
ABSTRACT

BERNSTEIN, ANDREW SCOTT. Numerical Techniques for Hydrodynamic and Morphody-
namic Modeling. (Under the direction of Alina Chertock).

In this dissertation, we consider numerical techniques for modeling and computationally

solving a hydrodynamic system, represented by the system of shallow water equations used to

model the flows of coastal areas and rivers, and a morphodynamic system, represented by the

shallow water equations with an Exner equation to govern sediment transport. We begin by

deriving the equations for both the shallow water system and Exner equation from physical

principles, and then we consider a number of formulations one can use to model the movement

of sediment within the Exner equation. We then discuss finite volume methods and their use

in solving systems of hyperbolic balance laws, particularly the shallow water equations with

Exner equation.

In Part I, we implement a second-order central-upwind scheme for the 1-D shallow water

equations with discontinuous bottom topography. The scheme is well-balanced, able to exactly

numerically preserve a chosen steady state, and positivity preserving, ensuring that the height

of the water never becomes negative which represents a non-physical state. This central-upwind

scheme relies on a discontinuous piecewise linear reconstruction of the bottom topography

function, and, thus, it is suitable for functions when the bottom contains large jumps and can

be extended to models with moving, time-dependent bottom topography which will be studied

in Part II. We then present the performance of the scheme, demonstrating the numerical scheme

remains smooth while handling a small perturbation of steady state and accurately converging

to the solution of a Riemann problem with both a unique solution or with multiple solutions.

In Part II, we implement second-order central-upwind schemes for the 1-D shallow water

equations with Exner equation. A straightforward implementation of the numerical scheme in

Part I, produces diffusive numerical results, leading us to investigate the eigenvalues of the en-

tire system, as the largest and smallest eigenvalues of the system are used in the evolution of the

numerical scheme. Our conclusion is that most often the water waves and sediment waves prop-

agate with speeds of different magnitudes, causing numerical diffusion to be produced within

the numerical scheme. After determining which eigenvalues are associated with the shallow

water equations and which are associated with the Exner equation, we use this information

to modify our numerical scheme. These modifications include the use of Strang splitting [81]

in the time evolution and a staggered spatial discretization for the numerical representation

of the bottom topography. Using a mixture of these modifications with the original numerical

scheme, we implement four different numerical schemes. We then present the performance of

the numerical schemes and further demonstrate one of the schemes on a number of examples



for various levels of interaction between the water and sediment as well as different speeds for

the water flow. The chosen numerical scheme is then extended into two dimensions which we

use in numerically solving the 2-D shallow water equations with 2-D Exner equation.
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Chapter 1

INTRODUCTION

1.1 Motivation

In recent years the modeling of sediment transport has been of interest to those in the hydraulics

community for its use in environmental and engineering problems. One example is that sediment

transport can influence the construction of harbors since sediment entering the harbor can

damage the layout of the harbor, and dredging the harbor can be expensive. In addition,

sediment building up can cause reservoirs to lose a significant amount of their capacity. Looking

at U.S. reservoirs in 1973, Cunge et al. [19] stated that, by 1973, 33% of the reservoirs built

before 1935 had lost between 25% to 50% of their original capacity. The modeling of sediment

transport can also be of use in the construction of underwater oil wells. Underwater oil wells,

when built too low above the ocean floor, run the risk of sediment covering the wells. As a

result, the wells are built taller than needed, a costly expenditure.

The modeling of sediment transport incorporates a balance between the modeling of flowing

water and that of the sediment. The water flow is modeled using the Saint-Venant system of

shallow water equations which was introduced over 140 years ago in [20] and is still used in

modeling flow in rivers, lakes, and coastal areas. In this thesis, we use both the one-dimensional

(1-D) and two-dimensional (2-D) Saint-Venant systems, with the 2-D system given as
h

hu

hv


t

+


hu

hu2 + g
2h

2

huv


x

+


hv

huv

hv2 + g
2h

2


y

=


0

−ghBx

−ghBy

 , (1.1)

where x, y are spatial vectors, t is the time, B(x, y) is the bottom topography elevation, h(x, y, t)

is the fluid depth above the bottom, u(x, y, t) is the velocity in the x-direction, v(x, y, t) is the

1



velocity in the y-direction and g is a constant for gravity.

Since the Saint-Venant system of shallow water equations (1.1) does not incorporate sed-

iment and has a bottom B(x, y) that is independent of time, we use an additional equation

to govern the sediment transport. Sediment transport is mainly characterized into two main

categories: bed load transport and suspended load transport, which refer to the sediment on

the bottom topography and sediment moving within the water column, respectively. If a model

incorporates both of these processes, it is said to cover the total transport. A third category

which is less commonly accounted for is saltation, which is when single grains jump a short

distance over the bed, settling back onto it. This is a mixture of the bed load and suspension

transport. Due to the complexity and different natures of the processes for bed load and sus-

pended load transport many models focus on only one of these processes. In this thesis, we

will not consider suspension load transport, instead focusing on bed load transport. For the

transport of the sediment layer we will be using a bed load updating equation called an Exner

equation [23] in 1-D and 2-D, with the 2-D Exner equation given by

Bt + ξ
∂qb1
∂x

+ ξ
∂qb2
∂y

= 0, (1.2)

where the variable ξ =
1

1− ε
is a constant with ε representing the porosity of the sediment

layer. The closer ε is to zero the larger the particles that comprise the sediment. We also define

qb1(h, u, v) to be the sediment transport discharge fluxes in the x-direction and qb2(h, u, v) to

be the sediment transport discharge fluxes in the y-direction. These sediment fluxes depend on

various water and sediment properties with a multitude of models used to represent them, a

few of which are defined in Section 1.3.2.

1.2 Shallow Water Equations

In this section, we will briefly describe the derivation of the 2-D shallow water equations and

their properties. For the shallow water equations, we will assume that fluid is in a channel of

unit width, and the depth is much smaller than the width of the channel. In terms of velocity, we

assume the vertical velocity of the fluid ω(x, y, t) is negligible, and that the velocities u(x, y, t)

and v(x, y, t) are roughly constant throughout the cross section of the channel. We define the

vector of velocities to be u(x, y, t) = (u(x, y, t), v(x, y, t), ω(x, y, t)). The general picture to have

in mind is given in Figure 1.1.
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Figure 1.1: Shallow Water Domain.

1.2.1 Derivation of First Equation: Conservation of Mass

To balance the mass on a control volume Ω with boundary ∂Ω, we let ρ be the fluid density,

u ∈ Rm be the fluid velocities, and n be the outward normal vector on ∂Ω. The balance of mass

on a control volume Ω is given by

∂

∂t

∫
Ω
ρ dV︸ ︷︷ ︸

The rate of change

of total mass in Ω

= −
∫
∂Ω

(ρu) · n dA.︸ ︷︷ ︸
The net mass flux across

the boundary of Ω

(1.3)

We can now apply the Divergence Theorem to the right hand side of (1.3) to rewrite the outward

flux through the surface as the divergence over the region,

∂

∂t

∫
Ω
ρ dV = −

∫
Ω
∇ · (ρu) dV. (1.4)

Assuming that ρ is smooth, we can move the derivative to the inside of the integral and rewrite

(1.4) as ∫
Ω

[
∂ρ

∂t
+∇ · (ρu)

]
dV = 0. (1.5)

Since we chose our region Ω arbitrarily, we can rewrite (1.5) as

∂ρ

∂t
+∇ · (ρu) = 0. (1.6)

3



Equation (1.6) is a general formula for conservation of mass. In order to derive the con-

servation of mass equation for the 2-D shallow water equations we need to apply boundary

conditions at the bottom z = B(x, y) and the free surface z = h(x, y, t) +B(x, y), recalling that

in the shallow water equations the bottom B is fixed in time.

At the bottom z = B(x, y), we have

No normal flow: u
∂B

∂x
+ v

∂B

∂y
+ ω = 0. (1.7)

At the surface the solution is slightly more complicated as the free surface may be moving.

Therefore, at the free surface z = h(x, y, t) +B(x, y), we have

No relative normal flow:
∂(h+B)

∂t
+ u

∂(h+B)

∂x
+ v

∂(h+B)

∂y
− ω = 0. (1.8)

We want depth averaged values for our equation, so we integrate (1.6) over the depth from

z = B(x, y) to z = h(x, y, t) +B(x, y). Note for simplicity in our notation we will suppress the

dependance on x, y, and t. Then, ∫ h+B

B

∂ρ

∂t
dz +

∫ h+B

B
∇ · (ρu) dz = 0,∫ h+B

B

∂ρ

∂t
dz +

∫ h+B

B

(
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρω)

∂z

)
dz = 0,∫ h+B

B

∂ρ

∂t
dz +

∫ h+B

B

(
∂(ρu)

∂x
+
∂(ρv)

∂y

)
dz + (ρω)|z=h+B − (ρω)|z=B = 0. (1.9)

Since the functions that are being differentiated and the limits or integration are continuous

and have continuous partial derivatives, we can apply the Leibniz integral rule to (1.9) to obtain

∂

∂t

∫ h+B

B
ρ dz −

(
ρ|z=h+B

∂(h+B)

∂t
− ρ|z=B

∂B

∂t

)
+

∂

∂x

∫ h+B

B
ρu dz −

(
ρu|z=h+B

∂(h+B)

∂x
− ρu|z=B

∂B

∂x

)
(1.10)

+
∂

∂y

∫ h+B

B
ρv dz −

(
ρv|z=h+B

∂(h+B)

∂y
− ρv|z=B

∂B

∂y

)
+ ρω|z=h+B − ρω|z=B = 0.

Using our boundary conditions (1.7) and (1.8) and since the bottom B is fixed in time, the

evaluations at the boundary for ρ, ρu, ρv, and ρω in (1.11) equal zero. Cancelling these terms

4



and evaluating the remaining integrals, we have

∂

∂t
(ρ(h+B)− ρB) +

∂

∂x
(ρu(h+B)− ρuB) +

∂

∂y
(ρv(h+B)− ρvB) = 0,

∂

∂t
(ρh) +

∂

∂x
(ρhu) +

∂

∂y
(ρhv) = 0. (1.11)

The density ρ depends on the pressure, temperature, and salinity of the fluid. We assume that

the temperature and salinity are constant in our domain, and, since our fluid is water, it is

incompressible. Therefore, ρ also does not depend on the pressure; thus, ρ can be taken as a

constant. We factor ρ out of (1.11), and the first equation of the 2-D shallow water equation

system is given by
∂

∂t
(h) +∇ · (hu) = 0. (1.12)

1.2.2 Derivation of Second and Third Equation: Conservation of Momentum

To balance the momentum on a control volume Ω with boundary ∂Ω, we again let ρ be the

fluid density, u ∈ Rm be the fluid velocities, and n be the outward normal vector on ∂Ω. The

balance of momentum on a control volume Ω is given by

∂

∂t

∫
Ω
ρu dV︸ ︷︷ ︸

The rate of change

of total momentum in Ω

= −
∫
∂Ω

(ρu) u · n dA︸ ︷︷ ︸
The net momentum flux across

the boundary of Ω

+

∫
∂Ω

(pI − II) · n dA︸ ︷︷ ︸
The surface forces

acting on ∂Ω

+

∫
Ω
ρg dV,︸ ︷︷ ︸

The volume forces

acting on Ω

(1.13)

where g is the body force, p is the pressure, I is the identity matrix, and II is the viscous stress

tensor given by

II =


τxx, τxy, τxz

τyx, τyy, τyz

τ zx, τ zy, τ zz

 . (1.14)

We can now combine the two surface integrals and apply the Divergence Theorem on them to

get
∂

∂t

∫
Ω
ρu dV =

∫
Ω
∇ · [(ρu) u + ρ(pI − II) + ρg] dV. (1.15)

Assuming that ρ is smooth, we move the derivative to the inside of the integral, and rewrite

(1.15) as ∫
Ω

[
∂(ρu)

∂t
+∇ · [(ρu) u + (pI − II) + ρg]

]
dV = 0. (1.16)
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Since we chose our region Ω arbitrarily, we can rewrite (1.16) as

∂(ρu)

∂t
+∇ · [(ρu) u + (pI − II) + ρg] = 0. (1.17)

Equation (1.17) is a general formula for conservation of momentum. In order to derive the

equations specific to the 2-D shallow water equations we need to apply a few assumptions.

The first is that the only body force acting on the system is the force of gravity. Thus g =

(g1, g2, g3) ≡ (0, 0,−g) where g is the acceleration due to gravity, a constant value. Secondly,

from the assumption that the vertical velocity is small and can be neglected, we have D
Dtω =

∂ω
∂t + u ·∇ω = 0, where D

Dt denotes the total derivative which computes the time rate of change

of any quantity for a portion of material moving with a velocity u. Lastly, we assume that the

flow is inviscid, meaning that the viscous stress tensor II is zero.

The system in (1.17) can now be written as
ρu

ρv

ρω


t

+


ρuu+ p

ρvu

ρωu


x

+


ρuv

ρvv + p

ρωv


y

+


ρuω

ρvω

ρωω + p


z

=


0

0

−ρg

 . (1.18)

By expanding the derivatives in (1.18) and using the equation for conservation of mass (1.6),

we rewrite (1.18) as

ρut + ρuux + ρvuy + ρωuz + px = 0, (1.19)

ρvt + ρuvx + ρvvy + ρωvz + py = 0, (1.20)

ρωt + ρuωx + ρvωy + ρωωz + pz = −ρg. (1.21)

Since we assume that the vertical velocity ω is small and thus the vertical component of accel-

eration given by the material derivative D
Dtω = 0, we can rewrite (1.21) as

ρωt + ρuωx + ρvωy + ρωωz + pz = −ρg,

ρ
Dω

Dt
+ pz = −ρg,

pz = −ρg. (1.22)

At the free surface z = h + B, the pressure is equal to the pressure from the atmosphere,

p = patm. For convenience we will take patm to be zero. Now, integrating (1.22) and applying

the pressure boundary condition at the free surface, we get p(h + B) = 0. Thus, we arrive at
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the hydrostatic pressure relation

p = ρg[(h+B)− z], (1.23)

which represents the pressure exerted by a liquid. Note from (1.23) that the deeper you go

under the surface, the greater the pressure will be. From the relation (1.23) we find a formula

for the other pressure terms px and py in (1.19) and (1.20), respectively,

px = ρg(h+B)x, (1.24)

py = ρg(h+B)y. (1.25)

We further simplify (1.19) and (1.20), by noting that px and py are independent of z, and thus

the left hand side must be as well. Therefore, the z velocity terms will vanish, and u and v are

independent of z. We rewrite (1.19) and (1.20), plugging in (1.24) and (1.25), to obtain

ρut + ρuux + ρvuy = −ρg(h+B)x, (1.26)

ρvt + ρuvx + ρvvy = −ρg(h+B)y. (1.27)

To express (1.26) and (1.27) in a conservative form similar to (1.11) for the conservation for

mass, we rewrite the system, starting with (1.26), by first multiplying it by the fluid height h

and adding (1.11) multiplied by u, to obtain

h(ρut + ρuux + ρvuy) + u(ρh)t + u(ρhu)x + u(ρhv)y = h(−ρg(h+B)x), (1.28)

(ρh)ut + u(ρh)t + (ρhu)ux + u(ρhu)x + (ρhv)uy + u(ρhv)y = −ρgh(h+B)x. (1.29)

As was stated with the conservation of mass equation, ρ can be taken as a constant and factored

out. Once factored out, we separate the right hand side into the hx and Bx terms and rewrite

the left hand side, recognizing a number of chain rules. Thus, we have

hut + uht + (hu)ux + u(hu)x + (hv)uy + u(hv)y = −ghhx − ghBx, (1.30)

(hu)t + (hu2)x + (huv)y = −
(

1

2
gh2

)
x

− ghBx, (1.31)

(hu)t + (hu2 +
1

2
gh2)x + (huv)y = −ghBx. (1.32)

Equation (1.32) represents the second of the 2-D shallow water equations: conservation of

momentum in the x-direction.

In a similar way, we find the third equation by multiplying (1.27) by the fluid height h and

7



adding (1.11) multiplied by v to obtain

h(ρvt + ρuvx + ρvvy) + v(ρh)t + v(ρhu)x + v(ρhv)y = h(−ρg(h+B)y), (1.33)

(ρh)vt + v(ρh)t + (ρhv)ux + u(ρhv)x + (ρhv)vy + v(ρhv)y = −ρgh(h+B)x. (1.34)

Again, ρ can be taken as a constant and factored out. Once factored out, we separate the right

hand side into the hy and By terms and rewrite the left hand side, recognizing a number of

chain rules. Thus, we have

hvt + vht + (hv)ux + u(hv)x + (hv)vy + v(hv)y = −ghhy − ghBy, (1.35)

(hv)t + (huv)x + (hv2)y = −
(

1

2
gh2

)
y

− ghBy, (1.36)

(hv)t + (huv)x + (hv2 +
1

2
gh2)y = −ghBy. (1.37)

Equation (1.37) represents the third of the 2-D shallow water equations: conservation of mo-

mentum in the y-direction.

1.2.3 Hyperbolic System of Conservation and Balance Laws

In the previous subsections, we derived the individual equations for the 2-D system of shallow

water equations given by (1.12), (1.32), and (1.37), resulting in the system given in (1.1). The

system of shallow water equations, belongs to the category of hyperbolic systems of the form,

∂

∂t
U(x, y, t) +

∂

∂x
F (U(x, y, t)) +

∂

∂y
G (U(x, y, t)) = S(x, y, t). (1.38)

In the general case, U ∈ Rm is an m-dimensional vector of conserved variables, that is variables

whose quantities are neither created nor destroyed. F (U) ∈ Rm and G (U) ∈ Rm are referred

to as flux functions with S(x, y, t) being the source term. If the bottom topography is flat, then

Bx = 0 and By = 0 in (1.1). Thus, S is zero, and a system written in the form of (1.38), is

called a conservation law when S(x, y, t) = 0. A conservation law in quasilinear form is given

by

Ut +
∂F

∂U
Ux +

∂G

∂U
Uy = 0, (1.39)

where
∂F

∂U
,
∂G

∂U
are Jacobian matrices of size m×m in the general case. We say the system of

conservation laws (1.39) is hyperbolic if any real combination α
∂F

∂U
+ β

∂G

∂U
has real eigenvalues

and is diagonalizable.

The shallow water equations and conservation laws are important to many applications in

science and engineering which deal with conserved quantities such as mass, momentum, and
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energy, and thus can be modeled with PDEs of this form. Difficulties in solving these equations

arise that are both inherent to the system and caused by solving the system numerically. The

first difficulties may arise in solving (1.39) as the solutions to the system may have compli-

cated structures such as shocks and rarefactions. Possible discontinuities in the solution may

also develop in finite time, even if the initial conditions were smooth. Where the solution is

discontinuous, the PDE is not satisfied in the classical sense, so we work with the integral form

of the equations (1.5) and (1.16). A second difficulty, when dealing with the integral form of

the system, is that we have weak solutions which are non-unique. Since the equations are only

a model of reality, the challenge is to be able to choose a physically relevant solution.

When the source term in (1.38) is nonzero (S 6= 0), the conservation laws are instead referred

to as balance laws. Since most physical applications of the shallow water equations do not deal

with a perfectly flat bottom where bottom derivatives are zero, they are usually represented

as a balance law. This addition of a nonzero source term may make numerically solving the

system a more complicated task. To help with numerically solving the balance laws a special

set of solutions called steady-state solutions are used. These steady state solutions, which are

solutions that do not change in time, i.e. their time derivatives are zero, are physically relevant

and important for numerical methods. A good numerical method should be able to capture

steady states and small perturbations of steady states. A numerical method which is able to

capture a particular steady state is referred to as well balanced and will be further discussed

section 1.4. In the following subsection, we will derive a formula for steady states of the shallow

water equations.

1.2.4 Steady States of Shallow Water Equations

The 2-D system of shallow water equations (1.1) has both smooth and non-smooth steady state

solutions. In this section, we derive some of these steady state solutions. At steady state all the

time derivatives are zero, and therefore (1.1) reduces to
(hu)x + (hv)y = 0,(
hu2 + 1

2gh
2
)
x

+ (huv)y = −ghBx,

(huv)x +
(
hv2 + 1

2gh
2
)
y

= −ghBy.

(1.40)

One solution to the first equation of (1.40) is (hu)x = 0 and (hv)y = 0. Since the spatial

derivatives are both zero, this implies

hu = constant and hv = constant. (1.41)
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Looking at the second equation of (1.40) we can expand using the chain rule to obtain

u(hu)x + (hu)ux + ghhx + u(hv)y + (hv)uy = −ghBx. (1.42)

From (1.41), we have that (hu)x = 0 and (hv)y = 0, and using this and rearranging (1.42) we

have

u��
��*0

(hu)x + (hu)ux + ghhx + u��
��*0

(hv)y + (hv)uy + ghBx = 0, (1.43)

h (uux + ghx + gBx + vuy) = 0, (1.44)

uux + ghx + gBx + vuy = 0. (1.45)

Since u is the velocity in the x-direction, uy = 0. Therefore, (1.45) can be rewritten as

uux + ghx + gBx + v��>
0

uy = 0, (1.46)(
1

2
u2 + gh+ gB

)
x

= 0, (1.47)(
1

2
u2 + g(h+B)

)
x

= 0. (1.48)

Therefore, this implies that
1

2
u2 + g(h+B) = constant. (1.49)

We now consider the third equation of (1.40) which we expand using the chain rule to obtain

v(hu)x + (hu)vx + v(hv)y + (hv)vy + ghhy+ = −ghBy. (1.50)

From (1.41) we have (hu)x = 0 and (hv)y = 0, and, using this and rearranging (1.50), we find

that

v��
��*0

(hu)x + (hu)vy + v��
��*0

(hv)y + (hv)vy + ghhy + ghBy = 0, (1.51)

h (uux + ghx + gBx + vuy) = 0, (1.52)

uvx + vvy + ghy + gBy = 0. (1.53)
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Since v is the velocity in the y-direction we have vx = 0. Therefore, (1.53) can be rewritten as

u��>
0

vx + vvy + ghy + gBy = 0, (1.54)(
1

2
v2 + gh+ gB

)
y

= 0, (1.55)(
1

2
v2 + g(h+B)

)
y

= 0. (1.56)

The third equation of (1.40) therefore implies that

1

2
v2 + g(h+B) = constant. (1.57)

Putting together equations (1.41), (1.48), and (1.56), the 2-D shallow water system (1.1) admits

steady state solutions satisfying

hu = constant,

hv = constant,

1

2
u2 + g(h+B) = constant,

1

2
v2 + g(h+B) = constant.

