
ABSTRACT

BERNSTEIN, AMANDA SUE. Modeling and Control: Applications to a Double Inverted
Pendulum and Radio Frequency Interference. (Under the direction of Hien Tran).

In this work we consider methods for the modeling and control of physical systems. In

particular, we examine a double inverted pendulum (DIP) system and the impact of radio

frequency interference (RFI) on satellite operations (SATOPS) systems.

The DIP is a classic example of a nonlinear, multivariable, unstable system. For the stabi-

lization problem, a controller is designed that stabilizes the pendulum system in the unstable

equilibrium position. Physically, this is the position where the two pendulum rods are aligned

in a vertical position. The mathematical model of the DIP is derived using Lagrange’s energy

method, and parameter estimation is performed to optimize the friction parameters. The result-

ing nonlinear system is linearized about its unstable equilibrium state, and a linear quadratic

regulator (LQR) control and a power series based nonlinear control are each implemented in

real-time in order to stabilize the DIP system. Since the real-time system only measures the

three position states of the system, the three velocity states must also be estimated in order

to apply the state feedback controls. Thus, three estimation methods are presented: a low pass

derivative filter, a Kalman observer, and a nonlinear observer. Only the low pass derivative filter

is successful in estimating the velocity states and is thus used to obtain the real-time results.

A series of analytic models to detect and predict RFI within a SATOPS system is presented

which include the behavior of the carrier synchronization loops when evaluating the perfor-

mance of the system. Models for the carrier acquisition time, the carrier tracking errors, and

the bit error rate performance for a phase locked loop in the absence of RFI as well as in the

presence of continuous wave or wideband RFI are presented. These models are then imple-

mented in MATLAB and tested under actual operating conditions for purposes of validation

and verification.
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Chapter 1

Introduction

Mankind has always sought to understand our universe and to control it for our own aims. As

mathematicians, one of the ways we seek to understand is by creating models. Whether we are

looking to comprehend the ups and downs of the stock market, the spread of pathogens through

a population, or how a self-driving car operates, models can give us insight to these systems and

allow us to predict what will happen in the future. Furthermore, by including control variables

in our models, we can change the outputs to suit our desires. Models can take many forms, but

most commonly we use systems of equations to represent them as well as to describe the ways

we want to control them. In this thesis, we will examine the models of two different systems, a

double inverted pendulum and radio frequency interference within a satellite operations system,

as well as ways to control the double inverted pendulum system.

1.1 The Double Inverted Pendulum

An inverted pendulum refers to any pendulum that has its center of mass above its pivot

point. A simple example would be a broomstick balanced on the open palm of your hand. Your

palm is the pivot point for the pendulum and the mass of the broomstick is above that point.

While this is an unstable position for the system, by moving your hand around, you can keep

the broomstick balanced upright. Inverted pendulums are standard models of multivariable,

nonlinear, unstable systems. Yet they are also controllable, and thus they are commonly used

for pedagogy as well as for the introduction of intermediate and advanced control concepts.

Inverted pendulums come in a variety of forms including classical inverted pendulum systems

that are mounted on a base which moves in a linear manner and rotary inverted pendulum

systems where the base doesn’t move back and forth but rather applies a torque directly to the

pendulum rod. Pendulum systems can also have differing numbers of pendulum rods attached

to their base including single, double, triple, and quadruple inverted pendulum systems.
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For this work, we will consider the double inverted pendulum (DIP) system mounted on a

cart. This is an extension of the single inverted pendulum with an additional pendulum rod

attached via a hinge. Imagine you break your broomstick into two pieces, reattach them using

a hinge, and now balance that on your open palm. DIP systems can be used as models for

a number of different applications, including self-stabilizing robots and robotic limbs [34, 36],

human posture, and gymnast motion [38]. Currently, the DIP is used as a model for human

standing where the pivot of the pendulum is the ankle joint and the hinge is the hip joint with

the legs and the torso comprising the two pendulum rods [35, 39]. Some of these applications

are shown in Figure 1.1.

(a) (b)

Figure 1.1: Some applications of the double inverted pendulum: (a) a robot arm and (b) a gymnast.

The double inverted pendulum is commonly used as a benchmark problem in nonlinear con-

trol theory. There are two types of control synthesis for an inverted pendulum system: swing-up

and stabilization control. Both problems have the goal of balancing the pendulum in its unsta-

ble vertical position, but swing-up control starts the pendulum in the stable downward position

while stabilization just refers to the balancing control necessary to maintain the unstable po-

sition. While many control methods have been applied to the DIP system, the vast majority

use only numerical simulations to test the feasibility of their proposed controllers and do not
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provide real-time experimental implementation on a physical system.

For our work, we use an apparatus of the DIP system which was provided by Quanser

Consulting, Inc. (119 Spy Court, Markham, Ontario, L3R 5H6, Canada). This system is depicted

in Figure 1.2. The DIP system consists of two aluminum rods, one 12 inches long and one 7

Figure 1.2: The double inverted pendulum mounted on a cart.

inches long. These rods are mounted on a linear servo base unit (IP02) consisting of a cart

driven by a DC motor and two encoders. One encoder measures the position of the cart while

the other measures the angular position of the short (lower) pendulum rod. The longer (upper)

pendulum rod is attached via a hinge which also has another encoder to measure its angular

position. Based on these measurements, we can compute a voltage to move the cart back and

forth and balance the pendulums in the upright, vertical position. The control methods used

3



to compute this voltage will be one of the focuses of this work.

1.2 Radio Frequency Interference Modeling

Satellite operations (SATOPS) services are provided by a satellite control network (SCN) and

include capabilities to provide tracking, telemetry, and command services [26]. Figure 1.3 shows

an example of what a satellite control network may consist of. The ground tracking station

Figure 1.3: A typical satellite control network (SCN).

provides communication between the different components of the system, particularly between

the satellites and the control centers, and is typically located in a remote location where there

is a clear view of the sky. The satellite control center (SCC) provides support for the operation,

control, and maintenance of the satellites and executes the telemetry, tracking, and command

operations. The network control center (NCC) provides support for scheduling and configuring

the satellite network as well as the operations of all the other system components. The ground

communications network refers to the systems which support data transfers between the three

on the ground components: the SCC, NCC, and the ground tracking stations.
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SATOPS typically operate in L-band (1–2 GHz) or S-band (2–4 GHz) frequencies where

there are many potential sources for radio frequency interference (RFI) [25, 28, 29]. RFI oc-

curs when the victim receiver simultaneously collects power from its desired signal as well as

other undesired interfering signals. Depending on the power of the interfering signals, this can

degrade the system performance and could result in data blockages. These frequency bands

are shared by many systems, ranging from the Global Positioning System (GPS) to wireless

mobile communications and network systems such as WiFi. Therefore, it is important to be

able to analyze the potential for RFI to occur, especially as more users want to operate in these

bandwidths.

Many tools exist to perform this analysis, and these have been summarized in [26]. However,

most of these tools do not consider the time factor of the interference when calculating the

bit or carrier signal-to-noise ratio degradation. Those that do typically accomplish this by

including the SATOPS schedules and the interference protection criteria (IPC) as recommended

by the National Telecommunication and Information Administration (NTIA) and International

Telecommunication Union (ITU) to identify RFI caused blockages, but they assume the RFI

would increase the noise floors of the receiver without considering the effects of the RFI on the

synchronization loops used by the receivers.

In this research, we consider new models to estimate the potential for RFI to occur including

the evaluation of the interfering time factor applied at the level of the synchronization loops.

We focus on SATOPS using USB waveforms which is of interest to the U.S. Air Force, and we

provide verification of the RFI models using MATLAB.

1.3 Thesis Outline

The remainder of this thesis is structured as follows. In Chapter 2, we derive the full nonlinear

model for the DIP system. We then verify the model performance and improve it by optimizing

a selection of parameters. In Chapter 3, we discuss the stabilization of the DIP system in the

unstable, vertical position. We accomplish this via two different control methods and compare

the performance of the real-time system. In Chapter 4, we consider different observers for the

DIP system to determine the velocity states which are not directly measured but which are

necessary for computing the state feedback controllers. In Chapter 5, we consider models for

the analysis of RFI and provide verification and validation. In Chapter 6, we summarize our

conclusions and provide thoughts on future directions for this research.
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Chapter 2

Modeling of an Inverted Double

Pendulum System

In this chapter, we will derive the model for the double inverted pendulum mounted on a

cart using Lagrange’s energy method. We will then verify the model performance relative to

our experimental apparatus. The following model derivation is based on the single inverted

pendulum model presented by Quanser in [32] and has been presented in [6]. This derivation

follows the standard procedure to derive the model used in the literature as seen, for example,

in [7, 9, 13, 15, 18, 33, 43], using Lagrange’s energy method. Our model differs from those

presented in the literature because our state variables are measured relative to a different refer-

ence position. In the literature, the pendulum angles are both measured relative to the vertical

position, whereas we measure the upper pendulum angle θ relative to the lower pendulum angle

α. We formulate our model this way because that is how we measure the angles in our real-

time system. This results in a more complicated model, but one which is easier to use for the

real-time experimental implementation.

2.1 Frame of Reference

Figure 2.1 shows the free body diagram of the DIP system mounted on a cart. The system

consists of two aluminum rods connected to each other by a hinge with the lower rod connected

to the motorized cart. Quantities related to the lower rod are denoted by the number 1, and

those related to the upper rod are denoted by the number 2. In our model, we consider the

masses of the cart, Mc; the rods, M1 and M2; and the hinge, Mh, as being concentrated at

their center of gravities. The lengths of the pendulum rods are given by L1 and L2, and the

distances from each pendulum’s pivot point to its center of gravity is given by `1 and `2. The

corresponding nomenclature for this system is summarized in Appendix A.1.
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The position of the cart xc is zero at the center of its track; the angle α of the lower rod is

zero when the rod is pointed perfectly upwards; and the angle θ of the upper rod is zero when

it is perfectly aligned with the lower rod. We define the positive sense of the rotation to be

counterclockwise and the displacement is positive towards the right when facing the cart.

Mc

x

y

α > 0

xc

Fc > 0

M1

Mh

θ > 0

M2

yp

xp

`1

`2

Figure 2.1: Free body diagram of the DIP system mounted on a cart.

2.2 Equations of Motion

We use Lagrange’s energy method to derive the equations of motion for this system. This

method is equivalent to using Newton’s laws of motion for systems in classical mechanics but
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has the benefit of working with generalized coordinate systems resulting in fewer and simpler

equations. It is also frequently easier to apply for systems with many components since it

considers energies instead of forces. For our system, the single input is the driving force Fc

generated by the DC motor and acting on the cart via the motor pinion. The Lagrangian of

the motion is computed from the calculation of the total potential and kinetic energies of the

system.

In order to calculate the energy of the system, we first determine the absolute cartesian

coordinates for the center of gravity of each pendulum rod and the hinge. For the lower rod,

pendulum 1, the center of gravity is located atx1(t)
y1(t)

 =

xc(t)− `1 sin(α(t))

`1 cos(α(t))

 , (2.1)

and for the upper rod, pendulum 2, the center of gravity is located atx2(t)
y2(t)

 =

xc(t)− `2 sin(α(t) + θ(t))− L1 sin(α(t))

`2 cos(α(t) + θ(t)) + L1 cos(α(t))

 . (2.2)

The center of gravity of the hinge is located atxh(t)

yh(t)

 =

xc(t)− L1 sin(α(t))

L1 cos(α(t))

 . (2.3)

We determine the linear velocity of each component by taking derivatives with respect to

time of (2.1), (2.2), and (2.3) to getx′1(t)
y′1(t)

 =

x′c(t)− `1α′(t) cos(α(t))

−`1α′(t) sin(α(t))

 , (2.4)

x′2(t)
y′2(t)

 =

x′c(t)− `2(α′(t) + θ′(t)) cos(α(t) + θ(t))− L1α
′(t) cos(α(t))

−`2(α′(t) + θ′(t)) sin(α(t) + θ(t))− L1α
′(t) sin(α(t))

 , (2.5)

x′h(t)

y′h(t)

 =

x′c(t)− L1α
′(t) cos(α(t))

−L1α
′(t) sin(α(t))

 . (2.6)
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2.2.1 Potential Energy

The total potential energy in a system, VT , is the energy a system has due to work being

or having been done to it. Typically potential energy is due to either vertical displacement

(gravitational potential energy) or spring-related displacement (elastic potential energy). Here,

we have no springs, and we assume all of the components of our system are rigid. Thus, there

is no elastic potential energy, just the potential energy due to gravity. The cart is limited to

horizontal motion and therefore has no gravitational potential energy. The potential energies

of the pendulum rods and the hinge are given by

V1(t) = M1gy1 = M1g`1 cos(α(t)), (2.7)

V2(t) = M2gy2 = M2g [`2 cos(α(t) + θ(t)) + L1 cos(α(t))] , (2.8)

Vh(t) = Mhgyh = MhgL1 cos(α(t)). (2.9)

Then the total potential energy of the system is the sum of each component’s potential energy.

Summing (2.7), (2.8), and (2.9) and rearranging, we obtain

VT (t) = [M1g`1 +M2gL1 +MhgL1] cos(α(t)) +M2g`2 cos(α(t) + θ(t)). (2.10)

2.2.2 Kinetic Energy

The total kinetic energy of a system, TT , is the amount of energy a system has due to motion.

For the DIP system, the total kinetic energy is the sum of the translational and rotational

energies of each component.

First, we consider the cart which has kinetic energy due to its linear motion along the track

and due to the rotation of the DC motor. The translational kinetic energy of the cart is given

by

Tct(t) =
1

2
Mc(x

′
c(t))

2. (2.11)

The rotational kinetic energy of the cart’s DC motor is given by

Tcr(t) =
1

2
Jm(ωc(t))

2 (2.12)

where Jm is the rotational moment of inertia of the DC motor’s output shaft. The angular

velocity of the DC motor’s output shaft ωc is given by

ωc(t) =
Kg

rmp
x′c(t) (2.13)

where Kg is the planetary gear box ratio and rmp is the radius of the motor pinion. Then the
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total kinetic energy of the cart is the sum of the translational and rotational kinetic energies,

Tc(t) =
1

2

[
Mc +

JmK
2
g

r2mp

]
(x′c(t))

2. (2.14)

Next we consider the kinetic energy of each pendulum rod. For each, we assume the mass

of the pendulum is concentrated at its center of gravity. Then, the translational kinetic energy

of the lower pendulum rod is given by

T1t(t) =
1

2
M1

[
(x′1(t))

2 + (y′1(t))
2
]

=
1

2
M1

[
(x′c(t))

2 − 2`1x
′
c(t)α

′(t) cos(α(t)) + `21(α
′(t))2

]
, (2.15)

and the rotational kinetic energy is given by

T1r(t) =
1

2
I1(α

′(t))2. (2.16)

I1 is the moment of inertia of the lower pendulum rod at its center of gravity and is calculated

by

I1 =
1

12
M1L

2
1. (2.17)

Thus, the total kinetic energy for the lower pendulum rod is given by

T1(t) =
1

2
M1

[
(x′c(t))

2 − 2`1x
′
c(t)α

′(t) cos(α(t)) + `21(α
′(t))2

]
+

1

2
I1(α

′(t))2. (2.18)

Similarly, the translational and rotational kinetic energies of the upper pendulum rod are given

by

T2t(t) =
1

2
M2

[
(x′2(t))

2 + (y′2(t))
2
]

=
1

2
M2

[
(x′c(t))

2 − 2`2x
′
c(t)(α

′(t) + θ′(t)) cos(α(t) + θ(t))

−2L1x
′
c(t)α

′(t) cos(α) + 2L1`2α
′(t)(α′(t) + θ′(t)) cos(2α+ θ)

+`22(α
′(t) + θ′(t))2 + L2

1(α
′(t))2

] (2.19)

T2r(t) =
1

2
I2(θ

′(t))2 (2.20)

10



for a total kinetic energy of

T2(t) =
1

2
M2

[
(x′c(t))

2 − 2`2x
′
c(t)(α

′(t) + θ′(t)) cos(α(t) + θ(t))

−2L1x
′
c(t)α

′(t) cos(α) + 2L1`2α
′(t)(α′(t) + θ′(t)) cos(2α+ θ) (2.21)

+`22(α
′(t) + θ′(t))2 + L2

1(α
′(t))2

]
+

1

2
I2(θ

′(t))2.

