
Using Multi-Class Classification Methods to
Predict Baseball Pitch Types

GLENN SIDLE, HIEN TRAN

Department of Applied Mathematics

North Carolina State University

2108 SAS Hall, Box 8205

Raleigh, NC 27695

(919) 515-2382

gdsidle@ncsu.edu

Abstract

Since the introduction of PITCHf/x in 2006, there has been a plethora of data available for
anyone who wants to access to the minute details of every baseball pitch thrown over the
past nine seasons. Everything from the initial velocity and release point to the break angle
and strike zone placement is tracked, recorded, and used to classify the pitch according to an
algorithm developed by MLB Advanced Media (MLBAM). Given these classifications, we
developed a model that would predict the next type of pitch thrown by a given pitcher, using
only data that would be available before he even stepped to the mound. We used data from
three recent MLB seasons (2013-2015) to compare individual pitcher predictions based on
multi-class linear discriminant analysis, support vector machines, and classification trees to
lead to the development of a real-time, live-game predictor. Using training data from the 2013,
2014, and part of the 2015 season, our best method achieved a mean out-of-sample predictive
accuracy of 66.62%, and a real-time success rate of over 60%.

Keywords: baseball, pitch prediction, machine learning, PITCHf/x

1

mailto:gsidle@ncsu.edu

1 Introduction
Ever since Bill James published his work on sabermetrics four decades ago, Major League Baseball
(MLB) has been on the forefront of sports analytics. While the massive amount of statistical
data is generally used to examine historical player performance on the field in an effort to make
coaching and personnel decisions, there is great potential for predictive models that has largely
gone unnoticed. The implementation of the PITCHf/x system and distribution of large amount
of pitching data publicly over the internet has sparked the use of machine learning methods for
prediction, not just analysis.

As shown in Figure 1, pitchers have been getting better and better at preventing hits, lowering
the average ERA and batting average across the league. While hitting a major league pitch will
always be an incredibly difficult task, in this work we hypothesize that knowing what type of
pitch is coming next may help the batter decide to swing or not and work to get him on base. In
this paper, we compare three different machine learning techniques and their predictive abilities,
seeking to find what feature inputs are the most informative and to develop a blind prediction in an
attempt to anticipate the next pitch type. By comparing different techniques, we were able to find
which would work best in a live game environment, attempting to predict the next type of pitch as
before it would be thrown.

1.1 Literature Review
Previous research has mostly focused on a binary prediction, commonly a fastball vs. non-fastball
split. This prediction has resulted in accuracy around 70% (Ganeshapillai and Guttag, 2012), with
varying degrees of success for individual pitchers and different methods. This binary classification
using support vector machines was expanded upon using dynamic feature selection in (Hoang,
2015), improving the results by approximately 8 percent. Because many classification methods
were originally designed for binary classification, this prediction method makes sense, but we
wish to expand it further into predicting multiple pitch types.

Very limited attempts have been made at multi-class prediction prior to our work. In (Bock,
2015), the authors used a support vector machine approach with a linear kernel function, focusing
mostly on finding a measure of predictability for a pitcher and comparing that predictability against
long-term pitcher performance. The authors only examined four pitch types, and had a very limited
out-of-sample testing set, looking at the methods accuracy on 14 pitchers during a single World
Series, with an average accuracy of just under 61%. (Woodward, 2014) used decision trees to
again only predict up to four different types of pitches, and only shows results for two individual
pitchers. We expand on their work by considering up to seven different pitch types and apply
machine learning to many more pitchers over a longer amount of time. Along with a much larger
test set, we also investigate which methods perform the best, if our results share any correlation
with standard pitching statistics, what variables are most important for prediction, and finally our
ability to predict the next pitch type in a live game situation.

