
ABSTRACT

LEON, LIDER STEVEN. Parameter Subset Selection and Subspace Analysis Techniques Applied to
a Polydomain Ferroelectric Material Phase-Field Energy Model. (Under the direction of Dr. Ralph
Smith).

In this dissertation, we illustrate parameter subset selection and subspace techniques applied

to a quantum-informed Ginzburg-Landau-Devonshire theory-based phase-field energy model for

mono- and polydomain ferroelectric lead titanate structures. This model may be used for character-

izing multi-domain structure evolution and accounting for hysteresis and domain wall interactions,

which is necessary for model-based material design.

We consider phenomenological parameters that govern attributes of the Landau polarization

energy, electrostrictive energy, and gradient energy behavior. In the case of single domain structures,

the model is informed by synthetic data provided by density functional theory (DFT) simulations of

material electron densities. We use frequentist statistical analysis techniques to demonstrate high

correlation among model parameters, which is a function of the underlying electronic structure. For

the polydomain structures, we investigate free energy profiles across 180◦ and 90◦ twinned domain

walls separating oppositely- and perpendicularly-oriented polarization at the grain level. We obtain

information in this case from first-principles investigations in the literature.

We address four fundamental questions pertaining to the parameters in the model: (1) are

higher-order Landau energy parameters identifiable or influential in the sense that they uniquely

contribute to energy responses, (2) how much does strong parameter correlation influence sensitiv-

ity analysis results in phase-field models, (3) which electrostrictive coefficients are influential to the

polydomain energy response, and (4) which gradient energy parameters are most critical in the 90◦

domain wall energy? The answers to these questions are important for determining which noninflu-

ential parameters may be fixed at nominal values in subsequent Bayesian inference, uncertainty

propagation, and model-based design.

To answer the first two questions, we employ a variance-based methodology for conducting

global sensitivity analysis of models with highly correlated parameters and verify our results by

comparing Bayesian model calibration for various parameter sets, to conclude that all parameters

are influential. In general, the results indicate a significant contribution from higher-order Landau

polarization energy terms, due to parameter correlation. To answer questions (3) and (4), we employ

recently developed gradient-based active subspace methods, which rely upon the property that

model responses vary prominently in only a few directions dictated by linear combinations of the

model parameters. We identify all electrostrictive coefficients as influential in the energy response,

highlighting the high-order coupling and electromechanical interactions in the polydomain system.

Additionally, we determine only one influential gradient energy parameter in the 90◦ domain wall



energy response. This further supports the dependence of the polydomain energy system on the

Landau energy parameters and electrostrictive coefficients. We conclude that the noninfluential

gradient energy parameters may be fixed at nominal values in future Bayesian inference investiga-

tions. This analysis also provides insight into how parameter subset selection and subspace analysis

techniques can be applied to other material system models.
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CHAPTER

1

INTRODUCTION

“If we knew what it was we were doing, it would not be called research, would it?”

- Albert Einstein

Sensitivity analysis and uncertainty quantification play pivotal roles for scientists and engineers

using models to predict physical phenomena with quantified uncertainties. Specifically, sensitivity

analysis or parameter subspace analysis comprises a critical first step to isolate subsets or sub-

spaces of parameters that are identifiable in the sense that they are uniquely determined by data as

influential on measured responses. Noninfluential or nonidentifiable parameters are fixed at nomi-

nal values before subsequent Bayesian inference to quantify input uncertainties and uncertainty

propagation to compute intervals for quantities of interest.

The sensitivity analysis and uncertainty quantification framework can be naturally applied to

Landau-Ginzburg phase-field energy models used to characterize phase transitions and domain

structure evolution in ferroelectric materials. As detailed in Chapter 2, mechanisms such as ferro-

electric hysteresis, may be quantified via Landau-Ginzburg theory, providing relations employed in

homogenized energy models, to be used for model-based control and material design [50, 52]. A

commonly encountered challenge is the estimation of unknown Landau-Ginzburg parameters [5,

32, 56]. Parameter assumptions are, in some cases, made to alleviate the difficulties in obtaining

uncertain parameter estimates and solutions to free energy systems [5]. Density functional theory

(DFT) simulations can be used to generate atomic-level data to inform continuum energy rela-
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tions, as detailed in [33]. However, using quantum calculations to inform a macroscopic continuum

domain introduces uncertainty into the model that may have significantly different parameter

uncertainties [27]. The techniques described in Chapter 3 are focused on addressing and quantifying

this uncertainty.

Specifically, the energy model we consider in this dissertation is composed of classical energy

functionals for the mechanical energy, Landau polarization energy, electrostrictive energy and

gradient energy. The attributes of these functionals are governed by unknown phenomenological

parameters that must be estimated prior to their employment in model-based material design. For

example, the sixth-order Landau polarization energy
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is governed by the phenomenological parameters θP = [α1,α11,α12,α111,α112,α123], specifying the

non-convex energy potential as a function of the polarization P= [P1, P2, P3].

To facilitate the employment of phase-field models in material design, we focus on two major

issues pertaining to these parameters. First, we determine which of the parameters are identifiable

or influential in the sense that they uniquely contribute to energy responses. Secondly, we determine

the actual parameter values that dictate specific material behavior and the associated uncertainties

in these values. Both of these issues are addressed in Chapter 4 for single domain energy responses,

and in Chapters 6-7 for polydomain energy responses.

For the Landau polarization relation (1.1), we employ sensitivity analysis to determine whether

the sixth-order model is necessary to approximate quantum calculations or whether a fourth-order

model will suffice. In classical global sensitivity analysis methods, parameters are assumed to be

uniformly and independently distributed in the absence of a priori knowledge of the underlying

parameter distribution. This assumption is made to avoid introducing unintentional biases. How-

ever, we show that Landau parameters are strongly correlated and determine how the correlation

influences sensitivity analysis results.

Domain walls have long been evidenced to produce attractive properties of ferroelectric materi-

als, such as high piezoelectric and dielectric constants [5, 32, 57]. The parameters most associated

with electromechanical effects of polarization and strain in the Landau-Ginzburg energy are the

coefficients q11, q12 and q44 governing the electrostrictive energy
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�

ε11P 2
1 + ε22P 2

2 + ε33P 2
3

�

−q12

�

ε11

�

P 2
2 +P 2

3

�

+ ε22

�

P 2
1 +P 2

3

�

+ ε33

�

P 2
1 +P 2

2

��

−q44 (ε12P1P2+ ε13P1P2+ ε23P2P3) .

(1.2)

2



Figure 1.1 Schematic of the steps in uncertainty quantification, most associated with this dissertation.
This is a partial diagram of the complete schematic given in [51].

When transitioning through the 180◦ and 90◦ domain walls, polarization and strain evolution are

further dependent on high-order coupling between the electrostrictive coefficients and the Landau

energy parameters in (1.2), as well on polarization gradient exchange parameters as detailed in

Chapters 2, 5, 6 and 7. Consequently, we determine which parameters are noninfluential with respect

to the polydomain energy response, to be fixed for subsequent Bayesian inference and uncertainty

propagation. We provide a more detailed introduction to ferroelectric materials and phase-field

energy models in Chapter 2.

We illustrate in Figure 1.1 the steps in the uncertainty quantification framework, which are most

associated with this dissertation. In Section 1.2, we provide an introduction to local and global

sensitivity analysis used for parameter subset selection. This is followed by active subspace methods,

which we introduce in Section 1.3. Before addressing local and global sensitivity, in the next section

we define identifiable and influential parameter spaces and introduce terminology, which we use

throughout this dissertation.
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Figure 1.2 Illustration of y = f (θ ) for (a) identifiable, (b) unidentifiable, and (c) noninfluential parameters
θ . Plotted after [27].

1.1 Identifiable and Influential Parameters

We first define identifiable and influential parameters. We will use this terminology throughout this

dissertation to describe parameters that do not significantly influence model responses.

Consider the general input-output relation

Y = f (Θ),

where Θ = [Θ1, . . . ,Θp ] are random variables representing inputs, or parameters, and θ = [θ1, . . . ,θp ]

are realizations of those random variables. Here Y and y are also corresponding random variables

and realizations for the responses. For example, in the polarization energy (1.1), Θ = ΘP are the

phenomenological parameters, f denotes the sixth-order relation, and y = uP (P) denotes the energy

for a specified polarization value.

The concept of identifiability is defined as follows. Parameters θ = [θ1, . . . ,θp ] are identifiable

at θ ∗ if f (θ ) = f (θ ∗) implies that θ = θ ∗ for realizations θ in an admissible parameter spaceQ. We

denote I (θ ) as the identifiable subspace. The parameters θ are identifiable with respect to this

space, if it holds for all θ ∗ ∈ I (θ ). The unidentifiable subspace N I (θ ) is the orthogonal complement

of I (θ ), with respect to the Euclidean inner product. Unidentifiable parameters must be fixed at

nominal values for model calibration using outputs y , whereas the identifiable parameters may be

uniquely determined from observations. We illustrate an example of identifiable and unidentifiable

parameters in Figure 1.2(a) and (b), respectively.

In the same context, we define parameters θ to be noninfluential on the space N I (θ ) if

| f (θ ) − f (θ ∗)| < ε for all θ and θ ∗ ∈ N I (θ ). Likewise, I (θ ) is the influential parameter space

and orthogonal complement ofN I (θ ), in the admissible parameter spaceQ. Similar to unidenti-

fiable parameters, noninfluential parameters can be fixed for subsequent model calibration and

uncertainty propagation. We illustrate an example of a noninfluential parameter in Figure 1.2(c).

When considered over the admissible parameter space, a parameter θ1 is more influential than
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Figure 1.3 Illustration of (a) a highly influential parameter θ1 and (b) minimally influential parameter θ2.
(c) Minimally influential parameter θ3 having large local derivative values. Plotted after [27].

θ2 if perturbations in θ1 produce greater variability in y than perturbations in θ2. We illustrate highly

and minimally influential parameters in Figure 1.3(a) and (b).

1.2 Local and Global Sensitivity

Through the use of parameter subset selection techniques, such as local and global sensitivity

analysis, we determine which parameters are most influential in a model. We can then use this

information to fix those parameters, which do not significantly influence the model, in the sense

that their perturbations are only minimally reflected in the model response.

Local sensitivity analysis concerns the change in a model output or response with respect to

local changes in nominal parameter values. A measure of local sensitivity is obtained by evaluating

the partial derivatives
∂ f

∂ θ
(θ ∗). (1.3)

The limitations in using local sensitivity analysis to determine a parameter subset suitable for

uncertainty quantification are that we do not broadly account for uncertainties and parameter

interactions across the entire parameter space. For example, as illustrated in Figure 1.3(c), the

parameter θ3 is noninfluential when considered throughout the admissible parameter space, but

has large derivatives locally at certain nominal values. Morris screening (defined in Section 3.1)

partially addresses this issue by statistically averaging derivative approximations at multiple nominal

values [35].

This motivates global sensitivity analysis, in the sense that the uncertainties in the model re-

sponse are more broadly apportioned to the uncertainties in the model inputs. Rather than studying

the sensitivity of the model y = f (θ ), to local perturbations about θ ∗, we consider associated distri-

butions for the parameters θ . Additionally, global sensitivity analysis considers sensitivities due

to different combinations of parameter samples rather than traditional one-factor-at-a-time local

sensitivity analysis methods.

5



In Chapter 3, we introduce several global sensitivity analysis methods used in our investigation.

This includes variance-based global sensitivity analysis, based on [46, 53], as well as the approximated

gradient-based methods of [35]. We compare and contrast the methods and provide an alternative

approach for performing variance-based global sensitivity analysis when model parameters are

strongly correlated. This method, based on the theory of [29], is motivated by cases where the

assumption of independently and uniformly distributed parameters is violated and hence can yield

incorrect sensitivity results.

1.3 Active Subspace Methods

In some cases, influential or identifiable parameter spaces can include linear combinations of

parameters. In such scenarios, it is useful to consider directions in the admissible parameter space,

not aligned with particular coordinate axes, corresponding to individual parameter values. Here

we often discover that the function may vary most dominantly, with respect to directions dictated

by linear combinations of the parameter values, as detailed in [8]. Typically this includes a small

number of directions, and one can project onto this low-dimensional space by employing a linear

transformation. This provides us with the capability to use linear algebra properties to determine

an influential subspace. As this subspace contains the most influential or “active” directions in the

admissible parameter space, we refer to it as the active subspace. The active subspace is additionally

less susceptible to unknown distributions, facilitating analysis where parameter densities are not

known a priori.

The active subspace is determined by the construction of a gradient, or approximate gradient,

matrix G, containing evaluations of the function gradient with respect to random parameter values,

and its corresponding singular value decomposition G=WΣVT , as proposed in [1, 8, 44]. Alterna-

tively, a QR decomposition may also be used. The projection of the original input parameters θ

onto the active subspace is obtained by the relation

y=WT
1 θ .

Here, y are the active variables and W1 represents the first m singular vectors, where m is the

dimension of the active subspace. The orthogonal projection z = WT
2 θ represents the inactive

subspace projection, where perturbations in these directions are reflected minimally in the original

model response. We provide more details about the construction and dimension selection of the

active subspace in Chapter 3.

As illustrated in Figure 1.1, active subspace methods may be used to reduce input dimensions

and to develop surrogate models. In the latter, upon the projection of the original input parameters

onto the active subspace, one can construct a response surface which approximates the original
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model response, as a function of the active variables. This greatly reduces the computational cost,

since it many cases, the response surface is constructed from a simple regression analysis, and is a

function of only a few active variables.

One can also exploit information from the SVD G = WTΣVT , to construct global sensitivity

metrics

ai =
m
∑

j

λ j w 2
i , j , i = 1, . . . , p

Here, p is the number of model parameters, λ j denotes the j t h eigenvalue and wi , j is the ij-entry

of W [9]. These metrics are termed activity scores, as they rank the “activity” of each of the model

parameters in terms of their relative influence on the output. In this dissertation, we use active

subspaces to construct activity scores and compare and contrast results with parameter subset

selection techniques based on other gradient-based methods. We include the theoretical background

for active subspaces in Chapter 3, and illustrate the application of this method in Chapters 6-7.
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CHAPTER

2

FERROELECTRIC MATERIALS

Ferroelectric materials are characterized by the presence of spontaneous polarization in the ab-

sence of electric fields, at temperatures below the Curie point Tc . The materials exhibit tetragonal,

orthorhombic or rhombohedral phases at these temperatures, where the orientation of polarization

is determined by the coordinates of atoms in the unit cell. Additionally, this polarization orientation

can be reversed by the application of an electric field or mechanical stress.

Ferroelectric materials are closely related to pyroelectric and piezoelectric materials. Pyroelectric

materials develop a voltage due to an increase or decrease in temperature, and the polarization

changes as a result. Many piezoelectric materials serve as actuators and sensors in the sense that

they develop mechanical forces due to an applied electric field, and conversely develop a voltage

due to an applied external force. In particular, they are characterized by the ability to produce a

change in polarization when subjected to mechanical stress. This is termed the direct piezoelectric

effect. Alternatively, the material can produce mechanical strain in response to an applied electric

field, yielding the converse piezoelectric effect.

Because of the strong electromechanical properties of many ferroelectric materials, they are

widely considered and employed as actuators and sensors in engineering applications. Commonly

employed and/or studied ferroelectric materials include BaTiO3 (barium titanate), Pb(Zr,Ti)O3 (lead

zirconate titanate or PZT) and Pb(Mg1/3Nb2/3)O3-PbTiO3 (lead magnesium niobate-lead titanate or

PMN-PT). The solid state nature and nanopositioning accuracy make ferroelectric materials ideal

for applications such as solid state ferroelectric random access memory (FeRAM) [47]. Additionally,
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Figure 2.1 (a) Dependence of the Curie temperature TC on the molar fraction x of PbZrO3, and mor-
photropic phase boundary separating rhombohedral from tetragonal structures. (b) Dependence of the
piezoelectric coupling coefficient on the molar fraction x . Plotted after [22].

high energy efficiency rates and complementary direct and converse effects, provide excellent

properties for the development of energy harvesting circuits [55], flow control transducers [2, 26],

ultrasound transducer devices for biomedical imaging [36], and flying and ambulatory microrobots

[20, 40, 62, 63].

The material studied, and of main interest in this dissertation, is PbTiO3. This, along with

PbZrO3 or lead zirconate, is a main component in PZT. These materials are present in PZT as part

of the molar fraction x of Zr in PbTi1−x Zrx O3. The determination of x is based on the desired

optimal electromechanical properties for specific engineering applications. As depicted in the

phase diagram of Figure 2.1(a), PbZrO3 exhibits a orthorhombic phase at temperatures below

the Curie point, whereas PbTiO3 exhibits a tetragonal phase. Note that PZT is advantageous for

transducer engineering applications due to its strong electromechanical coupling constant near

the morphotropic phase boundary, as illustrated in Figure 2.1(a)-(b). Since lead titanate is a critical

component in PZT, and density functional theory (DFT) calculations (Section 2.4) are facilitated

for PbTiO3 as compared with PbZrO3 [37], we focus our attention on this material throughout this

dissertation.

Because of its excellent transduction capabilities, PZT is largely used in place of other lead-free

ferroelectric materials. Compared with the Curie temperature TC = 120◦C for BaTiO3, for example,

Curie temperatures for PZT range from 240◦C - 480◦C, thus providing higher operating temperatures

and therefore more flexibility for different types of engineering applications. Compared with barium

titanate, PZT also possesses a stronger piezoelectric response, which makes it a better material for
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Figure 2.2 Schematic of ferroelectric material grains depicting 180◦ and 90◦ domains and domain walls.
Polarization is randomly oriented in the grains. Plotted after [52].

transducer designs.

A disadvantage of PZT is the presence of lead, which is toxic in the environment. As a result,

significant effort has focused on developing new materials that can replace lead-based materials [21,

25], while maintaining the high performance required for applications. To develop new materials, it

is critical to understand why lead-based ones are so effective. This starts with experimental and

computational investigations ranging in scales from the material devices down to the micro-sized

grains, nanoscale domains and atomic structure of the materials. A complete-structure evolution

investigation thus requires the development of effective and efficient methods for characterizing

free energy behavior within material grains. Energy relations across multiple scales can then be

incorporated into homogenized energy frameworks, such as the one in [50, 52], to develop model-

based control algorithms for bulk materials.

Within micro-sized grains, on scales of 1 µm - 100 µm, ferroelectric materials exhibit multido-

main structures in which polarization is randomly oriented as defined by the atomic positions in

twinned unit cells. These domain structures are separated by ferroelectric domain walls or bound-

aries, as depicted in Figure 2.2. This twinned domain structure occurs as an energy minimization

mechanism as the material is cooled through the Curie temperature, from the paraelectric to ferro-

electric phase. As detailed in [5, 32, 57, 59], domain walls contribute significantly to the nonlinearities,

hysteresis, and dynamics at all scales in ferroelectric materials. Thus, understanding the properties

of the domain walls is critical to the study of the governing physics of the materials. As a result, we

study the monodomain energy response away from domain boundaries in Chapter 4, and focus on

domain wall energies in Chapters 5 and 6. We provide a short introduction to single- and polydomain

structures in Section 2.1 and 2.2, respectively.
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2.1 Monodomain Structures

In terms of its unit cell, lead titanate exhibits a perovskite structure, with lead atoms occupying

the A site and the titanium atom the B site. The material is cubic (paraelectric phase) above the

Curie temperature TC and it achieves its tetragonal (ferroelectric) phase when cooled below TC .

The material’s internal energy for the paraelectric phase exhibits one unique minimum, whereas

it exhibits two minima depending on the position of the Ti atom for its tetragonal phase, thereby

determining the polarization orientation. A plot of the material energy profiles, along with the

corresponding perovskite crystal structure is given in Figure 2.3. A macroscopic polarization is

oriented in the x3 direction as dictated by the shift in the center Ti atom. When sufficient energy in

the form of elastic or electrostatic forces is applied, the ion moves across the unstable equilibrium to

the other potential well, thus producing a dipole switch, and a polarization jump at the macroscopic

scale. In particular, the dipoles switch may be caused by the application of electric fields larger in

magnitude than the coercive field EC , denoting the field required to reduce polarization to zero.

These switching mechanisms produce hysteresis and saturation nonlinearities, as illustrated in

Figure 2.4. This behavior may be characterized by the implementation of the ferroelectric phase-field

models discussed in Section 2.3.

When discussing monodomain structures, we refer to twinned unit cells with polarization

orientation in the same direction within a single crystal. For a positive polarization P3 in the x3

direction, we plot the unit cell along with a single domain in Figure 2.5. In later chapters, we consider

polarization rotation from x3 to x2, and determine free energy associated with this domain structure

evolution, informed by density functional theory (DFT) calculations as introduced in Section 2.4.

Domains with polarization oriented in opposite directions or perpendicular to P3 are separated by

domain walls or boundaries as detailed in the next section.

2.2 Polydomain Structures

The cooling of the material leads to the formation of many irregular nanoscale domain structures of

polarization orientation. This produces one of the main sources of uncertainty at the micro-sized

grain level, where nonlinearities are caused by many polarization-oriented structures. As depicted in

Figure 2.2, each grain is composed of 180◦ and 90◦ domains in which oppositely- or perpendicularly-

oriented polarization is separated by domain walls or boundaries. We illustrate a 2-D example of

180◦ and 90◦ polarization domains and domain walls in Figure 2.6. Here, we consider the domain

walls to be positioned at x1 = 0. In the case of the 180◦ domains, polarization is constrained to switch

from negative to positive spontaneous polarization P0 in the x3 direction. For the 90◦ domains,

polarization switches from orientation in the x1 direction to orientation in the x2 direction. In the

model analysis, we work in a new rotated coordinate system (s , r, x3) for convenience, as depicted

11



(a) (b)

0

Ti Position

In
te

rn
a

l 
E

n
e

rg
y

0

Ti Position

In
te

rn
a

l 
E

n
e

rg
y

(c) (d)

Figure 2.3 Atomic structure unit cell of lead titanate (PbTiO3), with polarization oriented in the x3 direc-
tion. (a) Cubic form of PbTiO3 in the paraelectric phase T > TC . (b) Tetragonal structure of PbTiO3, along
with spontaneous polarization P0 in the x3 direction. (c) PbTiO3 internal energy as a function of the Ti
position in the paraelectric phase T > TC , and (d) in the ferroelectric phase T < TC .

in Figure 2.6(b), with the domain wall positioned at s = 0. We present more details in Chapter 6.

We determine energy densities, total energy and corresponding model parameter sensitivities

and uncertainties associated with 180◦ and 90◦ domain walls. Note that our analysis focuses on

Pb-centered 180◦ domain walls that lie on Pb-O planes, whereas we consider Pb-Ti-O-centered 90◦

domain walls. As noted in [32], there is no sharp distinction between specific planes used for 90◦

domain wall centering, whereas domain wall energy results are the same when considering Pb- and

Ti-centered 180◦ domain walls. Domain wall widths are reported to be on the order of the lattice

constant a [32], which implies that transition takes place on the length scale of one unit cell. In
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Figure 2.4 Hysteretic field-polarization relation produced by ferroelectric switching mechanisms, when
applied electric fields are larger than EC in magnitude. The remanence polarization PR occurs when the
applied electric field is zero, where the linear and reversible direct and converse piezoelectric effects are
applicable.

terms of the total domain wall energy, its values are reported to be 132 mJ/m2 and 50 mJ/m2, for the

180◦ and 90◦ domain wall structures respectively [56].

