
ABSTRACT

NOORMAN, MARCELLA JO. Analysis of Fluid Flow Models with Biological Applications. (Under the
direction of H.T. Banks and Lorena Bociu).

Mathematical models are a valuable tool to researchers, particularly in problems for which

noninvasive techniques for experimentation are not currently available or are extremely costly. Such

circumstances are common in biological problems and, in particular, in the study of human diseases.

While mathematical modeling cannot replace experimentation, it does give us the ability to test

hypotheses and study the dynamics and relationships between potentially crucial components in

silico rather than in vivo or in vitro. The main advantages of studying such problems mathematically

is the relatively low cost of computation along with the speed at which results can be obtained

and used to inform further experimentation. Here, we look specifically at two different problems

with applications in biology and medicine. First, we study a poro-visco-elastic model that can be

applied to optical perfusion which plays a role in glaucoma. Second, we look at models of the liver

microstructure that have been built specifically to study non-alcoholic fatty liver disease.

Poro-elastic and poro-visco-elastic models describe fluid flow through porous, deformable

media. They are relevant in many applications in bioengineering and medicine, such as tissue

perfusion and fluid flow inside cartilages and bones. In particular, we are interested in the application

of these models specifically to optical perfusion and its relation to glaucoma, as well as confined

compression tests for biological tissues. In both these applications, and many other biological

applications, pressure loads on the tissue (represented in the model through boundary traction)

play an extremely important role. The inclusion or absence of structural viscosity has also been

seen to be a major determinant in the behavior of solutions to poro-elastic and poro-visco-elastic

models [39]. The amount of structural viscosity included in the solid component plays a relevant

role in many biological and medical applications as well as structural viscosity of biological tissues

is known to decrease with age and disease. We investigate the effect of these pressure loads and

structural viscosity through a sensitivity analysis of the system with respect to the boundary traction

and compare the results obtained in the purely elastic case versus the visco-elastic case. We also

consider sensitivity with respect to boundary flux conditions, however the results are much less

consistent than those for the sensitivity with respect to boundary traction. Ultimately, this analysis

will direct and inform the development of relevant control and optimization problems for the

given poro-visco-elastic model which could be used to help develop novel strategies to improve

experimental and clinical approaches in bioengineering and medicine.

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and

can lead to cirrhosis and liver cancer. Precipitated by the build up of extra fat in the liver not caused

by alcohol, it is still not understood why steatosis occurs where it does in the liver microstructure in



NAFLD. It is likely, however, that the location of steatosis is due, at least in part, to metabolic zonation

(heterogeneity among liver cells in function and enzyme expression). Recently, there has been an

influx of computational and mathematical models in order to investigate the relationship between

metabolic zonation and steatosis in NAFLD. Of interest among these models are “compartments-

in-series” models. These compartmental models include the spatial distribution of metabolite

concentrations via series of compartments that are connected through some representation of

blood flow. Here, we analyze one such model, looking at how the number of compartments as well

as inclusion of dispersion in the flow affect simulation results.
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∑10

i=0φi when δ= 1 (left) and δ= 0 (right). . . . . . . . . . . . 45
Figure 1.17 Sensitivity functions of fluid pressure p with respect to boundary sourceψ3h

in the directionφ0 when δ= 1 (left) and δ= 0 (right). . . . . . . . . . . . . . . . . . . 46
Figure 1.18 Sensitivity functions of fluid pressure p with respect to boundary sourceψ3h

in the directionφ3 when δ= 1 (left) and δ= 0 (right). . . . . . . . . . . . . . . . . . . 46

ix



Figure 1.19 Sensitivity functions of fluid pressure p with respect to boundary stressψ3h

in the direction ψ̄=
∑10

i=0φi when δ= 1 (left) and δ= 0 (right). . . . . . . . . . . . 47
Figure 1.20 Sensitivity functions of discharge velocity v with respect to boundary stress

g3h in the directionφ0 when δ= 1 (left) and δ= 0 (right). . . . . . . . . . . . . . . . 47
Figure 1.21 Sensitivity functions of discharge velocity v with respect to boundary stress

g3h in the directionφ3 when δ= 1 (left) and δ= 0 (right). . . . . . . . . . . . . . . . 48
Figure 1.22 Sensitivity functions of discharge velocity v with respect to boundary stress

g3h in the direction ḡ =
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CHAPTER

1

SENSITIVITY OF PORO-ELASTIC AND

PORO-VISCO-ELASTIC MODELS WITH

APPLICATIONS IN OPTICAL AND TISSUE

PERFUSION

Poro-elastic and poro-visco-elastic models describe fluid flow through porous, deformable media.

They are relevant in many applications in bioengineering and medicine, such as tissue perfusion

and fluid flow inside cartilages and bones. In particular, we are interested in the application of

these models specifically to optical perfusion and its relation to glaucoma, as well as confined

compression tests for biological tissues. In both these applications, and many other biological

applications, pressure loads on the tissue (represented in the model through boundary traction)

play an extremely important role. The inclusion or absence of structural viscosity has also been

seen to be a major determinant in the behavior of solutions to poro-elastic and poro-visco-elastic

models [39]. The amount of structural viscosity included in the solid component plays a relevant

role in many biological and medical applications as well as structural viscosity of biological tissues

is known to decrease with age and disease. We investigate the effect of these pressure loads and

structural viscosity through a sensitivity analysis of the system with respect to the boundary traction
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and compare the results obtained in the purely elastic case versus the visco-elastic case. We also

consider sensitivity with respect to boundary flux conditions, however the results are much less

consistent than those for the sensitivity with respect to boundary traction. Ultimately, this analysis

will direct and inform the development of relevant control and optimization problems for the

given poro-visco-elastic model which could be used to help develop novel strategies to improve

experimental and clinical approaches in bioengineering and medicine.

1.1 Optical Perfusion and Glaucoma

Glaucoma is a heterogeneous group of eye diseases that cause vision loss and blindness. Approxi-

mately 64.3 million people between the ages of 40 and 80 were affected by glaucoma in 2013. That

number is expected to rise to 76 million in 2020 and 112 million by 2040 [98]. Glaucoma is the leading

cause of irreversible blindness worldwide [98]. Unfortunately, the biological basis of glaucoma is

still poorly understood and the factors contributing to its progression have not been fully character-

ized [190]. Further, the diseases that fall under the category of glaucoma can have different causes.

However, they are all characterized by cupping of the optic disc (see Fig. 1.1). This cupping occurs

as a result of the degeneration of retinal ganglion cells and is a symptom unique to the glaucomas.

Figure 1.1 A normal optic cup (left) vs. a glaucomatous optic cup (right). The arrow from the bottom of
the figures indicates the visible portion of the optic nerve head which is the circular structure through
which the blood vessels pass. The arrow inside the visible portion of the optic nerve head indicates the
optic cup. Figure from WikEM: http://medbox.iiab.me/modules/en-wikem/wiki/File_Glaucoma-cupping-
1024x414.html

The two main types of glaucoma are open-angle and angle-closure glaucoma. In angle-closure
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glaucoma, the anterior chamber angle is blocked by the peripheral iris so that the aqueous humor

(the clear fluid that supplies nutrients to and removes waste from the clear structures in the anterior

eye) cannot access its main outflow system. This causes the intraocular pressure (IOP) to increase

which can cause damage to the optic nerve. In open-angle glaucoma, the anterior chamber angle

remain unblocked, however there is still typically an increased resistance of aqueous humor outflow

again increasing the IOP. There are cases in open-angle glaucoma when optic nerve damage occurs

despite having normal IOP levels (10-21mmHg). In fact, surveys have shown that 20-52% of patients

with glaucoma have IOP within the normal range [114]. This is called normal pressure or low tension

glaucoma and can occur despite normal or only slightly increased aqueous outflow resistance.

Glaucoma is largely asymptomatic until late stages of the disease, and as such its presence often

goes unnoticed by patients until visual problems arise. Once diagnosed, treatment is focused on

preventing further progression of the disease as the glaucomas are irreversible. The only risk factor

of glaucoma that can currently be treated is intraocular pressure (IOP) levels. Upon diagnosis, the

practitioner will determine a “target” IOP level, typically 30-50% lower than the patients baseline IOP,

and prescribe any number of methods in an attempt to reach this target, including drug treatment,

laser therapy, or surgery. Reducing IOP is currently the only treatment of proven benefit and does

stop or significantly slow down the progression of glaucoma in most patients. There is, however,

large variation in effectiveness between individuals with some having no change in the rate of

disease progression.

Changes in the optic nerve head generally precede visual field loss and a significant amount of

optic nerve and nerve fiber damage can occur before any changes occur in the visual field. In order

to detect glaucoma, then, practitioners examine the patients optic disc and retinal nerve fibre layer.

Indicators of glaucoma are the loss or degradation of the neuroretinal rim (which causes the optic

cup to enlarge and deepen), thinning of the retinal nerve fiber layer, and optic disc hemorrhages.

Note that, though elevated IOP is considered an important risk factor for glaucoma, it is not involved

in diagnosis.

The hemodynamics in the optic nerve head may also play a role in glaucoma. Hemorrhages at

the optic nerve head are fairly common and considered a risk factor of glaucoma [114]. Thus, optical

perfusion and impaired blood flow in the central retinal artery and optic nerve head may cause

damage to the retinal ganglion cells through a decrease in oxygen and nutrients [54].

1.1.1 Basic biology

The visible portion of the optic nerve is the superficial nerve fiber layer. Below this is the prelaminar

layer which lines up with the choroid (the pigmented vascular layer of the eyeball between the

retina and the sclera). These top two layers are comprised mostly of axons (about 95%) along with

some astrocytes (about 5%). Below the prelaminar is the laminar region which includes the lamina
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Figure 1.2 Anatomy and vascular supply of the optic nerve head as presented in [149].

cribrosa, a porous tissue through which the retinal ganglion cell axons and blood vessels pass

through the optic nerve head. The lamina cribrosa is believed to be primarily where the damage

occurs that causes the degeneration of retinal ganglion cells in glaucoma. Below the laminar region

is the retrolaminar region where the nerve fibers (that is, the retinal ganglion cell axons) begin to

take on myelination which causes the optic nerve to double in diameter.

There are 1.2 million retinal ganglion cell axons in the optic nerve. Retinal ganglion cells are

neurons located in the inner retina that receive visual information from photoreceptors. They have

long axons that go through the optic nerve and extend into the brain. It is the degeneration of these

nerves that causes the cupping seen in the optic disc. When this cupping occurs, we also may see

thinning of the retinal nerve fiber layer and ganglion cell layer as well as posterior bowing of the

lamina cribrosa.

The blood supply for the optic nerve head comes from the ophthalmic artery and reaches the

various regions of the optic nerve head through the central retinal artery and the posterior ciliary

arteries. Blood in the optic nerve head drains almost entirely through the central retinal vein. Both

the central retinal artery and the central retinal vein pass through the lamina cribrosa in order to

reach the upper regions of the optic nerve head. The central retinal artery supplies the surface

nerve fiber layer and the retrolaminar region with blood. The posterior ciliary branches into short

posterior ciliary arteries which enter the sclera around the optic nerve and supply the laminar and

prelaminar regions with blood. Note that, though the central retinal artery goes through the lamina

cribrosa, its blood supply comes entirely from the posterior ciliary branches, not the central retinal
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artery.

1.1.2 Intraocular pressure (IOP)

IOP is the fluid pressure (specifically that of the aqueous humor) inside the eye. Aqueous humor

is the clear fluid that fills the space in the front of the eyeball between the lens and the cornea. Its

purpose is to supply nutrients to and remove waste from the cornea and lens as these structures

don’t have blood vessels going to them. The production of aqueous humor is, on average, 2µl/min,

though the rate of production decreases with age, during sleep, and as a result of inflammation.

The outflow of aqueous humor is primarily pressure dependent and occurs through the trabecular

meshwork into the episcleral venous system, though there is also some outflow that is independent

of pressure. IOP is determined by the balance between aqueous production and outflow and can be

given by

Po =
F

C
+Pv , (1.1)

where Po is IOP, Pv is the episcleral venous pressure, F is the rate of aqueous humor production,

and C is the facility of aqueous humor outflow.

Mean IOP is normally 15.5mmHg and 10− 21mmHg is considered a “normal” range though

some people naturally have higher than normal IOP levels without developing glaucoma. There is

also considerable fluctuation of IOP throughout the day, with more fluctuation seen in glaucoma

patients than in healthy patients [119]. The importance of these fluctuations in glaucoma progression

is a debated topic, with studies on the role of IOP fluctuation as an independent risk factor of

glaucoma producing controversial results [12, 73, 119, 178]. However, some have suggested that

these fluctuations could explain normal-pressure glaucoma and glaucomas that are not receptive to

treatment [131]. Many have suggested that 24 hour monitoring of IOP is needed to better understand

the role of IOP in glaucoma and the importance of IOP fluctuations [116,132,152,178] and a number

of studies with 24 hour IOP monitoring confirms this [3, 29, 93, 122]. While devices for monitoring

IOP continuously and semi-continuously exist and are continuing to be further developed, they are

rather costly and are not typically feasible in routine practice [13,152,178]. Without accessibility to 24

hour IOP monitoring devices, other strategies have been suggested in order to attempt to determine

the range of fluctuation in IOP over 24 hours. Such tactics include taking IOP measurements when

the patient is in different body positions (in particular, in a supine position) [73, 100, 137].

Many different activities are known to elevate IOP, including playing loud, high pitched notes

on wind and brass instruments, certain positions in yoga, weight lifting, wearing a tight necktie,

rubbing ones eyes, and sleeping [30, 86, 97, 131, 187]. The amount of IOP elevation varies depending

upon activity, being only 2−4mmHg when wearing a tight necktie, up to elevations of 300mmHg

and 400mmHg from eye compression like rubbing or massaging the eyes [131]. IOP elevation has

even been found to occur in situations of psychological stress [40, 185].
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1.1.3 Lamina cribrosa

The lamina cribrosa is believed to be the primary location of injury in glaucoma. A thin, collagenous

tissue at the base of the optic nerve head that is believed to be an extension of the sclera, the lamina

is covered in fenestrations of varying sizes that allow the optic nerve fibers to exit the eye. Mesh-

like webs of astrocyte processes extend across each fenestration, while the fibrous trabeculae are

composed of interlacing skeins of fine collagen fibers [70]. The lamina cribrosa also has a single

canal in the center through which the central retinal artery and vein pass.

Providing structural and functional support to the retinal ganglion cell axons, the lamina cribrosa

also acts as a barrier between the high pressure intraocular space and the low pressure retrolaminar

space thus causing a pressure gradient across the lamina. The pressure difference between the IOP

and retrolaminar tissue pressure (which is strongly correlated with cerebrospinal fluid pressure [136])

can cause stress and strain on the lamina cribrosa. When this pressure difference becomes too

large, compression, deformation, and remodelling of the lamina cribrosa can occur [98, 190]. It is

conjectured that these structural changes in the lamina could cause decreased rates of optic nerve

axonal transport and mechanical damage to the nerve fibers [54, 98, 190].

This remodeling of the lamina cribrosa in glaucomatous eyes can result in posterior displacement

[54, 99] from loss of collagen fibers in the top-centre of the lamina and recruitment of new collagen

at the lower surface, resulting in cupping [50]. Changes in collagen in the optic nerve head has been

suggested as a possible cause of glaucoma [91]. The content and composition of collagen molecules

in the lamina cribrosa have been observed to be different in glaucoma and glaucoma suspected

eyes in comparison to normal eyes [180]. Variation of collagen structure may affect the flexibility

and resilience required by the lamina cribrosa in order to support the optic nerve fibers [91, 164].

Further, changes in tissue viscoelasticity have been found to be associated with glaucoma [68].

Studies have also found the lamina cribrosa to be significantly thinner in glaucoma patients

in comparison to healthy patients [99]. A thin lamina cribrosa can’t offer as much biomechanical

support to the optic nerve fibers [91]. Also, the thinner the lamina cribrosa, the steeper the pres-

sure gradient across it which may increase the lamina cribrosas susceptibility to glaucomatous

optic neuropathy [91, 99]. If the steepness of the pressure gradient is the parameter of interest in

susceptibility to glaucomatous damage, rather than the level of IOP, this would suggest that normal-

pressure glaucoma may be glaucoma in patients with an abnormally thin lamina cribrosa [99].

Another explanation for normal-pressure glaucoma would be abnormally low retrolaminar tissue

pressure [99, 190].
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1.2 Poro-Elastic and Poro-Visco-Elastic Models

Poro-elastic models describe fluid flow through porous, deformable media. The mathematical theory

for these models began in 1925 with Terzaghi’s one-dimensional analysis [181]. Terzaghi, known as

the father of soil mechanics, used this model to describe soil consolidation in one dimension with

remarkable success. In 1941, Biot generalized the mathematical theory of consolidation to three

dimensions, laying out the mathematical foundation for coupling deformation to flow in porous

media and hence starting the mathematical development of poro-elasticity [36]. Currently, there are

many mathematical results in the literature regarding their well-posedness [47, 141, 171, 176, 196]

and associated numerical simulations [57, 146–148].

Terzaghi and Biot were interested in problems concerning soil consolidation in which the

soil plays the role of the porous media. Since then, media such as clay and rock have also been

modeled via poro-elasticity with many applications in problems in geophysics and petroleum

engineering, along with soil consolidation [33, 41, 62, 69, 79, 92, 113, 118, 123, 154, 163, 167, 188, 189].

Other examples of poro-elastic structures include biological tissues, such as cartilage, bone, and

vascularized tissues. As such, poro-elastic models have also found a variety of applications in

bioengineering and medicine [50, 53, 58, 96, 117, 138, 162, 172, 179]. Specifically of interest to us

has been their use in the study of tissue perfusion in the optic nerve head with a focus on the

lamina cribrosa [50]. Unlike materials like soil and rock, most biological tissue exhibit both elastic

and visco-elastic behavior resulting from the combined action of various components, including

elastin, collagen, and extracellular matrix [186]. For this reason, one may want to account for the

structural viscosity of the material as well, giving rise to a poro-visco-elastic system. As such, poro-

visco-elastic models have also been applied to many problems in bioengineering and medicine

[65, 109, 127, 153, 168, 177, 191, 194].

For both poro-elastic and poro-visco-elastic models, the equations of linear momentum (for the

fluid-solid mixture) and mass balance (of the fluid) are strongly coupled through the permeability

tensor which describes the ability of fluid to flow within the porous material. In general, permeability

is a nonlinear function of porosity, with the structure of the nonlinearity being dependent on the

geometrical architecture of the pores inside the solid matrix and on the physical properties of the

fluid. Biological tissues have a mass density similar to that of water, so the assumption is made

that the solid and fluid are incompressible components in the mixture. This leads to a simplified

constitutive equation for fluid content, in comparison to Biot’s model, resulting in it being equal

to volumetric solid strain. Through the dependence of porosity on fluid content, the permeability

becomes, implicitly, a nonlinear function of the volumetric solid strain. Due to their biological

and medical applications, the fluid-solid mixture systems are considered on bounded domains,

with appropriate, inhomogeneous, mixed boundary conditions for both the solid displacement

and the fluid pressure. In most of these applications, the boundary conditions are the primary
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drivers of the dynamics of the system. Their influence over and ability to control the solution is an

important open question with beneficial implications in the development of novel strategies to

improve experimental and clinical approaches in bio-engineering and medicine.

In [39], a theoretical and numerical analysis on nonlinearly coupled poro-elastic and poro-visco-

elastic models with mixed boundary conditions was done. The focus of the analysis was on the role

of visco-elasticity in the fluid-solid mixture and the regularity of the boundary data. An interesting

interplay was found between the time regularity of the boundary traction and the presence or lack of

structural viscosity (as well as the time regularity of the source of linear momentum) in guaranteeing

boundedness of the solution of the coupled system. Specifically, in the case of purely poro-elastic

models (i.e., no structural viscosity included), the boundary traction and linear momentum source

needed to be H 1 in time in order to obtain a bounded solution (both solid displacement and

fluid pressure) that is L 2 in time and H 1 in space. In contrast, the boundary traction and linear

momentum only needed to be L 2 in time in order to get a bounded solution to the poro-visco-elastic

system which is, for solid displacement, H 1 in space and time, and for fluid pressure, L 2 in time and

H 1 in space. In addition, numerical simulations performed on a one dimensional version of the

model (which retain the nonlinearity of the coupling) hinted at blow up in the fluid energy (which

depends on the discharge velocity) as the boundary traction and the source of linear momentum

lost H 1 smoothness in time when structural viscosity is not present in the system. These results can

have tremendous implications in biological applications where sources present in the system can,

physiologically, have sudden changes in time. For example, IOP is known to physiologically change

suddenly. This potential blow up in the discharge velocity then indicates that physiological changes

in sources can induce pathological changes in the dynamics of the coupling if visco-elasticity is not

present in the structure. For the lamina cribrosa, this implies that pysiological changes in the IOP

can induce pathological changes in the hemodynamics of the lamina if the viscoelasticity provided

by the collagen fibers is not intact.

The work presented here extends the analysis done in [39]. Our goal is to further investigate the

interplay between boundary conditions and structural viscosity through a numerical sensitivity

analysis on the poro-elastic and poro-visco-elastic models introduced in [39]with respect to the

imposed boundary data. Though the theoretical analysis in [39] does not indicate any differences

in regularity requirements on the boundary flux condition, we still consider the sensitivities of

the solution to this condition and compare these sensitivities to senstivities with respect to the

boundary traction. Results obtained in the purely elastic case are compared to results obtained

in the visco-elastic case and we also look at how varying the amount of structural viscosity in the

system affects the results. Sensitivity analysis can provide valuable information on how the fluid-

mechanical responses are affected by changes in boundary data. It can also reveal which parameters

are most important in the system and can effectively be used as controls. This work is intended as a

precursor to relevant control and optimization problems for the poro-visco-elastic models which
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can inform novel strategies to improve experimental and clinical approaches in bioengineering and

medicine.

1.2.1 Model Derivation

We will describe here the derivation of the poro-visco-elastic model in question. We note that the

theoretical work on well-posedness in [39] was done in the general three dimensions, however

for computational sake, we consider only the one dimensional model. For these reasons, we will

first present the model in three dimensions before briefly describing its one dimensional analog.

Throughout this section, symbols which are not bold denote scalar quantities or functions.

1.2.1.1 Three Dimensional Model

Let Ω⊂R3 be an open domain occupied by the fluid-solid mixture with boundary Γ = ∂ Ω. Taking x

to be the position vector of each point in the body with respect to the Cartesian reference frame, let

V (x, t )⊂Ω be an arbitrary representative elementary volume (that is, the smallest volume one can

take a measurement of that will yield a value representative of the whole) centered at x at time t

and Vf (x, t )⊂ V (x, t ) be the portion of the elementary volume occupied by the fluid component.

Then, assuming the solid is fully saturated by the fluid, the porosity φ is given by the volumetric

fraction of the fluid component,

φ(x, t ) =
Vf (x, t )

V (x, t )
. (1.2)

We can then define the fluid content ζ to be

ζ=φ(x, t )−φ0(x), (1.3)

whereφ0(x) is the baseline porosity. Under the assumptions of negligible inertia, small deformations,

and incompressible mixture components [9, 77, 115, 120, 150], the following balance equations

describe the motion of the poro-visco-elastic material:

ζt +∇·v= S (x, t ) (1.4)

and

∇·σ+F= 0, (1.5)

where v is the discharge velocity (or Darcy velocity), σ is the total stress tensor of the mixture, S is

the net volumetric fluid production rate, and F is a body force per unit of volume. Note that Eq. 1.4

describes the balance of mass of the fluid component while Eq. 1.5 describes the the balance of

linear momentum for the fluid-solid mixture.
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1.2.1.1.1 Constitutive equations

We complete the balance equations with the following constitutive equations.

Total stress The total stress σ is comprised of both the elastic and the visco-elastic stresses

(σe and σv respectively), which are given by

σe = 2µe ε(u) +λe (∇·u)I (1.6)

and

σv =
∂

∂ t

�

2µvε(u) +λv (∇·u)I
�

, (1.7)

where u is the solid displacement, µe ,λe ,µv ,λv are the Lamé elastic and visco-elastic parameters

(respectively), I is the identity tensor, and ε(u) = 1
2 (∇u+(∇u)T ) is the symmetric part of the gradient.

The total stress is then given by

σ =σe+δσv −p I, (1.8)

where p is the fluid pressure (or Darcy pressure) and δ≥ 0 is a parameter indicating the extent to

which the model includes structural viscosity. Note that, if δ = 0, we are looking at the purely elastic

problem.

Discharge velocity The discharge velocity v is given by Darcy’s law and takes the form

v=−K(φ)∇p , (1.9)

where K is the permeability tensor. We assume the permeability is a function of porosityφ and a

multiple of the identity tensor. That is,

K= k (φ)I, (1.10)

where

k (φ) = kr e f fk (φ). (1.11)

Here, kr e f is a reference value for the permeability of the mixture and fk is a function (often times

nonlinear) that depends upon the geometrical architecture of the pores inside the deformable

matrix and the physical properties of the fluid. In the following analysis, we will consider fk to either

be constant (in which case we take k = kr e f ) or given by the Carman-Kozeny formula for Newtonian

fluid flow through spherical particles [90]:

fk (φ) =
φ3

(1−φ)2
. (1.12)
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Note that the form of fk determines the type of coupling occurring between the balance of mass and

balance of linear momentum equations. That is, if fk is linear, it is a linear coupling, and, similarly, if

fk is nonlinear, it is a nonlinear coupling. An important point of distinction is that a linear coupling

does not necessarily mean the system itself is linear. Only if fk is constant do we get a fully linear

system. Otherwise, the system itself is nonlinear regardless of whether or not the coupling between

the balance equations is.

Fluid content The fluid content, given above by Eq. 1.3, can also be written in the form given

by Biot in his 1941 work [36],

ζ= c0p +α∇·u, (1.13)

where c0 is the constrained specific storage coefficient and α is the Biot-Willis coefficient. However,

from our assumption of incompressibility of the fluid and solid components of the mixture we have

c0 = 0 and α= 1 [62] so that the fluid content becomes

ζ=∇·u. (1.14)

Since fluid content is also defined to be the difference between porosity and a baseline value for

that porosity (see Eq. 1.3), we can now write porosity as a function of dilation∇·u:

φ(∇·u) =∇·u−φ0. (1.15)

Thus, we can consider permeability K to be a function of the solid dilation:

K(φ(∇·u)) =K(∇·u). (1.16)

1.2.1.1.2 Boundary and initial conditions

We finish the model description with the following initial and boundary conditions.

Boundary conditions For the boundary, we take Γ = ΓN ∪ ΓD where ΓD = ΓD ,p ∪ ΓD ,v . Note here

that we do allow ΓN ∩ ΓD to possibly be nonempty [39]. The subscripts N and D denote the portions

of the boundary for which we impose conditions on the stress and displacement, respectively.

The subscripts p and v indicate conditions imposed on the fluid pressure and discharge velocity,

respectively. The boundary conditions then are given by

σn= g, v ·n= 0, on ΓN , (1.17)

u= 0, p = 0, on ΓD ,p , (1.18)

u= 0, v ·n=ψ, on ΓD ,v , (1.19)
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where n is the outward unit normal and g andψ are given functions of space and time that denote

the boundary traction and flux condition, respectively.

Initial conditions The choice for initial condition will depend upon the value of δ. That is, if

δ > 0 we assume

u(x, 0) = u0 (1.20)

in Ω.

If δ= 0, then only the fluid content ζ=∇·u undergoes time differentiation. As a result, we only

need a condition on∇·u. So, we assume

∇·u= d0, (1.21)

where d0 is such that there exists some u0 for which∇·u0 = d0.

1.2.1.1.3 Full system

The entire system together is given by















































∇·σ =−F, in Ω× (0, T ),

ζt +∇·v= S (x, t ), in Ω× (0, T ),

σn= g, v ·n= 0, on ΓN × (0, T ),

u= 0, p = 0, on ΓD ,p × (0, T ),

u= 0, v ·n=ψ, on ΓD ,v × (0, T ),

I C (δ) for t = 0, in Ω,

(1.22)

where I C (δ) is given by Eq. 1.20 when δ > 0 and by Eq. 1.21 when δ= 0.

1.2.1.2 One Dimensional Model

Though the theoretical analysis referenced in Section 1.2.2 and throughout this chapter was done

for the general three dimensional system, the computations are done on a one dimensional version

of the model. Physically, one can interpret the one dimensional poro-visco-elastic model as being a

slice of a porous, deformable media. We here briefly describe that one dimensional system. Unless

otherwise specified, everything here is defined the same as it is in Section 1.2.1.1.

We take the open interval (x0, x f ) to be our spatial domain with boundary {x0, x f } and length
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L = x f − x0. The balance equations take the form

∂ ζ

∂ t
+
∂ v

∂ x
= S (x , t ) (1.23)

and
∂ σ

∂ x
+ F = 0, (1.24)

where S is the fluid production rate and F is the body force. We note that this is the one-dimensional

equivalence to Eq. 1.4 and Eq. 1.5.

1.2.1.2.1 Constitutive equations

The different appearance of the constitutive equations mainly comes from the fact that the spatial

derivative of u now represents two physically different quantities, the strain and the dilation of

the solid. This is due to the fact that, mathematically, the divergence and the gradient of a “one

dimensional vector” are the same.

Total stress In one dimension, the elastic (respectively visco-elastic) stress is merely a multiple

of one spatial derivative (respectively one mixed derivative) of u . That is,

σe = (2µe +λe )
∂ u

∂ x
(1.25)

and

σv = (2µv +λv )
∂ 2u

∂ t ∂ x
. (1.26)

The total stress is then given by

σ=σe +δσv −p . (1.27)

Discharge velocity The discharge velocity is given by

v =−k (φ)
∂ p

∂ x
, (1.28)

where k (φ) = kr e f fk (φ) is the permeability.