1

2 Methods

2.1 Data
The introduction of PITCHf/x was a revolutionary development in baseball data collection. Cam-
eras, installed in all 30 MLB stadiums, record the speed and location of each pitch at 60 Hz, and
data is made available to the public through a variety of online resources. MLB Advanced Media
uses a neural-network based algorithm to classify those pitches, giving a confidence in the clas-
sification along with the type of pitch (Fast, 2010). This information is added to the PITCHf/x
database, along with the measure characteristics of the pitch and details about the game situa-
tion. Using the pitch data provided at gd2.mlb.com, we were able to retrieve every pitch from the
2013, 2014, and 2015 seasons. Using 22 features from each pitch, we created data sets for every
individual pitcher, adding up to 81 additional features to each data set, depending on how many
types of pitches the individual threw. Here we consider seven pitch categories (with given integer
values), fastball (FF, 1), cutter (CT, 2), sinker (SI, 3), slider (SL, 4), curveball (CU, 5), changeup
(CH, 6), and knuckleball (KN, 7), and those that had a type confidence (the MLBAM algorithm’s
confidence that its classification is correct) greater than 80%.

We restricted our data set only to pitchers who threw at least 500 pitches in both the 2014
and 2015 seasons, which left us with 287 total unique pitchers, 150 starters and 137 relievers as
designated by ESPN. The average size of the data set for each pitcher was 4,682 pitches, with
the largest 10,343 pitches and the smallest 1,108 pitches. Because each pitcher threw a different
number of unique pitch types, not all the datasets are the same size. At the most, a pitcher could
have 103 features associated with each pitch and at the minimum he could have 63. The average
pitcher had 81 features.

Table 1 gives a list of the features used, both those that can be taken from the immediate game
situation and the features we generated using the historical data on for both pitcher and batter.
Because of the size of the feature set, similar features are grouped together in the table, i.e. group
16 contains the previous pitch’s type, result, break angle, break length, break height, and the zone
where it crossed the plate. Groups 19-26 have variable sizes due to the number of types of pitches
each pitcher throws. Groups 27-29 are unique for each batter, containing the percent of each type
of pitch he puts in play, has a strike on, or takes a ball on.

2.2 Model Development
We decided to employ three different classification-based methods to compare and contrast results
from all 287 pitchers in our data set. First, we used multi-class Linear Discriminant Analysis
because its speed and efficiency. Then, to compare results to (Bock, 2015) and (Woodward, 2014)
we used support vector machines and classification trees.

2

2.3 Linear Discriminant Analysis
Linear Discriminant Analysis (LDA) is a method descended from R.A. Fisher’s linear discriminant
he first introduced in (Fisher, 1936). Assuming two classes of observations have respective mean
covariance pairs (~µ0,Σ0) and (~µ1,Σ1), then the linear combinations ~w ·~x have the mean covariance
pairs (~w ·~µi,~wT Σi~w) for i = 0,1. Fisher determined the separation between the two distributions
(and therefore classes) as the ratio of the variance between the two classes to the variance within
each class, i.e.

S =
σ2

between

σ2
within

=
(~w ·~µ1−~w ·~µ0)

2

~wT Σ1~w+~wT Σ0~w
=

(~w · (~µ1−~µ0))
2

~wT (Σ0 +Σ1)~w
,

where the maximum separation between the classes is found when ~w ∝ (Σ0 +Σ1)
−1(~µ1−~µ0).

To go from the linear discriminant to LDA, we use the assumption that the class covariances
are the same, i.e. Σ0 = Σ1 = Σ, then the proportional equation leads to ~w ·~x > c, where

~w =Σ
−1(~µ1−~µ0)

c =
1
2
(~µT

1 Σ
−1~µ1−~µT

0 Σ
−1~µ0)

and so the decision of which class ~x belongs to depends on whether the linear combination sat-
isfies the inequality. In order to extend LDA to multi-class classification, the same assumption is
made that each of N classes has a unique mean ~µi but the same covariance Σ. The between class
covariance is found by

Σb =
1
N

N

∑
i=1

(~µi−~µ)(~µi−~µ)T ,

where ~µ is the mean of the means, and then class separation is determined by

S =
~wT Σb~w
~wT Σ~w

.

We use a regularization parameter to shrink the covariance matrix closer to the average eigen-
value of Σ. In the MATLAB implementation of LDA, N(N− 1)/2 separations are made, making
it comparable to the one-vs-one (OvO) technique for support vector machines. The final class
decision is made by minimizing the sum of the misclassification error (MathWorks, 2016b).