Finally, the hinge has only translational kinetic energy since it cannot rotate about its own

axis. Therefore the total kinetic energy of the hinge is given by

Th(t) =
1

2
Mh

[
(x′h(t))2 + (y′h(t))2

]
=

1

2
Mh

[
(x′c(t))

2 − 2L1x
′
c(t)α

′(t) cos(α(t)) + L2
1(α
′(t))2

]
. (2.22)

Summing (2.14), (2.18), (2.21), and (2.22) we obtain the total kinetic energy of the system

TT (t) =
1

2

[
Mc +

JmK
2
g

r2mp
+M1 +M2 +Mh

]
(x′c(t))

2

− [M1`1 +M2L1 +MhL1]x
′
c(t)α

′(t) cos(α(t))

+
1

2

[
M1`

2
1 + I1 +M2L

2
1 +MhL

2
1

]
(α′(t))2

−M2`2x
′
c(t)(α

′(t) + θ′(t)) cos(α(t) + θ(t))

+M2L1`2α
′(t)(α′(t) + θ′(t)) cos(2α(t) + θ(t))

+
1

2
M2`

2
2(α
′(t) + θ′(t))2 +

1

2
I2(θ

′(t))2.

(2.23)

2.2.3 Lagrange’s Equations

The Lagrangian, L, of a system is given by the difference between the total kinetic and potential

energies

L(t) = TT (t)− VT (t). (2.24)
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Substituting (2.10) and (2.23) into (2.24) we obtain

L(t) =
1

2

[
Mc +

JmK
2
g

r2mp
+M1 +M2 +Mh

]
(x′c(t))

2

− [M1`1 +M2L1 +MhL1]x
′
c(t)α

′(t) cos(α(t))

+
1

2

[
M1`

2
1 + I1 +M2L

2
1 +MhL

2
1

]
(α′(t))2

−M2`2x
′
c(t)(α

′(t) + θ′(t)) cos(α(t) + θ(t))

+M2L1`2α
′(t)(α′(t) + θ′(t)) cos(2α(t) + θ(t))

+
1

2
M2`

2
2(α
′(t) + θ′(t))2 +

1

2
I2(θ

′(t))2

− g [M1`1 +M2L1 +MhL1] cos(α(t))−M2g`2 cos(α(t) + θ(t)).

(2.25)

By definition, Lagrange’s equations state

∂

∂t

(
∂

∂x′c
L
)
− ∂

∂xc
L = Q1 (2.26)

∂

∂t

(
∂

∂α′
L
)
− ∂

∂α
L = Q2 (2.27)

∂

∂t

(
∂

∂θ′
L
)
− ∂

∂θ
L = Q3 (2.28)

where Q1, Q2, and Q3 are the generalized forces applied to each of the generalized coordinates:

xc, α, and θ. When we compute the generalized forces we neglect the nonlinear Coulomb friction

and the force due to the pendulum’s action on the linear cart. Therefore the generalized forces

just include our viscous damping frictional forces at the motor pinion and each pendulum axis

and the input force and are given by

Q1(t) = Fc(t)−Bcx′c(t), (2.29)

Q2(t) = −B1α
′(t), (2.30)

Q3(t) = −B2θ
′(t). (2.31)
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We substitute (2.29), (2.30), and (2.31) into (2.26), (2.27), and (2.28), respectively, to obtain

∂

∂t

(
∂

∂x′c
L
)
− ∂

∂xc
L = Fc(t)−Bcx′c(t) (2.32)

∂

∂t

(
∂

∂α′
L
)
− ∂

∂α
L = −B1α

′(t) (2.33)

∂

∂t

(
∂

∂θ′
L
)
− ∂

∂θ
L = −B2θ

′(t). (2.34)

Using (2.25), we take the derivatives indicated in (2.32) and rearrange to obtain[
Mc +

JmK
2
g

r2mp
+M1 +M2 +Mh

]
x′′c (t)−

[(
M1`1 +M2L1 +MhL1

)
cos(α(t))

+M2`2 cos(α(t) + θ(t))
]
α′′(t)−M2`2 cos(α(t) + θ(t))θ′′(t) +Bcx

′
c(t)[[(

M1`1 +M2L1 +MhL1

)
sin(α(t)) +M2`2 sin(α(t) + θ(t))

]
α′(t) +

2M2`2 sin(α(t) + θ(t))θ′(t)

]
α′(t) +M2`2 sin(α(t) + θ(t))

(
θ′(t)

)2
= Fc(t).

(2.35)

Similarly, taking the derivatives indicated in (2.33) of (2.25) and rearranging yields

−
[(
M1`1 +M2L1 +MhL1

)
cos(α(t)) +M2`2 cos(α(t) + θ(t))

]
x′′c (t)

+
[
M1`

2
1 + I1 +M2L

2
1 +MhL

2
1 +M2`

2
2 + 2M2L1`2 cos(2α(t) + θ(t))

]
α′′(t)

+
[
M2L1`2 cos(2α(t) + θ(t)) +M2`

2
2

]
θ′′(t)

+
[
B1 − 2M2L1`2 sin(2α(t) + θ(t))

(
α′(t) + θ′(t)

)]
α′(t)

−M2L1`2 sin(2α(t) + θ(t))
(
θ′(t)

)2
−g
[
M1`1 +M2L1 +MhL1

]
sin(α(t))− gM2`2 sin(α(t) + θ(t)) = 0.

(2.36)

Finally, we take the derivatives indicated in (2.34) and rearrange to obtain

−M2`2 cos(α(t) + θ(t))x′′c (t) +
[
M2L1`2 cos(2α(t) + θ(t)) +M2`

2
2

]
α′′(t)

+
[
M2`

2
2 + I2

]
θ′′(t)−M2L1`2 sin(2α(t) + θ(t))

(
α′(t)

)2
+B2θ

′(t)

−gM2`2 sin(α(t) + θ(t)) = 0.

(2.37)

Thus (2.35), (2.36), and (2.37) are the equations of motion for the system.
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2.2.4 Converting to Voltage Input

In our real-time implementation of the DIP system, the input for the system is the cart’s DC

motor voltage, Vm, so we must convert the driving force Fc to Vm. The driving force of the cart

is generated by the cart’s DC motor and acts on the cart via a motor pinion. This force can be

expressed as

Fc(t) =
Kg

rmp
Tm(t) (2.38)

where Tm is the motor torque.

A standard DC motor can be modeled using a simple circuit with an armature resistance

Rm and inductance Lm. The electrical schematic of the equivalent armature circuit model is

shown in Figure 2.2. Kirchhoff’s Voltage Law states that the sum of the electrical potential

Vm

Rm LmIm

MEemf

Tm, ωm

Figure 2.2: Electrical schematic of a standard DC motor.

differences around the closed loop of a circuit is zero. Applying this to the circuit shown, we

obtain

Vm(t)−RmIm(t)− Lm
d

dt
Im(t)− Eemf (t) = 0 (2.39)

where Im is the armature current and Eemf is the back-electromotive force voltage. Since

Lm << Rm, we can neglect the motor inductance, and rearranging (2.39) we have

Im(t) =
Vm(t)− Eemf (t)

Rm
. (2.40)

The back-electromotive force voltage created by the motor is proportional to the angular velocity

of the motor shaft,

Eemf (t) = Kmωc(t), (2.41)
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so we rewrite (2.40) as

Im(t) =
Vm(t)−Kmωc(t)

Rm
. (2.42)

The motor torque is proportional to the armature current, and assuming no electrical losses,

can be expressed as

Tm(t) = KtIm(t). (2.43)

Then, substituting (2.43) and (2.42) into (2.38), we obtain

Fc(t) =
KgKt(Vm(t)−Kmωc(t))

Rmrmp
. (2.44)

Using (2.13) in (2.44) yields

Fc(t) =
KgKt(rmpVm(t)−KgKmx

′
c(t))

Rmr2mp
. (2.45)

This equation for the driving force of the cart can then be substituted into (2.35) to obtain the

final equations of motion for the DIP system.

2.3 Model Calibration

To validate our nonlinear model for the DIP system, we apply a set voltage input and compare

the measured performance of the real system to the simulation results. The parameter values

used for this simulation are given in Appendix A.2. Our input voltage is a square wave with

an amplitude of 1 V and a frequency of 0.2 Hz as shown in Figure 2.3. Figure 2.4 shows the

real-time experimental results in blue (dashed) and the simulation results in red (solid) with

this voltage input. We can see that the simulation results generally follow the same patterns

as the experimental results; however, the magnitude of the simulation results is typically larger

than the experimental results. This is particularly apparent for the cart position. In order to

address the discrepancies between the magnitudes of the model and the experimental results,

we decided to use parameter estimation techniques on the friction values used in the model. In

this way, we hope to improve our model accuracy relative to the experimental results.

We perform our parameter estimation on the three viscous damping coefficients as seen at

the motor pinion, Bc, and the upper and lower pendulum axes, B1 and B2. The original values

for these parameters were given by Quanser for our system as

Bc = 5.4 N.m.s/rad, B1 = 0.0024 N.m.s/rad, B2 = 0.0024 N.m.s/rad.

To determine the optimal parameters for our system, we want to minimize the sum of the
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Figure 2.3: Input voltage for use in model calibration.

squared errors between the model and the experimental results. We write this optimization

problem as

q∗ = arg min
q

N∑
i=1

(yi −X(ti; q))
T (yi −X(ti; q)) (2.46)

where q = [Bc, B1, B2] is the set of parameters to optimized. We let X be the state vector

solution to our nonlinear model with X = [xc(t), α(t), θ(t), x′c(t), α
′(t), θ′(t)]. Then, N is the

number of experimental data points, and yi is the experimental data for a given time point ti.

We use MATLAB’s nonlinear optimization function fminsearch to solve (2.46). This func-

tion implements a Nelder-Mead algorithm to search for the minimizing arguments. This is a

local search algorithm and does not guarantee a global minimum to the optimization problem.

Therefore we use a number of initial guesses in order to determine the optimized parameters.

Table 2.1 shows a number of those initial guesses along with the optimized parameters and the

value of the minimization function, J , using those parameters. For all tested initial guesses,

the resulting optimized values are very close as is the value of the minimization function. We

also note that the viscous friction coefficients increased as we would expect from examining
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Figure 2.4: Experimental and model simulation results using the parameter values provided by
Quanser.
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Table 2.1: Optimized friction parameter values found using fminsearch.

Bc B1 B2 B∗c B∗1 B∗2 J

5.4 0.0024 0.0024 11.1878 0.03473 0.006230 4.391e+03

4.3 0.02 0.02 11.1747 0.03475 0.006224 4.391e+03

13 0.02 0.02 11.1925 0.03472 0.006228 4.391e+03

13 0.08 0.02 11.1951 0.03475 0.006224 4.391e+03

13 0.08 0.08 11.1997 0.03476 0.006211 4.391e+03

Figure 2.4. Using the optimized values in the first row of the table,

Bc = 11.1878 N.m.s/rad, B1 = 0.03473 N.m.s/rad, B2 = 0.006230 N.m.s/rad,

we compare the new model values with the experimental values of each state. These results are

shown in Figure 2.5. The values of the three position states from the model are much closer

to the experimentally observed values. For the cart velocity, the overall magnitudes are much

closer, though the model doesn’t capture the smaller changes in velocity on the 2.5 second

sub-intervals as closely as the previous model did. The two states for the angular velocities of

the upper and lower pendulums are generally closer to the experimental results, but now the

values of the experimental results are actually slightly larger than those of the model.

We also computed and graphed the residuals between the model and experimental values

which are shown in Figure 2.6. We can clearly see that our residuals are not independent and

identically distributed. This tells us that the errors we see are not merely due to random white

noise in our experimental results, but rather there is something more systematic going on.

Most likely this is related to assumptions we made in our model, particularly those related to

forces we neglected. For example, our model doesn’t include the force of friction between the

cart’s wheels and the track or exterior forces on the pendulums such as air resistance and the

force of air currents present in the lab setup caused by the HVAC systems. Furthermore, we

assumed that the motion of our pendulum was purely in a two-dimensional plane since our cart

is constrained to travel along a track and the pendulum motion is also restricted to that plane.

However, there could be small amounts of out-of-plane motion present since we are working in

real three-dimensional space which may contribute to the errors in the model. Models which

include these considerations could result in more accurate simulations, but we leave that for

future work. The presented results will use the optimized friction values determined here.
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Figure 2.5: Experimental and model simulation results using the optimized friction parameter values.
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Figure 2.6: Residuals between the experimental and model simulation results using the optimized
friction parameter values.
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Chapter 3

Stabilization Control of an Inverted

Double Pendulum System

In this chapter, we will discuss the stabilization of the double inverted pendulum system. We

begin by discussing control methods currently used in the literature. Then we will derive a

linear quadratic regulator controller and a power series based controller for the system. Both

simulation and real-time experimental results will be presented for each controller.

3.1 Overview of Existing Control Methods

Control problems for the double inverted pendulum come in two varieties: swing-up and stabi-

lization control. Swing-up control refers to beginning the pendulum at rest in its stable, down-

ward hanging equilibrium state and then using a motor to bring the pendulum to its vertical,

unstable equilibrium state and balancing it there. Stabilization control refers to just this second

step, where the pendulum begins in the unstable equilibrium position and must be balanced

there. Several control design approaches have been developed and applied to the DIP system

for each of these cases. However, these methods are typically applied only in simulations and

not on real-time experimental set ups. These simulations also frequently use simplified versions

of the DIP model which ignore frictional effects.

We also note that the models seen in the literature are typically simpler than the one derived

in Chapter 2 since the upper pendulum angle, θ, is measured from vertical rather than relative

to the lower angle as we have done [7, 9, 13, 15, 18, 33, 43]. This reference point results in

simpler model formulations but is not as easily applied to our real system since we can only

measure θ relative to α.

The following is a summary of the control methods commonly seen in the literature.

Linear Quadratic Regulator (LQR) Control is a simple to implement control method
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that is frequently used as a baseline for comparison with other methodologies [7, 9, 40]. How-

ever, since the DIP system is highly nonlinear and the LQR controller can only be applied

to linear systems, this method requires that we first linearize about the unstable equilibrium

X = 0. Therefore, this method can only be used near the equilibrium as a locally near-optimal

stabilizing control as shown in [7]. This control is also commonly used to perform the stabi-

lization after using a swing-up control once the pendulum is within a certain basin near the

equilibrium [43].

