
ABSTRACT

GADDY, MELISSA ROSE. Optimization of Radiotherapy Treatments with Spatiotemporal
Fractionation Schemes. (Under the direction of Dr. Dávid Papp).

In this thesis, we develop mathematical optimization techniques to improve external beam

photon radiotherapy treatments. We begin by revisiting a treatment planning optimization method

for arc therapy planning called VMERGE and propose two modifications to the algorithm. First, we

incorporate an explicit constraint on the treatment time during the treatment planning optimization

and implement an efficient algorithm that exploits the structure of the problem to optimize a

solution. Next, we substitute a heuristic in the original VMERGE algorithm with a greedy strategy

to obtain a treatment that improves the trade-off of treatment efficacy versus treatment time. We

demonstrate the benefit of these two modifications on a clinical prostate and paraspinal case.

Next, we optimize spatiotemporally fractionated treatments by incorporating a mathematical

model of a tissue’s response to radiation over a series of repeated treatments into the treatment

planning optimization. In spatiotemporal plans, the radiation dose distribution is allowed to be

different on each treatment day, and these plans achieve a balance of the potentially competing

objectives of delivering high doses to the target volumes on a single treatment day while maintaining

consistent low doses to the healthy tissues. Spatiotemporal plans exhibit an improvement in healthy

organ sparing over treatments optimized with a conventional treatment schedule.

The optimization models for spatiotemporal fractionation are nonconvex, so the spatiotempo-

rally fractionated treatment plans are only certified to be locally optimal. We formulate a semidef-

inite programming relaxation of the nonconvex optimization problem to derive a bound on the

maximum benefit of spatiotemporal fractionation over conventional treatment schedules. We show

that the locally optimal spatiotemporally fractionated treatment plans attain a large percentage of

the maximum possible improvement in healthy tissue sparing.

The degradation of plan quality in the presence of patient setup uncertainty is a more pressing

concern for spatiotemporal fractionation than for conventional treatments, and the conventional



methods to mitigate setup uncertainty cannot be used for spatiotemporal planning. In this work,

we utilize stochastic optimization techniques to incorporate random patient setup uncertainty into

the optimization problems for spatiotemporally fractionated plans and demonstrate that even in

the presence of patient setup uncertainty, spatiotemporal plans exhibit an improvement in normal

tissue sparing over uniformly fractionated plans while maintaining robust target coverage.
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Chapter 1

Introduction

Radiotherapy is a widely used and highly effective modality to treat cancer, and it is a coalescence

of the fields of physics, medicine, biology, and mathematics. Radiation was first used for therapeutic

purposes at the turn of the twentieth century, and throughout its history, technological and scientific

developments in each of these fields has propelled the progress of radiation for cancer treatment [23].

In 2015, more than half of all cancer patients were treated with some type of radiotherapy, either

in conjunction with other treatment modalities such as surgery, chemotherapy, or immunotherapy,

or as the primary treatment [47]. Despite the fact that it is so widely used, there remain many

unanswered questions, and there is much potential for further progress in the field. In this thesis,

we focus on mathematical optimization problems that arise in radiation therapy.

1.1 External beam radiotherapy

In external beam radiotherapy, ionizing radiation is generated outside of the patient and aimed at

a tumor to damage malignant cells and prevent them from replicating. Typically, several radiation

beams with non-lethal magnitudes are delivered from various angles around the patient. The cells

in the intersection of the beams receive the highest amount of radiation, while the cells affected by

a single beam receive a sub-lethal dose.
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(a) (b)

Figure 1.1: (a) The equipment setup for radiation treatment. The patient lies on the flat table,
and the linear accelerator rotates around the patient on a gantry. (b) Close-up image of a multi-leaf
collimator, which is positioned in front of the source of the radiation beam in the linear accelerator
to control the beam’s size and shape. Images courtesy of Varian Medical Systems, Inc., Palo Alto,
CA. Copyright 2019. All rights reserved.

In photon radiotherapy, photon beams are generated by a linear accelerator, which is mounted

on a rotating gantry. The patient is positioned on a table, and the gantry rotates around the

patient to administer the radiation treatment (see Figure 1.1a). The shape of each radiation beam

is controlled by a multileaf collimator (MLC), which is an apparatus that is positioned between

the photon source and the patient. The MLC is made of pairs of “leaves”, or small blocks of a

heavy metal that prevent radiation from passing through (see Figure 1.1b). The leaf positions are

each controlled separately, and they affect the size and shape of the beam aperture, which in turn

controls which cells are exposed to radiation.

Before a patient receives radiation treatment, a CT image of the treatment region is taken.

On the CT scan, the structures in the patient are contoured, labeled, and classified into one of

several types in order to prioritize them and specify how much radiation the structures should

receive. Some healthy organs in the patient are called organs at risk (OARs), which must receive

as little radiation as possible to avoid the side effects of radiation treatment. The observable tumor
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of cancerous cells is labeled as the gross tumor volume, or GTV; these are cells that must be

irradiated the most in order to have an effective treatment. In many radiation treatment plans,

a small margin around the GTV is contoured and labeled as well. This region, called the clinical

target volume (CTV), is contoured to include cancer cells that may be undetectable on the CT scan.

Oftentimes an additional margin is added around the CTV to form a structure called the planning

target volume (PTV). The PTV is included in treatment plans to be conservative for uncertainties

in treatment delivery. Later in this thesis, (see Chapter 5) we will discuss the role of the PTV in

treatment planning with uncertainty. Some clinical cases may contain additional targets, such as

the lymph nodes for head and neck cases; these targets do not occur in the clinical cases used in

this thesis, but they could be incorporated into the optimization models presented here in the same

manner as the primary target structures. Any remaining tissue that is not part of the structures

above is considered “Unclassified” (UNC).

1.2 Radiotherapy treatment modalities

The earliest and simplest form of radiotherapy is 3D conformal radiotherapy, which delivers pho-

ton beams through an aperture that is the same shape as the beam’s-eye-view of the PTV. The

development of the MLC allowed radiation beams to have varying intensities across the beam in

a modality called intensity-modulated radiotherapy (IMRT). IMRT can either be delivered with

beams that are fixed at certain gantry angles, or it can be delivered with arc therapy, where the

beam is on while the gantry rotates around the patient. Less commonly, beams of heavy charged

particles such as protons, helium ions, or carbon ions are used to damage malignant cells, but these

require more complex and expensive equipment than photon radiotherapy.

1.2.1 Fixed beam intensity-modulated radiotherapy (IMRT)

A fixed beam IMRT treatment delivers photon beams from fixed gantry angles, but unlike the

3D conformal method it delivers modulated beams in which the intensity of the photons can be

non-constant across the beam. This inhomogeneity is achieved by delivering multiple unmodulated
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beams with different intensities from the same angle; the effects of the beams are superimposed,

as illustrated in Figure 1.2. At a given gantry angle, a beam is delivered through some MLC leaf

configuration. The beam is then turned off, the MLC leaves are rearranged, and the beam is turned

back on at the same gantry angle to deliver another beam, possibly with a different intensity level.

The total effect of this superposition is a beam with inhomogeneous intensity. Fixed beam IMRT is

also sometimes referred to as “step-and-shoot” IMRT because the beam is on only when the gantry

is stopped at a specified gantry angle. Typical clinical IMRT treatments use between five and nine

distinct beam angles.

1.2.2 Photon arc therapy (VMAT)

Photon arc therapy, also known as intensity-modulated arc therapy (IMAT) or volumetric mod-

ulated arc therapy (VMAT), is a technique in which a beam is constantly on while the gantry is

rotating around the patient. In addition, the MLC leaves are continuously moving as the gantry is

rotating. VMAT is an attractive treatment modality because it uses the same equipment as fixed-

beam IMRT, and it has the potential to greatly reduce treatment time. However, VMAT treatment

planning is a large-scale, nonconvex optimization problem that must take additional parameters,

such as dose rate and gantry speed, into account. Thus far, there is no universally accepted method

for VMAT planning optimization among numerous approaches [91], and in this thesis we use a

technique known as VMERGE [27].

1.2.3 Intensity-modulated proton therapy (IMPT)

Intensity-modulated proton therapy (IMPT) uses proton beams instead of photon beams to damage

malignant cells. The optimization algorithms for proton and photon therapies are similar, but there

are key differences in the absorption of protons versus photons in human tissue. The absorption of

dose with each beam type is depicted in the depth-dose curve found in Figure 1.3a, which shows the

amount of radiation absorbed in a tissue as a function of the tissue’s depth in the patient. With a

proton beam, the dose absorption remains mostly constant until it peaks at a point called a Bragg
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Figure 1.2: This graphic represents an example of a fixed-beam intensity-modulated radiotherapy
(IMRT) treatment [75]. Three photon beams with different intensity levels are delivered through
the three apertures on the left in succession from the same beam angle, and the resulting beam on
the right has an inhomogeneous intensity that is the sum of the intensities in each of the beams on
the left. Reprinted by permission from the publisher.
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peak and then recedes quickly. In contrast, the photon depth-dose curve has a large peak at a more

shallow depth and a much slower fall-off, meaning that cells in front of and behind the tumor will

also be irradiated. A comparison of proton and photon dose distributions for the same patient can

be found in Figure 1.3b.

Currently, proton treatment facilities are far less prevalent than photon facilities because pro-

ton therapy requires specialized equipment, including particle accelerators such as cyclotrons or

synchrotrons. As of October 2017, there were only 64 operational proton therapy facilities world-

wide [69], whereas there are over 2,000 radiotherapy facilities with a photon linear accelerator in

the United States alone [2].

1.3 Optimization of radiotherapy treatments

In IMRT treatment planning, the cross-section of a radiation beam is discretized into a rectangular

grid of beamlets whose intensities are simultaneously optimized. The radiation to be delivered is

represented by the fluence maps, which are the arrays of intensities assigned to each beamlet. Each

beam angle is associated with a single fluence map.

There are two phases of optimization in radiotherapy treatment planning: the first is fluence map

optimization (FMO), in which the optimal fluence maps are found that will yield the most effective

treatment plan for target coverage and healthy tissue sparing. The next phase of the optimization

is leaf sequencing, which finds the series of MLC leaf positions that will deliver a treatment plan as

close as possible to the one that was optimized in FMO. For fixed-beam IMRT, there are standard

leaf sequencing algorithms that can very closely replicate any fluence map. Thus, in this thesis we

focus on the fluence map optimization phase of radiotherapy treatment planning.

At a very high level, the fluence map optimization problem is to select the vector of beamlet

intensities that provides a treatment which meets prescription doses of radiation in the tumor

volume(s) while delivering as little radiation to the healthy tissue as possible. In this section, we

will introduce the conventional optimization models based on physical dose in the context of fixed-

beam IMRT. Variations will be later introduced as needed.
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(a)

(b)

Figure 1.3: (a) A comparison of the depth-dose curves for photon and proton beams [60]. Reprinted
with permission. © 2014 American Society of Clinical Oncology. All rights reserved. (b) A com-
parison of the dose absorption within a patient using photon and proton beams [86]. (The acronym
IMXT is intensity-modulated x-ray therapy, which is the same as IMRT.) Consistent with the
depth-dose curves in (a), the dose distribution from the photon treatment delivers dose in front of
and behind the tumor, while the proton beam avoids healthy tissues behind the tumor. Reprinted
with permission from the publisher.
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1.3.1 Clinical objectives

A multicriteria approach

In radiotherapy treatment planning, an oncologist prescribes some amount of radiation dose to

the GTV and restricts the dose delivered to certain OARs. Each of these requirements represents

a clinical objective, and typically there are many, oftentimes conflicting, clinical objectives for

a single treatment plan. In this way, the optimization of treatment plans can be viewed as a

multicriteria optimization (MCO) problem. In general, an MCO problem aims to simultaneously

optimize multiple objective functions f1, . . . , fp, with fi : Rn → R for each i, over a feasibility

region X ⊂ Rn in a problem of the form

min
x∈X

{f1(x), . . . , fp(x)}

[33, Ch. 2]. The notion of an optimal solution in MCO is fundamentally different from optimality for

problems with a single objective function. A solution x̂ ∈ X is called Pareto efficient if there is no

x ∈ X such that fk(x) ≤ fk(x̂) for k = 1, . . . , p and fi(x) < fi(x̂) for some i ∈ {1, . . . , k} [33, Ch. 2].

In other words, a feasible solution x̂ is Pareto efficient if there is no other x in the feasible region

that improves on one objective i without compromising another objective. The collection of all

Pareto efficient points is called the Pareto surface, or Pareto frontier.

Often, choosing a solution of an MCO problem involves navigating the Pareto surface to explore

the trade-offs between the objectives. There is much previous work on using MCO formulations of

optimization problems in radiotherapy treatment planning to find treatment plans that balance the

clinical objectives [11,29,78]. In many applications, a way to handle MCO problems is to combine

the objectives into a single objective function by using the weighted sum

p∑
i=1

wifi(x)
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Figure 1.4: A screenshot of the open-source treatment planning system matRad [104]. Within the
interface of a treatment planning system, a dosimetrist can complete all the steps of the treat-
ment planning process, which includes specifying prescription values for each structure, calling the
optimization solver, and evaluating treatment plan quality.

with wi ∈ R+, for i = 1, . . . , p. The minimum of this sum is Pareto efficient [57]. Treatment planners

use a treatment planning system (see Figure 1.4) to find solutions on the Pareto surface that balance

the clinical objectives in a satisfactory way. We will also use a weighted sum of clinical objectives

in the optimization problems throughout this thesis.

Quantifying the quality of a dose distribution

Metrics like the mean, maximum, or minimum dose in certain structures are utilized to evaluate

how well a plan conforms to the clinical objectives. The metric for a particular organ depends on

whether the organ can be described as a serial organ or a parallel organ, though not all organs fit

neatly into one of these two categories. For serial organs, the functionality depends on the health

of the entire organ. An example of a serial organ is the spinal cord; complications can occur if even

a small part of the spinal cord is irradiated. Thus, the clinical objective for a serial organ is to limit
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the maximum dose so that no single part of the structure suffers too much damage. In contrast to

serial organs, parallel organs are able to sustain high amounts of damage in one part of the organ,

and the undamaged area of the organ can function relatively normally. A mean dose objective

for parallel organs reflects this property. An example of a parallel organ is the liver, which is the

primary dose-limiting organ in the cases studied in Chapters 3 through 5 in this thesis. For organs

that are not perfectly parallel or serial, the p-norm of the dose distribution (with 1 < p < ∞)

is often used to quantify the dose level in the organ. In radiotherapy nomenclature this is called

equivalent uniform dose (EUD) [65,88].

In addition to specifying goals for minimum, maximum, or mean dose values to various structures

of the patient, clinicians can specify goals called dose-volume constraints such as “95% of the GTV

must receive at least 50 Gy of dose”. While popular in the clinic, these dose-volume constraints

are nonconvex and are therefore usually approximated in optimization models. A diagram called a

dose volume histogram (DVH) is used to visually represent these objectives when evaluating plan

quality. An example of a dose volume histogram can be found in Figure 1.5. Each structure is

represented by a different curve on the DVH, and the curve indicates the percentiles of physical

dose within the structure. For example, in Figure 1.5, approximately 10% of the bladder receives

40 Gy or more of physical dose. DVH plots are widely used in the medical community to evaluate

the quality of a treatment plan.

1.3.2 A mathematical model of fluence map optimization

To formulate a mathematical model, the patient is discretized into a 3-dimensional grid of voxels,

and the structures of the patient, such as organs, target volumes, or unclassified tissue, are repre-

sented as sets of voxels. The beam aperture is discretized into a grid of beamlets, and the arrays

of radiation intensities assigned to each beamlet are called fluence maps, which are the decision

variables in the optimization problem. Figure 1.6 is a pictorial representation of the optimization

problem.
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Figure 1.5: An example of a dose volume histogram (DVH) used to evaluate the quality of a
treatment plan for a prostate case. Each curve represents a different structure within the patient,
and for a fixed amount of dose, the DVH displays the fraction of the structure which receives at least
that amount of dose. The prostate and seminal vesicles are the target volumes with a prescription
dose of 70 Gy, and the remaining structures are OARs.
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Figure 1.6: A pictorial representation of the setup of an IMRT problem [75]. The oval figure at the
bottom represents the patient, which is divided into a grid of voxels. In the gantry head, the beam
aperture is divided into a grid of beamlets, and the beamlet intensities are the decision variables
in the fluence map optimization problem. Reprinted by permission from the publisher.

Let B ∈ N be the total number of beamlets for all of the beams, and let V be the set of all voxels

in the patient, with the total number of voxels denoted by |V |. The fluence maps are denoted by

the vector x = (x1, . . . , xB), where each element xk is the intensity of the k-th beamlet measured in

monitor units (MU). The physical doses delivered to each voxel of the patient are denoted by the

vector d = (d1, . . . , d|V |), where each dv is the dose delivered to voxel v, measured in the physical

unit gray (symbol: Gy). The physical dose that is absorbed by each voxel of the patient is a linear

function of the beamlet intensities delivered by the linear accelerator; the linear model is given by

the expression d = Dx with the dose-influence matrix D ∈ R|V |×B. The (i, j)-th entry in the dose

matrix is the dose delivered to voxel i by a unit intensity in beamlet j. In this work, a dose-influence

matrix for each patient is computed with an existing dose calculation algorithm and is considered

to be a fixed part of the patient data. In a typical clinical case with fewer than 10 beams, the

number of beamlets B is on the order of thousands, and the number of voxels |V | is in the tens of

millions.
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With this notation established, the fluence map optimization problem is as follows:

min
x∈RB , d∈R|V |

F (d)

s.t. d = Dx

x ≥ 0.

(1.1)

The optimal fluence map minimizes a function of the physical dose d, subject to only two constraints.

First, the dose-influence relationship from the linear model must be maintained, and second, the

beamlet intensities must be nonnegative (because a negative amount of radiation cannot be deliv-

ered). In the implementation, the dose vector d is eliminated using the matrix multiplication Dx,

but in this thesis the dose vectors d are included in the optimization models for clarity.

Let I represent the index set of clinical objectives in the treatment plan prescription. In this

thesis, prescriptions are defined in terms of three types of objectives: prescription upper bounds

and lower bounds for individual voxels and mean dose upper bounds for entire structures. Three

types of penalty functions reflect these prescription types. Let I+ and I− be the index sets of

objectives that penalize dose above and below the prescribed thresholds, respectively, and let Im+

be the index set of objectives penalizing mean dose over the prescription limit. The index set I

is the union of the sets I+, I−, and Im+ . Let Vi denote the set of voxels that are associated with

clinical objective i.

It is possible that a given voxel could be subjected to multiple penalties simultaneously; a

voxel could have a prescription upper bound and a prescription lower bound, and the voxel could

be a member of a structure that has mean overdose penalties. If objective i imposes voxelwise

prescription limits, let dhi
iv and dlo

iv denote the prescription upper and lower bounds, respectively,

for voxel v. Similarly, if objective i is a bound for the mean dose of some structure, let mhi
i denote

the upper bound for the mean dose. Deviations from these prescription values can be penalized

using the sum of one-sided deviations squared, where the one-sided deviation is represented by the

positive part function given by (y)+ = max{0, y}. The piecewise quadratic penalty functions of the
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physical dose Fi are defined as

Fi(d) =



∑
v∈Vi

(dv − dhi
iv)

2
+ if i ∈ I+,

∑
v∈Vi

(dlo
iv − dv)2

+ if i ∈ I−, 1

|Vi|
∑
v∈Vi

dv −mhi
i

2

+

if i ∈ Im+ .

(1.2)

Typically, a treatment plan uses the same threshold dhi
i or dlo

i in every voxel v of the same structure

Vi, but we opted for the above, more general, formulation to allow for different thresholds for voxels

within the same structure. For example, in later chapters we use a conformity objective in which

the prescription threshold for a voxel around the PTV is a function of the voxel’s distance from

the PTV.

The objective function in the optimization problem (1.1) is a weighted sum of the individual

penalty functions:

F (d) =
∑
i∈I

wiFi(d). (1.3)

The weights wi ∈ R+ reflect the relative importance of each clinical objective, and they are chosen

by the treatment planner, either directly or indirectly via Pareto surface navigation [26,28,38,62].

Since the Fi are all convex, every Pareto optimal solution can be obtained by minimizing (1.3) with

some set of positive weights [33, Ch. 3].