2.4 Multi-class Support Vector Machines
Support vector machines (SVM) were first designed as a method of binary classification. The
extension of binary SVMs to a multi-class method has led to two common approaches to multi-
class classification. Unlike (Bock, 2015), however, we employed a C-SVM formulation with the
radial basis kernel function. For a problem with N distinct classes, the one-vs-all (OVA) method

3

creates N SVMs, and places the unknown value in whatever class has the largest decision function
value.

For our model, we used the one-vs-one (OVO) method, which creates N(N− 1)/2 SVMs for
classification. For a set of p training data, (x1,y1), . . . ,(xp,yp) where xl ∈ Rn, l = 1, . . . , p and
yl ∈ {1, . . . ,N} is the class label for xl , then the SVM trained on the ith and jth classes solves

min
wi j,bi j,ξ i j

1
2
(wi j)T wi j +C∑

`

ξ
i j
`

where (wi j)T
φ(x`)+bi j ≥ 1−ξ

i j
` if y` = i,

or (wi j)T
φ(x`)+bi j ≤−1+ξ

i j
` if y` = j,

ξ
i j
` ≥ 0.

where φ(x) = eγ||xi−x j|| is the radial basis function used to map the training data xi, j to a higher
dimensional space and C is the penalty parameter. After all comparisons have been done, the
unknown value is classified according to whichever class has the most votes from the assembled
SVMs.

Figure 2 shows a basic representation of the differences between the OVA and OVO methods.
The middle triangle formed by the OVA method leaves a gap where the classification algorithm
can fail to place an unknown value, but since the OVO method does not have any blind spots, we
used it for our classification. We used a modified grid search (Finkel, 2003) to optimize for both
parameters C and γ , using the five-fold cross-validation accuracy of the training set to find the
optimal parameters.

2.5 Classification Trees
In order to compare our results to (Woodward, 2014), we also implemented classification trees,
using random forests. We used the MATLABCART (Classification And Regression Trees) imple-
mentation that creates aggregate random forests of trees, known as TreeBagger.

Classification Trees are a specific type of binary decision tree that give a categorical classifica-
tion as an output. The input set is used in the nodes of the tree, determining which feature to split
at each node and what criterion to base that decision on. To determine node impurity, MATLAB
classification trees use the Gini diversity index (gdi), given by I = 1−∑

N
i=1 p2(i), where N is the

number of classes and p(i) is the fraction of each class i that reaches the node. The gdi is a measure
of the expected error rate at the node if the class is randomly selected according to the distribution
of the classes at that node.

For each node, the tree first computes the impurity at the node, then sorts the observation to
determine what features can be used as splitting criteria or cut points. For all splitting points,
the tree seeks to maximize the decrease in impurity, ∆I, by splitting the observations at the node
into two child nodes, then measuring ∆I for each node with different cut points. Once a feature
is chosen as the best splitting candidate, then the feature is split using the best cut point, and the

4

process is repeated until the total impurity is minimized and the end leaf nodes are found. To
combat overfitting, however, classification trees are pruned by merging leaves that have the most
common class per leaf (MathWorks, 2016a).

3 Results

3.1 Overall Prediction Accuracy
To establish a value for comparison, we found the best ”naive” guess accuracy, similar to that used
in Ganeshapillai and Guttag (2012). We define this naive best guess to be the percent of time each
pitcher throws his preferred pitch from the training set in the testing set. Consider some pitcher
who throws pitch types 1, 2, 4, and 5 with distribution P = {p1, p2, p4, p5} where ∑ pi = 1, and his
preferred training set pitch is max(Ptrain) = p2, then the naive guess for the pitcher is Ptest(p2). For
example, since Jake Arrieta threw his sinker the most in the training set (26.31%), we would take
the naive guess as the percentage of the time he threw a sinker in the testing set, which gives a naive
guess of 34.03%. For the random forest method, we predicted 48.33% of his pitches correctly, so
we beat the naive guess by 14.30% in his case. For all 287 pitchers, the naive guess was 54.38%.

