Introduction

- Brachial plexus birth injury (BPBI) is the most common nerve injury in children.
- 30-40% of injured children experience lifelong arm impairment with limited range of motion and joint dislocation.
- BPBI leads to gross changes in muscle and bone development during rapid postnatal growth.
- Muscular changes including contracture occur with BPBI, but the causes of these changes at the cellular level are not well understood.
- We hypothesize that underlying muscle composition changes, including increased fibrosis, contribute to limited arm functionality in patients with BPBI.

Methods: Study Design

Age
- **Day 0**: Sprague-Dawley rats
 - n = 6 (5 male, 1 female)
- **Day 5**: Postganglionic neurectomy
 - Nerves C5 and C6 excised
 - Unaffected-left, Affected-right
- **Week 8**: Sacrifice
 - Muscles of interest: 1) Biceps long head, 2) Biceps short head, 3) Lower subscapularis, 4) Upper subscapularis

Methods: Histology

- Muscles were snap frozen and stored at -80°C.
- Samples were cryosectioned to create three frozen sections (10 µm thickness) for each muscle.
- Sections were stained with Masson’s trichrome and imaged with an EVOS XL light microscope at 20X magnification.

Methods: Image Processing

Imaged sections were analyzed using a custom protocol in ImageJ software

Collagen Detection
- Excessive collagen, stained blue by Masson’s trichrome, indicates fibrosis.
- Color thresholding used to measure percent of image occupied by collagen.

Muscle Tissue Detection
- Healthy muscle fibers are stained red by Masson’s trichrome.
- Saturation thresholding used to measure percent of image occupied by tissue.

Calculations and Statistics
- The ratio of collagen to total tissue was calculated using the percentages of collagen and tissue in the image.
- Paired t-tests were used to compare collagen content in the affected and unaffected shoulders for each muscle (α = 0.05).

Results: Representative Images

Results: Statistical Analysis

Fibrosis was significantly increased in the affected biceps long, biceps short, and lower subscapularis muscles.

Discussion

- Neuromyectomy affects fibrosis in innervated muscles to different extents:
 - Biceps muscles demonstrated the greatest increase in collagen, suggesting development of fibrosis.
 - Subscapularis muscles demonstrated moderate or no increase in collagen.
- Our results confirm previous findings suggesting postganglionic neuromyectomy increases fibrosis in the developing shoulder.
- Understanding the impact of neuromyectomy on underlying muscle changes is the first step toward understanding the development and progression of limited arm function in patients with BPBI.
- Future work will compare collagen composition with preganglionic and postganglionic neuromyectomy.
- Additional metrics, muscle fiber size and geometry, will be analyzed and correlated with muscle and bone changes.

References

Acknowledgments

Funding was provided by NIH R21 HD088893 and the North Carolina State University Office of Undergraduate Research.