Fluid content The fluid content is given by both

ζ=φ(x , t )−φ0(x ) (1.29)
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and

ζ=
∂ u

∂ x
. (1.30)

This gives us that porosity (and thus permeability) are now dependent upon ∂ u
∂ x as well. That is,

φ =
∂ u

∂ x
+φ0 (1.31)

and

k
�

φ

�

∂ u

∂ x

��

= k
�

∂ u

∂ x

�

. (1.32)

1.2.1.2.2 Boundary and initial conditions

Boundary conditions We still allow Γ = ΓD ∪ ΓN and ΓD = ΓD ,p ∪ ΓD ,v . However, we note that in

this case Γ = {x0, x f } so we must allow ΓN ,ΓD ,p ,ΓD ,v to be empty, but not all of them simultaneously.

The boundary conditions are then given by

σn = g , v n = 0, for x ∈ ΓN , t ∈ (0, T ), (1.33)

u = 0, p = 0, for x ∈ ΓD ,p , t ∈ (0, T ), (1.34)

u = 0, v n =ψ, for x ∈ ΓD ,v , t ∈ (0, T ), (1.35)

where n is the outward unit normal. That is, n (x0) =−1 and n (x f ) = 1. In this case, g andψ are given

functions of time that represent the boundary traction and flux condition respectively.

Initial conditions The choice for initial condition again depends upon the value of δ. If δ > 0,

we assume

u (x , 0) = u0(x ) (1.36)

in (x0, x f ), and if δ= 0
∂ u

∂ x
(x , 0) = d0(x ), (1.37)

where d0 is such that there exists some u0 for which ∂ u0
∂ x = d0.
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1.2.1.2.3 Full system

The entire one-dimensional system is given by















































∂ σ
∂ x =−F, in (x0, x f )× (0, T ),
∂ ζ
∂ t +

∂ v
∂ x = S (x , t ), in (x0, x f )× (0, T ),

σn = g , v n = 0, for x ∈ ΓN , t ∈ (0, T ),

u = 0, p = 0, for x ∈ ΓD ,p , t ∈ (0, T ),

u = 0, v n =ψ, for x ∈ ΓD ,v , t ∈ (0, T ),

I C (δ) for t = 0, x ∈ (x0, x f ),

(1.38)

where I C (δ) is given by Eq. 1.36 when δ > 0 and by Eq. 1.37 when δ= 0.

1.2.2 Well-posedness results

The existence of solutions to Eq. 1.22 was studied in [39] along with the derivation of some energy

estimates. Those results are presented here as they support, inform, and add further meaning to our

numerical study. The following notation will be used for the functional framework:

H 1
Γ∗
(Ω) = { f ∈H 1(Ω) : γ[ f ]

�

�

Γ∗
= 0},

where γ[ f ] is the trace map of f from H 1(Ω) to H 1/2(Γ ). Let

V =H 1
ΓD ,p
(Ω), V= (H 1

ΓD
(Ω))3.

For inner products and norms, we will denote

(·, ·) = (·, ·)L 2(Ω), 〈·, ·〉Γ = 〈·, ·〉L 2(Γ ), ‖ · ‖= ‖ · ‖L 2(Ω).

Then, the elastic bilinear form can be given by

a (u, w) = (∇·u,∇·w) + (∇u,∇w) + (∇u, (∇w)T ).

The definition of weak solution to the three dimensional system Eq. 1.22 for both δ > 0 and δ= 0

are given below.

Definition 1.2.1 (Visco-elastic solution) A solution to Eq. 1.22 (with δ > 0) is represented by the

pair of functions u ∈H 1(0, T ; V) and p ∈ L 2(0, T ; V ) such that:
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(a) the following relations are satisfied for any w ∈V, q ∈V , and f ∈C∞((0, T ))

δ

∫ T

0

a (ut , w) f d t +

∫ T

0

a (u,w) f d t −
∫ T

0

(p ,∇·w) f d t =

∫ T

0

〈g, w〉ΓN f d t −
∫ T

0

(F, w) f d t ,

∫ T

0

(k (∇·u)∇p ,∇q ) f d t+

∫ T

0

(∇·ut , q ) f d t =−
∫ T

0

〈ψ, q 〉ΓD ,ν
f d t +

∫ T

0

(S , p ) f d t .

(b) the initial conditions u(x,0) = u0 ∈ V and ∇ ·u(x,0) = d0 ∈ L 2(Ω) are given, and it is required

that∇·u0 = d0 (in the L 2(Ω) sense).

Definition 1.2.2 (Elastic solution) A solution to Eq. 1.22 (with δ = 0) is represented by the pair of

functions u ∈ L 2(0, T ; V) and p ∈ L 2(0, T ; V ) such that:

(a) the following relations are satisfied for any w ∈V, q ∈V , and f ∈C∞0 ((0, T )):

∫ T

0

a (u, w) f d t −
∫ T

0

(p ,∇·w) f d t =

∫ T

0

〈g, w〉ΓN f d t −
∫ T

0

(F, w) f d t ,

∫ T

0

(k (∇·u)∇p ,∇q ) f d t −
∫ T

0

(∇·u, q ) f ′ d t =−
∫ T

0

〈ψ, q 〉ΓD ,ν
f d t +

∫ T

0

(S , p ) f d t .

(b) for every q ∈ V , the term (∇ ·u(t ), q ) uniquely defines an absolutely continuous function on

[0, T ] and the initial condition (∇·u(0), q ) = (d0, q ) is satisfied.

We also have the following definitions for energy and data:

Definition 1.2.3 (Energy and data) Energy functionals for solutions and data are defined as follows

E (u(t ))≡
1

2

�

‖∇ ·u(t )‖2+ ‖∇u‖2+ (∇u,∇uT )
�

,

E (p (t )) =Eu(p (t ))≡ (k (∇·u)∇p ,∇p ),

DATA0

�

�

�

T

0
≡
∫ T

0

�

||g(t )||2L 2(ΓN )
+ ||ψ(t )||2L 2(ΓD ,v )

+ ||S (t )||2L 2(Ω)+ ||F(t )||
2
L 2(Ω)

+ ||gt (t )||2L 2(ΓN )
+ ||Ft (t )||2L 2(Ω)

�

d t + sup
[0,T ]

�

||F(t )||2+ ||g(t )||2L 2(ΓN )

�

,

DATAδ

�

�

�

T

0
≡
∫ T

0

�

||g(t )||2L 2(ΓN )
+ ||ψ(t )||2L 2(ΓD ,v )

+ ||S (t )||2L 2(Ω)+ ||F(t )||
2
L 2(Ω)

�

d t .

Note that, when δ > 0, the notion of time differentiability for the solution is stronger than in the case

δ= 0. As a consequence, time regularity requirements of the data (i.e., DATA∗|T0 ) are significantly

weaker in the case δ > 0 than in the case δ= 0.
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With these definitions in place, we can present the existence results along with the energy

estimates obtained in [39]. We note that these theorems do require some assumptions stated in [39],

however, since proving existence is not the goal here, we will omit them.

Theorem 1.2.1 (Existence of visco-elastic solutions) Consider Eq. 1.22 with δ > 0. Suppose the

assumptions stated in [39] hold, and consider data of the form:

F ∈ L 2
�

0, T ; (L 2(Ω))3
�

, S ∈ L 2(0, T ; L 2(Ω)), (1.39)

g ∈ L 2
�

0, T ; (H 1/2(ΓN ))
3
�

, ψ ∈ L 2(0, T ; L 2(ΓD ,v )). (1.40)

Then, there exists a visco-elastic solution as defined in Definition 1.2.1 satisfying the a priori bound

sup
t ∈[0,T ]

E (u(t ))+

∫ T

0

�

E (p (t ))+E (u(t ))+E (ut )
�

d t

≤C1

�

E (u(0))+
�

1

1+δ

�

D AT Aδ|T0
�

exp
�

C2T

1+δ

�

. (1.41)

Theorem 1.2.2 (Existence of elastic solutions) Consider Eq. 1.22 with δ= 0. Suppose the assump-

tions stated in [39] hold, and consider data of the form:

F ∈H 1
�

0, T ; (L 2(Ω))3
�

, S ∈ L 2(0, T ; L 2(Ω)), (1.42)

g ∈H 1
�

0, T ; (H 1/2(ΓN ))
3
�

, ψ ∈ L 2(0, T ; L 2(ΓD ,v )). (1.43)

Then, there exists an elastic solutions as defined in Definition 1.2.2 satisfying the a priori bound

sup
t ∈[0,T ]

E (u(t ))+

∫ T

0

�

E (p (t )) +E (u(t ))
�

d t ≤C1

�

E (u(0))+ D AT A0|T0
�

e C2T . (1.44)

We note that these theorems require a higher level of time regularity for the body force F and

boundary traction g when δ= 0 as opposed to δ > 0. However, these requirements for the existence

of solution were only shown to be sufficient, not necessary. Thus, from these theorems alone we

do not know if this higher time regularity of the data is actually a requirement for solutions to the

elastic problem to exist. In order to investigate this further, some preliminary numerics were done

in [39] to test how the solution to the elastic system reacts when the boundary traction loses this H 1

smoothness in time. These numerical experiments hinted at fluid energy Ep blow up when g went

from being H 1 in time to L 2 in time. This was seen through the appearance of peaks in the energy

Ep at points where g experienced discontinuities in time. Further, the fluid pressure and discharge

velocity were much less smooth in the elastic case in comparison to the visco-elastic case.
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1.2.3 Discretization

We present here the discretization used in order to solve the system numerically. Following the

discretization in [39], we first discretize in time using the backward Euler (BE) method and then

discretize in space using the dual mixed hybridized finite element method. A Picard iteration is used

to handle the implicit nature of the the BE method due to the nonlinearity of the system as well as

the nonlinear dependence of permeability on the dilation of the solid in the stationary case.

This algorithm was tested in a number of cases for which the analytic solution is known and a

grid refinement study was done. Details on this study can be found in [39]. In the stationary case,

O (h 2) convergence is found for the hybrid and dual variables and a linear convergence rate O (h ) is

found for the primal variables [39] (the different kinds of variables are described in Section 1.2.3.4).

Interestingly, these are optimal convergence rates for second order elliptic problems [39]. In the

time dependent case, however, these convergence rates are lowered to linear for all variables except

the total stress due to the BE method only being first order accurate [39].

1.2.3.1 Elastic Pressure Parameter

Before performing the discretization, we introduce the elastic pressure parameter ℘ which is in-

troduced in order to avoid displacement differentiation in the evaluation of the permeability. This

helps to prevent the degradation of computational accuracy from numerical differentiation. This

parameter also acts as a Lagrange multiplier to enforce material incompressibility which means it

allows one to avoid the occurrence of locking in finite element discretizations when λe →∞ [94].

We define ℘ by the equation
℘

λe
+
∂ u

∂ x
= 0. (1.45)

With this parameter then, we evaluate k
�

−℘
λe

�

instead of k
�

∂ u
∂ x

�

in computation. Note that no bound-

ary conditions need to be imposed on ℘ since the total stress is already prescribed on ΓN in (1.33).

The main thing that changes in the system with the addition of the elastic pressure parameter is the

total stress, which is now given by

σ= 2µe
∂ u

∂ x
−℘+δ

∂

∂ t

�

2µv
∂ u

∂ x
−
λv

λe
℘

�

−p . (1.46)

Note that we only replace dilation terms with ℘.
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1.2.3.2 Backward Euler Time Discretization

For discretization in time, we partition the temporal domain into Nt subintervals of length∆t =

T /Nt . Let the partition be given by

T∆t = {t0 = 0, t1, . . . , tr−1, tNt
= T }

and define for any time dependent functions f (t ), f i = f (ti ) for all i = 0, . . . , Nt . Taking u 0 to be

given by Eq. 1.36, applying the BE method to our system gives us the following scheme.

Given u i and ℘i , i = 0, · · · , Nt −1, solve:

∂ σi+1

∂ x
=−F i+1, (1.47)

σi+1 = 2µe
∂ u i+1

∂ x
−℘i+1−p i+1+δ

1

∆t

�

2µν
∂ u i+1

∂ x
−
λν
λe
℘i+1

�

−δ
1

∆t

�

2µν
∂ u i

∂ x
−
λν
λe
℘i

�

, (1.48)

℘i+1

λe
+
∂ u i+1

∂ x
= 0, (1.49)

−
℘i+1

λe∆t
+
∂ v i+1

∂ x
= S i+1−

℘i

λe∆t
, (1.50)

v i+1 =−k

�

−
℘i+1

λe

�

∂ p i+1

∂ x
, (1.51)

for x in Ω, with

σi+1n = g i+1, v i+1n = 0, on ΓN , (1.52)

u i+1 = 0, p i+1 = 0, on ΓD ,p , (1.53)

u i+1 = 0, v i+1n =ψi+1, on ΓD ,v . (1.54)

1.2.3.3 Picard Iteration

A Picard iteration is used in order to deal numerically with the permeabilities nonlinear dependence

on ℘. The Picard iteration updates our numerical scheme as follows.

Given u (0) = u i and ℘(0) =℘i , for each j ≥ 0 until convergence, solve:
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∂ σ( j+1)

∂ x
=−F i+1, (1.55)

σ( j+1) = 2µe
∂ u ( j+1)

∂ x
−℘( j+1)−p ( j+1)+δ

1

∆t

�

2µν
∂ u ( j+1)

∂ x
−
λν
λe
℘( j+1)

�

−δ
1

∆t

�

2µν
∂ u i

∂ x
−
λν
λe
℘i

�

, (1.56)

℘( j+1)

λe
+
∂ u ( j+1)

∂ x
= 0, (1.57)

−
℘( j+1)

λe∆t
+
∂ v ( j+1/2)

∂ x
= S i+1−

℘i

λe∆t
, (1.58)

v ( j+1/2) =−k

�

−
℘( j )

λe

�

∂ p ( j+1)

∂ x
, (1.59)

for x in Ω, with

σ( j+1)n = g i+1, v ( j+1)n = 0, on ΓN , (1.60)

u ( j+1) = 0, p ( j+1) = 0, on ΓD ,p , (1.61)

u ( j+1) = 0, v ( j+1)n =ψi+1, on ΓD ,v . (1.62)

The Picard iteration is considered to have converged at the first value j ∗ such that

‖X ( j ∗)−X ( j
∗−1)‖

‖X ( j ∗)‖
< ε,

where ε is some prescribed tolerance and X is any variable in the set {uh , ph , ûh , p̂h ,σh , vh}. These

variables are defined below in Section 1.2.3.4. Note that the “half step” j +1/2 indicates the variable

is being computed using variables from both the next step (i.e., j +1) and the previous step (i.e., j ).

1.2.3.4 Dual Mixed Hybridized Finite Elements

The dual mixed hybridized (DMH) finite element method treats the dual variables σ and v as

independent variables along with the primal variables u and p . The lowest order Raviart-Thomas

mixed finite element pair is used for the dual and primal variables. This spatial discretization will

only provide weak satisfaction of the Dirichlet boundary conditions. To address this, a hybridization

technique which introduces the hybrid variables û and p̂ (described in more detail below) and

allows the Dirichlet boundary conditions to be satisfied in a strong sense [39].

We start by reformulating the system Eq. 1.55 - Eq. 1.62. For ease of notation, we drop all super-
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scripts denoting both time steps in the BE method and iterations of the Picard iteration. The only

superscripts that we will maintain are those indicating a variable from a previous time step and

those indicating the time step of known functions such as F,S , g , andψ. The exception to this will

be the superscript on the permeability k , which will be left as a reminder that the permeability is

evaluated one iteration behind everything else in the Picard iteration. Rearranging the equations,

integrating Eq. 1.55 - Eq. 1.59 against test functions ξ,τ, and utilizing integration by parts gives us

the following formulation of the system already discretized temporally:

∫

Ω

ξ
∂ σ( j+1)

∂ x
d x =−

∫

Ω

F i+1ξd x , (1.63)

∫

Ω

m−1
u στd x +

∫

Ω

u
∂ τ

∂ x
d x −

∫

Γ

uτn d s +
mp

mu

∫

Ω

℘τd x +
1

mu

∫

Ω

pτd x

=
δ

∆t

2µv +λv

λe

1

mu

∫

Ω

℘iτd x , (1.64)

1

λe

∫

Ω

℘ξ+

∫

Γ

uξn d s −
∫

Ω

u
∂ ξ

∂ x
d x = 0, (1.65)

−
1

λe∆t

∫

Ω

℘ξd x +

∫

Ω

ξ
∂ v

∂ x
d x =

∫

Ω

S i+1ξd x −
1

λe∆t

∫

Ω

℘iξd x , (1.66)

∫

Ω

k−1vτd x −
∫

Ω

p
∂ τ

∂ x
d x +

∫

Γ

pτn d s = 0, (1.67)

for x ∈ Ω, where n is the unit outward normal, mu = 2
�

µe +
δµv
∆t

�

, and mp = 1+ δλv
∆tλe

. Note that

the only terms from the previous time step before this formulation were ∂ u i

∂ x and ℘i . Here, we use

Eq. 1.45 to reduce the number of terms from the previous time step to just one by substituting −℘
i

λe

for ∂ u i

∂ x .

We now introduce the finite element framework. Let {Kh} be a partition of the domain Ω into

subintervals Kk = (xk−1, xk ), k = 1, · · ·Nh of length h = L/Nh for some Nh ∈N. Denote the midpoint

of Kk by x̄k and the boundary of Kk by ∂ Kk = {xk−1, xk }. The associated unit normal vector is given

by nk , where nk =−1 at x = xk−1 and nk = 1 at x = xk . Now, letPq (Kk ) be the set of polynomials in
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Kk of degree less than or equal to q . The finite element spaces are then given by

Uh = {uh ∈ L 2(Ω) : uh |Kk
∈P0(Kk ), ∀Kk ∈Kh}, (1.68)

Vh = {vh ∈ L 2(Ω) : vh |Kk
∈P1(Kk ), ∀Kk ∈Kh}, (1.69)

Mh = {µh : {x0, . . . , xNh
}→RNh+1 : |µh |<∞, ∀xk ∈ {x0, . . . , xNk

}}, (1.70)

M u
h ,0 = {µh ∈Mh :µh = 0 on ΓD }, (1.71)

M
p
h ,0 = {µh ∈Mh :µh = 0 on ΓD ,p }. (1.72)

In addition, we set W u
h = Vh ×Uh ×M u

h ,0 and W
p

h = Vh ×Uh ×M
p
h ,0. The spaces Mh , M u

h ,0 and M
p
h ,0

are for the hybrid variables û , p̂ which are the restrictions of u and p to the nodes of the FE mesh

(i.e., to {x0, . . . , xNh
}). We denote by uh , ph ,σh , vh the approximations of u , p ,σ, v , respectively, in

the interior of each element Kk ∈Kh , and by ûh , p̂h the appoximations of û , p̂ respectively. That is,

ûh , p̂h approximates u , p respectively, at each node of the FE mesh (i.e., {x0, . . . , xNh
}). Then, taking

Uh := (σh , uh , ûh )T and Ph := (vh , ph , p̂h )T , the finite element space for Uh is W u
h and for Ph is W

p
h .

Now, also letting ℘h be the approximation of ℘ in the interior of each element Kk ∈Kh , the finite

element approximation of (1.55)-(1.62) is:

Find (Uh ,℘h , Ph ) ∈ (W u
h ×Uh ×W

p
h ) such that, for all (τh ,ξh ,µu

h ,µ
p
h ) ∈Vh ×Uh ×M u

h ,0×M
p
h ,0,

B (ξh ,σh ) =−(F i+1,ξh )h , (1.73)

A(m−1
u σh ,τh ) +B (uh ,τh )−C (ûh ,τh )

+
mp

mu
D (℘h ,τh ) +

1

mu
D (ph ,τh ) =

δ(λv +2µv )
∆tλe mu

D (℘i
h ,τh ), (1.74)

1

λe
(℘h ,ξh )h +G (ûh ,ξh ) = 0, (1.75)

−
1

λe∆t
(℘h ,ξh )h +B (ξh , vh ) = (S

i+1,ξh )h −
1

λe∆t
(℘i

h ,ξh )h , (1.76)

A(k−1vh ,τh )−B (ph ,τh ) +C (p̂h ,τh ) = 0, (1.77)

C (µu
h ,σh ) = g i+1µu

h

�

�

ΓN
, (1.78)

C (µp
h , vh ) = ψ

i+1µ
p
h

�

�

ΓD ,v
, (1.79)
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where the bilinear forms A, B , C , D ,G are given by

A(a−1 Jh ,τh ) =
∑

Kk∈Kh

∫

Kk

a−1 Jhτh d x , ∀(Jh ,τh ) ∈Vh ×Vh , (1.80)

B (qh ,τh ) =
∑

Kk∈Kh

∫

Kk

qh
∂ τh

∂ x
d x , ∀(qh ,τh ) ∈Uh ×Vh , (1.81)

C (µh , Jh ) =
∑

Kk∈Kh

∫

∂ Kk

µh Jh nk d s , ∀(µh , Jh ) ∈Mh ,0×Vh , (1.82)

D (qh ,τh ) =
∑

Kk∈Kh

∫

Kk

a qhτh d x , ∀(qh ,τh ) ∈Uh ×Vh , (1.83)

G (µh ,ξh ) =
∑

Kk∈Kh

∫

∂ Kk

µhξh nk d s , ∀(µh ,ξh ) ∈Mh ,0×Uh , (1.84)

along with

( f , g )h =
∑

Kk∈Kh

∫

Kk

f g d x .

Note that Eq. 1.78 and Eq. 1.79 are included to incorporate Neumann type boundary conditions. The

system Eq. 1.73 - Eq. 1.79 constitutes a linear algebraic system for the seven scalar dependent vari-

ables in Uh ,℘h , Ph . At first glance, this system appears to have an exceptional number of unknowns

which may imply extremely large computational costs. However, almost all of these equations are

local and, as such, the primal and dual variables (uh , ph andσh , vh , respectively) can be rewritten

in terms of the hybrid variables ûh , p̂h and the problem data. This elimination procedure is called

static condensation and effectively reduces the computational cost of solving this system so that it

is competitive with standard displacement-based approaches [39].

1.2.3.5 Static condensation

Since static condensation is an elimination process that utilizes the local nature of the system Eq. 1.73

- Eq. 1.79, we will here restrict ourselves to a single arbitrary element Kk ∈Kh . On such an element,

the bilinear forms Eq. 1.80 - Eq. 1.84 become small matrices corresponding to their action on the

single element. Specifically, we let A, C ∈M2×2, B, G ∈M1×2, and D ∈M2×1 represent the actions of

A(·, ·), C (·, ·), B (·, ·),G (·, ·), D (·, ·), respectively, on the arbitrary element Kk . Further, we let σ, v, û, p̂ ∈
R1×2 and u, p,℘ ∈R1×1 represent the degrees of freedom for the restrictions of σh , vh , ûh , p̂h and

uh , ph ,℘h , respectively, on arbitrary element Kk . Lastly, we will use the midpoint rule to approximate

(·, ·)h |Kk
= (·, ·)L 2(Kk ).
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We will start with the fluid phase. Noting that A is invertible, from Eq. 1.76 we have

Bv−
h

λe∆t
℘=I i+1, (1.85)

where

I i+1 = hS i+1(x̄k )−
h

λe∆t
℘i . (1.86)

From Eq. 1.77 we get

v=−k ( j )A−1[Cp̂−BT p], (1.87)

and from Eq. 1.75 we get

℘=−
λe

h
Gû. (1.88)

Now, substituting Eq. 1.87 and Eq. 1.88 into Eq. 1.85 we get

k ( j )BA−1BT p= k ( j )BA−1Cp̂−
h

∆t
Gû+I i+1, (1.89)

making p a function of p̂ and û as well as known values S i+1(x̄k ) and ℘i (note that ℘i is a known

quantity since it would have been found in the previous time step). To reflect this more clearly, we

write

p=J p̂+Rû+B−1
p I

i+1, (1.90)

where

Bp = k ( j )BA−1BT , (1.91)

J = k ( j )B−1
p BA−1C, (1.92)

R =−
h

∆t
B−1

p G. (1.93)

Note,Bp is symmetric positive definite so that its inverse is well-defined. Substituting Eq. 1.90 into

Eq. 1.87 gives us

v=Lp p p̂+Lp u û+bp, (1.94)

where

Lp p =−k ( j )A−1[C−BTJ ], (1.95)

Lp u = k ( j )A−1BTR , (1.96)

bp = k ( j )A−1BTB−1
p I

i+1. (1.97)

Thus, we see that v can also be written as a function of p̂, û, and known quantities.
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Continuing similarly with the solid phase, we have from Eq. 1.74

1

mu
Aσ+BT u−CT û+

mp

mu
D℘+

1

mu
Dp=

δ(λv +2µv )
∆tλe mu

D℘i . (1.98)

Rearranging this equation and substituting in Eq. 1.88 gives us

σ =M û−mu A−1BT u−A−1Dp+ r i , (1.99)

where

M =A−1

�

mu C+
λe mp

h
DG

�

, (1.100)

r i =
δ(λv +2µv )
∆tλe

A−1D℘i . (1.101)

Now, from Eq. 1.73, we have

Bσ =−d i+1, (1.102)

where

d i+1 = h F i+1(x̄k ). (1.103)

Substituting Eq. 1.90 and Eq. 1.99 into Eq. 1.102, we get

mu BA−1BT u=B(M −A−1DR)û−BA−1DJ p̂+B(r i −A−1DB−1
p I

i+1) +a i+1, (1.104)

making u a function of p̂ and û as well as known values. To reflect this more clearly, we write

u= R̃û+ J̃ p̂+B−1
u f i+1, (1.105)

where

Bu =mu BA−1BT , (1.106)

J̃ =−B−1
u BA−1DJ , (1.107)

R̃ =B−1
u B(M −A−1DR), (1.108)

f i+1 =B(r i −A−1DB−1
p I

i+1) +d i+1. (1.109)

Note,Bu is symmetric positive definite so that its inverse is well-defined. Lastly, substituting Eq. 1.90

and Eq. 1.105 into Eq. 1.99, we get

σ =Lu u û+Lup p̂+bu, (1.110)
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where

Lu u =M −A−1[mu BT R̃ +DR], (1.111)

Lup =−A−1[mu BT J̃ +DJ ], (1.112)

bu = r i −mu A−1BTB−1
u f i+1−A−1DB−1

p I
i+1. (1.113)

Thus, we see that σ can also be written as a function of p̂, û, and known quantities.

1.2.3.6 Stiffness matrix

Having eliminated all variables except p̂ and û, we can now construct the stiffness matrix. This

will follow from enforcing continuity on stressσh and discharge velocity vh across elements. That

is, if σKk
=

�

σ1
Kk

σ2
Kk

�

gives the degrees of freedom of the restriction of σh to Kk , then we must have

σ2
Kk
=σ1

Kk+1
and similarly for vh .

Using the notation L Kk
∗∗ =

�

L Kk ,11
∗∗ L Kk ,12

∗∗

L Kk ,21
∗∗ L Kk ,22

∗∗

�

and b∗ =

�

b Kk ,1
∗

b Kk ,2
∗

�

to denote the local matrices L∗∗

and b∗, respectively, on element Kk , then from Eq. 1.110 we have

σ2
Kk
=L Kk ,21

u u û k−1
h +L Kk ,22

u u û k
h +L

Kk ,21
up p̂ k−1

h +L Kk ,22
up p̂ k

h + b Kk ,2
u , (1.114)

where ûh (xk ) = û k
h and p̂h (xk ) = p̂ k

h . Similarly,

σ1
Kk+1
=L Kk+1,11

u u û k
h +L

Kk+1,12
u u û k+1

h +L Kk+1,11
up p̂ k

h +L
Kk+1,12

up p̂ k+1
h + b Kk+1,1

u . (1.115)

Enforcing continuity on the stress then gives us

−L Kk ,21
u u û k−1

h + (L Kk+1,11
u u −L Kk ,22

u u )û k
h +L

Kk+1,12
u u û k+1

h

−L Kk 21
up p̂ k−1

h + (L Kk+1,11
up −L Kk ,22

up )p̂ k
h +L

Kk+1,12
u u p̂ k+1

h = b Kk ,2
u − b Kk+1,1

u . (1.116)

This gives us the information need to create banded matrices Muu and Mup as well as a vector bu

such that
�

Muu Mup

�

�

û

p̂

�

= bu,

where

û= [û 0
h , û 1

h , . . . , û Nh
h ]

T and p̂= [p̂ 0
h , p̂ 1

h , . . . , p̂ Nh
h ]

T .

Following a similar process to enforce continuity on vh , we get matrices Mpu and Mpp and vector bp.
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Putting it all together, we get the full system

�

Muu Mup

Mpu Mpp

��

û

p̂

�

=





bu

bp



 . (1.117)

The construction of the M∗∗ matrices and b∗ vectors comes almost entirely from the continuity

condition ofσh and vh . The only exceptions are the first and last rows which may need to be adjusted

to account for boundary conditions. For example, suppose ΓD ,p = x0, ΓN = x f , and ΓD ,v =∅. Then, to

enforce the Dirichlet condition (i.e., the condition on ΓD ,p ) we would set the first row of Muu and

Mpp to the first canonical vector (i.e., [1,0, . . .0]), the first row of Mup and Mpu to all zeros, and the

first entry of bu and bp to zero. To allow the Neumann condition (i.e., the condition on ΓN ), we would

determine the last row of Muu and Mup from the equation given by

σ2
KNh
= g i+1

and the last row of Mpu and Mpp from the equation given by

v 2
KNh
= 0.

