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A Power Series Based Controller for the
Stabilization of a Single Inverted Pendulum on a

Cart: Analysis and Real-Time Implementation
Emese Kennedy, and Hien Tran, Member, SIAM

Abstract—The single inverted pendulum (SIP) system is a
classic example of a nonlinear under-actuated system. In the
past fifty years many nonlinear methods have been proposed
for the swing-up and stabilization of a self-erecting inverted
pendulum, however, most of these techniques are too complex
and impractical for real-time implementation. In this paper, the
successful real-time implementation of a nonlinear controller for
the stabilization of a SIP on a cart is discussed. The controller
is based on the power series expansion of the solution to the
Hamilton Jacobi Bellman (HJB) equation. While the performance
of the controller is similar to the traditional linear quadratic
regulator (LQR), it has some important advantages. First, the
method can stabilize the pendulum for a wider range of initial
starting angle. Additionally, it can also be used with state
dependent weighting matrices, Q and R, whereas the LQR
problem can only handle constant values for these matrices. We
present results with both constant and state-dependent weighting
matrices. Furthermore, we analyze both the stability region and
the disturbance rejection of the controller.

Index Terms—Hamilton-Jacobi-Bellman equation, inverted
pendulum, nonlinear feedback control, power series approxima-
tion, real-time implementation, stabilization

I. INTRODUCTION

IN 1990 the International Federation of Automatic Control
(IFAC) Theory Committee published a set of benchmark

problems that can be used to compare the benefits of new and
existing control methods. One of these problems involves the
stabilization of an inverted pendulum [1]. Despite its simple
structure, the inverted pendulum is among the most difficult
systems to control. This difficulty arises because the equations
of motion governing the system are inherently nonlinear
and because the upright position is an unstable equilibrium.
Furthermore, the system is under-actuated as it has two degrees
of freedom, one for the cart’s horizontal motion and one for
the pendulum’s angular motion, but only the cart’s position
is actuated, while the pendulum’s angular motion is indirectly
controlled. Many of the previously proposed nonlinear control
techniques for the stabilization of an inverted pendulum are too
complex and impractical for real-time implementation [2]. In
this paper, we present the successful real-time implementation
of a nonlinear controller for the stabilization of a single
inverted pendulum (SIP) on a cart. The controller is based on
the power series approximation to the solution to the Hamilton
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Jacobi Bellman (HJB) equation [3]–[6]. In addition to our
previously presented work [7], [8], we also present results
using state-dependent weighting matrices, and analyze both the
stability region and the disturbance rejection of the controller.

A. Existing Control Methods
Because of its popularity and numerous applications, there

are many existing control methods for the inverted pendulum.
However, many of the published controllers have only been
tested in simulations and not in real-time experiments. Com-
paring experimental results with published work of others,
the simulation results are often different from the real-time
results. This is because almost all simulations use a simplified
model to represent the dynamics of the inverted pendulum.
Furthermore, most of the simulations ignore the effects of
friction, and often fail to incorporate some physical restrictions
like the maximum deliverable voltage by the amplifier, the
capacity of the DC motor that drives the cart, and the finite
track length.

Below is a summary of the most popular control methods
that have been implemented for an inverted pendulum, and a
short discussion of the advantages and disadvantages of each
method. Most of the cited references were compiled based on
an extensive survey by Boubaker [2].
• Fuzzy logic and neural network controllers like the ones

presented in [9]–[11] have a simple structure and don’t
require lengthy computations. They are very popular
methods for both the swing-up and the stabilization of
the pendulum, however, the presentation of these methods
often lack the specification of the stability conditions.

• Proportional-integral-derivative (PID) adaptive control is
discussed in [12]–[14]. This method is good for stabi-
lizing the pendulum, but requires frequent tuning. Chang
et al. discusses the implementation of a self-tuning PID
controller using a Lyapunov approach in [13], but only
simulation results are presented without discussion of
real-time experiments.

