ABSTRACT

BOYLE, KRISTEN JOHNSON. On Derivations of Leibniz Algebras. (Under the direction
of Dr. Kailash Misra and Dr. Ernest Stitzinger.)

Leibniz algebras are non-commutative generalizations of Lie algebras. Since the intro-
duction of Leibniz algebras in 1993, researchers have been working to determine which
properties of Lie algebras have analogs for Leibniz algebras. In this work we study the
properties of derivations of Leibniz algebras. We determine a basis for the derivation alge-
bra of an n-dimensional cyclic Leibniz algebra. Based on George Seligman’s work on Lie
algebras we investigate characteristic ideals of Leibniz algebras. By modifying the proof
techniques for Lie algebras we are able to prove the invariance of the radical and nilradical
under derivations of a Leibniz algebra over fields of characteristic 0 and over some finite
fields. We introduce the notion of completeness for Leibniz algebras, and prove that all
semisimple Leibniz algebras are complete. It is known that nilpotent Lie algebras are not
complete. However, there exist nilpotent Leibniz algebras which are complete. We define
the holomorph for a Leibniz algebra, and study properties of the holomorph for complete
Leibniz algebras. We also introduce the notion of semicompleteness for Leibniz algebras.

We show that all complete Leibniz algebras are semicomplete, but not conversely.
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Chapter 1
Introduction

Lie algebras have been studied since the mid-nineteenth century, appearing in connection
with the study of Lie groups. Lie algebras are a widely researched area of mathematics,
and have applications in applied mathematics and physics. Jean-Louis Loday, known for
his work in Lie algebra homology, proved in 1989 that the Chevalley-Eilenberg boundary
map on the exterior algebra of a Lie algebra can be lifted to the tensor algebra into a
new boundary map. In [11], Loday shows that this lift gives rise to a new complex whose
homology is called non-commutative homology of the Lie algebra. Loday noticed that
the Leibniz identity was the only property necessary for the chain complex to be well-
defined. This discovery motivated him to define Leibniz algebras as non-commutative
generalizations of Lie algebras.

Since the introduction of Leibniz algebras in 1993, researchers have been working to
determine which properties of Lie algebras can be extended to Leibniz algebras. Among
the results which have been proven for Leibniz algebras are analogs of Lie’s Theorem,
Engel’s Theorem, Levi decomposition, and Cartan’s criterion [8]. Classification of finite
dimensional Leibniz algebras is a difficult open problem. Many researchers are working
to classify finite dimensional Leibniz algebras which are not Lie [1], [3], [7], [9], [17]. An
important class of non-Lie Leibniz algebras are the cyclic Leibniz algebras generated by
a single element [5]. We use cyclic Leibniz algebras and other low-dimensional examples
to illustrate important concepts for Leibniz algebras throughout this work.

In this work we study the properties of derivations of Leibniz algebras. In Chapter
2 we recall important notions for Leibniz algebras in the same manner as Demir, Misra,

and Stitzinger in [8]. In Chapter 3 we discuss cyclic Leibniz algebras. We compute the



derivation algebras of cyclic Leibniz algebras up to dimension 5, and find their bases. We
determine a basis for the derivation algebra of an n-dimensional cyclic Leibniz algebra.
Since the cyclic Leibniz algebras are significant examples of algebras which are not Lie,
having a basis for the derivation algebra is useful to investigate properties of derivations
of Leibniz algebras.

George Seligman [19] studied the properties of characteristic ideals of Lie algebras. In
Chapter 4, we prove corresponding results for Leibniz algebras. We use techniques similar
to those shown by Petravchuk [16] and Maksimenko [13] to prove the invariance of the
radical and nilradical under derivations of a Leibniz algebra over fields of characteristic
0 and over some finite fields.

In Chapter 5, we introduce the notion of completeness for Leibniz algebras generalizing
the notion of completeness for Lie algebras. In particular, any complete Lie algebra is
also complete as a Leibniz algebra. We prove that all semisimple Leibniz algebras are
complete. Using our results from Chapter 2, we show that a cyclic Leibniz algebra is not
complete. Demir, Misra, and Stitzinger in [8] and [9] provide lists of all 3-dimensional non-
Lie Leibniz algebras, and all 4-dimensional non-split non-Lie nilpotent Leibniz algebras,
up to isomorphism. We determine which of these Leibniz algebras are complete and which
are not complete. Jacobson proves in [10] that all nilpotent Lie algebras are not complete.
We give an example of a nilpotent Leibniz algebra which is complete. We also define the
holomorph for a Leibniz algebra. We show that the holomorph of a Leibniz algebra is a
Leibniz algebra. In [14], Meng proves that a Lie algebra L is complete if and only if the
holomorph of L is a direct sum between L and the centralizer of L in the holomorph.
When A is a complete Leibniz algebra, we provide a decomposition of the holomorph, and
show by example that this decomposition does not imply that A is a complete Leibniz
algebra.

In Chapter 6 we introduce the notion of semicompleteness for Leibniz algebras. We
prove that all cyclic Leibniz algebras are semicomplete. We show that all complete Leibniz

algebras are semicomplete, but not all semicomplete Leibniz algebras are complete.



Chapter 2
Preliminaries

Leibniz algebras are non-commutative generalizations of Lie algebras. In particular, a
(left) Leibniz algebra is a vector space over a field F equipped with a bilinear product
(,): Ax A — A that satisfies the Leibniz identity, a(bc) = (ab)c+b(ac) for all a, b, c € A.
Recall, it is the alternativity of the Lie bracket that yields the antisymmetry of the
product. So, when a Leibniz algebra A also satisfies the condition a?> = 0 for all a € A,

the Leibniz algebra is a Lie algebra and the Leibniz identity becomes the Jacobi identity.

Example 2.0.1. Let A =span{a,b, c} with nonzero multiplications defined by a? = b
and ab = c. A is not a Lie algebra since a? # 0. Let x,y, 2 € A where

T = ara + agb + aze, y = Pra + Pob + P3c, and z = yia + b + 3¢ for «y, 5;,v; € T,
1 <i<3. Then

1(yz) = (a1a + azb + aze) (b + fiyec) = arfivic
And
(vy)z +y(w2) = (a1 10 + a1 Bzc)(y1a + Y2b + y3¢) + (Bra + B2b + Bsc)(ary1b + aiyac)

=0+ fraamc
= a1 f171c.

Thus, the Leibniz identity holds; and A is a Leibniz algebra.

A linear map § : A — A is a derivation of a Leibniz algebra A if §(ab) = d(a)b+ ad(b)
for all a,b € A. For any derivation § of a Leibniz algebra A, define ¢°(4) = A and



6F(A) = §(6F71(A)). We denote Der(A) to be the set of all derivations of A.

Example 2.0.2. Let A be a Leibniz algebra. Der(A) is closed under linear combinations,
so it is a subspace of gl(A), the algebra of all linear operators on A with the product
given by composition. Let 01,02 € Der(A), z,y € A, and consider the commutator of §;
and d, applied to the product xy.

Therefore, [01, 0] €Der(A). Hence, Der(A) of any Leibniz algebra A is a Lie algebra.

For a Leibniz algebra A, and for any a € A, we define the left multiplication operator
L,:A— Aby Ly,(b) = ab for all b € A.

Remark 1. Left multiplication L, is a derivation.
Let a,b,c € A. Ly(bc) = a(be) = (ab)c + blac) = Ly(b)c+ bL4(c).

—_——

by Leibniz identity

We denote L(A) =span{L,|a € A}. Since all left multiplications are derivations, for

every Leibniz algebra we have the containment L(A) CDer(A). For a Leibniz algebra A,
and for any a € A, we define the right multiplication operator R, : A — A by R,(b) = ba
for all b € A.

Remark 2. Right multiplication R, is not a derivation.
Let a,b,c € A. R,(bc) = (bc)a = b(ca) — c(ba) = bR,(c) — cR4(b) # Ra(b)c + bR, (c).
by Leibniz identity
We defined the Leibniz identity in such a way that left multiplication is a derivation.
Notice that the derivation property is exactly Leibniz’s rule for the product of derivatives.
This is one of the reasons Leibniz algebras were named for Gottfried Leibniz. A right

Leibniz algebra is a vector space over a field F equipped with a bilinear product such



that right multiplication is a derivation. In this paper, a Leibniz algebra always refers to
a left Leibniz algebra.

For any subspace I of a Leibniz algebra A, if I? C I, then I is a subalgebra of A. I
is a left ideal of Aif A-I C I, and [ is a right ideal of Aif I - A C I. I is an ideal of
A if it is both a left ideal and a right ideal. A particularly important subalgebra of A is
Leib(A) =span{a®|a € A}.

Remark 3. Leib(A) is an ideal of A.

Let a € A and let ¥ €Leib(A). Then &' = b? for some b € A.

Consider V'a = b*a = (bb)a = b(ba) — b(ba) = 0 €Leib(A); thus, Leib(A) is a right ideal.
Now consider the element (a + b?)(a + b?) — a® €Leib(A).

(a+b*)(a+b*) — a® = a(a + b*) + b*(a + b*) — a® = a* + ab® + b*(a + b*) — @
= ab® + (bb)(a + b*) = ab* + b(b(a + b*)) — b(b(a + b?))

=ab® = ab'.

Thus, ab’ €Leib(A), which implies Leib(A) is a left ideal. Therefore, Leib(A) is an ideal
of A.

For any ideal I of A, we define the quotient Leibniz algebra A/l by a — a+1. Leib(A)
is the minimal ideal such that A/Leib(A) is a Lie algebra, since the quotient by Leib(A)

implies a? = 0 for every a € A.

Example 2.0.3. Let A =span{a,b, ¢, d} with nonzero multiplications defined by a? = d,
ab=c, ac=d, ba = —c, and ca = —d. Let x € A where x = aya + asb + azc + aud.
Then

1% = (10 + asb + asc + agd)(ra + asb + asc + aud)
= a%d + ajaac + ajasd — asa e — asaqd

= aZd.
Thus, Leib(A) =span{d}. Hence, A/Leib(A) =span{a-+Leib(A), b+ Leib(A), c+Leib(A)}
=span{a, b, ¢} with [@,b] = ¢, the 3-dimensional Heisenberg Lie algebra.

Let A be a Leibniz algebra. The left center of A is Z'(A) = {z € Alza = 0 for all
a € A}. The right center of Ais Z"(A) = {x € Alax = 0 for all a € A}. The center of



Ais Z(A) = Z'(A) N Z7(A). By definition, the center of a Leibniz algebra is an abelian
ideal.

Remark 4. Let A be a Leibniz algebra, and let a,b € A. By the Leibniz identity,
a(ab) = (a*)b + a(ab). Therefore, a*b = a(ab) — a(ab) = 0.

Since left multiplication by any square element of A is zero, we have the containment
Leib(A) C Z'(A) for every Leibniz algebra. The derived series of a Leibniz algebra A is
the sequence of ideals A D A® D A®) O . where AM = A% and A® = A=D . A(»-1)
for all n > 1. A Leibniz algebra A is solvable if A*+t1) =0 for some k 4+ 1 > 0 such that
A®) £ 0. In this case, we say the derived length of A is k.

The lower central series of a Leibniz algebra A is the sequence of ideals A O A! D
A% D ... where Al = A- A = A?2 Akt — A . Ak A Leibniz algebra A is nilpotent if
ATl = 0 for some k& > 0 such that A% # 0. In this case, we say the nilpotency class of
A is k. We have the containment A™ C A® for all n. Therefore, every nilpotent Leibniz
algebra is a solvable Leibniz algebra. But every solvable Leibniz algebra is not nilpotent,

as seen in Example 2.0.5

Example 2.0.4. Let A be the Leibniz algebra with basis B = {a,b,c} and nonzero
multiplications defined by a> = b and ab = c. Then Z!(A) =span{b,c} =Leib(A),
Z"(A) =span{c}, and Z(A) =span{c}. Let us also consider the ideals in the derived
series of A: A1) =span{b, c}, A® = 0. Thus, A is solvable with derived length 1. Now
consider the ideals in the lower central series of A: A =span{b, c}, A% =span{c}, A® = 0.

Thus, A is nilpotent with nilpotency class 2.

Example 2.0.5. Let A be the Leibniz algebra B = {a, b, ¢} with nonzero multiplications
defined by a®> = b, ab = ¢, and ac = c. The terms in the derived series of A are:
AN =span{b, c}, A® = 0. Thus, A is solvable of derived length 1. The terms in the lower
central series of A are: A =span{b, c}, A? =span{c} = A3. Therefore, A% =span{c} for
all k£ > 2. Hence, A is not nilpotent.



Chapter 3

Derivations of Cyclic Leibniz

Algebras

3.1 Cyclic Leibniz Algebras

Consider A =span{a,ada?,...,a"} with multiplications a - @’ = ¢, 1 < i < n — 1, and
a-a” = aia + aa® + ... + apa® for some oy, ..., o, € F. Then A is generated by the
single element a, and A is called a cyclic Leibniz algebra. Cyclic Leibniz algebras are not

Lie algebras since a? # 0.

Example 3.1.1. Let A be an n-dimensional cyclic Leibniz algebra. Consider a? - a* for
1 < k < n. By the Leibniz identity, a®> - a* = (a-a)-a* =a-(a-a*) —a- (a-d*) = 0.
Therefore, multiplication on the left by a? is zero. Now assume a’-a* = 0 for 2 <i <n—1
and 1 <k <n. Then a"™ - a*=(a-a')-a*=a-(a'-a*)—a'-(a-ad*)=a-0-0=0.

Therefore, multiplication on the left by any basis element other than a is zero.

Example 3.1.2. Let A be an n-dimensional cyclic Leibniz algebra. Since a" - a = 0,
a-(a"-a)=a-0=0.And, by the Leibniz identity, a - (a"-a) = (a-a")-a+a" - (a-a) =
(ara+asa®+...+a,a™)-a+0=oa-a+aa® a+...+a,a"-a = aja®. Thus, aja® = 0,

which implies a; = 0.

It follows from Example 3.1.2 that for any n-dimensional cyclic Leibniz algebra A,
Leib(A) = A? =span{a?,a®,...,a"}. And in fact, for any Leibniz algebra A, the

dimension of A? is n — 1 if and only if A is cyclic.



Note: the multiplications a - @’ = a1, 1 < i < n — 1 are defined in the same way for
every cyclic Leibniz algebra. Thus, we only need to describe the multiplication for a - a”

when defining a cyclic Leibniz algebra.

3.2 Nilpotent Cyclic Leibniz Algebras

Consider the n-dimensional cyclic Leibniz algebra A with basis {a, a?,...,a"} and multi-
plication a-a™ = 0. The terms in the lower central series of A are: A' =span{a?,..., a"},
A% =span{a®,...,a"}, ..., A® =span{a"}, A®t! = (. Thus, A is nilpotent with nilpo-

tency class n + 1.

Example 3.2.1. Let A be the cyclic Leibniz algebra with basis B = {a,a? a*} and

multiplication a - a® = 0. Let § €Der(A) and define the action of § on the basis elements

as follows: §(a) = aya+aga®+aza®, 6(a?) = Bra+ Bea’® + B3a®, 6(a®) = y1a+y2a* +3a.
o P m

Therefore, 0]lp = | aa f2 72

as B3 73
By the derivation property, d(a - a) = d(a)a + ad(a)
= (1a + aa® + aza®)a + alara + aza® + aza®) = 2a1a* + asa®.
And §(a - a) = §(a?) = Bra + [ra® + [za’.
Hence, by the linear independence of the basis vectors, £; = 0, 83 = 2a4, and [3 = as.

Continuing this process for every combination of basis vectors yields:

a; 0 0 1 00 000 000
[(S]B =|ay 2m 0 =a1 |0 2 0] +a2|1 O O] +a3]0 O O
oz ay 3oy 00 3 010 1 00

Therefore, Der(A) =span{d, do,d3}, where
e 0,(a) = a,0,(a®) = 2a% 6,(a®) = 3a®
o 0y(a) = a? 6y(a?) = a3, d5(a®) =0
o 03(a) = a?,d3(a?) = 0,05(a®) = 0.

