
ABSTRACT

HART, JOSEPH LEE. Extensions of Global Sensitivity Analysis: Theory, Computation, and
Applications. (Under the direction of Pierre Gremaud.)

Global sensitivity analysis (GSA) seeks to quantify the relative importance of input variables

in a model. The classical framework for GSA considers p variables X = (X1, X2, . . . , Xp) which

are inputs of a function f : Rp → R. The inputs are assumed to be statistically independent

with known marginal distributions. Sensitivity indices are defined in terms of the moments or

distribution of f(X), or its derivatives, and are typically computed via sampling based approaches.

However, many problems in practice do not satisfy the aforementioned assumptions. This thesis

provides extensions of the classical GSA methods to address problems which fail to satisfy one

or more of the assumptions in the classical framework. In particular, this thesis considers (i)

problems with statistically dependent input variables, (ii) uncertainty in the distribution of X,

(iii) models with inherent stochasticity (f depends on X and another source of stochasticity), (iv)

using GSA to analyze statistical model parameters, and (v) using GSA for uncertain parameters

in optimization problems constrained by partial differential equations. Other extensions of

the classical GSA framework are highlighted and avenues of future development are discussed.

Theoretical properties and computational considerations are explored throughout the thesis.
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CHAPTER

1

INTRODUCTION

1.1 Motivation

Mathematical models and computer simulations are ubiquitous in engineering and scientific

disciplines. Various systems and processes may be represented by mathematical models such

as differential equations, interacting particles, or algebraic equations. These models are used

to design structures, make policy decisions, and influence the development of systems in many

spheres of society. However, models typically involve variables (or parameters) which are

uncertain. These variables come in a variety of forms such as, but not limited to, chemical,

material, or mechanical properties, electrical capacitance or resistance, or atmospheric conditions.

They may appear as coefficients or boundary conditions in differential equations, parameters

defining the simulation of dynamics, or algebraic expressions used to couple states in a system,

to name a few. In all of these cases a user is seeking to utilize a mathematical model for scientific

insight, design, or decision making, but is limited by uncertainties in the input variables of the

model.

A mathematical abstraction of this is to represent uncertain quantities as random variables

and the mathematical model as a function with these random variables as inputs. Global

sensitivity analysis (GSA) aims to quantify the relative importance of these input variables on

the output of the function. Such analysis facilitates, among other things,

• insight into the underlying system processes,
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• direction for model development,

• design of experiments and data acquisition,

• engineering risk adverse systems,

• reducing the number of uncertain variables to facilitate further analysis.

In some applications, GSA may not be tractable (or necessary) so practitioners use local

sensitivity analysis (LSA) instead. The idea of LSA is to measure the influence of uncertain

quantities at some nominal value rather than considering them as random variables. A basic

example of this is to use the gradient of a function evaluated at a nominal point to rank the

importance of the variables. This thesis focuses on GSA, the reader is directed to [59], and

references therein, for a broader introduction to sensitivity analysis (GSA and LSA).

In practice, there are many tools for performing GSA, each of which has its own benefits

and challenges. Different goals, model properties, types of uncertain variables, and quantities of

interest (QoI) mandate different approaches to GSA. This thesis considers five problems where

particular challenges prompted interest in developing a GSA tool relevant to the problem. This

chapter introduces two commonly used GSA tools, the Sobol’ indices and derivative-based global

sensitivity measures, and references other methods of interest that are not immediately relevant

to this thesis. The subsequent five chapters present the author’s work on five different problems;

the final chapter leaves concluding remarks and highlights other problems for future work.

1.2 Review of Sobol’ indices

This section reviews the Sobol’ indices. The references [57, 96, 104] are noted as useful resources.

1.2.1 Mathematical formulation

Let (Θ,F, ν) be a probability space with sample space Θ, σ-algebra F, and probability measure ν.

Let X : Θ→ X , X = X1×X2× · · · ×Xp ⊆ Rp, be a random vector with distribution function Φ,

and (X ,FX, νX) be the probability space induced by X, i.e. X is the image of X, FX is the Borel

σ-algebra, and νX is the measure corresponding to the law of X. Each set Xi ⊂ R corresponds

to the image of the ith component of the random vector X. Let f : X → R be a function. The

random vector X represents the uncertain variables in the system and f represents a scalar QoI

which is determined from a model output. In this and the subsequent three chapters, X will

be referred to as the input variables, the uncertain variables, or simply the variables when it is

clear from the context. For application specific purposes, X will be referred to as the parameters

or uncertain parameters in Chapters 5 and 6.
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Let u = {i1, i2, . . . , ik} be a subset of {1, 2, . . . , p} and∼u = {1, 2, . . . , p}\u be its complement.

The group of variables corresponding to u is referred to as Xu = (Xi1 , Xi2 , . . . , Xik). Assuming

f(X) to be square integrable, consider the decomposition

f(X) = f0 +

p∑
k=1

∑
|u|=k

fu(Xu), (1.1)

where the fu’s are defined recursively,

f0 = E[f(X)], (1.2)

fi(Xi) = E[f(X)|Xi]− f0

fi,j(Xi, Xj) = E[f(X)|Xi, Xj ]− fi − fj − f0,

...

fu(Xu) = E[f(X)|Xu]−
∑
v⊂u

fv(Xv)

where the sum over v ⊂ u is summing all subsets of u. The indexing |u| = k indicates that the

sum is over all u ⊆ {1, 2, . . . , p} of size k.

If X1, X2, . . . , Xp are independent random variables then the decomposition (1.1) is referred

to as the ANOVA (analysis of variance) decomposition of f and

E[fu(X)fv(X)] = 0 ∀u 6= v. (1.3)

Computing the variance of both sides of (1.1) and using (1.3) yields

Var(f(X)) =

p∑
k=1

∑
|u|=k

Var(fu(Xu)). (1.4)

This gives the classical definition of the Sobol’ indices

Su =
Var(fu(X))

Var(f(X))
. (1.5)

The Sobol’ index Su may be interpreted as the relative contribution of Xu to Var(f(X)).

For u ⊂ {1, . . . , p}, the total Sobol’ index Tu is defined as the sum of all indices Sv with

v ∩ u 6= ∅, i.e.

Tu =
∑
v∩u6=∅

Sv, (1.6)

3



where the sum over v ∩ u 6= ∅ indicates the sum is over all v ⊂ {1, 2, . . . , p} whose intersection

with u is nonempty. The total Sobol’ index may be interpreted as the contribution of Xu to

Var(f(X)) by itself and through interactions with other variables.

1.2.2 Properties

The following are well known properties of the Sobol’ indices and total Sobol’ indices:

(I)
p∑

k=1

∑
|u|=k

Su = 1,

(II) Su, Tu ∈ [0, 1] ∀u,

(III) Su ≤ Tu ∀u,

(IV) max
k∈u

Tk ≤ Tu ≤
∑
k∈u

Tk.

The first two properties support the interpretation of the Sobol’ indices as relative contribu-

tions to Var(f(X)). The third property supports the interpretation of Su as the contribution of

Xu and Tu as the contribution of Xu along with its interactions. The fourth property allows

inferences to be made about subsets of variables using the p total Sobol’ indices {Tk}pk=1.

The indices Su and Tu provide a clear way to attribute influence to subsets of variables;

however, there are 2p − 1 possible subsets which makes computing all the indices impractical.

Rather, in practice one typically computes {Sk, Tk}pk=1 and utilizes Property IV to make

inferences about subsets. The indices {Sk}pk=1 are referred to as the first order Sobol’ indices.

1.2.3 Estimation of Sobol’ indices

Their mathematical properties and clear interpretation make Sobol’ indices a preferred method

for GSA in many applications, at least under the assumption that X1, X2, . . . , Xp are independent.

The indices may be estimated via Monte Carlo integration. There are numerous estimators

proposed for them, see [89, 96, 102, 103], and references therein, for a overview. This section

will present the basic idea of estimating {Sk, Tk}pk=1 when X1, X2, . . . , Xp are independent.

First note that Sk and Tk may be written probabilistically as

Sk =
Var(E[f(X)|Xk])

Var(f(X))
and Tk =

E[Var(f(X)|X∼k)]
Var(f(X))

.

Using properties of conditional expectation and Fubini’s theorem yields

Var(E[f(X)|Xk]) = E[f(X)(f(X′k,X∼k)− f(X′))]
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and

E[Var(f(X)|X∼k)] =
1

2
E[(f(X)− f(X ′k,X∼k))

2],

where X′ is an independent copy of X.

The indices {Sk, Tk}pk=1 may be estimated by Monte Carlo integration using (p + 2)N

evaluations of f , where N is the number of Monte Carlo samples. Specifically, the samples

are generated by constructing 2 matrices of size N × p, call them A and B, where the rows

correspond to independent samples of X. Then p additional matrices of size N × p, denote them

Ck, k = 1, 2, . . . , p, are generated by setting the ith column of Ck equal to the ith column of A,

i 6= k, and the kth column of Ck equal to the kth column of B. The set of indices {Sk, Tk}pk=1

may be estimated using evaluations of f at the rows of A, B, and Ck, k = 1, 2, . . . , p.

In some cases, the Sobol’ indices may be estimated more efficiently using spectral approaches

rather than Monte Carlo integration. The fundamental idea of spectral approaches is to represent

f by a series expansion using orthogonal basis functions. Then the component functions (1.2) in

(1.1) may be identified as linear combinations of the basis functions and the Sobol’ indices may

be computed using their coefficients. There are a variety of spectral approaches, see [96] for a

overview of them, which arise from the plurality of possible basis expansions, series truncations,

and coefficient estimation schemes. Spectral approaches are advantageous when f is sufficiently

regular so that the coefficients decay quickly.

In many applications, evaluating f is computationally intensive and hence it may only be

evaluated sparingly, for instance a few tens or a few hundred times. In such cases, the user cannot

estimate Sobol’ indices via Monte Carlo integration. On common approach is to approximate f

with a surrogate model f̂ and compute the Sobol’ indices of f̂ . Polynomial Chaos expansions (a

spectral method) are popular for this purpose [1, 6, 22, 114]. They are particularly useful because,

as highlighted above, the Sobol’ indices of f̂ may be computed analytically from the coefficients

since it corresponds to an approximation with orthogonal polynomials. Gaussian processes [72,

81] are also commonly used surrogate models because of their approximating properties and

flexibility to represent a large class of functions. The Sobol’ indices of the Gaussian process must

be computed through Monte Carlo integration; however, when the number of uncertain variables

is not too large (for instance, p = 10), this cost is small compared to the cost of evaluating f .

Many other surrogate models may be used, see [113]. There are many factors to consider when

choosing a surrogate model; the number of uncertain variables, the smoothness of f , the cost of

evaluating f , and the expected level of interactions between variables, are a few such factors.

Multivariate Adaptive Regression Splines (MARS) [28, 29] will be used in Chapter 4 because of

its internal automation and scalability for large numbers of variables. In general, it is unclear

how the surrogate error f − f̂ propagates through the computation of Sobol’ indices. This will
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be revisited in Chapter 7 as an open question.

1.3 Review of derivative-based global sensitivity measures

A challenge frequently encountered in practice is that the number of uncertain variables p is

large and this prohibits computation of Sobol’ indices. In some case, the gradient of f , ∇f ,

may be computed independently of the parameter dimension p; a common example of this is a

differential equation model with an adjoint. This motivates derivative-based global sensitivity

measures. Assume that f is a differentiable function on X and ∂f
∂xk

(X) is square integrable,

k = 1, 2, . . . , p. The unnormalized derivative-based global sensitivity index [69, 107, 108] is

defined as

Dk = E

[(
∂f

∂xk
(X)

)2
]

(1.7)

for k = 1, 2, . . . , p.

Unlike the Sobol’ indices, the derivative-based global sensitivity measures cannot be inter-

preted in terms of relative contributions. However, they are related to the Sobol’ indices by the

following result from [71].

Theorem 1. If

• X1, X2, . . . , Xp are independent,

• f(X) is square integrable,

• ∂f
∂xk

(X) is square integrable,

• Xk follows a Boltzmann probability measure on R,

then

Tk ≤ Ck
Dk

Var(f(X))
, (1.8)

where

Ck = sup
x∈R

min{Φk(x), 1− Φk(x)}
φk(x)

,

Φk and φk are the cumulative distribution function (CDF) and probability density function

(PDF) for Xk, respectively.
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Theorem 1 ensures that if the derivative-based global sensitivity measure is sufficiently small

then the total Sobol’ index for that variable will be small. In other words, the Dk may be

used to identify unimportant variables. Note that the special case where each Xk is uniformly

distributed on [0, 1] does not meet the assumptions of Theorem 1 because a uniform measure is

not a Boltzmann measure. This special case is covered in [107] where the constant Ck in (1.8) is

π−2.

The shortcoming of derivative-based global sensitivity measures is that they can not reliably

identify important variables or rank the order of their importance. Nonetheless, when the

gradient of f may be computed independently of p, derivative-based global sensitivity measures

may be estimated efficiently with Monte Carlo integration and provide a means to determine

unimportant variables. It is common in practice to identify unimportant variables using Dk,

k = 1, 2, . . . , p, then perform subsequent analysis with a smaller subset of variables.

1.4 Overview of other GSA methods

This thesis focuses on extensions of Sobol’ indices and derivative-based global sensitivity measures.

A brief collection of other common GSA methods is given in this section to provide a more

complete (though not exhaustive) overview of the GSA landscape.

Shapley values originated in the economics literature [105] and have gained recent interest

in the GSA literature [90, 111]. Like the Sobol’ indices, the Shapley values use contributions

to the model output variance to measure the importance of the variables. It is shown in [90],

under the assumption that X1, X2, . . . , Xp are independent, that the Shapley value for variable

Xk, denoted by Shk, satisfies, Sk ≤ Shk ≤ Tk. In [111], the Shapley value is considered as a

GSA tool when the input variables are dependent. There is still ongoing research to better

understand the Shapley value and its relationship to other GSA methods [91]. One challenge is

that estimating the Shapley values generally requires more computational effort than estimating

the Sobol’ indices or derivative-based global sensitivity indices.

Moment-independent importance measures [9] is an alternative GSA method which seeks

to measure importance through changes in the distribution of f(X) rather than its moments

(Sobol’ indices use the 2nd moment, variance). This is appealing in some applications where

the variance of f(X) is not sufficient to characterize uncertainty. Different approaches have

been considered, a few examples are [8, 23, 93]. The basic framework shared by the various

approaches is to define the importance of Xk by some distance between f(X) and f(X)|Xk.

The PDF and conditional PDF are used in [8]; the CDF and conditional CDF are used in [93].

Morris screening [86] is a classical method which evaluates f at strategically chosen points

to reduce computational cost. It measures the importance of the variables with elementary

effects, which may be viewed as coarse finite difference approximations of f ’s partial derivatives.
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Estimating derivative-based global sensitivity indices with finite differences requires (p+ 1)N

evaluations of f to estimate ∇f at N samples from X . In contrast, Morris screening uses an

experimental design for sampling trajectories in X which enables an efficient exploration of X
with relatively few evaluation of f . Morris screening lacks some of the mathematical properties

possessed by Sobol’ indices or derivative-based global sensitivity measures, but it can be useful

in practice when evaluating the model is computationally intensive.

Active subspaces [19] has gained significant interest in recent years as an alternative to

GSA for dimension reduction. Rather than measuring the influence of uncertain variables, as all

the previous methods sought to do, active subspaces seek to determine important directions

in X such that f varies more in those directions. It uses the gradient of f and finds important

directions through the spectral decomposition of the matrix E[∇f(X)∇f(X)T ]. This may be

particularly useful when there are significantly fewer important directions than important

variables, though this can only be determined after computing the active subspaces. Along with

important directions, activity scores may be derived from the active subspaces [20] as a measure

of the importance of each variable.

1.5 Outline of the thesis

The review of GSA in this chapter focused on problems where f is a real-valued function which

depends on p uncertain variables that are assumed to be statistically independent and have

known probability distributions. In many applications one or more of these assumptions are not

valid. This thesis extends the classical GSA methods to address such problems. Theoretical and

computational aspects of GSA are studied and applications are considered. Chapter 2 analyzes

properties of the Sobol’ indices when X1, X2, . . . , Xp possess statistical dependencies. In many

applications, the distribution of the inputs and/or dependency structure is not known precisely,

Chapter 3 explores the robustness of the Sobol’ indices with respect to changes in the distribution

of X. Chapter 4 develops a generalization of the Sobol’ indices for problems with two different

sources of uncertainty, uncertain variables and inherent stochasticity. This work is motivated by

an application in chemical reaction networks where the uncertain variables are reaction rates

and the inherent stochasticity arises in the system dynamics. Having focused on Sobol’ indices

in these chapters, the thesis shifts to focus on derivative-based methods in its latter portion.

Chapter 5 develops a novel approach using derivative-based GSA to analyze parameters in

statistical models. A Gaussian process model for wind speed prediction motivated this research.

A general class of PDE-constrained optimization problems prompt interest in Chapter 6 for a

derivative-based GSA approach for the solution of a PDE-constrained optimization problem with

respect to the uncertain parameters in the PDE. Chapter 7 concludes the thesis by highlighting

other extensions and open questions in GSA.
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1.6 Overview of the author’s work

The content of this thesis corresponds to five articles which are at various stages of preparation,

review, or publication. The author is primarily responsible for the contributions of these five

articles. Of these five articles, only [51, 52, 53] are published at this time; they correspond to the

material in Chapters 4, 5, and 2, respectively. In addition, the author has four other articles

whose content is not included in this thesis. One of them, [50], has been published; the other

three are in preparation or under review.
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CHAPTER

2

SOBOL’ INDICES WITH DEPENDENT

VARIABLES

2.1 Introduction

In this chapter the Sobol’ indices are analyzed for problems with dependent input variables.

The content of this chapter is based on the publication [53]. Recall from Chapter 1 that the

ANOVA decomposition (1.1) and the orthogonality property (1.3) are the fundamental results

used to define the Sobol’ indices. These results imply that the Sobol’ indices satisfy Property I

and Property II, which facilitate their interpretation.

When the input variables are dependent, the decomposition (1.1) can still be considered but

the resulting orthogonality property (1.3) is not satisfied. The Sobol’ indices may then again be

defined from (1.1) [73]

Su =
Cov(fu(Xu), f(X))

Var(f(X))
, (2.1)

where (2.1) clearly reverts to (1.5) if the input variables are independent. With dependent

variables, the indices (2.1) satisfy Property I but not Property II: while they sum up to 1, some

of the Su’s may be negative and thus do not yield a quantitative measure of variable importance.

A simple example from [111] is borrowed to illustrate this point.
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Example 2.1.1. Let

f(X1, X2) = X1 +X2

where X1, X2 have a joint normal distribution with E[X1] = E[X2] = 0, Var(X1) = Var(X2) = 1,

and Cov(X1, X2) = ρ ∈ (0, 1). Then, following (1.1), f admits the decomposition

f(X1, X2) = 0 + (1 + ρ)X1 + (1 + ρ)X2 + (−ρ)(X1 +X2)

and the associated Sobol’ indices are S1 = S2 = 1+ρ
2 , S1,2 = −ρ. These indices sum to 1 but

their interpretation as relative contributions to the variance of f(X) is lost.

The total Sobol’ indices may be generalized to problems with dependent variables by putting

(2.1) into (1.6); however, Property III is lost so their interpretation in terms of interaction effects

becomes more challenging.

The issue of GSA with dependent variables has been the object of intense recent research.

Regarding Sobol’ indices, Xu and Gertner [120] propose a decomposition of the Sobol’ indices into

a correlated and uncorrelated part for linear models. Li et al. [73] build upon this to decompose

the Sobol’ indices for a general model. Mara and Tarantola [79] propose to use the Gram-Schmidt

process to decorrelate the inputs variables then define new indices through the Sobol’ indices of

the decorrelated problem. Building off the older work of [55] and [112], Chastaing et al. [16]

provide a theoretical framework to generalize the ANOVA decomposition to problems with

dependent variables. In a subsequent article [17], they also provide a computational algorithm

to accompany their theoretical work. In contrast to the other works which focus on generalizing

the ANOVA decomposition, Kucherenko et al. [68] develop the Sobol’ indices via the law of

total variance. Recent work of Mara and Tarantola [115] considered estimating Sobol’ indices

with dependent variables using the Fourier Amplitude Sensitivity Test.

As highlighted in Chapter 1, there are various methods in GSA and many applications of

them. To facilitate analysis for problems with dependent input variables, this chapter focuses on

applying Sobol’ indices for dimension reduction, i.e. approximating f(X) by a function which

depends on fewer variables. To this end, the total Sobol’ index, with independent or dependent

variables, is characterized in terms of approximation error rather than variance analysis. This

approximation theoretic characterization is used to analyze the error introduced through different

approaches to dimension reduction.

11



2.2 An approximation theoretic perspective of total Sobol’ in-

dices

As in Chapter 1, f : X → R is a square integrable function with mean f0 = E[f(X)]. Given

u ⊂ {1, 2, . . . , p}, a natural question is “how accurately can f(X) − f0 can be approximated

(in L2(X )) without the variables Xu?” In other words, what is the error associated with the

approximation

f(X)− f0 ≈ P∼uf(X∼u), (2.2)

where P∼uf(X∼u) is the optimal L2(X ) approximation of f(X)− f0 which does not depend on

Xu? It is shown that this error,

‖(f(X)− f0)− P∼uf(X∼u)‖22
‖f(X)− f0‖22

, (2.3)

coincides with the classical definition of the total Sobol’ index (1.6). This requires a few technical

considerations.

Definition 1. For f ∈ L2(X ), f does not depend on Xk if and only if there exists N ∈ FX

with νX(N) = 0 such that

f(x) = f(y) ∀x,y ∈ X \N with x∼k = y∼k.

Otherwise, f is said to depend on Xk.

Definition 2. For any v ⊂ {1, . . . , p}, define Mv as the set of all functions in L2(X ) that do

not depend on any variables in X∼v.

Roughly speaking, Mv is the set of those functions in L2(X ) that only depend on Xv.

Theorem 2 gives that Mv is a closed subspace of L2(X ).

Theorem 2. Mu is a closed subspace of L2(X ).

Proof. Mu is clearly a subset of L2(X ). To show that it is closed, let {fn} be a sequence in Mu

which converges to f ∈ L2(X ). It is enough to show that f ∈ Mu. Suppose by contradiction

that f /∈Mu. Then ∃i ∈ {1, 2, . . . , p} such that i /∈ u and f depends on Xi. Then ∃A ∈ FX and

x,y ∈ A such that νX(A) > 0 with x∼i = y∼i and f(x) 6= f(y). Since fn → f in L2(X ) then

∃{fnk}, a subsequence of {fn}, such that fnk → f almost surely. Since x,y ∈ A and νX(A) > 0

then fnk(x) → f(x) and fnk(y) → f(y). But fnk does not depend on Xi so fnk(x) = fnk(y)

∀k ∈ N =⇒ f(x) = f(y). This is a contradiction so f ∈Mu and hence Mu is closed.
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Using classical results on orthogonal decompositions, L2(X ) can be decomposed as a direct

sum of Mv and M⊥v , the orthogonal complement of Mv, i.e.

L2(X ) = Mv ⊕M⊥v . (2.4)

It is worth noting here that M⊥v 6= M∼v.

Setting v = ∼u, rewrite (2.2) more explicitly as

f(X) = f0 + P∼uf(X∼u) + P⊥∼uf(X), (2.5)

where P∼uf(X∼u) = E[f(X)− f0|X∼u] = E[f(X)|X∼u]− f0 is the projection of f(X)− f0 onto

M∼u. This orthogonal decomposition yields

‖(f(X)− f0)− P∼uf(X∼u)‖22
‖f(X)− f0‖22

=
‖P⊥∼uf(X)‖22
‖f(X)− f0‖22

= 1− ‖P∼uf(X∼u)‖22
‖f(X)− f0‖22

. (2.6)

Theorem 3 shows that the total Sobol’ index Tu equals (2.3), thus providing a new charac-

terization of the total Sobol’ indices, with independent or dependent variables, and giving a

clear interpretation of these indices in terms of relative approximation error.

Theorem 3. For u ⊂ {1, 2, . . . , p},

Tu =
‖(f(X)− f0)− P∼uf(X∼u)‖22

‖f(X)− f0‖22
.

Proof. Rearranging (1.1) gives,

f(X)− f0 =
∑
v∩u=∅

fv(Xv) +
∑
v∩u6=∅

fv(Xv).

Taking into account (1.6), (2.5), (2.6), and the linearity of the covariance operator, it follows

that

Tu =
∑
v∩u6=∅

Cov(fv(Xv), f(X))

Var(f(X))

=
1

‖f(X)− f0‖22
Cov

 ∑
v∩u6=∅

fv(Xv),P∼uf(X∼u) + P⊥∼uf(X)


=

Cov(P⊥∼uf(X),P∼uf(X∼u))

‖f(X)− f0‖22
+

Cov(P⊥∼uf(X),P⊥∼uf(X))

‖f(X)− f0‖22

13



=
0

‖f(X)− f0‖22
+
‖P⊥∼uf(X)‖22
‖f(X)− f0‖22

=
‖(f(X)− f0)− P∼uf(X∼u)‖22

‖f(X)− f0‖22

Corollary 1 shows that the total Sobol’ index defined by using (2.1) and (1.6) is equivalent

to the total Sobol’ index defined in [68], thus equipping it with both an approximation theoretic

and probabilistic interpretation. The function decomposition (2.5) is the approximation theoretic

analogue of the law of total variance approach in [68].

Corollary 1.