State Dependent Riccati Equation (SDRE) Control is a method which uses a non-

linear form of the DIP model to develop a control that is dependent on the states. This method

is sometimes considered to be a nonlinear extension of the LQR control. It has been shown to

perform similarly to the LQR control when close to the equilibrium state and performs better at

larger pendulum deflections [7]. However, this method can be very computationally expensive

since it requires solving the state dependent Riccati equations at each time step.

Neural Networks allow for direct nonlinear optimization of a control. They are popular

for controlling nonlinear systems because of their universal function approximation capabilities

as discussed by Bogdanov in [7]. Due to the costs and challenges in training the neural networks,

when used on their own, neural networks were unable to improve beyond the performance of

the LQR control, only achieving stabilization in the same range. However, when combined with

either the LQR or SDRE control, neural networks improved performance since they were able to

generate “corrections” to the other controls, and in the case of the SDRE control, also achieved

noticeable reductions in computational costs. Still, studies of this method have only been shown

in simulation, often without limits on the magnitude of the control force.

Passivity Based Control has been used with partial feedback linearization, primarily for

the swing-up of a DIP system as in [16, 43]. These are energy based methods where the stability

is asymptotic to a manifold rather than a point, and therefore are typically used with LQR

controls for stabilization. Again, only simulation results are typically presented, though [16]

does include a detailed analysis of the motor performance in the construction of their control.

Feedforward/Feedback Control solves the swing-up control problem by solving an opti-

mization problem where the unstable and stable equilibrium are boundary conditions and they

seek to determine a path for the pendulum to follow for swing-up [13, 33]. These controllers

then switch to a linear feedback control for the stabilization of the DIP. Experimental results

have been presented in the literature for these controllers, but they are sensitive to the model

parameters and therefore require optimizing the model parameters before applying them to the

system [13].

Nonlinear Model Predictive Control also uses the solution of a two-point boundary

value problem. However, this method computes the solution in real-time as a feedback control.

This control has been shown to be effective in numerical simulations by [18].
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Fuzzy Control methods attempt to stabilize the DIP system by constructing fuzzy rules

that focus on each aspect of the system independently. They then use priority weighting to

stabilize the complete system. This has been shown in simulation for a parallel double inverted

pendulum, where two pendulums are mounted on a single cart but not connected to each other,

but has not yet been applied to a DIP system of our type [41].

Sliding Mode Control is a robust control method that uses a discontinuous control signal.

However, it can lead to undesirable performance issues such as chatter when combined with fast

switching times. This control has been used to stabilize the DIP system in [15] and numerical

simulations are presented.

3.2 Problem Statement

Our goal is to stabilize the DIP system about its unstable, vertical equilibrium with minimal

cart and pendulum movement and control effort. In particular, we desire the pendulum angles

to never exceed a 10◦ deflection from the vertical position, that is, |α(t)|, |θ(t)| ≤ 10◦. To begin,

we write the equations of motion for the DIP system in their state space representation as

X ′(t) = f(X(t)) +Bu(t)

X(0) = X0

(3.1)

with state vector X(t) = [xc(t), α(t), θ(t), x′c(t), α
′(t), θ′(t)]T and control variable u(t) = Vm(t).

We also consider the cost functional

J(X0, u) =

∫ ∞
0

(
XTQX +Ru2

)
dt (3.2)

where Q is a constant valued 6x6 symmetric and positive definite matrix, and R is a positive

scalar.

Since we will be applying our controls to a real-time system, we have some additional

constraints on our state variables. Our track length is finite, and therefore, for the safety of the

system, we require that the cart does not run to the edge of the track. We assume the center

of the track is at xc(t) = 0, so we require |xc(t)| ≤ 400 mm. We also need to ensure that the

power amplifier is not put into saturation by our applied control voltage, so we need to satisfy

|Vm(t)| ≤ 10 V.

23



3.3 LQR Control

First, we apply a standard linear quadratic regulator (LQR) controller to our system. Since

this control is for linear systems, we must linearize the system about the zero equilibrium state.

In practice, we accomplish this by using the Taylor function in Maple. Then we can write our

system from (3.1) as

X ′(t) = AX(t) +Bu(t)

X(0) = X0.
(3.3)

To determine the optimal control relative to the cost given in (3.2), we begin by considering

the Hamiltonian function of this system given by

H(X,u, λ) =
1

2
(XTQX + uTRu) + λT (AX +Bu) (3.4)

where λ is a Lagrange multiplier referred to as the costate. We follow the derivation of [20] which

uses the calculus of variations to show that the necessary conditions to obtain a minimum cost

for this problem are

Hx = −λ′ = QX +ATλ, (3.5)

Hλ = x′ = AX +Bu. (3.6)

For the unconstrained control problem, we would also have the stationarity condition given by

Hu = 0 = Ru+BTλ. (3.7)

Since in our problem, the input control is bounded, that is, |u(t)| ≤ umax, we use Pontryagin’s

minimum principle which requires that

H(x∗, u∗, λ∗, t) ≤ H(x∗, u, λ∗, t) (3.8)

for all u in the admissible space with ∗ denoting the optimal quantities. Using (3.4), we have

1

2
(u∗)TRu∗ + (λ∗)TBu∗ ≤ 1

2
uTRu+ λTBu (3.9)

for all admissible u. Therefore, we want to select our input to minimize the quantity 1
2u

TRu+

λTBu. We add the term 1
2λ

TBR−1BTλ since it doesn’t depend on u and alternately minimize

1

2
(u+R−1BTλ)TR(u+R−1BTλ). (3.10)
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Since R > 0, we know this is equivalent to minimizing

1

2
(u+R−1BTλ)T (u+R−1BTλ). (3.11)

If the magnitude of R−1BTλ(t) is smaller than umax, then u∗ is found by setting the derivative

of (3.11) with respect to u equal to zero, that is,

u+R−1BTλ = 0. (3.12)

Thus,

u = −R−1BTλ (3.13)

if |R−1BTλ(t)| ≤ umax. Note that this is the same result obtained using the stationarity condi-

tion given in (3.7). However, if |R−1BTλ(t)| ≥ umax, then the result of minimizing u using (3.12)

is an inadmissible value for u. Therefore, the best we can do is select u to make u+R−1BTλ(t)

as close to zero as possible. Thus,

u =

umax if R−1BTλ(t) < −umax,

−umax if R−1BTλ(t) > umax.
(3.14)

Combining (3.13) and (3.14), we find that the optimal control for the constrained input is

u =


umax if R−1BTλ(t) < −umax,

−R−1BTλ if |R−1BTλ(t)| ≤ umax,

−umax if R−1BTλ(t) > umax.

(3.15)

Note, that if |R−1BTλ(t)| ≤ umax for all t, then this is the same control as in the unconstrained

control problem.

We now assume we are in the case where |R−1BTλ(t)| ≤ umax and suppose that the costate

λ is given by

λ = PX (3.16)

for some matrix P . Substituting (3.16) into (3.5) and (3.15) for this case, we obtain

−λ′ = QX +ATPX, (3.17)

u = −R−1BTPX. (3.18)
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We then substitute (3.18) into (3.6) to find

x′ = AX −BR−1BTPX. (3.19)

Then we differentiate (3.16) to obtain

λ′ = PX ′ (3.20)

= P (AX −BR−1BTPX)

= PAX − PBR−1BTPX.

Setting this equal to (3.17), we get

−QX −ATPX = PAX − PBR−1BTPX. (3.21)

This implies

PAX − PBR−1BTPX +QX +ATPX = 0 (3.22)

(PAX +ATP − PBR−1BTP +Q)X = 0. (3.23)

Since this is true for all X, we have

PA+ATP − PBR−1BTP +Q = 0 (3.24)

which is the well known matrix Riccati equation. Thus, the feedback control is given by

u =


umax if R−1BTPX < −umax,

−R−1BTPX if |R−1BTPX| ≤ umax,

−umax if R−1BTPX > umax.

(3.25)

where P is the solution to the matrix Riccati equation given by (3.24).

3.3.1 An Application Example

As an exercise, we consider the following nonlinear system

x′′(t) + sin(x(t)) = u(t). (3.26)

Our goal is to drive the states x and x′ to zero using the control u. Let x(t) = x1(t) and

x′(t) = x2(t), and X(t) = [x1(t), x2(t)]
T . Then, we can rewrite our system in its state space
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representation as

X(t)′ = f(X(t)) +Bu(t) (3.27)

where

f(X(t)) =

 x2

− sin(x1)

 ,

B =

0

1

 .
In order to apply the LQR control, we begin by linearizing our system about the solution

X = [0, 0]T . Then our linearized system is

X ′(t) = AX(t) +Bu (3.28)

where

A =

 0 1

−1 0

 ,

B =

0

1

 .
We consider the cost functional

J(X0, u) =

∫ ∞
0

(XTQX +Ru2)dt (3.29)

where

Q =

40 0

0 30


R = 10.

We implement the LQR control in MATLAB using the lqr function to compute the solution
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P to the algebraic Riccati equation and the control gain,

K = R−1BTP. (3.30)

Figure 3.1 shows the trajectories of the states of the system for an initial state of X(0) = [2, 1]T

and the control effort. We can see that the LQR controller quickly drives the states to zero as

desired.

(a) (b)

Figure 3.1: LQR control applied to example problem: (a) state trajectories and (b) control effort.

3.4 Nonlinear Control

We now consider the nonlinear system as given in (3.1) with cost (3.2). It is shown by [10] that

the optimal nonlinear feedback control is of the form

u∗(X) = −1

2
R−1BTVX(X) (3.31)

where the function V is the solution to the Hamilton-Jacobi-Bellman (HJB) equation given by

V T
X (X)f(X)− 1

4
V T
X (X)BR−1BTVX(X) +XTQX = 0. (3.32)
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3.4.1 Power Series Based Controller

Since the HJB equation is difficult to solve analytically, the main challenge to using the optimal

control given in (3.31) is how to determine V (X). Various efforts have been made to use a

numerical approximation of the HJB equation to obtain a suboptimal control. We will follow

Garrard and others [10, 11, 12] to numerically approximate the solution of the HJB equation

from (3.32) using its power series representation:

V (X) =
∞∑
n=0

Vn(X), where Vn(X) = O(Xn+2). (3.33)

We also rewrite the nonlinear function f from (3.1) as

f(X) = A0X +
∞∑
n=2

fn(X), where fn(X) = O(Xn). (3.34)

We then substitute these expansions into the HJB equation to obtain( ∞∑
n=0

(Vn)TX

)(
A0X +

∞∑
n=2

fn(X)

)

− 1

4

( ∞∑
n=0

(Vn)TX

)
BR−1BT

( ∞∑
n=0

(Vn)X

)
+XTQX = 0.

(3.35)

Next, we separate out the terms according to powers of X to get a series of equations:

(V0)
T
XA0X −

1

4
(V0)

T
XBR

−1BT (V0)X +XTQX = 0, (3.36)

(V1)
T
XA0X + (V0)

T
Xf2(X)− 1

4
(V1)

T
XBR

−1BT (V0)X −
1

4
(V0)

T
XBR

−1BT (V1)X = 0, (3.37)

(Vn)TXA0X +

n−1∑
k=0

((Vk)
T
Xfn+1−k(X))− 1

4

n∑
k=0

((Vk)
T
XBR

−1BT (Vn−k)X) = 0, (3.38)

where n = 2, 3, 4, . . .

Equation (3.36) can be solved by

V0(X) = XTPX (3.39)

where P is the solution to the matrix Riccati equation (3.24). To solve (3.37), substitute in the

equation

(V0)X = 2PX (3.40)
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to obtain

(V1)
T
XA0X + 2XTPf2(X)− 1

2
(V1)

T
XBR

−1BTPX − 1

2
XTPBR−1BT (V1)X = 0. (3.41)

We rearrange terms to find

XT
(
AT0 (V1)X + 2Pf2(X)− PBR−1BT (V1)X

)
= 0. (3.42)

Since this is true for all X, we can then solve for (V1)X to obtain

(V1)X = −2(AT0 − PBR−1BT )−1Pf2(X). (3.43)

We take the sum of (3.40) and (3.43) as an approximation for VX . Then, substituting into

(3.31), we obtain a quadratic feedback control law:

u∗(X) = −R−1BT
[
PX −

(
AT0 − PBR−1BT

)−1
Pf2(X)

]
. (3.44)

In our DIP model f2(X) = 0, so we consider (3.38) with n = 2, and our control is

u∗(X) = −R−1BT
[
PX −

(
AT0 − PBR−1BT

)−1
Pf3(X)

]
. (3.45)

3.4.2 An Application Example

As an exercise, we again consider the example system from Section 3.3.1. To apply the power

series based controller, we first take the necessary derivatives of f to find the power series

representation

f(X(t)) =

 x2

− sin(x1)

 , (3.46)

=

 x2

−x1 + 1
6x

3
1 +O(x51)

 . (3.47)

From this we can see that the term f2(X) = 0, so we use the control

u∗(X) = −R−1BT
[
PX −

(
AT0 − PBR−1BT

)−1
Pf3(X)

]
. (3.48)

We implement this power series based control using MATLAB. The trajectories of the states

and the control effort are shown in Figure 3.2 for an initial state of X(0) = [2, 1]T . We note,
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that in comparison to the LQR controller, when using the power series based control, the states

reach zero slightly faster.

(a) (b)

Figure 3.2: Power series based control applied to example problem: (a) state trajectories and (b)
control effort.

3.5 Simulation Results

Prior to implementing either stabilization controller on the real-time DIP system, we check the

performance in simulation using MATLAB Simulink. The initial condition for the simulations

is to have the cart at rest at a position of 0 mm and both the upper and lower pendulum angles

are deflected to 1 degree, i.e. X = [0, 1, 1, 0, 0, 0]T . We require the cart’s position to track a

square wave with amplitude 50 mm and a frequency of 0.05 Hz.

Figure 3.3 shows the state responses and Figure 3.4 shows the corresponding control effort

for a simulation run with Q = diag(30, 350, 100, 0, 0, 0) and R = 0.1 using the LQR controller.

From this simulation, we can see that all values of the states and the required control effort

stay within the possible ranges for our physical apparatus. This check via the simulation is

performed for each value of Q and R that we test in real-time.
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Figure 3.3: Simulation results for the state trajectories using the LQR controller with
Q = diag(30, 350, 100, 0, 0, 0) and R = 0.1.
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Figure 3.4: Control effort for the simulation using the LQR controller with
Q = diag(30, 350, 100, 0, 0, 0) and R = 0.1.

3.6 Experimental Results

3.6.1 Experimental Apparatus

As previously stated, our experimental apparatus for the DIP system was provided by Quanser

Consulting, Inc. as shown in Figure 1.2 and described in Section 1.1. The two pendulum rods

are mounted on an IP02 linear servo unit; voltage is applied to the cart via a VoltPAQ amplifier;

and communication between the computer and the system is provided by two Q2-USB DAQ

control boards. Figure 3.5 shows a diagrammatic representation of the experiment. Detailed

technical specifications are found in [31]. The real-time experiments are run using a desktop

computer running Windows 7 with a 3.20 GHz Intel Core i5 650 processor and 4 GB of RAM.

3.6.2 Experimental Procedure

To implement our control on the real-time system we use Quanser’s Quarc software which is

run through MATLAB Simulink. Figure 3.6 shows the Simulink block diagram which governs

the real-time implementation. For the following experiments, we set the desired position of the

system to be the zero state. The control block, shown in blue, is modified to implement the
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Figure 3.5: A diagram of the experimental setup for the DIP system.

different controls for each experiment. Real-time experiments are begun with the pendulum

in the downward, stable configuration, completely at rest. The position of the system at that

time is considered to be at xc(0) = 0, α(0) = −180◦, θ(0) = 0◦. Once the real-time software is

running, we manually move the pendulum to the desired vertical, unstable equilibrium position.