The objective function (1.3) is a (once) continuously differentiable convex function, and when

used in the optimization problem (1.1) together with the substitution d = Dx in the objective

function, we have an essentially unconstrained problem except for nonnegativity constraints of the

beamlet intensities. A globally optimal solution can be found using standard convex optimization

solvers. The IMPT optimization model is mathematically analogous to the IMRT model presented

in this section, but VMAT plans are optimized with different large-scale nonconvex models to

14



simultaneously optimize the leaf trajectories, beam intensities, and gantry rotation in a VMAT

plan.

1.4 Fractionation of radiotherapy treatments

Radiotherapy treatments are typically fractionated, which means the total dose is divided among

treatments that are delivered over a series of days or weeks. Each of the individual treatments

is called a fraction. Fractionated treatments allow for the preservation of healthy tissue because

healthy cells are able to recover from sub-lethal radiation damage. Traditionally, radiation treat-

ments are uniformly fractionated, meaning that the total dose is divided evenly into equal doses

on each treatment day. A typical uniform fractionation scheme has between 5 and 30 fractions of

treatment, and the same dose distribution is delivered in every fraction.

Fractionated treatments are ideal for healthy tissue sparing, but to deliver lethal damage to

tumor cells, an ideal treatment would deliver a high amount of dose in a small number of frac-

tions (this is called a hypofractionated treatment). Thus, there is a trade-off between fractionating

the treatment for healthy tissue sparing and hypofractionating the treatment for effective tumor

coverage.

1.4.1 Spatiotemporal fractionation

Unlike uniform fractionation that delivers the same dose distribution in each fraction, spatiotemporal

fractionation, (also called nonuniform fractionation) is a relatively novel approach that allows dose

distributions to vary between the fractions. (The terms nonuniform fractionation and spatiotem-

poral fractionation are used synonymously throughout this thesis.) Spatiotemporally fractionated

treatments are able to at least approximately achieve both of the goals of hypofractionating parts

of the tumor while fractionating dose to the healthy tissue. The concept of spatiotemporal frac-

tionation is quite recent, and it was first proposed in the context of IMPT [98]. Spatiotemporal

fractionation schemes have not been implemented in the clinic thus far because their benefit has not

been properly assessed, particularly in the context of photon therapy. This thesis contributes to the
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growing body of literature that demonstrates that spatiotemporal fractionation schemes are able to

substantially improve photon treatment plan quality over conventionally fractionated treatments.

1.5 Uncertainty in radiotherapy treatments

Precision in the delivery of a radiotherapy treatment plan is imperative because an incorrect delivery

can lead to severe degradation of the treatment. If a treatment is not delivered in accordance with

how it was planned, tumor cells could be spared from radiation, compromising the effectiveness of

the treatment, and healthy tissues could be subjected to radiation levels that could cause potentially

fatal side effects. In this section, we briefly introduce sources of uncertainty that may affect the

accurate delivery of radiotherapy treatments and summarize a mathematical approach to mitigate

uncertainties.

1.5.1 Sources of uncertainty in radiotherapy

There are two broad classes of uncertainty in radiation therapy: systematic errors and random

errors. Systematic errors occur consistently throughout the treatment, while random errors exhibit

no regular pattern. Potential sources of error in treatment planning and delivery include particle

range uncertainty in IMPT [70, 71, 93], variability in target volume delineation [5, 107], or errors

in patient setup during treatment delivery [4, 14, 39, 71]. Radiotherapy treatments could also be

compromised because of anatomy changes in the patient [100] or organ motion, including respiratory

motion [14,15,20].

The severity of each type of uncertainty depends on the treatment site (in the body) and

treatment modality; for example, respiratory motion would be a more pressing concern in a lung

cancer treatment than in a prostate cancer treatment. In this thesis, we focus on random patient

setup errors that could occur during the treatment. In conventional treatment planning, setup error

is usually handled using margins around the target, such as the PTV [99], which ensure that the

GTV is not too severely underdosed if the patient position is shifted slightly. We will discuss later
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in Chapter 5 that the concern of adequate GTV coverage in the presence of random patient setup

uncertainty is even more pronounced for spatiotemporal plans.

1.5.2 Optimization under uncertainty

Stochastic optimization is one approach to handle uncertainties in optimization problems. Stochastic

optimization models contain functions of a random vector ω that is assumed to have a probability

distribution P supported on Ω ⊂ Rs, where s is the dimension of the uncertainty. An example of a

simple stochastic program is

min
x∈X

EP [F (x, ω)] ,

where x is a deterministic decision vector on X ⊂ Rn and F : X ×Ω→ R [80, Ch. 1]. In addition,

stochastic programs may have probabilistic constraints such as

P{g(x, ω) ≤ 0} ≥ 1− α,

for some α ∈ [0, 1] and g : X ×Ω→ R, which requires that the inequality g(x, ω) ≤ 0 must hold at

the 1− α probability level [80, Ch. 4]. In Chapter 5, we formulate stochastic optimization models

to optimize spatiotemporal treatments that are robust against patient setup uncertainty.

1.6 The contribution of this thesis

In Chapter 2, we propose two modifications for an arc therapy planning algorithm called VMERGE

with the goal of improving the achieved trade-off between treatment time and plan quality. We

compare this trade-off for both the original algorithm and the algorithm with our proposed modifi-

cations using two clinical cases, and we observe noticeably improved treatment plans for the same

treatment times over what can be obtained using the original VMERGE method. For one of the

proposed modifications, we present an algorithm that exploits the problem structure to optimize

treatments efficiently.
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In Chapter 3, we present optimization models for spatiotemporal fractionation that are based

on a quadratic phenomenological model called the biologically effective dose (BED) model. This

formulation leads to a computationally challenging nonconvex optimization problem. For five clin-

ical liver cases, we demonstrate that spatiotemporal fractionation schemes improve plan quality

over conventionally fractionated treatments in photon arc therapy.

In Chapter 4, we derive a bound on the maximum achievable benefit from spatiotemporal

fractionation. Both Chapter 3 and prior works on spatiotemporal fractionation in the context of

IMPT demonstrate that locally optimal solutions are high-quality treatment plans, but it has

been unclear if better optimization algorithms may yield substantially better solutions. In this

chapter we formulate a convex semidefinite programming relaxation of the nonconvex problem in

Chapter 3 whose solution provides a rigorous upper bound on the maximum achievable benefit of

spatiotemporal fractionation.

In Chapter 5, we address the concern of patient setup uncertainty in dose delivery of spatiotem-

porally fractionated treatments. Patient setup uncertainty is incorporated into the optimization

models using expected penalty functions, and a discrete probability distribution is defined to char-

acterize the random setup error occurring in each fraction. We demonstrate that in the presence

of patient setup uncertainty, spatiotemporally fractionated treatment plans exhibit robust tumor

coverage and retain some of the benefit in sparing healthy tissues.

Some of the material in this thesis has been published in peer-reviewed journals. Parts of

Chapter 2 were published as a Technical Note in Medical Physics [40]. The contents of chapters 3

and 4 were published in Physics in Medicine & Biology [41]. A manuscript based on Chapter 5 is

in preparation.
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Chapter 2

Improving photon arc therapy

delivery

We revisit the VMERGE treatment planning algorithm by Craft et al. [27] for arc therapy planning

and propose two changes to the method that are aimed at improving the achieved trade-off be-

tween treatment time and plan quality at little additional planning time cost, while retaining other

desirable properties of the original algorithm. The VMERGE algorithm is a two-phase approach,

where a high-quality initial plan is determined in the first phase; the delivery of this plan is usually

very time-consuming, and the plan may even be undeliverable due to machine constraints such as

minimum gantry speed. The initial plan is made deliverable in a practical amount of time in the

second phase. We propose two changes to this approach, which affect both phases. We implement a

“sum-of-positive-gradients” (SPG) smoothing in the first phase that constrains the treatment time

of the initial plan, and in the second phase we use a greedy algorithm to merge maps in a way that

keeps the dose degradation low. The SPG-constrained treatment can be optimized with an efficient

algorithm that exploits the structure of the problem.
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2.1 Introduction

Despite the fact that photon arc therapy (VMAT) has found widespread clinical application, as

mentioned in Section 1.2.2, the optimization of VMAT plans remains a challenging large-scale

nonconvex problem, with a variety of competing approaches to its (incomplete) solution [73, 91].

The VMERGE algorithm, proposed by Craft et al. [27], is one of these approaches. VMERGE has

several desirable properties: it is very fast, it is compatible with multicriteria optimization (MCO),

and it allows the planner to select a desired trade-off between plan quality and delivery time. In the

rest of this section we summarize the original VMERGE radiotherapy treatment planning method.

Our suggested changes to the method follow in Section 2.2. In Section 2.3 we describe an efficient

algorithm to solve the SPG-constrained problem, and in Section 2.4 we present our numerical results

using a prostate and a paraspinal case.

The VMERGE algorithm

As described in Section 1.2.1, static beam IMRT treatments deliver intensity-modulated beams from

fixed gantry angles, and in our implementation of fluence map optimization (FMO), the beamlet

intensities for each beam angle are optimized using the piecewise quadratic objective function (1.3)

to penalize under- and over-dosing of various organs. Let b denote the number of beam angles in the

static-beam IMRT treatment. In Section 1.3.2, we used the notation x ∈ RB to denote the fluence

maps, where B is the total number of beamlet intensities to optimize. In this chapter, because the

spatial location of each beamlet in the field is important for leaf sequencing, we represent the k-th

fluence map by using the matrix xk ∈ Rr×q, for k = 1, . . . , b, where the grid of beamlet intensities

has r rows and q columns. Relating this back to the notation from Chapter 1, the total number of

beamlet intensities to optimize over all beams is b × r × q = B. Throughout this work we assume

every beam has a rectangular grid of beamlets of the same size.

The first step of the VMERGE algorithm is solving FMO on an angular grid of fine (say,

2-degree) resolution. The attained 180 fluence maps represent an approximation of a perfect treat-
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ment that could be delivered to the patient by a single-arc VMAT, but this 180-beam fluence map

is not feasible to deliver to a patient. First, it is not possible to achieve arbitrarily high intensity

modulation during a 2-degree rotation of the gantry; the maximum MLC leaf speed and the mini-

mum gantry speed are mechanical limitations on some machines that prevent a highly-modulated

field from being delivered in a small 2-degree arc sector. Even if such intensity modulation within

a 2-degree angle is possible, the amount of time to deliver this treatment would be prohibitive; for

example, in the clinical cases presented later in this chapter, the delivery time for treatments with

180 fluence maps is over 19 minutes, whereas a static-beam IMRT plan usually takes less than 10

minutes and a VMAT plan takes less than 3 minutes.

To make the 180-beam deliverable, the second phase of the VMERGE algorithm iteratively

merges similar adjacent fluence maps and their corresponding gantry arc sectors. With each merge,

the number of fluence maps decreases by one. After merging, the resulting treatment plan can be

accurately delivered with a full VMAT arc in a reasonable amount of time. The merging of adjacent

fluence maps is dictated by the similarity between maps, which is measured by the Frobenius norm

of the arc-length-weighted fluence maps. More precisely, the similarity score δ for two maps x1 and

x2 that are to be delivered in adjacent arc sectors with arc lengths θ1 and θ2, respectively, is given

by

δ(x1, x2) = (θ1 + θ2)
( p∑
i=1

q∑
j=1

(
x1ij
θ1
− x2ij

θ2

)2 )1/2
, (2.1)

where i, j indicate the row and column indices of the fluence maps [27]. The pair of adjacent fluence

maps with the lowest δ is added and delivered over the union of their individual arc sectors; this

will reduce the treatment time, but it could result in a degradation of plan quality. The merging of

adjacent maps continues until the dose degradation has surpassed a chosen threshold. The stopping

criterion can be specified in terms of the violation of the original clinical goals, which is likely a

better practice than using a threshold based on the less directly interpretable optimization objective

function used in the FMO.
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2.2 Two improvements to the VMERGE algorithm

2.2.1 A greedy approach to merging

Our first change to the VMERGE algorithm is implementing a greedy strategy in choosing the pair

of maps to merge. In the original VMERGE algorithm, the pair of maps to merge was determined

by the similarity score δ defined in (2.1), but simply merging adjacent maps that are similar

beamletwise does not necessarily make the merged map easier to deliver over the combined arc

sector. Because of the way the MLC leaves sweep across the field, it may be more beneficial to

merge adjacent maps that are not necessarily similar to each other, but whose combination results

in a dose distribution that is similar to the ideal distribution when delivered over the combined

arc sector. To quantify this idea, for each pair of adjacent fluence maps, we compute the dose

degradation that would result from the merging of those maps, which is measured using the same

objective function that is used in the initial FMO step of the algorithm. In each iteration, we merge

the pair of maps whose merging results in the smallest dose degradation.

As in the original VMERGE, two maps are merged by adding the fluence of the corresponding

beamlets and delivering the new map over the union of the individual arc sectors. Merging maps with

the greedy variant is computationally more expensive than merging based on the similarity score

δ, but only marginally so. Suppose that a certain number of merges have already been performed,

and the dose distribution d delivered by the plan obtained after the last merging step has already

been computed. Then, in order to evaluate the dose degradation resulting from merging two given

adjacent maps, we only need to compute the dose corresponding to the two fluence maps to be

merged and the dose corresponding to the merged map. Since each map can only be merged with

one of two adjacent maps, the total computational work needed to evaluate the dose degradation

resulting from the merging of all adjacent pairs is equivalent to two complete dose calculations for

a 180-beam plan. With a precomputed dose-influence matrix D, the dose d corresponding to the

plan x is simply d = Dx, and the total computational work required in each iteration is equivalent

to two matrix-vector multiplications involving the matrix D.
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2.2.2 Regularization and treatment time constraints in fluence map

optimization

Our second change in the VMERGE implementation affects the treatment plan with 180 fluence

maps that is computed in the first step of the algorithm. As mentioned above, this “ideal” treatment

plan is undeliverable because it contains an arbitrarily high amount of intensity modulation within

a single fluence map. If adjacent beamlets have very different beamlet intensities, then it is more

time-consuming to deliver that fluence map because the MLC leaves must move across the field

in small increments. It would be more desirable for the 180-map plan to have some amount of

“smoothness” in the fluence maps, or similarities between adjacent beamlet intensities, so that the

MLC leaves can move across the field more quickly and the treatment time can be reduced.

Quantifying the delivery time for a fluence map is a challenging combinatorial problem with

no known efficient solution [91]. However, for a sliding window delivery (also known as a sweep

in dynamic multileaf collimation), the time required to deliver a fluence map can be computed

exactly, assuming that the dose rate is constant [87]. During this mode of delivery, all collimator

leaves start on one side of the field and move unidirectionally across the field. Leaves may only turn

back once all leaves have reached the other side of the field. The amount of time it takes for a pair

of collimator leaves to move across the field is given by the expression w
` , where w is the physical

width of the field (which equals the beamlet width times q) and ` is the maximum leaf speed. The

additional time required to deliver the modulated dose for the row xki,· of a fluence map is given by

the sum-of-positive-gradients (or SPG) function, expressed as

SPG(xki,·) = xki,1 +

q−1∑
j=1

max
{
xki,j+1 − xki,j , 0

}
. (2.2)

Combining the dose modulation time with the time for the leaves to sweep across the field, the

delivery time for the i-th row of fluence map k is given by

t
(
xki,·

)
=
w

`
+

1

α

(
SPG(xki,·)

)
, (2.3)
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where α is the constant dose rate.

It can be shown using elementary arithmetic that SPG can also be expressed using the formula

SPG(xki,·) =

q∑
j=1

xkij −
q−1∑
j=1

min
{
xki,j , x

k
i,j+1

}
, (2.4)

which reveals that the SPG is the same whether the collimator leaves move right-to-left or left-to-

right. The time to deliver the k-th fluence map xk with sliding window delivery is the maximum

of the delivery times of each collimator leaf pair (that is, of each row of xk). Using the notation

x = (x1, . . . , xb) ∈ RB for the entire fluence vector of a treatment plan with b beams, the total

delivery time for treatment plan x is

T (x) =
b∑

k=1

max
i=1,...,r

t(xki,·). (2.5)

To achieve the goal of having “smoother” fluence maps when computing the ideal 180-beam

IMRT plan, we explicitly include an upper bound constraint on the treatment time, assuming

sliding window delivery. We refer to the resulting plan as the regularized solution. To obtain the

regularized solution, we aim to find the optimal set of nonnegative beamlet weights x that minimize

the physical dose-based piecewise quadratic penalty function, subject to an upper bound U on the

treatment time. Formally, the optimization problem to obtain the regularized solution is

min
x

F (x)

s.t. T (x) ≤ U

x ≥ 0,

(2.6)

where the objective function F (x) is the convex penalty function defined in Section 1.3.2 and T (x)

is the total delivery time defined in (2.5).

Note that SPG(·) is a convex piecewise affine function, and as a result, so is T (·); thus, we can

write the constraint T (x) ≤ U as a collection of linear constraints by introducing the auxiliary
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variables mk for maxi=1,...,r t(x
k
i,·) and the auxiliary variables pki,j for max{xki,j+1 − xki,j , 0} in (2.2).

The constraints T (x) ≤ U and x ≥ 0 are satisfied if and only if there exist mk ∈ R and pki,j ∈ R

(for i=1, ..., r, j=1, ..., (q−1), k=1, ..., b) that satisfy the system of constraints

b∑
k=1

mk ≤ U

w
` + 1

α

(
xki,1 +

q−1∑
j=1

pki,j

)
≤ mk ∀k = 1, . . . , b, ∀i = 1, . . . , r

xki,j+1 − xki,j − pki,j ≤ 0 ∀k = 1, . . . , b, ∀i = 1, . . . , r, ∀j = 1, . . . , q − 1

pki,j ≥ 0 ∀k = 1, . . . , b, ∀i = 1, . . . , r, ∀j = 1, . . . , q − 1

xki,j ≥ 0 ∀k = 1, . . . , b, ∀i = 1, . . . , r, ∀j = 1, . . . , q.

(2.7)

In the clinical prostate case presented later in this chapter with 180 beams, this formulation contains

over 72, 000 variables and 109, 000 constraints. The resulting optimization problem can be quite

challenging to solve within practical time and memory limits, but in the next section we describe

an algorithm to solve the optimization problem efficiently.

2.3 Optimizing a treatment plan with a constraint on the

treatment time

To obtain the regularized solution from the optimization problem (2.6), we use an in-house imple-

mentation of the Frank–Wolfe algorithm (also known as the conditional gradient algorithm), which

in general minimizes a convex function g over a convex domain D [37, 48]. At an iterate xt in the

Frank–Wolfe algorithm, the next iterate is given by

xt+1 = (1− λt)xt + λts, (2.8)
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where the step size λt ∈ (0, 1] is given by λt = 2
t+2 and s is the solution of the optimization problem

min
s∈D
∇g(xt)

>s. (2.9)

In other words, at every iteration of the algorithm, the first-order Taylor approximation of the

objective function is minimized over the feasible region, and then a step is made in the direction of

the minimizer. Variations of the Frank–Wolfe algorithm use different step sizes to promote sparsity

of the solutions [22] or accelerate the convergence of the algorithm [44].

The Frank–Wolfe algorithm is especially useful if each instance of the inner problem (2.9) is

simple to solve, e.g., when the feasible region is a norm ball or simplex [48]. Because the feasible

region of (2.6) is a polyhedron, an interior point method [49] could be used to minimize the linear

objective function over the feasible region (2.7). For this linear program, the number of variables

and the number of constraints are both Θ(B). (Recall that B = brq is the total number of beamlets,

which for the clincal cases presented later in this chapter is in the tens of thousands.) An interior

point method requires O(
√
B) iterations, and in each iteration, one or more linear systems of size

Θ(B) are solved. Thus, an interior point method could solve (2.9) in O(B3.5) time, requiring O(B2)

space for the linear system solves in each iteration. We will show in the remainder of this section

that we can solve the inner problem (2.9) with substantially smaller time and space requirements.