2.3 Ferroelectric Phase-Field Model

The modeling of domain structure evolution for ferroelectric materials constitutes a significant

challenge in materials science. Whereas density functional theory (DFT) simulations are accurate

for determining many structure-property relationships in ferroelectric materials [16, 39], they are

not feasible for large-scale computations in material design and engineering [48]. Other domain

structure evolution methods consider the introduction of phase-field polarization and strain order

parameters [6, 17, 31]. In phase-field models, the system structure is generally represented by the

order parameters which, in this case, are polarization and strain. The phase-field represents the

set of possible values for the order parameters. These methods are more computationally feasible

since they approximate free energy in the nanoscale domain regions using coarser grids, with the

13



(a) (b)

Figure 2.5 (a) Ferroelectric phase for PbTiO3, with polarization oriented in the x3 direction. (b) Single
domain structure for PbTiO3.

(a) (b)

Figure 2.6 (a) 180◦ and (b) 90◦ polydomain structures of polarization orientation. Domains are separated
by corresponding domain walls or boundaries. We depict a new coordinate system for the 90◦ polydomain
structure. As detailed in Section 2.2, this new 45◦-rotated coordinate system is denoted by (s , r, x3), with
the domain wall positioned at s = 0.

associated polarization and strain as the independent variables. Characterization of the electronic

behavior via order parameters and nonlinear stress effects induced by domain wall structures

produces uncertainty in the model response and parameters, due to the incorporation of quantum-

scale effects into a continuum domain.

We focus on sensitivity analysis for model parameter selection, and uncertainty analysis and

14



propagation for free energy models informed by DFT simulations for lead titanate. These quantum-

based calculations provide computational measures of polarization and free energy. Results obtained

from [33] and other literature reference values [32, 56] are treated as high-fidelity calculations to

inform our models for characterization of single- and multi-domain energy structures.

For linear operating regimes, corresponding to low input electric field levels, energy functionals,

which incorporate linear electromechanical coupling, accurately characterize domain structure

evolution. As detailed in [50], to incorporate additional ferroelectric hysteresis or phase transitions,

it is necessary to quantify internal processes such as dipole switching or entropic effects in the

absence of stresses or electromechanical coupling. To quantify this behavior, one can employ the

Helmholtz energy relation

ψ(ε, P, T ) =
1

2
Y P ε2−a1εP −a2εP 2+ψ0(T ) +α1(T −TC )P

2+α2P 4+α3P 6. (2.1)

Here Y P is the Young’s modulus at constant polarization, a1 and a2 denote positive coupling coeffi-

cients, α1 and α2 are positive constants, andψ0(T ) includes temperature effects independent of

strain ε and polarization P . In comparison with energy functionals for linear operating regimes, re-

lations such as (2.1) consider nonlinear electromechanical coupling terms, whose minima quantify

polarization and strain densities in the absence of applied fields.

Whereas the Helmholtz energy relation (2.1), provides mechanisms for characterizing hysteresis

in single crystal material compounds, we require a model that incorporates effects due to domain

wall interactions as well as polarization and stress-dependent switching behavior across multiple

domains. This is accomplished by using the Ginzburg-Landau theory for characterizing free energy

[14], in which domain wall interactions are incorporated via the inclusion of polarization gradient

terms of the form ∂ P
∂ x . As illustrated in the work by Shu and Bhattacharya [49], Smith [50], Zhang and

Bhattacharya [65], and further detailed in Chapter 4, the gradient energy terms incorporate local

polarization changes due to domain wall effects. In addition, free energy is assumed to be nonlinearly

dependent on quadratic, quartic and sextic polarization terms, and induced by electrostriction and

a strain relationship motivated by Hooke’s law.

In general, the phenomenological internal stored energy is divided into mechanical, polariza-

tion, electrostrictive, and gradient energy terms. Since one electronic coordinate vector is used

to approximate the internal electronic structure in the DFT studies in [37], a polarization order

parameter P is used to represent the state. Thus, we treat polarization P and strain ε as independent

variables in the system. The 3-D stored free energy in the material polydomain system is thus given

by

u (P,ε) = uM (ε) +uP (P) +uC (P,ε) +uG (P,ε), (2.2)

which depends on the mechanical energy uM , Landau or polarization energy uP , electrostrictive
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energy uC and gradient energy uG . For the analysis of the monodomain structures, we consider the

first three terms on the right hand side of system (2.2), whereas we include the gradient energy term

for analysis of the polydomain structures. Additionally, a residual energy term uR is considered to

compare with results from DFT studies where the unit cell is held fixed with respect to a reference

cubic state. We provide more details about the residual energy in Chapter 4.

Our goal is to determine which phenomenological parameters are influential or identifiable in

the sense that they are uniquely determined by available data as detailed in Section 1.1. In the case

of the Landau energy

uP (P) =α1

�

P 2
1 +P 2

2 +P 2
3

�

+α11

�

P 2
1 +P 2

2 +P 2
3

�2
+α12

�

P 2
1 P 2

2 +P 2
2 P 2

3 +P 2
1 P 2

3

�

+α111

�

P 6
1 +P 6

2 +P 6
3

�

+α112

�

P 4
1

�

P 2
2 +P 2

3

�

+P 4
2

�

P 2
1 +P 2

3

�

+P 4
3

�

P 2
1 +P 2

2

��

+α123P 2
1 P 2

2 P 2
3 ,

(2.3)

one seeks to determine whether or not a sixth-order expansion is necessary as compared to using a

fourth-order expansion for characterization of phase transition and monodomain structure evolu-

tion. Relation (2.3) is analogous to the fifth, sixth and seventh terms in (2.1), with the exception that

(2.3) incorporates 3-D polarization effects. Additionally, in (2.3) we consider a temperature T < TC

such that α1 is an unknown phenomenological parameter whose value is less than zero.

The gradient energy density is taken to be

uG (Pi , j ) =
g11

2

�

P 2
1,1+P 2

2,2+P 2
3,3

�

+ g12

�

P1,1P2,2+P1,1P3,3+P2,2P3,3

�

+
g44

2

�

�

P1,2+P2,1

�2
+
�

P1,3+P3,1

�2
+
�

P2,3+P3,2

�2�

,
(2.4)

where g11, g12 and g44 denote the exchange parameters and

Pi , j =
∂ Pi

∂ x j

is the polarization gradient. For 180◦ and 90◦ domain wall polarization effects, we seek to determine

the influential exchange parameters in (2.4), in the sense that their uncertainties directly contribute

to the uncertainty in the response.

The mechanical and electrostrictive energy uM and uC are also analogous to the first, second

and third terms in (2.1). We present the complete form of (2.2), as well as more details about the

model analysis in Chapters 4-7.
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2.4 Density Functional Theory Calculations

Density functional theory (DFT) calculations describe the quantum behavior of atoms and molecules

through solutions of the Schrödinger equation. As such, DFT is used to determine many structure-

dependent properties for collections of atoms. Of particular importance is the energy calculation of

atoms and the change in energy as these atoms are moved. To effectively determine these energy

states, solutions of the atoms’ electron densities are required. The ground state energy E of the

electrons, in Schrödinger’s equation, is then expressed as the functional E [n (r)], where n (r) is the

electron density for a particular 3-coordinate position vector r. This motivates the name density

functional theory. More details about the theory behind DFT are provided in sources including [48,

64, 66]

For the ferroelectric phase-field model studied in this dissertation, DFT informs the continuum

scale Landau energy and stresses associated with several uniform polarization states in lead titanate.

For the monodomain structures, we use the DFT calculations from [33], treated as high fidelity

results, to quantify the uncertainty in the Landau energy parameters and electrostrictive energy

coefficients, in the stored energy (2.2). Model parameter uncertainty is present since we are going

from a quantum DFT calculation to a continuum framework description using polarization as the

order parameter.

As detailed in [33, 37], the DFT calculations for the monodomain structure were performed using

ABINIT 7.0.5 [16] for lead titanate (PbTiO3). Starting with the centrosymmetric atomic configuration,

atoms were linearly incremented, yielding an equilibrium tetragonal state and a double well potential

energy. To estimate the full three-dimensional energy surface, atomic displacements under internal

atomic shearing were used, quantifying polarization not aligned with the spontaneous polarization

direction. Note that the corresponding polarization for the atomic displacement configurations

was obtained using the Berry phase approach [43]. This yields the polarization rotation profiles

plotted in Figure 2.7, for which DFT energy and stresses are calculated. More details about the DFT

computational experiment for the monodomain analysis are provided in [33, 34, 37]

In the case of polydomain structures, we consider DFT calculations for 180◦ and 90◦ domain

walls in [32, 56]. The reported values for the 180◦ and 90◦ domain wall energies are 132 mJ/m2 and

50 mJ/m2, respectively. We use these values to quantify the uncertainty in the exchange parameters

of the gradient energy uG in (2.2). We provide more details in Chapters 5-7.
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Figure 2.7 Polarization states at which DFT energy and stresses were calculated in the computational
study of [33].
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CHAPTER

3

PARAMETER SUBSET SELECTION AND

UNCERTAINTY QUANTIFICATION

In Chapter 1, we introduced the concept of influential and identifiable parameters, whereas in

Chapter 2 we provided motivation for parameter subset selection in ferroelectric material models.

In this chapter, we introduce global sensitivity analysis techniques, starting with Pearson correlation

coefficients and including Morris screening methods and variance-based Sobol’ decomposition

methods. Section 3.1 considers these methods with the assumption that the parameters are indepen-

dently and uniformly distributed. Section 3.2 details the problems that arise when the parameters

are actually correlated, and presents an alternate variance-based sensitivity analysis methodology

based originally on the work by Li [29]. In Section 3.3, we consider a parameter subset selection

methodology based on the Fisher information matrix, for identifying locally identifiable parameters.

In Section 3.4, we present parameter subspace selection methodologies, including using active

subspaces to determine activity scores as a sensitivity analysis alternative. Lastly, in Section 3.5 and

3.6, we summarize Bayesian inference and uncertainty propagation and detail how the parameter

subset selection results are used to determine noninfluential parameters, which may be fixed in

uncertainty quantification.

Consider the input-output system described by the relation

Y = f (Θ), (3.1)
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where Y denotes the output and Θ = [Θ1,Θ2, . . . ,Θp ] denotes random input parameters. We let θ

and y denote realizations of the random variables Θ and Y . The mean and variance are defined by

f0 =E [Y ] =
∫

Γ

ρ(θ ) f (θ )dθ (3.2)

and

D =Var [Y ] =E
�

(Y −E [Y ])2
�

=

∫

Γ

ρ(θ ) f 2(θ )dθ − f 2
0 . (3.3)

Here, Γ is defined as the parameter space and ρ(θ ) is the probability density function for θ .

The objective of sensitivity analysis is to quantify the sensitivity of the response Y to the param-

eters Θ. In local sensitivity analysis, this is quantified by the derivative

∂ f

∂ θi
(θ ∗) (3.4)

with respect to the parameter θi evaluated at a nominal parameter value θ ∗. Alternatively, global

sensitivity analysis more broadly quantifies the manner in which uncertainties in the response are

apportioned to uncertainties in the model inputs. This is described in more detail in Chapter 15 of

Smith [51] and in Saltelli et al. [45].

To perform global sensitivity analysis, we first determine maps for the parameter θi realizations

between the arbitrary physical interval [θ`i
,θui
] and the unit interval [0, 1]. In all the analyses, where

the parameters are uniformly distributed, we randomly sample from the uniform distributionU (0, 1)

and then map to [θ`i
,θui
] before evaluating the physical model.

For general intervals [a , b ] and [A, B ], the map g : [a , b ]−→ [A, B ] is defined by

g (x ) =
x −a

b −a
(B −A) +A

for x ∈ [a , b ]. When [a , b ] = [0, 1] and [A, B ] = [θ`i
,θui
], this yields the map

g (x ) = x (θui
−θ`i

) +θ`i
. (3.5)

If θ` and θu are vectors for the lower and upper bounds of the physical intervals for the parameters

θ , then for x ∈ [0, 1]p , this yields

θ = g (x) = diag(θu −θ`)x+θ`. (3.6)
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Pearson Correlations

To obtain initial sensitivity indices, one often begins with centered parameter studies in which one

individually perturbs parameters about nominal values to ascertain individual effects. As detailed

previously, we randomly sample parameters from U (0,1) and map them to physical intervals

[θ`i
,θui
] via the transformation (3.5).

To qualitatively observe the degree to which the responses depend on individual parameter

variations, one can draw M samples fromU (0,1) for each parameter and plot scatterplots of the

realizations y as a function of θi for i = 1, . . . , p . The correlation between the individual parameters

Θi and the output Y can be quantified by the Pearson correlation coefficient

ρi =

∑M
j=1(θ

j
i − θ̄i )(yj − ȳ )

r

∑M
j=1(θ

j
i − θ̄i )2

∑M
k=1(yk − ȳ )2

, (3.7)

where θ
j

i and yj are realizations of Θi and Y , and θ̄i and ȳ are the respective sample means. Param-

eters having large Pearson correlation coefficients are considered more influential on the response

than those having small values as they reflect the trend of the model output. We note that this method

quantifies only linear interactions and will not detect nonlinear interactions between parameters

and outputs.

3.1 Global Sensitivity Analysis for Uncorrelated Inputs

In this section, we detail global sensitivity analysis techniques for models with uniformly and

independently distributed parameters. We detail Morris screening in Section 3.1.1 and variance-

based global sensitivity analysis in Section 3.1.2.

3.1.1 Morris Screening

In Morris screening [35], a measure of global sensitivity is provided by the average of finite-difference

relations, referred to as elementary effects. The individual effects of parameters and the effect of

interaction terms on the model response are respectively represented by the mean µ∗i and variance

σ2
i of the elementary effects. This method is typically quite computationally efficient and exhibits

less dependence on potentially unknown parameter distributions than the variance-based method

of Section 3.1.2.

To compute the elementary effects, the parameters are again mapped to [0, 1]p and taken to be

uniformly distributed as θi ∼U (0, 1). The elementary effect for θi is given by

di (θ ) =
f (θ1, . . . ,θi−1,θi +∆,θi+1, . . . ,θp )− f (θ )

∆
. (3.8)
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In the analysis presented here, we employ a value of ∆ = 1
49 , as motivated by [51]. To compute

parameter sensitivity measures, we first let

d
j

i =
f (θ j +∆ei )− f (θ j )

∆
,

denote the elementary effect corresponding to the i th parameter and j th sample. We then employ

the sensitivity indices

µ∗i =
1

s

s
∑

j=1

|d j
i (θ )|, (3.9)

and

σ2
i =

1

s −1

s
∑

j=1

(d j
i −µi )

2, for µi =
1

s

s
∑

j=1

d
j

i . (3.10)

Here, the index µ∗i quantifies effects due to individual parameter perturbations, whileσ2
i quantifies

nonlinearities and interactions with other inputs in the admissible parameter space. Since two model

evaluations are required per parameter, this yields a total of 2p s model evaluations to compute the

Morris sensitivity measures (3.9) and (3.10). The Morris screening strategy as presented in [61] is

provided in Algorithm 3.1.1.

3.1.2 Variance-Based Sensitivity Analysis

To construct variance-based global sensitivity indices, we start by decomposing the model f (θ ) into

its Sobol’ decomposition [53],

f (θ ) = f0+
p
∑

i=1

fi (θi ) +
∑

1≤1< j≤p

fi j (θi ,θ j ) + · · ·+ f12···p (θ1, . . . ,θp )

= f0+
2p−1
∑

n=1

frn
(θrn
),

(3.11)

where p denotes the number of parameters and rn , 1≤ n ≤ 2p −1, represents all the sets {i |1≤ i ≤ p},
{i j |1≤ i < j ≤ p}, . . .. For example, the first- and second-order component functions are

1st order: fr1
(θr1
) = f1(θ1), . . . , frp

(θrp
) = fp (θp ),

2nd order: frp+1
(θrp+1

) = f12(θ1,θ2), . . . , frp+p2
(θrp+p2

) = fp−1,p (θp−1,θp ),

where p2 =
�p

2

�

. Note that this follows the functional form employed in Li [29]. The decomposition

(3.11) is subject to the expected value condition
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Algorithm 3.1.1: Morris screening sampling strategy.

1. A strictly lower triangular (p ×1)×p matrix B is first created such that

B=











0 · · · 0 0

1
...

...
...

...
... 0 0

1 · · · 1 0











.

2. Take the step size to be∆= 1
49 .

3. Choose an initial vector θ ∗ ∈ I 1×p .

4. Build a diagonal p ×p matrix D∗, with randomly chosen entries from {−1, 1}.

5. Construct a (p +1)×p matrix Jp+1,p with entries equal to 1 and a p ×p permutation P∗ of
the identity matrix to compute the sampling matrix

B∗ = Jp+1,pθ
∗+
∆

2

��

2B− Jp+1,p

�

D∗+ Jp+1,p

�

P∗.

6. Let C∗r denote the r th row of C∗. We then compute the elementary effects

di =
f (C∗n )− f (C∗m )

∆
,

so that the n t h and m t h rows differ in the i t h entry.

7. For s samples, repeat procedure in steps 1-7.

8. Compute the average and variance of the local elementary effects

µ∗i =
1

s

s
∑

j=1

|d j
i (θ )|,

σ2
i =

1

s −1

s
∑

j=1

(d j
i −µ)

2, where µ=
1

s

s
∑

j=1

d
j

i

to determine the Morris measures. Large indices represent more influential parameters.
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E
�

frn

�

Θrn

��

=

∫

Γrn

ρ(θrn
) frn
(θrn
)dθrn

= 0. (3.12)

Here, ρ(θrn
) is the joint probability density function for the set of parameters θrn

.

We define the component functions from (3.11) by the relations

f0 =

∫

Γ

ρ(θ ) f (θ )dθ =E [Y ] ,

fi (θi ) =

∫

Γ∼i

ρ∼i (θ∼i ) f (θ )dθ∼i − f0 =E [Y |θi ]− f0, (1≤ i ≤ p ),

fi j (θi ,θ j ) =

∫

Γ∼{i j }

ρ∼{i j }(θ∼{i j }) f (θ )dθ∼{i j }− fi (θi )− f j (θ j )− f0

=E
�

Y |θi ,θ j

�

− fi − f j − f0, (1≤ i < j ≤ p ),

...

f1...p (θ1, . . . ,θp ) = f (θ )− f0−
∑

1≤i≤p

fi −
∑

1≤i< j≤p

fi j −
∑

1≤i< j<k≤p

fi j k − · · · ,

(3.13)

which express contributions from each subset of parameters θrn
. In (3.13), Γ , Γ∼i and Γ∼{i j } are the

image spaces for θ , θ∼i ≡ [θ1, . . . ,θi−1,θi+1, . . . ,θp ] and

θ∼{i j } ≡ [θ1, . . . ,θi−1,θi+1, . . . ,θ j−1,θ j+1, . . . ,θp ].

Additionally, ρ∼i (θ∼i ) and ρ∼{i j }(θ∼{i j }) denote the conditional probability density functions for θ∼i

and θ∼{i j } given θi and (θi ,θ j ), respectively. We can define the variance of the component functions

by

Drn
=Var

�

frn

�

Θrn

��

=E
�

�

frn

�

Θrn

�

−E
�

frn

�

Θrn

���2�

=

∫

Γrn

ρ(θrn
) f 2

rn
(θrn
)dθrn

. (3.14)

For earlier studies of variance-based global sensitivity analysis, the response Y = f (Θ) was

generally approximated by a subset of all the possible component functions [45, 46, 51]. In this

section we consider the scenario in which each of the parameters Θi is independently distributed

and Θi ∼ U (0,1), such that each individual range is Γ = [0,1]. This yields the range Γ p and joint

density ρ(Θ) for Θ,

Γ p =
p
∏

k=1

Γ , ρ(θ ) =
p
∏

k=1

ρ(θk ),

respectively. This assumption, along with the Sobol’ decomposition (3.11), yields the variance
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decomposition

D =Var[Y ] =
2p−1
∑

n=1

Var[ frn
(Θrn
)] =

2p−1
∑

n=1

Drn
. (3.15)

We consider the output f (θ ) to be adequately represented by the second-order expansion

f (θ ) = f0+
p
∑

i=1

fi (θi ) +
∑

1≤i< j≤p

fi j (θi ,θ j ). (3.16)

Relation (3.12) then yields the constraints

∫ 1

0

fi (θi )dθi =

∫ 1

0

fi j (θi ,θ j )dθi =

∫ 1

0

fi j (θi ,θ j )dθ j = 0

to ensure that the component functions are orthogonal and uniquely defined in the sense that

∫

Γ 2

fi (θi ) f j (θ j )dθi dθ j =

∫

Γi j

fi (θi ) fi j (θi ,θ j )dθi dθ j = 0, i , j = 1, . . . , p .

The expected values in (3.13) are then reduced to

f0 =E(Y ) =
∫

Γ p

f (θ )dθ

fi (θi ) =E(Y |θi )− f0 =

∫

Γ p−1

f (θ )dθ∼i − f0

fi j (θi ,θ j ) =E(Y |θi ,θ j )− fi (θi )− f j (θ j )− f0 =

∫

Γ p−2

f (θ )dθ∼{i j }− fi (θi )− f j (θ j )− f0,

(3.17)

where θ∼i = [θ1, . . . ,θi−1,θi+1, . . . ,θp ]. To construct sensitivity indices, we define the total and partial

variances

D =

∫

Γ p

f 2(θ )dθ − f 2
0 =Var[Y ],

Di =

∫ 1

0

f 2
i (θi )dθi =Var [E(Y |θi )] ,

Di j =

∫ 1

0

∫ 1

0

fi j (θi ,θ j )dθi dθ j =Var
�

E(Y |θi ,θ j )
�

−Var [E(Y |θi )]−Var
�

E(Y |θ j )
�

.

This yields the Sobol’ indices

Si =
Di

D
=

Var [E(Y |θi )]
Var[Y ]

, Si j =
Di j

D
, i = 1, . . . , p , (3.18)
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satisfying
p
∑

i=1

Si +
∑

1≤i< j≤p

Si j = 1. (3.19)

We also define the total sensitivity indices

STi
= Si +

p
∑

j=1
i 6= j

Si j = 1−
Var [E(Y |θ∼i )]

Var [Y ]
, (3.20)

quantifying total effects of the parameter θi including higher order interactions on the response.

We note that a rough guideline is to consider indices Si greater than 100
p % as significant when

analyzing Sobol’ indices. This is because, in the absence of interactions, indices with this magnitude

have greater than average effect on the response variability.

In most cases, the computation of the Sobol’ indices (3.18) and (3.20) is prohibitive when using

tensor product-based quadrature to estimate integrals over Γ p , Γ p−1 and Γ p−2. In such cases, rather

than implementing sparse grid quadrature techniques, we employ the techniques of Saltelli and

other authors [38, 45, 46, 54, 60] for constructing Monte Carlo-based estimators for Si and STi
. We

implement Algorithm 3.1.2 for our global sensitivity analysis, which has variations from [46, 54, 60],

as illustrated in [61].

3.2 Global Sensitivity Analysis for Correlated Inputs

In the classical global sensitivity analysis methods summarized in the previous section, one typically

assumes uniformly and independently distributed model inputs in absence of additional informa-

tion. However, when the parameters are strongly correlated, we need to verify whether or not this

assumption may lead to incorrect interpretations about parameter sensitivities.

To address this issue, we expand the variance-based Sobol’ decomposition method detailed

in Section 3.1.2 to include contributions due to parameter correlation. We then summarize total

sensitivity indices, which accurately account for underlying parameter correlation. When the model

is linearly parameterized, we show that an analytic solution for the component functions in the Sobol’

decomposition is available. Additionally, we provide a general method for determining component

functions for nonlinearly parameterized problems based on basis function expansions. We detail

the associated methodology next.

26



Algorithm 3.1.2: Saltelli algorithm for computing Sobol’ sensitivity indices for uniform densi-
ties [46]

(1) First create two M ×p matrices

A=







θ 1
1 · · · θ 1

i · · · θ 1
p

...
...

...
θM

1 · · · θM
i · · · θM

p






and B=







θ̂ 1
1 · · · θ̂ 1

i · · · θ̂ 1
p

...
...