Example 3.2.2. Let A be the cyclic Leibniz algebra with basis B = {a, a?, a®,a*} and
multiplication a - a* = 0. Let § €Der(A) and define the action of § on the basis



elements as follows: §(a) = aja + aza® + aza® + ayat, §(a?) = Bra + Pra® + Pza® + Pat,
§(a®) = y1a + 120® + y3a® + viat, 6(a?) = wia + wea® + wzad + wya’.

ar B mow

az B2 Y2 wa

as B3 73 ws

Qs Bis Y wa
By applying ¢ to the product of every combination of basis vectors, we can show:

Therefore, [0|p =

a; 0 0 0
(6] 2@1 0 0
a3 oy 3a; 0

6] =

Yy a3 (6] 4061

1000 0000 0000 0000

0200 1 000 0000 0000
=0 + Qg + a3 + oy

0030 0100 1000 0000

000 4 0010 0100 1000

Therefore, Der(A) =span{d, ds, 03, d4 }, where

e 5i(a) = a,d(a?) = 2a?,6,(a®) = 3a3, 0, (a*) = 4a*
o 5y(a) =a? dy(a®) = a?,65(a?) = a, 62(a*) = 0

e 53(a) = a?,d3(a®) = a*,d3(a®) = 0,05(a*) = 0

o di(a) =a*,d04(a®) = 0,0,(a®) = 0,04(a*) =0

Example 3.2.3. Let A be the cyclic Leibniz algebra with basis B = {a, a?, a®, a*, @} and
multiplication a-a® = 0. Let § €Der(A) and define the action of § on the basis elements as
follows: §(a) = aja+ asa? + aza® + aua’ + asa®, §(a?) = Bra+ Bea® + Bsa® + Bya + Bsa®,
§(a®) = ya + ya? + ya® + yat + sa®, 5(at) = wia + wea? + wsa® + wyat + wsa®,
§(a®) = A\ia + Xaa? + Aza® + Ma* + \sa®.

ar B owr M

ay P2 72 wa Ao
Therefore, [0l = | a3 P35 73 ws A3

ar Ba oy owi M

as Bs 5 ws As



By applying ¢ to the product of every combination of basis vectors, we can show:

Q
)
)
Q
s
o
o
o o o

[5]32 ag  ap  3ag

)

a4 Q3 (0] 40[1

(073 iy 3 (0] 50(1

10000 000O0O 000O0O0
02000 1 0000 0000O0O
=a |00 3 0O0f+a]010O0O0f+az3|1 00 0 O
00040 0010O0 01000
00005 00010 00100
00 0O0O 000O0O0
000O0O 000O0O0
+a4 10 0 0 0 0]l +a510 0 0 0 O
10000 000O0O0
01 00O 10000

Therefore, Der(A) =span{dy, da, 03, d4, 05 }, where
e i(a) = a,d(a?) = 2a?,6,(a®) = 3a3,0,(a*) = 4a?, §,(a®) = 5a°
o 5y(a) = a? 6y(a®) = a®,85(a®) = a?, 65(a') = a®, 5(a®) = 0
e 03(a) = a?,3(a?) = a*,63(a®) = a®, d5(a*) = 0,83(a®) = 0

(54(61) = @4, (54(&2) = a57 (54(&3) = 07 54(@4) = 07 54(@5) =0

L] 55<CL> = (1,5, (55(@2) = 0, 55(a3) = O, (55(@4) = 0, 55(@5) =0

By completing enough examples of derivations of low-dimensional nilpotent cyclic
Leibniz algbebras, we establish a pattern among the basis vectors for the derivation
algebras. We generalize the result to define the derivation algebra of any n-dimensional

nilpotent cyclic Leibniz algebra.
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Theorem 1. Let A be a nilpotent cyclic Leibniz algebra with basis B = {a,a?,...,a"}.
Let 0 €Der(A), and let (d;;j)nxn be the representation matrix of § with respect to the
basis B. Then (dij)nxn = Y o OakE where

o B _ (0 _ )T =]
€D =10 iz

o EW = (¢ <k>)_{ 1 Z::j:Jrk 1<k<n-—1.
0 i#j+k
Proof. Let B = {a,a?, ...,a"} be a basis for cyclic Leibniz algebra A, and let a - a™ = 0.
Let 0 €Der(A), and consider [6]p = (dij)nxn-
To check for linear independence consider Zz_é apB® = 0.
Observe column one in E®). Column one of E® is a column of zeros with a one in the

ax+1,1 entry for every 0 <k <n —1.

(&%) (o)) 0
. . n—1 (k) . aq (5} O
Thus, column one in the matrix >, _; ap E™ is ) , and ) =
an—l an—l O
implies g = 0q = ... = ay,_1 = 0. Hence, the vectors E*) are linearly independent.

Now we need to show spanning. Let § be any derivation in Der(A).

We need to show [0]g = (di;)nxn can be written as a linear combination of the E®). §(a)

is a linear combination of the basis elements of A, so let (a) = 3.1 Bia™™.

Note 3]z = ()]sl [B(a)]sl | Blas)
Bo
b

Thus, column one in the matrix [0]p is

ﬁnfl

11



This implies:

0
0
0 1
B@ls =0 | . | +B| O |+t B
0 :
0
0 1 n—1 n— k
6%1) 651) 631 : Zk:é 5k€§1)
0 1 n—1 n—1 k
Sy egl) 43 651) 48 €é1 : _ Zk:o ﬁkeél)
= Po ) 1 ) e n—1 . =
e en el S el
Zn_l ﬁke "
- e
Assume [0(a')|p = 2o Bk for i > 1.
> k0 Bke
0 0
e 5 5
. Ek oﬁk 21 n—1 (k) .
By definition, . = > 0 B e = v 50
Z B 6 Z Bk z+1z Z z+11
k=0 Mk nz
57 el ). ﬁken’?

Since § is a derivation d(a'*!) = 0(a - a’)

= 0(a) - a’ +a-6(a’)

= (Z?iol Biatt) - a' +a- (i- foa’ + Zk 0 Bkeerlz a4+ "‘ Zk =0 5k€m a")
— 60a2+1 +q- 6 az+1 +Zk O/Bkez-i-lz z+2 + . +Zk Oﬁken 1zan

= (i+1)- Boa™t + 317, 5k€z‘+1,i a4+ Y 5ken—1,ian-

12



This implies [0(a)]g =
N

n—1 (k)
> k=0 Bkei-‘rl,i

n—1 k
Zk:O Bkefzzl,i

Since n — 1 =i+ k if and only if n = (i + 1) + k we can shift the indices to show:

0 0
. n—1 k
0 > k=0 5k6§g§+1
n—1
SN L 0 _ 0 o o Pres it
[0(a")]p = . = et = ,
(i +1)5 Y b0 Br€iti,it .
n—1 k n—1 k n—
k=0 Bkez(Jr)l,i k=0 Bke§+)2,z'+1 Zk:é ﬁkegfz?ﬂ
n—1 k n—1 k
k=0 ﬁkefm—)l,z’ > k=0 ﬁkegz,z)—l—l

n—1 k
> k=0 Bkegj)

n—1 (k)
- —o Bresy; -
Hence, [6(a?)]p = Zk_o.ﬁk % for 1 < j < n, which implies [0]p = >f—¢ B E®.

Sizo Brelt)
Therefore, the vectors E*) form a basis for Der(A). ]

Each of the basis vectors E®) corresponds to a representation matrix for a derivation

in Der(A) with respect to the given basis B.

Corollary 1. Let A be a nilpotent cyclic Leibniz algebra with basis B = {a,a?,...,a"}.
Then Der(A) =span{dy, da, ..., 0, }, where

e 0(a")=tia" for 1 <i<n

o fp(a)y=a™Vifi+k—1<mnand §(a")=0ifi+k—1>nfor 1 <k<n.

13



3.3 Nonnilpotent Cyclic Leibniz Algebras

Consider the n-dimensional cyclic Leibniz algebra A with basis {a, a?, ..., a"} and

multiplication a-a™ = aa®+. . .+a,_1a", where at least one of the o; # 0for 1 < i < n—1.
The terms in the derived series of A are: A1) = span{a?,...,a"}, A® = 0. Hence, A is
solvable of derived length 2. However, A is nonnilpotent since a - a™ # 0 implies there is

not an ideal in the lower central series equal to 0.

Example 3.3.1. Let A be the cyclic Leibniz algebra with basis B = {a,a? @} and
multiplication a - a® = bja® + bya® for by, by € F. Let 6 €Der(A) and define the action of
d on the basis elements as follows: 6(a) = aia + aza® + aza®, 6(a?) = Bra + foa® + Bza’,
0(a®) = ya + y2a® + v3a®.

ar B m
Therefore, 0]lp = | aa [2 72

a3 Pz 73
By the derivation property, d(a - a) = §(a)a + ad(a)

= (a1a + a2a?® + aza®)a + a(ana + axa® + aza®)

= 201a% + 0a® + az(bia® + baa®) = (20 + azby)a® + (ao + azby)a’.
And §(a - a) = §(a®) = Bra + fra® + [za’.

Hence, by the linear independence of the basis vectors,

B1 =0, B2 = 207 + agby, and B3 = g + azbs.

It is important to note that d(a - a®) = §(a) - a® + a - §(a®) and
d(a-a®) = §(b1a® + baa®) = b16(a?) + bad(a®).

This equality yields the relationships 2a;1b; = 0 and a;b, = 0.

If a # 0, then b; = by = 0, which implies A is nilpotent.

Thus, for the nonnilpotent case, a; = 0.

Continuing this process for every combination of basis vectors yields:

0 0 0 00 0 0 0 0
[5]3 = | Qo Oé3b1 Oégbl + Ckgbgbl =as2 |1 0 bl +as3 |0 bl b2b1
a3 Qg + Oégbg CYQbQ + Oég(bl + b%) 0 1 bg 1 bg bl + b%

Therefore, Der(A) =span{d, d2}, where
e 01(a) = a? 61(a?) = a3, 61(a®) = bia® + bya®

o 0r(a) = a? 6s(a?®) = bia® + baa?, 62(a®) = babra® + (b + b3)a®.

14



Example 3.3.2. Let A be the cyclic Leibniz algebra with basis B = {a, a?, a®,a*} and
multiplication a - a* = bya? + bya® + bza* for by, by, by € F. Let § €Der(A) and define the
action of ¢ on the basis elements as follows: §(a) = aja + asa® + aza® + aga’,

§(a?) = Bra + Baa? + B3a® + Paa’, 6(a®) = yia + 1ea® + y3a° + yaa?,

§(a*) = wia + wra? 4+ wza® + wya’.
ar B mow
az B2 2 wa
as B3 73 ws

Qg Pa Ya wa
By applying ¢ to the product of every combination of basis vectors, we can show:

Therefore, [0|p =

0 0 0 0
s asby a3bi+oasbibs agbi+asbibg+aa(b1ba+b1b2)
[5]3 = ag ast+asbs  agbatas(br+bobs) aobotaz(bi+babs)+aa(b3+b1bs+bab3)
s az+agbs astasbstoay(ba+b2)  asbs+as(ba+b3)+ay(bi+2b2bs+b3)
000 O 0 0 O 0
1 00 b 0 0 b b1b3
= Qg +as
010 bg 10 b2 b1 + beg
00 1 b 01 by byt B2
0 O 0 0
0 b1 bibs  biby+ b2
+ ay 9 9
0 by by + babs bibs + b5 + babs
1 by by+0b3 by + 2bybs + b3

Therefore, Der(A) =span{d, do, d3}, where
e 4i(a) = a? 61(a®) = a?,61(a®) = a*, 61 (a*) = bra® + bya® + bza?

o 5y(a) = a? 6y(a®) = a, 53(a?) = bya® + bea® + bza®,
4

52<CL ) = b1b3a2 + (bl + bgb3>a3 + (bg + b%)a4

o 03(a) = at, 53(a?) = bya® + bya® + bza?,
(53(&3) = b1b3a2 + (bl + b2b3>a3 + (bz + bg)a‘l,
53(&4) = (b1b2 + b1b§)(l2 + (blbg + b% + bgb%)&g + (b1 + ngbg + bg)a4

By completing enough examples of derivations of low-dimensional nonnilpotent cyclic

Leibniz algbebras, we establish a pattern among the basis vectors for the derivation al-
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gebras. We generalize the result to define the derivation algebra of any n-dimensional
nonnilpotent cyclic Leibniz algebra. In particular, it is important to note from the pre-

vious example that:

2

0000 00 0 0
1 0 0 b 0 0 b bib
[51}23 - ' = ' e = [52}3
01 0 by 1 0 by by + bybs
0 0 1 b 0 1 by b+ b§
and
3
000 O 0 0 0 0
3 1 0 0 b 0 b b1b3 biby + b1b3
[01]5 = = ) o | = [03]B-
01 0 b 0 by by +bobs b1bs + b5 + babs
0 0 1 bs 1 by by+ b% by + 2bybs + bg

Theorem 2. Let A be a cyclic Leibniz algebra with basis B = {a,d?,...,a"} and let
a-a” =S """ batt!, where at least one of the b; # 0. Let § €Der(A), and let (d;; )an be
the representation matrix of § with respect to the basis B. Then (d;;)nxn = Zk 0 ap B

where

(1 i=j+1

o BV = (6531')) =9 bi1 j=n
L 0 otherwise
(")) 1<ji<n—1

k n— .

o B® = (e Ej)) - l=11 bleg,’? J=n =(EW) 2<k<n-1

[ O otherwise

Proof. Let B ={a,a?,...,a"} be a basis for cyclic Leibniz algebra A, and let

a-a” = 3" ba™!, where at least one of the b; 7£ 0. Let 0 €Der(A), and [0]5 = (dij)nxn-
To check for linear independence consider > )~ LapE® =0,

Column one in E® is a column of zeros with a 1 in the ag41,1 entry for 1 <k <n—1.
0

aq

Thus, column one in the matrix Zz;i arBE®) is

Qn—1

16



o 0
Therefore, ) = ) impliesay =ay=... =a,_1 = 0.
Oy 0
Hence, the vectors E®*) are linearly independent. Now we need to show spanning.
Let & be any derivation in Der(A). We need to show [0]p = (dij)nxn can be written as a
linear combination of the vectors E® 1 <k <n —1.

0(a) is a linear combination of the basis elements of A4, so let §(a) = Y"1, B;a’

A
: R o
Thus, column one in the matrix [0]p is ~ |- Which implies
Bn
0
1 0
0 ! :
[6(a)]s = A S It U (R e 0
0 : 1
0
1 6511) 6571#1) B+ ZJ 1 ﬂj+1€11)
(1) (n—1) J)
N O + B efl t. 4B, 62{ | Z= 1@“621
0 67(111) egﬁ_l) Z] 1 BJHB

Since § is a derivation 6(a?) = d(a-a) = 6(a) - a + a - 6(a)
= (i Bid') rat+a- (321, Bia’)

= pra® + 3300 Bia 4 B 0 bia

= (251 + ﬁnb1>a + (ﬂ? + ﬁan)a + ... (ﬁnfl + ﬁnbnfl)an
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This implies

0
261 + Bnbl
0(a*)]p = Ba + Bubo
/anl + /Bnbn—l
’ 0
0 0 ,
1 : 1
=B 0 | +5 0 + ...+ B . + B, by
: 1 :
0 0 bn—l
‘iz (n-1)
etV €12 Zg 1 ﬁ]+1612
22 n—1 .
= B 0 + 6 6(1) + + B 652 ) - Qﬁl + Zj:l 5]4—1622)
— M 2 392 - ' . — .
E E 71»‘—1 n—1 ‘ .
0 ') e > i1 Bjirel)

Z +1611
Z] 1 /8]+1621

Assume [0(a)]p = | for2<i<n.

s+ Z;L;ll Bjsred)

Z] 1 BJJrlenz
Then, by the derivation property, d(a’™') = 0(a - a’) = §(a) - a’ + a - §(a’)

= (X0, Biad) - a + a(X07) Breila+ Y071 Baeda? + .+ Y0 Biel)an)
_ i+1 n=1,5 (j) 2 n=1,5  (j) 3
= Pra™ + 37000 Bier; a® + 3000 Bives a’ + .

