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Abstract

The glassy-winged sharpshooter, Homalodisca vitripennis, is an invasive pest which presents a major
economic threat to grape industries in California, as well as Texas [22] and other wine growing regions,
because it spreads a disease-causing bacterium, Xylella fastidiosa. We continue an earlier investigation
[1] into a long-term phenological decline of H. vitripennis densities by studying a system of delayed
di�erential equations (DDEs) and analyzing aggregate population data for H. vitripennis from a 10-year
study in which bi-weekly monitoring of H. vitripennis populations decreased signi�cantly. These data
present several challenges for modelers. First, they involve truly aggregate population level sampling and
hence cannot properly be treated as ordinary longitudinal time series data corresponding to individual
level models. The appropriate modeling involves estimation of probability distributions for parameters
rather than estimation of the dynamic parameters themselves. Moreover, our analysis reveals that
the correct corresponding statistical models involve errors that are observation size dependent (e.g.,
relative errors should be employed in statistical models). We use these data to test whether DDEs are
useful in modeling the observed H. vitripennis population decline. To do this, we perform an analysis
of variance (ANOVA) type test comparing the glassy-winged sharpshooter (GWSS) model with delay
to the model without delay [1]. The model is �t to the aggregate H. vitripennis data using iterative
reweighted weighted least squares (IRWLS) by estimating probability densities over the delay and one of
the birthrate parameters. Results indicate that a positive delay provides improvement with a signi�cance
level of p < 0:005.

1 Introduction

The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae),
is a xylem-feeding leafhopper native to the southern United States from Florida to Texas and northeastern
Mexico [18]. H. vitripennis has a large degree of agricultural importance, because it vectors a xylem-dwelling
bacterium, Xylella fasitidiosa, which causes a variety of often lethal plant diseases (e.g., Pierce's disease of
grapes) [19,20].

H. vitripennis exhibits high invasion potential and is a signi�cant pest outside of its native range, including
California [20], Hawaii, the Cook Islands, Easter Island, and French Polynesia [13, 14]. In particular, after
invading California in 1990, H. vitripennis has represented a major economic threat to the wine, table, and
raisin grape industries, because it was implicated in a signi�cant increase of the lethal and incurable grape
malady, Pierce's disease [18,20]. This disease costs approximately $104 million per year in crop damage and
resources devoted to mitigating this threat [21].
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From March 2002 to August 2012, a long-term monitoring program in citrus, a preferred host plant for
H. vitripennis, was undertaken in order to study H. vitripennis densities in California. Every two weeks
ten individual lemon trees in an unsprayed citrus orchard were surveyed for H. vitripennis adults and eggs.
This large data set consisting of 271 observation dates clearly showed a decline in H. vitripennis populations
over time. The mymarid egg parasitoid Cosmocomoidea (formerly Gonatocerus) ashmeadi (Girault), which
targets H. vitripennis exclusively, was found in GWSS eggs collected during the study [1], but the biotic
factor of parasitism is not analyzed in this project. The goal of this project is to determine whether abiotic
factors such as temperature were responsible for observed population trends (i.e., density independent pop-
ulation regulation). The reproductive and developmental biology of H. vitripennis is strongly in�uence by
environmental factors, especially temperature [20]. In an earlier investigation [1] we developed a system of
ordinary di�erential equations (ODEs) to investigate the cause of this observed decrease in H. vitripennis

populations over time. In this investigation, we present a system of delayed di�erential equations (DDEs)
and test whether this the added delay improves the model tells us more about the GWSS population in the
data set.