• Energy-based control is one of the most popular and effi-
cient methods for swinging-up the pendulum. The global
stability conditions of this approach are well proven using
Lyapunov techniques. Hybrid control methods based on
the energy approach that accomplish both the swing-up
and the stabilization of the pendulum without switching
controllers are presented in [15]–[19].

• Sliding mode control is a powerful and robust control
method that can be used for many practical systems
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that are not under actuated. In [20] a modified Van
der Pol oscillator is implemented for both the swing-
up and the stabilization of the pendulum, but with some
performance issues. Namely, the fast switching in the
implemented controller causes undesirable chattering. In
[21] an aggressive sliding mode control law is presented
for both the swing-up and the stabilization along with
results of numerical simulations for the cart pendulum
system, and real-time experimental results for the rotary
pendulum system.

• Linear quadratic regulator (LQR) is a simple and easy
to implement control method that performs reasonably
well for stabilizing the inverted pendulum. However,
the performance of the method greatly depends on the
selection of the weighting matrices, Q and R, in the
cost functional. In a recent publication, Trimpe et al.
proposed a self-tuning LQR approach using stochastic
optimization, but the method has only been implemented
in simulations and not in real-time experiments [22].

• Linear quadratic gaussian (LQG) is a controller that com-
bines LQR with a Kalman Filter to improve disturbance
rejection. This method was implemented by Eide et al. in
[23] during the balance of an inverted pendulum mobile
robot, however, they found that the LQR produced better
response when compared to the LQG approach.

• Approximate linearization is a method of finding a non-
linear change of coordinates for a nonlinear system to
construct a linear approximation of the plant dynamics
accurate to second or higher order. Starting with the work
of Krener [24]–[26], many variants of this approach have
been suggested [27], [28]. The algorithm presented in
[24] was implemented for the stabilization of a rotary
pendulum by Sugie and Fujimoto [29]. They showed
through experiments that the method enlarges the stability
region. Using the ideas in [25] and [28], Ohsumi and
Izumikawa implemented in real-time a control method
that can be used for both the swing-up and stabilization
of an inverted pendulum on a cart [30]. Based on Krener’s
approach, Guzzella and Isodori developed a simpler and
more direct method to calculate the quantities involved
[31]. This algorithm was implemented for the stabiliza-
tion of a cart-pendulum system by Renou and Saydy [32].
Their simulation and experimental results show a slight
improvement in the system’s transient response, but a
reduced region of stability when compared to the LQR
control method. In [33], Ingram et al. present the suc-
cessful real-time implementation of a modified approach
using an algorithm designed for feedback linearizable
systems. Their technique works for both the swing-up
and stabilization of an inverted pendulum on a cart. They
consider both the finite track length, and the restriction
on the maximum voltage input, but they do not take the
effects of friction into account.

• State-dependent Riccati equation (SDRE) based con-
troller has been used for the stabilization of the pendulum
in simulations in [34], [35]. In [36], Dang and Lewis
present the successful real-time implementation of a
SDRE based controller for both the swing-up and the

0 x

y

Fc > 0M

x

yp
Mp

xp

`p

α

α̇ > 0

Fig. 1. Single inverted pendulum diagram.

stabilization. The drawback of this method is that it is
computationally very intense as it requires the solution
of complicated state-dependent Riccati equations at every
time step.

Most of the control methods discussed above ignore the effects
of friction. There is a limited number of publications that
consider friction in the development of the model for the
inverted pendulum. Campbell et al. have studied the use of
different friction models during real-time implementation for
the stabilization of the pendulum [37], [38]. They have also
showed that disregarding friction produces oscillatory behavior
during stabilization.

II. SYSTEM DYNAMICS

A. System Representation and Notations

Fig. 1 shows a diagram of the Single Inverted Pendulum
(SIP) mounted on a cart. The positive sense of rotation is
defined to be counterclockwise, when facing the cart. The
perfectly vertical upward pointing position of the inverted
pendulum corresponds to the zero angle, modulus 2π, (i.e.
α = 0 rad [2π]). The positive direction of the cart’s displace-
ment is to the right when facing the cart, as indicated by the
Cartesian frame of coordinates presented in Fig. 1. The model
parameters and their values are provided in Table I.