1.3 Sensitivity Analysis

The purpose of a sensitivity analysis is to study what effect perturbations in system inputs has on

the system output. Such analysis plays a critical role in many aspects of modeling and data analysis

including in parameter selection and identifiability in inverse problem formulations [15, 21, 22],

asymptotic theories for large sample size problems in statistics [25, 28, 60, 78, 166], studies on data

set information content [24], and optimal experiment design [26, 27]. Here, we utilize a sensitivity

analysis to inform potential control formulations in biomedical studies using poro-elastic and poro-

visco-elastic models with the ultimate goal of informing novel strategies to improve experimental

and clinical approaches in bioengineering and medicine. In particular, we look to perform a local

sensitivity analysis on the poro-elastic and poro-visco-elastic models presented in Section 1.2.1

with respect to the two sources of boundary data: the boundary traction and flux.

A local sensitivity analysis seeks to determine the rate of change of solutions to a system with

respect to varying inputs (such as parameters, boundary data, body forces, etc.). Mathematically,

this boils down to computing the derivative of the solutions with respect to the input of interest. For

illustrative purposes, supposed f (x , t ;θ) is the solution to a system with parameters θ = [θ1, . . . ,θn ]

which can include initial condition, boundary condition, etc.. Then, supposing θ does not depend
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upon x or t , the sensitivity of f with respect to θ is simply

∂ f

∂ θ
=
�

∂ f

∂ θ1
, . . . ,

∂ f

∂ θn

�

. (1.118)

If θ does depend on space and/or time (i.e., θ = θ(x , t )), then functional derivatives are required.

This is, in fact, the case that we find ourselves in since, regardless of being spatially one-dimensional

and hence resulting in a boundary comprised of two single points, the boundary conditions them-

selves are still time dependent. Allowing this dependence on time is of particular importance in

some applications, such as the lamina cribrosa and its role in glaucoma, as it has been suggested

that transient changes in IOP (appearing in the model as boundary traction) may play a crucial

role in the continuing development of glaucoma, particularly in patients with normal-pressure

glaucoma [131].

1.3.1 Functional Sensitivities

Let C , D be Banach spaces withC ⊂C open and F :C →D .

Definition 1.3.1 (Directional derivative and first variation) Let w ∈ C and h ∈ C be given. If the

limit

δF (w , h ) := lim
s↘0

1

s
(F (w + s h )− F (w ))

exists in D , then it is called the directional derivative of F at w in the direction h. If this limit exists

for all h ∈C , then the mapping h 7→δF (w , h ) is termed the first variation of F at w .

Note that the first variation is not necessarily a linear mapping.

Definition 1.3.2 (Gâteaux differentiability and derivative) Suppose that the first variationδF (w , h )

at w ∈C exists, and suppose there exists a continuous linear operator A : C →D such that

δF (w , h ) = Ah , ∀h ∈C .

Then, F is said to be Gâteaux differentiable at w , and A is referred to as the Gâteaux derivative of F

at w . We write A = F ′(w ).

For our problem, F would be a map taking the boundary conditions (g ,ψ) to the corresponding

solution (u , p ). We now define the Fréchet derivative:

Definition 1.3.3 (Fréchet differentiability and derivative) F is said to be Fréchet differentiable at

w ∈ C in there exists an operator A ∈ L (C , D ) and a mapping r (w , ·) : C → D with the following

properties: for all h ∈C such that w +h ∈C , we have

F (w +h ) = F (w ) +Ah + r (w , h ),
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where the so-called remainder r satisfies the condition

lim
‖h‖C→0

‖r (w , h )‖D

‖h‖C
= 0.

The operator A is called the Fréchet derivative of F at w and we write A =D F (w ).

Now, let C , D , and Z be Banach spaces withC ⊂C andD ⊂D be open.

Theorem 1.3.1 (Chain rule) Let F :C →D and G :D → Z be Fréchet differentiable at w ∈C and

at F (w ) ∈D, respectively. Then the composition E =G ◦ F :C → Z , defined by E (w ) =G (F (w )), is

Fréchet differentiable at w , and

D E (w ) =D G (F (w ))D F (w ).

As the Fréchet derivative operator is an infinite dimensional object, we need a finite dimensional

approximation in order to estimate it numerically. To do so, we will start by approximating the

boundary conditions with linear splines. Numerically, we will compute the Fréchet derivative of

(u , p , v )with respect to these linear spline approximations. For example, let ĝ be the linear spline

approximation of g :

g ≈ ĝ =
n
∑

i=0

αiφi (t ), (1.119)

whereφi , i = 0, 1, . . . n are linear splines on [0, T ]. That is, we partition the time interval [0, T ] into n

subintervals of equal length∆t = T
n and define

φ0(t ) =







t1−t
∆t , for t ∈ [t0, t1],

0, otherwise,
φn (t ) =







t−tn−1
∆t , for t ∈ [tn−1, tn ],

0, otherwise,

φi (t ) =























t−ti−1
∆t , for t ∈ [ti−1, ti ],

ti+1−t
∆t , for t ∈ [ti , ti+1],

0, otherwise,

for i = 1, . . . , n −1,

where t0 = 0 and tn = T . Then, we can consider ĝ to be a function of its coordinates α0, . . . ,αn in the

linear spline space S = span{φ0, . . . ,φn} so that we have ĝ = ĝ (α)whereα= [α0, . . . ,αn ]T . Thus, we

have ĝ (α) :Rn+1→ S . Now, let u (g ) be the map from the boundary condition g to the corresponding

solid displacement u . Then, assuming Fréchet differentiability of u with respect to g and ĝ with
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respect toα, we have from the chain rule

D u (α) =D u (ĝ (α))D ĝ (α). (1.120)

Note that D ĝ (α) and D u (α) are Jacobian matrices with respect toα. Thus, we have

D ĝ (α) =
�

∂ ĝ
∂ α0

∂ ĝ
∂ α1

. . . ∂ ĝ
∂ αn

�

=
�

φ0 φ1 . . . φn

�

(1.121)

and

D u (α) =
�

∂ u
∂ α0

∂ u
∂ α1

. . . ∂ u
∂ αn

�

. (1.122)

Taking h = [h0, . . . , hn ]T ∈Rn+1, we have

D ĝ (α)h =
n
∑

i=0

hiφi (1.123)

so that D ĝ (α)h ∈ S . Therefore, for any ḡ ∈ S , we have

D u (ĝ )ḡ =D u (α)













ḡ0

ḡ1
...

ḡn













, (1.124)

where ḡ =
∑n

i=0 ḡ iφi (t ). So, we can see the action of D u (ĝ ) on elements in S through the Jacobian

matrix of u with respect toα. In terms of sensitivity, this means that we can compute the sensitivity

of u with respect to ĝ in the direction ḡ by computing the Jacobian matrix of u with respect toα

and multiplying it by the coordinates of ḡ in the linear spline space S . Numerically, this amounts to

computing the derivatives ∂ u
∂ αi

for i = 0, . . . , n and calculating the appropriate linear combination of

these partial derivatives. We can similarly compute the sensitivities of p and v with respect to g and

the sensitivities of u , p , and v with respect toψ.

1.3.2 Numerical Methods

There are a number of different techniques for approximating sensitivity derivatives, including finite

difference approximations, sensitivity equations, and automatic differentiation (see [23, 25, 28] and

the references therein). Sensitivity equations are accurate and computationally inexpensive for

reasonably small systems. However, the complex nature of our problem, in particular attempting

to compute functional sensitivities from a nonlinear fluid-solid mixture problem, does not lend

itself easily to sensitivity equations. While the system of sensitivity equations will be linear in

the sensitivities (as is always true for sensitivity equations), this system is coupled to the original
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nonlinear system and the coupling occurs through derivatives of the solution to the nonlinear

system which further complicates the numerics. The finite difference method, on the other hand, is

relatively easy and efficient to implement. However, finite differences suffer from cancellation error

for small step sizes.

Another method for calculating sensitivities is the complex-step method [128, 129]. The idea

of using complex variables to estimate derivatives originated in [124, 125], and has become quite

popular in aerodynamic optimization [5, 6, 128, 129, 175]. The complex-step estimate is second

order accurate and extremely robust while retaining a reasonable computational cost. In [128],

Martins et al. show the method to have implementation advantages over automatic differentiation

and computational advantages over finite-differencing. In [19], we demonstrated the use of the

complex-step method for computing sensitivities to biological models and compared our results with

solutions of traditional sensitivity equations. We observed that (i) the method is easy to implement,

(ii) the complexity of the algorithm is the same as the complexity of the algorithm evaluating the

solution function (i.e., the algorithm solving the system of equations), (iii) less computation time

is needed in comparison to using sensitivity equations if the number of parameters is not large

compared to the dimension of the problem, and (iv) the method gives consistently second order

accurate approximation of the derivative for a wide range of step size values which can be taken as

small as machine precision. Moreover, we showed that, even though the complex-step formula is

derived assuming analyticity of the solution function, the approximation provides accurate one-

sided derivatives for functions with far less smoothness, implying that analyticity of the solution

functions is sufficient but not necessary for the complex-step method to be effective.

1.3.3 Complex Step Method

We derive here the complex step method, following the process outlined in [128]. Let z ∈C with

z = x + i y for x , y ∈R and f (z ) = f (x , y ) = u (x , y ) + i v (x , y ) be a function of a complex variable. If

f is analytic, then the Cauchy-Riemann equations hold:

∂ u

∂ x
=
∂ v

∂ y
,

∂ u

∂ y
=−

∂ v

∂ x
. (1.125)

Note that these equations establish a relationship between the real and imaginary parts of the

function f . Applying the definition of partial derivative to the first equation in Eq. 1.125, we have

∂ u

∂ x
= lim

h→0

v (x , y +h )− v (x , y )
h

= lim
h→0

Im[ f (x + i (y +h ))]− Im[ f (x + i y )]
h

. (1.126)

Now, if f is actually a real-valued function for real inputs (which is the case we’re in), then we can

take

y = 0, f (x ) = u (x , 0), and v (x , 0) = Im[ f (x )] = 0.
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Thus, Eq. 1.126 becomes
∂ f

∂ x
= lim

h→0

Im[ f (x + i h )]
h

. (1.127)

Therefore, for small h , we have the complex-step derivative approximation

∂ f

∂ x
≈

Im[ f (x + i h )]
h

. (1.128)

This formula can also be obtained through a Taylor series expansion of f about a small complex

step:

f (x + i h )≈ f (x ) + i h f ′(x )−
h 2

2!
f ′′(x )− i

h 3

3!
f (3)(x ) +

h 4

4!
f (4)(x ) + · · · . (1.129)

Taking the imaginary parts of both sides of Eq. 1.129 and dividing by h gives

f ′(x )≈
Im[ f (x + i h )]

h
+O (h 2),

with truncation error

Et (h ) =
h 2

6
f (3)(x ). (1.130)

We note that, although a step size parameter is required, in most cases the numerical derivatives

are not subject to subtractive cancellation errors as in the use of finite differences, (see [129] for

exceptions and remedies). Therefore, the method exhibits true second-order accuracy as the step size

is reduced. The accuracy of the complex-step estimate then is only limited by the numerical precision

of the algorithm that evaluates the function f . In addition, the procedure is easily implemented

into existing programs. The only requirements are that the floating point variables be declared as

complex and that a complex perturbation be added to the variable of interest.

Note that the complex-step approximation formula (1.128) is derived based on the Cauchy-

Riemann formula for analytic functions. Therefore, this derivation only applies to analytic functions

f . However, we showed in [19] that, in the case where the functions have singularities or branch cuts

where they are not analytic, the complex-step method provides a correct derivative approximation

up to the point of discontinuity. In addition, it gives accurate approximations of one-side derivatives

if the function is uniquely defined at that point. The method also provides an accurate first order

derivative when a function has jumps in its higher order derivatives.

1.3.3.1 Implementation of the complex-step method

Since the derivation of the complex-step approximation formula Eq. 1.128 is based upon analyticity,

and specifically the satisfaction of the Cauchy-Riemann equations, we must make sure the numerical

algorithm also satisfies these equations. Thus, we need to extend functions of real variables to

functions of complex variables in a such a way so as to guarantee that the Cauchy-Riemann equations
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still hold. The discussion below describes implementation of the complex-step method in Matlab,

however the same principles hold for other programming languages. For further discussion and

Fortran implementation see [128, 129].

When we convert a ‘real’ algorithm to a ‘complex’ one, we are mainly concerned with two types

of operations:

1. Relational operators. Relational logic operators like “greater than” and “less than” are defined

in Matlab to compare only the real parts of a complex number. These operators are usually

used in ‘if ’ statements to redirect the execution thread. The original algorithm and its complex

version must follow the same execution thread. Therefore, the Matlab definition for these

types of operators is the correct one.

2. Arithmetic functions and operators. In Matlab, complex numbers are a standard data type

and many functions have complex counterparts. Functions that choose one argument like

max and min are based on relational operators. Therefore, one would assume that they are

defined based on their real parts in Matlab. Unfortunately, that is not the case. In Matlab, min

and max functions compare the moduli of two complex numbers. Hence, they need to be

redefined to compare only the real parts.

Another function that needs to be given attention is the absolute value (abs) function. In

Matlab, abs returns the modulus of a complex number. The modulus, however, is not an

analytic function and does not satisfy the Cauchy-Riemann equations. So, we redefine this

function using the Cauchy-Riemann equations in order to ensure that the complex-step

method will give a correct derivative approximation. We know that we should have

∂ u

∂ x
=
∂ v

∂ y
=

¨

−1, x < 0

+1, x > 0
. (1.131)

Then, since ∂ v
∂ x = 0 on the real axis, the Cauchy-Riemann equations (Eq. 1.125) tell us that

we need ∂ u
∂ y = 0 on the real axis. Thus, the real part of the result must be independent of the

imaginary part of the variable. This means that the new sign of the imaginary part depends

only on the sign of the real part of the complex number, and an analytic absolute value function

can be defined as:

a b s (x + i y ) =

¨

−x − i y x < 0

x + i y x ≥ 0
. (1.132)

This function is not analytic at x = 0. However, as mentioned above, the complex-step ap-

proximation yields an accurate derivative up to the discontinuity. In addition, since we have

defined the function at x = 0 in the same way as it is defined for x > 0, the method gives the
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correct right-hand side derivative at x = 0.

Similarly, for every real valued function we can obtain a unique complex function definition

by requiring that the complex extension satisfies the Cauchy-Riemann equations and that

the real and complex parts have the same properties. If Matlab’s complex analog function is

not already correctly defined, we can adjust the definition using a custom function. Many of

the arithmetic operators including addition, multiplication, and trigonometric function have

standard complex definitions that are analytic almost everywhere. The transpose operator (′)

in Matlab gives the complex conjugate of the matrix, however the non-conjugate transpose

(.′) is appropriately defined for the complex-step method. Note that before implementing the

complex-step method, one always needs to check whether the functions and operators in the

algorithm need re-definition and do so accordingly.

The implementation procedure for using the complex-step method to approximate a first order

derivative d f
d x is:

1. Define all functions and operators that are not defined for complex arguments such as, for

example, max, min and abs.

2. Add a small complex step i h to the desired variable x and run the algorithm that evaluates f .

3. Compute d f
d x using Eq. 1.128.

1.4 Selected Results

Using insight from results in [19, 20], we compute the desired sensitivities using the complex-step

derivative approach outlined in Section 1.3.3, in combination with the dual mixed hybridized (DMH)

finite element discretization developed for the nonlinear coupling in [39] and presented in Section

1.2.3. First, we apply the method to four one-dimensional test cases discussed in [39], for which

analytical solutions are available. We use the first test case (where the data and the permeability

are constants) to validate our technique. In the other three cases, while the analytic solutions are

provided in [39] (either for δ= 0 or δ= 1), there is no explicit dependence on the boundary data in

the formulas. So there is no analytic information about how sensitive the solution is to the given

data. Lastly, we perform sensitivity analysis on a one-dimensional, dynamical case with irregular (in

time) boundary data. In this case, the numerical results in [39] predicted a finite time blow up for

the fluid energy when viscoelasticity is not present in the system. Our goal in this case is to compute

and compare the sensitivities of the states with respect to the boundary data for δ= 0 and δ= 1, as

well as treat δ as a control parameter, and see how the sensitivities change while δ takes a variety of

values in two important ranges: 0≤δ≤ 1 and δ≥ 1.
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1.4.1 Sensitivity with Respect to Boundary Conditions

1.4.1.1 Constant Data, Constant Permeability - Case 1 (Validation)

Let the domain be given by (x0.x f ) = (0, 1) of length L = 1. Consider the purely elastic (δ= 0) system

Eq. 1.38 with constant volumetric sources F1, S1, constant boundary data g1 and ψ1, and with

boundary conditions given by







u = p = 0, x0 = 0,

σn = g1 and v n =ψ1, x f = 1.
(1.133)

This problem admits the following analytic solution, provided in [39]:

u (x ) =
x

HA

h

F1

�

L −
x

2

�

+ g1

i

−
x 2

2HAkref

h

ψ1−S1

�

L −
x

3

�i

,

p (x ) =
x

HA

h

S1

�

L −
x

2

�

−ψ1

i

,

℘(x ) =−
λe

HA
(σ(x ) +p (x )),

σ(x ) = g1+ F1(L − x ),

v (x ) =ψ1+S1(x − L ).

If we treat the boundary data as constant parameters and thus assume that g1,ψ1 ∈R, and we

consider the following specific values for the reference value of the permeability and the Lamé

constants

k = kref = 1 cm3s g−1, HA =λe +2µe = 3 dyne cm−2, λe =µe = 1 dynecm−2, φ = 0.5,

we can simplify the formulas for the the solutions to

u (x , g1,ψ1) =−
S1

18
x 3−

1

6
(F1+ψ1−S1)x

2+
1

3
(F1+ g1)x ,

p (x , g1,ψ1) =−
S1

2
x 2+ (S1−ψ1)x ,

σ(x , g1,ψ1) = g1+ F1(1− x ),

v (x , g1,ψ1) =ψ1+S1(x −1).
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and find the partial derivatives with respect to g1 andψ1:

∂ u

∂ g1
=

x

3
,

∂ p

∂ g1
= 0,

∂ v

∂ g1
= 0, (1.134)

∂ u

∂ ψ1
=−

x 2

6
,

∂ p

∂ ψ1
=−x ,

∂ v

∂ ψ1
= 1. (1.135)

For the numerical computations, we assume that the volumetric and boundary source terms are

given by the following specific values:

F1 = 0.3 dynecm−3, S1 = 0.3 s−1, g1 = 0.3 dynecm−2, ψ1 = 3 cms−1.

The computed sensitivities of u , p , and v with respect to g1 andψ1 at (g1,ψ1) = (0.3, 3) are shown

in Fig. 1.3 and Fig. 1.4.
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Figure 1.3 Sensitivity of u (left panel), p (center panel), and v (right panel) with respect to g1 at g1 = .3
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Figure 1.4 Sensitivity of u (left panel), p (center panel), and v (right panel) with respect toψ1 atψ1 = 3
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Observations From Fig. 1.3 and Fig. 1.4, we can see that the sensitivity derivatives obtained

via the complex-step method agree with the ones computed analytically (given in Eq. 1.134 and

Eq. 1.135). Note that the sensitivities of the solid displacement u to the boundary data (g1,ψ1) at

g1 = .3 andψ1 = 3 increase in magnitude as we approach the right end point x f = 1 at which the

boundary conditions are applied, which is to be expected.

1.4.1.2 Constant Boundary Data, Variable Permeability - Validation Case 2

Let (x0, x f ) = (−1, 1) of length L = 2. Consider the fluid-solid mixture given by the system Eq. 1.38 with

δ= 0. For boundary conditions, we take homogeneous Dirichlet boundary conditions at x0 =−1

and non-homogenous Neumann boundary conditions at x f = 1 given by







u = p = 0, x0 =−1,

σn = g2, v n =ψ2, x f = 1.
(1.136)

Volumetric and boundary source terms are given by

F2(x ) =−[UrefHAχ
′′(x )−Prefχ

′(x )],

S2(x ) =−krefPrefχ
′′(x )Θ(x )−krefPrefUrefχ

′(x )χ ′′(x )Ξ(x ),

g2 =UrefHAχ
′(x f )−Prefχ(x f ) =−0.9425,

ψ2 =−krefPrefχ
′(x f )Θ(x f ) = 0.0304,

where

χ(x ) = sin(ωx x ), Φ(x ) =φ0+Urefχ
′(x ), Θ(x ) =

Φ3(x )
[1−Φ(x )]2

, Ξ(x ) =
Φ2(x )[3−Φ(x )]
[1−Φ(x )]3

,

and

ωx = 2π/L , Uref = 0.1 cm, Pref = 1 dynecm−2, HA = 3 dynecm−2, φ0 = 0.5.

In comparison to the previous case, the porosityφ is now allowed to vary with the derivative

of the displacement within the range [Φmin,Φmax], where 0 < Φmin < Φmax < 1, in such a way that

the permeability k , expressed by the nonlinear relation of Carman-Kozeny Eq. 1.12, satisfies the

following lower and upper bounds [48]:

0< kref
Φ3

min

(1−Φmin)2
≤ k (φ)≤ kref

Φ3
max

(1−Φmax)2
.

Here we set Φmin = 0.125,Φmax = 0.875 and kref = 1 cm3 s g−1. From [39], we know that the problem
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admits the following exact stationary solution [39]:

u (x ) =Ur e f χ(x ),

p (x ) = Pr e f χ(x ),

σ(x ) =Ur e f HAχ
′(x )−Pr e f χ(x ),

v (x ) =−kr e f Pr e f χ
′(x )Θ(x ),

℘(x ) =−λe Ur e f χ
′(x ).

Due to the particular choice of data and implicitly, the structure of the solutions, we can see that

the Darcy velocity is a function ofψ2, but it does not depend on g2, therefore v2 is not sensitive to

g2. However, solid displacement u and fluid pressure p depend nonlinearly and implicitly on both

g2 andψ2, especially due to the permeability being nonlinearly dependent on porosity.

Similarly to case 1, we consider g2 andψ2 as constant parameters and compute the sensitivities

of the states with respect to g2 andψ2 at g2 =−0.9425 andψ2 = 0.0304. The numerical results agree

with the analytical ones in the case of the discharge velocity. For u and p , we don’t have explicit

dependence on the boundary data and thus have no analytic results to compare our numerical

results with.

Observations We can see in Fig. 1.5 and Fig. 1.6 that, in comparison to Case 1, the peaks in

sensitivity for both u and p are in the interior of the domain, which could be explained by the

nonlinearity of the permeability, but also by the fact that the volumetric source of momentum is

also non-zero and thus the solution is not driven solely by the boundary data.

Remark 1.4.1 For further validation, we computed the sensitivities in this case also using the finite

difference method and obtained similar results (not included here). There were small differences in

the magnitudes of the sensitivities, which are due to the 1st order accuracy of the forward difference.
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Figure 1.5 Sensitivity of u (left panel), p (center panel), and v (right panel) with respect to g2.
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Figure 1.6 Sensitivity of u (left panel), p (center panel), and v (right panel) with respect toψ2.

1.4.1.3 Dynamical Poro-Visco-Elastic Model, Constant Permeability - Case 3

In this example, we consider the system in Eq. 1.38 on (x0, x f )× (t0, t f ) = (0, 1)× (0, .1), with boundary

conditions given by






u = p = 0, x0 = 0,

σn = g3(t ), v n =ψ3(t ), x f = 1.
(1.137)

We prescribe the following volumetric and boundary source terms

F3(x , t ) =−Urefχ
′′(x )[HAτ(t ) +δHV τ

′(t )]−Prefτ(t )χ
′(x ),

S3(x , t ) =Urefτ
′(t )χ ′(x )−krefPrefχ

′′(x )τ(t ),

g3(t ) =Urefχ
′(x f )[HAτ(t ) +δHV τ

′(t )]−Prefτ(t )χ(x f ),

ψ3(t ) =−krefPrefτ(t )χ
′(x f ),

where the spatial and temporal shape functions are given by

χ(x ) = sin(ωx x ), with ωx = 8/L ,

τ(t ) = sin2(ωt t ), with ωt = 8/t f ,

respectively, and the parameters have the following values:

Uref = 0.1 cm, Pref = 0.3 dynecm−2,

HA =λe +2µe = 3 dyne cm−2, λe =µe = 1 dynecm−2, HV =λv +2µv = 0.5774dynescm−2.
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As in Case 1, we assume that the porosity and permeability are constant and given by

φ =φ0 = 0.5 and k = kref = 1 cm3s g−1,

respectively. For the purely elastic case δ= 0, the problem admits the exact solution [39]

u (x , t ) =Ur e f χ(x )τ(t ),

p (x , t ) = Pr e f χ(x )τ(t ),

σ(x , t ) =Ur e f χ
′(x )[HAτ(t ) +δHV τ

′(t )]−Pr e f χ(x )τ(t ),

v (x , t ) =−kr e f Pr e f χ
′(x )τ(t ),

℘(x , t ) =−λe Ur e f χ
′(x )τ(t ),

which now depends on both space and time, and implicitly on the boundary data.

Assuming that the data-to-state map is Fréchet differentiable, we follow the process outlined in

Section 1.3.1 and approximate both the data and the directions using linear splines. Partitioning the

time interval [0, .1] into ten subintervals of equal length∆t = .01 and definingφi as in Section 1.3.1

for i = 0, . . . , n with n = 10, we approximate the data by

g3(t )≈ g3h =
10
∑

i=0

αiφi (t ), ψ3(t )≈ψ3h =
10
∑

i=0

βiφi (t ),

where αi = g3(ti ), and βi =ψ3(ti ) (see Fig. 1.7). Moreover, we consider ḡ ,ψ̄ ∈ span{φi }10
0 , and write

them as

ḡ (t ) =
10
∑

i=0

ᾱiφi (t ), ψ̄(t ) =
10
∑

i=0

β̄iφi (t ).

In the figures below, we display the graphs of the directional derivatives first in the case of

directions taken as particular splines, likeφ1 andφ2, and then for specific linear combinations of

the splines, like wh =
∑11

i=1φi . Note that if the direction is taken to be a particular splineφi then the

functional sensitivity in that direction is the partial derivative with respect to the corresponding

coordinate of the boundary data. For example, the sensitivity of u with respect to g3h in the direction

φi is

(Dg3h
u )φi =

∂ u

∂ αi
.

For all the sensitivities, we include both the visco-elastic and purely elastic cases and compare the

results.
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Figure 1.7 Linear spline approximations of g3 andψ3.
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Figure 1.8 Sensitivity function of solid displacement u with respect to boundary stress g3h in the direction
φ4, when δ= 1. Note, the two figures give different angles of view of the sensitivity.

Observations Comparing Fig. 1.8-Fig. 1.13 (note the different scales for δ= 0 and δ= 1), we

see that u appears to be more sensitive to g3h than it is toψ3h , regardless of the values of δ. We

also note that both ∂ u
∂ g3h

and ∂ u
∂ ψ3h

are larger in magnitude when δ = 0 than when δ = 1. However,

this difference in magnitude is more significant for ∂ u
∂ g3h

where we see a full order of magnitude

difference.

Further, we notice that the sensitivity of u with respect to g3h is more prevalent throughout the

spatial domain than the sensitivity of u with respectψ3h , regardless of the value of δ (though, when

δ= 1, the sensitivity of u with respect to g3h steadily decreases as we get farther away from the point

where g3h is applied. The sensitivity of u with respect to g3h stays consistent throughout the spatial
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Figure 1.9 Sensitivity function of solid displacement u with respect to boundary stress g3h in the direction
φ4, when δ= 0. Note, the two figures give different angles of view of the sensitivity.
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Figure 1.10 Sensitivity functions of solid displacement u with respect to boundary stress g3h in the direc-
tion ḡ =

∑10
i=0φi when δ= 1 (left) and δ= 0 (right).

domain when δ= 0). In contrast, the sensitivity of u (to both g3h andψ3h ) throughout the temporal

domain is most prevalent when δ= 1. This could indicate that the effect of the term ∂ u
∂ t dominates

the expression for the stressσ when δ= 1.

Comparing Fig. 1.14-Fig. 1.19, we see that when δ = 1, p appears to be more sensitive toψ3h

than it is to g3h . However, when δ= 0, the opposite is true. Similar to the sensitivity of u with respect

to g3h , the sensitivity of p with respect to g3h is about one order of magnitude larger when δ = 0

than when δ= 1. In contrast, the sensitivity of p with respect toψ3h reacts in the opposite manner;

that is, p appears to be more sensitive toψ3h when δ= 1 than when δ= 0.

Similar to the sensitivities for u , we see that p is more sensitive to g3h throughout the spatial
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Figure 1.11 Sensitivity function of solid displacement u with respect to boundary sourceψ3h in the direc-
tionφ0 when δ= 1 (left) and δ= 0 (right).
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Figure 1.12 Sensitivity function of solid displacement u with respect to boundary sourceψ3h in the direc-
tionφ3 when δ= 1 (left) and δ= 0 (right).

domain than toψ3h . However, we do not see much sensitivity throughout the temporal domain when

looking in the direction of particular splines. This is most likely due to the lack of time derivatives

on p .

Similar to the sensitivities of p , we see from Fig. 1.20-Fig. 1.25 that v is more sensitive toψ3h

than it is to g3h when δ= 1, but it is more sensitive to g3h than toψ3h when δ= 0. We again see that,

when δ= 0, the sensitivity of v with respect to g3h is one order of magnitude larger than when δ= 1.

On the other hand, the magnitude of the sensitivity of v with respect toψ3h is the same for δ= 0
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Figure 1.13 Sensitivity functions of solid displacement u with respect to boundary stressψ3h in the direc-
tion ψ̄=

∑10
i=0φi when δ= 1 (left) and δ= 0 (right).
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Figure 1.14 Sensitivity function of fluid pressure p with respect to boundary stress g3h in the directionφ4

when δ= 1. Note, the two figures give different angles of view of the sensitivity.

and δ= 1.