(1.58)

One of the most important steady states satisfying (1.58) is the stationary steady state, which

is also called the ”lake-at-rest steady state”. This steady state describes a motionless lake and

is satisfied when

u = 0, v = 0, w := h+B = constant, (1.59)

where w is defined to be the water surface.

1.3 Sediment Transport Equation

The 2-D shallow water equations (1.1) govern the flow of water, assuming that the bottom

topography or sediment is fixed in time. In the physical world, we know that this is not always

the case. Bedrock may appear fixed in the short term but may be moved over time, and a

bottom made of sand can be in constant flux depending on how powerful the flow of water is.

To incorporate the movement of the bottom, we need to add an additional equation to (1.1)

which models the sediment transport. This equation (1.2), referred to as an Exner equation

from Austrian meteorologist and sedimentologist Felix Maria Exner, will be used to model
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the mass transport of the sediment and will resemble the mass transport equation for the

water (1.12). One main difference between the mass transport equation for the water and

the Exner equation is that in (1.12) the water flux is always represented by hu in the x-

direction and hv in the y-direction, while in (1.2) the sediment fluxes (qb1 , qb2) in the Exner

equation can be represented by various formulations. These sediment flux formulations can

depend on various physical parameters such as sediment grain size, and angle of elevation of

the bottom topography. This will be discussed in Section 1.3.2 and examples can be found

in [10,30,66,67,69,75].

In sediment transport formulations, the mass of the sediment or total load for the sediment

flux can be written in two parts that incorporate the bed load transport qb and the suspended

load transport qs. The bed load transport incorporates the sediment being transported on the

bed surface either by friction or gravity. The suspension transport incorporates the sediment

that is picked up by the water and transported above the bed. The sediment moves within the

water flow and may or may not be deposited back onto the bed. Thus we have that the total

load for sediment flux is given by

qtot = qb + qs. (1.60)

While the total load sediment flux is made up of both the bed load and suspended sediment

fluxes, one flux often dominates the other based on the environment. For slow moving water

flows and beds with larger sediment, bed load transport will dominate as the water will not lift

much sediment into the water flow. Suspended load transport will dominate in faster moving

water flows and when the sediment is fine enough to be put into suspension. In a general, or

typical, marine environment, bed load transport will dominate when sediment grains are coarser

than approximately 0.2 mm, and suspended load transport will dominate for sediment grains

finer than 0.2 mm [79].

In the following subsections, we derive the Exner equation for the sediment transport and

discuss a number of empirically derived models for the sediment transport fluxes. These sedi-

ment transport flux formulations are obtained using bed load transport sediment fluxes qb.

1.3.1 Derivation of Sediment Transport Equation

To balance the sediment mass on a control volume Ω with boundary ∂Ω, we represent sediment

density by ρs, sediment velocities by ub ∈ Rm, and let n be the outward normal vector on ∂Ω.
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The balance of sediment mass on a control volume Ω is then given by

∂

∂t

∫
Ω
ρs(1− ε) dV︸ ︷︷ ︸

The rate of change

of total mass in Ω

= −
∫
∂Ω

[ρs(1− ε)ub] · n dA︸ ︷︷ ︸
The net mass flux across

the boundary of Ω

, (1.61)

where ρs(1− ε) is the packing density and ε is the porosity of the sediment [19]. We now apply

the Divergence Theorem to the right hand side of (1.61), rewriting the outward flux through

the surface to equal the divergence over the region,

∂

∂t

∫
Ω
ρs(1− ε) dV =

∫
Ω
∇ · [ρs(1− ε)ub] dV. (1.62)

Assuming that ρs(1− ε) is smooth, we can move the derivative to the inside and rewrite (1.62)

as ∫
Ω

[
∂[ρs(1− ε)]

∂t
+∇ · [ρs(1− ε)ub]

]
dV = 0. (1.63)

Since we chose our region Ω arbitrarily, we rewrite (1.63) as

∂[ρs(1− ε)]
∂t

+∇ · [ρs(1− ε)ub] = 0. (1.64)

Equation (1.64) is a general formula for conservation of sediment mass. In order to derive the

2-D Exner equation for sediment mass transport, we need to apply boundary conditions at

the bed level, z = B(x, y, t), where the sediment interacts with the water, and at the bottom

topography reference level, z = 0, where the sediment is assumed to be fixed. In our boundary

conditions, we assume the sediment is incompressible. Thus, ps is constant and the sediment

velocity is ub = (ub, vb, ωb) where ub, vb, and ωb are the sediment velocities in the x-direction,

y-direction and z-direction, respectively.

At the reference level z = 0, let the sediment velocity ub = (ub, vb, ωb). Then we have

ub = vb = ωb = 0. (1.65)

At the bed level z = B(x, y, t), we have no relative normal flow, so

∂B

∂t
+ ub

∂B

∂x
+ vb

∂B

∂y
+ ωb = 0. (1.66)

To obtain depth averaged values for our equation, we integrate (1.64) over the depth of the

sediment from z = 0 to z = B(x, y, t). Note for simplicity in our notation we will suppress the
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dependance on x, y, and t. Then, ∫ B

0

∂[ρs(1− ε)]
∂t

dz +

∫ B

0
∇ · [ρs(1− ε)ub] dz = 0,∫ B

0

∂[ρs(1− ε)]
∂t

dz +

∫ B

0

(
∂ [ρs(1− ε)ub]

∂x
+
∂ [ρs(1− ε)vb]

∂y
+
∂ [ρs(1− ε)ωb]

∂z

)
dz = 0,∫ B

0

∂[ρs(1− ε)]
∂t

dz +

∫ B

0

(
∂ [ρs(1− ε)ub]

∂x
+
∂ [ρs(1− ε)vb]

∂y

)
dz

+ [ρs(1− ε)ωb] |z=B − [ρs(1− ε)ωb] |z=0 = 0.

(1.67)

To simplify, we may factor out ρs, since it is a constant by assumption, and apply the Leibniz

integral rule to (1.67) to obtain

∂

∂t

∫ B

0
(1− ε) dz − (1− ε)|z=B

∂B

∂t

+
∂

∂x

∫ B

0
(1− ε)ub dz − (1− ε)ub|z=B

∂B

∂x

+
∂

∂y

∫ B

0
(1− ε)vb dz − (1− ε)vb|z=B

∂B

∂y

+ ρω|z=B − ρω|z=0 = 0. (1.68)

Using the boundary conditions given in (1.65) and (1.66), the evaluations at the boundaries in

(1.68) equal zero. Canceling these terms and evaluating the remaining integrals results in

∂

∂t
[(1− ε)B] +

∂

∂x
qb1 +

∂

∂y
qb2 = 0,

∂

∂t
B + ξ

∂

∂x
qb1 + ξ

∂

∂y
qb2 = 0. (1.69)

We recall that ξ =
1

1− ε
, and we let qb1 =

∫ B
0 (1 − ε)ub be the bed load sediment transport

flux in the x-direction, and qb2 =
∫ B

0 (1 − ε)vb be the bed load sediment transport flux in the

y-direction. The values for qb1 and qb2 are not always straight forward and can be calculated in

a number of different ways. In the following sections, we will look at various ways of formulating

the sediment transport flux.

1.3.2 Sediment Transport Formulations

This subsection discusses various formulations for the sediment transport fluxes qb = (qb1 , qb2).

First, we review the terms and physical meaning behind the variables used in the various
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sediment transport fluxes. In general, hydrodynamic forcing agents, i.e the currents and waves,

will affect the sediment movement primarily through the friction they exert on the sediment

bed which is referred to as the bed shear stress τ0. Usually, τ0 can be written in terms of the

hydrodynamic unknowns as

τ0 = gρwRh|Sf |, (1.70)

where gρw is the specific weight of the fluid, Rh is the hydraulic ratio which can be approximated

by h, and Sf is the friction term for Manning’s law given by

Sf =
gη2|u|u
R

4/3
h

, (1.71)

with η representing Manning’s coefficient. We then use τ0 to define the Shields parameter θ

(1936) which is a non-dimensional number used to calculate the initiation of sediment motion

in a fluid. The Shields parameter is given by the following:

θ =
τ0

g(ρs − ρw)d
, (1.72)

where ρs is the density of the sediment, ρw is the density of the fluid (in our case, water), and

d is the diameter of the sediment grains.

In addition, we make use of the threshold bed shear stress τcr and threshold Shields pa-

rameter θcr. The threshold or critical values are an indication of the amount of force required

before a sediment grain starts moving. Like the normal Shields parameter, the threshold Shields

parameter is the ratio of the force exerted by the bed shear stress acting to move a grain of

sediment and the submerged weight of the grain counteracting it given by the following formula:

θcr =
τcr

g(ρs − ρw)d
. (1.73)

Also note that we use the notation d50 to represent the size of a grain in the 50th percentile of

all the grains that make up the sediment.

1.3.2.1 Du Boys (1879)

The first sediment transport formula was proposed by Du Boys in 1879. Du Boys divided the

sediment into n layers with layer 1 being directly under the water, layer (n− 1) directly above

a fixed immobile bed, and layer n being the fixed bed. The thickness of the layers is assumed

to be d50 with the velocity increasing linearly. If layer (n− 1) starts moving with velocity ∆u,

then layer (n − 2) will move with speed ∆u in respect to the layer under it, for an absolute

velocity of 2∆u. Extending this up, layer one on the surface just below the water will move
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with speed (n− 1)∆u. We then have the total discharge per unit width is given by

qb =
1

2
(n− 1)∆u(nd50). (1.74)

We now have a formula for qb, but the number of layers n is unknown, so we want to rewrite

this in terms of known quantities. To accomplish this, Du Boys used a tractive force method

which says that the tractive forces or shear forces, moving a particle on the channel bed will

not exceed those resisting the particle motion, i.e. shear stress of the flow is equivalent to the

friction at the bed (τ0 = τcr). From the theory, we have

τ0 = θ(ρs − ρw)gnd50, (1.75)

where the friction is proportional to the submerged weight of the overlying grains. From our

assumption of a tractive force method, there is only one layer (the immobile bed layer), so n = 1

and τ0 = θ(ρs − ρw)gd50. Therefore, in general, when (n − 1) layers are in motion τ0 = nτcr,

which implies n = τ0
τcr

. Plugging into (1.75), we obtain a formula for bed load sediment transport

given by

qb =

(
∆ud50

2τ2
cr

)
τ0(τ0 − τcr). (1.76)

1.3.2.2 Meyer-Peter-Müller (MPM) (1948)

The MPM model is a well know empirical model proposed after a series of tests in Zurich

in 1948 [67]. Meyer-Peter and Müller related bed load sediment flux and shear stress by the

dimensionless formulation

qb = 8

√(
ρs
ρw
− 1

)
gd3 (θ − θcr)3/2 . (1.77)

The MPM model is typically used for the transport of sediment in rocky rivers rather than

sandy areas and assumes a flat bed. It is important to this model that the shear stress τ and

the shield parameter θ are defined well as the (θ− θcr) term will prevent motion while θ < θcr.

In the MPM model, we have θcr = 0.047 and d50 = 0.4429 mm. However both these numbers

may change as the sediment properties change.
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1.3.2.3 Fernandez Luque-VanBeek (FLV) (1976)

The FLV model proposed in 1976 [66] is an empirically derived model of a similar form to (1.77)

given by

qb = 5.7

√(
ρs
ρw
− 1

)
gd3 (θ − θcr)3/2 . (1.78)

In their experiments, FLV used smaller sediment particles, and introduced a downward slope

of up to 22◦.

1.3.2.4 Grass (1981)

One of the simplest models derived for sediment flux was proposed by Grass in his book from

1981 [30]:

qb = Agu ‖u‖m−1
2 , 1 ≤ m ≤ 4, (1.79)

where m = 3 is the usual value for the exponent. The value of A ∈ [0, 1] is an experimentally

determined constant that takes into account the sediment properties such as the size of the

sediment and the viscosity of the fluid. If A is zero, there is no sediment transport, and the

system (1.1)-(1.2) reduces down to just the shallow water equations. When A is small, there is

a weak interaction between the sediment and the water, and when A is large (approaching 1),

there is a strong interaction between the sediment and the water. One thing to note about this

model is that there is no threshold necessary to initiate motion as there are in the other models

in this section. This means that sediment bed load transport will begin with the fluid motion.

1.3.2.5 Nielsen (1992)

In 1992, Nielsen [69] proposed a model similar to that in (1.77) given by

qb = 12

√(
ρs
ρw
− 1

)
gd3 (θ − θcr)

√
θ, (1.80)

where θcr = 0.05. This model is used for smaller grain sizes than the MPM model.

1.3.2.6 Modified Grass (2012)

In 2005, while investigating suspended load sediment transport, Pritchard and Hogg [75] noted

that sediment flux should not depend solely on the water velocity u. They implemented a flux

for the suspension that depended on the water column h in addition to the water velocity u. In

2012, Briganti et al. [10] explored a linear relationship between the water column water height
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and the water velocity u with what we will refer to as a Modified Grass model given by

qb = Adhu ‖u‖32 , (1.81)

where Ad ∈ [0, 1] is analogous to A in (1.79) and is an experimentally determined constant that

takes into account the sediment properties such as the size of the sediment and the viscosity of

the fluid. Adding the water column h to the flux helps fix a problem with Grass’s model that

the maximum velocity on the free surface is where h = 0. This is not physically correct, as,

when there is no water, there is nothing to move the sediment. Adding h to the sediment flux

helps to correct this non-physical result, while allowing the flux to remain large at the bottom

as expected when the problem is fully flooded.

1.4 Finite Volume Methods

In this section, we discuss finite volume methods and their use in solving hyperbolic systems of

conservation and balance laws such as (1.39). In particular, we will discuss Godunov-type finite-

volume projection-evolution methods which were first derived in [28]. With these methods, at

each time level, a solution is globally approximated by a piecewise polynomial function, which

is then evolved to a new time using the integral form of the system of hyperbolic conservation

laws, and projected back onto the original grid. Numerical difficulties that may arise when

solving (1.39) with finite volume methods include the possibility of complicated structures in

the solutions, such as shocks and rarefactions, and discontinuities in the solution that can

develop in finite time, even if the initial conditions are smooth. For simplicity, we will discuss

the 1-D system of conservation laws given by

Ut + F(U)x = 0, (1.82)

where x ∈ Rm, t ∈ R+, U(x, t) is a vector of conserved quantities, and F(U) is a vector of flux

terms. The first step of the method is to divide the computational domain into non-overlapping

intervals. For simplicity, we will divide our domain into uniform intervals called cells, where

we denote Cj = (xj− 1
2
, xj+ 1

2
). Therefore, we have that xj+ 1

2
− xj− 1

2
= ∆x for all j. Second, if

an approximate solution is available at a time level tn, then we define cell averages to be the

average of the integral of a cell j. Thus,

U
n
j :=

1

∆x

∫
Cj

U(x, tn) dx. (1.83)

Generally, the approximate solution at time tn is reconstructed using a global piecewise polyno-

mial. For example, the simplest reconstruction is the global piecewise constant approximation

18



of the solution given by

Ũn
j (x) :=

∑
j

U
n
j χCj , (1.84)

where χCj is the characteristic function of the interval Cj . This reconstruction is only first order

accurate. In order to increase the accuracy, we would need to use a higher-order interpolant.

A wide variety of reconstructions are available in literature, e.g. [1, 16, 27, 33, 34, 38, 42, 59]. We

note that, in general, the solutions are discontinuous at the interfaces of the cells x = xj± 1
2
.

Using the reconstructed interpolant as the initial data at time t = tn, we may now evolve to

the next time level t = tn+1 by integrating (1.82) over Cj × [tn, tn+1]:

Ut = −F(U)x,

1

∆x∆t

∫ x
j+1

2

x
j− 1

2

∫ tn+1

tn
Utdxdt = − 1

∆x∆t

∫ x
j+1

2

x
j− 1

2

∫ tn+1

tn
F(U)xdxdt,

U
n+1
j = U

n
j −

1

∆x

∫ tn+1

tn

[
F(U(xj+ 1

2
, t)− F(U(xj+ 1

2
, t)
]
dt. (1.85)

The way that (1.85) is calculated will depend on the space-time control volumes that are

selected, as seen in Figure 1.2. The first finite volume upwind scheme was proposed by Godunov

Figure 1.2: Left: Central (staggered) control volume. Right: Upwind control volume.

in [28] in 1959. For upwind schemes, the computation cell is chosen such that Cj = (xj− 1
2
, xj+ 1

2
).

Thus, the space-time control volume is given by
[
xj− 1

2
, xj+ 1

2

]
×
[
tn, tn+1

]
. To solve the upwind

scheme, we need to be able to solve or exactly approximately the integrals for the fluxes in

(1.85), since the solution U(x, tn) is discontinuous at the cell interfaces x = xj± 1
2

by the

nature of the reconstruction (1.84). In order to compute the required values at the interfaces

U(x ± ∆x
2 , t

n), an approximate solution to the generalized Riemann problem is required, e.g.
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[4, 9, 16, 27, 28, 42, 59, 84]. The drawback to such schemes is that they are restricted to systems

in which Riemann solvers exist, which can be computationally expensive and very hard to

obtain analytically. However, if the Riemann solver is available, upwind schemes are highly

accurate and less dissipative and diffusive than central schemes, resulting is less smearing at

the discontinuities.

First-order central schemes were introduced in 1954 by Lax and Friedrichs [25, 56]. Within

the finite volume framework, we will be working with central schemes which are staggered,

referred to as central (staggered) schemes, which allow one to evolve the solution without

solving Riemann problems exactly or approximately. This works by computing the cell averages

over a centered grid that is staggered, given by computational cell Cj+ 1
2

= (xj , xj+1), rather

than the original computed grid centered at j. The central (staggered) schemes framework

of being Riemann-problem-solver-free is of particular importance to solving multi-dimensional

problems as Riemann problem solvers do not exist. Central schemes have been developed further

in literature including staggered and non-staggered variants, multidimensional generalizations,

and higher order methods, as seen in , e.g. [2, 6, 15,39,43,50,54,60–62,64,65,68,71,72].

Through the use of a higher-order reconstruction instead of the first order reconstruction

in (1.84), we can significantly improve the resolution of both upwind and central (staggered)

schemes. While the results improve, the cost and difficulty of solving the Riemann problem still

remains in upwind schemes, and central schemes may suffer from increased numerical viscosity.

In addition to central and upwind schemes, a new class of Godunov-type finite volume methods

that combines central and upwind schemes was introduced in [44, 45, 53] and are referred to

as central-upwind schemes. These central-upwind schemes are able to combine the Riemann

solver free aspect of the central scheme with the high accuracy and low dissipation of an

upwind scheme, making them efficient, highly accurate, and applicable to a wide variety of

multidimensional hyperbolic systems of conservation and balance laws. The idea behind central-

upwind schemes is to use upwinding information at the interfaces, which are the one sided speeds

of propagation of waves stemming from the discontinuities at these interfaces. The use of left-

sided and right-sided speeds of propagation allow one to design an overall control volume made

up of two smaller control volumes as seen in Figure 1.3. The first smaller control volume on the

outside edges of Figure 1.3 (colored in blue) will contain the non-smooth nonlinear waves that

are generated at the interface. The second smaller control volume located at the center of Figure

1.3 (colored in green) will contain all the smooth parts from the reconstruction. If the stability

condition for the problem is chosen in a strong enough manner, we can then guarantee that no

waves reach the boundaries of their smaller control volume, and the evolution remains central.

Therefore, no Riemann problem solver is required. Central-upwind schemes have become more

robust in recent years, being further developed in the literature by [5,12,13,17,44–49,51,52,55].

In this thesis, we use a second order semi-discrete scheme outlined in section 1.5.

20



Figure 1.3: Central-Upwind Control Volume.

If the system from (1.82) does not have a zero right hand side, but instead is a balance law

with a source term S(U) in 1-D given by

Ut + F(U)x = S(U), (1.86)

finding a solution is much more complicated. As discussed in section 1.2.3, one special class

of solutions of particular importance to balance laws is that of steady states, or solutions that

remain constant in time, since many additional solutions are small perturbations of steady

states. Capturing these perturbations of steady state solutions can be numerically difficult, as

the size of the perturbation may be smaller than the numerical error from the computation,

particularly on a coarse grid. One way to overcome this challenge is to refine the grid, but this

can be computationally expensive or unfeasible. Another difficulty that may arise is preserving

the positivity of the computed solution so that it remains physically relevant as numerical

oscillations may cause negative values for non-negative quantities. An example of this would be

ensuring that the height of a water column is never negative, as the lowest it could be physically

is zero which corresponds to the dry case.

To overcome these difficulties, it is important to design a scheme which is capable of exactly

preserving a chosen steady state, referred to as being well-balanced (see eg. [3,7,8,11,26,31,40,

41,50,58,70,74,76,77,87]), and is able to maintain the positivity of the numerical solution when

physically relevant, referred to as positivity preserving (see eg. [3, 7, 8, 11, 26, 50]). If a scheme

is well-balanced and positivity preserving, then perturbations of the numerical solution, both

small and large, will be resolved in a non-oscillatory manner on a coarse grid.
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1.4.1 Alternatives to the Central-Upwind Scheme

This thesis focuses on the development of second order semi-discrete central-upwind schemes

in one and two dimensions which will be described fully in the following sections. However, we

also wish to briefly discuss other schemes in literature used to solve the shallow water equations

with Exner equation to govern sediment transport.

