3y, δ1(z) = 4z

• δ2(w) = y, δ2(x) = 0, δ2(y) = 0, δ2(z) = 0

• δ3(w) = z, δ3(x) = 0, δ3(y) = 0, δ3(z) = 0

• δ4(w) = 0, δ4(x) = y, δ4(y) = z, δ4(z) = 0

• δ5(w) = 0, δ5(x) = z, δ5(y) = 0, δ5(z) = 0

We can write L(A)=span{Lw, Lx, Ly} =span{δ4, δ5 − δ2,−δ3}. Thus, there is not an

element b ∈ A such that im(δ1 − Lb) ⊆Leib(A). Hence, A is not complete.

Example 5.2.12. w2 = z wx = y, xw = −y + z, wy = z, yw = −z.

We can show Leib(A) =span{z} = Z l(A), and Der(A) =span{δ1, δ2, δ3, δ4, δ5} where

• δ1(w) = x, δ1(x) = x, δ1(y) = y, δ1(z) = z

• δ2(w) = y, δ2(x) = 0, δ2(y) = 0, δ2(z) = 0

• δ3(w) = z, δ3(x) = 0, δ3(y) = 0, δ3(z) = 0
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• δ4(w) = 0, δ4(x) = y, δ4(y) = z, δ4(z) = 0

• δ5(w) = 0, δ5(x) = z, δ5(y) = 0, δ5(z) = 0

We can write L(A)=span{Lw, Lx, Ly} =span{δ3 + δ4, δ3− δ2,−δ3}. Thus, there is not an

element b ∈ A such that im(δ1 − Lb) ⊆Leib(A). Hence, A is not complete.

Example 5.2.13. wx = y, xw = −y + z, x2 = z, wy = z, yw = −z.

We can show Leib(A) =span{z} = Z l(A), and Der(A) =span{δ1, δ2, δ3, δ4} where

• δ1(w) = y, δ1(x) = 0, δ1(y) = 0, δ1(z) = 0

• δ2(w) = z, δ2(x) = 0, δ2(y) = 0, δ2(z) = 0

• δ3(w) = 0, δ3(x) = y, δ3(y) = z, δ3(z) = 0

• δ4(w) = 0, δ4(x) = z, δ4(y) = 0, δ4(z) = 0

We can write L(A)=span{Lw, Lx, Ly} =span{δ3,−δ1+δ2+δ4,−δ2}. The im(δ2) ⊆Leib(A)

and im(δ4) ⊆Leib(A). Also, δ3 = Lw implies im(δ3−Lw) = 0 ⊆Leib(A). Finally, im(δ1 +

Lx) =im(δ1− δ1 + δ2 + δ4) =im(δ2 + δ4) ⊆Leib(A). Hence, by linearity, for any δ ∈Der(A)

there exists a b ∈ A such that im(δ − Lb) ⊆Leib(A). Therefore, A is complete.

Example 5.2.14. w2 = y, wx = z.

We can show Leib(A) =span{y, z}, but Z l(A) =span{x, y, z}. Hence, A is not complete.

Example 5.2.15. w2 = y, xw = z.

We can show Leib(A) =span{y, z} = Z l(A), and Der(A) =span{δ1, δ2, δ3, δ4, δ5, δ6, δ7}
where

• δ1(w) = w, δ1(x) = 0, δ1(y) = 2y, δ1(z) = z

• δ2(w) = x, δ2(x) = 0, δ2(y) = z, δ2(z) = 0

• δ3(w) = y, δ3(x) = 0, δ3(y) = 0, δ3(z) = 0

• δ4(w) = z, δ4(x) = 0, δ4(y) = 0, δ4(z) = 0

• δ5(w) = 0, δ5(x) = x, δ5(y) = 0, δ5(z) = z

• δ6(w) = 0, δ6(x) = y, δ6(y) = 0, δ6(z) = 0
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• δ7(w) = 0, δ7(x) = z, δ7(y) = 0, δ7(z) = 0

We can write L(A)=span{Lw, Lx} =span{δ3, δ4}. Thus, there is not an element b ∈ A

such that im(δ1 − Lb) ⊆Leib(A). Hence, A is not complete.

Example 5.2.16. xw = y, wx = z, x2 = −y
We can show Z l(A) =span{y, z}=Leib(A), and Der(A) =span{δ1, δ2, δ3, δ4} where

• δ1(w) = y, δ1(x) = 0, δ1(y) = 0, δ1(z) = 0

• δ2(w) = z, δ2(x) = 0, δ2(y) = 0, δ2(z) = 0

• δ3(w) = 0, δ3(x) = y, δ3(y) = 0, δ3(z) = 0

• δ4(w) = 0, δ4(x) = z, δ4(y) = 0, δ4(z) = 0

We can write L(A)=span{Lw, Lx} =span{δ4, δ1−δ3}. Thus, there is not an element b ∈ A
such that δ2(a)− Lb(a) ∈Leib(A) for all a ∈ A. Therefore, A is not complete.

Example 5.2.17. w2 = y, xw = z.

We can show Leib(A) =span{y, z} = Z l(A), and Der(A) =span{δ1, δ2, δ3, δ4, δ5, δ6, δ7}
where

• δ1(w) = w, δ1(x) = 0, δ1(y) = 2y, δ1(z) = z

• δ2(w) = x, δ2(x) = 0, δ2(y) = (α + 1)z, δ2(z) = 0

• δ3(w) = y, δ3(x) = 0, δ3(y) = 0, δ3(z) = 0

• δ4(w) = z, δ4(x) = 0, δ4(y) = 0, δ4(z) = 0

• δ5(w) = 0, δ5(x) = x, δ5(y) = 0, δ5(z) = z

• δ6(w) = 0, δ6(x) = y, δ6(y) = 0, δ6(z) = 0

• δ7(w) = 0, δ7(x) = z, δ7(y) = 0, δ7(z) = 0

We can write L(A)=span{Lw, Lx} =span{δ3 + δ7, αδ4}. Thus, there is not an element

b ∈ A such that im(δ1 − Lb) ⊆Leib(A). Hence, A is not complete.