Moreover, these sensitivities are similar to the sensitives for p in that we do not see the sensitivity

continuing throughout the temporal domain when taken in the direction of particular splines.

Unlike the sensitivities for u and p , however, the sensitivity of v (to both g3h and ψ3h ) is more

prevalent throughout the spatial domain when δ= 1.

Looking specifically at the sensitivities with respect to g3h (Fig. 1.8 - Fig. 1.10, Fig. 1.14 - Fig. 1.16,

and Fig. 1.20 - Fig. 1.22) we can see that in the purely elastic case (δ = 0), the sensitivities of all three

states with respect to g3h are larger than in the visco-elastic case (δ= 1).

Moreover, for δ = 1, the sensitivities of u and p with respect to g3h decrease as we go farther
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Figure 1.15 Sensitivity function of fluid pressure p with respect to boundary stress g3h in the directionφ4

when δ= 0. Note, the two figures give different angles of view of the sensitivity.
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Figure 1.16 Sensitivity functions of fluid pressure p with respect to boundary stress g3h in the direction
ḡ =

∑10
i=0φi when δ= 1 (left) and δ= 0 (right).

from the part of the boundary where the data g3h is applied. In comparison, for δ= 0, the solution

is affected by the boundary datum g3h throughout the entire domain. For δ = 1, we see that the

sensitivities ∂ u
∂ αi

stay similar for t ≥ ti , whereas for δ= 0, the sensitivities drops shortly after t = ti .

This could indicate the effect of the term ∂ u
∂ t in equation (1.24) is dominant in the case δ= 1.

Comparing Fig. 1.8 - Fig. 1.10, Fig. 1.14 - Fig. 1.16, and Fig. 1.20 - Fig. 1.22, we can see that

the Darcy velocity v is the most sensitive to the boundary data g3h . In the visco-elastic case, the

magnitude of ∂ v
∂ g3h

is the highest among all of the sensitivities. Moreover, the sensitivity is one order

of magnitude higher in the case of δ= 0, and two sharp peaks appear around the time at which the

direction is given.
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Figure 1.17 Sensitivity functions of fluid pressure p with respect to boundary sourceψ3h in the direction
φ0 when δ= 1 (left) and δ= 0 (right).
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Figure 1.18 Sensitivity functions of fluid pressure p with respect to boundary sourceψ3h in the direction
φ3 when δ= 1 (left) and δ= 0 (right).

We also notice that in both elastic and visco-elastic cases, the sensitivity of the discharge velocity

with respect to g3h , which is applied at x = 1, increases towards the left end point, x = 0, of the

domain. This is due to the fact that at x = 1, v ·n =ψ3 andψ3 is not dependent on g3. This results in
∂ v
∂ g3
·n = 0 at x = 1. The magnitude of ∂ v

∂ g3
increases as we go farther away from x = 1, and ultimately

reaches its maximum at x = 0, as there is no condition imposed on v at this boundary point.

Overall, we see that u is the least sensitive to both g3h andψ3h and v is the most sensitive. We

also note that the behavior of the sensitivities with respect to g3h when we vary δ between 1 and 0

are more consistent and more drastic than the sensitivities with respect toψ3h .
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Figure 1.19 Sensitivity functions of fluid pressure p with respect to boundary stressψ3h in the direction
ψ̄=

∑10
i=0φi when δ= 1 (left) and δ= 0 (right).
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Figure 1.20 Sensitivity functions of discharge velocity v with respect to boundary stress g3h in the direc-
tionφ0 when δ= 1 (left) and δ= 0 (right).

1.4.1.4 Dynamical Model with Variable Permeability - Case 4

Consider the system given in Eq. 1.38 in the space-time domain (x0, x f )× (0, T ) = (−1, 1)× (0, 2), so

that L = 2cm and T = 2s. The boundary conditions are given by







u = p = 0, x0 =−1,

σn = g4(t ), v n =ψ4(t ), x f = 1.
(1.138)
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Figure 1.21 Sensitivity functions of discharge velocity v with respect to boundary stress g3h in the direc-
tionφ3 when δ= 1 (left) and δ= 0 (right).
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Figure 1.22 Sensitivity functions of discharge velocity v with respect to boundary stress g3h in the direc-
tion ḡ =

∑10
i=0φi when δ= 1 (left) and δ= 0 (right).

Porosity and permeability are nonlinear functions of the solution, just as in Case 2. The porosityφ

varies with the derivative of the displacement within the range [Φmin,Φmax], where 0<Φmin <Φmax <

1, in such a way that the permeability k , expressed by the nonlinear relation of Carman-Kozeny

Eq. 1.12, satisfies the following lower and upper bounds [48]:

0< kref
Φ3

min

(1−Φmin)2
≤ k (φ)≤ kref

Φ3
max

(1−Φmax)2
.
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Figure 1.23 Sensitivity functions of discharge velocity v with respect to boundary sourceψ3h in the direc-
tionφ0 when δ= 1 (left) and δ= 0 (right).
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Figure 1.24 Sensitivity functions of discharge velocity v with respect to boundary sourceψ3h in the direc-
tionφ3 when δ= 1 (left) and δ= 0 (right).

We set the following parameters,

Φmin = 0.125, Φmax = 0.875, and kref = 1 cm3 s g−1.

49



0.1
0.08

0.06
0.04

t
0.02

(DAv) 7A

00
0.2

x

0.4
0.6

0.8

1

0.8

0.6

0.4

0.2

0
1

(D
A
v
)
7 A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) δ= 1

0.1
0.08

0.06
0.04

t
0.02

(DAv) 7A

00
0.2

x

0.4
0.6

0.8

0.4

0.3

0.5

0

0.1

0.2

0.9

0.8

0.7

0.6

1

(D
A
v
)
7 A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) δ= 0

Figure 1.25 Sensitivity functions of discharge velocity v with respect to boundary stressψ3h in the direc-
tion ψ̄=

∑10
i=0φi when δ= 1 (left) and δ= 0 (right).

The volumetric and boundary source terms are time-dependent and are given by:

F4(x , t ) =−[Ur e f χ
′′(x )(HAτ(t ) +δHV τ

′(t ))−Pr e f τ(t )χ
′(x )],

S4(x , t ) =Ur e f χ
′(x )τ′(t )−Pr e f kr e f χ

′′(x )τ(t )Θ(x , t )−kr e f Pr e f Ur e f χ
′(x )χ ′′(x )τ2(t )Ξ(x , t ),

g4(t ) =Ur e f χ
′(xe nd )(HAτ(t ) +δHV τ

′(t ))−Pr e f τ(t )χ(xe nd ),

ψ4(t ) =−kr e f Pr e f Θ(xe nd )χ
′(xe nd )τ(t ),

where

χ(x ) = sin(ωx x ), τ(t ) = sin(ωt t ), Φ(x , t ) =φ0+Ur e f χ
′(x )τ(t ),

Θ(x , t ) =
Φ3(x , t )

[1−Φ(x , t )]2
, Ξ(x , t ) =

Φ2(x , t )[3−Φ(x , t )]
[1−Φ(x , t )]3

,

withωt = 2π/T , and all the other parameter values the same as those given in Case 3.

For the visco-elastic case δ= 1, the problem admits the following exact solution [39]:

u (x , t ) =Ur e f χ(x )τ(t ),

p (x , t ) = Pr e f χ(x )τ(t ),

σ(x , t ) =Ur e f χ
′(x )(HAτ(t ) +δHV τ

′(t ))−Pr e f χ(x )τ(t ),

v (x , t ) =−Pr e f kr e f Θ(x , t )χ ′(x )τ(t ),

℘(x , t ) =−λe Ur e f χ
′(x )τ(t ).

Again, since the boundary sources g4 andψ4 are time dependent, we approximate these func-
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tions using linear splines as described in Section 1.3.1:

g4(t )≈ g4h =
Ng
∑

i=0

αiφi (t ), ψ4(t )≈ψ4h =
Nψ
∑

i=0

βi φ̃i (t ),

with Ng = 10 and Nψ = 12 where αi = g4(ti ) and βi =ψ4(t̃i ) (see Figure 1.26).

In the figures below, we display the graphs of the directional derivatives first in the case of

directions taken as particular splines, likeφi and φ̃i , and then for specific linear combinations of the

splines, like wh =
∑Ng

i=0φi and w̃h =
∑Nψ

i=0 φ̃i . For all the sensitivities, we include both visco-elastic

and purely elastic cases, and compare the results.
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Figure 1.26 Linear spline approximations of g4 andψ4.

Observations In Fig. 1.27-Fig. 1.32, we see that unlike the sensitivities in the case of constant

permeability, here u appears to be more sensitive to ψ4h than g4h . While there does not appear

to be a large difference in magnitude of the sensitivity of u with respect to g4h when δ = 0 and

δ= 1 when taken in the directionφ3 (see Fig. 1.28), we note that when the sensitivity is taken in the

directionφ0 (see Fig. 1.27) and ḡ =
∑Ng

i=0φi (see Fig. 1.29), we see large differences of either three

or two orders of magnitude. We also see that the sensitivity of u with respect toψ4h is at least one

order of magnitude larger when δ= 0 than when δ= 1.

Further, when δ= 0, the sensitivity of u with respect toψ4h is much more irregular than when

δ= 1. This behavior was seen in the sensitivities of u with respect toψ4h in the direction of each

of the splines φi , i = 0, . . . , Nψ. On the other hand, the sensitivities of u with respect to g4h are
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Figure 1.27 Sensitivity functions of solid displacement u with respect to boundary stress g4h in the direc-
tionφ0 when δ= 1 (left) and δ= 0 (right).
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Figure 1.28 Sensitivity functions of solid displacement u with respect to boundary stress g4h in the direc-
tionφ3 when δ= 1 (left) and δ= 0 (right).

irregular in the direction of some of the earlier splines (i.e. j < 3), but smooth out for directionsφ j ,

j = 3 . . . , Ng .

In Fig. 1.33-Fig. 1.38, we see that overall, p appears to be more sensitive toψ4h than to g4h and

both ∂ p
∂ g4h

and ∂ p
∂ ψ4h

are at least one order of magnitude larger when δ= 0 than when δ= 1. When

δ= 0, the sensitivities of p with respect to g4h is somewhat irregular when taken in the directions

φ j , j ≤ 7, however they smooth out for j = 7, . . . , Ng (not shown here). In contrast, the sensitivities

of p with respect toψ4h are irregular in the directions of each spline and for both δ= 0, 1.
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Figure 1.29 Sensitivity functions of solid displacement u with respect to boundary stress g4h in the direc-

tion ḡ =
∑Ng

i=0φi when δ= 1 (left) and δ= 0 (right).
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Figure 1.30 Sensitivity functions of solid displacement u with respect to boundary sourceψ4h in the direc-
tion φ̃0 when δ= 1 (left) and δ= 0 (right).

Regarding the senstivities of the solid displacement u and fluid pressure p with respect to g4h ,

we see from Fig. 1.27-Fig. 1.29 and Fig. 1.33-Fig. 1.35 that the magnitude of the sensitivities is higher

(up to 3 times in order of magnitude in the case of α0) in the elastic case than in the visco-elastic

case. The difference decreases for subsequent αi ’s.

Moreover, in the visco-elastic case, the sensitivity of u and p with respect to the boundary datum

g4h in the specific directions of the splines decreases as we get farther away from the boundary x = 1,

where the datum acts. In comparison, the solid displacement and fluid pressure seem to be equally
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Figure 1.31 Sensitivity functions of solid displacement u with respect to boundary sourceψ4h in the direc-
tion φ̃3 when δ= 1 (left) and δ= 0 (right).
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Figure 1.32 Sensitivity functions of solid displacement u with respect to boundary sourceψ4h in the direc-

tion ψ̄=
∑Nψ

i=0 φ̃i when δ= 1 (left) and δ= 0 (right).

sensitive to the boundary source g4h throughout the space domain in the purely elastic case. This

is similar to Case 3, where the same behaviour was observed between the elastic and visco-elastic

cases. However, this is not the case for the sensitivity in the direction ḡ , where the influence of

the boundary is seen throughout the space-time domain. It can be observed though that in the

visco-elastic case, the sensitivity surface is much smoother than in the elastic counterpart.

It is interesting to see the difference in behaviors of the sensitivities of the solid displacement

and fluid pressure with respect to the boundary traction g4h in comparison to Case 3, where the
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Figure 1.33 Sensitivity functions of pressure p with respect to boundary stress g4h in the directionφ0 when
δ= 1 (left) and δ= 0 (right).
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Figure 1.34 Sensitivity functions of pressure p with respect to boundary stress g4h in the directionφ3 when
δ= 1 (left) and δ= 0 (right).

permeability is assumed to be constant. The surfaces associated with the sensitivities in this case

are much more complex, with sharp peaks (present in the δ= 0 scenario), and a non-zero presence

almost throughout the space-time domain.

In Fig. 1.39-Fig. 1.44, we again see that v appears to be more sensitive toψ4h than it is to g4h .

Similarly to the sensitivity of u with respect to g4h , there does not appear to be a large difference

in magnitude of the sensitivity of v4h with respect to g when δ = 0 and δ = 1 when taken in the

directionφ3 (see Fig. 1.40). However, when the sensitivity is taken in the directionφ0 (see Fig. 1.39)
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Figure 1.35 Sensitivity functions of fluid pressure p with respect to boundary stress g4h in the direction

ḡ =
∑Ng

i=0φi when δ= 1 (left) and δ= 0 (right).
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Figure 1.36 Sensitivity functions of fluid pressure p with respect to boundary sourceψ4h in the direction
φ̃0 when δ= 1 (left) and δ= 0 (right).

and ḡ =
∑Ng

i=0φi (see Fig. 1.41), there is a difference of at least three orders of magnitude. We also

see a drastic difference in magnitude of the sensitivities of v with respect toψ4h for the viscoelastic

case versus the purely elastic case.

In regards to the sensitivity of the discharge velocity v with respect to the boundary traction

g4h , we see from Fig. 1.39-Fig. 1.41 that the discharge velocity, among the three state variables, is

the most sensitive to the boundary datum g4h . This could explain why the fluid energy (which is

dependent on the discharge velocity and the permeability) seems to become unbounded when
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Figure 1.37 Sensitivity functions of fluid pressure p with respect to boundary sourceψ4h in the direction
φ̃3 when δ= 1 (left) and δ= 0 (right).
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Figure 1.38 Sensitivity functions of fluid pressure p with respect to boundary sourceψ4h in the direction

ψ̄=
∑Nψ

i=0 φ̃i when δ= 1 (left) and δ= 0 (right).

the data loses smoothness in time [39]. We also see that the surfaces associated with the discharge

velocity sensitivities with respect to g4h are less smooth and much sharper in this case than in Case

3 (where permeability is constant).

In comparison to the solid displacement and fluid pressure sensitivities with respect to g4h ,

the sensitivity of the discharge velocity with respect to the boundary data g4h seems to increase

towards the left end point x =−1 of the domain in both the elastic and visco-elastic cases. This was

explained when first observed in Case 3.
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Figure 1.39 Sensitivity functions of discharge velocity v with respect to boundary stress g4h in the direc-
tionφ0 when δ= 1 (left) and δ= 0 (right).
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Figure 1.40 Sensitivity functions of discharge velocity v with respect to boundary stress g4h in the direc-
tionφ3 when δ= 1 (left) and δ= 0 (right).

Here we also include the solution graphs for Case 4 in Fig. 1.45-Fig. 1.47. Note, the values u and

p are given at the midpoints of the partition subintervals (xi , xi+1) of (x0, x f ).

1.4.1.5 Irregular Boundary Data - Case 5

In [39], the following example is used to study how time regularity in the boundary source term

influences the solid displacement and fluid pressure in the presence and absence of viscosity. Let us

consider again the system given in Eq. 1.38 in the space-time domain (x0, x f )× (0, T ) = (−1, 1)× (0, 2),
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Figure 1.41 Sensitivity functions of discharge velocity v with respect to boundary stress g4h in the direc-

tion ḡ =
∑Ng

i=0φi when δ= 1 (left) and δ= 0 (right).
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Figure 1.42 Sensitivity functions of discharge velocity v with respect to boundary sourceψ4h in the direc-
tion φ̃0 when δ= 1 (left) and δ= 0 (right).

so that L = 2 cm and T = 2 s. To help us see the effect better, we study the problem in the absence of

volumetric sources of linear momentum and mass:

F5(x , t ) = S5(x , t ) = 0, (1.139)

59



2
1.5

1

t
0.5

dv/d-3

0-1

-0.5
x

0

0.5

1

-0.2

0

1.2

0.2

0.4

0.6

0.8

1

dv
/d
-
3

0

0.2

0.4

0.6

0.8

1

(a) δ= 1

2
1.5

1

t
0.5

dv/d-3

0-1

-0.5
x

0

0.5

#108

1

0.5

0

-0.5

-1

-1.5

-2

-2.5
1

dv
/d
-
3

#107

-20

-15

-10

-5

0

5

(b) δ= 0

Figure 1.43 Sensitivity functions of discharge velocity v with respect to boundary sourceψ4h in the direc-
tion φ̃3 when δ= 1 (left) and δ= 0 (right).
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Figure 1.44 Sensitivity functions of discharge velocity v with respect to boundary sourceψ4h in the direc-

tion ψ̄=
∑Nψ

i=0 φ̃i when δ= 1 (left) and δ= 0 (right).

with boundary conditions given by







u = p = 0, x0 =−1,

v n = 0, σn = cgGq (t , ; ta , tb ), x f = 1,
(1.140)
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Figure 1.45 Solution functions of solid displacement u when δ= 1 (left) and δ= 0 (right).
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Figure 1.46 Solution functions of fluid pressure p when δ= 1 (left) and δ= 0 (right).

where

Gq (t ; ta , tb ) =
1

2
[tanh(q (t − ta ))− tanh(q (t − tb ))], (1.141)

ta = 1−T /8, tb = 1+T /8, cg = 0.01 dynecm−2.

We will consider both g 100
5 =G100(t ; ta , tb ) and g∞5 =G∞(t ; ta , tb ). In both cases, we approximate

g
q
5 using linear splines as described in Section 1.3.1 (see Fig. 1.48). Namely,

g
q
5 (t )≈ g

q
5h =

20
∑

i=0

αiφi .
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Figure 1.47 Solution functions of discharge velocity v when δ= 1 (left) and δ= 0 (right).

Note that we have setψ= 0 in this case in order to better examine the effect of the boundary traction

g
q
5 . So, we do not consider sensitivities with respect to ψ in this case. The results are shown in

Fig. 1.49 through Fig. 1.63.

Remark 1.4.2 The spline approximation to the step function g∞5 does not appear to be significantly

different enough from the spline approximation to g 100
5 to have a noticeable effect on the computations.
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Figure 1.48 Linear spline approximations of g q
5 for q = 100 (left) and q =∞ (right).
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Figure 1.49 Sensitivity functions of solid displacement u with respect to boundary stress g 100
5h in the direc-

tionφ0 when δ= 1 (left) and δ= 0 (right).
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Figure 1.50 Sensitivity functions of solid displacement u with respect to boundary stress g 100
5h in the direc-

tionφ5 when δ= 1 (left) and δ= 0 (right).

Observations From Figures 1.49-1.63 we again see that the magnitude of the sensitivities is

bigger for the case when δ= 0 that when δ= 1. This suggests that the purely elastic model is more

sensitive to the boundary traction than the visco-elastic model. We also note that in the elastic case

δ = 0, the effect of the boundary data on the solutions (u , p ) is quite significant throughout the
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Figure 1.51 Sensitivity functions of solid displacement u with respect to boundary stress g∞5h in the direc-
tionφ0 when δ= 1 (left) and δ= 0 (right).
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Figure 1.52 Sensitivity functions of solid displacement u with respect to boundary stress g∞5h in the direc-
tionφ5 when δ= 1 (left) and δ= 0 (right).

domain. In comparison, the boundary effects on (u , p ) diminish as we go farther from the boundary

for the case when δ= 1. The opposite is true of the sensitivities of v .

We also observe that the sensitivity graphs appear to be similar to those in Case 3, where the

permeability is constant. Here, even though the permeability is nonlinear, the system is driven

only by the boundary stress data g
q
5 . In comparison, the sensitivities with respect to the boundary

traction in the previous case (Case 4) are quite different, and this could be explained by the system’s

complexity due to the interaction between the nonlinear permeability k , body force F , and net

volumetric fluid production rate S .
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Figure 1.53 Sensitivity functions of solid displacement u with respect to boundary stress g∞5 in the direc-

tion ḡ =
∑20

i=0φi when δ= 1 (left) and δ= 0 (right).
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Figure 1.54 Sensitivity functions of fluid pressure p with respect to boundary stress g 100
5h in the directionφ0

when δ= 1 (left) and δ= 0 (right).
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Figure 1.55 Sensitivity functions of fluid pressure p with respect to boundary stress g 100
5h in the directionφ5

when δ= 1 (left) and δ= 0 (right).
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Figure 1.56 Sensitivity functions of fluid pressure p with respect to boundary stress g∞5h in the directionφ0

when δ= 1 (left) and δ= 0 (right).
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Figure 1.57 Sensitivity functions of fluid pressure p with respect to boundary stress g∞5h in the directionφ5

when δ= 1 (left) and δ= 0 (right).

2
1.5

1

t
0.5

(Dgp)7g

0

-0.5
x

0

0.5

-0.1

0

-0.5

-0.4

-0.3

-0.2

(D
g
p
)7g

-0.5

-0.4

-0.3

-0.2

-0.1

0

(a) δ= 1

2
1.5

1

t
0.5

(Dgp)7g

0

-0.5
x

0

0.5

-0.7

-0.9

0

-0.1

-0.8

-0.2

-0.3

-0.4

-0.5

-0.6(D
g
p
)7g

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(b) δ= 0

Figure 1.58 Sensitivity functions of fluid pressure p with respect to boundary stress g∞5 in the direction

ḡ =
∑20

i=0φi when δ= 1 (left) and δ= 0 (right).
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Figure 1.59 Sensitivity functions of discharge velocity v with respect to boundary stress g 100
5h in the direc-

tionφ0 when δ= 1 (left) and δ= 0 (right).
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Figure 1.60 Sensitivity functions of discharge velocity v with respect to boundary stress g 100
5h in the direc-

tionφ5 when δ= 1 (left) and δ= 0 (right).
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Figure 1.61 Sensitivity functions of discharge velocity v with respect to boundary stress g∞5h in the direc-
tionφ0 when δ= 1 (left) and δ= 0 (right).
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Figure 1.62 Sensitivity functions of discharge velocity v with respect to boundary stress g∞5h in the direc-
tionφ5 when δ= 1 (left) and δ= 0 (right).
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Figure 1.63 Sensitivity functions of discharge velocity v with respect to boundary stress g∞5 in the direc-

tion ḡ =
∑20

i=0φi when δ= 1 (left) and δ= 0 (right).
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1.4.2 Varying Structural Viscosity

In all of the previous examples, we can see that states (u , p , v ) are more sensitive to the boundary

traction in the purely elastic case δ = 0 in comparison to the visco-elastic scenario δ = 1. In this

section, we further investigate the importance of the viscosity parameter by considering a variety

of values for δ, and studying the effect of the boundary stress g on the solid displacement, fluid

pressure, and discharge velocity in all these cases. We focus on two main ranges for δ: 0≤δ≤ 1 vs.

1≤δ≤ 2. In these computations, we use the same set up as in Case 4, now with constant boundary

function g4 = 1.
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Figure 1.64 Sensitivity of u to boundary traction g for various values of 0≤δ≤ 1.
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Figure 1.65 Sensitivity of u to boundary traction g for various values of 1≤δ≤ 2.

First we discuss the behaviors of the sensitivities of the solid displacement u with respect to the

boundary datum g , shown in Fig. 1.64 and Fig. 1.65. For 0≤δ≤ 1, we can see that the sensitivities

of the elastic displacement with respect to g do not follow a “prescribed” pattern, as we have two
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different scenarios at the three times chosen. At times t = 0.025 and t = 2, we note that the solid

displacement is more sensitive for δ= 0 and there is clear pattern: the more visco-elasticity (i.e., the

bigger the δ), the less sensitive the solid displacement is to g . At time t = 0.975, the sensitivity of the

solid displacement is two to three times smaller for values of δ close to 1 compared to values of δ

close to 0. However, it can also be observed that the sensitivity for δ= 0.25 is slightly bigger than the

one computed for δ= 0 through the space domain. This could suggest that there is a range of small

values of δ around 0 for which the sensitivity of the solid displacement stays within the same range

as the one in the case of δ= 0.

In comparison, for 1≤δ≤ 2, the graphs for the sensitivities of solid displacement show a solid

trend for all the times considered: the larger the value of δ, the smaller the sensitivity. This suggests

that the value δ = 1 may be a “safe value” in terms of assuring that the sensitivity of the solid

displacement will continue to decrease as δ increases above 1.

Comparing Fig. 1.64 and Fig. 1.65, we note that the magnitudes of the sensitivities are smaller for

1≤δ≤ 2 compared to 0≤δ≤ 1, which agrees with what we observed in the previous investigations

(Case 1 - Case 5).
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Figure 1.66 Sensitivity of p to boundary traction g for various values of 0≤δ≤ 1.

Regarding the sensitivities of the fluid pressure to the boundary datum g (Fig. 1.66 and Fig. 1.67),

when 0≤δ ≤ 1, the behavior of the sensitivities is “complex”. The various curves are intersecting

with each other, hinting that different parts of the domain would have a different sensitivity to the

data depending on the level of viscoelasticity. Thus, the choice of δ would affect differently various

regions within the domain. Even in the case of 1 ≤ δ ≤ 2, the graphs do not show any pattern: at

t = 0.025, the magnitude of the sensitivities decreases as δ gets larger, at t = 0.975, the behavior is

quite the opposite, with the magnitude of the sensitivities increasing as δ gets larger, and at t = 2

the graphs of the sensitivities intersect and reverse their order in magnitude at around x =−0.65.

The sensitivities of the discharge velocity with respect to the boundary datum g show a clear
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Figure 1.67 Sensitivity of p to boundary traction g for various values of 1≤δ≤ 2.
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Figure 1.68 Sensitivity of v to boundary traction g for various values of 0≤δ≤ 1.
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Figure 1.69 Sensitivity of v to boundary traction g for various values of 1≤δ≤ 2.

“order” in magnitudes at most of the times considered (see Fig. 1.68 and Fig. 1.69). For both 0≤δ≤ 1

and 1≤ δ ≤ 2, the sensitivity increases as δ gets smaller. There is one exception at time t = 0.975,

in the case of 1 ≤ δ ≤ 2: the boundary source g is applied at x = 1, and around in the interval

x ∈ [−1,−.4], the sensitivities lose the expected “ordering”, as their magnitudes fluctuate close to 0.

It is also interesting to see the big difference in the magnitudes of the sensitivities between δ= 0

and values of δ close to 2. This again suggests that the discharge velocity becomes heavily sensitive

to the boundary data of traction when visco-elasticity is not present in the system.
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Figure 1.70 Sensitivity of u toψ for various values of 0≤δ≤ 1.
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Figure 1.71 Sensitivity of u toψ for various values of 1≤δ≤ 2.
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Figure 1.72 Sensitivity of p toψ for various values of 0≤δ≤ 1.

As can be seen from Fig. 1.70-Fig. 1.75, the sensitivities of the states with respect toψ don’t show

a clear pattern as δ changes. This is true for both scenarios 0≤δ≤ 1 and 1≤δ≤ 2.
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Figure 1.73 Sensitivity of p toψ for various values of 1≤δ≤ 2.
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Figure 1.74 Sensitivity of v toψ for various values of 0≤δ≤ 1.
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Figure 1.75 Sensitivity of v toψ for various values of 1≤δ≤ 2.
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1.5 Dimensional Analysis

The numerical results presented in Section 1.4 show that the solution (solid displacement, fluid

pressure and discharge velocity) is more sensitive to boundary traction in the elastic case than in the

visco-elastic scenario. However, we do not see a direct correlation between the sensitivities and the

viscous effects present in the solid component as was expected. In Section 1.4.2, we show that the

sensitivities are not monotonic with respect to the amount of structural viscosity included and rather

exhibit complex behavior in space and time. This result prompts the need for dimensional analysis,

where relevant physical and geometrical parameters of the problem are combined in dimensionless

numbers that can be used to establish some equivalences between behaviors of apparently different

systems [186].

In [186], a dimensional analysis of the system is provided. Moreover, the response of deformable

porous media with incompressible constituents to external applied loads (either step or trapezoidal

pulses) and the role that the structural viscosity plays in this response were analyzed for the 1-D pro-

totype. The authors showed that the fluid velocity within the medium could increase tremendously

(even up to infinity), should the external applied load experience sudden changes in time and the

structural viscoelasticity be too small. The authors also identify some dimensionless parameters

that could be used in the design of structural properties and experimental conditions in order to

maintain the fluid velocity within the medium below a desired threshold, and implicitly prevent

potential damage to the material (which could be, for example, a biological tissue).

Here, we complement the results given above in Section 1.4 as well as those from [186] by

numerically investigating the sensitivities of the 1-D dimensionless poro-visco-elastic solutions

to applied boundary loads and their dependence on the dimensionless parameters identified

in [186]. Due to the complex behavior the sensitivities exhibit in space and time as functions of δ,

we conclude that δmay not be a good control parameter for the system. For this reason, we here

present a sensitivity analysis on a dimensionless version of the model given in Eq. 1.38, which may

highlight more clearly which physical and geometrical parameters of the problem will act as good

control parameters.

1.5.1 Confined Compression

Confined compression is one of a number of mechanical testing regimes that are used to characterize

properties of biological tissues. Being able to establish the compressive, tensile, bending, shear, or

elastic and viscous properties of tissues is an important step in understanding the mechanics of the

tissue. This is necessary in order to engineer materials that can act as tissue substitutes in order to

replace and restore damaged tissues [83].