High resolution finite volume methods are used when high accuracy is needed such as when

discontinuities and shocks are present. The computed solutions of these methods are second

order or higher in accuracy at the smooth parts of the solution, are free of spurious oscillations,

obtain high accuracy around discontinuities and shocks, and are computationally efficient. Two

particular high resolution finite volume numerical schemes are Monotone Upstream-Centered

Schemes for Conservation Laws (MUSCL), see Van Leer [85], and Weighted Essentially Non-

Oscillatory (WENO), see Shu [78]. MUSCL schemes are a flux/slope limiter method which limit

the solution gradient near shocks and discontinuities. When problems contain shocks and com-

plex smooth solution structures, WENO schemes can provide good solution resolution around

discontinuities and provide higher accuracy than second-order schemes. An implementation of

a MUSCL method to the shallow water equations with Exner equation can be seen in [22] and

an implementation of a WENO method to the shallow water equations with Exner equation

can be seen in [35].

In addition to finite volume methods, finite element methods can be used in solving the

shallow water equations with Exner equation. Finite element methods have the benefit that

they can accommodate general cell shapes and thus can be well-suited for complex domains

or topographical features [32]. One particular finite element method used is the Discontinuous

Galerkin Method which combines the high-order accuracy and flexibility of elements of finite

element methods with the local nature of finite volume methods. An implementation of a

Discontinuous Galerkin Method to the shallow water equations with Exner equation can be

seen in [83].

1.5 1-D Second Order Semi-Discrete Central-Upwind Scheme

In this section, we describe a 1-D second order semi-discrete central-upwind scheme for the

hyperbolic balance law given by

Ut + F(U)x = S(U). (1.87)

First, the computational domain is broken into a uniform grid, for simplicity, with computational

cells Cj := [xj− 1
2
, xj+ 1

2
] of size

∣∣Cj∣∣ = ∆x, centered at x = xj for j = 1, . . . , N , with N being

the number of computational cells. The cell averages are assumed to be known at a given

time t and are computed as in (1.83). Applying a second order semi-discrete formulation of the
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central upwind scheme to (1.87) results in the following system of ordinary differential equations

(ODEs):

d

dt
Uj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
+ Sj(t), (1.88)

where Hj± 1
2

are the central-upwind numerical fluxes given by

Hj+ 1
2
(t) =

a+
j+ 1

2

F(U−
j+ 1

2

)− a−
j+ 1

2

F(U+
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
U+
j+ 1

2

−U−
j+ 1

2

]
, (1.89)

and the cell averages of the source term are given by

Sj(t) ≈
1

∆x

∫
Cj

S(U)dx. (1.90)

In (1.89), U±j+ 1
2

are the left and right point values of the computed solution at the cell interface

x = xj+ 1
2
. For our scheme to be second-order, the point values should be calculated using

piecewise linear reconstructions given by

Ũ(x) =
∑
j

[
Uj + (Ux)j(x− xj)

]
·χCj

(x), (1.91)

obtained at cell interfaces x = xj+ 1
2

by

U+
j+ 1

2

= Uj+1 −
∆x

2
(Ux)j+1 , U−

j+ 1
2

= Uj +
∆x

2
(Ux)j . (1.92)

In (1.91) and (1.92), χCj
(x) is the characteristic function of the interval Cj and (Ux)j are the

numerical derivatives, which should be computed using a nonlinear limiter in order to minimize

oscillations. In our numerical experiments shown in Chapter 2, 3, and 4, we use the generalized

minmod limiter (see, e.g., [63, 68,82,85]):

(Ux)j = minmod

(
θ
Uj −Uj−1

∆x
,
Uj+1 −Uj−1

2∆x
, θ

Uj+1 −Uj

∆x

)
, θ ∈ [1, 2], (1.93)

where the minmod function is defined by

minmod(z1, z2 . . . , ) :=


minj{zj}, if zj > 0 ∀j,

maxj{zj}, if zj < 0 ∀j,

0, otherwise.

(1.94)
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The parameter θ in (1.93) is used to control the amount of numerical viscosity with large θ

values resulting in less dissipative results.

The one-sided local speeds of propagation a±
j+ 1

2

used in the central-upwind numerical flux

from (1.89) are obtained using the largest and smallest eigenvalues of the Jacobian matrix
∂F

∂U
where λ1 < . . . < λN are the eigenvalues. Thus, we have

a+
j+ 1

2

= max

{
λN

(
∂F

∂U
(U−

j+ 1
2

)

)
, λN

(
∂F

∂U
(U+

j+ 1
2

)

)
, 0

}
,

a−
j+ 1

2

= min

{
λ1

(
∂F

∂U
(U−

j+ 1
2

)

)
, λN

(
∂F

∂U
(U+

j+ 1
2

)

)
, 0

}
.

(1.95)

Lastly, the evolution of the system of ODEs for the central-upwind semi-discretization system

(1.88), should be integrated by a sufficiently accurate and stable ODE solver. We use a third

order Strong Stability Preserving Runge Kutta (SSP-RK3) method from [29], which is outlined

in Appendix A. In order for the computations to be stable, the time step should be chosen with

the following CFL condition,

∆t ≤ δ ∆x

max
j

∣∣a±
j+ 1

2

∣∣ , δ ≤ 1

2
. (1.96)

1.6 2-D Second Order Semi-Discrete Central-Upwind Scheme

In this section, we describe a 2-D second order semi-discrete central-upwind scheme for the

hyperbolic balance law given by

Ut + F(U)x + G(U)y = S(U). (1.97)

First, the computational domain is broken into a uniform grid in the x-direction and y-direction,

for simplicity, with computational cells Cj,k :=
[
xj− 1

2
, xj+ 1

2

]
×
[
yk− 1

2
, yk+ 1

2

]
of size

∣∣Cj,k∣∣ =

∆x∆y, centered at (xj , yk) for j = 1, . . . , N , k = 1, . . . ,M with N and M being the number

of computational cells in the x-direction and y-direction, respectively. The cell averages are

assumed to be known at a given time t and are computed by

Uj,k(t) ≈
1

∆x∆y

∫∫
Cj,k

U(x, y, t)dxdy. (1.98)
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Applying a second order semi-discrete formulation of the central upwind scheme to (1.98) results

in the following system of ordinary differential equations (ODEs):

d

dt
Uj,k(t) = −

Hx
j+ 1

2
,k(t)−Hx

j− 1
2
,k(t)

∆x
−

Hy
j,k+ 1

2
(t)−Hy

j,k− 1
2
(t)

∆y
+ Sj,k(t), (1.99)

where Hx
j± 1

2
,k and Hy

j,k± 1
2

are the central-upwind numerical fluxes given by

Hx
j+ 1

2
,k(t) =

a+
j+ 1

2
,k

F(U−
j+ 1

2
,k

)− a−
j+ 1

2
,k

F(U+
j+ 1

2
,k

)

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

+
a+
j+ 1

2
,k
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

[
U+
j+ 1

2
,k
−U−

j+ 1
2
,k

]
,

Hy
j,k+ 1

2
(t) =

b+
j,k+ 1

2

G(U−
j,k+ 1

2

)− b−
j,k+ 1

2

G(U+
j,k+ 1

2

)

b+
j,k+ 1

2

− b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
U+
j,k+ 1

2

−U−
j,k+ 1

2

]
,

(1.100)

and the cell averages of the source term are given by

Sj,k(t) ≈
1

∆x∆y

∫∫
Cj,k

S(U)dxdy. (1.101)

In (1.100), U±j+ 1
2
,k and U±j,k+ 1

2
are the left and right point values and bottom and top

point values, respectively, of the computed solution at the cell interface x = xj+ 1
2
, y = yk and

x = xj , y = yk+ 1
2
. For our scheme to be second-order the point values should be calculated

using piecewise linear reconstructions given by

Ũ(x, y) =
∑
j,k

[
Uj,k + (Ux)j,k(x− xj) + (Uy)j,k(y − yk)

]
·χCj,k

(x, y), (1.102)

obtained at the midpoint cell interfaces
(
xj± 1

2
, yk

)
, and

(
xj , yk± 1

2

)
by

U+
j+ 1

2
,k

= Uj+1,k −
∆x

2
(Ux)j+1,k , U−

j+ 1
2
,k

= Uj,k +
∆x

2
(Ux)j,k ,

U+
j,k+ 1

2

= Uj,k+1 −
∆y

2
(Uy)j,k+1 , U−

j,k+ 1
2

= Uj,k +
∆y

2
(Uy)j,k . (1.103)

In (1.102) and (1.103), χCj,k
(x, y) is the characteristic function of the interval Cj,k and (Ux)j,k

and (Uy)j,k are the numerical derivatives in the x-direction and y-direction, respectively, which

should be computed using a nonlinear limiter in order to minimize oscillations. Similar to the
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1-D case in Section 1.5, we use the generalized minmod limiter:

(Ux)j,k = minmod

(
θ
Uj,k −Uj−1,k

∆x
,
Uj+1,k −Uj−1,k

2∆x
, θ

Uj+1,k −Uj,k

∆x

)
, θ ∈ [1, 2], (1.104)

(Uy)j,k = minmod

(
θ
Uj,k −Uj,k−1

∆y
,
Uj,k+1 −Uj,k−1

2∆y
, θ

Uj,k+1 −Uj,k

∆y

)
, θ ∈ [1, 2], (1.105)

where the minmod function is defined by

minmod(z1,1, . . . , zj,k) :=


minj,k{zj,k}, if zj,k > 0 ∀j, k,

maxj,k{zj,k}, if zj,k < 0 ∀j, k,

0, otherwise.

(1.106)

The parameter θ in (1.104) and (1.105) is used to control the amount of numerical viscosity

with large θ values resulting in less dissipative results.

The one-sided local speeds of propagation in the x-direction and y-direction, a±
j+ 1

2
,k

and

b±
j,k+ 1

2

, used in the central-upwind numerical flux from (1.100) are obtained using the largest and

smallest eigenvalues of the Jacobian matrices
∂F

∂U
and

∂G

∂U
, respectively, where λ1 < . . . < λN

are the eigenvalues. Thus, we have

a+
j+ 1

2
,k

= max

{
λN

(
∂F

∂U
(U−

j+ 1
2
,k

)

)
, λN

(
∂F

∂U
(U+

j+ 1
2
,k

)

)
, 0

}
,

a−
j+ 1

2
,k

= min

{
λ1

(
∂F

∂U
(U−

j+ 1
2
,k

)

)
, λ1

(
∂F

∂U
(U+

j+ 1
2
,k

)

)
, 0

}
,

b+
j,k+ 1

2

= max

{
λM

(
∂G

∂U
(U−

j,k+ 1
2

)

)
, λM

(
∂F

∂U
(U+

j+ 1
2

)

)
, 0

}
,

b−
j,k+ 1

2

= min

{
λ1

(
∂G

∂U
(U−

j,k+ 1
2

)

)
, λ1

(
∂F

∂U
(U+

j,k+ 1
2

)

)
, 0

}
.

(1.107)

Lastly, the evolution of the system of ODEs for the central-upwind semi-discretization sys-

tem (1.99), should be integrated by a sufficiently accurate and stable ODE Solver. We use a

third order Strong Stability Preserving Runge Kutta (SSP-RK3) method from [29], which is

outlined in Appendix A. In order for the computations to be stable, the time step should be

chosen with the following CFL condition:

∆t ≤ δmin

{
∆x

max
j

∣∣a±
j+ 1

2
,k

∣∣ , ∆x

max
j

∣∣b±
j,k+ 1

2

∣∣
}
, δ ≤ 1

4
. (1.108)
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1.7 Outline of the Dissertation

The remainder of this thesis is as follows. In Chapter 2, we implement a well-balanced, positivity

preserving second order semi-discrete central-upwind scheme for the system of 1-D shallow water

equations with a discontinuous bottom topography. We then demonstrate the computed results

of this scheme, showing that the incorporation of a generally discontinuous reconstruction for the

bottom produces robust, accurate, non-oscillatory results. In Chapter 3, we numerically solve the

system of 1-D shallow water equations with 1-D Exner equation to govern sediment transport.

Due to the nature of the interaction between the water and the sediment, we perform four

implementations of a well-balanced second order semi-discrete central-upwind scheme to more

accurately solve the system. In Chapter 4, we extend one of the one-dimensional schemes from

Chapter 3 to two-dimensions, solving the 2-D shallow water equations with 2-D Exner equation.

We then demonstrate the results on a numerical example. In Chapter 5, our conclusions are

summarized, and we provide thoughts on future paths for this research.
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Part I

Hydrodynamic: Shallow Water

Equations with Discontinuous

Bottom Topography
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Chapter 2

A Well-Balanced, Positivity

Preserving Central-Upwind Scheme

for the 1-D Shallow Water System of

Equations

The contents of this chapter have been submitted to the Bulletin of the Brazilian Mathematical

Society [5].

In this chapter, we discuss a second-order central-upwind scheme from Bernstein et al. [5],

which is a modification of the central-upwind scheme in [50]. The central-upwind scheme in [50]

uses a continuous piecewise linear approximation of the bottom topography function B and

is quite robust, although its accuracy may deteriorate when B is not smooth. In that case,

the continuous interpolation of B may prevent the scheme from achieving high resolution. The

new scheme relies on a discontinuous piecewise linear reconstruction of the bottom topography

function B, and thus it is suitable for when B contains large jumps and can be extended

to models with moving, time-dependent bottom topography functions for B, (which will be

studied in Part II). In Section 2.2, we describe how the central-upwind scheme can be modified

to be well-balanced, exactly preserving the lake-at-rest steady state, by a special numerical

quadrature used for approximating the geometrical source term in the right-hand side (RHS)

of the system (2.3). In Section 2.3, we show how the positivity of the computed water depth

is achieved by applying a draining time step technique from [8] and a correction from [50].

Finally, in section 2.4, we illustrate the performance of the introduced central-upwind scheme

on a number of numerical examples.
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2.1 A Modified Second-Order Semi-Discrete Central-Upwind

Scheme

To start, the 1-D system of shallow water equations can written from (1.12) and (1.32) by

letting u = (u, 0, 0)>, resulting in h

hu


t

+

 hu

hu2 + 1
2gh

2


x

=

 0

−ghBx

 . (2.1)

In Section 2.2, we discuss how to build the numerical scheme to be well balanced, by exactly

preserving the lake-at-rest steady state (1.59). To this end, we choose to work with equilibrium

variables, which remain fixed at our chosen steady state. From (1.59) and the first equation

of (1.58), two such variables are the water surface w = h + B and the discharge q = hu.

Following [50], we start by rewriting the system (2.1) in terms of the equilibrium variables

U = (w, q)>: w
q


t

+

 q

q2

w−B +
g

2
(w −B)2


x

=

 0

−g(w −B)Bx

 . (2.2)

Furthermore, we expand and rewrite the second equation in (2.2) to make it easier to work with

in Section 2.2. System (2.2) then becomes,w
q


t

+

 q

q2

w−B +
g

2
(w2 − 2wB)


x

=

 0

−gwBx

 . (2.3)

We introduce a uniform grid xα := α∆x with a finite volume cell denoted by Cj :=

[xj− 1
2
, xj+ 1

2
], in which a cell average of the computed solution,

Uj(t) ≈
1

∆x

∫
Cj

U(x, t)dx, (2.4)

is assumed to be known at a given time t. The cell averages are evolved in time based on the

following equation:

d

dt
Uj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
+ Sj(t), (2.5)
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where Hj± 1
2

are the central-upwind numerical fluxes from [45] given by

Hj+ 1
2
(t) =

a+
j+ 1

2

F(U−
j+ 1

2

, B−
j+ 1

2

)− a−
j+ 1

2

F(U+
j+ 1

2

, B+
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
U+
j+ 1

2

−U−
j+ 1

2

]
, (2.6)

with F(U, B) :=
(
q, qu+

g

2
(w2−2wB)

)>
. Note, that, in contrast to the general central-upwind

scheme in (1.5) and the numerical scheme from [50], the numerical fluxes now make use of B±

which are the left and right point values of the computed solution at the cell interface x = xj+ 1
2
.

The cell averages of the geometric source term are given by

Sj(t) ≈
1

∆x

∫
Cj

S(U, B)dx. (2.7)

where S = (0,−gwBx)>. For the rest of this chapter, we will drop the notation t for time

dependence for simplicity where it is appropriate. The construction of the numerical scheme

will be complete once the numerical fluxes in Hj± 1
2

in (2.6) and the source term Sj in (2.7) are

computed such that the resulting method is well-balanced and positivity preserving.

2.1.1 Reconstruction of U

In equation (2.6), U±j+ 1
2

are the left and right point values of the computed solution at the cell

interface x = xj+ 1
2
. For our scheme to be second-order, the point values should be calculated

using piecewise linear reconstructions

Ũ(x) =
∑
j

[
Uj + (Ux)j(x− xj)

]
·χCj

(x), (2.8)

obtained at cell interfaces x = xj+ 1
2

by

U+
j+ 1

2

= Uj+1 −
∆x

2
(Ux)j+1 , U−

j+ 1
2

= Uj +
∆x

2
(Ux)j . (2.9)

In (2.8) and (2.9), recall, χCj
(x) is the characteristic function of the interval Cj , and (Ux)j

are the numerical derivatives, which should be computed using a nonlinear limiter in order

to minimize oscillations. In all numerical experiments in Section 2.4, we use the generalized

minmod limiter given in (1.93) and (1.94).
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2.1.2 Piecewise Linear Reconstruction of B

The primary differences in our numerical scheme to the central-upwind scheme in [50] stem from

our use of a generally piecewise discontinuous linear reconstruction for the bottom topography

B instead of a continuous piecewise linear approximation. This reconstruction is obtained using

the same generally piecewise discontinuous linear reconstruction as in (2.8) and (2.9) given by

B̃(x) =
∑
j

[B(xj) + (Bx)j(x− xj)] ·χCj
(x) (2.10)

to obtain the point values B±
j+ 1

2

at x = xj+ 1
2
:

B+
j+ 1

2

= Bj+1 −
∆x

2
(Bx)j+1, B−

j+ 1
2

= Bj +
∆x

2
(Bx)j . (2.11)

2.1.3 Local Speeds of Propagation

The one-sided local speeds of propagation a±
j+ 1

2

used in the central-upwind numerical flux (2.6)

are obtained from the largest and smallest eigenvalues of the Jacobian matrix
∂F

∂U
given by

∂F

∂U
=

 0 1

− q2

(w−B)2
+ g

2(2w − wB) 2q
w−B

 . (2.12)

The characteristic equation reduces to λ2−2uλ+u2− gh = 0, which can be solved analytically

to obtain the eigenvalues λ1 = u+
√
gh and λ2 = u−

√
gh. Thus, the one-sided local speeds of

propagation are

a+
j+ 1

2

= max

{
u+
j+ 1

2

+

√
gh+

j+ 1
2

, u−
j+ 1

2

+

√
gh−

j+ 1
2

, 0

}
,

a−
j+ 1

2

= min

{
u+
j+ 1

2

−
√
gh+

j+ 1
2

, u−
j+ 1

2

−
√
gh−

j+ 1
2

, 0

}
.

(2.13)

2.2 Well-Balanced Quadrature for the Geometric Source Terms

To ensure the method is well-balanced, exactly preserving our chosen lake-at-rest steady-state

(q = 0 and w = Constant), a special quadrature should be used to discretize the second

component of the source term S
(2)
j in (2.7). A proper discretization should guarantee that the

right hand side of (2.5) vanishes at the lake-at-rest steady-state by balancing the numerical
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fluxes and source term. The numerical fluxes at the discrete level are given by:

H
(2)

j+ 1
2

−H(2)

j− 1
2

∆x
=

1

∆x

a+
[
( q2

w−B )− + g
(

1
2w

2 − wB
)−]− a− [( q2

w−B )+ + g
(

1
2w

2 − wB
)+]

a+ − a−


j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
q+ − q−

]
j+ 1

2

− 1

∆x

a+
[
( q2

w−B )− + g
(

1
2w

2 − wB
)−]− a− [( q2

w−B )+ + g
(

1
2w

2 − wB
)+]

a+ − a−


j− 1

2

+
a+
j− 1

2

a−
j− 1

2

a+
j− 1

2

− a−
j− 1

2

[
q+ − q−

]
j− 1

2
. (2.14)

Since q is a constant zero, q±
j+ 1

2

= q±
j− 1

2

= 0. Applying this condition to (2.14), we have

H
(2)

j+ 1
2

−H(2)

j− 1
2

∆x
=

1

∆x


a+

[
(
��

��*
0

q2

w−B )− + g
(

1
2w

2 − wB
)−]− a− [

��
��
�* 0

( q2

w−B )+ + g
(

1
2w

2 − wB
)+]

a+ − a−


j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

���
���

��:0[
q+ − q−

]
j+ 1

2

− 1

∆x


a+

[
��

��
�* 0

( q2

w−B )− + g
(

1
2w

2 − wB
)−]− a− [

��
��
�* 0

( q2

w−B )+ + g
(

1
2w

2 − wB
)+]

a+ − a−


j− 1

2

+
a+
j− 1

2

a−
j− 1

2

a+
j− 1

2

− a−
j− 1

2

���
���

��:0[
q+ − q−

]
j− 1

2
. (2.15)
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In addition, w = Constant, therefore w±
j+ 1

2

= w±
j− 1

2

= wj , and (2.15) further reduces to

H
(2)

j+ 1
2

(t)−H(2)

j− 1
2

(t)

∆x
=

g

∆x

[
a+
[

1
2(w)2 − wB−

]
− a−

[
1
2(w)2 − wB+

]
a+ − a−

]
j+ 1

2

− g

∆x

[
a+
[

1
2(w)2 − wB−

]
− a−

[
1
2(w)2 − wB+

]
a+ − a−

]
j− 1

2

,

=
g

∆x

[
(a+ − a−) 1

2w
2

a+ − a−

]
j+ 1

2

+
g

∆x

[
−wB−a+ + wB+a−

a+ − a−

]
j+ 1

2

− g

∆x

[
(a+ − a−) 1

2w
2

a+ − a−

]
j− 1

2

− g

∆x

[
−wB−a+ + wB+a−

a+ − a−

]
j− 1

2

,

=
gwj
∆x

−B−j+ 1
2

a+
j+ 1

2

+B+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

−
−B−

j− 1
2

a+
j− 1

2

+B+
j− 1

2

a−
j− 1

2

a+
j− 1

2

− a−
j− 1

2

 .
Therefore the numerical fluxes and source term will balance, if the second component of the

source term is discretized as follows:

S
(2)
j ≈ −

gwj
∆x

a+
j+ 1

2

B−
j+ 1

2

− a−
j+ 1

2

B+
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

−
a+
j− 1

2

B−
j− 1

2

− a−
j− 1

2

B+
j− 1

2

a+
j− 1

2

− a−
j− 1

2

 . (2.16)

2.3 Positivity Preserving Property

To guarantee the positivity of the numerical scheme such that the water height is greater than

or equal to zero, we implement two additional changes to the central-upwind scheme in Section

1.5. First, in Section 2.3.1, we will adjust any non-physical negative values obtained in the

reconstruction of w̃. Second, in Section 2.3.2, we implement a draining time-step, which further

restricts the time evolution to limit the amount of water leaving a particular cell.