Tu = 1− Var(E[f(X)|X∼u])

Var(f(X))
=

E[Var(f(X)|X∼u)]

Var(f(X))

Proof. Recall from the proof of Proposition 3 that

P∼uf(X∼u) = E[f(X)− f0|x∼u] =
∑
v∩u=∅

fv(Xv).

Using this equality along with (2.1), (1.6), and the orthogonal decomposition (2.5) gives

Tu =
∑
v∩u6=∅

Sv

=
∑
v∩u6=∅

Cov(fv(Xv), f(X))

Var(f(X))

=
1

Var(f(X))
Cov

 ∑
v∩u6=∅

fv(Xv), f(X)


=

1

Var(f(X))
Cov

(
f(X)−

∑
v∩u=∅

fv(Xv)− f0, f(X)

)

=
1

Var(f(X))

(
Cov (f(X), f(X))− Cov

(
P∼uf(X∼u),P∼uf(X∼u) + P⊥∼uf(X)

))
= 1− 1

Var(f(X))
Cov (P∼uf(X∼u),P∼uf(X∼u))

= 1− 1

Var(f(X))
Var(E[f(X)− f0|X∼u])

= 1− 1

Var(f(X))
Var(E[f(X)|X∼u])
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Because of their approximation theoretic interpretation, this chapter focuses on the total

Sobol’ indices.

2.3 Applying the approximation theoretic perspective for di-

mension reduction

One common use of the total Sobol’ indices is dimension reduction, i.e., approximating f by a

function which depends on fewer variables. There are several ways to do this, three examples

are:

1. projecting f onto a subspace of functions which only depend on a subset of the input

variables,

2. constructing a surrogate model (from sample data) using only a subset of the variables,

3. fixing some of the input variables to nominal values, or possibly a function of the other

input variables.

The approximation theoretic perspective in Section 2.2 provides useful insights for all three of

these possible approaches. For the first approach, the total Sobol’ index Tu is the relative L2(Ω)

error squared when f is approximated by its orthogonal L2(Ω) projection onto the subspace

of functions which only depend on X∼u. However, acquiring this projection is computationally

costly since it requires computing many high dimensional integrals, so the applicability of this

approach is limited in practice. The second approach is practical in cases where the user wishes

to use existing evaluations of f to train a surrogate model. The unimportant variables may

be considered as latent and the surrogate model may be trained using only a subset of input

variables. Since Tu is the error for the optimal L2(Ω) approximation, it provides a lower bound

on the L2(Ω) error of a surrogate model approximation. Hence Tu is useful for making decisions

about which variables to use when constructing a surrogate model in the second approach.

The third approach, fixing inputs, is commonly used in practice because of its simplicity. As

demonstrated below, the approximation theoretic perspective of total Sobol’ indices is useful for

analyzing approximation error in this setting as well.

With the assumption of independent variables, classical results exist [110] which use the total

Sobol’ indices to bound the error incurred when fixing variables to nominal values. Partition

X = (Xu,X∼u) and assume that Tu is small. The goal is to approximate f by replacing Xu

with a function of X∼u. Specifically, f(X) is approximated by f(g(X∼u),X∼u), where g(X∼u)

15



is an approximation of Xu. It is common to take the constant approximation g(X∼u) = E[Xu]

when the variables are independent. The subsequent analysis considers a general g.

The relative error incurred by replacing Xu with g(X∼u) is

δu =
||f(X)− f(g(X∼u),X∼u)||22

||f(X)− f0||22
. (2.7)

Theorem 4 extends a result in [110] to the case with dependent variables.

Theorem 4. For any u ⊂ {1, 2, . . . , p} and any g : Ω∼u → Ωu such that f(g(X∼u),X∼u) ∈
L2(Ω),

δu ≥ Tu.

Proof. The result follows since Tu is the squared relative L2(X ) error of the the orthogonal

projection of f(X)−f0 onto M∼u, i.e. the optimal approximation in M∼u, and f(g(X∼u),X∼u) ∈
M∼u.

An upper bound on δu is more useful than a lower bound in most cases; however, a tight

upper bound is difficult to attain. Substituting (2.5) into (2.7) yields

δu =
||P⊥∼uf(X)− P⊥∼uf(g(X∼u),X∼u)||22

||f(X)− f0||22
. (2.8)

Recall that the Sobol’ index Tu, which is assumed to be small, is given by

Tu =
||P⊥∼uf(X)||22
||f(X)− f0||22

.

Hence, P⊥∼uf(X) is small relative to f(X)− f0.

Theorem 5 provides a loose, but informative (see below), upper bound on δu.

Theorem 5.

δu ≤ Tu +
||P⊥∼uf(g(X∼u),X∼u)||22

||f(X)− f0||22
+ 2Tu

||P⊥∼uf(g(X∼u),X∼u)||2
||P⊥∼uf(X)||2

Proof. Notice,

||P⊥∼uf(X)− P⊥∼uf(g(X∼u),X∼u)||22 =||P⊥∼uf(X)||22
+ ||P⊥∼uf(g(X∼u),X∼u)||22
− 2E[P⊥∼uf(X)P⊥∼uf(g(X∼u),X∼u)].
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Applying the Triangle inequality and Cauchy-Schwarz inequality gives

||P⊥∼uf(X)− P⊥∼uf(g(X∼u),X∼u)||22 ≤||P⊥∼uf(X)||22
+ ||P⊥∼uf(g(X∼u),X∼u)||22
+ 2||P⊥∼uf(X)||2||P⊥∼uf(g(X∼u),X∼u)||2.

Multiplying and dividing 2||P⊥∼uf(X)||2||P⊥∼uf(g(X∼u),X∼u)||2 by ||P⊥∼uf(X)||2 and dividing

both sides of the inequality by ||f(X)− f0||22 completes the proof.

Observe that if

||P⊥∼uf(X)||2 = ||P⊥∼uf(g(X∼u),X∼u)||2

then

Tu ≤ δu ≤ 4Tu.

This assumption typically does not hold in practice, nor is it easily verifiable; however, it provides

some intuition about the behavior of the error. In particular, δu will be small when Tu is small

and ||P⊥∼uf(g(X∼u),X∼u)||2 is approximately ||P⊥∼uf(X)||2. The error, δu, will be large when

the magnitude of P⊥∼uf(X) increases dramatically on subsets of X which have a small probability

under X and a larger probability under (g(X∼u),X∼u). The magnitude of δu is closely linked

to how well the distribution of (g(X∼u),X∼u) approximates the distribution of X, and the

robustness of the Sobol’ index which respect to changes in the distribution of X, i.e. how much

Tu changes when the distribution of X is changed. The method proposed in Chapter 3 may be

used to test robustness.

Three conclusions may be drawn from the arguments above:

1. Dependencies between the variables can help reduce δu if g(X∼u) ≈ Xu.

2. A tight upper bound will be difficult attain without placing additional assumptions on the

behavior of f on sets of small probability.

3. Testing the robustness of Tu with respect to changes in the distribution of X provides a

heuristic to asses when δu will be small.

2.4 Practical and computational considerations

The total Sobol’ indices with dependent variables may be estimated via Monte Carlo integration

[68] or the Fourier Amplitude Sensitivity Test [115]. In what follows, {Tk}pk=1 is estimated via
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Monte Carlo integration using (p+ 1)N evaluations of f , where N is the number of Monte Carlo

samples [68].

When the variables are independent, Property IV bounds Tu using {Tk}pk=1, so it is typically

sufficient to compute {Tk}pk=1 as inferences about Tu may be made using {Tk}pk=1. This does not

generalize when the variables are dependent. The example in Subsection 2.5.1 provides a case

where T1 and T2 are small, but T1,2 is large. The approximation theoretic framework is helpful

for interpreting this. When f is sensitive to two variables which are dependent on one another

then one variable may be projected out with little error because the remaining variable can

approximate its influence on f ; however, when both are projected out a large error is incurred.

A practical strategy with dependent variables is to estimate {Tk}pk=1, which requires (p+1)N

evaluations of f . Then {Tk}pk=1 may be analyzed, along with information about the dependencies

in X (known analytically or from the samples), and the user may select particular subsets

u ⊂ {1, 2, . . . , p} for which to compute Tu. Using the estimator from [68], the additional cost to

compute Tu, for a given u, will be N evaluations of f .

As shown in Chapter 3, the robustness of Tk to changes in the distribution of X may be

computed as a by-product of computing {Tk}pk=1. If Tk, k ∈ u, is not robust to changes in the

distribution of X, then δu may be significantly larger than Tu. For a particular function g and

subset u, the user may compute δu directly; this also requires N evaluations of f .

Choosing g is a challenge in practice. The simplest choice, g(X∼u) = E[Xu], fails to exploit

dependency information and is not suggested. Rather, g(X∼u) = E[Xu|X∼u] is suggested since

(i) linear dependencies are common in practice (normal distributions and copula models are two

common examples), and (ii)E[Xu|X∼u] is easily computed (either analytically or through linear

regression with the existing samples). If the dependencies in X are known to be nonlinear then

g may be estimated by nonlinear regression (using the existing samples). The challenge in this

case is determining an appropriate nonlinear model for g.

2.5 Illustrative examples

This section provides two illustrative examples to highlight properties of the total Sobol’ indices

and their association with approximation error.

2.5.1 A linear function

Let

f(X) = 20X1 + 16X2 + 12X3 + 10X4 + 4X5 (2.9)

18



and X follow a multivariate normal distribution with mean µ and covariance matrix Σ given by

µ =


0

0

0

0

0

 , Σ =


1 .5ρ .5ρ 0 .8ρ

.5ρ 1 0 0 0

.5ρ 0 1 0 .3ρ

0 0 0 1 0

.8ρ 0 .3ρ 0 1

 , 0 ≤ ρ ≤ 1.

The total Sobol’ indices Tk, k = 1, . . . , 5, are computed analytically and displayed in Figure 2.1

as a function of ρ. Observe that the ordering of importance changes as the correlations become

stronger. This underscores the significance of accounting for dependencies. Also notice that the

total Sobol’ indices are decreasing as a function of ρ. The approximation theoretic perspective

provides a nice interpretation of this. As the correlations are strengthened, the error associated

with projecting out a variable decreases because its influence on f(X) may be approximated by

the other variables.
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Figure 2.1 Total Sobol’ indices for (2.9) with increasing correlation strength as ρ varies from 0 to 1.

Table 2.1 displays the total Sobol’ indices T1, T2, and T1,2 when ρ = 1. This demonstrates that

two variables may have small total Sobol’ indices individually (T1 and T2), but their joint total

Sobol’ index (T1,2) may be significantly larger. This phenomenon, which does not occur when

the variables are independent, is important when analyzing results with dependent variables;

inference about subsets cannot be made with {Tk}pk=1 alone.
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Table 2.1 Total Sobol’ indices of (2.9) for variables X1, X2, and (X1, X2) when ρ = 1.

T1 T2 T1,2

0.0087 0.0196 0.4228

2.5.2 A nonlinear function

Let f be the g-function of [109] with p = 10 variables; more precisely, f is given by

f(X) =

10∏
k=1

|4Xk − 2|+ ak
1 + ak

, (2.10)

where the parameters ak, k = 1, 2, . . . , 10, is given by a = (1, 2, 3, 9, 11, 13, 20, 25, 30, 35). Let X

follow a multivariate normal distribution with mean µ ∈ R10,

µk =
1

2
, k = 1, 2, . . . , 10,

and covariance matrix Σ ∈ R10×10,

Σk,k =
1

6
, k = 1, 2, . . . , 10, and Σi,j =

ρ

6|i− j + 1|
1
γ

, i 6= j.

The covariance matrix is parameterized so that the magnitude of the covariances are large

near the diagonal of Σ and decrease as they move away from the diagonal. The parameter

γ determines the rate at which they decrease, as γ → ∞, the off diagonal elements of Σ all

converge to ρ/6. Hence γ tunes how many variables are strongly correlated with one another.

The parameter ρ scales the strength of the correlations.

Direct calculations yield that variables Xi, i = 7, 8, 9, 10, are not influential for any ρ, γ,

though T7,8,9,10 does depend on ρ and γ. Figure 2.2 demonstrates how the Sobol’ index T7,8,9,10

and the approximation error δ7,8,9,10 vary with respect to ρ and γ. On the left panel γ = 1 is

fixed and ρ is varied from 0 to 1; on the right panel γ = 6 is fixed and ρ is varied from 0 to 1.

Figure 2.2 shows that linear dependencies, as in the case of a multivariable normal random

vector, aid in approximating f by fixing unimportant variables. In particular, observe that the

error from replacing X7,8,9,10 with its conditional expectation decreases as ρ increases. Taking

a larger γ, as in the right panel, corresponds to having more variables which are strongly

correlated. Having T7,8,9,10 ≈ δ7,8,9,10, as in the right panel with ρ ≥ 0.7, demonstrates that the

optimal approximation (which corresponds to computing a L2(Ω) projection) may be accurately

approximated by replacing X7,8,9,10 with its conditional expectation.
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Figure 2.2 Sobol’ index T7,8,9,10 and approximation error δ7,8,9,10 for (2.10) as ρ varies from 0 to 1.
Left: γ = 1; right: γ = 6.

2.6 Conclusion

This chapter provides a framework to analyze dimension reduction with dependent variables

and highlights how dependencies may aid the user in dimension reduction. The approximation

theoretic characterization of total Sobol’ indices is useful as it demonstrates how total Sobol’

indices are linked to optimal approximation and how they may be used to analyze the error

when replacing variables Xu with a function g(X∼u), a practical approach. An important factor

in this analysis is the robustness of the total Sobol’ indices to changes in the distribution of X.

Further analysis is needed to (i) connect the robustness studies in Chapter 3 with dimension

reduction and (ii) determine an optimal g, particularly in the presence of nonlinear dependencies.

As mentioned in Chapter 1, there has been progress with derivative-based global sensitivity

indices [100, 107, 108] and active subspaces [19] as alternative approaches for dimension reduction

with independent variables. Extending analysis of these methods for dimension reduction with

dependent variables is another avenue of future research.

The approximation theoretic perspective provides a useful characterization of Sobol’ indices

for dimension reduction with dependent variables. However, this characterization does not

address difficulties which arise in other applications of GSA. For instance, when GSA is used

for model development the user wants to identify the most important variables. If the most

important variables have strong dependencies then their Sobol’ indices may be small which hides

the information the user desires. Future work may consider alternative characterizations which

are focused toward other applications. This may involve the Sobol’ indices, or possibly other

tools in GSA.
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CHAPTER

3

ROBUSTNESS OF SOBOL’ INDICES TO

INPUT DISTRIBUTION UNCERTAINTY

3.1 Introduction

As mentioned in Chapter 1, the Sobol’ indices, and most other GSA methods, assume that

the distribution of X is known and may be sampled. In many applications the distribution

of X is not known and practitioners are left to estimate it. A common approach is to assume

X1, X2, . . . , Xp are independent and define the marginal distribution of Xk to be uniform or

normal centered at some nominal value. Defining a probability distribution for X is a challenging

task which carries uncertainties itself. This raises the question, “how robust is a GSA method

to changes in the distribution of X?” This question is addressed for the Sobol’ indices in this

chapter.

The robustness of the Sobol’ indices with respect to changes in the marginal distributions of

Xk, k = 1, 2, . . . , p, is considered in the Life Cycle Analysis literature [70]. Their approach requires

the user to specify various admissible marginal distributions for the variables and compute the

Sobol’ indices for each possibility. This requires many evaluations of f thus limiting its use more

broadly. The robustness of the Sobol’ indices with respect to changes in the correlation structure

is highlighted in [45] where the authors seek to quantify the risk of ignoring correlations between

the variables. Imprecise probabilities are used in [49] to quantify uncertainty in the sensitivity
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indices. This approach requires the user to parameterize admissible distributions and collect

additional samples, i.e. additional evaluations of f . In the ecology literature [92], the robustness

of Sobol’ indices to changes in the means and standard deviations defining normally distributed

inputs is examined. The challenges of deep uncertainty, i.e. uncertainty in the distributions of

Xk, k = 1, 2, . . . , p, are identified in [32] where the authors compute Sobol’ indices for different

distributions and define “robust sensitivity indicators” as a function of the Sobol’ indices from

different distributions. Similar questions about the robustness of computed quantities with

respect to distributional uncertainty may be found in [3, 18, 56, 85, 88].

In [10], the ANOVA decomposition is analyzed when X does not have a unique distribution

but rather multiple possible distributions. The authors provide a framework for analyzing the

robustness of the Sobol’ indices which depends upon the user specifying a prior on the space of

possible distributions of X. In line with [7], the robustness of the Sobol’ indices may be determined

by considering a set of possible distributions, sampling from their mixture distribution, and

computing the Sobol’ indices with respect to each distribution using a weighting scheme. This

approach does not require additional evaluations of f , but the user must specify the set of

possible distributions, which is challenging in practice.

All of the aforementioned approaches require user specification of possible distributions,

additional evaluations of f , or both. In this chapter, a method is presented to measure the

robustness of the Sobol’ indices to distributional uncertainties without requiring either. In

particular, the PDF of X is perturbed and the Sobol’ indices are computed using the perturbed

PDF. A judicious formulation facilitates a closed form solution to an optimization problem

which determines PDF perturbations yielding maximum change in the Sobol’ indices. The

Sobol’ indices with a perturbed PDF are then computed using weighted averages. The proposed

method is a post-processing step which requires minimal user specification and no evaluations

of f beyond those already taken to compute the Sobol’ indices.

3.2 Robustness of the Sobol’ index to PDF perturbations

As in Chapter 1, let f : X → R, X = X1 ×X2 × · · · × Xp ⊂ Rp, be a function or model and let

X = (X1, X2, . . . , Xp) ∈ X be the input variables of that model; assume X admits a PDF φ. For

conciseness, this chapter focuses on the robustness of the total Sobol’ index Tu to changes in φ;

the Sobol’ index Su may be analyzed in a similar fashion.

There are multiple ways to express and estimate Tu; a useful expression from [68] is

Tu =
1
2

∫
X×Xu(f(x)− f(x′))2φ(x)φx|x∼u(x′|x∼u) dx dx′u∫

X f(x)2φ(x)dx−
(∫
X f(x)φ(x)dx

)2 (3.1)
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where x = (xu,x∼u), x′ = (x′u,x∼u), φx|x∼u is the conditional density for X|X∼u, and Xu is

the Cartesian product of each Xk, k ∈ u. Note that x = (xu,x∼u) is not a permutation of the

entries of x but rather a partitioning of them. Then Tu may be estimated by drawing samples

from X, drawing a second set of samples from X|X∼u, and estimating (3.1) via Monte Carlo

integration of the numerator and denominator separately.

The basic idea of the proposed approach is to view Tu as an operator which takes a PDF as

input and returns the total Sobol’ index. The Fréchet derivative of this operator is computed at

φ and used to analyze the robustness of Tu. To this end, the following assumptions are made

throughout the chapter:

1. X is a Cartesian product of compact intervals,

2. φ(x) > 0 ∀x ∈ X ,

3. φ is continuous on X ,

4. f is bounded on X .

Some of the results below may be shown with weaker assumptions, these overarching assumptions

are made now for conciseness and simplicity. Without loss of generality, under the assumptions

above, assume that X = [0, 1]p.

The proposed method seeks to perturb the PDF, so it is essential that the perturbations

preserve properties of PDFs, specifically, that every PDF is nonnegative and its integral over X
equals one.

Since φ > 0 is continuous and X is compact, φ is bounded above and below by positive real

numbers. Define the Banach space V as the set of all bounded functions on X equipped with

the norm

||ψ||V =

∣∣∣∣∣∣∣∣ψφ
∣∣∣∣∣∣∣∣
L∞(X )

,

where || · ||L∞(X ) is the supremum norm on L∞(X ), the set of bounded function on X . This

norm ensures that φ+ψ ≥ 0 for all ψ ∈ V with ||ψ||V ≤ 1, the non negativity property of PDFs.

To ensure that the integral over X equals one, a normalization operator is introduced which

takes η ∈ V and returns η∫
X η(x)dx

. Composing this normalization operator with (3.1) yields the

total Sobol’ index as an operator on V . Define F,G, Tu : V → R by

F (η) =
1

2

∫
X×Xu

(f(x)− f(x′))2η(x)η(x′)
1∫

Xu η(x)dxu
dxdx′u, (3.2)
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G(η) =

∫
X
f(x)2η(x)dx− 1∫

X η(x)dx

(∫
X
f(x)η(x)dx

)2

, (3.3)

Tu(η) =
F (η)

G(η)
. (3.4)

It is easily observed that multiplying the numerator and denominator of (3.4) by 1∫
X η(x)dx

yields

that (3.4) and (3.1) coincide with φ replaced by η∫
X η(x)dx

. In this framework, every η ∈ V such

that ||φ− η||V ≤ 1 is nonnegative and Tu(η) corresponds to the total Sobol’ index computed

with respect to the PDF η∫
X η(x)dx

.

Having defined the total Sobol’ index as an operator which inputs bounded PDFs, Theorem 6

below gives the Fréchet derivative of the total Sobol’ index at φ.

Theorem 6. The operator Tu is Fréchet differentiable at φ with Fréchet derivative DTu(φ) :

V → R given by the bounded linear operator

DTu(φ)ψ =
DF (φ)ψ

G(φ)
− Tu(φ)

DG(φ)ψ

G(φ)
, (3.5)

where

DF (φ)ψ =
1

2

∫
X×Xu

(f(x)− f(x′))2ψ(x′)

φ(x′)
φ(x)φx|x∼u(x′|x∼u)dxdx′u

+
1

2

∫
X×Xu

(f(x)− f(x′))2ψ(x)

φ(x)
φ(x)φx|x∼u(x′|x∼u)dxdx′u

−1

2

∫
X×Xu

(f(x)− f(x′))2

∫
Xu ψ(x)dxu∫
Xu φ(x)dxu

φ(x)φx|x∼u(x′|x∼u)dxdx′u

and

DG(φ)ψ =

∫
X
f(x)2ψ(x)

φ(x)
φ(x)dx

− 2

∫
X
f(x)φ(x)dx

∫
X
f(x)

ψ(x)

φ(x)
φ(x)dx

+

(∫
X

ψ(x)

φ(x)
φ(x)dx

)(∫
X
f(x)φ(x)dx

)2

.

Proof. One may easily observe that G(η) > 0 in a neighborhood of φ (assuming f(X) is non

constant). It is sufficient to compute the Fréchet derivatives of F and G, the Fréchet derivative
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of Tu follows from the quotient rule. The Fréchet derivatives of∫
X
f(x)φ(x)dx,

∫
X
f(x)2φ(x)dx, and

∫
X
φ(x)dx,

when considered as operators from V to R, acting on ψ, are easily shown to be∫
X
f(x)ψ(x)dx,

∫
X
f(x)2ψ(x)dx, and

∫
X
ψ(x)dx,

respectively, using the definition of the Fréchet derivative. The Fréchet derivative of G follows

from the sum/difference, product, and chain rule of differentiation.

The Fréchet derivative of F may be computed by first defining an operator

H : V → L∞(X × Xu),

H(η) = η(x)η(x′)
1∫

Xu η(x)dxu
,

where x′∼u = x∼u. The Fréchet derivatives of

η(x), η(x′), and

∫
Xu
η(x)dxu,

when considered as operators from V to L∞(X × Xu), acting on ψ, are easily shown to be

ψ(x), ψ(x′), and

∫
Xu
ψ(x)dxu,

respectively, using the definition of the Fréchet derivative. The Fréchet derivative of H follows

from the product and quotient rules of differentiation. The Fréchet derivative of F may be

easily computed using the Fréchet derivative of H, the boundedness of f , and the chain rule of

differentiation.

If the total Sobol’ index is computed using a Monte Carlo estimator for the numerator and

denominator of (3.1), then DTu(φ)ψ may be estimated using these samples and evaluations of

f ; the only additional work is evaluating φ and ψ at the sample points. Hence DTu(φ)ψ may be

estimated at any ψ ∈ V with negligible computational cost. This is why, as previously mentioned,

the proposed method is a post-processing step which requires no additional evaluations of f

beyond those taken to compute the total Sobol’ indices.

An “optimal” perturbation of φ is sought in the sense that it causes the greatest change

in the total Sobol’ index. The locally optimal perturbation is the ψ ∈ V , ||ψ||V ≤ 1, which

maximizes |DTu(φ)ψ|. To estimate this ψ, define a finite dimensional subspace VM ⊂ V and

compute the operator norm of the restriction of DTu(φ) to VM . When choosing VM , there is a
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tradeoff to consider between the approximating properties of functions from VM , the ability to

use existing samples to estimate the action of DTu(φ) on functions from VM , and the ease of

computing the operator norm of DTu(φ) restricted to VM . In what follows, VM is chosen to be a

subspace generated by the span of a set of locally supported piecewise constant functions.

Let Ri, i = 1, 2, . . . ,M , be a partition of X into open hyperrectangles, i.e. X = ∪Mi=1Ri and

Ri ∩Rj = ∅ for i 6= j; Ri denotes the closure of Ri. Define

ψi(x) =

1 x ∈ Ri
0 x /∈ Ri

to be the indicator function of Ri, i = 1, 2, . . . ,M , and VM = span{ψ1, ψ2, . . . , ψM}, a M

dimensional subspace of V . A partition may be efficiently constructed using Regression Trees

[12]; this will be elaborated on in Section 3.4.