B. Equations of Motion

A dynamic model of the system can be derived using
Lagrange’s method. In this approach, the single input to the
system is considered to be the driving force, Fc, generated by
the DC motor acting on the cart through the motor pinion. As
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TABLE I
INVERTED PENDULUM MODEL PARAMETERS

Symbol Description Value
Mw Cart Weight Mass 0.37 kg
M Cart Mass with Extra Weight 0.57 +Mw kg
Jm Rotor Moment of Inertia 3.90E-007 kg.m2

Kg Planetary Gearbox Gear Ratio 3.71
rmp Motor Pinion Radius 6.35E-003 m
Beq Equivalent Viscous Damping Coefficient 5.4 N.m.s/rad
Mp Pendulum Mass 0.230 kg
`p Pendulum Length from Pivot to COG 0.3302 m
Ip Pendulum Moment of Inertia at its COG 7.88E-003 kg.m2

Bp Viscous Damping Coefficient 0.0024 N.m.s/rad
g Gravitational Constant 9.81 m/s2

Kt Motor Torque Constant 0.00767 N.m/A
Km Back-ElectroMotive-Force Constant 0.00767 V.s/rad
Rm Motor Armature Resistance 2.6 Ω

we showed in [7], the second-order time derivatives of x and
α are the two non-linear equations

ẍ =
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where x and α are both functions of t. Equations (1) and (2)
represent the equations of motion (EOM) of the system.

In our implementation the system’s input is equal to the
cart’s DC motor voltage, Vm, so we must convert the driving
force, Fc, to voltage input. Using Kirchhoff’s voltage law and
the physical properties of our system, we can easily show [39]
that

Fc = −
K2

gKtKm (ẋ(t))

Rmr2mp

+
KgKtVm
Rmrmp

. (3)

III. CONTROLLER DESIGN

A. Problem Statement

The state-space representation of our system has the form

Ẋ(t) = f(X(t)) +B(X(t))u(t) (4)

where the system’s state vector is

XT (t) =

[
x(t), α(t),

d

dt
x(t),

d

dt
α(t)

]
= [x1, x2, x3, x4] ,

(5)
and the control input u is set to equal the cart’s DC motor
voltage, i.e. u = Vm. Based on equations (1)-(3) the nonlinear
function f(X) can be expressed as

f(X) =


0 0 1 0

0 0 0 1

0 0 a33 a34

0 0 a43 a44
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where
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2
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2
p sin

2(x2).
Similarly, B(X(t)) can be expressed as

B(X(t)) =


0

0
(Ip+Mp`

2
p)KgKt

D(X)Rmrmp

Mp`p cos(x2)KgKt

D(X)Rmrmp

 . (7)

Equation (7) can be linearized as

B =


0

0
(Ip+Mp`

2
p)KgKt

((Mc+Mp)Ip+McMp`2p)Rmrmp

Mp`p cos(x2)KgKt

((Mc+Mp)Ip+McMp`2p)Rmrmp

 .

Replacing B(X(t)) by B in (4) we obtain the nonlinear
system

Ẋ(t) = f(X(t)) +Bu(t) (8a)
X(0) = X0. (8b)

Note that we have compared the performance of our controller
with constant B against the performance of the controller with
state-dependent B(X(t)) and found that the two controllers
performed similarly near the upright position. For the details
of the comparison study see [39].

Now, consider the cost functional

J(X0, u) =

∫ ∞
0

(
XTQ(X)X +Ru2

)
dt, (9)
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where Q(X) is either a state-dependent or a constant-valued
4× 4 symmetric positive-semidefinite matrix and R is a pos-
itive scalar. In the case of starting and balancing the inverted
pendulum in the upright position, the optimal control problem
is to find a state feedback control u∗(x) which minimizes the
cost (9) for the initial condition XT

0 = [0, 0, 0, 0].
When the function f is linearized around the zero equi-

librium as f(X) = A0X , we obtain the well-know linear
quadratic regulator (LQR) problem. The optimal feedback
control for the LQR problem is

u∗(X) = −R−1BTPX,

where P is the unique, symmetric, positive-definite matrix
solution to the algebraic Riccati equation

PA0 +AT
0 P − PBR−1BTP +Q = 0. (10)

The theories for the LQR problem have been well-established,
and multiple stable and robust algorithms for solving (10)
have already been developed and are well documented in the
literature and in textbooks [40].