First, we will establish an equivalent formulation of the optimization problem to illuminate its

structure. Consider the polyhedron

P (β) :=
{
x ∈ Rr×q+ | SPG(xi,·) ≤ β ∀i = 1, . . . , r

}
. (2.10)
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Using x̂ to denote the current iterate in the Frank–Wolfe algorithm and defining Ũ = α(U − w
` )

and m̃ = α(m− w
` ), the problem (2.9) is the linear program

min
x=(x1,...,xb)
m1,...,mb

∇F (x̂)>x

s.t.
b∑

k=1

m̃k ≤ Ũ

xk ∈ P (m̃k) ∀k = 1, . . . , b,

(2.11)

which must be solved in every iteration of the algorithm.

In the following lemma, we note a useful property of the SPG function:

Lemma 2.3.1. Let x = (x1, . . . , xq) ∈ Rq, let a ∈ R, and let b ∈ R. Then SPG(ax + b1) =

aSPG(x) + b, where 1 = (1, . . . , 1) ∈ Rq.

Proof. We have that

SPG(ax+ b1) = ax1 + b+ ((ax2 + b)− (ax1 + b))+ + · · ·+ ((axq + b)− (axq−1 + b))+

= ax1 + b+ (ax2 − ax1)+ + · · ·+ (axq − axq−1)+

= a (x1 + (x2 − x1)+ + · · ·+ (xq − xq−1)+) + b

= aSPG(x) + b.

From the homogeneity of the SPG function established in this lemma (with b = 0), an optimal

solution of (2.11) is a scaled version of the problem

min
x=(x1,...,xb)
m1,...,mb

∇F (x̂)>x

s.t.

b∑
k=1

m̃k ≤ 1

xk ∈ P (m̃k) ∀k = 1, . . . , b.

(2.12)
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That is, if x∗ is a solution to (2.12), then Ũx∗ is a solution to (2.11). For cleaner notation, throughout

the remainder of this section we will use the formulation (2.12) for the inner problem of the Frank–

Wolfe algorithm.

2.3.1 Decomposition of the inner problem

If it were not for the constraint
∑b

k=1 m̃k ≤ 1, the problem (2.12) could be decomposed into b

subproblems with P (m̃k) as the feasible region, and each subproblem could be solved separately.

While this trivial decomposition of the problem is not possible, we shall see in Theorem 2.3.2 that

in an optimal solution of the inner problem (2.12), m̃k = 1 for at most one index k and m̃k = 0

for all other k. In the radiotherapy application, this means in the solution to the inner problem of

the Frank–Wolfe algorithm, one beam is turned on and uses the total treatment time, while all the

other beams are off, delivering no fluence. We will use the notation ck ∈ Rr×q for the elements of the

gradient of the objective function corresponding to beam k, so that ∇F (x̂) = c = (c1, . . . , cb). We

prove in the following theorem that at least one of the optimal solutions of (2.12) has the structure

described above:

Theorem 2.3.2. For the optimization problem (2.12), there always exists an optimal solution x∗

with maxi=1,...,r SPG(xk
∗
i,· ) = 1 for at most one index k∗ and maxi=1,...,r SPG(xki,·) = 0 for all other

k 6= k∗.

Proof. Suppose that x∗ = (x1, . . . , xb) is an optimal solution of (2.12). If x∗ = 0, then the theorem

holds. If x∗ is not the zero vector, then let λk := maxi=1,...,r SPG(xki,·). Then 0 <
∑b

k=1 λk ≤ 1. In

the case where
∑b

k=1 λk < 1, the solution can be scaled up so that
∑b

k=1 λk = 1 and the objective

value is no worse than c>x∗. Suppose that at the optimal solution x∗ = (x1, . . . , xb), λk > 0 for

at least two indices k, and without loss of generality assume λ1 > 0 and λ2 > 0. Then c>1 x
1 ≤ 0

and c>2 x
2 ≤ 0, because otherwise changing x1 or x2 to the zero vector would yield a better solution

than x∗. Again without loss of generality, assume

c>1 x
1

λ1
≤ c>2 x

2

λ2
. (2.13)
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Now consider the vector x̄ =
(
x1(λ1+λ2)

λ1
, 0, x3, . . . , xb

)
. With some algebraic manipulations we have

c>x̄ =
(λ1 + λ2)c>1 x

1

λ1
+ c>3 x

3 + · · ·+ c>b x
b

= c>1 x
1 +

λ2c
>
1 x

1

λ1
+ c>3 x

3 + · · ·+ c>b x
b

(2.13)

≤ c>1 x
1 + c>2 x

2 + c>3 x
3 + · · ·+ c>b x

b

= c>x∗.

Thus, the objective value of x̄ is no larger than the objective value of the optimal solution x∗. If the

strict inequality holds, there is a contradiction because the feasible solution x̄ has a lower objective

value than the vector x∗ that was assumed to be optimal.

If the equality c>x̄ = c>x∗ holds, then x̄ is another feasible solution that has the same objective

value as the optimal solution x∗ and one fewer nonzero λk. Continuing with the remaining indices

with λk > 0 in the same fashion as x1 and x2, we can follow a similar procedure until we arrive at

a contradiction or a solution where λk > 0 for exactly one k.

From the theorem above, we know that m̃k = 1 for at most one value of k and m̃k = 0 for

all other k. If the index of the beam with m̃k = 1 were known a priori, then solving the inner

problem (2.12) would reduce to finding

(xk)∗ = arg min
x∈P (1)

c>k x (2.14)

for a single value of k. Since this index is unknown, we obtain (xk)∗ for every beam k and find a

beam index k̂ with the lowest objective value. Then, the optimal solution of the inner problem (2.12)

is x∗ = (0, . . . , (xk̂)∗, . . . , 0).

In subsequent sections we will show that a subproblem of the form (2.14) can be solved in O(rq)

time. Since the solution of (2.12) is obtained by solving (2.14) b times, the inner problem of the
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Frank–Wolfe algorithm is solved in O(brq) = O(B) time, as opposed to interior point methods that

can solve the inner problem in O(B3.5) time.

2.3.2 The subproblem for each beamlet row

We can further decompose the problem by observing that the polyhedron P (1) is the Cartesian

product Q×Q× · · · ×Q with

Q :=
{
x ∈ Rq+ | SPG(x) ≤ 1

}
. (2.15)

Each xk ∈ P (1) has the form xk = (xk1,·, . . . , x
k
r,·) with each xki,· ∈ Q. The polyhedron Q is a

bounded polyhedron (a polytope) because each component of x must be in the interval [0, 1] to

satisfy SPG(x) ≤ 1. Using the notation cik to denote the components of the objective function

∇F (x̂) corresponding to xki,·, we solve the subproblem (2.14) by computing

xki,· = arg min
x∈Q

(cik)
>x (2.16)

r times, once for each value of i. In the next section we will show that this reduced problem for a

single beamlet row can be solved in O(q) time. Thus, the subproblem (2.14) for a single beam can

be solved in O(rq) time.

We now provide the vertex representation of the polytope Q, which will aid in solving the

reduced subproblem (2.16). Consider the set

Ξ := {ξ ∈ {0, 1}q | ∃ i, j ∈ {1, 2, . . . , q} s.t. ξk = 1 iff i ≤ k ≤ j} ∪ {0}.

The set Ξ is the set of all vectors in {0, 1}q with a contiguous set of nonzero elements. In the next

two theorems, we will prove that Ξ is equal to the set of vertices of the polytope Q. We will first

show that the set Ξ is a subset of the vertices of Q.

Theorem 2.3.3. Every element in the set Ξ is a vertex of the polytope Q.
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Proof. Let ξ ∈ Ξ. A vector ξ is a vertex of the polytope Q if there exists a c ∈ Rq such that

c>ξ < c>y ∀y ∈ Q, y 6= ξ [8]. Consider the vector c ∈ {−1, 1}q defined by

ck =


1, if ξk = 0

−1, if ξk = 1.

Let y ∈ Q, y 6= ξ, and since y ∈ Q, we know yi ∈ [0, 1] ∀i = 1, . . . , q. If ξ = 0, then c>y > 0 = c>ξ.

If ξ 6= 0, let i and j be the indices such that ξk = 1 iff i ≤ k ≤ j. Then c>y > −(j − i+ 1) = c>ξ.

Thus, ξ is a vertex of the polytope Q.

Now that we have established that every element in the set Ξ is a vertex of Q, we will also show

that every vertex of Q is contained in Ξ. We will use the fact that x ∈ Q is a vertex of Q if and

only if it is an extreme point of Q, that is, a vector x ∈ Q for which there are no other vectors

y, z ∈ Q, y 6= x and z 6= x, such that x = λy+ (1−λ)z for a scalar λ ∈ (0, 1) [8]. We will show that

every element in Q \ Ξ can be written as a convex combination of two other elements in Q.

Theorem 2.3.4. The set Ξ contains every vertex of the polytope Q.

Proof. Let x = (x1, . . . , xq) ∈ Q \Ξ, and let xi be the smallest nonzero element of x. (The vector x

has at least one nonzero element because x /∈ Ξ.) Then 0 < xi < 1 because if xi = 1 then x = 1 ∈ Ξ,

and if xi > 1 then x /∈ Q. Note that x = xi1+(1−xi)z with z =
(
x1−xi
1−xi , . . . ,

xq−xi
1−xi

)
∈ [0, 1)q. Since

x ∈ Q \ Ξ, we know that x 6= 1, and since xi > 0 = zi, we also know that x 6= z. Further, applying

Lemma 2.3.1,

SPG(z) =
1

(1− xi)
SPG(x)− xi

(1− xi)

≤ 1

(1− xi)
− xi

(1− xi)

= 1,

so z ∈ Q. Thus, x is a convex combination of two vectors (that are not the same as x) in Q.
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From Theorems 2.3.3 and 2.3.4 we have that Ξ is exactly equal to the set of vertices of the

reduced problem (2.16), so an optimal solution of the subproblem can be found in Ξ. The charac-

terization of the vertices of Q with the set Ξ will allow the reduced problem for each beamlet row to

be solved efficiently. One could solve the subproblem (2.16) in O(q3) time by simply enumerating

through all of the O(q2) elements of Ξ and evaluating the objective function with O(q) arithmetic

operations. Then the subproblem (2.12) could be solved in O(brq3) operations; already, that is an

improvement over an interior point method, which could solve (2.12) in O((brq)3.5) time. In the

next section, we will demonstrate an even larger improvement with a linear-time algorithm to solve

the reduced subproblem for a single beamlet row.

2.3.3 Linear-time algorithm to solve the reduced subproblem

We aim to find the vertex in Ξ with the lowest objective value. As described in the previous section,

the vertices of the subproblem are vectors in {0, 1}q that have a contiguous set of nonzero elements.

Thus, solving (2.16) is equivalent to finding the indices m and n, with 1 ≤ m ≤ n ≤ q, such that∑n
j=m−

(
cik
)
j

is maximized. This problem is known as the maximum subarray sum problem.

The maximum subarray sum problem can be solved with a dynamic programming algorithm

known as Kadane’s algorithm [43]. At index j, let c be the maximum sum for the subarray ending at

position j, and let s be the maximum subarray sum obtained so far up to position j. The maximum

subarray is extended if the sum of the subarray ending at position j plus xj+1 is greater than xj+1.

Otherwise, the maximum subarray stays the same and the iterations continue. Formally, Kadane’s

algorithm is given by

c← max{0, x1}

s← max{0, x1}

for j = 2 : length(x) do

c← max{c+ xj , xj}

s← max{c, s}.

end for
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The indices m and n for the beginning and end of the subarray with the maximum sum can also be

maintained throughout the iterations. Then the optimal solution of (2.16) is the vector x∗ defined

as

x∗j =


1, if m ≤ j ≤ n

0, if j < m or j > n.

This algorithm can be used to solve the reduced subproblem (2.16) in linear (O(q)) time. Then,

since the subproblem is solved r times for each of the b beams, the problem (2.12) in each iteration

of the Frank–Wolfe algorithm can be solved in O(brq) time.

2.4 Numerical experiments with clinical cases

We examined the effect of the proposed changes to the VMERGE planning method using two clinical

cases: the first is the prostate case from the CORT dataset [25], and the second is a paraspinal

tumor with a more challenging geometry (see Figure 2.1). The prostate case is a standard one with

a small number of organs-at-risk (bladder, rectum, penile bulb, and femoral heads) and two targets:

a geometric expansion of the prostate is prescribed 68 Gy in 30 fractions, and an expansion around

the prostate and the lymph nodes is prescribed 56 Gy in 30 fractions.

The paraspinal case has a single target volume that surrounds the spinal cord, which is the

main dose-limiting organ. The secondary dose-limiting organs in this case are the kidneys. The

prescribed dose to the PTV is 66 Gy in 33 fractions. For the OARs, the maximum dose in the

center of the spinal cord is limited to 50 Gy, and the mean dose in the kidneys is constrained to be

under 25 Gy.

2.4.1 Experimental setup

Single-arc VMAT plans were computed using different variants of VMERGE. We compared the

two merging strategies, the one based on the original similarity score (2.1) and one based on the

greedy strategy from Section 2.2.1. Both of these were employed with and without the SPG-based
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(a)

(b)

Figure 2.1: Representative slices of CT images for the clinical cases in this chapter. (a) The prostate
case from the CORT dataset. The visible contoured OARs in this slice are the bladder (red), left and
right femoral heads (light blue and brown), and the rectum (orange). The two PTVs are contoured
in blue and yellow. (b) The paraspinal case. The PTV (contoured in yellow) is wrapped around the
spinal cord, which is contoured in red.
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regularization from Section 2.2.2. All of the plans were optimized assuming sliding window MLC

leaf trajectories with a maximum leaf speed of 6 cm/s and a maximum dose rate of 600 MU/min.

Dose deposition coefficients were computed for 180 equispaced 6 MV beams with 1 × 1 cm

beamlet grid resolution using the dose calculation algorithm implemented in CERR version 4.0b4

[31]. The maximum field size was adapted to each case; the field width was determined by the

smallest rectangular field that covers the beams-eye-view of the target from each of the 180 beam

angles. For the prostate case, this rectangular field is 13×16 cm, for the paraspinal case it is 9×12

cm.

The different variants of the VMERGE algorithm were started from an optimal 180-beam step-

and-shoot IMRT plan (with and without the SPG constraint), and the merges were continued until

only 10 merged fluence maps remained. Each plan following a merge represents a different trade-off

between delivery time and treatment quality. In both of the clinical cases, the initial 180-sector

plan required far too much delivery time, and the quality of the 10-sweep plan was far too poor

to be useful. The overall plan quality was measured by the FMO objective function value. For

visualization and evaluation purposes, two additional metrics were also used [24]:

• the target coverage was quantified by the standard error of the (voxelwise) PTV dose,

std error =

(
1
P

P∑
i=1

(M − di)2

)1/2

(2.17)

where P is the number of voxels in the PTV, and M is the prescription dose;

• organ sparing was quantified by the mean dose to the respective organs.

2.4.2 Results

Results from the prostate case

Figure 2.2 compares the merging strategies of the original VMERGE method and the greedy variant.

The first panel shows the difference in terms of our primary plan quality metric, the FMO objective

35



Treatment time [min]
2 4 6 8 10 12 14 16 18 20

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

×10
7

0

2

4

6

8

10

12

14

Original VMERGE
Greedy VMERGE

Treatment time [min]
2 4 6 8 10 12 14 16 18 20

S
ta

n
d
a
rd

 e
rr

o
r 

o
f 
P

T
V

 d
o
s
e
 [
G

y
]

0

1

2

3

4

5

6

7

Original VMERGE - PTV56
Original VMERGE - PTV68
Greedy VMERGE - PTV56
Greedy VMERGE - PTV68

(a) (b)

Treatment time [min]
2 4 6 8 10 12 14 16 18 20

M
e
a
n
 O

A
R

 d
o
s
e
 [
G

y
]

5

10

15

20

25

30

35

40

45

Bladder
L Femoral Head
Penile Bulb
Rectum
R Femoral Head

Treatment time [min]
2 4 6 8 10 12 14 16 18 20

M
e
a
n
 O

A
R

 d
o
s
e
 [
G

y
]

5

10

15

20

25

30

35

40

45

Bladder
L Femoral Head
Penile Bulb
Rectum
R Femoral Head

(c) (d)

Figure 2.2: Comparison of the original VMERGE method and the greedy variant on the prostate
case, without SPG-regularization. Panel (a): objective function value versus treatment time. Panel
(b): standard error of PTV dose (Eq. (2.17)) versus treatment time for the two PTVs. Panel (c):
mean dose to the OARs with the original VMERGE method. Panel (d): mean dose to the OARs
with the greedy variant. The data points with the highest treatment time represent the 180-beam
IMRT plan before any merges; each plan obtained after a merge is represented by a data point
in each of the figures. In the clinically most relevant part of the figures (treatment time under 5
minutes) the greedy approach provides a substantial improvement in the objective function and
standard error of the PTV. The differences in the OAR sparing between the two VMERGE methods
are minimal.
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function value. The remaining panels show the standard error of the PTV dose and the mean dose

to each OAR separately. In the most relevant section of graph, corresponding to 2–6 minutes of

treatment time, for two plans that have the same treatment quality, the plan obtained with the

greedy merging strategy has around 1.5 minutes lower treatment time. The greedy variant also

yields lower voxelwise standard error for both of the PTVs in this case.

Figure 2.3 shows the effect of starting VMERGE from a regularized SPG-constrained solution.

As outlined in Section 2.2.2, these plans were obtained by starting with a 180-beam FMO solution

that was optimized with the additional constraint that the delivery time of the plan should be

under a specific time. For this case the time constraint was chosen to be 540 seconds; it takes

480 seconds to sweep across the 16 cm wide field 180 times without delivering any dose (with

the collimator leaves traveling at their maximum speed), and we allowed one additional minute to

deliver radiation and modulate the radiation field. To better gauge the quality of these treatment

plans, we marked in the figure the objective function values of two fixed-beam IMRT plans (with

no constraints on treatment time or modulation of the fluence), using 9 and 20 equispaced beams.

Fixed beam IMRT treatments typically have between 5 and 9 beams; hence, the 9-beam plan is a

high-quality plan that could realistically be delivered in the clinic, while the 20-beam plan is better

than typical clinical treatments. The fixed beam IMRT plans were obtained by optimizing the same

FMO objective function that is used throughout the study to measure treatment quality.

The treatment plans benefit considerably from both modifications to the VMERGE method; in

fact, the effect of the regularization appears to be even greater than the effect of the greedy merging

strategy. Combining regularization and greedy merging, our modified VMERGE method provided

a treatment comparable to 9-beam step-and-shoot IMRT with an estimated treatment time under

3 minutes.

Results from the paraspinal case

In Figure 2.4, we observe that the paraspinal case has the same qualitative results as the prostate

case. For a fixed treatment time, the greedy VMERGE algorithm yields a solution with a lower
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Figure 2.3: A comparison of treatment time versus plan quality trade-offs with the original
VMERGE method, the greedy variant, and both methods with our SPG-regularization, for the
prostate case. The two horizontal lines are objective function values of the optimal 9-beam and
20-beam step-and-shoot IMRT plans provided for reference. The SPG-regularization lowers the
objective function values for both merging strategies, and greedy merging combined with SPG-
regularization provides the most desirable plans.

38



(a)

(b)

Figure 2.4: A comparison of the two VMERGE methods, without SPG regularization, for the
paraspinal case. In (a), we observe that for a fixed treatment time, the greedy VMERGE method
achieves a lower objective function. This is especially pronounced in the most clinically relevant
part of the graph, with treatment time under five minutes. (b) Mean dose to the spinal cord and
kidneys, which are the two dose-limiting OARs.
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lines are objective function values for 9-beam and 20-beam step-and-shoot IMRT plans. As in the
prostate case, using greedy merging improves the objective function value for the same treatment
times, and adding SPG-regularization lowers the objective function value even more substantially.
A treatment plan with the same plan quality as the optimal 20-beam IMRT plan can be delivered
in just over two minutes.
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objective function value than the original VMERGE method. In addition, the healthy organ sparing

is comparable between the two VMERGE methods. Figure 2.5 provides a graphical summary of the

results with the regularized solutions. Noting that it takes 360 seconds for the leaves to move across

the 12 cm field 180 times, and allowing one minute for beam modulation, an upper bound of 420

seconds was used during the SPG-regularization step. As with the prostate case, the greedy variant

and SPG-regularization provide a substantial reduction in treatment time for a given objective

function value. The effect of the regularization is particularly notable. The plan quality of the

20-beam step-and-shoot IMRT plan is matched with a delivery time of just over two minutes.