The operator norm of DTu(φ) restricted to VM is given by

||DTu(φ)||L(VM ,R) = max
ψ∈VM
||ψ||V ≤1

|DTu(φ)ψ|

= max
a∈RM

||
∑M
i=1 aiψi||V ≤1

∣∣∣∣∣DTu(φ)

(
M∑
i=1

aiψi

)∣∣∣∣∣
= max

a∈RM
||
∑M
i=1 aiψi||V ≤1

∣∣∣∣∣
M∑
i=1

aiDTu(φ)ψi

∣∣∣∣∣ .
Since the basis functions have disjoint support, it follows that∣∣∣∣∣

∣∣∣∣∣
M∑
i=1

aiψi

∣∣∣∣∣
∣∣∣∣∣
V

=

∣∣∣∣∣
∣∣∣∣∣
M∑
i=1

ai
1

φ
ψi

∣∣∣∣∣
∣∣∣∣∣
L∞(X )

= max
i=1,2,...,M

|ai|
∣∣∣∣∣∣∣∣ 1φ
∣∣∣∣∣∣∣∣
L∞(Ri)

,

which implies ∣∣∣∣∣
∣∣∣∣∣
M∑
i=1

aiψi

∣∣∣∣∣
∣∣∣∣∣
V

≤ 1

is equivalent to |ai| ≤ bi, where bi is the infimum of φ on Ri, i = 1, 2, . . . ,M .

Let d ∈ RM be defined by di = DTu(φ)ψi, i = 1, 2, . . . ,M . Then

||DTu(φ)||L(VM ,R) = max
a∈RM
|ai|≤bi

i=1,2,...,M

|dTa|.
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This problem may be solved in closed form to get

ai = sign(di)bi

and

||DTu(φ)||L(VM ,R) = ||d||1.

In what follows, ψ ∈ VM , ||ψ||V ≤ 1, which maximizes the Fréchet derivative will be referred

to as the optimal perturbation. Finding the optimal perturbation and the corresponding operator

norm simplifies to evaluating DTu(φ)ψi for i = 1, 2, . . . ,M , which may be estimated with

negligible additional computation. However, estimating DTu(φ)ψi is typically more challenging

than estimating the total Sobol’ index. Rather than inferring robustness with ||DTu(φ)||L(VM ,R),

it is proposed to:

i. estimate ai = sign(di)bi, i = 1, 2, . . . ,M ,

ii. use weighted averaging with the existing evaluations of f and φ to estimate the total Sobol’

indices with respect to the optimally perturbed PDF, which is defined as

φ+ δ
M∑
i=1

aiψi

1 + δ
M∑
i=1

aivol(Ri)

, (3.6)

where δ ∈ [−1, 1] is a parameter to scale the size of the perturbation and vol(Ri) is the volume

of the set Ri; the determination of δ will be discussed in Section 3.4. The total Sobol’ indices

computed with φ will be referred to as the nominal total Sobol’ indices and the total Sobol’

indices computed with the optimally perturbed PDF (3.6) will be referred to as the perturbed

total Sobol’ indices.

In practice, it is suggested to estimate the terms vol(Ri), i = 1, 2, . . . ,M , in (3.6) with a

Monte Carlo estimator from the existing data. They may be computed analytically since Ri

is known; however, if they are computed exactly then the weights used to estimate perturbed

Sobol’ indices may not sum to one because of Monte Carlo error in the estimate. This can bias

the resulting analysis. Estimating vol(Ri), i = 1, 2, . . . ,M , from the existing data diminishes

this potential bias.

Computing perturbed total Sobol’ indices with weighted averages is an improvement from

traditional derivative based robustness (or stability) analysis in several ways:

• Estimating ai is easy. Since φ is known, bi may be computed numerically by querying the
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existing evaluations of φ (or possibly analytically, for instance if φ ≡ 1 then bi = 1 for all

i), this computation is negligible. Assuming that enough samples have been taken for the

total Sobol’ index estimation to converge, determining the sign of di with these samples is

relatively easy. Additionally, when the sign of di is not determined correctly it is frequently

because DTu(φ)ψi ≈ 0, in which case this error is benign in the scope of the analysis.

• The user must determine δ; however, various values of δ ∈ [−1, 1] may be tested at

negligible computation cost. The sample standard deviation of the weighted average may

be compared with the sample standard deviation in the original estimator to determine

admissible values of δ. Additional details are given in Section 3.4.

• Computing the perturbed Sobol’ indices estimates a realized worst case. This is superior

to worst case bounds, error bars, or confidence intervals, which in many cases are overly

pessimistic. Further, computing error bars for each Sobol’ index individually may yield

misleading results. For instance, error bars for two variables may yield large intervals

for each Sobol’ index, but their magnitude relative to one another is nearly constant for

any PDF perturbation. In this case the user would incorrectly conclude that the relative

importance of the variables to one another is uncertain.

As previously highlighted, one way to test for robustness is to use weighted averages to

estimate the total Sobol’ indices with different PDFs. The challenge with this approach is

that the user must specify the perturbed PDFs. The proposed method may be viewed as an

improvement on this idea by automating the choice of perturbed PDFs. The Fréchet derivative

operator norm yields a locally optimal perturbation, which will likely reveal greater changes in

the total Sobol’ indices when compared with a user manually selecting a small set of perturbed

PDFs. However, the proposed method does not have the danger of finding unrealistic worst

cases since it only seeks perturbations in a neighborhood of the existing PDF and is constrained

to use the existing samples.

3.3 Robustness of the normalized total Sobol’ index to PDF

perturbations

Section 3.2 provides the necessary tools to analyze the robustness of the total Sobol’ indices. As

highlighted in Chapter 2, the total Sobol’ indices may be smaller in magnitude when X possesses

stronger dependencies. When the PDF is perturbed it may result in all of total Sobol’ indices

decreasing on a relative scale, that is, they decrease but their relative size does not change

significantly. In this case, the inference of the relative importance of the variables is unchanged

by the perturbed PDF. Rather than considering the robustness of the total Sobol’ indices, it
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is also advantageous to analyze the robustness of the relative importance of the variables. For

clarity and notational simplicity, the remainder of the chapter will focus on the total Sobol’

indices when u = {k} is a singleton, i.e. the set of total Sobol’ indices {Tk}pk=1.

In order to measure the relative importance of the variables as the PDF varies, define the

normalized total Sobol’ index Tk : V → R as

Tk(φ) =
Tk(φ)
p∑
i=1

Ti(φ)

(3.7)

for k = 1, 2, . . . , p. Applying Theorem 6 and the quotient rule to (3.7) yields that Tk is Fréchet

differentiable with Fréchet derivative

DTk(φ)ψ =

(
p∑
i=1

Ti(φ)

)
DTk(φ)ψ − Tk(φ)

(
p∑
i=1

DTi(φ)ψ

)
(

p∑
i=1

Ti(φ)

)2 .

Since DTk(φ) is a linear combination of the operators DTk(φ) from Section 3.2, DTk(φ)ψ

may be easily estimated using the same results previously presented. In fact, in Section 3.2 a

subspace VM = span{ψ1, ψ2, . . . , ψM} is defined and DTk(φ)ψi is computed for i = 1, 2, . . . ,M .

Using this computation, DTk(φ)ψi, i = 1, 2, . . . ,M , can be computed at no additional cost. The

same procedure from Section 3.2 may be adopted to compute perturbed PDFs and perturbed

total Sobol’ indices via weighted averages. Since the cost is negligible, it is suggested to compute

the optimal perturbation using DTk(φ) and DTk(φ), and estimate the perturbed total Sobol’

indices for each perturbation.

Definition 3 below aids to identify perturbations which change the total Sobol’ indices but

not the relative importance of the variables.

Definition 3. Let T̃k and T̃k denote the perturbed total Sobol’ indices and perturbed normalized

total Sobol’ indices, respectively, for some perturbation of φ. The absolute change in the total

Sobol’ indices is

p∑
k=1

|Tk − T̃k|

and the relative change in the total Sobol’ indices is

p∑
k=1

|Tk − T̃k|.
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It is suggested to consider two sets of perturbed total Sobol’ indices, those which yield the

largest absolute change and those which yield the largest relative change. This will be further

described in Section 3.4 and demonstrated in Section 3.5.

3.4 Algorithmic description

Algorithm 1 below summarizes the proposed method. In this section, the user inputs of Al-

gorithm 1 are discussed in detail, important algorithmic features are highlighted, and the

visualization and interpretation of the results are considered.

It was previously suggested to generate the partition Ri, i = 1, 2, . . . ,M , with a Regression

Tree [12]. This is a judicious choice because the minimum number of samples in the sets Ri is

easily specified. An integer L may be input and the Regression Tree will recursively partition

X ensuring that each set of the partition contains at least L samples. This simplicity makes

Regression Trees attractive. Taking small values of L typically results in VM being a larger

subspace, but will create error when estimating DTu(φ)ψi (since there will be fewer samples to

estimate the integrals). The determination of L is discussed below. The relationship between L

and M depends on the algorithm used to generate the partition; a Regression Tree will uniquely

determine M as a function L, typically a decreasing function of L.

A Regression Tree may be trained using the existing samples and evaluations of f . It will

pursue a partition of X for which f is approximately constant on the sets Ri. In some cases, as

illustrated in Subsection 3.5.3, this may result in sets Ri, i = 1, 2, . . . ,M , where most of the bi’s

are small. This is problematic because it limits the size of admissible perturbations. To mitigate

this, a Regression Tree may be trained to generate a coarser partition which can be refined by

the user to ensure that only a few bi’s are small. This is demonstrated in Subsection 3.5.3.

The norm of the perturbed PDF in (3.6) depends on δ. It was suggested to try various values

of δ ∈ [−1, 1] (equally spaced points in [−1, 1]) and accept those which meet a convergence

tolerance. If Monte Carlo integration is used to estimate the total Sobol’ indices {Tk}pk=1,

then the sample standard deviation may be used as a metric for convergence. Let σj and σ̃j ,

j = 1, 2, . . . , p, denote the sample standard deviation for the nominal and perturbed total

Sobol’ indices, respectively. For the results presented in this Chapter, the sample standard

deviation is estimated by computing the standard derivation of 50 estimates generated by

randomly subsampling half of the function evaluations. Assuming that σj , j = 1, 2, . . . , p, are

sufficiently small to ensure convergence of the nominal total Sobol’ indices, it is required that

(σ̃j/T̃j)/(σj/Tj) be less than a threshold. Define

t = max
j=1,2,...,p

(σ̃j/T̃j)

(σj/Tj)
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and specify a threshold τ > 1. The perturbed total Sobol’ indices are accepted if t ≤ τ .

The inputs of Algorithm 1 are:

• N , the number of Monte Carlo samples,

• L, the minimum number of samples in each set of the partition,

• r, an integer denoting how many values of δ ∈ [−1, 1] to consider,

• and τ , the acceptance threshold for the perturbed total Sobol’ indices.

The results in Section 3.5 use L = 50, r = 60, and τ = 1.5; the number of Monte Carlo

samples required depends on the problem. Numerical evidence, and intuition, indicate that t is

approximately a quadratic function of δ centered at δ = 0. To determine δ, the scalar nonlinear

equation t(δ) = τ may be solved by evaluating t(δ) at r equally spaced points in [−1, 1]. It is

not necessary to take large values for r; the choice r = 60 introduces negligible computation

and provides sufficient resolution. The choice τ = 1.5 is considered a reasonable threshold to

permit non trivial perturbations without introducing significant numerical errors. The choice

of L = 50 is the least intuitive of the inputs. To justify this choice, a numerical experiment

was performed varying L = 25 + 5`, ` = 0, 1, . . . , 10. The results, omitted from this chapter for

conciseness, indicate that the proposed method is robust to changes in L. If necessary, the user

may easily verify the particular choice of inputs used in their application by varying them. The

computational cost of this numerical experiment is small.

Lines 2-5 of Algorithm 1 below is the total Sobol’ index estimation and Lines 6-17 is the

robustness analysis. In many applications, Line 4 dominates the computational cost and hence

the cost of robustness analysis is negligible. Lines 6 and 8 may be done analytically in many

applications. The computation in Lines 9-18 is primarily taking sample averages of data on

memory so its cost is small. In particular, the nested for loops may appear burdensome, but the

operations inside of them are sufficiently simple that they may be executed quickly.

Algorithm 1 returns a collection of 2p sets perturbed Sobol’ indices. It is suggested to

extract the perturbed total Sobol’ indices with the largest absolute and relative changes to

visualize alongside the nominal total Sobol’ indices, denote them as {T̃ ak , T̃ rk , Tk}
p
k=1 where the

superscripts a and r identify the total Sobol’ indices with largest absolute and relative changes,

respectively. This may be done by querying the collection of perturbed total Sobol’ indices and

creating a bar plot of {T̃ ak , T̃ rk , Tk}
p
k=1, see Figure 3.2 for an illustration of this. There are several

possible scenarios the user may observe:

• If T̃ ak ≈ Tk, k = 1, 2, . . . , p, then the user may confidently make inferences with the total

Sobol’ indices.
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• If T̃ ak 6≈ Tk, k = 1, 2, . . . , p, but T̃ rk ≈ Tk, k = 1, 2, . . . , p, then the user may confidently

make inferences about the relative importance of the variables but not the magnitude of

the total Sobol’ indices.

• If there are variables such that Tk ≈ T̃ ak ≈ 0 then they may be considered unimportant.

• If Tk ≈ 0 but T̃ ak 6≈ 0 then the user should excise caution treating Xk as unimportant.

• If Ti > Tj but T̃ ri < T̃ rj then the user may not be certain of the importance of Xi and Xj

relative to one another.

If a particular Sobol’ index Tk is of interest, the collection of perturbed Sobol’ indices may

be queried to assess its robustness. The user may easily visualize all 2p of the perturbed indices

T̃k in a histogram.

Algorithm 1 Computation of total Sobol’ indices with robustness post-processing

1: Input: N , L, r, τ
2: Draw N samples of X, store them in X0 ∈ RN×p
3: Draw N samples of X|X∼k, store them in Xk ∈ RN×p, k = 1, 2, . . . , p
4: Evaluate f(Xj), j = 0, 1, . . . , p
5: Compute Tk, k = 1, 2, . . . , p
6: Evaluate φ(Xj), j = 0, 1, . . . , p
7: Generate a partition {Ri}Mi=1 by using the data (X0, f(X0)) to train a Regression Tree with

a minimum of L data points in each terminal node
8: Determine bi = infx∈Ri φ(x), i = 1, 2, . . . ,M
9: Compute DTk(φ)ψi, i = 1, 2, . . . ,M , k = 1, 2, . . . , p

10: Compute DTk(φ)ψi, i = 1, 2, . . . ,M , k = 1, 2, . . . , p
11: for k from 1 to p do
12: Determine ψ(k,1) ∈ VM , ||ψ(k,1)||V ≤ 1, to maximize |DTk(φ)|
13: Determine ψ(k,2) ∈ VM , ||ψ(k,2)||V ≤ 1, to maximize |DTk(φ)|
14: for ` from 0 to r do
15: Compute {T̃ (k,`,1)

j }pj=1 and t(k,`,1) with perturbation (φ+
(
−1 + 2`

r

)
ψ(k,1))/C(k,`,1)

16: Compute {T̃ (k,`,2)
j }pj=1 and t(k,`,2) with perturbation (φ+

(
−1 + 2`

r

)
ψ(k,2))/C(k,`,2)

17: end for
18: end for
19: Output: 2p sets of perturbed Sobol’ indices with largest admissible t(k,`,I) ≤ τ
20: Note: C(k,`,1), C(k,`,2) are constants ensuring the perturbed PDF integrates to one.
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3.5 Numerical results

In this section, three examples are presented to highlight different properties of the proposed

method. The first example analyzes how the robustness analysis changes as more samples are

taken. The second example expands on Section 3.3 by highlighting a case when the largest

absolute change in the total Sobol’ indices yields a small relative change. The final example is

an application of the proposed method to the Lorenz system [74]. Two cases are considered in

this example to demonstrate the effect of the partitioning on the robustness analysis.

3.5.1 Synthetic example to demonstrate convergence in samples

Let

f(X) =
10∏
k=1

|4Xk − 2|+ ak
1 + ak

, (3.8)

where each Xk is independent and uniformly distributed on [0, 1], and ak = k−1 for k = 1, 2, ..., 10.

This is the “g-function” [109] commonly used in the GSA literature.

The nominal total Sobol’ indices and perturbed total Sobol’ indices of (3.8) are computed.

The number of Monte Carlo samples is varied to analyze the convergence behavior of the

robustness estimation, specifically, 1,000, 5,000, 10,000, and 50,000 Monte Carlo samples are

used. For each fixed sample size, 32 repetitions of the calculation is performed to understand

sampling variability. Figure 3.1 below displays box plots for the estimation of the largest total

Sobol’ index, T1. The center panel is the estimation of T1; the median estimation is nearly

constant and the quantiles shrink as the number of samples increases, this reflects convergence

of the estimator. The perturbation size δ is varied between -1 and 1 and it is determined that

|δ| = .33 is the maximum admissible perturbation size for the threshold τ = 1.5. The left and

right panels show the convergence of T̃1 with perturbations δ = −.33 and δ = .33, respectively.

The shrinking quantiles are very similar to those in the center panel demonstrating that the

estimation error in T̃1 is comparable to the estimation error in T1. The left and right panels

have slight decreasing and increasing trends, respectively. This is because the subspace VM is

larger when more samples are taken, thus the perturbations yield larger changes in the total

Sobol’ indices. For this example, the trend is relatively small reflecting the fact that taking a

larger subspace does not yield significant changes in the perturbed total Sobol’ index.
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Figure 3.1 Convergence of the total Sobol’ index for variable X1 as the number of Monte Carlo
samples vary. Left: perturbed total Sobol’ index with δ = −.33, center: nominal total Sobol’ index,
right: perturbed total Sobol’ index with δ = .33.

3.5.2 Synthetic example to demonstrate the normalized total Sobol’ indices

This example illustrates the difference in the largest absolute and relative perturbations of the

total Sobol’ indices. Let

f(X) = 1.5X1 + 1.25X2 +X3 (3.9)

where each Xk is independent and uniformly distributed on [0, 1], k = 1, 2, 3. The total Sobol’

indices are estimated with 5,000 Monte Carlo samples. Figure 3.2 displays the nominal total

Sobol’ indices of (3.9) in blue, the perturbed total Sobol’ indices with the largest absolute

differences change in cyan, and the perturbed total Sobol’ indices with the largest relative change

in yellow.

The largest absolute change of the total Sobol’ indices corresponds to the case when they

are all shifted down but their relative importance does not change. The largest relative change

identifies a case where T1 decreases while T2 and T3 increase. The relative importance of the

variables change with this perturbation, demonstrating the benefit of considering the largest

absolute and relative perturbations.

3.5.3 Lorenz system

This example applies the proposed method to the well known Lorenz system [74], a model

for atmospheric convection. Sobol’ indices were considered for this system in [84]. The Lorenz

system is described by the system of ordinary differential equations

dy1

dt
= σ(y2 − y1)
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Figure 3.2 Total Sobol’ indices for (3.9), the height of each bar indicates the total Sobol’ index. The
blue bars indicate the nominal total Sobol’ indices; the cyan and yellow bars indicate the total Sobol’
indices when the PDF of X was perturbed in extreme cases; cyan: the largest absolute change; yellow:
the largest relative change.

dy2

dt
= y1(ρ− y3)− y2

dy3

dt
= y1y2 − βy3

with initial conditions yi(0) = αi, i = 1, 2, 3. Letting X = (σ, ρ, β, α1, α2, α3) denote the uncertain

variables, the total Sobol’ indices of the function

f(X) =
y3(1)

y2(1)

are computed. This choice of f corresponds to a ratio of temperature variations after a duration

of 1 time unit.

The distribution of X is chosen to reflect uncertainty about nominal values of the variables.

Two different cases, in the sub-subsections below, are considered to highlight different features

of the proposed method. For each case, 10, 000 Monte Carlo samples are taken for the total

Sobol’ index estimation.

3.5.3.1 Lorenz system case 1

In this first case, assume the variables are independent with the uniform distributions given in

Table 3.1 below. Figure 3.3 displays the nominal total Sobol’ indices in blue, the perturbed total

Sobol’ indices with the largest absolute change in cyan, and the perturbed total Sobol’ indices

with the largest relative change in yellow. Several inferences may be drawn from this result,
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• ρ and β are the most influential variables, although their total Sobol’ indices and relative

importance is uncertain,

• the total Sobol’ indices for σ, α1, and α2 and their importance relative to one another is

robust,

• α3 has little influence and its small total Sobol’ index is robust, it may be considered a

non-influential variable.

Table 3.1 Marginal distribution for uncertain variables in Lorenz system Case 1. The means of σ, ρ,
and β are the nominal values in [84].

Variable Distribution Support

σ Uniform
[

97
10 ,

103
10

]
ρ Uniform

[
2716
100 ,

2884
100

]
β Uniform

[
194
75 ,

206
75

]
α1 Uniform

[
4
5 ,

6
5

]
α2 Uniform

[
4
5 ,

6
5

]
α3 Uniform

[
4
5 ,

6
5

]
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Figure 3.3 Total Sobol’ indices for the Lorenz System Case 1 example, the height of each bar indi-
cates the total Sobol’ index. The blue bars indicate the nominal total Sobol’ indices; the cyan and
yellow bars indicate the total Sobol’ indices when the PDF of X was perturbed in extreme cases; cyan:
the largest absolute change; yellow: the largest relative change.
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3.5.3.2 Lorenz system case 2

In this second case, assume the variables are independent and that all variables have the same

marginal distribution given in Table 3.1 with the exception of α3. Instead of being uniformly

distributed on
[

4
5 ,

6
5

]
as in Case 1, α3 is taken to have a Beta distribution on

[
4
5 ,

6
5

]
with shape

parameters 1 (1, 4). This corresponds to giving greater probability to α3 < 1.

A partition is generated by training a Regression Tree to predict f . The left panel of

Figure 3.4 displays the nominal total Sobol’ indices in blue, the perturbed total Sobol’ indices

with the largest absolute change in cyan, and the perturbed total Sobol’ indices with the

largest relative change in yellow. The results indicate that the total Sobol’ indices are robust,

a different conclusion than was reached in Case 1. This occurred because the Regression Tree

never partitioned on α3 so each set Ri contained the entire support of α3. Because the marginal

PDF for α3 takes small values on part of its support, namely near 5
4 , the infimum of φ on each

Ri is small. The partition generated by the Regression Tree yielded very small perturbations

and as a result did not produce significant changes in the total Sobol’ indices.

To alleviate this problem, a partition is generated by a Regression Tree trained to predict

f using all of the variables except α3. A minimum of 4L samples are requested in each hy-

perrectangle rather than L, as requested previously. This yields a coarser discretization of the

other 5 variables. The resulting partition is refined by splitting each set into 4 subsets defined

by partitioning α3 at its quantiles. This yields a partition with approximately L samples per

subset and a sufficient discretization of α3 to enable larger perturbations. Figure 3.4 displays the

nominal total Sobol’ indices in blue, the perturbed total Sobol’ indices with the largest absolute

change in cyan, and the perturbed total Sobol’ indices with the largest relative change in yellow.

Larger changes in the total Sobol’ indices are observed, as is expected. However the changes

are smaller than what was observed in Case 1. This is because the partition used in Case 1

was generated by a Regression Tree which better approximated f , and hence allowed for larger

perturbations of the total Sobol’ indices. The general conclusion from this example is that the

partition should be generated so that the Regression Tree approximates f as well as possible. If

small values of φ prohibit taking large perturbations, then the partition may be generated with

fewer hyperrectangles, followed by a refining of this coarse partition to sufficiently discretize the

necessary regions. This may result in a failure to discover the largest possible perturbations, as

demonstrated by comparing Case 1 and Case 2.

1For shape parameters (a, b), a Beta random variable x on [0, 1] has a unnormalized PDF given by xa(1− x)b.
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Figure 3.4 Total Sobol’ indices for the Lorenz System Case 2 example, the height of each bar indi-
cates the total Sobol’ index. The blue bars indicate the nominal total Sobol’ indices; the cyan and
yellow bars indicate the total Sobol’ indices when the PDF of X was perturbed in extreme cases; cyan:
the largest absolute change; yellow: the largest relative change. The left and right panel correspond
to generating the partition by training a Regression Tree to: predict f with a minimum of L samples
per hyperrectangle (left) and predict f with a minimum of 4L samples per hyperrectangle, followed by
additional partitioning of α3 (right).

3.6 Conclusion

This chapter presents a novel framework in which robustness of the total Sobol’ indices with

respect to the input variables distribution may be assessed. The proposed method permits such

analysis to be done at negligible computational cost. For a modeler using total Sobol’ indices,

this robustness analysis may be obtained as a by-product of computing total Sobol’ indices

and may be easily visualized along with the indices themselves. Understanding the robustness

of the Sobol’ indices to distributional uncertainty prevents the user from making incorrect

inferences which have significant consequences. For instance, reducing dimensions by fixing

variables with small Sobol’ indices—which are not robust—may result in model variations which

are not explained in the lower dimensional space.

The proposed method suffers three primary limitations, namely,

1. the nominal PDF must be compactly supported,

2. perturbations may not change the support of the nominal PDF,

3. the perturbation direction is only locally optimal.

The first limitation prohibits a direct application of the method to many commonly used

PDFs. This occurs because the Fréchet derivative is not well defined if perturbations in the tail
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of the distribution are allowed. However, one may define a compact subset of the domain where

the PDF assumes most of its mass and allow perturbations on this subset while keeping the

tail fixed. A theory analogous to what is presented in the chapter may be developed for this

scenario. In practice, the modeler will take a compact subset which contains all of the existing

samples and the robustness analysis will be identical to what is presented in this chapter.

The second limitation occurs because the method is formulated to work with existing samples.

If the support of the PDF increases, then additional evaluations of f in these unexplored regions

are required.