In confined compression, the biological material is placed in a confining chamber with the
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bottom fixed (see Fig. 1.76). A permeable piston applies a compressive load at the top of the chamber

while allowing the fluid in the tissue to exude unimpeded so that the tissue can be compressed. Due

to the confinement, deformation occurs only in the longitudinal (x ) direction and there is minimal

lateral flow.

Figure 1.76 Schematic of confined compression as presented in [186].

One of the tests done using confined compression are creep tests. In these tests, the tissue is put

under a constant load for a period of time before suddenly removing the load. The response of the

tissue is measured through the strain of the material as a function of time. Utilizing these results

along with mathematical models that can recreate such results allows one to quantify the elastic

and viscous properties of the tissue [142]. In poro-visco-elastic materials, creep tests have shown

that materials that have more viscoelastic effects take longer to reach equilibrium after the applied

load [127]. The phenomena of fluid load support has also been observed [173]. This phenomena

describes the pressurization of the fluid in the initial phases of loading in order to support up to

90% of the load. Over time, the load is transferred entirely to the strain and the pressures subsides.

When this occurs, the tissue reaches its equilibrium deformation.

In the rest of this section, we will put ourselves in the framework of a confined compression

creep test. Our simulation results correspond closely with those observed in these tests on poro-

visco-elastic materials, thus acting as validation for our model.
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1.5.2 Dimensionless Model

We again consider the 1-D poro-visco-elastic model presented in Section 1.2.1.2. Along with the

assumptions of small deformations, full saturation of the mixture, incompressibility of the mix-

ture constituents, and negligible inertia, we now also assume zero volumetric sources of linear

momentum and fluid mass. This results in the homogeneous system



























































∂ σ
∂ x = 0, in (0, L )× (0, T ),
∂ ζ
∂ t +

∂ v
∂ x = 0, in (0, L )× (0, T ),

u (0, t ) = 0, t ∈ (0, T ),

v (0, t ) = 0, t ∈ (0, T ),

σ(L , t ) =−P (t ), t ∈ (0, T ),

p (L , t ) = 0, t ∈ (0, T ),

u (x , 0) = 0, x ∈ (0, L ).

(1.142)

We note that the boundary conditions here correspond with the setup in a confined compression

creep test and that we have replaced g from early sections with −P to represent the applied load.

Though permeability often depends nonlinearly on the dilation of the solid in biological applications,

we will assume here that the permeability k = k0 is constant. This is an assumption made in [186]

where the dimensionless model is presented, and was needed in order to solve the system analytically

and determine appropriate characteristic (or scaling) values. Thus, the discharge velocity is now

given by

v =−k0
∂ p

∂ x
. (1.143)

Following [186], we define the dimensionless (or scaled) variables to be

x̂ =
x

[x ]
, t̂ =

t

[t ]
, P̂ =

P

[P ]
, σ̂=

σ

[σ]
, û =

u

[u ]
, v̂ =

v

[v ]
, p̂ =

p

[p ]
.

The bracket notation used above denotes the characteristic value for the respective variable. We

note that the choice of characteristic values is not trivial and, in general, characteristic values are

not unique. In this work, we select the characteristic values found in [186], which are given by

[x ] = L , [t ] =
L 2

k0(λe +2µe )
, [P ] = Pr e f , [σ] = Pr e f ,

[u ] =
Pr e f L

λe +2µe
, [v ] =

k0Pr e f

L
, [p ] = Pr e f ,

where Pr e f is a reference value, for example the mean value of the given function P (t ).
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For T̂ = T
[t ] , the dimensionless system is then given by



























































∂ σ̂
∂ x̂ = 0, in (0, 1)× (0, T̂ ),
∂ 2û
∂ t̂ ∂ x̂ +

∂ v̂
∂ x̂ = 0, in (0, 1)× (0, T̂ ),

û (0, t̂ ) = 0, t̂ ∈ (0, T̂ ),

v̂ (0, t̂ ) = 0, t̂ ∈ (0, T̂ ),

σ̂(1, t̂ ) =−P̂ (t̂ ), t̂ ∈ (0, T̂ ),

p̂ (1, t̂ ) = 0, t̂ ∈ (0, T̂ ),

û (x̂ , 0) = 0, x̂ ∈ (0, 1),

(1.144)

with constitutive equations

σ̂=
∂ û

∂ x̂
+ η̂

∂ 2û

∂ t̂ ∂ x̂
− p̂ , (1.145)

v̂ =−
∂ p̂

∂ x̂
. (1.146)

The parameter η̂ in (1.145), given by

η̂=
K0

L 2
δ(λv +2µv ), (1.147)

is the analog to the viscoelastic parameter δ used above (and in [16,18,39]). Note that if δ= 0, which

corresponds to the poro-elastic case, then we also have η̂= 0.

The solution to the dimensionless system was found in [186] to be

û (x̂ , t̂ ) =−2
∞
∑

n=0

(−1)n yn (x̂ )

1+ η̂λ̂n

exp

�

−
λ̂n

1+ η̂λ̂n

t̂

�

∗ P̂ (t̂ ), (1.148)

p̂ (x̂ , t̂ ) = 2
∞
∑

n=0

(−1)n y ′n (x̂ )
Æ

λ̂n (1+ η̂λ̂n )

�

P̂ (t̂ )−
λ̂n

1+ η̂λ̂n

exp

�

−
λ̂n

1+ η̂λ̂n

t̂

�

∗ P̂ (t̂ )

�

, (1.149)

v̂ (x̂ , t̂ ) = 2
∞
∑

n=0

(−1)n yn (x̂ )

1+ η̂λ̂n

�

P̂ (t̂ )−
λ̂n

1+ η̂λ̂n

exp

�

−
λ̂n

1+ η̂λ̂n

t̂

�

∗ P̂ (t̂ )

�

, (1.150)

σ̂(x̂ , t̂ ) =−P̂ (t̂ ), (1.151)
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where ′ denotes ordinary differentiation, ∗ denotes convolution, and, for n = 0, 1, . . . ,

λ̂n =
(2n +1)2π2

4
, (1.152)

yn (x̂ ) = sin
�q

λ̂n x̂
�

. (1.153)

1.5.3 Numerical Procedure

In this case, since the series solution is known and the system is linear, we can compute series

representations of the sensitivities analytically. However, if we allow permeability to be nonlinear

(which is the next step in this analysis), we will need to use computational methods in order to

obtain approximate sensitivities.

The system was solved numerically using the approach outlined in Section 1.2.3. The resulting

solution was validated against the series approximations (1.148)-(1.150). The norm used to measure

the difference of the approximated solution with the series approximation is given by

‖w ‖Q := sup
t ∈[0,T̂ ]

‖w (t )‖L 2(0,1) (1.154)

for any function w (x , t ). Using this norm, we found that our algorithm consistently gives solutions

within 10−5 of the series approximation. Sensitivities were again computed using the complex step

method and were validated using series approximations to the sensitivities (which were obtained

using (1.148)-(1.150)). This suggests that the complex step method may be an appropriate method

for computing sensitivities in the case of nonlinear permeability. Thus, this work both studies the

sensitivity of the system in the case of constant permeability and provides evidence for the use of

the complex step method when the permeability is a nonlinear function of dilation.

1.5.4 Selected Results

In this section, we look at the sensitivities of û , p̂ , and v̂ with respect to P̂ in the direction P̄ of

the linear splines shown in Figure 1.77. In particular, we display here the sensitivities of û in the

direction of P̄ = s2 (Figure 1.77, middle panel) and the sensitivities of p̂ , v̂ in the direction P̄ = s1

(Figure 1.77, left panel). We note that the behaviors shown and discussed here are typical of the

sensitivities for the other splines as well. Understanding the behavior of the sensitivities in the

direction of these splines unveils how the sensitivities will behave in any direction that can be

accurately approximated by linear splines.

General Comments. We note the following common trend: the sensitivity curves (for all three

variables û , p̂ and v̂ ) appear to follow similar behaviors regardless of the value of η̂, except for
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Figure 1.77 Linear splines

times that are close to a discontinuity in the direction P̄ (here, at t̂ = 0). Away from times near a

discontinuity, the two main differences (with respect to η̂) between the sensitivity curves appear to

be their maximum magnitude and the rate at which they react to changes in the slope of P̄ . For the

magnitudes of the sensitivities, we do see that the maximum is monotonic with respect to η̂, with

smaller values of η̂ resulting in larger maximum magnitudes. This monotonicity in magnitudes,

however, is not true over all time and space. Rather, we see that for smaller values of η̂, the sensitivities

tend to react more quickly to changes in the slope of P̄ which causes the sensitivities for different

values of η̂ to “cross over” each other. In fact, it appears that there is a “lag” in the sensitivities

for larger values of η̂which visually manifests itself in the appearance of the sensitivity curves for

smaller values of η̂ “leading” the sensitivity curves for larger values of η̂ in monotonic order.

On the other hand, near times where P̄ has a discontinuity, the sensitivities show drastically

different behavior depending upon whether η̂= 0 or η̂ > 0. This is particularly true for the sensitivities

of p̂ and v̂ when η̂= 0, which show discontinuities and blow up (respectively) near the boundary

x̂ = 1 where the boundary traction is imposed. This is discussed in more detail below.

Sensitivity of the solid displacement û . Fig. 1.78 shows the sensitivities of û in the direction

P̄ = s2 at some conveniently selected times t̂ , for various values of η̂ ∈ [0, 1]. We chose these particular

snapshots to include specific times when the slope of P̄ is constant (either positive or negative), as

well as changing, and show the behavior of the sensitivities in those scenarios. In general, we found

that the magnitude of the sensitivity of û with respect to P̂ depends mostly upon the magnitude of

P̄ . While P̄ is increasing away from zero, we see the magnitudes of the sensitivities of û increasing

as well. Similarly, when P̄ starts decreasing back to zero, we see the magnitudes of the sensitivities

of û decrease as well, though there is a slight lag in their response which is proportional to the value

of η̂.

Note that the bottom right panel of Fig. 1.78 shows the crossing over of the sensitivities due

to the change in slope of P̄ from positive to negative. This is due to a lag in the reaction of the

sensitivities to this change of slope (which occurs at t̂ = 1.5). To illustrate this lag further, we plot
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Figure 1.78 Sensitivity of û to P̂ in direction s2(t ) for 0≤η≤ 1

the maximum value of the magnitude of the sensitivity of û in the direction s2 against the time at

which it occurs in Fig. 1.79a. Here, we see that smaller values of η̂ indeed lead to sensitivities with

larger magnitudes, which are obtained in shorter time spans. This corresponds to the lag we see in

Figure 1.78 in sensitivities with larger η̂ values.

Sensitivity of the pressure p̂ . In Figure 1.80, we show the sensitivities of p̂ in the direction

P̄ = s1 for various values of η̂ ∈ [0,1]. Overall, we see that p̂ is most sensitive when the direction P̄

has nonzero slope. When P̄ is constant, the sensitivities of p̂ collapse to 0. Overall, it appears that,

for the most part, when the slope of P̄ is nonzero we have larger sensitivities for smaller values of η̂.

When the slope of P̄ is zero, the sensitivities for smaller values of η̂ collapse more quickly causing

the sensitivity curves for various values of η̂ to cross over each other similar to the sensitivities of û .

Interestingly, while we do see that the senstivities of p̂ for larger values of η̂ react more slowly to

changes in the direction P̄ , the time at which the sensitivities attain their maximum is the same for
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Figure 1.79 Maximum magnitude of sensitivities and the time at which it occurs for each value of η̂ consid-
ered.

all η̂ (see Figure 1.79b). This indicates that, unlike the sensitivities of the solid displacement û , the

sensitivities of p̂ are not exhibiting a true lag in reaction time. Rather, the response of the sensitivities

of p̂ to a change in P̄ is simply smaller for larger η̂. To investigate this further, we computed the time

derivative of the sensitivities using a central finite difference. Figure 1.81 shows the results at x̂ = 0

for p̂ (left panel) and at x̂ = 1 for v̂ (right panel). Note that the value of x̂ was chosen to correspond

with where we see the largest changes in the magnitude of these sensitivities. These plots show that

the sensitivities do appear to respond at the same time, however the response when η̂= 0 is much

larger than the rest and in general smaller η̂ corresponds to a larger response.

Sensitivity of the velocity v̂ . Figure 1.82 shows the sensitivities of v̂ in the direction P̄ = s1 for

various values of η̂ ∈ [0, 1]. In general, we see that the sensitivities of v̂ are similar to the sensitivities

of p̂ in that they are most sensitive when the slope of P̄ is nonzero and collapse when the slope of P̄

is zero. We also see here that the senstivities attain their maximum magnitude at the same time and

that that magnitude is larger for smaller values of η̂.

Sensitivity at time of discontinuity in P̄ (t̂ = 0). When η̂ = 0 and t̂ is close to 0 (where P̄

experiences a discontinuity) the sensitivities can display some complex and irregular behavior. The

behavior here is of particular interest since, as is noted in [186], the discharge velocity experiences

blow up in the purely elastic case of η̂= 0 when P̂ has a jump. Here, we see that at t̂ = 0 and for η̂= 0

the sensitivity of p̂ experiences a discontinuity at x̂ = 1 (note the boundary condition on p̂ at x̂ = 1

is a homogeneous Dirichlet condition) and the sensitivity of v̂ blows up at x̂ = 1. These sensitivities
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Figure 1.82 Sensitivity of v̂ to P̂ in direction s1(t ) for 0≤η≤ 1.

are shown in Figure 1.83. Note that the log of the sensitivity of v̂ (right panel) is shown to better

illustrate the blow up.

1.6 Conclusions and Future Work

All our numerical results show that the solution (u , p , v ) is more sensitive to the boundary traction

g in the elastic case than in the visco-elastic scenario. This could explain why the theoretical results

provided in [39] (and presented in Section 1.2.2) require the boundary source to have higher time

regularity in order to obtain the solution (u , p ) in L 2 in space and time, and with appropriate energy

estimate in terms of data, in the purely elastic case.

The effects of the boundary source g are most significant for the discharge velocity v , especially

in the purely elastic (δ = 0) case. This is very important, as the numerical investigation in [39]

hinted that the fluid energy (which is dependent on the discharge velocity) becomes unbounded as
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the boundary source of traction g loses H 1-smoothness in time, and visco-elasticity is no longer

present.

While our results consistently show that the solution (u , p , v ) is more sensitive to the boundary

traction g in the elastic case than in the visco-elastic scenario, we do not observe such consistent

results for the sensitivities with respect to boundary datum ψ. The solid displacement u , fluid

pressure p , and discharge velocity v are all more sensitive to ψ in the purely elastic case, in the

case of nonlinear permeability that is dependent on dilation. For constant permeability, the elastic

displacement is again more sensitive toψwhen δ= 0. However, the fluid pressure appears to be

more sensitive to ψ in the visco-elastic case (δ = 1) than in the purely elastic one. Further, the

magnitudes of the sensitivities of the discharge velocity with respect toψ are about the same in

both scenarios.

When we compare the sensitivities of each variable to the two boundary terms g andψ, the

difference in magnitude depends on the specific variable when permeability is constant [17]. How-

ever, in the case when permeability is nonlinearly dependent on dilation, all of the variables (u , p , v )

are consistently more sensitive toψ than they are to g , regardless of the presence or absence of

visco-elasticity in the system. This implies that, according to this preliminary analysis, while the

theoretical results in [39] focus on g and F ,ψ should not be disregarded from the control point of

view.

However, we would like to point out that apart from the presence/absence of viscosity and

nonlinearity of permeability, the sensitivity results were also dependent on other characteristics

of the problem, such as the volumetric body force F and net volumetric fluid production rate S .

This suggests that further investigation may be necessary to make definitive conclusions about the
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effects of the boundary sources g andψ.

Due to the consistency of our results for the sensitivities with respect to g , we believe that g

could be an important control parameter in future control and optimization problems governed

by poro-visco-elastic models. Specifically, we conclude that g would be an effective control for the

fluid velocity and fluid pressure. The solid displacement u , on the other hand, appears to be the

least sensitive to changes in g andψ; this motivates one to look for other ways to control the solid

displacement, such as by acting on the material elastic and viscoelastic properties. In addition,

these findings also show that small changes in the solid displacement may actually correspond

to big changes in fluid velocity and pressure, thereby suggesting that monitoring the sole solid

displacement might not be indicative of the fluid-dynamical state inside the medium.

Another important observation is that the areas within the domain exhibiting highest sensitivity

to data differ from case to case depending on whether volumetric sources of mass and momentum

are present and on whether the permeability depends on dilation. This finding suggests that each

case should be studied in detail, should the control problem be of interest in a specific application

under particular conditions.

A similar remark should be made for the influence of the viscoelastic parameter δ. Even though,

in general, lower sensitivities are associated with higher values of δ, the results reported in Section

1.4.2 exhibit complex behaviors in space and time depending on the range of δ. This might be

due to the fact that viscoelasticity introduces a time delay between stress and strain within the

material, thereby strongly affecting the dynamic behavior of the system in time and space. To further

understand this issue, we performed a sensitivity analysis on a dimensionless version of the problem.

Our results from the sensitivity analysis on the dimensionless problem consistently show that

the maximum magnitude of the sensitivities (for all three dimensionless variables û , p̂ and v̂ ) is

largest when η̂= k0
L 2δ(λv +2µv ) = 0 and gets smaller monotonically with respect to η̂. However, the

magnitudes of the sensitivities were not always monotonic with respect to η̂ and this is due to the

response of the sensitivities to changes in the slope of the direction P̄ also being dependent upon η̂.

In general, we found that the sensitivities of the solid displacement experience a lag to changes in

the slope of P̄ if η̂ > 0 with larger values of η̂ corresponding to longer lag times. On the other hand,

while the sensitivities of the fluid pressure and discharge velocity did not experience any lags in

time, their responses to changes in the slope of P̄ were markedly smaller for larger values of η̂.

These results correspond closely with results typically observed in creep tests for poro-visco-

elastic materials. The lag in the solid displacement due to the inclusion of structural viscosity is

indicative of the increase in time that it takes for the solid to reach an equilibrium after an applied

load [127]. The sharp increase in the sensitivity of the fluid pressure when the slope of the direction

P̄ changes is itself consistent with the phenomena of fluid load support in the early time response

of confined compression creep tests [173]. Further, the sensitivities of the fluid pressure collapse

to zero around times where the sensitivities of the solid displacement are experiencing negligible
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change in time. This indicates moments at which the load has been fully transferred to the strain

and the solid has reached an equilibrium which is consistent with experimental results [173].

While the magnitudes of the sensitivities were not monotonic with respect to η̂, we were still able

to observe a correlation between the value of η̂ and the extent and speed at which the sensitivities

responded to changes in the direction P̄ as well as the maximum magnitude they obtained. For

these reasons, we do believe η̂will work better as a control parameter than the measure of structural

viscosity δ. This is due to the complex behavior the sensitivities with respect to boundary traction

displayed depending upon the range of δ. Interestingly, while η̂ does itself contain δ, it is also

dependent upon the length L of the domain and the permeability k0. Here, we have only considered

constant permeability, however the dependence of η̂ upon k0 suggests that taking the permeability

k to be nonlinear (which is often more physically relevant) may result in interesting behaviors.

Considering the case of nonlinear permeability k is currently a work in progress.

Finally, our analysis shows which directions P̄ will result in the most significant changes in û , p̂ ,

and v̂ . In particular, we can increase the sensitivity for û by keeping the direction P̄ nonzero and

not changing the sign of its slope. On the other hand, p̂ and v̂ are most sensitive to directions P̄ that

are always changing. This tells us that while the solid displacement will remain sensitive to a load as

long as it is being applied, the fluid pressure and discharge velocity lose sensitivity over time unless

the force of the load itself is being changed.
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CHAPTER

2

ZONATED MODELS FOR THE LIVER

MICROSTRUCTURE WITH

APPLICATIONS IN NON-ALCOHOLIC

FATTY LIVER DISEASE

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and

can lead to cirrhosis and liver cancer. Precipitated by the build up of extra fat in the liver not caused

by alcohol, it is still not understood why steatosis occurs where it does in the liver microstructure in

NAFLD. It is likely, however, that the location of steatosis is due, at least in part, to metabolic zonation

(heterogeneity among liver cells in function and enzyme expression). Recently, there has been an

influx of computational and mathematical models in order to investigate the relationship between

metabolic zonation and steatosis in NAFLD. Of interest among these models are “compartments-

in-series” models. These compartmental models include the spatial distribution of metabolite

concentrations via series of compartments that are connected through some representation of

blood flow. Here, we analyze one such model, looking at how the number of compartments as well

as inclusion of dispersion in the flow affect simulation results.
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2.1 Non-alcoholic Fatty Liver Disease

Non-alcholic fatty liver disease (NAFLD) encompasses a spectrum of liver disease that begins

as noninflammatory build-up of extra fat in liver cells (steatosis), can progress to non-alcoholic

steatohepatitis (NASH) which is the occurrence of inflammation and liver damage in addition to the

steatosis, and can eventually lead to cirrhosis [8,14,87]. Globally, an estimated 11-46% of people suffer

from NAFLD [8,14,81]. Approximately 25-40% of patients with NAFLD will progress to NASH [14]with

40-50% of patients developing fibrosis and 20% developing cirrhosis [10]. The increasing prevalence

of NAFLD has been linked to the rise of obesity [10] and is strongly associated with insulin resistance

and type 2 diabetes mellitus [10, 14, 81, 87]. Considered the hepatic manifestation of metabolic

syndrome [14, 42, 87], NAFLD is currently the most common cause of chronic liver disease [8, 14]

with NASH currently the second leading cause of cirrhosis in adults waiting for liver transplants in

the United States [8, 81, 84] and expected to become the first leading cause by 2030 [8, 10]. It has also

been suggested that a recent increase in the prevalence of hepatocellular carcinoma is caused by

NAFLD [8, 184].

As the prevalence of NAFLD continues to increase, the cause and pathogenesis of the disease

remains an area of intensive study. Though our understanding of this disease has progressed sub-

stantially and continues to grow, there is much still to uncover. The pathogenesis of NAFLD is

multifactorial and extremely complex, comprised of both environmental and genetic factors though

the specific contributions of these are not yet known [8]. Further, though the metabolic processes

involved in steatosis have been investigated for decades, there is still much unknown about why

lipids accumulate where they do in the liver.

In the continuing investigation of this disease, mathematical and computational models will

serve an important role as they give us the ability to explore the complex relationships between

various components in a low cost setting. In this paper, we will look at a model of the liver metabolism

and examine certain aspects of it in order to inform future development of such models.

2.2 Liver Biology

The liver is the main metabolic organ in the human body and, as such, plays a central role in the

regulation of key metabolites including glucose and free fatty acid (FFA). Most of the metabolic

processes that occur in the liver take place in the hepatocyte, the main cell type of the liver. These

hepatocytes are tightly organized into tesselating columns embedded into liver lobules which make

up each of the four lobes of the liver. The lobules have hexagonal cross sections, each corner of

which harbors a portal triad which is comprised of a bile duct, hepatic artery (which supplies the

hepatocytes with oxygenated blood), and a portal vein (which supplies the hepatocytes with nutrient

filled blood). The blood exits the lobule through the central vein which is located at the center of the
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Figure 2.1 Portal axis of a liver sinusoid.

hexagonal structures. Numerous capillaries, called sinusoids, connect the periportal blood vessels

of the portal triad with the central vein (see Fig. 2.1). These sinusoids are surrounded by the columns

of hepatocytes and are the mechanism through which the hepatocytes have access to the blood

provided by the portal triad.

2.2.1 Zonation

Hepatocytes vary in enzyme expression and function depending upon where they lie along the sinu-

soid, a phenomena called zonation [80, 101–103, 106–108]. This heterogeneity among hepatocytes

is, at least in part, the result of differing concentrations of metabolites and signaling molecules

along the sinusoid. For example, as blood flows through the sinusoid, oxygen diffuses and is taken

up into the hepatocytes resulting in higher levels of oxygen on the periportal end of the sinusoid

(near the portal triad) and lower levels of oxygen on the pericentral end of the sinusoid (near the

central vein). This oxygen gradient was discovered decades ago and has long since been considered

a significant driving force of zonation [35, 104, 105, 110–112, 192]. Some studies have also indicated

that the hormones insulin and glucagon play an important role in the regulation of zonated gene

expression [103, 106, 151]. More recently, other signaling pathways have also been proposed and

studied as potential mechanisms for zonation [55, 89, 183].

2.2.2 Zonated steatosis

Metabolic zonation is not the only form of heterogeneity seen across the sinusoid. Most liver diseases

show a varying amount of damage across the liver microstructure [103]. In NAFLD, studies have

shown that, for adult patients, steatosis is typically most severe in pericentral cells [2,43,44,51,89,195].

However not all patients show such an aberrant accumulation of lipids on a particular part of the

sinusoid [44, 51]. Further, steatosis in pediatric patients with NAFLD tends to occur most severely in

periportal cells [195]. The cause of this “zonated steatosis” in NAFLD is still not fully understood,
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however the heterogeneity of hepatocytes likely results in certain liver cells being more vulnerable

to lipid build up than others [11]. Further, in patients who have progressed to NASH, inflammation

and fibrosis tends to be most severe on the pericentral end of the sinusoid [1, 43, 51, 89].

Although it is well known that lipids tend to accumulate heterogeneously across the sinusoid

(both in NAFLD and in other liver diseases), the effect of metabolic zonation on such zonated

steatosis has received limited attention experimentally. To great extent, this is because investigating

changes in individual regions of the sinusoid is extremely time consuming and complex [11]. Com-

putational models of liver metabolism that are spatially distributed give us the ability to explore

relationships between metabolic zonation and zonated steatosis without the high cost of experi-

mentation. Since NAFLD is induced by a change in metabolism, that is, the build up of lipids in the

liver, it is tangible that metabolic zonation plays a major role in the pathology of this disease. Thus,

the development of computational models of liver metabolism that include the spatial effects of

zonation are of utmost importance in the continuing effort to understand and find treatment for

NAFLD.

2.3 Mathematical models

Computational models have been used previously to study the effect of zonation on detoxification

processes such as the detoxification of ammonia [140], xenobiotics [169], and drugs [144,156], as well

as more generally in pharmacokinetics [7, 143]. However, few models currently exist that explicitly

consider the heterogeneous expression of enzymes which defines metabolic zonation.

Existing mechanistic models of liver metabolism that include spatial distribution can be roughly

divided into two categories depending on the types of equations used: those which use partial

differential equations (PDEs) and those which use ordinary differential equations (ODEs). As will be

shown later on, models from different categories may not always be as different from each other as

may appear at first glance. The PDE models can further be divided into models derived using the

theory of porous media and models that utilize advection or advection-dispersion equations.

The advantages of deriving a system using the theory of porous media is in the ability to more

accurately describe the process of blood perfusion through the liver lobule. This is of particular

interest since steatosis can affect hepatic hemodynamics [71,126,135,174]. In a series of publications

[157–159], Ricken et al. develop a multi scale approach that does just this, coupling the blood

perfusion through the liver lobule with a description of hepatic cell metabolism. While metabolic

zonation is not explicitly included, they are still able to simulate some zonated steatosis.

Models using advection or advection-dispersion equations to represent the blood flow in the

liver have been around for decades finding applications in many areas such as hepatic elimination,

drug clearance, and capillary tissue exchange [31, 32, 63, 143, 160]. These models have generally

been referred to as parallel-tube and distributed models (advective flow) [31, 32, 75] and dispersion
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models (advective-dispersive flow) [161]. Similar models to the dispersion model have been used in

the past decade to study aspects of hepatic metabolism as well [46, 52]. In 2006, Chalhoub et al. [52]

used advection-dispersion-reaction equations to represent the concentrations of metabolites in

the sinusoid, coupled through metabolic transport to mass-balance equations for the metabolites

in the tissue. Enzymatic zonation is included for central carbohydrate pathways, but not for lipid

metabolism. In 2008, Calvetti et al. [46] used a model similar to the one given in [52] to illustrate

how one may embed such a model of cellular liver metabolism into a Bayesian framework for

parameter estimation purposes. However, zonation is excluded from the model and the system is

only considered at steady state. Use of these types of PDEs to model the liver microstructure has

appeared to lag in the past decade as compartmental models have started to show prevalence. An

explanation for this may be due to the appearance of these PDEs as being more difficult to use in

comparison to compartmental models which are composed of ODEs [7, 82].

Compartmental models for the liver that include spatial distribution were originally inspired by

“tanks-in-series” models from chemical engineering [82] and can be considered “compartments-in-

series” models. These models are comprised of systems of ODEs derived by considering a series

of compartments that are connected together, typically through blood flow. While early models

of this type had each compartment represent both blood and tissue [82] so that there is only a

single series of compartments, modern models tend to separate blood and tissue into different

compartments with a transport between them [10, 11, 34, 140, 165]. These models have a series of

hepatic blood compartments that are connected through blood flow along with a series of tissue

compartments which are only connected to their corresponding hepatic blood compartment (i.e.,

there is no explicit connection between tissue compartments). These models often treat the series

of compartments as being lined up along the portocentral axis of the liver sinusoid, and as such

treat this as the repeating unit of the liver (rather than the hepatocyte). Recently, compartmental

models that include spatial distribution have been applied more specifically to hepatic metabolism.

Schleicher et al. [165] used a three compartment model to simulate hepatic lipid metabolism.

The hepatic blood flow is a basic advective flow that transports concentrations of metabolites in the

hepatic blood from the periportal to the pericentral end of the sinusoid. This three compartment

model is used to look at how the plasma oxygen gradient, plasma FA gradient, as well as the process

for FA uptake affect the zonation of steatosis under a high-fat diet. Despite the fact that zonated

enzyme expressions are not included in this model, model simulations do show a zonated steatosis.