+ Z] 1 BJ‘Hen lza + (Z] 1 5]—&—16 ]))(Z?;ll bia”l)
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=(7) Brarer) +b1 00 Brre))a? + (272 Breaesy) + 0o e  Brraen)a’ +o o (Bt
B Breres 40 071 Brael)at +<z L Brpaed) by 307 el )ar.
()

Since €11 =0 for 1 < j <n—1, and since e,(fjgﬂ = ep_1,; + bg_1€,,; for 2 < k <n and

1 <j<n-—1, we have:

0
>t 5j+16g) + by Y Biaey
"l Bieres) + by > ! Bj4red)
2
Ba** )]s = 3 |
(i+1)B + >0 Bield +b; S Bires
> 5j+167(1j) 1o by S0 Byl
Z /8]+1 1 Z+1
Z 6]"‘1 22—!—1
Z B]Jrle?) i+l
(i +1)8 + 2 L Bre
Z ﬁ]-ﬁ-len a+1
Z ﬁ]"'lelz
Z B]Jrle
Therefore, by induction, [0(a’)]p = L | forall 2 <i<n.

i+ 22:11 Bie

Z BJJrlem

Now consider d(a - a™).
d(a-a”) =6(a)-a"+a-6(a ”)
= (Zi ) 0" +a- (T30 Baenia+ S50 afjnelia® .+ (nfi+ T52 Bjaeid)a”)
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—~ &(Z" b+ Y Bl + 500 BraeSat 4.+ 0 Biarel) ) a+ (nBy+
Zg 1 BJH@ )(Z?:ll bia't!)

= [(n+1)Biby + 3071 Biaa(ell) + bretim)]a® + [(n +1)Biba + 3207 Birales)) + boelid))a® +
o [0+ 1)Biby + S0 Braa(€D) )+ byre)]a”

Therefore, the coefficient of a'*! can be written:

(o Db+ 5 Brealen + bierd)
= (1 DBibi+ 25 By ?? bieyl) X | B (05 bibiey) )

= (n+ 1)ﬁlbz-+61[2] ! 5g+1€ )b, ZJ L Biies )l+b2l2] 1 /3y+1€ "0 30 Bield]+
A b [0 e + b I Bl
(n +1)B1b; + by E] 1 BJJrleerl 2+ b2 Z] 1 5J+1€z+)1 R ol Z] 1 BJJrleerl n

Also, 8(a - a™) = (317 bia'tt) = S bid(at ).

Collecting the coefficients of a"™! in Z”_l bi0(a") we have:

bid i, 53+1€z+1 2 + b Y i, /6J+1€z+1 gt h[(E+1)8 + 27;11 5j+1€§i)1,i+1l +...+
bn—1 ZJ 1 /Bj-l-lez-i—ln

= (i +1)Bib; + by Z?:l 5j+1€§i)1,2 + by 22:11 BjJrlez('i)l,S ot b 205 5J+1€z+1 n

Since the a’ are linearly independent for 1 <4 < n, setting the two equations for 6(a-a™)
equal and collecting the coefficients of a**! on both sides of the equation yields
(n+1)B1b; + by Z] 1 ﬁ]+1€z+1 o + b2 ZJ 1 6]+1€z+)1 3 ot ZJ 1 ﬁ]+1€z+1 n

= (i +1)B1bi + by Zj:l 5J+1€i+)1,2 +023 705 ﬁj—l'lez—i-l 3 b1 ﬂ]'l‘lezi—)l n:
Hence, (n — )51, = 0.

Since 1 <i <mn—1, (n—1) # 0. Therefore, 5; = 0 or b; = 0 for all i. But we assumed
that at least one of the b; # 0. Hence, 5, = 0.

Z] 1 6]+161k)

()
- — e
Thus, [6(a*)]s = ijl @H |l for1<k<n

Z =1 éj-kle(])
Which implies [6]5 = ( [6(a)]B][6(a®)]5]...|[0(a™)]B ) =301 B BR.
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]

As was true for the nilpotent case, each of the basis vectors E®*) corresponds to a

representation matrix for a derivation in Der(A) with respect to the given basis B.

Corollary 2. Let A be a cyclic Leibniz algebra with basis B = {a,d?,...,a"}, and let
a-a™ = Y1~ b;a™! where at least one of the b; # 0 . Then Der(A) =span{d;,da, ..., 0,1},
where

o Si(a)=a for 1 <i<n—1,6(a") =" bjat!

Jj=1

e Sp(al) =dF(a) for1<i<nand 1<k <n-1.
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Chapter 4

Characteristic Ideals of Leibniz

Algebras

Definition 1. Let A be a Leibniz algebra. An ideal B of A is called characteristic if it

is invariant under all derivations of A.

Example 4.0.1. The derived algebra of A is characteristic.
Let a,b € A and let 6 €Der(A). §(ab) = §(a)b + ad(b) € A2 This implies §(A?) C A%

Thus, A2 is characteristic.

Using induction, we can show that every ideal in the lower central series and in the

derived series of A is characteristic.

Example 4.0.2. Z'(A) is a characteristic ideal of A.

Let 6 €Der(A), and let x € ZY(A), y € A. Then xy = 0 for every y € A, which implies
§(zy) = 6(z)y + 20(y) = §(x)y = 0. Therefore, 5(x) € Z'(A); and hence, §(Z'(A)) C
Z'(A). Thus, Z'(A) is characteristic.

Lemma 1. The sum of characteristic ideals is characteristic.

Proof. Let By, Bs, ..., B, be characteristic ideals of a Leibniz algebra A. Let § €Der(A).
Then 6(By + Ba+ ...+ B,) =6(B1) +6(Bg) + ...+ 8(By) C B+ By+ ...+ By,

since ¢ is a linear operator. 0
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4.1 Properties of Derivations

In this section we study properties of derivations and ideals. These results will be useful

in determining under which conditions an ideal is characteristic.

Lemma 2. Let A be a Leibniz algebra over a field F, let I be any ideal of A, and let
d €Der(A). Then A-6"(I) CI+6(I)+...+6"(I)and 0"(I)-AC I +6(1)+ ...+ (1)
for all n > 1.

Proof. Let v € A and y € 6(I). This implies y = §(z) for some z € I. Then

xy:xé(z):5(\:16/2'_/)—@36]+5(1)and

el pet
yr =0(2)r = d( 2z ) — 20(x) € I +(1).
=T

Hence, A-§(1) CI1+6(I) and 6(1)- A C I+ 0(I).

Now assume A-0" Y1) CI+6(1)+...+0" 1 (I)and 6" 1 (I)-AC I+6(I)+...+6" (1)
forn —1>1. Let x € A and let y € §"(I) = 6(6"'(I)). This implies y = §(z) for some
z € 6" }(I). Then

xy = x0(2) = d(zz) — d(x)z
COI+0(I)+ ...+ D)) +T+6)+...+06" 1)
CI+0(I)+...+6" ) +0"().

And

yr = 6(z)x = d(zx) — 20(x)
€SI+ +...+" I+ T+6I)+...+5"'()
CI+0(I)+...4+8" () +48*().

Therefore, by induction, A-6"(1) C I+d()+...+0"(]) and §*(1)-A C I+6(1)+...+5"(1)
for all n > 1. O
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Lemma 3. Let A be a Leibniz algebra over a field F, and let § €Der(A). Then for any
ideal I of A, the F-subspace I +0(I) + ...+ d"(I) is an ideal of A for all n > 1.

Proof. Let x € A and let y € I 4+6(A). This implies y = z+ 6(w) for some z,w € I. Then

z(z 4+ §(w)) = xz + zd(w)

xz +0(aw,) —o(x)w € I 4+ 6(1) and
er er o7

Y

yr = (z 4+ 0(w))xr = za + d(w)z

= zx +0(wz ) —wd(x) € I +6(1).
el el e

Thus, I +§(I) is an ideal of A. Assume I +§(I)+...+6""*(I) is an ideal for n —1 > 1.
Note A+ (I4+86(I)+...+0"(I)=A-(I+6I)+...+ "))+ A-6"(1).

Also, by the induction hypothesis, A« (I +d(I)+.. .—1—(5" YI) CI+o6(I)+...+0" (1),
and by Lemma 2, A-0"(1) CI+6(I)+ ...+ 0"({).

Therefore, A- (I +6(I)+...+6"(1)) ST +d)+...4+"(1).

Similarly,

(I+0()+...40"I) - A=T+6(D)+...+8" 1) - A+6(I)- A
CU+I)+...+0" D)+ (T +6)+...+6"())
CI4+6I)+...4+0"(1).

Thus, I +0(I) + ...+ "(I) is an ideal of A for all n > 1. O

Lemma 4. Let A be a Leibniz algebra over a field F, and let § €Der(A). Then for every
x,y € A the general Leibniz product rule holds:

Fay) = oy (£)0°(2)0"2(y).

Proof. Let x,y € A. Then
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Thus, the product rule holds when k£ = 1. Now assume:

51 (zy) zz( Do)

s=0

Then

S

-1

o a) =000 an) = 0% ()@ )

S

B
Il
o

= (s

T
|
= O

(]

(k . 1) (6 ()01 (y) + 8" (2)8" ()
(ot X (F] oo

Taking the s = k — 1 term from the first summand and the s = 0 term from the second

> »
Il
= O

s=0

summand yields:

= §"(z)y + 20" (y) + k: ( )55“ (z)8F 17 + kzi (k B 1) 6% (2)0% ()

s s=1 5
Re-indexing the first summand yields:
k

— (a)y + 26y +Z(3_1)58 o+ z( Do)

Recall (*7}) + (*") = (¥), which yields:

= 6" (2)y + 20" (y) Z() )" (y i() 2)0" 7 (y).

S=

Therefore, Leibniz’s product rule holds for all n > 1.
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The previous result can be generalized to Leibniz’s rule for differentiation of several

multipliers:

5(171 Ty -t xm) = Zk1+k2+...+km:n Wékl (Z)’Jl) (5k2(1'2) s (5km (fEm)

Now we consider the action of derivations on ideals from the derived series of a Leibniz

algebra A.

Lemma 5. Let A be a Leibniz algebra over a field F, let I be any ideal of A, and let
§ €Der(A). Then §™(1%)) C I for all m < 2° — 1.

Proof. First consider s = 1. Then m < 2! —1 =1, implies m = 1. And

S(IMWy =6(I1*) Co(I)-T+1-6(I)C1,

m < 2571 — 1. Take an arbitrary m < 2° — 1, and consider §™(I1®)) = §m([(s=1) . [(s=D),

For any elements z,y € 16V, by Lemma 4,

o =3 (1) @)

=0

since I is an ideal of A. Thus, the base case holds. Assume §™(1*=1)) C I for all

Since i+ (m—i) = m < 2°—1, and since (2% —1) = 2°! — 1 at least one of the numbers
i or m — i does not exceed 2571 — 1, since i, m € Z. Thus, by the induction hypothesis,
either &'(z) or 6m_i(y) is an element of I. Hence, §'(x)0™ (y) € I for each 1 < i < m.
Therefore, §™(1®)) C I for all m < 2° — 1. O

Lemma 6. Let A be a Leibniz algebra over a field F, let I be any ideal of A, and let
d €Der(A). If char(FF) does not divide the binomial coefficient (2k ,), then
62 (I=D) L g2 (=) € §25(TW) 4 T

Proof. Let z,y € I*~Y. By Lemma 4, 6% (zy) = ZQk (2k)53( )6 5 (y).

Taking the s = 2¥~1 term from the summand yields:

P n) = (o )5 @5 ) + 5 (%))

s=0;s#£2k—1
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Since 2% — 2871 = 2%(1 — 271) = 2¥(3) = 2¥7, we can simplify the exponent in the first

summand to get:
" %\ i e 2 ok ”
P = () 0w X (3)ree -,
s=0;5#2k—1

Now, in the second summand, s + (28 — s) = 2" and $(2¥) = 2571 but s # 281,
hence, either the number s or the number 2 — s does not exceed 2F~! — 1.

Therefore, by Lemma 5, the second summand is in /.

Also, since char(FF) ¢ (2,3:), the first summand is not 0 and (2,3:) has a multiplicative

inverse in [F . Thus,

(;kl)az“(x)ﬁ“(y) = 6% (xy) - i ) (2:>55(5“)52k_5(y)’

which implies
2 (I D) (1Y) € 8 (1W) 4 1.

]

Lemma 7. Let A be a Leibniz algebra over a field of characteristic 0 or characteristic

p # 2, let I be an abelian ideal of A, and let 6 €Der(A). Then §(I) - 6(I) C I.

Proof. Let z,y € I. I abelian implies zy = 0. Thus, 6(xy) = 0. This implies
0= 6*(zy) = 6*(z)y + 20(z)0(y) + 26°(y).
Thus,
20(2)8(y) = —0%(x)y — 26*(y) € 1.

Since the characteristic of the field is not 2, and since x and y are arbitrary elements
from I, this implies 6(I) - 6(1) C 1. O

Now we consider the action of derivations on ideals from the lower central series of a

Leibniz algebra A.
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Lemma 8. Let A be a Leibniz algebra over a field F, let I be any ideal of A, and let

d €Der(A). Then for any x1,...,zs € I and for any nonnegative number m < s:
O™(xy - - - xs) € I5™,

Proof. Denote | = s —m > 0. By Leibniz’s rule for differentiation of several multipliers,

m!
6m($1 e ;L‘S) = Z m(skl ($1) e 5k5($5)-

ki+..+ks=m

Since m < s, and since each k; is nonnegative, there must be at least [ of the
ki = 0,1 <i < s. Recall °(z;) = x;; thus, each term of the sum 6% (z;)--- 0% (z,) contains

at least [ elements of I and m elements of A. Therefore, 6™(zy - - - x5) € I' = ™. [

Lemma 9. Let [ be a nilpotent ideal with nilpotency class n of a Leibniz algebra A over
a field of characteristic 0 or characteristic p > n+ 1, and let § € Der(A).
Then (I +6(1))** C 1.

Proof. Any term of (I+§(7))™+! with elements from I will be contained in I by definition.
So it is enough to show 6(7) - --d(I) C I. Since the nilpotency class of I is n,
—_——

n+1
X1+ Ty - Tpep = 0 for all elements x4, ..., 2,, 2,11 € 1.

By Leibniz’s rule for differentiation of several multipliers,

+1)!
(n ) '(Skl <$C1> e (Skn+1 (LUnJrl) = O

6n+1(x1 N anrl) = Z ﬁ

krtothpgi=nt1 L il

The sum of n+ 1 nonnegative integers to n+ 1 can be split into two cases: the case where
each k; = 1, and the case where at least one of the k; > 1. In the second case, this leaves
at least 1 of the k; = 0. Thus,

5n+1(x1 e an) —

(n+1)! (n+1)! -
0@ @) £ D Ml g0 @) 0 (@) = 0.
ki+...+knp1=n+1

and in each summand there is at least one 6% (z;) = §°(x;) = z;. Hence, each summand
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belongs to I. Therefore,

i + 1!

6(x1) <+ 0(Tngr) = — E Mé’ﬂ (1) - - - 0%+ (241) € I
kil Kk oq!

kibootkpg=ngl LTl

Since the characteristic of the field is zero or greater than n+1, §(z1)---0(x,y1) € I. O

Lemma 10. Let I be a nilpotent ideal of nilpotency class n from a Leibniz algebra A
over a field of characteristic 0 or characteristic p > n + 1, and let § €Der(A).
Then I-6(1)---6(1) C I%
1
n+

Proof. Let xy,...,x,19 be arbitrary elements from I. For convenience, denote

ti = (5(1’1) R VR 5(In+2> and

usle.m2...5(xs)...xn+2
for 1 <i,s <n+ 2. Note u, € I""' = 0 implies u; = 0. Therefore,

0=0"us) =0"(xy -9+ (xs) -+ Tpyo)

n!
= Y @) T @) 5 ().

k1! .. kpyo!
ki+...+kpt2=n 1 n+2

All of the k; are nonnegative, so ki + ...+ k,42 = n implies that at least 2 of the k; = 0.

o If more than 2 of the k; = 0, then at least 2 of the degrees of the derivations are 0

and the summand lies in I2.
o If exactly 2 k;, k; = 0 such that i, j # s, then, as before, the summand lies in I

So, we have left to consider the case when one of the indices 7,7 = s. Without loss
of generality, let ks = 0,k; = 0,5 # s. This implies all other k,, = 1. Therefore, the

summand is equal to

n!
1., 1!