When f is nonlinear, like in our case, the optimal feedback
control is given by

u∗(X) = −1

2
R−1BTSX(X),

where the function S is the solution to HJB equation

ST
X(X)f(X)− 1

4
ST
X(X)BR−1BTSX(X)+XTQ(X)X = 0.

(11)
It is well know that the HJB equation is very difficult to solve
analytically. Several efforts have been made to numerically
approximate the solution of the HJB equation in order to obtain
a usable feedback control [3].

B. Power Series Approximation
The following method was adapted for the SIP system based

on [3]. As it has been done by Garrard and others in [4]–
[6], the solution of the HJB equation can be numerically
approximated using its power series expansion

S(X) =

∞∑
n=0

Sn(X),

where each Sn is a scalar polynomial containing all possible
combinations of products of the state elements with a total
order of n+2. Similarly, the nonlinear function f(X) can be
approximated by

f(X) = A0X +

∞∑
n=2

fn(X),

where each fn is a function vector with a scalar polyno-
mial containing all possible combinations of products of the
state elements with a total order of n in every row. In
our implementation, the power series of f was calculated
using the MATLAB function taylor from the Symbolic
Math Toolbox. Furthermore, when using a state-dependent
weighting matrix Q(X), it can be expanded as

Q(X) =

∞∑
n=0

Qn(X), (12)

where the entries in each Qn is a scalar polynomial containing
all possible combinations of products of the state elements
with a total order of n. These expansions can be substituted
into (11) to yield[ ∞∑

n=0

(Sn)
T
X

][
A0X +

∞∑
n=2

fn(X)

]

− 1

4

[ ∞∑
n=0

(Sn)
T
X

]
BR−1BT

[ ∞∑
n=0

(Sn)X

]

+XT

[ ∞∑
n=0

Qn(X)

]
X = 0.

(13)

Separating out powers of X in (13) yields the following system
of equations:

(S0)
T
XA0X−

1

4
(S0)

T
XBR

−1BT (S0)X +XTQ0X = 0, (14)

(S1)
T
XA0X −

1

4
(S1)

T
XBR

−1BT (S0)X

− 1

4
(S0)

T
XBR

−1BT (S1)X + (S0)
T
Xf2(X) +XTQ1X = 0,

(15)

(Sn)
T
XA0X −

1

4

n∑
k=0

[
(Sk)

T
XBR

−1BT (Sn−k)X
]

+

n−1∑
k=0

[
(Sk)

T
Xfn+1−k(X)

]
+XTQnX = 0,

(16)

where n = 2, 3, 4, . . .. The solution to (14) is

S0(X) = XTPX,

where P solves (10). We can solve (15) and (16) for Sn,
n = 1, 2, 3, . . ., but this can get very complicated quickly. In
[4], Garrard proposed a very easy method of finding (S1)X
and obtaining a quadratic type control. Using the solution of
(14) and making the substitution (S0)X = 2PX in equation
(15), we obtain

(S1)
T
XA0X −

1

4
(S1)

T
XBR

−1BT (2PX)

− 1

4
(2XTP )BR−1BT (S1)X

+ (2XTP )f2(X) +XTQ1X = 0.

(17)

The solution of (17) is

(S1)X = −(AT
0 − PBR−1BT )−1(2Pf2(X) +Q1X), (18)

which yields the feedback control law

u∗(X) =R−1BT (AT
0 − PBR−1BT )−1

(
Pf2(X) +

1

2
Q1X

)
−R−1BTPX.