2.3.1 Positivity Correction for w̃

When w̃ is reconstructed using (2.8), some of the point values w±
j± 1

2

, obtained in (2.9), may be

smaller than the corresponding point values B±
j± 1

2

, which will lead to negative point values for

h. Following [50], we perform a positivity correction for the reconstruction of w̃ according to
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the following simple algorithm:

if w−
j+ 1

2

< B−
j+ 1

2

, then take (wx)j :=
B−
j+ 1

2

− wj
∆x/2

,

=⇒ w−
j+ 1

2

= B−
j+ 1

2

, w+
j− 1

2

= 2wj −B−j+ 1
2

, (2.17)

if w+
j− 1

2

< B+
j− 1

2

, then take (wx)j :=
wj −B+

j− 1
2

∆x/2
,

=⇒ w−
j+ 1

2

= 2wj −B+
j− 1

2

, w+
j− 1

2

= Bj− 1
2
, (2.18)

noticing that this correction algorithm works as long as wj > Bj .

After the point values w±
j+ 1

2

are corrected, we compute the point values of the water height

as follows:

h±
j+ 1

2

:= w±
j+ 1

2

−B±
j+ 1

2

. (2.19)

2.3.1.1 Velocity Desingularization

In cases where the height of the water column is approximately zero (h ≈ 0), in order to avoid

division by zero (or by a very small number), we desingularize the computation of the velocity

point values needed in (2.6) by setting

u±
j+ 1

2

=
2h±

j+ 1
2

q±
j+ 1

2(
h±
j+ 1

2

)2
+ max

[(
h±
j+ 1

2

)2
, ε2

] , (2.20)

where ε is a small desingularization parameter. In all of our numerical examples, we have used

ε = 10−5. For more details on different desingularization strategies, see the discussions in [14,50].

For consistency, the desingularized velocities should be used to modify the corresponding values

of the discharge by

q±
j+ 1

2

= h±
j+ 1

2

· u±
j+ 1

2

.

2.3.2 Time Evolution and the Draining Time-Step

The central-upwind semi-discretization given in (2.5) is a system of ODEs which should be

integrated by a sufficiently accurate and stable ODE solver. We first note that the bottom

topography function B is independent of time, and, therefore, the forward Euler time step for

the first component in (2.5) can be written in the following form:

h
n+1
j = h

n
j −

∆t

∆x

(
H

(1)

j+ 1
2

−H(1)

j− 1
2

)
, (2.21)
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where ∆t is the time step constrained by the CFL condition

∆t ≤ 1

2

∆x

max
j

∣∣a±
j+ 1

2

∣∣ . (2.22)

In order to guarantee the positivity of h
n+1
j , provided h

n
j ≥ 0 ∀j, we adopt a draining

time-step technique from [7,8]. To this end, we introduce the draining time step

∆tdrainj :=
∆xh

n
j

max

(
0, H

(1)

j+ 1
2

)
+ max

(
0,−H(1)

j− 1
2

) , (2.23)

which describes the time when the water contained in cell Cj at the beginning of the time step

has left via the outflow fluxes. We now replace the evolution step in (2.21) by

h
n+1
j = h

n
j −

∆tj+ 1
2
H

(1)

j+ 1
2

−∆tj− 1
2
H

(1)

j− 1
2

∆x
, (2.24)

where the time step ∆tj+ 1
2

is defined as

∆tj+ 1
2

= min
(

∆t,∆tdraini

)
, i = j +

1

2
−

sgn

(
H

(1)

j+ 1
2

)
2

, (2.25)

with ∆t satisfying (2.22). Thus, we have h
n+1
j ≥ 0, for all j in the numerical scheme by

construction.

2.4 Numerical Examples

In this section, we present three numerical examples. In all of the numerical simulations, the

bottom topography is reconstructed according to (2.10) with (Bx)j computed using the minmod

limiter with θ = 1. The equilibrium variables w and q are reconstructed using the minmod

limiter with either θ = 1.3 (Examples 1 and 2) or θ = 1 (Example 3, in which we select the

most diffusive version of the limiter to limit the oscillations). In all of the examples below, we

use absorbing boundary conditions on both ends of the domain.

2.4.1 Example 1—Small Perturbation of Steady State

In this problem, taken from [50], we study propagation of a small perturbation of the steady-

state solution that contains nearly dry areas. The computational domain is [−1, 1], the gravi-
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tational constant g = 1, the initial data are

w(x, 0) =

1.001, 0.1 ≤ x ≤ 0.2,

1, otherwise,
u(x, 0) ≡ 0,

and the bottom topography is given by

B(x) =



10(x− 0.3), 0.3 ≤ x ≤ 0.4,

1− 0.0025 sin2(25π(x− 0.4)), 0.4 ≤ x ≤ 0.6,

−10(x− 0.7), 0.6 ≤ x ≤ 0.7,

0, otherwise.

A small perturbation of the “lake-at-rest” steady state initially located at x ∈ [0.1, 0.2] is

split into two parts propagating in the opposite directions. When the right-going wave propa-

gates over the oscillating part of the bottom, above which the initial water depth is very small

(x ∈ [0.4, 0.6]), a complicated surface wave structure is developed. In Figure 2.1, we compare

the solutions obtained by the proposed well-balanced central-upwind scheme and its non-well-

balanced version, obtained by replacing the well-balanced quadrature (3.86) with the midpoint

one,

S
(2)
j ≈ −gwjBx(xj),

and increasing the value of the desingularization parameter ε from 10−5 to 10−4. The latter

adjustment is needed to improve the efficiency of the non-well-balanced version of the scheme.

Both solutions are computed until the final time t = 1 using N = 400 (top row) and N = 1600

(bottom row) uniform cells. As one can see, the non-well-balanced solution is very oscillatory,

and the magnitude of oscillations decrease quite slowly when the mesh is refined. More details

can be seen in Figure 2.1 (right column) where we zoom into the low water depth region

x ∈ [0.395, 0.5].

2.4.2 Example 2—Riemann Problem with Unique Solution

In this example, we consider the Riemann problem from [57, Test 7], where the system (2.1) is

solved with g = 9.8 and the following Riemann data:

B(x) =

1.1, x < 0,

1, x > 0,
h(x, t) =

1, x < 0,

0.8, x > 0,
u(x, t) =

2, x < 0,

4, x > 0.
(2.26)
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Figure 2.1: Example 1: Solution (w) computed by the well-balanced and non-well-balanced
central upwind schemes using N = 400 (top row) and N = 1600 (bottom row) uniform cells.
Right column: zoom into the region x ∈ [0.395, 0.5].

In [57], the exact solution of the initial value problem (IVP) given by (2.1) and (2.26) was

obtained, and it was also shown that the Godunov-type scheme based on the exact solution of

the Riemann problem fails at this test.

The central-upwind scheme proposed in this chapter is, on the other hand, capable of ac-

curately capturing the exact solution of the IVP given by (2.1) and (2.26). To demonstrate

this, we compute the numerical solution until the final time t = 0.03 on two uniform grids with

∆x = 0.004 and 0.001 and compare the obtained solution with a reference one computed with

∆x = 0.00004. We plot the computed water depth h and velocity u in Figure 2.2, where one

can clearly observe the convergence towards the reference solution, which agrees very well with

the exact one (see [57, Test 7]).
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Figure 2.2: Example 2: Solution (h on the left and u on the right) computed using ∆x = 0.004
and 0.001 and compared with the reference solution.

2.4.3 Example 3—Riemann Problem with Multiple Solutions

In the final example, we consider the Riemann problem from [57, Test 6], where the system

(2.1) is solved with g = 9.8 and different Riemann data:

B(x) =

1, x < 0,

1.2, x > 0,
h(x, t) =

0.2, x < 0,

0.75904946, x > 0,
u(x, t) =

5, x < 0,

1.3410741, x > 0.
(2.27)

As it was shown in [57], the IVP given by (2.1) and (2.27) admits three distinct analytic solu-

tions, and Godunov-type upwind schemes based on different Riemann problem solvers converge

to different analytic solutions. We compute the numerical solution until the final time t = 0.1 on

three uniform grids with ∆x = 0.004, 0.001, and 0.00004 using both the central-upwind scheme

proposed in this chapter and the central-upwind scheme from [50]. The results are plotted in

Figures 2.3 and 2.4, respectively. As one can see, the schemes converge to different limits, each

of which agrees well with the second and third analytic solutions from [57, Test 6].

2.5 Conclusion

In this chapter, we implemented a second-order, well-balanced, positivity preserving central-

upwind scheme for the 1-D shallow water equations with discontinuous bottom topography. The

central-upwind scheme presented relies on a discontinuous piecewise linear reconstruction of the

bottom topography function B, and thus it is suitable for functions containing large jumps and

can be extended to models with moving, time-dependent bottom topography function B. In
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Figure 2.3: Example 3: Solution (h on the left and u on the right) computed by the proposed
central-upwind scheme using ∆x = 0.004, 0.001, and 0.00004.

Figure 2.4: Example 3: Solution (h on the left and u on the right) computed by the central-
upwind scheme from [50] using ∆x = 0.004, 0.001, and 0.00004.

Section 2.4, we presented three numerical results for our scheme. In the first, we demonstrated

the numerical scheme presented in this chapter is capable of handling a small perturbation

of steady state, with the computed solution remaining smooth, compared to the oscillations

present in the non well-balanced computed solution. The next two examples illustrate Riemann

problems with either a unique solution or multiple solutions. The numerical scheme in this

chapter is capable of accurately converging to the exact solution of the initial value problem

and to one of the analytic solutions in the last example.
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Part II

Morphodynamic: Exner Equation to

Govern Bed Load Sediment

Transport
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Chapter 3

1-D Shallow Water Equations with

Exner Equation

In this chapter, we discuss numerical methods to solve the 1-D system of shallow water equations

with a 1-D Exner equation to govern sediment transport. Within this chapter some redundancies

are left in for the sake of the reader in understanding and implementing these methods.

We start with the 1-D system of shallow water equations represented by h

hu


t

+

 hu

hu2 + g
2h

2


x

=

 0

−ghBx

 , (3.1)

with 1-D Exner equation to govern sediment transport given by

Bt + (ξqb)x = 0, (3.2)

where the variable ξ =
1

1− ε
is a constant, with ε representing the porosity of the sediment

layer. The closer to zero ε is, the larger the particles that comprise the sediment.

Similarly to Chapter 2, we wish to rewrite (3.1) in terms of the equilibrium variables for

the shallow water equations (w, q). However, since the bottom topography function B is no

longer time independent, ht 6= wt. To rewrite the system, we add (3.2) to the first equation of

(3.1), obtaining the equation in terms of w. In addition, we rearrange the second equation of

the shallow water system, and (3.1) becomesw
q


t

+

 q + ξqb

q2

w−B + g
2(w2 − 2wB)


x

=

 0

−gwBx

 . (3.3)
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Recall, qb is the sediment flux, which depends on various water and sediment properties

and can be represented by a multitude of models (see Section 1.3.2). For our numerical scheme,

the sediment flux represents the bed load sediment transport, and we use the flux proposed by

Grass (1.79),

qb = Au
(
u2
)(m−1)/2

, (3.4)

where A is a non-dimensional constant which accounts for the effects of sediment grain size

and kinematic viscosity. The value of A is in [0, 1], and the closer A is to zero, the weaker

the interaction between the sediment and fluid is. The constant A is often computed from

experimental data and m represents a constant value 1 ≤ m ≤ 4. In our numerical experiments,

we will use m = 3.

With the addition of the 1-D Exner equation to the 1-D system of shallow water equations,

the values for the local speeds of propagation used in our numerical scheme, calculated by the

largest and smallest eigenvalues of the Jacobian of the system (3.3) and (3.2), will be different

than in the previous chapter. We therefore recalculate the eigenvalues in the following section

and show they are real and distinct.

3.1 Eigenvalues for the Jacobian of the Shallow Water System

with Exner Equation

For simplicity of the computations we use the primitive variables Up = (h, u,B)>, and Fp =(
hu, hu2 + 1

2gh
2, Au3

)
to obtain the Jacobian given by

∂Fp

∂Up
=


u h 0

g u g

0 3ξAu2 0

 . (3.5)

The eigenvalues of this system, λ(1) < λ(2) < λ(3), are the roots of the cubic equation

P (λ, h, u) = λ3 − 2uλ2 + [u2 − 3ξAgu2 − gh]λ+ 3ξAgu3 = 0. (3.6)

These roots are not easy to compute analytically, but we can prove, that with this formulation

of the sediment flux, that the roots of P (λ, h, u) are real using a formula for factoring a cubic

in [80]. For a cubic equation of the form

P (x) = λ3 + a2λ
2 + a1λ+ a0, (3.7)
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we let

Q =
1

9
(3a1 − a2

2), R =
1

54
(9a2a1 − 27a0 − 2a3

2), Θ =
R√
−Q3

. (3.8)

If we let D = Q3 + R2 be the polynomial discriminant, which has an opposite sign and differs

by a constant to the standard discriminate of a cubic function, then we have three cases to

consider. If

1. D > 0, then one root is real and two are complex,

2. D = 0, then all roots are real and two are equal,

3. D < 0, all roots are real and distinct.

In the case D < 0, all the roots of (3.7) are real, distinct, and given by

λ(1) = 2
√
−Q cos

(
1

3
Θ

)
− 1

3
a1, (3.9)

λ(2) = 2
√
−Q cos

(
1

3
(Θ + 2π)

)
− 1

3
a1, (3.10)

λ(3) = 2
√
−Q cos

(
1

3
(Θ + 4π)

)
− 1

3
a1. (3.11)

Using (3.6), the coefficients of the cubic equation are given by

a2 = −2u, a1 = u2 − 3ξAgu2 − gh, a0 = 3ξAgu3.

Substituting this into (3.8) results in

Q =
1

9
(3a1 − a2

2),

=
1

9
(3(u2 − 3ξAgu2 − gh)− (−2u)2),

=
1

9
(3u2 − 9ξAgu2 − 3gh− 4u2),

= −1

9
(9ξAgu23 + gh+ u2),

and

R =
1

54
(9a2a1 − 27a0 − 2a3

2),

=
1

54
(9(−2u)(u2 − 3ξAgu2 − gh)− 27(3ξAgu3)− 2(−2u)3),

=
1

54
(−18u3 + 54ξAgu3 + 18ghu− 81ξAgu3 + 16u3),

=
u

54
(18gh− 2u2 − 27ξAgu2).
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Plugging Q and R into our formula for D = Q3 +R2, we have

D =
g

108

[
8gu2h2 − 9gξ2A2u6 − 4hu4 − 60hgξAu4 − 4g2h3 − 108g2ξ3A3u8

−36g2h2ξ2A2u4 − 108g2hξ2A2u4
]
.

In order to show that all the roots are real and distinct, we need to show that D < 0, or

8gu2h2 < 9gξ2A2u6 +4hu4 +60hgξAu4 +4g2h3 +108g2ξ3A3u8 +36g2h2ξ2A2u4 +108g2hξ2A2u4.

(3.12)

From the physical assumptions on our system that the water height h ≥ 0, all of the terms

in (3.12) are non-negative. Since A is a small constant, we will lump all of the terms with A

together to form a non-negative term, Aall. Thus,

8gu2h2 < 4hu4 + 4g2h3 +Aall,

0 < 4hu4 + 4g2h3 − 8gu2h2 +Aall,

0 < 4h(u4 + g2h2 − 2gu2h) +Aall,

0 < 4h(u2 − gh)2 +Aall.

Hence, the eigenvalues of P (λ, h, u) will be real and distinct.

3.2 Time Evolution

With the eigenvalues for the system in hand, a straightforward implementation of a central-

upwind scheme for the system (3.3) and (3.2), as in Section 1.5, which uses the largest and

smallest eigenvalues of the Jacobian for the local speeds of propagation in the numerical scheme,

leads to numerical difficulties. In particular, the computed solution for the bottom B is overly

diffusive on a coarse grid. An example of this will be shown in Example 3.8.4 in Section 3.8.

To better understand where the numerical difficulties are coming from, let us first consider the

eigenvalues of the system (3.3) and (3.2). As the value for the sediment interaction A is reduced,

the eigenvalues λ(1) and λ(3) become close to the eigenvalue of the 1-D shallow water system

(2.3). To estimate the last eigenvalue λ(2), we find the approximate value is given by Au3/B

and is close to zero. Typically, we found that λ(2) � max
(
|λ(1)|, |λ(3)|

)
, corresponding to the

most common physical case in which water waves propagate at a much faster speed than the

bottom sediment waves [19].

When the central-upwind scheme given in Section 1.5 is implemented, the values of a± are

too large, and the second term in the central-upwind numerical fluxes (1.89) results in extra
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diffusion. The main idea of the numerical scheme presented here is to replace the local speeds of

propagation a± by different local speeds of propagation depending on whether we are evolving

the shallow water equations or the Exner equation. When evolving the shallow water equations

(3.3), we use the new local speeds of propagation â±, and, when evolving the Exner equation

(3.2), we use the new local speeds of propagation ĉ±. These values are defined to be

â+ = max

{
λ(1)+, λ(3)+, λ(1)−, λ(3)−, 0

}
, (3.13)

â− = min

{
λ(1)+, λ(3)+, λ(1)−, λ(3)−, 0

}
, (3.14)

and

ĉ+ = max

{
λ(2)+, λ(2)−, 0

}
, (3.15)

ĉ− = min

{
λ(2)+, λ(2)−, 0

}
. (3.16)

Recall that the plus/minus notation refers to the left and right point values at the interface of

the computational cells.

Now, the new local speeds of propagation for the shallow water equations â± will depend

only on the largest and smallest eigenvalues associated with the water waves, and the new local

speeds of propagation for the Exner equations ĉ± will depend only on the largest and smallest

eigenvalues associated with the sediment waves. We note that, in literature, see e.g. [18], one

practice is to use the eigenvalues of the shallow water system u ±
√
gh for the local speeds of

propagation of the entire system, instead of the three eigenvalues from (3.3) and (3.2). In general,

the results from using the shallow water eigenvalues are not as accurate, often underestimating

the eigenvalues of (3.3) and (3.2) and ignoring the different speed for the sediment transport.

To overcome the diffusion of the computed solution of the bottom, we make use of the

different speeds of propagation, (3.13)-(3.16), in the evolution of our numerical method, making

sure to always use â± and ĉ± in the central-upwind numerical fluxes when evolving (3.3) and

(3.2), respectively. The introduction of ĉ± will change how we calculate the time step for our

scheme ∆t, which is based on the local speeds of propagation for the system. We implement

the changes to our scheme using two different approaches, referred to as the splitting approach

and the non-splitting approach, which are discussed in the following sections.

3.2.1 Splitting Approach

In the splitting approach, we solve the system (3.3) and (3.2) by separating the system into the

shallow water system (3.3) and the Exner equation (3.2) and solving each independently. Our
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system will be solved by applying a Strang operator splitting method (see e.g. [81]) outlined

below. We start by considering the following two subsystems:Ut + F̂(U)x = S(U),

Bt = 0,
(3.17)

Ut = 0,

Bt + ξ ∂qb1∂x = 0,
(3.18)

where F̂(U) =
(
q + ξqb,

q2

w−B + g
2(w2 − 2wB)

)>
. The subsystem in (3.17) represents the shal-

low water equations with the bottom held fixed in time, and it will be referred to as the hydro-

dynamic subsystem. The subsystem in (3.18) represents the Exner equation with the shallow

water equations fixed in time, and it will be referred to as the morphodynamic subsystem.

Assuming the solution is available at time t, let Sw represent the exact solution operators

for the 1-D shallow water equations with the bottom fixed in time, (3.17), and let Ss represent

the sediment transport with water fixed in time (3.18) respectively. We evolve the system to

the next time level, t + ∆tspl, where ∆tspl is called the splitting time step, using an operator

splitting algorithm of the first order given byU(x, t+ ∆tspl)

B(x, t+ ∆tspl)

 ≈ Ss(∆tspl)Sw(∆tspl)

U(x, t)

B(x, t)

 , (3.19)

or of the second order given byU(x, t+ ∆tspl)

B(x, t+ ∆tspl)

 ≈ Sw(∆tspl/2)Ss(∆tspl)Sw(∆tspl/2)

U(x, t)

B(x, t)

 . (3.20)

We note, in practice, numerical approximations for the exact solution operators Sw and Ss are

used.

