
ABSTRACT

ELLIS, JOHN AUSTIN. Performant Hybrid and Parallel Domain Decomposed Monte Carlo Methods
for Radiation Transport. (Under the direction of C.T. Kelley).

This document further develops performant algorithms for massively parallel, hybrid Monte Carlo

methods for radiation transport. New algorithms are implemented in the Shift Monte Carlo code de-

veloped at Oak Ridge National Laboratory. We provide the governing neutron transport equation and

long-standing solution techniques. First, we explore the convergence of two acceleration techniques

when the fixed point maps are corrupted with stochastic noise: Anderson Acceleration and Nonlinear

Diffusion Acceleration. Next, we consider the Monte Carlo algorithm for solving the transport equation.

It simulates a finite number of particle histories from known probability distribution functions inside

a given domain. It avoids discretization error associated with deterministic algorithms, but requires a

significant number of random samples. The Shift code is targeted at leadership class high performance

computing platforms, like the Titan and Summit supercomputers at the Oak Ridge Leadership Comput-

ing Facility.

Domain decomposition is necessary when the problem’s memory footprint grows too large to fit on

a single high performance compute node. We diagnose a load imbalance problem that typically arises

with domain decomposed calculations and propose as solution a nonuniform allocation of processors

across subdomains. We optimize the allocation with runtime diagnostics collected during a calibration

step, then complete the full calculation. We demonstrate the effectiveness and robustness of nonuniform

processor allocation and its optimization on three 3D radiation transport applications, including a sim-

ulation of the Watts Bar Nuclear 1 initial start up reactor. We conclude with discussion on the future of

high performance computing within the Department of Energy, particularly continued emphasis on GPU

computing, through the highly-heterogenous Summit machine and the soon-to-come Frontier machine.

We also provide potential interesting optimization problems that may arise in a GPU implementation of

domain decomposed Monte Carlo algorithms.
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Chapter 1

Introduction

1.1 Motivation

Our research builds on the past successes in hybrid numerical techniques for solving the neutron trans-

port equation, while making efficient use of state-of-the-art computing platforms available to researchers.

The development of algorithmic techniques that maximize usage of new computational power will al-

low us to solve problems at scales that had no viable solutions ten years ago. The Department of Energy

(DOE) and Oak Ridge National Laboratory (ORNL) have funded research through the Consortium for

Advanced Simulation of Light-Water Reactors (CASL) and the Exascale Computing Project (ECP) to

improve capabilities and performance of the massively parallel Shift Monte Carlo radiation transport

code developed at ORNL. The Shift code is used for solving problems in a variety of nuclear appli-

cations, including reactor physics, shielding, irradiation target design, and threat detection [46]. The

Shift development team is investigating algorithmic performance improvements on the leadership class

platforms including advanced variance reduction techniques, efficient GPU implementations, and load

balancing domain decomposed Monte Carlo calculations. The focus of this thesis is on our load balanc-

ing successes for domain decomposition that have led to robust increases in parallel efficiency with little

additional overhead required.

In terms of tangible world impact, high-fidelity solutions in reactor simulations serve as bench-

marks for industry partners. Due to the nature of the nuclear reactors, access to experimental data may

be severely limited. This makes simulation one of the only viable options for test verification. Daily

calculations are made in industry using more approximate methods and smaller computer clusters. It is

CASL’s mission to build a new reactor core simulator, The Virtual Environment for Reactor Applica-

tions (VERA), that is sensitive to industry computer resource and time constraints. In numerical analy-

sis, comparing results to the known “true” solution is a basic principle. If the benchmark solutions are

low-grade, then matching those solutions provides no useful information and, in worse circumstances,

information that may be inadequate or even harmful. Higher fidelity benchmarks may be attainable if the
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full potential of the DOE’s leadership class supercomputers and future computing platforms are realized

on high precision reactor simulations.

1.2 Neutron Transport Equation

A perennial goal of numerical nuclear physics is the solution to the linear integro-differential transport

equation presented in [4, 13, 37]

1
3(E)

∂ψ

∂t
+ Ω̂ · ~∇ψ(~r, Ω̂, E, t) + Σt(~r, E) ψ(~r, Ω̂, E, t) =∫ ∞

0
dE′

∫
4π

dΩ̂′ Σs(~r, Ω̂′ → Ω̂, E′ → E) ψ(~r, Ω̂′, E′, t) +

χ(~r, E, t)
4π

∫ ∞

0
dE′

∫
4π

dΩ̂′ ν(~r, E′, t) Σ f (~r, E′, t) ψ(~r, Ω̂′, E′, t) + Q(~r, Ω̂, E, t), (1.1)

where the quantity of interest is the angular neutron flux ψwhich depends on a phase space of the spatial

vector as ~r within a defined domain volume V ∈ R3, the unit direction vector of particle movement

Ω̂ ∈ R3, particle energy E ∈ [0,∞), and time t ∈ [0,∞). The velocity of a particle is represented by a

direction and an energy. We aim to solve (2.43) for ψ. If we define d` = 3(E)dt as the differential unit of

track length, then

Definition 1.2.1. ψ(~r, Ω̂, E, t) d3~r dΩ̂ dE is the amount of neutron track length with velocity 3(E) in a

differential volume d3~r about ~r, traveling in dΩ̂ about Ω̂, having energies in dE around E, and at time

t. ψ has units neutrons per cm2 per seconds per steradians per MeV.

The linear transport equation is a simplified form of the nonlinear Boltzmann equation for gas dy-

namics [37]. The collision kernel in the transport equation is linear, whereas for the Boltzmann equation

it is nonlinear. In the nonlinear form, particles of interest may interact with themselves resulting in a

quadratic term. In the linear form, particles of interest interact only with medium nuclei. We discuss

further model assumptions in Chapter 2.

Each element in the model equation governs a different physical phenomenon for a neutron. Respec-

tive to (2.43), they are temporal change, particle streaming, total collision, scattering production, fission

production, and external source. Cross sections are the coefficients that depend on a phase space of

location, angle, energy, and time with each term. They are predetermined material dependent constants

that appropriately weight the probability of events occurring in the model equation.

The mean free path (mfp) is the average distance a particle travels between interactions. The m f p =

1/Σt(~r, E), where the total cross section Σt(~r, E) describes the probability of a neutron undergoing any

type of “collision” at the location ~r with neutron energy E. The scattering cross section Σs(~r, Ω̂′ →

Ω̂, E′ → E) describes the probability of a neutron undergoing a state-change from an initial energy state

E′ to the final state E, noted by E′ → E and from initial angle to final angle, Ω̂′ → Ω̂.

2



There are three types of energy state-change.

Definition 1.2.2. Up-scattering occurs when a neutron initial energy E transitions to a higher final

energy state E′.

Definition 1.2.3. Down-scattering occurs when a neutron initial energy E transitions to a lower final

energy state E′.

Definition 1.2.4. In-scattering occurs when a neutron initial energy E remains in the same energy

state, or E = E′.

The fission cross section Σ f describes the probability of a neutron spawning additional neutrons

during a portion of absorption processes in fissile material. The absorption cross section Σa describes the

probability of a neutron leaving the system by undergoing absorption from a nuclide during a collision.

Absorption of neutrons by a nuclei is implicitly described in the model equation as Σa = Σt − Σs.

The probabilistic energy spectrum occurring from fission χ and ν is the average number of neutrons

birthed per fission. The function Q is a known external source depending on the same phase space as

the angular flux ψ. When integrating ψ over angle Ω̂, we use dimensionless unit steradians. First, the

components of Ω̂ = {Ωx,Ωy,Ωz} are

Ωx = sin θ cosϕ; Ωy = sin θ sinϕ; Ωz = cos θ (1.2)

where θ is the polar angle and ϕ is the azimuthal angle. This two dimensional angle in R3 space is a

solid angle and its integration is ∫
4π
· dΩ̂ ≡

∫ 2π

0

∫ π

0
· sin(θ) dθdϕ. (1.3)

From solid angle integration, we find the scalar flux, φ.

Definition 1.2.5. φ is the scalar flux. The scalar flux is the angle independent quantity that describes the

total amount of neutron track length moving with velocity 3(E) in volume d3~r about ~r, having energies

in dE around E, and at time t.

The scalar flux is

φ(~r, E, t) =

∫
4π
ψ(~r, Ω̂, E, t) dΩ̂. (1.4)

The partial differential equation has one spatial and one temporal derivative, so it requires a boundary

condition and an initial condition. We define ψ on the boundary ∂A as

ψ(~rb, Ω̂, E, t) = ψb(~rb, Ω̂, E, t), ~rb ∈ ∂A; Ω̂ · ên < 0 (1.5)

3



where ên is the outward unit normal of the domain surface. We assume all boundaries are non-reentrant,

or that no particles return to the domain once exiting.

The initial condition is

ψ(~r, Ω̂, E, 0) = ψ0(~r, Ω̂, E). (1.6)

We define the loss and production operators as

Lψ = Ω̂ · ~∇ψ(~r, Ω̂, E, t) + Σt(~r, E)ψ(~r, Ω̂, E, t) (1.7)

and

Pψ =

∫ ∞

0
dE′

∫
4π

dΩ̂′ Σs(~r, Ω̂′ → Ω̂, E′ → E)ψ(~r, Ω̂′, E′, t) +

χ(~r, E, t)
4π

∫ ∞

0
dE′

∫
4π

dΩ̂′ ν(~r, E′, t)Σ f (~r, E′, t′)ψ(~r, Ω̂′, E′, t). (1.8)

We take

ψ = ψ(~r, Ω̂, E, t)

and

Q = Q(~r, Ω̂, E, t),

to obtain the transport equation in compact form

1
v
∂ψ

∂t
+Lψ = Pψ + Q. (1.9)

4



Chapter 2

The Neutron Transport Equation Model

2.1 Model Assumptions

The linear Boltzmann transport equation is used to model the statistical behavior of various particles

being transported through a medium. It is important to understand its derivation and the grounding

assumptions before we continue. The Boltzmann equation is only a model of reality and with each model

comes certain conditional assumptions. We discuss these long-standing and well-defined assumptions

all in the context of neutron transport [4, 12, 13], but other particles may also be applicable.

Assumption 2.1.1. Particle represented as point particle:
The type of particles transported must be considered point particles, and so must be fully described by

position ~r and velocity ~v.

Assumption 2.1.2. Size of particle small relative to size of system:
The physical width of the particle must be far less than the domain width.

For example, the width of a neutron o ≈ 4.55 · 10−9cm, while a standard Westinghouse 17x17 fuel

assembly is approximately 21.4 cm [5].

Assumption 2.1.3. Size of particle small relative to distance between collisions:
The physical width of the particle must be far less than the distance between successive collisions, the

mean free path. It is 1/Σt(~r, E), a positive length that is dependent on domain media and particle energy.

For example, the mean free path of a neutron with energy 106eV in a uniform water medium is

approximately 2.42cm, which again is far larger than than neutron width o. We calculated these values

using the Nemesis package inside the Scale code developed by Oak Ridge National Lab [1].

Assumption 2.1.4. Particles only collide with nuclides of medium:
Particle-particle collisions are assumed to be negligible because of similar size and low-probability

arguments.
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We assume no nuclide-nuclide interactions occur. This assumption allows us to reduce the nonlinear

Boltzmann equation to the linear transport equation.

Assumption 2.1.5. System must contain a large quantity of particles:
The system must have enough particles so that deviations from the expected distribution are small and

may be ignored.

Assumption 2.1.6. Medium in equilibrium state:
Particles do not influence the distribution of the moderating material.

If the model satisfies the assumptions, the model transport equation accurately reflects real world

phenomena within a small level of uncertainty. In the case of the neutron transport equation, the neces-

sary model assumptions are satisfied and make no further appearances in our future analyses.

2.2 Derivation of the Transport Equation

2.2.1 Conservation of Mass

The derivation of the transport equation [12] takes an arbitrary volume V and balances the loss L and

production P of neutrons within V . Analogous to ψ, the neutron distribution function is n(~r, Ω̂, E, t). The

two are related by the equation ψ(~r, Ω̂, E, t) = 3(E)n(~r, Ω̂, E, t).

The number of neutrons at a specific time t in the arbitrary volume within the energy interval dE

and the angle dΩ̂ is (∫
V

n(~r, Ω̂, E, t)d3~r
)

dΩ̂ dE, (2.1)

which is an scalar quantity, because dΩ̂ and dE are both differentials and n(~r, Ω̂, E, t) is a density de-

pending on angle and energy. The change rate in the number of neutrons in the volume V and phase

space differentials dΩ̂, dE is

∂

∂t

(∫
V

n(~r, Ω̂, E, t)d3~r
)

dΩ̂ dE = Neutron Production in V − Neutron Loss in V . (2.2)

We assume the volume has fixed boundaries and does not depend on time. We have the equality

∂

∂t

(∫
V

n(~r, Ω̂, E, t)d3~r
)

dΩ̂ dE =

(∫
V

∂n
∂t

(~r, Ω̂, E, t)d3~r
)

dΩ̂ dE. (2.3)

We must quantify Neutron Production and Neutron Loss in the righthand side of (2.2). The possible

additions and subtractions of neutrons in volume V include:
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Neutron Production Rate in Volume V:

1. Neutron sources within the volume V from an external source Q.

2. Neutrons streaming into volume V through the surface S within angle dΩ̂ and within energy dE.

3. Neutrons scattering in volume V from incident angle Ω̂′ and original energy E′ to values of

interest Ω̂ and E. We write as (Ω̂′ → Ω̂, E′ → E).

4. Neutron sources within the volume V due to fission.

Neutron Loss Rate in Volume V:

5. Neutrons streaming out of the volume V through the surface S with angle dΩ̂ and energy dE.

6. Neutrons undergoing collision in volume V. This term covers both absorption collision and scat-

tering collisions from (Ω̂→ Ω̂′, E → E′) which are both considered losses.

We provide expressions for each case that form the model equation.

1. Neutron source rates within the volume V:
The general source term is Q(~r, Ω̂, E, t) d3~r dΩ̂ dE.The source contribution in V is(∫

V
Q(~r, Ω̂, E, t) d3~r

)
dΩ̂ dE. (2.4)

2&5. Neutrons streaming into and out of volume V:
The leakage is the amount of neutrons streaming into or out of the system. We define the angular

current density as

J(~r, Ω̂, E, t) = 3(E) Ω̂ n(~r, Ω̂, E, t) · dS . (2.5)

The angular current density describes the rate of neutrons that leak out of the surface differential

dS in angle dΩ̂ and energy dE. We integrate over the entire surface to obtain∫
S

dS · 3(E) Ω̂ n(~r, Ω̂, E, t), (2.6)

which is equivalent to ∫
V

d3~r ∇ ·
(
3(E) Ω̂ n(~r, Ω̂, E, t)

)
(2.7)

from the divergence theorem. Consider 3(E) and Ω̂ to be independent of location ~r; therefore,

∇ · 3(E) Ω̂ = 3(E) Ω̂ · ∇. (2.8)
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Thus, we obtain the final streaming volume integral(∫
S

dS · 3(E) Ω̂ n(~r, Ω̂, E, t)
)

dΩ̂ dE =

(∫
V

d3~r 3(E) Ω̂ · ∇n(~r, Ω̂, E, t)
)

dΩ̂ dE. (2.9)

3. Neutrons scattering in volume V from (Ω̂′ → Ω̂, E′ → E):
Remember, the coefficient describing scattering Σs depends on the four parameters (Ω̂′, ,̂E′, E) to

determine the appropriate double-differential scattering cross section. The contribution from one

incident angle and original energy is(∫
V

d3~r 3(E′) Σs(Ω̂′ → Ω̂, E′ → E) n(~r, Ω̂, E, t)
)

dΩ̂ dE. (2.10)

Contributions can come from any (Ω̂′, E′), so integrating over all angles and energies then the

total contribution is(∫
V

d3~r
∫ ∞

0
dE′

∫
4π

dΩ̂′3(E′) Σs(Ω̂′ → Ω̂, E′ → E) n(~r, Ω̂, E, t) d3~r
)

dΩ̂ dE. (2.11)

4. Neutron source in volume V due to fission:
The number of neutrons produced by fission is the reaction rate of one neutron scaled by the total

neutron count. The reaction rate for one neutron is 3(E)Σ f (~r, E, t). The fission cross section Σ f

describes the number of interactions per unit of path length. Also recall, we defined the average

number of neutrons produced by fission as ν(~r, E, t).Then, the neutron total produced in angle dΩ̂

and energy dE is

3(E) ν(~r, E, t) Σ f (~r, E, t) n(~r, Ω̂, E, t) d3~r dΩ̂ dE. (2.12)

Integrate this quantity over angle, energy, and volume V to obtain(∫
V

d3~r
∫

4π
dΩ̂′

∫ ∞

0
dE′ 3(E′) ν(~r, E′, t) Σ f (~r, E′, t) n(~r, Ω̂, E, t)

)
dΩ̂ dE. (2.13)

(2.13) does not take into account the direction or energy of neutrons that are produced from

fission. We scale fission production by the distribution χ(Ω̂, E) to obtain(∫
V

d3~r
∫

4π
dΩ̂′

∫ ∞

0
dE′ χ(Ω̂, E) 3(E′) ν(~r, E′, t) Σ f (~r, E′, t) n(~r, Ω̂, E, t)

)
dΩ̂ dE. (2.14)

Collisions that give no preference to any one direction Ω̂ are isotropically distributed. We integrate

χ(Ω̂, E) with respect to angle and obtain the coefficient 1/4π, a normalizing constant from the solid

angle integral for isotropic χ. In contrast, the energies of produced neutrons are not uniformly

distributed. Therefore, the created neutrons are weighted by χ(E). The total contribution from
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fission is(∫
V

d3~r
χ(E)
4π

∫
4π

dΩ̂′
∫ ∞

0
dE′ 3(E′) ν(~r, E′, t) Σ f (~r, E′, t) n(~r, Ω̂, E, t)

)
dΩ̂ dE. (2.15)

6. Neutrons undergoing collision in volume V:
The total rate of collisions at location ~r is

ft(~r, Ω̂, E, t) = 3(E) Σt(~r, E) n(~r, Ω̂, E, t). (2.16)

Integrate over volume and multiply by the differentials to find the loss term,(∫
V
3(E) Σt(~r, E) n(~r, Ω̂, E, t) d3~r

)
dΩ̂ dE. (2.17)

We have defined all production and loss terms. The resulting neutron balance is

∫
V

d3~r
[
∂n
∂t

+ 3(E) Ω̂ · ∇n + 3(E) Σt n(~r, Ω̂, E, t) −∫ ∞

0
dE′

∫
4π

dΩ̂′3(E′) Σs(Ω̂′ → Ω̂, E′ → E) n(~r, Ω̂′, E′, t) −

χ(~r, E, t)
4π

∫ ∞

0
dE′

∫
4π

dΩ̂′ 3(E′) ν(~r, E′, t) Σ f (~r, E′, t′) n(~r, Ω̂′, E′, t) + Q(~r, Ω̂, E, t)
]

dE dΩ̂ = 0.