Table 2 shows a breakdown of each type of pitch predicted for Odrisamer Despaigne by the
random forest method, as well as the accuracy for each specific pitch, showing that for each pitch
type, the accuracy of the model prediction improves the naive guess. We take this style of compar-
ison from (Woodward, 2014), who gives an outline of a decision tree based prediction model, but
does not go into detail or use more than a handful of examples, so we cannot fully compare to his
results.

Table 3 shows the prediction results from each individual method. On average accuracy alone,
Classification Trees had the best prediction accuracy of 66.62%. The number of pitchers we pre-
dicted better than naive is given, as well as the percentage of the 287 total pitchers that number
represents. The average prediction accuracy is shown, given along with the overall average im-
provement over the naive guess, denoted P̄I , the average improvement for those pitchers who did
beat the naive guess, denoted as P̄B, and the average amount the pitchers who did not beat the naive
guess failed by, denoted by P̄W . Given the number of pitchers N with respective prediction value
Pi and naive guess Gi, the number who did better than the naive guess, NB, the number who did

5

worse than the naive guess NW , we find

P̄I =

N
∑
i

Pi−Gi

N

P̄B =

NB
∑
i

Pi−Gi

NB

P̄W =

NW

∑
i

Pi−Gi

NW
.

We also give the average range of accuracy between the most and least accurate members of each
committee as well as the average time for each pitcher’s model to be trained and tested. As shown
in Table 3, the random forests of classification trees outperformed both LDA and SVM by a wide
margin. Basing the judgement solely on how many pitchers were predicted better, the random
forests were near-perfect, leading the average prediction accuracy and improvement to also be
higher. LDA outperforms the random forests only when we examine the average improvement
for those pitchers who we are able to beat the naive guess for, but conversely also has much worse
performance for the pitchers we do not beat the naive guess for. At this stage, we undertook further
comparative analysis to determine if the random forests were the best method overall.

3.2 Prediction by Count
A common analysis in any pitch prediction is breaking down prediction success rate by each pitch
count. There are twelve possible counts for any at-bat, three where the batter and pitcher are even,
three where the pitcher is ahead in the count (more strikes than balls), and six where the batter is
ahead (more balls than strikes). Similar to other works, On the very batter-favored count of 3-0, we
were able to predict 104 pitchers (36.24% of 287 pitchers) totally correct, i.e. for every pitch they
threw on a 3-0 count, we predicted them all exactly. The total counts and average success rates for
the random forest classification tree method are given in Table 4. Pitcher ahead counts are bolded,
batter-favored counts are italicized.

The high success rate on counts in which the batter is ahead is not surprising, given that a
pitcher is more likely to throw a controllable pitch in order to even the count or to avoid a walk.
Batter-behind counts give the pitcher much more freedom, which explains the lower average pre-
dictability.

3.3 Comparison with Standard Statistics
In an effort to determine if the prediction success correlated with any standard measure of pitcher
success, we looked at the ten pitchers whose prediction improved over the naive guess the most,
and those ten who improved the least (or were worse than the naive guess). We compared the

6

improvement over the naive guess to the pitchers’ wins-above-replacement (WAR) and fielding-
independent-pitching (FIP) statistics. FIP is an extension of a pitchers’ earned run average (ERA)
that examines only outcomes over which the pitcher had control. The comparisons are shown
below in Table 5.

We looked at those pitchers who improved over the naive guess the most rather than just the
pitchers with the highest overall prediction accuracy because some pitchers highly favor one type
of pitch, sometimes throwing it upwards of 90% of the time, and so even with only a small im-
provement they would be one of the highest predicted pitchers.

After examining the standard metrics next to the prediction improvement, we found a small
correlation between the ability of the classification trees to improve on the naive guess and the
overall pitcher performance. On average, the pitchers who were hardest to beat the guess had a
WAR almost 0.5 higher than those who were most improved on and around 0.2 less FIP. While
not a huge difference in performance metrics, these results suggest that the harder it is to predict a
pitcher, the better he is in a game. We also examined the number of pitch types a pitcher throws,
and we find that on average, those pitchers harder to improve prediction wise, who had higher
average WAR, throw fewer unique pitch types. This may suggest that these pitchers have high
prediction levels already due to an over-reliance on a single pitch and a lack of diversity, leading
to a high naive guess.