2.5 Discussion

While the initial results are based on only two clinical cases, these results are both consistent and

promising, indicating that the greedy merging strategy and especially the SPG-based regulariza-

tion provide a substantial boost to the original VMERGE algorithm. The specific treatment times

achieved are dependent on machine parameters such as leaf speed and patient geometry (especially

the required field size), but the outcomes are qualitatively the same independent of these parame-

ters. For example, we observed a similar reduction in treatment times (with the same plan quality)

over the original VMERGE method assuming a 3 cm/s maximum collimator leaf speed.

There are a number of ways that the modified VMERGE algorithm could potentially be further

improved. For example, the current optimization model explicitly assumes that the gantry speed is

constant in each merged arc sector. A continuously variable gantry speed that can change within

the merged arc sectors is more desirable, but it introduces another aspect to the optimization that

adds considerable computational difficulty. Another limitation of the current approach is that its

delivery time estimates rely on sliding window delivery, where all leaves have to move in the same

direction across the entire field before they can simultaneously turn back. Allowing more general

leaf trajectories would likely result in even lower treatment times [3, 24], but the nonconvexity of

the underlying optimization models makes it particularly difficult to incorporate other types of leaf

trajectories without increasing the plan optimization time to impractical levels.
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Chapter 3

Optimizing nonuniformly fractionated

treatments

In this chapter, we demonstrate that spatiotemporal fractionation schemes, in which the dose distri-

bution can vary in each fraction, provide high-quality treatment plans and show an improvement in

healthy tissue sparing over uniformly fractionated treatments. The optimization of spatiotemporal

plans is based on a biological model, which introduces nonconvexity into the fluence map optimiza-

tion. In five cases of liver cancer with distinct tumor geometries, the locally optimal spatiotemporal

plans achieve substantial mean liver BED reduction over the optimal uniformly fractionated plans.

The results indicate that spatiotemporal treatments can achieve substantial reductions in normal

tissue dose and BED in the context of photon arc therapy.

3.1 Introduction

3.1.1 The linear-quadratic model for biologically effective dose

The effect of radiation on a tissue is given by the radiobiologic linear-quadratic (LQ) model for the

number of cells that survive a radiation dose. In this model, there are two components to radiation-
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Figure 3.1: The cell survival curve given by the linear quadratic (LQ) model in (3.1). The solid
line shows the estimation from the LQ model, and the data and error bars are from in-vitro
experiments [18]. Reprinted with permission from Elsevier.

induced cell death, one that is proportional to the dose and one that is proportional to the dose

squared. The fraction S of cells surviving dose d is given by

S = e(−αd−βd2), (3.1)

where α and β are tissue-dependent parameters whose values are obtained from in-vitro experiments

[32, 45]. A plot of the cell survival curves from the LQ model can be found in Figure 3.1. The

effectiveness of a treatment is given by the logarithm of the surviving fraction of cells, and the

equation is divided by α so the dimension is dose instead of dose squared [36]. This measure of

effectiveness, called the biologically effective dose (BED), for a treatment with T fractions is given

by

b = Td
(

1 +
d
α/β

)
. (3.2)

Recall from Chapter 1 that radiation treatments are fractionated by dividing the total dose into

a series of smaller treatments. For a fixed total physical dose Td, the BED is minimized if the dose

is split evenly into many fractions. This standard fractionation regimen is desired in normal tissues.
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On the other hand, for a fixed total physical dose, the BED is maximized if all dose is delivered in

a few fractions (called hypofractionation), which is desired in the tumor. Considering this inherent

trade-off of fractionation decisions, it would seem ideal to simultaneously achieve hypofractionation

in the tumor while splitting the dose to normal tissues evenly into many fractions. While this may

appear unattainable at first glance, this goal can be approximately achieved using spatiotemporal

fractionation schemes, in which the dose distribution in each fraction can vary. Spatiotemporal

fractionation schemes deliver different dose distributions in different fractions in an attempt to

minimize BED in healthy tissue and maximize BED in the tumor by hypofractionating parts of the

tumor while delivering approximately identical doses to the surrounding tissue. Throughout this

thesis, we use the terms spatiotemporal fractionation and nonuniform fractionation synonymously.

3.1.2 Relation to prior works

The clinical rationale for spatiotemporal fractionation to optimally exploit the dependence of cell

survival on the fractionation scheme as described by the BED model was first proposed in the

context of proton radiotherapy [97, 98, 110]. The potential benefit in IMPT comes from the fact

that the dose in the entrance region of a proton beam is largely independent of the beam’s range,

which provides some flexibility to modify the dose in the tumor without equally affecting the dose

in the entrance region. (Recall the dose-depth curve for protons in Figure 1.3, which displays the

Bragg peak and then the quick dose falloff after the peak.) Because of the differences in how proton

doses and photon doses are absorbed, it was unclear until recently whether or not the benefit

of spatiotemporal fractionation would translate to photon treatments. A proof-of-concept paper

for spatiotemporal fractionation in photon therapy proposed that spatiotemporal fractionation

may indeed provide a therapeutic advantage in arc therapy delivered with conventional photon

beams [89]. The rationale for photon treatments is that distinct arc therapy plans can be created in

such a way that each fraction delivers high single-fraction doses to complementary parts of the target

volume while creating a similar dose bath in the surrounding normal tissue. This was demonstrated

for the fractionated radiosurgery treatments of large arteriovenous malformations [92].
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Prior research has addressed the problem of optimizing fractionation decisions, such as whether

to hypofractionate or hyperfractionate, based on the BED model [50, 61, 94]. These works aim at

maximizing the tumor BED subject to BED constraints to the normal tissue. It was shown that

the optimal number of fractions depends on the α/β ratios of tumor and normal tissues, but also

on the dose distribution. These works, however, all assume uniform fractionation, where the same

dose distribution is delivered in all fractions.

The novelty in the idea of spatiotemporal fractionation lies in the fact that there is a potential

advantage of delivering distinct dose distributions in different fractions, purely motivated by the

cell response to fractionated treatments as described by the standard BED model. There are several

extensions of the BED model that describe higher order biological effects such as incomplete repair of

radiation damage between fractions [9,103], repopulation of tumors over the course of treatment [16],

the effect of chemotherapeutic agents [79], and reoxygenation of hypoxic tumors [109]. It was found

that some of these models give rise to more complex fractionation schemes, i.e. varying doses per

fraction. However, it is difficult to quantify the importance of any of these higher order effects in

the clinic. Consequently, the role of such models to guide fractionation decisions in clinical practice

has been limited. Instead, spatiotemporal fractionation as described in this thesis is purely based

on the basic fractionation effect, whose existence and clinical relevance is undoubted.

Another approach in which different dose distributions in each fraction may arise is adaptive

radiotherapy (ART) [108], sometimes called adaptive fractionation therapy [56] or dynamic radio-

therapy [52,53]. This technique uses feedback information, such as changes in the patient anatomy,

to modify the treatment plan during the course of a fractionated treatment (e.g., replanning to

compensate for tumor shrinkage in lung or head-and-neck cancer) [84,106]. ART mostly deals with

adapting treatment plans to compensate for geometric changes of the patient [51, 52]. Formally,

different treatment plans are delivered in different fractions; however, ART in the context of geo-

metric changes does not aim at purposefully delivering different tumor doses after replanning. To

the contrary, it aims at reestablishing the paradigm of uniform fractionation.
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3.2 A mathematical model for optimal spatiotemporal

fractionation

3.2.1 Nonuniform fractionation using the BED model

The generalization of the BED model in (3.2) to fractionated treatments with T fractions is the

cumulative BED defined as

b =

T∑
t=1

(
dt +

d2
t

(α/β)

)
, (3.3)

where dt is the physical dose delivered in fraction t, and α/β is a tissue-specific parameter; see,

e.g., [66]. IMRT planning using BED can be performed analogously to conventional IMRT opti-

mization, using similar objective functions and constraints in the treatment planning optimization

model (1.1), but substituting BED in place of physical dose [97]. We define x1, . . . , xT to be the

vectors of beamlet intensities delivered in fractions 1 through T , and V to be the set of voxels

in the patient. Using the cumulative BED from (3.3), we obtain the spatiotemporal optimization

problem:

min
x,d,b

F (b)

s.t. bv =

T∑
t=1

(dvt +
d2vt

(α/β)v
) ∀ v ∈ V

Dxt = dt t = 1, . . . , T

xt ≥ 0 t = 1, . . . , T,

(3.4)

where D is the dose-influence matrix and the objective function F represents the desired clinical

goals of target coverage, conformity, and organ sparing. We use a similar piecewise quadratic objec-

tive function that was first presented in Section 1.3.2, except the penalty is now a function of the

BED b for a voxel or structure instead of the physical dose d. As before, the objective function F

is a weighted sum of piecewise quadratic penalty functions that penalize BED above a prescribed

threshold bhi
v in voxel v, below a threshold blov , or above a prescribed mean BED mhi in a given
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structure. Let I+ and I− be the index sets of objectives that penalize BED above or below a pre-

scribed threshold, and let Im be the index set of objectives penalizing mean BED of a structure.

Let Vi be the set of voxels involved in objective i ∈ I. We define the clinical goal Fi as the piecewise

quadratic penalty function

Fi(b) =



∑
v∈Vi

(bv − bhi
iv)

2
+ if i ∈ I+,

∑
v∈Vi

(bloiv − bv)2
+ if i ∈ I−, 1

|Vi|
∑
v∈Vi

bv −mhi
i

2

+

if i ∈ Im.

The overall objective function F is the weighted sum

F (b) =
∑
i∈I

wiFi(b), (3.5)

where I is the union of I+, I−, and Im, and each wi reflects the relative importance of the i-th

clinical goal.

There are typically protocols from common clinical practice that dictate the prescription values

for dose to certain structures, but there are no such standards for BED prescriptions. Instead, we

derive the prescription BED thresholds bhi
v and blov from physical dose prescriptions. The prescription

BED value is computed to be the BED that would result if the physical dose prescription were

delivered in a uniformly fractionated treatment. For example, if the prescription value for the

physical dose to a PTV structure (with α/β = 10 Gy) is 50 Gy in 5 uniform fractions, the resulting

BED of 100 Gy would be used as the BED prescription for the PTV in the spatiotemporal plan.

We also employ the distance-dependent BED thresholds for voxels around the PTV as described

in Section 1.3.2, using the same calculation from the physical dose thresholds.
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Nonconvexity of nonuniform fractionation

Conventional fluence map optimization is a convex optimization problem when the clinical goals

are modeled using a convex objective function F of the physical dose. In Section 3.2.2 we will show

that despite the apparent nonconvexity introduced by the quadratic equality constraints, a BED-

based optimization model for uniformly fractionated treatment plans is convex when the physical

doses d are restricted to clinically relevant values and F is a piecewise quadratic penalty function

similar to the dose-based objective functions. The nonuniform fractionation problem (3.4), however,

is nonconvex. The nonconvexity of the formulation comes from the composition of the piecewise

quadratic penalty function penalizing the underdose of the target and the function defining the

BED. As a general rule, the composition of a convex nonincreasing function (such as our penalty

function) with a convex quadratic function (such as the BED) is nonconvex, unlike the composition

of a convex nondecreasing function (such as the functions used to penalize overdose) and the BED,

which is always convex.

This nonconvexity is an inherent characteristic of the problem that cannot be eliminated by

reformulating the model, as the following argument shows: by definition, permuting the fractions in

an optimal treatment plan leads to another optimal plan, yet the average of these T ! treatment plans

will be a plan with identical fractions, which in general will not be optimal. Thus, gradient-based

optimization methods used to solve the uniform model can only yield locally optimal solutions for

the nonuniform model. Later in this chapter, we will observe the nonconvexity of this problem in

Figure 3.4, which shows that substantially different locally optimal spatiotemporal plans may exist

for the same clinical case.

3.2.2 Uniform fractionation using the BED model

BED-based optimization can also be performed analogously for conventional, uniformly fractionated

treatments. Throughout this work, we use a uniform reference plan as a benchmark to evaluate

the benefit of nonuniform fractionation. We obtain the uniform reference plan by solving (3.4) with

the additional constraint that x1 = · · · = xT . Eliminating the redundant variables, the uniform
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reference plan is the optimal solution of the following problem:

min
x,d,b

F (b)

s.t. bv = Tdv

(
1 +

dv
(α/β)v

)
∀ v ∈ V

Dx = d

x ≥ 0.

(3.6)

In a similar manner to [97], we verify that the BED-based optimization model for uniformly

fractionated treatment plans is convex in the domain of “reasonable” doses d for all typical α/β

values and number of fractions T . Because the BED is a monotone increasing function of the

physical dose and the piecewise quadratic penalties are convex functions of the BED, the only

potentially problematic term of the objective function is the underdose penalty of the form f(bv) =

w
(
blov − bv

)2
+

= w
(
blov − T

(
dv + d2v

α/β

))2

+
for a single voxel v. This is not a convex function of the

physical dose. However, it can be seen that ∂2f
∂d2v

> 0 for physical dose values dv that satisfy

dv > −
α/β

2
+

1√
3

√
(α/β)blov
T

+
(α/β)2

4
. (3.7)

For the parameter values used in the current work (blov = 100 Gy, α/β = 10 for the tumor, and

T = 5, as detailed later in Section 3.3.1), the above expression yields a lower bound of 3.66 Gy on

the physical dose in order for the uniform model to be convex, which is not a binding constraint

in the tumor, where the prescription BED blov and number of fractions T correspond to dv = 10

Gy of physical dose per fraction. More generally, we may compare the lower bound in (3.7) with

the prescribed per-fraction dose dlo
v corresponding to a BED of blov delivered in T fractions, which

is given by the formula

dlo
v = −

α/β

2
+

√
(α/β)blov
T

+
(α/β)2

4
. (3.8)
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This reveals that regardless of the parameters blov , α/β, and T , the underdose penalty is convex for

per-fraction dose values satisfying

dv > dlo
v /
√

3, (3.9)

which is reasonably required from every acceptable uniformly fractionated plan.

3.2.3 The constrained nonuniform model

While the objective function (3.5) can be useful to specify each of the clinical objectives and

their relative priorities, it does not fully quantify the benefit of spatiotemporal fractionation. The

optimal objective value has no physical interpretation, so if one treatment plan has a lower objective

function value, we cannot specify in what way the treatment plan is “better” than another because

an improvement in the objective function does not directly relate to a clinical outcome. Additionally,

the benefit of spatiotemporal fractionation over conventional fractionation is distributed among the

terms of the objective function, and the optimal solution does not realize the maximum benefit in

any given objective.

In order to have a clinically interpretable objective function, we formulate an optimization

problem in which we minimize only one of the clinical objectives of (3.5), say F1, while constraining

the solution to be at least as good as the uniform reference plan with respect to each other objective

Fi, (i ∈ I, i 6= 1). In the liver cases in Section 3.3, the primary goal is to lower the BED in the liver

without compromising target coverage and conformity.

Let b∗ be the BED delivered by the uniform reference plan, which is the globally optimal solution

of (3.6), and let F1 be the penalty function for nonzero mean BED in the liver. We modify (3.4)

to include the constraints that the solution must be as good as the uniform reference plan with
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respect to all objectives besides F1, and we obtain the constrained spatiotemporal fractionation

problem:

min
x,d,b

F1(b)

s.t. Fi(b) ≤ Fi(b∗) i ∈ I, i 6= 1

bv =

T∑
t=1

(dvt +
d2vt

(α/β)v
) ∀ v ∈ V

Dxt = dt t = 1, . . . , T

xt ≥ 0 t = 1, . . . , T.

(3.10)

The first set of constraints ensures that the improvement in the objective F1 is not at the cost

of sacrificing the other clinical objectives; the computed spatiotemporal plan is either preferable or

identical to the uniform reference plan with respect to every objective.

3.3 Application to liver tumors

We examined the benefit of spatiotemporal fractionation on two-dimensional slices of five clinical

liver cases with distinct geometries. The first three cases feature centrally-located lesions within

the liver; Case 1 has a large lesion, Case 2 has a small lesion, and Case 3 has two separate lesions

within the liver. In each of these cases the liver is the main dose-limiting organ. In Case 4, the

tumor abuts the chest wall, and Case 5 is a challenging geometry where both the chest wall and

the bowel are dose-limiting and need to be included in the treatment plan optimization model. The

patient geometries can be found in Figure 3.2.

3.3.1 Experimental setup

The BED prescription and α/β ratios

Five-fraction treatments were planned for all cases. To derive the upper and lower BED thresholds

bhi and blo, typical prescription doses and normal tissue constraints for 5-fraction liver treatments
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were converted into BED values using the clinically accepted values of α/β = 10 Gy in the tumor

and α/β = 4 Gy in all normal tissues [32, 67]. The prescription lower bounds blo for the GTV and

PTV were chosen to be 100 Gy and 72 Gy, respectively, which correspond to 50 Gy and 40 Gy of

physical dose delivered in 5 fractions assuming uniform fractionation. We also included an upper

bound bhi of 115.5 Gy BED in the GTV and 100 Gy BED in the PTV, corresponding to 55 Gy and

50 Gy of physical dose delivered in 5 uniform fractions.

We minimize mean liver BED (mhi = 0) to spare the healthy liver tissue. In addition, to achieve

a conformal dose distribution, we implement a distance-dependent quadratic penalty function for

voxels outside the PTV. We impose a linear falloff of BED from 175 Gy at the edge of the PTV to

a BED of 15 Gy in 3 cm. This corresponds to a physical dose falloff from 50 Gy to 10 Gy in 5 equal

fractions. In Cases 4 and 5, with the chest wall near the tumor, we highly penalize dose exceeding

bhi = 96.2 Gy BED (35 Gy of physical dose in 5 fractions) to the chest wall. Additionally, in Case 5,

where the GI tract is also dose-limiting, we add an upper bound of 75 Gy BED (30 Gy of physical

dose in 5 fractions) to the affected sections of the GI tract.

Computing the uniformly fractionated reference plan

The BED-based fluence map optimization problem (3.6) was solved to obtain optimal beamlet

weights for a uniformly fractionated reference plan with 21 equispaced beams, which approximates

a high-quality VMAT plan by delivering the modulated beams in small arc sectors [68]. The number

of arc sectors could be reduced by using techniques such as the merging of adjacent fluence maps

described in Chapter 2. Dose-influence matrices were calculated for the 21 beams using the dose

calculation algorithm implemented in CERR version 5.2 [31]. In this work, we limited the compu-

tations to two-dimensional slices of the patient voxels and optimized beamlet weights for a single

row of the beamlet grid. As discussed in Section 3.2.2, although the uniform plan optimization

problem is defined using a combination of convex and nonconvex constraints, when the beamlet

weights x and physical doses d are restricted to clinically relevant values, the problem is convex,

and the globally optimal solution can be computed by local optimization algorithms.
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L-BFGS-B is a quasi-Newton method to solve bound constrained optimization problems, which

are problems that aim to minimize a differentiable nonlinear function f : Rn → R subject to the

constraints ` ≤ x ≤ u. L-BFGS-B is a descendant of the BFGS algorithm, which minimizes an

unconstrained objective function f with iterates of the form

xk+1 = xk − αkHk∇fk,

where αk is an appropriately-chosen step size and Hk is an approximation of the inverse Hessian of

f that is updated in every iteration using the gradients from previous iterations. When the number

of variables is large, the cost to store the approximate Hessian matrix may be problematic. The

limited-memory variant L-BFGS stores a set of vectors that contain curvature information from

the past m iterations (where m is a user-defined parameter), and the Hessian approximation is

defined implicitly instead of storing the entire matrix. With the addition of the bound constraints

` ≤ x ≤ u, the L-BFGS-B algorithm is based on the gradient projection method and uses the

limited-memory BFGS Hessian approximation [112]. In our experiments, the optimization was

performed with Matlab using the L-BFGS-B solver [111], and the runtimes to obtain the globally

optimal uniformly fractionated solutions were less than 10 seconds on a standard desktop computer

for all of the cases.