In all our splitting methods, we use second order Strang splitting. When solving using (3.20),

we have two sets of intermediate values that will be used. The first set of intermediate values

we denote by

U∗(x, t) ≈ Sw(∆tspl/2)

U(x, t)

B(x, t)

 , (3.21)

which represents the computed values for U and B after the hydrodynamic subsystem has been
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evolved to ∆tspl/2. The second set of intermediate values, which represents the computed values

for U and B after the morphodynamic subsystem has been evolved to ∆tspl, is denoted by

U∗∗(x, t) ≈ Ss(∆tspl)Sw(∆tspl/2)

U(x, t)

B(x, t)

 . (3.22)

Because the systems from (3.17) and (3.18) are solved independently, this method only

works if the water flow has a negligible effect on the sediment flow and vice versa. A great

deal of research has been performed on the splitting approach for solving this system, see

e.g. [18,19,21,22,36,37,73]. In most physical cases, as stated in Cunge et al. [19], the water flow

is considerably faster than the movement of the sediment. For example, over time a river channel

may change its flow location, with the sediment shifting over many years, while the water may

flow though a channel on an order of days. Therefore, the assumption that the water and

sediment waves have negligible impact on each other fits with real world physical phenomena.

A benefit of using a splitting approach is that since the systems are solved separately, we may

solve each subsystem, (3.17) and (3.18), using existing methods tailored to each system. This

may prove useful when the sediment flux qb is complicated and does not have an analytic

formulation and, therefore, cannot easily be used in the Jacobian. In this case, empirical data

can be used to evolve (3.2) in a black box manner.

3.2.2 Non-Splitting Approach

In the non-splitting approach, the system of three equations from (3.3) and (3.2) is solved

simultaneously. Assuming the solution is available at time t, let S represent the exact solution

operators for the system of (3.3) and (3.2). Then, we can evolve the system to the next time

level (t+ ∆t) by

W(x, t+ ∆t) =

U(x, t+ ∆t)

B(x, t+ ∆t)

 ≈ S(∆t)

U(x, t)

B(x, t)

 , (3.23)

where W = (w, q,B)>, noting that â± are used in the central-upwind numerical fluxes for

the computed solution of U(x, t), and ĉ± are used in the central-upwind numerical flux for

the computed solution for B(x, t). In practice, numerical approximations for the exact solution

operator S are used.

In comparison to the splitting approach, less research has been carried out on the non-

splitting case as a full solution can be too complex to solve (see the discussion in Cunge et
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al. [19]). In part, this is due to the difficult nature of obtaining the eigenvalues of the complete

system which are used for the local speeds of propagation and based on how the sediment

transport flux in the 1-D Exner equation is defined. If the sediment transport flux is differen-

tiable and can be calculated and incorporated into the Jacobian of the system, as with Grass’s

formula, the non-splitting approach may have large benefits in solving the case when the wa-

ter wave speed and the sediment wave speed are similar in magnitude. While rare, this case,

as stated in Perdreau and Cunge [73], cannot be handled properly by the splitting approach,

as the splitting approach assumes negligible interaction between the water and sediment. The

non-splitting approach, however, can handle both the cases where the magnitude of the water

wave speed and the sediment wave speed are similar or dissimilar.

3.3 Spatial Discretization

In this section, we discuss the spatial discretization used when solving the numerical schemes,

which we will refer to as being solved on a non-staggered discretized grid or on a staggered

discretized grid. In both the non-staggered and staggered cases, we divide the computational

domain into a uniform grid composed of cells, denoted by Cj :=
[
xj− 1

2
, xj+ 1

2

]
, of size

∣∣Cj∣∣ =

xj+ 1
2
− xj− 1

2
= ∆x for all j = 1 . . . N, where N is the number of cells in the domain. The

difference between the non-staggered and staggered discretized grids is where in each cell we

define our cell averages U(t) and B(x, t).

3.3.1 Non-Staggered Discretized Grid

For the non-staggered discretized grid, if an approximate solution is available at a time level

tn for U(x, t) and B(x, t), we define the cell averages at the center of each cell x = xj , ∀j, and

they are computed by

U
n
j (t) ≈ 1

∆x

∫
Cj

U(x, tn) dx, (3.24)

B
n
j (t) ≈ 1

∆x

∫
Cj

B(x, tn) dx. (3.25)

In this implementation of the spatial discretization, the equations for U and B are solved on

the same spatial grid. An example of this spatial discretization can be seen in Figure 3.1.

3.3.2 Staggered Discretized Grid

On the staggered discretized grid, if an approximate solution is available at a time level tn for

U(x, t) and B(x, t), we define the cell averages as follows. For U(x, t), we define the cell average,
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Figure 3.1: Non-staggered discretized grid for U and B.

Uj(t), at the center of each cell x = xj , ∀j, and, for B(x, t) we define the cell average, Bj(t),

at the interface of each cell x = xj+ 1
2
, ∀j. Then, the cell averages are computed by

U
n
j (t) ≈ 1

∆x

∫
Cj

U(x, tn) dx, (3.26)

B
n
j+ 1

2
(t) : ≈ 1

∆x

∫
C

j+1
2

B(x, tn) dx. (3.27)

In this implementation of the spatial discretization, the equations for U and B are solved on

different spatial grids. An example of this can be seen in Figure 3.2.

Figure 3.2: Staggered discretized grid consisting of U (blue) centered at the cell center and of
B (black dashed) centered at the cell interface.

In the following sections, we describe the formulation of four different well-balanced sec-

ond order central-upwind schemes made from the combination of the splitting approach, non-

splitting approach, non-staggered discretized grid, and staggered discretized grid.
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3.4 Numerical Scheme for the Splitting Approach with the Bot-

tom Evolved on a Non-Staggered Discretized Grid (S-NSG)

The Formulation S-NSG is based on the splitting approach with the bottom evolved on a non-

staggered discretized grid. For this scheme, we use the spatial discretization from Section 3.3.1

where all the functions make use of a non-staggered discretized grid.

3.4.1 Hydrodynamic Subsystem

For the hydrodynamic subsystem (3.17) of the Strang splitting (3.20), we fix the bottom function

in time and solve the shallow water equations in terms of equilibrium variables. Starting with the

cell averages obtained in (3.24) and (3.25) applying a second order semi-discrete central-upwind

formulation to Uj , we have the cell averages are evolved in time by

d

dt
Uj(t) = −

Ĥj+ 1
2
(t)− Ĥj− 1

2
(t)

∆x
+ Sj(t), (3.28)

where Ĥj± 1
2

are the central-upwind numerical fluxes and Sj(t) is given by

Sj(t) ≈
1

∆x

∫
Cj

S(U)dx, (3.29)

and Sj(t) represents the cell averages of the geometric source term. For simplicity in the rest

of this section, we drop the notation t for time dependence where appropriate.

The construction of the scheme will be complete once the numerical fluxes Ĥj± 1
2

in (3.30)

and the source term Sj in (3.29) are computed such that the resulting method is well-balanced.

Numerical Fluxes. In (3.28), we use the central-upwind fluxes from [50], slightly modifying

the local speeds of propagation to â± using (3.13) and (3.14):

Ĥj+ 1
2
(t) =

â+
j+ 1

2

F̂(U−
j+ 1

2

, B−
j+ 1

2

)− â−
j+ 1

2

F̂(U+
j+ 1

2

, B+
j+ 1

2

)

â+
j+ 1

2

− â−
j+ 1

2

+
â+
j+ 1

2

â−
j+ 1

2

â+
j+ 1

2

− â−
j+ 1

2

[
U+
j+ 1

2

−U−
j+ 1

2

]
.

(3.30)

Reconstruction. In equation (3.30), U±
j+ 1

2

are the left and right point values of the piecewise

linear reconstructions

Ũ(x) =
∑
j

[
Uj + (Ux)j(x− xj)

]
·χCj

(x), (3.31)
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obtained at the midpoint cell interfaces x = xj± 1
2

by

U+
j+ 1

2

= Uj+1 −
∆x

2
(Ux)j+1 , U−

j+ 1
2

= Uj +
∆x

2
(Ux)j . (3.32)

In (3.31), recall χCj
(x) is the characteristic function of the interval Cj , and (Ux)j represents

the numerical derivatives, which are computed using a nonlinear limiter to reduce oscillations.

In our numerical experiments, we use the generalized minmod limiter given in (1.93) and (1.94).

For Formulation S-SNG, after obtaining Ũ(x) for the reconstruction of U using (3.31) and

(3.32), we approximate the bottom function B using a generally discontinuous piecewise linear

reconstruction.

Piecewise Linear Reconstruction of B. In order to capture discontinuities in the bottom

in a robust and accurate manner, following [5], we approximate the bottom function B with a

generally discontinuous piecewise linear reconstruction

B̃(x) =
∑
j

[
Bj+ 1

2
+ (Bx)j+ 1

2
(x− xj+ 1

2
)

]
·χCj

(x), (3.33)

with point values obtained on the cell interfaces x = xj+ 1
2

by

B+
j+ 1

2

= Bj+1 −
∆x

2
(Bx)j+1 , B−

j+ 1
2

= Bj +
∆x

2
(Bx)j . (3.34)

The numerical derivatives in (3.33) and (3.34) are calculated using the same midmod limiter

in (1.93) and (1.94). We note, in this stage of the splitting, the reconstruction is used to obtain

the left and right point values for B at the interfaces for use in (3.30), but the bottom function

B is fixed in time during hydrodynamic subsystem evolution.

Well-Balanced Quadrature for the Geometric Source Terms. In order to ensure the

method is well-balanced, a special quadrature should be used to discretize the second component

S
(2)
j of the source term in (3.29) such that it balances with the numerical fluxes. The fluxes at

the discrete level are given by

Ĥ
(2)

j+ 1
2

− Ĥ(2)

j− 1
2

∆x
=
gwj
∆x

 â+
j+ 1

2

B−
j+ 1

2

− â−
j+ 1

2

B+
j+ 1

2

â+
j+ 1

2

− â−
j+ 1

2

−
â+
j− 1

2

B−
j− 1

2

− â−
j− 1

2

B+
j− 1

2

â+
j− 1

2

− â−
j− 1

2

 . (3.35)

Therefore, the fluxes and source term will balance if the second component of the source term
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is discretized as follows:

S
(2)
j ≈ −

gwj
∆x

 â+
j+ 1

2

B−
j+ 1

2

− â−
j+ 1

2

B+
j+ 1

2

â+
j+ 1

2

− â−
j+ 1

2

−
â+
j− 1

2

B−
j− 1

2

− â−
j− 1

2

B+
j− 1

2

â+
j− 1

2

− â−
j− 1

2

 . (3.36)

Local Speeds of Propagation. Within the hydrodynamic subsystem (3.19), we are only

concerned with the fast moving water waves of the shallow water equations. Thus, the local

speeds of propagation are given by the largest and smallest of these eigenvalues, corresponding

to λ(1) and λ(3), such that, in this spatial discretization,

â+
j+ 1

2

= max

{
λ

(1)+

j+ 1
2

, λ
(1)−
j+ 1

2

, λ
(3)+

j+ 1
2

, λ
(3)−
j+ 1

2

, 0

}
,

â−
j+ 1

2

= min

{
λ

(1)+

j+ 1
2

, λ
(1)−
j+ 1

2

, λ
(3)+

j+ 1
2

, λ
(3)−
j+ 1

2

, 0

}
.

(3.37)

Intermediate Computed Solution for U. After the first stage of our operator splitting in

(3.18), we evolved (3.28) to time t + ∆tspl/2 where we obtained the intermediate solution U∗j
defined as in (3.21). We use this as the initial condition for the second stage of our operator

splitting.

3.4.2 Morphodynamic Subsystem

In the second stage of the operator splitting, we evolve the morphodynamic subsystem (3.18),

which fixes U∗ in time, and evolve the bottom on a non-staggered discretized grid. The cell

averages U
∗
j and Bj will be defined as in (3.24) and (3.25), respectively. Applying a second order

semi-discrete central-upwind formulation to the bottom function B, we have the cell averages

will be evolved in time by

d

dt
Bj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
, (3.38)

where Hj± 1
2

in (3.38) are the central-upwind numerical fluxes for the bottom given in (3.39).

Numerical Fluxes. In (3.38), we use the central-upwind fluxes from [50]. However, since we

are only evolving the bottom, we modify the local speeds of propagation to ĉ± using (3.15) and

(3.16), which only takes into account the eigenvalue associated with the Exner equation:

Hj+ 1
2
(t) =

ĉ+
j+ 1

2

qb(U
∗−
j+ 1

2

)− ĉ−
j+ 1

2

qb(U
∗+
j+ 1

2

)

ĉ+
j+ 1

2

− ĉ−
j+ 1

2

+
ĉ+
j+ 1

2

ĉ−
j+ 1

2

ĉ+
j+ 1

2

− ĉ−
j+ 1

2

[
B+
j+ 1

2

−B−
j+ 1

2

]
. (3.39)
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Reconstruction. In equation (3.39), B±
j+ 1

2

and U∗±
j+ 1

2

are the left and right point values of

the piecewise linear reconstructions

B̃(x) =
∑
j

[
Bj + (Bx)j(x− xj)

]
·χCj

(x), (3.40)

Ũ∗(x) =
∑
j

[
U
∗
j + (Ux)j(x− xj)

]
·χCj

(x), (3.41)

obtained at the midpoint cell interfaces x = xj± 1
2

by

B+
j+ 1

2

= Bj+1 −
∆x

2
(Bx)j+1 , B−

j+ 1
2

= Bj +
∆x

2
(Bx)j , (3.42)

U∗+
j+ 1

2

= U
∗
j+1 −

∆x

2
(U∗x)j+1 , U∗−

j+ 1
2

= U
∗
j +

∆x

2
(U∗x)j , (3.43)

where the numerical derivatives (Bx)j and (Ux)j are computed using a nonlinear limiter to

reduce oscillations as was done in (1.93) and (1.94).

Local Speeds of Propagation. Within the morphodynamic subsystem (3.20), we are only

concerned with the slow moving sediment waves corresponding to the Exner equation. Thus,

the local speeds of propagation are given by the largest and smallest of these eigenvalues cor-

responding to λ(2). Therefore,

ĉ+
j+ 1

2

= max

{
λ

(2)+

j+ 1
2

, λ
(2)−
j+ 1

2

, 0

}
,

ĉ−
j+ 1

2

= min

{
λ

(2)+

j+ 1
2

, λ
(2)−
j+ 1

2

, 0

}
.

(3.44)

Second Intermediate Computed Solution for U. After the second stage of our operator

splitting we evolved (3.38) to time t+∆tspl where we obtained the intermediate solution U∗∗j as

defined in (3.22). These values are used as the initial condition for the hydrodynamic subsystem,

and we evolve (3.38) from t+ ∆tspl/2 to t+ ∆tspl.

3.4.3 Time Evolution of S-NSG

When choosing the splitting time step ∆tspl, the choice is not unique, and instead depends on

which of our local speeds of propagation

(
ĉ±
j+ 1

2

or â±
j+ 1

2

)
we use to define it. If we consider the

splitting time step on the morphodynamic time step the CFL condition is satisfied using the
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sediment waves speed of propagation ĉ±
j+ 1

2

. Thus,

∆tspl ≤
1

2
min

 ∆x∣∣ĉ±
j+ 1

2

∣∣
 . (3.45)

We may also consider the splitting time step on the hydrodynamic time step, where the

CFL condition is satisfied using the water waves speed of propagation â±
j+ 1

2

. Thus,

∆tspl ≤
1

2
min

 ∆x∣∣â±
j+ 1

2

∣∣
 . (3.46)

In Section 3.4.3.1 and Section 3.4.3.2, we further discuss when the CFL condition is con-

strained by (3.45) and (3.46), respectively.

3.4.3.1 Time Evolution of S-NSG When the Splitting Time-Step Is Chosen Using

the Morphodynamic Time-Step (S-NSG-M)

In this section we detail how the time evolution is implemented when the splitting time step is

chosen using the morphological time step (3.45). While ∆tspl is the overall time step, each indi-

vidual hydrodynamic subsystem or morphodynamic subsystem may require a smaller time step

when the system is evolved for our scheme to remain stable. Consider the first hydrodynamic

subsystem in our splitting (3.19) which we evolve to ∆tspl/2. This hydrodynamic subsystem is

associated with the one sided local speeds of propagation given by â±
j+ 1

2

in (3.37). The values

of â±
j+ 1

2

are larger than ĉ±
j+ 1

2

, and thus the hydrodynamic subsystem will require a smaller time

step to remain stable. The constraint on this time step is given by

∆tw ≤ min

 ∆x

max
j

2
∣∣â±
j± 1

2

∣∣ , ∆tspl
2

 , (3.47)

where ∆tw is the time step used when evolving the hydrodynamic subsystem. Since ∆tw may

be smaller than ∆tspl/2, the end time in the first step of our Strang splitting, the method may

require multiple hydrodynamic subsystem evolutions of ∆tw to equal ∆tspl/2.

For the second stage of the splitting, we solve the morphodynamic subsystem until ∆tspl.

We make sure to satisfy

∆ts ≤ min

 ∆x

max
j

2
∣∣ĉ±
j± 1

2

∣∣ ,∆tspl
 , (3.48)

where ∆ts is the time step used when evolving the morphodynamic subsystem. We note that in
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most cases ∆ts = ∆tspl, but if, during the evolution, ∆ts < ∆tspl, multiple ∆ts time evolutions

may be needed.

For the final stage of our splitting, we will evolve the hydrodynamic subsystem from t +

∆tspl/2 to t+ ∆tspl making sure to satisfy (3.47).

3.4.3.2 Time Evolution of S-NSG When the Splitting Time-Step Is Chosen Using

the Hydrodynamic Time-Step (S-NSG-H)

In this section we detail how the time evolution is implemented when the the splitting time step

is chosen using the hydrodynamic time step (3.46). Then, ∆tspl is constrained by the following

condition:

∆tspl ≤
1

2
min

 ∆x

max
j

∣∣â±
j± 1

2

∣∣
 ≤ 1

2
min

 ∆x

max
j

∣∣ĉ±
j± 1

2

∣∣
 . (3.49)

Since ∆tspl is based on the smaller time step associated with the fast moving local speeds of

propagation, when evolving the hydrodynamic subsystem to ∆tspl/2, we will always take one

step since

∆tw ≤
∆tspl

2
<

1

2
min

 ∆x

max
j

∣∣â±
j± 1

2

∣∣
 . (3.50)

For the evolution of the morphodynamic subsystem which is evolved to ∆tspl, since ∆ts is

naturally greater than ∆tspl, only take one step in ∆ts. Thus, the CFL is constrained as follows:

∆ts < ∆tspl ≤
1

2
min

 ∆x

max
j

∣∣ĉ±
j± 1

2

∣∣
 . (3.51)

For the final stage of our splitting, we will evolve the hydrodynamic subsystem from t +

∆tspl/2 to t+ ∆tspl making sure to satisfy (3.49).

3.5 Numerical Scheme for the Splitting Approach with the Bot-

tom Evolved on a Staggered Discretized Grid (S-SG)

The Formulation S-SG is based on the splitting approach where the bottom evolved on a

staggered discretized grid. For this scheme, we use the spatial discretization in Section 3.3.2,

where U uses a non-staggered discretized grid and B uses a staggered discretized grid.
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3.5.1 Hydrodynamic Subsystem

For the hydrodynamic subsystem (3.17) of the Strang splitting (3.20), we fix the bottom function

in time and solve the shallow water equations in terms of equilibrium variables. Starting with

the cell averages obtained in (3.26) and applying a second order semi-discrete central-upwind

formulation to Uj , we have the cell averages are evolved in time by

d

dt
Uj(t) = −

Ĥj+ 1
2
(t)− Ĥj− 1

2
(t)

∆x
+ Sj(t), (3.52)

where Ĥj± 1
2

are the central-upwind numerical fluxes and Sj(t) is given by

Sj(t) ≈
1

∆x

∫
Cj

S(U)dx, (3.53)

and Sj(t) represents the cell averages of the geometric source term. For the rest of this section

we will drop the notation t for time dependence for simplicity where it is appropriate.

The construction of the scheme will be complete once the numerical fluxes Ĥj± 1
2

in (3.54)

and the source term Sj in (3.53) are computed such that the resulting method is well-balanced.

Numerical Fluxes. In (3.28), we use the central-upwind fluxes from [50], slightly modifying

the local speeds of propagation to â± using (3.13) and (3.14) so that

Ĥj+ 1
2
(t) =

â+
j+ 1

2

F̂(U−
j+ 1

2

, Bj+ 1
2
)− â−

j+ 1
2

F̂(U+
j+ 1

2

, Bj+ 1
2
)

â+
j+ 1

2

− â−
j+ 1

2

+
â+
j+ 1

2

â−
j+ 1

2

â+
j+ 1

2

− â−
j+ 1

2

[
U+
j+ 1

2

−U−
j+ 1

2

]
.

(3.54)

Note that, in (3.54), since the bottom is solved on a staggered discretized grid, there is only

one value for B at each interface x = xj+ 1
2
.

Reconstruction. In equation (3.54), U±
j+ 1

2

are the left and right point values of the piecewise

linear reconstructions

Ũ(x) =
∑
j

[
Uj + (Ux)j(x− xj)

]
·χCj

(x), (3.55)

obtained at the midpoint cell interfaces x = xj± 1
2

by

U+
j+ 1

2

= Uj+1 −
∆x

2
(Ux)j+1 , U−

j+ 1
2

= Uj +
∆x

2
(Ux)j . (3.56)
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In (3.55), χCj
(x) is the characteristic function of the interval Cj , and (Ux)j represents the

numerical derivatives, which are computed using a nonlinear limiter to reduce oscillations. In

our numerical experiments, we use the generalized minmod limiter (1.93) and (1.94).