(2.18)

V was chosen arbitrarily. An integral equivalent to zero for any V implies that the integrand is

equivalently zero. Concluding, we obtain the final equation

∂n
∂t

+ 3(E) Ω̂ · ∇n + 3(E) Σt n(~r, Ω̂, E, t) =∫ ∞

0
dE′

∫
4π

dΩ̂′3(E′) Σs(Ω̂′ → Ω̂, E′ → E) n(~r, Ω̂′, E′, t) +

χ(~r, E, t)
4π

∫ ∞

0
dE′

∫
4π

dΩ̂′ 3(E′) ν(~r, E′, t) Σ f (~r, E′, t′) n(~r, Ω̂′, E′, t) + Q(~r, Ω̂, E, t) (2.19)

where ψ(~r, Ω̂, E, t) = 3(E) n(~r, Ω̂, E, t) to obtain (2.43), the 3-D neutron transport equation.

2.2.2 Boundary and Initial Conditions

We introduce three different boundary conditions and an initial condition that appear in regular applica-

tions [37].
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1. Vacuum Boundary:
Vacuum boundaries do not allow neutrons to enter the system from the boundaries. Neutrons once

outside the system do no return. This description is only for incoming directions Ω̂, so in a one

dimensional problem, we have two half-conditions on the left and right boundary. We write angles

for incoming directions in terms of the outward normal n̂ as n̂ · Ω̂ < 0. The vacuum boundary

condition is

ψ(~rb, Ω̂, E, t) = 0 (2.20)

with n̂ · Ω̂ < 0.

2. Reflective Boundary:
Reflective boundaries do not allow neutrons to leave the system and instead neutrons are reflected

when hitting a boundary. New particle direction is dependent on the incidental angle. If the new

direction is Ω̂′, then we write

n̂ · Ω̂ = −n̂ · Ω̂′; (Ω̂ × Ω̂′) · n̂ = 0 (2.21)

with half-angles n̂ · Ω̂ < 0. The reflective boundary condition is

ψ(~rb, Ω̂, E, t) = ψ(~rb, Ω̂
′, E, t). (2.22)

Reflective boundary conditions are common in shielding applications.

3. Fixed Source Boundary:
Fixed source boundary conditions explicitly set the angular flux at the boundary by a known

function over the phase space. The boundary position and incoming angles of the source function

are fixed, but the function may vary over energy. The fixed source boundary condition is

ψ(~rb, Ω̂, E, t) = ψ̄(~rb, Ω̂, E, t) (2.23)

with n̂ · Ω̂ < 0.

4. Initial Condition:
The initial condition is the initial configuration of neutrons over space, angle, and energy at time

t = 0. The initial condition is written as

ψ(~r, Ω̂, E, t)
∣∣∣
t=0 = ψ̃(~r, Ω̂, E). (2.24)

We have fully defined and derived the transport equation, its boundary conditions, and its initial con-

ditions. The next step is to discretize the transport equation. The discretized space allows for numerical
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computations when continuous solutions are unavailable.

2.3 Angular and Energy Discretization of the Transport Equation

First, we develop discretizations for the angle and energy spaces. Applications we consider are steady

state problems; therefore, we need no time discretization. The spatial domain is discretized as needed

depending on the application or theory being presented. The time-independent problem is

Ω̂ · ~∇ψ(~r, Ω̂, E) + Σt(~r, E) ψ(~r, Ω̂, E) =∫ ∞

0
dE′

∫
4π

dΩ̂′ Σs(~r, Ω̂′ → Ω̂, E′ → E) ψ(~r, Ω̂′, E′) +

χ(~r, E)
4π

∫ ∞

0
dE′

∫
4π

dΩ̂′ ν(~r, E′) Σ f (~r, E′) ψ(~r, Ω̂′, E′) + Q(~r, Ω̂, E), (2.25)

with boundary conditions

ψ(~rb, Ω̂, E) = ψb(~rb, Ω̂, E), ~rb ∈ ∂A; Ω̂ · ên < 0. (2.26)

2.3.1 Angular Discretization

A basic angular discretization is the S N method, or discrete ordinates method [4, 12, 37]. The angular

discretization is a finite set Ω̂n = (ηn, ξn, µn)T , each of unit length. Functions of Ω̂ are defined only on

node locations:

f (Ω̂)→ f (Ω̂n) ≡ fn, n = 1, . . . ,N. (2.27)

We integrate over Ω̂ with quadrature weights wn for each of the angular nodes, as

∫
4π

f (Ω̂′) dΩ̂′ =

N∑
n=1

wn fn. (2.28)

Using (wn, Ω̂n), we can form the S N equations for the nth direction from (2.25) as

Ω̂n · ~∇ψn(~r, E) + Σt(~r, E) ψn(~r, E) =∫ ∞

0
dE′

N∑
n′=1

Σs,n′→n(~r, E′ → E) wn′ψn′(~r, E′) +

χ(~r, E)
4π

∫ ∞

0
dE′

N∑
n′=1

ν(~r, E′) Σ f (~r, E′) wn′ψn′(~r, E′) + Qn(~r, E), (2.29)

where ψn(~r, E) = ψ(~r,Ωn, E) and Σs,n′→n(~r, E′ → E) = Σs(~r,Ωn′ → Ωn, E′ → E).
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We still must develop the energy mesh to have a fully discretized problem.

2.3.2 Energy Discretization

Each particle has energy that lies on the interval [0,∞). One approach to energy discretization is called

the multigroup approximation. The multigroup approximation divides the interval into G continuous

non-uniform intervals [4, 12, 37]. We write the intervals as [EG, EG−1], [EG−1, EG−2], . . . , [Eg, Eg−1],

. . . , [E2, E1], [E1, E0], where the lower value of g indicates a higher energy value and EG = 0.

The first approximation is choosing a maximum energy value E0 < ∞ such that all flux contributions

from particles above that energy are reasonably ignored. Choosing an E0 is application dependent and

must be chosen deliberately. We divide [0, E0] so that neutrons live in distinct energy groups. A neutron

is in group g if the energy of that neutron lies between [Eg, Eg−1].

The energy grid provides new degrees of freedom where we solve the differential equation. The

solutions to the multigroup equations are group angular fluxes, ψg. The group angular flux is

ψg(~r, Ω̂) =

∫ Eg−1

Eg

ψ(~r, Ω̂, E) dE ≡
∫

g
ψ(~r, Ω̂, E) dE. (2.30)

In the neutron transport equation (2.43), we must define a full integral over [0,∞) with the new finite

energy grid. The intervals are all distinct so the total integral is equal to the summation of each distinct

element; thus, the integral is ∫ ∞

0
· dE′ =

G∑
g′=1

∫
g′
· dE′. (2.31)

Using the multigroup integral approximation to replace the full energy integrals in (2.25) and integrating

the whole equation over a single g, we obtain

Ω̂ · ~∇

∫
g

dE ψ(~r, Ω̂, E) +

∫
g

dE Σt(~r, E) ψ(~r, Ω̂, E) =

G∑
g′=1

∫
g

dE
∫

g′
dE′

∫
4π

dΩ̂′ Σs(~r, Ω̂′ → Ω̂, E′ → E) ψ(~r, Ω̂′, E′) +

∫
g

dE
χ(~r, E)

4π

G∑
g′=1

∫
g′

dE′
∫

4π
dΩ̂′ ν(~r, E′) Σ f (~r, E′) ψ(~r, Ω̂′, E′) +

∫
g

dE Q(~r, Ω̂, E). (2.32)

We assume that the angular flux is separable in energy to use ψg. We require

ψ(~r, Ω̂, E) = ψg(~r, Ω̂) f (E), E ∈ [Eg, Eg+1] (2.33)
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where f (E) is some distribution and ∫
g

dE f (E) = 1, (2.34)

which is true for all group intervals. Using (2.33), we arrive at

Ω̂ · ~∇

∫
g

dE f (E) ψg(~r, Ω̂) +

∫
g

dE f (E) Σt(~r, E) ψg(~r, Ω̂) =

G∑
g′=1

∫
g

dE
∫

g′
dE′

∫
4π

dΩ̂′ Σs(~r, Ω̂′ → Ω̂, E′ → E) f (E′) ψg(~r, Ω̂′) +

∫
g

dE
χ(~r, E)

4π

G∑
g′=1

∫
g′

dE′
∫

4π
dΩ̂′ ν(~r, E′) Σ f (~r, E′) f (E′) ψg(~r, Ω̂′) +

∫
g

dE Q(~r, Ω̂, E). (2.35)

The coefficients are still continuous in energy E and not in terms of the group structure we formulated.

So, the new multi-group cross sections, fission spectrum, and external source are

Σt,g(~r) =

∫
g

f (E) Σt(~r, E) dE, (2.36)

νg(~r)Σ f ,g(~r) =

∫
g

f (E′) ν(~r, E′) Σ f (~r, E′) dE′, (2.37)

Σs,g′→g(~r, Ω̂′ → Ω̂) =

∫
g′

∫
g

f (E′) Σs(~r, Ω̂′ → Ω̂, E′ → E) dE′ dE, (2.38)

χg(~r) =

∫
g
χ(~r, E) dE, (2.39)

Qg(~r, Ω̂) =

∫
g

Qg(~r, Ω̂, E) dE. (2.40)

Finally, the transport equation in multi-group form for a single group g is

Ω̂ · ~∇ψg(~r, Ω̂) + Σt,g(~r) ψg(~r, Ω̂) =

G∑
g′=1

∫
4π

dΩ̂′ Σs,g′→g(~r, Ω̂′ → Ω̂) ψg(~r, Ω̂′) +

χg(~r)
4π

G∑
g′=1

∫
4π

dΩ̂′ νg(~r) Σ f ,g(~r) ψg(~r, Ω̂′) + Qg(~r, Ω̂). (2.41)
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We combine the two discretizations, (2.29) and (2.41), to obtain

Ω̂n · ~∇ψn,g(~r) + Σt,g(~r) ψn,g(~r) =

G∑
g′=1

N∑
n′=1

Σs,n′→n,g′→g(~r) wn′ψn′,g′(~r) +

χg(~r)
4π

G∑
g′=1

N∑
n′=1

νg′(~r) Σ f ,g′(~r) wn′ψn′,g′(~r) + Qn,g(~r). (2.42)

We discuss how to solve the full system of multi-group equations with up and down-scattering from

Definition 1.2.2, 1.2.3 in Chapter 3.

2.4 The k-eigenvalue Problem

In nuclear reactor analysis, an important factor to determine is the criticality of the reactor. The criticality

is defined as the multiplicative rate at which neutrons are being produced through fission in the system.

The dominant eigenvalue of this system is keff.

1. Subcritical (keff < 1): The total number of neutrons in the system is decreasing either from leakage

or absorption.

2. Critical (keff = 1): The total number of neutrons in the system remains constant.

3. Supercritical (keff > 1): The total number of neutrons in the system is increasing either from

fission or fixed sources.

The k-eigenvalue problem is

Ω̂ · ~∇ψ(~r, Ω̂, E) + Σt(~r, E) ψ(~r, Ω̂, E) =∫ ∞

0
dE′

∫
4π

dΩ̂′ Σs(~r, Ω̂′ → Ω̂, E′ → E) ψ(~r, Ω̂′, E′) +

χ(~r, E)
4πkeff

∫ ∞

0
dE′

∫
4π

dΩ̂′ ν(~r, E′) Σ f (~r, E′) ψ(~r, Ω̂′, E′), (2.43)

with boundary conditions

ψ(~rb, Ω̂, E) = ψb(~rb, Ω̂, E), ~rb ∈ ∂A; Ω̂ · ên < 0. (2.44)

The solution to (2.43) is both ψ and keff, the eigenfunction and eigenvalue. We discuss solution tech-

niques to the k-eigenvalue problem in multi-group form in Chapter 3.
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2.5 One-Speed Transport Equation in Slab Geometry

To demonstrate basic methods, it is convenient to work with a simplified form of the transport equation.

Many of the algorithms and solution techniques may be extended to the full form. A common simpli-

fication of the full transport equation is the one-speed steady-state neutron transport equation in slab

geometry for one dimension. Further simplifications include isotropic scattering and source, meaning

there is no preference given to different angles Ω̂.

2.5.1 Slab Geometry

Slab geometry describes a material slab that is infinite in both the y and z dimensions, where solution

from any horizontal cross-section at height z would be identical to any other cross-section at a different

height z′. We define the new angular variable µ = cos θ, seen in Figure 2.1, where θ describes the polar

angle out of the cross-sectional plane; thus, µ ∈ [−1, 1].

θ

0 𝛕

Figure 2.1: Angular variable µ = cos(θ) in slab geometry.

We present the one-speed steady-state transport equation in 1D slab geometry with isotropic scat-

tering and an isotropic source

µ
∂ψ(x, µ)
∂x

+ Σt(x)ψ(x, µ) =
1
2

(
Σs(x) + ν f (x)Σ f (x)

) ∫ 1

−1
dµ′ψ(x, µ′) +

1
2

q(x). (2.45)

for

0 ≤ x ≤ X, −1 ≤ µ ≤ 1 (2.46)
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with the boundary conditions

ψ|x=0 = ψin
0 (µ), for µ > 0, (2.47)

ψ|x=X = ψin
X (µ), for µ < 0. (2.48)

We can also define the scalar flux similarly as

φ(x) =

∫ 1

−1
dµ′ ψ(x, µ′). (2.49)

Solutions and techniques for the transport equation in slab geometry are explored in the following chap-

ter.
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Chapter 3

Deterministic Solutions to the Neutron
Transport Equation

Deterministic approaches to solving the neutron transport equation include direct methods and iterative

methods [4, 37]. Direct methods apply a discretization mesh to the phase space and solve the partial

differential equation in one calculation. Iterative methods in contrast find a sequence of increasingly

accurate iterates through a fixed point map that is both consistent and stable. Both types of methods have

been applied to the neutron transport equation but the majority of our focus is on discrete ordinates,

iterative methods, and acceleration schemes. Specifically, we discuss solutions to the single material

one-speed fixed-source problem

µ
∂ψ(x, µ)
∂x

+ Σtψ(x, µ) =
1
2

[
Σsφ(x) + q(x)

]
, (3.1)

for

0 ≤ x ≤ X, − 1 ≤ µ ≤ 1 (3.2)

with the boundary conditions

ψ|x=0 = ψin
0 (µ), for µ > 0, (3.3)

ψ|x=X = ψin
X (µ), for µ < 0. (3.4)

3.1 Source Iteration

One solution technique for the neutron transport equation is source iteration. We create a stable and

consistent contraction mapping, S(φ), for the scalar flux that converges to the “true” scalar flux solution

through Picard iteration. We denote the true solution as φ∗. If φ∗ is known then (3.1) is solvable for

the angular flux by a transport sweep, which is discussed in sections further below. An overview of the
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Picard iteration is Algorithm 1.

Algorithm 1 Source Iteration
source iteration(φ(0), τ)

Begin with initial iterate φ(0) and tolerance τ.
φ(c) = S(φ(0)).
Calculate initial residual r = ||φ(0) − φ(c)||.
while r > τ do

Evaluate φ(+) = S(φ(c)).
Calculate r = ||φ(c) − φ(+)||.
Update φ(c) = φ(+).

end while

3.2 Source Iteration Map for the Continuous Problem

We begin by formulating the source iteration mapping for the continuous problem, following the steps

found in [8, 9, 30]. We show that the transport equation is used to derive the integral form

φ(y) −
∫ τ

0
k(x − y) φ(x) dx = g(y). (3.5)

We manipulate the transport equation by a change of variables, with the spatial variable x = Σtz, assum-

ing Σt constant. The resulting equation is

µΣt
∂ψ(z, µ)
∂z

+ Σtψ(z, µ) =
1
2

[
Σsφ(z) + q(z)

]
. (3.6)

We define a new constant c = Σs/Σs, called the scattering ratio, and the new source q̃(x) = q(x)/Σt.

Dividing the altered transport equation by Σt, we obtain

µ
∂ψ(z, µ)
∂z

+ ψ(z, µ) =
1
2

[
cφ(z) + q̃(z)

]
. (3.7)
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The change of variables morphs the spatial domain from x ∈ [0, X] to z ∈ [0, τ] where τ = X/Σt. We

continue with µ > 0:

µ
∂ψ

∂z
+ ψ(z, µ) =

1
2

[
cφ(z) + q̃(z)

]
,

ez/µ
[
µ
∂ψ

∂z
+ ψ(z, µ)

]
=

1
2

ez/µ [
cφ(z) + q̃(z)

]
,

µ
∂

∂z

[
ez/µψ(z, µ)

]
=

1
2

ez/µ [
cφ(z) + q̃(z)

]
,

∂

∂z

[
ez/µψ(z, µ)

]
=

1
2µ

ez/µ [
cφ(z) + q̃(z)

]
,∫ y

0

∂

∂z

[
ez/µψ(z, µ)

]
dz =

∫ y

0

1
2µ

ez/µ [
cφ(z) + q̃(z)

]
dz,

ey/µψ(y, µ) − ψ(0, µ) =

∫ y

0

1
2µ

ez/µ [
cφ(z) + q̃(z)

]
dz,

ψ(y, µ) = e−y/µ
∫ y

0

1
2µ

ez/µ [
cφ(z) + q̃(z)

]
dz + e−y/µψin

0 (µ),

ψ(y, µ) =

∫ y

0

1
2µ

e(z−y)/µ [
cφ(z) + q̃(z)

]
dz + e−y/µψin

0 (µ),

ψ(y, µ) =

∫ y

0

1
2µ

e−|z−y|/|µ| [cφ(z) + q̃(z)
]
dz + e−y/|µ|ψin

0 (µ).