Example 5.2.18. w2 = y, xw = z, wx = −αy, x2 = −z, α ∈ F
We can show Z l(A) =span{y, z} =Leib(A), and Der(A)=span{δ1, δ2, δ3, δ4, δ5} where
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• δ1(w) = w, δ1(x) = x, δ1(y) = 2y, δ1(z) = 2z

• δ2(w) = y, δ2(x) = 0, δ2(y) = 0, δ2(z) = 0

• δ3(w) = z, δ3(x) = 0, δ3(y) = 0, δ3(z) = 0

• δ4(w) = 0, δ4(x) = y, δ4(y) = 0, δ4(z) = 0

• δ5(w) = 0, δ5(x) = z, δ5(y) = 0, δ5(z) = 0

We can write L(A)=span{Lw, Lx} =span{δ2−αδ4, δ3−δ5}. Thus, there is not an element

b ∈ A such that δ1(a)− Lb(a) ∈Leib(A) for all a ∈ A. Therefore, A is not complete.

Example 5.2.19. w2 = y, wx = y, xw = y + z, x2 = z.

We can show Leib(A) =span{y, z} = Z l(A), and Der(A) =span{δ1, δ2, δ3, δ4, δ5, δ6} where

• δ1(w) = w, δ1(x) = x, δ1(y) = 2y, δ1(z) = 2z

• δ2(w) = x, δ2(x) = 2x, δ2(y) = 2y + z, δ2(z) = 2z

• δ3(w) = y, δ3(x) = 0, δ3(y) = 0, δ3(z) = 0

• δ4(w) = z, δ4(x) = 0, δ4(y) = 0, δ4(z) = 0

• δ5(w) = 0, δ5(x) = y, δ5(y) = 0, δ5(z) = 0

• δ6(w) = 0, δ6(x) = z, δ6(y) = 0, δ6(z) = 0

We can write L(A)=span{Lw, Lx} =span{δ3 + δ5, δ3 + δ4 + δ6}. Thus, there is not an

element b ∈ A such that im(δ1 − Lb) ⊆Leib(A). Hence, A is not complete.

Example 5.2.20. wx = y, wy = z.

We can show Leib(A) =span{y, z}, but Z l(A) =span{x, y, z}. Hence, A is not complete.

Example 5.2.21. wx = y, x2 = z, wy = z.

We can show Leib(A) =span{y, z} = Z l(A), and Der(A) =span{δ1, δ2, δ3, δ4} where

• δ1(w) = w, δ1(x) = 2x, δ1(y) = 3y, δ1(z) = 4z

• δ2(w) = z, δ2(x) = 0, δ2(y) = 0, δ2(z) = 0

• δ3(w) = 0, δ3(x) = y, δ3(y) = z, δ3(z) = 0
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• δ4(w) = 0, δ4(x) = z, δ4(y) = 0, δ4(z) = 0

We can write L(A)=span{Lw, Lx} =span{δ3, δ4}. Thus, there is not an element b ∈ A

such that im(δ1 − Lb) ⊆Leib(A). Hence, A is not complete.

Example 5.2.22. wx = y, xw = z, wy = z.

We can show Leib(A) =span{y, z} = Z l(A), and Der(A) =span{δ1, δ2, δ3, δ4} where

• δ1(w) = z, δ1(x) = 0, δ1(y) = 0, δ1(z) = 0

• δ2(w) = 0, δ2(x) = x, δ2(y) = y, δ2(z) = z

• δ3(w) = 0, δ3(x) = y, δ3(y) = z, δ3(z) = 0

• δ4(w) = 0, δ4(x) = z, δ4(y) = 0, δ4(z) = 0

We can write L(A)=span{Lw, Lx} =span{δ3, δ1}. Thus, there is not an element b ∈ A

such that im(δ2 − Lb) ⊆Leib(A). Hence, A is not complete.

Example 5.2.23. wx = y, xw = z, x2 = z, wy = z.

We can show Leib(A) =span{y, z} = Z l(A), and Der(A) =span{δ1, δ2, δ3} where

• δ1(w) = z, δ1(x) = 0, δ1(y) = 0, δ1(z) = 0

• δ2(w) = 0, δ2(x) = y, δ2(y) = z, δ2(z) = 0

• δ3(w) = 0, δ3(x) = z, δ3(y) = 0, δ3(z) = 0

Therefore, every derivation of A has an image in Leib(A). Hence, A is not complete.

Example 5.2.24. w2 = y, xw = z, wy = z

We can show Z l(A) =span{y, z} =Leib(A), and Der(A) =span{δ1, δ2, δ3, δ4, δ5} where

• δ1(w) = w, δ1(x) = 2x, δ1(y) = 2y, δ1(z) = 3z

• δ2(w) = x, δ2(x) = 0, δ2(y) = z, δ2(z) = 0

• δ3(w) = y, δ3(x) = 0, δ3(y) = z, δ3(z) = 0

• δ4(w) = z, δ4(x) = 0, δ4(y) = 0, δ4(z) = 0

• δ5(w) = 0, δ5(x) = z, δ5(y) = 0, δ5(z) = 0
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We can write L(A)=span{Lw, Lx} =span{δ3, δ4}. Thus, there is not an element b ∈ A

such that δ1(a)− Lb(a) ∈Leib(A) for all a ∈ A. Therefore, A is not complete.

Example 5.2.25. w2 = y, x2 = z, wy = z

We can show Z l(A) =span{y, z}=Leib(A), and Der(A) =span{δ1, δ2, δ3, δ4} where

• δ1(w) = w, δ1(x) = 3
2
x, δ1(y) = 2y, δ1(z) = 3z

• δ2(w) = y, δ2(x) = 0, δ2(y) = z, δ2(z) = 0

• δ3(w) = z, δ3(x) = 0, δ3(y) = 0, δ3(z) = 0

• δ4(w) = 0, δ4(x) = z, δ4(y) = 0, δ4(z) = 0.

We can write L(A)=span{Lw, Lx} =span{δ2, δ4}. Thus, there is not an element b ∈ A
such that δ1(a)− Lb(a) ∈Leib(A) for all a ∈ A. Therefore, A is not complete.

Jacobson provides a proof in [10] that all nilpotent Lie algebras have an outer deriva-

tion; and hence, all nilpotent Lie algebras are not complete. By Example 5.2.13, nilpotent

Leibniz algebras can be complete. It is also important to note that when we consider

A/Leib(A), for A as defined in Example 5.2.13, we get the 3-dimensional Heisenberg Lie

algebra which is not complete. Therefore, when A is a complete Leibniz algebra, the Lie

algebra A/Leib(A) is not necessarily complete.

5.3 3-Dimensional Solvable Leibniz Algebras

Let A be a non-split non-Lie non-nilpotent Leibniz algebra, A =span{x, y, z}. Then A is

solvable, and by Demir, Misra, and Stitzinger [8], A is isomorphic to one of the following

algebras defined by the given nonzero multiplications. We will define a basis for Z l(A),

Leib(A), L(A), and Der(A) of each algebra to show 3-dimensional non-nilpotent Leibniz

algebras can be either complete or not complete.