2 Aggregate Data Sets

Biweekly surveys were made of ten Eureka lemon trees in an unsprayed mixed variety citrus plot at the
Agricultural Operations Facility at the University of California Riverside (UCR Ag. Ops) from March 13,
2002 to August 8, 2012. Field surveys were conducted at approximately 12:00 to 1:00 PM for each sample
date. The north, south, west, and east quadrants of the experimental trees were visually searched for 30
seconds each, and the total number of adult H. vitripennis infesting each citrus tree was recorded. After
adult counts were completed, each tree was searched for �ve minutes and all H. vitripennis egg masses that
were found were removed from trees and returned to the lab where the total number of individual eggs
collected on each sampling date were recorded. These egg and adult H. vitripennis data can be found in
Figure 1A and 1B. Egg masses were also observed over a three week period for the emergence of parasitoids,
but these data are not analyzed in this paper. For more information about the parasitoid data collected, see
Banks, Banks, Cody, Hoddle, and Meade [1].

Figure 1: Population phenology data for adult H. vitripennis (A) and eggs (B), and (C) the minimum
and maximum average monthly temperatures in Riverside, California in citrus at Agricultural Operations,
University of California, Riverside.

The reproductive and developmental biology of H. vitripennis depends on climatic conditions, especially
temperature [20], so temperature is an important part of the GWSS model. The daily minimum and
maximum temperatures from January 1, 2002 to December 31, 2012 in Riverside, CA were downloaded
from an automated weather station, CIMIS 44, located at UCR Ag. Ops and used to calculate monthly
averages (Figure 1D). For the mathematical simulations, we assume a daily sinusoidal curve in temperature
�uctuation in which the daily maximum temperature occurs at approximately 4:00 PM, and the daily
minimum temperature occurs at approximately 4:00 AM.

Homalodiscs vitripennis are strong �iers and can travel long distances to �nd optimal host plants [17].
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Thus, it is reasonable to assume that each data point is a di�erent subsample of the total population,
making this an aggregate [7] data set (i.e., each sample may possibly consist of di�ering individuals from the
overall population). Because of this, we assume that H. vitripennis eggs and adults from the data set have
been sampled longitudinally from the aggregate population. Therefore, parameters regulating population
�uctuation are likely described by some probability distribution [7] instead of a single value. This is vital and
changes the inverse problem when comparing aggregate population data to a mathematical model meant to
describe an individual population.

3 Mathematical Model: Delayed Di�erential Equations (DDEs)

To model the individual population of H. vitripennis, we use a continuous time age structured population
growth model [15] with an added delay. H. vitripennis is known to begin life as an egg and undergo �ve
nymphal stages before developing into sexually mature adults. For simplicity, we model the egg and adult
stage with a delay to represent the nymphal stage in

dxe(t)

dt
= b(Tt�180)xA(t)� r(Tt�180)xe(t)� dexe(t) (1)

dxA(t)

dt
= r

�
Tt�(�+180)

�
xe(t� �)� dAxA(t): (2)

where t is time in days and Tt is temperature in �C at time t. Eggs, xe, can die at rate de or hatch at rate
r(Tt�180). Parameter � represents the interval from egg emergence to oviposition or the combined nymphal
time and preoviposition (i.e., interval from adult emergence to the �rst oviposition) time. Thus, hatched
eggs become adults after � days at rate r

�
Tt�(�+180)

�
, and adults, xA, lay more eggs at rate b(Tt�180) and

die at rate dA.
The temperature dependent developmental rate is de�ned by the Lactin model [16],

r(T ) = e�T � e(�Tu�[Tu�T ]=�) + �: (3)

We let the birthrate b(T ) = R0(Tt)=Tc(Tt) from Pilkington, Lewis, Jeske, and Hoddle [20], so that

b(T ) =
R0(T )

Tc(T )
=

a0 + a1T + a2T
2

b0 + b1T + b2T 2
(4)

is the average number of o�spring produced per female per day at temperature T . The parameter values of
these temperature-dependent rates are taken from Pilkington, et al. [20] and listed in Table 1.