...
θ̂M

1 · · · θ̂M
i · · · θ̂M

p






.

The entries of these matrices are pseudo-random numbers drawn from the respective density.
Note that M is the number of samples and p stands for the number of parameters in the
model.

(2) Then, create p M ×p matrices

A(i )B =







θ̂ 1
1 · · · θ 1

i · · · θ̂ 1
p

...
...

...
θ̂M

1 · · · θM
i · · · θ̂M

p






, i = 1, . . . , p ,

where, as can be observed, the entries are identical to A, with the exception of the i th column
which is taken from B. Create B(i )A in a similar manner.

(3) Create

C=





A
–
B



 , (3.21)

which is the B matrix appended to matrix A.

(4) Compute the column vectors f (A), f (B), f (A(i )B ) and f (B(i )A ) by evaluating the model at input

values from the rows of matrices A, B, A(i )B and B(i )A . Here f (A) j denotes the output computed
from the j t h row of A.

(5) The first-order Sobol’ indices are estimated by

Si ≈
1

M

∑M
j=1

�

f (A) j f (B(i )A ) j − f (A) j f (B) j
�

1
2M

∑2M
j=1 f (C) j f (C) j −E 2

�

f (C)
� (3.22)

and the total indices by

STi
≈

1
2M

∑M
j=1

�

f (A) j − f (A(i )B ) j
�2

1
2M

∑2M
j=1 f (C) j f (C) j −E 2

�

f (C)
� . (3.23)
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In (3.22), we approximated the squared mean,

f 2
0 =

∫

Γ p

f (θ ) f (θ ′)dθdθ ′

by

f 2
0 ≈

1

M

M
∑

j=1

f (A) j f (B) j , (3.24)

as motivated in [45, 54].

3.2.1 Variance-Based Sensitivity Analysis

As noted in Section 3.1.2, the function Y = f (Θ) is expressed in terms of its Sobol’ decomposition

Y = f (Θ) = f0+
2p−1
∑

n=1

frn
(θrn
). (3.25)

In the previous section, we illustrated how a second-order approximation (3.16) is used in the Saltelli

algorithms from [46, 54, 60]. Independent of the second-order approximation, these algorithms

also assume that the parameters Θ are uniformly and independently distributed. In this section, we

consider cases for which the assumption of independent inputs is false. We will start by considering

an alternate decomposition of the model variance Var[Y ], such that this incorporates possible

correlations and structural interactions between the model parameters. We illustrate the alternate

derivation of the sensitivity indices based on the theory developed by Li [29].

Consider the Hilbert inner product 〈·, ·〉ρ ,




f (θ ), g (θ )
�

ρ
=

∫

Γ

ρ(θ ) f (θ )g (θ )dθ (3.26)

for two arbitrary functions f (θ ) and g (θ ). Using the Hilbert inner product, relations (3.11), (3.14),

(3.25), and the definition of variance, then yield the variance decomposition
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Var [Y ] =E
�

(Y −E [Y ])2
�

=

�2p−1
∑

j=1

fr j
, y − f0

�

ρ

=
2p−1
∑

j=1

Cov
�

fr j
, Y
�

=
2p−1
∑

j=1

Var
�

fr j

�

+Cov



 fr j
,

2p−1
∑

k=1,k 6= j

frk



 ,

(3.27)

where

Cov
�

frk
, Y
�

=

∫

Γ

ρ(θ ) frk
(θrk
)
�

f (θ )− f0

�

dθ . (3.28)

Whereas the relation
∑2p−1

j=1 Var
�

fr j

�

accounts for individual parameter contributions to the total

variance Var[Y ], the covariance

Cov



 fr j
,

m
∑

k=1,k 6= j

frk





accounts for correlation present in the component functions of the sets θr j
and θrk

.

As a counterpart to the sensitivity indices defined in (3.18) and (3.20), here we define the indices

Sr j
=

Cov
�

fr j
, Y
�

D
, S s

r j
=

Dr j

D
,

S c
r j
=

Cov
�

fr j
,
∑

frk

�

D
,

(3.29)

where D = Var [Y ]. The Sobol’ indices S s
r j

and S c
r j

correspond to the structural and correlative

contributions [29] to the total index

Sr j
= S s

r j
+S c

r j
, (3.30)

for the index of set of parameters r j . These indices satisfy the condition

2p−1
∑

j=1

Sr j
= 1.

We approximate indices Sr j
and S s

r j
using Monte Carlo integration techniques, and simply solve for

the index S c
r j

in (3.30).

As an overall measure of sensitivity for individual parameters θi , we define the total sensitivity
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indices

STi
= Si +

p
∑

j=1
j 6=i

Si j +
∑

1≤ j<k≤p
j ,k 6=i

Si j k + · · ·+S1...p , i = 1, . . . , p . (3.31)

Here, the indices Si , Si j , Si j k , . . ., correspond to the component functions

fi (θi ), fi j (θi ,θ j ), fi j k (θi ,θ j ,θk ), . . . ,

respectively. It follows that the total indices quantify the complete influence of the parameter θi on

the response, which includes high-order structural interactions, as well as all parameter correlative

contributions.

Recall from Section 3.1, that a guide to interpreting the first-order Sobol’ sensitivity indices, is to

regard indices Si greater than 100
p % as significant, because they have greater than average effect on

the variability of the response, in the absence of interactions. Here the indices, Si , Si j ,Si j k , . . ., may

be negative due to parameter correlation. Furthermore, we consider the magnitude of the index

as well as the value of the total index STi
, when asserting the significance of any negative Sobol’

indices. To measure relative parameter importance, we compare and contrast the values of STi
for

the parameters θ = [θ1,θ2, . . . ,θp ].

3.2.2 Linearly Parameterized Problems

For linearly parameterized problems

Y = f (Θ) = a1Θ1+a2Θ2+ · · ·+apΘp , (3.32)

we give an analytic representation of the component functions from (3.29) derived in Section 3.2.1.

We start by making the assumption that

Θ ∼N (µ, V),

whereµ= [µ1,µ2, . . . ,µp ]T is a vector of nominal values forΘ and V is the associated p×p covariance

matrix. Recall that θ are realizations of the random variable Θ.
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We compute the expected values

f0 =E [Y ] =E
�

a1Θ1+a2Θ2+ · · ·+apΘp

�

= a1E [Θ1] +a2E [Θ2] + · · ·+apE
�

Θp

�

= a1µ1+ · · ·+apµp

fi (θi ) =E [Y |θi ]− f0

= a1E [Θ1|θi ] + · · ·+apE
�

Θp |θi

�

− f0,

fi j (θi ,θ j ) =E
�

Y |θi ,θ j

�

− fi (θi )− f j (θ j )− f0

= a1E
�

Θ1|θi ,θ j

�

+ · · ·+apE
�

Θp |θi ,θ j

�

− fi (θi )− f j (θ j )− f0,
...

(3.33)

by evaluating the expectation terms E[Θr |θi ], for r = 1, . . . , p in (3.33). For analytic evaluation, we

partition Θ and V as

Θ = [Θ1Θ2]
T , V=

�

V11 V12

V21 V22

�

.

Here, Θ1 is r ×1, Θ2 is (p − r )×1, and V has components with dimensions

�

r × r r × (p − r )

(p − r )× r (p − r )× (p − r )

�

.

The expected value is then

E[Θ1,θ2] =µ1+V12V−1
22 (θ2−µ2). (3.34)

With the expectation terms defined, we now apply these results to the problem (3.32). Assuming

a normal distribution, we take

V=













σ2
1 τ12 · · · τ1p

τ21 σ2
2

...
...

τp 1 σ2
p













as the covariance matrix. Using the entries in the covariance matrix, we express the component
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functions in (3.33) as

f0 = a1µ1+ · · ·+apµp

fi (θi ) = aiθi +
p
∑

j=1
j 6=i

a j

�

µ j +τσiσ j

σ j

σi
(θi −µi )

�

− f0, (i = 1, . . . , p ),

fi j (θi ,θ j ) = aiθi +a jθ j +
p
∑

k=1
k 6=i , j

ak

 

µk + [τk i τk j ]

�

σ2
i τi j

τ j i σ2
j

�−1 �
θi −µi

θ j −µ j

�

!

− fi − f j − f0,

...

f1...p (θ1, . . . ,θp ) = f (θ ) − · · · −
∑

1≤i< j<k<`≤p

fi j k`−
∑

1≤i< j<k≤p

fi j k −
∑

1≤i< j≤p

fi j −
p
∑

i=1

fi − f0,.

(3.35)

Here τi j is the covariance between θi and θ j , σ2
i is the variance for θi , and τσiσ j

=
τi j

(σiσ j )
is the

Pearson correlation. The theory given here is employed in the ferroelectric phase-field single domain

model analysis of Chapter 4 to construct Sobol’ decomposition component functions analytically.

3.2.3 Numerical Basis Functions Expansion

Whereas the analytical solution for the component functions in (3.29), introduced and detailed

in Section 3.2.2, is applicable only for linearly parameterized problems, here we discuss a general

solution technique for nonlinearly parameterized problems

Y = f (Θ).

The technique is similar in nature to the one based on the work by Li [29], utilizing cubic B-splines

[12, 41], Bk (θ ), k = k =−1, . . . , m+1, and approximating the Sobol’ decomposition terms in Y = f (Θ).

We employ these basis functions in the component functions (3.13) approximations

fi (θi )≈
m+1
∑

r=−1

αi
r Br (θi ),

fi j (θi ,θ j )≈
m+1
∑

u=−1

m+1
∑

q=−1

β i j
uq Bu (θi )Bq (θ j ),

fi j k (θi ,θ j ,θk )≈
m+1
∑

u=−1

m+1
∑

q=−1

m+1
∑

v=−1

γi j k
uq v Bu (θi )Bq (θ j )Bv (θk ).

(3.36)
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Here the coefficientsαi
r ,β

i j
uq and γ

i j k
uq v are determined via least squares regression. Next, we consider

the first-, second- and third-order component functions approximations

fi (θ
s
i )≈ Y s − f0,

fi j (θ
s
i ,θ s

j )≈ Y s − f0− fi (θ
s
i )− f j (θ

s
j ),

fi j k (θ
s
i ,θ s

j ,θ s
k )≈ Y s − f0− fi (θ

s
i )− f j (θ

s
j )

− fk (θ
s
k )− fi j (θ

s
i ,θ s

j )− fi k (θ
s
i ,θ s

k )− f j k (θ
s
j ,θ s

k ),

(3.37)

where we employ Y s = f (θ s ) as an unbiased estimator for E[Y |θ s
rn
]. The samples θ s represent

independent realizations from the underlying distribution for θ . To determine a numerical approxi-

mation for each specific component function, we then substitute the expression (3.36) into (3.37),

to obtain

m+1
∑

r=−1

αi
r Br (θ

s
i )≈ Y s − f0,

m+1
∑

u=−1

m+1
∑

q=−1

β i j
uq Bu (θ

s
i )Bq (θ

s
j )≈ Y s − f0− fi (θ

s
i )− f j (θ

s
j ),

m+1
∑

u=−1

m+1
∑

q=−1

m+1
∑

v=−1

γi j k
uq v Bu (θ

s
i )Bq (θ

s
j )Bv (θ

s
k )

≈ Y s − f0− fi (θ
s
i )− f j (θ

s
j )− fk (θ

s
k )− fi j (θ

s
i ,θ s

j )− fi k (θ
s
i ,θ s

k )− f j k (θ
s
j ,θ s

k ).

(3.38)

The coefficients in (3.38) are solved for in a stepwise least squares regression fashion. For the

first-order component functions, we determine the coefficientsαi = [αi
−1, . . . ,αi

m+1]
T , by minimizing

the cost functional

Ji (α
i ) =

K
∑

s=1

�

Y s − f0− fi (θ
s
i )
�2

=
K
∑

s=1

�

Y s − f0−
m+1
∑

r=−1

αi
r Br (θ

s
i )

�2

=
�

Yi −A{i }αi
�T �

Yi −A{i }αi
�

=




Yi −A{i }αi






2

2
,

(3.39)
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for i = 1, . . . , p . We define the additional terms in (3.39) as

A{i } =







B−1(θ 1
i ) B0(θ 1

i ) · · · Bm+1(θ 1
i )

...
...

...

B−1(θ K
i ) B0(θ K

i ) · · · Bm+1(θ K
i )






,

Yi =







Y 1

...

Y K






− f01,

where K ≡ number of θ samples and 1= [1, . . . , 1]T . It follows that

αi ∗ =
�

A{i }
T

A{i }
�−1

A{i }
T

Yi (3.40)

is a least squares solution to the sum of squares function (3.39).

Likewise, for the higher-order component functions, we minimize the cost functions

Ji j (β
i j ) = ‖Yi j −A{i j }β i j ‖2

2,

Ji j k (γ
i j k ) = ‖Yi j k −Ai j kγi j k‖2

2,

where

β i j = [β i j
−1,−1, . . . ,β

i j
m+1,−1,β

i j
−1,0, . . . ,β i j

uq , . . . ,β
i j
m+1,m+1]

T

and

γi j k = [γi j k
−1,−1,−1, . . . ,γi j k

uq v , . . . ,γ
i j k
m+1,m+1,m+1]

T .

The solution of the coefficients in (3.38), is followed by random sampling from the underlying

parameter distribution to approximate the integrals in the Sobol’ sensitivity indices (3.29).

We implement the numerical method given here and compare it with the analytical method

given in Section 3.2.2 for the ferroelectric single domain phase-field continuum model analysis of

Chapter 4.

3.3 Subset Selection using the Singular Value Decomposition

An alternative method for verifying the results of the global sensitivity analysis is determining

identifiable parameters via singular value decomposition-based algorithms. As we will detail, the

first method requires a linearly parameterized model of the form

Y =Aθ ,
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where A is the design matrix and θ are the parameters of interest. The second method uses local

sensitivity in ascertaining the most identifiable parameters with respect to nominal parameter

values. We extend this to consider global sensitivity by sampling from the underlying parameter

distributions to the entries in sensitivity matrices. We give the two methods in Sections 3.3.1 and

3.3.2.

3.3.1 SVD Subset Selection for Linearly Parameterized Models

For problems where the model is linearly parameterized, Golub’s algorithm for subset selection

gives a least squares solution to a reduced system of parameters [15]. The algorithm uses the singular

value decomposition of the design matrix A, and determines a rank estimate r̃ for r such that the

parameter dimension is reduced. An associated QR decomposition is then used to determine an

appropriate permutation matrix in selecting the significant columns of A. We illustrate the full

procedure in Algorithm 3.3.1. Note that the algorithm relies on the assumption that the smallest

singular value of the matrix A is small enough such that we obtain a rank approximation r̃ . Typically,

we invoke the threshold ε= 10−8, or the square root of machine epsilon, to appropriately define

‘small enough’.

3.3.2 Fisher Information Matrix Analysis

Consider the function f (Pi ,θ ) and its first order Taylor series approximation

f (Pi ,θ )≈ f (Pi ,θ ∗) +∇θ f (Pi ,θ ∗)∆θ , (3.41)

where Pi is some independent variable, and θ ∗ is a nominal parameter value. Let Yi = f (Pi ,θ ∗) + εi ,

Algorithm 3.3.1: Golub’s algorithm for subset selection using the singular value decomposition
(SVD) for problems of the type Ax= b [15].

(1) Construct the SVD of A ∈Rm×p , such that A=UΣVT , where Σ= diag(σ1,σ2, . . . ,σp ) is the
diagonal matrix of singular values of A.

(2) Determine a rank estimate r̃ ≤ r = rank(A), by filtering the small singular values of A.

(3) Apply the QR factorization with column pivoting to V(:, 1 : r̃ )T such that V(:, 1 : r̃ )T P=QR,
where P is a permutation matrix and R is upper triangular.

(4) Set AP= [B1, B2], where B1 ∈Rm×r̃ and B2 ∈Rm×(p−r̃ ).

(5) Determine the least squares solution such that min
z∈Rr̃
‖B1z−b‖2 is minimized.
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where εi ∼N (0,σ2) is an independently and identically distributed random error, and let fi (θ ∗) =

f (Pi ,θ ∗). Then, we have the approximation Yi ≈ f (Pi ,θ ), and the cost function

J (θ ) =
1

N

N
∑

i=1

�

Yi − f (Pi ,θ ∗)
�2

. (3.42)

Substituting (3.41) into (3.42), yields

J (θ )≈
1

N

N
∑

i=1

�

∇θ f (Pi ,θ ∗) ·∆θ
�2

=
1

N
(S∆θ )T (S∆θ ),

(3.43)

where S is the sensitivity matrix

S=



























∂ f1

∂ θ1
(θ ∗)

∂ f1

∂ θ2
(θ ∗) · · ·

∂ f1

∂ θp
(θ ∗)

∂ f2

∂ θ1
(θ ∗)

∂ f2

∂ θ2
(θ ∗) · · ·

∂ f2

∂ θp
(θ ∗)

...
...

...

∂ fN

∂ θ1
(θ ∗)

∂ fN

∂ θ2
(θ ∗) · · ·

∂ fN

∂ θp
(θ ∗)



























. (3.44)

We can then formulate the cost function (3.43) as

J (θ ∗+∆θ )≈
1

N
∆θ T ST S∆θ . (3.45)

If we take∆θ to be an eigenvector of ST S, then for a corresponding eigenvalue λ,

ST S∆θ =λ∆θ =⇒ J (θ ∗+∆θ )≈
λ

N
‖∆θ ‖2

2.

When the eigenvalueλ≈ 0, its perturbations defined by the eigenvector∆θ , yield negligible changes

in the cost function,

J (θ ∗+∆θ )≈ 0,

such that parameters in the direction of∆θ are locally unidentifiable.

We define the matrix F = ST S as the Fisher information matrix. There are several algorithms

which employ this methodology in determining locally identifiable parameters, such as the ones

in Brun et al. [3], Burth et al. [4], Contron-Arias et al. [10], and Quaiser and Monnigmann [42]. To

implement this methodology, we use Algorithm 3.3.2, as motivated by [42].
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Algorithm 3.3.2: Method for determining locally identifiable parameters from the Fisher
information matrix, based on [42].

(0) Set η= p , where p is the number of parameters in the model. Next, compute construct the
corresponding sensitivity matrix S following relation (3.44). The variable ηwill change with
the successive iterations of the algorithm.

(1) Construct the Fisher information matrix F= ST S and determine its eigenvalues. Order the
eigenvalue magnitudes as

|λ1| ≤ |λ2| ≤ · · · ≤ |λη|.

(2) If |λ1|>ε, where ε is some prescribed threshold value, stop. We take all the parameters to be
identifiable. In further implementations of the algorithm, we will take the threshold value
ε= 10−8.

(3) If |λ1|<ε, then one of the parameters is not locally identifiable. Proceed as follows.

(4) Identify the component with the largest magnitude in the eigenvector∆θ1 associated with
λ1. As motivated by (3.45), this component corresponds to the least identifiable parameter.

(5) Remove the column in S corresponding to the component identified in Step 4 and setη=η−1.
Repeat Step 1 until all locally unidentifiable model parameters have been determined.

3.3.3 Random Sampling of the Sensitivity Matrix

For a measure of quasi-global sensitivity, we expand the derived methodology for Algorithm 3.3.2, to

include samples across the admissible parameter space. This is analogous to the elementary effects

(3.8), given in Section 3.1.1, in that the entries to the sensitivity matrix are taken to be sampled

derivative means. Therefore we define each final sensitivity matrix entry S ∗i j to be

S ∗i j =
1

r

r
∑

k=1

S k
i j , (3.46)

where

S k
i j =

∂ fi

∂ θ j
(θ k ).

Here, k represents the k t h evaluation of the sensitivity matrix for a sample θ k . Note that the param-

eters θ are sampled from the underlying parameter distributions.
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3.4 Active Subspace Selection

Active subspace methods provide an alternative appealing approach that identifies important direc-

tions in the admissible parameter space that most strongly affect the output response. We typically

employ these methods when models contain a high number of parameters and/or parameter subset

selection techniques are infeasible due to high computational cost. Active subspaces may be used to

derive response surfaces, that approximate the original output, and can subsequently be employed

for model calibration. They can also be used to develop activity scores, to rank the relative influence

of model inputs, as an alternative to classical global sensitivity analysis techniques.

When constructing an active subspace, we must approximate gradients, which quantify changes

in the output with respect to parameter perturbations. When the parameters differ by large orders of

magnitude, classical derivative approximations may yield incorrect gradient results. This motivates

the normalized gradient evaluations described in Section 3.4.1. We use these normalized gradient

evaluations to construct the active subspace detailed in Section 3.4.2. In Section 3.4.3, we detail

techniques for verifying the dimension of the active subspace. Lastly, in Section 3.4.4, we detail the

construction of activity scores.

3.4.1 Normalized Gradient Evaluations

The active subspace method detailed in Section 3.4.2 requires gradient approximations for the

model y = f (θ ). When the parameters θ vary vastly in magnitude, partial derivative approximations,

such as
∂

∂ θi
f (θ )≈

f (θ +∆ei )− f (θ )
∆

,

where∆ is a suitably small step size, may yield inaccurate results. Here, ei is the i th canonical vector

containing all entries equal to 0, except for the i t h entry which is equal to 1.

In some cases we may observe differences up to 20 orders of magnitude in parameter samples. To

ensure that inputs or parameters with large or small values do not dominate the gradient evaluations,

we must normalize our inputs. We consider two cases of scaling maps for normalizing our parameters.

The first is the assumption that the parameters are uniformly distributed, whereas the second is the

assumption that the parameters are normally distributed.

Scaling Maps

For the first scaling map, we consider the parameters θ to be uniformly distributed such that

Θi ∼U (θ no m
i −δ|θ no m

i |,θ no m
i +δ|θ no m

i |). (3.47)

Here, θ no m
i , i = 1, . . . , p , represents the nominal values of the parameters θ . For active subspace
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construction, a typically chosen value for δ is 0.10. To avoid issues due to differences in parameter

values, we transform the distributions (3.47) toU (0, 1). The transformation normalizes all inputs,

removes units and ensures that parameters containing relatively large or small values do not affect

the analysis disproportionately. To transform back to the physical space for model evaluations, we

use the mapping

gU (x) = diag(θu −θ`)x+θ`, (3.48)

where x is a p -vector with values between 0 and 1, and θ` and θu , respectively, are the lower and

upper bound vectors of the parameters θ . For the above scenario, these vectors are

θ` = θ
no m −δ|θ no m | and θu = θ

no m +δ|θ no m |,

where θ no m are the nominal values for θ .

Secondly, we consider the case when the parameters are normally distributed, such that

Θ ∼N (θ no m , V), (3.49)

where V is the covariance matrix

V=













var(Θ1) cov(Θ1,Θ2) · · · cov(Θ1,Θp )

cov(Θ2,Θ1) var(Θ2) · · ·
...

...
...

cov(Θp ,Θ1) var(Θp )













.

We again normalize all inputs to avoid discrepancies in the analysis, as a result of parameters with

relatively large or small values. We employ a Cholesky decomposition of V, where

V=AAT .

Here, the mapping to the natural input space for model evaluations is

gN (x) = θ
no m +Ax, (3.50)

where x are generated from the standard normal distributionN (0, 1).

Normalized Gradient Estimates

Here, we define the normalized derivative approximation to be used in the construction of the active

subspace. This derivative has the normalized parameters as inputs, with evaluations in the physical

space as outputs.
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We define the function h as a composition of functions. LetQ⊆R, θ ∈Q, x ∈ [0, 1], and consider

the mappings

f : Q 7→R,

g : [0, 1] 7→Q,

h : [0, 1] 7→R,

(3.51)

such that

h (x) = ( f o g )(x) = f (g (x)). (3.52)

We then obtain the relation

h ′(x )≈
h (x +∆)−h (x )

∆

=
f (g (x +∆))− f (g (x ))

∆

≈
f (g (x ) +∆g ′(x ))− f (g (x ))

∆

≈
f (g (x ))+∆g ′(x ) f ′(g (x ))− f (g (x ))

∆

= f ′(g (x ))g ′(x )

where 0<∆� 1. This is equivalent to the chain rule derivative for composition (3.52). We implement

this derivative in the gradient evaluations required for the determination of active subspaces to

avoid inaccuracies due to varying units of magnitude. When p > 1, we approximate the required

partial derivatives in the finite difference algorithms as

∂

∂ xi
h (x)≈

h (x+∆ei )−h (x)
∆

, i = 1, . . . , p ,

where ei is the i th canonical vector.