Example 5.3.1. xz = z

We can show Z l(A)=span{y, z} and Leib(A) =span{z}. Hence, A is not complete.

Example 5.3.2. xz = αz, α ∈ F \ {0}, xy = y, yx = −y
We can show Z l(A)=span{z}=Leib(A), and Der(A) =span{δ1, δ2, δ3} where
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• δ1(x) = y, δ1(y) = 0, δ1(z) = 0

• δ2(x) = 0, δ2(y) = y, δ2(z) = 0

• δ3(x) = 0, δ3(y) = 0, δ3(z) = z

We can write L(A)=span{Lx, Ly} =span{δ2 + αδ3,−δ1}. Thus, im(δ1 − L−y) =

0 ⊆Leib(A), im(δ2 − Lx) ⊆Leib(A), and im(δ3 − L0) ⊆Leib(A). Therefore, A is com-

plete.

Example 5.3.3. xy = y; yx = −y;x2 = z

We can show Z l(A)=span{z}=Leib(A), and Der(A) =span{δ1, δ2, δ3} where

• δ1(x) = y, δ1(y) = 0, δ1(z) = 0

• δ2(x) = z, δ2(y) = 0, δ2(z) = 0

• δ3(x) = 0, δ3(y) = y, δ3(z) = 0

We can write L(A)=span{Lx, Ly} =span{δ2 + δ3,−δ1}. Thus,

im(δ1 − L−y) = 0 ⊆Leib(A), im(δ2 − L0) ⊆Leib(A), and im(δ3 − Lx) ⊆Leib(A).

Therefore, A is complete.

Example 5.3.4. xz = 2z; y2 = z;xy = y; yx = −y;x2 = z

We can show Z l(A)=span{z}=Leib(A), and Der(A) =span{δ1, δ2} where

• δ1(x) = y, δ1(y) = −z, δ1(z) = 0

• δ2(x) = z, δ2(y) = y, δ2(z) = 2z

We can write L(A)=span{Lx, Ly} =span{δ2,−δ1}. Thus, im(δ1−L−y) = 0 ⊆Leib(A),

and im(δ2 − Lx) = 0 ⊆Leib(A). Therefore, A is complete.

Example 5.3.5. xz = αz, α ∈ F \ {0}, xy = y

We can show Z l(A)=span{y, z}=Leib(A), and Der(A) =span{δ1, δ2, δ3, δ4} where

• δ1(x) = 0, δ1(y) = y, δ1(z) = 0

• δ2(x) = 0, δ2(y) = z, δ2(z) = 0

• δ3(x) = 0, δ3(y) = 0, δ3(z) = y
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• δ4(x) = 0, δ4(y) = 0, δ4(z) = z

There is not a δ ∈Der(A) whose image is not in Leib(A). Therefore, A is not complete.

Example 5.3.6. xz = z + y;xy = y

We can show Z l(A)=span{y, z}=Leib(A), and Der(A) =span{δ1, δ2} where

• δ1(x) = 0, δ1(y) = y, δ1(z) = z

• δ2(x) = 0, δ2(y) = 0, δ2(z) = y

There is not a δ ∈Der(A) whose image is not in Leib(A). Therefore, A is not complete.

Example 5.3.7. xz = y;xy = y;x2 = z

We can show Z l(A)=span{y, z}=Leib(A), and Der(A) =span{δ1, δ2, δ3} where

• δ1(x) = y, δ1(y) = 0, δ1(z) = y

• δ2(x) = z, δ2(y) = 0, δ2(z) = y

• δ3(x) = 0, δ3(y) = y, δ3(z) = z

There is not a δ ∈Der(A) whose image is not in Leib(A). Therefore, A is not complete.

5.4 The Holomorph of a Leibniz Algebra

Meng [14] provides the following definition for the holomorph h(L) of a Lie algebra L.

Let L be a Lie algebra, then h(L) = L+̇Der(L), where the bracket in h(L) is defined by

[x+ δ1, y + δ2] = [x, y] + δ1(y)− δ2(x) + [δ1, δ2], where x, y ∈ L and δ1, δ2 ∈Der(L). But,

[x, δ2](y) = (xδ2 − δ2x)(y) = xδ2(y)− δ2(xy)

= xδ2(y)− δ2(x)y − xδ2(y) = −δ2(x)y

by properties of the commutator bracket. Therefore, we need to show how elements from

a Leibniz algebra will interact with elements of the derivation algebra before we can

define the holomorph of a Leibniz algebra.
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Example 5.4.1. Let A be a Leibniz algebra. Let x ∈ A and let δ ∈Der(A). Der(A) is a

Lie algebra with the commutator bracket, so for any z ∈ A,

[Lx, δ](z) = (Lxδ − δLx)(z) = Lx(δ(z))− δ(Lx(z))

= xδ(z)− δ(xz) = xδ(z)− δ(x)z − xδ(z) = −δ(x)z.

Thus, [Lx, δ] = −δ(x).

Example 5.4.2. Let A be a Leibniz algebra. Let x, y, z ∈ A.

Lxy(z) = (xy)z = x(yz)− y(xz) = Lx(Ly(z))− Ly(Lx(z))

= (LxLy − LyLx)(z) = [Lx, Ly](z).

Therefore, Lxy = [Lx, Ly].

Example 5.4.3. Let A be a Leibniz algebra. Let x ∈ A and let δ ∈Der(A). Then

δ(x) ∈ A, and for any z ∈ A we have:

Lδ(x)(z) = δ(x)z = δ(xz)− xδ(z) = δ(Lx(z))− Lx(δ(z))

= (δLx − Lxδ)(z) = [δ, Lx](z).

Thus, Lδ(x) = [δ, Lx].

Now we are ready to provide a definition for the holomorph of a Leibniz algebra.

Definition 8. Let A be a Leibniz algebra. The holomorph of A is h(A) = AuDer(A)

with the product defined by (x+δ1)(y+δ2) = xy+δ1(y)+[Lx, δ2]+[δ1, δ2] for all x, y ∈ A
and δ1, δ2 ∈Der(A).

By Example 5.4.1, this definition for the product in h(A) is equivalent to

(x+ δ1)(y + δ2) = xy + δ1(y)− δ2(x) + [δ1, δ2].

Proposition 1. The holomorph of a Leibniz algebra A is a Leibniz algebra.