Computing the spatiotemporally fractionated plans

After computing the uniform reference plan, we computed nonuniformly fractionated treatment

plans in which the beamlet weights and corresponding dose distributions are not the same in each

of the five fractions. As described in Section 3.2.3, we solve (3.10) to minimize the mean BED

in the liver, subject to the constraints that the solution must be at least as good as the uniform

reference plan with respect to all other objectives. In this work, we used the interior point algorithm

implemented in Matlab’s built-in optimizer fmincon [58] to compute locally optimal solutions of

these nonconvex problems.
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Interior point methods, which were originally proposed for linear programming [49], find solu-

tions to constrained nonlinear programs using a barrier function that approaches infinity as a point

approaches the boundary of the feasible region. For a general nonlinearly constrained optimization

problem

min f(x)

s.t. h(x) = 0

g(x) ≤ 0,

where f : Rn → R, h : Rn → Rt, and g : Rn → Rm are smooth functions, the barrier problem is

min f(x)− µ
m∑
i=1

ln si

s.t. h(x) = 0

g(x) + s = 0,

(3.11)

for some value of µ > 0 [19]. Path-following interior point methods iterate through the interior of the

feasible region with a sequence of points xµ, which converge to an optimal solution of the constrained

optimization problem as µ approaches zero. For a fixed value of µ, an iterate xµ is computed by

solving a system of optimality conditions for the barrier problem (3.11) with Newton’s method [35].

In the current work, we initialize the optimization with a perturbation of the fluence maps of

the uniform reference plan. The beamlet weights were multiplied by independent random factors

drawn uniformly from the interval [0, 2], and the quality of the computed local optimal solutions did

not appear to be sensitive to the specific way the plans were perturbed. Runtimes for computing a

locally optimal solution of (3.10) ranged from 15 minutes to 4 hours.

3.3.2 Results

Figure 3.3 shows a comparison of the dose distributions of the uniform reference plan with locally

optimal nonuniformly fractionated solutions for Case 1. In Figure 3.4, several additional locally

optimal solutions for Case 1 are presented to demonstrate that the locally optimal solutions par-
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Table 3.1: Summary of mean liver BED reductions from spatiotemporal fractionation and sparing
factors for each of the five cases. The sparing factor is a value that determines the dependence of the
optimal fractionation schedule of a fixed dose distribution on the patient geometry. The remarkable
benefit seen in Case 2 agrees with the fact that the sparing factor is substantially lower in this case
than in the other cases.

Case description
Mean liver BED [Gy] Sparing

conventional spatiotemporal reduction factor

1 Large central lesion 84.54 75.87 12.8% 0.6663

2 Small lesion 26.14 19.47 34.3% 0.3830

3 Two small lesions 59.54 50.24 18.5% 0.5879

4 Lesion abutting ch. wall 47.51 38.65 22.9% 0.5289

5 Lesion abutting GI tract 88.67 77.38 14.6% 0.7028

tition the tumor differently but maintain similar overall treatment quality. Similar figures for the

remaining cases can be found in Appendix A.

Table 3.1 summarizes the computed bounds and benefits observed in all five cases. In each case,

the mean liver BED in the nonuniform plans is substantially lower than in the uniform plans. Case

1 displays the smallest reduction in the mean liver BED with an approximately 13% improvement,

and Case 2 has the largest reduction of approximately 34%. Note that these improvements are

achieved without sacrificing any other clinical objective, as by definition, the spatiotemporal plans

computed by solving (3.10) are at least as good as the uniform reference plan with respect to every

objective.

The effectiveness of a spatiotemporal treatment can be quantified by its equivalent dose DEQ5,

defined via

BED =

5∑
t=1

[
dt +

d2
t

α/β

]
= DEQ5 +

(DEQ5)2/5
α/β

which yields

DEQ5 = 5

−α/β

2
+

√√√√(α/β

2

)2

+
α/β

5

5∑
t=1

[
dt +

d2
t

α/β

] .
The DEQ5 is the physical dose distribution that achieves the same BED as the spatiotemporal

treatment, if the treatment were to be delivered in five uniform fractions. Using DEQ5 has the
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advantage that the spatiotemporal plan can be directly compared to the physical dose distribution

of the uniform reference plan. The comparison is shown in Figure 3.3e and in the remaining figures of

Appendix A. In the visualization of the difference between the uniform and DEQ5 dose distributions,

we observe that the nonuniformly fractionated plans maintain the same tumor BED as the uniformly

fractionated plans while reducing the mean dose and BED in healthy liver tissue. This reduction

can also be seen by comparing the DVH curves of the physical dose and DEQ5 of the two plans.

For Case 1, these curves are included in Figure 3.5. The DVH curves show that there is substantial

dose reduction in the liver (both the DEQ5 and physical dose curves shift to the left), and that

this is a consequence of lower physical dose (but nearly identical DEQ5) delivered to the tumor.

The optimal number of fractions

In order to fairly evaluate the benefit of spatiotemporal fractionation, we must consider the potential

gain from changing the fractionation schedule in addition to altering the physical dose distribution.

We recomputed the optimal uniformly fractionated treatment plans with up to five fractions by

solving the uniform model (3.6) for T = 1, . . . , 5. In all of the cases, the five-fraction uniform plans

had the lowest mean liver BED among all computed uniform plans. Hence, Table 3.1 compares the

5-fraction spatiotemporal plans against the best uniform plans with up to five fractions.

This agrees with previous work on the dependence of optimal fractionation schedules on the

patient geometry and dose distribution. When the goal is to minimize the mean dose to a single

dose-limiting parallel organ such as the liver, the optimal fractionation schedule is a function of the

effective sparing factor δ̄ which was introduced independently by [94] and [50]. Using the notation

(α/β)N and (α/β)T for the α/β ratios for the normal tissue and tumor, respectively, it was shown that

if δ̄ >
(α/β)N
(α/β)T

= 0.4, then increasing the number of fractions is optimal, and if δ̄ < 0.4, then lowering

the number of fractions is optimal. In Case 2, the effective sparing factor is approximately 0.4,

while in the remaining four cases, the sparing factor is well above 0.4. This provides an explanation

for the observation that the benefit of spatiotemporal fractionation was largest for Case 2; the

treatment quality of a uniformly fractionated 5-fraction treatment and a single-fraction treatment
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is approximately equal. Therefore, achieving a benefit through spatiotemporal fractionation relies

to a lesser extent on achieving near-uniform fractionation in the normal liver.

3.4 Discussion

The results indicate that spatiotemporal treatments can achieve substantial reductions in both

BED and physical dose to the liver and other normal tissue. The approximately 13-35% mean liver

BED reduction is consistent with the benefit of spatiotemporal fractionation observed in previous

work for IMPT and large arteriovenous malformations [92].

As mentioned in Section 3.3, the treatment plans in this work have a higher number of beams

than a conventional IMRT plan to approximate a VMAT plan, where we expect nonuniform frac-

tionation to display the most benefit. The nonuniformly fractionated plans that are most effective

in lowering BED and total physical dose are those in which the tumor dose is hypofractionated

while the dose to surrounding tissue is fractionated. In other words, these plans deliver a high

single-fraction dose to parts of the tumor during each fraction and a consistent lower dose to the

liver and other healthy tissue throughout all of the fractions. VMAT treatments are particularly

suitable for delivering such a nonuniformly fractionated plan because the gantry rotation causes a

lower dose to be spread over the entire arc, which helps preserve the healthy tissue.
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Case 1: Large central lesion Case 2: Small lesion

Case 3: Two small lesions Case 4: Lesion abutting chest wall

Case 5: Lesion abutting GI tract

Figure 3.2: Patient geometries for each of the five cases. The structures contoured on the CT scan
are the liver (red), GTV (orange), chest wall (light green), large and small bowel (yellow), stomach
(dark blue), esophagus (light blue), kidneys (purple), spinal cord (light brown), heart (magenta),
and duodenum (dark green).
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(a)

(b) (c) (d) (e)

Figure 3.3: Dose distributions for Case 1, a large central lesion within the liver. (a) Physical
dose distributions in each of the five fractions show that the nonuniformly fractionated treatment
hypofractionates different parts of the tumor. (b) Total physical dose delivered throughout the
nonuniformly fractionated treatment. (c) Physical dose distribution of the uniformly fractionated
reference plan. (d) DEQ5 of the nonuniformly fractionated plan, which is the uniform plan that is
isoeffective in delivering the same BED as the nonuniformly fractionated plan. (e) The difference
between the physical dose in the uniform plan and the DEQ5 for the nonuniform plan, or (c) minus
(d). This shows that the spatiotemporal plans reduce dose in the healthy liver and in the entrance
region of the those beams that expose the liver the most. All numerical quantities shown are in
[Gy].
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Figure 3.4: Rows (a), (b), and (c) are physical dose distributions from three additional locally
optimal 5-fraction nonuniform treatments for Case 1, which is the same clinical liver case displayed
in Figure 3.3. They are all locally optimal solutions of the model (3.4). The first five panels of each
row are the dose distributions in the five nonuniform fractions, and the last panel on each row is the
equivalent dose DEQ5. The solutions exhibit the same pattern: different subregions of the tumor
receive a high single-fraction dose in different fractions. Note that the emergent “partitions” in the
optimized plans are a result of the optimization. This pattern supports the rationale that the benefit
of spatiotemporal fractionation is a result of hypofractionating parts of the tumor while maintaining
a consistent low dose in the surrounding tissue. The difference in the hypofractionated regions in
each solution also demonstrates that several qualitatively different locally optimal spatiotemporal
treatments may exist for the same case. All numerical quantities shown are in [Gy].
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(a)

(b)

Figure 3.5: Dose-volume histogram for (a) total physical dose and (b) DEQ5 for various structures
in Case 1. The dashed lines are the values from the uniformly fractionated reference plan and the
solid lines are from the spatiotemporal plan. These curves indicate that the spatiotemporal plan
achieves an overall reduction in physical dose, as observed by the lines shifted to the left in (a).
Additionally, in (b) we note that the spatiotemporal plan maintains DEQ5 in the tumor while
reducing dose to the healthy liver tissue. To assess the conformity of the dose around the PTV, we
included a curve for the voxels in a 1-cm margin around the PTV.
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Chapter 4

Bounding the achievable benefit of

spatiotemporal fractionation

In the previous chapter, we demonstrated that treatment plans optimized with a nonuniformly

fractionated treatment scheme can result in a lower BED in healthy tissue while maintaining the

tumor coverage of a conventional uniformly fractionated plan. However, the spatiotemporal treat-

ment plans presented in the last chapter were only locally optimal solutions of nonconvex optimiza-

tion problems, and we had little information about the optimality of these solutions on the global

scale. In this chapter, we begin by summarizing the theory of how to use semidefinite program-

ming to formulate a convex relaxation of a nonconvex quadratically constrained quadratic program

(QCQP). Next, we present a semidefinite programming relaxation of the constrained spatiotempo-

ral fractionation model. We present the results of solving the semidefinite programming relaxation

with the five clinical liver cases used in the last chapter, which allows us to bound the maximum

achievable benefit of spatiotemporal fractionation. We conclude by discussing some limitations of

this methodology and potential future directions of research.
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4.1 Semidefinite programming relaxations of general QCQPs

A semidefinite program (SDP) is an optimization problem of the form

min
x∈Rn

c>x

s.t. A(x) < 0,

where c ∈ Rn and A : Rn → Sn is an affine mapping [101]. (The notation Sn represents the cone

of n × n symmetric matrices.) The expression A(x) < 0 is called a linear matrix inequality, which

imposes that A(x) must be positive semidefinite. Similarly, the notation A � 0 is used to indicate

the matrix A is positive definite. A formulation with a linear objective function and a single linear

matrix inequality may seem restrictive, but it can be shown that many convex constraints can

be equivalently written as linear matrix inequalities [6, Ch. 3]. Hence, many convex optimization

problems can be reformulated into equivalent semidefinite programs.

The idea of formulating a convex relaxation of a general QCQP using semidefinite matrices was

first proposed by Shor, using Lagrangian duality to obtain a lower bound on the optimal value [82].

Semidefinite relaxations were then applied to a special case of combinatorial optimization problems

using the technique of lifting the problem to write the quadratic inequalities as linear inequalities in

a higher-dimensional space [55]. Later, Vandenberghe and Boyd used similar techniques to develop

a SDP relaxation for general QCQP that is the dual of Shor’s relaxation; these two relaxations

yield the same lower bound on the optimal value of a general QCQP [101]. In the remainder of

this section, we will describe a procedure for formulating a SDP relaxation of a general QCQP.

Consider the following general QCQP with inequality constraints:

min
x

x>A0x+ b>0 x+ c0 (4.1)

s.t. x>Aix+ b>i x+ ci ≤ 0 i = 1, . . . ,m,
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where Ai ∈ Sn (but not necessarily positive semidefinite), bi ∈ Rn, and ci ∈ R for all i = 0, 1, . . . ,m.

Recalling that x>Ax = tr(Axx>) and introducing an auxiliary matrix variable X = xx>, we can

write the QCQP as

min
x,X

〈A0, X〉+ b>0 x+ c0

s.t. 〈Ai, X〉+ b>i x+ ci ≤ 0 i = 1, . . . ,m

X = xx>,

where 〈·, ·〉 represents the matrix inner product 〈A,X〉 = tr(A>X). The final constraint, X = xx>

is equivalent to imposing that X < 0 and rank(X) = 1. The constraint X < 0 is a convex constraint,

but the constraint rank(X) = 1 is not. We relax the constraint X−xx> = 0 into X−xx> < 0; this

makes the feasible region larger, so the solution to the relaxation is a lower bound for the solution

of the original QCQP.

We now have an optimization problem with m linear constraints and one quadratic matrix

inequality:

min
x,X

〈A0, X〉+ b>0 x+ c0

s.t. 〈Ai, X〉+ b>i x+ ci ≤ 0 i = 1, . . . ,m

X − xx> < 0.

To reformulate this as a semidefinite program, we use the Schur complement to write the quadratic

matrix inequality as a linear matrix inequality. For a block matrix X =
(
A B
B> C

)
with an invertible

block A, the Schur complement of X is C −B>A−1B. If we assume that A � 0, then we have

X < 0 ⇐⇒ C −B>A−1B < 0
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[17]. Using this fact, we can rewrite the last constraint as the linear matrix inequality
(

1 x>
x X

)
< 0.

Then a relaxation of the QCQP (4.1) is the semidefinite program

min
x,X

〈A0, X〉+ b>0 x+ c0 (4.2)

s.t. 〈Ai, X〉+ b>i x+ ci ≤ 0 i = 1, . . . ,m 1 x>

x X

 < 0.

The optimal objective function value of (4.2) is a lower bound for the solution of (4.1).

4.2 A mathematical model for bounding the maximum

achievable benefit of spatiotemporal fractionation

We now apply the concepts from the previous section to formulate a convex optimization model

for bounding the maximum achievable benefit from nonuniform fractionation. We begin by writing

problem (3.4)–(3.5) as a quadratic optimization problem with quadratic constraints.

Recall that the objective function for the optimization of spatiotemporally fractionated plans is

a weighted sum of three types of penalty functions (see Section 3.2.1). We introduce the auxiliary

variables piv for the overdose penalties (bv−bhi
iv)+, the auxiliary variables qiv for the underdose penal-

ties (bloiv − bv)+, and the auxiliary variables ri for the mean dose penalties
(

1
|Vi|
∑

v∈Vi bv −m
hi
i

)
+

.

Note that in general, (y)+ is the smallest number z satisfying the inequalities z ≥ y and z ≥ 0. We

impose similar inequality constraints on the auxiliary variables piv, qiv, and ri:

piv ≥ bv − bhi
iv ∀i ∈ I+, ∀v ∈ Vi

piv ≥ 0

qiv ≥ bloiv − bv ∀i ∈ I−, ∀v ∈ Vi

qiv ≥ 0
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ri ≥
1

|Vi|
∑
v∈Vi

bv −mhi
i ∀i ∈ Im+

ri ≥ 0.

When these auxiliary variables are minimized, they are equal to the values of the positive part

functions.

We eliminate the variables bv from the problem using the equality

bv =
T∑
t=1

(dvt +
d2vt

(α/β)v
),

and we arrive at the following quadratically constrained quadratic programming (QCQP) formula-

tion of the nonuniform fractionation problem:

min
x,d,p,q,r

∑
i∈I+

∑
v∈Vi

wip
2
iv +

∑
i∈I−

∑
v∈Vi

wiq
2
iv +

∑
i∈Im

wir
2
i

s.t. piv ≥ −bhi
iv +

T∑
t=1

(dvt +
d2vt

(α/β)v
) ∀i ∈ I+, ∀v ∈ Vi

piv ≥ 0 ∀i ∈ I+, ∀v ∈ Vi

qiv ≥ bloiv −
T∑
t=1

(dvt +
d2vt

(α/β)v
) ∀i ∈ I−, ∀v ∈ Vi

qiv ≥ 0 ∀i ∈ I−, ∀v ∈ Vi

ri ≥
1

|Vi|
∑
v∈Vi

(
T∑
t=1

dvt +
d2vt

(α/β)v

)
−mhi

i ∀i ∈ Im

ri ≥ 0 ∀i ∈ Im

Dxt = dt t = 1, . . . , T

xt ≥ 0 t = 1, . . . , T.

(4.3)

Because the physical dose dvt is a linear function of the beamlet intensities xt, the dvt variables

can be eliminated from the formulation, and all the inequality constraints can be seen as quadratic
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inequalities in the primary decision variables x1, . . . , xT . By introducing the auxiliary matrix vari-

ables Xt = xtx
>
t , the quadratic inequalities in (4.3) can be written as linear inequalities in xt and

Xt. For instance, on the right-hand side of the first set of inequalities we substitute

−bhi
iv +

T∑
t=1

(dvt +
d2vt

(α/β)v
) =

T∑
t=1

〈 1 x>t

xt Xt

 ,

 − bhiiv
T

e>v D
2

D>ev
2

1
(α/β)v

D>eve
>
v D

〉 ,
where ev is the characteristic vector with ev = 1 in the v-th position and zeros elsewhere. (That

is, e>v D is simply the v-th row of the D matrix.) The resulting optimization model has a convex

quadratic objective function and only linear constraints, aside from the nonconvex quadratic equa-

tions Xt = xtx
>
t for t = 1, . . . , T . As described in the previous section, we obtain a convex relaxation

of this problem by replacing this set of equations by the weaker convex constraint Xt − xtx>t < 0

and, using the Schur complement, this constraint is equivalent to the convex linear matrix inequality(
1 x>t
xt Xt

)
< 0.

Since in the original nonconvex model we have Xt = xtx
>
t and xt ≥ 0, it is clear that each Xt is

component-wise nonnegative. Hence, we can add the inequalities Xt ≥ 0 to the convex relaxation.

(This component-wise inequality should not be confused with the linear matrix inequality Xt < 0.)

Note that even though the inequality Xt ≥ 0 is redundant in the original model, Xt ≥ 0 is not

redundant in the convex relaxation and tightens the bound.

A further simplification is possible. Since the relaxation is convex and symmetric in the fractions,

we can assume without loss of generality that at the optimum we have x1 = · · · = xT and X1 =

· · · = XT . Thus, we can eliminate the variables corresponding to the different fractions and use

only a single variable x and X in place of each xt and Xt. (This shows that our convex relaxation

does not distinguish between the uniformly and nonuniformly fractionated models, although the

bound does depend on the number of fractions.)

Finally, using the shorthand

Cv = 1
(α/β)v

D>eve
>
v D,
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we arrive at the following convex relaxation of (4.3):

min
x,X,p,q,r

∑
i∈I+

∑
v∈Vi

wip
2
iv +

∑
i∈I−

∑
v∈Vi

wiq
2
iv +

∑
i∈Im

wir
2
i

s.t. piv ≥ T

〈1 x>

x X

 ,

− bhiiv
T

e>v D
2

D>ev
2 Cv

〉 ∀i ∈ I+, ∀v ∈ Vi

piv ≥ 0 ∀i ∈ I+, ∀v ∈ Vi (4.4)

qiv ≥ −T

〈1 x>

x X

 ,

− bloiv
T

e>v D
2

D>ev
2 Cv

〉 ∀i ∈ I−, ∀v ∈ Vi

qiv ≥ 0 ∀i ∈ I−, ∀v ∈ Vi

ri ≥
T

|Vi|
∑
v∈Vi

〈1 x>

x X

 ,

−mhi
i
T

e>v D
2

D>ev
2 Cv

〉 ∀i ∈ Im

ri ≥ 0 ∀i ∈ Im1 x>

x X

 < 0, x ≥ 0, X ≥ 0.