6(w1) -+ 0(xjo1) - 0°(a)) - 0(xjgn) - - - O(2pan) = nlt.

Since ¢ = s is fixed, j is arbitrarily chosen, and since all other cases can be reduced to
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an element in 2, we have
0=06"us) =nl(ty+ ... +ts—1 +tss1 + ...+ lora) + 25
for some z, € I%. Define
Ve=t14...+te1+ter1+ ... +tnio.

Since 0 = nlv, + z,, this implies n!lvy, = —z,. And since the characteristic of the field is

greater than n + 1, this implies v, € I2. Consider

n+2 n+2

v = sz =(n+ I)Ztk.
s=1 k=1

Then v € I?, since each v, € I?. Thus, t = t; +ty + ... + t,po € I?, again because

p > n+ 1. But then, since t = t; + v, and t,v; € I?, we have t; € I%. Also, z1,..., %, 0

were chosen arbitrarily and ¢; = x1-8(22) -+ 0(2n12). Therefore, I-6()---8(1) C I2. O
—_—

n+1

Lemma 11. Let [ be a nilpotent ideal of nilpotency class n from a Leibniz algebra A over

a field of characteristic 0 or characteristic p > n+1, and let § € Der(A). Then there exists

a function f,(m) such that f,(m) = f,(m—1)+n—m+1and I"™-§(I)---6(I) C "™
—_————

fn(m)
for 1 <m <n.

Proof. Let n be a fixed natural number. When m =1, f,(1) =n + 1.
Thus, by Lemma 10 we have the relation I -§(I)---§(I) C I%
———

n+1

Assume the function f,,(m — 1) satisfies the condition ™1 -§(I)---6(I) C I"™ for some
—_——
fn(m—1)
m > 1.

We need to show I™- §(I)---6(I) C 1™
—— ——

m(m+1)
2

m(n+1)— +1

For convenience, denote N = m(n+1) — M + 2 and take arbitrary elements x; € I™
and xo,...,xy € I.
Let s = fu(m—1)+1andt=n—m+ 1. Note: N =t +s.
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Also, I™ C I™=! which implies x; € I™ L.
Therefore, by induction, xy - 0(za) - - - §(xs) € I™.
Thus, 21 - 0(x3) - - - 6(2) - Teyy - - -y € IMFOMHD = il —

N TV
erm n—m-+1

Consider 6" ™ (xy - §(z3) - - - §(wy) - Toyy - - - wy) = ™ H(0) = 0.

Also, using Leibniz’s Rule, 6" ™™ (2 - §(x3) - - - §(xs) - Tgyy - - - TN) =

> #}kmékl (m1) - 0% (2g) - - - SR () - P+ (myy) - - 6FV (zy) = 0, where ky, ... ky
are nonnegative and k; + ...+ ky =t =n—m+ 1.

Recall N = s +t, so there are at least s of the k; = 0.

We will show that all summands of this sum either lie in I™*! or have the form

t16%(xy) - §(wa) - - - 6(s) - 6(z541) - - - 6(z). Consider the following possible cases:

1. There are exactly s of the k; = 0.

If these numbers are ky, ..., ks, then ks, = ... = ky = 1, which reduces the sum-
mand to t16°(z1) - §(wa) - - 0(xs) - 6(weyr) - - - O(TN).
If at least one of the numbers kq, ..., k, is nonzero, then at least one of the numbers
ksi1,...,kyn is 0. First assume that k; = 0.
Then §1(x1) = 0°(x1) = 1 € I™ and if at least one of the numbers ky 1, ..., ky is
0, then the summand t!6%(z1) - 6(z2) - - - 0(ws) - 6(xspq) - - O(wn) € I
Consider now the case where k; = 1. If ky = ... = k, = 0, then §(z;) € I™ !, by
Lemma 8. Thus, d(x;) - 6(xg) - - - §(zs) € I™.

fn(m—1)
And, since at least one of the numbers k.1, ..., ky is 0, then the element in this

case lies in ™1,

2. There are exactly s + j of the k; = 0, where j > 1.
Since N = s 4 t, we have at least j of the ks11,...,ky equal to 0.
First assume there are exactly 5 such numbers.
This implies k1 = ... = ks = 0. Thus, zy - §(z2) - - - 0(xs) € I™.
Since 7 > 1 at least one of the kgy1,...,ky is equal to 0, which means
tlay - 6(xa) -+ - 8(wy) - (xsyr) - - - O(an) € IT™TL.
Now suppose at least j + 1 of the kgyq,...,ky are equal to 0.
Let the quantity of the k; =0, s+ 1 < i < N, be called r.

Then according to our assumption r» > j + 1.
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Hence, the quantity of nonzero numbers among kg 1,...,ky ist —r.

Thus Zi\—fi-l k; > t — r, which implies > [ k; <t — (¢t —r) = r. In particular, this
implies k; < r. First, assume Y | k; <.

Then k; < r — 1, and therefore, 6% (z;,) € I~ =D = [+ by Lemma 8.

Since there are at least r of the kgyq,...,ky equal to 0, this implies

ok (1) -5k2+1(a:2) cee (5"75“(91;5) . (5’“3“(:53“) co okN (xy) € [m—rHitr = pm+l,
H/_/ ~ vl

erm—rt1 elr

Now assume » | k; = 7.
If k; <r — 1, then, as above, one can show that the element lies in 7™,
So let ky =r.

Then ky = ... =k, = 0 and by induction §"(x1) - 6(z2) - - - 6(x,) € [™ "L
—_—— ———
erm=r fn(m—1)
Since at least 7 of the elements among 6%+ (x,,1),...,0" (zy) are in I, we have
6 (1) - 8(xa) - - - 8(ws) - 67 (wypy) - - - OV () € T
EIWXT"‘*:[ g[r"‘

Therefore, Zkl,t—'kN,(Skl (z1) - 0%t (wg) - - - SFH(zy) - St (gyy) - - - OV (zy) =

x4+ t10%(2y) - 8(wg) - - - 6(wy) - 6(zg41) -+ O(zy) = 0, for zp € T™ T

Since t = n — m + 1 and the characteristic p > n + 1, this implies
21 0(xg) - - 0(wy)  0(weyr) - - - O(ay) € T™FL.

N Y\ J/

Fa(m—1) n—m-+1
And since the elements xy € I™ x9,..., oy € I can be chosen arbitrarily, this

implies

Im. 6(I)---6(I) CI™ for 1 <m <n.
N————
fn(m—1)+n—m+1

Thus, f,(m) = fu(m—1)+n—m+ 1.

Remark An explicit formula can be written f,(m)=m(n+1) — w + 1.
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4.2 Invariance of Solvable Ideals

Recall a Leibniz algebra A is solvable if A®) = 0 for some k& > 0 such that A%®~1 =£ 0.
The sum of solvable ideals of a Leibniz algebra is solvable. Hence, the sum of solvable

characteristic ideals is a solvable characteristic ideal of A.

Definition 2. The characteristic radical, or c-radical, of A is the maximal solvable

characteristic ideal of A.
Definition 3. A Leibniz algebra A is characteristic semisimple if its c-radical is 0.

Equivalently, A is characteristic semisimple if its only solvable characteristic ideal is
0. Let J be a solvable ideal of A. Then J® = Jt=D . j6=1) = 0 for some i such that
J@=1 =£ 0. Thus, J0~Y is a nonzero characteristic ideal. And if we consider the first
term in the derived series of JO—1 (JE=D)1) = jG= . ji=1) — ( we can see that
J@=1 is a nonzero solvable characteristic ideal. This implies J¢~Y is in the c-radical of
A. Therefore, A is characteristic semisimple if and only if the only abelian characteristic
ideal of A is 0.

Theorem 3. If R is the c-radical of A, then A/R is characteristic semisimple.

Proof. Let S be a solvable characteristic ideal of A/R,

and let & : A — A/R be defined by ®(a) = a + R, for all a € A.

By the correspondence theorem, we know that the ideals of A/R are in 1 — 1
correspondence with the ideals of A containing R.

Thus, S = S*/R, for an ideal S* of A.

Furthermore, since S and R are both solvable, we know that S* is a solvable ideal of A.
Let ¢ be any derivation of A. We want to show S* is characteristic in A, so consider
0:A/R — A/R, the induced derivation in the quotient space defined by:

0(a+ R) =d(a) + R.

Now consider § : S — S, and let u* € S*.

This implies u* 4+ R € S, and since S is a characteristic ideal of A/R,

o(u* +R)=06(u*)+Re S =S"/R.

Thus, d(u*) € S*, for all u* € S*. Hence, S* is a solvable characteristic ideal of A.

This implies S* C R. But we chose S* such that R C 5*; thus, S* = R.

Hence, S = S*/R = 5*/S* = {0}, which implies A/R is characteristic semisimple. [
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Lemma 12. If A is characteristic semisimple, then every characteristic ideal in A is

characteristic semisimple.

Proof. Let A be characteristic semisimple, and let B be a characteristic ideal in A.
Consider S, any solvable characteristic ideal of B.

Let § be any derivation of A. Since B is a characteristic ideal of A, §(B) C B;

so, 0 : B — B is a derivation of B. Thus, 6(5) C S.

Hence, S is a characteristic ideal in A. Since A is characteristic semisimple, S = {0}.

Therefore, B is characteristic semisimple. O]

Definition 4. A Leibniz algebra A is called characteristic simple, or c-simple, if its only

characteristic ideals are A and 0, and if A2 = A.

A? = A implies that A is not a solvable Leibniz algebra. Therefore, the only solvable
characteristic ideal of a c-simple Leibniz algebra is 0. Hence, every c-simple Leibniz

algebra is characteristic semisimple.

Definition 5. A Leibniz algebra A is called completely semisimple if A can be written

as A=A D Ay @ ... ® A, where each A; is a characteristic simple algebra.

It is not clear from the definition, but we can show that each A; is a characteristic

ideal of A. Consider
Ugt..ia, ={a € Ala(As+ ...+ Ay) = (A2 + ... + Ay)a = 0},

the annihilator of Ay + ...+ Ay in A. Let a; € Ay, and consider a;(As + ...+ Ay). Since
A is a direct sum of the A;’s, A;A; = 0 when 7 # j. Thus,

(ll(A2+...+Ak) = (A2++Ak)a1 :0,
which implies a; € Ua,+..+4,. Hence, A1 C Uyyt. 44,. Now let
a=a+as+...+a € UA2+...+Ak,

such that a;, € A;. Then a; € Z;(A;) for 2 < j < k. But, the center of a Leibniz algebra
is a characteristic ideal, and A; characteristic simple implies Z;(A;) = 0 for 2 < j < k.
Therefore, a; = 0 for 2 < j < k, which implies a = a; € Ay. Thus, Ua,+. 44, € Ay,
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which implies Ua,4. 14, = A1. Now let a; € Ay, § €Der(A), and y € Ay +...+ Ag. Then

6(ar)y = 6(ary) — a1d(y) = —a1d(y),

which implies §(a1)y € (A2 +...+ Ar) N A; = 0. Therefore, d(a1) € Ua,t. +4, = Ar; and
hence, §(A;) C A;. Thus, A; is a characteristic ideal of A, and the same holds for each
A,

Theorem 4. Every completely semisimple Leibniz algebra is characteristic semisimple.

Proof. Let A be a completely semisimple Leibniz algebra, and let B be a characteristic
ideal of A. Thus, A = A; @ ... @ A, where each A; is a characteristic simple ideal. Let
d be any derivation of A. Then §(BA;) C §(B)A; + Bi(A;) C BA;; hence, BA; is a
characteristic ideal in A for each i. Let J; be a derivation of A;. By defining 4,(A4;) = 0
when ¢ # j, we can extend ¢; to be a derivation of A. Thus, BA; is a characteristic
ideal of A;, and A; characteristic simple implies BA; = A; or BA; = 0. If BA; = 0,
then B C A; 4+ ...+ A; 1+ Aii1 + ... + A, the annihilator of A;. If BA; = A;, then
A; C B. Therefore, B is the direct sum of the A; such that BA; = A;, and in particular,
B? = B. Thus, the only solvable characteristic ideal of A is 0. Hence, A is characteristic

semisimple. O
For any ideal I of a Leibniz algebra A, recall by Lemma 3, I + 6(1) is an ideal of A.

Theorem 5. Let A be a Leibniz algebra over a field F, and let I be a solvable ideal of
A of derived length n. Then the ideal I + 6(1) is solvable and its derived length is < 2n

in the following cases:
1. char(F) =0
2. char(F) > 2"

Proof. 1f char(F) = 2, then 2 > 2™ implies n = 0, and hence, I = 0.
So assume char(F) = 0 or char(F) =p > 2.
Let J =1+4(1).

JUV = 2= T +6)I + (1) =1*+15(1) + 6(I)I + 5(1)s(I)
CI+6(I)d(1).
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Let z,y € I. Then zy € I? = I,
Note: $(6%(zy) — 6*(z)y — 26%(y)) € 6*(I) + I. And by Lemma 4,

P = (3 )@+ ()i + (5)

— 28%(y) + 26(2)3(y) + 6*(x)y.
Thus,

%(52(:@) — 8% (x)y — 20%(y)) = = (x0%(y) + 26(x)d(y) + 6*(x)y — 6*(x)y — 26°(y))

= 5(20(z)0(y)) = 0(x)d(y).

N =N =

Hence, 6(z)0(y) € 82(IMW) + I for all z,y € I.

Therefore, §(1)3(I) € 62(IM) + I, which implies J® C 62" (1M) + 1.
Assume J*D C 62 (1E-D) 4 T for k > 2.

This implies

J(k) — J(k*l)J(k*l) C (52k—1 (I(kfl)) + I)((52k_l(f(k71)) 1 ].)
=02 (102 (1) 4 g2 (1) T+ 167 (10 4 1P
C o2 (%) g2 T (IR 4T

By a result from combinatorics, an odd prime number p does not divide the binomial

coefficients (f), (222), cee (272:1) if and only if p > 2".

Thus, p does not divide the binomial coefficients (2,3:) So, by Lemma 6,
¥ (1D (10 € 62 (1 W) 4 1.

This implies J® C §2"(I®)) 4+ I for all k > 1. Thus, when k = n =derived length of I,

we have

JW C 6 (I™) 4+ T =6%"(0)4+1=1.
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But, J™ C I implies J®» C I™ = 0. Hence, J = I + §(I) is a solvable ideal of derived
length < 2n. O

Theorem 6. The radical of a Leibniz algebra A, denoted Rad(A), is a characteristic

ideal of A in the following cases:
1. char(F) =0
2. char(F) > 2"

Proof. Let § €Der(A), and assume the characteristic of the field meets the above criteria.
Rad(A) an ideal implies by Lemma 3 that Rad(A) + 6(Rad(A)) is an ideal. Rad(A) is a
solvable ideal so, by Theorem 5, the ideal Rad(A) + d(Rad(A)) is a solvable ideal. Thus,
Rad(A) + §(Rad(A)) CRad(A); and hence, §(Rad(A)) CRad(A) for every § €Der(A).
Therefore, Rad(A) is characteristic. O

Thus, if the field has characteristic 0 or if char(F) > 2™ where n is the derived length
of Rad(A), then the c-radical is equal to the radical of a Leibniz algebra A. It is unknown
whether the radical is a characteristic ideal for other characteristics of the ground field.
George Seligman [19] provides an example of a Lie algebra that has a radical which is
not characteristic when the field has prime characteristic > 2. Since all Lie algebras are
Leibniz algebras we can use this example to show that the radical of a Leibniz algebra is

not always a characteristic ideal.