Proof. Let x, y, z ∈ A and let δ1, δ2, δ3 ∈Der(A). We need to show multiplication in h(A)

satisfies the Leibniz identity:

(x+ δ1)((y + δ2)(z + δ3)) = ((x+ δ1)(y + δ2))(z + δ3) + (y + δ2)((x+ δ1)(z + δ3)).
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The left hand side of the Leibniz identity expands as follows:

(x+ δ1)((y + δ2)(z + δ3))

= (x+ δ1)(yz + δ2(z) + [Ly, δ3] + [δ2, δ3])

= x(yz + δ2(z)) + δ1(yz + δ2(z)) + [Lx, [Ly, δ3] + [δ2, δ3]] + [δ1, [Ly, δ3] + [δ2, δ3]]

= x(yz)︸ ︷︷ ︸
1

+xδ2(z)︸ ︷︷ ︸
2

+ δ1(yz)︸ ︷︷ ︸
3

+ δ1(δ2(z))︸ ︷︷ ︸
4

+ [Lx, [Ly, δ3]]︸ ︷︷ ︸
5

+ [Lx, [δ2, δ3]]︸ ︷︷ ︸
6

+ [δ1, [Ly, δ3]]︸ ︷︷ ︸
7

+ [δ1, [δ2, δ3]︸ ︷︷ ︸
8

.

The right hand side of the Leibniz identity expands as follows:

((x+ δ1)(y + δ2))(z + δ3) + (y + δ2)((x+ δ1)(z + δ3))

= (xy + δ1(y) + [Lx, δ2] + [δ1, δ2])(z + δ3) + (y + δ2)(xz + δ1(z) + [Lx, δ3] + [δ1, δ3])

= (xy + δ1(y))z + ([Lx, δ2] + [δ1, δ2])(z) + [Lxy+δ1(y), δ3] + [[Lx, δ2] + [δ1, δ2], δ3]

+ y(xz + δ1(z)) + δ2(xz + δ1(z)) + [Ly, [Lx, δ3] + [δ1, δ3]] + [δ2, [Lx, δ3] + [δ1, δ3]]

= (xy)z + δ1(y)z + [Lx, δ2](z) + [δ1, δ2](z) + [Lxy, δ3](z) + [Lδ1(y), δ3] + [[Lx, δ2], δ3]

+ [[δ1, δ2], δ3] + y(xz) + yδ1(z) + δ2(xz) + δ2(δ1(z)) + [Ly, [Lx, δ3]] + [Ly, [δ1, δ3]]

+ [δ2, [Lx, δ3]] + [δ2, [δ1, δ3]]

= (xy)z + y(xz)︸ ︷︷ ︸
1

+ [Lx, δ2](z) + δ2(xz)︸ ︷︷ ︸
2

+ δ1(y)z + yδ1(z)︸ ︷︷ ︸
3

+ [δ1, δ2](z) + δ2(δ1(z))︸ ︷︷ ︸
4

+ [Lxy, δ3] + [Ly, [Lx, δ3]]︸ ︷︷ ︸
5

+ [[Lx, δ2], δ3] + [δ2, [Lx, δ3]]︸ ︷︷ ︸
6

+ [Lδ1(y), δ3] + [Ly, [δ1, δ3]]︸ ︷︷ ︸
7

+ [[δ1, δ2], δ3] + [δ2, [δ1, δ3]]︸ ︷︷ ︸
8

1. x(yz) = (xy)z + y(xz) by the Leibniz identity.

2. [Lx, δ2](z) + δ2(xz) = −δ2(x)z + δ2(xz) = −δ2(x) + δ2(x)z + xδ2(z) = xδ2(z) by

Example 5.4.1 and the derivation property.

3. δ1(yz) = δ1(y)z + yδ1(z) by the derivation property.

4. [δ1, δ2](z)+δ2(δ1(z)) = (δ1δ2−δ2δ1)(z)+δ2(δ1(z)) = δ1(δ2(z))−δ2(δ1(z))+δ2(δ1(z)) =

δ1(δ2(z)) by properties of the Lie bracket.
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5. [Lxy, δ3]+[Ly, [Lx, δ3]] = [[Lx, Ly], δ3]+[Ly, [Lx, δ3]] = [Lx, [Ly, δ3]] by Example 5.4.2

and the Jacobi identity.

6. [Lx, [δ2, δ3]] = [[Lx, δ2], δ3] + [δ2, [Lx, δ3]] by the Jacobi identity.

7. [Lδ1(y), δ3]+ [Ly, [δ1, δ3]] = [[δ1, Ly], δ3]+ [Ly, [δ1, δ3]] = [δ1, [Ly, δ3]] by Example 5.4.3

and the Jacobi identity.

8. [δ1, [δ2, δ3] = [[δ1, δ2], δ3] + [δ2, [δ1, δ3]] by the Jacobi identity.

Thus, the Leibniz identity holds, and h(A) is a Leibniz algebra.

Example 5.4.4. Let x + δ ∈ h(A) and let y ∈ A. Then (x + δ)(y) = xy + δ(y) ∈ A.

Thus, A is a left ideal of h(A).

Example 5.4.5. Let x + δ ∈ h(A) and let y ∈ A. Then y(x + δ) = yx − Lδ(y) ∈ h(A).

Thus, A is not a right ideal of h(A); and hence, A is not an ideal of h(A).

Definition 9. Let A be a Leibniz algebra and let B be a subalgebra of A. The left

centralizer of B in A is the set C l
A(B) = {x ∈ A|Lx(y) = 0 for all y ∈ B}.

Example 5.4.6. Let A be a Leibniz algebra, and let x ∈ C l
h(A)(A). Then x ∈ h(A)

implies x = a + δ for some a ∈ A and δ ∈Der(A). And x ∈ C l
h(A)(A) implies Lx(y) = 0

for all y ∈ A. Thus,

Lx(y) = La+δ(y) = (a+ δ)(y) = ay + δ(y) = 0.

Therefore, δ(y) = −ay, which implies δ(y) = −La(y). Therefore, the left centralizer of A

in h(A) is C l
h(A)(A) = {a− La|a ∈ A}.

Example 5.4.7. Let A be a Leibniz algebra. Let x ∈ h(A), and let y ∈ C l
h(A)(A). Then

x = a+ δ1 and y = b− Lb for some a, b ∈ A and δ1 ∈Der(A). Consider

xy = (a+ δ1)(b− Lb) = ab+ δ1(b)− L−Lb(a) + [δ1,−Lb]

= ab+ δ1(b) + Lba − [δ1, Lb] = ab+ δ1(b) + [Lb, La]− Lδ1(b)
= ab+ δ1(b)− [La, Lb]− Lδ1(b) = ab+ δ1(b)− Lab − Lδ1(b)
= ab+ δ1(b)− Lab+δ1(b) ∈ C l

h(A).