The third limitation is more significant in practice than the previous two; the proposed

method only considers locally optimal perturbations about the nominal PDF. This limitation

is inherent to derivative-based approaches, but may be mitigated by computing higher order

Fréchet derivatives, or computing the Fréchet derivative at other nominal PDFs.
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CHAPTER

4

SOBOL’ INDICES FOR STOCHASTIC

MODELS

4.1 Introduction

In this chapter the Sobol’ indices are extended from their classical framework, presented in

Chapter 1, to stochastic models of the form

f : X × Ω→ R (4.1)

where (Ω, E , λ) is a probability space. The content of this chapter is based on the publication

[51]. Here f(X, ω) depends on two sources of uncertainty, namely, uncertain input variables

X and some intrinsic stochasticity ω. Examples of such models include agent-based models,

queuing models, Monte Carlo based numerical models, and models of intrinsically stochastic

phenomena such as those found in biological systems [118] or chemical reaction networks [36].

Stochastic models of the form (4.1) present theoretical and computational challenges to the

traditional GSA paradigm. There are multiple ways in which the framework of Chapter 1 may

be extended to stochastic models. A natural approach is to first marginalize over ω, and then
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evaluate the Sobol’ indices of the resulting function of X. Specifically, the Sobol’ indices of

g(X) = Eω(f(X, ω))

may be defined and computed using the classical theory presented in Chapter 1. This approach

is used in [58, 80]. Though appealing for its simplicity, marginalizing over ω a priori may yield

misleading results; this is demonstrated in Example 4.1.1 below.

This chapter presents a new approach to extend the Sobol’ indices to stochastic models. It

avoids the misleading results which may arise from marginalizing over ω a priori. The proposed

approach defines the Sobol’ index as a random variable and considers its statistical properties.

The two aforementioned approaches are considered in Example 4.1.1 below; a fuller description

of the proposed method is given later in the chapter.

Example 4.1.1. Let (Θ,F , ν), (Ω, E , λ), be probability spaces, and X : Θ→ R2, W : Ω→ R be

random vectors/variables defined by X = (µ, σ) where µ ∼ U(0, 1) and σ ∼ U(1, L+ 1), L ≥ 0,

are independent random variables, and W ∼ N (0, 1); U and N denote uniform and normal

distributions, respectively. Then

Y = f(X, ω) = µ+ σW (ω), (4.2)

is a stochastic model of the form (4.1). For L = 0, σ is deterministic; as the value of L increases,

so does the uncertainty on σ. One expects the importance of σ to increase with L. This is

confirmed by direct calculations. The first order Sobol’ indices of Y with respect to both µ and σ

can be found analytically

Sµ(Y )(ω) =
1

1 + L2W (ω)2
and Sσ(Y )(ω) =

L2W (ω)2

1 + L2W (ω)2
,

and the corresponding expected values are given by

Eω (Sµ(Y )) =
1

L

√
π

2
exp

(
1

2L2

)
erfc

(
1√
2L

)
,

Eω (Sσ(Y )) = 1− Eω (Sµ(Y )) ,

where erfc is the complementary error function. Figure 4.1 illustrates the behavior of Eω (Sσ(Y ))

as a function of L confirming the increasing importance of σ with L.

Reversing the order of operations between averaging and computing the Sobol’ indices leads to

an entirely different picture which is at odds with the very nature of (4.2). Indeed, the expected

value of Y with respect to ω is simply Eω (Y ) = µ and therefore the first order Sobol’ indices are
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Figure 4.1 Expected first order Sobol’ index of Y from (4.2) with respect to the uncertain variable σ
as a function of L.

given by

Sµ(Eω (Y )) = 1 and Sσ(Eω (Y )) = 0.

In other words, σ appears insignificant regardless of L.

As highlighted in Example 4.1.1, computing ω-moments and evaluating Sobol’ indices for (4.1)

are two operations that do not commute. This simple observation has significant consequences

as averaging over ω before computing sensitivity indices significantly reduces the amount of

information available for analysis. Motivated by this, theoretical and computation analysis

is presented in this chapter to demonstrate the validity and practical value of the proposed

approach.

A fair amount of recent work on GSA for stochastic models has focused on analyzing

stochastic chemical systems [24, 75, 76]. In [75], for instance, the authors develop a method,

based on polynomial chaos expansion and a stochastic Galerkin formalism, to analyze the

variance of stochastic differential equations driven by additive or multiplicative Wiener noise.

In [76], a method is proposed for sensitivity analysis of stochastic chemical systems to the

different reaction channels and channel interactions. Local derivative-based sensitivity analysis

for stochastic systems has also seen significant progress. References [46, 63, 87, 95, 98] provide a

sample of such efforts. Finally, other approaches for sensitivity analysis of stochastic systems

rely on information theory [2, 66, 77, 78].
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4.2 Formulation and method

Given the probability spaces (Θ,F , ν) and (Ω, E , λ), the product probability space

(Θ,F , ν)⊗ (Ω, E , λ) = (Θ× Ω,F ⊗ E , ν ⊗ λ),

may be defined in the customary way. Its sample space is Θ×Ω, F⊗E is the σ-algebra generated

by the sets F × E , and ν ⊗ λ is the product measure.

If f : X ×Ω→ R, then f(X(·), ·) : Θ×Ω→ R is a random variable on (Θ×Ω,F ⊗E , ν ⊗λ),

it is assumed to be square integrable. For a fixed ω ∈ Ω, f(X, ω) is a deterministic function of

uncertain variables for which the Sobol’ indices may be computed in the classical fashion. Doing

this for each ω ∈ Ω defines functions

Su : Ω → [0, 1],

ω 7→ Su(f(X, ω)), u ⊂ {1, 2, . . . , p}.

Invoking the remarks in Theorem 1.7.2 of [25] and elementary properties of measurable functions,

it can be seen that the Su’s are E-measurable functions, i.e., they are random variables. As

illustrated by Example 4.1.1, the statistical properties of the indices {Su(ω)}u⊂{1,2,...,p} contains

significant information needed for sensitivity analysis. The total Sobol’ indices may likewise be

defined as random variables using this stochastic formulation of Su along with (1.6). This chapter

focuses on the first order Sobol’ indices but total Sobol’ indices may be treated analogously.

Computing these sensitivity indices is, in general, costly. For instance, to compute all p first

order indices {Sk(ω)}pk=1 through the sampling based method from Chapter 1 with N Monte

Carlo samples requires (p+ 1)N evaluations of f(X(·), ω) for each fixed ω ∈ Ω. To characterize

the statistical properties of the indices, an additional Monte Carlo sampling over Ω has to be

performed. Assuming a sample size of m in Ω leads to a total of

`samp = m(p+ 1)N (4.3)

evaluations of f . Such a cost is prohibitive in many applications where N might be of the order

of thousands or tens of thousands.

To mitigate this challenge, it is proposed to use a surrogate model for f . Specifically, for each

fixed ω, a surrogate f̂(X, ω) ≈ f(X, ω) may be constructed and its Sobol’ indices computed.

The construction of the surrogate f̂ requires an ensemble of function evaluations, {f(Xj , ω)}nj=1,

where {Xj}nj=1 are realizations of the uncertain variables.

The construction of an efficient surrogate only requires n function evaluations, where n

is much smaller than the number of Monte Carlo samples, i.e., n � N . Assuming the cost
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to compute Sobol’ indices is negligible relative to evaluations of f , the total cost is reduced

from (4.3) to

`surrogate = mn (4.4)

evaluations of f , where n is significantly smaller than (p + 1)N . While the computational

cost (4.4) appears to be independent of the uncertain variable dimension p, it should be noted

that the choice of n depends on p. This dependence is linked to the surrogate model itself.

Other indices, Su or Tu, u ⊂ {1, 2, . . . , p}, may also be computed from the surrogate model.

The main steps of the method for computing Su for stochastic models is given in Algorithm 2

below.

Algorithm 2 Efficient approximation of {Su}u⊂{1,2,...,p}
for i from 1 to m do

Randomly generate ωi ∈ Ω
Generate realizations {Xj}nj=1 of the uncertain variables
Evaluate f(Xj , ωi), for each j = 1, . . . , n

Construct surrogate f̂(X, ωi) ≈ f(X, ωi) using data set (Xj , f(Xj , ωi))
n
j=1

Compute Ŝu(ωi) using the surrogate f̂(X, ωi) for u ⊂ {1, 2, . . . , p}
end for
Approximate statistical properties of Su using {Ŝu(ωi)}mi=1 for u ⊂ {1, 2, . . . , p}

The algorithm returns m realizations of Sobol’ indices of f̂(X, ω), i.e., Ŝu(ω), u ⊂ {1, 2, . . . , p}.
Denote these realizations Ŝiu

iid∼ Ŝu, i = 1, . . . ,m, and consider the sample r-th moment

µ̂[r]
u (ω) =

1

m

m∑
i=1

(Ŝiu(ω))r. (4.5)

Clearly,

Eω
(
µ̂[r]
u

)
= Eω

(
(Ŝu)r

)
and Varω

(
µ̂[r]
u

)
=

Varω((Ŝu)r)

m
, u ⊂ {1, 2, . . . , p}.

The error in approximating Eω ((Su)r) can be decomposed into Monte Carlo error using m

samples from Ω and surrogate approximation error using n samples from X .

Theorem 7. Let µ̂
[r]
u , Su, and Ŝu be as defined above. Then,

1. Eω
(
µ̂[r]
u − Eω ((Su)r)

)
= Eω

(
(Ŝu)r − (Su)r

)
,
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2. Varω

(
µ̂[r]
u − Eω ((Su)r)

)
≤

Eω
(

(Ŝu)r
)(

1− Eω
(

(Ŝu)r
))

m
≤ 1

4m
.

Proof. The first statement follows from

Eω
(
µ̂[r]
u − Eω ((Su)r)

)
= Eω

(
µ̂[r]
u − Eω

(
(Ŝu)r

)
+ Eω

(
(Ŝu)r

)
− Eω ((Su)r)

)
=
(
Eω
(
µ̂[r]
u

)
− Eω

(
(Ŝu)r

))
+ Eω

(
(Ŝu)r − (Su)r

)
= Eω

(
(Ŝu)r − (Su)r

)
.

For the second statement,

Varω

(
µ̂[r]
u − Eω ((Su)r)

)
= Varω

(
µ̂[r]
u

)
=

Varω

(
(Ŝu)r

)
m

≤
Eω
(

(Ŝu)r
)(

1− Eω
(

(Ŝu)r
))

m
≤ 1

4m
,

where the inequalities follow from the Theorem 2 in [5] and the fact that Ŝu is supported on

[0, 1].

To understand the implication of the above result, consider the point estimator for the

expected value of Su(ω) given by the sample mean:

µ̂[1]
u (ω) =

1

m

m∑
i=1

Ŝiu(ω). (4.6)

Theorem 7 characterizes the bias of this estimator as the approximation error due to the

surrogate, i.e., Eω
(
Ŝu − Su

)
. Further, since, Eω

(
(Ŝu)r

)
∈ [0, 1], for every r ≥ 1, the second

statement of Theorem 7 indicates that even a modest value of m, the order of a few hundreds

for instance, can be very effective in obtaining an estimator with small variance. Finally, an

estimate of the error can be obtained in the L2(Ω) norm by using the elementary definition of

the variance and Theorem 7,

Eω

(
(µ̂[1]
u − Eω (Su))2

)
≤ Eω

(
Ŝu − Su

)2
+

1

4m
.

4.3 Numerical results

The following two examples illustrate some of the points raised in the previous section: (i) the

convergence of the estimators as a function of n (number of samples to build the surrogate)

and m (number of samples over Ω) and, (ii) the effect of the surrogate bias on the statistical

distribution of the Sobol’ indices. Multivariate Adaptive Regression Splines (MARS) [28, 29]
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is used as the surrogate model in these two examples because of its internal adaptivity which

minimizes the users responsibility to tune parameters.

4.3.1 The stochastic g-function

Let (Θ,F , ν) and (Ω, E , λ) be two probability spaces and let X : Θ→ R15 and W : Ω→ R be

random vectors/variables such that

X = (X1, . . . , Xp) with Xk
iid∼ U(0, 1), k = 1, . . . , p,

W ∼ Beta(5, 3);

in other words,

ν
(
X ∈ (c1, d1)× · · · × (c15, d15)

)
=

15∏
k=1

(dk − ck) for any 0 ≤ ck ≤ dk ≤ 1, k = 1, . . . , p,

λ(W ∈ (a, b)) = K

∫ b

a
t4(1− t)2 dt for any a, b, 0 ≤ a ≤ b ≤ 1,

with a normalization factor K = Γ(5 + 3)/
(
Γ(5)Γ(3)

)
= 105.

Then define a stochastic version of the g-function [109]

f(X, ω) =

15∏
k=1

|4Xk − 2|+ ak(W (ω))

1 + ak(W (ω))
, (4.7)

where the parameters ak : [0, 1]→ R, k = 1, . . . , 15, are chosen to create a variety of means and

variances for the Sobol’ indices. Analytic expressions for the ak’s are given in Table 4.1.

Table 4.1 Expressions of the parameters ak, k = 1, . . . , 15, for the stochastic g-function example (4.7).

a1(t) = (1− t)5 a2(t) = t5 a3(t) = sin2(8t)

a4(t) = sin2(10(1− t)) a5(t) = cos2(10(1− t)) a6(t) = cos2(8t)

a7(t) = (1.5− t)2 a8(t) = (.5 + t)2 a9(t) = (3− t)2

a10(t) = (2 + t)2 a11(t) = (3.5− t)2 a12(t) = (2.5 + t)2

a13(t) = (4− t)2 a14(t) = (3 + t)2 a15(t) = (4 + t)2

The Sk’s are computed analytically and Eω (Sk), k = 1, . . . , 15, is evaluated using numer-

ical quadratures. The trapezoidal rule with 106 quadrature nodes is used to ensure accurate
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computation of the expectations.

In the first test, the error approximating Eω (Sk), k = 1, . . . , 15, is considered as a function

of the number of surrogate samples n. For n = 100, 150, . . . , 950, 1000, the µ̂
[1]
k ’s from (4.6) are

obtained from Algorithm 2. Samples from X are taken using a Latin Hypercube design. To

remove dependence upon sampling, 500 different datasets are generated for each fixed n and the

error is defined as the average errors over these datasets. Since higher order interactions are

difficult for surrogate models to represent in high dimensions, the normalized first order Sobol’

indices Eω (Sk) /
∑p

i=1 Eω (Si) are considered. This facilitates a more useful comparison of the

exact Sobol’ indices and the Sobol’ indices of the surrogate by ensuring that they both sum to 1.

Define the error

Ē =
1

500

500∑
`=1

∥∥∥∥∥∥∥∥
Eω (S)
p∑

k=1

Eω (Sk)

− µ̂(`, n)
p∑

k=1

µ̂k(`, n)

∥∥∥∥∥∥∥∥
∞

, (4.8)

where S = (S1, S2, . . . , Sp), µ̂(`, n) = (µ̂1(`, n), µ̂2(`, n), . . . , µ̂p(`, n)), and each µ̂k(`, n) is a

realization of the random variable µ̂
[1]
k using the `th dataset of size n. Figure 4.2 (left) shows

the error Ē as a function of n while Figure 4.2 (right) compares the normalized expected Sobol’

indices of MARS with the normalized exact indices for a representative sample of size n = 600.
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Figure 4.2 Convergence of the expected Sobol’ indices for the stochastic g-function (4.7). Left: aver-
age error Ē (4.8) in the normalized expectation of the indices as the surrogate sampling size n varies;
the empirical convergence rate is 0.59. Right: comparison of normalized expectation of the indices for
a representative sample size of n = 600.

The effect of m in (4.6) is studied in Figure 4.3, which shows the convergence of µ̂
[1]
1 and µ̂

[1]
3

as the number of samples m increases. The results in Figure 4.3 are computed using the sample

of size n = 600 from Figure 4.2 (right). The first and third variables are chosen because they

have the largest expectation and variance, respectively. These results confirm both the efficiency
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of MARS as a surrogate and the fast convergence of the expectation of the indices with only

200 samples in Ω.

0 50 100 150 200

0.
1

0.
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]

Figure 4.3 Dependency of µ̂
[1]
1 (red) and µ̂

[1]
3 (black) on the number of samples m in Ω.

Accurate approximations of the distributions of the Sobol’ indices can be obtained from

sampling their analytical expressions; as above, 106 samples are taken from Ω. This provides

highly accurate approximations to assess convergence in distribution of the Sobol’s indices

computed through the proposed method.

For each ωi, i = 1, . . . , 200, one thousand samples are drawn from X ; these are subsampled

for n = 100, 150, . . . , 950, 1000 and the resulting histograms are evaluated. Figure 4.4 illustrates

convergence in distribution of both S1, the index with largest expectation, and S3, the index

with largest variance.

For S1, the histograms appear to converge, see Figure 4.4, top left; however, Figure 4.4,

top right, shows that they converge to a distribution that is biased high. This results from

the built-in adaptivity of MARS which causes an inherent bias toward the more important

variables. This is a useful feature for the purpose of screening unimportant variables. The bottom

row of Figure 4.4 illustrates the unbiased convergence in distribution of S3. Figure 4.5 further

illustrates the bias from MARS with a QQ plot of the eight most important variables. The

“exact” distribution was generated using 106 samples from the analytic expressions of the Sobol’

indices. Lying along the line indicates being unbiased; lying below or above the line indicates

being biased low or high respectively. This plot demonstrates the general trend that the most

important variables are biased high while the less important variables are biased low; S6 and S8

fail to follow this trend.
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Figure 4.4 Convergence in distribution of the Sobol’ indices for the g-function (4.7). Top row; S1,
index with the largest expectation; bottom row: S3, index with the largest variance. Left: heat map of
the histograms as the surrogate sampling size n varies. Each vertical slice is a histogram for a fixed n;
right: comparison of the “exact” (see text) and approximation distributions using n = 1000.

4.3.2 Genetic oscillator

The proposed stochastic sensitivity analysis method is applied to study a circadian oscillator

mechanism from biochemistry. The problem is detailed in [117] and is commonly referred to

as the genetic oscillator. It corresponds to a biochemical reaction network consisting of nine

species and sixteen reactions. The nine system species are described in Table 4.2.

Table 4.2 Nine species of the genetic oscillator problem from [117].

DA, D′A activator genes

DR, D′R repressor genes

A, R activator and repressor proteins

MA, MR mRNA of A and R

C complex species

Denoting the number of molecules of each of the species with the corresponding symbol, the
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Figure 4.5 QQ plot of the Sobol’ indices of the eight most important variables. Lying above or below
the line indicates being biased high or low respectively.

state vector of the system is given by

(
DA,D

′
A,A,D

′
R,DR,R,MA,MR,C

)
∈ R9.

The initial state is taken as

(1, 0, 0, 0, 1, 0, 0, 0, 0) ,

that is, initially, DA = DR = 1, and all the other variables are set to zero.

The reactions and reaction rates are listed in Table 4.3 which also includes the nominal

reaction rates from [117].

Uncertainties in the reaction rate constants are considered; that is, the uncertain variables

for the system are given by

X =
(
γA, θA, γR, θR, γC , αA, αR, α

′
A, α

′
R, βA, βR, δMA, δA, δMR, δR

)
∈ R15.

It is assumed that the coordinates of X, i.e., the reaction rates, are iid uniform random variables

centered at their respective nominal values given in Table 4.3, and with a 10% perturbation

around the mean.

With fixed reaction rates the time evolution of the state vector is stochastic. The sequence

of reactions is random with probabilities parameterized by the reaction rates and state vector;

51



Table 4.3 Reactions and reaction rates for the genetic oscillator system [117].

reaction # reaction rate (nominal value)

1 DA + A → D′A γA (1.0)

2 D′A → DA + A θA (50.0)

3 DR + A → D′R γR (1.0)

4 D′R → DR + A θR (100.0)

5 A + R → C γC (2.0)

6 DA → DA + MA αA (50.0)

7 DR → DR + MR αR (0.01)

8 D′A → D′A + MA α′A (500.0)

9 D′R → D′R + MR α′R (50.0)

10 MA → MA + A βA (50.0)

11 MR → MR + R βR (5.0)

12 MA → ∅ δMA (10.0)

13 A → ∅ δA (1.0)

14 MR → ∅ δMR (0.5)

15 R → ∅ δR (0.2)

16 C → R δA (same as react. 13)
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see e.g., [26]. Realizations of the genetic oscillator are computed through Gillespie’s stochastic

simulation algorithm (SSA) [26, 36, 37]. Fixing a realization of the inherent stochasticity and

sampling the reaction rates requires generating and saving a sequence of random numbers to

input to SSA for each sample of the reaction rates. This corresponds to evaluating f(Xj , ωi),

for each j = 1, . . . , n, in Algorithm 2; ωi corresponds to the fixed sequence of random numbers.

The goal is to evaluate the sensitivity of the number of C molecules to the uncertain reaction

rates. Letting the probability spaces (Θ,F , ν) and (Ω, E , λ) carry the input variable uncertainty

and intrinsic stochasticity of the system, respectively, and X : Θ → X model the uncertain

variables, note that C : X × Ω × [0, Tfinal] → R is a stochastic process. Figure 4.6 illustrates

the dynamics of C = C(X, ω, t) by displaying four typical realizations of the stochastic process

when the uncertain variables are fixed at their nominal values. The differing periods and small

oscillations are a result of the inherent stochasticity of the system.
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Figure 4.6 Genetic oscillator: four realizations of the evolution of the complex C.

Algorithm 2 is used with n = 400, m = 200, and a MARS surrogate model constructed

point-wise in time. By subsampling X from existing data, convergence in n is assessed and it is

determined that n = 400 is an adequate sample size for this application. Moreover, thanks to

Theorem 7, a relatively small m is sufficient to ensure a small variance of the estimators of the

Sobol’ indices.

Figure 4.7, left, shows the time evolution of the expectation of the Sobol’ indices; for each

index, the expectation becomes periodic after an initial transient. Moreover, observe that the

reaction rates βR and α′R have the most notable contribution to the model variance during the

transient regime. After the transient regime, the degradation rates for the proteins A and R, i.e.,
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Figure 4.7 Evolution of the Sobol’ indices for the genetic oscillator. Left: expectation of the Sobol’
indices. Each row corresponds to a specific reaction rate. Top right: time evolution of the expectation
of the Sobol’ indices for the two most important reaction rates. Bottom right: time evolution of the
histogram of the Sobol’ index of δR. Each vertical slice is a histogram for the Sobol’ index of δR at a
given time.

δA and δR, are the most important factors. Figure 4.7, top right, displays the time evolution of

the expectation of the Sobol’ indices for these two reaction rates. Note in particular that δA

and δR periodically swap role of the most dominant contributor to variance of C after the intial

transient regime. The time-dependent behavior of the statistical distribution of sensitivity index

for δR is illustrated in Figure 4.7, bottom right.

The computational cost of the above analysis is n×m = 400×200 = 80, 000 SSA simulations.

While this is still a significant number of function evaluations, it should be contrasted with

the complexity of traditional sampling based method for computing the Sobol’ indices, given

in (4.3), which, for such a stochastic model, would be orders of magnitudes larger.

4.4 Conclusion

A strategy for GSA of stochastic models has been proposed and investigated. Within this

framework, a thorough analysis of variable importance is obtained by computing the statistical

properties of the Sobol’ indices. The proposed approach requires sampling in the product of
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probability spaces carrying the model stochasticity and uncertain variables. The number of

samples in the uncertain variable space is driven by the choice of surrogate model construction,

and can be controlled via the use of adaptive surrogates such as MARS. Theoretical and

numerical evidence indicates that the moments of the indices can be evaluated with only a

modest number of samples in the stochastic space.

As mentioned in Section 4.1, one may also consider performing sensitivity analysis on

Eω (f(X, ω)) directly. However, as illustrated in Example 4.1.1, this approach may result in

a significant loss of information. The variance of the Monte Carlo estimator for Eω (f(X, ω))

is Varω (f(X, ω)) /m, which in general is not known a priori. In contrast, the variance of the

Monte Carlo estimator for Eω (Su(ω)) in the proposed framework is bounded above by 1/(4m)

independently of f . This gives the proposed method theoretical and computational advantages.

The numerical results focus on computing first order Sobol’ indices and MARS was shown to

be an efficient surrogate for this task. Other indices may be computed in the proposed framework

as well, provided a sufficiently accurate surrogate model is available. Further study of surrogate

models and their properties which facilitate accurate computation of Sobol’ indices remains an

important question for future work.
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CHAPTER

5

DERIVATIVE-BASED GSA FOR

STATISTICAL MODEL PARAMETERS

5.1 Introduction

This chapter considers GSA for parameters in statistical models. The content of this chapter

is based on the publication [52]. To the author’s knowledge, the GSA tools developed for

mathematical models and simulations have not been systematically developed for analysis of

statistical models. Challenges arise with statistical model parameters which prohibit a direct

application of GSA tools to statistical models. Nevertheless, problem structure in statistical

models may be exploited to enable efficient GSA. This chapter provides a framework to use

existing GSA tools along with methods from statistics to address these challenges and yield a

new GSA approach for analysis of statistical models.

This work is motivated by a statistical model that fuses two datasets of atmospheric wind

speed in order to provide statistical prediction of wind speed in space and time [4]. The

predictions are generated from a Gaussian process whose mean and covariance are parameterized

through a large number of parameters, which are determined by numerical optimization. Because

of changing weather patterns, the parameters must be re-optimized on a regular basis. The

optimization procedure to fit parameters is an important problem feature influencing the

approach to GSA. The method is developed in an abstract setting and subsequently used to
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analyze the Gaussian process wind speed model.