4.3 Invariance of Nilpotent Ideals

Recall a Leibniz algebra A is nilpotent if A¥ = 0 for some k > 0 such that A¥! £ (.
The sum of nilpotent ideals of a Leibniz algebra is nilpotent. Hence, the sum of nilpotent

characteristic ideals is a nilpotent characteristic ideal of A.
Definition 6. The nilradical of A is the maximal nilpotent characteristic ideal of A.
Theorem 7. Every proper ideal in a characteristic simple Leibniz algebra A is nilpotent.

Proof. Let I be a nonzero, proper ideal of A. Let 6 : A — A be any derivation of A.

Since [ is an ideal of A, it is a left ideal and a right ideal. Hence,

S(IY)y =8(I1*) CS(NI+I6(1) C Al +TACI.
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Assume 6(7%) C I*1. Then

S(I*TYY = §(I-1%) C o(I)I* + I5(1%)
CA-IN+ 1.1t CI~

Therefore, by induction, §(I%*t1) C I¥ for all k € Z". Since the lower central series is a

descending chain of ideals, I™+! = ™ for some m € Z". This implies

S(I™) = §(r™+tty c rm.
Hence, I™ is a characteristic ideal. But, A is characteristic semisimple and [ is a proper
ideal, so I™ = 0. Therefore, I is nilpotent. O]

Theorem 8. Let I be a nilpotent ideal of nilpotency class n of a Leibniz algebra A over
a field of characteristic 0 or characteristic p > n+ 1, and let 6 € Der(A). Then I + (1)

is a nilpotent ideal of the Leibniz algebra A of nilpotency class at most w + 2n.

Proof. Let k=" _, fo(m). Using Lemma 11, we can show that

I-6(1)---6(I)

k
=1-6(1)---6(1)-0(1)---56(1)---8(I)---5(I)

fal1) fa(2) faln)
=1-8(I)---0(I)-6(I)---0(I)---6(I)---6(I) CI" =0

By Lemma 9, (I + 6(1))k 1 = (I + §(1))"T1)* C (I)* = 0, since k > n + 1. Recall:
fn(1) = n+ 1. Therefore, the ideal I+ () is nilpotent of nilpotency class at most k + n.
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Direct calculation yields:

k‘+n:n+2m(n+1)—

2
m=1 m=1
n 1 n n n

=n+(n+1 m— — m? + m — 2 1

Py mogli i m i
B nn+1)* 1nnh+1)2n+1) n(n+1)
=n+ ) 5[ 6 5 2n]
o n(n+1)6(2n—|—1)

]

Theorem 9. Let A be a Leibniz algebra over a field F, let 6 €Der(A), and let N(L) be

the nilradical of A with nilpotency class n. N(L) is characteristic in the following cases:
e char(F)=0
o char(F)=p>n+1.

Proof. N(L) is a nilpotent ideal, so when the conditions on the characteristic of the field
are met, by Theorem 8, N(L)+d(N(L)) is a nilpotent ideal for any derivation § €Der(A).
Therefore, N(L) + 0(N(L)) € N(L); and thus, 6(N(L)) C N(L).

Hence, N(L) is a characteristic ideal of A. O

39



Chapter 5
Complete Leibniz Algebras

A Lie algebra L is called complete if it has a trivial center and if all derivations are left
multiplications. Here we present a definition of complete Leibniz algebras that agrees

with the theory of complete Lie algebras when we consider A/Leib(A).

Definition 7. Let A be a Leibniz algebra. A is complete if the following conditions hold:
o 7!(A) =Leib(A)
e For every § €Der(A) there is an element a5 € A such that im(d — L,,) CLeib(A)
e There is some 6 €Der(A) such that im(§) ZLeib(A).

Recall that when Leib(A) = 0, A is a Lie algebra. So the first condition guarantees
Z(A) =0 when A is a Lie algebra, the second condition is equivalent to im(d) =im(L,;)
when A is a Lie algebra, and the final condition guarantees the existence of a nontrivial

derivation of A when A is a Lie algebra.

Example 5.0.1. Let A be a complete Leibniz algebra. Then for every 6 €Der(A) there
is an a € A such that §(b)—L,(b) €Leib(A) for every b € A. Let b €Leib(4) C A.
Then §(b)—L,(b) €Leib(A), which implies 6(b) — ab €Leib(A). But, ab €Leib(A) since
Leib(A) is an ideal. Hence, 6(b) €Leib(A) for every 6 €Der(A) and for every b € Leib(A).

Therefore, when A is a complete Leibniz algebra, Leib(A) is a characteristic ideal.

Theorem 10. Let A be a Leibniz algebra such that Leib(A) is a characteristic ideal. If
A/Leib(A) is a complete Lie algebra, then A is a complete Leibniz algebra.
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Proof. Let A be a Leibniz algebra such that Leib(A) is a characteristic ideal, and
assume A/Leib(A) is a complete Lie algebra. Let 6 €Der(A). Since Leib(A) is invariant
under derivations, § induces a derivation § €Der(A/Leib(A)) defined by 6(a+Leib(A)) =
§(a)+Leib(A) for every a € A. Since A/Leib(A) is a complete Lie algebra, § = Lz for
some T € A/Leib(A) such that T = z+Leib(A) for some z € A. This implies

§(b) + Leib(A) = §(b + Leib(A))
Lz(b + Leib(A)) = Lz(b) + Leib(A) = L,(b) + Leib(A).

Therefore, 6(b) — L,(b) €Leib(A) for every b € A. Thus, A is complete.

Recall, all semisimple Lie algebras are complete [14].
Corollary 3. All semisimple Leibniz algebras are complete.

Proof. Let A be a semisimple Leibniz algebra. Then

where S; is a simple Lie algebra for all 1 <4 < k. This implies Leib(A4) = Z!(A), which

is a characteristic ideal. Since

is a semisimple Lie algebra, A/Leib(A) is a complete Lie algebra. Thus, by Theorem 10,
A is a complete Leibniz algebra. O]

Example 5.0.2. Let A be an n-dimensional nilpotent Leibniz algebra. By Corollary 1,
Der(A) =span{dy, da, . .., d, }, where

e 0i(a')=da for1<i<n
o fp(a)y=a™Vifi+k—1<mnand §(a")=0ifi+k—1>nfor 1 <k<n.

Thus, im(d;) CLeib(A) for 1 < k < n. But there is not an element b € A such that
d1(a) — Ly(a) €Leib(A) for all @ € A. Therefore, A is not complete.
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Example 5.0.3. Let A be an n-dimensional nonnilpotent Leibniz algebra. By Corollary
2, Der(A) =span{dy, da, ..., 0,1}, where

e 01(a")=a for 1 <i<n-—1, (") = Z?;l bjal ™
o Jp(a)=0F(a)for 1<i<mand 1 <k <n-—1.
Thus, im(d;) CLeib(A) for 1 <k <n — 1. Hence, A is not complete.

By these examples, all cyclic Leibniz algebras are not complete.

5.1 3-Dimensional Nilpotent Leibniz Algebras

Let A be a non-split non-Lie nilpotent Leibniz algebra, A =span{x,y, z}. Then, by
Demir, Misra, and Stitzinger [8], A is isomorphic to one of the following algebras defined
by the given nonzero multiplications. We will define a basis for Z!(A), Leib(A), L(A),
and Der(A) of each algebra to show all 3-dimensional nilpotent Leibniz algebras are not

complete.

Example 5.1.1. 2% = y, 2y = 2.
These nonzero multiplications define a nilpotent cyclic Leibniz algebra. Thus, Leib(A) =
Z'(A) =span{y, z}, and by Corollary 1, Der(A) =span{di, da, 63} where

e §(x) =x,01(y) =2y,0(2) = 32
e 5(x) =y,02(y) = 2,02(2) =0
o 03(z) =2,05(y) =0,05(2) =0

We can write L(A)=span{L,} =span{ds}. Thus, im(dy — L,) = 0 CLeib(A), and im(d5 —
Ly) CLeib(A); but there is not an element b € A such that §,(a) — Ly(a) €Leib(A) for
all a € A. Therefore, A is not complete.

Example 5.1.2. 22 = 2

By definition of the nonzero multiplications L(A) =span{L,} and Z'(A)=span{y, z}. Let
a = 17+ asy+azz. Then a? = (a1 + gy +azz) (T + ey + azz) = a?z, which implies
Leib(A) =span{z} # Z!(A). Hence, A is not complete.
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Example 5.1.3. 22 = z;9? = 2

By definition of the nonzero multiplications L(A) =span{L,, L,} and Z'(A) =span{z}.
Let a = oy« + oy + azz. Then a® = (qz + oy + a32) (a1 + oy + a3z) = a2z + a3z,
which implies Leib(A) =span{z}. Let § €Der(A), and define §(z) = a1 + a2y + asz,
I(y) = bix + boy + b3z, and §(z) = 1o + oy + c3z. We will apply ¢ to the product of
every combination of basis vectors to find a basis for Der(A).

§(z%) = (ayx + agy + a32)x + x(a1x + azy + azz) = 2a12 = 1o + ey + 32 = 0(2).

= ¢1 =0,c0 =0,c3 = 2a;4.

Izy) = (x4 agy + azz)y + x(byx + bay + b3z) = azz + byz = 0.

= b = —as.

dzz) = (a1x + ay + a32)z + x(2a12) =0

d(yx) = (—agx + bay + b3z)x + y(ar1x + agy + azz) = —azz + a220

8(y?) = (—agx + bay + b32)y + y(—asw + boy + b3z) = 2byz = 2a;2 = §(2)

= b=

I(yz) = (—asx + a1y + b32)z + y(2a12) =0

)
I(zz) = (2012)x + 2(a1x + asy + azz) =0
d(zy) = (2a12)y + z(—asx + a1y + b3z) =0
§(2?) = (2a12)z + 2(2a12) = 0
Thus,
a; —as O
Olp=|a a 0

1 00 0 -1 0 0 00 0 00
= a 010 + as 1 0 0 + asg 0 0 0 —|—b3 0 0 0
0 0 2 0O 0 0 1 00 010

Therefore, Der(A) =span{d, ds, 03, d4 }, where
L4 (51<£C> = x751(y) = y7(51<2) =2z
52<I'> = y752<y) = _I762(Z> =0

o 03(x) = 2,05(y) =0,05(2) =0

o 04(x) =0,04(y) = 2,04(2) =0
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We can write L(A)=span{L,,L,} =span{ds,d,}. Thus, im(d3 — L,) = 0 CLeib(A),
and im(d; — L,) = 0 CLeib(A); but there is not an element b € A such that 6;(a) —
Ly(a) €Leib(A) for all a € A. Therefore, A is not complete.

Example 5.1.4. 2y = z;yz = —2;y° = 2

Using techniques similar to those used in Example 5.1.3 we can show

Z'(A) =span{z} =Leib(4), and we can find a basis for the derivation algebra of A.
Der(A) =span{dy, d2, 93,04} where

o 5,(x) = 2,01 (y) =y, 01(2) = 2z
o 0y(x) = 2,05(y) = 0,05(2) = 0
o 03(x) = 0,05(y) = ,05(2) = 0
o 8u(x) = 0,04(y) = 2,04(2) = 0

We can write L(A)=span{L,, L,} =span{ds, d4 — d2} =span{ds, d,}. Hence, there is
not an element b € A such that 6;(a) — Ly(a) €Leib(A) for all @ € A. Therefore, A is not

complete.

Example 5.1.5. 2y = z;yz = az,a € F\ {-1,1}

For all « € F\ {—1,1}, Leib(A) =span{z}. But, when a = 0, Z'(A) =span{y, z}, which
implies A is not complete. So assume « # {—1,0, 1}. Then we can show

Der(A) =span{dy, d2, 93,94} where

o 5y(x) = 2,01 (y) = 0,0,(2) =
o 05(x) = 2,05(y) = 0,6,(2) = 0
o 55(x) = 0,05(y) =y, 63(2) = =
o 8u(x) = 0,04(y) = 2,64(z) = 0

We can write L(A)=span{L,, L,} =span{dy, d2}. Hence, there is not an element b € A
such that 6;(a) — Ly(a) €Leib(A) for all a € A. Therefore, A is not complete.
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5.2 4-Dimensional Nilpotent Leibniz Algebras

Let A be a non-split non-Lie nilpotent Leibniz algebra, A =span{w,x,y, z}. Then, by
Demir, Misra, and Stitzinger [9], A is isomorphic to one of the following algebras defined
by the given nonzero multiplications. We will define a basis for Z!(A), Leib(A), L(A),
and Der(A) of each algebra to determine the completeness of all 4-dimensional nilpotent

Leibniz algebras.

Example 5.2.1. wy = z, yr = 2
We can show Leib(A)=span{z} and Z!(A) =span{z, z}. Hence, Leib(A) # Z'(A), which

implies A is not complete.

Example 5.2.2. wy =z, 2> = 2, 2y = 2, yw = 2, YT = —2
We can show Leib(A) =span{z} = Z'(A), and Der(A) =span{dy, ds, d3, 4, 65 } where

o 5y(w) = w,dy(x) = x,01(y) =y, 01(2) = 2z
o Gy(w) = 2, 85(x) = 0,85(y) = 0,0(2) = 0
o G3(w) = 0,85(x) = w — 22, 05(y) = & — dy, 63(2) = —4z
o 8u(w) = 0,8,(x) = 2,04(y) = 0,04(z) = 0
o 05(w) = 0,85(x) = 0,05(y) = 2,05(z) = 0

We can write L(A)=span{L,, L;, L,} =span{ds, ds + d5, 02 — d4}. Thus, there is not an
element b € A such that im(d; — L;) CLeib(A). Hence, A is not complete.

Example 5.2.3. wr =2, 2w = —z, y> = 2
We can show Z!(A) =span{z} =Leib(A), and Der(A) =span{d, 6, d3, b4, I5, &, 07 } where

o Si(w) =w— 3y, 61 (x) =0,61(y) = =3z + Ly, 61(2) = 2
o Oo(w) =2, 8:(x) = 0,5(y) = 0,55(2) = 0
o 55(w) = z,05(x) = 0,85(y) = 0,85(z) =0
o 54(w) = 0,0,(z) = w,04(y) = 0,04(2) = 0

o 05(w) = —1y,85(z) = 2,85(y) = —3x + 3y, 05(2) = 2
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o Js(w) =0,d(x) = 2,06(y) = 0,06(2) =0
e 0;(w) =0,07(x) =0,07(y) = 2,07(2) =0

We can write L(A)=span{L,, L., L,} =span{ds, Js,d7}. Thus, there is not an element
b € A such that d;(a) — Ly(a) €Leib(A) for all a € A. Therefore, A is not complete.

Example 5.2.4. wr = 2z, 2w = —z, 2% =

2, yP =z
We can show Leib(A) =span{z} = Z'(A), anzcll Der(A) =span{di, 2, d3, 04, 95} where
o 01 (w) =w,01(x) =z, (y) =y,01(2) =2z
o Oy(w) = z,05(x) = 0,02(y) = 0,02(2) =0
o 3(w) =0,03(x) = w,d3(y) =0,03(2) =0
o y(w) =0,04(x) = 2,04(y) =0,04(2) =0
e 5(w) =0,05(x) =0,05(y) = 2,05(2) =0

We can write L(A)=span{L,,, L, L, } =span{d,d4 — 02, 05 }. Thus, there is not an element
b € A such that im(é; — L) CLeib(A). Hence, A is not complete.

Example 5.2.5. wr = z, z7w = az, y* = z, a € C/{-1,1}

For all « € C/{—1,1}, Leib(A) =span{z}, but when a = 0, Z'(A) =span{z, 2}, which
means A is not complete. So assume o € C/{—1,0,1}. Then we can show

Leib(A) =span{z} = Z!(A), and Der(A) =span{dy, ds, 03, d4, 05} where

o 5(w) = w,01(x) = 0.5,(y) = 3y 61(z) = 2
o Gy(w) = 2, 85(x) = 0,85(y) = 0,05(2) = 0
o 03(w) = 0,05(x) = x,05(y) = Ly, 05(2) =
o 0y(w) =0,04(z) = 2,84(y) = 0,84(2) = 0
o 0s(w) = 0,05(z) = 0,85(y) = 2, 85(2) = 0

We can write L(A)=span{L,, L,, L,} =span{ds, ads, d5}. Thus, there is not an element
b € A such that im(d; — L) CLeib(A). Hence, A is not complete.
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Example 5.2.6. w? = z, 22 = 2, y? = 2.