The optimal objective function value of this problem is a lower bound for the minimum value

of the spatiotemporal fractionation problem (3.4)-(3.5).

Note that to obtain (4.4), we linearized every quadratic constraint in (4.3), even though all of

them were convex except for those involving qiv. The bound from (4.4) is tighter than what could

be obtained by simply replacing the concave quadratic constraints with a convex relaxation and

keeping the convex quadratic constraints intact. This is because unlike the linearizations of the

concave quadratics (which are relaxations), the linearizations of the convex quadratics are tighter

than the original constraints. Our derivation of (4.4) shows that the convex model as a whole is

indeed a relaxation of (4.3) despite the fact that this cannot be seen when we compare the models

constraint by constraint.
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4.2.1 Bounding the maximum benefit in a given objective

In Section 3.2.3 we formulated a constrained version of the spatiotemporal fractionation model to

prioritize a single clinical objective, which allowed us to maximize the benefit of the prioritized

objective. The convex relaxation of the constrained nonuniform model (3.10) can be derived anal-

ogously to how the relaxation (4.4) of the nonuniform model (3.4) was obtained. Consistent with

the application to liver tumors, we assume that the mean dose objective

F1(b) =

 1

|V1|
∑
v∈V1

bv −mhi
1

2

+

is the primary objective, where V1 is the set of healthy liver voxels. We minimize the auxiliary

variable r1 for the mean liver BED, and, similar to the constraints Fi(b) ≤ Fi(b
∗),∀i ∈ I, i 6=

1 in (3.10), we impose the constraints on the auxiliary variables piv and qiv. Then the convex

optimization model bounding the minimum value of F1 from below is the following:

min
x,X,p,q,r

r1

s.t.
∑
v∈Vi

p2
iv ≤ Fi(b∗) ∀i ∈ I+

∑
v∈Vi

q2
iv ≤ Fi(b∗) ∀i ∈ I−

ri ≤ Fi(b∗) ∀i ∈ Im, i 6= 1

piv ≥ T

〈1 x>

x X

 ,

− bhiiv
T

e>v D
2

D>ev
2 Cv

〉 ∀i ∈ I+, ∀v ∈ Vi (4.5)

piv ≥ 0 ∀i ∈ I+, ∀v ∈ Vi

qiv ≥ −T

〈1 x>

x X

 ,

− bloiv
T

e>v D
2

D>ev
2 Cv

〉 ∀i ∈ I−, ∀v ∈ Vi
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qiv ≥ 0 ∀i ∈ I−, ∀v ∈ Vi

ri ≥
T

|Vi|
∑
v∈Vi

〈1 x>

x X

 ,

−mhi
i
T

e>v D
2

D>ev
2 Cv

〉 ∀i ∈ Im

ri ≥ 0 ∀i ∈ Im1 xT

x X

 < 0, x ≥ 0, X ≥ 0.

In the next section, we describe how the first two convex quadratic constraints can be reformulated

into an equivalent linear matrix inequality [101], so without loss of generality we can include them

in the semidefinite program.

4.2.2 Solution methods

In our implementation of the convex relaxations, we reformulate the models to include both semidef-

inite constraints and second-order cone constraints. The second-order cone in RK+1 (also known

as the Lorentz cone or the quadratic cone) is defined as

QK+1 = {(x0, x̄) ∈ R× RK | x0 ≥ ||x̄||},

and a second-order cone constraint requires a vector to be in the second-order cone. Second-order

cone constraints are a special case of semidefinite constraints because it can be shown that any

second-order cone constraint can be written as a semidefinite constraint. In particular, (x0, x̄) ∈

QK+1 if and only if the arrow-shaped matrix

Arw(x0, x̄) =



x0 x1 · · · xK

x1 x0

...
. . .

xK x0


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(where all entries not on the diagonal, first row, or first column are zero) is positive semidefinite [1].

Semidefinite programming solvers often have better performance with second-order cone constraints

exploiting the compact structure of vectors in the second-order cone rather than using the larger

matrix representation. In our implementation, instead of writing the first quadratic constraint in

the model (4.5) as a linear matrix inequality, we represent the constraint
∑

v∈Vi p
2
iv ≤ Fi(b∗) as the

second order cone constraint

(
√
Fi(b∗), pi,1, . . . , pi,|Vi|) ∈ Q|Vi|+1.

Interior point methods, which are used to solve both linear and nonlinear programs, can also

be generalized to solve semidefinite programming problems. Interior point methods are currently

considered the state of the art for solving SDPs; they can solve SDPs in polynomial time and

perform well for many applications [6, Ch. 4–5]. Interior point methods for SDPs are implemented

in widely available optimization software such as Sedumi [85] and Mosek [63]. In our experiments

we used Mosek to solve the semidefinite programs (4.4) and (4.5).

4.3 Results for clinical liver cases

To evaluate the quality of the locally optimal spatiotemporal solutions, we solved the SDP relaxation

for each of the five liver cases from Section 3.3 in the previous chapter. See Section 3.3.1 for details

about the cases and the prescriptions. The lower bounds obtained from solving the SDP relaxations

can be found in Table 4.1; the first few columns in Table 4.1 are replicated from Table 3.1 to serve

as a reference for the lower bound.

Bounds on the maximum achievable liver BED reduction

The lower bounds obtained from the SDP relaxation are close to the mean liver BED values achieved

by the locally optimal nonuniform solutions. In Case 1, spatiotemporal fractionation reduced the

mean liver BED from 84.5 Gy in the uniform reference plan to 75.9 Gy, which is a reduction of 8.7
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Table 4.1: Summary of mean liver BED reductions from spatiotemporal fractionation and lower
bounds for mean liver BED. The “gap closed” values provide a measure of how close the local
optimal solutions are to achieving the lower bound on the mean liver BED; see Eq. (4.6) for the
definition.

Case description
Mean liver BED [Gy] Gap

conventional spatiotemporal reduction lower bnd. closed

1 Large central lesion 84.54 75.87 12.8% 73.38 77.7%

2 Small lesion 26.14 19.47 34.3% 18.58 88.2%

3 Two small lesions 59.54 50.24 18.5% 48.03 80.8%

4 Lesion abutting ch. wall 47.51 38.65 22.9% 37.65 89.9%

5 Lesion abutting GI tract 88.67 77.38 14.6% 77.02 96.9%

Gy from the uniform plan. The lower bound from the SDP relaxation for Case 1 is 73.4 Gy, which

means that no treatment plan can achieve a reduction of more than 11.2 Gy from the uniform

reference plan. It is important to note that the value of 73.4 Gy is only a lower bound, and we are

not able to guarantee the existence of a nonuniform solution that achieves this value. The mean

liver BED value for the true globally optimal plan may be anywhere between 75.9 and 73.4 Gy.

We compared the mean liver BED reduction in the locally optimal nonuniform plan with the

bound on the maximum possible reduction by computing the fraction of the gap between the mean

liver BED in the uniform reference plan and the lower bound from the SDP relaxation that the

nonuniform plan closes. Let mref and msp denote the mean liver BED in the uniform reference

plan and the spatiotemporal plan, respectively, and notate the lower bound provided from the

semidefinite programming relaxation by mSDP. Then the gap closed is the ratio

mref −msp

mref −mSDP
. (4.6)

This gap represents the percentage of the maximum possible benefit that the spatiotemporal plans

achieve. If the gap closed is near 100%, then the spatiotemporal plan is very near the SDP lower

bound; similarly, if the gap closed is small, then there is still a considerable distance between the

mean liver BED in the spatiotemporal plan and the lowest possible mean liver BED. For example,
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in Case 1, the nonuniform plan’s reduction of 8.7 Gy is 78% of the upper bound on the maximum

possible reduction of 11.2 Gy. In the five clinical liver cases, the nonuniformly fractionated plans

closed 78-97% of the gap between the mean liver BED of the uniform reference plan and the bound

on the lowest achievable mean liver BED.

4.4 Discussion

The results in this chapter are limited to the optimization of treatment plans for two-dimensional

slices of clinical liver cases, and the main challenge in extending this study to three-dimensional cases

is the computational complexity of solving the SDP relaxations in Section 4.2. In the nonuniform

fractionation optimization problem there is at least one variable for each beamlet in the fluence

maps and at least one constraint for every voxel associated with a quadratic penalty function.

For reference, the largest optimization problem out of the five two-dimensional slices in this work

contains 282 beamlets in a single fraction, while a three-dimensional clinical liver case may have

over 3,000 beamlets. In the SDP relaxation, with the introduction of the matrix variables X, the

number of variables is roughly squared. Semidefinite programs of this size cannot be solved for three-

dimensional cases in a reasonable amount of time with the available off-the-shelf software. Even

with the two-dimensional case, the solver took up to 7 hours to solve the SDP. It is an interesting

direction for future research to devise customized algorithms for the solution of these large-scale

semidefinite optimization problems that arise for the three-dimensional cases. For now, the results

obtained for the two-dimensional slices suggest that the locally optimal solutions computed for the

nonuniform fractionation problem are close to global optimality.
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Chapter 5

Robust spatiotemporal fractionation

schemes in the presence of patient

setup uncertainty

In this chapter, we address the concern of random patient setup uncertainty in the context of

spatiotemporal fractionation. A stochastic optimization model is used to optimize spatiotemporally

fractionated plans using expected penalties for deviations from prescription values, and a discrete

probability distribution is defined to characterize the random setup error occurring in each fraction.

For the optimization of uniform plans, the expected penalties are computed exactly by exploiting the

symmetry of the fractions, and for the spatiotemporal plans, quasi-Monte Carlo sampling is used to

approximate the expectation. Using five clinical liver cases it is demonstrated that spatiotemporally

fractionated treatment plans maintain the same robust tumor coverage as a stochastic uniform

reference plan and exhibit a reduction in the expected mean BED of the uninvolved liver.
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5.1 Introduction

In previous chapters, we demonstrated the remarkable benefit of spatiotemporal fractionation over

conventional uniform fractionation. The benefit from spatiotemporally fractionated photon plans

is a result of their characteristic pattern of delivering high single-fraction doses to small parts of

the tumor. The resulting sharp dose gradients need to be meticulously aligned in different fractions

in order to avoid potentially compromising tumor control. As the regions receiving high dose in

each fraction are not predetermined, but are the result of the treatment plan optimization, this

issue cannot be addressed using margins around the treated volumes. In this chapter, we study the

impact of random setup uncertainty on spatiotemporal treatments. We utilize stochastic optimiza-

tion techniques to directly incorporate setup uncertainty in the treatment planning optimization

problem. When this uncertainty is properly accounted for, spatiotemporal photon plans can be com-

puted that achieve substantial normal tissue sparing compared to conventional plans while being

as robust against random setup uncertainty as their conventionally fractionated counterparts.

The problem of patient setup uncertainty is not new in the context of IMRT and IMPT. For

a recent, comprehensive review of the subject, the reader is referred to [90]. Previous work utilizes

stochastic optimization techniques to handle uncertainties in radiotherapy treatments by constrain-

ing or optimizing the expected values of quantities such as quadratic penalty functions [10,96], ex-

pected values of objective functions based on tumor control probability [105], or objective functions

based on an approximation of the expected cumulative dose [34]. Another stochastic optimization

approach is to use a mean and variance constraint for each voxel to ensure robust target cover-

age [21]. In the current work we use a scenario-based model with expectations of penalty functions

to account for the uncertainty in patient positioning, and use, when necessary, scenario sampling

to approximate the expected values. An important difference between spatiotemporal and conven-

tional fractionation lies in the importance of random errors, i.e. setup errors that are different from

fraction to fraction. In conventional fractionation, random errors have a minor impact compared to

systematic errors, i.e. a setup error that is the same in each fraction. Since spatiotemporal fraction-
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ation delivers a distinct dose distribution in each fraction, random errors are both more important

and computationally more challenging to account for.

5.2 Treatment plan optimization for spatiotemporal

fractionation under uncertainty

5.2.1 Modeling dose delivery uncertainty

Random setup errors, along with other sources of uncertainty in dose delivery, can be modeled as

uncertainty in the dose-influence matrixD. We use the notation Ω for the set of possible setup errors,

or scenarios, and Dω for the realization of D in scenario ω ∈ Ω. Under random setup uncertainty,

the patient positioning error is potentially different in each fraction, and it is convenient to think

of each scenario as a T -dimensional vector ω = (ω1, . . . , ωT ). The associated probability function

is denoted by P . For simplicity, in this chapter we will work with finitely many discrete scenarios,

that is, Ω ⊂ RT is a finite set, and each scenario ω has a positive probability P (ω). Our choice of

distribution P for the patient setup uncertainty is described in more detail later in Section 5.3.1.

Recall the cumulative BED equation given in (3.3), which is based on the linear-quadratic

model of a tissue’s response to radiation over the course of multiple fractions. Now, with the dose-

influence matrix being a random variable, the physical dose and the cumulative BED in each voxel

also become random variables. The cumulative BED for voxel v in scenario ω is

bωv =

T∑
t=1

(
dωtvt +

(dωtvt )
2

(α/β)v

)
. (5.1)

As a result, the plan quality that we aim to optimize is also random. Following [95] and many

others, we quantify plan quality by the expected value of an appropriately chosen penalty function

that penalizes deviation from prescribed BED values, such as the piecewise quadratic penalty

functions in Section 3.2.1. For example, to ensure that the cumulative BED delivered to a particular

voxel remains above a prescribed value blov with sufficiently high probability, we may minimize (or
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constrain) the quantity

EP
[
(blov − bv)2

+

]
. (5.2)

To lighten the notation, for the rest of the chapter, we shall drop the subscript P from the expected

values, as the probability distribution is always the same.

5.2.2 Stochastic optimization of uniformly fractionated treatments

To ensure a fair comparison between spatiotemporal fractionation and uniform fractionation, uni-

formly fractionated treatment plans are optimized using the same BED-based prescriptions and

the same stochastic model of random setup uncertainty as the spatiotemporal plans. The benefit

of spatiotemporal fractionation can be evaluated by comparing the spatiotemporal plans to their

robust uniformly fractionated counterparts. In our optimization models, all clinical objectives are

implemented using standard piecewise quadratic penalty functions. Structures that are sufficiently

distant from the target volumes are likely to be nearly or entirely unaffected by random setup

uncertainty; it is sufficient to consider only the nominal scenario in the objectives involving these

structures. The objectives concerning target structures and nearby volumes are implemented using

expected piecewise quadratic penalties.

Let I+ and I− denote the index sets of the clinical objectives associated with structures that

are assigned an expected penalty for the BED exceeding the prescription amount bhi or BED falling

below a prescription amount blo, respectively. Let Im be the index set for the clinical objectives pe-

nalizing mean BED exceeding mhi. Similarly, let Ī+, Ī−, and Īm denote the index sets of the clinical

objectives that involve nominal penalty values. Let the set I be the union of the six aforementioned

index sets. Let Vi be the set of voxels associated with the objective i ∈ I, with V = ∪i∈IVi denoting

the set of all patient voxels considered in the optimization model. Lastly, let ω̄ denote the nominal

scenario.
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Piecewise quadratic penalty functions Fi are used to mathematically define the clinical objec-

tives, either for the nominal scenario ω̄ or the expected value over all scenarios:

Fi(b) =



∑
v∈Vi

(
bω̄v − bhi

iv

)2
+

∀i ∈ Ī+

∑
v∈Vi

(
bloiv − bω̄v

)2
+

∀i ∈ Ī−

(
1
|Vi|

∑
v∈Vi

bω̄v −mhi
i

)2

+

∀i ∈ Īm

E

[ ∑
v∈Vi

(
bv − bhi

iv

)2
+

]
∀i ∈ I+

E

[ ∑
v∈Vi

(
bloiv − bv

)2
+

]
∀i ∈ I−

E

( 1
|Vi|

∑
v∈Vi

bv −mhi
i

)2

+

 ∀i ∈ Im.

(5.3)

Using this notation, the uniformly fractionated reference plans are obtained by solving optimization

problems of the form

min
x,d,b

∑
i∈I

qiFi(b)

s.t. bωv =
T∑
t=1

(
dωtvt +

(dωtvt )
2

(α/β)v

)
∀ v ∈ V, ω = (ω1, . . . , ωT ) ∈ Ω

dωt = Dωtx ∀ω ∈ Ω, t = 1, . . . , T

x ≥ 0,

(5.4)

with the penalty weights qi ≥ 0 reflecting the relative importance of each clinical objective. The

variables dωvt and bωv can be eliminated using the equality constraints; this yields an optimization

problem with the fluence x as the only variable, and the only constraint is the nonnegativity of the

fluence.
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In the stochastic model, the expected value of the underdose penalty is the probability-weighted

linear combination of deterministic quadratic underdose penalties; thus, a sufficient condition for

the convexity of the stochastic model (5.4) is that the per-fraction dose values satisfy (3.9) in every

scenario.

5.2.3 Stochastic optimization of spatiotemporal treatments

It is straightforward to formulate an optimization model analogous to (5.4) to compute an optimal

robust spatiotemporal plan, with only two small changes to the model (5.4). First, the fluence map

in each fraction t needs to be a separate vector of decision variables xt, and then the corresponding

random physical dose dωt is computed as dωt = Dωtxt. One way to compare spatiotemporal treat-

ment plans with uniform reference plans would be to optimize both plans for the same objective

function (i.e. the same set of objective weights qi). However, improvements in terms of quadratic

penalty functions are difficult to interpret. In the application to liver tumors in Section 5.4, we

instead quantify the benefit of spatiotemporal fractionation via the mean BED reduction in the

healthy liver for a fixed BED delivered to the tumor. To that end, we minimize the objective

function corresponding to the primary clinical objective (the mean liver BED) while constraining

the remaining penalty function values to be at least as good as the penalty values in the uniform

reference plan.

Next, we provide the mathematical details for this formulation. Without loss of generality, let V1

denote the voxel set associated with the primary clinical objective and let F1 be the corresponding

penalty function. Let b∗ denote the BED distribution of the uniformly fractionated reference plan,

with Fi(b
∗) the value of the i-th penalty function evaluated with the uniform plan. For all clinical

objectives aside from the primary clinical objective, we constrain the spatiotemporally fractionated

treatment plan to have a smaller or equal penalty function value than the uniform reference plan.
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Then the optimization model for spatiotemporally fractionated plans can be written as follows:

min
x,d,b

F1(b)

s.t. Fi(b) ≤ Fi(b∗) ∀i ∈ I, i 6= 1

bωv =
T∑
t=1

(
dωtvt +

(dωtvt )
2

(α/β)v

)
∀v ∈ V, ω = (ω1, . . . , ωT ) ∈ Ω

dωt = Dωtxt ∀ω ∈ Ω, t = 1, . . . , T

xt ≥ 0 t = 1, . . . , T.

(5.5)

From the same reasoning outlined in Section 3.2.1 for the determinstic model, this stochastic spa-

tiotemporal optimization model is nonconvex, and the solutions to this model can only be certified

to be locally optimal.

5.3 Modeling random patient setup uncertainty

We model uncertainty in patient positioning by considering scenarios in which the patient is shifted

slightly from the nominal position.

5.3.1 Probability distributions of patient position

First, let us consider a one-dimensional probability distribution of the patient’s position when the

setup uncertainty is restricted to one axis of motion. For computational convenience, we assume

that the patient is shifted an integer number of voxels on either side of the nominal position. Let ps

be the probability that the patient’s position is s voxels away from the nominal position. (Thus, p0

is the probability of the patient being in the nominal position.) We assume that the probabilities

ps satisfy

ps = γ|s|p0 s ∈ S (5.6)

for some parameter γ ∈ [0, 1] and a finite set S ⊂ Z symmetric about zero. In particular, the

patient positioning error is assumed to be symmetric and bounded, with its mode in the nominal
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position, and the probability of the patient being in the nominal position is given by

p0 =
1∑

s∈S
γ|s|

.

The parameter γ allows us to consider a spectrum of probability distributions. As γ increases, the

probabilities of larger errors increase. When γ = 0, the probability of the nominal scenario is 1,

and all other shifts have probability zero. At the other extreme, γ = 1, the nominal scenario and

all shifts have an equal probability of occurring. In all of our experiments, S ⊆ {−2,−1, 0, 1, 2}.