Temperature-dependent rates are calculated using temperatures from 6 months or 180 days in the past,
because without this shift there is a disconnect between the peaks of the model and that of the actual
population. We let the maximum delay be � = 180, and we have temperature data beginning on January 1,
2002, so with a � + 180 = 360 day shift we cannot model populations earlier than March 8, 2003. Thus, the
�rst 22 dates in the time series cannot be modeled, bringing the total number of usable H. vitripennis egg
and adult data points from 544 to 522, which is still su�cient for our purposes (usually 30-40 data points [6]
are suggested per parameter being estimated). In order to solve the DDEs (1) and (2), we de�ne an initial
condition function using the removed data points in

xe(t) = xe0(t) =

0X
j=�21

xej lj(t); �� � t � 0 (5)

xA(t) = xA0(t) =

0X
j=�21

xAj lj(t); �� � t � 0; (6)

where [xej ; xAj ] are the �rst 22 egg and adult data points we removed from the data set, and lk(t) are
piecewise linear splines de�ned on the corresponding removed time points tj for j = �21; :::; 0.
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Table 1: Parameters and descriptions for equations (1-4). Bolded parameters are temperature-
dependent equations.

� De�nition Chosen Values Units Source
r(T ) Developmental rate of eggs into adults � 1/day [16]
Tu Temperature when r(T ) = � 47.1 �C [20]
� Fitted in Logan Model 0.002 � [20]
� Fitted in Logan Model 3.61 � [20]
� Determines upper temperature threshold -1.03 1/day [20]

R0(T ) Number of daughters produced/female � eggs/adult [12]
a0 Quadratic parameter (constant) -701.19 � [20]
a1 Quadratic parameter 57.48 � [20]
a2 Quadratic parameter -1.113 � [20]

Tc(T ) Mean generation time � day [12]
b0 Quadratic parameter (constant) -1616.2 � [20]
b1 Quadratic parameter 147.92 � [20]
b2 Quadratic parameter -3.0264 � [20]
de Death rate of eggs 0.02 1/day [15]
dN Death rate of nymphs 0.02 1/day [15]
dA Death rate of adults 0.02 1/day [15]
� Time spent in nymphal and preoviposition period 0-180 day �

This model is an individual model, so it is not su�cient to model the aggregate data described in Section 2.
Thus, we use the individual model to create an aggregate model by assuming that a probability distribution
exists over one or another of the parameters in Table 1. In [1] we compared estimations of various parameters
such as a1; a2; etc. Note that if � = 0, the system of DDEs in equation (1) and (2) becomes a system of
ordinary di�erential equations (ODEs). In the following sections, we compare two aggregate versions of
this model to the aggregate data: one model in which the delay � = 0, and one in which the delay � � 0.
For these comparisons we used an estimated distribution for the birthrate parameter a1 as described below,
because in [1] the egg and adult observations are most sensitive to this parameter.

4 Aggregate Parameter Estimation Methodology

4.1 Aggregate Model

Equations (1) and (2) model individual populations, where all individual glassy-winged sharpshooters
are assumed to have the same growth, birth, and death rates. However, this assumption does not apply to
the aggregate data which consists of frequent sampling of the changing populations. Thus, the aggregate
population u at time t corresponding to an individual population x is given by

u(t;P ) =

Z
G

x(t; �)dP (�);

where x(t; �) is distributed over parameters �, G is the collection of admissible parameter values, and P is a
probability measure on G. Under the assumption that the probability distribution, P , possesses a density,
the population count is given by

u(t;P ) =

Z
G

x(t; �)p(�)d�;

where the density P 0 = dP
d� = p(�). We are interested in determining the probability density P 0 = p(�)

which gives the best �t of the underlying model to the aggregate data. However, this parameter estimation
problem involves an in�nite dimensional parameter space (the space P of probability measures). Instead of
using a speci�c probability density function in the aggregate model, we use �nite approximations. Based
on [3,4,6,9], we are guaranteed convergence in the Prohorov metric. (In a separate publication [9], we have
given a rather complete theoretical foundation - existence of estimators in classes of probability distributions,
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convergence of approximations, and consistency of estimators - for the techniques we use here.) Thus, the
�nite approximation PM (G) to the probability measure space P(G) can be de�ned using linear splines and
given by

PM (G) =

(
P 2 PM (G) j

dP

d�
= p(�) =

MX
k=0

�M
k lMk (�);