When the pendulum is within 0.5 degrees of the desired α and θ position, that is, zero degrees,

the feedback control turns on and will work to stabilize the pendulum.

Figure 3.6: Simulink block diagram governing the real-time implementation of the DIP system.

We implement each controller for a variety of Q and R values to assess the performance of

the controller. In order to improve our controller’s performance, we adjust the values of Q and

R according to the following guidelines:

1. If the cart motion is too large, increase Q11 and/or decrease Q22 or Q33.
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2. If the pendulum does not meet the specifications for the angle, increase Q22 or Q33 and/or

decrease Q11.

3. If the control voltage is too large or the cart vibrates excessively, increase R and/or

decrease Q11, Q22, or Q33.

3.6.3 Results for the LQR Controller

To implement the LQR controller, we compute the solution to the matrix Riccati equation given

in (3.24) using the lqr command in MATLAB. We then use the Simulink diagram shown in

Figure 3.6 to apply the control to the real time system.

Figure 3.7 shows sample experimental results using the LQR controller with weighting

matrices Q = diag(30, 350, 100, 0, 0, 0) and R = 0.1. When performing the experiment, we allow

the system to run for some time between one and three minutes to ensure that the pendulum

system will remain stabilized, and here we show the behavior on a typical 20 second subinterval.

The behavior seen here repeats over the course of the entire experiment. We can see that the

position of the cart remains within 100 mm of the center of the track. The lower pendulum angle

stays within 8 degrees of its vertical position, and the upper pendulum angle remains within

4.5 degrees of alignment with the lower rod. Examining the input voltage used to control the

system shown in Figure 3.8, we see that, for this sample of the real-time experiment, the motor

voltage remains less than 9 V. While the voltage is staying within its saturation limits, we would

prefer the system to stay closer to the center of the track and the pendulums to be closer to

vertical. Keeping this in mind, we can then adjust the weighting matrices Q and R in pursuit

of better system performance.

We adjusted the Q and R values used in the LQR controller and summarize the results for

the state trajectories and the motor input voltage as shown in Table 3.1. We see that for some

tested controllers, the amplifier enters voltage saturation at least once resulting in a maximum

applied voltage of 10 V. However, we note that just because the maximum voltage was not at

the saturation level, this does not always correspond to a lower average or cumulative motor

voltage. For example, compare the second and third lines of the table. In the third tested case

the amplifier enters saturation at least once, but the average and cumulative motor voltages

are less than the second tested case where the amplifier did not enter saturation.

In the second tested case with Q = diag(30, 350, 100, 0, 0, 0) and R = 0.5, the maximum

control effort decreased by almost 3 V, but the average and cumulative motor voltages increased

slightly. Similarly, the average values of the other state variables also increased. This is rea-

sonable since, by increasing the weight on the control variable, the system will be unable to

maintain the same values for the state variables, and the control punishes the high maximum

motor voltage more strongly.
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Figure 3.7: Real-time experimental results for the state trajectories using the LQR controller with
Q = diag(30, 350, 100, 0, 0, 0) and R = 0.1.

36



Figure 3.8: Control effort for the real-time experiment using the LQR controller with
Q = diag(30, 350, 100, 0, 0, 0) and R = 0.1.

We also attempt to keep the cart closer to the center of the track by increasing the value of

the weight on the cart position, Q11. The resulting control is shown in the third line of Table 3.1,

and the average and maximum values for the cart position are smaller than previously seen,

though not by a significant amount. The average angular positions are slightly larger than with

the original control, but the control effort is similar on average.

The next tested case explored weighting the velocity states to see the effect on the system

performance. When larger weights were applied to the velocity states, the pendulum failed to

stabilize, so we restricted ourselves to small ones. With this control, the average and maximum

values for the states and the voltages increased slightly in comparison to the previously tested

values. However, this control was more likely to fail to stabilize the pendulum in general.

In the fifth tested case, we attempt to bring the cart position closer to the center of the track

while also weighting the motor voltage at the higher rate. Unfortunately, the higher weighting

on the cart position actually created larger oscillations in the cart motion as the control applied

larger voltages in an attempt to bring it to center, overshot the center, and used a larger voltage

to quickly bring it back, again overshooting the target position. These control values resulted

in the worst performance for the LQR control, amongst controls which succeeded in stabilizing
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Table 3.1: Maximum and average values for the states and control voltages using the LQR controller
with various values of Q and R. (xc[mm], α[degrees], θ[degrees], Vm[V]).

max |xc| max |α| max |θ| max |Vm|
Q R

avg |xc| avg |α| avg |θ| avg |Vm|

∫ 20
0 |Vm|dt

94.5884 7.5586 4.2188 8.5906
diag(30, 350, 100, 0, 0, 0) 0.1

29.4310 3.4183 1.8656 1.6646
33.2370

86.3535 7.9102 4.4824 5.8618
diag(30, 350, 100, 0, 0, 0) 0.5

34.1592 4.5009 2.3253 2.1029
41.6019

92.0634 8.7891 5.0098 10
diag(100, 300, 100, 0, 0, 0) 0.1

28.8757 4.1876 2.4168 1.9954
39.7388

79.3924 7.9980 4.1309 10
diag(100, 300, 100, 1, 1, 1) 0.1

31.4460 3.8657 1.9683 2.1865
43.5259

133.3975 15.9961 8.6133 10
diag(200, 300, 100, 0, 0, 0) 0.5

64.2152 9.6711 5.4195 4.1135
81.4041

112.4916 14.1504 6.7676 8.7765
diag(100, 300, 100, 0, 0, 0) 1.0

58.9119 8.1359 4.1689 3.3851
67.4756

the pendulum.

Lastly, we tried just increasing the weight on the control voltage to R = 1. This resulted in

poorer performance of the state variables, and this was also a control which was more likely to

fail to stabilize the pendulum at all.

3.6.4 Results for the Power Series Controller

We implement this power series based control for the same values of Q and R as were used with

the LQR controller. Figure 3.9 shows the sample experimental results using the first control,

Q = diag(30, 350, 100, 0, 0, 0) and R = 0.1, and Figure 3.10 shows the control effort. Again,

we run each experiment for between one and three minutes, and we show the behavior on a

typical 20 second subinterval. The behavior shown continues throughout the experiment. While

the control voltage Vm does reach a saturation level of 10 V a few times, it is mostly during

the last 3 seconds of the plotted time. Examining the same time period for the state trajectory

plots, we see that there is larger oscillatory motions for all states at that time. In particular,
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Figure 3.9: Real-time experimental results for the state trajectories using the power series based
controller with Q = diag(30, 350, 100, 0, 0, 0) and R = 0.1.
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Figure 3.10: Control effort for the real-time experiment using the power series based controller with
Q = diag(30, 350, 100, 0, 0, 0) and R = 0.1.

looking at the plot of the cart position, we can see that the system had a short period of more

jagged motion which is typically seen when the pendulum is very close to the zero state, as

confirmed by the plots of the upper and lower pendulum angles. This behavior occurs regularly

with the power series based controllers, but never continues for longer than five seconds before

returning to the patterns shown in the rest of the figure. Otherwise, the motion is quite similar

to that for the LQR controller with the same weighting matrices. The cart position remains

within 100 mm of the center of the track, and the lower and upper angles remain within 6

and 5 degrees of their zero states, respectively. In fact, while the average position of the cart is

farther from the center of the track than that obtained by the corresponding LQR controller,

the average values for the upper and lower pendulum angles are significantly smaller. As seen in

the first line of Table 3.2, the average angular states using the power series based controller are

half the magnitude of the those using the corresponding LQR controller. Even so, this power

series controller has average and cumulative motor input voltages only slightly higher than that

applied by the LQR controller.

Table 3.2 also shows a summary of the state trajectories and motor input voltages for

the other tested values of Q and R when using the power series based controller. The tested
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weighting matrices were also likely to cause the power amplifier to go into voltage saturation

at some point, but, in general, average and cumulative applied motor voltages were lower than

those seen with the LQR controllers.

Table 3.2: Maximum and average values for the states and control voltages using the power series
based controller with various values of Q and R. (xc[mm], α[degrees], θ[degrees], Vm[V]).

max |xc| max |α| max |θ| max |Vm|
Q R

avg |xc| avg |α| avg |θ| avg |Vm|

∫ 20
0 |Vm|dt

93.0870 5.2734 4.1309 10
diag(30, 350, 100, 0, 0, 0) 0.1

36.4901 1.7754 0.9047 1.7517
34.7876

98.6832 7.6465 3.7793 6.6544
diag(30, 350, 100, 0, 0, 0) 0.5

35.4940 3.1983 1.4241 1.6180
32.1967

72.0446 6.5918 4.5703 10
diag(100, 300, 100, 0, 0, 0) 0.1

26.3484 2.8903 1.4913 1.8682
37.2777

62.4220 4.9219 3.2520 10
diag(100, 300, 100, 1, 1, 1) 0.1

22.3453 2.0616 1.0954 1.7821
35.3103

113.5835 8.7891 5.0098 6.3668
diag(200, 300, 100, 0, 0, 0) 0.5

39.8354 4.4707 2.0734 1.9491
38.7577

93.5648 7.8223 4.9219 10
diag(100, 300, 100, 0, 0, 0) 1.0

40.0830 4.1154 1.7709 2.2386
44.6471

For the second test case where the weight R on the motor voltage was increased, we see that

the applied voltage was less than that of case one, with R = 0.1, with the power series based

controller. As expected, the values of the states were also higher on average, and thus further

from the desired state. However, the state trajectory response was better than the corresponding

LQR control for each of the pendulum angles and similar for the cart position.

Next we increased the weight on the cart position, Q11, to bring the cart closer to the center

of the track. Compared to the previous power series based controller, the cart position stayed

much closer to the center of the track, decreasing by about 10 mm to an average distance of

26.3 mm. The angular position of the lower rod averaged a larger deflection from zero, which
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makes sense since this control also has a slightly smaller Q22 weight of 300. The applied voltage

for the control was close to the first case control which had the same value for R. Compared to

the corresponding LQR controller, the state trajectories and applied motor voltage were smaller

by all measures, showing better performance.

The fourth test case included nonzero weights for the velocity states. Again, including these

weights resulted in controllers which did not always consistently stabilize the pendulum, so the

value of the weights was kept low in comparison to those used for the position states. With the

power series based controller, when stabilization was attained, the resulting performance was

better than with many of the other tested controllers as shown in the table. This controller

obtained the best results for the cart position, and was second only to the first test case for the

performance of the pendulum rods and decreasing the control effort. This was also much better

than the corresponding LQR controller. However, this was definitely the control that was most

likely to fail to stabilize the pendulum at all.

For the fifth test case, we increased the weight on the cart position as well as the weight

on the applied motor voltage. As was the case with the LQR control, the resulting power series

based control had one of the worst overall performances in terms of both the state trajectories

and the applied motor voltage, though it did perform better than the corresponding LQR

control.

Lastly, we again tested the case with Q = diag(100, 300, 100, 0, 0, 0) and R = 1.0 which

places a high weight on the applied motor voltage. This case actually had the highest maximum,

average, and cumulative applied motor voltage of the tested power series based controllers, as

well as one of the worst performances for the state trajectories, attaining similar results to

the fifth test case. The control did perform significantly better than the corresponding LQR

controller. The average cart position was almost 20 mm closer to the center of the track; the

lower pendulum angular position was 4 degrees closer to vertical, half the distance of the LQR

controller; and the upper pendulum was over 2 degrees closer to its zero state, also half the

distance of the LQR controller.

In general, we see that the power series based controller results in better stabilization per-

formance of the DIP system. The angular positions in particular are closer to the desired zero

state in both an absolute sense and on average. Also, the control effort via the motor voltage

is also smaller in most cases in terms of average and cumulative measures, though it is more

likely to go into saturation on occasion as well.
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Chapter 4

State Observation for an Inverted

Double Pendulum System

To this point, we have tacitly assumed that we have access to all of the state variables in our

model in order to compute our desired feedback controls. However, in both this and many other

applications we do not actually have the ability to measure every state variable. Therefore, in

order to compute our feedback controls we must first construct or estimate the unmeasured

state variables. This is known as the state estimator or state observer problem which is shown

diagrammatically in Figure 4.1. The partial measurements of the system model are passed as

inputs for a state estimator. This estimator outputs a full set of state variables, including the

measured states and the constructed states, to use as input for the feedback control. The control

is then used as an input for the system model.

System Model Nonlinear State Estimator

Optimizer

Predicted Outputs

(partial measurements)

Estimated States

Cost FunctionControl Constraints

Future Controls

Figure 4.1: Diagrammatic representation of the state observer problem.
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For the DIP system, our physical apparatus takes direct measurements of the three position

state variables, xc, α, and θ, using three encoders. The three velocity state variables, x′c, α
′,

and θ′, are not measured directly, so they must be estimated. We will first discuss the current

method implemented to estimate these variables and then we will examine two other proposed

estimators for this system.

4.1 Low Pass Derivative Filter

A low pass filter is a filter that works to reduce noise from a signal by passing signals with

a frequency lower than a certain cut-off frequency and attenuating, or reducing, the signal

strength of higher frequency signals. Removing some signals in this way creates a smoother

signal and improves the ability to see trends and increases the overall signal-to-noise ratio. The

particular cut-off frequency used is a design decision for the filter. In a first order low pass filter,

the signal amplitude is reduced by half each time the frequency doubles for frequencies above

the cut-off. A second order filter attenuates high frequencies more quickly, reducing the signal

amplitude to one-fourth its original value each time the frequency doubles.

The general equation for a second order low pass filter in the transfer function domain is

given by

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(4.1)

where ωn is the cut-off frequency and ζ is the damping ratio [30]. A derivative filter is then a

combination of passing a signal through a low pass filter and taking a derivative, which in the

transfer function domain is given by

H(s) =
ω2
ns

s2 + 2ζωns+ ω2
n

. (4.2)

We note that it is important to use a filter when taking a derivative of a signal since differen-

tiating a signal amplifies the noise present in that signal.

As part of the Quanser provided software Quarc which communicates with the DIP system,

a second order derivative filter is used when reading the data from the encoders to compute the

velocity states. For the IP02 linear servo unit, the given values for design of the second order

low pass filter are

ωcf1 = 100π, ζ1 = 0.9, ωcf2 = 20π, ζ2 = 0.9,

where ωcf1 is the cut-off frequency and ζ1 is the damping ratio for the encoder which measures

the cart position and ωcf2 is the cut-off frequency and ζ2 is the damping ratio for the encoders

which measure the angular positions of the pendulum rods. The resulting filter allows us to
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obtain the velocity states for the real-time experiments for use in our feedback controls as

previously discussed in Chapter 3. However, we also explored other options to estimate these

states.