4 Variable Importance
Post-processing techniques can be used to determine what features are the most important in a
model, so we used the models created for the results previously discussed to find measures of vari-
able importance with the permuted variable delta error (PVDE) for the random forests of classifi-
cation trees. The PVDE is found during the construction of each random forest for each variable by
first finding the expected error (EOi) against a hold-out validation set, similar to the cross-validation
used for the parameter optimization. The values for a particular variable xi are then randomly per-
muted across every observation in the subset of the training data used for the tree construction, and
the expected error value (EPi) is found against the same holdout set.

Table 6 gives the ranks of the permuted variable delta error for each input feature group (with
29 feature groups, total), respectively. The ranks were found by first averaging the values for
each pitcher, then sorting those averages by magnitude, and then averaging each rank across each
variable in the group. Once the group ranks were found, we sorted the averaged group ranks to find
the overall importance. The results of the analysis are mostly unsurprising, but again are helpful
to show that the model works the way we would expect it to. The pitch number can be a measure
of how tired a pitcher is, which would greatly affect his pitch choice. As shown by the results by
count, the number of balls and strikes can also affect the pitch selection, so the inputs being second
and third most important is unsurprising.

7

5 Live Pitch Prediction
At the start of this research, one of the reasons we examined different machine learning methods
of prediction was to determine what would work best in real time in a live game environment. The
previous experiments were all done in a ”bulk” setting, i.e. predicting all of the testing set all at
once. While this gives a way to measure the effectiveness of each method, the construction of the
testing datasets was not reflective of the way a dataset would be built during an actual baseball
season. Any live prediction training set could only be updated with after each game, and would
only show historical pitcher or batter tendencies up to the day before a game was played.

The data for the live predictions was parsed appropriately, creating pitcher preferences and
batter performance measures up until the day being predicted. We examined the games in the
regular season of September and October 2016, creating models for each pitcher for not only
predicting the type of pitch thrown, but also the speed of the pitch and the location of the pitch
(as determined by the zones detailed in Chapter 2). Models were created for every pitcher who
pitched in September and October, as long as he had pitched at some point after the All-Star break
(mid-July) and before September 1st. There was a large amount of data available to test on, and
the characteristics of the data are shown in Table 7.

While the overall prediction accuracy for all the pitches thrown was 59.07%, the average accu-
racy across each pitcher in each game was 60.69%

6 Conclusion and Future Work
Because (Bock, 2015) and (Woodward, 2014) are the only examples of multi-class pitch prediction
we have found, they are the standard for comparison. An example of pitch prediction using Markov
Chains was done by (Malter, 2016), but it is not a situational-based model. Our model takes data
that is available in the moments before the next pitch is thrown and gives the batter and manager
better knowledge of what is coming than he would have had beforehand. Our results are better
than any other purely predictive model of a multi-class pitch type thus far.

Moving forward, we plan to employ a feature selection method similar to one used in (Hoang,
2015) to find which inputs are the most important to the prediction, or even if reducing the size of
the feature vectors may improve the prediction, as we may work to avoid the curse of dimension-
ality. Due to the construction of the multi-class problem, implementing pre-processing techniques
such as F-score or ROC curve analysis may require the introduction of classification using a Di-
rected Acyclic Graph. Using these pre-processing techniques along with the information learned
from the variable importance may help improve the live pitch predictors as well.

References
Ben Aisen. A Comparison of Multi-Class SVM Methods, 2006. URL http://courses.media.

mit.edu/2006fall/mas622j/Projects/aisen-project/.

8

http://courses.media.mit.edu/2006fall/mas622j/Projects/aisen-project/
http://courses.media.mit.edu/2006fall/mas622j/Projects/aisen-project/

Joel R. Bock. Pitch Sequence Complexity and Long-Term Pitcher Performance. Sports, pages
40–55, March 2015.

Mike Fast. The Internet cried a little when you wrote that on it. The Hardball Times, 2010.

Daniel Finkel. DIRECT Optimization Algorithm User Guide. Center for Research in Scientific
Computation, NCSU, 2003.

R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 2:
179–188, 1936.