We can show Leib(A) =span{z} = Z!(A), and Der(A) =span{d;,ds,ds,d4, ds, o, 07}

where
o 01 (w) =w,d1(x) =x,01(y) =y,01(2) =22
o S(w) =1x,0(x) = —w,ds(y) = 0,09(2) =0
o 03(w) =y, 03(x) = 0,03(y) = —w, d3(z) =0
o 0y(w) = z,04(x) =0,04(y) =0,04(2) =0
e J5(w) =0,05(x) =y,05(y) = —x,95(z) =0
o Js(w) =0,d(x) = z,06(y) = 0,6(z) =0
e 0;(w) =0,07(w) =0,07(y) = 2,6:(2) =0

We can write L(A)=span{L.,, L,, L,} =span{d,, ds, d7}. Thus, there is not an element
b € A such that im(d; — L) CLeib(A). Hence, A is not complete.

Example 5.2.7. w? =z, wr =y, wy = 2.
These nonzero multiplications define a nilpotent cyclic Leibniz algebra. Thus, Leib(A) =
Z'(A) =span{z,y, 2z}, and by Corollary 1, Der(A) =span{d,, 6, 93,04} where

o 0y(w) = w, 0y (x) = 21,0, (y) = 3y, 6y (2) = 42
o 2(w) = ,02(x) =y, 02(y) = 2,02(2) = 0
o §3(w) =y, 03(x) = 2, 85(y) = 0,05(z) = 0
o 04(w) = 2, 84(x) = 0,84(y) = 0,04(z) = 0

We can write L(A)=span{L, } =span{ds}. Thus, im(ds — L,,) = 0 CLeib(A), but there
is not an element b € A such that d;(a) — Ly(a) €Leib(A) for all @ € A. Therefore, A is

not complete.

Example 5.2.8. w? = z, wx =y, zw = —y.
We can show Leib(A) =span{z}, but Z!(A) =span{y, z}. Hence, A is not complete.

Example 5.2.9. w? = 2z, wr =y, 2w = —y, 22 = 2.
We can show Leib(A) =span{z}, but Z!(A) =span{y, z}. Hence, A is not complete.
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Example 5.2.10. w? = 2, wx = y, 2w = —y, Wy = 2, yw = —2.
We can show Leib(A) =span{z} = Z!(A), and Der(A) =span{di, 02, d3, 4, 95, s} where

o §y(w) = w, 0y (x) = 0,5,(y) = y,61(2) = 22
o Gy(w) = x,05(x) = 0,8,(y) = 0,05(2) = 0
o §3(w) =y, 63(x) = 0,85(y) = 0,05(2) = 0
o §i(w) = 2, 8,(x) = 0,84(y) = 0,6,(2) = 0
o §5(w) = 0,85(x) = 1, 85(y) = 2,05(2) = 0
o Go(w) = 0,86(x) = 2, d6(y) = 0,05(z) = 0

We can write L(A)=span{L,, L., L,} =span{d, + 5, —03, —d,}. Thus, there is not an
element b € A such that im(d; — L) CLeib(A). Hence, A is not complete.

Example 5.2.11. wx =y, 2w = —y, 2> = 2, wy = z, yw = —2.
We can show Leib(A) =span{z} = Z!(A), and Der(A) =span{dy, 03, d3, b4, 95 } where

o 51(w) =w,0,(z) = 22,0, (y) = 3y, 01(2) = 4z
o Gy(w) =y, 65(x) = 0,85(y) = 0,05(2) = 0
o §3(w) = 2, 85(x) = 0,85(y) = 0,65(z) = 0
o §u(w) = 0,8,(x) = 1,04(y) = 2,04(2) = 0
o §5(w) = 0,05(x) = z,85(y) = 0,05(z) = 0

We can write L(A)=span{L,, L;, L,} =span{ds,ds — d, —d3}. Thus, there is not an
element b € A such that im(d; — L) CLeib(A). Hence, A is not complete.

Example 5.2.12. w?> =z wr =y, 2w = —y + 2, wy = 2, yw = —2.
We can show Leib(A) =span{z} = Z'(A), and Der(A) =span{dy, 0z, d3, d4, 95 } where

e 01(w) =x,01(x) =x,0(y) =y,01(2) = 2
o 83(w) = 3,05(x) = 0,62() = 0,55(2) = 0

o J3(w) = z,03(x) = 0,05(y) = 0,035(2) =0
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o Jy(w) =0,04(x) = y,04(y) = 2,04(2) =0
e 05(w) =0,05(z) = 2,05(y) =0,d5(2) =0

We can write L(A)=span{L,,, L., L,} =span{ds + d4, 93 — d2, —d3}. Thus, there is not an
element b € A such that im(d; — L;) CLeib(A). Hence, A is not complete.

Example 5.2.13. wr =y, 2w = —y + 2, 2° = 2, wy = 2, yw = —2.
We can show Leib(A) =span{z} = Z!(A), and Der(A) =span{d;, §2, d3, 94} where

o 5y(w) =y, 61 (x) = 0,81(y) = 0,0,(2) = 0
o 0y(w) = z,05(x) = 0,85(y) = 0, 85(2) = 0
o 53(w) = 0,55(x) =y, 5s(y) = 2,65(2) = 0
o 0i(w) = 0,04(z) = 2, 84(y) = 0,84(2) = 0

We can write L(A)=span{ L., L,, L,} =span{ds, —01+092+04, —d2}. The im(d,) CLeib(A)
and im(d4) CLeib(A). Also, d3 = L,, implies im(d3 — L,,) = 0 CLeib(A). Finally, im(d; +
L,) =im(d; — 1 + 62+ 04) =im(d + d4) CLeib(A). Hence, by linearity, for any § €Der(A)
there exists a b € A such that im(0 — L;) CLeib(A). Therefore, A is complete.

Example 5.2.14. w? =y, wr = 2.
We can show Leib(A) =span{y, 2}, but Z!(A) =span{z,y, z}. Hence, A is not complete.

Example 5.2.15. w? =y, 2w = 2.
We can show Leib(A) =span{y, z} = Z!(A), and Der(A) =span{d;, 62,3, d4, J5, O, 07 }

where
o (51(111) = waél(x) = 0,51(?/) = 2y751(z) =z

o J(w)=1x,6(x) =0,0(y) = 2,02(2) =0

I3(w) =y, 03(z) = 0,03(y) = 0,03(2) =0
o 54(11)) = 2,64(1‘) = O, (54(’y) = 0,(54(2) =0
e 05(w) =0,05(x) = x,05(y) =0,05(2) = 2

o ds(w) =0,0(z) =y,06(y) =0,96(2) =0
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o J7(w) =0,07(x) = 2,07(y) = 0,07(2) =0

We can write L(A)=span{L,, L.} =span{ds, ds}. Thus, there is not an element b € A
such that im(d; — Ly) CLeib(A). Hence, A is not complete.

Example 5.2.16. zw =y, wr = 2, 22 = —y
We can show Z!(A) =span{y, z}=Leib(A), and Der(A) =span{d;, ds, d3, 6, } where

e §1(w) =y,01(z) =0,0,(y) =0,01(2) =0
o Jo(w) = z,05(x) =0,05(y) = 0,02(2) =0
o 53(w) = 0,03(z) =y,d3(y) = 0,03(2) =0
o 54(w) = 0,04(x) = 2,84(y) = 0,04(2) = 0

We can write L(A)=span{L,, L.} =span{d,, d; —d3}. Thus, there is not an element b € A
such that do(a) — Ly(a) €Leib(A) for all a € A. Therefore, A is not complete.

Example 5.2.17. w? =y, 2w = 2.
We can show Leib(A) =span{y, z} = Z!(A), and Der(A) =span{d;, 62,93, d4, J5, O, 07 }

where
o §(w) =w,d1(z) =0,6(y) =2y,5(z) =2
o J(w)=1x,0(x) =0,0(y) = (a+1)z,6(2) =0

e 03(w) =y,03(x) =0,05(y) =0,3(2) =0

dg(w) = z,04(x) = 0,04(y) = 0,04(2) =0

d5(w) = 0,05(x) = x,05(y) = 0,05(2) = 2
e ds(w) =0,0(z) =y,06(y) =0,96(2) =0
e 57(w) =0,07(x) = 2z,07(y) =0,67(2) =0

We can write L(A)=span{L,, L,} =span{ds + 7, ad,s}. Thus, there is not an element
b € A such that im(é; — L) CLeib(A). Hence, A is not complete.

Example 5.2.18. w? =y, 2w = 2z, wr = —ay, 2’ = —z, « € F
We can show Z'(A) =span{y, 2} =Leib(A), and Der(A)=span{d;, ds, d3, 4, 95 } where
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o 5y(w) = w, 0, (x) =z, 81(y) = 2y, 61 (2) = 22
o Gy(w) =y, 65(x) = 0,85(y) = 0,05(2) = 0
o §3(w) = 2, 85(x) = 0,85(y) = 0,03(z) = 0
o §i(w) = 0,8,(x) =y, 84(y) = 0,04(2) = 0
o §5(w) = 0,05(x) = z,05(y) = 0,05(z) = 0

We can write L(A)=span{L,,, L.} =span{ds —ady, 05 —d5}. Thus, there is not an element
b € A such that 0;(a) — Ly(a) €Leib(A) for all a € A. Therefore, A is not complete.

Example 5.2.19. w? =y, wr =y, 2w =y + 2, 2% = 2.
We can show Leib(A) =span{y, 2} = Z!(A), and Der(A) =span{dy, 02, d3, d4, d5, 06 } where

o 51(w) =w,0(z) = 2,01 (y) = 2y, 01(2) = 22
o Gy(w) = x,05(x) = 22, 8(y) = 2y + 2, 02(2) = 22
o §3(w) =y, 63(x) = 0,85(y) = 0,05(z) = 0
o §u(w) = z,8,(x) = 0,84(y) = 0,64(2) = 0
o §5(w) = 0,85(x) =, 85(y) = 0,05(2) = 0
o Go(w) = 0,86(x) = 2, d6(y) = 0,05(z) = 0

We can write L(A)=span{L,, L,} =span{ds + 05,03 + 04 + 0¢}. Thus, there is not an
element b € A such that im(d; — L) CLeib(A). Hence, A is not complete.

Example 5.2.20. wzr =y, wy = z.
We can show Leib(A) =span{y, 2z}, but Z!(A) =span{z,y, z}. Hence, A is not complete.

Example 5.2.21. wz =y, 2° = 2, wy = 2.
We can show Leib(A) =span{y, 2} = Z'(A), and Der(A) =span{dy, ds, d3, 64} where

e 01 (w) =w,d1(x) =2x,0:(y) = 3y, 01(2) = 4z
o Jo(w) = z,00(x) =0,02(y) =0,d2(2) =0

e i3(w) =0,03(x) = y,05(y) = 2,03(2) =0
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o Jy(w) =0,04(x) = 2,04(y) = 0,04(2) =0

We can write L(A)=span{L,, L,} =span{ds, ds}. Thus, there is not an element b € A
such that im(§; — L) CLeib(A). Hence, A is not complete.

Example 5.2.22. wx =y, zw = z, wy = Z.
We can show Leib(A) =span{y, 2} = Z'(A), and Der(A) =span{dy, ds, d3, 6, } where

o §y(w) = z,81(x) = 0,8,(y) = 0,6,(2) = 0
o Gy(w) = 0,05(x) = 2, 05(y) = 1, 05(2) = 2
o §3(w) = 0,85(x) = 1, 85(y) = 2,05(2) = 0
o §i(w) = 0,8,(x) = 2,04(y) = 0,04(2) = 0

We can write L(A)=span{L,, L,} =span{ds,d;}. Thus, there is not an element b € A
such that im(dy — L) CLeib(A). Hence, A is not complete.

Example 5.2.23. wx =y, 2w = z, 2% = 2z, wy = 2.

We can show Leib(A) =span{y, 2} = Z'(A), and Der(A) =span{di, da, 43} where
o §(w)=2z0(x)=0,0(y) =00(z) =0
o Jr(w) =0,0(z) =y,02(y) = 2,02(2) =0
e 03(w) =0,03(z) = z,05(y) =0,d3(2) =0
Therefore, every derivation of A has an image in Leib(A). Hence, A is not complete.

Example 5.2.24. w? =y, 2w = 2z, wy = 2
We can show Z!(A) =span{y, 2} =Leib(A), and Der(A) =span{dy, dz, I3, 04, d5} where

e 01 (w) =w,d1(x) =2x,0:(y) = 2y,0:(2) = 32

o Jr(w) =x,02(x) =0,0(y) = 2,02(2) =0

I3(w) =y, 03(x) = 0,03(y) = 2,03(2) =0

da(w) = z,04(x) = 0,04(y) = 0,04(2) =0

o J5(w) =0,05(x) = 2,05(y) = 0,05(2) =0
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We can write L(A)=span{L,, L,} =span{ds,d,}. Thus, there is not an element b € A
such that d;(a) — Ly(a) €Leib(A) for all a € A. Therefore, A is not complete.

Example 5.2.25. w? =y, 22 = 2, wy = 2
We can show Z!(A) =span{y, z}=Leib(A), and Der(A) =span{dy, ds, d3, 6, } where

o 0y(w) = w, 0 (z) = 3z, 6,(y) = 2,01 (2) = 32
o Gy(w) =y, 0x(x) = 0,85(y) = 2,05(2) = 0
o §3(w) = 2, 85(x) = 0,85(y) = 0,05(z) = 0
o 8u(w) = 0,8,(x) = 2,84(y) = 0,04() = 0.

We can write L(A)=span{ L, L,} =span{ds, ds}. Thus, there is not an element b € A
such that 6;(a) — Ly(a) €Leib(A) for all a € A. Therefore, A is not complete.

Jacobson provides a proof in [10] that all nilpotent Lie algebras have an outer deriva-
tion; and hence, all nilpotent Lie algebras are not complete. By Example 5.2.13, nilpotent
Leibniz algebras can be complete. It is also important to note that when we consider
A/Leib(A), for A as defined in Example 5.2.13, we get the 3-dimensional Heisenberg Lie
algebra which is not complete. Therefore, when A is a complete Leibniz algebra, the Lie

algebra A/Leib(A) is not necessarily complete.

5.3 3-Dimensional Solvable Leibniz Algebras

Let A be a non-split non-Lie non-nilpotent Leibniz algebra, A =span{z,y, z}. Then A is
solvable, and by Demir, Misra, and Stitzinger [8], A is isomorphic to one of the following
algebras defined by the given nonzero multiplications. We will define a basis for Z!(A),
Leib(A), L(A), and Der(A) of each algebra to show 3-dimensional non-nilpotent Leibniz

algebras can be either complete or not complete.

Example 5.3.1. 2z =z
We can show Z!(A)=span{y, 2} and Leib(A) =span{z}. Hence, A is not complete.

Example 5.3.2. 2z = az,a € F\ {0},zy = y,yx = —y
We can show Z!(A)=span{z}=Leib(A), and Der(A) =span{dy, da, 63} where
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e 01(z) =y,d1(y) =0,61(2) =0
o dao(x) = 0,02(y) =y,02(2) =0
e J3(x) =0,03(y) =0,03(2) = 2

We can write L(A)=span{L,,L,} =span{ds + ads, —01}. Thus, im(é; — L_,) =
0 CLeib(A), im(d2 — L,) CLeib(A), and im(d3 — Ly) CLeib(A). Therefore, A is com-
plete.

Example 5.3.3. 2y = y;yr = —y; 2% = 2
We can show Z!(A)=span{z}=Leib(A), and Der(A) =span{di, ds, 63} where

e di(z) =y,01(y) = 0,01(2) = 0
o 5y(x) = 2,05(y) = 0,02(2) =0
e 03(z) =0,03(y) =y,93(2) =0

We can write L(A)=span{L,, L,} =span{d, + 63, —d, }. Thus,
im(d; — L_,) = 0 CLeib(A), im(d2 — Lo) CLeib(A), and im(d3 — L,) CLeib(A).