MX
k=0

�M
k

Z
G

lMk (�)d� = 1

)
;

where the piecewise linear splines are represented by lMk for k = 0; :::;M . We assume G = [�l; �u] is a closed
interval. Thus, the aggregate populations corresponding to observations xe and xA are given by

ue(t; f�
M
1kg) =

MX
k=0

�M
1k

Z �u

�l

xe(t; �)l
M
k (�)d�; (7)

uA(t; f�
M
2kg) =

MX
k=0

�M
2k

Z �u

�l

xA(t; �)l
M
k (�)d�; (8)

where �M
1k and �M

2k for k = 0; :::;M are coe�cients for the linear splines of the egg and adult populations,
respectively.

Similarly, we can assume that the aggregate data is best described when the individual population is
distributed over two parameters. This is done by taking the aggregate population model in equations
(7) and (8) which is distributed over parameter � and apply the same principles to assume a probability
distributed over !. Thus, an aggregate populations distributed over two parameters, � and !, corresponding
to xe and xA are given by

u�e(t; f�
M
1kg; f


M�

1k�g) =

M�X
k�=0


M�

1k�

Z !u

!l

 
MX
k=0

�M
1k

Z �u

�l

xe(t; �; !)l
M
k (�)d�

!
lM

�

k� (!)d!; (9)

u�A(t; f�
M
2kg; f


M�

2k�g) =

M�X
k�=0


M�

2k�

Z !u

!l

 
MX
k=0

�M
2k

Z �u

�l

xA(t; �; !)l
M
k (�)d�

!
lM

�

k� (!)d!; (10)

where lM
�

m� and piecewise linear splines and 
M�

1k� and 
M�

2k� are coordinates for the linear splines of the egg
and adult populations, respectively, for k� = 0; :::;M� . The probability densities of the egg and adult
populations over parameters � and ! can be described using the 2� (M + 1) and 2� (M� + 1) matrices

�M =

"
�M
10 �M

11 : : : �M
1M

�M
20 �M

21 : : : �M
2M

#
and 
M�

=

"

M�

10 
M�

11 : : : 
M�

1M�


M�

20 
M�

21 : : : 
M�

2M�

#
; (11)

respectively. All integrals are approximated using the composite trapezoidal rule.

4.2 Parameter Estimation Methodology

We follow techniques from Banks, Hu, and Thompson [7] and Banks, Bekele-Maxwell, Everett, Stephen-
son, Shao, and Morgenstern [2] to estimate parameters in our mathematical model. We perform two inverse
problems in order to estimate a probability densities over two parameters described in equations (9) and (10).
First, we estimate the probability density over parameter � while holding ! �xed. Next, we �x the probabil-
ity density over � and estimate the probability density over !. The techniques used for both problems are
described below.

For the �rst inverse problem, we choose to estimate a probability density over parameter � and consider
a general n-dimensional dynamical system,

d~x

dt
(t) = ~g(t; ~x(t); �); (12)

~x(t0) = ~x0; (13)

with an m-dimensional aggregate observation process ~f(t; �M ) = [ue(t; f�
M
1kg); uA(t; f�

M
2kg)]

T from equa-
tions (7) and (8), since our data set consists of egg and adult aggregate populations.
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We only need to estimate the set of 2(M + 1) spline coordinates in the matrix �M from equation (11).
We note that there is some discrepancy between the actual phenomenon, which is represented through the
data, and in the above observation process. This uncertainty is accounted for in the statistical model"

U1
j

U2
j

#
| {z }

~Uj

=

"
f1(tj ; �

M
0 )

f2(tj ; �
M
0 )

#
| {z }

~U(tj ;�M
0
)

+

"
f
11 (tj ; �

M
0 )

f
22 (tj ; �
M
0 )

#
�

"
E1j

E2j

#
| {z }

error

;

where ~
 = [
1; 
2] � 0 and �M
0 is the nominal probability density approximation. Here f1(t; �

M
0 ) =

ue(t; �
M
0 ) and f2(t; �

M
0 ) = uA(t; �

M
0 ). The n� 1 random error vectors ~E1 and ~E2 respectively are assumed

to be independent and identically distributed (i.i.d.) with mean zero and Var(E1j ) = �201 and Var(E2j ) = �202.
The corresponding realizations are"

u1j

u2j

#
| {z }

~uj

=

"
f1(tj ; �

M
0 )

f2(tj ; �
M
0 )

#
| {z }

~u(tj ;�M
0
)

+

"
f
11 (tj ; �

M
0 )

f
22 (tj ; �
M
0 )

#
�

"
�1j

�2j

#
| {z }

error

:

This multiplicative structure of the observational error in the above statistical model exists because often in
biological models the size of the observation error is proportional to the size of the observations. For ~
 � 0,
a generalized least squares method or an iterative reweighted weighted least squares (IRWLS) method [2]
as used below is appropriate to perform the inverse problem. In order to estimate �M

0 � �M , we want to
minimize the distance between the collected data and aggregate mathematical model, where the observables
are weighted according to their variability and, for each observable, the observations over time are weighted
unequally.

The iterative weighted least squares estimate, �̂M , is numerically determined by iteratively solving the
following system:

�̂M = argmin
�M

nX
j=1

�
~uj � ~u(tj ; �

M )
�T

V̂ �1
j

�
~uj � ~u(tj ; �

M )
�

(14)

V̂j = diag

0
@ 1

n� p
Ŵj

0
@ nX

j=1

h
~uj � ~u(tj ; �̂

M )
i h
~uj � ~u(tj ; �̂

M )
iT

Ŵ�1
j

1
A
ii

1
A (15)

for n data points. The matrix Ŵj = diag(f2
11 (tj ; �̂
M ); f2
22 (tj ; �̂

M )) is made up of the error weights, and V̂j
is the estimated covariance matrix at data point j = 1; :::; n. We use the following iterative procedure [7,8]:

1. Estimate �̂M(0) using (14) with V̂j = I. Set l = 0.

2. Compute weight matrices Ŵ
(l)
j = diag(f2
11 (tj ; �̂

M(l)); f2
22 (tj ; �̂
M(l))).

3. Solve for V̂
(l)
j using �̂M(l) and Ŵ

(l)
j in equation (15).

4. Estimate �̂M(l+1) using V̂
(l)
j in equation (14).

5. Set l := l + 1 are return to step 2. Terminate when two successive estimates for �̂M are su�ciently
close.

Note that this is not the same as taking the derivative of the argument in the right side of (14) and setting
it equal to zero. We iteritavely want to minimize

J(�̂M ) =

nX
j=1

h
~uj � ~u(tj ; �̂

M )
iT

V̂ �1
j

h
~uj � ~u(tj ; �̂

M )
i
: (16)
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The estimated variances for each observable �201 and �202 are approximated by the following:

�
�̂201; �̂

2
02

�
=

1

n� 1

nX
j=1

diag
�
V̂j

�
: (17)

If we assume ~
 = [
1; 
2] = [0; 0], then our statistical model is called an absolute error model and an ordinary
least squares method is appropriate for parameter estimation. However, we believe it is more biologically
realistic to assume the observation error is proportional to the size of the observed quantity for our data sets
and models investigated here.

For the second inverse problem, we estimate a probability density over parameter ! by �xing the spline
coe�cients of the density over � at �M = �̂M . When we estimate a probability density over parameter !,
the observation process becomes ~f(t; 
M�

) = [u�e(t; f�̂
M
1kg; f


M�

1k�g); u
�
A(t; f�̂

M
2kg; f


M�

2k�g)]
T from equations

(9) and (10). For this inverse problem, we only need to estimate the set of 2(M� + 1) spline coe�cients in
matrix 
M�

. A similar iterative process described above estimates values of J�(
̂M�

), �̂�201 , and �̂�202 for the
new estimated distribution, 
M�

. In [1], we use a second order di�erence-based method to determine the
correct statistical model to be de�ned by the weighted error coe�cients ~
 = [0:3; 0:6].