4.2 Kalman Observer

The first observer we explored for the DIP system is the Kalman filter. This filter is constructed

using linear systems, so we begin by considering a general linear system:

x′(t) = Ax(t) +Bu(t)

x(0) = x0.
(4.3)

We also need to consider our output equation, that is, an equation returning what is being

observed,

y(t) = Cx(t) (4.4)

where y ∈ Rp and p is the number of observed states. In general, we can design a state observer

x̂ so that it has the same dynamics as the original system which is given by

x̂′(t) = Ax̂(t) +Bu(t) +G(y(t)− ŷ(t)) (4.5)

where

ŷ(t) = Cx̂(t). (4.6)

The term G(y(t) − ŷ(t)) is the correction term. The observer gain G is designed to drive the

state observer x̂ to the actual state x. To ensure that this happens, we define the error between

the state observer and the actual state as

e(t) = x̂(t)− x(t). (4.7)

We differentiate this equation and use the state equation (4.3) and the observer equation (4.5)

to obtain

e′(t) = x̂′(t)− x′(t)

= Ax̂(t) +Bu(t) +G(y(t)− ŷ(t))−Ax(t)−Bu(t)

= A(x̂(t)− x(t)) +G(Cx(t)− Cx̂(t))

= (A−GC)e(t). (4.8)
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If all of the eigenvalues of (A − GC) have negative real parts, then the error e will approach

zero, that is, the state observer x̂ will approach the actual state x. This is true even if there are

large errors between the initial observer and the actual state. This is known as the Luenberger

observer [4].

In the state feedback problem, we use the state observer for feedback, so

u(t) = Kx̂(t). (4.9)

We substitute this into the state equation (4.3) to obtain

x′(t) = Ax(t) +BKx̂(t)

= Ax(t) +BK(e(t) + x(t))

= (A+BK)x(t) +BKe(t).

When we combine this with the error equation (4.8), we obtain the closed-loop systemx′(t)
e′(t)

 =

A+BK BK

0 A−GC


x(t)

e(t)

 (4.10)

y(t) =

(
C 0

)x(t)

e(t)

 . (4.11)

We note that the system matrix for the closed-loop system is a block triangular matrix, and

therefore the eigenvalues of the system are the eigenvalues of A+BK and A−GC. Thus, the

design of the state feedback and the state observer can be done independently. This is known

as the separation principle [4].

We will now show that the state observer described above is the Kalman filter when white

noise processes are added to the state and output equations following the presentation in [14].

We begin by examining the linear filtering problem given by

x′(t) = Ax(t) +Bu(t) + g(t)w(t) (4.12)

yk = Cx(tk) + vk (4.13)

where measurements y are taken at discrete time points tk and w(t) and vk are uncorrelated

white noises with means zero and covariances Q̂ and R̂, respectively. To solve this problem, the
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time update equations are given by

x̂′ = Ax̂(t) +Bu(t) (4.14)

P ′ = PAT +AP + gQ̂gT (4.15)

where the first equation is for the estimate and the second equation is for the error covariance.

We solve these equations from t = tk−1 to t = tk to obtain x̂−k = x̂(tk) and P−k = P (tk). Then,

the measurement update equations are given by

Kk = P−k C
T (CP−k C

T + R̂)−1 (4.16)

x̂k = x̂−k +Kk[zk − Cx̂−k ] (4.17)

Pk = [I −KkC]P−k (4.18)

where Kk is the Kalman gain. In the state observer problem, the measurement is continuous:

z(t) = Cx(t) + v(t). (4.19)

If we assume that we use an integrating sensor, then the relationship between the discrete and

the continuous measurement is

vk =

∫ tk

tk−1

v(t)dt (4.20)

and

R̂k =
R̂(tk)

h
, (4.21)

where R̂k and R̂(t) are the covariances of the discrete and continuous white noise processes vk

and v(t), and h is the sampling period. To derive the continuous-time Kalman filter equations,

we first discretize the time update equations and then take the limit as the sampling period

h→ 0. Let us denote xk = x(tk), xk+1 = x(tk +h), and Pk = P (tk). The Euler’s approximation

for the time update equation (4.14) is given by

x̂−k+1 − x̂k
h

= Ax̂k +Buk (4.22)

which can be rearranged as

x̂−k+1 = (I + hA)x̂k + hBuk. (4.23)

By taking the Euler’s approximation for the second time update equation (4.15) and rearrang-

ing, we have

P−k+1 = Pk + hPkA
T + hAPk + hgQ̂gT . (4.24)
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For the Kalman gain Kk, we combine (4.16) and (4.21) to get

Kk = P−k C
T

(
CP−k C

T +
R̂k
h

)−1
(4.25)

Kk = hP−k C
T (hCP−k C

T + R̂k)
−1, (4.26)

Kk

h
= P−k C

T (hCP−k C
T + R̂k)

−1 (4.27)

We then take the limit as h→ 0 to obtain

lim
h→0

Kk

h
= P−k C

T R̂−1k (4.28)

and we note that

lim
h→0

Kk = hP−k C
T R̂−1k = 0. (4.29)

Now considering the covariance equations, we substitute (4.18) into the discrete time co-

variance update equation (4.24) to find

P−k+1 = [I −KkC]P−k + h[I −KkC]P−k A
T + hA[I −KkC]P−k + hgQ̂gT . (4.30)

We rearrange this as

P−k+1 − P
−
k

h
=
−KkCP

−
k

h
+ [I −KkC]P−k A

T +A[I −KkC]P−k + gQ̂gT . (4.31)

We take the limit of both sides of this equation as h→ 0 to obtain

P ′(t) = PAT +AP − PCT R̂−1CP + gQ̂gT (4.32)

which we recognize as the matrix Riccati differential equation.

We now consider the state update equation (4.17) and shift the index k by k + 1 to obtain

x̂k+1 = x̂−k+1 +Kk+1[zk+1 − Cx̂−k+1]. (4.33)

We substitute the discrete state equation (4.23) for x̂−k+1 and then rearrange to find

x̂k+1 = (I + hA)x̂k + hBuk +Kk+1[zk+1 − C(I + hA)x̂k − hCBuk] (4.34)

x̂k+1 − x̂k
h

= Ax̂k +Buk +
Kk+1

h
[zk+1 − C(I + hA)x̂k − hCBuk]. (4.35)
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Taking the limit as h→ 0 of this equation yields

x̂′(t) = Ax̂+Bu+ PCT R̂−1[z − Cx̂] (4.36)

which is the state observer equation with observer gain G = PCT R̂−1. In summary, equa-

tions (4.36) and (4.32) define the continuous-time Kalman estimator, also known as the Kalman-

Bucy filter [14].

4.2.1 An Application Example

As an exercise, we again consider the system from Section 3.3.1. Recall that the nonlinear

system was given as

x′′(t) + sin(x(t)) = u(t), (4.37)

and we now consider the output equation

y = x. (4.38)

We still want to drive the states x and x′ to zero using the control u. However, since the only

state we measure is x, we also want to construct an observer for the system to be used in the

state feedback.

We again begin by linearizing our system about the solution x = 0, x′ = 0. Let x(t) = x1(t)

and x′(t) = x2(t), and X(t) = [x1(t), x2(t)]
T . Then,

X ′(t) = AX(t) +Bu (4.39)

y = CX(t) (4.40)

where

A =

 0 1

−1 0

 ,

B =

0

1

 ,
C =

[
1 0

]
.

49



We consider the same cost functional as previously given,

J(X0, u) =

∫ ∞
0

(XTQX +Ru2)dt (4.41)

with Q = diag(400, 300) and R = 10, and will use the power series based controller from

Section 3.4.1 given by

u∗(X) = −R−1BT
[
PX −

(
AT0 − PBR−1BT

)−1
Pf3(X)

]
. (4.42)

The observer equations are given by

X̂ ′(t) = AX̂ +Bu+ P̂CT R̂−1[y − CX̂] (4.43)

where P̂ is the solution to

P̂ ′(t) = P̂AT +AP̂ − P̂CT R̂−1CP̂ + gQ̂gT . (4.44)

We implement this system and observer using MATLAB. The resulting trajectories for the

states and the control effort are shown in Figure 4.2 for initial states of the system and observer

given by X(0) = [2, 1]T and X̂(0) = [1, 3]T , respectively. We can see that the observer quickly

tracks the system and Figure 4.3 shows the absolute error between the observer and the system

states.

(a) (b)

Figure 4.2: The Kalman observer applied to the example problem using the power series based
control: (a) x1 and (b) x2.
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Figure 4.3: Absolute error between the observer and system state values for the example problem
using the Kalman observer.

We also compute this example after adding white noise to the model and output equations,

x′′(t)+ sin(x(t)) + w(t) = u(t), (4.45)

y = x+ v(t), (4.46)

where w and v are gaussian white noises with mean zero and covariances Q̂ and R̂. For the

MATLAB simulation, we let Q̂ = 1 and R̂ = 0.01. The resulting trajectories for the state and

observer variables are shown in Figure 4.4 and the absolute error is shown in Figure 4.5. We

can see that the observer does track the states well, though the absolute error is not as small

as before due to the presence of the white noise terms.
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(a) (b)

Figure 4.4: The Kalman observer applied to the example problem including white noise: (a) x1 and
(b) x2.

Figure 4.5: Absolute error between the observer and system state values for the example problem
using the Kalman observer including white noise.
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4.2.2 Application to the DIP System

For the DIP system, the output equation is

y = CX (4.47)

where the matrix C is given by

C =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 .

Thus y returns the three measured position states of our system. For our MATLAB implemen-

tation, we compute the solution to the Riccati equation using the lqr function. We run the

MATLAB simulation of the observer and the linearized DIP model with covariances Q̂ = 10−7

and R̂ = 10−6 for the white noises processes of the model and output equation, respectively. We

use the power series based controller with weighting matrices Q = diag(30, 350, 100, 0, 0, 0) and

R = 0.1 for the cost function. The resulting state trajectories for the system and the observer

are shown in Figure 4.6, and the control effort is shown in Figure 4.7.

We can see that the observer quickly and accurately tracks the states of the system for the

simulation. However, we found that when we attempted to apply this observer to the real-time

experiment, we were unable to stabilize the pendulum at all. Various values of the covariances

for the white noise processes were tried for the real-time experiment, and in an effort to better

predict what values may improve the system performance, simulations were run using the full

nonlinear DIP model presented in Chapter 2. In these simulations, we were also unable to have

the observer track the state variables. Therefore, we decided to apply a different observer made

for nonlinear systems to the DIP system.

4.3 Nonlinear Observer

We next looked at an observer that requires no linearization of our model. This observer is an

extension of the Luenberger observer for use with nonlinear continuous time systems and was

proposed by [8].

We begin by considering a single-input-single-output nonlinear system given by

x′(t) = f(x(t)) + g(x(t))u(t) (4.48)

y(t) = h(x(t)) (4.49)
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Figure 4.6: Simulation results for the states of the observer and the linearized DIP system using the
Kalman observer and the power series based controller.
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Figure 4.7: Control effort for the simulation using the Kalman observer and the power series based
controller.

where x(t) ∈ Rn is the state vector, h is a C∞ real-valued function, f and g are C∞ real-valued

vector fields, and u is a uniformly bounded input function.

Following [17], we define the derivative of a function h along a vector field f as

Lfh(x) = 〈∇h(x), f(x)〉 =
n∑
i=1

∂h(x)

∂xi
fi(x). (4.50)

To compute the k-times derivative of h along f , we write Lkfh(x) and compute it using the

recursion

Lkfh(x) = Lf (Lk−1f h(x))(x) (4.51)

L0
fh(x) = h(x). (4.52)
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We also write the observability matrix Q(x) of (4.48) and (4.49) as

Q(x) =
d

dx



h(x)

Lfh(x)

...

Ln−1f h(x)


=
dφ(x)

dx
. (4.53)

Note that, in the linear case where h(x) = Cx and f(x) = Ax, Q(x) reduces to the usual

observability matrix given by

Q(x) =



C

CA

...

CAn−1


(4.54)

since

d

dx
h(x) = C

d

dx
Lfh(x) =

dh

dx
f(x) = CA

d

dx
L2
fh(x) =

dLfh

dx
f(x) = CA2

d

dx
Ln−1f h(x) =

dLn−2f h

dx
f(x) = CAn−1.

Lastly, we say that the system of (4.48) and (4.49) has relative degree r at a point x0 if

1. LgL
k
fh(x) = 0 for all x in a neighborhood of x0 and all k < r − 1

2. LgL
r−1
f h(x0) 6= 0

as defined by [17].

We can now compute an observer for (4.48) and (4.49) which is given in the following

convergence theorem by [8].

Theorem 1 Let Q(x) be the observability matrix associated with the pair (f(x), h(x)) of func-

tions in (4.48) and (4.49). Assume u(t) is a real-valued, uniformly bounded function for all

t ≥ 0, and the triple (f(x), g(x), h(x)) has relative degree n. If Q(x) has full rank for all x ∈ Rn
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and

sup
||u||≤M

||Lnfh(φ−1(ζ1)) + uLgL
n−1
f h(φ−1(ζ1))− Lnfh(φ−1(ζ2))

− uLgLn−1f h(φ−1(ζ2))|| ≤ γg||ζ1 − ζ2||δ

with δ ∈ (0, 1], for all ζ1, ζ2 ∈ Rn and γg is the Holder constant, then there exists a finite gain

vector K ∈ Rn such that the solution of the following system of equations

x̂′(t) = f(x̂(t)) + g(x̂(t))u(t) +Q(x̂(t))−1K[y(t)− h(x̂(t))] (4.55)

x̂(0) = x̄

has the following properties:

1. for δ ∈ (0, 1)

lim
t→∞
||x̂(t)− x(t)|| ≤ ε

for any ε > 0, for all x̂(0) ∈ Rn, and

2. for δ = 1

lim
t→∞
||x̂(t)− x(t)|| = 0

for all x̂(0) ∈ Rn.

[8] then shows that the gain matrix K can be computed simply by first choosing λi such

that Real{λi} < −γ for all i = 1, . . . n. Then compute the polynomial

(λ− λ1)(λ− λ2) . . . (λ− λn) = λn +K1λ
n−1 +K2λ

n−2 + . . .+Kn (4.56)

and take K = [K1,K2, . . .Kn]T .

4.3.1 An Application Example

We will now go through a simple example taken from [17] to show how to construct this

observer. Consider a one-link robot arm whose rotary motion is controlled by an elastically

coupled actuator. This elasticity can be modeled by inserting a torsional spring at each joint.

An illustration of such a model is shown in Figure 4.8. We describe this system mathematically

using two second order differential equations: one for the mechanical balance of the actuator

shaft and one for the mechanical balance of the link. Let q1 and q2 be the angular positions of
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Figure 4.8: A one-link robot arm.

the actuator shaft and link, respectively, so the equations are

J1q
′′
1 + F1q

′
1 +

H

N

(
q2 −

q1
N

)
= T (4.57)

J2q
′′
2 + F2q

′
2 +H

(
q2 −

q1
N

)
+mgd cos(q2) = 0. (4.58)

The parameters J1 and F1 represent the inertia and viscous friction constants, H is the elasticity

constant, N is the transmission gear ratio, T is the torque produced at the actuator axis, m is

the mass of the link, g is gravity, and d is the position of the center of gravity of the link.

We let the state vector for our system be x = [q1, q2, q
′
1, q
′
2]
T and the input be u(t) = T and

rewrite the system as

x(t)′ = f(x(t)) + g(x(t))u(t)

x′(t) =



x3(t)

x4(t)

− H
J1N2x1(t) + H

J1N
x2(t)− F1

J1
x3(t)

H
J2N

x1(t)− H
J2
x2(t)− mgd

J2
cos(x2(t))− F2

J2
x4(t)


+



0

0

1
J1

0


u(t) (4.59)

For the output of the system, we choose the angular position of the link q2, that is,

y(x(t)) = h(x(t)) = x2(t). (4.60)
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We calculate the quantities

Lfh(x) =

4∑
i=1

∂h(x)

∂xi
fi(x) = f2(x) = x4

L2
fh(x) =

4∑
i=1

∂Lfh(x)

∂xi
fi(x) = f4(x)

L3
fh(x) =

4∑
i=1

∂L2
fh(x)

∂xi
fi(x) =

∂f4(x)

∂x1
f1(x) +

∂f4(x)

∂x2
f2(x) +

∂f4(x)

∂x4
f4(x)

=
H

J2N
x3 +

(
−H
J2

+
mgd

J2
sin(x2)

)
x4 −

F2

J2
f4(x).