Gartheeban Ganeshapillai and John Guttag. Predicting the Next Pitch. Proceedings of the MIT
Sloan Sports Analytics Conference, 2012.

Phuong Hoang. Supervised Learning in Baseball Pitch Prediction and Hepatitis C Diagnosis. NC
State University, Ph.D. Thesis, 2015.

Danny Malter. Using Markov Chains to Predict Pitches, 2016. URL http://danmalter.

github.io/r/2016/03/28/Markov-chains.html.

MathWorks. fitctree.m documentation, 2016a. URL http://www.mathworks.com/help/

stats/fitctree.html.

MathWorks. Discriminant Analysis, 2016b. URL http://www.mathworks.com/help/stats/

discriminant-analysis.html.

Noah Woodward. A Decision Tree Approach to Pitch Prediction. The Hardball Times, 2014.

9

http://danmalter.github.io/r/2016/03/28/Markov-chains.html
http://danmalter.github.io/r/2016/03/28/Markov-chains.html
http://www.mathworks.com/help/stats/fitctree.html
http://www.mathworks.com/help/stats/fitctree.html
http://www.mathworks.com/help/stats/discriminant-analysis.html
http://www.mathworks.com/help/stats/discriminant-analysis.html

Table 1: Feature groups for each pitch. Tendency refers to the percentage of each pitch type.
Number Feature Group Type of Variable

1 Inning Categorical
2 Top or Bottom Binary
3 Outs Categorical
4 Order Position Categorical
5 Total At-Bat Categorical
6 Score Spread Categorical
7 Time of Day Categorical
8 Batter Handedness Binary
9 Strikes Categorical

10 Balls Categorical
11 On Base Binary
12 Base Score Categorical
13 Previous At-Bat Result Categorical
14 Previous Pitch Result Categorical
15 Previous Pitch Type Categorical
16 Previous Pitch Location Categorical
17 Pitch Number Categorical
18 Previous Pitch Speed,

Break Angle, Break
Length, Break Height

Continuous

19 Previous 5 Pitch Tendency Continuous
20 Previous 10 Pitch Tendency Continuous
21 Previous 20 Pitch Tendency Continuous
22 Previous 5 Pitch Strike

Tendency
Continuous

23 Previous 10 Pitch Strike
Tendency

Continuous

24 Previous 20 Pitch Strike
Tendency

Continuous

25 Pitcher Historical Tendency Continuous
26 Pitcher Tendency vs. Batter Continuous
27 Batter Strike Tendency Continuous
28 Batter In-Play Tendency Continuous
29 Batter Ball Tendency Continuous

10

Table 2: 100 CT pitch-specific model predictions for Odrisamer Despaigne, overall accuracy
53.30%.

Predicted Pitch Type
FF CT SI SL CU CH KN % Thrown % of Each Correct

A
ct

ua
lT

yp
e

FF 330 5 77 2 17 2 0 28.60 76.21
CT 55 42 19 2 1 8 3 8.59 32.31
SI 108 5 312 2 19 10 0 30.12 68.42
SL 31 2 23 10 2 6 2 5.02 13.16
CU 36 2 43 3 54 3 1 9.38 38.03
CH 72 1 34 0 2 33 2 9.51 22.92
KN 63 3 30 3 5 3 26 8.78 19.55

11

Table 3: Average values to compare support vector machines (SVM), random forests of 100 clas-
sification trees (100 CT), and linear discriminant analysis (LDA).

Value LDA SVM 100 CT
of Predictions > Naive 263 251 282
% of Predictions > Naive 91.64 87.46 98.26
Prediction Accuracy (%) 65.08 64.49 66.62

P̄I (%) 10.70 10.11 12.24
P̄B (%) 13.26 12.38 12.52
P̄W (%) -9.08 -5.40 -1.15

Range of Committee (%) 1.52 3.02 2.22
Time (s) 22.75 2,383.8 72.05

12

Table 4: Average Prediction accuracy for each pitch count for the Classification Tree method.
Pitcher favored counts are shown in bold, batter-favored counts in italics.