The analogous steps are completed for µ < 0 to obtain

ψ(y, µ) =

∫ τ

y

1
2|µ|

e−|z−y|/|µ| [cφ(z) + q̃(z)
]
dz + e−|τ−y|/|µ|ψin

τ (µ), (3.8)

where ψ(z, µ)|z=τ = ψin
τ (µ) = ψin

X (µ). Thus, we have formulas for the angular flux for both positive and

negative angles µ. Recognize that the formula for the scalar flux is split as

φ(x) =

∫ 1

−1
ψ(x, µ) dµ =

∫ 0

−1
ψ(x, µ) dµ +

∫ 1

0
ψ(x, µ) dµ, (3.9)

which directly leads to

φ(y) =

∫ 0

−1

∫ τ

y

1
2|µ|

e−|z−y|/|µ| [cφ(z) + q̃(z)
]
dz dµ +

∫ 0

−1
e−|τ−y|/|µ|ψin

τ (µ) dµ

+

∫ 1

0

∫ y

0

1
2µ

e−|z−y|/|µ| [cφ(z) + q̃(z)
]
dz dµ +

∫ 1

0
e−y/|µ|ψin

0 (µ) dµ. (3.10)
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We rewrite the scalar flux by splitting the double integrals as

φ(y) =

∫ 0

−1

∫ τ

y

c
2|µ|

e−|z−y|/|µ|φ(z) dz dµ +

∫ 0

−1

∫ τ

y

1
2|µ|

e−|z−y|/|µ|q̃(z) dz dµ +

∫ 0

−1
e−|τ−y|/|µ|ψin

τ (µ) dµ

+

∫ 1

0

∫ y

0

c
2µ

e−|z−y|/|µ|φ(z) dz µ +

∫ 1

0

∫ y

0

1
2µ

e−|z−y|/|µ|q̃(z)dz dµ +

∫ 1

0
e−y/|µ|ψin

0 (µ) dµ (3.11)

and combining the spatial integrals and changing the order of integration, we obtain

φ(y) =

∫ τ

0

∫ 1

0

c
2µ

e−|z−y|/µφ(z) dµ dz +

∫ τ

0

∫ 1

0

1
2µ

e−|z−y|/µq̃(z) dµ dz

+

∫ 0

−1
e−|τ−y|/|µ|ψin

τ (µ) dµ +

∫ 1

0
e−y/|µ|ψin

0 (µ) dµ. (3.12)

The integral equation is then

φ(y) −
∫ τ

0
k(y − z) φ(z) dz = g(y), (3.13)

where the kernel

k(y − z) =

∫ 1

0

c
2µ

e−|z−y|/µ dµ (3.14)

and

g(y) =

∫ τ

0

∫ 1

0

1
2µ

e−|z−y|/µq̃(z) dµ dz +

∫ 0

−1
e−|τ−y|/|µ|ψin

τ (µ) dµ +

∫ 1

0
e−y/|µ|ψin

0 (µ) dµ. (3.15)

Continuing as in [30], the continuous form of source iteration is

φ(+) = K(φ(c)) + g, (3.16)

with the operator K defined as

K(φ)(x) =

∫ τ

0
k(x − z) φ(z) dz. (3.17)

3.2.1 Convergence of Source Iteration

It is important to note that the operator I−K is not invertible when τ = ∞ and c = 1. Source iteration is

slow to converge in cases where τ is large and c near unity from [9,34]. In Appendix A.1, we prove that

stationary iterative methods converge to a fixed point if ||K|| < 1. Further information on induced matrix

norms is located there, as well. We prove that the operator is indeed norm-bounded by one. We use the

`1-norm,

|| f ||1 =

∫ τ

0
| f (x)| dx. (3.18)
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The definition of K acting on the scalar flux φ is

||K(φ)||1 =

∫ τ

0
|K(φ)(x)| dx,

=

∫ τ

0

∣∣∣∣∣∫ τ

0
k(x, z)φ(z) dz

∣∣∣∣∣ dx,

≤

∫ τ

0

∫ τ

0
|k(x, z)||φ(z)| dz dx,

=

∫ τ

0

∫ τ

0
|k(x, z)||φ(z)| dx dz,

=
c
2

∫ τ

0
|φ(z)|

[∫ τ

0

∣∣∣∣∣∣
∫ 1

0

1
µ

e−|z−x|/µ dµ

∣∣∣∣∣∣ dx
]

dz,

=
c
2

∫ τ

0
|φ(z)|

[∫ τ

0

∫ 1

0

1
µ

e−|z−x|/µ dµ dx
]

dz,

≤
c
2

∫ τ

0
|φ(z)|

[∫ ∞

−∞

∫ 1

0

1
µ

e−|z−x|/µ dµ dx
]

dz,

=
c
2

∫ τ

0
|φ(z)|

[∫ ∞

−∞

∫ 1

0

1
µ

e−|y|/µ dµ dy
]

dz,

=
c
2

∫ τ

0
|φ(z)| dz

∫ ∞

−∞

∫ 1

0

1
µ

e−|y|/µ dµ dy,

=
c
2
||φ||1

∫ ∞

−∞

∫ 1

0

1
µ

e−|y|/µ dµ dy,

=
c
2
||φ||1

∫ 1

0

1
µ

∫ ∞

−∞

e−|y|/µ dy dµ,

=
c
2
||φ||1

∫ 1

0

2
µ

∫ ∞

0
e−y/µ dy dµ,

=
c
2
||φ||1

∫ 1

0

2
µ
· µ dµ,

= c||φ||1.

The resulting relationship

||Kφ|| ≤ c||φ||

for any element φ, describes a bound for the norm of the operator K, which is ||K|| < c. Thus, as stated

previously, if c < 1 this implies that ||K|| < 1 and so source iteration converges.

3.3 Transport Sweep and the Discrete Contraction Mapping

We discretize (3.1) on spatial nodes xi from i = 0, 1, . . . ,N and a standard S N angular discretization for

angle µ j from j = 1, 2, . . .M, similar to the description in Chapter 2. We have a uniform spatial grid, so
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cell width h = X/(N + 1). We choose a Gaussian quadrature for angle (µ j,w j) as in [28], so that

M∑
j=1

w j ψ(x, µ j) =

∫ 1

−1
ψ(x, µ′) dµ′. (3.19)

The angular flux, scalar flux, and external source are defined at grid nodes, as follows:

ψ
j
i = ψ(xi, µ j); φi = φ(xi); qi = q(xi). (3.20)

We use a second order central difference approximation at cell faces xi+1/2 for the streaming term

and central averaging for all other terms. We obtain the fully discrete problem

µ jψ
j
i+1 − ψ

j
i

h
+ Σt

ψ
j
i+1 + ψ

j
i

2
=

S i+1 + S i

2
, (3.21)

where the total source S i = Σsφi + qi, and we have boundary conditions

ψ
j
0 = ψin

0 (µ j), for µ j > 0, (3.22)

ψ
j
N = ψin

N (µ j), for µ j < 0. (3.23)

Solving (3.21) for ψ j
i+1, we have

ψ
j
i+1 =

(
1
h

+
Σt

2

)−1 [
S i+1 + S i

2
+

(
1
h
−

Σt

2

)
ψ

j
i

]
. (3.24)

Given the boundary condition ψ j
0, we forward march for µ j > 0 using the explicit formula for the

next spatial grid point. This is called a forward sweep. Similarly, we form a reverse marching formula

for ψi−1 using a backwards central difference formula for xi−1/2. This produces the explicit formula

ψ
j
i−1 =

(
Σt

2
−

1
h

)−1 [
S i + S i−1

2
−

(
1
h

+
Σt

2

)
ψ

j
i

]
(3.25)

for µ j < 0, the reverse direction. This is called a backward sweep. Together a forward and backward

sweep create a transport sweep, a unit of work in transport theory similar to a matrix-vector product or

a floating point operation. The transport sweep calculates the angular flux at all grid points from a scalar

flux.

For the contraction mappingS(φ), the transport sweep is the first component. The second component

is a closure relation that projects the angular flux onto the lower dimensional space where the scalar flux

lives. In source iteration, the closure relation is a simple integral over µ. We use the Gaussian quadrature
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to have

φ(+)
i =

M∑
j=1

w j ψ
j
i , (3.26)

where φ(+)
i = S(φ(c))i is the output of the contraction mapping at the grid point xi. Finally, the last

element required to complete Algorithm 1 is to choose a initial iterate φ(0) to begin the Picard iteration

and an absolute stopping tolerance τa.

Many of the deterministic iterative methods in neutron transport use this algorithm as a framework.

Various methods are formed by choosing a different closure relation in the second component of the

contraction mapping [32, 37]. These alternate formulations are chosen to decrease the total number of

transport sweeps in the calculation, and thereby the total computational work. We are also able to solve

(3.16) by forming an invertible linear system. We never explicitly create the matrix of this linear system,

but instead we describe an operator acting on a vector in a matrix-free way.

3.4 Solving the Transport Equation as a Linear System

Solution strategies for linear systems are well documented throughout the mathematics literature [27,

28]. We form a linear system from the integral equation we have derived. The source iteration map is

φ(+) = K(φ(c)) + g. (3.27)

If K is a linear operator, then the linear system of equations is

φ −Kφ = g,

(I −K)φ = g,

Aφ = g, (3.28)

where A = I −K.

Source iteration is slow to converge for high scattering ratios and may take more transport sweeps

than one might want to invest. A faster method of finding of a solution to this system is using Krylov

methods, such as GMRES. See Appendix A.2.
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3.4.1 Source Iteration Components for the Linear Solver

We use S to formulate the linear operator and right-hand side. We call the discretized fixed point map,

S. We seek a solution to the fix point problems

φ = S(φ), (3.29)

φ = Kφ + g; (3.30)

therefore, we have S(φ) = Kφ + g. To obtain g, we use

S(~0) = K~0 + g = g, (3.31)

because of the linearity of K. From (3.28), the matvec is

Aφ = (I −K)φ,

= φ −Kφ,

= φ − (S(φ) − g),

= φ − S(φ) + S(~0).

Thus, we solve the system

Aφ = g (3.32)

for the solution, φ. We may accelerate the convergence of source iteration with a modified fixed point

iteration. Two examples are Anderson acceleration and nonlinear diffusion acceleration.

3.5 Anderson Acceleration

Anderson Acceleration [3, 55, 62] is a method for accelerating the convergence of fixed point iteration

u = G(u), (3.33)

originally developed for electronic structure calculations. It has recently seen a resurgence in popularity

with many black box, code coupling problems [21]. We define the residuals of this fixed point map as

F(u) = G(u) − u. (3.34)

Accelerating source iteration, we use

F(φ) = S(φ) − φ. (3.35)
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The algorithm stores and uses, along with the residuals, the m most recent iterates. The Anderson al-

gorithm which stores m iterates called Anderson(m). If we choose not to store any iterates then Ander-

son(0) is equal to fixed point iteration by design. Algorithm 2 is an overview of Anderson acceleration.

Algorithm 2 Anderson(m)
anderson(u0,S,m)

u1 = S(u0); F0 = S(u0) − u0

for k = 1, . . . do
mk = min(m, k)

Fk = S(uk) − uk

Minimize ||
∑mk

j=0 α
k
jFk−mk+ j||2 subject to∑mk

j=0 α
k
j = 1.

uk+1 = (1 − βk)
∑mk

j=0 α
k
juk−mk+ j + βk

∑mk
j=0 α

k
jG(uk−mk+ j)

end for

Anderson acceleration solves a linear least squares problem for the Anderson coefficients {αk
j}. The

new iterate is defined as a linear combination of the iterates and the fixed point evaluations. The βk terms

are mixing parameters.

Algorithm 2 converges if the fixed point iteration converges (i.e. G is a contraction mapping), u0

close enough to the solution, and {αk
j} stay bounded throughout the iteration [55]. It is proven that in

linear case the convergence rate of Anderson is no worse than fixed point iteration. In the nonlinear

case, we can make the convergence speed arbitrarily close to fixed point iteration. We discuss Anderson

acceleration under noisy function evaluations, once we have introduced stochastic methods for neutron

transport in Chapter 4.

3.6 Nonlinear Diffusion Acceleration

Nonlinear diffusion acceleration (NDA) [32, 51, 65] is an acceleration method that uses the zeroth mo-

ment of the 1D transport equation. In slab geometry, the zeroth moment is

dJ
dx

(x) + (Σt − Σs) φ(x) = q(x), (3.36)

where J is the current. In Section 3.3, we described a framework to solve the transport equation. We

present a low-order (LO) problem that uses ψ from the transport sweep. We solve the LO problem for

the next iterate φ(+) using a specific closure relation for J.
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Components of the framework include the high-order (HO) and LO problems. The HO problem is

computing a transport sweep with the most recent scalar flux iterate. The angular flux resulting from the

transport sweep is ψHO and the scalar flux is φHO. The LO problem is a function G(ψHO, φHO) which

outputs the new iterate φ(+). For source iteration, the LO problem is simply G(ψHO, φHO) = φHO. For

NDA, we model transport as diffusion to formulate the LO problem.

3.6.1 NDA Derivation

We follow the same steps and formulation as found in [32]. Recall, the HO problem for ψHO is

µ
∂ψHO

∂x
+ Σtψ

HO =
1
2

[
Σsφ

(c) + q
]
. (3.37)

First, we define the current:

Definition 3.6.1. J is the neutron current. J(~r, E, t) d3~r dE dA is the expected net number of particles

crossing area dA moving with velocity 3(E) in volume d3~r about ~r, having energies in dE around E, and

at time t.

The current is

J(x) =

∫ 1

−1
µψ(x, µ) dµ, (3.38)

the first moment of the angular flux. Analogously, the scalar flux is the zeroth moment, because

φ(x) =

∫ 1

−1
µ0ψ(x, µ) dµ. (3.39)

Next, the zeroth moment of the transport equation is∫ 1

−1

[
µ
∂ψ

∂x
(x, µ) + Σtψ(x, µ)

]
dµ =

∫ 1

−1

[
Σs

2
φ(x) +

1
2

q(x)
]

dµ,∫ 1

−1
µ
∂ψ

∂x
(x, µ) dµ +

∫ 1

−1
Σtψ(x, µ) dµ =

∫ 1

−1

[
Σs

2
φ(x) +

1
2

q(x)
]

dµ

d
dx

∫ 1

−1
µψ(x, µ) dµ + Σt

∫ 1

−1
ψ(x, µ) dµ =

∫ 1

−1

[
Σs

2
φ(x) +

1
2

q(x)
]

dµ,

dJ
dx

(x) + Σtφ(x) = Σsφ(x) + q(x),

dJ
dx

(x) + (Σt − Σs) φ(x) = q(x). (3.40)

The crux of NDA is the approximation of J using Fick’s law of diffusion and a consistency term. We

approximate the current as

J = −
1

3Σt

dφ
dx

+ D̂φ, (3.41)
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where D̂ is a vector. Combining the two equations, the LO problem is

d
dx

[
−

1
3Σt

dφ
dx

+ D̂φ
]

+ (Σt − Σs)φ = q, (3.42)

which we solve for φ. This resulting φ is next iterate in the NDA fixed point map. We calculate D̂ in

terms of known quantities from the HO problem. The D̂-equation is

D̂ =
JHO + 1

3Σt

dφHO

dx

φHO , (3.43)

with definitions

JHO =

∫ 1

−1
µψHO(x, µ) dµ (3.44)

and

φHO =

∫ 1

−1
ψHO(x, µ) dµ. (3.45)

D̂ is a function explicitly depending on JHO and φHO, or D̂(JHO, φHO). We embed D̂ into (3.42), to

obtain
d
dx

[
−

1
3Σt

dφ
dx

+ D̂(JHO, φHO)φ
]

+ (Σt − Σs)φ = q. (3.46)

A full overview of NDA is seen in Algorithm 3.

Algorithm 3 NDA
nda(φ(0), τ)

Begin with initial iterate φ(0) and tolerance τ.

r = ∞.

Set φ(c) = φ(0).

while r > τ do
Solve HO problem for ψHO from φ(c).

Calculate JHO and φHO from ψHO.

Compute D̂ from (3.43).

Solve LO problem for φ(+) using D̂.

r = ||φ(+) − φ(c)||∞.

Update φ(c) = φ(+).

end while
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3.6.2 NDA Discretization

For the HO problem, we use the diamond difference discretization from [32]

µ j
ψ

j
i+1/2 − ψ

j
i−1/2

∆x
+ Σt

ψ
j
i+1/2 + ψ

j
i−1/2

2
= Σsφi + qi, (3.47)

where φi is a cell-averaged quantity and ψi+1/2 is a cell-edge quantity. We consider here only a con-

sistent discretization for the HO and LO problem. The µ j are chosen to be the Gauss nodes and have

corresponding weights w j, so that

φi =
1
2

∫ −1

−1
(ψi+1/2 + ψi−1/2) dµ =

∑
j

w j

2

(
ψ

j
i+1/2 − ψ

j
i−1/2

)
. (3.48)

The discretized closure relation is

JHO
i+1/2 = −

1
3Σt

φHO
i+1 − φ

HO
i

∆x
+

D̂i+1/2

2
(φHO

i+1 + φHO
i ), (3.49)

where

JHO
i+1/2 =

∫ −1

−1
µψHO

i+1/2 dµ (3.50)

and

φHO
i =

1
2

∫ −1

−1
(ψHO

i+1/2 + ψHO
i−1/2) dµ. (3.51)

We directly solve (3.49) for D̂i+1/2. We use D̂i+1/2 to solve the discrete version of (3.46) to obtain

−
1

3Σt

φi+1 − 2φi + φi−1

∆x
+

D̂i+1/2

2∆x
(φi+1 + φi) −

D̂i−1/2

2∆x
(φi + φi−1) + (Σt − Σs)φi = qi. (3.52)

The LO boundary conditions are chosen to maintain consistency between the HO and LO scalar fluxes

and currents. Specifically, we set
JLO

1/2

φLO
1

=
JHO

1/2

φHO
1

. (3.53)

With this formulation, φHO and φLO are consistent to within the tolerance τ once the iteration terminates.
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3.7 Solving the k-eigenvalue Problem from the Multigroup Equations

The multigroup equations discretized in angle in 1D slab geometry with isotropic scattering are

µ
∂ψg

∂x
(x, µ) + Σt,g(x) ψg(x, µ) =

1
2

G∑
g′=1

Σs,g′→g(x) φg′(x) +

χg(x)
2k

G∑
g′=1

νg′(x) Σ f ,g′(x) φg′(x) +
1
2

Qg(x), (3.54)

for each group g for G total equations. We assume vacuum boundary conditions for all groups. The

solution pair is φg and multiplicative factor k. We rewrite the scattering term as

µ
∂ψg

∂x
(x, µ) + Σt,g(x) ψg(x, µ) =

1
2

g−1∑
g′=1

Σs,g′→g(x) φg′(x) +
1
2

Σs,g→g(x) φg(x) +

1
2

G∑
g′=g+1

Σs,g′→g(x) φg′(x) +
χg(x)