We note that, since f4(x) does not depend on x3,

Lgh(x) = LgLfh(x) = LgL
2
fh(x) = 0

LgL
3
fh(x) =

∂L3
fh(x)

∂x3
g3(x) =

H

J1J2N
.

Therefore, the system has a relative degree n = 4 at each point x0 in the state space, a necessary

condition to use this observer. We then compute the observability matrix Q as

Q(x) =
d

dx



h(x)

Lfh(x)

L2
fh(x)

L3
fh(x)



=



0 1 0 0

0 0 0 1

H
J2N

mgd
J2

sin(x2)− H
J2

0 −F2
J2

−F2H
J2
2N

mgd
J2

cos(x2)x4 + F2H
J2
2
− F2mgd

J2
2

sin(x2)
H
J2N

−H2

J2
+ mgd

J2
sin(x2) +

F 2
2

J2
2


.

(4.61)

We can compute Q(x)−1 using Maple, and then the observer equations from (4.55) are the
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following:

x̂1
′ = x̂3 +

(
N(H −mgd sin(x̂2))

H
K1 +

F2N

H
K2 +

J2N

H
K3

)
(y − x̂2) (4.62)

x̂2
′ = x̂4 +K1 (y − x̂2) (4.63)

x̂3
′ = − H

J1N2
x̂1 +

H

J1N
x̂2 −

F1

J1
x̂3 +

1

J1
u

+

(
−Nmgd cos(x̂2)x̂4

H
K1 +

N(H −mgd sin(x̂2))

H
K2 +

F2N

H
K3 +

J2N

H
K4

)
(y − x̂2)

(4.64)

x̂4
′ =

H

J2N
x̂1 −

H

J2
x̂2 −

mgd

J2
cos(x̂2)−

F2

J2
x̂4 +K2 (y − x̂2) . (4.65)

We implement this system and observer in MATLAB with an input of u(t) = 2 + sin(t). All

constants are set equal to one for simplicity, and to compute K we let λ1 = −2, λ2 = −2.1,

λ3 = −2.2, λ4 = −2.3. We initialize the system to x(0) = [2, 1,−1.25,−1]T and the observer

to x̂(0) = [3, 2,−2, 0]T . The resulting system and observer are shown in Figure 4.9. We can see

that the observer rapidly approaches the system and accurately predicts the state variables.

4.3.2 Application to the DIP System

To apply this observer to the DIP system, we began by computing the derivatives Lfh, L
2
fh, . . . ,

L5
fh analytically using Maple. We then used Maple to compute the matrix Q and then imported

that equation to MATLAB for use in our numerical solver. Unfortunately, due to the highly

complicated nonlinear expressions in our system of equations and thus the very long expressions

in Q, attempting to evaluate the observer equations crashed the MATLAB program. Note, this

was initially tried on a MacBook Pro laptop with a 2.4 GHz Intel Core i5 processor and 16 GB

1600 MHz DDR3 of RAM.

Knowing that we ultimately want to run this observer for the real-time experiments, we next

tried to compute the x derivative necessary for Q in MATLAB using the complex step method.

We can then import the comparatively simpler analytic expressions for Lfh, L
2
fh, . . . , L

5
fh into

MATLAB and calculate Q there.

4.3.2.1 The Complex Step Method

The complex step method is a method of approximating partial derivatives using complex

functions. The method was first originated in the work of Lyness and Moler [22] and Lyness [21].

It was then rediscovered by Squire and Trapp [37] and has become popular in aerodynamic

optimizations [2, 3, 23] due to its high degree of accuracy, robustness, and surprisingly simple
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Figure 4.9: System and observer performance for the one-link robot arm.

implementation. Martins et al. compared the performance to automatic differentiation as well

as finite difference methods, and we will follow the procedure they presented [23].

Consider a complex number z = x+ iy and a function

f(z) = u(x+ iy) + iv(x+ iy) (4.66)

where f is an analytic complex function with real part u and imaginary part v. Since f is

analytic, it satisfies the Cauchy-Riemann equation and thus

ux(x, y) = vy(x, y) (4.67)

uy(x, y) = −vx(x, y). (4.68)
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Using the definition of the derivative in (4.67), we have

ux(x, y) = lim
h→0

v(x+ i(y + h))− v(x+ iy)

h
. (4.69)

Since we want to take the derivative of a real function, we now restrict the function f to the

real axis such that

y = 0 (4.70)

v(x, 0) = Im(f(x)) = 0 (4.71)

f(x, 0) = u(x, 0). (4.72)

Then we have

df

dx
= ux(x, 0) (4.73)

= lim
h→0

v(x+ ih)− v(x)

h
(4.74)

= lim
h→0

v(x+ ih)

h
. (4.75)

Thus, by taking a small h, the first derivative of f can be approximated by

df

dx
≈ Im(f(x+ ih))

h
. (4.76)

This is called the complex step derivative approximation. It has clear advantages over the

usual finite difference approximation since it requires just one function evaluation and has no

subtraction and therefore no subtraction cancelation errors.

To determine the error of this method, we consider the Taylor series expansion of f given

by

f(x+ ih) = f(x) + ihf ′(x)− h2

2!
f ′′(x)− ih3

3!
f ′′′(x) + . . . (4.77)

Taking the imaginary parts of both sides and dividing by h we obtain

f ′(x) =
Im(f(x+ ih))

h
+
h2

3!
f ′′′(x) + . . . (4.78)

Therefore, we have O(h2) error, and since there is no subtractive error, we can reduce h to a

very small value in order to achieve high accuracy for the derivative. It was shown by Banks et

al. that h could be reduced to a value of hcrit = 10−320 on machines with a machine accuracy

of 10−324 [5].

We also note that this approximation can also be extended to vector valued functions. For
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a function f : Rn → Rm and step size h, the complex step approximation of the Jacobian is

given by

J ≈ 1

h



f1(x + ihe1) · · · f1(x + ihej) · · · f1(x + ihen)

...
...

...

fp(x + ihe1) · · · fp(x + ihej) · · · fp(x + ihen)

...
...

...

fm(x + ihe1) · · · fm(x + ihej) · · · fm(x + ihen)


(4.79)

where fp is the p-th component of the function f and ej is the j-th unit vector in Rn [19].

4.3.2.2 Applying the Complex Step Method to the DIP

We implemented the complex step method in MATLAB by evaluating a function f at an imag-

inary step x + ih, taking the imaginary part of the result, and dividing by h. To compute Q
as given in (4.53), we use the complex step approximation of the Jacobian from (4.79) using

the analytic formulations of the derivatives Lfh, L
2
fh, . . . , L

5
fh computed in Maple. Using these

comparatively simpler expressions with the approximate derivatives allowed us to successfully

compute Q for given values of the state variables of x. However, individual evaluations of Q
took approximately 30 seconds to complete, much too slow to be of use for real-time imple-

mentation. We also noted at this time that for some typical values of the states, Q was very

ill-conditioned, having a condition number on the order of 106. This is concerning since our

observer formulation requires taking the inverse of Q and ill-conditioned matrices have large

errors in inverse calculations.

In an effort to find a faster way to compute Q, we also considered applying the complex

step method to compute the derivatives Lfh, L
2
fh, . . . , L

5
fh. We note that to compute these

derivatives using the complex step method and then compute Q will require a second derivative.

Consider the second row of Q:

d

dx
(Lfh(x)) =

d

dx
〈∇h(x), f(x)〉

=
d

dx

6∑
i=1

(
∂h(x)

∂xi
fi(x)

)
.

Therefore, we need to consider how to compute the second derivative using the complex step

method. Once again we take the Taylor series of the analytic function f :

f(x+ ih) = f(x) + ihf ′(x)− h2

2!
f ′′(x)− ih3

3!
f ′′′(x) +

h4

4!
f (4)(x) + . . . (4.80)
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Now to obtain an expression for the second derivative of f we take the real parts of both sides

of the equation and solve for f ′′(x) to obtain

h2

2!
f ′′(x) =

2

h2
(f(x)− Re(f(x+ ih))) +

2h2

4!
f (4)(x) + . . . (4.81)

Therefore, with O(h2) error, the complex step approximation for the second derivative is

f ′′(x) ≈ 2

h2
(f(x)− Re(f(x+ ih))) . (4.82)

This approximation now contains a difference, so we again need to be concerned about having

error due to subtractive cancellation. Knowing that for our case the matrix Q is ill-conditioned

for some values of the states, introducing errors in calculating the derivatives is highly undesir-

able.

4.4 Summary of the Observer Used for the DIP System

As we have seen in this chapter, after exploring two other options to construct an observer for the

DIP system, we have not yet found a method that works better than the Quanser provided low

pass derivative filter for the real-time implementation. We have been unable to find suitable

parameters for the Kalman observer in order to implement it on the real-time system, and

the nonlinear observer has not been computationally practical to implement. Therefore, all

presented real-time results in this work have been obtained using the low pass derivative filter

from Section 4.1. Those results can be seen in Chapter 3. For our future work we are interested

in continuing to explore adjustments that could be made to the Kalman and nonlinear observers

presented here for use with the DIP system as well as other state estimators.
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Chapter 5

Modeling of Radio Frequency

Interference for SATOPS

Applications

In this chapter, we will describe the radio frequency interference (RFI) prediction models which

are then implemented for verification in MATLAB. This work was conducted with collaborators

at The Catholic University of America, Intelligent Fusion Technology, Inc., and the Air Force

Research Laboratory and has been presented in [26] and [27].

5.1 Background

Radio frequency interference sources are classified into two categories: friendly and unfriendly.

Friendly sources are unintentional interferers whose data transmissions are within the field of

view of the victim’s SATCOM links. Figure 5.1 depicts how this sort of RFI may occur for both

the uplink and downlink cases. Depending on the transmitting carrier frequencies, these sources

can cause co-channel interference (CCI) or adjacent channel interference (ACI). See Figure 5.2

for a graphical representation of how the power and frequency of different signals interact to

create interference. Common friendly sources of RFI include personal communication systems

such as 3G, 4G, WiFi, and WiMAX. Unfriendly sources of RFI are caused by intentional

jamming signals. These could be classical jammers which use high powered signals intended to

shut down an entire USB SATOPS system operation or significantly reduce such a system’s

efficiency; or these could be smart jammers which monitor USB SATOPS data links and use

weak powered signals to degrade the quality of signal for more specific channels in use. The

models presented here are capable of detecting and predicting RFI signals from both friendly

and unfriendly sources.

65



Figure 5.1: Typical RFI scenarios involving friendly sources.

Figure 5.2: Interference bandwidth for evaluating potential RFI events and the corresponding CCI
and ACI scenarios.

In this work we also consider RFI caused by two types of interfering signals. Wideband

(WB) interference refers to signals whose energy is spread over a wide band of frequencies that

interfere with the system. Continuous wave (CW) interference refers to signals composed of

an electromagnetic wave with constant amplitude and frequency which generally causes less

interference since it is active on a particular frequency band.
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5.1.1 The RFI Detection Problem

For our RFI detection models, we assume that the interfering link is operating and that the

following four considerations are accounted for.

First is the geometric consideration. Simply put, the victim receiver must be within the

field of view of an interferer’s transmitting antenna, and, simultaneously, the interferer must be

within the field of view of the victim receiver’s antenna. This necessary geometry is easily seen

in Figure 5.1.

Next is the frequency consideration. For RFI to occur, any interfering link must have at least

part of its signal power spectrum within the victim receiver’s interference bandwidth, as seen

in Figure 5.2. This interference bandwidth is based on the power spectral density of the victim

signal. The frequency separation between the victim and interfering receivers and the spectral

spreading of the interfering signal determines the contribution to the interference power, and

the spectral spreading of the interfering signal is dependent on its power spectral density. This

is based on its waveform which includes the data rate, coding, and modulation scheme.

Then we have the interfering power consideration. In order to declare that a potential

RFI event is to occur, the RFI effects from all interfering links, both friendly and unfriendly,

must exceed the interference protection criteria (IPC). The IPC is usually determined from the

victim’s receiver operating threshold or given by national or international regulatory bodies,

such as the NTIA, FCC, or ITU.

Lastly is the interfering time consideration. The time duration (or time factor) of the effects

from all the interfering links must be sufficient to cause an unacceptable level of degradation

in the victim receiver performance in order to declare an RFI event has been detected. This

time factor should be included in the receiver’s synchronization loops in order to ensure that

the detected event is really caused by an RFI source.

The RFI detection models shown here incorporate the above mentioned considerations for

the interference links.

5.1.2 The RFI Prediction Problem

For the prediction of an RFI event, the models must incorporate the same considerations as

listed for the detection problem. The power of the interfering links must be strong enough to

exceed the IPC and must be long enough to cause the synchronization loops to go out-of-lock.

The operator may not declare an RFI event if the loops can reacquire and track the desired

signal quickly. Furthermore, the following four considerations must also be accounted for in the

prediction problem.

First we have the carrier tracking performance consideration. In order for an RFI event to

occur, the interference signals must exceed the carrier threshold power level and remain within
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the carrier tracking loop bandwidth for a certain amount of time before the carrier loop drops

lock. Also, the carrier loop must be unable to require the carrier signal within a particular time

window.

Next we have the sub-carrier tracking performance consideration. This is the same as the

previous carrier tracking consideration but applied to the sub-carrier instead.

Next is the symbol timing synchronization performance consideration, which is again similar

to the previous considerations now applied to the symbol signal-to-noise ratio (SNR) and the

symbol synchronization loop.

Finally, we have the hop/de-hop/spread/de-spread consideration. This applies to victim

receivers using waveforms that employ the spread spectrum or frequency hop technique. With

this technique, the signal will rapidly hop between multiple sub-frequencies of a particular

frequency band in a predetermined order. This helps protect the signal from interference at a

specific frequency since the signal only uses a specific frequency for a short amount of time and

is very common for both military and civilian use. Taking this into account, for an RFI event

to occur the interfering signals must stay within the spreading or hop bandwidth long enough

to cause the de-spread or de-hop synchronizer to drop lock.

The synchronization loops are implemented as phase locked loops (PLL). In general, a PLL

is a feedback control system which generates an output signal whose phase is related to that of

the input signal. Therefore they can be used to synchronize signals by locking on to the phase

of the signal we want to track. PLLs contain a phase detector, a voltage controlled oscillator

(VCO), and a loop filter linked via feedback. A block diagram of a basic PLL is shown in

Figure 5.3. The periodic reference signal is compared to the output of the VCO using the phase

Phase Detector Loop Filter

Voltage
Controlled
Oscillator

Signal Phase-Locked
to Reference

Reference
Signal

Figure 5.3: A general block diagram of a PLL.
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detector. This output is then low pass filtered through the loop filter and used to drive the

VCO. By doing this, the internal oscillator in the loop will lock onto the reference sinusoid so

that the frequency and phase differences go to zero. Therefore the internal sinusoid is a filtered

version of the reference one [1]. The PLL used in this research has additional features to remove

and reduce the loop noise and smooth the tracking phase error in order to create improved

carrier tracking performance, namely, an additional low-pass filter and phase smoother.