To implement gradient evaluations in the uniform normalized space, we let TU = diag(θu −θ`),
and define the function

hU (x) = f (gU (x)) = f (TU x+θ`). (3.53)
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Using (3.53), we obtain the finite difference partial derivative approximation

hU (x+∆)−hU (x)
∆

=
f (gU (x+∆))− f (gU (x))

∆

=
f (TU (x+∆) +θ`)− f (TU x+θ`)

∆

(3.54)

Similarly, when the parameters are normally distributed, we define

hN (x) = f (gN (x)) = f (Ax+θ no m ), (3.55)

such that the normalized gradient is

hN (x+∆ei )−hN (x)
∆

=
f (gN (x+∆ei ))− gN (x)

∆

=
f (A(x+∆ei ) +θ no m )− f (Ax+θ no m )

∆
.

(3.56)

3.4.2 Active Subspace Construction

We refer to parameter subspace selection methods as active subspace methods since active variables

are determined as weighted linear combinations of the parameters indicating directions of strongest

variability in the parameter space. Those directions are separated from ones in which the model

output is relatively flat, yielding inactive variables.

Consider the function

Y = f (Θ)

where Θ = [Θ1,Θ2, . . . ,Θp ] is a set of random variables with an associated distribution ρ(Θ). Then,

we define the matrix

C=E
�

(∇θ f )(∇θ f )T
�

, (3.57)

which is positive semidefinite by construction. Thus, it has the eigenvalue decomposition

C=WΛWT .

Here, Λ= diag(λ1,λ2, . . . ,λp ), λ1 ≥λ2 ≥ · · · ≥λp ≥ 0. If there exists a significant gap in the eigenvalue

spectrum, we obtain the partitions

W= [W1 W2], Λ=

�

Λ1

Λ2

�

, Λ1 = diag(λ1, . . . ,λm ), m < p .
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Based on the significant gap, we define the new rotated coordinate variables

y=WT
1 θ , z=WT

2 θ ,

where y ∈Rm and z ∈Rp−m . Here, the output f varies more prominently due to variability in direc-

tions dictated by y, than in the directions dictated by z, defining the active and inactive subspaces

[8].

The construction of the matrix C (3.57) may require the computation of high dimensional

integrals, which may be prohibitive in practice. Therefore, we approximate the gradient matrix

G=
1
p

M

�

∇θ f1 ∇θ f2 · · · ∇θ fM

�

(3.58)

using Monte Carlo sampling. Here, G is composed of M gradient, or approximate gradient evalua-

tions at values in the original input space, as motivated by Bang [1] and Constantine [8]. We extract

an input active subspace basis by employing the singular value decomposition (SVD) of the matrix

G. As such, the active subspace basis is represented by a subset of singular vectors contained in the

matrix W, in

G=WΣVT , (3.59)

where Σ is the diagonal matrix containing the squared roots of the eigenvalues of C. As shown by

Russi [44], this active subspace computation methodology is equivalent to the one employed by the

formation of the matrix C.

Implementation

The construction of the matrix G (3.58) usually necessitates gradient approximations since an ana-

lytic gradient is typically not be available for complex systems. This motivates the consideration of

finite-difference algorithms to construct G and determine the active subspace. Depending on the

parameter distribution, we use either (3.54) or (3.56) to evaluate normalized derivative approxima-

tions. The main idea is to select normalized initial vectors x j ∈Rp , j = 1, . . . , M , sampled from the

corresponding probability density ρ(x). Following the maps for the uniform and normal density

distributions defined in (3.47)-(3.49), we then construct a set of derivative approximations termed

elementary effects,

di (x
j ) =

h (x j
1 , . . . , x

j
i−1, x

j
i +∆, x

j
i+1, . . . , x

j
p )−h (x j )

∆
=

h (x j +∆ ·ei )−h (x j )
∆

(3.60)

similar to relation (3.8), with the distinction of the map h (x) and the normalized parameters x.

Here, ∆ is a given step size, and i represents an index for the i t h parameter and j for the j t h
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Algorithm 3.4.1: Finite-difference method for gradient matrix approximation [28].
(0) Identify the number of desired columns M , appropriate step size∆, and probability density

ρ(x). Use the model function hU (x) (3.54) or hN (x) (3.56) depending on the probability density
ρ(x).

for j = 1, . . . , M

(1) Construct the row vector D1×p with randomly chosen entries ±∆, where∆ is the step size.

(2) Select x j from the probability density ρ(x). In our case this is the uniform or normal
distribution. Evaluate the model function at the sampled value along with the elementary
effect as follows.

for i = 1, . . . , p

di =
h (x j

i +D(i )·ei )−h (x j )
D(i ) , where ei is the i th standard basis vector.

end

(3) Let Ĝ(:, j ) = d, where Ĝ is the gradient matrix approximation.

end

sample point drawn from ρ(x). We use this method, as illustrated in Algorithm 3.4.1, to construct

the columns of the gradient matrix (3.58) for the active subspace determination. Following an SVD

of the gradient matrix, the first n singular vectors represent the basis vectors for an n−dimensional

active subspace. To reduce the number of model evaluations, the gradient-free active subspace

construction methods, detailed in [28], may also be used. In the next section, we visit the techniques

employed in the determination of the dimension of the active subspace.

3.4.3 Finding the Dimension of the Active Subspace

To determine the dimension of the active subspace, we consider several criteria. The first and most

straightforward criteria is to observe large gaps in the singular value spectrum upon a SVD of the

gradient matrix (3.58). Typically, a large gap consisting of at least an order of magnitude is observed

after the first or second singular value, thereby indicating a one- or two-dimensional active subspace,

respectively [8]. Gap observations require a more quantitative verification step, which motivates the

following methods for dimension selection.

A second criteria for determining the dimension of the active subspace, is error-based dimension

selection. Here, we consider an approach based on an algorithm from [19]. The user selects an error

tolerance εt o l which is compared to an upper-error bound. The error tolerance is selected based on

factors such as model computational time and resources available. When the error upper bound has

decreased below the user-defined error tolerance, the algorithm is terminated and an appropriate
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Algorithm 3.4.2: Error-based dimension selection algorithm based on [19].

(1) For the gradient matrix G (3.58), compute the SVD G=WΣVT .

for j = 1 : k −1

(a) Sample a set of p standard Gaussian vectors {w1, . . . , wp }.
(b) Let Ŵm× j be the first j columns of W.

(c) Define the upper bound error as ε
j
up p = 10

p

2/πmaxi=1,...,p ‖(I− ŴŴT )Gwi ‖.

end

(2) When ε
j
up p < εt o l , take j to be the active subspace dimension. If a value less than the error

tolerance is not achieved, compute G with more columns and repeat Step 1.

active subspace dimension is determined. As noted by Lewis et al. [28], this method retains the

largest number of dimensions for response surface construction in the active subspace. We illustrate

the outline of the algorithm in Algorithm 3.4.2.

The next criteria that we use to verify the active subspace dimension is principal component

analysis (PCA). In this analysis, deviations from the sample mean of the gradient matrix G are

analyzed and a test statistic is developed, based on a covariance matrix C, to assess the dimension

of the active subspace [23]. We detail the outline of the procedure in Algorithm 3.4.3.

Lastly we construct a response surface as a verification step to the identification of the active

subspace. In principle, the response surface should be aligned in the direction of strongest variability

in the parameter space, while accurately fitting the model response. We use a comparison of mean

relative errors (MRE) for several possible active subspace dimensions. We denote the actual model

response at sample s as As , while we denote the response surface by Fs . Then, we define the mean

relative error by

M R E =
1

N

N
∑

s=1

�

�

�

�

As − Fs

As

�

�

�

�

,

where N is the number of realizations. The dimension of the active subspace is typically indicated

when the reduction in the MRE is less than one order of magnitude, as the dimension is increased.

We illustrate the procedure for constructing the response surface in Algorithm 3.4.4.

3.4.4 Activity Scores

Here, we present an alternative metric for global sensitivity analysis, based on active subspaces.

This sensitivity metric ranks parameter influence based on the derived singular values and vectors

used to define the active variables.
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Algorithm 3.4.3: Principal component analysis (PCA) active subspace dimension selection
based on [23].

(1) For the gradient matrix G (3.58), compute the sample mean u ( j ) = 1
m

∑m
i=1 Gi , j . Let 1 be an

m ×1 column vector of ones.

(2) Calculate the deviations from the mean, employing the column vector of sample means u, by

B=G−1uT .

(3) Compute the covariance matrix C by calculating the outer product of B with itself,

C=
1

m −1
BT B.

(4) Compute the eigendecomposition of C, such that

C=VDV−1,

where D is the diagonal matrix which contains the eigenvalues of C.

(5) For each subset of j eigenvectors, compute the cumulative ‘energy’ content for each subset
of j eigenvectors, to quantify the variance, which is contained in the set

g ( j ) =
j
∑

k=1

D(k , k ), for j = 1, . . . , m .

(6) For some user-defined percentage 100t ∗, the active subspace dimension is the smallest j
such that

g ( j )
g (n )

≥ t ∗.

As detailed in [8], the activity scores are based on the formula

ai = ai (m ) =
m
∑

j=1

λ j w 2
i , j , i = 1, . . . , p , (3.61)

where m is the dimension of the active subspace,λ j , j = 1, . . . , m correspond to the m eigenvalues in

the active subspace, whereas wi , j are the eigenvector entries. We use the activity scores to compare

with the parameter subset selection methods derived in Section 3.3.2.
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Algorithm 3.4.4: Algorithm for constructing response surface based on active subspace.

(0) Sample the training input values xi with respect to its probability density function and
construct corresponding responses qi = g (xi ).

(1) Project the sampled values xi onto the active subspace by using the transformation
y=WT

1 xi .

(2) Using regression analysis construct a response surface r (y), using qi , such that qi ≈ r (yi ).

(3) Verify the response surface by approximating the original function g (x)≈ r (WT
1 x).

3.5 Bayesian Inference

In Bayesian inference, we consider probabilities as quantifying the likelihood of an event occurring

given prior knowledge and available information. Hence, as more information is acquired about a

particular system or phenomenon of interest, Bayesian probabilities are updated. As a counterpart to

frequentist statistical analysis, where probabilities are characterized as fixed relative frequency values

with which events occur given a large number of performed experiments, Bayesian probabilities are

not fixed values and change as more information is obtained.

As such, model parameters in Bayesian statistical analysis are treated as random variables with

associated probability densities. The distributions characterize the information known about the

parameters, and this involves the construction or approximation of probability density functions

(PDFs). Due to the reliance of probabilities on prior information and current observations, Bayes’

rule

P (A|B ) =
P (B |A)P (A)

P (B )
(3.62)

constitutes the natural foundation for Bayesian statistical inference investigations. Here, A and B

represent events, while P (∗) represents the probability of an event occurring.

For parameters θ = [θ1,θ2, . . . ,θp ] informed by observations [ν1,ν2, . . . ,νn ], we employ the corre-

sponding relation

π(θ |ν) =
π(ν|θ )π0(θ )

∫

Rp π(ν|θ )π0(θ )dθ
. (3.63)

Here, π(θ |ν) is the posterior distribution, while π0(θ ) and π(ν|θ ) represent the prior density and

likelihood function, respectively, and the integral in the denominator is a normalization factor.

3.5.1 Markov Chain Monte Carlo (MCMC)

In practice, direct implementation of (3.63) for large parameter dimensions is prohibitive. The state-

of-the-art alternative to evaluating the normalization constant and obtaining marginal densities, is
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the employment of Markov chain Monte Carlo (MCMC) techniques [51]. Here, the Markov chains’

stationary distributions reflect the posterior densities for each iterative Monte Carlo random sample.

In the next section, we summarize the main MCMC algorithm implemented in this dissertation for

Bayesian statistical inference.

3.5.2 Delayed Rejection Adaptive Metropolis (DRAM)

Among MCMC algorithms for constructing posterior densities that characterize parameter uncer-

tainties, the delayed rejection adaptive metropolis (DRAM) algorithm is an appealing option since it

incorporates learned information as candidate parameter values are accepted in each Monte Carlo

chain sample iteration [18, 51]. The algorithm uses the Metropolis-Hastings algorithm [7, 51] for

random sampling from the posterior distributions, while adding two extra steps–adaptation and

delayed rejection.

The delayed rejection step improves mixing in the parameter chains by decreasing the variance

of the proposal distribution. Additionally, the adaptive step enhances updates to the proposal

distributions via the chain covariance matrix and associated chain accepted candidates. This step

efficiently enables the correction of poor initial estimates and prior distributions. We summarize

the procedure in Algorithm A.0.1 in the Appendix, while the delayed rejection step is given in

Algorithm A.0.2. Note that the updated chain covariance matrix design parameter sp and length

k0 of the adaptation interval, respectively depend on the dimension p of the parameter space and

the necessity of ensuring a nonsingular proposal chain covariance matrix. Typically, the value of

sp is taken to be sp = 2.382/p , while k0 is taken to be 100 [18]. Other design parameters such as ns

and σ2
s are the number of observations and mean squared error of observations with respect to

information producing the prior. Oftentimes with a noninformative prior, one takes ns to be small,

such that ns = 0.1t o 1 in value [51]. Note that for subsequent Bayesian statistical inference, we use

the MATLAB DRAM code available at https://wiki.helsinki.fi/display.

3.5.3 Model Calibration

In this dissertation, we use the following general statistical model for Bayesian model calibration.

The statistical model incorporates the parameter-dependent model response along with associated

random errors, and is defined to be

M o b s (s ) = fs (Θ) + εs , s = 1, . . . , n . (3.64)

Here, the random variables M o b s (s ) and εs , respectively denote measurement observations and

errors with respect to the model response fs (Θ). Note that the errors εs are assumed to be indepen-

dent and identically distributed (iid), and ε ∼N (0,σ2). We let m o b s be realizations of the random

47



variable M o b s .

In the context of our subsequent models and Bayesian inference, Bayes equation becomes

π(θ |m o b s ) =
`(m |θ )π0(θ )

∫

Rp `(m |θ )π0(θ )dθ
(3.65)

where the likelihood function is

`(m |θ ) = e −
∑n

s=1[m o b s (s )− fs (θ )]2/2σ2
. (3.66)

For all subsequent Bayesian model calibration studies in this dissertation we employ the DRAM

algorithm given in Algorithm A.0.1 in the Appendix.

3.6 Uncertainty Propagation

Posterior densities of the type constructed from the Bayesian analysis introduced in Section 3.5,

are often sampled to construct distributions for model responses. We use the probability densities

to propagate input uncertainties and construct credible intervals which quantify the accuracy of

the model fits, as detailed in Smith [51]. We refer to this method as sampling-based uncertainty

propagation, and it is the method of choice for constructing the credible intervals in the 180◦ and

90◦ domain wall energy applications of Chapter 6 and Chapter 7.

3.6.1 Sampling

As discussed in Chapter 5, there are several cases considered for model parameters and their prop-

agation of uncertainties. In the first case, we use the mean values and standard deviations from

the sampled chains obtained from inference to construct densities assuming normal distributions.

Upon the identification of a quantity of interest (QoI), we then randomly sample the parameters and

perform corresponding model realizations with the goal of constructing credible intervals. In the

second scenario, we sample directly from the chains constructed using Bayesian analysis techniques.

Both methods are advantageous in that they are independent of the parameter dimension, since

one can simultaneously sample from the parameter distributions or constructed chains.

As detailed in Chapter 9 of [51], the convergence rate for sampling-based uncertainty propagation

is 1p
M

, where M is the number of simulations. Therefore, to increase the accuracy by one order of

magnitude, we increase the number of simulations by factors of 100. This is infeasible for more

computationally expensive models, but is appropriate for the models investigated here. We apply

sampling-based uncertainty propagation techniques in later chapters of this dissertation.
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3.6.2 Energy Statistics

To verify parameter selection results employed in later chapters, we compare credible intervals

constructed from uncertainty propagation of all parameters θ , with the uncertainty propagation of

only sensitive parameters, denoted by θ s e n s . We construct densities from these credible intervals

and measure how close the densities are to being the same, using energy statistics.

Energy statistics methods are used to measure distances between statistical observations. We

employ the method based on [58] to test null hypothesis H0 : FX = FY that two distributions are

the same against the alternate hypothesis H1 : FX 6= FY . We are often interested in distributions

constructed from 99% credible intervals since these observations encapsulate the majority of the

uncertainty.

To test the null hypothesis against the alternate hypothesis,

H0 : FX = FY versus H1 : FX 6= FY ,

consider two independent random samples

X = {X1, X2, . . . , Xn1
}, Y = {Y1, Y2, . . . , Yn2

},

respectively sampled from FX and FY . We start by constructing the energy distance

εn1,n2
=

2

n1n2

n1
∑

i=1

n2
∑

m=1

||X i −Ym || −
1

n 2
1

n1
∑

i=1

n1
∑

j=1

||X i −X j || −
1

n 2
2

n2
∑

k=1

n2
∑

m=1

||Yk −Ym ||, (3.67)

to evaluate the test statistic

Tn1,n2
=

n1n2

n1+n2
εn1,n2

. (3.68)

The null hypothesis is rejected if the test statistic Tn1,n2
is large, whereas it cannot be rejected if Tn1,n2

is small. To determine the relative size with statistic replicates we employ the bootstrap method.

Consider the pooled sample W = X ∪Y , containing the original samples X and Y . We choose a

significance α, along with total number of replicates M , such that (M +1)α is an integer. We then

compute energy statistic replicates T (k )n1,n2
, by resampling

X (k ) = {X (k )1 , X (k )2 , . . . , X (k )n1
}, Y (k ) = {Y (k )1 , Y (k )2 , . . . , Y (k )n2

}

for k = 1, . . . , M , and evaluating relation (3.68). The pooled sample W enables mixing such that

X (k )i , Y (k )j ∈ W , i = 1, . . . , n1, j = 1, . . . , n2. We reject the null hypothesis H0 if 100(1− α)% of the

replicates T (k )n1,n2
are exceeded by the original energy test statistic Tn1,n2

.
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CHAPTER

4

MONODOMAIN ENERGY ANALYSIS

The stored energy functional used in this dissertation follows from Ginzburg-Landau free energy

theory [14]. A three-dimensional continuum stored energy modeling framework for ferroelectric

materials, based on the Ginzburg-Landau theory, is given by Cao and Cross [5]. The derivation of

our model follows this framework and is presented in [33, 37], where quantum density functional

theory (DFT) calculations are implemented to inform the developed continuum model. Here, we

use global sensitivity analysis to determine the most influential model parameters, and quantify the

uncertainty in the output apportioned to the uncertainty in the inputs.

Here, we take polarization and strain to be the order parameters. We express the model as a

function of polarization P and total strain ε,

u (ε, P) = uM (ε) +uP (P) +uC (ε, P) +uR (ε). (4.1)

In (4.1), u (ε, P) is the total energy per unit volume. The terms uM , uP , uC and uR , respectively

denote the mechanical, Landau, electrostrictive, and residual energy per unit volume. The variables

P and ε are the independent polarization and strain variables, respectively.

The mechanical energy, with respect to a reference cubic state, is

uM (ε) =
c11

2
(ε2

11+ ε
2
22+ ε

2
33) + c12(ε11ε22+ ε22ε33+ ε11ε33) +2c44(ε

2
12+ ε

2
23+ ε

2
13), (4.2)

based on the assumption of linear elasticity. Note that c11, c12 and c44 are elastic coefficients ex-
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pressed in Voigt notation [30]. We note that the elasticity theory has been thoroughly developed in

the literature for the material lead titanate. This includes properties for the elastic coefficients c11,

c12 and c44 [24]. As a result, throughout the analysis of the monodomain and polydomain continuum

models, we assume fixed elastic properties, setting c11, c12 and c44 at the values given in Table 4.1.

The sixth-order Landau polarization energy is

uP (P) =α1(P
2

1 +P 2
2 +P 2

3 ) +α11(P
2

1 +P 2
2 +P 2

3 )
2+α12(P

2
1 P 2

2 +P 2
2 P 2

3 +P 2
1 P 2

3 )

+α111(P
6

1 +P 6
2 +P 6

3 ) +α112

�

P 4
1 (P

2
2 +P 2

3 ) +P 4
2 (P

2
1 +P 2

3 ) +P 4
3 (P

2
1 +P 2

2 )
�

+α123P 2
1 P 2

2 P 2
3 .

(4.3)

Here,α1,α11,α12,α111,α112 andα123 are phenomenological parameters influencing the ferroelectric

phase transition in the Landau energy. When considering both paraelectric and ferroelectric phase

transitions, the Landau parameters are functions of temperature. These are, however, treated as

constants in the ferroelectric phase when cooling through the Curie temperature TC . A goal of the

global sensitivity and uncertainty analyses is to determine the importance of including sixth-order

terms rather than employing only up to a fourth-order relation.

The coupling of strain ε and polarization P is exhibited by the electrostrictive energy

uC (ε, P) =−q11(ε11P 2
1 + ε22P 2

2 + ε33P 2
3 )−q12

�

ε11(P
2

2 +P 2
3 ) + ε22(P

2
1 +P 2

3 ) + ε33(P
2

1 +P 2
2 )
�

−q44(ε12P 2
1 P 2

2 + ε13P1P3+ ε23P2P3),
(4.4)

where the parameters q11, q12 and q44 denote the electrostrictive coefficients.

Lastly, the residual energy is

uR (ε) =σ
R
i j εi j . (4.5)

This energy term is motivated by the monodomain continuum model analysis, where the unit cell is

held fixed with respect to a reference cubic state. The residual stress parametersσR
i j constrain the

unit cell to this cubic state, and thus must be estimated. We note that this is an additional energy

term not originally included in Landau-Ginzburg theory, but proposed in the work by Miles et al.

[33] to accommodate the DFT calculations informing the model.

We discuss the monodomain continuum model next, summarizing the parameters, independent

variables, and responses relevant to our analysis.

Table 4.1 Elastic coefficients obtained from [24].

Parameter c11 c12 c44 Units
Value 3.206e-1 1.397e-1 9.647e-2 µJ/µm3
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4.1 Monodomain Continuum Model

We note that DFT calculations were implemented in [33] to calibrate the monodomain continuum

model. The DFT analysis focused on energy, stress, and polarization computations derived from

first-principles investigations. The total strain is zero in the cubic state when held fixed. This permits

a calibration of the Landau energy (4.3), independent of coupling effects in the electrostrictive energy

(4.4). Moreover, the effect of electrostriction is implemented via the continuum stress relation

σ =
∂ u

∂ ε
. (4.6)

This relation yields the stress tensor

σ = c : ε+σR −q : PP. (4.7)

Here, the fourth-order elastic tensor c and the residual stress tensor σR follow after the derivative of

the residual energy (4.5) with respect to strain.

DFT computations were carried out by constraining the polarization to rotate from P3 to P2. The

employed values are presented in Figure 4.1, and yield the simplified residual stresses σR
11 =σ

R
22

andσR
13 = 0. The remaining stress component outputs are thus

σ11 =c11ε11+ c12(ε22ε33)−q11P 2
1 −q12(P

2
2 +P 2

3 ) +σ
R
11,

σ22 =c11ε22+ c12c12(ε11+ ε33)−q11P 2
2 −q12(P

2
1 +P 2

3 ) +σ
R
22,

σ22 =c11ε22+ c12c12(ε11+ ε33)−q11P 2
2 −q12(P

2
1 +P 2

3 ) +σ
R
22,

σ23 =2c44ε23−2q44P2P3+σ
R
23.