Thus, C l
h(A)(A) is a left ideal of h(A).
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Example 5.4.8. Let A be a Leibniz algebra, and let x ∈ h(A). Then x = a+ δ for some

a ∈ A and δ ∈Der(A). If y ∈ A, then Lx(y) = La+δ(y) = (a + δ)(y) = ay + δ(y) ∈ A.

Therefore, Lx|A ∈Der(A) for all x ∈ h(A).

Example 5.4.9. Let A be a complete Leibniz algebra, and let x ∈ h(A). Then x = a+ δ

for some a ∈ A and δ ∈Der(A). If y ∈ A/Leib(A), then y = b+Leib(A) for some b ∈ A.

Then

Lx(y) = La+δ(b+ Leib(A)) = ab+ aLeib(A) + δ(b+ Leib(A))

= ab+ δ(b) + Leib(A) ∈ A/Leib(A),

since A complete implies Leib(A) is a characteristic ideal. Therefore,

Lx|A/Leib(A) ∈Der(A/Leib(A)) for all x ∈ h(A).

Lemma 13. For any Leibniz algebra A, A ∩ C l
h(A)(A) = Z l(A).

Proof. Let A be a Leibniz algebra, and let a ∈ A ∩ C l
h(A)(A). a ∈ C l

h(A)(A) implies

a = x − Lx for some x ∈ A. But x − Lx ∈ A implies Lx = 0. Thus, Lx(b) = 0 for

every b ∈ A, which implies x ∈ Z l(A). Therefore, a = x − Lx = x ∈ Z l(A) for every

a ∈ A ∩ C l
h(A)(A). Hence, A ∩ C l

h(A)(A) = Z l(A).

Meng proved in ?? that L is a complete Lie algebra if and only if h(L) has the

decomposition h(L) = L ⊕ Ch(L)(L). We have just shown that for any Leibniz algebra

A, A ∩ C l
h(A)(A) = Z l(A). When A is a complete Leibniz algebra Z l(A) =Leib(A), so

we know that the decomposition of the holomorph into A⊕Ch(A)(A) is not possible. We

modify Meng’s result for Lie algebras to prove the following theorem.

Theorem 11. Let A be a complete Leibniz algebra. Then h(A) = A + (C l
h(A)(A) ⊕ I),

where I = {δ ∈Der(A)|im(δ) ⊆Leib(A)}.

Proof. By definition A+ (C l
h(A)(A)⊕ I) ⊆ h(A). Let a+ δ ∈ h(A). Since A is complete,

im(δ − Lb) ⊆Leib(A) for some b ∈ A. This implies δ − Lb ∈ I. Therefore,

a+ δ = a+ b− (b− Lb) + (δ − Lb) ∈ A+ C l
h(A)(A)) + I,

which implies h(A) ⊆ A+ C l
h(A)(A) + I. Assume δ ∈ C l

h(A)(A) ∩ I. δ ∈ C l
h(A)(A) implies

δ(a) = 0 for all a ∈ A. But this implies, δ = 0. Thus, C l
h(A)(A) ∩ I = {0}.

Hence, h(A) = A+ (C l
h(A)(A)⊕ I).
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By Theorem 11,

dim(h(A)) = dim(A ∪ (C l
h(A)(A) ∪ I))

= dim(A) + dim(C l
h(A)(A) ∪ I)− dim(A ∩ (C l

h(A)(A) ∪ I))

= dim(A) + dim(C l
h(A)(A)) + dim(I)− dim[(A ∩ C l

h(A)(A)) ∪ (A ∩ I)]

= dim(A) + dim(C l
h(A)(A)) + dim(I)

− [dim(A ∩ C l
h(A)(A)) + dim(A ∩ I)− dim((A ∩ C l

h(A)(A)) ∩ (A ∩ I))].

By Lemma 13, A ∩ C l
h(A)(A) = Z l(A), and when A is complete Z l(A) =Leib(A).

Also, A ∩ I = {0}, since A∩Der(A) = {0}. Thus,

dim(h(A)) = dim(A) + dim(C l
h(A)(A)) + dim(I)− dim(Leib(A))

= dim(A/Leib(A)) + dim(C l
h(A)(A)) + dim(I).

And, if A is a Lie Algebra, this implies dim(h(A)) =dim(A)+dim(Ch(A)(A)). And since

Leib(A) = 0 when A is a Lie algebra, A ∩ Ch(A)(A) = 0. Thus, h(A) = A ⊕ Ch(A)(A),

agreeing with Meng’s result. Meng also proved in his paper that a Lie algebra L is

complete if and only if h(L) has the decomposition h(L) = L ⊕ Ch(L)(L). However, as

shown in the following example, the decomposition of the holomorph to h(A) = A +

(C l
h(A)(A)⊕ I) does not imply that A is a complete Leibniz algebra.

Example 5.4.10. Let A be the 3-dimensional cyclic Leibniz algebra with basis {a, a2, a3}
and with the multiplication a · a3 = a3. Recall Leib(A) = A2 =span{a2, a3}. And by

Corollary 2, Der(A) =span{δ1, δ2} with δ1(a) = a2, δ1(a
2) = a3, δ1(a

3) = a3 and δ2(a) =

a3, δ2(a
2) = a3, δ2(a

3) = a3. Therefore, the image of all derivations of A are contained in

Leib(A), which means Der(A) = I. We can also show that C l
h(A)(A) =span{a2, a3, a−La};

hence C l
h(A)(A)∩I = {0}. Thus, h(A) = A+Der(A) = A+(C l

h(A)(A)⊕I), but by Example

A is not complete.
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Chapter 6

Semicomplete Leibniz Algebras

In this section we introduce the notion of semicompleteness for Leibniz algebras.

Definition 10. A derivation δ of a Leibniz algebra A is called an ID-derivation if its

image is contained in the derived algebra of A. ID(A) is the set of all ID-derivations of

A.

A Lie algebra L is called semicomplete if all ID-derivations are left multiplications.

Given a Leibniz algebra A, to guarantee A/Leib(A) is a semicomplete Lie algebra we need

the image of all ID-derivations A to differ from a left multiplication of A by Leib(A).

Definition 11. A Leibniz algebra A is called semicomplete if for every δ ∈ID(A) there

is an a ∈ A such that δ(b)−La(b) ∈Leib(A) for every b ∈ A.