A much more complex compartmental model was used by Berndt et al. [34] to study glucose

metabolism and how it is affected by zonated enzyme expressions, metabolite and hormone gradi-

ents in the sinusoid, and blood perfusion. This model includes the blood in the sinusoid, accom-

panying space of Disse, as well as the adjacent layers of hepatocytes allowing the authors to take

into account both morphological and systemic parameters. Each component (sinusoid, space of

Disse, and hepatocytes) is partitioned into 20−25 compartments and flow is modeled in both the
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sinusoid and the space of Disse as an advective-dispersive flow.

Among the most advanced compartmental models for liver metabolism is the one presented

by Ashworth et al. in [10, 11]. This 8 compartment model does not include any morphology like

the model in [34], however it does include a rather detailed representation of glucose, lipid, and

energy metabolism including zonated enzyme expressions and metabolite and hormone gradients

in the hepatic blood. The blood flow through the sinusoid is given by a simple advective flow from

the periportal to the pericentral end of the sinusoid. This model was used to investigate causes of

pericentral cell susceptibility to steatosis in NAFLD, especially in the case of insulin resistance. A

distinctive aspect of this model is the inclusion of an extra compartment that holds a simplified

representation of metabolism in the rest of the body including hormone release by the pancreas.

This extra “body” compartment acts as an input into the first hepatic blood compartment of the

series of compartments and takes the output of the final hepatic blood compartment to update its

own concentrations, thus creating a type of feedback into the system.

As NAFLD becomes more and more prevalent, the ability to perform accurate in silico exper-

iments is an integral part of uncovering important mechanisms and targets for these conditions.

Compartments-in-series models are an attractive tool that allow one to investigate how metabolic

zonation, hepatic blood gradients of metabolites and hormones, and even blood perfusion, affect

liver metabolism at various levels of complexity. In particular, these models boast the ability to

investigate various aspects of liver metabolism with sharp detail while keeping computational times

reasonable. However, one may question if the simplification to a number of compartments rather

than a continuum may result in the loss of information or misrepresentation of results. In what

follows, we will examine a model similar to the one presented in [10,11] in order to begin attempting

to answer this question. The two main goals of the current work are (i) to investigate the effect

that the number of compartments has on model simulations and (ii) to investigate the effect of

dispersion on the system.

In what follows, we will present the models of the liver microstructure under consideration.

Our models closely resembles that of [10, 11], with the main differences being how concentrations

in the systemic blood (i.e., the blood/plasma in the body excluding the liver) are modeled as well

as how we view the equations in the hepatic blood. We model the concentrations of a number of

metabolites, hormones, and oxygen in the liver sinusoid. Equations are separated into those for the

hepatocytes (referred to as hepatic equations), those for the hepatic blood (i.e., blood/plasma in the

sinusoid), and those for the systemic blood (i.e., blood/plasma in the rest of the body). While oxygen,

hormones, and metabolites are all modeled in the hepatic and systemic blood, only metabolites are

modeled in the hepatocyte. However, the concentration of hormones and oxygen in the hepatic

blood do affect the metabolic processes that occur in the hepatocyte. A full list of all the molecule

concentrations modeled is included in Table 2.1 along with what kinds of equations they have and

their abbreviated variable name that will be used to denote them throughout this chapter. Fig. 2.2

94



gives a schematic of the general structure of the models in consideration. We will use the following

notation convention: variables in the hepatocyte will have a subscript H , variables in the hepatic

blood will have a subscript H B , and variables in the systemic blood will have a subscript S B . The

only exception to this will be molecules whose concentrations are only modeled in the hepatocyte

(see the third column of Table 2.1) which will not have any subscript.

Systemic blood

Periportal end

Hepatic blood

Pericentral end

Oxygen

availability

Cross membrane 

transport of metabolites

Hepatocyte

Compartment 1

Hepatocyte

Compartment 2

Hepatocyte

Compartment 3

Hepatocyte

Compartment 4

Hepatocyte

Compartment 5

Hepatocyte

Compartment 6

Hepatocyte

Compartment 7

Hepatocyte

Compartment 8Hepatocytes

Figure 2.2 Schematic illustrating general structure of the models in consideration.

Table 2.1 All molecules represented in the model with their abbreviated variable name.
H denotes hepatic, HB denotes hepatic blood, SB denotes systemic blood.

Eq. in H, HB, SB Eq. in HB, SB Eq. in H
Glucose g C Insulin I n s Glycogen G

Triglycerides T G Glucagon G L Glucose-6-phosphate g 6p
Fatty acids F A Oxygen O x y Glycerol-3-phosphate g 3p

Glycerol g l y Acetyl-CoA a C o A
Lactate L a c Inorganic phosphate P

Guanosine Tri-phosphate g t p
Guanosine Di-phosphate g d p

Uridine Tri-phosphate u t p
Uridine Di-phosphate ud p

Adenosine Tri-phosphate a t p
Adenosine Di-phosphate a d p

Adenosine Mono-phosphate a mp
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2.3.1 Compartments-in-series model

The compartments-in-series model can be seen as many two-compartment models lined up next

to each other and connected via the blood flow through the hepatic blood compartments. Let n

be the number of hepatic compartments in use. Then, there are 8(n +1) equations in the hepatic

and systemic blood compartments and 17n in the hepatic compartments, resulting in a total of

17n + 8(n + 1) = 25n + 8 equations in this discrete model. Fig. 2.3 illustrates the structure of the

compartment-in-series model with n = 8 hepatic compartments.

Systemic Blood

Periportal End

Hepatic Compartments

Hepatic Blood Compartments

Pericentral End

Oxygen

availability

Cross membrane 

transport of metabolites

Hepatocyte

Compartment 1

Hepatocyte

Compartment 2

Hepatocyte

Compartment 3

Hepatocyte

Compartment 4

Hepatocyte

Compartment 5

Hepatocyte

Compartment 6

Hepatocyte

Compartment 7

Hepatocyte

Compartment 8

Figure 2.3 Schematic of compartments-in-series model.

2.3.1.1 Hepatic compartments

In the model presented in [10, 11], the rate of hepatic metabolic processes are modeled through the

use of Hill functions. Rather than modeling every individual enzyme, sections of metabolic pathways

are often modeled by a single function, thus depending upon a number of intermediate enzymes

rather than a single one. Each substrate and allosteric activator/inhibitor is represented by a Hill

function and the rate of the process is calculated to be the product of these Hill functions. Hormonal

regulation of metabolic processes is modeled differently depending upon the strength and speed

with which the hormone is known to act on the process. The hepatic metabolic processes included

in the model are given in Appendix A along with the function for the rate of that process. Every

hepatic compartment has the same processes modeled in it, however the rate of these processes

vary due to zonation. An explanation for how zonation is included in the model is given below in

Section 2.3.1.1.2. The hepatic equations are given in Appendix B.1.
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2.3.1.1.1 Transports

The transport of metabolites between plasma and hepatocyte are modeled similarly to the metabolic

processes within the hepatic compartment. For uni-directional transports, the rate is calculated

using a Hill function where the plasma molecule is treated as the substrate and the hepatic molecule

as the product. For bi-directional transports, the rate is calculated by a “Hill-like” function that

depends on the difference in concentration of the molecule between the plasma and hepatocyte.

The rates of transport of metabolites between plasma and hepatocyte are given below.

Glycerol transport. The glycerol transport is just a simple bi-directional transport:

T g l y
i =

v g l y ([g l yH B ]i − [g l yH ]i )

K
g l y

M + [g l yH B ]i + [g l yH ]i
. (2.1)

Triglyceride transport. The triglyceride transport is made up of both a bi-directional and a

uni-directional transport. The uni-directional transport represents the release of VLDL (very large

density lipids) from the liver into the plasma. The full transport then is given by

T T G
i =−

v V LD L [T GH ]i
K V LD L

M + [T GH ]i
+

v T G
�

[T GH B ]i −
[T GH ]i
T Gr e f

�

K T G
M + [T GH B ]i +

[T GH ]i
T Gr e f

, (2.2)

where T Gr e f is used to ensure the bi-directional component does not give a constant output from

the hepatocyte (i.e. always < 0).

Fatty acid transport. The regulation of fatty acid (FA) transport and uptake into the liver is a

complex and often debated topic [130]. There is strong evidence for protein-mediated FA uptake

with a number of membrane proteins being implicated [4, 130]. In particular, in the liver such

proteins include fatty acid translocase FAT/CD36 [45, 130, 133], liver fatty acid binding protein

LFABP [139, 155], and fatty acid transport proteins, specifically FATP2, FATP3, and FATP5 [4, 37, 38,

66, 67, 72, 130, 134]. Passive diffusion also contributes to hepatic FA uptake, however this process is

minimal in comparison to facilitated uptake [130].

In [10, 11], the FFA transport is composed of a uni-directional, insulin dependent term and

a bi-directional, insulin independent term. We omit the insulin dependent term here as, under

physiological conditions, the hepatic FA transporters that appear to be the major players in hepatic

FA uptake (LFABP, FATP2, FATP3, and FATP5) [4, 38, 139] are not known to be regulated by insulin.

The greatest evidence for insulin regulated hepatic FA uptake is in FAT/CD36 mediated FA uptake.

FAT/CD36 is a fatty acid transporter that is regulated by muscle contraction and/or insulin

and is an important protein implicated in FA uptake by skeletal muscle cells, cardiomyocytes, and
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adipocytes [45]. Under physiological conditions, FAT/CD36 is weakly expressed in hepatocytes

suggesting FA uptake is largely FAT/CD36 independent [45]. However, there is evidence that hepatic

mRNA and protein levels of FAT/CD36 at the plasma membrane of hepatocytes increases in patients

with NAFLD [45, 130, 133].

Of the FATP family of transporters, the only one known to be regulated by insulin is FATP1 [4].

While FATP1 does have some expression in the liver, this transport is more significant for skeletal

muscle, heart, and adipose tissue [4, 38]. In fact, studies have shown that while mice lacking FATP1

show a decrease in insulin-stimulated long chain FA uptake in adipocytes and skeletal muscle, they

actually have an increase in long chain FA uptake in the liver [193].

The fatty acid transport is a simple bi-directional transport that encompasses both transport

due to diffusion and facilitated transport:

T F A
i =

v F A([F AH B ]i − [F AH ]i )
K F A

M + [F AH B ]i + [F AH ]i
. (2.3)

Glucose transport. The glucose transport modeled here is GLUT2. This transport has both

a uni and a bi-directional component where the uni-directional component represents pumping

glucose into the hepatocyte and the bi-directional term represents the glucose diffusing into the

hepatocyte. The transport is given by

T g C
i =

v g Cp ump [g CH B ]i

K
g Cp ump

M + [g CH B ]i
+

v g Cd i f f ([g CH B ]i − [g CH ]i )

K
g Cd i f f

M + [g CH B ]i + [g CH ]i
. (2.4)

Lactate transport. The lactate transport is just a simple bi-directional transport:

T L a c
i =

v L a c ([L a cH B ]i − [L a cH ]i )
K L a c

M + [L a cH B ]i + [L a cH ]i
. (2.5)

2.3.1.1.2 Zonation

We follow the process outlined in [10] to include zonation of enzyme expressions in the model.

Specifically, zonation of the enzyme expressions are modeled through the metabolic processes

(pathways) they are involved in by utilizing information about the enzymes involved in the process

as well as the location of the hepatocyte along the sinusoid. Each hepatic compartment is assigned

a value zi ∈ [−1,1] (roughly) depending upon the concentration of oxygen in the corresponding

hepatic blood compartment. Specifically,

zi =







tanh
�

[O x yH B ]i−46.5
12

�

if [O x yH B ]i > 46.5mmHg

2 tanh
�

[O x yH B ]i−46.5
24

�

if [O x yH B ]i ≤ 46.5mmHg
. (2.6)
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Note that periportal oxygen concentrations should be approximately 65-75 mmHg and pericentral

oxygen concentrations should be approximately 30-35 mmHg so that a positive zi value indicates

the hepatic compartment is on the periportal end of the sinusoid, while a negative zi value indicates

the hepatic compartment is on the pericentral end.

Each metabolic process M is also assigned a zonation constant kM ∈ (−1, 1) that depends upon

the experimentally measured ratio of the enzyme expression in periportal cells to pericentral cells.

Specifically, if kp p : 1 is this ratio, then

kM = 1−
2kp p

|kp p |+1
. (2.7)

The rate constant for the metabolic process in hepatic compartment i is then calculated as

v M
i = (1+ zi kM )v

M
b , (2.8)

where v M
b is the base-value for the rate constant of metabolic process M .

The zonation constants for the compartments are also used to include how reception of hor-

mones change across the sinusoid. However, instead of setting v M
i to a base rate constant for a

process, it is used to scale the concentration of the hormone in the metabolic process it is regulating

(i.e. v I n s
i [I n sH B ]i is used in regulation rather than [I n sH B ]i ).

2.3.1.2 Hepatic blood compartments

In the hepatic blood compartments, the equations for the concentrations of metabolites all have

the same form which depends on the concentration in the previous compartment. For i = 1, . . . , n , if

[CH B ]i is the concentration of metabolite C in hepatic blood compartment i , then

d [CH B ]i
d t

= vb f ([CH B ]i−1− [CH B ]i )−γHT C
i , (2.9)

where vb f = 0.15n is the rate of blood flow, γH is the ratio of hepatic to hepatic blood volume, and

T C
i is the rate of transport of metabolite C between hepatic blood compartment i and hepatic

compartment i . We also set [CH B ]0 = [CS B ], the concentration of metabolite C in the systemic blood

compartment. Note that the value 0.15 in the rate of blood flow in the hepatic blood compartment

was chosen in order to make a circuit of blood flow last approximately 5 minutes [10].
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Figure 2.4 Schematic of metabolite concentration in hepatic blood for compartments-in-series liver mi-
crostructure model.

Oxygen and the hormones insulin and glucagon also have equations in the hepatic blood

compartments. The concentration of oxygen in the hepatic blood compartments promotes all

zonated expressions, while the concentrations of hormones act as regulators of the metabolic

processes in the hepatic compartments. All three of these variables are modeled with a constant

rate of degradation as the hormone travels through the sinusoid in order to simulate the oxygen and

hormone gradients that occur across the sinusoid. In particular, the equation for oxygen is set such

that the concentration of oxygen is approximately 65mmHg in the first (periportal) hepatic blood

compartment and 35mmHg in the blood in the last (pericentral) hepatic blood compartment [10].

The hepatic blood equations are given in Appendix B.1.

2.3.1.3 Systemic blood compartment

The blood flow in the systemic blood compartment is treated similarly to the blood flow in the hepatic

blood compartments. If [CH B ]n is the concentration of metabolite C is the final compartment of

the hepatic blood, and [CS B ] is the concentration in the systemic blood, then

d [CS B ]
d t

=
QH

γB
([CH B ]n − [CS B ])+S , (2.10)

where γB is the ratio between the volume of systemic blood to the volume of hepatic blood, andS
represents the rates of the metabolic processes included in the model from the rest of the body.

It is in the representation and inclusion of metabolic processes in the systemic blood (referred

to as the body compartment in [10, 11]) that the model presented here truly differs from the model

in [10, 11]. These changes were made in order to improve biological detail as well as to simplify

the equations here. Since the main focus of this model is on liver metabolism, we aim to leave

these equations as simple as possible while keeping the concentrations at realistic levels. The main

issue we came across was that the meal inputs were too significant of a driver of the system and

resulted in metabolite concentrations falling too quickly in the absence of these inputs. To address

this, we adjust the equations for the concentrations of metabolites and hormones in the systemic

blood. A summary of the most significant changes is given below. Plots showing selected metabolite
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and hormone levels in the systemic blood before and after these changes are given in Fig. 2.5. The

systemic blood equations are given in Appendix B.1.
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(b) Systemic blood TG levels over 36 hours.
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(c) Systemic blood insulin levels over 36 hours.
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Figure 2.5 Concentrations in systemic blood before and after model changes.

2.3.1.3.1 Glucose uptake in body

In the original model, glucose uptake in the body (excluding the liver) is represented by a function

S̃g C up dependent on plasma glucose level alone. This function takes the form of a simple Hill
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Figure 2.6 Data fit and model predictions for glucose uptake in rest of body.

function given by

S̃g C up =
v [g CS B ]

KM + [g CS B ]
. (2.11)

While there is insulin independent glucose uptake in the body such as in the brain, the uptake of

glucose in other tissues (such as muscle and adipose) does depend upon insulin [49, 170]. For this

reason, we formulated a second term for the rate of insulin dependent glucose uptake in the body

using Hill functions. Our resulting function for the rate of glucose uptake in the rest of the body is

given by

Sg C up =
v1[g CS B ]n1

K n1
M1
+ [g CS B ]n1

+ v2

�

[I n sS B ]nI

K nI
MI
+ [I n sS B ]nI

��

[g CS B ]n2

K n2
M2
+ [g CS B ]n2

�

. (2.12)

The parameters for this function were estimated using a weighted least squares scheme with data

from [61] and predictions were tested using data from [182] (see Figure 2.6). Finally, to getSg C up in

terms of the correct units for our model, we divide the rate by the volume of distribution of glucose,

estimated to be 14L.

We note that the data used to estimate the parameters forSg C up are extremely sparse and as

such identifiability is nearly impossible to obtain from this data set alone. However, in this work we

prioritize biological detail over identifiability concepts and as such assume our parameter estimates

are sufficient with low confidence.
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2.3.1.3.2 Lipolysis in adipose tissue

Lipolysis is the breakdown of fats by hydrolysis to release fatty acids. Specifically, lipolysis breaks

down a triglyceride into one glycerol molecule and three fatty acids. With no adipose compartment

in the model, there is also no triglyceride storage in adipose tissue. In [10], plasma triglycerides are

treated as adipose triglycerides for lipolysis in adipose tissue. To account for the fact that the size

of the plasma triglyceride pool is much smaller than those stored in adipose tissue, rate constants

that had a slow dependence upon plasma glucagon and insulin concentration were used. In our

simulations, however, this adjustment to the rate constants did not prevent the plasma triglyceride

pool from emptying during fasting periods (i.e., periods without meal inputs). To alleviate this,

we take the rate of lipolysis in adipose tissue to be driven by insulin action alone. Fig. 2.7 gives

schematic representations of how lipolysis in adipose tissue is represented in the model from [10]

(Fig. 2.7a) and in the model given here (Fig. 2.7b).

(a) Adipose lipolysis in [10]. (b) Adipose lipolysis in model presented here.

Figure 2.7 Schematics of how adipose lipolysis is modeled.

Following the work of Periwal et al. [121, 145], we model the rate of lipolysis in adipose tissue

with the following system

d [F AS B ]
d t

= L (IA)− c f [F AS B ], (2.13a)

d IA

d t
= cI ([I n sS B ]− IA − Ib ), (2.13b)

L (IA) = l0+
l2

1+ (IA/IA2)αAd Li p
, (2.13c)

where IA is insulin action with initial condition IA(0) = 0 and L =SAd Li p is the rate of lipolysis. We

also have Ib A which is related to the basal insulin level (though not the basal insulin level itself), a

basal lipolysis rate l0, the maximal insulin dependent lipolysis rate l2, a rate constant for insulin
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dependent lipolysis IA2, a Hill constant modulating free fatty acid lipolysisαAd Li p , and the clearance

of fatty acid to the body c f . This model was fit using data from [121] as well as mean parameter

estimates and standard deviations provided therein as initial guesses and weights in a weighted

least squares formulation. Fig. 2.8 shows the fit to the FFA data where the model (2.13) was driven

by insulin data.
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Figure 2.8 Data fit to reduced fatty acid model with adipose lipolysis Eq. 2.13.

Once the parameters for (2.13) were estimated, parameters for the fatty acid transport as well as

the clearance of fatty acids c f were then adjusted so that approximately 30% of FFA being cleared to

the body is transported to the liver. This amount is based on the percentage of palmitate cleared by

the liver as indicated by data in [85].

2.3.1.3.3 Meal inputs

In [10], the meal inputs are given by a high-powered sine function (i.e., vi n sin6(2πt /(2 hours)) for

some constant vi n ). This representation for meal input causes sharp peaks with steep slopes in

plasma glucose concentrations as well as other concentrations dependent on glucose (such as

insulin). However, data shows [56, 59, 64] that the effect of meal ingestion upon concentrations of

plasma metabolites should not give such a steep slope of decrease. These sharp peaks are largely

due to the dynamics of the high-powered sine function which itself exhibits sharp peaks. Thus, to

reduce the slopes of the peaks in plasma glucose concentration (and other plasma metabolites), we
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represent the meal inputs using the solution to a basic differential equation (DE) that simulates the

passage of food through the body (see Figure 2.9).

Meal

��
G1

k1 // G2
k2 // Systemic blood

Figure 2.9 Schematic of meal input DE.

The DE used to simulate meal ingestion is a two-compartment model where each compartment

represents part of the gut and is given by







d G1
d t =−k1G1+αme a l Gi n fs , G1(0) =αGi n ,

d G2
d t = k1G1−k2G2, G2(0) = 0.

(2.14)

The rate of change in plasma glucose from the ingestion of meals is then given by Sme a l = k2G2.

The source function, fs is a Gaussian centered at two hours after the beginning of the meal. The

meal cycle is: meals occur every 4 hours for 12 hours, then no meals for 12 hours (to simulate rest).

2.3.2 Advection-Reaction (AR) Version

The AR version of the model is actually equivalent to the compartments-in-series model as n→∞.

Here, we will briefly describe how the form of this model differs from the compartments-in-series

model.

2.3.2.1 Hepatocytes

The metabolic processes in the hepatocytes as well as the transports between hepatocytes and

hepatic blood are modeled in the same way as they are described above in Section 2.3.1.1. The only

difference being that now the hepatic and hepatic blood concentrations are taken to be spatially,

rather than compartmentally, dependent (i.e., [C∗] = [C∗](x , t )). Further, rather than having com-

partment dependent zonation constants zi , we will use the spatially dependent function zx given

by

zx =







tanh
�

[O x yH B ]−46.5
12

�

, if [O x yH B ]> 46.5mmHg,

2 tanh
�

[O x yH B ]−46.5
24

�

, if [O x yH B ]≤ 46.5mmHg,
(2.15)
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Table 2.2 Transports between hepatocytes (H ) and hepatic blood (H B ) in AR and ADR systems.

Transport Rate

Glycerol T g l y = v g l y ([g l yH B ]−[g l yH ])

K
g l y

M +[g l yH B ]+[g l yH ]

Triglyceride T T G =− v V LD L [T GH ]
K V LD L

M +[T GH ]
+

v T G
�

[T GH B ]−
[T GH ]
T Gr e f

�

K T G
M +[T GH B ]+

[T GH ]
T Gr e f

Fatty acid T F A = v F A ([F AH B ]−[F AH ]
K F A

M +[F AH B ]+[F AH ]

Glucose (GLUT2) T g C = v g Cp ump [g CH B ]

K
g Cp ump

M +[g CH B ]
+ v g Cd i f f ([g CH B ]−[g CH ])

K
g Cd i f f

M +[g CH B ]+[g CH ]

Lactate T L a c = v L a c ([L a cH B ]−[L a cH ])
K L a c

M +[L a cH B ]+[L a cH ]

for [O x yH B ] = [O x yH B ](x , t ). Then, for metabolic process M , the rate constant is now given as the

spatially dependent function

v M
x = (1+ zx kM )v

M
b , (2.16)

where v M
b is the base-value rate constant of the metabolic process M and kM is as given above in

Eq. 2.7. The rates of the metabolic processes used in this model are given in Appendix A, the rates of

the transports are given in Table 2.2, and the hepatic equations for this version of the model are

given in Appendix B.2.

2.3.2.2 Hepatic blood

In the compartments-in-series model, the hepatocytes around the sinusoid and the blood flowing

through the sinusoid are partitioned into compartments depending upon where they lie on the

sinusoid (see Fig. 2.3). In this view, one might think of the model as multiple two compartment

models that are connected by the blood flow through the hepatic blood compartments. As shown

above in Section 2.3.1.2, the blood flow is modeled through a basic rate-in minus rate-out term. That

is, supposing we’ve partitioned the hepatic blood into n compartments, if [CH B ]i is the concentration

of metabolite C in hepatic blood compartment i , then the equation for [CH B ]i is given by

d [CH B ]i
d t

= vb f ([CH B ]i−1− [CH B ]i )−γHT C
i ,

for i = 1, . . . , n . Here, γH is the ratio of hepatic to hepatic blood volume andT C
i is the rate of transport

of metabolite C between hepatic blood compartment i and hepatic compartment i . The rate of

blood flow vb f is given by

vb f =QH n (2.17)
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per second, where QH = 0.15. Note then that we have

d [CH B ]i
d t

=
QH

1/n
([CH B ]i−1− [CH B ]i )−γHT C

i , (2.18)

and observe that
∂ [CH B ]i
∂ x

≈
QH

1/n
([CH B ]i−1− [CH B ]i ), (2.19)

for i = 1, . . . , n , is the first order upwind advection discretization on an uniform mesh. Thus, while

the model in Section 2.3.1 can be considered a compartments-in-series model comprised solely of

ODE’s, one can also view it as an advection-reaction equation strongly coupled to mass-balance

equations describing the concentrations of metabolites in the liver cells (see Figure 2.2). That is, we

allow [CH B ] and [CH ] to be spatially dependent and write

∂ [CH B ]
∂ t

=QH
∂ [CH B ]
∂ x

−γHT C ([CH B ], [CH ]). (2.20)

Note that QH is in units 1
second . That is, this advection equation is dimensionless in the axial direction.

This implies that we can assume our “sinusoid” length is L s c a = 1. These hepatic blood equations

are given in Appendix B.2.

2.3.2.3 Systemic blood

The equations for concentrations in the systemic blood remain effectively the same with the only

difference being how concentrations in the hepatic blood come into the equation. Since the concen-

trations in hepatic blood are now considered to be spatially, rather than compartmentally dependent,

we replace the n th compartment concentration with the concentration at the out-flow boundary of

the hepatic blood. That is,

d [CS B ]
d t

=
QH

γB
([CH B ](1, t )− [CS B ](t )) +S , (2.21)

where γB is the ratio between the volume of systemic blood to the volume of hepatic blood, and

S represents the metabolic processes included in the model from the rest of the body. The inter-

pretation of the role these equations play in the system, however, does change. Since the hepatic

blood equations are now given by a system of PDEs on a bounded domain, boundary conditions are

required. The concentrations of metabolites in the systemic blood (found by solving the systemic

blood equations) then actually become Dirichlet conditions on the in-flow boundary of the hepatic
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blood. Thus, the dynamics of the concentration of metabolite C in the hepatic blood is given by

∂ [CH B ]
∂ t

=QH
∂ [CH B ]
∂ x

−γHT C ([CH B ], [CH ]), 0< x < 1, t > 0, (2.22)

[CH B ](0, t ) = [CS B ](t ), t > 0, (2.23)

[CH B ](x , 0) = fH B , 0< x < 1, (2.24)

where fH B represents the initial distribution of the concentration of metabolite C in the hepatic

blood. In order to solve Eq. 2.21 for [CS B ], we can assign the initial condition [CS B ](0) = fS B . The

systemic blood equations are given in Appendix B.2.

2.3.3 Advection-Reaction-Dispersion (ADR) Version

While advection-reaction equations such as those given above in Section 2.3.2 are good models for

simple flows, the actual dynamics of blood flow through a capillary are much more complex than

just a pure advective flow. Here, we include the effect of the dispersion that occurs due to the flow

by modeling the blood flow using Taylor’s axial dispersion model [74]. This model has been used

previously for blood flow through the liver sinusoid in other works such as [46, 52]. Here, we add a

dispersion term to the AR model of Section 2.3.2 in order to get an advection-dispersion-reaction

(ADR) system in order to compare the two and thus determine whether or not a dispersion term

makes a significant difference for the model presented here (one of the goals of this work). Note that

the hepatic and systemic blood equations for this system are the same as those for the AR system,

thus we omit the description of them here.

The addition of a dispersion term, and thus the addition of a second spatial derivative, requires

boundary conditions at both the periportal (in-flow boundary) and pericentral (out-flow boundary)

ends of the sinusoid in order to remain well-posed (in contrast, the AR equation only requires bound-

ary conditions at one end). To accommodate this, we assign homogeneous Neumann conditions at

the pericentral end (out-flow boundary) to indicate that the concentration of the metabolite leaving

the sinusoid is the same as the concentration entering the systemic blood. The concentration of

metabolite C in the hepatic blood is now given by

∂ [CH B ]
∂ t

=QH
∂ [CH B ]
∂ x

−DC
∂ 2[CH B ]
∂ x 2

−γHT C ([CH B ], [CH ]), 0< x < 1, t > 0, (2.25)

[CH B ](0, t ) = [CS B ](t ), t > 0, (2.26)

∂ [CH B ]
∂ x

(1, t ) = 0, t > 0, (2.27)

[CH B ](x , 0) = fH B , 0< x < 1, (2.28)

where DC is the dispersion coefficient of metabolite C in blood and everything else is defined as in
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Section 2.3.2 (including the equation for [CS B ]).

Determining the appropriate values for DC is nontrivial due to the fact that QH is dimensionless

in the axial direction. This implies that we need DC to be dimensionless in the axial direction as

well. The difficulty here is the requirement to keep things scaled appropriately with respect to the

biology without knowing the scaling factor used to render the AR equations dimensionless. In order

to determine an appropriate scaling factor, we must look more closely at the role of vb f in the

compartments-in-series model.

If n is the number of compartments the hepatic blood has been separated into, then

vb f =
rate of blood flow in the liver

volume of blood compartment
. (2.29)

In general, the rate of blood flow in the liver is given by the volume of blood in the liver divided by

the time it takes the blood to go through the liver. Since the volume of a blood compartment should

be the volume of blood in the liver divided by n (the number of compartments), we get that

vb f =
n

time it takes blood to go through the liver
. (2.30)

Thus, from (2.17), we have that, under this scaling, the time it takes blood to go through the liver is
1

QH
seconds.