(4.8)

Given the fixed elastic properties and the unit cell held fixed to a reference cubic state, we evaluate

sensitivities and perform the uncertainty analysis with respect to the zero strain case.

Thus, we define the parameters of interest in the analysis as the Landau energy parameters

θP = [α1,α11,α12,α111,α112], (4.9)

and the set of normal and shear stress component parameters

θσn s
= [q11, q12,σR

11,σR
22,σR

33], θσs
= [q44,σR

23]. (4.10)
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Figure 4.1 Input polarization values of P2 and P3 obtained from the DFT analysis implemented in [33], and
employed in the Landau polarization energy (4.3).

This forms the combined set of stress parameters

θσ = [θσn s
,θσs
].

We denote the complete set of parameters in the monodomain analysis as

θM D = [θP ,θσ]. (4.11)

Responses in our model are then compared to the DFT outputs via

yM D (θM D ) = [uP (θP ),σ11(θσn s
),σ22(θσn s

),σ33(θσn s
),σ23(θσs

)]. (4.12)

This includes the polarization energy, and the normal and shear stress components. To define

a quantity of interest suitable for global sensitivity analysis, we suppress the dependence of the

outputs on the polarization. This permits the discussion of the sensitivity of the responses to

all parameters. In addition, the independence between the Landau energy uP (θP ) and the stress

components σ11(θσn s
), σ22(θσn s

), σ33(θσn s
), σ23(θσs

), allows the sensitivity of these responses to

the polarization energy parameters θP and stress parameters θσ to be analyzed separately. A least

squares optimization of the parameters yields the nominal values of the parameters θM D , presented

in Table 4.2

In standard global sensitivity analysis, we define the scalar quantities of interest as follows. In
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the case of the polarization energy response, we employ the pseudo-response

YP (θP ) =
1

N

N
∑

n=1

uP (P
n

2 , P n
3 ;θP ). (4.13)

This response averages over the N polarization values (P n
2 , P n

3 ), n = 1, . . . , N , plotted in Figure 4.1.

In the case of the vector-valued stress responses yσn s
(θσn s

) = [σ11,σ22,σ33] and yσs
(θσs
) =σ23, we

define the pseudo-responses

Yσn s
(θσn s

) =
1

3N

�

N
∑

n=1

σ11(P
n

2 , P n
3 ;θσn s

) +
N
∑

n=1

σ22(P
n

2 , P n
3 ;θσn s

) +
N
∑

n=1

σ33(P
n

2 , P n
3 ;θσn s

)

�

(4.14)

and

Yσs
(θσs
) =

1

N

N
∑

n=1

σ23(P
n

2 , P n
3 ;θσs

). (4.15)

Given that the monodomain responses given in (4.13), (4.14) and (4.15) are linearly parameter-

ized, we express them as

YP (θP ) = [a1, a2, a3, a4, a5][α1,α11,α12,α111,α112]
T ,

Yσn s
(θσn s

) = [b1, b2, b3, b4, b5][q11, q12,σR
11,σR

22,σR
33]

T ,

Yσs
(θσs
) = [c1, c2][q44,σR

23]
T .

Here,

Table 4.2 Nominal values for the polarization parameters θP and the stress component parameters θσ, de-
fined in (4.9) and (4.10), respectively. The nominal values were obtained from a least-squares optimization
of the outputs (4.12).

Parameter α1 α11 α12 α111 α112

Units MV·m/C MV·m5/C3 MV·m5/C3 MV·m9/C5 MV·m9/C5

Nominal Value -389.2 761.1 414.6 61.61 -740.5

Parameter q11 q12 σR
11 σR

22 σR
33

Units GV·m/C GV·m/C GPa GPa GPa

Nominal Value 19.2 3.14 -3.98 -4.00 -3.41

Parameter q44 σR
23

Units GV·m/C GPa

Nominal Value 1.40 -8.16e-4
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1

N

N
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n=1

�

P 2
2n
+P 2
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�

, a2 =
1

N

N
∑
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�

P 2
2n
+P 2

3n

�2
, a3 =

1

N

N
∑

n=1

P 2
2n

P 2
3n

,

a4 =
1

N

N
∑

n=1

�

P 6
2n
+P 6

3n

�

, a5 =
1

N

N
∑

n=1

�

P 4
2n

P 2
3n
+P 4

3n
P 2

2n

�

,

and

b1 =−
1

3N

N
∑

n=1

�

P 2
2n
+P 2

3n

�

, b2 =−
2

3N

N
∑

n=1

�

P 2
2n
+P 2

3n

�

, b3 = b4 = b5 =
1

3
,

c1 =−
1

N

N
∑

n=1

�

P2n
P3n

�

, c2 = 1.

This representation facilitates the analytic determination of the component functions necessary in

the associated Sobol’ decomposition for global sensitivity analysis.

4.2 Global Sensitivity Analysis

We employ sensitivity analysis to determine the sensitivity of the responses YP (θP ), Yσn s
(θσn s

) and

Yσn s
(θσn s

) to the parameters θP , θσn s
and θσs

. Whereas in local sensitivity analysis partial parameter

derivatives are used to quantify sensitivities about local nominal parameter values, global sensitivity

analysis more broadly accommodates sensitivities across the entire parameter space as detailed in

Chapter 3. This allows us to fix noninfluential or unidentifiable parameters for subsequent Bayesian

analysis in the manner described in Chapter 1.

In the monodomain continuum model analysis, we employ the Morris screening and Sobol

global sensitivity analysis methods, which we introduced in Chapter 3. We show how the assumption

of uniformly distributed parameters can lead to incorrect interpretation of sensitivity analysis

results, when fixing presumed non-influential parameters and performing Bayesian inference on

the influential parameters. We employ the global sensitivity analysis method for highly correlated

parameters, also developed in Chapter 3, to compare and contrast with previous results. Finally,

we use the local sensitivity-based Fisher information matrix analysis to determine the identifiable

parameters in the system and verify the results of the correlated global sensitivity analysis. These

methods applied to the monodomain continuum model are presented in the following sections.

In the following analyses, we express the pseudo-responses (4.13), (4.14) and (4.15) generically
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as

Y = f (Θ),

where Θ = [Θ1, . . . ,Θp ] is a vector of random variables representing ΘP , Θσn s
or Θσs

. Likewise, Y

denotes the polarization response YP , the electrostrictive normal stress response Yσn s
, or the elec-

trostrictive shear stress response Yσs
. Additionally, θ will be used to indicate realizations of the

random variables Θ.

4.2.1 Sensitivity Analysis for Uncorrelated Parameters

As part of parameter subset selection, global sensitivity analysis is in general performed before model

calibration and Bayesian inference. Thus, in absence of information about parameter distributions

incorporating any correlation structure, one typically assumes the parameters to be uniformly

and independently distributed. This assumption simplifies the determination of the component

functions relevant to Sobol’ analysis, and justifies the employment of the methods detailed in

Section 3.1.

Here, we assume the parameters Θ to be uniformly and independently distributed such that

Θi ∼U
�

θ no m
i −0.25|θ no m

i |, θ no m
i +0.25|θ no m

i |
�

, for i = 1, . . . , p ,

where |θ no m
i | are the nominal absolute values for θP and θσ, presented in Table 4.2. The value

0.25 was chosen as the perturbation value given that broad sampling is commonly provided in the

parameter space, while the model behavior is not significantly changed. As detailed in Chapter 3,

the intervals given here are mapped to [0, 1] to avoid scaling issues pertaining to physical parameter

units.

Pearson Correlations

As was defined in Section 3, Pearson correlations quantify the degree to which responses depend

on individual parameter variations. Qualitatively, this information is provided by scatterplots of

responses computed by randomly sampling individual parameters. The intuition for employing

Pearson correlations here is to obtain both initial qualitative and quantitative measures for global

sensitivity of the polarization energy response (4.13), the normal stress response (4.14), and the

shear stress response (4.15).

We analyze the Pearson correlations with respect to the polarization energy response (4.13). For

the sampling procedure, we choose the interval

[θ no m
i −0.25θ no m

i ,θ no m
i +0.25θ no m

i ], (4.16)
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Figure 4.2 Scatterplots, Pearson correlations ρ given by (3.7), means, and two standard deviation intervals
for the polarization parameters θP and response YP given (4.13).

where the nominal values θ no m
i are compiled in Table 4.2. In Figure 4.2, we plot scatterplots for

the polarization parameters α1, α11, α12, α111 and α112. We obtained the scatterplots with M = 1000

realizations of the model, along with means and two standard deviation intervals. Likewise, we

report the associated Pearson coefficients in Figure 4.2, as well as in Table 4.3. In relative terms,

Pearson correlation coefficients close to 1 in value, indicate strong linear trends and influence on

(4.13), with respect to the parameters θP . We note that the values ρ = 0.64 and ρ = 0.78 for α1 and

α11 are an order of magnitude larger than the coefficients for α12, α111 and α112. Qualitatively, this is

reflected in the trends observed in the means and two standard deviation intervals. Presumably,

this would provide initial evidence that the sixth-order parameters α111 and α112 are noninfluential,

thus concluding that these terms could be fixed.

Assuming that the parameters α1 and α11 are the most sensitive parameters in the sense that

they most influence the response (4.13), we fix all the other parameters at nominal values, and

randomly sample only α1 and α11 in subsequent function evaluations. We present the obtained
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Figure 4.3 Pearson correlations of sampled (a) α1, (b) α11 against each of 500 realizations of YP (4.13),
with all other parameters in θP also sampled and only α1, α11 sampled. Pearson correlation coefficients
ρ for each parameter are also presented. The labels (—) and (- - -) denote the means and two standard
deviations for the cases where all parameters θP are sampled to obtain the responses shown by (o), and
only parameters α1, α11 are sampled to obtain the responses shown by (+).

scatterplot results in Figure 4.3, along with the associated Pearson correlation coefficients (3.7). This

provides additional evidence that α1 and α11 are the most influential parameters.

Morris Screening Measures

The Morris indices µ∗i andσi quantify individual effects as well as certain nonlinearities or interac-

tions between parameters. Generally, one designates influential parameters as those having large

values of both µ∗i andσi .

To construct the Morris sensitivity measures, we employed the Morris screening sampling

strategy Algorithm 3.1.1. We used a total of s = 40 samples in the determination of the measures. In

the case of the Landau energy, parameters α1 and α11 seem to be the most sensitive, as exhibited by

the coefficient values in Table 4.3.

Sobol’ Sensitivity Indices

The Sobol’ sensitivity indices for correlated parameters are constructed assuming a uniform distri-

bution for all the parameters. We implement Algorithm 3.1.2 introduced in Section 3.1.2, with a total

of 40, 000 samples to construct the indices. This yields the results given in Table 4.3. These results are

consistent with the Pearson correlations and Morris screening sensitivity indices. Table 4.3 indicates

that only α1 and α11 are influential, implying that a fourth-order Landau energy is sufficient for lead

titanate. Typically, assuming that these results are correct, we then fix the non-influential parameters
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Table 4.3 Sobol’ sensitivity indices Si , STi
, Morris screening measures µ∗i ,σ∗i and Pearson correlation coef-

ficients ρa l l , ρi n f for the Landau energy phenomenological parameters θP (4.9). Note that ρi n f indicates
Pearson correlation coefficients when only presumed influential parameters are sampled while all others
are fixed. The shaded cells correspond to significant indices, measures and coefficients.

α1 α11 α12 α111 α112

Si 0.40 0.60 4.53e-5 1.12e-3 1.49e-4

STi
0.40 0.59 1.97e-4 1.89e-3 1.44e-4

µ∗i 74.77 90.17 1.64 5.13 1.41

σ∗i 116.81 126.44 2.31 6.68 2.11

ρa l l 0.62 0.79 -0.01 0.08 0.03

ρi n f 0.64 0.78 - - -

α12,α111 and α112, and proceed with model calibration inferring only the influential parameters

α1 and α11. We expect to see no effect on the posterior densities of other parameters or the model

uncertainties when fixing the noninfluential parameters since the associated perturbations would

not be reflected in the output.

4.3 Bayesian Statistical Analysis

In this section, we calibrate the monodomain model while fixing the presumed non-influential pa-

rameters, and only sampling the influential ones. We compare this with the case where all parameters

are randomly sampled.

We employ the DRAM algorithm to infer the parameters θP and θσ using Bayesian statistical

analysis. Note that we use the DFT simulations obtained from [33] to calibrate the polarization

energy uP , the normal stressesσ11,σ22,σ33 and the shear stress termσ23. This work is based on

the results in [33].

In the analysis, we used a total of 10000 iterations of the DRAM algorithm. We obtain the plots

presented in Figure 4.4, for the chain of accepted parameter values. Likewise, we present the associ-

ated pairwise density plots in Figure 4.5. The strong correlation of the pairwise plots is explained by

the covariance matrix
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V f r e q =

















1.057e+2 −2.871e+2 −1.307e+3 1.774e+2 2.932e+3

−2.871e+2 8.541e+2 3.485e+3 −5.569e+2 −8.495e+3

−1.307e+3 3.485e+3 5.361e+4 −2.092e+3 −1.074e+5

1.774e+2 −5.569e+2 −2.092e+3 3.764e+2 5.373e+3

2.932e+3 −8.495e+3 −1.074e+5 5.373e+3 2.269e+5

















, (4.17)

obtained by employing the ordinary least squares (OLS) techniques detailed in [27, 51]. This method

for constructing the covariance matrix yields values within the same order of magnitude as the

covariance matrix

VD R AM =

















1.077e+2 −2.900e+2 −1.299e+3 1.778e+2 2.918e+3

−2.900e+2 8.525e+2 3.451e+3 −5.512e+2 −8.377e+3

−1.299e+3 3.451e+3 5.266e+4 −2.064e+3 −1.063e+5

1.778e+2 −5.512e+2 −2.064e+3 3.698e+2 5.257e+3

2.918e+3 −8.377e+3 −1.063e+5 5.257e+3 2.256e+5

















, (4.18)

obtained via Bayesian inference.

Figure 4.4 Chain of accepted sampled Landau energy parameter values with respect to DFT simulations in
[33], obtained using 1×104 iterations.
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Figure 4.5 Pairwise correlation among the Landau energy parameters (4.9). Strong correlation observed
between the lower- and higher-order parameters.

The pairwise correlation plots and covariance matrix raise several questions with regard to

our global sensitivity analysis. First, our assumption was that the parameters were uniformly and

independently distributed in the absence of further prior information. What are the consequences

given that we assumed these priors in the initial global sensitivity analysis? What effect does the

correlation have on the model response? To answer these questions, we perform Bayesian inference

when fixing the parameters determined to be non-influential while inferring only the influential

ones. We present the analysis next.

Bayesian Inference for Presumed Influential Parameters

In this case we fix the parametersα12,α111 andα112 while using Bayesian analysis to inferα1 andα11.

If the fixed parameters are truly noninfluential, we would expect to see no effects on the distributions

of the other parameters, given the high correlation we introduced in this section.

We present the resulting posterior densities obtained with 10, 000 iterations of the DRAM algo-

rithm in Figure 4.6. It is apparent that the parameters that were presumed to be noninfluential have

an effect on the posterior distributions of the influential parameters. This motivates a sensitivity

analysis where we incorporate the correlation given by the covariance matrix (4.17) as addressed in
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Figure 4.6 Posterior densities obtained via Bayesian calibration of Yp (θP ) in when (i) sampling all the
parameters, (ii) sampling α1,α11,α111 with α12,α112 fixed, and (iii) sampling α1,α11 with α111,α12,α12 fixed.

the next section.

4.4 Sensitivity Analysis for Correlated Parameters

There are two scenarios to consider when employing the global sensitivity analysis techniques for

correlated parameters developed in Section 3.2; linearly or nonlinearly parameterized models. In

the present case, the responses YP (θP ) (4.13), Yσn s
(θσn s

) (4.14) and Yσs
(θσs
) (4.15) are all linearly

parameterized. Therefore, we illustrate the analytical and numerical techniques from Section 3.2.2

and Section 3.2.3 for quantifying the global sensitivity of the correlated parameters θP (4.9) and θσ
(4.10).
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Analytic Determination of Component Functions

To incorporate parameter correlation when constructing the component functions (3.13), we first

specify a distribution for the parameters θP , θσn s
and θσs

. This requires a parametric distribution

approximation to the non-parametric posterior distributions created through Bayesian analysis.

Namely, we require nominal values and covariance matrices in the construction of prior multivariate

normal distributions. Recall from Table 4.2 in Section 4.1, and Section 4.3, that the nominal values

and covariance matrices can be either obtained through Bayesian analysis, or by using asymptotic

ordinary least squares (OLS) techniques.

We use the nominal values µP , µn s and µs provided in Table 4.2, and associated covariance

matrices

VP =

















1.077e+2 −2.900e+2 −1.299e+3 1.778e+2 2.918e+3

−2.900e+2 8.525e+2 3.451e+3 −5.512e+2 −8.377e+3

−1.299e+3 3.451e+3 5.266e+4 −2.064e+3 −1.063e+5

1.778e+2 −5.512e+2 −2.064e+3 3.698e+2 5.257e+3

2.918e+3 −8.377e+3 −1.063e+5 5.257e+3 2.256e+5

















,

Vσn s
=

















0.0605 0.0014 0.0012 0.0021 0.0208

0.0014 0.0314 0.0115 0.0106 8.8239e-4

0.0012 0.0115 0.0097 0.0037 6.3619e-4

0.0021 0.0106 0.0037 0.0093 8.4661e-4

0.0208 8.8239e-4 6.3619e-4 8.4661e-4 0.0126

















,

Vσs
=

�

3.4801e-4 3.6383e-5

3.6383e-5 1.1141e-5

�

(4.19)

obtained through Bayesian inference, to construct the densities

ΘP ∼N (µP , VP ), Θσn s
∼N (µn s , Vσn s

), Θσs
∼N (µσs

, Vσs
). (4.20)

The strong correlation is incorporated through the random sampling of the parameters based on this

distribution. We perform 10,000 realizations of the component functions (3.35), to obtain the plots

in Figures 4.7, 4.8 and 4.9, for the Landau, normal stress, and shear stress parameters, respectively.

The component functions determined analytically are denoted by the dashed black lines.
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Figure 4.7 (a) First, (b) second, (c) third, (d) fourth and (e) fifth-order component functions constructed
using the analytical method (- -) and the numerical method (—) for θP in (4.13) with m = 4 subintervals for
the Cubic B spline basis functions.

Numerical Determination of Component Functions

Using the numerical method, detailed in Section 3.2.3, for determining the Sobol’ component

functions, we again sample from densities (4.20) to incorporate the correlation in the parameters.

Following the procedure, we first determine the basis expansion coefficientsαi ,β i j , γi j k , . . ., in (3.38)

by minimizing cost functionals of the type (3.39). We obtain the component functions presented

in Figures 4.7, 4.8 and 4.9, for the Landau, normal stress, and shear stress parameters, respectively.

Here, we denote the component functions determined via this numerical method by the red lines.

Sobol’ Sensitivity Indices

In the alternate variance-based sensitivity analysis framework of Section 3.2.1, first-order Sobol’

sensitivity indices Si quantify the fraction of uncertainty in the response that is attributed to the pa-

rameter θi . The higher-order Sobol sensitivity indices Si j ,Si j k , . . ., quantify effects due to parameter

correlation and structural interactions in the model. The total sensitivity indices STi
additionally

quantify the total fraction of uncertainty attributed to the individual parameter effects as well as
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Figure 4.8 (a) First, (b) second, (c) third, (d) fourth and (e) fifth order component functions constructed
using the analytical method (- -) and numerical method (—) for θσn s

in (4.14) with m = 4 subintervals.

contributions from correlations and structural parameter interactions. Therefore, a more compre-

hensive measure of global parameter sensitivity is provided here as compared with the sensitivity
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Figure 4.9 First-order component functions constructed using the analytical method (- -) and numerical
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in (4.15) with m = 4 subintervals.

65



measures obtained in Section 4.2.1.

For the component functions constructed using both the analytical and numerical methods, we

construct the Sobol’ indices (3.29), employing the Monte Carlo approximations

Srn
=

cov[ frn
, Y ]

var[Y ]
≈

∑K
s=1 frn

(θ s
rn
)
�

f (θ s )− f0

�

∑K
s=1

�

f (θ s )− f0

�2 ,

S s
rn
=

var
�

frn

�

var [Y ]
≈

∑K
s=1 frn

2(θ s )
∑K

s=1

�

f (θ s )− f0

�2 ,

S c
rn
= Srn

−S s
rn

,

(4.21)

Here, we employ the f0 approximation

f0 ≈
∑K

s=1 f (θ s )
K

,

where K is the number of component function realizations to compute the sensitivity indices.

We obtain the indices in Table 4.4 for θP , Table 4.5 for θσn s
and Table 4.6 for θσs

, using a total of

K = 10,000 samples. We observe that for the pairs of most correlated Landau energy parameters

second-order Sobol’ sensitivity indices are significant, when the first-order indices are influential. For

the normal stress parameters θσn s
, we make a similar observation in Table 4.5. The total sensitivity

indices for θP ,θσn s
, and θσs

all indicate that no parameter is non-influential due to contribution

effects corresponding to parameter correlation.

To illustrate relative effects between the first-order and total sensitivity indices incorporating

all contributions, in Figures 4.10, 4.11 and 4.12 we plot the indices Si and STi
, respectively for the

Landau parameters θP , normal stress parameters θσn s
and shear stress parameters θσs

.

We observe that the magnitudes for the first-order indices S3 and S5 are relatively small, corre-

sponding to parameters α12 and α112. However, as observed in Figure 4.10(b), contributions due to

higher-order parameter correlations have a significant effect on the values of the total sensitivity

indices ST1
and ST2

. This observation indicates that the parameters α12 and α112 are still influential,

thus explaining the results observed in posterior densities plotted in Figure 4.6. We make a similar

conclusion about normal stress parameters q11 and q12, as well as the shear stress parameter q44.

4.5 Analysis Using the Fisher Information Matrix

To corroborate the global sensitivity analysis results of Section 4.4, we employ the methodology

detailed in Section 3.3.2, based on the analysis of the Fisher information matrix, to determine

identifiable parameters. Namely, we apply Algorithm 3.3.2, to the Landau energy uP (4.3), and the
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Table 4.4 Sensitivity indices for total contributions Srn
constructed using the component functions frn

for
the Landau energy parameters θP . The A’s and N’s represent sensitivity indices derived from the analytical
and numerical determination of the component functions, respectively. The indices correspond to the
order specified by θP = [α1,α11,α12,α111,α112]. The shaded cells designate significant indices.

S1 S2 S3 S4 S5

A. 1s t order 0.281 0.133 0.006 0.088 0.009

N. 1s t order 0.274 0.127 0.005 0.082 0.008

S12 S13 S14 S15 S23 S24 S25 S34 S35 S45

A. 2nd order 0.100 0.062 0.060 0.067 0.012 0.021 0.016 -3.75e-4 0.002 -0.001

N. 2nd order 0.109 0.065 0.068 0.072 0.014 0.029 0.019 0.002 0.004 0.002

S123 S124 S125 S134 S135 S145 S234 S235 S245 S345

A. 3r d order -0.002 0.049 -0.052 0.013 -0.069 -0.024 0.032 -0.011 0.015 0.001

N. 3r d order 4.20e-4 0.036 -0.052 0.016 -0.068 -0.023 0.036 -0.009 0.018 0.003

S1234 S1235 S1245 S1345 S2345

A. 4t h order -0.070 0.202 -0.011 0.088 -0.025

N. 4t h order -0.073 0.195 -0.011 0.092 -0.011

S12345

A. 5t h order 0.009

N. 5t h order -0.027

ST1
ST2

ST3
ST4

ST5

A. Total Index 0.703 0.418 0.249 0.244 0.217

N. Total Ind 0.672 0.400 0.242 0.238 0.211
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Figure 4.10 Comparison of analytical and numerical methods obtain (a) first-order and (b) total sensitivity
indices for (4.13).
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Table 4.5 Sensitivity indices for total contributions Srn
constructed using the component functions

frn
for the normal stress parameters θσn s

. The indices correspond to the order specified by θσn s
=

[q11, q12,σR
11,σR

22,σR
33]. The shaded cells correspond to significant indices.