Therefore, A is complete.

Example 5.3.4. vz = 22;,y> = 2,2y = y;yx = —y; 02 = 2
We can show Z!(A)=span{z}=Leib(A), and Der(A) =span{d;, J,} where

o o1 (x) =y, 01(y) = —2,01(2) =0
o 0o(x) = 2,00(y) =y, 09(2) = 22

We can write L(A)=span{L,, L,} =span{ds, —d; }. Thus, im(6; —L_,) = 0 CLeib(A),
and im(dy — L,) = 0 CLeib(A). Therefore, A is complete.

Example 5.3.5. 7z = az,a € F\ {0}, zy =y
We can show Z!(A)=span{y, z}=Leib(A), and Der(A) =span{di, ds, d3, 6, } where

° 51<$> = 0,(51(3/) = y,§1(2) =0
o Oo(z) =0,00(y) = 2,09(2) =0

e 03(z) =0,05(y) =0,d3(2) =y
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1 64(55) = 0754(y) = 0,(54(2) =z
There is not a § €Der(A) whose image is not in Leib(A). Therefore, A is not complete.

Example 5.3.6. 2z =z +y;2y =y
We can show Z!'(A)=span{y, z}=Leib(A), and Der(A) =span{d;, d,} where

o 01(2) =0,01(y) =y, 01(2) =
o (52(3:) = 0762<y) = 0752(2) =Y
There is not a 6 €Der(A) whose image is not in Leib(A). Therefore, A is not complete.

Example 5.3.7. 22 = y;2y = y;2° = 2
We can show Z!(A)=span{y, z}=Leib(A), and Der(A) =span{di, ds, 63} where

e 01(7) =y,01(y) =0,61(2) =y
o 0o(z) =12,00(y) =0,02(2) =y
e J3(x) =0,05(y) = y,03(2) = 2

There is not a 6 €Der(A) whose image is not in Leib(A). Therefore, A is not complete.

5.4 The Holomorph of a Leibniz Algebra

Meng [14] provides the following definition for the holomorph h(L) of a Lie algebra L.
Let L be a Lie algebra, then h(L) = L+Der(L), where the bracket in h(L) is defined by
[z + 01,y + 0] = [z, y] + 01(y) — 2(x) + [01, 03], where z,y € L and §;, 5, €Der(L). But,

[, 02)(y) = (202 — o) (y) = 262(y) — d2(y)
= 205(y) — d2(2)y — 202(y) = —da(x)y

by properties of the commutator bracket. Therefore, we need to show how elements from
a Leibniz algebra will interact with elements of the derivation algebra before we can

define the holomorph of a Leibniz algebra.

%)



Example 5.4.1. Let A be a Leibniz algebra. Let x € A and let § €Der(A). Der(A) is a

Lie algebra with the commutator bracket, so for any z € A,

=20(z) — d(zz) = 2d(z) — 0(x)z — x0(2) = —6(x)z.
Thus, [L,, 0] = —d(x).
Example 5.4.2. Let A be a Leibniz algebra. Let x,y, z € A.
Lay(2) = (zy)z = 2(yz) — y(22) = La(Ly(2)) — Ly(La(2))
= (LyLy — LyLy)(2) = [La, Ly](2).
Therefore, L,, = [L,, L,].

Example 5.4.3. Let A be a Leibniz algebra. Let x € A and let 6 €Der(A). Then
d(z) € A, and for any z € A we have:

Ls@)(2) = 6(x)z = 0(z2) — 26(2) = 6(La(2)) — La(6(2))
= (0L, — L;0)(z) = [9, L] (2).
Thus, L(g(z) = [(5, Lx]
Now we are ready to provide a definition for the holomorph of a Leibniz algebra.

Definition 8. Let A be a Leibniz algebra. The holomorph of A is h(A) = A+4Der(A)
with the product defined by (z+401)(y+02) = xy+01(y) + [La, 2] +[01, 62 for all z,y € A
and (51, (52 EDGY(A).

By Example 5.4.1, this definition for the product in h(A) is equivalent to
(@ +01)(y + 02) = 2y + 01(y) — d2(x) + [d1, b2].

Proposition 1. The holomorph of a Leibniz algebra A is a Leibniz algebra.

Proof. Let x,y,z € A and let 01, 02,3 €Der(A). We need to show multiplication in h(A)
satisfies the Leibniz identity:

(@ 4 01)((y + 02)(z + 03)) = ((x + 61)(y + 02)) (2 + 03) + (y + 02)((x + 1) (2 + F3)).
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The left hand side of the Leibniz identity expands as follows:

(z +01)((y + d2)(2 + 03))
= (2 4 61)(yz + 02(2) + [Ly, 03] + [d2, 05])
= x(yz + 62(2)) + 61(yz + 2(2)) + [La, [Ly, 03] + [02, 03] + [61, [Ly, 03] + [J2, 03]
= x(yz) + z05(2) + 61(yz) + 01(02(2)) + [La, [Ly, 65]] + [La, [02, 05]] + [01, [Ly, 05]]
Y Y v T 1 Y Y Y
+ [d1, [02, d3] -
——

8

The right hand side of the Leibniz identity expands as follows:

((z 4+ 01)(y + 62)) (= + d3) + (y + 62)((z + 61)(2 + 03))
= (zy + 01(y) + [La, 02] + [61,02]) (2 + 03) + (y + d2) (22 + 61(2) + [La, 03] + [01,63])
= (zy + 01(y))z + ([La, 02] + [01,02])(2) + [Luyte1(y), 93] + [[La 02] + (01, 2], 03]
+y(zz+61(2)) + da(xz + 01(2)) + [Ly, [ L, 03] + [01, 03]] + [02, [La, 03] + [01, 03]
= (zy)z + 01(y)z + [La, 62](2) + [01,02)(2) + [Lay, 05)(2) + [Lsy(y), 03] + [[La, 62], 03]
+ [[61, 2], 05] + y(xz) + ydi(z) + d2(x2) + 62(61(2)) + [Lya[meSSH [Ly, [61, 65]]
+ [02, [La, 65]] + (62, [01, J5]]
= (zy)z + y(x2) + [La, 02)(2) + d2(x2) + 61(y)z + yd1(2) + [01, 0] (2) + 62(61(2))

~ ~~ ~ ~

1 2 3 4

+ [Lay, 0] + [Ly, [La, 63]] + [[ Lz, 0], 03] + [02, (L, 3]] + [y ), 03] + [Ly, [01, 55]]

Vv VT
6

7

5
+\[[517 2], 03] + [O2, [01, 53]1
kS

1. z(yz) = (zy)z + y(zz) by the Leibniz identity.

2. [Ly,09)(2) + 02(x2) = —da(x)z + da(x2) = —do(x) + da(x)z + xd2(2) = xd9(2) by
Example 5.4.1 and the derivation property.

3. 81(yz) = 01(y)z + yd1(2) by the derivation property.

4. [01,02)(2)+02(01(2)) = (0102—0201)(2)+02(01(2)) = 01(d2(2)) —02(01(2)) +02(d1(2)) =
01(d2(z)) by properties of the Lie bracket.
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5. [Lay, 03] +[Ly, [La, 03] = [[Lx, Ly], 03]+ [Ly, [Ls, 03]] = [Lu, [Ly, 93]] by Example 5.4.2
and the Jacobi identity.

6. [Ly, [02,03]] = [[Ls, 2], 03] + [02, [Lz, d3]] by the Jacobi identity.

7. [L§1 (53] [ i [51, (53]] = [[(51, Ly], 53] + [Ly, [(51, 53]] = [(51, [Ly, 53]] by Example 5.4.3
and the Jacobi identity.

8. [01,[d2, 03] = [[01, b2, 03] + [d2, [01, d3]] by the Jacobi identity.
Thus, the Leibniz identity holds, and h(A) is a Leibniz algebra. O

Example 5.4.4. Let x + 9 € h(A) and let y € A. Then (z 4 J)(y) = 2y + d(y) € A.
Thus, A is a left ideal of h(A).

Example 5.4.5. Let  +§ € h(A) and let y € A. Then y(z + 6) = yz — Ls) € h(A).
Thus, A is not a right ideal of h(A); and hence, A is not an ideal of h(A).

Definition 9. Let A be a Leibniz algebra and let B be a subalgebra of A. The left
centralizer of B in A is the set C4(B) = {x € A|L,(y) =0 for all y € B}.

Example 5.4.6. Let A be a Leibniz algebra, and let = € C}L(A)(A) Then = € h(A)
implies * = a + 0 for some a € A and § €Der(A). And z € C’;L(A)(A) implies L,(y) = 0
for all y € A. Thus,

La(y) = Lays(y) = (a +0)(y) = ay + 0(y) =
Therefore, d(y) = —ay, which implies 0(y) = —L,(y). Therefore, the left centralizer of A
in h(A) is C’,ll(A)(A) ={a— L,Ja € A}.

Example 5.4.7. Let A be a Leibniz algebra. Let x € h(A), and let y € C,IZ(A) (A). Then
x=a+0 and y = b— L for some a,b € A and 0; €Der(A). Consider

xy = (a+01)(b— ) =ab+01(b) — L_p,(a) + [61, —Ls)
=ab+ 01(b) + — [61, L) = ab + 61(b) + [Ls, La] — Ls, )
—ab+ 6, (b) — [La, L) — Ls, ) = ab + 61(b) — Lay — Ls, o)
=ab+61(b) — Lapts,v) € Cl

Thus, C}IZ(A)(A) is a left ideal of h(A).
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Example 5.4.8. Let A be a Leibniz algebra, and let z € h(A). Then x = a + § for some
a € Aand 0 €Der(A). If y € A, then L,(y) = Lars(y) = (a+0)(y) = ay + 0(y) € A.
Therefore, L,|4 €Der(A) for all x € h(A).

Example 5.4.9. Let A be a complete Leibniz algebra, and let x € h(A). Then z = a+ 9
for some a € A and 0 €Der(A). If y € A/Leib(A), then y = b+Leib(A) for some b € A.
Then

L,(y) = Lq+s(b+ Leib(A)) = ab + aLeib(A) + 6(b + Leib(A))
= ab+ d(b) + Leib(A) € A/Leib(A),

since A complete implies Leib(A) is a characteristic ideal. Therefore,
Ly|ajrein(ay €Der(A/Leib(A)) for all x € h(A).

Lemma 13. For any Leibniz algebra A, AN C,ZZ(A)(A) =Z'(A).

Proof. Let A be a Leibniz algebra, and let a € AN C}L(A)(A). a € C,ZI(A)(A) implies
a =x — L, for some x € A. But x — L, € A implies L, = 0. Thus, L,(b) = 0 for
every b € A, which implies x € Z'(A). Therefore, a = z — L, = x € Z'(A) for every
ac AN CZ(A)(A). Hence, AN C,lz(A)(A) = Z'(A). O

Meng proved in ?? that L is a complete Lie algebra if and only if h(L) has the
decomposition h(L) = L @ Cy(r)(L). We have just shown that for any Leibniz algebra
A, ANCyay(A) = Z'(A). When A is a complete Leibniz algebra Z'(A) =Leib(A), so
we know that the decomposition of the holomorph into A & Cj(4)(A) is not possible. We

modify Meng’s result for Lie algebras to prove the following theorem.

Theorem 11. Let A be a complete Leibniz algebra. Then h(A) = A + (C}{L(A)(A) &),
where I = {0 €Der(A)|im(d) CLeib(A)}.

Proof. By definition A + (C,Q(A)(A) ®I) Ch(A). Let a+ 6 € h(A). Since A is complete,
im(d — L,) CLeib(A) for some b € A. This implies 6 — Ly, € I. Therefore,

a+6=a+b—(b—Ly)+ (6 — L) € A+ Cj 4 (A) + 1,
which implies h(A) C A + C’,ll(A)(A) + 1. Assume 0 € CL(A)(A) NnI.o¢ C'}’L(A) (A) implies

d(a) =0 for all @ € A. But this implies, § = 0. Thus, C’;L(A)(A) NI ={0}.
Hence, h(A) = A+ (C}ll(A)(A) ®1I). O
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By Theorem 11,

dim(h(A)) = dim(A U (Cj4(A) U T))

) ( ) UT) —dim(AN (Clay(A) UT))

= dim(A) + dim(Cj, 4 (A)) + dim(I) — dim[(A N C} 4y (4)) U (AN )]
) ( )) + dim(7)

— [dim(A N Ch4y(A)) + dim(A N 1) = dim((A N Chx)(A)) N (ANT))].

By Lemma 13, AN C}I(A)(A) = Z!(A), and when A is complete Z!(A) =Leib(A).
Also, AN I = {0}, since ANDer(A) = {0}. Thus,

dim(h(A)) = dim(A) + dim(C}, 4)(A)) + dim(I) — dim(Leib(A))
= dim(A/Leib(A)) + dim(C’,ll(A)(A)) + dim(7).

And, if A is a Lie Algebra, this implies dim(h(A)) =dim(A)+dim(Cja)(A)). And since
Leib(A) = 0 when A is a Lie algebra, A N Cxa)(A) = 0. Thus, h(A) = A @ Cypa(A),
agreeing with Meng’s result. Meng also proved in his paper that a Lie algebra L is
complete if and only if (L) has the decomposition h(L) = L @ Cyr)(L). However, as
shown in the following example, the decomposition of the holomorph to h(A) = A +
(C’,IL(A)(A) @ I) does not imply that A is a complete Leibniz algebra.

Example 5.4.10. Let A be the 3-dimensional cyclic Leibniz algebra with basis {a, a?, a®}
and with the multiplication a - a®> = a®. Recall Leib(A) = A? =span{a?,a*}. And by
Corollary 2, Der(A) =span{dy,d,} with d;(a) = a?,6,(a?) = a?,d,(a®) = a® and d(a) =
a®,0:(a?) = a®,65(a®) = a3. Therefore, the image of all derivations of A are contained in
Leib(A), which means Der(A) = I. We can also show that C’;L(A)(A) =span{a® a*,a—L,};
hence C’,’l(A) (A)NI = {0}. Thus, h(A) = A+Der(A) = A—l—(C}lL(A)(A)@I), but by Example

A is not complete.
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Chapter 6
Semicomplete Leibniz Algebras

In this section we introduce the notion of semicompleteness for Leibniz algebras.

Definition 10. A derivation ¢ of a Leibniz algebra A is called an ID-derivation if its
image is contained in the derived algebra of A. ID(A) is the set of all ID-derivations of
A.

A Lie algebra L is called semicomplete if all ID-derivations are left multiplications.
Given a Leibniz algebra A, to guarantee A/Leib(A) is a semicomplete Lie algebra we need
the image of all ID-derivations A to differ from a left multiplication of A by Leib(A).

Definition 11. A Leibniz algebra A is called semicomplete if for every 6 €ID(A) there
is an a € A such that 6(b)—L,(b) €Leib(A) for every b € A.

We have the containment L(A) C ID(A) C Der(A) for all Leibniz algebras. Therefore,

all complete Leibniz algebras are semicomplete.
Proposition 2. If A% =Leib(A), then A is semicomplete.

Proof. Let A be a Leibniz algebra such that A% =Leib(A). Let 6 €ID(A).
Then 6(a) €Leib(A) for all a € A.
Thus, d(a) — Lo(a) €Leib(A), and A is semicomplete. O

Recall from Chapter 3 that when A is a cyclic Leibniz algebra, A? =Leib(A). Thus,

all cyclic Leibniz algebras are semicomplete.

Proposition 3. Let A =1 & J be the direct sum of two ideals I and J.

If A is semicomplete, then both I and J are semicomplete.
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Proof. Let A=1& J, and let A be semicomplete.

Let § €ID(I), and consider the linear map & : A — A defined by

0(i+ j) =6(i), for alli € I and j € J.

Then 6((iy + j1)(ia + j2)) = 0(ivia + jija) = d(iria) = 6(i1)iz + i10(i2)

= 0(i1 + j1)(i2 + j2) + (i1 + j1)d(i2 + ja).

Thus, § is a derivation of A.

Also, since § € ID(I) and A? = I* @ J?, this implies

0(i+j)=06()eI>C A% forallic [andj€ J.