In order to have an unscaled advection equation, we would need to know the velocity of the

blood in the liver. Let v be this velocity. Then

v =
distance traveled through liver

time it takes blood to go through the liver
=

L

1/QH
(2.31)

or

v =QH L . (2.32)

Now, while our model is of the liver microstructure (that is, of a liver sinusoid and the sur-

rounding cells), the concentrations of metabolites our model gives is actually representative of

the accumulation from all sinusoids in the liver. On the other hand, in [52], the authors model the

production from a single sinusoid using Taylor’s axial dispersion and using physical measurements

for the length of the sinusoid, velocity of blood, etc. Assuming then that our model gives us the

concentration from a single sinusoid times the number of sinusoids in the liver, one can obtain that

we should have v = vs i n and D s
C =D s i n

C where vs i n and D s i n
C are the velocity of blood and dispersion

coefficient in a single sinusoid respectively and D s
C is the unscaled dispersion coefficient for our

model. In [52] L s i n = 1mm is used as the length of the sinusoid and τ= 5.4 seconds is assumed to
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be the time it takes blood to get through a sinusoid. Thus, we can calculate

L =
v

QH
=

L s i n

QHτ
= 1.23mm. (2.33)

Now that we have our scaling factor L , we can follow the process and use the values given in [52]

to compute D sin
C and then divide by L 2 in order to obtain the scaled dispersion coefficient DC that

we will use in our simulations. That is, we use Renkin’s equation [76]

D i
C = 1.013×10−4× (M W )−0.46 cm2

s
(2.34)

to compute the diffusion coefficient D i
C , where M W is the molecular weight of C . We then use

Aris-Taylor’s relation [74]

D s i n
C =D i

C +

�

vs i n ds
2

�2

48D i
C

(2.35)

to calculate D s
C (where ds is the diameter of the sinusoid (given in [52])). Finally, we scale the

dispersion coefficient to obtain

DC =
D s

C

L 2
. (2.36)

2.4 Results

Discretization in space is carried out using a first-order upwind difference for the advection term

and a second-order central difference for the dispersion term. The resulting ODE’s are then solved

using ode15s from the Matlab ODE suite.

2.4.1 Mesh Refinement

First, we look at how varying the mesh size h = 1/n affects the numerical solutions of the AR

version of the model (equivalently, seeing how varying the number of compartments n affects the

compartments-in-series ODE model). Fig. 2.10 shows some of the metabolite levels at the time

when the difference between the metabolite levels from the most coarse grid used (n = 5) and the

most fine grid used (n = 500) is largest. While the change in the metabolite levels from varying n can

be rather small in some cases (e.g. change in hepatic blood glucose levels only reaches 0.37−0.43%

of the span of hepatic blood glucose levels), in other cases it is much larger as can be seen from

Table 2.3 which gives the largest change seen in the metabolites due to varying n from 5 to 500 using

72 hour simulations. We note that since the span of the metabolite levels varies depending upon

where the level is taken on the sinusoid, these changes were calculated separately for each spatial

grid point on the coarse grid (in this case, n = 5) and the span given in Table 2.3 contains the largest
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changes in the metabolite level at each coarse grid point.

Table 2.3 Change of metabolite levels in over x from refining the mesh from n = 5 to n = 500 (relative to
overall range of metabolite level).

Largest Largest Largest
Variable change Variable change Variable change

g CH B 0.37−0.43% g CH 1.01−2.73% g d p 9.91−31.7%
T GH B 0.91−0.92% T GH 2.91−61.5% g t p 9.91−31.7%
F AH B 6.94−7.00% F AH 8.07−28.5% ud p 3.87−10.9%
g l yH B 6.87−17.4% g l yH 3.51−28.2% u t p 3.87−10.9%
L a cH B 7.48−8.00% L a cH 7.12−17.1% a d p 15.4−54.7%
O x yH B 16.0−80.6% G 4.57−42.2% a t p 11.1−26.2%
G LH B 6.43−9.94% g 6p 3.47−36.9% a mp 10.5−26.1%
I n sH B 5.87−14.9% g 3p 9.94−35.8% P 8.57−61.4%

a C o A 10.9−38.0%

The differences seen due to the mesh size (or number of compartments) can be explained by

the addition of numerical dispersion in the hepatic blood equations through the first-order upwind

advection discretization. It can be shown that, while the first-order upwind scheme is first-order

accurate to the advection equation

ut +a ux = 0, (2.37)

it is actually second-order accurate to the modified advection-dispersion equation

ũt +a ũx =
1

2
a h ũx x , (2.38)

where a is the advection coefficient and h the mesh size [95]. Thus, the amount of numerical

dispersion being introduced in the numerical solution is directly related to the mesh size (or number

of compartments). We see further that the change in the hepatic blood metabolite levels also has a

strong affect on the hepatic metabolite levels seen through the large changes seen in these levels

(Table 2.3, two middle and two right columns). This is likely due to the strength of the coupling

between these sets of equations. We also note that, regardless of the addition of numerical dispersion,

it appears that if the mesh size h is not sufficiently small (or number of compartments n sufficiently

large), then interesting spatial dynamics of the levels in the hepatocytes may be lost as can be seen

by Fig. 2.10e and Fig. 2.10f.
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Figure 2.10 Metabolite levels for various mesh sizes across the sinusoid at time of largest difference be-
tween h = 1/5 and h = 1/500 (72 hour simulations).
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2.4.2 Comparison of AR and ADR

We also want to investigate how the intentional inclusion of dispersion affects the system. That is,

we wish to compare the AR simulation results with the ADR simulation results. In an attempt to limit

the effect of numerical dispersion from the advection term while keeping computation time fairly

short, we use n = 50 compartments (or a mesh size of h = 1/50). From Fig. 2.10 it appears that most

of the metabolite levels start to converge around n = 50. Further, Table 2.4 shows that the changes

in all metabolite levels between n = 50 and n = 500 is less than 10% of the span of the metabolite.

Table 2.4 Change of metabolite levels over x from refining the mesh from n = 50 to n = 500 (relative to
overall range of metabolite level).

Largest Largest Largest
Variable change Variable change Variable change

g CH B 0.0342−0.0386% g CH 0.052−0.38% g d p 0.82−3.10%
T GH B 0.0832−0.0835% T GH 0.21−5.88% g t p 0.82−3.10%
F AH B 0.65−0.66% F AH 0.58−2.76% ud p 0.18−1.16%
g l yH B 0.63−1.69% g l yH 0.30−3.29% u t p 0.18−1.16%
L a cH B 0.59−0.68% L a cH 0.62−1.74% a d p 1.42−4.39%
O x yH B 1.48−7.76% G 0.065−4.21% a t p 0.69−2.42%
G LH B 0.60−0.93% g 6p 0.32−7.11% a mp 0.70−2.41%
I n sH B 0.53−1.37% g 3p 0.83−3.63% P 0.70−5.81%

a C o A 0.57−3.80%

Fig. 2.11 depicts the metabolite levels across the sinusoid at the time for which the solutions to

the AR and ADR versions of the model have the largest difference for each particular metabolite

(as measured by the discrete 2 norm). As can be seen from Fig. 2.11, there does not appear to be a

significant difference between the solutions from the AR and ADR versions of the model. Further

the differences are small in comparison to the span of the metabolite levels over time as can be seen

from Table 2.5. This indicates that the addition of dispersion may not have a significant effect on the

metabolite levels. However, we note that the presence of numerical dispersion could be muffling the

effect of the actual dispersion. In fact, in these simulations the numerical dispersion is on the order

of 10−3 while the actual dispersion is only on the order of 10−4. Thus, though the actual dispersion

does not have much of an effect in these numerical simulations, other discretizations could unveil

the dispersion to have a larger effect than seen here.

Lastly, under this discretization, it appears that including the dispersion term increases compu-

tation time exponentially. Simulations were run using various mesh sizes (from h = 1/5 to h = 1/50)

and computation times were recorded. Figure 2.12 illustrates the ADR computation times as a func-

tion of the AR computation times. The Matlab function lsqcurvefit was used to fit an exponential
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Table 2.5 Change of metabolite levels over x between AR and ADR simulation (relative to overall range of
AR simulation metabolite level).

Largest Largest Largest
Variable change Variable change Variable change

g CH B 0.434−0.527% g CH 0.438−0.520% g d p 0.279−1.557%
T GH B 0.135−0.136% T GH 0.251−0.656% g t p 0.279−1.557%
F AH B 0.7698−0.723% F AH 0.360−0.976% ud p 1.27−1.49%
g l yH B 0.705−1.37% g l yH 0.763−1.72% u t p 1.27−1.49%
L a cH B 1.35−2.10% L a cH 1.10−1.90% a d p 0.325−1.52%
O x yH B 0.505e-4−3.82e-4% G 0.719−0.940% a t p 0.380−1.27%
G LH B 0.258−0.493% g 6p 0.375−0.670% a mp 0.358−1.26%
I n sH B 0.761−0.765% g 3p 0.535−1.63% P 0.153−0.579%

a C o A 0.338−0.979%

to this data and, at least empirically, appears to capture the trend quite well. The fit exponential is

given by

tAD R = 0.1720e 0.3119tAR (2.39)

where tAD R and tAR are computation times for the ADR and AR systems respectively.

2.5 Conclusions and Future Work

In this work, we investigated the effect the number of compartments used in a model of the liver

microstructure similar to the one presented in [10,11] has on the simulated concentrations as well as

how including dispersion affects the system. The model of the liver microstructure from [10, 11]was

adjusted in order to keep metabolic levels realistic when the system is not being driven by meal inputs.

This adjustment included, most influentially, the addition of insulin dependent glucose uptake in the

body excluding the liver, the rate of lipolysis in adipose tissue depending solely upon insulin action,

and the representation of meal inputs as the solution to a two-compartment model of ingestion

in the gut. We note that the compartment-in-series model presented in Section 2.3.1 is equivalent

to the system presented in Section 2.3.2 when the hepatic blood equations have been spatially

discretized using an upwind forward difference and a mesh size of h = 1/n (corresponding to n

compartments). The system presented in Section 2.3.2 uses advection-reaction equations to give the

dynamics of concentrations in the hepatic blood, coupled to mass-balance equations that provide

dynamics for the concentrations in the hepatic tissue presented. The in-flow boundary condition

for the hepatic blood equations is given by the solution to an ODE that yields a basic representation

of metabolism in the rest of the body which depends upon the out-flow concentrations, hence

creating a feedback loop.
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Figure 2.11 Metabolite levels for AR and ADR versions of the model across the sinusoid at time of largest
difference (24 hour simulations).

Numerical simulations were carried out using the upwind forward difference discretization for

the advection term in order to investigate how changing the number of compartments n affects

the compartments-in-series model. We find that the value of n does have a large affect on the

simulated concentrations, as can be seen from Table 2.3. One of the advantages of viewing this

system as a PDE as opposed to a compartments-in-series ODE is the ability to analyze the numerical

simulations in terms of spatial discretization. Indeed, by analyzing the modified equation (2.38) we

see that numerical dispersion has been introduced into the solution, the amount of which has an

inverse relationship with the number of compartments n . Interestingly, we find that the value of n

has, in many cases, an even larger affect on the hepatic concentrations than on the hepatic blood
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Figure 2.12 Computational times of ADR against AR with exponential fit.

concentrations. This seems counter intuitive as there is no spatial discretization in the equations for

hepatic concentrations, thus no numerical dispersion is directly introduced to these concentrations.

Thus, the numerical dispersion can only affect these concentrations indirectly through the coupling

of the hepatic blood to the hepatic equations. This, then, is a testament to the strength of the

coupling in the system, both between hepatic and hepatic blood variables as well as between the

hepatic variables themselves since not all hepatic equations are directly coupled to a hepatic blood

equation.

We also address how intentionally included dispersion affects the system. This is of interest

because it is biologically more accurate and has been included in other models of the liver mi-

crostructure. Most notably, Berndt et al. [34] include a dispersive effect in the blood flow of their

compartments-in-series model. When looked at closely, one sees that this dispersion is in fact

modeled through a second-order central finite difference discretization for a standard dispersion

term (that is, a discretization for ∂ 2

∂ x 2 ). We use the same discretization in our simulations here and

find that the inclusion of dispersion does not appear to have a significant affect on our system (see

Table 2.5). Further, the addition of dispersion appears to increase computation time exponentially.

Thus, we conclude that for models discretized in this way, it is more efficient to use just the AR

version over the ADR version. However, we note that the numerical dispersion is dominating the

actual dispersion, and is thus likely muting the effect of the actual dispersion. If we consider the

system as a PDE system, then we can utilize more accurate spatial discretizations in order to better
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analyze the effect of dispersion. Advection-dispersion equations are known to be difficult to solve

numerically and every discretization has its pros and cons [95]. However, because of this there

is a wide breadth of research on how to solve these systems numerically, and as such there is an

abundance of existing algorithms one could utilize. Unfortunately, the size of the system considered

here along with the stiffness and strong coupling of the system make other discretizations difficult to

implement and computationally costly. Because of this, we recommend testing other discretizations

on a smaller system that has the same form as the one considered here. This preliminary study on a

smaller system will lend valuable insights into what numerical scheme will be most effective for

systems of this type.

In the past, arguments have been made for compartments-in-series models over PDE models

for hepatic elimination often citing the mathematical simplicity of ODEs compared to PDEs [7, 82].

However, many of these compartments-in-series models are equivalent to a spatially discretized

PDE, especially in how they’ve been used thus far to model liver metabolism. Thus, considering

these models strictly as ODEs is potentially limiting the information and insights these systems may

be able to give us. In particular, if our goal is to understand why and how certain spatially dependent

processes occur, such as metabolic zonation and the phenomena of zonated steatosis in liver disease,

then it makes sense to consider systems of PDEs which give us more options when it comes to

discretizing spatially in numerical schemes. Further, PDEs lends themselves more appropriately in

this problem to theoretical analyses that can unveil properties of the system such as the functional

framework and stability. Compartments-in-series models are very useful computational tools and

considering these systems from the perspective of a PDE does not diminish that. Rather, it provides

more options and tools with which to analyze the system, both numerically and theoretically.

Future work for this problem then includes an in depth study of a “toy version” of the PDE

systems where we limit the number of variables (and hence the size of the system) but maintain

the nonlinearities, coupling, stiffness, and overall structure. A numerical analysis on this toy model

including the investigation of numerous solution algorithms will inform future attempts to numer-

ically analyze larger systems of this form. Theoretical analyses on the toy model can be done to

investigate the functional framework needed in order to guarantee the existence and uniqueness

of solutions. A stability analysis on the system would also be of interest to further elucidate the

behavior of the system, especially pertaining to the effect of the feedback from the systemic blood

equations. Lastly, checking the positivity of the system is an important step to verifying its biological

relevance. This theoretical analysis could potentially be expanded and applied to larger systems at a

later time as well.
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APPENDIX

A

RATES OF METABOLIC PROCESSES FOR

LIVER MODELS

The rates of metabolic processes assume the forms given in [10]which uses Hill functions to represent

each substrate and allosteric activator/inhibitor. The way in which hormonal regulation is modeled

is dependent upon the strength and speed with which the hormone is known to act on the process.

These regulations will be dependent upon the hepatic blood concentration of the hormone at

the same point as the hepatocyte along the sinusoid. Zonation is included through rate constants

for the metabolic processes. A complete description of how zonation is included in the models

is given in Section 2.3.1.1.2 for the compartments-in-series model and in Section 2.3.2.1 for the

PDE models. Fig. A.1 gives a schematic of a hepatic compartment from the compartments-in-

series model. This schematic shows in detail the metabolic processes that occur in each hepatic

compartment, including where these processes are upregulated due to zonation via the color of the

arrows indicating the process. Though this schematic is specifically of a hepatic compartment in

the compartments-in-series model, it illustrates the metabolic processes being simulated in the

hepatic equations for both the compartments-in-series model and the PDE models.

Below, we give the hepatic metabolic processes included in the model along with the function

for the rate of the process. For each process (excluding transports and inorganic phosphate control),

we include a table indicating the number and type of molecules used and synthesized in the process,

as well as which molecules act as allosteric activators or inhibitors. We also include in this table
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Figure A.1 Variables and conversions included in each hepatic compartment as depicted in [11].

whether any hormones stimulate or depress the process. We note that the supplementary material

from [10] provides a thorough search of the literature for parameter values. Those values are utilized

here unless otherwise specified.

A.1 Glucose Metabolism

Fig. A.2 gives a basic schematic of how glucose metabolism is simulated in the models.

• GLUT2. GLUT2 is a glucose transport that is described in Section 2.3.1.1.1 for the compartments-

in-series model and in Table 2.2 for the PDE models. We take v g Cd i f f = 500µM/s as opposed to

224µM/s which is reported in the supplementary material of [10]. Note that the value reported

in the supplementary material of [10]was, according to the authors, found by fitting data of

glucose levels to the system by eye.

• Glucokinase (G K ). Converts glucose into glucose-6-phosphate using a phosphate from ATP.

This enzyme is upregulated in pericentral cells. Table A.1 gives the roles of molecules in

glucokinase.

135



Figure A.2 Schematic of glucose metabolism.

Table A.1 Roles of molecules in Glucokinase (G K ).

Molecules used in process (#) Molecules synthesized in process (#)

Glucose (g CH ) 1 Glucose-6-phosphate (g 6p ) 1

Adenosine Tri-phosphate (a t p ) 1 Adenosine Di-phosphate (a d p ) 1

Inhibitors Activators

Glucose-6-phosphate (g 6p ) Glucose (g CH )

Depressant Stimulant

N/A N/A

– Compartments-in-series model: for i = 1, . . . , n , the rate of glucokinase in hepatic com-

partment i is given by

RG K
i = v G K

i

 

[g CH ]
n a c t

G K
i

(K a c t
G K )

n a c t
G K + [g CH ]

n a c t
G K

i

!
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g C
G K

i

(K g C
G K )

n
g C
G K + [g CH ]

n
g C
G K

i



 · · ·

· · ·

�

[a t p ]i
K

a t p
G K + [a t p ]i

�



1−
[g 6p ]n

i nh
G K

(K i nh
G K )

n i nh
G K + [g 6p ]

n i nh
G K

i



 . (A.1)
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– PDE models: the rate of glucokinase in the hepatocytes is given by

RG K = v G K
x
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a c t
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· · ·
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G K + [a t p ]
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i nh
G K

(K i nh
G K )

n i nh
G K + [g 6p ]n

i nh
G K

�

. (A.2)

• Glucose-6-phosphatase (G 6P a s e ). Glucose-6-phosphate is converted to glucose, releasing

a phosphate. This enzyme is upregulated in the periportal cells. Table A.2 gives the roles of

molecules in glucose-6-phosphatase.

Table A.2 Roles of molecules in Glucose-6-phosphatase (G 6P a s e ).

Molecules used in process (#) Molecules synthesized in process (#)

Glucose-6-Phosphate (g 6p ) 1 Glucose (g CH ) 1

Inorganic phosphate (P ) 1

Inhibitors Activators

none none

Depressant Stimulant

N/A N/A

– Compartments-in-series model: for i = 1, . . . , n , the rate of glucose-6-phosphatase in

hepatic compartment i is given by

RG 6P a s e
i = v G 6P a s e

i

�

[g 6p ]i
K

g 6p
G 6P a s e + [g 6p ]i

�

. (A.3)

– PDE models: the rate of glucose-6-phosphatase in the hepatocytes is given by

RG 6P a s e = v G 6P a s e
x

�

[g 6p ]

K
g 6p

G 6P a s e + [g 6p ]

�

. (A.4)

• Glycogen Synthase (GS). Glucose-6-phosphate extends a glycogen chain. This enzyme is

upregulated in the periportal cells. Table A.3 gives the roles of molecules in glycogen synthase.
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Table A.3 Roles of molecules in Glycogen Synthase (G S ).

Molecules used in process (#) Molecules synthesized in process (#)

Glucose-6-phosphate (g 6p ) 1 Glycogen (G ) 1

Uridine Tri-phosphate (u t p ) 1 Uridine Di-phosphate (ud p ) 1

Inorganic phosphate (P ) 2

Inhibitors Activators

none Glucose-6-phosphate (g 6p )

Depressant Stimulant

Glucagon (G LH B ) Insulin (I n sH B )

– Compartments-in-series model: for i = 1, . . . , n , the rate of glycogen synthase in hepatic

compartment i is given by

RG S
i = v G S

i K G S
ma x

�

[g 6p ]nG S
i

(K g 6p
G S )nG S + [g 6p ]nG S

i

��

[u t p ]i
K

u t p
G S + [u t p ]i

�

, (A.5)

where hormonal regulation is given by

K G S
ma x =

v I n s
i [I n sH B ]i +K G S

I

v G L
i [G LH B ]i +K G S

G

. (A.6)

– PDE models: the rate of glycogen synthase in the hepatocytes is given by

RG S = v G S
x K G S

ma x

�

[g 6p ]nG S

(K g 6p
G S )nG S + [g 6p ]nG S

��

[u t p ]

K
u t p

G S + [u t p ]

�

, (A.7)

where hormonal regulation is given by

K G S
ma x =

v I n s
x [I n sH B ] +K G S

I

v G L
x [G LH B ] +K G S

G

. (A.8)

• Glycogen Phosphorylase (G P ). Glycogen is depolymerised and converted to glucose-6-phosphate.

Table A.4 gives the roles of molecules in glycogen synthase.
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Table A.4 Roles of molecules in Glycogen Phosphorylase (G P ).

Molecules used in process (#) Molecules synthesized in process (#)

Glycogen (G ) 1 Glucose-6-phosphate (g 6p ) 1

Inorganic phosphate (P ) 1

Inhibitors Activators

none none

Depressant Stimulant

Insulin (I n sH B ) Glucagon (G LH B )

– Compartments-in-series model: for i = 1, . . . , n , the rate of glycogen phosphorylase in

hepatic compartment i is given by

RG P
i = v G P K G P

ma x

�

[G ]nG P
i

(K G
G P )nG P + [G ]nG P

i

��

[P ]i
K P

G P + [P ]i

�

, (A.9)

where hormonal regulation is given by

K G P
ma x =

v G L
i [G LH B ]i +K G P

G

v I n s
i [I n sH B ]i +K G P

I

. (A.10)

– PDE models: the rate of glycogen phosphorylase in the hepatocytes is given by

RG P = v G P K G P
ma x

�

[G ]nG P

(K G
G P )nG P + [G ]nG P

��

[P ]
K P

G P + [P ]

�

, (A.11)

where hormonal regulation is given by

K G P
ma x =

v G L
x [G LH B ] +K G P

G

v I n s
x [I n sH B ] +K G P

I

. (A.12)

• Glucogenesis part 1, phosphoenolpyruvate carboxykinase (P E P C K ). Conversion of pyru-

vate (in the model, bunched together with lactate (L a c )) to glyceraldehyde-3-phosphate (in

the model, bunched together with glycerol-3-phosphate (g 3p )). This enzyme is upregulated

in the periportal cells. Table A.5 gives the roles of molecules in glucogenesis part 1.
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Table A.5 Roles of molecules in Glucogenesis part 1 (P E P C K ).

Molecules used in process (#) Molecules synthesized in process (#)

Lactate (L a cH ) 1 Glycerol-3-phosphate (g 3p ) 1

Adenosine Tri-phosphate (a t p ) 2 Adenosine Di-phosphate (a d p ) 2

Guanosine Tri-phosphate (g t p ) 1 Guanosine Di-phosphate (g d p ) 1

Inorganic phosphate (P ) 2

Inhibitors Activators

none none

Depressant Stimulant

Insulin (I n sH B ) Glucagon (G LH B )

– Compartments-in-series model: for i = 1, . . . , n , the rate of glucogenesis part 1 in hepatic

compartment i is given by

RP E P C K
i = v P E P C K

i K P E P C K
ma x
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where hormonal regulation is given by

K P E P C K
ma x =

v G L
i [G LH B ]i +K P E P C K

G

v I n s
i [I n sH B ]i +K P E P C K

I

. (A.14)

– PDE models: the rate of glucogenesis part 1 in the hepatocytes is given by

RP E P C K = v P E P C K
x K P E P C K

ma x
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where hormonal regulation is given by

K P E P C K
ma x =

v G L
x [G LH B ] +K P E P C K

G

v I n s
x [I n sH B ] +K P E P C K

I

. (A.16)

• Glucogenesis part 2, fructose biphosphatase (F B P ). Conversion of 2 glyceraldehyde-3-phosphate
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molecules to glucose-6-phosphate. This enzyme is upregulated in the periportal cells. Table

A.6 gives the roles of molecules in glucogenesis part 2.

Table A.6 Roles of molecules in Glucogenesis part 2 (F B P ).

Molecules used in process (#) Molecules synthesized in process (#)

Glycerol-3-phosphate (g 3p ) 2 Glucose-6-phosphate (g 6p ) 1

Inorganic phosphate (P ) 1

Inhibitors Activators

none none

Depressant Stimulant

Insulin (I n sH B ) Glucagon (G LH B )

– Compartments-in-series model: for i = 1, . . . , n , the rate of glucogenesis part 2 in hepatic

compartment i is given by

RF B P
i = v F B P

i K F B P
ma x

�

[g 3p ]i
K

g 3p
F B P + [g 3p ]i

�

, (A.17)

where hormonal regulation is given by

K F B P
ma x =

v G L
i [G LH B ]i +K F B P

G

v I n s
i [I n sH B ]i +K F B P

I

. (A.18)

– PDE models: the rate of glucogenesis part 2 in the hepatocytes is given by

RF B P = v F B P
x K F B P

ma x

�

[g 3p ]

K
g 3p

F B P + [g 3p ]

�

, (A.19)

where hormonal regulation is given by

K F B P
ma x =

v G L
x [G LH B ] +K F B P

G

v I n s
x [I n sH B ] +K F B P

I

. (A.20)

• Glycolysis part 1, phosphofructokinase (P F K ). Glucose-6-phosphate is broken down to two

glyceraldehyde-3-phosphate molecules. Table A.7 gives the roles of molecules in glycolysis

part 1.
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Table A.7 Roles of molecules in Glycolysis part 1 (P F K ).

Molecules used in process (#) Molecules synthesized in process (#)

Glucose-6-phosphate (g 6p ) 1 Glycerol-3-phosphate (g 3p ) 2

Adenosine Tri-phosphate (a t p ) 1 Adenosine Di-phosphate (a d p ) 1

Inhibitors Activators

Adenosine Tri-phosphate (a t p ) Adenosine Di-phosphate (a d p )

Glycerol-3-phosphate (g 3p )

Depressant Stimulant

Glucagon (G LH B ) Insulin (I n sH B )

– Compartments-in-series model: for i = 1, . . . , n , the rate of glycolysis part 1 in hepatic

compartment i is given by

RP F K
i = v P F K K P F K

ma x
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where hormonal regulation is given by

K P F K
ma x =

v I n s
i [I n sH B ]i +K P F K
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v G L
i [G LH B ]i +K P F K

G

. (A.22)

– PDE models: the rate of glycolysis part 1 in the hepatocytes is given by

RP F K = v P F K K F B P
ma x
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where hormonal regulation is given by

K P F K
ma x =

v I n s
x [I n sH B ] +K P F K

I

v G L
x [G LH B ] +K P F K

G

. (A.24)

• Glycolysis part 2, pyruvate kinase (P K ). Each glyceraldehyde-3-phosphate molecule is con-

verted to pyruvate (and lactate). This enzyme is upregulated in the pericentral cells. Table A.8

gives the roles of molecules in glycolysis part 2.
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Table A.8 Roles of molecules in Glycolysis part 2 (P K ).

Molecules used in process (#) Molecules synthesized in process (#)

Glycerol-3-phosphate (g 3p ) 1 Lactate (L a cH ) 1

Adenosine Di-phosphate (a d p ) 3.25 Adenosine Tri-phosphate (a t p ) 3.25

Inorganic phosphate (P ) 2.25

Inhibitors Activators

Acetyl-CoA (a C o A) none

Depressant Stimulant

Glucagon (G LH B ) Insulin (I n sH B )

– Compartments-in-series model: for i = 1, . . . , n , the rate of glycolysis part 2 in hepatic

compartment i is given by

RP K
i = v P K
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where hormonal regulation is given by

K P K
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G

. (A.26)

– PDE models: the rate of glycolysis part 2 in the hepatocytes is given by
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x K P K
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where hormonal regulation is given by

K P K
ma x =

v I n s
x [I n sH B ] +K P K

I

v G L
x [G LH B ] +K P K

G

. (A.28)

A.2 Lipid Metabolism

Fig. A.3 gives a basic schematic of how lipid metabolism is simulated in the models.
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Figure A.3 Schematic of lipid metabolism.

• Transports. The lactate, glycerol, free fatty acid, and triglyceride transports are described in

Section 2.3.1.1.1 for the compartments-in-series model and in Table 2.2 for the PDE models.

• Pyruvate Oxidation (P D H ). The conversion of pyruvate to acetyl-CoA. Table A.9 gives the

roles of molecules in pyruvate oxidation.

Table A.9 Roles of molecules in pyruvate oxidation (P D H ).

Molecules used in process (#) Molecules synthesized in process (#)

Lactate (L a cH ) 1 Acetyl-CoA (a C o A) 1

Adenosine Di-phosphate (a d p ) 2.5 Adenosine Tri-phosphate (a t p ) 2.5

Inorganic phosphate (P ) 2.5

Inhibitors Activators

Acetyl-CoA (a C o A) none

Depressant Stimulant

Glucagon (G LH B ) Insulin (I n sH B )

– Compartments-in-series model: for i = 1, . . . , n , the rate of pyruvate oxidation in hepatic
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compartment i is given by

RP D H
i = v P D H K P D H

ma x
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where hormonal regulation is given by

K P D H
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– PDE models: the rate of pyruvate oxidation in the hepatocytes is given by

RP D H = v P D H K P D H
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where hormonal regulation is given by
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. (A.32)

• β-Oxidation (βo x i ). Acetyl-CoA molecules are produced from the breakdown of fatty acids.