2k

G∑
g′=1

νg′(x) Σ f ,g′(x) φg′(x) +
1
2

Qg(x), (3.55)

where it is separated into down-scattering, in-scattering, and up-scattering. The power iteration method

is

µ
∂ψ(s)

g

∂x
(x, µ) + Σt,g(x) ψ(s)

g (x, µ) =
1
2

g−1∑
g′=1

Σs,g′→g(x) φ(s)
g′ (x) +

1
2

Σs,g→g(x) φ(s)
g (x) +

1
2

G∑
g′=g+1

Σs,g′→g(x) φ(s−1)
g′ (x) +

χg(x)
2k

G∑
g′=1

νg′(x) Σ f ,g′(x) φ(s−1)
g′ (x) +

1
2

Qg(x), (3.56)

k(s) =

G∑
g=1

∫ X
0 dx νg(x) Σ f ,g(x)φ(s)

g (x)

G∑
g=1

[
J(s)

g (X) − J(s)
g (0)

]
+

G∑
g=1

∫ X
0 dx Σa,g(x)φ(s)

g (x)
(3.57)

for a sequence of iterates over index s. We lag the fission and up-scattering terms in (3.56) as in [37]. In

(3.57), k(s) is a ratio of neutron production and neutron loss at the s iteration. The loss term is composed
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of leakage out the boundaries and absorption in the domain for all g. We define a new source term,

Q̃g(x) =
1
2

g−1∑
g′=1

Σs,g′→g(x) φ(s)
g′ (x) +

1
2

G∑
g′=g+1

Σs,g′→g(x) φ(s−1)
g′ (x) +

χg(x)
2k(s−1)

G∑
g′=1

νg′(x) Σ f ,g′(x) φ(s−1)
g′ (x) +

1
2

Qg(x), (3.58)

which contains all terms except for the in-scattering. We define each component as

Q̃down(s)
g (x) =

1
2

g−1∑
g′=1

Σs,g′→g(x) φ(s)
g′ (x) (3.59)

Q̃up(s)
g (x) =

1
2

G∑
g′=g+1

Σs,g′→g(x) φ(s−1)
g′ (x), (3.60)

and

Q̃ f ission(s)
g (x) =

χg(x)
2k(s−1)

G∑
g′=1

νg′(x)Σ f ,g′(x)φ(s−1)
g′ (x). (3.61)

The result is a one-group fixed-source problem at every iteration and in each group,

µ
∂ψ(s)

g

∂x
(x, µ) + Σt,g(x) ψ(s)

g (x, µ) =
1
2

Σs,g→g(x) ψ(s)
g (x) + Q̃g(x). (3.62)

We solve (3.62) using any of the methods we have introduced, such as NDA. Within each iteration s, we

calculate φg for the highest energy group, g = 1, first. We continue incrementally until g = G. We have

two edge cases for Q̃g. When g = 1, we have Q̃down(s)
1 = 0. When g = G, we have Q̃up(s)

G = 0. Power

iteration continues until φg and k converge to a provided tolerance. A full overview of the multigroup

algorithm is seen in Algorithm 4.
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Algorithm 4 Multigroup

multigroup(φ(0)
g , k(0), τφ, τk, τφg)

Begin with initial iterate φ(0), k(0) and tolerance τ.

s = 0.

rφ = ∞.

rk = ∞.

while rφ > τφ or rk > τk do
s = s + 1.

for g = 1, . . . , G do
Calculate Q̃up(s−1)

g and Q̃ f ission(s−1)
g .

end for
for g = 1, . . . , G do

Calculate Q̃down(s)
g .

Set φ(s),c
g = φ(0)

g .

rφg = ∞

while rφg > τφg do
Solve HO problem (3.62) for ψ(s),+

g from φ(s),c
g and Q̃g.

Solve LO problem for φ(s),+
g .

rφg = ||φ(s),+
g − φ(s),c

g ||.

Update φ(s),c
g = φ(s),+

g .

end while
Set φ(s)

g = φ(s),+
g .

end for
Calculate k(s).

rφ = ||φ(s+1) − φ(s)||.

rφ = |k(s+1) − k(s)|.

end while
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Chapter 4

Introduction to Monte Carlo for
Neutronics

The Monte Carlo method [39, 52] simulates a finite number of particle histories inside a given domain

through random number generation. Each particle samples known probability distribution functions for

particle location, direction, and energy. Particles complete flights from birth to death, either through ab-

sorption or leaving the system. During their histories, particles stream, scatter, fission, or cross material

boundaries. Random number generation also determines collision location and collision type based on

the material cross-sections. After the simulation, we calculate a mean value estimate, x̂, of some desired

quantity. Given an Np-sample Monte Carlo simulation, the mean value estimate is

x̂ =
1

Np

Np∑
n=1

xn, (4.1)

where xn is the contribution from the nth sample. So, we tally the xn due to each history to estimate x̂ at

the end of the calculation. Examples of xn include total number of collisions and the total track length

distance traveled. Tallies are objects in the Monte Carlo method providing users with flux estimates.

All estimates contain stochastic error because we use a finite number of samples, but the variance

in those estimates decreases as the number of samples increases. The uncertainty in the Monte Carlo

estimate is known to converge O(1/
√

Np) [37]. The attractive features of Monte Carlo include contin-

uous treatment of angle, space, and potentially energy; therefore, the Monte Carlo simulation has no

discretization error. For deterministic transport methods, we use discrete grids for each variable in the

phase space. Each discretization is an additional approximation that adds to the final solution’s overall

error. Monte Carlo avoids discretizations in exchange for stochastic error. We reduce the stochastic error

by taking more samples and through variance reduction techniques. Also, we may parallelize the Monte

Carlo method. A particle history is independent from all other histories and may be computed on sep-
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arate processors. Once all histories are completed, one designated processor calculates and reports the

mean value estimate.

We begin this chapter with analog Monte Carlo and its components. We discuss variance reduction

techniques in the coming sections as well.

4.1 Analog Monte Carlo

Analog Monte Carlo is a basic form of Monte Carlo for neutronics. We focus on 1D monoenergetic

transport with constant cross sections and isotropic scattering in slab geometry.

First, probability density functions are the tools we use to relate events and quantities with randomly

generated numbers.

Definition 4.1.1. A probability density function f (x) describes the probability of a random variable

taking certain values from the sample space.

The probability of the random variable x falling in the interval [a, b] is

P{a ≤ x ≤ b} =

∫ b

a
f (x) dx. (4.2)

A density function has the requirements that it is non-negative and∫ ∞

∞

f (x) dx = 1. (4.3)

Any non-negative integrable function g has a corresponding density function,

f (x) =
g(x)∫ ∞

−∞
g(x) dx

. (4.4)

The cumulative distribution function (CDF) is

F(a) = P{x ≤ a} =

∫ a

−∞

f (x) dx. (4.5)

It is a monotone increasing function that describes the probability that the random variable is less than

the value a. From the definition, we see

lim
x→∞

F(x) ≡ F(∞) = 1 (4.6)

and

lim
x→−∞

F(x) ≡ F(−∞) = 0. (4.7)
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We restate (4.2) in terms of CDFs as

P{a ≤ x ≤ b} = F(b) − F(a). (4.8)

Random numbers ξ are generated uniformly on [0, 1], the range space of the CDF. We transform ξ

as

F(x) = ξ, (4.9)

or

x = F−1(ξ), (4.10)

to obtain a sample of x. The inversion of the F is not trivial. We introduce techniques for this inversion

for relevant cases.

4.1.1 Components of Monte Carlo

The Monte Carlo components include starting location, travel distance, direction, and collision type. We

obtain each by sampling distributions and computing the CDF inversions when needed.

The first CDF inversion determines the number of mean free paths the particle travels. the distribu-

tion function for mean free paths from [37] is

f (x) = e−x (4.11)

and the CDF is

F(x) = 1 − e−x. (4.12)

The inversion of F is

x = − ln(1 − ξ), (4.13)

which we simplify to

x = − ln(ξ). (4.14)

ξ is uniform on [0, 1], so 1−ξ is also uniform on [0, 1]. This simplification reduces excessive computation

which is important when simulating large numbers of histories. Given a number of mean free paths, the

streaming distance is

xstrm =
x
Σt
. (4.15)

A second CDF inversion finds the starting particle locations. Assume we have a piecewise constant

source density s(x) ∈ [0,∞) with x ∈ [0, τ], like in [37]. We choose a starting particle location with a
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random number through the CDF of s(x). The density function is

s(x) = {x ∈ [xi−1, xi) | si} , (4.16)

for i = 1, . . . ,M. The piecewise constant density function leads to the piecewise linear CDF

S (x) =
1

xi − xi−1
[(x − xi−1)S i + (xi − x)S i−1] , (4.17)

where

S i =

i∑
j=1

(x j − x j−1)s j. (4.18)

To find x = S −1(ξ), we first find which interval [S i−1, S i] that ξ is located. Then we solve (4.17),

S (x) = ξ, to obtain

x0 =
(xi − xi−1)ξ − xiS i−1 + xi−1S i

S i − S i−1
, (4.19)

where x0 is the particle’s starting location.

Direction µ for an isotropic source and isotropic scattering is sample directly from a uniform distri-

bution. All angles are equally likely, so we sample from Uni(−1, 1). With ξ ∈ Uni(0, 1), the translation

is

µ(ξ) = 2ξ − 1. (4.20)

The final probabilistic event is the collision. Given a starting location, a direction, and a travel

distance, we compute the collision locations,

xcoll = x0 + µ · xstrm. (4.21)

If xcoll is outside the domain, we terminate the history and proceed to the next. If xcoll is inside the

domain, we collide. Collisions are determined randomly, as well. The cross section data determines the

likelihoods of each collision type occurring. Assume the fission-free case, then we know

Σt = Σs + Σa. (4.22)

If we sample ξ from Uni(0, 1), then the particle undergoes scattering for

ξ ≤
Σs

Σt
(4.23)

and undergoes absorption for

ξ >
Σs

Σt
. (4.24)
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When a particle is absorbed, we terminate the history and proceed to the next. When a particle scatters,

we sample a new µ and xstrm. This process continues until the particle leaves the system. After all Np

histories are completed, we compute the quantities of interest from the tallies.

4.1.2 Analog Monte Carlo Tally

In analog Monte Carlo, we tally information for each history as the simulation runs. The information is

averaged over the Np histories to obtain a mean value with an associated variance. We use a weighted

average, where each particle has weight, wn. The uniform weights are

wn =
1

Np

∫ τ

0
s(x) dx. (4.25)

We discuss two types of tallies for φ̂: the track-length tally and the collision estimator tally. The

track-length tally stores the flight paths of the particles, `n. Specifically, `n is the distance traveled by

the nth particle in a volume V . We estimate the scalar flux φ̂ in a volume V with Np histories as

φ̂ =
1

NpV

Np∑
n=1

wn`n. (4.26)

The collision estimator tally stores the number of collisions cn in V . The collision density is

ĉ = VΣtφ̂, (4.27)

or the mean number of collisions in V . Solve for φ̂, to obtain

φ̂ =
1

VΣt
ĉ, (4.28)

where

ĉ =
1

Np

N∑
n=1

wncn. (4.29)

Similarly, we estimate Ĵ through a surface of area A using the surface crossing tally. The estimate is

Ĵ =
1

NpA

Np∑
n=1

sign(µ)wnzn, (4.30)

where zn is the number of crossings of face A for the nth particle. We present a full overview of analog

Monte Carlo method in Algorithm 3.
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Algorithm 5 Analog Monte Carlo
Analog MC(s,N)

Begin with source distribution s and number of histories N.

Compute total source.

Normalize s to s̄ and find the CDF, F.

Initialize weights wn.

for n = 1, . . . ,N do
Randomly sample ξ for location.

Solve F(x0) = ξ for x0.

Randomly sample direction µ.

while nth particle remains in system do
Randomly sample streaming distance.

Compute collision location.

if Particle n leaves domain then
Terminate history.

end if
Randomly sample for collision type.

if Particle n scatters then
Compute new direction µ for next flight.

else if Particle n is absorbed then
Terminate history.

end if
Store tallies.

end while
end for
Calculate mean value from tallies.

4.2 Variance Reduction

The variance for a random variable x is

σ2(x) = E
[
(x − x̂)2

]
=

∫ ∞

−∞

dx (x − x̂)2 f (x), (4.31)

where E is the expected value operator and f is the probability density function of x. The expected value

of x is mean value we obtain as the number of samples Np → ∞. So, the variance is the expected value

of the second moment about the mean.
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The Monte Carlo method calculates a mean value

x̂ =

∫
x f (x) dx (4.32)

with an associated variance. Choose a modified probability density function, f̃ , to induce a weight

function, w(x), such that

f̃ (x)w(x) = f (x). (4.33)

Then, (4.32) is equal to

x̂ =

∫
xw(x) f̃ (x) dx. (4.34)

Appropriate choices of f̃ lead to an unbiased estimator with smaller variance. The estimator is unbiased

because x̂ remains unchanged. We may perform a non-analog Monte Carlo process, represented by f̃ ,

that produces a more precise x̂. Non-analog steps may occur during collisions, boundary crossings, or

other events.

4.2.1 Implicit Capture and Russian Roulette

Implicit capture trades any chance of absorption for particle weight reduction [37, 52]. All particles are

forced to scatter in the non-fission case. The particle’s weight after scattering is

wn,i+1 = wn,i

(
1 −

Σa

Σt

)
, (4.35)

where wn,i is the weight of the nth particle after the ith collision. The initial weights wn,0 are equal

to the uniform weights in (4.25). The Np particles remain in the system for more events leading to

longer histories. This increases the computational runtime of each history. In exchange, longer histories

increase expected number of particles that contributes to the estimator, thereby lowering the variance

[37].

The loss of absorption forces us to formulate a new termination criterion. Otherwise, histories only

end when they leak out the domain boundary. Weights quickly decrease for low-scattering ratios, so

their contributions to the tallies become negligible. Killing histories when weights fall below a threshold

saves runtime. Importantly, if we outright kill small-weighted particles, we bias the estimator. We cannot

remove the tails of histories without changing wn,i. One solution is Russian roulette.

Russian roulette occurs when a particle falls below a user chosen weight threshold. We sample ξ

from Uni(0, 1) and check the inequality

ξ >
1
d
, (4.36)

where d is a chosen parameter. If the inequality holds we kill the history. If the inequality does not hold

we increase the weight by the factor d. This ensures the estimator is unbiased while still reducing the
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variance through implicit capture.

4.2.2 Particle Splitting

Particles are split when they become highly important, for example, when entering particular regions of

interest. It is advantageous to split the particle at a collision site or boundary crossing into d particles.

Figure 4.1 shows particles splitting upon entering an important region. The d particles continue with

their flights as normal particles and are terminated under the same criteria. Each of the d particles have

1/d of the original particle weight to preserve the unbiased estimators. This process is known to reduce

variance in the calculation, but increase computational time [37]. Each particle contribution is smaller,

but the number of contributions is increased. More non-zero samples for the estimator leads to reduced

variance in the mean estimate.

S

Im

Figure 4.1: Monte Carlo particles splitting in an important region with d = 3.

Consider the case where we desire flux values at a location far away from any neutron source. The

likelihood particles pass through this region is low. If we split the few particles that travel through that

region, there are greater number of particles in the region of interest. More particles leads to an increased

number of non-zero contributions. Particle splitting is essential for modeling low probability events with
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Monte Carlo. Further variance reduction techniques are found in [37].

4.3 Monte Carlo Criticality Calculations

Criticality calculations with Monte Carlo measure the multiplication factor of the system. The system

contains fissionable material and particles may spawn additional fission neutrons during the simulation.

The k-eigenvalue problem is solved using the Monte Carlo version of power iteration. Let f ` and kell be

the eigenvector-eigenvalue pair corresponding to the fission source at generation ` and the multiplication

factor. Then the iteration is

f `+1 =
1
k`

Â f ` (4.37)

k`+1 =

∫
Â f `dΓ∫

f `dΓ
= k`

∫
f `+1dΓ∫
f `dΓ

, (4.38)

where Â is the transport operator and Γ is the phase space of f .

A cycle is a single advancement of all particles to their next event. The algorithm calculates the fis-

sion source for the next cycle from the previous cycle. As generations continue, fission produces addi-

tional neutrons and absorption removes fission neutrons. The sequence k` converges to the k-eigenvalue

within statistical noise after a significant number of cycles [37].

With the introduction of fissionable material, we may never simulate all neutrons from birth to death.

The addition of fission neutrons each cycle makes this impossible. Therefore, we select a total number

of cycles, LC , to simulate for the criticality calculation. We divide LC in two phases: inactive cycles

and active cycles. Inactive cycles do not gather any tallies, and instead are used to converge the fission

source. Power iteration is slow to converge when the dominance ratio of the system is near unity [28].

The dominance ratio is |k2|/|k1|, where k1 is the largest eigenvalue and k2 is the second largest eigenvalue.

Estimates are poor when fission is not sufficiently converged. During active cycles, we record tallies

that form the estimates. Methods are available that accelerate fission convergence [37]. Standard Monte

Carlo power iteration is presented in Algorithm 6.

Algorithm 6 MC Power Iteration
power iteration( f 0, LC)

Sample an initial fission source, f 0, for cycle ` = 0.
for ` ∈ {1, · · · , LC} do

Perform N random walks of fission neutrons.
Sample the fission source for the next iteration, f `+1

Tally k`+1 during active cycles
end for
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Chapter 5

Hybrid Methods for Neutronics

Hybrid methods for neutronics combine stochastic and deterministic methods. We use deterministic

methods to accelerate the underlying stochastic method, a Monte Carlo simulation. We investigate two

hybrid techniques: Monte Carlo embedded in HO-LO framework and Monte Carlo informed by a coarse

deterministic solution. The second technique is consistent adjoint driven importance sampling (CADIS).

5.1 Monte Carlo High Order Problem

For source iteration, we invert the streaming, absorption, and scattering operators to solve the fixed

source problem

Ω̂ · ∇ψ+(~r, Ω̂) + Σtψ+(~r, Ω̂) =
1

4π
[Σs(~r)φc(~r) + q(~r)]. (5.1)

The Monte Carlo transport sweep in [65] solves (5.1) by considering the scattering operator as a com-

ponent of a new source term

S c(~r) = Σs(~r)φc(~r) + q(~r), (5.2)

then it completes a MC simulation without any scattering. Thus, we solve

Ω̂ · ∇ψ+(~r, Ω̂) + Σtψ+(~r, Ω̂) =
1

4π
S c(~r). (5.3)

The MC transport sweep allows particles to take a single flight before they are absorbed. This transport

sweep is the HO problem for HO-LO framework in Chapter 3. A full Monte Carlo simulation con-

verges scattering. Here, we complete multiple simple MC transport sweeps each iteration and converge

scattering as the iteration converges.

The Monte Carlo embedded algorithm is seen in Algorithm 7.
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Algorithm 7 MC Transport
mc transport(φ0, τ)

Begin with initial iterate φ0 and tolerance τ.

r = ∞.

Set φc = φ0.

while r > τ do
S c = Σsφc + q

Compute scatter-free MC solution ψMC,HO
+ from S c.