We assume that the patient positioning errors along each axis are independent. Considering |S|

scenarios for the error along each of the n axes, the number of scenarios for the patient position

in one fraction is |S|n. In a treatment with T fractions, the number of scenarios is |S|n×T . For

example, in some of our computational experiments, a five-fraction treatment plan is computed

that allows the patient position to be shifted up to two voxels from the nominal position in either

direction, in two dimensions. The number of distinct scenarios in these experiments is 52×5 ≈ 107.

5.3.2 Computing the expected penalty values

Because we use a finitely supported probability distribution, the expected value of the penalty

function F can be computed exactly as a finite sum over all scenarios:

E [F (bv)] =
∑
ω∈Ω

P (ω)F (bωv ), (5.7)

where P (ω) is the probability of scenario ω. However, the large number of scenarios in the spa-

tiotemporal models becomes prohibitive during optimization, as the time required to compute the

penalty function values and their gradients is proportional to the number of scenarios. Later in

Section 5.4.1, we will discuss the static dose cloud assumption that is adopted throughout this

chapter. This assumption allows us to accelerate the function evaluations for the expected penal-

ties because the dose in scenario ω is a permutation of the dose in the nominal scenario, and the
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expected penalty functions can be computed efficiently using permutations of the nominal dose

calculation. The calculation of the gradients of the penalty functions is the bottleneck in the com-

putations because they require multiplication by the permuted dose-influence matrices instead of

simply permuting the components of the dose vector.

Approximating penalty values with quasi-Monte Carlo sampling

The time required to compute the function values and gradients of (5.7) at least once during every

iteration of an optimization algorithm can be mitigated by taking a sample Ω̃ ⊆ Ω containing |Ω̃|

scenarios and approximating the expectation with

QN =
1

|Ω̃|

∑
ω∈Ω̃

F (bωv ). (5.8)

A simple method to obtain the sample Ω̃ is Monte Carlo sampling, which draws a set of N elements

according to the probability distribution and approximates the expectation with the estimator

above. The approximation error of a Monte Carlo sample is given by

∣∣∣E [F (bv)]−QN
∣∣∣, (5.9)

which converges to zero at a rate of O
(

1√
N

)
. One advantage of Monte Carlo sampling is that this

bound on the approximation error is dimension-free, which makes it a good choice for problems

with high-dimensional uncertainty.

Quasi-Monte Carlo (QMC) methods utilize more evenly distributed sequences of points to

approximate the expectation, and generally the approximation error of QMC sequences has better

convergence than that of Monte Carlo approximations when the dimension of the uncertainty is

sufficiently small. In our application, the dimension of the uncertainty is nT (with n = 2 and

T = 5 for our experiments), so we use QMC integration, rather than Monte Carlo, to sample the

scenarios and approximate the expected penalty values. In particular, we employ a rank-one lattice

integration rule. An N -point rank-one lattice is a point set in [0, 1)s, where s is the dimension of
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the uncertainty (with s = nT in the current work), of the form

PN =

{(
zi

N

)
mod 1, i = 0, . . . , N − 1

}
, (5.10)

where z ∈ Rs is called the generating vector [54]. Rank one lattices are low discrepancy point sets

whose approximation error converges at a rate of O
(
N−1(logN)s

)
[64]. A generating vector for a

rank-one lattice can be constructed using a greedy component-by-component algorithm to minimize

the worst-case approximation error [83].

An advantage of QMC lattices is that they can be randomized using the Cranley-Patterson

procedure to obtain statistical bounds on the approximation error [30]. This procedure adds a

random shift ∆ that is uniformly distributed in [0, 1)s to each vector in the lattice. With this

randomization, the lattice PN becomes

P̃N (∆) =

{(
zi

N
+ ∆

)
mod 1, i = 0, . . . , N − 1

}
. (5.11)

The estimator (5.8) with a randomized rank-one lattice sample is unbiased because F evaluated on

each random lattice point is an unbiased estimator of the true expected value, and the average of

these unbiased estimators is also unbiased [54].

Computing exact penalty values in uniformly fractionated plans

We note that for uniformly fractionated plans, scenario sampling is not necessary to evaluate the

expected penalty values. In a uniformly fractionated treatment, every permutation of the T shifts

in a scenario ω = (ω1, . . . , ωT ) will yield the same cumulative BED because the same fluence map is

delivered in each fraction, and the cumulative BED is not dependent on the order of the fractions.

Thus, after a penalty is evaluated for a particular sequence of T shifts, its weight can be adjusted

to account for all permutations of that shift sequence. Formally, let Ω̂ ⊂ Ω be the set of scenarios

ω̂ = (ω̂1, . . . , ω̂T ) such that every scenario ω = (ω1, . . . , ωT ) ∈ Ω is a permutation of exactly one

scenario in Ω̂; furthermore, for each ω̂ ∈ Ω̂, let N(ω̂) be the number of scenarios in Ω that are
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a permutation of ω̂, and let P (ω) be the probability of scenario ω. Then the expectation of the

penalty function F satisfies

E [F (bv)] =
∑
ω∈Ω

P (ω)F (bωv ) =
∑
ω̂∈Ω̂

N(ω̂)P (ω̂)F (bω̂v ). (5.12)

Even with T as little as 5, Ω̂ is substantially smaller than Ω, which vastly reduces the number of

function evaluations required to compute the exact expected value. For example, in our experiments

with 2-dimensional patients and patient positioning errors up to 2 voxels in either direction along

both axes, the number of scenarios can be reduced from 510 ≈ 107 to 118 755. This eliminates

the need for scenario sampling in the optimization models for uniformly fractionated treatments

because the expected penalty value over all scenarios can be exactly computed in each iteration of

the optimization algorithm.

5.4 Numerical experiments with clinical liver cases

We computed uniformly fractionated and spatiotemporally fractionated treatment plans for the

same five two-dimensional slices of liver tumors from the previous two chapters. In this chapter,

we considered patient setup errors in the two-dimensional transverse plane; we did not consider

superior-inferior motion of the patient that would move the voxels out of the transverse slice.

5.4.1 Clinical liver cases and prescriptions

In each of the five cases, an α/β ratio of 10 was used for the target structure and an α/β ratio of

4 was used for all healthy tissues. Five-fraction treatments were optimized to be consistent with

common clinical practice. The optimization models incorporated the following clinical objectives:

• Minimize the expected mean BED in the uninvolved liver, defined as the liver minus the

GTV.
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• Penalize the expected shortfall from 100 Gy BED in the GTV. This corresponds to 50 Gy of

physical dose delivered in 5 fractions.

• Minimize the nominal BED in the unclassified tissue.

• For Cases 4 & 5: Penalize excess of 96.25 Gy BED in the chest wall in the nominal scenario.

This is equivalent to 35 Gy of physical dose in 5 fractions.

• For Cases 4 & 5: A conformal plan was desired, with a prescribed linear falloff from 175 Gy

BED to 15 Gy BED in 3 cm in the nominal scenario. This is equivalent to a falloff from 50

Gy to 10 Gy of physical dose in 3 cm.

• For Case 5: Minimize the nominal BED in the kidneys.

BED excess and shortfall were penalized quadratically (from a threshold of 0 Gy if not specified

otherwise), as detailed in Section 5.2.2.

The nominal dose-influence matrix D was obtained using the Quadrant Infinite Beam (QIB)

dose calculation algorithm implemented in CERR version 5.2 [31]. Recall that the patient setup

error is modeled as error in the dose-influence matrix, so each scenario ω ∈ Ω has its corresponding

matrix Dω. Instead of repeating the dose calculation for every possible position of the patient to

explicitly find each Dω, we adopt the static dose cloud assumption, which is commonly used in

treatment planning optimization [81, 90]. Under this assumption, the position of the patient does

not affect the dose distribution, and if a shift of a patient occurs, the nominal dose distribution is

delivered to the shifted patient. Each Dω can be assembled from the rows of the nominal D with

no additional dose calculation.

5.4.2 Probability distributions of patient shifts

In this work we considered a spectrum of probability distributions on three different supports.

First, we considered probability distributions supported on 1- and 2-voxel shifts on a dose grid that

was downsampled from the CT resolution by a factor of 2. The voxel sizes for these experiments
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were 2.54 mm × 2.54 mm for the first four cases and 2.18 mm × 2.18 mm for Case 5. With other

treatment sites in mind that have smaller setup uncertainties, we also ran a set of experiments

without downsampling and using the full CT resolution with probability distributions supported

on 1-voxel shifts. These experiments used a voxel size of 1.27 mm × 1.27 mm for Cases 1-4 and 1.09

mm × 1.09 mm for Case 5. In all of the experiments, we assumed that the range and probability

distribution of the random setup error is the same along the two axes of motion.

As described in Section 5.3.1, the parameter γ is used to adjust the probabilities of each point

in the support of the distribution. Values of γ that correspond to several values for the variance σ2

of the shifts are chosen to illustrate the benefit of spatiotemporal fractionation across a spectrum

of probability distributions. (The variance is measured in units of voxels instead of mm.) In the

distributions of 1-voxel shifts, the variance ranges from 0 to a maximum value of 2/3, and for the

2-voxel distributions, the variance ranges from 0 to 2. This corresponds to nominal optimization

when the variance is 0 to a uniform probability distribution of the shifts when the variance is

maximized.

5.4.3 Optimizing robust uniformly fractionated reference plans

Uniformly fractionated treatment plans with 21 equispaced coplanar beams were optimized to ap-

proximate a VMAT plan. Because we considered two-dimensional patient slices, we only optimized

the beamlet weights of a single row of a 1 cm × 1 cm grid of beamlets. Uniformly fractionated

treatment plans with were optimized for six values of σ2 for 2-voxel shifts and five values of σ2 for

1-voxel shifts. The optimization problem (5.4) in Section 5.2.2 was solved to global optimality using

the solver L-BFGS-B [112]. As detailed in Section 5.3.2, the quasi-Monte Carlo approximations for

the expected GTV penalty are not necessary because the exact penalty values can be computed

by taking advantage of the symmetry of the fractions. Optimization runtimes ranged from a few

minutes with 1-voxel shifts to 28 hours for 2-voxel shifts.

The uniformly fractionated treatment plans served as high-quality reference plans that were

used as a point of comparison for the spatiotemporally fractionated plans optimized in the next
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section. To ensure that the uniformly fractionated plans were sufficiently robust, the penalty weights

qi in the objective function of (5.4) were adjusted so that in each of the cases, there was a 95%

probability that 95% of the GTV received the prescribed 100 Gy BED.

5.4.4 Optimizing robust spatiotemporal plans

After the uniformly fractionated reference plans were computed, we solved the optimization problem

(5.5) in Section 5.2.3 to compute robust spatiotemporal treatment plans. Because of the large num-

ber of scenarios in the spatiotemporal models, we used quasi-Monte Carlo sampling to approximate

the expected GTV penalty with a scenario sample Ω̃, as described in Section 5.3.2.

Locally optimal spatiotemporal plans were obtained by using an in-house implementation of the

augmented Lagrangian algorithm. For f : Rn → R and gi : Rn → R for i = 1, . . . ,m, the general

inequality-constrained optimization problem

min
x

f(x)

s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m

(5.13)

can be solved with the augmented Lagrangian method (also known as the method of multipliers) [46,

74]. This method solves a sequence of unconstrained optimization problems in which the augmented

Lagrangian function

Lρ(x, µ) = f(x) +
1

2ρ

m∑
i=1

[
(µi + ρgi(x))2

+ − µ
2
i

]
(5.14)

is minimized with respect to x, with µ = (µ1, . . . , µm) ∈ Rm+ a vector of Lagrange multipliers for

the constraints gi(x) ≤ 0 [76]. Starting with an arbitrary µ1 ≥ 0, in iteration k of the algorithm,

we obtain

xk = arg min
x

Lρ(x, µk) (5.15)

for a fixed value of µk, and then the vector of multipliers is updated by

µk+1 =
(
µk + ρg(xk)

)
+
. (5.16)
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The penalty parameter ρ > 0 may remain constant throughout the algorithm, or in some variations

of the algorithm, ρ is increased in each iteration to improve the convergence rate of the multipliers

to their optimal values [7]. The iterations continue until, for some tolerances ε1 > 0 and ε2 > 0, the

stopping criteria
∥∥∇Lρ(xk, µk)∥∥∞ ≤ ε1 and

∥∥∥(g(xk)
)

+

∥∥∥
∞
≤ ε2 are satisfied.

In our numerical experiments, we used the augmented Lagrangian algorithm to solve the con-

strained optimization problem (5.5) using penalty functions of the form (5.3) for each clinical

objective. All of the penalties Fi are functions of the beamlet weights x after eliminating b and d

from the formulation. The function F1 is the mean BED penalty for the uninvolved liver, which

plays the role of f in the general optimization problem (5.13). The function F2 is the penalty

function to penalize BED in the GTV less than 100 Gy, and F3 is the penalty function for BED

in the unclassified tissue. We computed the expected value of penalty F2 and the nominal penalty

value of F3 for the uniform reference plan, denoted by F̃2(b∗) and F3(b∗), respectively. Then the

constraints g1 and g2 in the general optimization problem (5.13) are E [F2(b)] − F̃2(b) ≤ 0 and

F3(b) − F3(b∗) ≤ 0, with corresponding Lagrangian multipliers µ1 ∈ R+ and µ2 ∈ R+. The vector

of multipliers µ̄ ∈ RB+ is for the nonnegativity constraint x ≥ 0. In iteration k, we fix the multiplier

values µk1, µk2, and µ̄k and minimize the augmented Lagrangian function

Lρ(x, µk1, µk2, µ̄k) =
1

|Ω̃|

∑
ω∈Ω̃

F1(bω) +
1

2ρ

µk1 + ρ

 1

|Ω̃|

∑
ω∈Ω̃

F2(bω)

− F̃2(b∗)

2

+

− (µk1)2


+

1

2ρ

[(
µk2 + ρ (F3(b)− F3(b∗))

)2

+
− (µk2)2

]
+

1

2ρ

[(
µ̄k − ρx

)2
− (µ̄k)2

]
. (5.17)

Once the minimium is attained, the multipliers are updated as in (5.16). (The extra clinical ob-

jectives in Cases 4 and 5 add similar terms to the augmented Lagrangian function, which we omit

here for cleaner notation.)

We implemented two modifications to the standard augmented Lagrangian method described

above. First, we implemented an inexact minimization of the inner problem (5.15). Previous work

has proven convergence of the augmented Lagrangian method when the stopping criterion of the
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inner problem (5.15) is ∥∥∥∇Lρ(xk, µk1, µk2, µ̄k)∥∥∥∞ ≤ εk (5.18)

for a nonnegative sequence {εk} → 0. Rockafellar proved the convergence of this inexact minimiza-

tion with convex, not-necessarily-differentiable objective and gradient functions f and gi as long as

the sequence {εk} satisfies
∑∞

k=1

√
εk < ∞ [77]. Bertsekas proved the convergence of the method

with the inexact minimization criterion (5.18) for twice continuously differentiable f and gi with

any sequence {εk} that converges to zero, but it was noted that the inexact minimization could

lead to a substantial degradation in the overall convergence of the algorithm if {εk} converges to

zero slowly [7].

Others have demonstrated numerically [59] and proven [72] the convergence of a variation of

the augmented Lagrangian method with a single gradient step towards the minimizer of L(x, µk)

in the case where f and all gi have continuous first and second partial derivatives. In the current

application, we found that limiting the number of inner iterations to 100 and allowing the inner

minimization to terminate sooner if the stopping criteria are satisfied resulted in convergence of the

algorithm. This heuristic increased the number of primal iterations where the minimization (5.15)

is performed, but it reduced the total number of overall function evaluations compared to trials

where exact minimization was used. With exact minimization, the algorithm uses a large number

of iterations (and consequently, function evaluations) to solve the problem (5.15) with multipliers

that are potentially very far from their optimal values. When an upper bound on the number

of inner iterations is implemented, the minimization of the augmented Lagrangian is only solved

approximately with the potentially inaccurate multiplier values, and as the multipliers converge to

their optimal values, the inner minimizations are solved to greater accuracy.

The second variation in our implementation of the augmented Lagrangian method was in the

evaluation of the constraint violation for the multiplier update (5.16). For the expected penalty

terms, we evaluated the constraint violation on a larger lattice sample than what was used in the

inner iterations for the minimization (5.15). This evaluation would be too time-consuming to carry

out in each inner iteration of the algorithm because of the expensive gradient evaluation required in
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each iteration, but evaluating the constraint violation during the multiplier update does not require

the expensive gradient calculation. The large lattice size allows for greater approximation accuracy

in the multiplier update.

5.4.5 Computing equieffective dose

In Chapter 3, we computed the equivalent dose DEQ5 of the BED for an interpretable comparison

between spatiotemporally fractionated treatment plans and their uniformly fractionated reference

plans. In this chapter, we compute the DEQ5 of the expected BED, which is the physical dose

distribution that if delivered in 5 uniform fractions would yield the same BED as the expected

BED for each voxel. The DEQ5 of the expected BED is the quantity satisfying

E
[
5d

(
1 +

d
α/β

)]
= DEQ5 +

(DEQ5)2/5
α/β

for uniformly fractionated plans and

E

[
5∑
t=1

(
dt +

d2
t

α/β

)]
= DEQ5 +

(DEQ5)2/5
α/β

for spatiotemporal plans.

5.5 Results for clinical liver cases

The benefit of spatiotemporal fractionation is measured by the reduction in expected mean liver

BED in the healthy liver tissue from the uniform reference plan. By construction, the spatiotempo-

ral plans have the same plan quality as the uniform reference plan with respect to all other clinical

objectives. Tables 5.1, 5.2, and 5.3 summarize the mean liver BED reductions in spatiotemporal

plans for all of the cases and probability distributions in our numerical experiments. Table 5.1

contains the reductions for probability distributions supported on shifts up to 2 voxels (approx-

imately 5 mm) in each axis, and Tables 5.2 and 5.3 display the reductions in mean liver BED
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Table 5.1: Percent reductions in expected mean liver BED of spatiotemporal plans over uniformly
fractionated plans for probability distributions supported on 2-voxel shifts in either axis of the
transverse plane. The variance σ2 of patient shifts ranges from 0, where the nominal position has
probability 1, to 2, where there is an equal probability of shifting to the 25 points around the
nominal position. The voxel sizes are 2.54 mm × 2.54 mm for Cases 1-4 and 2.18 mm × 2.18 mm
for Case 5.

σ2

Case description 0 1
4

1
2 1 3

2 2

1 Large central lesion 26.8 8.3 5.5 4.1 3.0 2.7

2 Small lesion 32.4 13.6 12.3 8.8 7.9 6.9

3 Two small lesions 28.6 11.6 9.4 7.5 6.0 4.6

4 Lesion abutting ch. wall 50.1 24.9 19.2 14.1 11.6 10.7

5 Lesion abutting GI tract 23.6 4.9 3.0 1.1 1.1 1.0

Table 5.2: Percent reductions in expected mean liver BED of spatiotemporal plans over uniformly
fractionated plans for probability distributions supported on 1-voxel shifts in either axis of the
transverse plane. The variance σ2 of patient shifts ranges from 0, where the nominal position has
probability 1, to 2/3, where there is an equal probability of shifting to the 9 points around the
nominal position. The voxel sizes are 2.54 mm × 2.54 mm for Cases 1-4 and 2.18 mm × 2.18 mm
for Case 5.

σ2

Case description 0 1
6

1
3

1
2

2
3

1 Large central lesion 26.8 10.1 8.3 6.8 6.1

2 Small lesion 32.4 16.6 16.4 15.8 15.1

3 Two small lesions 28.6 14.5 12.9 12.0 11.2

4 Lesion abutting ch. wall 50.1 29.9 25.7 23.5 21.0

5 Lesion abutting GI tract 23.6 7.7 5.4 4.2 3.2
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Table 5.3: Percent reductions in expected mean liver BED of spatiotemporal plans over uniformly
fractionated plans for probability distributions supported on 1-voxel shifts in either axis of the
transverse plane with the full-resolution dose grid. The variance σ2 of patient shifts ranges from 0,
where the nominal position has probability 1, to 2/3, where there is an equal probability of shifting
to the 9 points around the nominal position. The voxel sizes are 1.27 mm × 1.27 mm for Cases 1-4
and 1.09 mm × 1.09 mm for Case 5.