The zonation of enzymes included in this process makes this process upregulated in the

periportal cells. Table A.10 gives the roles of molecules in β-oxidation.

Table A.10 Roles of molecules in β-Oxidation (βo x i ).

Molecules used in process (#) Molecules synthesized in process (#)

Fatty acids (F AH ) 1 Acetyl-CoA (a C o A) 8

Adenosine Tri-phosphate (a t p ) 2 Adenosine Di-phosphate (a d p ) 1

Adenosine Mono-phosphate (a mp ) 1

Inorganic phosphate (P ) 3

Inhibitors Activators

Acetyl-CoA (a C o A) none

Depressant Stimulant

Insulin (I n sH B ) Glucagon (G LH B )

– Compartments-in-series model: for i = 1, . . . , n , the rate of β-oxidation in hepatic com-
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partment i is given by
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where hormonal regulation is given by
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– PDE models: the rate of β-oxidation in the hepatocytes is given by
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where hormonal regulation is given by

K βo x i
ma x = 1− v I n s
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βo x i
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x
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. (A.36)

• Lipogenesis (Lg e n). Acetyl-CoA molecules are converted to malonyl-CoA which, under fatty

acid synthase, form a fatty acid chain. The zonation of enzymes included in this process makes

this process upregulated in the pericentral cells. Table A.11 gives the roles of molecules in

Lipogenesis.
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Table A.11 Roles of molecules in Lipogenesis (Lg e n).

Molecules used in process (#) Molecules synthesized in process (#)

Acetyl-CoA (a C o A) 8 Free fatty acids (F AH ) 1

Adenosine Tri-phosphate (a t p ) 7 Adenosine Di-phosphate (a d p ) 7

Inorganic phosphate (P ) 7

Inhibitors Activators

Fatty acids (F AH ) none

Depressant Stimulant

Glucagon (G LH B ) Insulin (I n sH B )

– Compartments-in-series model: for i = 1, . . . , n , the rate of lipogenesis in hepatic com-

partment i is given by
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where hormonal regulation is given by
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– PDE models: the rate of lipogenesis in the hepatocytes is given by
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where hormonal regulation is given by
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r e f

. (A.40)

• Lipolysis (Li p ). Triglycerides are broken down to three fatty acids and a glycerol molecule.

Table A.12 gives the roles of molecules in Lipolysis.
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Table A.12 Roles of molecules in Lipolysis (Li p ).

Molecules used in process (#) Molecules synthesized in process (#)

Triglycerides (T GH ) 1 Free fatty acids (F AH ) 3

Glycerol (g l yH ) 1

Inhibitors Activators

none none

Depressant Stimulant

Insulin (I n sH B ) Glucagon (G LH B )

– Compartments-in-series model: for i = 1, . . . , n , the rate of lipolysis in hepatic compart-

ment i is given by

RLi p
i = v Li p K Li p

ma x

�

[T GH ]i
K T G

Li p + [T GH ]i

�

, (A.41)

where hormonal regulation is given by

K Li p
ma x = 1− v I n s

i

[I n sH B ]i
I n s

Li p
r e f

+ v G L
i

[G LH B ]i
G L

Li p
r e f

. (A.42)

– PDE models: the rate of lipolysis in the hepatocytes is given by

RLi p = v Li p K Li p
ma x

�

[T GH ]

K T G
Li p + [T GH ]

�

, (A.43)

where hormonal regulation is given by

K Li p
ma x = 1− v I n s

x

[I n sH B ]

I n s
Li p
r e f

+ v G L
x

[G LH B ]

G L
Li p
r e f

. (A.44)

• Triglyceride Synthesis (T S y n). Fatty acids are joined with a coenzyme A (CoA) to form acyl-

CoA and attach to a glycerol backbone derived from glycerol-3-phosphate to form triglycerides.

Table A.13 gives the roles of molecules in triglyceride synthesis.
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Table A.13 Roles of molecules in Triglyceride Synthesis (T S y n).

Molecules used in process (#) Molecules synthesized in process (#)

Fatty acids (F AH ) 3 Triglycerides (T GH ) 1

Glycerol-3-phosphate (g 3p ) 1 Adenosine Mono-phosphate (a mp ) 3

Adenosine Tri-phosphate (a t p ) 3 Inorganic phosphate (P ) 7

Inhibitors Activators

none none

Depressant Stimulant

Glucagon (G LH B ) Insulin (I n sH B )

– Compartments-in-series model: for i = 1, . . . , n , the rate of triglyceride synthesis in

hepatic compartment i is given by

RT S y n
i = v T S y n K T S y n

ma x

�

[F AH ]i
K F A

T S y n + [F AH ]i

�

 

[g 3p ]i
K

g 3p
T S y n + [g 3p ]i

!

, (A.45)

where hormonal regulation is given by

K T S y n
ma x = 1+ v I n s

i

[I n sH B ]i
I n s

T S y n
r e f

− v G L
i

[G LH B ]i
G L

T S y n
r e f

. (A.46)

– PDE models: the rate of triglyceride synthesis in the hepatocytes is given by

RT S y n = v T S y n K T S y n
ma x

�

[F AH ]
K F A

T S y n + [F AH ]

�

 

[g 3p ]

K
g 3p

T S y n + [g 3p ]

!

, (A.47)

where hormonal regulation is given by

K T S y n
ma x = 1+ v I n s

x

[I n sH B ]

I n s
T S y n
r e f

− v G L
x

[G LH B ]

G L
T S y n
r e f

. (A.48)

• Glycerol Kinase (G l y K ). Glycerol is converted to glycerol-3-phosphate. Table A.14 gives the

roles of molecules in glycerol kinase.
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Table A.14 Roles of molecules in Glycerol Kinase (G l y K ).

Molecules used in process (#) Molecules synthesized in process (#)

Glycerol (g l yH ) 1 Glycerol-3-phosphate (g 3p ) 1

Adenosine Tri-phosphate (a t p ) 1 Adenosine Di-phosphate (a d p ) 1

Inhibitors Activators

none none

Depressant Stimulant

N/A N/A

– Compartments-in-series model: for i = 1, . . . , n , the rate of glycerol kinase in hepatic

compartment i is given by

RG l y K
i = v G l y K

 

[g l yH ]i

K
g l y

G l y K + [g l yH ]i

! 

[a t p ]i
K

a t p
G l y K + [a t p ]i

!

. (A.49)

– PDE models: the rate of glycerol kinase in the hepatocytes is given by

RG l y K = v G l y K

 

[g l yH ]

K
g l y

G l y K + [g l yH ]

! 

[a t p ]

K
a t p

G l y K + [a t p ]

!

. (A.50)

A.3 Energy Metabolism

• Adenosine Tri-phosphate Synthesis (AT P S ). In the model, this synthesis of adenosine tri-

phosphate takes the place of the citrate cycle and electron transport chain. For each acetyl-CoA

molecule that enters the citrate cycle, 12 adenosine tri-phosphate molecules are produced

from adenosine di-phosphate and inorganic phosphate. The zonation of enzymes included in

this process makes this process upregulated in the periportal cells. Table A.15 gives the roles

of molecules in adensoine tri-phosphate synthesis.
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Table A.15 Roles of molecules in Adenosine Tri-phosphate Synthesis (AT P S ).

Molecules used in process (#) Molecules synthesized in process (#)

Acetyl-CoA (a C o A) 1 Adenosine Tri-phosphate (a t p ) 12

Adenosine Di-phosphate (a d p ) 12

Inorganic phosphate (P ) 12

Inhibitors Activators

none Oxygen (O x yH B )

Depressant Stimulant

N/A N/A

– Compartments-in-series model: for i = 1, . . . , n , the rate of adenosine tri-phosphate

synthesis in hepatic compartment i is given by

RAT P S
i = v AT P S

i

�

[a C o A]i
K a C o A

AT P S + [a C o A]i

�

�

[a d p ]i

K
a d p

AT P S + [a d p ]i

�

· · ·

· · ·
�

[P ]i
K P

AT P S + [P ]i

�

�

[O x yH B ]i
K

O x y
AT P S + [O x yH B ]i

�

. (A.51)

– PDE models: the rate of adenosine tri-phosphate synthesis in the hepatocytes is given by

RAT P S = v AT P S
x

�

[a C o A]

K a C o A
AT P S + [a C o A]

�

�

[a d p ]

K
a d p

AT P S + [a d p ]

�

· · ·

· · ·
�

[P ]
K P

AT P S + [P ]

�

�

[O x yH B ]

K
O x y

AT P S + [O x yH B ]

�

. (A.52)

• Nucleoside Diphosphate Kinases (N D K U and N D K G ). Nucleoside diphosphate kinases

mediate the exchange of phosphate groups between various nucleoside di- (and tri-) phos-

phates. Tables A.16 and A.17 gives the roles of molecules in the nucleoside diphosphate

kinases.
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Table A.16 Roles of molecules in Uridine Diphosphate Kinase (N D K U ).

Molecules used in process (#) Molecules synthesized in process (#)

Uridine Di-phosphate (ud p ) 1 Uridine Tri-phosphate (u t p ) 1

Adenosine Tri-phosphate (a t p ) 1 Adenosine Di-phosphate (a d p ) 1

Inhibitors Activators

none none

Depressant Stimulant

N/A N/A

Table A.17 Roles of molecules in Guanosine Diphosphate Kinase (N D K G ).

Molecules used in process (#) Molecules synthesized in process (#)

Guanosine Di-phosphate (g d p ) 1 Guanosine Tri-phosphate (g t p ) 1

Adenosine Tri-phosphate (a t p ) 1 Adenosine Di-phosphate (a d p ) 1

Inhibitors Activators

none none

Depressant Stimulant

N/A N/A

– Compartments-in-series model: for i = 1, . . . , n , the rate of nucleoside diphosphate

kinases in hepatic compartment i are given by

RN D K U
i = v N D K U [a t p ]i [ud p ]i

(K a t p
N D K U + [a t p ]i )(K

ud p
N D K U + [ud p ]i )

− v N D K U [a d p ]i [u t p ]i

(K a d p
N D K U + [a d pi ])(K

u t p
N D K U + [u t p ]i )

, (A.53)

RN D K G
i = v N D K G [a t p ]i [g d p ]i

(K a t p
N D K G + [a t p ]i )(K

g d p
N D K G + [g d p ]i )

− v N D K G [a d p ]i [g t p ]i

(K a d p
N D K G + [a d pi ])(K

g t p
N D K G + [g t p ]i )

. (A.54)
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– PDE models: the rate of nucleoside diphosphate kinases in the hepatocytes are given by

RN D K U = v N D K U [a t p ][ud p ]

(K a t p
N D K U + [a t p ])(K ud p

N D K U + [ud p ])

− v N D K U [a d p ][u t p ]

(K a d p
N D K U + [a d p ])(K u t p

N D K U + [u t p ])
, (A.55)

RN D K G = v N D K G [a t p ][g d p ]

(K a t p
N D K G + [a t p ])(K g d p

N D K G + [g d p ])

− v N D K G [a d p ][g t p ]

(K a d p
N D K G + [a d p ])(K g t p

N D K G + [g t p ])
. (A.56)

• Adenosine Kinase (AK ). Adenosine kinase mediates the bi-directional transfer of a phosphate

from adenosine tri-phosphate to adenosine mon-phosphate providing two adenosine di-

phosphate molecules. Table A.18 gives the roles of molecules in adensoine kinase.

Table A.18 Roles of molecules in Adenosine Kinase (AK ). Note: this is a bidirectional process.

Molecules used in process (#) Molecules synthesized in process (#)

Adenosine Tri-phosphate (a t p ) 1 Adenosine Di-phosphate (a d p ) 2

Adenosine Mono-phosphate (a mp ) 1

Inhibitors Activators

none none

Depressant Stimulant

N/A N/A

– Compartments-in-series model: for i = 1, . . . , n , the rate of adenosine kinase in hepatic

compartment i is given by

RAK
i = v AK

�

[a t p ]i [a mp ]i
(K a t p

AK + [a t p ]i )(K
a mp

AK + [a mp ]i )
−

[a d p ]2i
(K a d p

AK )2+ [a d p ]2i

�

. (A.57)

– PDE models: the rate of adenosine kinase in the hepatocytes is given by

RAK = v AK

�

[a t p ][a mp ]

(K a t p
AK + [a t p ])(K a mp

AK + [a mp ])
−

[a d p ]2

(K a d p
AK )2+ [a d p ]2

�

. (A.58)
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• Additional Adenosine Tri-phosphate Use (AT P u). Adenosine Tri-phosphate is consumed

by processes other than glucose and lipid metabolism in hepatocytes. In the model, a sin-

gle equation allows for this clearance. Table A.19 gives the roles of molecules in additional

adenosine triphosphate use.

Table A.19 Roles of molecules in Additional Adenosine Triphosphate Use (AT P u).

Molecules used in process (#) Molecules synthesized in process (#)

Adenosine Tri-phosphate (a t p ) 1 Adenosine Di-phosphate (a d p ) 1

Inorganic phosphate (P ) 1

Inhibitors Activators

none none

Depressant Stimulant

N/A N/A

– Compartments-in-series model: for i = 1, . . . , n , the rate of this additional adenosine

tri-phosphate use in hepatic compartment i is given by

RAT P u
i = v AT P u

�

[a t p ]i
K

a t p
AT P u + [a t p ]i

�

. (A.59)

– PDE models: the rate of this additional adenosine tri-phosphate use in the hepatocytes

is given by

RAT P u = v AT P u

�

[a t p ]

K
a t p

AT P u + [a t p ]

�

. (A.60)

• Control of Cellular Phosphate Levels (P R e g ). This term was added to control the cytosolic

phosphate concentration and is merely a clearance term for the inorganic phosphate equation.

– Compartments-in-series model: for i = 1, . . . , n , the rate of this control on cellular phos-

phate levels in hepatic compartment i is given by

RP R e g
i = v P R e g ([P ]i −P

P R e g
r e f ). (A.61)

– PDE models: the rate of this control on cellular phosphate levels in the hepatocytes is

given by

RP R e g = v P R e g ([P ]−P
P R e g

r e f ). (A.62)
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APPENDIX

B

EQUATIONS FOR LIVER METABOLISM

MODELS

B.1 Compartments-in-series model

The system of equations that defines the compartments-in-series model is given below. We note that

this model is equivalent to the AR system after the advection term has been spatially discretized by

the upwind forward difference with a mesh size of 1/n . Appropriate initial conditions are assumed

for all equations.
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B.1.1 Hepatic equations

For i = 1, . . . , n , the hepatic compartment equations are given by

d [G ]i
d t

=RG S
i −RG P

i , (B.1)

d [g 6p ]i
d t

=RG K
i −RG 6P a s e

i −RG S
i +RG P

i +
1

2
RF B P

i −RP F K
i , (B.2)

d [g CH ]i
d t

=−RG K
i +RG 6P a s e

i +T g C
i , (B.3)

d [g 3p ]i
d t

=RP E P C K
i −RF B P

i +2RP F K
i −RP K

i −RT S y n
i +RG l y K

i , (B.4)

d [L a cH ]i
d t

=−RP E P C K
i +RP K

i −RP D H
i +T L a c

i , (B.5)

d [a C o A]i
d t

=RP D H
i +8Rβo x i

i −RLg e n
i −

1

12
RAT P S

i , (B.6)

d [F AH ]i
d t

=−Rβo x i
i +

1

8
RLg e n

i +3RLi p
i −3RT S y n

i +
1

2
T F A

i , (B.7)

d [T GH ]i
d t

=−RLi p
i +RT S y n

i +T T G
i , (B.8)

d [g l yH ]i
d t

=RLi p
i −RG l y K

i +T g l y
i , (B.9)

d [g t p ]i
d t

=−RP E P C K
i +RN D K G

i , (B.10)

d [g d p ]i
d t

=RP E P C K
i −RN D K G

i , (B.11)

d [u t p ]i
d t

=−RG S
i +RN D K U

i , (B.12)

d [ud p ]i
d t

=RG S
i −RN D K U

i , (B.13)

d [P ]i
d t

=RG 6P a s e
i +2RG S

i −RG P
i +2RP E P C K

i +
1

2
RF B P

i −2.25RP K
i −2.5RP D H

i + . . .

· · ·+3Rβo x i
i +

7

8
RLg e n

i +7RT S y n
i −RAT P S

i +RAT P u
i −RP R e g

i , (B.14)

d [a t p ]i
d t

=−RG K
i −2RP E P C K

i −RP F K
i +3.25RP K

i +2.5RP D H
i −2Rβo x i

i −
7

8
RLg e n

i − . . .

· · · −3RT S y n
i −RG l y K

i +RAT P S
i −RN D K U

i −RN D K G
i −RAK

i −RAT P u
i , (B.15)

d [a d p ]i
d t

=RG K
i +2RP E P C K

i +RP F K
i −3.25RP K

i −2.5RP D H
i +Rβo x i

i +
7

8
RLg e n

i + . . .

· · ·+RG l y K
i −RAT P S

i +RN D K U
i +RN D K G

i +2RAK
i +RAT P u

i , (B.16)

d [a mp ]i
d t

=Rβo x i
i +3RT S y n

i −RAK
i , (B.17)
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where the rates of all metabolic processes M ,RM
i , are given in Appendix A, and the rate of transport

for metabolite C , T C
i , is given in Section 2.3.1.1.1.

B.1.2 Systemic blood equations

The systemic blood equations are given by

d [g l yS B ]
d t

=
vb f

s
([g l yH B ]n − [g l yS B ])+

1

3
SAd Li p , (B.18)

d [T GS B ]
d t

=
vb f

s
([T GH B ]n − [T GS B ])+ sT GSM e a l −

ln 2

λ
[T GS B ], (B.19)

d [F AS B ]
d t

=
vb f

s
([F AH B ]n − [F AS B ])+SAd Li p − c f [F AS B ], (B.20)

d [g CS B ]
d t

=
vb f

s
([g CH B ]n − [g CS B ])+SM e a l −Sg C up , (B.21)

d [L a cS B ]
d t

=
vb f

s
([L a cH B ]n − [L a cS B ]), (B.22)

d [I n sS B ]
d t

=
vb f

s
([I n sH B ]n − [I n sS B ])+

1

60rτI
HI + bI n s , (B.23)

d [G LS B ]
d t

=
vb f

s
([G LH B ]n − [G LS B ])+

1

60rτL
HL , (B.24)

d [O x yS B ]
d t

=
vb f

s
([O x yH B ]n − [O x yS B ])+ cO x y , (B.25)

where s = 5n is the ratio between the volume of the systemic blood compartment to the volume of

a hepatic compartment, sT G = 0.0145 is a scaling factor on meal inputs to triglycerides, ln 2
λ is the

half life of triglycerides with λ= 4.5 hours, c f = 0.0018 is the rate of clearance of free fatty acids to

the body (excluding the liver), bI n s = 0.0022 is a constant source term for insulin (so that it doesn’t

drop to zero), and cO x y = 1.35mmHg/s is a constant rate of oxygen input. The rates of insulin and

glucagon release, 1
60rτI

HI and 1
60rτL

HG , are based off of a model developed by Hetherington et

al. [88] for which insulin and glucagon are only released when the concentration of glucose is either

above or below a certain threshold. The functionsHI andHG are Hill functions dependent upon

the level of glucose, given by

HI =
fI ([g CS B ])

(K I n s
M )nI n s + fI ([g CS B ])

, (B.26)

HG =
fG ([g CS B ])

(K G L
M )nG L + fG ([g CS B ])

, (B.27)
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where

fI ([g CS B ]) =











ln

�

sb l o o d [g CS B ]

I
g C
r e f

�

, if sb l o o d [g CS B ]

I
g C
r e f

≥ 1,

0, otherwise,

(B.28)

fG ([g CS B ]) =











ln

�

G L
g C
r e f

sb l o o d [g CS B ]

�

, if
G L

g C
r e f

sb l o o d [g CS B ]
≥ 1,

0, otherwise,

(B.29)

where sb l o o d is a scaling factor. The parameters given in [10] are used with the exception of I
g C
r e f and

τI which were set to 2.5 and 0.03, respectively. The rates of glucose uptakeSg C up , adipose lipolysis

SAd Li p , and meal inputsSme a l are given in Sections 2.3.1.3.1 - 2.3.1.3.3 with parameter values given

in Tables B.1, B.2, and B.3, respectively.

Table B.1 Parameter values for rate of glucose uptake in the body excluding the liver.

Parameter Value Parameter Value Parameter Value
v1 42.953 KM1

2141 n1 3
v2 151.49 KM2

12137 n2 3
KMI

1.894 nI 3

Table B.2 Parameter values for rate of adipose lipolysis.

Parameter Value Parameter Value Parameter Value
cI 4.31e-4 l0 0.125 Ib 5.95

αAd Li p 3.29 l2 1.28 IA2 16

Table B.3 Parameter values for rate of meal inputs.

Parameter Value Parameter Value Parameter Value
k1 3.7e-3 αme a l 32.7 σ2 107

k2 4.7e-4 Gi n 0.507
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B.1.3 Hepatic blood equations

We will use the notational convention [CH B ]0 = [CS B ] for all molecules C modeled in the hepatic

blood. For i = 1, . . . , n , the hepatic blood equations are given by

d [g l yH B ]i
d t

= vb f ([g l yH B ]i−1− [g l yH B ]i )−γHT
g l y

i , (B.30)

d [T GH B ]i
d t

= vb f ([T GH B ]i−1− [T GH B ]i )−γHT T G
i , (B.31)

d [F AH B ]i
d t

= vb f ([F AH B ]i−1− [F AH B ]i )−γHT F A
i , (B.32)

d [g CH B ]i
d t

= vb f ([g CH B ]i−1− [g CH B ]i )−γHT
g C

i , (B.33)

d [L a cH B ]i
d t

= vb f ([L a cH B ]i−1− [L a cH B ]i )−γHT L a c
i , (B.34)

d [I n sH B ]i
d t

= vb f ([I n sH B ]i−1− [I n sH B ]i )−kI n s [I n sH B ]i , (B.35)

d [G LH B ]i
d t

= vb f ([G LH B ]i−1− [G LH B ]i )−kG L [G LH B ]i , (B.36)

d [O x yH B ]i
d t

= vb f ([O x yH B ]i−1− [O x yH B ]i )−kO x y [O x yH B ]i , (B.37)

where vb f =QH n = 0.15n is the rate of blood flow, γH = 4 is the ratio of hepatic to hepatic blood vol-

ume, T C
i is the rate of transport of metabolite C , given in Section 2.3.1.1.1, and kI n s = 0.1389, kG L =

0.1543, kO x y = 0.141 are constant rates of degradation.

B.2 PDE models

The PDE models follow a very similar form to the compartments-in-series model, with the exception

of the hepatic blood equations. Since the AR and ADR system have the same hepatic and systemic

blood equations, we present then together here. We keep the same definitions as those given above

unless otherwise specified. Appropriate initial conditions are assumed for all equations.
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B.2.1 Hepatic equations

We represent the dynamics of the metabolite concentrations in the hepatocytes through mass-

balance equations given by

∂ [G ]
∂ t

=RG S −RG P , (B.38)

∂ [g 6p ]
∂ t

=RG K −RG 6P a s e −RG S +RG P +
1

2
RF B P −RP F K , (B.39)

∂ [g CH ]
∂ t

=−RG K +RG 6P a s e +T g C , (B.40)

∂ [g 3p ]
∂ t

=RP E P C K −RF B P +2RP F K −RP K −RT S y n +RG l y K , (B.41)

∂ [L a cH ]
∂ t

=−RP E P C K +RP K −RP D H +T L a c , (B.42)

∂ [a C o A]
∂ t

=RP D H +8Rβo x i −RLg e n −
1

12
RAT P S , (B.43)

∂ [F AH ]
∂ t

=−Rβo x i +
1

8
RLg e n +3RLi p −3RT S y n +

1

2
T F A , (B.44)

∂ [T GH ]
∂ t

=−RLi p +RT S y n +T T G , (B.45)

∂ [g l yH ]
∂ t

=RLi p −RG l y K +T g l y , (B.46)

∂ [g t p ]
∂ t

=−RP E P C K +RN D K G , (B.47)

∂ [g d p ]
∂ t

=RP E P C K −RN D K G , (B.48)

∂ [u t p ]
∂ t

=−RG S +RN D K U , (B.49)

∂ [ud p ]
∂ t

=RG S −RN D K U , (B.50)

∂ [P ]
∂ t

=RG 6P a s e +2RG S −RG P +2RP E P C K +
1

2
RF B P −2.25RP K −2.5RP D H + . . .

· · ·+3Rβo x i +
7

8
RLg e n +7RT S y n −RAT P S +RAT P u −RP R e g , (B.51)

∂ [a t p ]
∂ t

=−RG K −2RP E P C K −RP F K +3.25RP K +2.5RP D H −2Rβo x i −
7

8
RLg e n − . . .

· · · −3RT S y n −RG l y K +RAT P S −RN D K U −RN D K G −RAK −RAT P u , (B.52)

∂ [a d p ]
∂ t

=RG K +2RP E P C K +RP F K −3.25RP K −2.5RP D H +Rβo x i +
7

8
RLg e n + . . .

· · ·+RG l y K −RAT P S +RN D K U +RN D K G +2RAK +RAT P u , (B.53)

∂ [a mp ]
∂ t

=Rβo x i +3RT S y n −RAK , (B.54)
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where the rates of all metabolic processes M ,RM , are given in Appendix A, and the rate of transport

for metabolite C , T C , is given in Table 2.2. Note that these equations are now for partial derivatives

with respect to t rather than ordinary derivatives with respect to t . This is because we are considering

the concentration of each molecule along the sinusoid to be represented by a single function rather

than a number of separate functions that are each in their own compartment. Note, however, that

we still do not include any spatial dynamics in these equations.

B.2.2 Systemic blood equations

Unlike the hepatic equations, the systemic blood equations remain ordinary differential equations.

Thus, this compartment is still assumed to be well-mixed. The systemic blood equations are given

by

d [g l yS B ]
d t

=
vb f

s

�

[g l yH B ](L , t )− [g l yS B ]
�

+
1

3
SAd Li p , (B.55)

d [T GS B ]
d t

=
vb f

s
([T GH B ](L , t )− [T GS B ]) + sT GSM e a l −

ln 2

λ
[T GS B ], (B.56)

d [F AS B ]
d t

=
vb f

s
([F AH B ](L , t )− [F AS B ]) +SAd Li p − c f [F AS B ], (B.57)

d [g CS B ]
d t

=
vb f

s

�

[g CH B ](L , t )− [g CS B ]
�

+SM e a l −Sg C up , (B.58)

d [L a cS B ]
d t

=
vb f

s
([L a cH B ](L , t )− [L a cS B ]) , (B.59)

d [I n sS B ]
d t

=
vb f

s
([I n sH B ](L , t )− [I n sS B ]) +

1

60rτI
HI + bI n s , (B.60)

d [G LS B ]
d t

=
vb f

s
([G LH B ](L , t )− [G LS B ]) +

1

60rτL
HL , (B.61)

d [O x yS B ]
d t

=
vb f

s

�

[O x yH B ](L , t )− [O x yS B ]
�

+ cO x y . (B.62)

B.2.3 Hepatic blood equations

The hepatic blood equations is where the AR and ADR system vary due to the inclusion of dispersion.

This dispersion takes form as a second spatial derivative in the equations, hence requiring boundary

conditions at both the in-flow and the out-flow boundaries. The AR system on the other hand

only requires a boundary condition on one boundary, here taken to be the in-flow boundary. For
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notational convenience, we will denote

CHB(x , t ) =































[g l yH B ](x , t )

[T GH B ](x , t )

[F AH B ](x , t )

[g CH B ](x , t )

[L a cH B ](x , t )

[I n sH B ](x , t )

[G LH B ](x , t )

[O x yH B ](x , t )































, CSB(t ) =































[g l yS B ](t )

[T GS B ](t )

[F AS B ](t )

[g CS B ](t )

[L a cS B ](t )

[I n sS B ](t )

[G LS B ](t )

[O x yS B ](t )































, T C =































T g l y

T T G

T F A

T g C

T L a c

0

0

0































, k=































0

0

0

0

0

kI n s

kG L

kO x y































.

B.2.3.1 AR system

We note that the AR system is equivalent to the compartments-in-series model if you take the

number of compartments n→∞. Using the notation defined above, the hepatic blood equations

are given by the advection-reaction system

∂ CHB

∂ t
=QH

∂ CHB

∂ x
−γHT C−k�CHB, 0< x < 1, t > 0, (B.63)

CHB(0, t ) =CSB(t ), t > 0, (B.64)

CHB(x , 0) = fHB(x ), 0< x < 1, (B.65)

for some appropriate initial conditions fHB. Here,� is taken to mean component wise multiplication

and the derivative operators are also meant to be taken in a component wise sense.

B.2.3.2 ADR system

The ADR system represents the hepatic blood equations as advection-dispersion-reaction equations.

The exception to this is the equations for hormones and oxygen which will remain advection-reaction

equations. The hepatic blood equations are given by

∂ CHB

∂ t
=QH

∂ CHB

∂ x
−DC�

∂ 2CHB

∂ x 2
−γHT C−k�CHB, 0< x < 1, t > 0, (B.66)

CHB(0, t ) =CSB(t ), t > 0, (B.67)

CHB(x , 0) = fHB(x ), 0< x < 1, (B.68)

where DC = [Dg l y , DT G , DF A , Dg C , DL a c ,0,0,0]T and for some appropriate initial conditions fHB.

Again, � is taken to mean component wise multiplication and the derivative operators are also

meant to be taken in a component wise sense.
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