S1 S2 S3 S4 S5

A. 1s t order 5.79e-4 0.001 0.158 0.176 0.164

N. 1s t order 5.46e-4 0.001 0.156 0.179 0.162

S12 S13 S14 S15 S23 S24 S25 S34 S35 S45

A. 2nd order 5.74e-5 -5.79e-4 -4.50e-4 0.180 0.157 0.141 0.002 -0.093 -0.018 -0.025

N. 2nd order 7.42e-4 2.09e-4 9.70e-4 0.183 0.156 0.141 0.002 -0.092 -0.015 -0.023

S123 S124 S125 S134 S135 S145 S234 S235 S245 S345

A. 3r d order -5.73e-5 3.35e-4 1.47e-5 6.99e-4 0.003 0.016 0.120 0.001 -0.003 0.012

N. 3r d order 0.003 0.003 0.003 0.005 0.005 0.017 0.119 0.001 -0.003 0.014

S1234 S1235 S1245 S1345 S2345

A. 4t h order 0.002 0.003 0.013 -0.005 -0.012

N. 4t h order 0.006 0.009 0.016 0.005 -0.011

S12345

A. 5t h order 0.005

N. 5t h order -0.045

ST1
ST2

ST3
ST4

ST5

A. Total Index 0.217 0.431 0.334 0.348 0.336

N. Total Index 0.211 0.403 0.316 0.332 0.320

Table 4.6 Sensitivity indices for total contributions Srn
constructed using the component functions frn

for
the shear stress parameters θσs

. The indices correspond to the order specified by θσs
= [q44,σR

23].

S1 S2 S12 ST1
ST2

Sensitivity 6.812e-5 0.651 0.349 0.349 1.000
Numerical 5.347e-5 0.650 0.350 0.350 1.000

normal and shear continuum stres componentsσ11,σ22,σ33 andσ23 (4.8).

In the algorithm, we set the threshold ε = 10−8 to represent the square root of machine epsilon.

The identifiable parameters correspond to those that have not been removed after the final iteration

of the algorithm, when |λ1| > ε. As observed in Table 4.7, we determine all parameters θP to be

identifiable. Similarly, in Table 4.8, we conclude that all continuum stress parameters are identi-

fiable. These results are consistent with the global sensitivity analysis for correlated parameters

performed in Section 4.4, where we showed that all parameters were influential as specified by the
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Figure 4.11 Comparison of analytical and numerical methods to obtain (a) first-order and (b) total sensitiv-
ity indices for (4.14).

S
1

S
2

0

0.2

0.4

0.6

0.8

1
Analytic

Numerical

S
T

1

S
T

2

0

0.2

0.4

0.6

0.8

1
Analytic

Numerical

(a) (b)

Figure 4.12 Comparison of analytical and numerical methods to obtain (a) first-order and (b) total sensitiv-
ity indices for (4.15).

Table 4.7 Results from Algorithm 3.3.2, to determine unidentifiable parameters in θP (4.9) for the polariza-
tion energy uP (4.3).

Eigenvector∆θ1 with associated parameters
Iteration |λ1| α1 α11 α12 α111 α112

1 5.62e-5 1.16e-2 -3.30e-2 -4.31e-1 2.07e-2 9.01e-1

Result: All parameters θP are identifiable since |λ1|>ε= 10−8.

total sensitivity indices STi
.
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Table 4.8 Results from Algorithm 3.2 to determine unidentifiable parameters in θσ (4.10) for the normal
and shear stress componentsσn s andσs (4.8).

Eigenvector∆θ1 with associated parameters

Iteration |λ1| q11 q12 σR
11 σR

22 σR
33

1 3.67 -9.33e-1 -6.13e-2 -2.48e-2 -5.17e-2 -3.51e-1

Iteration |λ1| q44 σR
23

1 8.99e-1 -9.94e-1 -1.07e-2

Result: All parameters θσ are identifiable since |λ1|>ε= 10−8.

Conclusions

In conclusion, the global sensitivity analysis and Fisher information subset selection yield that

all the parameters are influential. Broadly, this indicates that the sixth-order Landau polarization

energy is necessary to approximate quantum calculations. These results additionally demonstrate

that the incorrect assumption of uniformly and independently distributed parameters may yield

incorrect interpretations about parameter sensitivity.
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CHAPTER

5

POLYDOMAIN ENERGY MODELS

As stated in Chapter 2, domain walls form in ferroelectric materials as an energy minimization

mechanism in response to the solid being cooled through the Curie temperature TC . Properties

of 180◦ and 90◦ domain walls are known to significantly influence material phenomena such as

domain formation and evolution, in terms of ferroelectric switching mechanisms, as well as other

properties such as permittivity, coercive fields and piezoelectric constants [32, 50, 56]. Therefore,

the polarization and strain transitions through domain walls, as well as the total domain wall energy,

play a significant role in the domain structure evolution of ferroelectric solids.

DFT studies for domain wall width and energy, such as those in [32, 56], highlight the uncertainty

in the width and energy parameter values. These studies also highlight the importance of first-

principles investigations, in comparison with Landau-Ginzburg continuum theory models. Here the

estimation of model parameters often poses a challenge, due to the lack of available analytical and

computational experimental data. This motivates a parameter selection and uncertainty analysis of

the Ginzburg-Landau free energy functionals, and their corresponding uncertain parameters. We

recall that parameters may not be influential, and therefore would need to be fixed in subsequent

Bayesian inference and uncertainty propagation.

As defined earlier, 180◦ domain walls separate domains in which spontaneous polarization and

strain are oriented in opposite directions, whereas 90◦ domain walls separated domains in which

spontaneous polarization is oriented in perpendicular directions. In the analysis of Chapter 6, we

consider the 180◦ polydomain structures where polarization switches from negative to positive
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polarization as the domain wall is crossed in the x1 direction. A representative plot of the polydomain

structure is presented in Figure 2.6(a). Additionally, in Chapter 7, we consider 90◦ polydomain

structures where polarization transitions through a 90◦ change in polarization orientation as the

domain wall is crossed in the x1 direction. For analysis convenience, the coordinate system is rotated

by 45◦ to obtain the new system (s , r, x3). The corresponding polydomain structure is presented in

Figure 2.6(b). In both Chapter 6 and Chapter 7, we develop polydomain relations modeling domain

wall transitions, with polarization as the main independent variable. In these polydomain models,

we are primarily focused on free energy as a result of the domain wall interactions, which strongly

influence the material properties as described above.

We continue to focus on lead titanate. An approximation for the 180◦ domain wall energy for

PbTiO3 has been calculated in other studies via DFT simulations [32], with an approximate value of

132 mJ/m2. In addition, other first-principle investigations studies [56] noted an approximate value

of 50 mJ/m2 for the total energy associated with the 90◦ domain wall. The use of DFT simulations to

approximate domain wall energy and inform our continuum models, gives rise to uncertainty going

from a quantum scale onto a continuum domain. This augments the previous uncertainty regarding

parameters values for the relations in the Landau-Ginzburg free energy functionals. In Chapters 6

and 7, we address these challenges by performing parameter subset selection and uncertainty

analysis of the additional gradient exchange parameters present in the polydomain energy models.

We determine which parameters are most influential in the sense that they directly contribute to

the uncertainty in the model responses, and we correspondingly quantify the uncertainty in the

influential parameters.

In this chapter, we provide an overview of the stored energy relations used in the models analyzed

in later chapters. This includes the overall stored energy model relations of Section 5.1, the derivation

of spontaneous polarization and monodomain energy density of Section 5.2, and the introduction of

the total domain wall energies we focus on in later chapters in Section 5.3. Additionally, in Section 5.4,

we introduce notation for the parameters and associated proposal distributions used in the analysis

of 180◦ and 90◦ polydomain structures in the coming chapters.

5.1 Stored Energy Relations

In our investigation, we use the 180◦ domain wall energy values in the literature to inform our contin-

uum model. In Chapter 4, we considered the stored energy density for a monodomain structure with

the unit cell held fixed. This motivated a residual energy term with extra residual stress parameters.

In this case, there is gradient energy that is considered as a result of polarization gradient in the

domain walls. Moreover, since we are no longer holding the unit cell fixed, we no longer account for
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a residual energy term. The total form of the ferroelectric stored energy density is thus

u (P,ε, Pi , j ) = uM (ε) +uP (P) +uC (P,ε) +uG (Pi , j ), (5.1)

where

uM =
c11

2

�

ε2
11+ ε

2
22+ ε

2
33

�

+ c12 (ε11ε22+ ε22ε33+ ε11ε33)
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2
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�
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Here, the mechanical energy uM , Landau energy uP and electrostrictive energy uC are defined the

same as in the monodomain analysis of Chapter 4.

We define the gradient energy, which quantifies effects along the domain wall, as

uG (Pi , j ) =
g11

2

�

P 2
1,1+P 2

2,2+P 2
3,3

�

+ g12

�

P1,1P2,2+P1,1P3,3+P2,2P3,3

�

+
g44

2

�

�

P1,2+P2,1

�2
+
�

P1,3+P3,1

�2
+
�

P2,3+P3,2

�2�

.

Here, g11, g12 and g44 are the exchange parameters, whereas the polarization gradient is

Pi , j =
∂ Pi

∂ x j
.

The governing equations for polarization and polarization gradient with respect to the polydo-

main structure are derived using Euler’s equations

∂

∂ x j

�

∂ u

∂ Pi , j

�

−
∂ u

∂ Pi
= 0, (i , j = 1, 2, 3). (5.2)
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Likewise, the stress condition is given by

σtot
i j , j =

∂

∂ x j

�

∂ u

∂ εi j

�

= 0. (5.3)

We employ these conditions to obtain appropriate values for the independent order parameters

polarization P and strain ε, and evaluate the stored energy (5.1).

5.2 Monodomain Energy Regions

First, we consider polarization far away from the domain walls, such that its value is equal to spon-

taneous polarization in the absence of applied electric field, or stress. This encompasses regions in

which polarization is uniform, and we must characterize it in order to develop appropriate bound-

ary conditions for our model. Note that the stored energy in these regions is only dependent on

temperature, with no effects arising from polarization gradient variations. Thus, this is only gov-

erned by Landau energy phenomenological parameters, and electrostrictive and elastic coefficients.

Employing the governing equations (5.2) and (5.3), we obtain

∂ u

∂ Pi
= 0, (5.4)

σtot
i j = 0. (5.5)

We assume that polarization orientation is strictly in the x3 direction such that the uniform polar-

ization vector is P= (0,0,±P0) in regions away from the 180◦ domain wall. This assumption yields

the system of equations
∂ u

∂ P3
= 2α+1 P3+4α11P 3

3 +6α111P 5
3 = 0, (5.6)

∂ u

∂ ε11
= c11ε11+ c12(ε22+ ε33)−q12P 2

3 = 0,

∂ u

∂ ε22
= c11ε22+ c12(ε11+ ε33)−q12P 2

3 = 0,

∂ u

∂ ε33
= c11ε33+ c12(ε11+ ε22)−q11P 2

3 = 0,

(5.7)

where

α+1 =α1−q11ε33−q12(ε11+ ε22). (5.8)

In the ferroelectric phase for temperatures below the Curie temperature, we obtain the uniform
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polarization and strain in the system to be

P3 = P0 =

�

−α′11+ (α
′2
11−3α1α111)1/2

3α111

�1/2

, (5.9)

ε11 = ε22 = ε⊥ =
P 2

0

3

�

q̂11

ĉ11
−

q̂22

ĉ22

�

,

ε33 = ε|| =
P 2

0

3

�

q̂11

ĉ11
+

2q̂22

ĉ22

�

,

(5.10)

where

α′11 =α11+
4c12q11q12−q 2

11(c11+ c12)−2c11q 2
12

2ĉ11 ĉ22
,

ĉ11 = c11+2c12,

ĉ22 = c11− c12,

q̂11 = q11+2q12,

q̂22 = q11−q12.

(5.11)

In this investigation, we take polarization and strain to change with respect to the x1 direction,

although this direction is arbitrary, and is chosen with respect to the type of considered coordi-

nate system. With this assumption, we then use the uniform polarization and strain to define the

monodomain energy u0, which is obtained by substituting relations (5.9) and (5.10) into the stored

energy equation (5.1). Note that the gradient terms Pi , j are zero in the uniform regions away from

the 180◦ domain walls.

5.3 Total Domain Wall Energies

Here, we specify the total domain wall energies we will refer to in Chapters 6 and 7. To start we make

the distinction between the polydomain energy density

uγ(x )−u0 (5.12)

and the total domain wall energy

Eγ(θγ) =

∫ ∞

−∞
uγ(x )−u0 d x . (5.13)

Here,γdenotes either 180◦ or 90◦, whereas x is an arbitrary spatial variable. Although the polydomain

energy density (5.12) is vector-valued and can be used to infer the width and transition region of
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the associated domain wall, the total domain wall energy (5.13) is scalar-valued and can be used,

for example, to quantify the ease through which new domain walls are introduced as a result of

polarization reversal processes [56].

In the polydomain energy density (5.12), u0 is the monodomain energy obtained by evaluating

(5.1) with respect to the spontaneous polarization in the monodomain regions. The subtraction

from the energy term uγ eliminates contributions from regions far away from the domain wall. In

the next section, we provide the proposal distribution methodology used for the parameters θ = θγ,

which denote either θ180 or θ90.

5.4 Parameters and Distributions

As in Chapter 4, unless otherwise noted, we use θ to arbitrarily denote either of the prospective

parameters θ180 or θ90, as well as to denote realizations of the random variable Θ. In addition, we

use θi to denote the i t h parameter in θ180 or θ90.

As stated previously, the available data for the 180◦ and 90◦ total domain wall energies are

reported to be E ∗180◦ = 132 mJ/m2 and E ∗90◦ = 50 mJ/m2, respectively from the studies [32] and [56].

Since both of these values are scalar-valued, we use the characterized uncertainties for the Landau

phenomenological parameters and electrostrictive coefficients in Section 4.3. Recall that these

values are given in Table 4.2. We determine the nominal values for gradient exchange parameters

via least squares optimizations.

In the analysis, we propose two cases for the Landau and electrostrictive parameter distributions.

First, we construct independent normal density distributions

Θi ∼N (µi ,σ2
i ), (5.14)

where µi andσi are provided in Table 4.2. In the second case, we sample these parameters directly

from the chains and densities presented in Figure 4.4 and Figure 4.6.

Lastly, similar to the monodomain continuum model, we take elastic coefficients to be fixed at

the nominal values provided in Table 4.1.
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CHAPTER

6

180◦ POLYDOMAIN STRUCTURE

ANALYSIS

In this chapter, we consider parameter subset selection, and uncertainty analysis and propagation

for stored energy models characterizing the transition region of 180◦ domain walls separating

oppositely-oriented domains. We detail the 180◦ domain wall energy model and provide solution

procedures in Section 6.1. In Section 6.2, we employ Bayesian inference to quantify the uncertainty

in additional gradient exchange parameters. We use this information to construct appropriate

distributions for the parameter subset selection and active subspace methods of Sections 6.3 and

6.4, respectively. We verify the results of parameter subset selection and activity scores derived from

the active subspace, by propagating influential parameter uncertainties, while fixing non-influential

parameters, on the model, in Section 6.5. We derive the model and solution procedures next.

6.1 180◦ Domain Wall Energy Model

We fix the position of the 180◦ domain wall at x1 = 0, so the polarization vector is characterized by

P= (0, 0, P3(x1)). (6.1)
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Domains in which polarization is oriented in opposite directions are separated by the 180◦ domain

walls. In the uniform region, the material exhibits a spontaneous polarization and we obtain the

boundary conditions

lim
x1→±∞

P= (0, 0,±P0),

lim
x1→±∞

σtot
i j (x1) = 0, i j = 11, 22, 33,

lim
x1→±∞

σtot
i j (x1) = 0, i j = 23, 13, 12,

(6.2)

for polarization and stress.

Employment of the equilibrium conditions (5.2) and (5.3) yields the differential equation

∂

∂ x1

�

∂ u

∂ P3,1

�

1

−
∂ u

∂ P3
= 0,

which implies that

2α+1 P3+4α11P 3
3 +6α111P 5

3 − g44P3,11 = 0. (6.3)

Likewise, conditions (5.3) and (6.2) yield the differential equation governing strain

σ11,1 = 0= c11ε11,1+ c12(ε22,1+ ε33,1)−2q12P3P3,1. (6.4)

Polarization and strain solutions for the system (6.3)-(6.4) are used to obtain the energy surface

u180, which quantifies effects with respect to the domain wall. This is performed in the same manner

as the monodomain energy surface u0, by substituting into the polydomain stored energy (5.1). We

obtain the total energy associated with the 180◦ domain wall by taking the difference between u180

and u0, while integrating through the x1 domain. Hence, we obtain the relation

E180◦ (θ180) =

∫ ∞

−∞
(u180−u0)d x1, (6.5)

where the unknown governing input parameters are

θ180 = [α1,α11,α111, q11, q12, g44]. (6.6)

For the rest of the analysis, we use the nominal values for the Landau energy and electrostrictive

energy parameters, obtained from the monodomain analysis presented in Section 4.3, to define a

mean response for E180. Previous computational DFT simulations performed by Meyer and Van-

derbilt [32] are used to inform a least-squares approximation to obtain an initial estimate for the
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exchange parameter g44. In the next section we present solutions for the 180◦ domain wall model

system.

6.1.1 Model Solution Procedure

The differential equation (6.3) has a kink solution [11],

P3(x1) =
P0 sinh(x1/ξ180◦ )

�

A+ sinh2(x1/ξ180◦ )
�1/2

, (6.7)

for polarization P3(x1) that satisfies the boundary conditions (6.2). Here, the additional parameters

are defined by

ξ180◦ =
p

g44

P0(6α111P 2
0 +2α+11)1/2

, (6.8)

A =
3α111P 2

0 +α11

2α111P 2
0 +α11

. (6.9)

This solution for polarization P3 is differentiated with respect to x1 and substituted in the equilibrium

condition for stress (5.3) to yield the strain component

ε11(x1) = ε⊥−
q12

c11

P 2
0

1+A−1 sinh2(x1/ξ180◦ )
. (6.10)

Note that with the assumption of polarization distortion only in the x1 direction as a result of the

domain wall, the other strain components are the same as in the monodomain case. Hence, we

again define

ε22 = ε⊥,

ε33 = ε‖.

Note that not solving the system defined by (6.3) and (6.4) simultaneously, raises questions about

momentum effects due to change in strain. This motivates the implementation of a simultaneous

numerical solution to the 180◦ domain wall model for polarization and strain. For comparison,

we use a numerical finite-difference approach proposed by Miles et al. [34]with an addition of a

first-order polarization time-dependent term for conversion to a steady-state solution. The new

system is

ω
∂ P3

∂ t
= 2α+1 P3+4α11P 3

3 +6α111P 5
3 − g44

∂ 2P3

∂ x 2
1

, (6.11)

whereω is an appropriate damping parameter. The system reaches a steady state solution via an
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iterative method when
∂ P3

∂ t
= 0.

Note that in (6.4), the ε22 and ε33 terms vanish since we assume they are uniform with respect to x1.

In terms of material displacement in the x1 direction v1, this yields the differential equation

ω
∂ v1

∂ t
= c11

∂ 2v1

∂ x 2
1

−2q12P3
∂ P3

∂ x1
, (6.12)

for

ε11 =
∂ v1

∂ x1
.

For the numerical scheme, we use an implicit iterative method with temporal and spatial indices.

We approximate the first- and second-order spatial derivatives using central difference approxi-

mations. For example, letting z represent ε11 and v represent v1, each strain iterative solution is

approximated by

z n
j ≈

v n
j+1− v n

j−1

2∆x
.

For convenience, we let the subscript j represent the spatial index, whereas the superscript n

represents the temporal index. Representing polarization P3 by y , yields the discretized form

ω
y n

j − y n−1
j

∆t
≈ g44

y n
j+1−2y n

j + y n
j−1

∆x 2
−2(α1−q11ε33−q12ε22)y

n
j

+2q12z n−1
j y n−1

j −4α11

�

y n−1
j

�3
−6α111

�

y n−1
j

�5

(6.13)

of the differential equation (6.11), with respect to polarization P3. Likewise, we obtain the discretized

form of the displacement and strain differential equation,

ω
v n

j − v n−1
j

∆t
≈ c11

v n
j+1−2v n

j + v n
j−1

∆x 2
−2q12 y n−1

j

y n−1
j+1 − y n−1

j−1

∆x
. (6.14)

The discretized forms yield two tridiagonal matrix systems. Thus we solve each system iteratively

using the Thomas algorithm, while appropriately satisfying the boundary conditions (6.2). This

method requires appropriate initial conditions satisfying the boundary conditions and distortion

with respect to the domain wall. We choose a hyperbolic tangent function represent the initial

condition for polarization P3, whereas we choose a line for the strain ε11.

We additionally solve the system defined by (6.3) and (6.4) using MATLAB’s boundary value prob-

lem solver bvp4c.m. We define the initial conditions for this method using the function bvpinit.m.

While this method does not require a time-dependent term, its convergence is slower than the

finite-difference approach where we adopt an adaptive step size∆x depending on the parameter
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values θ180.

6.1.2 Implementation

After solving the differential equations for polarization and strain, we evaluate the resulting energy

density u180−u0 and the total energy associated with the 180◦ domain wall as defined in (6.5). Note

that the parameter values for α1, α11, α111, q11, q12 used in the solution and evaluation are obtained

from the monodomain analysis of Chapter 4. We obtain an initial nominal value for the gradient

exchange parameter by employing least-squares regression. This is achieved by first simulating data

with respect to the reported value of E ∗180◦ = 132m J /m 2 [32], such that

E d a t a
180◦ (i ) = E ∗180◦ + εi . (6.15)

Here, the measurements E d a t a
180◦ (i ) are obtained by adding random noise where εi ∼N (0,σ2). We

assume that σ = 0.01E ∗180◦ , let θM D
180 = [α1,α11,α111, q11, q12] represent the nominal values from

Table 4.2 and find a nominal value for g44 by minimizing the cost function

J (g44) =
K
∑

i=1

�

E d a t a
180◦ (i )−E180◦ (θ

M D
180 , g44)

�

. (6.16)

to obtain a value of g44 = 6.00× 10−6 mV ·mm 3

µC . We compile the set of parameters used in the 180◦

domain wall energy evaluation in Table 6.1.

Note that the unit system is changed for this model with respect to the monodomain analysis of

Chapter 4 due to the vast difference in parameter magnitudes when employing single domain units.

For example with voltage as M V or G V , we would have obtained a value of g44 ∼ 10−18M V ·m 3/C ,

which is below machine epsilon. The new unit system employed here is presented in Table 6.2

In Figure 6.1, we present the solutions for polarization P3(x1), P3,1(x1), ε11(x1), and u180−u0 using

the three methods defined in this section. All three methods are in close agreement, verifying the

solution. Nonetheless, the bvp4c.m solver is the slowest solution procedure, and furthermore we do

not use it in further realizations of the model in Sections 6.2-6.5. Since the analytic solution ignores a

Table 6.1 List of parameters used in solution and evaluation of the domain wall energy (6.5), along with
corresponding units. The parameters θM D

180 are appropriately scaled from Table 4.2 to reflect the new unit
system employed here.