Recall the assumptions in Chapter 1:

• the inputs are independent,

• the inputs have a known probability distribution,

• the output is scalar-valued.

None of these assumptions hold for statistical models such as the motiving Gaussian process.

The parameters will typically have strong dependencies because of the way they appear in the

model. A probability distribution for the parameters may be acquired by inversion, but it is not

readily available from problem specific information a priori. In general, the model output is a

set of random vectors (or a random field). Results from the previous chapters may be applicable

to address these challenges; however, they fail to exploit problem structure and hence applying

them directly is not a desirable approach.

A derivative-based strategy for GSA of statistical models is proposed. In principle, any

of the methods discussed in Chapter 1 may be generalized for use with statistical models.

Computational considerations make derivative-based methods preferable. In particular, the

number of gradient evaluations is independent of the parameter space dimension and it is

not necessary to sample from conditional distributions (which is challenging in the motivating

application). Further, gradients are readily available in the motivating application and many

other applications arising in statistics.

This chapter provides a framework to connect the mathematical and statistical tools needed

to efficiently extend GSA to statistical models. A loss function associated with the statistical

model parameter estimation is used to define a joint probability distribution which respects

the dependency structure in the problem. This distribution is sampled using a Markov Chain

Monte Carlo (MCMC) method, and derivative-based sensitivity indices are computed from these

samples. In this framework, both sensitivities and dependency structures are discovered without

requiring a priori knowledge about the parameters.

5.2 Preliminaries

Let f be a statistical model defined through parameters X = (X1, X2, . . . , Xp) which assume

values in X ⊆ Rp. In general, f may be considered a function whose domain is X and whose

range is a set of random vectors (or random fields). Unlike the previous chapters, X will be

referred to as “parameters” instead of “variables” since they correspond to parameters in the

statistical model.
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Let L(.; y) : X → R be a loss function (or cost function) associated with f ; that is, to fit

f to the data y, one computes arg minx∈X L(x; y). In the model-oriented context of statistics,

parameters of the model are usually estimated by minimizing L(·; y) computed on observed

data y. The loss function is chosen given the model and its intended use. Common examples are

least-squares and maximum likelihood. For simplicity, L(·) will be used instead of L(·; y) for

the remainder of the chapter. In the motivating application, f is a Gaussian process with mean

µ(X) and covariance Σ(X) depending on the vector of parameters X and L is the the negative

log likelihood. Throughout the chapter, it is assumed that ∇L may be computed efficiently, as

is the case in the motivating application.

The goal is discovering the the sensitivity of f to X. Since f may be a complex mathematical

object, the sensitivity of f to X is analyzed through the sensitivity of L to X. This makes

the analysis dependent on the choice of loss function, which is consistent with a goal oriented

choice of L. This is appropriate since L encodes the dependence of f on X. Further, since L is a

deterministic real-valued function of X, its analysis is more tractable than f .

One challenge is that the statistical model f may be mathematically well defined for

parameters X ∈ X but yield a practically irrelevant solution in the context of a given application.

To avoid this scenario, let Xr ⊆ X be the subset that restricts X to parameters yielding relevant

solutions. For instance, a quantity in f may be required to be nonnegative so Xr restricts to

parameters respecting this constraint. Assume that Xr is a Lebesgue measurable set; this is

easily verified in most applications.

The following three assumptions are made about L:

(I) L is differentiable.

(II) ∃ δmin ≥ 0 such that
∫
Xr e

−δminL(x)dx,
∫
Xr |xk|e

−δminL(x)dx, and∫
Xr |

∂L
∂xk

(x)|e−δminL(x)dx, k = 1, 2, . . . , p, exist and are finite.

(III) ∃ Lmin ∈ R such that Lmin ≤ L(x), ∀x ∈ Xr.

Assumption 1 is necessary since a derivative-based GSA is used. This assumption is easily

verifiable in most cases. Assumption 2 is needed so that global sensitivity indices (5.3) are well

defined. Assumption 3 is a needed technical assumption requiring that the loss function be

bounded below. Note that if L is continuously differentiable and Xr is compact, then all three

assumptions follow immediately.

Thus far, a probability distribution has not been specified for X. GSA may not be performed

until a distribution is specified for X. To this end, define

η(x) =

e−δ(L(x)+λ||x||22) x ∈ Xr
0 x /∈ Xr

(5.1)

58



for some δ ≥ δmin and λ ≥ 0; || · ||2 is the Euclidean norm. Note that Xr is defined through

constraints on f so it is generally difficult to express Xr in terms of simple algebraic constraints.

In most cases, however, the constraints may be checked when L is evaluated, and hence η is

easily evaluated through evaluating L.

Using Assumption 2 and the fact that e−δλ||x||
2
2 ≤ 1, it follows that η is integrable. Define

the PDF

φ(x) =
η(x)∫

X η(x̃)dx̃
=

e−δ(L(x)+λ||x||22)∫
Xr e

−δ(L(x̃)+λ||x̃||22)dx̃
. (5.2)

Then φ is supported on Xr and gives the greatest probability to regions where L is close to

its minimum namely, where x is a good fit. A PDF of this form corresponds to a Gibbs measure

[64] with temperature δ; the temperature determines how the probability mass disperses from

the modes. The scalar λ ≥ 0 is a regularization factor that aids when φ is too heavy tailed; this

is illustrated in Section 5.4. The determination of δ and λ is considered in Section 5.3. This

formulation shares similar characteristics to Bayesian inference. For instance, if L is a negative

log likelihood and δ = 1 then (5.2) is the posterior PDF of X using a Gaussian prior truncated

to Xr (or when λ = 0, the prior is simply a uniform distribution on Xr).

Definition 4. Define the sensitivity index of f with respect to Xk as

Sk = E (|Xk|)E
(∣∣∣∣ ∂L∂xk (X)

∣∣∣∣) =

∫
Xr
|xk|φ(x)dx

∫
Xr

∣∣∣∣ ∂L∂xk (x)

∣∣∣∣φ(x)dx. (5.3)

Unlike (1.7), the sensitivity index (5.3) takes the absolute value instead of squaring the

partial derivative. This is to prevent giving too much weight to outliers. The partial derivative

depends on the units of Xk, which creates challenges comparing sensitivities for parameters

on different scales. Multiplying by E (|Xk|) seeks to relieve this problem, yielding a sensitivity

index which only depends on the units of L.

Dependencies in X make Monte Carlo integration with uniform sampling intractable for

computing the Sk’s. Importance sampling may be used if an efficient proposal distribution is

found; however, this is also challenging in most cases. Therefore, the Sk’s will be estimated with

MCMC methods.

In summary, the global sensitivity of f to X may be estimated by using only evaluations

of L and ∇L along with MCMC. This framework also admits additional useful information as

by-products of estimating (5.3). More details are given in Section 5.3.
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5.3 Computing sensitivities

This section presents the main algorithmic developments of this chapter. The proposed method

may be partitioned into three stages:

(i) preprocessing where information is collected about the loss function,

(ii) sampling where samples are drawn from the probability measure (5.2),

(iii) post-processing where sensitivities, as well as additional information, are computed.

In the preprocessing stage, characteristic values for the parameters and the loss function are

found. These characteristic values are used to determine the temperature and regularization

factor in the PDF φ (5.2).

In the sampling stage, the temperature and regularization factor are determined. Subsequently

an MCMC sampler is run to collect samples from (5.2).

In the post-processing stage, sensitivities are computed by evaluating the gradient of the loss

function at the samples drawn in the sampling stage ii. In addition, the parameter dependencies

and the robustness of the sensitivities with respect to perturbations in the temperature are

extracted from the existing samples and gradient evaluations. These two pieces of information are

by-products of computing sensitivities and require no additional computation. The robustness

of the sensitivities has similarities to the robustness analysis in Chapter 3; the results of this

chapter are specific to the form of the proposed PDF.

These three stages are described in Subsections 5.3.1, 5.3.2, and 5.3.3, respectively. The

method is summarized as a whole in Subsection 5.3.4.

5.3.1 Preprocessing stage

Characteristic magnitudes for X and L are needed to determine the regularization factor and

temperature. To this end, two auxiliary computations are introduced as a preprocessing step.

The first auxiliary computation runs an optimization routine to minimize L; the choice of

optimizer is not essential here. Let x? be the minimizing parameter vector. It is acceptable if

x? is not the global minimizer of L as long as it is sufficiently close to capture characteristic

magnitudes of L in regions of good fit.

The second auxiliary computation uses x? to determine the range of loss function values

that the MCMC sampler should explore. Let c > 0, and let Z = (Z1, Z2, . . . , Zn) be a random

vector defined by

Zk ∼ U [(1− c)x?k, (1 + c)x?k], (5.4)
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where all the Zk’s are independent of one another and U denotes the uniform distribution. Hence,

Z represents uniform uncertainty of c% about x?.

Determining c is an application-dependent problem. In fact, its determination is the only

portion of the proposed method that cannot be automated. To choose c it is suggested to,

1. fix a value for c,

2. sample from Z,

3. asses the quality of f ’s predictions using the sample.

Repeating this sample and assessment process for various values of c allow the user to determine

a c that yields reasonable predictions. This step is highly subjective and application dependent;

however, it is a very natural means of inserting user specification. One simple way to do this

is visualizing the model output for each sample and increasing c until the outputs become

unrealistic.

Taking large values for c will result in the PDF φ giving significant probability to regions

of the parameter space yielding poor fits, and hence sensitivity indices that are not useful.

Taking small values for c will result in the PDF φ giving significant probability to regions of

the parameter space near local minima, thus making the sensitivity indices local. Since the

choice of c is strongly user dependent, the robustness of the sensitivity indices with respect to

perturbations in c is highly relevant; this is indirectly addressed by Theorem 11.

Once c is specified, then a threshold M , which is used to compute the regularization factor

and temperature (see Sub-subsection 5.3.2.1 and Sub-subsection 5.3.2.2), may be easily computed

via Monte Carlo integration. Define the threshold

M = E(L(Z)). (5.5)

Note that the expectation in (5.5) is computed with respect to the independent uniform measure;

all other expectations in the chapter are computed with respect to the PDF φ (5.2).

5.3.2 Sampling stage

An MCMC method is used to sample from φ (5.2) through evaluations of the unnormalized

density η (5.1). Then the Sk’s may be computed through evaluations of ∇L at the sample

points. Many MCMC methods may be used to sample φ; see, for example [33, 35, 47, 99, 106,

116].

Determining which MCMC method to use and when it has converged may be challenging.

Convergence diagnostics [14, 21] have been developed which may identify when the chain has not
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converged; however, they all have limitations and cannot ensure convergence [34]. In Section 5.4,

adaptive MCMC [116] is used with the convergence diagnostic from [13].

Assuming that an MCMC sampler is specified, Sub-subsections 5.3.2.1 and 5.3.2.2 focus on

determining the temperature and regularization factors, respectively.

5.3.2.1 Determining the regularization factor

To determine the regularization factor λ, consider the function

Lλ(x) = L(x) + λ||x||22.

The PDF φ gives greatest probability to regions where Lλ is small. If λ||x||22 is small relative to

L(x), then the local minima of Lλ are near the local minima of L. Ideally λ = 0 will be used,

but in some cases this results in φ being too heavy tailed. Instead λ||x||22 ≈ νLλ(x) may be

taken for some ν ∈ (0, 1); that is, the regularization term contributes ν percent of the value of

Lλ. Setting λ||x||22 = νLλ(x) and replacing L(x) and x with M and x?, gives

λ =
νM

(1− ν)||x?||22
. (5.6)

In practice, it is suggested to begin with ν = 0. If the MCMC sampler yields heavy-tailed

distributions that converge slowly, then ν may be increased to aid the convergence. This case is

illustrated in Section 5.4.

5.3.2.2 Determining the temperature

To determine the temperature δ, define

Mλ = M + λ||x?||22.

It is desirable to find δ so that Lλ(x) ≤Mλ with probability α; α = .99 is suggested to mitigate

wasted computation in regions where x yields a poor fit. Let A = {x ∈ Xr|Lλ(x) ≤Mλ}. Note

that A is a Lebesgue measurable set since Lλ is continuous and Xr is Lebesgue measurable.

Define the function ∆ : [δmin,∞)→ [0, 1] by

∆(δ) =

∫
A
φ(x)dx. (5.7)

Then ∆(δ) gives the probability that Lλ(x) ≤Mλ. The optimal temperature δ is the solution

of ∆(δ) = α. Four results are given below showing that ∆ possesses advantageous properties

making the nonlinear equation ∆(δ) = α easily solvable.
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Theorem 8. If
∫
Xr Lλ(x)e−δminLλ(x)dx <∞, then ∆ is differentiable on (δmin,∞) with

∆′(δ) = (−1 + ∆(δ))

∫
A
Lλ(x)φ(x)dx + ∆(δ)

∫
Xr\A

Lλ(x)φ(x)dx. (5.8)

Proof. Let U(δ) = e−δ(Lλ(x)−Lmin) and V (δ) =
∫
Xr e

−δ(Lλ(x)−Lmin)dx. Then

∆(δ) =
1

V (δ)

∫
A
U(δ)dx .

Using Theorem 6.28 in [65] with (Lλ(x)− Lmin)e−δmin(Lλ(x)−Lmin) dominating U ′(δ), gives

that
∫
A U(δ)dx and V are differentiable with

d

dδ

∫
A
U(δ)dx = −

∫
A

(Lλ(x)− Lmin)U(δ)dx ,

V ′(δ) = −
∫
Xr

(Lλ(x)− Lmin)e−δ(Lλ(x)−Lmin)dx .

∆ is differentiable since V (δ) > 0, ∀δ > δmin, and applying the quotient rule for derivatives

gives

∆′(δ) =
d
dδ

∫
A U(δ)dx

V (δ)
− V ′(δ)

V (δ)

∫
A U(δ)dx

V (δ)
.

Simple manipulations yields

∆′(δ) = (−1 + ∆(δ))

∫
A

(Lλ(x)− Lmin)
U(δ)

V (δ)
dx + ∆(δ)

∫
Xr\A

(Lλ(x)− Lmin)
U(δ)

V (δ)
dx .

Writing U(δ)
V (δ) = φ(x) and using the linearity of the integral completes the proof.

Theorem 9. If
∫
Xr Lλ(x)e−δminLλ(x)dx < ∞, then ∆ is a strictly increasing function on

(δmin,∞).

Proof. The proof of Theorem 8 gives

∆′(δ) = (−1 + ∆(δ))

∫
A

(Lλ(x)− Lmin)
U(δ)

V (δ)
dx + ∆(δ)

∫
Xr\A

(Lλ(x)− Lmin)
U(δ)

V (δ)
dx.
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Since

x ∈ A =⇒ Lλ(x) ≤Mλ,

x ∈ Xr \A =⇒ Lλ(x) > Mλ,

∆(δ) ∈ [0, 1],∫
Xr\A

φ(x)dx = 1−∆(δ),

so

∆′(δ) > (−1 + ∆(δ))

∫
A

(Mλ − Lmin)
U(δ)

V (δ)
dx + ∆(δ)

∫
Xr\A

(Mλ − Lmin)
U(δ)

V (δ)
dx

= (−1 + ∆(δ))(Mλ − Lmin)∆(δ) + ∆(δ)(Mλ − Lmin)(1−∆(δ))

= 0.

Theorems 8 and 9 yield desirable properties of ∆. The assumption that

Lλ(x)e−δminLλ(x) is integrable is necessary for ∆′(x) to be well defined. Note that this assumption

follows from Assumption 1 when Xr is bounded. Theorem 10 and Corollary 2 below give existence

and uniqueness, respectively, for the solution of ∆(δ) = α under mild assumptions.

Theorem 10. If Xr is a bounded set and ∃x′ ∈ Xr such that Lλ(x′) < Mλ, then ∀α ∈ (0, 1)

∃δ > δmin such that ∆(δ) > α.

Proof. Let α ∈ (0, 1). Define

M̃λ =
L(x′) +Mλ

2
< Mλ,

Ã = {x ∈ Xr|Lλ(x) ≤ M̃λ}.

By Assumption 1, Lλ is continuous so V ol(Ã) > 0. Then ∃δ > δmin such that

V ol(Xr \A)

(1− α)V ol(Ã)
< e(Mλ−M̃λ)δ.

Since∫
A e
−δ(Lλ(x)−Lmin)dx∫

Xr e
−δ(Lλ(x)−Lmin)dx

> α ⇐⇒ (1− α)

∫
A
e−δ(Lλ(x)−Lmin)dx > α

∫
Xr\A

e−δ(Lλ(x)−Lmin)dx,
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it is enough to show∫
Xr\A

e−δ(Lλ(x)−Lmin)dx < (1− α)

∫
A
e−δ(Lλ(x)−Lmin)dx.

If x ∈ Xr \A, then

Lλ(x) > Mλ =⇒ e−δ(Lλ(x)−Lmin) ≤ e−δ(Mλ−Lmin);

hence it is enough to show that

e−δ(Mλ−Lmin)V ol(Xr \A) < (1− α)

∫
A
e−δ(Lλ(x)−Lmin)dx.

Since the exponential is nonnegative and α ∈ (0, 1), it is equivalent to show

V ol(Xr \A)

1− α <

∫
Ã
e−δ(Lλ(x)−Mλ)dx.

If x ∈ Ã, then

Lλ(x) ≤ M̃λ =⇒
∫
Ã
e−δ(Lλ(x)−Mλ)dx ≥

∫
Ã
e−δ(M̃λ−Mλ)x = e−δ(M̃λ−Mλ)V ol(Ã).

But

V ol(Xr \A)

(1− α)V ol(Ã)
< e(Mλ−M̃λ)δ

by the construction of δ.

Corollary 2. If α ∈ (∆(δmin), 1), Xr is a bounded set and there exists x′ ∈ Xr such that

Lλ(x′) < Mλ, then ∆(δ) = α admits a unique solution.

Proof. Since Xr is bounded, e−δLλ(x) ∈ L1(Xr) ∀δ ∈ R. Mimicking the argument of Theorem 8, ∆

is differentiable and hence continuous at δmin. Since α ∈ (0, 1), Theorem 10 gives ∃δ > δmin such

that ∆(δmin) < α < ∆(δ). Then existence holds by the intermediate value theorem. Uniqueness

follows from Theorem 9.

The assumption that Xr is bounded is reasonable in most applications; X may be unbounded,

but Xr is restricted to physically relevant solutions so it is typically bounded. The assumption

that Lλ(x′) < Mλ means that Mλ is not chosen as the global minimum, which should always

hold in practice. The assumption that α ∈ (∆(δmin), 1) is necessary for existence. Typically
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∆(δmin) is much less than 1, while α is chosen close to 1. The assumptions Theorem 10 and

Corollary 2 hold in most applications

In summary, under mild assumptions, ∆(δ) = α is a scalar nonlinear equation admitting a

unique solution and ∆ possesses nice properties (monotonicity and differentiability). Further,

∆(δ) and ∆′(δ) may be approximated simultaneously by running MCMC. The challenge is

that evaluating ∆(δ) and ∆′(δ) with high precision requires running a long MCMC chain. In

fact, ∆′(δ) is significantly more challenging to evaluate than ∆(δ). For this reason, using a

derivative-free nonlinear solver is suggested, it will still be efficient since ∆ is a well-behaved

function. In the spirit of inexact Newton methods [62], shorter chains may be run for the early

iterations solving ∆(δ) = α and the precision increased near the solution. In practice, relatively

few evaluations of ∆ are needed because of its properties, shown above.

As previously highlighted, the PDF (5.2) corresponds to a Bayesian posterior PDF when L

is a negative log likelihood and δ = 1. If δ < 1, the GSA approach uses a “flatter” PDF than

the Bayesian posterior. The determination of δ incorporates information from the parameter

optimization procedure to ensure that the sensitivity analysis searches the parameter space in

which the optimization routine traverses.

5.3.3 post-processing stage

Having attained samples of X, the sensitivities (5.3) may be estimated by evaluating ∇L at the

sample points and forming the Monte Carlo estimator for the expectations in (5.3). In addition

to computing these sensitivities, two other useful pieces of information may be extracted, namely,

the robustness of the sensitivities with respect to perturbations in the temperature and the

parameter dependencies. These are described in Sub-subsections 5.3.3.1 and 5.3.3.2, respectively.

5.3.3.1 Robustness with respect to the temperature

As a result of the uncertainty in the determination of δ (computation of x?, choice of c, estimation

of M , solution of ∆(δ) = α), the robustness of the sensitivities with respect to δ are analyzed.

Consider the functions

Fk : (δmin,∞) → R,

δ 7→
(∫
Xr
|xk|

(
e−δLλ(x)∫

Xr e
−δLλ(x̃)dx̃

)
dx

)(∫
Xr

∣∣∣∣ ∂L∂xk (x)

∣∣∣∣
(

e−δLλ(x)∫
Xr e

−δLλ(x̃)dx̃

)
dx

)

k = 1, 2, . . . , p; clearly Fk(δ) = Sk. Theorem 11 gives the derivative of the sensitivity index with

respect to the temperature δ, namely, F ′k(δ).
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Theorem 11. If
∫
Xr Lλ(x)e−δminLλ(x)dx,

∫
Xr Lλ(x)|xk|e−δminLλ(x)dx, and∫

Xr Lλ(x)| ∂L∂xk (x)|e−δminLλ(x)dx exist and are finite, then Fk is differentiable with

F ′k(δ) = −Cov(|Xk|,Lλ(X))E
(∣∣∣∣ ∂L∂xk (X)

∣∣∣∣)− E (|Xk|) Cov

(∣∣∣∣ ∂L∂xk (X)

∣∣∣∣ ,Lλ(X)

)
, (5.9)

where Cov(·, ·) is the covariance operator.

Proof. Let

U(δ) =

∫
Xr
|xk|e−δ(Lλ(x)−Lmin)dx

V (δ) =

∫
Xr

∣∣∣∣ ∂L∂xk (x)

∣∣∣∣ e−δ(Lλ(x)−Lmin)dx

and

W (δ) =

∫
Xr
e−δ(Lλ(x)−Lmin)dx.

Then

Fk(δ) =
U(δ)

W (δ)

V (δ)

W (δ)
.

Note that W (δ) > 0 ∀δ > 0, so it is enough to show that U , V , and W are differentiable.

Theorem 6.28 in [65] gives the result using

|xk| (Lλ(x)− Lmin)e−δmin(Lλ(x)−Lmin),

∣∣∣∣ ∂L∂xk (x)

∣∣∣∣ (Lλ(x)− Lmin)e−δmin(Lλ(x)−Lmin),

and

(Lλ(x)− Lmin)e−δmin(Lλ(x)−Lmin)

to dominate the derivatives of the integrands of U , V , and W , respectively. Applying Theorem

6.28 in [65] to U(δ), V (δ), and W (δ) yields

U ′(δ) = −
∫
Xr
|xk| (Lλ(x)− Lmin)e−δ(Lλ(x)−Lmin)dx
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V ′(δ) = −
∫
Xr

∣∣∣∣ ∂L∂xk (x)

∣∣∣∣ (Lλ(x)− Lmin)e−δ(Lλ(x)−Lmin)dx

and

W ′(δ) = −
∫
Xr

(Lλ(x)− Lmin)e−δ(Lλ(x)−Lmin)dx.

An application of the product and quotient rules to Fk yields

F ′k(δ) =

(
U ′(δ)

W (δ)
− W ′(δ)

W (δ)

U(δ)

W (δ)

)
V (δ)

W (δ)
+

(
V ′(δ)

W (δ)
− W ′(δ)

W (δ)

V (δ)

W (δ)

)
U(δ)

W (δ)
.

Basic algebra along with the fact that e−δ(Lλ(x)−Lmin)

W (δ) = φ(x) yields the result.

Theorem 11 allows F ′k(δ) to be computed from the samples and function evaluations used

to compute Sk. For small h, Fk(δ + δh) ≈ Fk(δ) + hδF ′k(δ) so the robustness of Sk may be

estimated without any further computational expense.

Since the magnitude of Sk may depend on δ, it is useful to normalize for each h when

assessing robustness. Define

F̂k(δ + δh) =
Fk(δ) + hδF ′k(δ)∑p
j=1(Fj(δ) + hδF ′j(δ))

, k = 1, 2, . . . , p, (5.10)

which may be plotted for h ∈ (−hmax, hmax) to assess robustness. Since this is only a local

estimate it is suggested to take hmax = 1
10 , reflecting a 10% uncertainty about δ.

5.3.3.2 Extracting parameter dependencies

Parameters are typically dependent, and the dependency information is a valuable complement to

the sensitivity indices. For instance, if f is sensitive to two parameters that are highly dependent,

then it may be possible to remove one of them from f since the other may compensate. In

addition, the dependencies may reveal parameter misspecifications in f .

The strength and nature of the dependencies in X are typically not known a priori. Correlation

coefficients may be computed from the MCMC samples and returned as a by-product of

computing sensitivity indices. The Pearson correlation coefficient is commonly used to measure

dependencies from sampled data. The remainder of the chapter will focus on correlations

measured through the Pearson correlation coefficient. Other measures of dependency may be

interchanged within the framework as well.
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5.3.4 Summary of the method

This subsection summarizes the proposed method. The method is divided into three algorithms,

one for each stage described in Section 5.3.

Algorithm 3 performs the auxiliary computations of Subsection 5.3.1. Note that determining

c in Line 2 is the only application-specific portion of the proposed method; user discernment is

necessary to choose c.