We have the containment L(A) ⊆ ID(A) ⊆ Der(A) for all Leibniz algebras. Therefore,

all complete Leibniz algebras are semicomplete.

Proposition 2. If A2 =Leib(A), then A is semicomplete.

Proof. Let A be a Leibniz algebra such that A2 =Leib(A). Let δ ∈ID(A).

Then δ(a) ∈Leib(A) for all a ∈ A.

Thus, δ(a)− L0(a) ∈Leib(A), and A is semicomplete.

Recall from Chapter 3 that when A is a cyclic Leibniz algebra, A2 =Leib(A). Thus,

all cyclic Leibniz algebras are semicomplete.

Proposition 3. Let A = I ⊕ J be the direct sum of two ideals I and J .

If A is semicomplete, then both I and J are semicomplete.
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Proof. Let A = I ⊕ J , and let A be semicomplete.

Let δ ∈ID(I), and consider the linear map δ : A→ A defined by

δ(i+ j) = δ(i), for all i ∈ I and j ∈ J .

Then δ((i1 + j1)(i2 + j2)) = δ(i1i2 + j1j2) = δ(i1i2) = δ(i1)i2 + i1δ(i2)

= δ(i1 + j1)(i2 + j2) + (i1 + j1)δ(i2 + j2).

Thus, δ is a derivation of A.

Also, since δ ∈ ID(I) and A2 = I2 ⊕ J2, this implies

δ(i+ j) = δ(i) ∈ I2 ⊆ A2 for all i ∈ I and j ∈ J .

Thus, δ ∈ ID(A), which implies δ ∈L(A), since A is semicomplete.

Therefore, there exist i ∈ I and j ∈ J such that δ = Li+j.

Hence, for all x ∈ I and y ∈ J , δ(x+ y) = δ(x) = Li+j(x) = Li(x) + Lj(x) ∈ I2.
Thus, δ(x) = Li(x), which implies δ = Li ∈L(I).

Therefore, since δ ∈Der(A) was arbitrary, I is semicomplete.

Similarly, if we define a linear map α : A→ A by α(i+ j) = δ(j) for all i ∈ I, j ∈ J , and

δ ∈ ID(J), then we can show J is semicomplete.

Example 6.0.1. A = sl2 ⊕ C2 =span{e, f, h, e1, e2}
Recall the multiplications: ef = h, fe = −h, he = 2e, eh = −2e, hf = −2f,

fh = 2f, ee1 = 0, e1e = 0, e2e = 0, ee2 = e1, fe1 = e2, e1f = 0, fe2 = 0, e2f = 0, he1 = e1,

he2 = −e2, e1h = 0, e2h = 0

Let x = a1e+ a2f + a3h+ a4e1 + a5e2 and y = b1e+ b2f + b3h+ b4e1 + b5e2.

This implies xy = −2a1b3e+ 2a2b3f + (a1b2 − a2b1)h+ a1b5e1 + a2b4e2.

Thus, A2 =span{e, f, h, e1, e2} = A; and hence, all derivations are ID-derivations.

Also, Leib(A) = C2.

Since multiplication on the left by Leib(A) is zero, L(A) =span{Le, Lf , Lh}.
Let δ ∈Der(A), and define:

δ(e) = a1e+ a2f + a3h+ a4e1 + a5e2,

δ(f) = b1e+ b2f + b3h+ b4e1 + b5e2,

δ(h) = c1e+ c2f + c3h+ c4e1 + c5e2,

δ(e1) = d1e+ d2f + d3h+ d4e1 + d5e2,

δ(e2) = n1e+ n2f + n3h+ n4e1 + n5e2.

δ(ef) = −2b3e− 2a3f + (a1 + b2)h+ b5e1 = c1e+ c2f + c3h+ c4e1 + c5e2 = δ(h).

=⇒ −2b3 = c1,−2a3 = c2, a1 + b2 = c3, b5 = c4, c5 = 0.
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δ(fe) = 2b3e+ 2a3f + (−a1 − b2)h+ a4e2 = −c1e− c2f − c3h− c4e1 = −δ(h)

=⇒ a4 = 0, c4 = 0 = b5.

δ(eh) = (−2a1 − 2c3)e+ 2a2f + c2h = −2a1e− 2a2f − 2a3h− 2a5e2 = −2δ(e)

=⇒ c3 = 0(a1 = −b2), a2 = 0, a5 = 0.

δ(fh) = −2b1e+ 2b2f − c1h = 2b1e+ 2b2f + 2b3h+ 2b4e1 = 2δ(f)

=⇒ b1 = 0, b4 = 0.

δ(ee1) = −2d3e+ d2h+ (a3 + d5)e1 = 0

=⇒ d3 = 0, d2 = 0, a3 = −d5.
δ(ee2) = −2n3e+ n2h+ (a1 + n5)e1 − a3e2 = d1e+ d4e1 + d5e2 = δ(e1)

=⇒ −2n3 = d1, n2 = 0, a1 + n5 = d4.

δ(e2e) = 2n3e = 0

=⇒ n3 = 0(d1 = 0).

δ(fe1) = −d1h+ b3e1 + (b2 + d4)e2 = n1e+ n4e1 + n5e2 = δ(e1)

=⇒ n1 = 0, b3 = n4.

Thus,

[δ]B =


a1 0 −2b3 0 0

0 −a1 −2a3 0 0

a3 b3 0 0 0

0 0 0 d4 b3

0 0 0 −a3 d4 − a1



= a1


1 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1

+ a3


0 0 0 0 0

0 0 −2 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 −1 0

+ b3


0 0 −2 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 0 0



+ d4


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

.

Therefore, Der(A)=span{δ1, δ2, δ3, δ4} where

• δ1(e) = e, δ1(f) = −f, δ1(h) = 0, δ1(e1) = 0, δ1(e2) = −e2
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• δ2(e) = h, δ2(f) = 0, δ2(h) = −2f, δ2(e1) = −e2, δ2(e2) = 0

• δ3(e) = 0, δ3(f) = h, δ3(h) = −2e, δ3(e1) = 0, δ3(e2) = e1

• δ4(e) = 0, δ4(f) = 0, δ4(h) = 0, δ4(e1) = e1, δ4(e2) = e2

Now consider each derivation in the basis of Der(A) applied to

x = a1e+ a2f + a3h+ a4e1 + a5e2.