For Formulation S-SG after obtaining Ũ(x) for the reconstruction of U using (3.31) and

(3.32), we approximate B using a continuous piecewise linear approximation.

Piecewise Linear Approximation of B. In contrast to our previous approaches for ap-

proximating the bottom, we replace the bottom function B with a continuous piecewise linear

approximation following [50]. The continuous piecewise linear approximation is given by

B̃(x) = Bj− 1
2

+
(
Bj+ 1

2
−Bj− 1

2

) x− xj− 1
2

∆x
, xj− 1

2
≤ x ≤ xj+ 1

2
(3.57)

where

Bj+ 1
2

:=
1

2

(
B(xj+ 1

2
+ 0) +B(xj+ 1

2
− 0)

)
. (3.58)

B(xj+ 1
2

+ 0) and B(xj+ 1
2
− 0) represent the right and left values of the interface, respectively,

if B is discontinuous at the interface. However, if B is continuous at the interface it reduces to

Bj+ 1
2

= B(xj+ 1
2
).

This linear approximation results in the cell average of B̃ over the cell Cj equaling the value

at the center of the cell and the average of the midpoint values of B̃. Thus,

Bj := B̃(xj) =
1

∆x

∫
Cj

B̃(x)dx =
1

2

(
Bj+ 1

2
+Bj− 1

2

)
. (3.59)

Well-Balanced Quadrature for the Geometric Source Terms. In order to ensure the

scheme is well-balanced, a special quadrature should be used to discretize the second component

S
(2)
j of the source term in (3.53) such that it balances with the numerical fluxes. The fluxes at

the discrete level are given by

Ĥ
(2)

j+ 1
2

− Ĥ(2)

j− 1
2

∆x
=

gwj
∆x

 â+
j+ 1

2

Bj+ 1
2
− â−

j+ 1
2

Bj+ 1
2

â+
j+ 1

2

− â−
j+ 1

2

−
â+
j− 1

2

Bj− 1
2
− â−

j− 1
2

Bj− 1
2

â+
j− 1

2

− â−
j− 1

2

 , (3.60)

=
gwj
∆x

(
Bj+ 1

2
−Bj− 1

2

)
. (3.61)

Note, when the bottom is discretized on a staggered discretized grid, there is only a value at

the interface x = xj+ 1
2

or x = xj− 1
2
. Thus, the B±

j± 1
2

which are normally present in (3.60) are

reduced to Bj± 1
2
. Therefore, the fluxes and source term will balance if the second component
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of the source term is discretized as follows:

S
(2)
j ≈ −

gwj
∆x

(
Bj+ 1

2
−Bj− 1

2

)
. (3.62)

Local Speeds of Propagation. Within the hydrodynamic subsystem (3.19), we are only

concerned with the fast moving water waves of the shallow water equations. Thus, the local

speeds of propagation are given by the largest and smallest of these eigenvalues, corresponding

to λ(1) and λ(3), such that, in this spatial discretization,

â+
j+ 1

2

= max

{
λ

(1)+

j+ 1
2

, λ
(1)−
j+ 1

2

, λ
(3)+

j+ 1
2

, λ
(3)−
j+ 1

2

, 0

}
,

â−
j+ 1

2

= min

{
λ

(1)+

j+ 1
2

, λ
(1)−
j+ 1

2

, λ
(3)+

j+ 1
2

, λ
(3)−
j+ 1

2

, 0

}
.

(3.63)

Intermediate Computed Solution for U. After the first stage of our operator splitting

(3.18), where we evolved (3.28) to time t+ ∆tspl/2, we obtained the intermediate solution U∗j ,

which is used as the initial condition for the second stage of our operator splitting.

3.5.2 Morphodynamic Subsystem

In the second stage of the operator splitting, we evolve the morphodynamic subsystem which

fixes U∗j in time and evolves the cell average of the bottom function on a staggered discretized

grid. While U∗j is defined on a non-staggered discretized grid, we need to obtain the cell average

values on the interfaces, U∗
j+ 1

2

, for use in the numerical scheme. To this end we project U∗j onto

a staggered discretized grid using the method shown in Nessyahu and Tadmor [68] to obtain

U
∗
j+ 1

2
=

∫
C

j+1
2

U∗(x) dx,

=
1

2

(
U
∗
j + U

∗
j+1

)
+

1

8

{[(
U
∗
x

)
j
−
(
U
∗
x

)
j+1

]}
,

(3.64)

where Cj+ 1
2

is the cell centered at x = xj+ 1
2

of size ∆x, and
(
U
∗
x

)
j+1

and
(
U
∗
x

)
j

are numerical

derivatives calculated as in (1.93) and (1.94).

The cell averages of the bottom at the interfaces Bj+ 1
2

for all j will be defined as in (3.27),

and, applying a second order semi-discrete central-upwind formulation to B, we have the cell

averages will be evolved in time by

d

dt
Bj+ 1

2
(t) = −Hj+1(t)−Hj(t)

∆x
, (3.65)
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where Hj+1 and Hj are the central-upwind numerical fluxes for the bottom function given in

(3.66).

Numerical Fluxes In (3.65), we use the central-upwind fluxes from [50]. However, since we

are only evolving the bottom, we modify the local speeds of propagation to ĉ± using (3.15) and

(3.16), which only takes into account the eigenvalue associated with the Exner equation. This

results in

Hj+1(t) =
ĉ+
j+1qb(U

∗−
j+1)− ĉ−j+1qb(U

∗+
j+1)

ĉ+
j+j+ 1

2

− ĉ−j+1

+
ĉ+
j+1ĉ

−
j+1

ĉ+
j+1 − ĉ

−
j+1

[
B+
j+1 −B

−
j+1

]
. (3.66)

Reconstruction. In (3.66), B±
j+ 1

2

and U∗± are the left and right point values of the piecewise

linear reconstructions

B̃(x) =
∑
j+ 1

2

[
Bj+ 1

2
+ (Bx)j+ 1

2
(x− xj+ 1

2
)

]
·χC

j+1
2

(x), (3.67)

Ũ∗(x) =
∑
j

[
U
∗
j+ 1

2
+ (Ux)j+ 1

2
(x− xj+ 1

2
)
]
·χC

j+1
2

(x), (3.68)

obtained at cell interfaces x = xj and x = xj+1 by

B+
j+1 = Bj+ 3

2
− ∆x

2
(Bx)j+ 3

2
, B−j+1 = Bj+ 1

2
+

∆x

2
(Bx)+ 1

2
, (3.69)

U∗+j+1 = U
∗
j+ 3

2
− ∆x

2
(U∗x)j+ 3

2
, U∗−j+1 = U

∗
j+ 1

2
+

∆x

2
(U∗x)j+ 1

2
, (3.70)

where the numerical derivatives (Bx)j+ 1
2

and (Ux)j+ 1
2

are computed using a nonlinear limiter

to reduce oscillations as done in (1.93) and (1.94).

Local Speeds of Propagation. Within the morphodynamic subsystem (3.20), we use only

the eigenvalues associated with the slow moving sediment waves to determine the local speeds

of propagation ĉ±j+1 on the staggered discretized grid by

c+
j+1 = max

{
λ

(2)+
j+1 , λ

(2)−
j+1,k+ 1

2

, 0

}
,

c−j+1 = min

{
λ

(2)+
j+1 , λ

(2)−
j+1,k+ 1

2

, 0

}
.

(3.71)

Second Intermediate Computed Solution for U. After the second stage of the operator

splitting, we evolved (3.65) to time t+∆tspl where we obtained the intermediate solution U∗∗(x)
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as defined in (3.22). U∗∗(x) is used as the initial condition for the hydrodynamic system as we

evolve (3.52) from t+ ∆tspl to t+ ∆tspl.

3.5.3 Time Evolution of S-SG

When choosing the splitting time step ∆tspl, the choice is not unique, and it depends on which of

our local speeds of propagation

(
ĉ±
j+ 1

2

or â±
j+ 1

2

)
we use to define it. If we consider the splitting

time step on the morphodynamic time step the CFL condition is satisfied using the sediment

waves speed of propagation ĉ±
j+ 1

2

. Thus,

∆tspl ≤
1

2
min

 ∆x∣∣ĉ±
j+ 1

2

∣∣
 . (3.72)

We note the splitting time step is calculated using the eigenvalues associated with the non-

staggered discretized grid with the interfaces at x = xj+ 1
2
.

We also consider the splitting time step on the hydrodynamic time step, where the CFL

condition is satisfied using the water waves speed of propagation â±
j+ 1

2

. Thus,

∆tspl ≤
1

2
min

 ∆x∣∣â±
j+ 1

2

∣∣
 . (3.73)

In Section 3.5.3.1 and Section 3.5.3.2, we further discuss when the CFL condition is con-

strained by (3.72) and (3.73), respectively.

3.5.3.1 Time Evolution of S-SG When the Splitting Time-Step Is Chosen Using

the Morphodynamic Time-Step (S-SG-M)

In this section we detail how the time evolution is implemented when the splitting time step

is chosen using the morphological time step as in (3.72). While ∆tspl is the overall time step,

each individual hydrodynamic or morphodynamic subsystem, may require a smaller time step

when the system is evolved for our scheme to remain stable. Consider the first hydrodynamic

subsystem in our splitting from (3.19) which we evolve to ∆tspl/2. This hydrodynamic subsys-

tem is associated with the one sided local speeds of propagation given by â±
j+ 1

2

in (3.63). The

values of â±
j+ 1

2

are larger than those of ĉ±
j+ 1

2

, and thus the hydrodynamic subsystem will require
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a smaller time step to remain stable. The constraint on this time step is given by

∆tw ≤
1

2
min

 ∆x

max
j

∣∣â±
j± 1

2

∣∣
 ≤ ∆tspl

2
. (3.74)

Since ∆tw may be smaller than ∆tspl/2, the end time in the first step of our Strang splitting,

the method may require multiple hydrodynamic subsystem evolutions of ∆tw to equal ∆tspl/2.

In the second stage of the splitting, where the morphodynamic subsystem is evolved until

∆tspl, we need to satisfy

∆ts ≤ ∆tspl ≤ min

 ∆x

2 max
j

∣∣ĉ±j ∣∣ ,∆tspl
 . (3.75)

In most cases, ∆ts = ∆tspl, but if, during the evolution, ∆ts < ∆tspl, multiple ∆ts time

evolutions may be needed.

For the final stage of our splitting, we will evolve the hydrodynamic subsystem from t +

∆tspl/2 to t+ ∆tspl making sure to satisfy (3.74).

3.5.3.2 Time Evolution of S-SG When the Splitting Time-Step Is Chosen Using

the Hydrodynamic Time-Step (S-SG-H)

In this section, we detail how the time evolution is implemented when the splitting time step

is chosen using the hydrodynamic time step from (3.73). Then, ∆tspl is constrained by the

following condition:

∆tspl ≤
1

2
min

 ∆x

max
j

∣∣â±
j± 1

2

∣∣
 ≤ 1

2
min

 ∆x

max
j

∣∣ĉ±
j± 1

2

∣∣
 . (3.76)

Since ∆tspl is based on the smaller time step associated with the fast moving local speeds of

propagation, when evolving the hydrodynamic subsystem to ∆tspl/2, we will always take one

step since

∆tw ≤ min

 ∆x

2 max
j

∣∣â±
j± 1

2

∣∣ , ∆tspl
2

 . (3.77)

For the evolution of the morphodynamic subsystem which is evolved to ∆tspl, since ∆ts is
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naturally greater than ∆tspl, only take one step in ∆ts. Thus, the CFL is constrained as follows:

∆ts < ∆tspl ≤ min

 ∆x

max
j

∣∣â±
j± 1

2

∣∣ ,∆tspl
 ≤ 1

2
min

 ∆x

max
j

∣∣ĉ±j ∣∣
 . (3.78)

For the final stage of our splitting, we will evolve the hydrodynamic subsystem from t +

∆tspl/2 to t+ ∆tspl making sure to satisfy (3.76).

3.6 Numerical Scheme for the Non-Splitting Approach with the

Bottom Evolved on a Non-Staggered Discretized Grid (NS-

NSG)

The Formulation NS-NSG is based on the non-splitting approach with the bottom evolved on a

non-staggered discretized grid. In this scheme the equilibrium variables w, q, and B are solved

on the non-staggered discretized grid from Section 3.3.1. In this section, we will be solving all

three equations of (3.3) and (3.2) simultaneously. Assuming the solution is know at a time t,

the cell averages of the computed solution are

W
n
j (t) :=

1

∆x

∫
Cj

W(x, tn) dx, (3.79)

recalling that W is composed of the three equilibrium variables w, q, and B. Applying a second

order semi-discrete central-upwind formulation to W, the cell averages are evolved in time

based on the following equation:

d

dt
Wj(t) =


d
dtUj(t)

d
dtBj(t)

 =


−

Ĥj+ 1
2
(t)− Ĥj− 1

2
(t)

∆x
+ S(t)

−
Hj+ 1

2
(t)−Hj− 1

2
(t)

∆x

 , (3.80)

where Ĥj± 1
2

and Hj± 1
2

are the numerical fluxes in (3.84) and (3.82) and

Sj(t) ≈
1

∆x

∫
Cj

S(W) dx, (3.81)

are the cell averages of the source term. For simplicity in the rest of this section, we will drop

the notation for t being time dependent where appropriate. The construction of the scheme will
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be complete once the numerical fluxes Ĥj± 1
2

and Hj± 1
2

in (3.82), (3.83), and (3.84), and the

source term in (3.81) are computed so that the resulting scheme is well-balanced.

Numerical Fluxes. In (3.80), we use the central upwind fluxes from [50], modifying the

local speeds of propagation to â± and ĉ± using (3.13)-(3.16) where appropriate to capture the

different speed of the water and sediment waves. These numerical fluxes are given by

Ĥ
(1)

j+ 1
2

(t) =

â+
j+ 1

2

F̂ (1)(W−
j+ 1

2

)− â−
j+ 1

2

F̂ (1)(W+
j+ 1

2

)

â+
j+ 1

2

− â−
j+ 1

2

+
â+
j+ 1

2

â−
j+ 1

2

â+
j+ 1

2

− â−
j+ 1

2

[
W

(1)+

j+ 1
2

−W (1)−
j+ 1

2

]
, (3.82)

Ĥ
(2)

j+ 1
2

(t) =

â+
j+ 1

2

F̂ (2)(W−
j+ 1

2

)− â−
j+ 1

2

F̂ (2)(W+
j+ 1

2

)

â+
j+ 1

2

− â−
j+ 1

2

+
â+
j+ 1

2

â−
j+ 1

2

â+
j+ 1

2

− â−
j+ 1

2

[
W

(2)+

j+ 1
2

−W (2)−
j+ 1

2

]
, (3.83)

Hj+ 1
2
(t) =

ĉ+
j+ 1

2

qb(W
−
j+ 1

2

)− ĉ−
j+ 1

2

qb(W
+
j+ 1

2

)

ĉ+
j+ 1

2

− ĉ−
j+ 1

2

+
ĉ+
j+ 1

2

ĉ−
j+ 1

2

ĉ+
j+ 1

2

− ĉ−
j+ 1

2

[
W

(3)+

j+ 1
2

−W (3)−
j+ 1

2

]
. (3.84)

Reconstruction. In (3.82)-(3.84), W±
j+ 1

2

are the left and right point values of the piecewise

linear reconstructions

W̃(x) =
∑
j

[
Wj + (Wx)j(x− xj)

]
·χCj

(x), (3.85)

obtained at the cell interfaces x = xj+ 1
2

by

W+
j+ 1

2

= Wj+1 −
∆x

2
(Wx)j+1 , W−

j+ 1
2

= Wj +
∆x

2
(Wx)j .

In (3.85),χCj
(x) is the characteristic function of the interval Cj , and (Wx)j is the numerical

derivative computed using a nonlinear limiter in order to reduce oscillations as in (1.93) and

(1.94).

Well-Balanced Quadrature for the Geometric Source Terms. In order to ensure the

method is well-balanced, a special quadrature should be used to discretize the second component

S
(2)
j of the source term in (3.29) such that it balances with the numerical fluxes. The fluxes at
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the discrete level are given by

Ĥ
(2)

j− 1
2

− Ĥ(2)

j+ 1
2

∆x
=
gW

(1)
j

∆x

 â+
j+ 1

2

W
(3)−
j+ 1

2

− â−
j+ 1

2

W
(3)+

j+ 1
2

â+
j+ 1

2

− â−
j+ 1

2

−
â+
j− 1

2

W
(3)−
j− 1

2

− â−
j− 1

2

W
(3)+

j− 1
2

â+
j− 1

2

− â−
j− 1

2

 .

Therefore, the fluxes and source term will balance if the second component of the source term

is discretized as follows:

S
(2)
j ≈ −

gW
(1)
j

∆x

 â+
j+ 1

2

W
(3)−
j+ 1

2

− â−
j+ 1

2

W
(3)+

j+ 1
2

â+
j+ 1

2

− â−
j+ 1

2

−
â+
j− 1

2

W
(3)−
j− 1

2

− â−
j− 1

2

W
(3)+

j− 1
2

â+
j− 1

2

− â−
j− 1

2

 . (3.86)

Local Speeds of Propagation. The local speeds of propagation for the water waves and

sediment waves are obtained by using the eigenvalues corresponding to their respective systems

given by

â+
j+ 1

2

= max

{
λ

(1)+

j+ 1
2

, λ
(3)+

j+ 1
2

, λ
(1)−
j+ 1

2

, λ
(3)−
j+ 1

2

, 0

}
,

â−
j+ 1

2

= min

{
λ

(1)+

j+ 1
2

, λ
(3)+

j+ 1
2

, λ
(1)−
j+ 1

2

, λ
(3)−
j+ 1

2

, 0

}
,

ĉ+
j+ 1

2

= max

{
λ

(2)+

j+ 1
2

, λ
(2)−
j+ 1

2

, 0

}
,

ĉ−
j+ 1

2

= min

{
λ

(2)+

j+ 1
2

, λ
(2)−
j+ 1

2

, 0

}
.

(3.87)

3.6.1 Time Evolution of NS-NSG

To find the time step ∆t, we compare all the local speeds of propagation together, and our time

step must satisfy the condition given by

∆t ≤ 1

2
min

 ∆x

max
j

∣∣â±
j± 1

2

∣∣ , ∆x

max
j

∣∣ĉ±
j± 1

2

∣∣
 . (3.88)

3.7 Numerical Scheme for the Non-Splitting Approach with the

Bottom Evolved on a Staggered Discretized Grid (NS-SG)

The Formulation NS-SG is based on the non-splitting approach with the bottom evolved on a

staggered discretized grid. In this scheme, the spatial discretization from Section 3.3.2 is used

where U is on a non-staggered discretized grid and B is on staggered discretized grid. Since the

system is not solved using splitting, we need to consider all three equations at once. Therefore,

we work simultaneously on the non-staggered and staggered discretized grids. For ease of the
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reader, we will refer to the variables on the non-staggered discretized grid by Wns and the

variables on the staggered discretized grid by Ws. The computed solution for the cell averages

on the non-staggered discretized grid,

W
ns
j (t) ≈ 1

∆x

∫
Cj

Wns(x, t)dx, (3.89)

are assumed to be known at a given time t. The cell averages on the staggered discretized grid

are slightly more complicated as the first two values of Ws are calculated using the method

from [68] to obtain

W
s(1)

j+ 1
2

=

∫
C

j+1
2

W s(1)(x) dx =
1

2

(
W

ns(1)
j +W

ns(1)
j+1

)
+

1

8

[(
W

ns(1)
x

)
j
−
(
W

ns(1)
x

)
j+1

]
, (3.90)

W
s(2)

j+ 1
2

=

∫
C

j+1
2

W s(2)(x) dx =
1

2

(
W

ns(2)
j +W

ns(2)
j+1

)
+

1

8

[(
W

ns(2)
x

)
j
−
(
W

ns(2)
x

)
j+1

]
, (3.91)

where
(
W

ns(1)
x

)
j
,
(
W

ns(1)
x

)
j+1

,
(
W

ns(2)
x

)
j
, and

(
W

ns(2)
x

)
j+1

are numerical derivatives calcu-

lated in the reconstruction step of this section. For the third value of Ws, which represents the

bottom topography function B, we calculate W s(3) as

W
s(3)
j (t) ≈ 1

∆x

∫
C

j+1
2

W s(3)(x, t)dx. (3.92)

Applying a second order semi-discrete central-upwind formulation to W, we solve all three

equations simultaneously as

d

dt
Wj(t) =



d
dtW

ns(1)
j (t)

d
dtW

ns(2)
j (t)

d
dtW

s(3)

j+ 1
2

(t)


=



−
Ĥ

(1)

j+ 1
2

(t)− Ĥ(1)

j− 1
2

(t)

∆x
+ S

(1)
j (t)

−
Ĥ

(2)

j+ 1
2

(t)− Ĥ(2)

j− 1
2

(t)

∆x
+ S

(2)
j (t)

−Hj+1(t)−Hj(t)
∆x


, (3.93)
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where Ĥj+ 1
2

and Hj+1 are the central-upwind fluxes and S(t) is given by

Sj(t) ≈
1

∆x

∫
Cj

S(W)dx, (3.94)

which represents the cell averages of the geometric source term. For the rest of this section we

will drop the notation t for time dependence for simplicity where it is appropriate.

The construction of the scheme will be complete once the numerical fluxes Ĥj+ 1
2

and Hj+1

in (3.95)-(3.97) and the source term Sj in (3.94) are computed such that the resulting method

is well-balanced.