Algorithm 4 requires the user to specify the parameter ν from Sub-subsection 5.3.2.1, the

parameter α from Sub-subsection 5.3.2.2, and the number of MCMC samples N . It is suggested

to start with ν = 0 and rerunning Algorithm 4 with a larger ν if the convergence results indicate

that the PDF is heavy tailed. Hence ν may be viewed as a computed quantity rather than one

specified by the user. As mentioned in Sub-subsection 5.3.2.2, α = .99 is suggested. It may be

considered fixed and the user only needs to change it if they have a specific purpose which

requires giving more weight to “poor” parameter choices. The choice of N may be difficult;

however, more samples may be appended after an initial run so N can be adapted without any

wasted computation.

Algorithm 5 is a simple post-processing of the MCMC samples to compute sensitivity

indices, robustness estimates, and parameter dependencies. One may also perform convergence

diagnostics on the MCMC estimators of E
(∣∣∣ ∂L∂xk (X)

∣∣∣), k = 1, 2, . . . , p, along with Algorithm 5.

Algorithm 3 Auxiliary Computation

1: compute x? = arg minL(x) via some optimization routine
2: determine c > 0 through visualization of model outputs, see (5.4)
3: estimate M via Monte Carlo integration, see (5.5)

Algorithm 4 Sampling

1: function (ν, N , α)
2: compute λ using (5.6)
3: solve ∆(δ) = α, see (5.7)
4: run MCMC sampler to draw N samples from φ (5.2)
5: store MCMC samples in a matrix S
6: test convergence of the sampler
7: end function
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Algorithm 5 Sensitivities, Perturbations, and Correlations

1: evaluate ∇L at samples from S
2: estimate Sk, k = 1, 2, . . . , p
3: estimate F ′k(δ), k = 1, 2, . . . , p
4: compute empirical correlation matrices from S

5.4 Numerical results

In this section the proposed method is applied to two problems. The first is a synthetic test

problem meant to illustrate the methodological details described in Section 5.3. Second is the

motivating application where f is a space-time hierarchical Gaussian process used for wind

speed prediction [4].

5.4.1 Synthetic test problem

This synthetic problem illustrates the proposed method of GSA and its properties on a simple

example with least squares estimation. The difficulty of MCMC sampling with heavy tailed

distributions, and the effect of the regularization factor (5.6), is demonstrated.

Mimicking characteristics of the motivating application, consider a space-time process

governed by the function

f(s, t; X) = S(s)T (t), (5.11)

where

S(s) = α0 + α1s+ α2s
2

and

T (t) = β0 + β1e
−γt cos

(
2π

100
t

)
+ β2 sin

(
2π

100
t

)
+ β3

1

1 + e−.1(t−50)

with s ∈ [0, 1], t ∈ [0, 100], and

X = (β0, β1, β2, β3, γ, α0, α1, α2)

= (2, 10, 3, .01, .01, 1, .01, 1). (5.12)

Drawing 152 samples from (5.11) on a uniform grid of [0, 1]× [0, 100] gives the data

{(si, ti, f(si, ti))}225
i=1.
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A model f̂ parameterized in the same form as (5.11) is proposed, but the parameters are

assumed to be unknown. They are determined by minimizing the least squares loss function

L(x) =
1

225

225∑
i=1

(f(si, ti)− f̂(si, ti))
2.

Analytic solutions for the sensitivities are intractable; however, the results may be validated

by comparing them with knowledge of the true model that generated the data. In particular, the

relative importance of the parameters is clear by examining (5.11) and (5.12). It is expected that

β1 will be the most important parameter and β3 and α1 to be the least important parameters.

The proposed method is used with N = 105, α = .99, c = .1, and hmax = .1. Five independent

chains are generated from overdispersed initial iterates using adaptive MCMC [116]. When

ν = λ = 0, the MCMC sampler fails to converge because the tail of φ is too heavy. To illustrate

this, Figure 5.1 shows the iteration history for the parameter β1 in each of the five chains after

a burn-in period is discarded. The two leftmost frames indicate that φ is heavy tailed; the other

three chains never reach the tail. A heavy-tailed PDF such as this requires extensive sampling,

which makes the reliable computation of sensitivity indices intractable. Therefore, regularization

is used to alleviate this problem by increasing ν and monitoring the sampler’s convergence; ν = .2

is found to yield converged chains with N = 105 samples. The chains are deemed convergent

by using the potential scale reduction factor (PSRF) [13] as well as visualizing the iteration

histories and histograms from each of the five chains.
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Figure 5.1 Iteration history for parameter β1. Each frame corresponds to an independent chain.

Plotting the iteration history of Lλ indicates that a burn-in of 3.5×104 is sufficient. Then the

remaining samples from the five chains are pooled together so that sensitivities and correlations

may be computed from them. Figure 5.2 shows the sensitivity indices and Pearson correlation

matrix computed from the pooled samples. These results are consistent with expectations, β1

is seen as the most important parameter and α1 as the least important. Two primarily blocks

are seen in the correlation plot representing the set of spatial variables and the set of temporal

variables. Negative correlations are observed on the off diagonal blocks since the spatial and

temporal variables are multiplied by one another and hence are inversely related.

Figure 5.3 displays (5.10) plotted for h ∈ (− 1
10 ,

1
10), k = 1, 2, . . . , 8. The horizontal lines
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Figure 5.2 Sensitivity indices (left) and Pearson correlation coefficients of the parameters (right) for
the synthetic test problem.

indicate that errors in determining δ are immaterial since the analysis would be unchanged by

perturbing δ.
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Figure 5.3 Sensitivity index perturbations for the synthetic test problem. Each line corresponds to a
given parameter.

5.4.2 Analysis of a space-time Gaussian process

In this section, the proposed method is applied to analyze the motivating statistical model [4].

The model aims at forecasting wind speed by fusing two heterogeneous datasets: numerical

weather prediction (NWP) model outputs and physical observations. Let YNWP denote the

output of the NWP model and YObs denote the observed measurements. They are modeled as a
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bivariate space-time Gaussian process specified in terms of mean and covariance structures as

follows, (
YObs

YNWP

)
∼ N

((
µObs(X)

µNWP(X)

)
,

(
ΣObs(X) ΣObs,NWP(X)

ΣT
Obs,NWP(X) ΣNWP(X)

))
, (5.13)

where X is the set of parameters that describe the shapes of the means and covariances. The

model is expressed in a hierarchical conditional manner to avoid the specification of the full

joint covariance in (5.13), indeed the mean and covariance of the distributions (YObs|YNWP) ∼
N
(
µObs|NWP ,ΣObs|NWP

)
and YNWP ∼ N

(
µNWP ,ΣNWP

)
are specified in time, geographical

coordinates, and parameters from the numerical model (the land-use parameter). More precisely,

µNWP (t, s) = (α0LU(s) + α1Lat(s) + α2Long(s)) g(t), (5.14)

where s is a spatial location, t is time, g(t) represents a sum of temporal harmonics with daily,

half-daily and 8hr-periodicities, LU(s) is a categorical variable that represents the land-use

associated with location s, Lat and Long are the latitude and longitude coordinates.

ΣNWP (∗, si; ∗, sj) = Cov(YNWP(∗, si), YNWP(∗, sj)) = (Ψ(si)Γ0Ψ(sj)
T ) + δi−jΓLU(si), (5.15)

Γ0, (ΓLU(si))i=1..I are temporal squared exponential covariances expressed as

Γ∗(tk, tl) = σ∗ exp(−ρ∗(|tk − tl|)2) + δk−lγ∗,

where δk−l is the Kronecker delta, σ, ρ, and γ are parameters to be estimated. (ΓLU(si))i=1..I are

land-use specific terms, and Ψ is linear in the latitude and longitude coordinates and quadratic

in time. The parameters α0, α1, α2, along with the parameters of g(t), (Γsi)i=0..I and Ψ, are

estimated by maximum likelihood. Denote the collection of all these parameters by XNWP .

The conditional distribution is expressed through its mean and covariance:

µObs|NWP (t, s) = µ(t, s) + (ΛYNWP)(t, s) ,

where µ(t, s) is written similarly to µNWP (t, s) as a product of temporal harmonics and a linear

combination of the coordinates latitude and longitude. Λ is a projection matrix specified in time,

latitude, longitude and the land-use parameter. The covariance ΣObs|NWP is parametrized with

a similar shape to (5.15) with a different set of parameters. Parameters of these functions are

denoted as XObs|NWP .

The model is fit by maximum likelihood estimation on the two datasets with respect to

the parameters X = (XNWP ,XObs|NWP ). The negative log likelihood of the model can be
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decomposed as

L(x) = LNWP(xNWP ) + LObs|NWP(xObs|NWP ), (5.16)

where LNWP(xNWP ) and LObs|NWP(xObs|NWP ) are the negative log likelihoods for the marginal

distribution of YNWP and the conditional distribution YObs|YNWP, respectively. Since the model

decomposes in this way, analysis of the parameters in YNWP and YObs|YNWP are considered

separately. The dataset consists of 27 days of measurements from August 2012; details may be

found in [4]. The parameter sensitivity during the first 13 days for YNWP and YObs|YNWP are

analyzed in Sub-subsection 5.4.2.1 and Sub-subsection 5.4.2.2, respectively. Inferences are drawn

from this analysis and validated using the later 14 days of data in Sub-subsection 5.4.2.3.

5.4.2.1 Parameter sensitivity analysis for YNWP

In this sub-subsection, the proposed method is applied to determine the sensitivity of the

marginal model for YNWP to its 41 parameters during a 13-day period. The sensitivities being

computed are with respect to the parameters in XNWP , but for notational simplicity denote

them by X in this sub-subsection.

In order to determine x? (Line 1 of Algorithm 3), the L-BFGS-B algorithm is used to

minimize LNWP. Visualizing the model predictions for various choices of c yields c = .35 (Line 2

of Algorithm 3). Then M (5.5) is estimated with ` = 5000 Monte Carlo samples (Line 3 of

Algorithm 3). It returns an estimate M = 4160 with standard deviation 2; hence ` is considered

to be sufficiently large. These steps complete the preprocessing stage by providing characteristic

values for the parameters X and the loss function L.

The PDF φ is found to be heavy tailed, so ν = .1 is chosen to reduce this effect. Then

the equation ∆(δ) = α is solved with α = .99 by evaluating ∆ and manually updating δ. The

solution δ = .07 is obtained. This converged in very few iterations because of the nice properties

of the equation ∆(δ) = α. Any other derivative-free nonlinear solver may be used; however,

manual tuning is preferable in many cases because of the simplicity of the equation and the

stochasticity of the function evaluations. Having determined ν and δ, the PDF φ is now well

defined and samples may be drawn from it.

Adaptive MCMC [116] is used with a desired acceptance rate of .15. Five chains of length

N = 4× 105 each are generated independently from overdispersed initial iterates, and the first

105 iterates are discarded as burn-in. The PSRF convergence diagnostic from [13] is used on Xk

and ∂L
∂xk

(X), k = 1, 2, . . . , p, to assess convergence of each of the 2p estimates. The PSRFs for all

parameters lie in the intervals (1, 1.025) and (1, 1.048), respectively. Other visual diagnostics are

applied as well, along with comparing sensitivity indices from each of the chains. The sensitivity

estimation appears to converge.
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Figure 5.4 displays the sensitivity indices estimated from each of the chains. The five

different colors represent the five different chains; their comparability demonstrates that MCMC

estimation errors are negligible. The intercept terms in the mean and the covariance kernel

parameters are the most influential. The terms parameterizing Ψ are less influential, particularly

the quadratic temporal terms.
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Figure 5.4 Sensitivity indices for YNWP. The five colors represent the sensitivity indices computed
from each of the five chains.

As discussed in Sub-subsection 5.3.3.1, the robustness of the sensitivities with respect to

errors in δ may be estimated as a by-product of computing sensitivities. Figure 5.5 displays

(5.10) plotted for h ∈ (−1/10, 1/10), k = 1, 2, . . . , 41. Most of the curves are nearly horizontal,

and those that not horizontal display small variation that does not change the resulting inference.

Thus the sensitivities are robust with respect to δ, and hence any errors made when determining

δ are negligible.

As mentioned in Sub-subsection 5.3.3.2, parameter correlation information is a useful

complement to sensitivity indices. Figure 5.6 displays the empirical Pearson correlation matrix

computed from the 1.5× 106 MCMC samples retained after removing burn-in and pooling the

chains. Strong positive correlations are observed between the three land-use dependent spatial

intercepts in the mean. Strong negative correlations are observed between the temporal range

ρ and the nugget term γ parameterizing the land-use specific covariance kernels ΓLU(si). This

correlation is expected since the nugget term represents the variance of the signal that is not

explained by the exponential part.
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Figure 5.5 Sensitivity index perturbations for YNWP. Each line corresponds to a given parameter.

5.4.2.2 Parameter sensitivity analysis for YObs|YNWP

In this sub-subsection, the proposed method is applied to determine the sensitivity of the model

for YObs|YNWP to its 54 parameters during the same 13-day period used in Sub-subsection 5.4.2.1.

The sensitivities being computed are with respect to the parameters in XObs|NWP , but for

notational simplicity denote them by X in this sub-subsection.

In a similar fashion to Sub-subsection 5.4.2.1, the L-BFGS-B algorithm is used to determine

x? (Line 1 of Algorithm 3). Visualizing the model predictions for various choices of c yields

c = .05 (Line 2 of Algorithm 3). Then M (5.5) is estimated with ` = 5000 Monte Carlo samples

(Line 3 of Algorithm 3). It returns an estimate M = 2973 with standard deviation 2; hence ` is

considered to be sufficiently large. These steps complete the preprocessing stage by providing

characteristic values for the parameters X and the loss function L. One may note that c and M

are significantly smaller for YObs|YNWP than for YNWP. Their difference is unsurprising since

YNWP and YObs|YNWP model two different processes.

The PDF φ is found to be heavy tailed, so ν = .15 is chosen to reduce the tail of φ.

Analogously to Sub-subsection 5.4.2.1, ∆(δ) = α = .99 is solved yielding δ = .06 (Line 3 of

Algorithm 4).

Adaptive MCMC [116] is used with a desired acceptance rate of .15. Five chains of length

N = 4×105 each are generated independently from overdispersed initial iterates, and the first 105

iterates are discarded as burn-in. The convergence diagnostics discussed in Sub-subsection 5.4.2.1

are used. The PSRFs for all parameters lie in the intervals (1, 1.191) and (1, 1.036), respectively.

A few sensitivity indices have not fully converged; however, the remaining uncertainty in their

estimation is sufficiently small for the purposes of this sensitivity analysis. These uncertain

sensitivities are among the largest in magnitude. Since the goal is encouraging model parsimony,

and derivative based approaches are known to have limitations in ordering the most influential
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Figure 5.6 Pearson correlation coefficients for the parameters of YNWP.

parameters, then the remaining uncertainty is of secondary importance.

Figure 5.7 displays the sensitivity indices estimated from each of the chains. The five

different colors represent the five different chains. The sensitivities with greatest uncertainties

are demonstrated by the differences in their estimated values in each chain; however, these

discrepancies are sufficiently small that they do not alter the resulting inference. The longitudinal

terms in the mean and Ψ are observed to have little influence since their sensitivity indices are

nearly zero. The most influential parameters are the spatial weights in the matrix Λ which acts

on YNWP.

Figure 5.8 displays (5.10) plotted for h ∈ (−δ/10, δ/10), k = 1, 2, . . . , 54. Most of the curves

are nearly horizontal, and those that are not horizontal display small variation that does not

change the resulting inference.

Figure 5.9 displays the empirical Pearson correlation matrix computed from the 1.5× 106

MCMC samples retained after burn-in and pooling the chains. Strong correlations are observed

between the spatial weights in the matrix Λ. Similar to YNWP, strong negative correlations are

also observed between the temporal range ρ and the nugget term γ of the land-use specific

covariance kernels.
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Figure 5.7 Sensitivity indices for YObs|YNWP. The five colors represent the sensitivity indices com-
puted from each of the five chains.
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Figure 5.8 Sensitivity index perturbations for YObs|YNWP. Each line corresponds to a given parame-
ter.

5.4.2.3 Inference and validation of results

In some cases with mathematical models one may set a threshold and fix all parameters whose

sensitivity is below the threshold. This approach is not suitable for statistical models because

the parameters must be understood in light of their contribution to the model structure and

their correlation with other parameters. Rather, the sensitivity indices and correlation structures

should be used to re-parameterize the statistical model in a simpler way. For instance, if a

collection of spatially dependent parameters are all found to be unimportant then the user may

consider replacing them by a single parameter which is not spatially dependent.

Using the results of Sub-subsection 5.4.2.1, and considerations of the model structure, it

is determined that the YNWP model is insensitive to the temporal quadratic terms in the

parameterization of Ψ. Similarly, coupling the results of Sub-subsection 5.4.2.2, and the model
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Figure 5.9 Pearson correlation coefficients for the parameters of YObs|YNWP.

structure, it is determined that the YObs|YNWP model is insensitive to several of the longitude

terms. Specifically, the longitude term in the parameterization of the mean and the nine longitude

terms in the parameterization of Ψ. This conclusion confirms what one would expect from the

physics considerations. The flow is predominantly east-west and thus the north-south correlation

is relatively weaker. The east-west information is likely to be well captured by YNWP and hence

is not needed in YObs|YNWP.

The 16 insensitive parameters are removed from the model, yielding a more parsimonious

model, call it the reduced model. To validate inferences, the original model and the reduced

model are used to predict on the other 14 days of data not use in the sensitivity analysis.

Leave-one-out cross-validation is used to fit each of the models and assess their predictive

capabilities.

For each of the 14 days, 1,000 scenarios are simulated and two metrics are used to quantify

the predictive capacity of the full and reduced models, namely, the energy score and the root

mean square error. The energy score [38, 94], a measure of distance between distributions, is

computed for the joint distribution of all spatial locations at each day; hence, 14 energy scores

are computed. The root mean square error is computed as the square root of the time average
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squared error at each spatial location; hence, there are 11 root mean square errors. Figure 5.10

displays the energy scores on the left and root mean square errors on the right. The reduced

model has slightly smaller (and hence better) energy scores and root mean square errors in the

majority of the cases. The sum of energy scores for full model and reduced model is 121.1 and

120.7, respectively. The sum of root mean squared errors for the full model and reduced model

is 11.4 and 11.3, respectively.
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Figure 5.10 Left: energy scores for each of the 14 days being predicted; right: root mean square error
for each of the 11 spatial locations being predicted. The full model is red and the reduced model is
black.

To further illustrate the difference between the full and reduced models, the simulated

scenarios are displayed for a typical case. Specifically, the spatial location with median root

mean square error and six days with median energy score is chosen to plot the 1,000 scenarios

along with the observed data. Figure 5.11 displays the results with the full model on the left

and reduced model on the right.
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Figure 5.11 Predictions using the full model (left) and reduced model (right) for 6 days at a fixed
spatial location. The red curve is the observed wind speed and the grey curves are 1000 simulations
generated from each model.
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The sensitivity analysis enabled the parameterization of the model to be simplified from

having 95 parameters to 79. The reduced model has equal or better predictive capability and is

simpler to fit and analyze. Further, the reduced model typically has fewer outlying scenarios, as

evidenced in Figure 5.11.

For this application a strong insensitivity of YObs|YNWP to some of its terms contributing

longitudinal information is observed. This is likely because the YNWP model captures longitudinal

information well and hence the Gaussian process does not need to fit terms contributing

longitudinal information. Thus, inferences may also be made on the data being input to the

statistical model through the parameter sensitivities.

These inferences and simplifications are useful for multiple reasons. First, long term weather

prediction is difficult so the parameters must be optimized frequently to accommodate changing

weather patterns. Hence a large optimization problem must be solved frequently, reducing the

number of parameters allows for faster and more robust optimization. Second, by removing

unimportant parameters the model is more robust and can be more easily integrated into a larger

workflow, namely power scheduling. Third, the underlying system may be better understood

through these inferences, for instance, the unimportance of longitudinal information.

5.5 Conclusion

A new method for GSA of statistical model parameters was introduced. It addresses the challenges

and exploits the problem structure specific to parameterized statistical models. The method

is nearly fully automated; one step depends on the user’s discretion, but this level of user

specification is likely necessary for any alternative method. The proposed method also admits

robustness analysis at no additional computational cost, thus yielding sensitivities accompanied

with certificates of confidence in them.

The method was motivated by, and applied to, a Gaussian process model aimed at wind

simulation. Sensitivities were computed and the model parameterization simplified by removing

17% of the model parameters. This simpler model was validated and shown to provide equal or

superior predictive capability compared with the original model.

The proposed method has two primary limitations. First, it relies heavily on Markov

Chain Monte Carlo sampling for which convergence diagnostics are notoriously challenging.

Second, regularization may be needed to eliminate heavy-tailed distributions. Determining

the regularization constant is simple in principle but may require drawing many samples to

resolve. However, these limitations are classical and have been observed in various applications

previously.
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CHAPTER

6

DERIVATIVE-BASED GSA FOR

PDE-CONSTRAINED OPTIMIZATION

6.1 Introduction

This chapter considers GSA for the solution of PDE-constrained optimization problems with

respect to uncertain parameters (which are not optimization variables). Throughout this thesis,

the function f has been a mapping from parameters to a QoI or model output; in this chapter

f is a mapping from uncertain parameters to the solution of a PDE-constrained optimization

problem. Hence evaluating f(X) is computationally intensive, and in general, f(X) will assume

values in a function space. Building off the work of Brandes and Griesse [11], a GSA paradigm

and computational framework is developed. A derivative-based approach to GSA is adopted in

order to utilize the work of [11] which provides a foundation for efficiently computing derivatives

of the optimal solution with respect to the uncertain parameters, i.e. local sensitivities. This

chapter extends their work in three ways, (i) an algorithmic extension, (ii) a scalable C++

implementation, and (iii) a systematic framework for GSA in PDE-constrained optimization.

The framework is illustrated by applying it to a multi-physics nonlinear system. The related

works of [15, 39, 40, 41, 42, 43, 44] consider various aspects of local sensitivity analysis for

PDE-constrained optimization problems, in particular, focusing on conditions for differentiability

and the computation of derivational derivatives.
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6.2 Overview of sensitivity analysis for PDE-constrained opti-

mization

This section overviews the work of Brandes and Griesse [11] to provide necessary background.

Throughout the chapter the optimization variables will be referred to as the control, though

the results of this chapter apply to design and deterministic inverse problems as well. The

uncertain parameters will be denoted by x (or X when treated as random variables) and called

the uncertain parameters or simply parameters (instead of input variables or variables as in some

chapters of this thesis). Local sensitivity analysis is studied first to develop a computational

framework, it is extended to GSA later in the chapter.

6.2.1 Control problem formulation

Consider the PDE-constrained control problem

min
y,u

J(y, u) (6.1)

s.t. e(y, u,x) = 0

y ∈ Y, u ∈ U

where Y is the state space, U is the control space, x ∈ X are fixed parameters, J : Y ×U → R is

an objective function, and e : Y ×U ×X → Z? is the weak form of a PDE; Z? denotes the dual

of Z. The PDE represented by e may be time dependent or stationary. It is assumed that Y and

Z are reflexive Banach spaces, and U and X are Hilbert spaces. The stronger assumptions on U

and X are to enable subsequent analysis with the Singular Value Decomposition (SVD). The

spaces Y, U,X , and Z may be finite or infinite dimensional. In particular, the parameter space

X may represent a finite number of parameters or a functional representation (for instance,

a spatially dependent parameter), in which case X is infinite dimensional. In contrast to the

previous chapters when GSA focused on functions whose domain was Rp (or a subset of it), this

chapters permits a more general parameter space.

The goal is to develop a computational framework which may by used for time dependent,

multi-physics, and/or multi-scale nonlinear problems in two or three spatial dimensions, with

infinite (or large finite) dimensional parameter uncertainty. A first step towards this end is taken

in this chapter through developing a framework which is applied to a multi-physics nonlinear

steady state problem in two spatial dimensions with spatially dependent parameters. Extensions

of the framework are highlighted.

The objective is to analyze the sensitivity of the optimal control solution with respect to

changes in the parameters x. To study (6.1) as an unconstrained optimization problem, define
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the Lagrangian L : Y × U × Z ×X → R as

L(y, u, λ,x) = J(y, u,x) + 〈λ, e(y, u,x)〉, (6.2)

where λ ∈ Z is the Lagrange multiplier, in the context of control it is called the adjoint state.

Throughout the chapter, the subscripts J∗ and e∗ will denote the Fréchet derivative of J and e

with respect to ∗, respectively. After discretizing, J∗ and e∗ will denote the gradient of J and

Jacobian of e, respectively.

The following assumptions are made for the remainder of the chapter:

1. J and e are twice continuously differentiable with respect to (y, u,x).

2. x0 ∈ X are nominal parameters and (y0, u0) is a local minimum of (6.1), with corresponding

adjoint state λ0, when x = x0.

3. ey(y0, u0,x0) is surjective and the adjoint state λ0 is unique.

4. There exists ρ > 0 such that

L(y,u),(y,u)(y0, u0, λ0,x0)((y, u), (y, u)) ≥ ρ||(y, u)||Y×U

for all (y, u) in the null space of e(y,u)(y0, u0,x0).

These assumptions imply that

Ly(y0, u0, λ0,x0) = fy(y0, u0) + 〈λ, ey(y0, u0,x0)〉 = 0 (6.3)

Lu(y0, u0, λ0,x0) = fu(y0, u0) + 〈λ, eu(y0, u0,x0)〉 = 0 (6.4)

Lλ(y0, u0, λ0,x0) = e(y0, u0,x0) = 0 (6.5)

which are the well known necessary conditions for optimality.

6.2.2 Sensitivity formulation

The following result of [11] provides the foundation for local sensitivity analysis.