Thus, 6 € ID(A), which implies § €L(A), since A is semicomplete.

Therefore, there exist i € I and j € J such that § = L;, ;.

Hence, for all x € [ and y € J, d(z +y) = 6(z) = Li;(z) = Li(z) + L;(x) € I*.

Thus, d(x) = L;(x), which implies § = L; €L(I).

Therefore, since § €Der(A) was arbitrary, I is semicomplete.

Similarly, if we define a linear map @: A — A by a(i+j) =4d(j) foralli € I, j € J, and
d € ID(J), then we can show J is semicomplete. O

Example 6.0.1. A = sl, ® C? =span{e, f, h, e, e}

Recall the multiplications: ef = h, fe = —h, he = 2e,eh = —2e, hf = —2f,

fh=2fee; =0,e1e =0,e0e =0,ee5 = €1, fe; = ea,e1f =0, fea =0,eaf =0, he; = e,
hey = —es,e1h = 0,e0h =0

Let x = aje + asf + ash + ase; + ases and y = bie + by f + bsh + byeq + bses.

This implies xy = —2a1bse + 2asbs3 f + (a1by — asby)h + a1bseq + agbyes.

Thus, A? =span{e, f, h,e1,e2} = A; and hence, all derivations are ID-derivations.

Also, Leib(A) = C2.

Since multiplication on the left by Leib(A) is zero, L(A) =span{L., Ly, Ly }.

Let § €Der(A), and define:

d(e) = are + aof + ash + ase; + ases,

O(f) = bre+ baf + bsh + byeq + bses,

d(h) = cre + cof + csh + cyeq + csea,

d(e1) = die+ dyf + dsh + dye; + dses,

d(e2) = nie + naf + ngh + ngeq + nses.

d(ef) = —2bze — 2a3f + (a1 + ba)h + bsey = cre + cof + csh + cye1 + cse2 = 5(h).

= —2b3 = c1, —2a3 = ¢y, a1 + by = C3, bs = cq,c5 = 0.
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d(fe) = 2bze + 2asf + (—ay — bo)h + ages = —cre — cof — csh — cye; = —6(h)
= a4 =0,¢c4 =0 =Ds.
d(eh) = (—2a; — 2¢c3)e + 2as f + coh = —2a1e — 2asf — 2a3h — 2azeq = —20(e)
— ¢33 =0(a; = —by),as =0,a5 = 0.
d(fh) = —2bje + 2bof — c1h = 2bje + 2by f + 2b3h + 2bseq = 20(f)
— b =0,b, =0.
d(eer) = —2dze + doh + (az + ds)e; =0
= d3=0,dy =0,a3 = —ds.
d(eez) = —2nge + nah + (a1 + nz)eqr — agea = die + dyeq + dses = d(eq)
— —2n3 =dy,ny = 0,a1 + n5 = dy.
d(eze) = 2nze =0
= n3 = 0(d, =0).
d(fer) = —dih + bgey + (by + dy)es = nyje + ngeq + nzeq = 0(eq)
= nq =0, b3 = ny.
Thus,
ap 0  —=2b3 O 0
0 —a; —2a3 O
0] =]as bs 0 0

0 0 dy b3
0 0 —az dy—ay
1 0 00 O 00 0 0 0 00 —2 00
0 —1.00 0 00 -2 0 0 00 0 00O
=a; {0 0 00 O |+a]1 0O 0 O Of+0b310 1 0 0O
0 0 00 O 00 0 O 00 0 01
0 0 00 —1 00 -1 0 00 0 00
00 00O
00 00O
+ds |0 0 0 0O
00010
00001

Therefore, Der(A)=span{d, d2, d3,d4} where

[ J (51(6) =€, (51<f) = —f, 51(h) = O, 51(61) = 0, (51(62) = —€3
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[} 52<€> == h,ég(f) == O,ég(h) == —Qf, 52(61) == —62,62(62) =0
[ ] (53(6) = O,ég(f) = h,ég(h) = —26,53(61) = 0,53(62) = €
e d4(e) =0,04(f) =0,04(h) = 0,04(e1) = e1,04(e2) = €3

Now consider each derivation in the basis of Der(A) applied to

T =ae+ CZQf + a3h + aseq + ases.

e (x)— L%(a:) = (me —ayf —asey) — (are — aof + %a461 — %ag,eg)

= —%a4el — %ag,eg €Leib(A).
o 0y(x) — L_y = (mh — 2a3f — ases) — (a1h — 2a3f — ases) = 0 €Leib(A).
e 03(z) — L. = (ash — 2aze + aser) — (agh — 2aze + azey) = 0 €Leib(A).
o 0y(z) — Lo(x) = ase; + ases €Leib(A).

Since there is an element z; € A for each derivation ¢; in the basis for Der(A), such that
di(x) — Ly, (x) €Leib(A), we know that for every § €Der(A) there is an element a € A
such that §(z)—L,(z) €Leib(A) for every x € A. Therefore, A is complete; and thus, A

is semicomplete.

6.1 3-Dimensional Nilpotent Leibniz Algebras

Let A be a non-split non-Lie nilpotent Leibniz algebra, A =span{z,y, z}, with the given
nonzero multiplications. We have shown in section 5.1 that the 3-dimensional nilpotent
Leibniz algebras are not complete. We will find a basis for A? for each algebra to show

that all 3-dimensional nilpotent Leibniz algebras are semicomplete.

Example 6.1.1. 22 =y, 2y = 2.

Let a = anz + ay + asz and let b = fiz + Poy + P3z. Consider ab = (yz + oy +
a3z)(Brz + Boy + P32) = 1By + a1 Bz, Thus, A? =span{y, z}. Recall from Example
5.1.1, Leib(A)=span{y, z}. Since A% =Leib(A), A is semicomplete.

Example 6.1.2. 22 = 2
By Example 5.1.2 Leib(A)=span{z}, and using techniques similar to those in Example
6.1.1, we can show A? =span{z}=Leib(A). Therefore, A is semicomplete.
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Example 6.1.3. 22 = z;9? = 2
We can show A% =span{z}=Leib(A). Therefore, A is semicomplete.

Example 6.1.4. 2y = z;yr = —2;9y% = 2
We can show A% =span{z}=Leib(A). Therefore, A is semicomplete.

Example 6.1.5. xy = z;yr = az,a € F\ {-1,1}
We can show A% =span{z}=Leib(A). Therefore, A is semicomplete.

6.2 4-Dimensional Nilpotent Leibniz Algebras

Let A be a non-split non-Lie nilpotent Leibniz algebra, A =span{w,z,y, z}, with the
given nonzero multiplications. We have shown in section 5.2 that the 4-dimensional
nilpotent Leibniz algebras can be either complete or not complete. We will find a ba-
sis for A2 for each algebra to show that all 4-dimensional nilpotent Leibniz algebras are

semicomplete.

Example 6.2.1. wy =z, yxr = 2
We can show Leib(A)=span{z} = A?%. Hence, A is semicomplete.

Example 6.2.2. wy =z, 22 =2, 2y = 2, yw = 2, yr = —2

We can show Leib(A) =span{z} = A% Hence, A is semicomplete.

Example 6.2.3. wr =z, 2w = —2, y> = 2

We can show A% =span{z} =Leib(A). Hence, A is semicomplete.

Example 6.2.4. wr =2, 2w = —z, 22 =2, y* = 2

We can show Leib(A) =span{z} = A% Hence, A is semicomplete.

Example 6.2.5. wr = z, 2w = az, y* = z, a € C/{-1,1}
For all « € C/{—1,1}, Leib(A) =span{z} = A?. Hence, A is semicomplete.

Example 6.2.6. w? =z, 22 = 2, y* = 2.

We can show Leib(A) =span{z} = A% Hence, A is semicomplete.

Example 6.2.7. w? =z, wx =y, wy = z.
These nonzero multiplications define a nilpotent cyclic Leibniz algebra. Thus, Leib(A) =

A?: and hence, A is semicomplete.
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Example 6.2.8. w? = z, wx =y, zw = —.
We can show Leib(A) =span{z}, but A% =span{y, z}. Der(A) =span{dy, ds, d3, o4, 05, 9, 7 }

where
e §(w) =w,d1(z) =0, (y) =vy,d(z) =2z
o J(w)=1x,0(x) =0,0(y) =0,d2(2) =0
o i3(w) =y,03(x) =0,03(y) =0,03(2) =0

o Jy(w) = z,04(x) = 0,04(y) = 0,04(2) =0

d5(w) = 0,05(x) = y,95(y) = 0,05(2) =0
o Js(w) =0,0(x) =z,0(y) = y,d6(z) =0
e 57(w) =0,07(x) = z,07(y) = 0,07(2) =0

Therefore, ID(A)=span{ds, d4, I5, 07 }, and we can write L(A) =span{L,,, L.} =span{d,+
d5, —03}. So, im(d4) CLeib(A) and im(d7) CLeib(A); and im(d5 — L,,) CLeib(A) and
im(d3 + L,) CLeib(A). Hence, A is semicomplete.

Example 6.2.9. w? =z, wr =y, 2w = —y, 2> = 2.
We can show Leib(A) =span{z}, but A? =span{y, z}. Der(A) =span{d;, d2, 03, d4, 5, I }

where
o 6, (w) = w,81(x) = z,6,(y) = 2y, 61 (2) = 22
o 5(w) = 2, 05(x) = —w, a(y) = 0,02(2) = 0
o 3(w) =y, d5(x) = 0,85(y) = 0,5(2) = 0
o 53(w) = 2,04(x) = 0,84(y) = 0,04(2) = 0
o d5(w) = 0,d5(x) = y,d5(y) =0,d5(2) =0
o d(w) = 0,06(z) = 2,d6(y) = 0,05(2) = 0

Therefore, ID(A)=span{ds, d4, I5, dg }, and we can write L(A) =span{L,,, L.} =span{d,+
5,06 — 03}. So, im(d4) CLeib(A) and im(ds) CLeib(A); and im(d5 — L,,) CLeib(A) and
im(d3 + L,) CLeib(A). Hence, A is semicomplete.
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Example 6.2.10. w? = 2, wx = y, 2w = —y, Wy = 2, yw = —2.
We can show Leib(A) =span{z}, but A% =span{y, z}. Der(A) =span{dy, ds, d3, o4, d5, O }

where
o 5y(w) = w,dy(x) = 0,0,(y) = y.01(2) = 22
o Gy(w) = z,05(x) = 0,65(y) = 0,05(2) = 0
o §3(w) =y, 63(x) = 0,85(y) = 0,05(2) = 0
o §u(w) = 2,8,(x) = 0,84(y) = 0,64(2) = 0
o d5(w) =0,05(x) =y,05(y) = 2,05(2) =0
o Go(w) = 0,86(x) = 2, 06(y) = 0,05(z) = 0

Therefore, ID(A)=span{ds, d4, 95, 6 }. Since L(A)=span{L.,, L,, L,}
=span{ds + 5, —I3, —04 },A is semicomplete.

Example 6.2.11. wz =y, 2w = —y, 22 = z, wy = z, yw = —2.
We can show Leib(A) =span{z}, but A? =span{y,z}. Der(A) =span{di, ds, 83, 04, 5}

where
o 5y(w) = w,0y(x) = 21,0, (y) = 3y, 61(2) = 42
o Gy(w) =y, 65(x) = 0,85(y) = 0,05(2) = 0
o §3(w) = z,85(x) = 0,85(y) = 0,05(z) = 0
o Gu(w) = 0,8,(x) = 1, 04(y) = 2,04(2) = 0
o §5(w) = 0,05(x) = z,05(y) = 0,05(z) = 0

Therefore, ID(A) =span{ds, 03, 4, 05 }. Since L(A)=span{L,,, L., L, } =span{dy, 65—, —d3},

A is semicomplete.

Example 6.2.12. w? =z wr =y, 2w = —y + 2, wy = 2, yw = —2.
We can show Leib(A) =span{z}, but A?=span{y,z}. Der(A) =span{di, ds, 3, 04,05}

where

o )1 (w) =x,6(x) =x,0(y) =y,01(2) = 2
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o Jy(w) =y, 09(x) =0,02(y) =0,02(2) =0

o 03(w) = z,03(x) =0,05(y) =0,d3(2) =0

da(w) = 0,04(x) = y,04(y) = 2,04(2) =0
e J5(w) =0,d5(x) = z,05(y) = 0,05(z) =0

Therefore, ID(A) =span{ds, 93, d4, 05 }. Since L(A)=span{ L, L,, L,} =span{ds + 04, I3 —

d2, —03}, A is semicomplete.

Example 6.2.13. wx =y, 2w = —y + 2, 22 = 2z, wy = 2, yw = —2.

We can show A is complete. Therefore, A is semicomplete.

Example 6.2.14. w? =y, wr = 2.
We can show Leib(A) =span{y, z} = A%. Hence, A is semicomplete.

Example 6.2.15. w? =y, 2w = 2.
We can show Leib(A) =span{y, 2z} = A%. Hence, A is semicomplete.

Example 6.2.16. zw =y, wr = 2, 22 = —y

We can show A% =span{y, z}=Leib(A). Hence, A is semicomplete.

Example 6.2.17. w? =y, 2w = 2.
We can show Leib(A) =span{y, z} = A%. Hence, A is semicomplete.

Example 6.2.18. w? =y, 2w = 2z, wr = —ay, 2> = —z, « € F

We can show A% =span{y, 2z} =Leib(A). Hence, A is semicomplete.

Example 6.2.19. w? =y, wr =y, 2w =y + 2, 2° = 2.

We can show Leib(A) =span{y, z} = A%. Hence, A is semicomplete.

Example 6.2.20. wzr =y, wy = 2.
We can show Leib(A) =span{y, 2} = A%. Hence, A is semicomplete.

Example 6.2.21. wz =y, 2% = 2z, wy = 2.

We can show Leib(A) =span{y, z} = A%. Hence, A is semicomplete.

Example 6.2.22. wxr =y, zw = z, wy = Z.

We can show Leib(A) =span{y, z} = A%. Hence, A is semicomplete.
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Example 6.2.23. wzr =y, 2w = 2, 2% = 2z, wy = 2.

We can show Leib(A) =span{y, z} = A2. Hence, A is semicomplete.
Example 6.2.24. w? =y, 2w = z, wy = 2
We can show A% =span{y, 2z} =Leib(A). Hence, A is semicomplete.

Example 6.2.25. w? =y, 22 = z, wy =

We can show A% =span{y, z}=Leib(A). Hence, A is semicomplete.

6.3 3-Dimensional Solvable Leibniz Algebras

Let A be a non-split non-Lie non-nilpotent Leibniz algbera, such that A =span{z,y, z}
with the following nonzero multiplications. We will find a basis for A% for each algebra

to show that all 3-dimensional solvable Leibniz algebras are semicomplete.

Example 6.3.1. xz =z
We can show A? =span{z}=Leib(A). Therefore, A is semicomplete.

Example 6.3.2. 2z = az,a € F\ {0}, 2y = y,yx = —y

We can show A is complete. Therefore, A is semicomplete.

Example 6.3.3. vy = y;yr = —y; 2% = 2

We can show A is complete. Therefore, A is semicomplete.
Example 6.3.4. vz = 2z2;y> = z;2y = y;yxr = —y; 02 = 2
We can show A is complete. Therefore, A is semicomplete.

Example 6.3.5. 2z = az,a € F\ {0},zy =y
We can show A? =span{y, z}=Leib(A). Therefore, A is semicomplete.

Example 6.3.6. 2z =z +y;2y =y
We can show A% =span{y, z}=Leib(A). Therefore, A is semicomplete.

Example 6.3.7. 22 = y;2y = y;2° = 2
We can show A% =span{y, z}=Leib(A). Therefore, A is semicomplete.

Therefore, all 3-dimensional non-split non-Lie Leibniz algebras and all 4-dimensional
non-split non-Lie nilpotent Leibniz algebras are semicomplete. Recall from Chapter 5
that many of these examples were not complete. Thus, while completeness implies semi-

completeness for Leibniz algebras, not all semicomplete Leibniz algebras are complete.
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