Solve LO problem for φ+ from ψMC,HO
+ .

r = ||φ+ − φc||∞.

Update φc = φ+.

end while

In our results, we apply Anderson acceleration to the MC Transport with F(φ) = G(φ) − φ, where

G(φ) is the function that takes φc to φ+. G may contain an accelerator as its LO problem, such as NDA.

5.1.1 Numerical Results

We consider two monoenergetic fixed source problems in single material slab geometry with isotropic

scattering. We consider the moderate and high scattering cases where the scattering ratio c = Σs/Σt = .80

and .99. We apply source iteration and NDA to each case with the Profugus code [15] as the HO solve.

In addition, we accelerate both of these methods using Anderson(2).

We fix the number of histories for each Profugus computation. For c = .80, we have NMC = 1e6

during each step of the iteration. The same is repeated for c = .99 but instead with NMC = 4e6 histories.

The high scattering case requires a higher number of particles because the mean spectral radius is near

unity. For a deterministic transport sweep the spectral radius of source iteration is bounded above by the

scattering ratio. Moderate stochastic error in the function evaluations may lead to poor stability iteration

to iteration and even divergence. This occurs because the error in the stochastic transport sweep is too

large, ultimately leading to loss of contractivity.

We use the parameter values in Table 5.1 from [64] along with the moderate scattering case. In

Figures 5.1 and 5.2, we plot the average relative residuals over 10 independent runs on the y-axis and the

cumulative number of particle histories on the x-axis, with each marker indicating an iterate’s residual.

We ran each of the iterations until the error in the function evaluation stagnates the residual reduction.

Anderson(2) accelerates source iteration and provides marginal speed up of nonlinear diffusion ac-

celeration. In Figure 5.1, Anderson(2) quickly reduces the residual relative to source iteration until the

noise in the function evaluation dominates. Source iteration stagnates at the same residual as Ander-
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Table 5.1: Problem Data from [64]

Parameter Case 1 Case 2
Σt 10 10
Σs 8.0 9.9
τ 1 1
q .5 .5

Spatial Cells 50 50

0.5 1 1.5 2 2.5
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7

10
-3

10
-2

10
-1

10
0

R
e
s
id

u
a
l 
N

o
rm

Source

Anderson(2)

NDA

NDA-Anderson(2)

Figure 5.1: Residual histories of Profugus dependent fixed source calculations with c = .80.

son(2), but the convergence is slower as expected. Comparing NDA and NDA-Anderson(2), we observe

that the two methods have roughly the same residual history and stagnate simultaneously. This supports

the theory in [54] that states Anderson does no worse than Picard iteration if the noise is well bounded

with high probability.

In Figure 5.2, source iteration with c = .99 has difficulty reducing the residual each iteration. Ander-

son(2) lowers the spectral radius of source iteration and achieves faster convergence. Though not plotted

in the high scattering case, source iteration and its Anderson accelerated version stagnate at roughly 70

and 30 iterations, respectively. Again, NDA and NDA-Anderson(2) follow the same convergence and
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Figure 5.2: Residual histories of Profugus dependent fixed source calculations with c = .99.

both stagnate at the same residual.

Lastly, we observe negligible differences in iteration histories storing more than two Anderson vec-

tors and only slight incremental improvement on intermediate iterates using Anderson(2) over Ander-

son(1). We also observe that Anderson accelerated versions are more stable once stagnation is reached.

5.2 CADIS and FW-CADIS

Consistent adjoint driven importance sampling (CADIS) and forward-weighted CADIS(FW-CADIS)

are hybrid variance reduction techniques from [57–59, 61]. They provides an optimized single region

tally and distribution, respectively. FW-CADIS may also optimize multiple tally regions at once. The

hybrid methods CADIS and FW-CADIS calculate a coarse 3D discrete ordinates solution to the adjoint

transport equation. The adjoint solution informs the Monte Carlo simulation through appropriate weight

windows. Weight windows decrease weights of particles traveling away from target tally region causing

flights to terminate quickly. Particles above the weight window threshold undergo splitting. This reduces

variance at the locations of interest by having a greater chance that particles remain alive and travel

through the tally regions.
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5.2.1 The Adjoint Transport Equation

The solution of adjoint transport equation is another tool that may assist with certain classes of calcu-

lations, such as CADIS variance reduction. We follow the formulation in [37]. Consider the operator

H and pair of function ψ and ψ+ that meet appropriate boundary conditions. Assume H has vacuum

boundary conditions. The adjoint operator H+ is defined by∫
d3~r

∫
dΩ̂

∫
dE ψ+Hψ =

∫
d3~r

∫
dΩ̂

∫
dE ψH+ψ+. (5.4)

In nonmultiplying transport,

Hψ =
(
Ω̂ · ~∇ + Σt(~r, E)

)
ψ(~r, Ω̂, E) −

∫
dE′

∫
dΩ̂′ Σs(~r, E′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E′). (5.5)

To find H+, we reverse positions of ψ and ψ+ from the known lefthand side in (5.4). We begin∫
d3~r

∫
dΩ̂

∫
dE ψ+Hψ =

∫
dV

∫
dE

∫
dΩ̂ ψ+(~r, Ω̂, E) ×[(

Ω̂ · ~∇ + Σt(~r, E)
)
ψ(~r, Ω̂, E) −

∫
dE′

∫
dΩ̂′ Σs(~r, E′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E′)

]
. (5.6)

First, the two components of streaming operator are commutative, so Ω̂ · ~∇ = ~∇ · Ω̂. Apply this operator

to ψ+ψ to obtain
~∇ · (Ω̂ψ+ψ) = ψ+Ω̂ · ~∇ψ + ψΩ̂ · ~∇ψ+. (5.7)

Integrate the result over V to obtain∫
dV ~∇ · (Ω̂ψ+ψ) =

∫
dV ψ+Ω̂ · ~∇ψ +

∫
dV ψΩ̂ · ~∇ψ+ (5.8)

The divergence theorem reduces the lefthand side to the surface integral∫
dS ~n · Ω̂ψ+ψ =

∫
dV ψ+Ω̂ · ~∇ψ +

∫
dV ψΩ̂ · ~∇ψ+ (5.9)

The vacuum boundary condition on H states that for Ω̂ · n < 0, ψ ≡ 0. Therefore, we enforce ψ+ to

satisfy

ψ+(~r, Ω̂, E) = 0, ~r ∈ S , Ω̂ · ~n ≥ 0. (5.10)

Thus, the surface integral is zero, and∫
dV ψ+ Ω̂ · ~∇ψ = −

∫
dV ψ Ω̂ · ~∇ψ+. (5.11)
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Next, in the collision operator, Σt is a coefficient, so we reverse ψ+Σtψ to ψΣtψ
+. Lastly, in the scattering

operator, we reverse the dummy variables E, E′ and Ω̂, Ω̂′ to see∫
dΩ̂

∫
dE ψ+(~r, Ω̂, E)

∫
dΩ̂′

∫
dE′ Σs(~r, E′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E′) =∫

dΩ̂

∫
dE ψ(~r, Ω̂, E)

∫
dΩ̂′

∫
dE′ Σs(~r, E → E′, Ω̂ · Ω̂′)ψ(~r, Ω̂′, E′). (5.12)

The three equalities lead to the expression∫
d3~r

∫
dΩ̂

∫
dE ψ+Hψ =

∫
dV

∫
dE

∫
dΩ̂ ψ(~r, Ω̂, E) ×[(

−Ω̂ · ~∇ + Σt(~r, E)
)
ψ+(~r, Ω̂, E) −

∫
dE′

∫
dΩ̂′ Σs(~r, E → E′, Ω̂ · Ω̂′)ψ+(~r, Ω̂′, E′)

]
, (5.13)

and so the adjoint transport operator is

H+ψ+ =
(
−Ω̂ · ~∇ + Σt(~r, E)

)
ψ+(~r, Ω̂, E) −

∫
dE′

∫
dΩ̂′ Σs(~r, E → E′, Ω̂ · Ω̂′) ψ+(~r, Ω̂′, E′). (5.14)

5.2.2 Detector Response Example

Given an external source q, we illustrate how to use the adjoint in solving the transport problem

Hψ = q, (5.15)

with vacuum boundary conditions on ψ, found in [37]. Specifically, assume we desire the detector re-

sponse R over a specific region d with volume Vd. The response is represented by the integrated reaction

rate over d,

R =

∫
Vd

d3r
∫ ∞

0
dE Σ̂t(~r, E)φ(~r, E). (5.16)

Let

Σ̂d(~r, E) =

 Σt(~r, E) ~r ∈ d

0 ~r < d
(5.17)

be the characteristic function defined on d weighted by the total cross section of the detector. We define

the corresponding adjoint problem as

H+ψ+ = Σ̂d(~r, E), (5.18)

where ψ+ satisfies (5.10). Multiply both sides of (5.18) by ψ+ to obtain

ψ+Hψ = ψ+q (5.19)
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and multiply both sides of (5.18) by ψ to obtain

ψH+ψ+ = ψΣ̂d(~r, E). (5.20)

We integrate over ~r3, Ω̂, and E then use the identity (5.4) to see∫
d3~r

∫
dΩ̂

∫
dE ψ+Hψ −

∫
d3~r

∫
dΩ̂

∫
dE ψH+ψ+ =∫

d3~r
∫

dΩ̂

∫
dE ψ+q −

∫
d3~r

∫
dΩ̂

∫
dE ψΣ̂d(~r, E) (5.21)

0 =

∫
d3~r

∫
dΩ̂

∫
dE ψ+q − R (5.22)

Therefore, we obtain

R =

∫
d3~r

∫
dΩ̂

∫
dE ψ+q, (5.23)

an integral of the adjoint weighted external source. To better understand the physical meaning of ψ+, we

define an external source emitting particles at a rate of one per second at location ~r0 in direction Ω̂0 with

energy E0 as

q(~r, Ω̂, E) = δ(~r − ~r0) δ(Ω̂ − Ω̂0) δ(E − E0). (5.24)

Substituting (5.24) into (5.23), we see

R =

∫
d3~r

∫
dΩ̂

∫
dE ψ+(~r, Ω̂, E) δ(~r − ~r0) δ(Ω̂ · Ω̂0) δ(E − E0) (5.25)

= ψ+(~r0, Ω̂0, E0). (5.26)

Therefore, the expected contribution of a particle in (~r0, Ω̂0, E0) to the response R is ψ+ at (~r0, Ω̂0, E0).

We view ψ+ as the importance of particles produced from q relative to R. This importance metric is

critical in the CADIS and FW-CADIS variance reduction techniques.

We solve (5.18) with methods using discrete ordinates found in Section 2.3.1. Two methods used in

production level codes are the linear-discontinuous galerkin finite element method [48,63], and the step

characteristics method [35].

We use codes developed at Oak Ridge National Laboratory for results found in Chapter 6. The

Denovo code [16] calculates the adjoint solution and the Shift code [46] performs the Monte Carlo

simulation. Both codes are in Exnihilo of the Scale code suite [1].
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5.2.3 Consistent Adjoint Driven Importance Sampling and Weight Windows

Considering the detector response problem, we rewrite the total response with the adjoint scalar flux as

R =

∫
dE

∫
d3~r φ+(~r, E) q(~r, E). (5.27)

From (5.4), we see ∫
d3~r

∫
dΩ̂

∫
dE ψ+Hψ =

∫
d3~r

∫
dΩ̂

∫
dE ψH+ψ+ (5.28)∫

d3~r
∫

dΩ̂

∫
dE ψ+q =

∫
d3~r

∫
dΩ̂

∫
dE ψq+, (5.29)

with adjoint problem

H+ψ+ = q+, (5.30)

where q+ is the adjoint source. Therefore, we also have

R =

∫
dE

∫
d3~r φ(~r, E) q+(~r, E). (5.31)

We let q+ = σd, an objective function such as a dose rate response function. A dose rate response

function is simply a flux-to-dose rate conversion factor. In (5.18), we have the reaction rate objective

function σd(~r, E) = Σ̂d(~r, E).

We solve (5.30) given q+ and integrate to obtain φ+. Considering φ+ as a measure of particle impor-

tance to R, we bias the source relative to φ+ and normalize. The biased source distribution is

q̂ =
φ+(~r, E) q(~r, E)∫

dE
∫

d3~r φ+(~r, E) q(~r, E)
=
φ+(~r, E) q(~r, E)

R
. (5.32)

If we sample particles from q̂, samples are proportional to expected contributions to R. We also use

φ+ and q̂ to form the weight windows for the Monte Carlo simulation.

A weight window has an upper and lower bound, ŵu and ŵ`. The lower bound is

ŵ`(~r, E) =
R

φ+(~r, E)
(
c + 1

2

) , (5.33)

where c is the width of the window. It is a user parameter and defines the ratio

c =
ŵu

ŵ`
. (5.34)
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Therefore, the upper bound is

ŵu = cŵ`. (5.35)

If a particle’s weight rises above ŵu, for example, when moving in the direction of the detector,

the particle is split. If the particle’s weight falls below ŵ`, when moving away from the detector, the

particle is rouletted. Each of these actions either brings the particle back into the allowable weight range

or removes the particle from the system.

Finally, the biased source and weight windows are consistently defined, so initial weights for source

particles must lie within the windows. This avoids immediate splitting and rouletting at birth. The

weights ŵ satisfy

ŵ0(~r, E) q̂(~r, E) = w0(~r, E) q(~r, E) (5.36)

where w0 ≡ 1 in the unbiased problem. Therefore, the initial weights are

ŵ0(~r, E) =
q(~r, E)
q̂(~r, E)

=
R

φ+(~r, E)
. (5.37)

5.2.4 Forward-Weighted CADIS

Forward-weighted CADIS has the same goal as CADIS but instead optimizes multiple detector regions

or distributions over large parts of the problem space [59, 61]. The recommendation in [11] is that

Monte Carlo particles be uniformly distributed throughout the domain. With this objective, we find an

appropriate choice of q+ to use in (5.31).

The physical neutron density n(~r, Ω̂, E) in the system is proportional to the Monte Carlo particle

density m(~r, Ω̂, E) scaled by their average particle weights w̄(~r, Ω̂, E), so

n(~r, Ω̂, E) ∝ w̄(~r, Ω̂, E) m(~r, Ω̂, E). (5.38)

We also know

ψ(~r, Ω̂, E) = n(~r, Ω̂, E) v(~r, Ω̂, E), (5.39)

where v is the particle velocity. Substituting (5.38) into (5.39) and solving for m, we obtain

m(~r, Ω̂, E) = ψ(~r, Ω̂, E)
[

1

w̄(~r, Ω̂, E) v(~r, Ω̂, E)

]
. (5.40)

Setting m constant in (5.38), we see

n(~r, Ω̂, E) ∝ w̄(~r, Ω̂, E) (5.41)

ψ(~r, Ω̂, E) ∝ w̄(~r, Ω̂, E) v(~r, Ω̂, E). (5.42)
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Integrate (5.40) over ~r3, Ω̂, and E to obtain

R′ =

∫
d3~r

∫
dΩ̂

∫
dE ψ(~r, Ω̂, E)

[
1

ψ(~r, Ω̂, E)

]
. (5.43)

We notice that if we define

q+(~r, Ω̂, E) =
1

ψ(~r, Ω̂, E)
, (5.44)

then (5.31) becomes (5.43). We achieve uniform Monte Carlo particle density by weighting q+ propor-

tional to 1/ψ.

In FW-CADIS, we weight the q+ response function by 1/φ, where φ is a coarse forward scalar flux

solution of (5.18). With the weighted q+, we solve (5.30) for a forward weighted importance metric φ+.

Now, when forward flux is low, the adjoint importance is high and vice-versa. We use φ+ to create a

biased source and weight weights in CADIS for the Monte Carlo calculation.

As an example from [61], let σd(~r, E) be the dose rate response function over a mesh tally. The total

dose rate is

D(~r) =

∫
dE φ(~r, E) σd(~r, E), (5.45)

a spatially dependent quantity. The adjoint source is

q+(~r, E) =
σd(~r, E)∫

dE φ(~r, E) σd(~r, E)
. (5.46)

And, if the goal is to obtain responses on a restricted volume Vd, we redefine (5.46) as

q+(~r, E) =


σd(~r, E)∫

dE φ(~r, E) σd(~r, E)
, ~r ∈ Vd

0, ~r < Vd.

(5.47)
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Chapter 6

Hybrid and Parallel Domain Decomposed
Monte Carlo

In this chapter, we discuss the motivation for domain decomposition Monte Carlo(DDMC) and diag-

nosing the load imbalance problem that arises. We propose a nonuniform processor allocation strategy

to alleviate the load imbalance between subdomains and we introduce a diagnostic-based approach to

optimize the allocations. The strategies are then applied to three test cases, including the Watts Bar

Nuclear 1(WBN1) initial start up reactor. All relevant contributions to the Shift code base are found in

Appendix A.3. All features are currently available to users in the production line code.

6.1 Parallel Computing

A parallel computation is a computation performed over concurrently running processor cores.

Definition 6.1.1. A core is a single processing element of a central processing unit (CPU) that carries

out program instructions.

Each core runs its set of instructions on local data that is stored on the node.

Definition 6.1.2. A node is a self contained compute unit of locally connected cores. Each node contains

cores, memory, storage, and an input/output communication system.

Node often exist within a computer cluster of many nodes, such as Titan. When a submitting par-

allel job to the job scheduler, users must select the number of processor cores per node to use for the

calculation (up to 16 cores for Titan). Reducing the cores per node may reduce memory usage if users

are facing memory constraints, but all other processors on the node remain idle during the calculation.

When necessary, data communication between cores or nodes is performed using network con-

nections and message passing commands. Message Passing Interface(MPI) [38] is used for distributed
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memory programs, required in node-to-node communication, and OpenMP [45] is used for shared mem-

ory programs, required in on-node core-to-core communication. We use the two messaging systems

together when computing on a cluster of many nodes each with several cores. To send a message it is

required to know the cores’ ranks and the message size.

Definition 6.1.3. A rank is the core’s index in the fixed ordered set of cores.

If we, for example, need to send a particle from one core to another, we use the ranks of both cores

and the datasize of the particle. Furthermore, to complete a parallel computation we consolidate through

messages the concurrent calculations to produce the final result.

Shift is one of the few radiation transport codes that supports parallel execution using both domain

replication and domain decomposition [60]. In domain replication, multiple cores each maintain a full

copy of the problem domain and perform independent simulations of particle histories and tally the

corresponding responses. At the end of the simulation, the results from each core are consolidated to

produce a final estimation of the desired responses. Because the work performed by each core is entirely

independent, domain replication achieves a very high parallel efficiency, weak scaling at 99% efficiency

up to 300k cores [46]. A calculation’s parallel efficiency is

E f fparallel =
1

Nprocs

(
Tserial

Tparallel

)
, (6.1)

and measures a parallel computation’s resource utilization.