For the synchronization loops, we evaluate their performance in terms of the tracking jitter.

This is the difference between the true signal and the tracked signal returned by the synchro-

nization loop. We know that as RFI power increases, the tracking jitter grows, so the RFI

prediction models must take this into account.

5.1.3 Existing RFI Tools

Many RFI analysis tools are available to analyze the impacts of RFI on digital communication

systems. However, most of these do not consider the time factor when computing the bit or

carrier signal-to-noise ratio (SNR) degradation. Rather they just assume that the RFI power

increases the receiver noise floor. A limited number of tools do consider the time factor by

incorporating SATOPS schedules with the IPC to identify data blockages due to RFI, but they

still use the assumption that RFI power increases the receiver noise floor. None of the surveyed

tools consider the effects of RFI on synchronization loops as explained in Section 5.1.2. For a

list of existing RFI tools and their capabilities see [26].

5.2 RFI Analytical Models for Acquisition Time

The first set of models we examined concern carrier acquisition performance. This refers to

the ability of a synchronization loop, the PLL, to reacquire a signal after an RFI event and

is broken into two modes: carrier frequency acquisition and carrier phase acquisition. We will

first consider the modes without RFI and then in the presence of CW or WB RFI in order to

compute the carrier acquisition time.

5.2.1 Carrier Frequency Acquisition Mode

The most commonly used technique for the frequency acquisition mode is the frequency sweep

technique. First, we select the frequency sweep rate, ∆ω̇ based on the estimated received carrier

signal-to-noise power ratio, or carrier SNR. This is derived based on simulations and actual

operational data. Next, the uplink command carrier frequency is swept using the selected sweep

rate during the carrier acquisition. Then, once the command signal carrier frequency and the
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receiver PLL VCO frequency coincide, the PLL will lock onto the carrier signal. This assumes

that the selected sweep rate is not too large.

For the frequency sweep technique, the carrier frequency acquisition time, TFreq is deter-

mined via simulation results using operational conditions from practical SATOPS missions and

given by

TFreq =
∆ωUn
∆ω̇

=
2πfUn

∆ω̇
(5.1)

where fUn is the frequency uncertainty due to factors such as the Doppler effect or VCO drift.

We also have that the sweep rate, given in units of Hz/sec, is

∆ω̇ =


ω2
N

[
1−

(
1

LSNRAcq−2

)1/2]
, for 3 < LSNRAcq < 4.75

ω2
N

[
1−

(
2

LSNRAcq−4

)1/2]
, for 6 < LSNRAcq < 9.5

ω2
N
2 , for LSNRAcq ≥ 9.5

(5.2)

where LSNR is the loop signal-to-noise ratio (SNR) and the natural frequency of the loop ωN

is

ω2
N =

2BLAcq
ζ

[
1 +

1

ζ2

]
, (5.3)

where ζ = 0.707 is the loop damping factor and BLAcq is the acquisition loop bandwidth. During

acquisition, the loop SNR is defined as

LSNRAcq =
J2
0 (m)PT
N0BLAcq

(5.4)

where the ratio PT /N0 is the total transmitted power-to-noise ratio, J0 is a Bessel function of

the first kind, and m is the command modulation index.

5.2.2 Carrier Phase Acquisition Mode

The most commonly used techniques for the carrier phase acquisition mode are carrier phase

sweep and synchronization (or sync) word. For the carrier phase acquisition process, we first

determine T0 which is the time required for the PLL to estimate the initial phase θ0 and Te

which is the time required for the PLL to reach the steady state phase error θe. Then the carrier

phase acquisition time, TPAcq, is the sum

TPAcq = T0 + Te. (5.5)

Using the sync word or phase sweep techniques to estimate the initial phase significantly im-

proves the carrier phase acquisition time.
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5.2.2.1 Sync Word Technique

A typical carrier phase acquisition technique is to use sync word, also called alternating sequence

or acquisition sequence, to estimate the initial phase of the signal. We assume that the Doppler

frequency and timing are known and that the command data is formatted as a non-return-to-

zero (NRZ) rectangular pulse, that is,

p(t) =

1 if 0 ≤ t ≤ Tb,

0 otherwise
(5.6)

where Tb is the bit time duration. We also assume that the sync word has length L, is known,

and is transmitted using direct modulation with the word sequence. The modulated carrier

signal is received at the SATOPS USB demodulator and processed by a maximum likelihood

phase estimator. As given in [24], the performance of the phase estimator is expressed in terms

of the variance of the estimated carrier phase, θc,

σ2
θ̂c

= var(θ̂c − θc) =
1

2L

N0

(2J2
1 (m)PTTb)

=
1

2L

1

BitSNRAcq
(5.7)

where BitSNRAcq is the bit signal-to-noise ratio. Note that this equation as a function of the

bit SNR is only valid for acquisition mode, and can be used to determine the length L of the

sync word using a given bit SNR and a specified variance of the estimated carrier phase. Then,

the carrier phase acquisition time, TPhaseSync, is given by

TPhaseSync =
1

2BLAcq
+ LTb. (5.8)

The length of the sync word must be chosen so that the variance of the carrier phase estimator

is small and the time it takes the PLL to reach the steady state phase error is about 1/2BAcq.

This ensures the probability of synchronization failure at 10−8.

5.2.2.2 Phase Sweeping Technique

The carrier phase acquisition time using the phase sweeping technique is based on simulation

results from various sources and found to be

TPhaseSwp =


1

2BLAcq
+ 12.2

4BLAcq
for LSNRAcq = 10 dB,

1
2BLAcq

+ 8
4BLAcq

for LSNRAcq = 14 dB.
(5.9)
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The total carrier acquisition time is then calculated as the sum

TAcq = TFreq + TPhase (5.10)

where TFreq is given in (5.1) and TPhase is given in (5.8) or (5.9), depending on the technique

used by the SATOPS USB receiver.

5.2.3 PLL Acquisition in the Presence of CW RFI

We now consider the impacts of CW RFI on the PLL acquisition performance. The CW RFI

signal is defined as

I(t) =
√

2PI cos(2π(fc + ∆fc)t+ θI) (5.11)

where PI is the RFI power, ∆fc is the RFI frequency offset from the desired carrier frequency

fc, and θI is the phase of the RFI signal.

For CW RFI, the effects of the RFI depend on the RFI carrier frequency. Case 1 is out-of-

band interference which occurs when the RFI carrier frequency is outside the carrier acquisition

loop bandwidth, BLAcq. Case 2 is in-band interference and happens when the RFI carrier

frequency is within the carrier acquisition loop bandwidth.

In the presence of CW RFI, the loop SNR is given by

LSNRCW =
LSNRAcq

∆AcqCW
(5.12)

where ∆AcqCW is a signal degradation factor determined by

∆AcqCW =

1 for Case 1,

1 + INR for Case 2.
(5.13)

INR is the interference power-to-noise ratio given by

INR =
PI
N0

. (5.14)

For Case 1, ∆fc > BLAcq, and from (5.12), the loop SNR in the presence of CW RFI is the

same as the acquisition loop SNR. Thus, the carrier acquisition time TAcq remains the same as

the noninterference case presented previously.

For Case 2, ∆fc < BLAcq, and the carrier acquisition time will be longer due to the degra-

dation of the loop SNR by a factor of ∆AcqCW . Therefore, in the calculations of Sections 5.2.1

and 5.2.2, we substitute the value of LSNRCW for LSNRAcq.

We note that in the presence of CW RFI, the performance of the maximum likelihood phase
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estimator given in (5.7) becomes

σ2
θ̂c,CW

=
1

2LCW

∆AcqCW

BitSNRAcq
. (5.15)

In order to compensate for the presence of CW RFI, we can increase the length of the sync

word, LCW , or the bit SNR.

5.2.4 PLL Acquisition in the Presence of WB RFI

Next we consider the impacts of WB RFI on the PLL acquisition performance. The WB RFI

signal is defined as

I(t) =
√

2PIdI(t) cos(2π(fc + ∆fc)t+ θI) (5.16)

d(t) =

∞∑
n=−∞

Inp(t− nT1 − τ) (5.17)

where PI is the RFI power, TI is the RFI bit duration, ∆fc is the frequency off set from

the desired carrier frequency fc, and θI is the phase of the RFI signal. The equation d(t)

characterizes the type of RFI where In is an RFI data sequence, p(t) is an RFI unit amplitude

rectangular pulse of duration TI , and τ is the time asynchronism of the RFI with respect to the

desired signal. For WB RFI, In is an independent and identically distributed sequence taking

on an equiprobable value of ±1, and TI ≥ Tb, the bit duration of the desired signal.

As in the case for CW RFI, the loop SNR in the presence of WB RFI has the form

LSNRWB =
LSNRAcq

∆AcqWB
. (5.18)

For WB RFI, the signal degradation factor is given by

∆AcqWB = [1 + INR · SRFI−WB(BDL, fUn)] (5.19)

where

SRFI−WB(f, fUn) =
1

2
[SI(f − fUn) + SI(f + fUn)] (5.20)

SI(f) = TI

∫ BAcq−DL

−BAcq−DL

[
sin(πfTI)

πfTI

]2
df. (5.21)

To obtain the equations for the carrier acquisition time in the presence of WB RFI, we substitute

LSNRWB in for LSNRAcq in the equations of Sections 5.2.1 and 5.2.2. Again, we note that in

the presence of WB RFI, the performance of the maximum likelihood phase estimator given
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in (5.7) becomes

σ2
θ̂c,WB

=
1

2LWB

∆AcqWB

BitSNRAcq
. (5.22)

To compensate for the WB RFI, we can increase the length of the sync word or the bit SNR,

just as in the case with CW RFI.

5.2.5 Simulation Results for Verification and Validation

The analytic models for the total carrier acquisition time described in this section were imple-

mented in MATLAB for purposes of verification and validation. Multiple operating scenarios

were tested to ensure that the models were accurate for the needs of a typical USB SATOPS

Command system. These MATLAB programs were implemented on an Apple MacBook Pro

laptop.

For the assessment of the impact of CW and WB RFI on PLL acquisition performance, we

use the parameters shown in Table 5.1. Note that, in the simulations, the interference power-

Table 5.1: Parameters for the simulations of PLL acquisition performance: Carrier acquisition time.

Symbol Description Value

fc Signal carrier frequency 2075 MHz

m Command modulation index 1.1 rad

σ Threshold carrier jitter π/2 rad

Rb Command bit rate 2 Kbps

RI Interference data bandwidth 1 Hz

to-noise ratio, INR, is calculated as the sum of the interference-to-signal power ratio, ISR, and

the received signal-to-noise ratio, SNR, that is

INR = ISR + SNR. (5.23)

Figure 5.4 shows the PLL acquisition performance in the presence of CW RFI at ISR = −40

dB. The plot in Figure 5.4a shows the loop SNR as a function of the received SNR. Figure 5.4b

shows the carrier frequency acquisition time as a function of the loop SNR both with and

without CW RFI. We can see that there is only a small difference between the time acquisition
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(a) (b)

(c) (d)

Figure 5.4: Carrier acquisition times vs. loop SNR without RFI and with CW RFI at ISR = -40 dB.

for the two signals with this level of interference signal power. The plot in Figure 5.4c shows the

carrier phase acquisition time as a function of loop SNR. The acquisition time in the presence

of CW RFI is larger than that with no RFI as we expect. Lastly, Figure 5.4d shows the total

carrier acquisition time which is the sum of the results of Figures 5.4b and 5.4c.

We then consider the case for CW RFI at ISR = -25 dB. Figure 5.5 shows the corresponding

series of plots. We can see that even with this larger RFI source, the results are similar to those

from the first case. The carrier acquisition time is slightly larger for this case as we expect, but

it is not a large change.

We next consider each of these cases for signals in the presence of WB RFI. First, we

consider the case with ISR = -40 dB. The resulting acquisition times are shown in Figure 5.6.

We notice that while the carrier frequency acquisition times with and without WB RFI are
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(a) (b)

(c) (d)

Figure 5.5: Carrier acquisition times vs. loop SNR without RFI and with CW RFI at ISR = -25 dB.

close, the carrier phase acquisition time shown in Figure 5.6c is over 0.5 seconds longer in the

presence of WB RFI than not. This is also larger than what we saw in the case of CW RFI

which is what we would expect.

Lastly, we present the carrier acquisition times for a signal in the presence of WB RFI at

ISR = -25 dB. The results are shown in Figure 5.7. We see that the general behavior of the

acquisition time is the same as before, but the values are slightly larger, which is reasonable for

the higher value of the ISR.
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(a) (b)

(c) (d)

Figure 5.6: Carrier acquisition times vs. loop SNR without RFI and with WB RFI at ISR = -40 dB.

5.3 Analytical Models for RFI Detection

We now consider models for RFI detection which will also calculate the tracking jitter errors

and the bit error rate (BER) due to the presence of RFI.

5.3.1 The PLL Lock Detector

Figure 5.8 shows the way that a PLL lock detector is integrated with a PLL in order to

acquire and track the carrier signal. The PLL starts in the acquisition mode in order to acquire

the carrier signal component. The phase lock loop monitors the carrier phase error over an

observation time, TL. If the phase error is less than a threshold value σThcar, then the PLL will

switch to tracking mode. The PLL tracking loop bandwidth is then set according to the product
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(a) (b)

(c) (d)

Figure 5.7: Carrier acquisition times vs. loop SNR without RFI and with WB RFI at ISR = -25 dB.

BLTb ≤ 0.01 where BL is the loop bandwidth and Tb is the command data bit duration.

The value of the threshold σThcar is selected in order to have a probability of lock greater

than 90%. It is chosen by the relationship

σThcar =

[
1√

LSNREff

+ σmargin

]
(5.24)

where LSNREff is the effective loop SNR and σmargin is the phase margin error. The effective

loop SNR is the loop SNR in the presence of a noisy carrier reference for a specified bit error

rate (BER) performance. The phase margin error is specified by the communications designer

in order to take into account phase jitters caused by factors such as VCO drift and residual

Doppler, and in practice it is 5 to 10% of the value of 1/
√

LSNREff .
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Figure 5.8: A typical PLL lock detector used by SATOPS satellites.

We use the effective loop SNR that is evaluated in the absence of RFI in order to select

the threshold value σThcar. It is assumed that the PLL tracking error follows the Tikhonov, or

circular normal, distribution and that the carrier tracking phase error is small. Following [42],

we can approximate the uncoded BER as

BERRL =
1

2
erfc(

√
BSNR0) +

1

2

√
1

π
BSNR0σ

2
θe
−BSNR0 (5.25)

where the bit SNR is given by

BSNR0 = 2J2
1 (m)

PTTb
N0

. (5.26)

As before, we define the carrier tracking loop SNR as

LSNR0 = J2
0 (m)

PT
N0BL

(5.27)

and the carrier tracking jitter

σ2θ =
1

LSNR0
. (5.28)

Then we can solve (5.27) for the ratio PT /N0 and substitute into (5.25) and (5.26) to rewrite
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the uncoded BER as

BERRL =
1

2
erfc(

√
αBLTbLSNR0) +

1

2

√
1
παBLTbLSNR0

LSNR0
e−αBLTbLSNR0 (5.29)

where

α = 2
J2
1 (m)

J2
0 (m)

. (5.30)

The first term of (5.29) represents the ideal BER performance with perfect carrier tracking,

and the second term gives the BER degradation due to imperfect carrier tracking due to the

presence of gaussian white noise. This imperfect carrier tracking is the tracking jitter, σ2θ .