Numerical Fluxes. In (3.93), we use the central-upwind fluxes from [50], slightly modifying

the local speeds of propagation to â±
j+ 1

2

and ĉ±j using (3.13)-(3.16) where appropriate, to capture

the different speeds of the water and sediment. These numerical fluxes are given by

Ĥ
(1)

j+ 1
2

(t) =

â+
j+ 1

2

F̂ (1)(Wns−
j+ 1

2

)− â−
j+ 1

2

F̂ (1)(Wns+
j+ 1

2

)

â+
j+ 1

2

− â−
j+ 1

2

+
â+
j+ 1

2

â−
j+ 1

2

â+
j+ 1

2

− â−
j+ 1

2

[
W

ns(1)+

j+ 1
2

−Wns(1)−
j+ 1

2

]
, (3.95)

Ĥ
(2)

j+ 1
2

(t) =

â+
j+ 1

2

F̂ (2)(Wns−
j+ 1

2

)− â−
j+ 1

2

F̂ (2)(Wns+
j+ 1

2

)

â+
j+ 1

2

− â−
j+ 1

2

+
â+
j+ 1

2

â−
j+ 1

2

â+
j+ 1

2

− â−
j+ 1

2

[
W

ns(2)+

j+ 1
2

−Wns(2)−
j+ 1

2

]
, (3.96)

Hj+1(t) =

ĉ+
j+1qb(W

s−
j+1)− ĉ−j+1qb(W

s+
j+1)

ĉ+
j+1 − ĉ

−
j+1

+
ĉ+
j+1ĉ

−
j+1

ĉ+
j+1 − ĉ

−
j+1

[
W

s(3)+
j+1 −W s(3)−

j+1

]
. (3.97)

Reconstruction. In (3.95)-(3.97), Wns±
j+ 1

2

and Ws±
j+1 are the left and right point values of the

piecewise linear reconstructions

W̃ns(x) =
∑
j

[
W

ns
j + (Wns

x )j(x− xj)
]
·χCj

(x), (3.98)

W̃s(x) =
∑
j

[
W

s
j+ 1

2
+ (Ws

x)j+ 1
2
(x− xj+ 1

2
)
]
·χC

j+1
2

(x), (3.99)
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obtained at the midpoint cell interfaces x = xj+ 1
2
, x = xj− 1

2
, x = xj , and x = xj+1 on the

non-staggered and staggered discretized grids given by

Wns+
j+ 1

2

= W
ns
j+1 −

∆x

2
(Wns

x )j+1 , Wns−
j+ 1

2

= W
ns
j +

∆x

2
(Wns

x )j , (3.100)

Ws+
j+1 = W

s
j+ 3

2
− ∆x

2
(Ws

x)j+ 3
2

, Ws−
j+1 = W

s
j+ 1

2
+

∆x

2
(Ws

x)j+ 1
2
. (3.101)

The numerical derivatives (Wns
x )j and (Ws

x)j+ 1
2

are then computed using a nonlinear limiter

in order to reduce oscillations as

(Wns
x )j = minmod

(
θ
W

ns
j −W

ns
j−1

∆x
,
W

ns
j+1 −W

ns
j−1

2∆x
, θ

W
ns
j+1 −W

ns
j

∆x

)
, θ ∈ [1, 2],

(Ws
x)j+ 1

2
= minmod

(
θ
W

s
j+ 1

2
−W

s
j− 1

2

∆x
,
W

s
j+ 3

2
−W

s
j− 1

2

2∆x
, θ

W
s
j+ 3

2
−W

s
j+ 1

2

∆x

)
, θ ∈ [1, 2],

where the minmod limiter is defined as in (1.94).

Well-Balanced Quadrature for the Geometric Source Terms. In order to ensure the

method is well-balanced, a special quadrature should be used to discretize the second component

S
(2)
j of the source term in (3.94) such that it balances with the numerical fluxes. The fluxes at

the discrete level are given by

Ĥ
(2)

j− 1
2

− Ĥ(2)

j+ 1
2

∆x
=

gwj
∆x

 â+
j+ 1

2

W
s(3)

j+ 1
2

− â−
j+ 1

2

W
s(3)

j+ 1
2

â+
j+ 1

2

− â−
j+ 1

2

−
â+
j− 1

2

W
s(3)

j− 1
2

− â−
j− 1

2

W
s(3)

j− 1
2

â+
j− 1

2

− â−
j− 1

2

 ,(3.102)

=
gwj
∆x

(
W

s(3)

j+ 1
2

−W s(3)−
j− 1

2

)
. (3.103)

Therefore, the fluxes and source term will balance if the second component of the source term

is discretized as follows:

S
(2)
j ≈ −

gwj
∆x

(
W

s(3)

j+ 1
2

−W s(3)−
j− 1

2

)
. (3.104)

Local Speeds of Propagation. The local speeds of propagation for the water waves are

obtained from the eigenvalues corresponding to the shallow water equations evaluated on the

non-staggered discretized grid. Meanwhile, the local speeds of propagation for the sediment

waves are obtained from the eigenvalues corresponding to the Exner equation evaluated on the
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staggered discretized grid. Therefore, we have

â+
j+ 1

2

= max

{
λ

(1)+

j+ 1
2

, λ
(3)+

j+ 1
2

, λ
(1)−
j+ 1

2

, λ
(3)−
j+ 1

2

, 0

}
,

â−
j+ 1

2

= min

{
λ

(1)+

j+ 1
2

, λ
(3)+

j+ 1
2

, λ
(1)−
j+ 1

2

, λ
(3)−
j+ 1

2

, 0

}
,

ĉ+
j+1 = max

{
λ

(2)+
j+1 , λ

(2)−
j+1 , 0

}
,

ĉ−j+1 = min
{
λ

(2)+
j+1 , λ

(2)−
j+1 , 0

}
.

(3.105)

3.7.1 Time Evolution of NS-SG.

Our time step ∆t must satisfy the CFL condition no matter which local speeds of propagation

are used. Therefore, the condition our time step must satisfy is given by

∆t ≤ 1

2
min

 ∆x

max
j

∣∣â±
j± 1

2

∣∣ , ∆x

max
j

∣∣ĉ+
j

∣∣
 . (3.106)

3.8 Numerical Examples

In this section, we present six numerical examples. In all examples, a third order Strong Stability

Preserving Runge Kutta (SSP-RK3) ODE solver from [29] is used, as well as an adaptive time

step strategy from [14], which are outlined in Appendix A and Appendix B, respectively. All

the examples, unless otherwise noted, are computed using the minmod limiter with θ = 1.3,

ξ = 5/3, g = 9.8, κ = 0.9 in the adaptive time evolution, m = 3 for Grass’s Model in (3.4),

N represents the number of computational cells the domain is broken into, and there are free

flow boundary conditions on all sides of the domain. All of the computations were performed

on a 2013 MacBook Pro running macOS Sierra with a 2.6Ghz Intel Core i5 Processor with 8Gb

1600 Mhz DDR3 Memory.

3.8.1 Example 1 – Comparison of Numerical Formulations

In this example, we recreate the computed results of Cordier et al. in [18] where they compared

a splitting and a non-splitting method for solving the combined shallow water system with

Exner equation (3.3) and (3.2). The problem statement and initial condition are given by
hu(x, t = 0) = 0.5,

B(x, t = 0) = 0.1 + 0.1e−(x−5)2 ,

u2

2 + g(h+B) = 6.386,
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with ξ = 1, A = 0.07, and solved until time t = 2.1. Figure 3.3 shows the initial conditions at

time t = 0 with N = 400 cells resulting in ∆x = 0.025.

Figure 3.3: Example 1: Initial conditions at t = 0 with N = 400.

The results of the computed solutions at t = 2.1 of the various numerical schemes (S-NSG-

M, S-NSG-H, S-SG-M, S-SG-H, NS-NSG, NS-SG) can be seen in Figure 3.4, which plots the

computed solutions which use the staggered discretized grid, and Figure 3.5, which plots the

computed solutions which use the non-staggered discretized grid.

Comparing the various computed solutions for Example 1, each numerical scheme produced

similar results with a large mound propagating to the right and a smaller mound propagating

to the left. Both of these results match well with the computed results seen in [18]. Since all

of the numerical schemes produced similar results, for the rest of this thesis we will only plot

the computed solutions correspond to the NS-NSG numerical scheme. The NS-NSG numerical

scheme was found to have the fastest computational run time (see Table 3.1). In addition, since

the NS-NSG numerical scheme is based on non-splitting approach, the scheme is capable of

handling when the magnitude of the water wave speed and sediment wave speed are either

similar or dissimilar in magnitude, making it more robust.

3.8.2 Example 2 – Test of Order

In this example, we consider a test of order problem from [21]. We consider a 1-D channel on

the interval [−10, 10] with the sediment interaction of Grass formula set to A = 0.3, a final time
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Figure 3.4: Example 1: NS-SG, S-SG-M, and S-SG-H solutions (B) computed using N = 400
at t = 2.1. Right zoom into the region x ∈ [0.8, 1.4].

Figure 3.5: Example 1: NS-NSG, S-NSG-M, and S-NSG-H solutions (B) computed using N =
400 at t = 2.1. Right zoom into the region x ∈ [1.0, 1.25].

of t = 0.5 and with initial conditions given by

h(x, 0) = 2− 0.1e−x
2
, q(x, 0) = 0, B(x, 0) = 0.1− 0.01e−x

2.

The exact solution is unknown, so we will compare to a numerical reference solution com-

puted on a fine grid of 6400 cells. The computed results are presented in Figure 3.6. The error

and order of convergence for h, q, and B can be seen in Table 3.2.

As one can see in Figure 3.6, as the grid is refined our computed solutions approach the
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Table 3.1: Example 1: Computation time for various formulations.

Formulation Computation Run Time for Example 1 (seconds)

NS-NSG 0.33

NS-SG 0.58

S-SG-M 7.26

S-NSG-M 7.70

S-NSG-H 12.41

S-SG-H 13.36

Table 3.2: Example 2: L1 Error and Order of Convergence.

N L1 err h L1 order h L1 err q L1 order q L1 err B L1 order B

100 0.0084 – 0.0365 – 7.80E-5 –

200 0.0023 1.88 0.0101 1.86 2.32E-5 1.73

400 6.24E-4 1.89 0.0027 1.92 6.32E-6 1.87

800 1.57E-4 1.99 6.66E-4 2.01 1.49E-6 2.09

numerical reference solution. In Table 3.2, one can also see that h, q, and B all exhibit a second

order rate of convergence.

3.8.3 Example 3 – Sediment Mound Interacting Slowly with the Water Flow

In this example, see in [36] we simulate a sediment mound interacting slowly with the water

flow when the water is moving slowly. The computational domain is [0, 1000] with initial data,

w(x, 0) = 10, hu(x, 0) = 10,

and the bottom topography is given by

B(x, 0) =

sin2
(
π(x−300)

200

)
, 300 ≤ x ≤ 500,

0, otherwise.

We also take A = .001 and t = 238079.
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Figure 3.6: Example 2: Solution (h in upper left, u in upper right, and B on bottom) computed
with N = 50, N = 100, N = 200, N = 400 at t = 1.05.

In Figure 3.7, we compare the computed solution for the NS-NSG numerical scheme with a

computational domain of 100, 200, and 400 cells, and a computed approximate solution plotted

from a formula in [36]. In Figure 3.7, the approximate solution depicts the sediment mound

propagating to the right, and the computed numerical solutions with N = 100, N = 200, and

N = 400 converging to the approximate solution as the number of computational cells doubles.
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Figure 3.7: Example 3: Solution (B) computed with N = 50, N = 100, N = 200, N = 400,
and approximate solution at t = 238709.

3.8.4 Example 4 – Sediment Mound Interacting Quickly with the Water

Flow

In this example, we simulate a sediment mound interacting quickly with the water flow when

the water is moving slowly, as seen in [36]. The computational domain is [0, 1000] with initial

data

w(x, 0) = 10, hu(x, 0) = 10,

and the bottom topography is given by

B(x, 0) =

sin2
(
π(x−300)

200

)
, 300 ≤ x ≤ 500,

0, otherwise.

We take A = 1.0 and compute until t = 238.

In Figure 3.8, we plot the initial condition along with the solution computed at time t = 238

using N = 100, N = 200, and N = 400 computational cells, using the NS-NSG numerical

scheme (right). As well a modified implementation of the NS-NSG scheme, determining the

local speeds of propagation by the largest and smallest eigenvalues of the full system from

(3.3) and (3.2), not taking into account the difference in wave speeds for the water and sedi-

74



ment (left). Overall, both of the solutions plotted in Figure 3.8 capture the propagation of the

mound moving to the right, matching well with the computed results in [36]. In comparison, the

numerical scheme with the local speeds of propagation determined from the eigenvalues of the

full system (left) showed additional diffusion in the computed solution for the bottom B. This

was not present in the computed solution for the bottom using the NS-NSG scheme (right).

This difference in solutions was particularly noticeable on a coarse grid.

Figure 3.8: Example 4: Solutions (B) computed at t = 0 with N = 400 and at t = 238 with
N = 100, N = 200, and N = 400 using water wave speed for the sediment (left) and using the
sediment wave speed for the sediment (right).

3.8.5 Example 5 – Sediment Mound Interacting Slowly with a Large Velocity

Water Flow

In this example, we simulate a sediment mound interacting quickly with the water flow, but

the water flow is also moving quickly (from [36]). The computational domain is [0, 1000] with

initial data

w(x, 0) = 10, hu(x, 0) = 50,

and the bottom topography is given by

B(x, 0) =

sin2(π(x−300)
200 ), 300 ≤ x ≤ 500,

0, otherwise.

We take A = 1.0 and compute until t = 1904.
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In Figure 3.9, we plot the initial condition along with the solution computed at time t = 1904

using the NS-NSG numerical scheme. The computed solution with N = 400 computational

cells captures the propagation of the sediment to the right, with the results matching well with

the reported results in [36]. This demonstrates that our method is capable of capturing the

interaction between water and sediment when water with a large velocity is present.

We note that Grass’ formula for bed load sediment transport does not take into account the

effects of gravity. This may result in sediment particles located at the front of an advancing dune

not falling due to gravity, as they only depend on the sediment constants and the hydrodynamic

variable. As a result, a vertical profile at the advancing front of a dune may be observed in

numerical simulations which is not physical in nature.

Figure 3.9: Example 5: Solution (B) computed with N = 400 at t = 1904.

3.8.6 Example 6 – Small Discontinuity in Sediment Bed

In this problem, taken from [36], we run the problem when the bed has a small discontinuity.

The computational domain is [0, 1000] with initial data

w(x, 0) = 10, hu(x, 0) = 10,
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and the bottom topography is given by

B(x, 0) =

1, x ≤ 300,

0, otherwise.

We take A = .001 and compute until t = 900000.

In Figure 3.10, we plot the initial condition along with the solution computed at t = 900000.

As one can observe, the discontinuity initially present propagates to the right, indicating proper

numerical handling of the discontinuity by the NS-NSG numerical scheme.

Figure 3.10: Example 6: Solution (B) computed with N = 200 at t = 0 and t = 900000.

3.9 Conclusion

In this chapter, we implemented four second order central-upwind schemes which are well-

balanced when applied to the 1-D shallow water equations with 1-D Exner equation to govern

sediment transport. We were successful in determining the eigenvalues for our complete system

and to which part of the system, shallow water or Exner, the eigenvalues corresponded. We used

this information to incorporate only the relevant eigenvalues for the local speeds of propagation

77



for the water or sediment. We obtained better results than the straightforward implementation

of the central scheme, which only takes into account the largest and smallest eigenvalues of the

Jacobian. In Section 3.8, we presented a number of numerical results in which we verified that

the NS-NSG numerical scheme is second order and can numerically handle when the sediment

interaction with the water is slow or fast with a slow moving water flow. For the case of slow

sediment interaction, we were also able to obtain a solution when the water flow was fast.

Finally, we demonstrated that the NS-NSG numerical scheme was capable of propagating a

discontinuity to the correct location, indicating proper numerical handling of the discontinuity

and usefulness in capturing shocks.
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Chapter 4

2-D Shallow Water Equations with

Exner Equation

In this chapter, we discuss a numerical scheme to solve the 2-D system of shallow water equations

with a 2-D Exner equation to govern sediment transport. We start by recalling the 2-D system

of shallow water equations represented by
h

hu

hv


t

+


hu

hu2 + g
2h

2

huv


x

+


hv

huv

hv2 + g
2h

2


y

=


0

−ghBx

−ghBy

 , (4.1)

with 2-D Exner equation to govern sediment transport given by

Bt + (ξqb1)x + (ξqb2)y = 0, (4.2)

where the variable ξ =
1

1− ε
is a constant with ε representing the porosity of the sediment

layer.

We can rewrite the complete system of 2-D shallow water equations with 2-D Exner equation

in terms of the equilibrium variables by adding (4.2) to the first equation of (4.1) and rearranging

the second and third equations of (4.1). This new system of equations can be written using a

new unknown vector of equilibrium variables W = (w, q, p,B)>:

W + F(W)x + G(W)y = Ŝ(W), (4.3)

where F(W) =
(
q + ξqb1 ,

q2

w−B + g
2(w2 − 2wB), qp

w−B , ξqb1

)>
, G(W) =

(
p+ ξqb2 ,

qp
w−B ,

p2

w−B +
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g
2(w −B)2, ξqb2

)>
, and Ŝ(W) = (0,−gwBx,−gwBy, 0)>.

Recall, we define qb1(h, u, v) to be the sediment discharge in the x-direction, and qb2(h, u, v)

is the sediment transport discharge in the y-direction. We define qb1 and qb2 using the sediment

fluxes formula proposed by Grass [30] for 2-D by

qb1 = Au
(
u2 + v2

)(m−1)/2
,

qb2 = Av
(
u2 + v2

)(m−1)/2
,

(4.4)

where A is a non-dimensional constant which accounts for the effects of sediment grain size

and kinematic viscosity. The value of A is in the interval [0, 1] and the closer A is to zero, the

weaker the interaction between the sediment and fluid. The constant A is often computed from

experimental data. Lastly, m represents a constant value 1 ≤ m ≤ 4, and, in our numerical

experiments, we will use m = 3.

In Section 4.1, we calculate the eigenvalues of (4.3) for the local speeds of propagation

in our numerical scheme. As in Section 3.2, we explain how to distinguish which eigenvalues

correspond to the 2-D shallow water system and which eigenvalues correspond to the 2-D Exner

equation.

4.1 Eigenvaules for the Jacobian of the 2D Shallow Water Sys-

tem with Exner Equation

To simplify the computations, we use the primitive variables Wp = (h, u, v,B)> and flux func-

tions Fp =
[
hu, hu2 + 1

2 , huv, ξAu(u2 + v2)
]>

and Gp =
[
hv, huv, hv2 + 1

2gh
2, ξAv(u2 + v2)

]
.

The Jacobian in the x−direction is given by

∂Fp

∂Wp
=



u h 0 0

g u 0 g

0 0 u 0

0 ξA(3u2 + v2) ξA(2uv) 0


. (4.5)

The eigenvalues of this system are λ(1) < λ(2) < λ(3) < λ(4), and they are the solutions to the

characteristic polynomial given by

P1(λ, h, u, v) = [λ− u]
[
λ3 − 2uλ2 + [u2 − ξAg(3u2 + v2)− gh]λ+ ξAg(3u3 + uv2)

]
= 0. (4.6)
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Thus, the eigenvalues are given by the velocity in the x-direction u and the factors of the cubic

equation

λ3 − 2uλ2 + [u2 − ξAg(3u2 + v2)− gh]λ+ ξAg(3u3 + uv2) = 0,

which can be factored using the same method as in [80] and Section 3.1. Similarly to Section 3.2,

we find that as the sediment interaction is reduced, the eigenvalues λ(1), λ(3), and λ(4) reduce

to the eigenvalues of the 2-D shallow water equations u −
√
gh, u, and u +

√
gh. To estimate

the last eigenvalue λ(2), we find the approximate value is given by A(u3 + v2)/B and is close

to zero. Typically, we find λ(2) << max
(∣∣λ(1)

∣∣, ∣∣λ(3)
∣∣, ∣∣λ(4)

∣∣). Thus, we conclude that λ(1), λ(3),

and λ(4) correspond to the 2-D shallow water equations and λ(2) corresponds to the 2-D Exner

equation. We make use of this in defining the local speeds of propagation in the x−direction

for the numerical scheme as

â+ = max

{
λ(1)+, λ(3)+, λ(4)+, λ(1)−, λ(3)−, λ(4)−, 0

}
, (4.7)

â− = min

{
λ(1)+, λ(3)+, λ(4)+, λ(1)−, λ(3)−, λ(4)−, 0

}
, (4.8)

and

ĉ+ = max

{
λ(2)+, λ(2)−, 0

}
, (4.9)

ĉ− = min

{
λ(2)+, λ(2)−, 0

}
. (4.10)

Similarly, the Jacobian in the y-direction is given by

∂Gp
∂Wp

=



v 0 h 0

0 v 0 0

g 0 v g

0 ξA(2uv) ξA(3v2 + u2) 0


. (4.11)

The eigenvalues of this system are µ(1) < µ(2) < µ(3) < µ(4), and they are the solutions to the

solutions to the characteristic polynomial given by

P2(µ, h, u, v) = [λ−v]
[
µ3 − 2vµ2 + [v2 − ξAg(3v2 + u2)− gh]µ+ ξAg(3v3 + vu2)

]
= 0. (4.12)
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Thus, the eigenvalues are the velocity in the y-direction v and the factors of the cubic equation

µ3 − 2vµ2 + [v2 − ξAg(3v2 + u2)− gh]µ+ ξAg(3v3 + vu2) = 0,

which we can factor using the method in [80] and Section 3.1. Similarly to Section 3.2, we find

that as the sediment interaction is reduced, the eigenvalues µ(1), µ(3), and µ(4) reduce to the

eigenvalues of the 2-D shallow water equations v −
√
gh, v, and v +

√
gh. To estimate the last

eigenvalue µ(2), we find the approximate value is given by A(u2 + v3)/B and is close to zero.

Typically, we find µ(2) << max
(∣∣µ(1)

∣∣, ∣∣µ(3)
∣∣, ∣∣µ(4)

∣∣). Thus, we conclude that µ(1), µ(3), and µ(4)

correspond to the 2-D shallow water equations and µ(2) corresponds to the 2-D Exner equation.