Parameter α1 α11 α111 q11 q12 g44

Units mV·mm
µC

mV·mm5

µC3
mV·mm9

µC5
mV·mm
µC

mV·mm
µC

mV·mm3

µC

Nominal Value -389.4e+6 761.3e+6 61.46e+6 19.2e+9 3.14e+9 5.73e-6
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Table 6.2 Units of measurement used in the 180◦ domain wall model for energy, length, charge, and voltage

Measurement Energy Length Charge Voltage
Units (PD) nJ/mm3 mm µC mV
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Figure 6.1 Comparison of analytic, finite difference and MATLAB bvp4c.m solver for solution 180◦ domain
wall energy system. From top left to bottom right, 180◦ domain wall energy density solution, polarization
P3 in the x1 direction, strain ε11 in the x1 direction, and polarization gradient in the x1 direction as we cross
the 180◦ domain wall.

simultaneous solution of polarization and strain, we also do not use this implementation in further

realizations of the model. Therefore, we use the finite-difference procedure in the analyses of the

upcoming sections.

6.2 Bayesian Inference

Typically, parameter subset selection is performed before model calibration, in order to determine

non-influential parameters which may be fixed in Bayesian inference. In this case, the only addi-

tional parameter for the 180◦ domain wall energy with respect to the monodomain continuum
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Figure 6.2 (a) Chain of accepted values and (b) kernel density estimation (kde) for the parameter g44 ob-
tained from the Bayesian uncertainty analysis with respect to E180◦ .

model analysis of Section 4.1, is the exchange parameter g44. To more accurately construct a param-

eter distribution for g44 from which we can sample for the parameter subset selection and active

subspace techniques of Section 6.3 and 6.4, we employ Bayesian inference to identify a correspond-

ing mean value from an obtained posterior distribution. We note that one could additionally employ

frequentist inference, which is computationally more efficient, to obtain a distribution.

To quantify the uncertainty in g44, we employ the delayed rejection adaptive metropolis (DRAM)

algorithm, given in Algorithm A.0.1 and detailed in Section 3.4. We generate synthetic data E d a t a
180◦ (i )

for the total 180◦ domain wall energy by employing the relation (6.15), as described in Section 6.1.2.

We let N = 50 specify the total number of synthetic observations.

In Figure 6.2, we present the chain and posterior density obtained from the implementation of the

DRAM algorithm. Here, we used a uniform prior for g44, along with 10, 000 accepted value iterations.

We obtain a mean value µg44
= 5.73e-6 mV·mm3/µC, along with a standard deviationσg44

= 1.21e-7

mV·mm3/µC from the chain in Figure 6.2(a). In Sections 6.3 and 6.4, we use a Gaussian distribution

constructed based on these values, for the parameter subset selection and active subspace analysis.

6.3 Parameter Subset Selection

In this section, we present the results of the parameter subset selection techniques introduced in

Section 3.3 applied to the 180◦ domain wall model. We intend to reduce the computational cost of

future Bayesian model calibration and uncertainty propagation by determining the most influential

set of parameters while isolating the non-influential ones, which may be fixed.

We consider the Fisher information matrix-based methodology developed in Section 3.3.2, with
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Table 6.3 Results from Algorithm 3.3.2 with the global sensitivity matrix (3.44) to determine noninfluential
parameters in θ180 (6.6) for the 180◦ domain wall energy E180◦ (6.5).

Eigenvector∆θ1 with corresponding parameters
Iteration |λ1| α1 α11 α111 q11 q12 g44

1 6.22e-13 8.01e-2 -8.20e-2 1.13e-2 -3.64e-1 -9.24e-1 -9.14e-3
2 7.55e-12 9.33e-1 -3.08e-1 8.64e-2 -6.01e-2 —– -1.51e-1
3 2.62e-9 —– -5.43e-1 2.01e-2 -7.12e-1 —– -4.45e-1

Result: The parameters α1 and q12 are not influential.

the construction of the global sensitivity analysis matrix S∗, constructed from the entries (3.46). Here,

we use the nominal values provided in Table 6.1, along with the standard deviations in Table 4.2, to

construct the multivariate normal distribution, as defined in (5.14).

Using a total of 500 realizations of the sensitivity entries Si j in the construction of the global

sensitivity matrix for Algorithm 3.3.2, we obtained the results presented in Table 6.3. We find that

the most influential parameters in the 180◦ domain wall energy model are α11,α111, q11 and g44

when using a threshold of ε = 1e-9. These results highlight the importance of the higher-order

Landau phenomenological parameters in the 180◦ polarization transition through the domain wall.

The results for q11 also illustrate its electromechanical coupling influence on the 180◦ domain wall

energy.

6.4 Active Subspace Construction

To verify the results of Section 6.3, in this section we construct activity scores based on an ac-

tive subspace analysis for the model E180◦ (6.5). We construct the active subspace employing the

methodology in Section 3.4.2. To determine the dimension of the active subspace, we implement

several dimension assessment techniques. We use the dimension to identify the active variables,

and compute activity scores, which provide an additional measure of global parameter sensitivity.

We start by constructing the gradient matrix G (3.58), employing Algorithm 3.4.1. We assume

uniform and normal distributions of the type (3.47) and (3.49), centered around the nominal values

in Table 6.1, to sample the parameters. Following 10, 000 iterations of the algorithm, a singular value

decomposition G =WΣVT then yields the singular values presented in Figure 6.3. Based on the

gap-based criteria for determining the dimension of the active subspace, we presume there to be a

one- or two-dimensional active subspace. We proceed with the other dimension selection methods

detailed in Section 3.4.2 to accurately determine the dimension of the active subspace.

As detailed in Constantine [8], active subspaces are often low-dimensional, since the output

varies dominantly in one or two directions dictated by linear combinations of the model parame-

ters in the input space. Therefore, we construct response surfaces based on one-, two- and three-
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Figure 6.3 Singular values obtained from the active subspace determination for E180◦ assumming uniform
(3.47) and normal (3.49) distributions for parameters θ180. The shading indicates two standard deviations
from the sample mean.

Table 6.4 Mean relative errors (MRE) for response surfaces considering 1-, 2-, and 3-dimensional active
subspaces for the mode response E180◦ .

Dimension 1 2 3

MRE 0.0244 0.0116 0.0116

dimensional active subspaces and compare the reduction in the mean relative errors (MRE) as

motivated in Section 3.4.3. We plot the one- and two-dimensional-based response surfaces in Fig-

ure 6.4, and present the corresponding MRE in Table 6.4. The dimension of the active subspace

based on this criteria is indicated when the reduction in the MRE is less than one order of magnitude.

As is observed from Table 6.4, this method implies that the dimension of the active subspace is

equal to one.

The final method used for dimension selection is principal component analysis (PCA). Imple-

menting Algorithm 3.4.3, with a tolerance t ∗ = 0.95, yields a one-dimensional active subspace,

consistent with the other dimension selection methods above. Note that we determine this based

on the samples used to construct the gradient matrix G, as detailed in Algorithm 3.4.3.

Activity Scores

Activity scores provide an additional global sensitivity metric by exploiting information from the

active variables defined in Section 3.4.2. This method ranks the relative influence of the parameters

on the model output. We compare the computation of the activity scores based on one- and two-
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Figure 6.5 Activity scores for the model response E180◦ assuming uniform (3.47) and normal (3.49) parame-
ter distributions, and a (a) one-dimensional and (b) two-dimensional active subspace.

dimensional active subspaces, and normal and uniform distributions, to obtain the results plotted

in Figure 6.5.

Based on the activity scores, the parametersα11,α111 and q11 are most influential. The significant

Landau energy parameter results are in agreement with the parameter subset selection results from

Section 6.3. In contrast with the parameter subset selection, the gradient exchange parameter

appears less influential here. However, we note that the active subspace analysis considers the total
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domain wall energy E180◦ (6.5) or (5.13), whereas the parameter subset selection analysis considers

the vector valued energy density u180(x1)−u0 (5.12), presented in Figure 6.1. Recall the distinction

between the two relations was made in Section 5.3. Thus, the contribution of the gradient exchange

parameter is more apparent in the domain wall energy density, as compared with the response E180◦ .

Incorporating the results of both the parameter subset selection of Section 6.3, as well as the activity

scores given here, we conclude that the gradient exchange parameter g44 is significant, to propagate

its uncertainty on the model output, as detailed in the Section 6.5 uncertainty propagation analysis.

6.5 Uncertainty Propagation

From the results of Sections 6.3 and 6.4, we obtain the sensitive parameters

θ s e n s
180 = [α11,α111, q11, g44]. (6.17)

In this section we compare the results of uncertainty propagation on the energy density u180(x1)−u0

when only sampling the sensitive parameters (6.17), with the case where we sample all parameters

θ180 (6.6).

As detailed in Section 6.4, we consider two cases for the random sampling of the parameters. In

the first case, we consider the parameters to be normally distributed with the distributions of the

type (5.14). The associated nominal values and standard deviations are provided in Table 4.2 for the

Landau and electrosctive energy parameters, whereas the nominal value and standard deviation for

g44 were obtained from the Bayesian inference in Section 6.2. In the second scenario, we randomly

sample all parameters from the chains given in Figures 4.4 and 6.2(a). This permits the evaluation of

the energy densities incorporating the strong correlation in the Landau energy parameters with

respect to the monodomain analysis of Section 4.3, and verify if the parameter selection results are

independent of the choice of parameter distribution.

Using 500 realizations of the energy density u180(x1)−u0, we construct and plot 50%, 90%, 95%

and 99% credible intervals in Figure 6.6. In Figure 6.6(a), we plot the results, when we all parameters

θ180, whereas in Figure 6.6(b), we plot the results, when we only sample the sensitive parameters

θ s e n s
180 , while fixing all other parameters, for uncertainty propagation. From a qualitative perspective,

we observe that the intervals are almost identical.

To obtain a better qualitative measure of the proximity between the credible intervals in Fig-

ures 6.6(a) and (b), we consider the “peak values” (at x1 = 0). We take 40 simulation and subtract

the θ s e n s
180 uncertainty propagation-based peaks from the ones associated with the θ180 uncertainty

propagation, to obtain the peak residuals plotted in Figure 6.7. Additionally, we plot the peak value

distributions for both parameter sampling scenarios discussed earlier in Figure 6.8. From a qualita-

tive point of view, the distributions are almost identical.
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Figure 6.6 Uncertainty propagation of the (a) θ180 model inputs and (b) θ s e n s
180 influential inputs on the

energy density u180(x1)−u0.
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Figure 6.7 (a) Peak residuals obtained for the different credible intervals (CI) peaks of Figure 6.6(a) sub-
tracted by the peaks of Figure 6.6(b). (b) 50% CI peak residuals obtained from the 50% CI peaks of Fig-
ure 6.6(a) subtracted by the peaks of Figure 6.6(b).

To quantitatively measure the distance between the statistical observations of Figure 6.8, we

employ energy statistics, detailed in Section 3.6.2. We test the null hypothesis H0 : F180 = F s e n s
180

that the two densities are equal against the alternate hypothesis H1 : F180 6= F s e n s
180 . For M = 499,

n1 = n2 = 4, 000, we obtain the energy test statistic Tn1,n2
= 0.2413. We construct the energy statistic
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Figure 6.8 (a) Histogram and (b) probability density of the 180◦ domain wall energy u180(0)−u0 distributions
with respect to the case where the uncertainties of all parameters θ180 are propagated, as compared with
the case where only the uncertainties of parameters θ s e n s

180 are propagated. In (c) and (d) parameters were
sampled directly from the chains in the monodomain analysis of Section 4.3 and [33], and the uncertainty
analysis of Section 6.2.

replicates in the manner detailed in Section 3.6.2, to obtain the results presented in Figure 6.9. We

take confidence levels α= 0.05,0.10, and present their associated values in Table 6.5. The energy

test statistic is clearly below the critical values specified by the confidence levels α. As a result, we

cannot reject the null hypothesis that the two distributions are equal, verifying the close proximity

of the credible intervals, based on θ s e n s
180 being the most sensitive parameters in the 180◦ domain

wall energy model.
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Figure 6.9 Energy test statistic replicates for the analysis of the u180(0)− u0 distribution considering a (a)
normal distribution and (b) direct sampling from the monodomain chains of [33] for the Landau and
electrostrictive parameters in θ180.

Table 6.5 Energy test statistic and critical values for α= 0.05, α= 0.10 with respect to normally distributed
θ180 (normal) and sampled from the chains in the single domain (MD) analysis of [33].

Density Peak Test Statistic Critical Value Critical Value
Samples (normal) (α= 0.05) (α= 0.10)

θ180 versus θ s e n s
180 sampled 0.2413 1.5761 1.2728

Density Peak Test Statistic Critical Value Critical Value
Samples (MD) (α= 0.05) (α= 0.10)

θ180 versus θ s e n s
180 sampled 0.3428 0.6353 0.4919
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CHAPTER

7

90◦ POLYDOMAIN STRUCTURE

ANALYSIS

Here we consider 90◦ domain walls separating domains. In Section 7.1, we detail the 90◦ domain

wall energy model and provide solution frameworks for calculation of the polarization transition

and total energy associated with the domain wall. We then determine the most influential gradient

energy exchange parameter, and quantify the associated parameter’s uncertainty in Sections 7.2

and 7.3, using the techniques detailed in Sections 3.3-3.5. In Section 7.4, we use the active subspace

techniques developed in Section 3.4 to construct activity scores, providing a final measure of global

sensitivity, to use in determining which parameters to fix in further Bayesian analysis. Lastly, in

Section 7.5, we propagate the parameters’ uncertainty on the model to determine credible intervals,

which measure the model’s fit in light of the parameter uncertainties.

7.1 90◦ Domain Wall Energy

The 90◦ polydomain structure consists of two twined domains whose spontaneous polarizations

are perpendicular to each other, separated by a domain wall or boundary. Thus, the polarization

vector of interest is P= [P1(x1), P2(x1), 0]with boundary conditions

lim
x1→−∞

P= (P0, 0, 0), lim
x1→+∞

P= (0, P0, 0), (7.1)
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where P0 is the spontaneous polarization. Note that this analysis is analogous with the inclusion of

P3.

We rotate the x1-x2 plane counterclockwise by 45◦ to facilitate the analysis, considering a polar-

ization vector

P= (Ps (s ), Pr (s ), 0). (7.2)

This corresponds to the new coordinate system (s , r, x3), obtained by employing the rotation matrix

R =







cos(45◦) −sin(45◦) 0

sin(45◦) cos(45◦) 0

0 0 1






=







1/
p

2 −1/
p

(2) 0

1/
p

2 1/
p

2 0

0 0 1






, (7.3)

where the rotated values for polarization and strain are P̄ =R P and ε =RεR T .

The employment of the rotation transformations yields new stored energy terms for the relation

(5.1). In the case of the mechanical energy, we obtain

uM (εk l ) =
c11

2
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where εk l , k , l = s , r, 3, denotes the rotated strains. The Landau energy is
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considering the rotated polarization vector (7.2). Additionally, we obtain the electrostrictive energy
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3

�

−q12

�

1

2
(εr r + εs s )(P

2
r +P 2

s )−2εs r Pr Ps

+ ε33(P
2

r +P 2
s )
�

−2q44

�

1

4
εr r (P

2
r −P 2

s )−
1

4
εs s (P

2
r −P 2

s )
�

.

(7.6)

Lastly, the gradient energy is

uG (Pi , j ) =
Gr s

2
P 2

r,s +
Gs s

2
P 2

s ,s , (7.7)
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where

Gr s =
g11− g12

2
,

Gs s =
g11+ g12+2g44

2
,

(7.8)

are new conveniently defined parameters.

Application of the rotation matrix (7.3) also yields the boundary conditions

lim
s→±∞

Ps =
P0p

2
, lim

s→±∞
Pr =±

P0p
2

, (7.9)

and

lim
s→±∞

εr r = lim
s→±∞

εs s =
ε||+ ε⊥

2
,

lim
s→±∞

εs r =±
ε||− ε⊥

2
.

(7.10)

We assume no mechanical constraints or shear stresses with respect to the x3-direction in the single

domain regions as s →∞. This assumption yields the total stress boundary conditions

lim
s→±∞

σtot
i j (s ) = 0 (i , j = r, s , x3),

σs 3 =σr s = 0.
(7.11)

Additionally, we obtain the constraints

εr r,s s = ε33,s s = εr s ,s s = 0. (7.12)

The boundary conditions (7.9)-(7.11), and constraints (7.12) yield the spatially constant strain

components

εr 3 = εs 3 = 0, εr r =
1

2
(ε||+ ε⊥), ε33 = ε⊥. (7.13)

The strain equilibrium condition (5.3) and stress boundary conditions (7.11) yield the remaining

spatially varying strain components

εs r =
q̂22

ĉ22
Ps Pr , (7.14)

εs s =−
1

2
(ε||+ ε⊥)−

1

2Cs s

�

(c11+ c12)(ε||+ ε⊥)

+2c12ε⊥− (P 2
s q ∗+P 2

r q̄ )
�

,
(7.15)
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which are only polarization dependent. Here, Cs s , q ∗ and q̄ are

Cs s =
c11+ c12

2
+ c44,

q ∗ = q11−q12,

q̄ = q11+q12+q44.

Employing the polarization equilibrium condition (5.2), we obtain the system of differential

equations

Gr s Pr,s s =
�

2α1− (q11+q12)(εr r + εs s )−2q12ε33

+q44(εs s − εr r )
�

Pr +4α+11P 3
r +6α′111P 5

r

+ (4α11−α12)Pr P 2
s +4α+111P 3

r P 2
s

+2α+111Pr P 4
s +2εs r (q11−q12)Ps ,

(7.16)

and

Gs s Ps ,s s =
�

2α1− (q11+q12)(εr r + εs s )−2q12ε33

−q44(εs s − εr r )
�

Ps +4α+11P 3
s +6α′111P 5

s

+ (4α11−α12)P
2

r Ps +4α+111P 2
r P 3

s

+2α+111P 4
r Ps −2εs r (q11−q12)Pr .

(7.17)

modeling the 90◦ domain wall transition.

We obtain the energy density u90 associated with the entire 90◦ polydomain structure by substi-

tuting appropriate solutions Ps (s ) and Pr (s ) for (7.16)-(7.17), into the energy components (7.4)-(7.7).

The energy density associated with the domain wall transition is obtained by evaluating and sub-

tracting the monodomain energy corresponding to the uniform regions u0, from the polydomain

energy density u90. Here, u0 employs the rotated energy terms (7.4)-(7.7). The total 90◦ domain wall

energy is then

E90◦ (θ90) =

∫ ∞

−∞
(u90−u0)d s , (7.18)

where

θ90 = [α1,α11,α12,α111,α112, q11, q12, q44, g11, g12, g44] (7.19)

are the unknown parameters governing the 90◦ polydomain structure.
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7.1.1 Model Solution Procedure

We consider two solution procedures for the system defined by (7.16)-(7.17), with the second

procedure used for verification. The first solution procedure involves rearranging the equations to

produce a root finding problem, that can be solved using MATLAB’s fsolve.m solver, for example.

The second method involves using the bvp4c.m MATLAB boundary value problem solver.

The root finding procedure requires the discretized form of (7.16)-(7.17). For notation conve-

nience, we let u and v represent Ps and Pr respectively. We thus obtain the discretized forms

0=Gr s
u n

i+1−2u n
i +u n

i−1

∆s 2
−
�

β1u n
i +β2(u

n−1
i )3+β3(u

n−1
i )5+β4u n−1

i (v n−1
i )2

+β5u n−1
i (v n−1

i )4+β6(u
n−1
i )3(v n−1

i )2
�

(7.20)

and

0=Gs s
v n

i+1−2v n
i + v n

i−1

∆s 2
−
�

γ1v n
i +γ2(v

n−1
i )3+γ3(v

n−1
i )5+γ4v n−1

i (u n−1
i )2

+γ5v n−1
i (u n−1

i )4+γ6(v
n−1
i )3(u n−1

i )2
�

,
(7.21)

where i = 1, . . . , N −1,

β1 = 2α1− ε̄(q11+q12)−2q12ε⊥+
q ∗

2Cs s

�

c11ε̄+ c12(ε̄+2ε⊥)
�

,

β2 = (ᾱ11−
q ∗2

2Cs s
), β3 =

3

2
α∗111,β4 =α

∗
11−

q ∗q̄

2Cs s
−2

q̂ 2
22

ĉ22
,

β5 =
1

2
ᾱ111, β6 = ᾱ111,

and

γ1 = 2α1− ε̄(q11+q12)−2q12ε⊥+
q̄

2Cs s

�

c11ε̄+ c12(ε̄+2ε⊥)
�

,

γ2 = (ᾱ11−
q̄ 2

2Cs s
), γ3 =β3,γ4 =β4, γ5 =β5, γ6 =β6.

We illustrate the root finding problem for ui . Following (7.9)-(7.10), we let u0, uN , v0, vN represent

the boundary conditions

u0 =−
P0p

2
, uN = v0 = vN =

P0p
2

.
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Relations (7.20)-(7.20) then yield the root finding problem

F (u) = 0, F :RN−1→RN−1, (7.22)

where u= [u1, . . . , uN−1] and 0 is an N −1×1 column vector of zeros. The solver fsolve.m can now

be used to solve this problem, simply by finding the roots of (7.22), through an iterative procedure.

To facilitate a solution in a lower number of iterations, we define and input the Jacobian

J =
�

∂F
∂ ui−1

,
∂F
∂ ui

,
∂F
∂ ui+1

�T

,

where

∂F
∂ ui−1

= 1,

∂F
∂ ui

=−2−
∆s 2

Gr s

�

β1+3β2u 2
i +5β3u 4

i +β4v 4
i +3β6u 2

i v 2
i

�

,

∂F
∂ ui+1

= 1.

(7.23)

We then compare the root finding problem solution with the one obtained using MATLAB’s boundary

value problem solver bvp4c.m.

7.1.2 Implementation

We use solution to the system (7.16)-(7.17) to evaluate the total domain wall energy E90◦ (θ90) (7.18).

Recall that

θ90 = [α1,α11,α12,α111,α112, q11, q12, q44, g11, g12, g44].

We fit the model (7.18) to the reported value E ∗90◦ = 50 by determining appropriate nominal values

for θ90. The parameter values for α1,α11,α12,α111,α112, q11, q12, q44 are all obtained from Table 4.2 in

the monodomain analysis of Chapter 4, whereas the value for g44 is obtained from Table 6.1 in the

180◦ domain wall energy analysis of Chapter 5.

Additionally, we obtain values for g11 and g12 by employing a least squares optimization with

respect to the synthetic data

E d a t a
90◦ (i ) = E ∗90◦ + εi , (7.24)

where E ∗90◦ = 50 mJ/m2 and εi ∼N (0,σ2)withσ= 0.01E ∗90◦ . Letting

θM D
90 = [α1,α11,α12,α111,α112, q11, q12, q44]
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Table 7.1 Nominal values for parameters θ90 with respect to the domain wall model energy model E90◦ (θ90).

θ90 α1 α11 α12 α111 α112 q11

Nominal Value -389.4e6 761.1e6 414.1e6 61.46e6 -740.56e6 19.2e9

Units mV·mm
µC

mV·mm5

µC3
mV·mm5

µC3
mV·mm9

µC5
mV·mm9

µC5
mV·mm
µC

θ90 q12 q44 g11 g12 g44

Nominal Value 3.14e9 1.40e9 1.65e-5 -2.17e-8 5.73e-6

Units mV·mm
µC

mV·mm
µC

mV·mm3

µC
mV·mm3

µC
mV·mm3

µC

represent the respective values from Table 4.2, and g 180◦
44 represent its corresponding value in Ta-

ble 6.1, we find nominal values for g11 and g12 by minimizing the cost function

J (g11, g12) =
K
∑

i=1

�

E d a t a
90◦ (i )−E90◦ (θ

M D
90 , g 180◦

44 , g11, g12)
�2

. (7.25)

We take initial values for g11 and g12 to be equal to the order exchange parameter g44. Upon mini-

mization of (7.25), we obtain the nominal values compiled in Table 7.1.