We can now see that the effective loop SNR is defined from the first term of (5.29) as

LSNREff = αBLTbLSNR0. (5.31)

Therefore, we can rewrite (5.29) as

BERRL =
1

2
erfc(

√
LSNREff ) +

αBLTb
2

√
1
πLSNREff

LSNREff
e−LSNREff . (5.32)

The effective loop SNR needs to be chosen so that the uncoded BER meets a specified threshold

BER value, typically around 10−9.

5.3.2 PLL Tracking Jitter in the Absence of RFI

The performance of the PLL is characterized by the variance of the tracking phase error, σ2θc ,

also known as the tracking jitter. In the absence of RFI, this is given by

σ2θc =
∆

LSNR
(5.33)

where LSNR is the loop SNR given by

LSNR =
PC
N0BL

, PC = J2
0 (m)PT . (5.34)
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Note that PC/N0 is the carrier SNR. Then we define the factor ∆ as

∆ =

[
1 +

PC
N0

SCD(1, 0)

]
(5.35)

SCD(k, f) =
∞∑

k=1,k=odd

J2
k (m)[Sd(f − kfSC) + Sd(f + kfSC)] (5.36)

Sd(f) = Tb

∫ BL

−BL

[
sin(πfTb)

πfTb

]2
df (5.37)

Tb =
1

Rb
. (5.38)

When fSC ≥ 4Rb, σ
2
θc

can be approximated as

σ2θc ≈
1

LSNR
, (5.39)

and we will assume this case for the remainder of the chapter. In practice, the loop SNR is set

at around 11 dB or more to ensure reliable tracking performance. We now consider how the

tracking jitter is changed by the presence of RFI.

5.3.3 PLL Tracking Jitter in the Presence of CW RFI

Recall from Section 5.2.3 that the CW RFI signal is given as

I(t) =
√

2PI cos(2π(fc + ∆fc)t+ θI) (5.40)

where PI is the RFI power, θI is the RFI phase, and ∆fc is the RFI frequency offset from the

desired carrier frequency, fc. The variance of the tracking phase error in the presence of CW

RFI is given by

σ2θc,CW =
∆CW

LSNR
. (5.41)

As we saw before, the value of ∆ is dependent on whether or not the RFI carrier frequency is

within the carrier loop bandwidth, BL, and is given by

∆CW =

1 if ∆fc > BL

1 + INR if ∆fc < BL
(5.42)

where INR is the interference-to-noise ratio given by PI/N0. We also note that when the INR

is larger than the carrier SNR, the PLL will drop lock on the command signal and lock onto

the CW RFI signal instead.
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In the presence of CW RFI, the effective loop SNR is calculated as

LSNREff,CW =
LSNR

∆CW
. (5.43)

Therefore, to calculate the SATOPS BER performance in the presence of CW RFI and gaussian

white noise, we can use this effective loop SNR in (5.32).

5.3.4 PLL Tracking Jitter in the Presence of WB RFI

Recall from Section 5.2.4 that the WB RFI signal is given by

I(t) =
√

2PIdI cos(2π(fc + ∆fc)t+ θI) (5.44)

d(t) =

∞∑
n=−∞

Inp(t− nTI − τ). (5.45)

The variance of the tracking phase error in the presence of WB RFI is given by

σθc,WB =
∆WB

LSNR
. (5.46)

Then the degradation factor ∆WB is given by

∆WB = 1 + INR · SWB(BL, TI ,∆fc) (5.47)

where INR is the ratio PI/N0 and

SWB(f, TI ,∆fc) = SRFI(f −∆fc) + SRFI(f + ∆fc) (5.48)

SRFI(f) = TI

∫ BL

−BL

[
sin(πfTI)

πfTI

]2
df. (5.49)

We can again compute the effective loop SNR in the presence of WB RFI as

LSNREff,WB =
LSNR

∆WB
. (5.50)

Then, the SATOPS BER performance in the presence of WB RFI and gaussian white noise can

be computed by using this effective loop SNR in (5.32).

5.3.5 Simulation Results for Verification and Validation

We implement the above models in MATLAB for purposes of verification and validation. The

parameters used to obtain these results are shown in Table 5.2.
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Table 5.2: Parameters for the simulations of PLL acquisition performance: Tracking error and BER.

Symbol Description Value

m Command modulation index 1.1 rad

Rb Command bit rate 2 Kbps

ISR Interference power-to-signal ratio -10 dB

RI Interference data bandwidth 10 bps

BL Loop bandwidth 10 Hz

σmargin Phase error margin 2 deg

Figure 5.9 shows the PLL tracking jitter in the absence of RFI as well as in the presence of

either CW or WB RFI as a function of the loop SNR with ∆fRFI = 5 Hz. The tracking error

in the presence of RFI is larger for all values of the loop SNR as we would expect. We also see

that the tracking performance of the PLL is somewhat worse in the presence of CW RFI as

Figure 5.9: PLL tracking jitters in the absence of RFI and the presence of CW and WB RFI signals
with ∆fRFI = 5 Hz.
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compared to WB RFI.

We also show the PLL tracking jitter in each RFI case with ∆fRFI = 10 Hz in Figure 5.10.

The tracking jitter is still worse for the case of RFI than in the case with no RFI, and the

presence of CW RFI has a greater negative impact than that of WB RFI for the same operating

conditions. However, the performance in the presence of WB RFI is better than the previous

case with ∆fRFI = 5 Hz. This is also expected since the RFI signal frequency is further away

from the center carrier frequency.

Figure 5.10: PLL tracking jitters in the absence of RFI and the presence of CW and WB RFI signals
with ∆fRFI = 10 Hz.

We next consider the BER performance due to gaussian white noise and the RFI signal as

functions of the loop SNR as described in (5.32). Figure 5.11 shows the BER performance with

and without either CW or WB RFI with ∆fRFI = 5 Hz. From Figure 5.11a we can see that

the BER decreases with increased loop SNR and that the performance in the presence of RFI

is much worse, particularly for higher values of loop SNR. Figure 5.11b shows just the BER

performance in the presence of each RFI type for detail. Again, the BER performance under

CW RFI is worse than the performance with WB RFI under the same operating conditions.

Figure 5.12 shows the BER performance without and in the presence of each type of RFI

with ∆fRFI = 10 Hz. As we saw with the corresponding plots of the tracking jitters, the BER
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(a) (b)

Figure 5.11: BER in the absence of RFI and the presence of CW and WB RFI signals with
∆fRFI = 5 Hz. (b) shows detail on the BER in the presence of CW and WB RFI.

(a) (b)

Figure 5.12: BER in the absence of RFI and the presence of CW and WB RFI signals with
∆fRFI = 10 Hz. (b) shows detail on the BER in the presence of CW and WB RFI.

performance of the PLL in the presence of RFI is worse than without, and the performance with

CW RFI is worse than that with WB RFI under the same conditions. Comparing Figure 5.12b

with Figure 5.11b, we see that the BER performance in the presence of WB RFI is better with

∆fRFI = 10 Hz than with ∆fRFI = 5 Hz, as we expect since the center frequency of the signal

is farther from the RFI signal.
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Chapter 6

Conclusion

6.1 The Double Inverted Pendulum System

The stabilization of a double inverted pendulum is a classic nonlinear control problem. Several

control design approaches have been applied to the stabilization of the DIP, but almost all of

them have only presented numerical simulations of the system and control performance and

have not provided real-time experimental implementation on a physical system.

In Chapter 2, we modeled the inverted double pendulum and verified the model against our

physical apparatus. We also performed parameter estimation to improve the performance of

our model relative to the experimental results.

In Chapter 3, we considered two methods for the stabilization of the DIP system in its

unstable, vertical position: LQR control and a power series based control. Each control was

applied to our physical system for real-time experiments, taking into account viscous damping

and the physical limitations of our system due to a finite track length and the voltage saturation

limits on the power amplifier, and were successful in stabilizing the DIP. In general, the power

series control used a smaller control effort measured via the average or cumulative voltage

applied. However, the LQR control was less likely to have the voltage reach the saturation level

at 10 V, though the voltage did go into saturation when using both control methods during

tests. The power series based controller also had generally better performance as shown by

lower average and maximum deviations from the unstable equilibrium state.

In Chapter 4, we examined possible observers to use with the physical DIP system since

the velocity states are not directly measured. This has not been considered in the literature,

primarily due to the fact that typically only numerical simulations are performed and full state

feedback is assumed. We discussed the current method of attaining the velocity states for use

in the feedback control by using a low pass derivative filter. Then we considered a Kalman

observer, though we were unable to determine parameter values for the Kalman observer which
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would result in the stabilization of the pendulum. We next examined a nonlinear observer

as described in [8]. This observer has been proposed as an easy to implement observer for

nonlinear systems. Constructing this observer required computing a series of derivatives of our

system which were too complex to include analytically. Instead we implemented the complex

step method to approximate the necessary derivatives. However, this still took too long to

compute to be practical for real-time implementation. Therefore all presented results, as shown

in Chapter 3, use the low pass derivative filter to estimate the velocity states.

In the future, we would be interested in designing and applying other controls to the DIP

system for comparison with those presented here such as the state dependent Riccati equation.

We would also like to continue modifying the controls already presented in order to obtain

better stabilization results. Moreover, we would like to incorporate other effects in the model

such as the static friction between the cart wheels and the track. Additional work will also be

done on the observer portion of this problem in order to design an observer which can accurately

estimate the velocity states for use in the state feedback control.

6.2 Radio Frequency Interference Analytic Models

Chapter 5 considered a series of analytic models to detect and predict RFI within SATOPS sys-

tems. These models include the behavior of the carrier synchronization loops when calculating

bit or carrier signal-to-noise ratio degradation due to interference. This allows them to include

the time factor involved with the synchronization loops which is rarely included in the currently

available RFI analysis tools. Models for the carrier acquisition time, the tracking errors, and

the bit error rate performance of a PLL in the absence of RFI as well as in the presence of

CW or WB RFI were presented. These models were then implemented in MATLAB and tested

using actual operating conditions in order to verify and validate the models. The models were

also implemented into an RFI analysis tool produced by our collaborators at Intelligent Fusion

Technology, Inc. These models focused on carrier tracking performance. In the future, we would

like to implement similar models for subcarrier systems.
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Appendix A

DIP Model Parameters

A.1 Nomenclature

Table A.1: Nomenclature for the DIP system model.

Symbol Description

α Angle of Lower Pendulum Rod Relative to Upright Position

α′ Lower Pendulum Angular Velocity

α′′ Lower Pendulum Angular Acceleration

Bc Viscous Damping Coefficient as seen at the Motor Pinion

B1 Viscous Damping Coefficient as seen at the Lower Pendulum Axis

B2 Viscous Damping Coefficient as seen at the Upper Pendulum Axis

Fc Cart Driving Force Generated by the DC Motor

g Gravitional Constant

I1 Moment of Inertia of the Lower Pendulum Rod at its Center of Gravity

I2 Moment of Inertia of the Upper Pendulum Rod at its Center of Gravity

Jm Rotational Moment of Inertia of the DC Motor’s Output Shaft
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Table A.1 – (continued)

Symbol Description

Kg Planetary Gearbox Gear Ratio

`1 Length of Lower Pendulum from Pivot to Center of Gravity

`2 Length of Upper Pendulum from Hinge to Center of Gravity

L1 Total Length of Lower Pendulum

L Lagrangian

Mc Cart Mass

Mh Hinge Mass

M1 Lower Pendulum Mass

M2 Upper Pendulum Mass

rmp Motor Pinion Radius

Tct Translational Kinetic Energy of the Cart

Tcr Rotational Kinetic Energy Due to the Cart’s DC Motor

Tc Total Kinetic Energy of the Cart

T1t Translational Kinetic Energy of the Lower Pendulum

T1r Rotational Kinetic Energy of the Lower Pendulum

T1 Total Kinetic Energy of the Lower Pendulum

T2t Translational Kinetic Energy of the Upper Pendulum

T2r Rotational Kinetic Energy of the Upper Pendulum

T2 Total Kinetic Energy of the Upper Pendulum

Th Total Kinetic Energy of the Hinge

TT Total Kinetic Energy of the System
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Table A.1 – (continued)

Symbol Description

V1 Potential Energy of the Lower Pendulum

V2 Potential Energy of the Upper Pendulum

Vh Potential Energy of the Hinge

VT Total Potential Energy of the System

xc Cart Linear Position

x′c Cart Velocity

x′′c Cart Acceleration

xh Absolute x-coordinate of the Hinge’s Center of Gravity

x1 Absolute x-coordinate of the Lower Pendulum Rod’s Center of Gravity

x2 Absolute x-coordinate of the Upper Pendulum Rod’s Center of Gravity

x′h x-component of the Velocity of the Hinge’s Center of Gravity

x′1 x-component of the Velocity of the Lower Pendulum Rod’s Center of Gravity

x′2 x-component of the Velocity of the Upper Pendulum Rod’s Center of Gravity

yh Absolute y-coordinate of the Hinge’s Center of Gravity

y1 Absolute y-coordinate of the Lower Pendulum Rod’s Center of Gravity

y2 Absolute y-coordinate of the Upper Pendulum Rod’s Center of Gravity

y′h y-component of the Velocity of the Hinge’s Center of Gravity

y′1 y-component of the Velocity of the Lower Pendulum Rod’s Center of Gravity

y′2 y-component of the Velocity of the Upper Pendulum Rod’s Center of Gravity

θ Angle of Upper Pendulum Rod Relative to Lower Pendulum Rod’s Position

θ′ Upper Pendulum Angular Velocity
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Table A.1 – (continued)

Symbol Description

θ′′ Upper Pendulum Angular Acceleration

ωc Motor Shaft Angular Velocity

A.2 Parameter Values

Table A.2: Model parameters for the DIP system as provided by Quanser.

Symbol Description Value

Bc Viscous Damping Coefficient as seen at the

Motor Pinion

5.4 N.m.s/rad

B1 Viscous Damping Coefficient as seen at the

Lower Pendulum Axis

0.0024 N.m.s/rad

B2 Viscous Damping Coefficient as seen at the

Upper Pendulum Axis

0.0024 N.m.s/rad

g Gravitational Constant 9.81 m/s2

I1 Moment of Inertia of the Lower Pendulum Rod

at its Center of Gravity

2.6347E-004 kg.m2

I2 Moment of Inertia of the Upper Pendulum

Rod at its Center of Gravity

1.1987E-003 kg.m2

Jm Rotational Moment of Inertia of the DC

Motor’s Output Shaft

3.9E-007 kg.m2

Kg Planetary Gearbox Gear Ratio 3.71

Km Back-ElectroMotive-Force Constant 0.00767 V.s/rad

Kt Motor Torque Constant 0.00767 N.m/A
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Table A.2 – (continued)

Symbol Description Value

`1 Length of Lower Pendulum from Pivot to

Center of Gravity

0.1143 m

`2 Length of Upper Pendulum from Hinge to

Center of Gravity

0.1778 m

L1 Total Length of Lower Pendulum 0.2096 m

L2 Total Length of Upper Pendulum 0.3365 m

Mc Cart Mass 0.57 kg

Mh Hinge Mass 0.170 kg

Mw Extra Weight Mass 0.37 kg

M1 Lower Pendulum Mass 0.072 kg

M2 Upper Pendulum Mass 0.127 kg

Rm Motor Armature Resistance 2.6 Ω

rmp Motor Pinion Radius 6.35E-003 m
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