To understand an algorithms scalability, we obtain a series of measurements in parallel efficiency

forming a scaling study, either weak or strong.

Definition 6.1.4. Weak scaling measures the variation in solution time as the number of processors

changes for a fixed problem size per processor

Definition 6.1.5. Strong scaling measures the variation in solution time as the number of processors

changes for a fixed problem size.

For example, a strong scaling study runs a series of 100k particle simulations with increasing pro-

cessor counts. In contrast, a weak scaling study will scale the number of particles with the processor

count (e.g. 100k particles for 1 processor and 400k particles for 4 processors).

6.2 Data Decomposition

However, for some problems it may not be feasible to fully replicate the problem domain due to the

memory costs associated with storing the desired quantities on node. In this case, it is necessary to

spatially decompose the problem such that each processor only has knowledge of a subset of the full
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problem domain. If a particle history reaches the edge of a processor’s domain that does not correspond

to a global domain boundary, it must communicate the particle to a neighboring processor that owns the

information needed to continue transporting the particle. Because communication is required between

processors during this process, the parallel efficiency for domain-decomposed Monte Carlo is typically

much lower than for the domain-replicated case. Shift uses a combination of replication and decom-

position known as multiple set, overlapping domain (MSOD) [46]. An example of MSOD is seen in

Figure 6.1.
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Highlighted region

Overlapping region 
(shared between multiple blocks)

Local region (exclusively owned by a block in domain decomposed MC)

Ns sets

Spatial block boundary

The highlighted section shows 12 blocks
with overlapping regions

Figure 6.1: Example of MSOD geometry entirely replicated over 4 sets.
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In this approach, the global problem domain is spatially decomposed into (possibly overlapping)

domains. A collection of domains that spans the global problem domain is known as a set.

Definition 6.2.1. A set is an instance of the fully replicated geometry that simulates a batch of particles.

A set may be replicated as many times as is desired to utilize additional processors. For example,

an Np particle Monte Carlo simulation may be split into Nb batches each with Np/Nb particles. If we

assume perfect parallel scaling, then time to completion reduces by the factor Nb. We track different

batches and processors transporting particles through set and domain ids. For domain replication, set

and domain ids are identical.

Definition 6.2.2. A domain id is the global rank of a processor transporting particles over a portion of

the geometry.

Because domain decomposition is less efficient than domain replication, the problem is spatially

decomposed into the fewest domains that allows the problem to satisfy per-node memory limitations

and then replicated as many times as possible with available computing resources.

6.3 Synchronous Domain Decomposed Monte Carlo

In domain decomposed Monte Carlo [26, 60], we divide the problem data by its spatial variable into Nd

uniform subdomains, or blocks.

Definition 6.3.1. A block is a spatial subdomain in the decomposition.

Particles that lived on the undecomposed geometry, now live on blocks with shared boundaries.

Each block is associated with distinct processors. Particles that cross block boundaries are added to a

communication buffer between processors. We must decide when to communicate buffered particles to

the new subdomain and continue with their flights.

We consider a synchronous domain decomposed scheme as opposed to an asynchronous scheme [7].

The synchronous domain decomposed Monte Carlo simulates a generation of particles between sync

points.

Definition 6.3.2. A generation is a number of particles transported from either sources or communica-

tion buffers.

We also use the term iterations per generation. The algorithm for the synchronous DDMC imple-

mentation is seen in Algorithm 8, where Nppg is the number of particles per generation.
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Algorithm 8 Synchronous DDMC algorithm
synchronous ddmc(Np,Nd,Nppg)

Decompose geometry into Nd subdomains

while !complete do
for i = 1 : Nppg do

if !bank.empty() then
Transport bank particle to termination or into outgoing buffer

else if !source.empty() then
Transport source particle to termination or into outgoing buffer

end if
end for
Communicate particle buffers and dump into existing banks

Check for complete

Update generation counter

end while
Global reduction of tally results across sets

The blocks are flagged as finished when their generation is completed or they run out of particles to

transport. Processors are halted to transfer particles across boundaries and update fission sources. The

simulation continues with the next generation. We complete generation after generation until we reach

Np samples from the source distribution and all buffers are empty. We store tally data as the simulation

runs.

Our motivation for choosing the synchronous scheme is to avoid race conditions that may occur

with particle splitting [6]. Race conditions are undesirable situations that occur when two elements of a

system experience an ordering or timing problem leading to unexpected program behavior. This arises

during asynchronous parallel operations. Syncing the processors invaluably prevents communication

and halting faults but slows the overall runtime of the computation.

6.4 Load Imbalance

By definition, load imbalance is an unequal distribution of work across processors. Idle processors do not

contribute and therefore do not reduce time to completion. In fixed-source Monte Carlo calculations with

isolated sources, for example, a group of the processors may not be transporting particles. The majority

of transported particles for fixed-source calculations are in subdomains near sources. Statistically few

particles will travel to subdomains far away from sources. The processors allocated to these subdomains

will sit idle after their small workload is completed. In hybrid Monte Carlo calculations, the particle
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storms that form due to particle splitting create massive burdens on subdomains near target tally regions.

If the load is not balanced, parallel efficiency greatly reduces.

The magnitude of this effect also depends on leakage fractions and the fineness of the decompo-

sition [50]. Leakage between blocks reduces load imbalance by providing work to idle processors.

Whereas, a finer decomposition increases the number of processors without useful work when under

load imbalance. The objective is to reduce the load imbalance effect.

6.4.1 Domain Decomposition Numerical Results

The first case we consider investigates the cost of communication from the synchronous scheme without

load imbalance. We consider a 12x12 assembly grid with each assembly containing a 17x17 grid of

UO2 fuel pins, seen in Figure 6.2. The design specifications are seen in Table 6.1. We calculated parallel

efficiencies for decompositions with processor counts of {1, 8, 64, 216} and constant generations of 1,000

particles. All calculations were performed on the Titan Cray XK7 [42] at Oak Ridge National Laboratory.

Table 6.1: Fuel assembly grid specifications

Parameter Dimensions Np Source Spectrum Boundary Conditions

Value 257 × 257 × 100cm 1e6 Uniform Watt Vacuum

Figure 6.2: UO2 fuel pin and assembly.
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Figure 6.3: Parallel efficiencies for 12x12 UO2 assembly grid with uniform source distribution.

From Figure 6.3, we see that parallel efficiency is deteriorating as processor count increases, with

216 processors barely reaching 50% efficiency. We aim to maintain efficiency in the 8 to 64 processor

regime. This decomposition regime allows us to fit the decomposed problem data onto nodes.

The second case we consider investigates the cost of communication and load imbalance. We con-

sider a cube of uniform water moderator of different widths. We artificially create load imbalance by

placing a box source, having width equal to 20% of the total domain width, in either the domain center

or a domain corner. We calculated the average mean free path of particles at energies 1e6–1e7 eVs in

water to be 7.85cm using the Nemesis package in Scale [1].

Definition 6.4.1. A mean free path is the material and energy dependent quantity that describes the

average distance between collisions.

The design specifications are seen in Table 6.2. We calculated parallel efficiencies for decomposi-

tions with processor counts of {1, 8, 64} and constant generations of 1e3 particles.
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Table 6.2: Uniform water moderator specifications

Test Case Widths Np Source Spectrum Boundary Conditions

1 {2, 4, 11} mfps 1e6 Uniform Uniform 1e6–1e7 eVs Vacuum

2 {2, 4, 11} mfps 1e6 Centered Uniform 1e6–1e7 eVs Vacuum

3 {2, 4, 11} mfps 1e6 Cornered Uniform 1e6–1e7 eVs Vacuum

4 {2, 4, 11} mfps 1e6 Cornered Uniform 1e6–1e7 eVs Reflective

5 {2, 4, 11} mfps 1e6 Cornered Uniform 1e6–1e7 eVs Half-Reflective

In Table 6.2, half-reflective boundaries have reflective boundaries on the three faces nearest the

source box and vacuum boundaries on the three faces farthest away.
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Figure 6.4: Parallel efficiencies for uniform water moderator with uniform source distribution.
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Figure 6.5: Parallel efficiencies for uniform water moderator with a centered source distribution.
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Figure 6.6: Parallel efficiencies for uniform water moderator with a cornered source distribution.
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Figure 6.7: Parallel efficiencies for uniform water moderator with a cornered source distribution and
full reflective boundaries.
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Figure 6.8: Parallel efficiencies for uniform water moderator with uniform source distribution and half
reflective boundaries.
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We see that efficiencies in Figure 6.4 are heavily affected by the width of the geometry. As the ge-

ometry size increases the parallel efficiency increases. The curve for 11 mfps, which is the approximate

width of the assembly problem, closely resembles the curve in Figure 6.3. In Figure 6.5, the centered

source calculations drastically lose efficiency when the decomposition increases to 64 processors. The

cornered source test cases each have poor efficiencies for all decompositions. In Figure 6.6, no case

reaches above 25% with vacuum boundaries. In Figure 6.7 and Figure 6.8, we observe that as reflec-

tive boundaries are added the efficiencies rise. This indicates that total domain leakage worsens the

load imbalance effect. We also notice that as the width increases the efficiency decreases, in contrast

to Figure 6.4. Therefore, we seek strategies to reduce this effect on parallel efficiency. In particular, we

investigate assigning processors nonuniformly to subdomains.

6.5 Nonuniform Processor Allocation for Domain Decomposition

We extend the parallel decomposition strategy in Shift to allow a more flexible assignment of processors

to Shift subdomains [14]. We show that the proposed scheme has the potential to improve Shift’s parallel

efficiency significantly. Current capabilities in Shift only allow for a uniform allocation of processors

for each subdomain, see Figure 6.9a. We have a two dimensional domain decomposed into sixteen

subdomains. In each of the subdomains, we have four processors transporting particles represented by

the four stacked rectangles. If we allocate processors relative to their load, we reduce the load imbalance

penalties from domain decomposition. With nonuniform processor allocation, we judiciously allocate

processors, see Figure 6.9b. In this example, the source is strongest in the center subdomain, so we

reassign processors from outer domains to alleviate the load imbalance.

(a) 64 processors uniformly over a 4 × 4 decomposi-
tion.

(b) 64 processors nonuniformly over a 4 × 4 decom-
position.

Figure 6.9: Uniform vs. nonuniform allocations.

One critical limiting factor for the domain decomposed calculation is the subdomain with the great-

est work to processor allocation ratio. In Shift, we have implemented a synchronous domain decomposed

scheme as opposed to an asynchronous scheme [7]. The synchronous scheme simulates a fixed num-

ber of particles, called a generation, then all processors halt to communicate particles to neighboring
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subdomains. The algorithm’s synchronicity requires that all domains transport and communicate their

particles before continuing to the next generation. One poorly balanced subdomain leads to parallel

inefficiencies for the whole calculation.

Further, we have developed and implemented in Shift a new communication pattern for nonuniform

processor allocation, see Figure 6.10. It allows any processor to communicate particles with a subset of

its neighboring processors through particle buffers. Particle buffers are sized appropriately based on the

constant generation size. We ensure load balance across processors in a subdomain by communicating

a specific fraction of buffered particles to neighboring processors. The fractions are based on processors

in the current subdomain and processors in the neighboring subdomain.

Figure 6.10: Subdomain 1 with 7 processors communicating with neighboring subdomain 2 with 4
processors.

For example, consider the processor allocations in Figure 6.10. Assume we have 7000 particles on

subdomain 1 evenly divided amongst the 7 processors and all 7000 particles are to be communicated to

subdomain 2. We ensure that after communication each processor on subdomain 2 has 1750 particles.

To accomplish this, processor 1 from subdomain 1 transfers 100% of its buffered particles to processor 1

of subdomain 2. Processor 2 from subdomain 1 transfers 75% of its buffered particles to processor 1 of

subdomain 2 and 25% to processor 2 of subdomain 2. Processor 3 from subdomain 1 transfers 100% of

its buffered particles to processor 2 of subdomain 2. Processor 4 from subdomain 1 transfers 50% of its

buffered particles to processor 2 of subdomain 2 and 50% to processor 3 of subdomain 2, and so on for

all processors. This strategy reduces size and number of messages from neighbor to neighbor, thereby

keeping communication costs small.
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6.5.1 Optimization of Nonuniform Processor Allocation

Nonuniform processor allocation increases the degrees of freedom that must be optimized. Two ap-

proaches are introduced to determine the distribution of processors: one based on an implicit filtering

optimization algorithm and one based on timing diagnostics collected during the execution of a small

initial calculation. It is shown that the approach based on timing diagnostics is simpler to implement

and produces a more optimal final result.

We aim to find the optimal static processor allocation across subdomains in order to best fit the load

and reduce overall runtime. To formulate the optimization problem, the design vector, q ∈ NNd , is a

vector of integer processors per subdomain with Nd subdomains. We minimize the transport run-time

of a highly parallel domain-decomposed Monte Carlo simulation. We order the elements of q with a

column-major cardinal index, see Figure 6.11. For example, in the 3x3x3 decomposition, logical index
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Figure 6.11: Cardinal ordering of subdomains for 3x3x3 decomposed domain.

(2, 1, 0) maps to index 5 and (1, 0, 2) maps to index 19.

We consider the discrete optimization problem

min
q∈Ω

f (q), (6.2)

where

Ω = {q ∈ NNd | 1 ≤ (q)i ≤ Nprocs − (Nd − 1)}, (6.3)

the feasibility region and Nprocs is the total number of processors to be allocated. We also require that
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all processors are allocated creating the linear constraint

Nd∑
i=1

(q)i = Nprocs. (6.4)

Our first approach is to solve the minimization problem using implicit filtering [31]. Implicit fil-

tering is a deterministic sampling algorithm for real-valued, bound constrained optimization. It is de-

signed to minimize noisy, nonsmooth objective functions. It combines the advantages of pure sampling,

like Nelder-Mead [41], and interpolatory methods [10, 47], which use first-order interpolation and a

quasi-Newton model Hessian. Pure sampling explores the inherent noisy function surface well, and the

quasi-Newton model Hessian exploits regions which are well approximated by smooth functions for

accelerated convergence. Parallel timings are inherently noisy; therefore, pure gradient-based methods

are ill-suited for this problem.

Second, we solve the minimization problem using run-time diagnostics collected during a low parti-

cle count calculation. The updated synchronous DDMC algorithm with diagnostic collection is seen in

Algorithm 9.
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Algorithm 9 Synchronous DDMC algorithm
synchronous ddmc(Np,Nd,Nppg)

Decompose geometry into Nd subdomains

while !complete do
for i = 1 : Nppg do

if !bank.empty() then
timer.start()

Transport bank particle to termination or into outgoing buffer

timer.stop()

else if !source.empty() then
timer.start()

Transport source particle to termination or into outgoing buffer

timer.stop()

end if
end for
Communicate particle buffers and dump into existing banks

Check for complete

Update generation counter and diagnostics

end while
Global reduction of tally results across sets

After the calibration calculation, we have the total transport time, tprocs ∈ R
Nprocs
+ , for each processor.

We flatten tprocs to td ∈ R
Nd
+ with Nprocs ≥ Nd. For example, if processors 0, 1, 2 are allocated to

subdomain 0, then (td)0 is the cumulative processing time for processors 0, 1, 2. These timings are then

used to calculate a processor allocation using Algorithm 10 [44]. This algorithm is designed to reduce

the maximum load-to-processor allocation ratio across all subdomains. We begin with one processor

allocated to each subdomain and distribute each remaining processor sequentially to the subdomain

with the current worst load.

Several metrics could be used to guide the processor allocation process. Total particles transported

and sourced on each subdomain is a potential candidate. Alternatively, if communication is the bottle-

neck, communication diagnostics may be optimal. In this study, we target reducing overall transport

time.
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Algorithm 10 Processor Allocation
allocate procs(td,Nprocs)

Set q = (1, 1, · · · , 1)T ∈ NNd .

for k ∈ {1, · · · ,Nprocs − Nd} do
Find i∗ = argmax0≤i≤Nd−1

[
(td)i/(q)i

]
.

Increment (q)i∗ by 1.

end for

Run-time diagnostics are an attractive alternative to iterative optimization methods because the

diagnostic-based approach does not require multiple costly function evaluations. It only requires the

single calibration step (often with very few calibration particles needed), then the calculation continues

to the full particle MC run.

6.5.2 Nonuniform Processor Allocation Test Problems

The objective is to achieve the highest possible intra-set parallel efficiency by (1) spatially decomposing

the problem into the smallest number of subdomains required and (2) optimizing the distribution of

subdomains to improve load-balancing while reducing communication costs. Thus, we only consider

single set cases in the results that follow because each set may be replicated multiple times to scale to

an arbitrarily large number of nodes. Since the set-to-set scaling is nearly linear [23, 46], the efficiency

achieved on a single set will be roughly equivalent to the scaling across thousands of sets, which is

sufficient to utilize the largest multi-node machines that currently exist and are in development over the

next decade.

We consider two test cases: a dogleg duct problem, comparable to [33], and a small modular reactor

(SMR) vessel fluence problem. Both test cases are highly load imbalanced for both forward and hybrid

calculations. All calculations were performed on Titan [42], a Cray XK7 supercomputer at Oak Ridge

National Laboratory.

First, we consider the dogleg duct problem whose geometry is seen in Figure 6.12. The channel is

filled with air, the walls are concrete, the source is uranium-238, and the detector is steel. The boundaries

are all vacuum. The dogleg duct problem is primarily a hybrid calculation where we seek to optimize

the tally region at the location of a detector. Load imbalance forms due to the isolated source and heavy

particle splitting near the detector. Regions away from the source, detector, and channel transport far

fewer particles. In the forward calculation, particles have low probabilities of fully traveling through the

channel to the detector. The bulk of source particles remain on one half of the spatial domain, indicating

strong load imbalance. Forward and adjoint fluxes are seen in Figure 6.13 and 6.14.

Second, we consider an SMR vessel fluence problem whose geometry is seen in Figure 6.15. The
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SMR case is an axial slice containing a 7x7 assembly grid each with uranium-238 fuel pins. Outside

of the assemblies we have a water moderator and the reactor is encased in a steel vessel. The top and

bottom axial boundaries are reflecting and the others are vacuum. In the SMR forward calculation, a

majority of particles remain in the core with few ever reaching the vessel creating load imbalance. In the

hybrid ex-core calculation, the source is biased to produce a majority of particles near the core edges.

Particles that travel to the center of the core are quickly terminated. In both cases, the load imbalance

is significant enough to warrant nonuniform processor allocation when running domain decomposition.

Forward and adjoint fluxes are seen in Figure 6.16 and 6.17.