Count (B-S) 100 CT
0-0 71.48
0-1 64.77
0-2 62.27
1-0 70.01
1-1 61.15
1-2 58.94
2-0 74.78
2-1 67.43
2-2 59.84
3-0 83.00
3-1 75.62
3-2 67.53

13

Table 5: Random Forest Classification Tree Prediction Improvement Compared to Number of Pitch
Types Thrown (PTT), FIP, and WAR.

Most Improved Least Improved
Pitcher PTT % Imp. FIP WAR Pitcher PTT % Imp. FIP WAR
J. Johnson 4 79.45 3.73 0.56 M. Estrada 4 -1.74 4.40 3.60
T. McFarland 4 72.84 4.47 -0.30 J. Lyles 5 -1.37 3.79 0.30
L. Avilan 5 70.24 3.66 0.29 J. Hughes 3 -1.30 3.81 1.20
J. Hahn 5 67.84 3.51 1.00 J. Odorizzi 4 -1.26 3.61 3.60
H. Santiago 5 63.40 4.77 1.80 U. Jimenez 4 -0.09 4.01 2.60
J. Garcia 5 63.04 3.00 3.90 K. Uehara 2 0.00 2.44 1.30
J. Kelly 5 61.95 4.18 1.00 L. Lynn 5 0.43 3.44 3.50
K. Gibson 5 59.88 3.96 3.20 K. Gausman 5 0.50 4.10 1.30
T. Roark 5 58.06 4.70 0.70 J. McGee 2 0.52 2.33 1.00
Z. Britton 2 57.86 2.01 2.50 B. Colon 5 0.62 3.84 1.00
Average 4.5 65.46 3.80 1.47 Average 3.9 -0.37 3.58 1.94

14

Table 6: Variable Importance for Permuted Variable Delta Error for all pitchers. 1 means highest
importance, 29 means lowest importance.

Feature Group PVDE
Inning 16

Top or Bottom 29
Outs 27

Order Position 18
Total At-Bat 6
Score Spread 21
Time of Day 25

Batter Handedness 7
Strikes 2
Balls 3

On Base 28
Base Score 19

Previous At-Bat Result 24
Previous Pitch Result 10
Previous Pitch Type 4

Previous Pitch Location 8
Pitch Number 1

Previous Pitch Stats 5
Previous 5 Pitch Tendency 13
Previous 10 Pitch Tendency 17
Previous 20 Pitch Tendency 14

Previous 5 Pitch Strikes 11
Previous 10 Pitch Strikes 15
Previous 20 Pitch Strikes 20

Pitcher Historical Tendency 26
Pitcher Tendency vs. Batter 23

Batter Strike Tendency 22
Batter In-Play Tendency 12

Batter Ball Tendency 9

15

Table 7: Python live pitch predictions for September 1st through October 2nd, 2016, with overall
accuracy 59.07%.

Predicted Pitch Type
FF CT SI SL CU CH KN % Thrown % of Each Correct

A
ct

ua
lT

yp
e

FF 52774 329 871 2124 1300 681 22 52.13 90.83
CT 2688 1353 203 24 190 127 3 4.12 29.49
SI 693 171 5381 417 211 101 0 6.26 77.16
SL 12243 59 1475 3110 90 98 0 15.32 18.21
CU 9775 340 650 183 2092 232 0 11.91 15.76
CH 8539 165 982 318 307 911 0 10.07 8.12
KN 9 0 0 0 0 0 183 0.17 95.31

16

2006 2008 2010 2012 2014

3.8

4

4.2

4.4

4.6

Year

E
R

A

ERA

0.25

0.26

0.26

0.27

0.27

0.28

B
at

tin
g

A
ve

ra
ge

BA

Figure 1: League-wide Batting Average and ERA over the past decade.

17

Figure 2: A visual representation of the one-vs-all method (thin lines) compared to the one-vs-one
method (thick line) from (Aisen, 2006).

18

	JSATitlePage
	JSATake2
	Introduction
	Literature Review

	Methods
	Data
	Model Development
	Linear Discriminant Analysis
	Multi-class Support Vector Machines
	Classification Trees

	Results
	Overall Prediction Accuracy
	Prediction by Count
	Comparison with Standard Statistics

	Variable Importance
	Live Pitch Prediction
	Conclusion and Future Work