4.3 Uncertainty Quanti�cation: Standard Errors

In order to quantify uncertainty in estimating the spline coe�cients �M and 
M�

, respectively, the
standard errors and con�dence intervals can be computed using standard asymptotic theory for the IRWLS
spline coe�cient estimators �M

ik and 
M�

ik� , respectively, for i = 1; 2 [5,7,8]. For each time point tj , j = 1; :::; n,
the 2� (M + 1) and 2� (M� + 1) sensitivity matrices for the i = 1; 2 observations are

�
Dj

�
�̂M

��
ik

=
@fi(tj ; �̂

M )

@�ik
=

Z �u

�l

xi(tj ; �)l
M
k (�)d� (18)

�
Dj

�

̂M�

��
ik�

=
@fi(tj ; 
̂

M�

)

@
ik�
=

Z !u

!l

 
MX
k=0

�̂M
ik

Z �u

�l

xi(tj ; �; !)l
M
k (�)d�

!
lM

�

k� (!)d! (19)

(20)

where x1 = xe and x2 = xA is de�ned in equations (7) and (8). The (M + 1) � (M + 1) and (M� +
1)� (M� + 1) Fisher Information Matrices, F and F�, respectively, are approximated using the sensitivity
matrices, Dj(�̂

M ) and Dj(
̂
M�

) in

F (or F�) �

0
@ nX

j=1

DT
j V̂

�1
j ŴjDj

1
A�1

: (21)

where V̂j (or V̂ �
j ) is the covariance matrix from equation (15) and Ŵj = diag(f2
11 (tj ; �̂

M ); f2
22 (tj ; �̂
M ))

(or Ŵ �
j = diag(f2
11 (tj ; 
̂

M�

); f2
22 (tj ; 
̂
M�

))) is made up of error weights.
In the following sections, �rst we estimate the probability density of aggregate egg and adult GWSS

populations over parameter � = a1 while �xing � = 0 and all other parameters at values from Table 1.
Thus, the �rst inverse problem analyzes a system of ODEs. Then, we �x the probability density of a1 at
this estimated density and compute a second inverse problem to estimate the probabilty density of aggregate
egg and adult GWSS populations over parameter ! = � using equations (9) and (10). The second inverse
problem utilizes the DDEs by letting � � 0.
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5 Results

We �rst set � = 0 and carry out estimations of the birthrate parameter distribution for a1 using M =
2; 3; 4; 5 spline elements which yields relatively stable results as depicted in Table 2. Then we chose the
distribution over a1 corresponding to M = 4 to carry out the estimations of the delay parameter distribution
for � using M� = 4; 6; 8; 10; 12; 14; 16; 18; 20 spline elements which also yields relatively stable results as
depecited in Table 3. Lastly, we perform an analysis of variance (ANOVA) test to compare the model with
no delay (� = 0) to the model with a delay (� � 0).

5.1 Probability Density over Birthrate Parameter a1

Below, we graph the results of conducting the aggregate inverse problem over a1 while �xing � = 0.
We choose parameter a1, because the individual observations xe and xA from equation (1) and (2) are very
sensitive to a1. The parameter range [�l; �u] = [56; 57:7] is chosen so that the birthrate, de�ned in equation
(4) makes biological sense and does not become unstable. The optimal cost value J from equation (14), the
estimated variances of the residuals of eggs and adults from equation (15), and the condition number of the
Fisher Information Matrix from equation (21) are shown in Table 2.

M J �̂201 �̂202 �(F)
2 498 9:6230� 107 3:9589� 107 2:1321� 102

3 498 9:0193� 106 4:1480� 107 9:6931� 103

4 498 8:6485� 106 2:8241� 107 2:4841� 105

5 498 7:9681� 106 2:0838� 107 2:0838� 106

Table 2: Optimal cost value (J), estimated variances for eggs and adults respectively (�̂201 and �̂201), and the
condition number of the Fisher Information Matrix, F when computing the inverse problem for a1.