(19)

Since for our model f2(X) = 0, we will define Q so that
Q1 = 0 to make sure that (17) can be solved trivially by
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S1 = 0. In this case we can replace Q1 by Q2, S1 by S2, and
f2 by f3 to obtain the the control law

u∗(X) =R−1BT (AT
0 − PBR−1BT )−1

(
Pf3(X) +

1

2
Q2X

)
−R−1BTPX.

(20)

C. Stability Analysis

Using a Simulink simulation in MATLAB with various
initial states, we can estimate the stability region for both the
power series controller and the LQR controller.

First, we only consider different initial pendulum angles and
make the other initial states zero. We repeat the simulation
several times with different initial angles to find the first
angle where each of the controllers is able to stabilize the
pendulum. This angle for the power series based controller is
α0 = 30.85◦, while for the LQR controller it is α0 = 23.30◦.
Since we have a finite track length, we continue repeating
the simulation until we find the first initial angle where each
of the controllers is able to stabilize the pendulum and the
position of the cart stays within the track (i.e. |x| < 400 mm).
The first such angle for the power series based controller is
α0 = 21.08◦, while for the LQR controller it is α0 = 18.22◦.
The simulated state responses and control effort for these
angles of interest are given in Fig. 2 for the power series
based controller and Fig. 3 for the LQR controller. The gray
shaded region in Figs. 2a and 3a indicates the length of the
track.

To get a better estimate of the stability region for the
power series controller and the LQR controller, we repeat
the simulations with various initial conditions for two of the
states while keeping the initial condition for the other two
states zero. The stability region estimates for initial conditions
−180◦ ≤ α0 ≤ 180◦, −590◦/s ≤ α̇0 ≤ 590◦/s, x0 = 0,
and ẋ0 = 0 are given in Fig. 4, for initial conditions
−180◦ ≤ α0 ≤ 180◦, −390 mm ≤ x0 ≤ 390 mm, ẋ0 = 0,
and α̇0 = 0 are given in Fig. 5, and for initial conditions
−390 mm ≤ x0 ≤ 390 mm, −1000 mm/s ≤ ẋ0 ≤ 1000
mm/s, α0 = 0, and α̇0 = 0 are given in Fig. 6. The range
on the velocities was selected based on the values possible
by the apparatus we use for real-time implementation, while
the range on the cart’s position was selected to be within the
length of the track. For all three cases, the stability region of
the power series controller is bigger than the stability region
of the LQR controller.

Finally, we repeat the simulations with various initial condi-
tions for three of the states while keeping the initial condition
for the remaining state zero. The stability region estimate for
initial conditions −180◦ ≤ α0 ≤ 180◦, −590◦/s ≤ α̇0 ≤
590◦/s, −1000 mm/s ≤ ẋ0 ≤ 1000 mm/s, and x0 = 0 is
given in Fig. 7 for the power series based controller and in
Fig. 8 for the LQR controller. The stability region estimate
for initial conditions −180◦ ≤ α0 ≤ 180◦, −590◦/s ≤ α̇0 ≤
590◦/s, −390 mm ≤ x0 ≤ 390 mm, and ẋ0 = 0 is given
in Fig. 9 for the power series based controller and in Fig.
10 for the LQR controller. The stability region of the power

series controller is bigger than the stability region of the LQR
controller for both cases.

IV. REAL-TIME IMPLEMENTATION

A. Apparatus

For our real-time experiments we use apparatus designed
and provided by Quanser Consulting Inc. (119 Spy Court
Markham, Ontario, L3R 5H6, Canada). This includes a single
inverted pendulum mounted on an IP02 servo plant (depicted
in Fig. 11), a VoltPAQ amplifier, and a Q2-USB DAQ con-
trol board. The IP02 cart incorporates a Faulhaber Coreless
DC Motor (2338S006) coupled with a Faulhaber Planetary
Gearhead Series 23/1. The cart is also equipped with a US
Digital S1 single-ended optical shaft encoder. The detailed
technical specifications can be found in [41]. A diagram of
our experimental setup is included in Fig. 12.