• δ1(x)− Lh
2
(x) = (a1e− a2f − a5e2)− (a1e− a2f + 1

2
a4e1 − 1

2
a5e2)

= −1
2
a4e1 − 1

2
a5e2 ∈Leib(A).

• δ2(x)− L−f = (a1h− 2a3f − a4e2)− (a1h− 2a3f − a4e2) = 0 ∈Leib(A).

• δ3(x)− Le = (a2h− 2a3e+ a5e1)− (a2h− 2a3e+ a5e1) = 0 ∈Leib(A).

• δ4(x)− L0(x) = a4e1 + a5e2 ∈Leib(A).

Since there is an element xi ∈ A for each derivation δi in the basis for Der(A), such that

δi(x) − Lxi(x) ∈Leib(A), we know that for every δ ∈Der(A) there is an element a ∈ A
such that δ(x)−La(x) ∈Leib(A) for every x ∈ A. Therefore, A is complete; and thus, A

is semicomplete.

6.1 3-Dimensional Nilpotent Leibniz Algebras

Let A be a non-split non-Lie nilpotent Leibniz algebra, A =span{x, y, z}, with the given

nonzero multiplications. We have shown in section 5.1 that the 3-dimensional nilpotent

Leibniz algebras are not complete. We will find a basis for A2 for each algebra to show

that all 3-dimensional nilpotent Leibniz algebras are semicomplete.

Example 6.1.1. x2 = y, xy = z.

Let a = α1x + α2y + α3z and let b = β1x + β2y + β3z. Consider ab = (α1x + α2y +

α3z)(β1x + β2y + β3z) = α1β1y + α1β2z. Thus, A2 =span{y, z}. Recall from Example

5.1.1, Leib(A)=span{y, z}. Since A2 =Leib(A), A is semicomplete.

Example 6.1.2. x2 = z

By Example 5.1.2 Leib(A)=span{z}, and using techniques similar to those in Example

6.1.1, we can show A2 =span{z}=Leib(A). Therefore, A is semicomplete.
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Example 6.1.3. x2 = z; y2 = z

We can show A2 =span{z}=Leib(A). Therefore, A is semicomplete.

Example 6.1.4. xy = z; yx = −z; y2 = z

We can show A2 =span{z}=Leib(A). Therefore, A is semicomplete.

Example 6.1.5. xy = z; yx = αz, α ∈ F \ {−1, 1}
We can show A2 =span{z}=Leib(A). Therefore, A is semicomplete.

6.2 4-Dimensional Nilpotent Leibniz Algebras

Let A be a non-split non-Lie nilpotent Leibniz algebra, A =span{w, x, y, z}, with the

given nonzero multiplications. We have shown in section 5.2 that the 4-dimensional

nilpotent Leibniz algebras can be either complete or not complete. We will find a ba-

sis for A2 for each algebra to show that all 4-dimensional nilpotent Leibniz algebras are

semicomplete.

Example 6.2.1. wy = z, yx = z

We can show Leib(A)=span{z} = A2. Hence, A is semicomplete.

Example 6.2.2. wy = z, x2 = z, xy = z, yw = z, yx = −z
We can show Leib(A) =span{z} = A2. Hence, A is semicomplete.

Example 6.2.3. wx = z, xw = −z, y2 = z

We can show A2 =span{z} =Leib(A). Hence, A is semicomplete.

Example 6.2.4. wx = z, xw = −z, x2 = z, y2 = z

We can show Leib(A) =span{z} = A2. Hence, A is semicomplete.

Example 6.2.5. wx = z, xw = αz, y2 = z, α ∈ C/{−1, 1}
For all α ∈ C/{−1, 1}, Leib(A) =span{z} = A2. Hence, A is semicomplete.

Example 6.2.6. w2 = z, x2 = z, y2 = z.

We can show Leib(A) =span{z} = A2. Hence, A is semicomplete.

Example 6.2.7. w2 = x, wx = y, wy = z.

These nonzero multiplications define a nilpotent cyclic Leibniz algebra. Thus, Leib(A) =

A2; and hence, A is semicomplete.
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Example 6.2.8. w2 = z, wx = y, xw = −y.

We can show Leib(A) =span{z}, butA2 =span{y, z}. Der(A) =span{δ1, δ2, δ3, δ4, δ5, δ6, δ7}
where

• δ1(w) = w, δ1(x) = 0, δ1(y) = y, δ1(z) = 2z

• δ2(w) = x, δ2(x) = 0, δ2(y) = 0, δ2(z) = 0

• δ3(w) = y, δ3(x) = 0, δ3(y) = 0, δ3(z) = 0

• δ4(w) = z, δ4(x) = 0, δ4(y) = 0, δ4(z) = 0

• δ5(w) = 0, δ5(x) = y, δ5(y) = 0, δ5(z) = 0

• δ6(w) = 0, δ6(x) = x, δ6(y) = y, δ6(z) = 0

• δ7(w) = 0, δ7(x) = z, δ7(y) = 0, δ7(z) = 0

Therefore, ID(A)=span{δ3, δ4, δ5, δ7}, and we can write L(A) =span{Lw, Lx} =span{δ4+

δ5,−δ3}. So, im(δ4) ⊆Leib(A) and im(δ7) ⊆Leib(A); and im(δ5 − Lw) ⊆Leib(A) and

im(δ3 + Lx) ⊆Leib(A). Hence, A is semicomplete.

Example 6.2.9. w2 = z, wx = y, xw = −y, x2 = z.

We can show Leib(A) =span{z}, but A2 =span{y, z}. Der(A) =span{δ1, δ2, δ3, δ4, δ5, δ6}
where

• δ1(w) = w, δ1(x) = x, δ1(y) = 2y, δ1(z) = 2z

• δ2(w) = x, δ2(x) = −w, δ2(y) = 0, δ2(z) = 0

• δ3(w) = y, δ3(x) = 0, δ3(y) = 0, δ3(z) = 0

• δ4(w) = z, δ4(x) = 0, δ4(y) = 0, δ4(z) = 0

• δ5(w) = 0, δ5(x) = y, δ5(y) = 0, δ5(z) = 0

• δ6(w) = 0, δ6(x) = z, δ6(y) = 0, δ6(z) = 0

Therefore, ID(A)=span{δ3, δ4, δ5, δ6}, and we can write L(A) =span{Lw, Lx} =span{δ4+

δ5, δ6 − δ3}. So, im(δ4) ⊆Leib(A) and im(δ6) ⊆Leib(A); and im(δ5 − Lw) ⊆Leib(A) and

im(δ3 + Lx) ⊆Leib(A). Hence, A is semicomplete.
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Example 6.2.10. w2 = z, wx = y, xw = −y, wy = z, yw = −z.