Figure 6.12: Geometry of dogleg duct.

6.5.3 Optimization Comparisons

We present a comparison of implicit filtering and the run-time diagnostic-based optimization for the

dogleg duct problem with a 3 × 2 × 1 and 6 × 4 × 1 decomposition. In Figure 6.18, we plot convergence

of three separate iterations versus total function evaluations. Each iteration of implicit filtering requires

multiple function evaluations. For each function evaluation we simulate 240k, 120k, and 60k source

particles and aim to minimize the Shift runtime. The initial iterate is a uniform allocation of 8 processors

per subdomain, or 48 total processors for the 3×2×1 decomposition. Currently, when coupling implicit
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Figure 6.13: Forward flux for dogleg problem.
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Figure 6.14: Adjoint flux for dogleg problem.
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Figure 6.15: Geometry of SMR problem.
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Figure 6.16: Forward flux for SMR problem.
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Figure 6.17: Adjoint flux for SMR problem.
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filtering with Denovo and Shift, a full adjoint calculation must be performed each function evaluation.

Adjoint calculations are not computationally cheap, and the number of necessary function evaluations

only increases with finer decompositions. Implicit filtering requires at least 50 function evaluations to

0 20 40 60 80
Function Evaluations

0

20

40

60

80

T
ra

ns
po

rt
 R

un
tim

e(
s)

240k Particles per Iteration
120k Particles per Iteration
60k Particles per Iteration

Figure 6.18: Implicit filtering iteration histories for the hybrid 3 × 2 × 1 dogleg duct problem.

find the minimizer for the 240k particle case, which reduces the Shift runtime by 50%. As the number

of source particles per iteration decreases, the improvement slightly worsens. With 60k particles per

iteration, runtime is reduced by 40%.

We consider the 3×2×1 and the 6×4×1 decomposition (48 and 192 processors) for the diagnostic-

based approach. The 6×4×1 decomposition has 24 degrees of freedom and the linear constraint, which

becomes an intractable problem for implicit filtering’s direct search. To avoid the need for multiple

function evaluations, the diagnostic-based approach collects the needed data and performs Algorithm 10,

a single time. The diagnostic-based approach finds the minimizer in one function evaluation as long as

the number of source particles is sufficient. In Figure 6.19, we plot the number of calibration source

particles and the resulting post-calibration runtime for both decompositions. We simulate 2.4 million

particles for the 3 × 2 × 1 decomposition with 48 processors and 9.6 million particles for the 6 × 4 × 1

decomposition with 192 processors. This maintains 50k particles per processor for each post-calibration

run. With 1k calibration particles we roughly converge to the minimizer for both decompositions. The

calibration step itself required a transport time of 1.4 seconds for the 6 × 4 × 1 decomposition and 0.80

seconds for the 3×2×1 decomposition. We observe, for these problems, that the optimization landscape
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Figure 6.19: Source particles versus post-calibration runtime for the hybrid 3 × 2 × 1 and 6 × 4 × 1
dogleg duct problem.

near the minimizer is fairly flat, so the runtimes of calculations using allocations near the minimizer do

not drastically change.

Once the optimized allocation is produced, the allocation remains static for the rest of the calcula-

tion. Further dynamic calibration may be required if the load shifts during the calculation. Figure 6.20

shows the transport times for each generation for each processor with and without the processor cali-

bration. The generation timings for the uniform allocation has a conspicuous stair-stepping pattern. A

step-down occurs when processors have less particles to transport than the generation size. After calibra-

tion, the stair-stepping is gone and each domain terminates at roughly generation 850. We reduce both

the number of generations and the transport time for each generation. We see no part of the calibration

where further calibration would be beneficial. The only load shifts still remaining are at the beginning

and end of the calculation. Calibration specifically for these two periods would most likely not provide

a net reduction in overall runtime. Comparatively, if we consider the time-dependent Implicit Monte

Carlo method [17], it would require dynamic calibration due to the frequent shifts in load over time.

Importantly, the optimized generation timings contain single-generation spikes due to rare hybrid

events. A particle with a large weight enters an important weight window region and massive particle

splitting occurs. Each generation’s runtime is dependent on the slowest processor, so the presence of

many spikes may hurt the efficiency of the calculation.

In Figure 6.21, we marginalize out the generation variable to produce total transport and wait timings
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Figure 6.20: Uniform and optimized transport times each generation for every processor in the 6×4×1
hybrid dogleg duct problem.

for each processor. The wait time is the amount of time a processor spends idle after it transports its

generation. The uniform transport timings cluster in groups of 8 processors for each subdomain in the

problem, whereas the optimization transport timings all lie below a certain timing threshold. The timing

of the highest uniform cluster is well above this optimized timing threshold. The difference reveals a

remarkable reduction in runtime. The same is true for the wait timings, where the wait time is reduced

from 500 seconds to roughly 50 seconds. The few processors above the threshold in the wait timings

figure are processors with little work during the whole calculation. Their allocations are already set to

just one processor and cannot be reduced further.

Overall, direct search algorithms, like implicit filtering, struggle to scale as the number of design

variables increases [29]. The diagnostic-based approach scales excellently. It requires only enough par-

ticle histories to describe the space fully. Of the two methods, the diagnostic-based method outperforms

implicit filtering in both performance and ease of implementation. We know of no cases where iter-

ative methods would beat the diagnostic-based approach. Further results use diagnostics to optimize

all processor allocations. We note that diagnostic-based optimization may have potential use for other

algorithms with independent sampling that face on-node memory constraints and load imbalance.

6.5.4 Weak Scaling Study

We use a series of decompositions to explore how decomposition and load balancing affect transport

performance. In the dogleg duct problem, we perform a weak scaling study maintaining 200k and 50k

source particles for each processor in the calculation, respectively. A uniform allocation has 8 processors

per subdomain. As an example, the 8×6×1 case uses 384 processors. Decompositions and Shift runtimes
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Figure 6.21: Transport and wait times over all generations for every processor in the 6 × 4 × 1 hybrid
dogleg duct problem.

Table 6.3: Weak scaling study and performance improvements for the forward dogleg duct problem.

Decomp. Processors Shift Runtime (s) Shift Runtime (s) Ratio
Uniform Procs Optimized Procs

3x2x1 48 103.5 36.7 282.0%
4x3x1 96 131.7 41.1 320.4%
6x4x1 192 148.3 52.8 280.9%
8x6x1 384 306.3 100.9 303.6%

are seen in Tables 6.3 and 6.4 for the forward and hybrid cases, respectively. Processors and Shift parallel

efficiencies are seen in Figures 6.22 and 6.23. The adjoint Denovo calculation is excluded in these

runtimes, because we are measuring nonuniform processor allocation’s effect on MC performance.

We achieved forward improvements of at least 224% with an upward trend as the decomposition

is refined further. Optimized hybrid calculations produced at least a 186% improvement, also with an

upward trend. Load imbalance and parallel inefficiency is known to increase with the number of sub-

domains [50]. In these cases, uniform processor allocation further loses parallel efficiency. And so, an

optimal processor allocation sees more improvement as load imbalance worsens.

For the forward and hybrid SMR vessel fluence problems, we maintain 200k source particles per

processor. The results of the weak scaling studies are provided in Table 6.5 and 6.6. Processors and

Shift parallel efficiencies are seen in Figures 6.24 and 6.25.
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Table 6.4: Weak scaling study and performance improvements for the hybrid dogleg duct problem.

Decomp. Processors Shift Runtime (s) Shift Runtime (s) Ratio
Uniform Procs Optimized Procs

3x2x1 48 311.9 167.7 186.0%
4x3x1 96 371.1 182.5 203.3%
6x4x1 192 580.1 225.9 256.8%
8x6x1 384 780.3 383.8 203.3%
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Figure 6.22: Forward Shift parallel efficiency versus processor count with uniform and optimized pro-
cessor allocations for the dogleg duct problem.

Table 6.5: Weak scaling study and performance improvements for the forward SMR vessel fluence
problem with fission source.

Decomp. Processors Shift Runtime (s) Shift Runtime (s) Ratio
Uniform Procs Optimized Procs

2x2x1 32 116.3 116.3 100.0%
4x4x1 128 305.1 118.4 257.7%
6x6x1 288 371.8 149.3 249.0%
8x8x1 512 340.4 140.6 242.1%

10x10x1 800 393.3 135.7 289.8%
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Figure 6.23: Hybrid Shift parallel efficiency versus processor count with uniform and optimized pro-
cessor allocations for the dogleg duct problem.

Table 6.6: Weak scaling study and performance improvements for the hybrid SMR vessel fluence prob-
lem with biased source.

Decomp. Processors Shift Runtime (s) Shift Runtime (s) Ratio
Uniform Procs Optimized Procs

2x2x1 32 119.4 119.4 100.0%

4x4x1 128 228.9 132.6 172.6%

6x6x1 288 409.0 186.1 219.8%

8x8x1 512 361.3 181.3 199.3%

10x10x1 800 657.4 262.1 250.8%

Forward calculations obtain runtime ratios of over 257%, whereas hybrid calculations see at least a

ratio of 172% with an upward trend. The forward and hybrid 2×2×1 cases see no improvement because

there is only a single processor per subdomain. As with the dogleg duct problem, runtime increases

as the decomposition is refined. The forward calculations with optimized allocations scale well to 800

processors for the 10×10×1 decomposition. Timing increases due to domain decomposition are largely
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Figure 6.24: Forward Shift parallel efficiency versus processor count with uniform and optimized pro-
cessor allocations for the SMR problem.
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Figure 6.25: Hybrid Shift parallel efficiency versus processor count with uniform and optimized pro-
cessor allocations for the SMR problem.

78



mitigated. This does not occur for uniform processor allocations. Hybrid calculation timings see upward

trends for both uniform and optimized allocations. The trend for uniform allocations greatly outpaces

the trend for optimized allocations. Runtime for uniform allocations grows by roughly a factor of 5.5

from the 2 × 2 × 1 to the 10x10x1 decomposition. Comparatively, runtime for optimized allocations

grows by only a factor of 2.2. Overall, nonuniform processor allocation provides greater improvements

as load imbalance worsens.

We also present a weak scaling study of the hybrid 8×8×1 SMR case over a series of total processor

counts to observe how the ratios converge. High processor counts allow nonuniform processor allocation

to fit the load’s distribution more optimally. In Table 6.7, low processor counts do not fully capture the

distribution and produce reduced speedups. As processor count increases, ratios quickly converge to near

200%. The same behavior is observed for other decompositions and test cases, as well. It is then possible

to utilize the MSOD process, without loss of performance, to reduce the total number of communication

buffers and messages. For example, we may restructure the 1024 processor calculation into 4 sets with

256 processors each at no loss of transport efficiency.

Table 6.7: Weak processor scaling study using an 8x8x1 decomposition for the hybrid SMR vessel
fluence problem with biased source.

Processors Shift Runtime (s) Shift Runtime (s) Ratio
Uniform Procs Optimized Procs

64 319.9 319.9 100.0%

128 337.8 214.2 157.7%

256 352.4 174.3 202.2%

512 348.0 176.3 197.4%

1024 357.2 180.2 198.2%

6.6 Problem 5 Watts Bar Nuclear 1 Reactor Core

Problem 5 of The Virtual Environment for Reactor Applications (VERA) core physics benchmark pro-

gression problem specifications [19] models the Watts Bar Nuclear 1 (WBN1) initial start up core. It

gives model specifications for simulation codes whose results are then compared with measurement

data from WBN1. The WBN1 core’s level of detail surpasses all previous test cases considered by our

investigations.
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6.6.1 Reactor Geometry

The WBN1 reactor geometry, seen in Figure 6.26, contains a full core of Westinghouse 17x17-type fuel

assemblies at beginning-of-life. The dimensions of the core are 483x483x419cm. The specific assembly

loading pattern is seen in Figure 6.27. It also contains the specific enrichment levels in percents of

each assembly and the number of pyrex control rods. Control rods are used by the nuclear technicians

to control the fission rate of the nuclear reactor. The model includes highly detailed representation of

instrumentation at the top and bottom of the reactor. A more thorough overview of the geometry and

instrumention representation is found in [19].

We may run the geometry with quarter symmetry but the instrumentation of the reactor is not sym-

metrical. In [19], only the quarter-core is considered due to the memory demands of the complex ge-

ometry. In their simulation, the quarter-core simulations required 10.7 GB of memory per core. Domain

decomposition allows us to handle memory demands, so we may simulate the full-core geometry with

asymmetrical instrumentation. We consider both forward and hybrid calculations for the full-core prob-

lem to test the processor allocation algorithm.

The resulting relative total fluxes of axial slices at various heights from the hybrid ex-core calculation

are seen in Figures 6.28-6.31. Data is missing near the center of the core due to source biasing and

repeated rouletting as particles move away from the vessel. In each slice, we see the vessel in which the

core is placed. As we move away from the center axial height, total flux decreases substantially.

6.6.2 Numerical Results

We use a series of 3D decompositions to examine transport performance. We perform a weak scaling

study maintaining 1 million source particles for each processor in the calculation. A uniform allocation

has 16 processors per subdomain. Optimized allocations are calibrated using 10k particles for each

processor. Decompositions, memory usage, and Shift runtimes are seen in Tables 6.8 and 6.9 for the

forward and hybrid cases, respectively. We use 8 processor cores per node when reporting the per node

memory usages for each Shift calculation (i.e. the number of nodes is equal to the number of processors

divided by 8).
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Figure 6.26: Problem 5 WBN1 reactor geometry.
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Figure 6.27: Problem 5 loading pattern with enrichment percentages and number of control rods.
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Figure 6.28: Problem 5 total flux for hybrid calculation in quarter symmetry at z = 40cm.

82



p5

0 100 200 300
x (cm)

0

50

100

150

200

250

300

y 
(c

m
)

-22

-20

-18

-16

-14

-12

-10

-8

-6

T
ot

al
 F

lu
x 

(lo
g)

Figure 6.29: Problem 5 total flux for hybrid calculation in quarter symmetry at z = 200cm.

0 100 200 300
x (cm)

0

50

100

150

200

250

300

y 
(c

m
)

-22

-20

-18

-16

-14

-12

-10

-8

-6

T
ot

al
 F

lu
x 

(lo
g)

Figure 6.30: Problem 5 total flux for hybrid calculation in quarter symmetry at z = 325cm.
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Figure 6.31: Problem 5 total flux for hybrid calculation in quarter symmetry at z = 400cm.

Table 6.8: Weak scaling study and performance improvements for the full forward P5 initial start up
core.

Decomp. Processors Memory Shift Runtime (s) Shift Runtime (s) Ratio
Per Node Uniform Procs Optimized Procs

1x1x1 16 8.3GB 826.8 826.8 100.0%

1x1x2 32 8.5GB 917.3 917.3 100.0%

1x1x4 64 8.4GB 1482 927.6 160.0%

1x1x8 128 8.4GB 1764 945.0 186.7%

2x2x1 64 8.4GB 852.4 852.4 100.0%

2x2x2 128 8.4GB 934.2 885.9 105.5%

2x2x4 256 8.5GB 1524 918.8 165.9%

4x4x1 256 8.6GB 3350 1287 260.3%

4x4x2 512 9.0GB 3701 1360 272.1%

4x4x4 1024 9.9GB 6024 1331 452.6%
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Table 6.9: Weak scaling study and performance improvements for the full hybrid P5 initial start up
core.

Decomp. Processors Memory Shift Runtime (s) Shift Runtime (s) Ratio
Per Node Uniform Procs Optimized Procs

1x1x1 16 > 32.0GB MEM MEM —%

1x1x2 32 20.8GB 417.5 417.5 100.0%

1x1x4 64 15.0GB 433.4 365.2 118.7%

1x1x8 128 12.1GB 455.9 418.7 108.9%

2x2x1 64 14.9GB 351.2 351.2 100.0%

2x2x2 128 11.9GB 364.1 364.1 100.0%

2x2x4 256 10.4GB 459.3 411.2 111.7%

3x3x1 144 11.6GB 746.1 386.8 192.9%

3x3x2 288 10.3GB 806.1 401.1 201.0%

3x3x4 576 9.8GB 1023 457.0 224.9%

4x4x1 256 11.1GB 630.0 624.6 100.8%

4x4x2 512 10.1GB 704.3 717.4 98.1%

4x4x4 1024 10.4GB 903.4 770.2 117.3%

Forward calculations obtain runtime ratios of over 160% with greater gains for finer decompositions.

The 4×4×4 decomposition achieves a ratio of 452%. Decompositions that see zero or little improvement,

such as the 2 × 2 × 2 decomposition, are already load balanced. As we further refine in z, runtimes

increase for both the uniform and optimized cases. The 2 × 2 × 1 and 2 × 2 × 2 decompositions are

both geometrically symmetric (ignoring the top and bottom reactor instrumentation), so uniform and

optimized runtimes do not differ as much as the 2 × 2 × 4 case. For all cases, calibration does no worse

than the uniform default; therefore, users should not fear that MC transport times will increase.

Hybrid calculations obtain more moderate runtime ratios for most cases—with the exception of

the 3 × 3 decompositions. Hybrid runtimes did not degrade as rapidly as the forward runtimes. Small

hybrid runtime degradation occurs when we decompose the z component past 2 divisions. Compared

to other decompositions, the 3 × 3 decompositions are outliers. The 1 × 1, 2 × 2, and 4 × 4 were all

relatively load balanced and saw zero to moderate speedups. Also, the optimal processor allocations

produced were not drastically different than the uniform allocations. Only in the 3 × 3 cases do we

see substantial improvements. This is due to how the subdomain boundaries lie, showing that the user

chosen decomposition is important to performance. The optimized 3 × 3 decompositions allocated all
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processors to the four corner subdomains in the x, y-plane. Neither the 2 × 2 nor 4 × 4 isolates the work

enough to lead to a load imbalance.

As a recommendation, users should target coarse decompositions that avoid elongated subdomain

shapes and minimize the surface-area-to-volume ratio. Higher surface area leads to a greater chance

that particles cross subdomain boundaries, requiring particle communication. Also, if users have prior

knowledge of the path particles will take, they should avoid placing successive subdomain boundaries in

the path. This is revealed by considering the difference between the 2×2×4 and 4×4×1 hybrid decom-

positions. Both have 16 subdomains but have different runtimes, both uniform and optimized. CADIS is

biasing particles radially outward towards the reactor vessel, so reducing the number of communications

per particle history may reduce runtime.

The memory scalings show noticeable difference between the forward and hybrid calculations. The

main memory burden of forward calculations is the continuous energy data, roughly 8GB, which must

exist on each node. Comparatively, the main memory burdens of the hybrid calculations are the con-

tinuous energy data, the weight window mesh, and the biased sources. For hybrid calculations, the

continuous energy data still exists on each node, but we partition both the weight window mesh and

the biased sources. This explains the fairly flat memory scaling for the forward calculations and the

asymptotic memory scaling for the hybrid calculations.