B. Design Specifications

The goal of our real-time experiment is to stabilize the
inverted pendulum in the upright position with minimal cart
movement and control effort. The weights Q(X) ≥ 0 and
R > 0 in the cost functional (9) must be chosen so that the sys-
tem satisfies the following design performance requirements
specified:

1) Regulate the pendulum angle around its upright position
and never exceed a ±1-degree-deflection from it, i.e.
|α| ≤ 1.0◦.

2) Minimize the control effort produced, which is pro-
portional to the motor input voltage Vm. The power
amplifier should not go into saturation in any case, i.e.
|Vm| ≤ 10V .

C. MATLAB Implementation

Our Experimental results were obtained using Simulink in
MATLAB and Quanser’s QuArc real-time control software.
The diagram of the main Simulink model is given in Fig. 13.
The control u is computed in real-time with a sampling rate
of 1 kHz (1ms) using an Embedded Matlab Function block.
The SIP+IP02 Actual Plant subsystem block that reads and
computes the cart’s position and velocity, and the pendulum’s
angle and angle velocity is taken from a model provided by
Quanser.

V. EXPERIMENTAL RESULTS

A. Constant Weighting Matrices

We have previously presented and discussed experimental
results with constant weighting matrices Q(X) = Q and R in
[7], [8].

B. State-Dependent Weighting Matrix

The amount of time required for tuning the performance
of the power series controller can be significantly reduced
by using a state-dependent values in the weighting matrix
Q(X). The choice of Q(X) = diag(800+5x2, 150+2α2, 1+
ẋ2, 1 + α̇2) and R = 0.1 greatly improves the performance



6

(a) Cart Position (b) Pendulum Angle

(c) Cart Velocity (d) Pendulum’s Angular Velocity

(e) Control Effort

Fig. 2. Simulated state response and control effort for the power series based controller with various initial angles, and x0 = 0, α̇0 = 0, ẋ0 = 0.

of the controller when compared to the performance of the
other two control methods that just use the constant part of
Q(X), namely Q = diag(800, 150, 1, 1). The corresponding
state responses and control effort are provided in Fig. 14. A
summary of the analysis of the state responses and the control
effort for the three methods is provided in Tables II and III.

C. Disturbance Rejection

The performance of the power series based controller with
both constant and state-dependent Q was compared to the
performance of the LQR controller in response to a 1.5◦

angular pulse disturbance. A summary of the analysis of the
state responses and the control effort for the three methods
is provided in Table IV. Graphs of the corresponding state
responses and control effort are provided in Figs. 15-19.
The three controllers performed very similarly, but the power

TABLE II
SUMMARY OF STABILIZATION STATE RESPONSE FOR THE POWER SERIES

BASED CONTROLLER WITH STATE-DEPENDENT Q VS. CONTROLLERS WITH
Q = diag(800, 150, 1, 1).

Method
|x|max |α|max |ẋ|max |α̇|max

|x|avg |α|avg |ẋ|avg |α̇|avg

3.05 mm 0.176◦ 28.64 mm/s 3.53 deg/spower series with
state-dependent Q 0.579 mm 2.67e-02◦ 4.53 mm/s 0.765 deg/s

3.8 mm 0.35◦ 67.3 mm/s 10.73 deg/spower series with
constant Q 0.775 mm 5.08e-02◦ 7.35 mm/s 1.1 deg/s

3.19 mm 0.264◦ 60.6 mm/s 9.19 deg/s
LQR

0.973 mm 6.68e-02◦ 6.82 mm/s 0.99 deg/s
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(a) Cart Position (b) Pendulum Angle

(c) Cart Velocity (d) Pendulum’s Angular Velocity

(e) Control Effort

Fig. 3. Simulated state response and control effort for the LQR controller with various initial angles, and x0 = 0, α̇0 = 0, ẋ0 = 0.

Fig. 4. Stability region estimate for both the power series based controller and
the LQR controller for various initial pendulum angles and angular velocities
with zero initial cart position and cart velocity.