We can show Leib(A) =span{z}, but A2 =span{y, z}. Der(A) =span{δ1, δ2, δ3, δ4, δ5, δ6}
where

• δ1(w) = w, δ1(x) = 0, δ1(y) = y, δ1(z) = 2z

• δ2(w) = x, δ2(x) = 0, δ2(y) = 0, δ2(z) = 0

• δ3(w) = y, δ3(x) = 0, δ3(y) = 0, δ3(z) = 0

• δ4(w) = z, δ4(x) = 0, δ4(y) = 0, δ4(z) = 0

• δ5(w) = 0, δ5(x) = y, δ5(y) = z, δ5(z) = 0

• δ6(w) = 0, δ6(x) = z, δ6(y) = 0, δ6(z) = 0

Therefore, ID(A)=span{δ3, δ4, δ5, δ6}. Since L(A)=span{Lw, Lx, Ly}
=span{δ4 + δ5,−δ3,−δ4},A is semicomplete.

Example 6.2.11. wx = y, xw = −y, x2 = z, wy = z, yw = −z.

We can show Leib(A) =span{z}, but A2 =span{y, z}. Der(A) =span{δ1, δ2, δ3, δ4, δ5}
where

• δ1(w) = w, δ1(x) = 2x, δ1(y) = 3y, δ1(z) = 4z

• δ2(w) = y, δ2(x) = 0, δ2(y) = 0, δ2(z) = 0

• δ3(w) = z, δ3(x) = 0, δ3(y) = 0, δ3(z) = 0

• δ4(w) = 0, δ4(x) = y, δ4(y) = z, δ4(z) = 0

• δ5(w) = 0, δ5(x) = z, δ5(y) = 0, δ5(z) = 0

Therefore, ID(A) =span{δ2, δ3, δ4, δ5}. Since L(A)=span{Lw, Lx, Ly} =span{δ4, δ5−δ2,−δ3},
A is semicomplete.

Example 6.2.12. w2 = z wx = y, xw = −y + z, wy = z, yw = −z.

We can show Leib(A) =span{z}, but A2=span{y, z}. Der(A) =span{δ1, δ2, δ3, δ4, δ5}
where

• δ1(w) = x, δ1(x) = x, δ1(y) = y, δ1(z) = z
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• δ2(w) = y, δ2(x) = 0, δ2(y) = 0, δ2(z) = 0

• δ3(w) = z, δ3(x) = 0, δ3(y) = 0, δ3(z) = 0

• δ4(w) = 0, δ4(x) = y, δ4(y) = z, δ4(z) = 0

• δ5(w) = 0, δ5(x) = z, δ5(y) = 0, δ5(z) = 0

Therefore, ID(A) =span{δ2, δ3, δ4, δ5}. Since L(A)=span{Lw, Lx, Ly} =span{δ3 + δ4, δ3−
δ2,−δ3}, A is semicomplete.

Example 6.2.13. wx = y, xw = −y + z, x2 = z, wy = z, yw = −z.

We can show A is complete. Therefore, A is semicomplete.

Example 6.2.14. w2 = y, wx = z.

We can show Leib(A) =span{y, z} = A2. Hence, A is semicomplete.

Example 6.2.15. w2 = y, xw = z.

We can show Leib(A) =span{y, z} = A2. Hence, A is semicomplete.

Example 6.2.16. xw = y, wx = z, x2 = −y
We can show A2 =span{y, z}=Leib(A). Hence, A is semicomplete.

Example 6.2.17. w2 = y, xw = z.

We can show Leib(A) =span{y, z} = A2. Hence, A is semicomplete.

Example 6.2.18. w2 = y, xw = z, wx = −αy, x2 = −z, α ∈ F
We can show A2 =span{y, z} =Leib(A). Hence, A is semicomplete.

Example 6.2.19. w2 = y, wx = y, xw = y + z, x2 = z.

We can show Leib(A) =span{y, z} = A2. Hence, A is semicomplete.

Example 6.2.20. wx = y, wy = z.

We can show Leib(A) =span{y, z} = A2. Hence, A is semicomplete.

Example 6.2.21. wx = y, x2 = z, wy = z.

We can show Leib(A) =span{y, z} = A2. Hence, A is semicomplete.

Example 6.2.22. wx = y, xw = z, wy = z.

We can show Leib(A) =span{y, z} = A2. Hence, A is semicomplete.
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Example 6.2.23. wx = y, xw = z, x2 = z, wy = z.

We can show Leib(A) =span{y, z} = A2. Hence, A is semicomplete.

Example 6.2.24. w2 = y, xw = z, wy = z

We can show A2 =span{y, z} =Leib(A). Hence, A is semicomplete.

Example 6.2.25. w2 = y, x2 = z, wy = z

We can show A2 =span{y, z}=Leib(A). Hence, A is semicomplete.

6.3 3-Dimensional Solvable Leibniz Algebras

Let A be a non-split non-Lie non-nilpotent Leibniz algbera, such that A =span{x, y, z}
with the following nonzero multiplications. We will find a basis for A2 for each algebra

to show that all 3-dimensional solvable Leibniz algebras are semicomplete.

Example 6.3.1. xz = z

We can show A2 =span{z}=Leib(A). Therefore, A is semicomplete.

Example 6.3.2. xz = αz, α ∈ F \ {0}, xy = y, yx = −y
We can show A is complete. Therefore, A is semicomplete.

Example 6.3.3. xy = y; yx = −y;x2 = z

We can show A is complete. Therefore, A is semicomplete.

Example 6.3.4. xz = 2z; y2 = z;xy = y; yx = −y;x2 = z

We can show A is complete. Therefore, A is semicomplete.

Example 6.3.5. xz = αz, α ∈ F \ {0}, xy = y

We can show A2 =span{y, z}=Leib(A). Therefore, A is semicomplete.

Example 6.3.6. xz = z + y;xy = y

We can show A2 =span{y, z}=Leib(A). Therefore, A is semicomplete.

Example 6.3.7. xz = y;xy = y;x2 = z

We can show A2 =span{y, z}=Leib(A). Therefore, A is semicomplete.

Therefore, all 3-dimensional non-split non-Lie Leibniz algebras and all 4-dimensional

non-split non-Lie nilpotent Leibniz algebras are semicomplete. Recall from Chapter 5

that many of these examples were not complete. Thus, while completeness implies semi-

completeness for Leibniz algebras, not all semicomplete Leibniz algebras are complete.
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