Theorem 12. There are neighborhoods N (x0) ⊂ X of x0 and N (y0, u0, λ0) ⊂ Y × U × Z of

(y0, u0, λ0) and a continuously differentiable function f : N (x0)→ N (y0, u0, λ0) such that for

all x ∈ N (x0), f(x) is the unique element of N (y0, u0, λ0) which satisfies

∇L(f(x),x) = 0,
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i.e. is the unique critical point of (6.1) in N (y0, u0, λ0). Further, the Fréchet derivative of f at

x0 is given by

f ′(x0) = K−1B

where

K =

 Lyy Lyu e?y

Luy Luu e?u

ey eu 0

 ,

B = −

 LyxLux
Lλx

 ,

with the second derivatives of L evaluated at (y0, u0, λ0,x0); ? denotes the adjoint of an operator.

The operator K is called the Karush-Kuhn-Tucker (KKT) operator.

Theorem 12 gives a computable expression for the change in the optimal state, control,

adjoint triple when the parameters x0 ∈ X are perturbed. Notice that this is a local result in the

sense that the optimization problem (6.1) may have multiple local minima but f depends upon

the specific local minimum (y0, u0, λ0). Restricting to one local minimum ensures the existence

and well-poseness of f and its derivative.

In what follows, the arguments of L and its derivatives are omitted implying that they

are evaluated at (y0, u0, λ0,x0). From Theorem 12, the directional derivative of optimal state,

control, adjoint triple in the direction x is given by the solution, (y, u, λ), of the linear system

K

 y

u

λ

 = Bx. (6.6)

To determine the sensitivity of the optimal controller to changes in x, define the projection

operator Π : Y × U × Z → U by

Π

 y

u

λ

 = u.

Then the Fréchet derivative of the optimal control solution with respect to the parameters x

85



may be expressed as the linear operator D : X → U ,

D = ΠK−1B, (6.7)

which, thanks to Theorem 12, is well defined in a neighborhood of x0. Note that the sensitivity

of the state, or a function of the state and control, may be considered by using a different Π.

This chapter focuses on the sensitivity of the optimal control strategy.

Assume that D is a compact operator, see [11] more further discussion of its compactness.

Since X and U are Hilbert spaces, the sensitivity of the control solution u0 to changes in x0

may be analyzed through the SVD of D. Theorem 13 below recalls fundamental results for the

SVD of compact linear operators on Hilbert spaces.

Theorem 13. There exists σk ≥ 0, xk ∈ X , uk ∈ U , k = 1, 2, . . . , such that

• Dx =
∞∑
k=1

σk(x,xk)uk ∀x ∈ X

• σk ≥ σk+1 ∀k

• {xk}∞k=1 are orthonormal in X

• {uk}∞k=1 are orthonormal in U

• Dxk = σkuk, k=1,2,. . .

Since xk and uk are normalized, the singular value σk measures the magnitude of the change

in control solution when x0 is perturbed in the direction xk. The ordering of the singular values

enables an identification of important directions in parameter space. In practice, the K leading

singular triples (σk,xk, uk), k = 1, 2, . . . ,K, are computed, where K is typically small (for

instance, K = 4 is sufficient for the application in Section 6.9), but the choice of K dependents

on the spectrum of D. Problems where D has a low rank structure are of particular interest,

which corresponds to when the controller is only sensitivity to a small subset of the uncertain

parameters. Section 6.8 elaborates on how these singular triples are used to infer the influence

of the parameters.

6.2.3 Discretization

Let Yh ⊆ Y, Uh ⊆ U,Zh ⊆ Z,Xh ⊆ X be finite dimensional subspaces inheriting norms from the

larger spaces. In practice they typically arise from a discretization of the PDE, for instance, a

finite element discretization. Let x0 ∈ Xh be nominal parameters, and (y0, u0, λ0) ∈ Yh×Uh×Zh
be a local solution of the discretization of (6.1) with nominal parameters x0. Assume that

(y0, u0, λ0) satisfies Assumptions 3 and 4.
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Let {φ1, φ2, . . . , φp} be a basis for Xh and {ψ1, ψ2, . . . , ψn} be a basis for Uh. In practice, the

implementation of Π,K, and B will act on coordinate representations of functions. Specifically,

x ∈ Xh is represented by xc ∈ Rp implying that

x =

p∑
i=1

(xc)iφi,

and similarly with coordinate representation for Uh. Define the coordinate transformation

operators

EXh : Rp → Xh, CXh : Xh → Rp, EUh : Rn → Uh, and CUh : Uh → Rn

which map between the coordinates in Euclidean space and the corresponding function in the

discretized function space (Xh or Uh).

Computational routines used in practice will represent the action of D on functions by

applying the matrix

D = CUhDEXh = CUhΠK−1BEXh ∈ Rn×p (6.8)

to the coordinate representation of the function.

Applying a standard SVD routine to the matrix D is not appropriate because the inner

products are taken in Euclidean space rather than in Xh and Uh. As observed in [11], an SVD

routine using Euclidean inner products should be applied to the matrix

RUhDR
−1
Xh , (6.9)

where RXh and RUh are the Cholesky factors of the symmetric positive definite mass matrices

MXh = RTXhRXh ∈ Rp×p and MUh = RTUhRUh ∈ Rn×n defined by

(MXh)i,j = (φi, φj)X (MUh)i,j = (ψi, ψj)U .

Computing the SVD of (6.9) is problematic for large scale applications because the Cholesky

factors RXh and RUh are dense, whereas the mass matrices MXh and MUh are sparse. To alleviate

this challenge, [11] computes the SVD of (6.9) by reformulating it as a non-symmetric eigenvalue

problem which does not require the Cholesky factors, and solves the eigenvalue problem with

a iterative non-symmetric solver. A new formulation will be given in Section 6.4 which has

advantageous properties to facilitate scalable computation.
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6.2.4 An illustrative example

Computing the SVD of (6.7) is computationally intensive because it requires repeatedly solving

KKT systems of the form (6.6). A natural alternative is to fix the controller to the optimal u0

and analyze the sensitivity of the state (or objective function) to changes in the parameters;

this eliminates the KKT solve thus reducing the computational complexity significantly. This

approach suffers two drawbacks:

• The optimal controller will change when the parameters change, so fixing the controller

may lead to sensitivity which occurs because of a poor control strategy.

• There may be parameters for which the state is sensitive but the optimal control is not, or

vice versa. Since the control strategy is our end goal, fixing the controller does not give

the sensitivities we need. Uncertainty in the state should be assessed through forward

uncertainty quantification once a robust control strategy has been determined.

The following example illustrates differences in these two approaches.

Example 6.2.1. Consider the optimization problem

min
y,u

J(y, u) (6.10)

s.t. y =
1

1 + e−x1u
+ x2

where

J(y, u) = (y − 2)2 +
.001

2
u2,

and x = (x1, x2) are uncertain parameters.

Let yopt(x), uopt(x), as a function of x, be the optimal solution of (6.10). Then

∂uopt
∂x1

(0.5, 0.5) = 9.99 and
∂uopt
∂x2

(0.5, 0.5) = 3.12.

If instead, (6.10) is solved with x = (0.5, 0.5) and the derivative of

g(x1, x2) =

(
1

1 + e−x1uopt(0.5,0.5)
+ x2 − 2

)2

+
.001

2
uopt(0.5, 0.5)2

is computed with respect to (x1, x2), then

∂g

∂x1
(0.5, 0.5) = 0.135 and

∂g

∂x2
(0.5, 0.5) = 1.03.

88



−20 −16 −12 −8 −4 0 4 8 12 16 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u

y

−20 −16 −12 −8 −4 0 4 8 12 16 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u

y

Figure 6.1 Plot of the constraint y in (6.10) as a function of u for different values of x. Left: varying
x1 from 0.3 to 0.7 with x2 = 0.5 fixed; right: x2 varying from 0.3 to 0.7 with x1 = 0.5 fixed. Each
curve corresponds to a different x and each dot corresponds to the solution of (6.10) for that given x.
The green horizontal line is the target state y = 2.

Hence computing the sensitivity of the control solution to x gives a different conclusion than

the sensitivity of the objective function (at the optimal control) to x. Figure 6.1 gives some

intuition for this result. The constraint is plotted with y as a function of u, i.e. the state as a

function of the control. Curves are plotted for different values of x and the solution of (6.10)

for each fixed x is given by the dot on the curve. The left (right) panel has x2 = 0.5 (x1 = 0.5)

fixed and varies x1 (x2) from 0.3 to 0.7. This demonstrates that as x1 varies, left panel, the

control solution u varies significantly while the state y is kept nearly constant; whereas as x2

varies, right panel, the control solution u is nearly constant while the state y varies significantly.

6.3 Overview of extensions and contributions

The approach of [11] presented in Section 6.2 is local sensitivity analysis in the sense that the

results are only valid in a neighborhood of the nominal parameters x0. A natural extension for

GSA is to compute local sensitivities, as described in Section 6.2, at a variety of samples from

Xh, i.e. different x0’s. To this end, a mathematical and computational framework is developed

to compute the local sensitivities quickly, in particular, levering parallelism whenever possible.

The contributions of this chapter to the efficient and scalable computation of local sensitivities

are twofold:

1. developing a software infrastructure, within the Trilinos framework, to leverage state of

the art (matrix free) PDE-constrained optimization software with parallel linear algebra

constructs within,
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2. reformulating the non-symmetric eigenvalue problem of [11] as a symmetric general-

ized eigenvalue problem and utilizing a randomized eigenvalue solver which affords an

embarrassingly parallel distribution of the KKT solves.

Having developed the capability to compute local sensitivities quickly, the work of [11] is

extended to be global. Specifically, local sensitivities are computed at various samples in X
(not global in the optimization variables); however, computational cost limits a full exploration

of the parameter space. The formulation of global sensitivities is rigorously developed and its

benefits and limitations are highlighted. A systematic approach is presented to compute, visualize,

interpret, and make inferences with the sensitivities. The proposed framework is demonstrated on

a optimal control problem constrained by the nonlinear multi-physics Boussinesq flow equations

with 153 uncertain parameters.

6.4 Proposed reformulation

In this section the eigenvalue problem originally posed in [11] is reformulated. For the remainder of

the chapter, analysis will be performed using coordinate representations. For notational simplicity,

x and u are used to denote the coordinate representations for parameters and controllers.

The singular values and singular vectors of (6.9) correspond to the positive eigenvalues and

eigenvectors of the Jordan-Wielandt matrix

W =

(
0 RUhDR

−1
Xh

(R−1
Xh)TDT (RUh)T 0

)
.

This gives the symmetric eigenvalue problem

W

(
u

x

)
= α

(
u

x

)
(6.11)

for which the largest eigenvalues are to be computed.

To avoid computing the Cholesky factors of the mass matrices, define

S =

(
R−1
Uh

0

0 R−1
Xh

)

and (
ũ

x̃

)
= S

(
u

x

)
.
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Then (6.11) may be reformulated as

(S−1)TWS−1

(
ũ

x̃

)
= α(S−1)TS−1

(
ũ

x̃

)
. (6.12)

Letting

A = (S−1)TJS−1 =

(
0 MUhD

DTMUh 0

)

and

B = (S−1)TS−1 =

(
MUh 0

0 MXh

)
,

(6.12) may be rewritten as Av = αBv. Since A is symmetric and B is symmetric positive

definite, a symmetric generalized eigenvalue problem must be solved. Unlike the eigenvalue

problem posed in [11], this formulation benefits from symmetry [27]. It is proposed to solve

the generalized eigenvalue problem with a randomized algorithm, whose advantages will be

elaborated on in Section 6.5.

Assume that the K largest eigenvalues αk > 0 and corresponding eigenvectors (ũk, x̃k),

k = 1, 2, . . . ,K, for Av = αBv, have been computed. The corresponding singular values, right

singular vectors, and left singular vectors of (6.9) are αk, RXh x̃k, and RUh ũk, k = 1, 2, . . . ,K,

respectively. It appears that the mass matrix Cholesky factor is needed to compute these singular

vectors; however, as shown in [11], the coordinate representation of the right and left singular

vectors of (6.7) (using Ph and Uh inner products) are given by

p̃k
p̃TkMPh p̃k

and
ũk

ũTkMUh ũk
,

k = 1, 2, . . . ,K, respectively. Hence only the dominant eigenvalues and eigenvectors of Av = αBv

are computed, and post-processed by multiplying with the mass matrices.

6.5 Overview of randomized linear algebra

This section presents necessary background on randomized linear algebra and eigenvalue compu-

tation, and its advantages in the context of the proposed sensitivity analysis. The articles [48,

101] are utilized for this review and an algorithm from [101] is presented.

Randomized linear algebra has recently emerged as a powerful tool in scientific computation.

Randomized methods have been developed for many of the classical problems such as solving
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linear systems of equations, computing eigenvalues, and computing SVD’s. The utility of

randomized methods is that they permit a reordering of the computation which may better

exploit computing architectures. Most traditional algorithms are inherently serial, for instance,

constructing Krylov subspaces require sequential matrix-vector products since each vector is

formed using the previous ones. In contrast, randomized methods may require a comparable

number of matrix-vector products which can be computed in parallel. They also enable distributed

memory computation with minimal communication overhead. These features motivate the use

of randomized methods in this work.

A randomized method seeks to project a large matrix onto a low dimensional subspace

through random sampling of its range space, then performs the desired computation in the

low dimensional subspace. Consider a generic matrix A. One may sample independent random

vectors {vi}`i=1 and compute Avi for i = 1, 2, . . . , `. This computation is easily parallelized

because the vi’s are independent. For modest values of `, the vectors {Avi}`i=1 will approximate

the eigenspace corresponding to the dominant eigenvalues; the reader is referred to [48] for a more

complete theoretical justification. Approximating the eigenspace with span{Av1, Av2, . . . , Av`}
may not be as accurate as using a ` dimensional Krylov subspace, but can be sufficiently accurate

to be useful when high precision is not required. Computation may be performed on a smaller

matrix formed from {Avi}`i=1 at a cost which is negligible compared to the cost of applying A.

In this way, the computational bottleneck of sequentially applying A (as is typically required in

traditional algorithms) is now embarrassingly parallel.

As described in Section 6.4, it is proposed to compute an SVD by reformulating it as a

symmetric generalized eigenvalue problem. An algorithm from [101] is given below to provide the

necessary background for this approach. Consider the generalized symmetric eigenvalue problem

Av = αBv (6.13)

where A ∈ RM×M is a symmetric matrix and B ∈ RM×M is a symmetric positive definite matrix,

M = p+ n is the sum of dimensions of Xh and Uh. It is known that the eigenvalues are real and

the eigenvectors are orthogonal with respect to the B inner product, 〈v,w〉B = vTBw.

Algorithm 6 presents the “two-pass algorithm” from [101]. It inputs the desired number of

eigenvalues 2K (the eigenvalues of (6.12) come in positive/negative pairs so 2K eigenvalues are

needed to determine the K largest eigenvalues) and an oversampling factor L, and returns an

approximation to the 2K eigenvalues of greatest magnitude and their corresponding eigenvectors.

The oversampling factor L is a user defined parameter which scales the cost versus accuracy.

Typically L < 20 (or even L < 10) is sufficient, see [48, 101] and references therein.

In Line 1 of Algorithm 6, one typically samples vi ∈ RM by drawing each entry of vi

independently from a standard normal distribution. Line 2 is embarrassingly parallel since each
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vi is independent. The resulting vectors will define the subspaces over which the eigenvectors

may be computed. In Line 3, the vectors yi, i = 1, 2, . . . , 2K + L are collected together to

form a matrix Y ∈ RM×(2K+L) and the QR decomposition of Y is computed with respect

to B inner products, Algorithm 7 below details this procedure. The columns of the matrix

Q ∈ RM×(2K+L) are a B orthogonal basis for span{B−1Av1, B
−1Av2, . . . , B

−1Av2K+L}. The

matrix A is applied to each column of Q in Line 4, this is also embarrassingly parallel. After

computing AQ ∈ RM×(2K+L), QT is applied on the left to form T ∈ R(2K+L)×(2K+L), a small

square matrix. This may be viewed as a projection of A using B inner products. The eigenvalue

decomposition of T is computed in Line 5, this is computationally light since T is small.

The eigenvalues of T approximate the dominant eigenvalues of (6.13). To approximate the

eigenvectors of (6.13), Q is applied to the eigenvectors {w1,w2, . . . ,w2K} of T in Line 6. Then

Qwi, i = 1, 2, . . . , 2K are B orthogonal vectors which approximate the eigenvectors of (6.13).

In summary, the computational cost of the algorithm is dominated by Lines 2 and 4

where B−1A and A are applied; however, computing these 2K + L matrix vector products is

embarrassingly parallel which enables exploitation of computational resources. In fact, since

2K + L typically is not too large (for instance, less than 20), the functions which define A and

B−1 may also be parallelized, giving two levels of parallelism in the algorithm.

Algorithm 6 Randomized Two-Pass Generalized Eigenvalue Algorithm

Input: desired number of eigenvalues 2K, oversampling factor L
1: sample independent random vectors vi ∈ RM , i = 1, 2, . . . , 2K + L
2: compute yi = B−1Avi, i = 1, 2, . . . , 2K + L
3: compute QR factorization Y = (y1,y2, . . . ,y2K+L) = QR where QTBQ = I
4: form T = QTAQ
5: compute eigenvalue decomposition T = V EV T , V = (w1,w2, . . . ,w2K+L)
6: form Qwi, i = 1, 2, . . . , 2K
Return: approximate eigenvalues from E and eigenvectors Qwi, i = 1, 2, . . . , 2K

There are multiple ways to compute a QR factorization with respect to B inner products, see

[101] for more details. Algorithm 7 below is adopted from [101] and used in the implementation

of Line 3 in Algorithm 6. Notice that the operations in Algorithm 7 are all standard and can

be efficiently executed using existing linear algebra libraries. Since the computational cost of

applying B is small relative to applying A, and 2K + L is relatively small, the cost of using

Algorithm 7 in Line 3 of Algorithm 6 is negligible.

The benefits of using a randomized eigenvalue solver in the context of the current sensitivity

analysis are threefold:
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Algorithm 7 QR Factorization with B Inner Products

Input: matrix Y , symmetric positive definite matrix B
1: compute a QR decomposition Y = ZS where ZTZ = I, S upper triangular
2: form C = ZTBZ
3: compute a Cholesky factorization C = RTCRC
4: form Q = ZR−1

C

5: form R = RCS
Return: Q,R, such that Y = QR and QTBQ = I

1. The bottleneck in the eigenvalue computation is applying A, which is embarrassingly

parallel with the randomized solver. This is particularly useful for large scale problems

where the parallel efficiency of the underlying linear algebra constructs decreases with a

large number of processors. Better parallel efficiency may be attained by distributing the

matrix vector products.

2. The randomized solver is particular well suited for problems with a low rank structure.

A low rank structure corresponds to having greatest sensitivity in a small subset of the

high dimensional parameter space. Such low rank structures in the parameter space are

commonly observed in practice.

3. Low precision may be permitted when computing sensitivities since they typically are not

used for additional computation downstream. The oversampling factor L provides an easy

mechanism to control the computational cost.

6.6 Software implementation

This section provides an overview of the implementation and highlights its important features.

The software is implemented in the Rapid Optimization Library (ROL) [67] of Trilinos [54], a

collection of C++ libraries for scientific computation. The implementation is matrix free, has

two levels of parallelism (three if multiple samples are taken in parameter space, see Section 6.8),

and may be easily adapted to variety of applications. Its parallelism and matrix free design

make it scalable.

Algorithm 6 provides an outline of the implementation. Lines 1, 3, 5, and 6 in Algorithm 6

are easily executed through calls to standard libraries and applying B to vectors, so it is sufficient

to focus on applying A, B, and B−1. Since the action of B−1 on a vector is easily computed

with iterative linear solvers, it is sufficient to focus on applying A and B, which requires the

ability to apply MXh , MUh , Π, K−1, and B. The subsections below highlight the implementation

of the action of each of these operators.
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The optimization problem (6.1) is solved using the PDE-constrained optimization tools in

ROL. It provides an interface to evaluate the objective function and constraint, and the action of

their derivatives. The ROL implementation also provides access to the entries of MXh and MUh

through calls to the underlying finite element library. These tools are leveraged to efficiently

implement the action of the operators needed for sensitivity analysis.

6.6.1 Applying MXh and MUh

The entries of MXh and MUh are easily accessible through the underlying finite element library.

Their action on vectors is implemented in an efficient matrix free, and parallelizable, manner.

6.6.2 Applying Π

The operator Π is a projection which inputs the state, control, adjoint triple, and return the

control. Hence its implementation is trivial. The action of its adjoint, which is needed in A, is

also trivial to implement.

6.6.3 Applying K−1

Applying K−1 is the most computationally intensive portion of the sensitivity computation. Its

action requires the solution of a large linear system whose dimension is the sum of degrees of

freedom from the state, control, and adjoint variables. It may be rewritten as the minimization

of a quadratic objective subject to a linear constraint [11]. All operators in the objective and

constraint are composed from the objective Hessian and constraint Jacobian of (6.1), which may

be accessed through ROL. The quadratic linear minimization problem is solved using ROL and

leverages the existing implementation used when solving (6.1).

6.6.4 Applying B

The operator B is the term in the sensitivity computation which encodes the parameter un-

certainty. The action of B on v is the directional derivative of the Lagrangian’s (6.2) gradient

in the direction v. ROL provides access to the Lagrangian’s gradient and Bv is approximated

with finite differences. In many applications, the parameters x appears linearly as they may

be coefficients multiplying a state or differential operator in the PDE. In this case, the finite

difference directional derivative is exact. Future developments may include using algorithmic

differentiation [44] to compute the parameter derivatives efficiently when the dependence is

nonlinear.

The adjoint of B must also be applied when applying A. In the implementation, this is done

using the property that the ith entry of a matrix vector product CTv is given by vTCsi, where
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si is a vector whose has 1 in its ith entry and 0 elsewhere. Hence the action of the adjoint of

B in the discretized coordinate representation may be computed by applying B p times (p is

the dimension of Xh). Since the computational cost of applying K−1 is significantly more than

applying B, the computational cost of this approach is negligible. Future developments may

include using algorithmic differentiation to efficiently compute the action of the adjoint B.

6.7 Formulation of global sensitivity indices

The previous sections developed a computationally efficient and scalable algorithm (and imple-

mentation) to perform local sensitivity analysis with fixed parameters x0 ∈ Xh. The goal of this

section is to formally define global sensitivity indices which do not depend on a specific x0, but

rather a probability distribution for the parameters that reflects their uncertainty. This section

highlights challenges, identifies assumptions, and formally defines global sensitivity indices.

Computational complexity typically prohibits accurate estimation of these global sensitivity

indices. Section 6.8 builds from this formulation to provide guidelines for computing, visualizing,

and interpreting sensitivities in practice.

The ideas of derivative-based global sensitivity measures are mimicked for this extension.

There are two important, and related, points to consider when defining global sensitivity indices:

• The term global sensitivity index is referring to being global in the parameter space, not

in the optimization variables (y, u). In general, only local optimally of the optimization

problem (6.1) may be ensured, but analysis may be performed at different x0’s thus making

the analysis global in Xh.

• For a fixed x0, Theorem 12 only ensures that the Fréchet derivative is well defined for a

given local minimum (y0, u0). For this reason, it is necessary to account for different local

minima associated with each x0.

To this end, two random vectors/fields are introduced.

Let X be a random vector of length p (the dimension of Xh) encoding the uncertainty in the

parameters. The user has freedom to define X to capture whatever uncertainty or statistical

characterization is known in the application.

As highlighted above, the presence of multiple local minima poses an additional challenge

beyond what is typically considered in global sensitivity analysis. To formally defined sensitivity

indices, let Z be a random vector whose length is dim(Yh) + dim(Uh), we will use realizations of

Z as the initial iterates when solving (6.1). Assume that a deterministic optimization algorithm

is used to solve (6.1) so that each realization of Z is uniquely mapped to local minimum (y0, u0).

This ensures that the global sensitivity index defined below is well-posed. If the user wishes to
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have zero as the initial iterate, then Z will equal zero with probability 1. Otherwise, the user

may permit a random initial iterate in which case there may be different local minima found for

different realizations of Z.

For a given realization x0 of X and z0 of Z, Theorem 12 gives a unique Fréchet derivative

whose SVD may be computed. Let (σk(X,Z),xk(X,Z), uk(X,Z)), k = 1, 2, . . . ,K be the K

leading random singular triplets that come from computing the SVD of (6.8) for each realization

of X,Z. Then define the global sensitivity index for the ith parameter as

Si = EX,Z

[
K∑
k=1

σk(X,Z)
∣∣∣(MXhxk(X,Z))i

∣∣∣] (6.14)

for i = 1, 2, . . . , p. The term
∣∣∣(MXhxk(X,Z))i

∣∣∣ is the absolute value of the ith entry of the

random vector MXhxk(X,Z); the absolute value is taken since the singular vector is only unique

up to a sign. The singular vector is multiplied by MXh to properly map the coordinate sensitivity

to the sensitivity of the basis function in Xh. This definition of sensitivity has a similar intuition

as the activity scores proposed in [20].

The sensitivity index Si may be related to the solution of the optimization problem (6.1)

as follows. Let g : Rp × Rdim(Yh)+dim(Uh) → Uh be defined by g(x, z) = Πf(EXhx), where z

is an initial iterate which is assumed to uniquely define the solution of (6.1) for the given x.

Theorem 14 bounds the expected difference in control solutions in terms of sensitivity indices.