Fig. 5. Stability region estimate for both the power series based controller
and the LQR controller for various initial pendulum angles and cart positions
with zero initial cart velocity and angular velocity.
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Fig. 6. Stability region estimate for both the power series based controller
and the LQR controller for various initial cart positions and cart velocities
with zero initial pendulum angle and angular velocity.

Fig. 7. Stability region estimate for the power series based controller for
various initial pendulum angles, angular velocities, and cart velocities with
zero initial cart position.

Fig. 8. Stability region estimate for the LQR controller for various initial
pendulum angles, angular velocities, and cart velocities with zero initial cart
position.

TABLE III
SUMMARY OF STABILIZATION CONTROL EFFORT FOR THE POWER SERIES

BASED CONTROLLER WITH STATE-DEPENDENT Q VS. CONTROLLERS WITH
Q = diag(800, 150, 1, 1).

Method Vmax |Vm|avg
∫ 30
0 |Vm|dt

power series with state-dependent Q 1.82 V 0.358 V 10.73 V

power series with constant Q 2.9 V 0.41 V 12.33 V

LQR 2.59 V 0.392 V 11.77 V

Fig. 9. Stability region estimate for the power series based controller for
various initial cart positions, pendulum angles, and angular velocities with
zero initial cart velocity.

Fig. 10. Stability region estimate for the LQR controller for various initial
cart positions, pendulum angles, and angular velocities with zero initial cart
velocity.

Fig. 11. Single inverted pendulum mounted on a Quanser IP02 servo plant.

series controller with state-dependent Q required less voltage
than the other two methods. Also notice, that for the power
series method with state dependent Q the maximum angular
displacement was the same as the introduced disturbance,
while the disturbance for the other two methods caused an
overcompensated angular displacement in the opposite direc-
tion.
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DAQ Computer
Control Signal

Pendulum Angle
& Cart Position

Cart Encoder
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Amplifier Command

Motor Connector

Fig. 12. Diagram of experimental setup.

Fig. 13. Main Simulink model diagram.

TABLE IV
SUMMARY OF STABILIZATION STATE RESPONSE AND CONTROL EFFORT

WITH 1.5◦ PULSE DISTURBANCE.

Method |x|max |α|max |ẋ|max |α̇|max Vmax

power series with
state-dependent Q

12.1 mm 1.5◦ 183.7 mm/s 25.4 deg/s 7.65 V

power series with
constant Q

11.24 mm 1.76◦ 197.4 mm/s 28 deg/s 8.81 V

LQR 11.43 mm 1.85◦ 181.3 mm/s 26.1 deg/s 8.82 V

VI. CONCLUSION

We presented the successful real-time implementation of
a nonlinear control method for the stabilization of a single
inverted pendulum on a cart. The method is based on the power
series approximation to the solution of the HJB equation.
To the best of our knowledge, this method has not been
implemented for a SIP system before. Experimental results
indicate that the controller performs slightly better than the
traditional linear quadratic regulator that is commonly used
for stabilization. Furthermore, the presented method has a
larger stability region, and it can be used with state-dependent
weighting matrices.
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(a) Cart Position (b) Pendulum Angle

(c) Cart Velocity (d) Pendulum’s Angular Velocity

(e) Control Effort

Fig. 14. State response and control effort with power series based controller: Q(X) = diag(800 + 5x2, 150 + 2α2, 1 + ẋ2, 1 + α̇2) and R = 0.1.
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(a) power series with state-dependent Q (b) power series with constant Q (c) LQR

Fig. 15. Cart position response to 1.5◦ disturbance.

(a) power series with state-dependent Q (b) power series with constant Q (c) LQR

Fig. 16. Pendulum’s angle response to 1.5◦ disturbance.

(a) power series with state-dependent Q (b) power series with constant Q (c) LQR

Fig. 17. Cart velocity response to 1.5◦ disturbance.

(a) power series with state-dependent Q (b) power series with constant Q (c) LQR

Fig. 18. Pendulum angular velocity response to 1.5◦ disturbance.
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(a) power series with state-dependent Q (b) power series with constant Q (c) LQR

Fig. 19. Control effort with 1.5◦ disturbance.
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