The optimal cost value, J , appears to have converged for values ofM . The estimated probability densities
are graphed in Figure 2A and 2B. The resulting aggregate population model for eggs and adults when we
let M = 4 is plotted against the corresponding data points in Figure 2C and2D, and the modi�ed residuals
are plotted in Figure 2E and 2F. The modi�ed residuals of the adults do not appear to be independent, but
this is to be expected since there is no delay (� = 0).
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Figure 2: Estimated probability density coe�cients of eggs (A) and adults (B) for M = 2; 3; 4; 5 while
varying parameter a1; aggregate egg (C) and adult (D) model solutions to equations (7) and (8) at estimated
densities for M = 4 and population phenology data; and modi�ed residual errors for egg (E) and adult (F)
observations.
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5.2 Probability Density over Delay �

Below, we graph the results of conducting the aggregate inverse problem over � while �xing the probability
density of a1 at the estimate �̂4 (M = 4) in Figure 3. The optimal cost value J�, the estimated variances of
the eggs and adults, and the condition number of the Fisher Information Matrix for parameter � is shown
in Table 3.

M� J* �̂�201 �̂�202 �(F�)
4 498.00 4:3336� 106 2:0788� 106 9:9987� 102

6 497.99 4:0701� 106 2:0296� 106 1:0236� 104

8 497.72 3:9197� 106 2:0208� 106 3:4799� 104

10 496.44 3:8242� 106 2:0371� 106 1:3454� 105

12 491.98 3:7574� 106 2:0883� 106 2:6122� 105

14 482.62 3:7089� 106 2:1616� 106 5:6538� 105

16 481.79 3:6747� 106 2:2098� 106 1:2025� 106

18 482.65 3:6488� 106 2:2038� 106 1:4729� 106

20 482.09 3:6329� 106 2:2387� 106 1:9585� 106

Table 3: Optimal cost value (J�), estimated variances for eggs and adults respectively (�̂�201 and �̂�201), and
the condition number of the Fisher Information Matrix, F� when computing the inverse problem for � while
�xing the distribution over a1 at the estimate when M = 4.
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Figure 3: Estimated probability density coe�cients of eggs (A) and adults (B) for M� = 4; 6; 8; 10 and
M� = 14; 16; 18; 20 while varying parameter � and �xing a1 at the probability density whenM = 4; aggregate
egg (C) and adult (D) model solutions to equations (9) and (10) at estimated densities for M� = 20 and
population phenology data; and modi�ed residual errors for egg (E) and adult (F) observations.
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6 Model Comparison

We use an analysis of variance (ANOVA) type test based on asymptotic distributional results for esti-
mators and residuals to compare the GWSS model without a delay (i.e., the aggregate model assuming a
distribution over birthrate parameter a1 with M = 4 spline elements) to the GWSS model with a delay (i.e.,
the aggregate model assuming a distribution over the delay � while �xing the probability density of a1 at
the estimate for M = 4). This statistical test is taken from Banks and Fitzpatrick [10]. We can calculate
the test statistic realizations, T = n(J �J�) where n = 250 is the number of time points used in the IRWLS
problem. This test statistic is used to determine a more useful test statistic realization, U = T =J�. Using
the �2(1) distribution, we can reject or fail to reject the following null hypothesis:

H0: The �ts provided by the aggregate GWSS model with the delay � � 0 is not signi�cantly di�erent from
the �t with the aggregate GWSS model when � = 0.

HA: The aggregate GWSS model with the delay � � 0 provides a signi�cantly better �t than when restricted
to the constant value � = 0.

The three test statistics, T , U , and the p�value of the �2 test for di�erent values of M� are shown below
in Table 4. With a con�dence value of � = 0:01, we reject the null hypothesis H0 for M� = 14; 16; 18; 20.
In Figure 3, for smaller values of M� = 4; 6; 8; 10 the probability density over the delay approaches values
of � = 90; 180 for the aggregate adult populations. However, for larger vaues of M� = 14; 16; 18; 20, the
probability density over the delay approaches values of � = 90; 150; 180 for the aggregate adult populations.
This added feature of the adult density causes optimal cost, J�, to decrease signi�cantly.