Processors and Shift parallel efficiencies are seen in Figures 6.32 and 6.33. In both figures, each

tick marker is a given x × y decomposition and the z decomposition varies. For example, the 1 × 1

decompositions are represented by a ‘+’ and z = {1, 2, 3, or 4}. This allows us to see the runtime effects

of different decompositions that use the same number of subdomains. We see consistent degradation

of efficiency for both uniform and optimized as the decompositions are refined, though degradation is

far worse without calibration. In the forward case, we remain above 50% efficiency for all optimized

cases and well above 80% for the coarsest cases, the common target decompositions. In the hybrid

case, improvements are more moderate, but we also stay above 80% efficiency for optimized cases up

to 3 × 3 × 4. The optimized 4 × 4 decompositions are noticeably separated from the other optimized

decompositions.

Overall, the WBN1 calculations obtain relatively similar improvements to the dogleg duct and

SMR problem when decompositions are load imbalanced. Nonuniform processor allocation and the

diagnostic-based optimization strategy reliably reduce load imbalance on domain decomposed radiation

transport calculations. Using this technique we recover much of the parallel efficiency lost by uniform

processor allocations that was used in Shift’s original domain decomposition implementation. The de-

fault nature of most source-detector radiation transport problems is load imbalanced, so exploring ef-

fective strategies is essential. The diagnostic-based algorithm far surpasses iterative optimization meth-

ods in performance by avoiding multiple costly function evaluations in a high performance computing

environment. Together, nonuniform processor allocation and diagnostic-based optimization deliver per-

formance improvements that scale with the severity of the load imbalance and problem size, at minimal
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Figure 6.32: Forward Shift parallel efficiency versus processor count with uniform and optimized pro-
cessor allocations for the WNB1 reactor problem.

102 103

Processors

0

0.5

1

1.5

P
ar

al
le

l E
ffi

ci
en

cy

Uni 1x1
Opt 1x1
Uni 2x2
Opt 2x2
Uni 3x3
Opt 3x3
Uni 4x4
Opt 4x4

Figure 6.33: Hybrid Shift parallel efficiency versus processor count with uniform and optimized pro-
cessor allocations for the WNB1 reactor problem.
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additional cost to Shift users. Problems with greater load imbalance will see an even greater reduction

in runtime over the uniform implementation. We improve our parallel efficiency in nearly all cases, and

commonly above 60-80% in the single set case. This allows users to use domain replication to scale

out to hundreds of thousands of cores on leadership compute platforms. Running domain decomposed

Monte Carlo efficiently in general is a challenge, and so Shift users facing data burdens will be more apt

to decompose their problem without complete deterioration of parallel performance.
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Chapter 7

Conclusions

In this thesis, we have introduced techniques for solving the fixed source neutron transport equation.

The main focus has been on diagnosing and improving performance of the domain decomposed Monte

Carlo implementation found in the massively parallel Shift Monte Carlo code developed at Oak Ridge

National Laboratory. We began with critical background information such as the transport equation

derivation, transport terms, boundary conditions, and various discretizations. Next, we introduced basic

deterministic methods for solving the one-speed transport equation in slab geometry, along with two

acceleration methods: Anderson acceleration and nonlinear diffusion acceleration. We analyzed the ef-

fects of the convergence of these acceleration schemes when randomized noise was embedded into the

function evaluation. We observed that as long as the noise was small enough the Anderson accelerated

case converged no worse than the unaccelerated case.

We continued to stochastic Monte Carlo methods for solving the 3D transport equation. The Monte

Carlo method involves simulating a finite number of independent particle histories inside a domain.

Particles are birthed by sampling probability distribution functions for particle location, direction, and

energy. The Monte Carlo method also constructs and samples various probability distribution functions

to advance particles through their histories. The Monte Carlo method then collects quantities of interest

at specific locations through tally objects declared by the user. The quantities of interest have associated

variances that may be decreased through variance reduction techniques. We described basic techniques,

such as Russian rouletting and implicit capture, and hybrid techniques, such as consistent adjoint-driven

importance sampling(CADIS).

We explained how CADIS is implemented in the Exnihilo code suite that contains both the Shift

Monte Carlo code and the Denovo deterministic code. CADIS combines a deterministic adjoint and

stochastic calculation to produce a massive reduction in variance at a single tally location. The tar-

get calculations of our investigations are large hybrid problems. As problems scale larger and larger,

memory demands become limiting; therefore, we must employ domain decomposition in order to fit

the problem on compute nodes. We described the exact domain decomposition algorithm implemented
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in Shift and how a load imbalance problem arises. We introduced the nonuniform processor allocation

capability that we developed to match the problem’s load with an appropriate number of processors for

each subdomain. We optimize this allocation with a cheap diagnostic-based approach, which far out-

performs iterative-based optimization algorithms. All contributions to the Shift code base is found in

Appendix A.3.

Numerical results include the new Shift capabilities applied to two representative test cases: a shield-

ing dogleg duct problem and a small modular reactor(SMR) problem. We show that the new approach

cheaply and robustly reduces runtime and improves parallel performance. Static processor allocations

appear to be sufficient in alleviating the load imbalance; therefore, further dynamic processor alloca-

tion seems unnecessary for the time-independent case. We continue to a larger challenge problem, the

Watts Bar Nuclear 1 initial start up core. For the forward calculations, different decompositions had

a noticeable impact on runtimes. Decompositions which lost significant performance with uniform al-

locations were able to recover efficiency with optimized allocations. Improvement ratios for hybrid

calculations were even more dependent on the decompositions—a majority of the decompositions were

already load balanced. This dependence indicates that user selected subdomain boundaries influence

uniform and optimized Shift performance greatly. As a recommendation, users should try to minimize

the surface-area-to-volume ratio in their decompositions and avoid placing subdomain boundaries in the

“high traffic” areas.

7.1 Future Work

The Shift development team is currently working on a CUDA implementation of domain decomposition

and nonuniform processor allocation for Shift’s GPU-based transport algorithm. The CUDA program-

ming language [2] was developed by NVIDIA for programming their NVIDIA GPUs, which are used

by leadership high performance computing platforms, like the Titan and Summit machines at the Oak

Ridge Leadership Computing Facility (OLCF) and the Sierra machine at Lawrence Livermore National

Laboratory [36,42,43]. The Shift team has reported dramatic GPU acceleration on both Titan and Sum-

mit over CPU implementations [22,23]. The current plan is to continue expanding Shift capabilities that

can be run on GPUs.

When considering domain decomposition and its optimization, a new set of constraints are present

in GPU implementations. The two conditions of primary importance are GPU occupancy and reduction

in thread divergence. GPUs contain many independent multiprocessors, processors that execute kernels

on a large number of threads simultaneously. Kernels are sections of CUDA code that CPUs launch on

the GPUs during a calculation. Multiprocessor threads are broken down into thread-blocks which are

further decomposed into sets of 32 threads called warps. A GPU’s occupancy is the the ratio of active

warps on the multiprocessor to the maximum possible number of active warps. Applications may have

difficulty keeping the GPUs occupied due to the GPUs fast processing speed and the communication
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latency of getting new work to the GPUs.

As for thread divergence, warps use the single instruction, multiple threads(SIMT) execution model,

which demands that any instruction executed by a thread must be executed by every thread in the warp.

Thread divergence occurs when warps encounter branching statements. Threads are marked inactive

if the thread is not meant to go down a specific branch path. The inactive thread still performs the

calculation but the result is, ultimately, discarded. If high thread divergence occurs, warps may waste

considerable compute time on unnecessary calculations impacting performance. Reducing thread diver-

gence through wise kernel launching may substantially improve runtime and efficiency. This was shown

by the event-based MC algorithm implemented in Shift [22].

The Shift CUDA implementation uses a work pool of active particles to keep warps occupied and

kernel launches efficient. Kernels are launched on subsets of the active particles. For example, there are

separate kernels for moving particles to the next geometric boundary, processing collisions, sampling

the source distribution, etc. When a particle is killed during a collision, it is set to inactive and replaced

by a new particle from source. The first step in a CUDA implementation of domain decomposition

would add new events for subdomain boundary crossings and replacing inactive particles with bank

particles. We must also develop a new syncing strategy to determine when to communicate particles

across subdomains.

The Summit machine’s Volta-series V100 GPUs have 80 multiprocessors and 16GB of memory.

The implementation must minimize the size of communication particle buffers and particle banks that

must be maintained, occupying valuable device memory. The communication pattern we developed for

the CPU implementation in Chapter 6 is a good place to begin. Perhaps a single communication buffer

the size of the generation on the GPU might be optimal, instead of individual buffers for neighboring

processors. Then, we send the single particle buffer from GPU to CPU. The CPU sorts particles into

individual communication buffers to send out to appropriate CPUs. CPUs will upload incoming particles

to its GPUs and dump them into bank for the GPUs to transport.

Further, optimizing nonuniform processor allocation must take into account memory limitations

as it effects GPU occupancy to maintain performance. A more nuanced allocation algorithm would

need to be developed, including a GPU performance model. The performance model would accept

as inputs calibration diagnostics and GPU memory limitations, and it would provide a nonuniform

GPU allocation. Perhaps we should prefer a slightly increased number of sets over an optimally load

balanced allocation. More sets with less ”processors” per set could free up memory needed to maintain

communication buffers. [22] showed that larger kernel launches led to higher throughput on each GPU.

A thorough cost-benefit analysis would need to completed.

Another area of potential interest is in load balancing time-dependent Monte Carlo methods, such

as Implicit Monte Carlo(IMC) [17]. Dynamic load balancing would be necessary as the load shifts over

successive time steps. Investigations could examine the criteria (probably diagnostic-based) of when and

how often to recalibrate. Computational costs and implementation complexity of frequent data transferal
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would have to be taken into account for a successful method. Also, the Shift development team could

investigate if there are other potential parameters that could be optimized with diagnostics using the

calibration framework already implemented. One potential candidate is the particle generation size.

In conclusion, as the Department of Energy HPC community continually moves closer to exascale

through next generation heterogeneous platforms, like the Summit and soon-to-come Frontier machines,

efficient resource utilization becomes critical. We see nonuniform processor allocation and diagnostic-

based optimization having a similar performance impact as long as we maintain GPU occupancy on

single compute nodes.
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Appendix A

Auxiliary Material

A.1 Stationary Iterative Methods

As opposed to direct methods, stationary iterative methods [28,40] are used to solve large linear systems

of equations in the form

Ax = b, (A.1)

with A ∈ Rn×n and x, b ∈ Rn×1. To form the iterative algorithm, we split A into nonsingular and singular

matrices M and N, such that A = M − N, where M−1 exists. Then,

Ax = b, (A.2)

(M − N)x = b, (A.3)

Mx = Nx + b, (A.4)

x = M−1Nx + M−1b. (A.5)

We define the iteration from xi to xi+1 as

xi+1 = M−1Nxi + M−1b, (A.6)

with the iteration matrix H = M−1N.

By definition, the spectral radius of a matrix A is

ρ(A) = max
λ∈σ(A)

|λ|, (A.7)

where σ(A) is the eigenspectrum of A. If ρ(H) < 1, the algorithm converges

lim
i→∞

xi = x = A−1b, ∀x0 ∈ R
n×1, (A.8)
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where x0 is the initial iterate. To prove A.8, let A = M(I −H). I −H is nonsingular, and

(I −H)−1 =

∞∑
i=0

Hi. (A.9)

We prove A.9 using a Cauchy sequence of partial sums Sk in Rn×n, where

Sk =

k∑
i=0

Hi. (A.10)

Now, WLOG let j < k, we see

||Sk − S j|| =

∥∥∥∥∥∥∥
k∑

i=0

Hi −

j∑
i=0

Hi

∥∥∥∥∥∥∥ , (A.11)

=

∥∥∥∥∥∥∥∥
k∑

i= j+1

Hi

∥∥∥∥∥∥∥∥ , (A.12)

≤

k∑
i= j+1

||Hi||, (A.13)

≤

k∑
i= j+1

||H||i, (A.14)

= ||H|| j+1
(
1 − ||H||k−( j+1)

1 − ||H||

)
. (A.15)

Given ||H|| < 1 and
(

1−||H||k−( j+1)

1−||H||

)
finite, we know ||Sk − S j|| → 0 as j, k → ∞. A convergent Cauchy

sequence implies ∃S ∈ Rn×n s.t. Sk → S, and we know

S = HS + I, (A.16)

S(I −H) = I, (A.17)

S = (I −H)−1. (A.18)

The iteration as one step is

xi+1 = Hi+1x0 +

∞∑
i=0

HiM−1b, (A.19)

where Hi+1x0 → 0, as i → ∞, irrespective of any x0 ∈ R
n×1. We are left with xi → SM−1b, where

SM−1b = (I −H)−1M−1b = (M(I −H))−1b = A−1b.
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A.2 GMRES

The General Minimum RESidual (GMRES) is an iterative method for solving linear systems [28,40,49].

On the kth iteration, GMRES minimizes the residual error over an affine space

x0 +Kk, (A.20)

with initial iterate x0 and the Krylov subspace of residuals, Kk, is

Kk = span{r0,Ar0, . . . ,Ak−1r0}, (A.21)

with the initial residual r0 ≡ b − Ax0. Thus, the minimization for the kth iteration is

min
x∈x0+Kk

||b − Ax||2, (A.22)

and the iteration terminates when the residual is below a user specified tolerance or a maximum number

of iterations are performed.

The attractiveness of GMRES comes from its speed given a well-conditioned system. The condi-

tioning of a matrix A is determined by its condition number,

κ(A) = ||A|| · ||A−1||. (A.23)

It is known [28] that GMRES is ”best” suited to diagonalizeable systems. One way of improving the

condition number and thus the speed of the GMRES iteration is by preconditioning the system. Precon-

ditioning is a strategy that attempts to alleviate conditioning problems by multiplying the system by an

approximate inverse of the matrix A. So, for the system

Ax = b,

we use a precondition matrix B−1 ≈ A−1 as

B−1Ax = B−1b. (A.24)

A.24 is the preconditioned system to be solved. This is called left-preconditioning because the new

matrix B−1 acts on the left of the system. The hope is that B−1A ≈ I so that eigenvalues of the new

system are clustered around one. For Right-preconditioning, we solve the two systems

AB−1y = b, (A.25)

B−1y = x, (A.26)
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for the unknown x. One advantage to right-preconditioning is that GMRES minimizes the original resid-

ual ||b − Axk||2, whereas left-preconditioning minimizes the preconditioned residual ||B−1(b − Axk)||2.

If the user hopes to reduce the original residual down to a certain tolerance, then left-preconditioning

needs to be used cautiously knowing that the preconditioned termination metric is not the same as the

original termination metric.

Computer tools which perform the GMRES iterations for the system do not need a matrix A or

preconditioner B−1 in explicit form. In practice, a function which accepts as input as vector and returns

the matrix-vector product, or matvec, is often easier to code and preferable to storing a large, possibly

dense, matrix. So, for an input vector u, the output of the matvec function would be a vector equal to

Au. Working with codes and solvers in this matrix-free manner is good practice and leads to convenient,

component-oriented code.

Other notable methods are BiCGSTAB [56], TFQMR [18], and Conjugate Gradient [25]. One of

the main drawbacks of GMRES is storage. The algorithm requires storage of the vectors in the space

Kk, appending one vector each iteration. Depending on the computing environment and the size of your

system, memory constraints may fail the job.

There are strategies to prevent the storage burden from becoming overwhelming for the environment–

one being GMRES with restarts, or GMRES(m). GMRES(m) will run for m iterations storing each

necessary vector for the Krylov subspace, and then the iteration halts if the problem has not reduced

the residual below the user specified tolerance. The solver will discard all past vectors in Kk and began

again with the most recent iterate. This continues until the residual is reduced or the maximum iterations

allowed for the whole calculation is reached.

A.3 List of Shift Code Base Contributions

The Exnihilo code suite provides a parallel, component library for transport application development on

high performance computing platforms. The Exnihilo code suite contains both the Shift Monte Carlo

solver [46] and the Denovo deterministic solver [16]. It contains pre- and post-processing tools for users

integrated with Jupyter notebooks. Exnihilo leverages existing functionality from other libraries, such

as SCALE [1], Trilinos [24], and HDF5 [53]. It uses an Oak Ridge National Laboratory internal GitLab

code repository and issue tracking system for adding new features and fixing bugs. Exnihilo uses the

design-by-contract tool, GoogleTest [20], to define interface specifications for software components.

Exnihilo is developed using an Agile, Continuous-Integration workflow, which includes roughly 1200

unit tests checked on each merge. It also has acceptance and runtime performance tests that run weekly.

Table A.1 shows the language makeup and the lines of code in Exnihilo.
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Language Executable Test
C++ 274,648 279,170

Python 30,543 19,569

CUDA 12,356 8,804

C 1,555 —

Fortran 934 55

Table A.1: Shift’s programming language composition and lines of code.

Here is a list of all major contributions I have made to the Shift Monte Carlo code base as part of this

thesis work. The two main areas have been, first, in the implementation of Shift’s nonuniform proces-

sor allocation strategy and its optimization, and second, in finishing the implementation of the domain

decomposed CADIS algorithm. All contributions have met the coding and documentation standards of

the Exnihilo development team.

Load Balancing:

• Transcore/mc/Boundary Mesh Nonuniform: Developed, implemented, tested the nonuniform

processor allocation strategy

• Shift/mc transport/detail/Communicator Nonuniform: Developed, implemented, tested

an improved communication pattern for nonuniform processor allocations

• Shift/mc transport/DD Sync Source Transporter, Omnibus/driver/detail/Processor -

Allocator: Developed, implemented, tested the diagnostic-based optimization algorithm

• Omnibus/driver/Driver, Omnibus/python/omnibus/omn/shift.py: Added user access

to new features and program drivers for auto-calibration mode

Domain Decomposed Hybrid Calculations:

• Helped to complete domain decomposed hybrid implementation

– Shift/mc sources/Separable Biased Source, Shift/mc sources/Fixed Sourcer -
Base: Fixed creation of biased sources in domain decomposition and nonuniform processor

allocation mode

– Shift/mc hybrid/Parallel Grid: Streamlined weight window data movement
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– Shift/mc hybrid/Grid LG Indexer: Developed 3D local to global mesh indexer for

weight windows

• Nemesis/utils/Rebalancer: Developed templated rebalance algorithms to rebalance particles

across subblocks and sets during particle storm formation

• Shift/mc sources/detail/Source Partitioner Local: Improved domain decomposed sourc-

ing performance through partitioning (currently only Box shape sources)
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