Theorem 14. Let i ∈ {1, 2, . . . , p} and assume that

• the Hessian of g with respect to x, gx,x, exists,

• ∃C > 0 such that ||gx,x((x, z), (x, z))||U ≤ C ∀(x, z) ∈ Rp × Rdim(Yh)+dim(Uh),

• ∃εi > 0 such that

min{dim(Uh),p}∑
k=K+1

σk(X,Z)|(φi, EXhxk(X,Z))X | ≤ εi almost everywhere.

Then

EX,Z [||g(X + δci,Z)− g(X,Z)||U ] ≤ |δ|Si + |δ|εi +
C

2
δ2,

where ci ∈ Rp equals 1 in its ith entry and 0 elsewhere.

Proof. Let (x, z) be a fixed realization of (X,Z). Taylor’s theorem implies that

||g(x + δci, z)− g(x, z)||U ≤ ||DEXhδci||U +
C

2
δ2.
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Leveraging the Singular Value Decomposition of D and coordinate transformations yields

||g(x + δci, z)− g(x, z)||U ≤
min{dim(Uh),p}∑

k=1

σk|δ||(φi, EXhxk)X |||uk||U +
C

2
δ2

≤ |δ|
K∑
k=1

σk|(MXhxk)i|+ |δ|εi +
C

2
δ2,

where (σk,xk, uk), k = 1, 2, . . . ,min{dim(Uh), p} are the singular triplets of D. Taking the

expectation over all (x, z) completes the proof.

The constant C in Theorem 14 corresponds to the nonlinearity of the operator g, if g is

approximately linear then C will be small. The constant εi corresponds to the SVD truncation

error, which is small. Theorem 14 implies that the average change in the control solution when

the nominal parameters are perturbed in the ith coordinate direction is bounded by the sensitivity

index for the ith parameter, the SVD truncation error, and a measure of the nonlinearity of g.

6.8 Computation, visualization, and interpretation of sensitivi-

ties

Estimating (6.14) accurately through sampling based approaches may require extensive compu-

tational effort. However, useful information may be obtained by computing local sensitivities at a

sparse number of samples from the parameter space. This section details practical considerations

computing, visualizing, and interpreting samples of local sensitivities. The proposed approach is

demonstrated in Section 6.9.

Assume that control solutions and local sensitivities have been computed at N (chosen based

upon the user’s computational budget) different realizations of X,Z, denote them as xj , zj ,

j = 1, 2, . . . , N . For each j = 1, 2, . . . , N , this gives,

• the state yjopt and control ujopt solution of (6.1) with initial iterate zj when x = xj ,

• the K leading singular triples of (6.8), (σjk,x
j
k, u

j
k), k = 1, 2, . . . ,K.

The spectrum of (6.8) summarizes its low rank structure (or lack thereof). The singular

values σjk, k = 1, 2, . . . ,K, j = 1, 2, . . . , N , may be visualized in a scatter plot which readily

reveals the structure of the leading singular values for different samples in parameter space.

Ideally a decay in the singular values will be observed for each fixed j indicating a low rank

structure. If such a low rank structure exists, the K singular values and singular vectors may be

used to analyze the sensitivities.
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Define the local sensitivity index as

Sji =

K∑
k=1

σk|(MXhxjk)i| (6.15)

for i = 1, 2, . . . , p, j = 1, 2, . . . , N . The scalar Sji measures the influence of parameter i, i.e.

the ith component of the discretized parameter vector, for the jth parameter sample. Then

Sji , i = 1, 2, . . . , p, j = 1, 2, . . . , N , may be easily visualized in a scatter plot which reveals

the relative influence of the various parameters and the variability of their influence over the

parameter samples xj , j = 1, 2, . . . , N .

A user may consider computing the average of Sji , j = 1, 2, . . . , N , which estimates (6.14), i =

1, 2, . . . , p. Rather than adopting this approach, the user should consider the empirical distribution

of Sji , or at least its mean and standard deviation; this is inline with the classical Morris method

for screening [57, 86]. The reason for this suggestion is twofold. First, computational cost prohibits

taking enough samples to reliably estimate the local sensitivities averaged over parameter space,

i.e. the average of Sji , j = 1, 2, . . . , N , as N → ∞. The variability in the samples indicates

indicates how the sensitivities for different parameters may be compared, and, as in the Morris

method, gives a measure of the nonlinearity of f . Second, Sji depends upon which local minimum,

(yjopt, u
j
opt) of (6.1), the optimization routine determines. The challenges of global optimization

are well known and for this reason it is acknowledged that this as a undesirable property of Sji
which cannot be alleviated. Nonetheless, considering the empirical distribution of Sji allows the

user to observe variability that may arise from sensitivities computed at different local minima.

Since variability in Sji is contributed by the parameter sampling and the nominal local minimum,

both of which are meaningful, the empirical distribution of Sji gives a practical strategy to

visualize and interpret these measures of sensitivity.

Along with the spectrum and parameter sensitivity information above, the resulting changes

in the control strategy when the parameters are perturbed may be visualized as well. In particular,

ujk is the change in the control strategy if the parameter vector xj is perturbed in the direction

xjk. The samples ujk may be visualized by overlaying them on a plot, or plotting statistical

quantities computed from the sample {ujk}Nj=1. In both cases, it indicates which part of the

control strategy will change as the uncertain parameters change.

The sensitivity information discussed above indicates which parameters the control strategy

is most sensitive too, and how it will change if they are perturbed. The control problem (6.1) is

solved at each sample as part of the sensitivity computation. The variability of the state and

control strategy over the samples may be observed as a by-product of the computation and

visualized by overlaying them on a plot, or plotting statistical quantities computed from the

samples.
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Figure 6.2 Computation domain and boundaries for (6.16).

6.9 Numerical results

In this section the proposed sensitivity analysis is demonstrated on the steady state nonlinear

multi-physics Boussinesq flow equations in two spatial dimensions. This arises from an application

in high pressure chemical vapor deposition (CVD) reactors, see [60]; the control problem is

implemented in the ROL PDE-OPT examples [67]. Reactant gases are injected in the top of

a reactor and flow downwards to create a epitaxial film on the bottom. Vorticities created by

buoyancy-driven convection inhibit some gases from reaching the bottom of the reactor. Thermal

fluxes are controlled on the side walls of the reactor in order to minimize the vorticity. Consider

the control problem,

min
y,u

1

2

∫
Ω

(∇× v)dΩ +
γ

2

∫
Γc

u2dΓ (6.16)

s.t.

− ε(x)∇2v + (v · ∇)v +∇q + η(x)Tg = 0 in Ω

∇ · v = 0 in Ω

− κ(x)∆T + v · ∇T = 0 in Ω

T = 0 and v = vi on Γi

κ(x)
∂T

∂n
= 0 and v = vo on Γo

T = Tb(x) and v = 0 on Γb

κ(x)
∂T

∂n
+ ν(x)(u− T ) = 0 and v = 0 on Γc

where Ω = (0, 1)×(0, 1), Γi = [1/3, 2/3]×{1}, Γo = [0, 1/3]×{1}∪ [2/3, 1]×{1}, Γb = [0, 1]×{0},
and Γc = {0, 1} × [0, 1]. Figure 6.2 depicts the domain and boundaries. The state y consists of
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horizontal and vertical velocities v = (v1, v2), the pressure q, and the temperature T ; the control

u is a function defined on the left and right boundaries of Ω, their union is denoted Γc. The

deterministic inflow and outflow conditions vi and vo are given by

vi(s) = −4

(
s− 1

3

)(
2

3
− s
)

and

vo(s) =

 2
(

1
3 − s

)
s if s ∈

[
0, 1

3

]
2
(
s− 2

3

)
(1− s) if s ∈

[
2
3 , 1
] .

Uncertainties enter the the model through the finite dimensional vector x ∈ Rp where

p = 2mb + 2m` + 2mr + 3. In particular, the boundary term Tb is defined through the sum

Tb(s,x) = 1 + 0.2

mb∑
k=1

(
xk

sin(πks)

k
+ xmb+k

cos(πks)

k

)
. (6.17)

In addition, the boundary term ν(s,x), a function defined on Γc, is expressed as a sum in

the form of (6.17) with 2m` parameters in the sum defining the left boundary term and 2mr

parameters in the sum defining the right boundary term. Along with these 2mb + 2m` + 2mr

parameters which define Tb and ν, there are three parameters, xp−2,xp−1,xp, which appear in

the uncertain scalar quantities ε, η, and κ, as

ε =
1

Re
=

1 + 0.05xp−2

100
, κ =

1

RePa
=

1 + 0.05xp−1

72

and η =
Ge

Re2
= 1 + 0.05xp,

where Re, Ge, and Pa are the Reynolds number, Grashof number, and Prandtl number respec-

tively. Each xk, k = 1, 2, . . . , p, is assumed to be independent and uniformly distributed on

[−1, 1]. The initial iterate is taken to be zero for all samples; similar results were found using a

random initial iterate.

The PDE is discretized with finite elements on a 99x99 rectangular mesh. The velocity and

pressure are represented with the Q2-Q1 Taylor-Hood finite element pair and the temperature

is represented with the Q2 finite element. Taking mb = m` = mr = 25 yields a total of p = 153

uncertain parameters. The deterministic control problem is solved using the full space composite

step algorithm in ROL with the control penalty γ = 0.01. Figure 6.3 displays the uncontrolled

(left) and controlled (right) velocity field with parameters xk = 0, k = 1, 2, . . . , 153. The undesired

vorticities are observed in the uncontrolled velocity field and are reduced by the control strategy.
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Figure 6.3 Uncontrolled (left) and controlled (right) velocity field.

Local sensitivities are evaluated at N = 20 samples from parameter space. Figure 6.4 displays

the optimal control solutions for these 20 samples. The left and right panels display the controller

on the left and right boundary, respectively. Each curve corresponds to the control solution for

a different parameter sample. There is significant variability in the solutions which indicates a

strong dependence of the controller on the uncertain parameters. The objective in the sensitivity

analysis is to determine which parameters cause the greatest changes in the controller so that

uncertainty quantification and robust optimization may focus on them rather than the full set

of 153 parameters.

The leading K = 4 singular triples of (6.8) are computed and the approach presented in

Section 6.8 is followed to analyze them. Since the generalized eigenvalue problem is an augmented

system, the leading 2K = 8 eigenvalues must be computed to extract the leading 4 singular

values; an oversampling factor of L = 8 is used. Figure 6.5 shows the leading 4 singular values

from each of the 20 parameter samples. Each vertical slice in Figure 6.5 gives the 4 singular

values for the fixed parameter sample. Observe that there are 2 dominant singular values (thus

validating that K = 4 is sufficiently large) and that the singular values do not vary significantly

over the different parameter samples.

The sensitivity indices (6.15) are computed and plotted in Figure 6.6. There are 20 circles in

each vertical slice of Figure 6.6 corresponding to the local sensitivity index for a fixed parameter

over the 20 parameter samples. Observe several interesting features:

• The local sensitivity analysis yields similar results for each parameter sample.

• Only around 10% of the uncertain parameters exhibit significant influence on the control
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Figure 6.4 Control solutions for (6.16) corresponding to 20 different parameter samples. The left and
right panels are the controllers on the left and right boundaries, respectively. Each curve is a control
solution for a given parameter sample.
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Figure 6.5 Leading 4 singular values of D at 20 different parameter samples. Each vertical slice
corresponds to the leading 4 singular values for a fixed sample.
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Figure 6.6 Parameter sensitivities (6.15) for the 153 uncertain parameters in (6.16). The 20 circles in
each vertical slice indicates the sensitivity index for a fixed parameter as it varies over the 20 param-
eter samples. The repeating color scheme indicates the grouping of parameters as they correspond to
sine and cosine components of each boundary condition.

strategy.

• The bottom boundary condition, Tb, appears to have the greatest influence on the control

strategy.

• The cosine components of Tb appear to be more important in the first two frequencies, the

sine component appears more important in the third frequency.

To complement these parameter sensitivities, Figure 6.7 displays the singular vectors, uk,

k = 1, 2, corresponding to the leading parameter perturbations xk, k = 1, 2. The top left and

top right panels of Figure 6.7 show the first singular vector on the left and right boundaries,

respectively; the bottom left and bottom right panels are the second singular vector on the left

and right boundaries, respectively. The singular vectors u1 and u2 may be interpreted as the

change in the control strategy if the parameters are perturbed according to the singular vectors

x1 and x2. Observe that the control strategy will change more near the bottom of the domain,

an unsurprising result since the greatest sensitivity is in the bottom boundary condition.

The computation was performed using 20 compute nodes, each containing 16 processors.

By taking 20 parameter samples and 16 vectors in the randomized eigenvalue solver, the

embarrassingly parallel loop in the eigenvalue solver distributed the computation over all 320

processors thus reducing the overall wall clock time to approximately one matrix vector product
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Figure 6.7 First two singular vectors uk, k = 1, 2, of D, i.e. Dxk = σkuk. The top (bottom) row
shows the first (second) singular vector on the left and right boundaries, respectively. Each curve
corresponds to a different parameter sample.
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in Line 2 and one matrix vector product in Line 4 of Algorithm 6. Since the KKT solve (6.6)

dominates the computational cost, this yields that the total wall clock time for computing 20

local sensitivities is approximately equal to 4 KKT solves.

6.10 Conclusion

In this chapter the work of [11] has been extended to facilitate GSA for large scale PDE-

constrained optimization problems. By coupling a C++ implementation and randomized eigen-

value solver, a scalable software infrastructure has been developed to determine the sensitivity of

the optimal control solution to changes in uncertain parameters. The framework is able to exploit

low dimensional structure which is commonly found in high dimensional parameter spaces,

and is scalable in both the complexity of the parameter space and the underlying PDE itself.

Finding this low dimensional structure has many useful applications. For instance, performing

uncertainty quantification and robust optimization (the ultimate goal) are challenging in high

dimensions. Reducing the number of parameters may enable experimental and computation

analysis which would otherwise be infeasible in the high dimensional parameter space. The

sensitivities may also direct model development by identifying which model parameters (and

hence corresponding physical effects) exhibit the greatest influence on the control strategy.

Computing these sensitivities requires solving the original optimization problem with fixed

parameters, and multiple large linear system solves thereafter. The randomized eigenvalue solver

allows the for loop over linear system solves to be parallelized thus reducing the wall clock time

to approximately four large linear system solves. The primary limitation of the method is that

the sensitivities are local in parameter space and hence need to be evaluated at several different

parameter samples. Challenges in high dimensional sampling prohibit a complete exploration of

parameter space; however, as observed in the numerical results, local sensitivities may be taken

at a modest number of sample points and inferences may be drawn if the results do not change

significantly between samples. Theoretical development is needed to aid in determining when

sparse sampling is sufficient. A possible extension of this work is to perform adaptive sampling

in the parameter space and/or utilize a multi-fidelity approach; this is made possible by the

efficiency of the local sensitivity computation.

The framework was demonstrated on a steady state nonlinear multi-physics PDE in two

spatial dimensions. Since the implementation is matrix free and parallelizable, it may be extended

to more complex problems such as having three spatial dimensions, time dependence, and/or

multiscale phenomena. The ability to evaluate the gradient and apply the Hessian from the

original optimization problem is required; hence, if the optimization problem is computationally

tractable then the sensitivity analysis will be as well. The software infrastructure is amenable to

these extensions because of the underlying Trillinos constructs.
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CHAPTER

7

CONCLUSION

This chapter highlights other extensions of GSA and questions which arise in a similar manner to

those presented in this thesis. Existing work by other authors is highlighted and open questions

are discussed.

A scalar quantity of interest was assumed in Chapter 1. In most applications, there may

be multiple quantities of interest, spatial dependent quantities of interest, or time dependent

quantities of interest; [30, 31, 82, 83, 119] address some of these extensions.

In the classical framework of Chapter 1, the model inputs are assumed to be a vector of

parameters in Rp. A natural extension is allow functional inputs which may correspond to

spatially dependent parameters, for instance. One approach is to represent the functional input

with its Karhunen Loeve expansion and truncate so that the function is parameterized by a

finite number of parameters. The works of [58, 83] offer other possible extensions.

The assumption of statistically independent input variables has been critical for much of the

theoretical developments in GSA. Chapter 2 provides a step toward developing a more robust

theory with dependent variables for the Sobol’ indices. Results such as Theorem 1 facilitate better

understanding of how various GSA methods relate to one another. However, Theorem 1, along

with other similar results [90], depend on the assumption of independence. Inequalities relating

the different GSA methods with dependent variables are needed to better understand how to

use and interpret them. Theoretical properties of derivative-based approaches are particularly

interesting because of the computational efficiency they may afford when gradients are computed
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through an adjoint equation.

In many cases, such as in Chapter 6, computational cost prohibits drawing enough samples to

accurately estimate global sensitivity indices. In [97], the authors seek to address this challenge

using a multi-fidelity approach. There is significant opportunity to utilize multi-fidelity methods

for GSA when model evaluations are computationally expensive. Screening through sparse

sampling is another area of exploration for problems with computationally costly models. This

approach is adopted in Chapter 6. Additional research is needed to better understand how to

sample and make inferences with a relatively small number of local sensitivities. Multi-fidelity

approaches may be beneficial for designing sampling strategies in this case.

One of the most common approaches to GSA with computationally expensive models is

computing the Sobol’ indices of a surrogate model. There are a plurality of open questions

concerning how to construct surrogate models for the purpose of GSA, and how error in the

surrogate model propagates through the computation of sensitivity indices. The work of [61] is a

first step toward answering these questions. One possible extension of the work in this thesis is

applying the framework of Chapter 3 to uncertainties in the model rather than the PDF. This

would provide a measure of the robustness of the Sobol’ indices with respect to the surrogate

model, giving a heuristic to measure how close the Sobol’ indices of the surrogate model may be

to the Sobol’ indices of the true model.
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[15] Büskens, C. & Griesse, R. “Parametric sensitivity analysis of perturbed PDE optimal
control problems with state and control constraints”. Journal of Optimization Theory
and Applications 131.1 (2006), pp. 17–35.

[16] Chastaing, G., Gamboa, F. & Prieur, C. “Generalized Hoeffding-Sobol’ decomposition for
dependent variables-Application to sensitivity analysis”. Electronic Journal of Statistics
(2012).

[17] Chastaing, G., Prieur, C. & Gamboa, F. “Generalized Sobol’ sensitivity indices for depen-
dent variables: numerical methods”. Journal of Statistical Computation and Simulation
(2014), pp. 1–28.

[18] Chick, S. E. “Input distribution selection for simulation experiments: Accounting for
input uncertainty”. Operations Research 49.5 (2001), pp. 744–758.

[19] Constantine, P. Active Subspaces: Emerging ideas for dimension reduction in parameter
studies. SIAM, 2015.

[20] Constantine, P. G. & Diaz, P. “Global sensitivity metrics from active subspaces”. Relia-
bility Engineering & System Safety 162 (2017), pp. 1–13.

[21] Cowles, M. K. & Carlin, B. P. “Markov Chain Monte Carlo convergence diagnostics: A
comparative review”. Journal of the American Statistical Association 91.434 (1996).

[22] Crestaux, T., Maitre, O. L. & Martinez, J.-M. “Polynomial chaos expansion for sensitivity
analysis”. Reliability Engineering & System Safety 94.7 (2009). Special Issue on Sensitivity
Analysis, pp. 1161 –1172.

[23] Da Veiga, S. “Global sensitivity analysis with dependence measures”. Journal of Statistical
Computation and Simulation 85 (2015).

[24] Degasperi, A. & Gilmore, S. “Sensitivity analysis of stochastic models of bistable bio-
chemical reactions”. Formal Methods for Computational Systems Biology. Springer, 2008,
pp. 1–20.

[25] Durrett, R. Probability: Theory and examples. 4th ed. Cambridge University Press, 2010.

[26] El Samad, H., Khammash, M., Petzold, L. & Gillespie, D. “Stochastic modelling of
gene regulatory networks”. International Journal of Robust and Nonlinear Control 15.15
(2005), pp. 691–711.

110



[27] Fassbender, H. & Kressner, D. “Structured eigenvalue problems”. GAMM-Mitteilungen
29.2 (2006), pp. 297–318.

[28] Friedman, J. “Multivariate adaptive regression splines”. Ann. Stat. 19 (1991), pp. 1–67.

[29] Friedman, J. Fast MARS. Tech. rep. 110. Laboratory for Computational Statistics,
Department of Statistics, Stanford University, 1993.

[30] Gamboa, F., Janon, A., Klein, T. & Lagnoux, A. “Sensitivity analysis for multidimensional
and functional outputs”. Electronic Journal of Statistics 8 (2014), pp. 575–603.

[31] Gamboa, F., Klein, T. & Lagnoux, A. “Sensitivity analysis based on Cramér–von Mises
distance”. SIAM/ASA Journal on Uncertainty Quantification 6.2 (2018), pp. 522–548.

[32] Gao, L., Bryan, B. A., Nolan, M., Connor, J. D., Song, X. & Zhao, G. “Robust global sen-
sitivity analysis under deep uncertainty via scenario analysis”. Environmental Modelling
& Software Software 76 (2016), pp. 154–166.

[33] Geyer, C. J. “Importance sampling, simulated tempering, and umbrella sampling”.
Chapman and Hall/CRC, 2011. Chap. 11, pp. 295–312.

[34] Geyer, C. J. “Introduction to Markov Chain Monte Carlo”. Chapman and Hall/CRC,
2011. Chap. 1, pp. 3–48.

[35] Geyer, C. J. & Thompson, E. A. “Annealing Markov Chain Monte Carlo with applications
to ancestral inference”. Journal of the American Statistical Association 90.431 (1995),
pp. 909–920.

[36] Gillespie, D. “A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions”. J. Comput. Phys. 22 (1976), pp. 403–434.

[37] Gillespie, D. “Exact stochastic simulation of coupled chemical reactions”. J. Phys. Chem.
81 (1977), pp. 2340–2361.

[38] Gneiting, T., Stanberry, L. I., Grimit, E. P., Held, L. & Johnson, N. A. “Assessing prob-
abilistic forecasts of multivariate quantities, with an application to ensemble predictions
of surface winds”. TEST 17.2 (2008), pp. 211–235.

[39] Griesse, R. & Volkwein, S. “Parametric sensitivity analysis for optimal boundary control
of a 3D reaction-difusion system”. Nonconvex Optimization and its Applications. Ed. by
Pillo, G. D. & Roma, M. Vol. 83. Springer, Berlin, 2006.

[40] Griesse, R. “Parametric sensitivity analysis in optimal control of a reaction-diffusion
system – part II: practical methods and examples”. Optimization Methods and Software
19.2 (2004), pp. 217–242.

111



[41] Griesse, R. “Parametric sensitivity analysis in optimal control of a reaction diffusion
System. I. Solution differentiability”. Numerical Functional Analysis and Optimization
25.1-2 (2004), pp. 93–117.

[42] Griesse, R. Stability and sensitivity analysis in optimal control of partial differential
equations. 2007.

[43] Griesse, R. & Vexler, B. “Numerical sensitivity analysis for the quantity of interest in
PDE-constrained optimization”. SIAM Journal on Scientific Computing 29.1 (2007),
pp. 22–48.

[44] Griesse, R. & Walther, A. “Parametric sensitivities for optimal control problems using
automatic differentiation”. Optimal Control Applications and Methods 24 (2003), pp. 297–
314.

[45] Groena, E. & Heijungs, R. “Ignoring correlation in uncertainty and sensitivity analysis
in life cycle assessment: what is the risk?” Environmental Impact Assessment Review 62
(2017), pp. 98–109.

[46] Gunawan, R., Cao, Y., Petzold, L. & Doyle III, F. “Sensitivity analysis of discrete
stochastic systems”. Biophys. J. 88 (2005), pp. 2530–2540.

[47] Haario, H., Laine, M., Mira, A. & Saksman, E. “DRAM: Efficient adaptive MCMC”.
Statistics and Computing 16 (2006), pp. 339–354.

[48] Halko, N., Martinsson, P. G. & Tropp, J. A. “Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions”. SIAM
Review 53.2 (2011), pp. 217–288.

[49] Hall, J. “Uncertainty-based sensitivity indices for imprecise probability distributions”.
Reliability Engineering and System Safety 91 (2006), pp. 1443–1451.

[50] Hart, J., Saunders, C., Novak, V. & Gremaud, P. “Transcranial doppler-based surrogates
for cerebral blood flow: A statistical study”. PLoS ONE 11.11 (2016).

[51] Hart, J., Alexanderian, A. & Gremaud, P. “Efficient computation of Sobol’ indices for
stochastic models”. SIAM J. Sci. Comput. 39.4 (2017), A1514–A1530.

[52] Hart, J., Bessac, J. & Constantinescu, E. “Global sensitivity analysis for statistical model
parameters”. SIAM/ASA J. Uncertain. Quantif. (2018).

[53] Hart, J. & Gremaud, P. “An approximation theoretic perspective of Sobol’ indices with
dependent variables”. International Journal for Uncertainty Quantification 8.6 (2018),
pp. 483–493.

112



[54] Heroux, M., Bartlett, R., Hoekstra, V. H. R., Hu, J., Kolda, T., Lehoucq, R., Long, K.,
Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro, R., Willenbring, J. &
Alan Williams ”, i.S.N. L. An overview of Trilinos. Tech. rep. SAND2003-2927. 2003.

[55] Hooker, G. “Generalized functional ANOVA diagnostics for high- dimensional functions
of dependent variables”. Journal of Computational and Graphical Statistics 16 (2007),
pp. 709–732.

[56] Hu, Z., Cao, J. & Hong, L. J. “Robust simulation of global warming policies using the
DICE model”. Management Science 58.12 (2012), pp. 2190–2206.
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