Table 4: Values of U when comparing the GWSS model without a delay, � = 0, to the GWSS model with a
distribution over the delay � .

Test Statistic
M�

4 6 8 10 12 14 16 18 20
T < 10�3 3.4066 70.765 390.60 1506.2 3845.1 4051.8 38.36 3977.2
U < 10�5 0.0068 0.1422 0.7868 3.0615 7.9672 8.4098 7.9495 8.2499

p-value � 1 0.9341 0.7061 0.3751 0.0802 0.0048 0.0037 0.0048 0.0041

7 Discussion and Conclusion

By assuming a probability distributions over parameters in least squares problems, we can use a simple
mathematical model to capture sophisticated information from aggregate data sets. Without the delay
(� = 0), the model laid out in equations (1) and (2) is a simple linear system of ODEs with two age classes,
and with the delay (� > 0), the system is the simplest form of DDEs, with one constant delay. However, by
taking the aggregate nature of the data into account and assuming weighted observational errors, we �nd
that in this population of H. vitripennis large proportions of eggs are dying out, and the combined nymphal
and preoviposition periods of the populations vary between 90, 150, and 180 days.

In the �rst IRWLS problem, we estimate the probability distribution over one of the birthrate parameters,
a1. When a1 = 56, the birthrate is zero for most temperature values, except optimal values. When a1 = 56:9
and 57:7, the birthrates are larger and nonzero in the range of 20-30�C. Thus, since our results show that
aggregate adult H. vitripennis populations have a probability density centered around a1 = 56 and 57.7,
only the best and worst egg populations are being modeled. Thus, in this population of glassy-winged
sharpshooters, a large proportion of H. vitripennis eggs are dying out before they reach adulthood.

In the second IRWLS problem, we estimate the probability distribution over the delay, � , and get signif-
icantly better results when we �x the birthrate parameter a1 at the probability density with M = 4. The
results indicate that the aggregate egg H. vitripennis populations hatch from the adult populations with no
delay, while the adults in this population of H. vitripennis undergo a nymphal and preoviposition period
of 90, 150, and 180 days. The proportion of adults with � = 150 are essential when comparing the GWSS
model with no delay to the GWSS model with a delay. The �t only becomes signi�cantly better (p � 0:005)
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when M� is large enought to account for this proportion of adults. Thus, we have shown that the driving
factors of this population of H. vitripennis are the di�ering combined nymphal and preoviposition periods.

There are a few drawbacks and improvements to be made with this model. When we �x � = 0, we assume
that a nymphal and preoviposition period does not exist and that a GWSS adult can emerge from the egg
fully capable of sexual reproduction. This is not biollogically reasonable, since the combined nymphal and
preoviposition period for GWSS is known to last from 50 to 140 days [20]. In Figure 2, the modi�ed residuals
graphed are clearly not independent, so this is not the correct mathematical model. Since the GWSS ODE
model (the model with � = 0) is not correct, the estimated distribution over a1 may not be accurate. Thus,
it may be useful to estimate the probability densities over a1 and � at the same time.

Even with the delay, the GWSS model fails to capture the second yearly spike in the H. vitripennis egg
population. It is known that invasive populations of GWSS located in Southern California usually have two
periods of oviposition per year: once in early spring, and again in mid-to-late summer [11]. This behavior
may need to be modeled with a more complicated system of DDEs. In [1] we simply ignored the �rst
oviposition period when the GWSS adult population is not very large compared to the egg population and
modeled the population with a simple system of ODEs, which resulted in much larger errors in the GWSS
egg observations.

The most important change to be made with the GWSS model with respect to this data set is to take egg
parasitism into account. Egg parasitoids including Cosmocomoidea ashmeadi and Cosmocomoidea morrili

were observed and counted in the H. vitripennis egg populations. [1] This biotic factor may play a crucial
role in the decline of the H. vitripennis population over the ten year period and needs further analysis.
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