Given the θ90 nominal values, we evaluate and plot the solutions to the 90◦ domain wall energy

system in Figure 7.1. The fsolve.m and bvp4c.m implementations are in close agreement, thus

verifying the solution. Whereas the two methods yield the same solution, the root finding problem

is more efficient for the high number of evaluations needed in the implementation of parameter

subset selection techniques and Bayesian uncertainty analysis. Furthermore, we use the fsolve.m
solver is used in further evaluations of E ∗90◦ (7.18).

Investigations such as [5, 32] cite the vague parameter assumptions made in Landau-Ginzburg

theory analysis of 90◦ polydomain structures. This poses a parameter uncertainty challenge which

we address in Section 7.2 by first determining which gradient exchange parameter is most influential

in the sense that its uncertainty is most apportioned to the uncertainty in the 90◦ domain wall

energy response.

7.2 Parameter Subset Selection

Here, we implement the parameter subset selection methodology developed in Section 3.3 for the

parameters θ90 in the model E90◦ (θ90) (7.18). This involves the construction of the global sensitivity

matrix S (3.44) to be employed in Algorithm 3.3.2. As detailed in Section 3.3, the use of the global

sensitivity matrix in this algorithm explores the entire parameter space, thus providing a better

measure of global identifiability.
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Figure 7.1 Comparison of finite difference fsolve.m and bvp4c.m MATLAB solvers for solution of the
90◦ domain wall energy system. From top left to bottom right, 90◦ domain wall energy density solution,
polarization Ps in the s direction, polarization Pr in the s direction, and polarization gradients Ps ,s and Pr,s

in the s direction as we cross the 90◦ domain wall.

To construct the global sensitivity matrix, we assume the proposal distribution (5.14). We employ

the nominal values and standard distributions from Table 4.2 for the Landau parameters and

electrostrictive coefficients. For the gradient exchange parameter g44, we use the nominal value
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Table 7.2 Results from Algorithm 3.3.2 with the global sensitivity matrix (3.44) to determine noninfluential
parameters in θ90 (7.19) for the 90◦ domain wall energy E90◦ (7.18).

Eigenvector∆θ1 with corresponding parameters

Iteration |λ1| α1 α11 α12 α111 α112 q11 q12 q44 g11 g12 g44

1 3.34e-14 4.67e-1 8.95e-2 -9.31e-2 2.68e-1 -3.91e-2 3.22e-1 -1.52e-1 1.66e-1 1.97e-1 -6.99e-1 -9.68e-2

2 4.23e-14 6.16e-2 -8.35e-2 -1.21e-1 5.32e-2 2.45e-2 -2.00e-1 -5.08e-1 -3.00e-1 -1.53 —– 7.49

3 6.75e-13 -7.48e-1 2.09e-1 -2.75e-3 -4.15e-1 2.96e-2 5.50e-2 4.57e-1 -6.00e-2 -9.11e-2 —– —–

4 1.42e-12 —– -1.78e-1 2.90e-1 -6.25e-2 2.69e-2 -6.56e-3 9.14e-1 -1.44e-2 -1.55e-1 —– —–

5 7.10e-12 —– -1.55e-1 -3.26e-1 -3.53e-1 1.79e-1 -2.84e-1 —– -4.46e-1 -6.59e-1 —– —–

6 5.57e-11 —– 4.90e-1 -5.06e-1 -1.44e-1 4.41e-2 6.93e-1 —– 2.59e-2 —– —– —–

7 2.83e-9 —– -1.78e-1 2.63e-1 5.05e-1 -4.42e-2 —– —– -8.01e-1 —– —– —–

Result: The parameters α1, q11, q12, g11, g12 and g44 are not influential based on ε= 1e −9.

and standard deviation identified from the uncertainty analysis of Section 6.3. In the case of the

additional parameters g11 and g12, we assume normal distributions about the nominal values µg11
,

µg12
provided in Table 7.1,

G11 ∼N (µg11
, (0.05|µg11

|)2), G12 ∼N (µg12
, (0.05|µg12

|)2),

for the random variables G11 and G12.

Employing Algorithm 3.3.2, along with the global sensitivity matrix (3.44), we obtain the results

in Table 7.2. Here, we assume a threshold ε = 1e-9. We observe that the higher-order Landau

phenomenological parameters are most influential on the model output, thus highlighting the

significance of the polarization on the 90◦ domain wall energy. The shear electrostrictive coefficient

q44 is also significant as evidenced by the results of Table 7.2. This illustrates the importance of the

shear electromechanical coupling term in the electrostrictive energy (7.6), with respect to the 90◦

domain wall transition.

A lower threshold, for example taking ε = 1e-12, yields g11 to be more influential than g12, which

is the first parameter to be eliminated in the algorithm. Thus, the results indicate that g12 is not

influential in the sense that its uncertainty is not reflected in uncertainty in the response. This

motivates the uncertainty analysis of parameter g11 in Section 7.3, while fixing the parameter g12 at

the nominal value provided in Table 7.1, with respect to the model response (7.18).
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Figure 7.2 (a) Chain and (b) kernel density estimation for the parameter g11, obtained from the implemen-
tation of the DRAM algorithm [18].

7.3 Bayesian Inference

The results of Section 7.2 indicated that the parameter g11 was the most influential gradient exchange

parameter with respect to the model response (7.18). Thus we quantify the uncertainty in this

parameter while fixing all other parameters in θ90 at nominal values from Table 7.1.

We employ the delayed rejection adaptive metropolis (DRAM) algorithm introduced in Sec-

tion 3.4, for the Bayesian uncertainty analysis. Recall that the synthetic observations for the total

90◦ domain wall energy are obtained by employing the relation

E d a t a
90◦ (i ) = E ∗90◦ + εi , i = 1, . . . , N ,

where E ∗90◦ = is the reported total domain wall energy literature value from [56]. Here, εi denotes ran-

dom noise εi ∼N (0,σ2)whereσ= 0.05E ∗90◦ . We let N = 50, specifying the number of observations

in the synthetic data simulation.

Using a uniform prior distribution for g11, along with 10,000 accepted value iterations of the

algorithm, we obtain the posterior chain and density presented in Figure 7.2. These results yield

the mean value for g11 to be µg11
= 1.71e-5 mV ·mm3/µC, while the standard deviation is σg11

=

2.60e-7 mV ·mm3/µC. We use the nominal value and standard deviation to construct a normal

density for g11, to be used in the active subspace analysis of Section 7.4.
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Figure 7.3 Singular values obtained from the active subspace determination for E90◦ assuming normal
(3.49) and uniform (3.47) distributions for parameters θ90. The shaded area around the singular values
corresponds to two standard deviations.

7.4 Active Subspace Construction

In this section, we discuss the active subspace analysis for the model E90◦ . We first construct the

active subspace, employing the methodology introduced in Section 3.4.2. Using several verification

techniques, we assess the dimension of the active subspace, and determine active variables, from

which we then determine activity scores. We compare the results of the activity scores with the

parameter identifiability rankings of Section 7.2, to determine a set of parameters denoting the most

sensitive inputs to the model E90◦ (θ90).

To determine the active subspace, we start by employing Algorithm 3.4.1, to construct the

gradient matrix G (3.58). We use a total of M = 10, 000 iterations of the algorithm, assuming uniform

and normal distributions of the type (3.47) and (3.49). Upon the construction of the gradient matrix,

we take a singular value decomposition G = WΣVT , as detailed in Section 3.4.2. This yields the

singular values presented in Figure 7.3. It is difficult to identify the active subspace dimension based

on the gap-based criteria, as observed from the singular value spectrum. As a result, we proceed with

the other dimension selection methods, detailed in Section 3.4.3, to determine the active subspace

dimension.

As stated in Section 3.4, active subspaces are often low-dimensional in the sense that the output

varies most dominantly in one or two directions in the parameter space. With this in mind, we

construct response surfaces considering one-, two-, three- and four-dimensional active subspaces.

We plot the one- and two-dimensional response surfaces in Figure 7.4, and present mean relative
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Figure 7.4 Response surface for E90◦ constructed based on a (a) one-dimensional and (b) two-dimensional
active subspace.

Table 7.3 Mean relative errors (MRE) for response surfaces considering 1-, 2-, 3-, and 4-dimensional active
subspaces for the model response E90◦ .

Dimension 1 2 3 4

MRE 0.0104 0.0075 0.0061 0.0061

errors for all in Table 7.3. As detailed in Section 3.4.3, the dimension of the active subspace is

determined when the mean relative errors stop decreasing by more than one order of magnitude.

Thus, this criteria indicates a one-dimensional active subspace for the 90◦ domain wall energy

(7.18).

Next, we consider dimension selection based on principal component analysis (PCA). The

employment of Algorithm 3.4.3, along with the tolerance t ∗ = 0.95, yields a one-dimensional active

subspace, consistent with the results of the response surface analysis.

Activity Scores

In the computation of activity scores to rank the relative parameter influence, we consider one-

and two-dimensional active subspace for comparison. Recall that the computation of the activity

scores follows the methodology detailed in Section 3.4.4. This yields the activity scores presented in

Figure 7.5.

The parameters α1,α11,α12,α111,α112, q11, q12 and g11 are the most sensitive parameters based

on the activity scores. The results indicating the higher-order Landau parameters to be significant

are in agreement with the parameter subset selection analysis of Section 6.2. However, here we notice
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Figure 7.5 Activity scores for the model response E90◦ assuming normal (3.49) and uniform (3.47) param-
eter distributions, and a (a) one-dimensional and (b) two-dimensional active subspace. The errorbars
indicate two standard deviations from the mean.

more significant influence with respect to the electrostrictive coefficients q11 and q12. We point out,

however, that the construction of the activity scores considers the total energy E90◦ associated with

the 90◦ domain wall, whereas the vector-valued energy density u90(s )−u0, presented in Figure 7.1,

was considered in the analysis of Section 7.2. Compared with the energy density, the contributions

of the electrostrictive coefficients q11 and q12 is thus more apparent in the model response E90◦ . To

incorporate the results of both the parameter subset selection analysis results of Section 6.2 and the

activity scores given here, we conclude that all electrostrictive coefficients are significant, and we

use their respective uncertainties in the uncertainty propagation analysis of Section 7.5.

7.5 Uncertainty Propagation

We conclude that the parameters α1,α11,α12,α111,α112, q11, q12, q44 and g11 are the most sensitive

parameters, from the results of the parameter subset selection in Section 7.2 and the activity scores

in Section 7.4. Thus, we denote

θ s e n s
90 = [α1,α11,α12,α111,α112, q11, q12, q44, g11]

as the most sensitive parameters of in the 90◦ domain wall energy model E90◦ (θ90) (7.18). Throughout

this section we randomly sample the sensitive parameters θ s e n s
90 to propagate their uncertainty on

the energy density u90−u0 while holding all other parameters fixed, and compare with uncertainty

propagation when sampling all parameters θ90.
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To verify that the parameter selection results are independent of possible strong correlation

among parameters, we consider two cases for uncertainty propagation. In the first case, we con-

sider the parameter distribution Θ90 ∼N (µ90, V90), where µ90 denotes the nominal values given in

Table 7.1, and V90 denotes the diagonal covariance matrix with the squared standard deviations

from Table 4.2 in Section 4.1 and the uncertainty analysis in Sections 6.3 and 7.3. We do this with the

exception of α12, α111 and α112, for which we take 1/3 of the standard deviations in Table 4.2. Higher

standard deviation values for these parameters cause large variations in the solution to the system

(7.16)-(7.17), further supporting the parameters’ influence. For the parameter g12, we assume a

squared standard deviationσg12
= 0.05|µg12

|. In the second scenario, we sample the Landau energy

parameters strictly from the chains and densities presented in Figures 4.4 and 4.6. This incorporates

the correlation among these parameters with respect to the monodomain continuum model analysis

of Section 4.3.

For both sampling scenarios, we compare the propagation of sensitive parameters θ s e n s
90 with

the propagation of all parameters θ90 on the domain wall energy density u90(s )−u0. We consider

50%,90%,95% and 99% credible intervals when propagating the parameter uncertainties. In Fig-

ure 7.6, we plot the mean response along with the credible intervals. In (a) and (b), we consider

the parameters to be normally distributed, whereas in (c) and (d), we consider the Landau and

electrostrictive parameters sampled from the monodomain chains in Figure 4.4. In the construction

of the credible intervals, we used a total of 500 random samples of θ90 and θ s e n s
90 . The credible

intervals are almost identical, from a qualitative point of view. In addition, the results indicate that

sensitive parameters are independent of the choice of distribution.

Next, we subtract the Figure 7.6 “peak values” (at s = 0) of the 99% credible intervals associated

with the sensitive parameter uncertainty propagation, from the peak values associated with the full

parameter uncertainty propagation. This yields the residuals plotted in Figure 7.7, with 20 different

simulations of the 99% credible interval construction. Here, we observe the residuals to be small

and scattered around zero.

We additionally plot the histogram and kernel density estimation (KDE) of the distributions

for u90(0)−u0, with respect to the two parameter sampling scenarios detailed earlier, in Figure 7.8.

Consistent with the observations of the credible intervals in Figure 7.6, the peak distributions are also

almost identical. To quantitatively measure the difference in distributions we use energy statistics.

Energy Statistics

Energy statistics provide metrics to measure distances between densities, as detailed in Section 3.6.

We use them to test the null hypothesis H0 : F90 = F s e n s
90 that the density obtained by propagating all

parameters θ90 is equal to the density obtained by propagating only the sensitive parameters θ s e n s
90 ,

while keeping all other parameters fixed.
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Figure 7.6 Uncertainty propagation of the (a) θ90 model inputs and (b) θ s e n s
90 influential inputs on the

energy density u90(s )− u0, assuming a normal distribution for the parameters. In (c) and (d) we sample
directly from the monodomain chains in [33] for the Landau and electrostrictive parameters.
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Figure 7.8 (a) Histogram and (b) probability density of the 90◦ domain wall energy u90(0)−u0 distributions
with respect to the case where the uncertainties of all parameters θ90 are propagated against the case
where only the uncertainties of parameters θ s e n s

90 are propagated. In (c) and (d) we sampled directly from
the chains obtained in the monodomain analysis reproduced in Chapter 4 and obtained from [33].

The implementation of the energy statistics methodology yields an energy test statistic Tn1,n2
=

8.0287e-4, with M = 499 and n1 = n2 = 4,000. In Figure 7.9, we plot the energy statistic replicates,

constructed in the manner detailed in Section 3.6. In Table 7.4, we present energy statistic values,

corresponding to the confidence levelsα= 0.05, 0.10. The test statistic is clearly lower than the critical

values dictated by the confidence levels as observed from Figure 7.9 and Table 7.4. Consequently,

we reject the alternate hypothesis that the distributions are not equal.

The energy statistics analysis verifies that the parameters θ s e n s
90 are the most influential in the

domain wall energy model E90◦ (θ90) (7.18). For future model calibration, uncertainty propagation
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(a) (b)

Figure 7.9 Energy test statistic replicates for the statistical analysis of the u90(0)−u0 distribution, with θ90

(a) normally distributed and (b) having Landau energy and electrostrictive parameters sampled from the
monodomain chains in [33].

Table 7.4 Energy test statistic and critical values for α = 0.05, α = 0.10, when sampling the Landau and
electrostrictive parameters from a normal distribution (normal) and directly from the monodomain chains
(MD) [33].

Density Peak Test Statistic Critical Value Critical Value
Samples (normal) (α= 0.05) (α= 0.10)

θ90 versus θ s e n s
900 sampled 8.0287e+4 2.4671e+5 1.9612e+5

Density Peak Test Statistic Critical Value Critical Value
Samples (MD) (α= 0.05) (α= 0.10)

θ90 versus θ s e n s
90 sampled 4.1372e+4 1.4823e+5 1.0102e+5

and model-based control design, we can thus fix the insensitive parameters, whose perturbations

will not significantly change model output.
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CHAPTER

8

CONCLUSIONS

The objective of this dissertation was to investigate parameter subset selection techniques and uncer-

tainty quantification of parameters in quantum-informed continuum models for single- and multi-

domain ferroelectric materials. Broadly speaking, parameters are considered to be non-influential

if the model responses minimally reflect perturbations in the inputs’ admissible parameter space.

One can typically fix non-influential parameters at nominal values in processes such as Bayesian

model calibration, uncertainty propagation, and model-based control design.

Phenomenological models describing domain structure evolution, based on Landau-Ginzburg

theory, are sometimes criticized because of the estimates that must be made about the governing

unknown parameters [32]. First-principles computational investigations, such as density functional

theory (DFT) simulations, are often preferred in determining ferroelectric material evolution prop-

erties, due to their accuracy [32, 37]. However, these calculations are not feasible for large-scale

computations required in material design [33].

In this investigation, we used parameter subset selection techniques and Bayesian uncertainty

analysis methods to determine the relative importance of parameters in models, informed by

high-fidelity DFT calculations. We identified which parameters are influential, and isolated the

non-influential ones that may be fixed in future model-based material design and model calibration

studies.

For single domain ferroelectric material structures, we employed global sensitivity analysis

techniques to quantify the relative influence of 5 phenomenological parameters in a 2-D sixth-order
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Landau energy, as well as 7 parameters in a electrostrictive energy. The results were verified by

comparing with Bayesian inference results and Fisher information-based subset selection criteria.

For multi-domain ferroelectric material structures, we employed Fisher information-based param-

eter subset selection and active subspace analysis to quantify the relative influence of 5 Landau

energy phenomenological parameters, 3 electrostrictive energy parameters, and 3 gradient energy

parameters in Landau-Ginzburg theory-based continuum model.

In the absence of a priori knowledge about parameter distributions, when performing global

sensitivity analysis, parameters are typically assumed to be independent and uniformly distributed.

Using a general variance-based methodology for correlated parameters, we demonstrate how the

incorrect assumption of mutually independent parameters may lead to incorrect interpretations

about parameter influence on model outputs. These results are further exemplified by Bayesian infer-

ence results provided in Chapter 4 and [33], regarding parameters in the single domain ferroelectric

structure analysis. The Fisher information matrix-based parameter subset selection corroborates

these conclusions, by employing information stemmed from the local sensitivity matrix. This analy-

sis, furthermore enables the comparison of individual, partial and total effects due to parameter

correlation structures, and is consistent with expected results from subsequent Bayesian model

calibration. Broadly, the results of the single domain ferroelectric structure analysis indicate a sig-

nificant contribution from higher-order Landau polarization energy terms, due to strong parameter

correlation.

The multi-domain ferroelectric material models consider polarization and strain interactions

across 180◦ and 90◦ domain walls. This includes polarization gradient energy relations, which model

the domain wall transitions in addition to the elastic energy, Landau polarization energy, and elec-

trostrictive energy considered in the single domain continuum model analysis. The implementation

of the models requires numerical solutions to boundary value problems composed of sets of differ-

ential equations. This increases the computational expense, otherwise required in variance-based

global sensitivity analysis. Thus, we employed gradient-based parameter subset selection and active

subspace analysis techniques to rank the relative influence of Landau energy, electrostrictive en-

ergy and gradient exchange parameters. The results yielded significant importance of higher-order

Landau energy parameters, as well as electromechanical coupling coefficients, whereas only one

gradient energy parameter was influential in the 90◦ domain wall energy response. We verified these

results by employing uncertainty propagation and measuring distribution distances, using energy

statistics. In comparison with the monodomain continuum analysis, we conclude that higher-order

Landau energy terms are important for the modeling of micro-scale domain structure evolution of

ferroelectric materials.

The incorporation of simultaneous single- and multi domain ferroelectric structure evolution

analysis is of significant interest in future work proceedings. This includes data fusion from multiple

sources to simultaneously inform parameters based on multiple effects away from and in close
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proximity to 180◦ and 90◦ domain walls. The complex motion of domain walls and formation

of new domains as a result of domain wall interactions motivates a comprehensive investigation

involving mono- and polydomain structure evolution. Uncertainty analysis challenges posed by data

fusion from several sources may be addressed by the inclusion of maximum entropy approaches,

which propose accurate weighting mechanisms, based on the covariance structure between data

sets [13]. The investigations in this dissertation have laid the foundations for a complete study

in which longitudinal data acquired from several sources, could be used to simultaneously infer

Landau-Ginzburg parameters at the polydomain scale, both for lead titanate and other ferroelectric

materials.
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Algorithm A.0.1: Delayed Rejection Adaptive Metropolis Algorithm (DRAM) using a Normal
Likelihood Function [18, 51].

(1) Preset design parameters ns ,σ2
s , sp and k0, as well as the number of chain iterations M .

Recall that ns andσ2
s are related to the error variance update, whereas sp is derived based

on the parameter dimension p and is in practice taken to be 2.382/p .

(2) Compute θ 0 = arg minθ
N
∑

i=1

�

m o b s
i − fi (θ )

�2
.

(3) Substitute θ 0 and set SSθ 0 =
∑N

i=1

�

m o b s
i − fi (θ 0)

�2
.

(4) Determine initial variance estimate s 2
0 =

SSθ 0

N −p
, where p is the number of parameters.

(5) Construct initial covariance estimate V0 = s 2
0

�

ST (θ 0)S(θ 0)
�−1

, set R = chol(V ). Recall that
the sensitivity matrix S is defined in (3.44).

(5) For k = 1, . . . , M

a. Sample zk ∼N (0, I ).

b. Construct candidate θ ∗ = θ k−1+R zk (i.e., θ ∗ ∼N (θ k−1, Vk−1)).

c. Sample uα ∼U (0, 1).

d. Compute SSθ ∗ =
∑N

i=1

�

m o b s
i − fi (θ ∗)

�2
.

e. Compute

α(θ ∗|θ k−1) =min
�

1, e −[SSθ ∗−SSθk−1 ]/2s 2
k−1

�

.

f. If uα <α,
Set θ k = θ ∗, SSθ k = SSθ ∗

else
Enter Delayed Rejection Algorithm A.0.2.

endif

g. Update s 2
k ∼ Inv-gamma(av a l , bv a l ), where

av a l = 0.5(ns +n ), bv a l = 0.5(nsσ
2
s +SSθ k ).

h. if mod(k , k0) = 1

Update Vk = sp cov(θ 0,θ 1,θ 2, . . . ,θ k ), Rk = chol(Vk ).

else

Vk =Vk−1.

endif
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Algorithm A.0.2: Delayed Rejection Component of DRAM using a Normal Likelihood Function
[18, 51].

(1) Preset the design parameter γ2 = 1. We use γ2 = 1/5.

(2) Sample zk2
∼N (0, I ).

(3) Construct second-stage candidate

θ ∗2 = θ k−1+γ2R T
k−1zk2

, (i.e., θ ∗2 ∼N (θ k−1,γ2
2Vk−1)).

(4) Sample uα2
∼U (0, 1).

(5) Compute SSθ ∗2 =
∑N

i=1

�

m o b s
i − fi (θ ∗2)

�2
.

(6) Compute

α2(θ ∗2|θ k−1,θ ∗) =min

�

1,
π(θ ∗2|m o b s )J (θ ∗|θ ∗2)

�

1−α(θ ∗|θ ∗2)
�

π(θ k−1|m o b s )J (θ ∗|θ k−1) [1−α(θ ∗|θ k−1)]

�

,

where J is the proposal distribution in 6b. of Algorithm A.0.1. In general,

J (θ i |θ j ) =
1

p

(2π)p |V |
exp

�

−
1

2

�

(θ i −θ j )V −1(θ i −θ j )T
�

�

.

(7) If uα2
<α2,

Set θ k = θ ∗2, SSθ k = SSθ ∗2 .
else

Set θ k = θ k−1, SSθ k = SSθ k−1 .
endif
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