We define the local speeds of propagation in the y−direction for the numerical scheme as

b̂+ = max

{
µ(1)+, µ(3)+, µ(4)+, µ(1)−, µ(3)−, µ(4)−, 0

}
, (4.13)

b̂− = min

{
µ(1)+, µ(3)+, µ(4)+, µ(1)−, µ(3)−, µ(4)−, 0

}
, (4.14)

and

d̂+ = max

{
µ(2)+, µ(2)−, 0

}
, (4.15)

d̂− = min

{
µ(2)+, µ(2)−, 0

}
. (4.16)

Now that we have the eigenvalues of (4.3) we can construct our numerical scheme.

4.2 A Modified Second-Order Semi-Discrete Central-Upwind

Scheme in Two Dimensions

We start by denoting Cj,k to be the computational cell Cj,k :=
[
xj− 1

2
, xj+ 1

2

]
×
[
yk− 1

2
, yk+ 1

2

]
,

introducing a uniform grid in the x-direction and y-direction with xα := α∆x and yβ := β∆y.

The cell average of the computed solution,

Wj,k(t) ≈
1

∆x∆y

∫∫
Cj,k

W(x, y, t)dxdy, (4.17)

is assumed to be known at a given time t. The cell averages are evolved in time based on the
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following equation:

d

dt
Wj,k(t) = −

Hx
j+ 1

2
,k

(t)−Hx
j− 1

2
,k

(t)

∆x
−

Hy

j,k+ 1
2

(t)−Hy

j,k− 1
2

(t)

∆y
+ Ŝj,k(t), (4.18)

where Hx
j± 1

2
,k

and Hy

j,k± 1
2

are the numerical fluxes and

Ŝj,k(t) ≈
1

∆x∆y

∫∫
Cj,k

Ŝ(W)dxdy, (4.19)

are the cell averages of the source term. For the rest of this chapter, we will drop the notation

t for time dependence, for simplicity, where it is appropriate.

The construction of the numerical scheme will be complete once the numerical fluxes Hx
j± 1

2
,k

,

and Hy

j,k± 1
2

in (4.20) and the source term Ŝj,k in (4.19) are computed such that the resulting

scheme is well-balanced.

4.2.1 Numerical Fluxes

In (4.18), we use the central-upwind numerical fluxes from [50], modifying the local speeds

of propagation to â±, ĉ±, b̂±, and d̂± using (4.7)-(4.10) and (4.13)-(4.16) where appropriate to

capture the different speed of water and sediment waves. These numerical fluxes are given by

H
x(1)

j+ 1
2
,k

(t) =
â+
j+ 1

2
,k
F (1)(W−

j+ 1
2
,k

)− â−
j+ 1

2
,k
F (1)(W+

j+ 1
2
,k

)

â+
j+ 1

2
,k
− â−

j+ 1
2
,k

+
â+
j+ 1

2
,k
â−
j+ 1

2
,k

â+
j+ 1

2
,k
− â−

j+ 1
2
,k

[
w+
j+ 1

2
,k
− w−

j+ 1
2
,k

]
,

H
x(2)

j+ 1
2
,k

(t) =
â+
j+ 1

2
,k
F (2)(W−

j+ 1
2
,k

)− â−
j+ 1

2
,k
F (2)(W+

j+ 1
2
,k

)

â+
j+ 1

2

− â−
j+ 1

2
,k

+
â+
j+ 1

2
,k
â−
j+ 1

2
,k

â+
j+ 1

2
,k
− â−

j+ 1
2
,k

[
q+
j+ 1

2
,k
− q−

j+ 1
2
,k

]
,
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H
x(3)

j+ 1
2
,k

(t) =
â+
j+ 1

2
,k
F (3)(W−

j+ 1
2
,k

)− â−
j+ 1

2
,k
F (3)(W+

j+ 1
2
,k

)

â+
j+ 1

2

− â−
j+ 1

2
,k

+
â+
j+ 1

2
,k
â−
j+ 1

2
,k

â+
j+ 1

2
,k
− â−

j+ 1
2
,k

[
p+
j+ 1

2
,k
− p−

j+ 1
2
,k

]
,

H
x(4)

j+ 1
2
,k

(t) =
ĉ+
j+ 1

2
,k
F (4)(W−

j+ 1
2
,k

)− ĉ−
j+ 1

2
,k
F (4)(W+

j+ 1
2
,k

)

ĉ+
j+ 1

2
,k
− ĉ−

j+ 1
2
,k

+
ĉ+
j+ 1

2
,k
ĉ−
j+ 1

2
,k

ĉ+
j+ 1

2
,k
− ĉ−

j+ 1
2
,k

[
B+
j+ 1

2
,k
−B−

j+ 1
2
,k

]
,

H
y(1)

j,k+ 1
2

(t) =
b̂+
j,k+ 1

2

G(1)(W−
j,k+ 1

2

)− b̂−
j,k+ 1

2

G(1)(W+
j,k+ 1

2

)

b̂+
j,k+ 1

2

− b̂−
j,k+ 1

2

+
b̂+
j,k+ 1

2

b̂−
j,k+ 1

2

b̂+
j,k+ 1

2

− b̂−
j,k+ 1

2

[
w+
j,k+ 1

2

− w−
j,k+ 1

2

]
,

H
y(2)

j,k+ 1
2

(t) =
b̂+
j,k+ 1

2

G(2)(W−
j,k+ 1

2

)− b̂−
j,k+ 1

2

G(2)(W+
j,k+ 1

2

)

b̂+
j,k+ 1

2

− b̂−
j,k+ 1

2

+
b̂+
j,k+ 1

2

b̂−
j,k+ 1

2

b̂+
j,k+ 1

2

− b̂−
j,k+ 1

2

[
q+
j,k+ 1

2

− q−
j,k+ 1

2

]
,

H
y(3)

j,k+ 1
2

(t) =
b̂+
j,k+ 1

2

G(3)(W−
j,k+ 1

2

)− b̂−
j,k+ 1

2

G(3)(W+
j,k+ 1

2

)

b̂+
j,k+ 1

2

− b̂−
j,k+ 1

2

+
b̂+
j,k+ 1

2

b̂−
j,k+ 1

2

b̂+
j,k+ 1

2

− b̂−
j,k+ 1

2

[
p+
j,k+ 1

2

− p−
j,k+ 1

2

]
,
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H
y(4)

j,k+ 1
2

(t) =
d̂+
j,k+ 1

2

G(4)(W−
j,k+ 1

2

)− d̂−
j,k+ 1

2

G(4)(W+
j,k+ 1

2

)

d̂+
j,k+ 1

2

− d̂−
j,k+ 1

2

+
d̂+
j,k+ 1

2

d̂−
j,k+ 1

2

d̂+
j,k+ 1

2

− d̂−
j,k+ 1

2

[
B+
j,k+ 1

2

−B−
j,k+ 1

2

]
. (4.20)

4.2.2 Reconstruction

In (4.20), W± are the left and right point values of the piecewise bilinear reconstruction

W̃(x, y) =
∑
j,k

[
Wj,k + (Wx)j,k(x− xj) + (Wy)j,k(y − yk)

]
·χCj,k

(x, y), (4.21)

obtained at the midpoint cell interfaces
(
xj± 1

2
, yk

)
and

(
xj , yk± 1

2

)
by

W+
j+ 1

2
,k

= Wj+1,k −
∆x

2
(Wx)j+1,k , W−

j+ 1
2
,k

= Wj,k +
∆x

2
(Wx)j,k ,

W+
j,k+ 1

2

= Wj,k+1 −
∆y

2
(Wy)j,k+1 , W−

j,k+ 1
2

= Wj,k +
∆y

2
(Wy)j,k . (4.22)

In (4.21) and (4.22), χCj,k
(x, y), is the characteristic function of the interval Cj,k, and

(Wx)j,k and (Wy)j,k are the numerical derivatives in the x-direction and y-direction, respec-

tively, which should be computed using a nonlinear limiter in order to reduce oscillations. In

our numerical experiments, we use the generalized minmod limiter (see, e.g., [63, 68,82,85]):

(Wx)j,k = minmod

(
θ
Wj,k −Wj−1,k

∆x
,
Wj+1,k −Wj−1,k

2∆x
, θ

Wj+1,k −Wj,k

∆x

)
, θ ∈ [1, 2],

(4.23)

(Wy)j,k = minmod

(
θ
Wj,k −Wj,k−1

∆y
,
Wj,k+1 −Wj,k−1

2∆y
, θ

Wj,k+1 −Wj,k

∆y

)
, θ ∈ [1, 2],

(4.24)

where the minmod function is defined by

minmod(z1,1, . . . , zj,k) :=


minj,k{zj,k}, if zj,k > 0 ∀j, k,

maxj,k{zj,k}, if zj,k < 0 ∀j, k,

0, otherwise.

(4.25)

The parameter θ in (4.23) and (4.24) is used to control the amount of numerical viscosity with

large θ values resulting in less dissipative results.

85



4.2.3 Well-Balanced Quadrature for the Geometric Source Terms

In order to ensure the scheme is well-balanced, a special quadrature should be used to discretize

the second and third components, S
(2)
j and S

(3)
j , of the source term in (4.19) such that it balances

with the numerical fluxes in the lake-at-rest steady state. The fluxes at the discrete level are

given by

H
x(2)

j− 1
2
,k
−Hx(2)

j+ 1
2
,k

∆x
+

H
y(2)

j− 1
2
,k
−Hy(2)

j+ 1
2
,k

∆y
=

gwj,k
∆x

 â+
j+ 1

2
,k
B−
j+ 1

2
,k
− â−

j+ 1
2
,k
B+
j+ 1

2
,k

â+
j+ 1

2
,k
− â−

j+ 1
2
,k

−
â+
j− 1

2
,k
B−
j− 1

2
,k
− â−

j− 1
2
,k
B+
j− 1

2
,k

â+
j− 1

2
,k
− â−

j− 1
2
,k

 ,

H
x(3)

j,k− 1
2

−Hx(3)

j,k+ 1
2

∆x
+

H
y(3)

j,k− 1
2

−Hy(3)

j,k+ 1
2

∆y
=

gwj,k
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Therefore, the fluxes and source term will balance if the second and third component of the

source term are discretized as follows:
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â+
j− 1

2
,k
− â−
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4.2.4 Local Speeds of Propagation

The local speeds of propagation for the water waves and the sediment waves are obtained using

the eigenvalues corresponding to the 2-D shallow water and 2-D Exner equations given by
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4.2.5 Time Evolution

To find the time step, we compare all of the local speeds of propagation for the water and

sediment constrained by the CFL condition, resulting in,

∆t ≤ 0.25 min
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4.3 Numerical Example in 2-D – Evolution of Conical Sediment

Dune Interacting Slowly with the Water Flow

In this section, we discuss a conical sand dune test problem discussed by [86]. The solution

is evolved in time using a third order Strong Stability Preserving Runge Kutta (SSP-RK3)

ODE solver from [29] as well as an adaptive time step strategy from [14], which are outlined

in Appendix A and Appendix B, respectively. The solutions are computed using the minmod

limiter with θ = 1.3, ξ = 5/3, A = .001, g = 9.8, κ = 0.9 in the adaptive time evolution. We

take m = 3 from Grass’s Model (3.4), and N represents the number of computational cells the

domain is broken into. We assume free flow boundary conditions on all sides of the domain.
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This example consists of evolving a conical dune where the computational domain is [0, 1000]×
[0, 1000], the initial data are

w(x, y, 0) = 10, hu(x, y, 0) = 10, hv(x, y, 0) = 0,

and the bottom topography is given by

B(x, y, 0) =

sin2(π(x−300)
200 ) sin2(π(y−400)

200 ), 300 ≤ x ≤ 500, 400 ≤ y ≤ 600,

0, otherwise.

DeVriend in [86] derived an approximate solution for the angle of spread for a small conical

dune in a river bed interacting slowly with the water flow (A < 0.01). He states that as time is

evolved the conical dune will spread out gradually into a star shaped pattern, approximating

the angle of the spread for the dune as α ≈ 21.79 degrees from the line of symmetry. This can

be seen in Figure 4.1.

Figure 4.1: Example 1: Approximate solution for the angle of spread.

In Figure 4.2 and 4.3, we plot the initial condition (left) as well as the computed solution at

t = 360000 (right). As one can see, our computed solution for the bottom is propagating to the

right and expanding into a star shape as is expected. In Figure 4.4, we plot a level curve at the

base of the dune at time t = 0, t = 90000, t = 180000, t = 270000, and t = 360000, as well as the

approximate solution where the angle between the dashed lines is given by 21.79 degrees. The

spread of the bottom exhibited in the computed solution, seen in Figure 4.4, extends past the
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desired angle of spread marked by the approximate solution, but it is largely contained within

them. This demonstrates that the solution is propagating and forming into a star pattern. We

found the computed results for the bottom to be similar to the results reported in [24,36].

Figure 4.2: Example 1: Solution (B) computed at t = 0 (left) and t = 360000 (right) with
∆x = 50 and ∆y = 50.

Figure 4.3: Example 1: Solution (B) computed at t = 0 (left) and t = 360000 (right) with
∆x = 50 and ∆y = 50.
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Figure 4.4: Example 1: Evolution of Conical Dune (B) at t = 0, t = 90000, t = 180000,
t = 360000 and approximate spread angle with ∆x = 50 and ∆y = 50.

4.4 Conclusion

In this chapter, we extended our non-staggered non-splitting scheme into two dimensions, im-

plementing a second order central-upwind scheme, which is well-balanced when applied to the

2-D shallow water equations with 2-D Exner equation to govern sediment transport. We suc-

cessfully determined the eigenvalues for the complete 2-D system in (4.3) and determined to

which equations of the system they corresponded. We then incorporated them as the local

speeds of propagation for the respective water and sediment waves to obtain better results than

the straightforward implementation of the central-upwind scheme, which only uses the largest

and smallest eigenvalues of the complete system. In Section 4.3, we presented a numerical result

for the propagation of a small conical dune in two dimensions, demonstrating the numerical

scheme described in this chapter produced a smooth, star-like pattern, which propagated to the

right, largely within the angle of spread.
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Chapter 5

Conclusions and Future Work

Throughout this thesis we have discussed a variety of numerical schemes for approximating

the shallow water equations with Exner equation to govern sediment transport in one and two

dimensions. In Chapter 1, the shallow water equations and Exner equations were derived from

physical principles, and six different formulations for computing the sediment transport fluxes

were discussed.

In Chapter 2, we implemented a second-order well-balanced positivity preserving central-

upwind scheme for the 1-D shallow water equations with discontinuous bottom topography. The

central-upwind scheme presented relied on a discontinuous piecewise linear reconstruction of the

bottom topography function B, and thus it is suitable for functions B containing large jumps

and can be extended to models with moving, time-dependent bottom topography function B.

We presented three numerical results for the numerical scheme in Chapter 2, demonstrating

that the numerical scheme remains smooth while handling a small perturbation of steady state

and accurately converge to the solution of a Riemann problem when there is a unique solution

and when multiple solutions are present.

In Chapter 3, we implemented four second order central-upwind schemes, which are well-

balanced when applied to the 1-D shallow water equations with Exner equation to govern

sediment transport. We were successful in determining the eigenvalues for our complete system

and to which part of the system they corresponded. We then incorporated the eigenvalues as

the local speeds of propagation for the respective water and sediment waves to obtain better

results than the straightforward implementation of the central-upwind scheme, which only uses

the largest and smallest eigenvalues of the complete system. We compared the four numerical

schemes to each other, obtaining similar results for each of the schemes. We then demonstrated

the NS-NSG numerical scheme on a number of numerical examples showing the scheme is second

orders and can numerically handle when the sediment interaction is large with a fast water flow

and when the sediment interaction is small and the water flow is fast or slow. Finally, we
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demonstrated that the NS-SNG numerical scheme was capable of propagating a discontinuity

to the correct location, indicating proper numerical handling of the discontinuity and usefulness

in capturing shocks.

In Chapter 4, we extended our non-staggered non-splitting scheme into two dimensions.

Implementing a second order central-upwind scheme, which is well-balanced when applied to

the 2-D shallow water equations with 2-D Exner equation to govern sediment transport. We

successfully determined the eigenvalues for the complete 2-D system given in (4.3), and we

determined to which equations of the system they corresponded, incorporating them as the

local speeds of propagation for the water and sediment waves to obtain better results than the

straightforward implementation of the central upwind scheme. We then presented a numerical

result for the propagation of a small conical dune in two dimensions, demonstrating the numer-

ical scheme described in Chapter 4 produced a smooth, star-like pattern, which propagated to

the right, largely within the angle of spread.

In future work, we intend to modify the numerical schemes in Chapter 3 and Chapter 4 to

implement different sediment transport fluxes beyond those discussed by Grass [30]. In addition,

we intend to investigate the dry bed case, where the water height is initially zero, which poses

numerical difficulties in constructing the numerical schemes to be positivity preserving.
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Appendix A

Third Order Strong Stability

Preserving Runge Kutta Method

In this appendix we discuss a third order Strong Stability Preserving Runge Kutta (SSP-RK3)

method from [29].

We start by considering the following 1-D semi-discrete system of ordinary differential equa-

tions given by

d

dt
Uj = −

Hj+ 1
2
−Hj− 1

2

∆x
+ Sj , (A.1)

where U is a vector of unknowns, H are numerical fluxes, S are the source terms, and j = 1 . . . n

corresponds to the cells in the computational domain. We start by rewriting the right hand side

of (A.1) such that

L
[
Uj

]
j

:= −
Hj+ 1

2
−Hj− 1

2

∆x
+ Sj .

The SSP-RK3 procedure, which entails evolving the system as a convex combination of forward

Euler steps, is given by

UI
j = Uj(t) + ∆tL

[
Uj(t)

]
j
,

UII
j =

3

4
Uj(t) +

1

4

(
U

(I)
j (t) + ∆tL

[
U
I
j (t)
]
j

)
,

UIII
j =

1

3
Uj(t) +

2

3

(
U

(II)
j (t) + ∆tL

[
U
II
j (t)

]
j

)
,

Uj(t+ ∆t) = U
III
j ,
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Now consider the 2-D semi-discrete system of ordinary differential equations given by

d

dt
Uj,k = −

Hx
j+ 1

2
,k
−Hx

j− 1
2
,k

∆x
−

Hy

j,k+ 1
2

−Hy

j,k− 1
2

∆y
+ Sj,k, (A.2)

where U is a vector of unknowns, Hx are numerical fluxes in the x-direction, Hy are numerical

fluxes in the y-direction, S are the source terms, and j = 1, . . . , n, k = 1, . . . ,m corresponds to

the cells in the computational domain. To solve start by rewriting the right hand side of (A.2)

such that

L
[
Uj,k

]
j,k

:= −
Hx
j+ 1

2
,k
−Hx

j− 1
2
,k

∆x
−

Hy

j,k+ 1
2

−Hy

j,k− 1
2

∆y
+ Sj,k.

The SSP-RK3 procedure, which entails evolving the system as a convex combination of forward

Euler steps, is given by

UI
j,k = Uj,k(t) + ∆tL

[
Uj,k(t)

]
j
,

UII
j,k =

3

4
Uj,k(t) +

1

4

(
U

(I)
j,k(t) + ∆tL

[
U
I
j,k(t)

]
j

)
,

UIII
j,k =

1

3
Uj,k(t) +

2

3

(
U

(II)
j,k (t) + ∆tL

[
U
II
j,k(t)

]
j,k

)
,

Uj.k(t+ ∆t) = U
III
j,k .
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Appendix B

Adaptive Time Step Strategy

In this appendix we discuss the implementation of an adaptive time step strategy from [14] that

modifies the SSP-RK3 method described in Appendix A.

We consider the time step restriction for the 1-D system given by

∆t ≤ min

 ∆x

2 max
i

∣∣λ(i)
∣∣
 , (B.1)

where i is the number of eigenvalues λ for the Jacobian of the flux. The procedure for the

adaptive time step strategy is then given by the following:

1. Given the solution U(t), set ∆t := κ(∆t)∗, where κ ∈ (0, 1) and (∆t)∗ is given by (B.1);

2. Use ∆t to compute U
I
;

3. Given the intermediate solution U
I
, compute (∆t)I∗ using (B.1);

4. If (∆t)I∗ < ∆t, set ∆t := κ(∆t)I∗ and go back to Step 2;

5. Use ∆t to compute U
II

;

6. Given the intermediate solution U
II

, compute (∆t)II∗ using (B.1);

7. If (∆t)II∗ < ∆t, set ∆t := κ(∆t)II∗ and go back to Step 2;

8. Use ∆t to compute U
III

and U(t+ ∆t).

In two dimensions we consider the time restriction for the 2-D system given by

∆t ≤ min

 ∆x

4 max
i

∣∣λ(i)
∣∣ , ∆y

4 max
j

∣∣µ(j)
∣∣
 , (B.2)
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where i is the number of eigenvalues λ, for the Jacobian of the flux in the x-direction and j is

the number of eigenvalues µ for the Jacobian of the flux in the y-direction. The procedure for

the adaptive time step strategy is then given by the following:

1. Given the solution U(t), set ∆t := κ(∆t)∗, where κ ∈ (0, 1) and (∆t)∗ is given by (B.2);

2. Use ∆t to compute U
I
;

3. Given the intermediate solution U
I
, compute (∆t)I∗ using (B.2);

4. If (∆t)I∗ < ∆t, set ∆t := κ(∆t)I∗ and go back to Step 2;

5. Use ∆t to compute U
II

;

6. Given the intermediate solution U
II

, compute (∆t)II∗ using (B.2);

7. If (∆t)II∗ < ∆t, set ∆t := κ(∆t)II∗ and go back to Step 2;

8. Use ∆t to compute U
III

and U(t+ ∆t).
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