σ2

Case description 0 1
6

1
3

1
2

2
3

1 Large central lesion 25.6 17.5 15.0 13.2 12.4

2 Small lesion 34.4 28.5 26.0 24.6 23.6

3 Two small lesions 28.6 22.8 20.7 19.4 18.6

4 Lesion abutting ch. wall 50.0 43.0 39.8 37.6 35.9

5 Lesion abutting GI tract 25.5 17.6 14.4 12.7 11.8

of spatiotemporal plans for probability distributions supported on 1-voxel shifts for downsampled

(approximately 2.5 mm) and full-resolution (approximately 1.25 mm) dose grids. For reference,

the tables also report the mean liver BED reductions that could be obtained in the case that no

uncertainty is present. Note that the reductions for the σ2 = 0 distributions are larger than those

reported in Chapter 3; this is because the treatment plans in Chapter 3 had a PTV surrounding

the GTV, whereas the treatments in this chapter are optimized without a PTV.

As expected, the benefit of spatiotemporal fractionation decreases with larger setup uncertainty.

However, when the variance in the patient position is small, spatiotemporally fractionated plans

maintain a large reduction in expected mean liver BED. With the downsampled dose grid, for the

smallest nonzero σ2, Case 4 displays the largest reduction of 24.9% for 2-voxel shifts, while Case 5

has the smallest reduction of 4.9%. The former corresponds to a DEQ5 reduction from 19.3 to 16.6

Gy, while the latter corresponds to a DEQ5 reduction from 33.0 to 32.1 Gy. The reductions are even

larger for spatiotemporal plans with 1-voxel shifts on both the downsampled and the full-resolution

dose grid. This suggests that the magnitude of the largest undetected random patient setup error

is just as important as the variance of the setup error.
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σ2 = 0 σ2 = 1/4 σ2 = 2

(a)

(b)

Figure 5.1: (a) Physical dose distributions for the five fractions of the optimal spatiotemporal
treatment plans for Case 3 with three different values for the variance of patient shifts, plotted in
the nominal scenario. Each column contains a spatiotemporal treatment plan that was optimized
with a different value of σ2. As the variance increases, the fractional doses go from highly modulated
to more uniform. (b) Distributions of DEQ5 for the expected BED of the plans. All numerical values
are shown in Gy.
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Figure 5.2: Dose-volume histogram (DVH) curves for the DEQ5 of expected BED for the GTV
and healthy liver in Case 3, with three values of the variance σ2 of patient shifts. The solid lines
are the curves for the uniform plans and the dashed lines are for the spatiotemporal plans. As σ2

increases, the healthy liver sparing deteriorates and the uniform and spatiotemporal DVH curves
become closer together.
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(a)

(b)

Figure 5.3: A comparison of dose-volume histograms (DVHs) for the DEQ5 of the BED for (a)
the uniform reference plan, and (b) the spatiotemporal plan, for Case 3 with variance σ2 = 2 of
patient shifts up to two voxels from the nominal position. Each curve in the DVH “cloud” is the
curve for a single scenario in a sample of 4096 scenarios. The spatiotemporal plan exhibits more
variability in the regions of high BED, as evidenced by the greater spread of the curves, but the
two treatment plans match in the important shoulder region around a DEQ5 of 50 Gy.
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As the variance σ2 increases, the fractions of the spatiotemporal plans become increasingly uni-

form. As seen in Figure 5.1a, the fractional doses are highly modulated for the smaller variances,

i.e. each fraction delivers a very high dose to complementary parts of the tumor. As the variance

increases, the fractional dose distributions become more uniform, i.e. each fraction delivers a sig-

nificant dose to most of the target volume. This trend is expected because more uniform dose

distributions help maintain robustness against greater misalignment of the fractional dose distribu-

tions. This explains the decreasing benefit of spatiotemporal fractionation over uniform reference

plans as σ2 increases.

In Figure 5.1b, the DEQ5 of the expected BED for Case 3 is plotted for the spatiotemporal

plan for three σ2 values. The robust treatment plans exhibit a “margin” of higher dose around the

GTV to maintain robustness despite the fact that there is no explicit margin, such as the PTV,

contoured around the GTV. As seen in the figure, the width of the “margin” around the GTV

increases as the variance σ2 of patient shifts increases. The stochastic optimization model adjusts

the width of the margin around the GTV depending on the probabilities of patient shifts, and this

margin is optimized to exactly maintain robustness but also to avoid unduly irradiating the healthy

liver with too large a margin. These trends in the dose distributions were observed in all of the five

cases; see additional figures in Appendix B.

Figure 5.2 contains the dose-volume histogram (DVH) curves for Case 3, which also shows the

evolution of the optimal treatment plans as the variance of patient shifts increases. In this figure, we

observe that as σ2 increases, the healthy liver sparing deteriorates, and the curves for the uniform

and spatiotemporal plans move closer to one another.

A key feature of the robust spatiotemporal plans is that the reduction in mean BED in the

healthy liver tissue occurs simultaneously with equally robust coverage of the tumor. In all of the

cases presented in this chapter, the spatiotemporal plan meets the same robustness criterion as its

uniform reference plan: there is at least a 95% probability that 95% of the GTV receives 100 Gy

BED. In most cases we found that even though the spatiotemporal plan and the uniform plan have

equal expected GTV penalties, the spatiotemporal plans generally have a higher probability that
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95% of the GTV receives the prescription 100 Gy BED. In addition, in most cases the spatiotemporal

plan has a higher expected mean GTV BED than the uniformly fractionated reference plan.

The similar robustness between the two fractionation schemes can be seen in Figure 5.3, which

displays a DVH plot for the DEQ5 values comparing the uniform reference plan and the spatiotem-

porally fractionated treatment plan for Case 3. Figure 5.3 displays a “cloud” of DVH curves that

shows the DVH curve for every scenario in a sample with 4096 scenarios. The spatiotemporal plan

exhibits more variability in the tumor, as evidenced through a greater spread of DVH curves, but we

notice that the variability occurs in the region of higher DEQ5. The spatiotemporal plan maintains

the same robust GTV coverage as the uniform reference plan in the critical region around DEQ5

of 50 Gy. DVH plots similar to Figure 5.2 and Figure 5.3 for the remaining cases can be found in

Appendix B.

5.6 Discussion

Evaluating the benefit. In this chapter we have demonstrated that spatiotemporal fractionation

schemes retain a portion of their benefit in healthy tissue sparing even in the presence of random

patient setup uncertainty. As expected, the benefit of spatiotemporal fractionation decreases with

increasing setup uncertainty. However, even with patient positioning errors of up to 5 mm along

both axes, spatiotemporal fractionation schemes yielded a reduction in the expected mean liver

BED over uniformly fractionated plans in each case, without any compromise in robustness or in

the other clinical objectives. For smaller setup errors of 1-2 mm, which is applicable to intracranial

lesions, a large portion of the benefit remains.

Measures of robustness. In our optimization models, the expected value of the piecewise

quadratic penalty of underdose in the GTV is used as the primary measure of the robustness

of a treatment plan. The constraints in the spatiotemporal optimization model are active at the

solution, which means that the expected penalty values for the GTV are equal in the uniform and

spatiotemporal treatment plans. Thus, with respect to the expected GTV penalty robustness mea-
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sure, the uniformly fractionated treatment plans and the spatiotemporal plans are equally robust.

In practice, robustness of a treatment plan is often assessed with a DVH-like criterion, such as the

probability that 95% of the GTV receives the prescription BED [42, 99]. An exact optimization

model with a DVH-based robustness measure would require a very large mixed-integer program

with binary variables for all of the GTV voxels in every scenario, which is computationally in-

tractable. In our models we used the expected GTV penalty to quantify the robustness, but after

the optimization we also evaluated the robustness of the optimal solutions using DVH criteria. We

have found that in nearly every experiment, the spatiotemporal plans are more robust than the

uniform reference plans with respect to this robustness measure. Thus, the healthy tissue sparing

could potentially be even higher than reported if the spatiotemporal plans and the uniform plans

were equally robust with respect to the DVH-based robustness criterion.

Other sources of uncertainty. In this work, we focus on random setup uncertainty. Setup er-

rors that are different between fractions yield a misalignment of BED contributions from different

fractions, and hence represent the main concern in spatiotemporal fractionation. In addition, ran-

dom errors could not be accounted for via margins because the dose distributions per fraction are

determined during the optimization and not beforehand. In future work, systematic errors should

also be included in robust treatment plan optimization. However, systematic errors lead to a shift

(rather than a degradation) of the cumulative BED distribution. Therefore, systematic errors affect

spatiotemporal treatments in the same way as conventional treatments, and could, in principle, be

mitigated via PTV margins. For the application to liver tumors, intrafraction motion of the tumor

due to respiration represents an additional uncertainty. However, modern treatment devices such

as MR-linacs, which allow for gated treatment based on real-time MR imaging, may be used to

mitigate such uncertainties.
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Chapter 6

Conclusions and open problems

In this thesis, we have applied mathematical optimization techniques to improve treatment plan-

ning optimization in photon arc radiotherapy. We have achieved a better trade-off of treatment

time versus treatment quality for arc therapy plans by using a greedy merging strategy and by

including an upper bound on the treatment time in the fluence map optimization. We have shown

that the optimization problem with an explicit upper bound on the treatment time has a special

structure that allows the optimal treatment plan to be computed efficiently. Further, we studied

the efficacy of a treatment modality in photon arc therapy called spatiotemporal fractionation,

which allows different dose distributions to be delivered on each treatment day. We demonstrated

the benefit of spatiotemporal fractionation in clinical liver cases, mathematically derived an upper

bound on the maximum achievable benefit, and showed that spatiotemporal plans attain a large

percentage of the maximum benefit. We also addressed the problem of patient setup uncertainty in

spatiotemporally fractionated treatments by developing a stochastic optimization model to account

for the uncertainties in patient positioning, and we optimized spatiotemporal plans that are robust

against these uncertainties.

This thesis extends the work of radiotherapy treatment planning optimization, which has a

relatively recent history. The introduction of IMRT in the early 1990s by Bortfeld and Webb [13,
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102] was transformative in planning radiotherapy treatments that achieve better dose conformality

around target structures, and IMRT treatments have attained widespread use in the clinic since the

early 2000s [12]. Spatiotemporal fractionation is a more recent development; it was first proposed

for proton radiotherapy in the early 2010s [97, 98, 110], and a more recent proof-of-concept paper

extended the idea of spatiotemporal fractionation for photon radiotherapy [89]. The material in this

thesis is part of the early work demonstrating the benefit of spatiotemporal plans by computing

photon treatment plans for clinical cases. As we have shown, spatiotemporal fractionation has

great potential to even further improve healthy tissue sparing in photon radiotherapy treatments

by delivering different dose distributions in each fraction.

One direction for future research is the development of algorithms to solve the large-scale op-

timization problems for a three-dimensional patient. In particular, the development of efficient

algorithms is necessary to solve the large-scale stochastic constrained optimization problems from

Chapter 5, perhaps by employing dynamic sampling techniques or an alternative model that incor-

porates both the expected value and variance of the BED. Further, more efficient conic optimization

algorithms are needed to solve the large-scale semidefinite programming relaxations to obtain the

bounds on the benefit of three-dimensional spatiotemporal plans. The results in this thesis for two-

dimensional slices of clinical cases demonstrate the potential of spatiotemporal fractionation, and

the future development of these algorithms for three-dimensional cases will promote the widespread

clinical use of this effective treatment modality.
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Appendix A

Supplementary figures for Chapter 3

This appendix contains the figures for the additional liver cases not presented in the main text

of Chapter 3. These figures show a comparison of locally optimal spatiotemporal treatment plans

and their uniformly fractionated reference plans. In each of the cases, the spatiotemporal plan

achieves an improvement in healthy tissue sparing while maintaining the same tumor coverage as

the uniformly fractionated treatment.
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(a)

(b) (c) (d) (e)

Figure A.1: Dose distributions for Case 2, a small lesion within the liver. (a) Physical dose dis-
tributions in a 5-fraction nonuniformly fractionated treatment. Although the tumor is small, the
nonuniform plan still hypofractionates different subregions of the target. (b) Total physical dose
delivered by the five nonuniform fractions. (c) Physical dose distribution of the uniformly fraction-
ated reference plan. (d) DEQ5 of the nonuniformly fractionated plan. As in Case 1, the nonuniform
spatiotemporal plan provides similar target coverage as the uniform reference plan, with a more
conformal dose distribution. (e) The plot of (c) minus (d) shows that, as expected, the majority of
the BED reduction is in the healthy liver and in the entrance regions of the beams exposing the
liver the most. All numerical quantities shown are in Gy.
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(a)

(b) (c) (d) (e)

Figure A.2: Nonuniformly fractionated dose distributions for Case 3, which contains two lesions
within the liver. (a) Physical dose distributions in each of the five fractions show that the nonuni-
formly fractionated treatment hypofractionates different parts of the tumor. (b) Total physical dose
delivered throughout the nonuniformly fractionated treatment. (c) Physical dose distribution of the
uniformly fractionated reference plan. (d) DEQ5 of the nonuniformly fractionated plan, which is the
uniform plan that is isoeffective in delivering the same BED as the nonuniformly fractionated plan.
(e) The difference between the physical dose in the uniform plan and the DEQ5 for the nonuniform
plan, or (c) minus (d). This shows that the benefit of nonuniform fractionation is mostly in reduced
dose in the healthy liver and in the entrance region of the those beams that expose the liver the
most. All numerical quantities shown are in Gy.
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(a)

(b) (c) (d) (e)

Figure A.3: Dose distributions for Case 4, a lesion abutting the chest wall. (a) Physical dose
distributions for each fraction of a nonuniformly fractionated treatment. (b) Total physical dose
delivered by the five nonuniform fractions. (c) Physical dose distribution of the uniform reference
plan. (d) DEQ5 of the nonuniformly fractionated plan. (e) Plot of (c) minus (d). All numerical
quantities shown are in Gy.
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(a)

(b) (c) (d) (e)

Figure A.4: Dose distributions for Case 5, a lesion abutting the GI tract. (a) Physical dose distri-
butions for each fraction of a nonuniformly fractionated treatment. (b) Total physical dose delivered
by the five nonuniform fractions. (c) Physical dose distribution of the uniformly fractionated refer-
ence plan. (d) DEQ5 of the nonuniformly fractionated plan. (e) Plot of (c) minus (d). All numerical
quantities shown are in Gy.
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Appendix B

Supplementary figures for Chapter 5

This appendix contains the figures for the additional clinical cases that were not included in the

main text of Chapter 5. These remaining clinical cases display the same trends as observed in

Case 3 presented in the main text. As the variance σ2 increases, the fractional dose distributions

become more uniform in order to maintain robustness against larger patient setup uncertainty.

From the DVH plots for each clinical case we observe that the spatiotemporal treatment plans

have a reduction in healthy liver BED while maintaining the same robustness in the GTV as the

uniformly fractionated plan.
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σ2 = 0 σ2 = 1/4 σ2 = 2

(a)

(b)

Figure B.1: (a) Physical dose distributions for the five fractions of the optimal spatiotemporal
treatment plans for Case 1 with three different values for the variance of patient shifts, plotted in
the nominal scenario. Each column contains a spatiotemporal treatment plan that was optimized
with a different value of σ2. As the variance increases, the fractional doses go from highly modulated
to more uniform. (b) Distributions of DEQ5 for the expected BED of the plans. All numerical values
are shown in Gy.
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Figure B.2: Dose-volume histogram (DVH) curves for the DEQ5 of expected BED for the GTV
and healthy liver in Case 1, with three values of the variance σ2 of patient shifts. The solid lines
are the curves for the uniform plans and the dashed lines are for the spatiotemporal plans. As σ2

increases, the healthy liver sparing deteriorates and the uniform and spatiotemporal DVH curves
become closer together.

(a) (b)

Figure B.3: A comparison of dose-volume histograms (DVHs) for the DEQ5 of the BED for (a)
the uniform reference plan, and (b) the spatiotemporal plan, for Case 1 with variance σ2 = 2 of
patient shifts up to two voxels from the nominal position. Each curve in the DVH “cloud” is the
curve for a single scenario in a sample of 4096 scenarios. The spatiotemporal plan exhibits more
variability in the regions of high BED, as evidenced by the greater spread of the curves, but the
two treatment plans match in the important shoulder region around a DEQ5 of 50 Gy.
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σ2 = 0 σ2 = 1/4 σ2 = 2

(a)

(b)

Figure B.4: (a) Physical dose distributions for the five fractions of the optimal spatiotemporal
treatment plans for Case 2 with three different values for the variance of patient shifts, plotted in
the nominal scenario. Each column contains a spatiotemporal treatment plan that was optimized
with a different value of σ2. As the variance increases, the fractional doses go from highly modulated
to more uniform. (b) Distributions of DEQ5 for the expected BED of the plans. All numerical values
are shown in Gy.
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Figure B.5: Dose-volume histogram (DVH) curves for the DEQ5 of expected BED for the GTV
and healthy liver in Case 2, with three values of the variance σ2 of patient shifts. The solid lines
are the curves for the uniform plans and the dashed lines are for the spatiotemporal plans. As σ2

increases, the healthy liver sparing deteriorates and the uniform and spatiotemporal DVH curves
become closer together.

(a) (b)

Figure B.6: A comparison of dose-volume histograms (DVHs) for the DEQ5 of the BED for (a)
the uniform reference plan, and (b) the spatiotemporal plan, for Case 2 with variance σ2 = 2 of
patient shifts up to two voxels from the nominal position. Each curve in the DVH “cloud” is the
curve for a single scenario in a sample of 4096 scenarios. The spatiotemporal plan exhibits more
variability in the regions of high BED, as evidenced by the greater spread of the curves, but the
two treatment plans match in the important shoulder region around a DEQ5 of 50 Gy.
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σ2 = 0 σ2 = 1/4 σ2 = 2

(a)

(b)

Figure B.7: (a) Physical dose distributions for the five fractions of the optimal spatiotemporal
treatment plans for Case 4 with three different values for the variance of patient shifts, plotted in
the nominal scenario. Each column contains a spatiotemporal treatment plan that was optimized
with a different value of σ2. As the variance increases, the fractional doses go from highly modulated
to more uniform. (b) Distributions of DEQ5 for the expected BED of the plans. All numerical values
are shown in Gy.
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Figure B.8: Dose-volume histogram (DVH) curves for the DEQ5 of expected BED for the GTV
and healthy liver in Case 4, with three values of the variance σ2 of patient shifts. The solid lines
are the curves for the uniform plans and the dashed lines are for the spatiotemporal plans. As σ2

increases, the healthy liver sparing deteriorates and the uniform and spatiotemporal DVH curves
become closer together.

(a) (b)

Figure B.9: A comparison of dose-volume histograms (DVHs) for the DEQ5 of the BED for (a)
the uniform reference plan, and (b) the spatiotemporal plan, for Case 4 with variance σ2 = 2 of
patient shifts up to two voxels from the nominal position. Each curve in the DVH “cloud” is the
curve for a single scenario in a sample of 4096 scenarios. The spatiotemporal plan exhibits more
variability in the regions of high BED, as evidenced by the greater spread of the curves, but the
two treatment plans match in the important shoulder region around a DEQ5 of 50 Gy.
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σ2 = 0 σ2 = 1/4 σ2 = 2

(a)

(b)

Figure B.10: (a) Physical dose distributions for the five fractions of the optimal spatiotemporal
treatment plans for Case 5 with three different values for the variance of patient shifts, plotted in the
nominal scenario. Each column contains a spatiotemporal treatment plan that was optimized with
a different value of σ2. As the variance increases, the fractional doses go from highly modulated to
more uniform. (b) Distributions of DEQ5 for the expected BED of the plans. All numerical values
are shown in Gy.
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Figure B.11: Dose-volume histogram (DVH) curves for the DEQ5 of expected BED for the GTV
and healthy liver in Case 5, with three values of the variance σ2 of patient shifts. The solid lines
are the curves for the uniform plans and the dashed lines are for the spatiotemporal plans. As σ2

increases, the healthy liver sparing deteriorates and the uniform and spatiotemporal DVH curves
become closer together.

(a) (b)

Figure B.12: A comparison of dose-volume histograms (DVHs) for the DEQ5 of the BED for (a)
the uniform reference plan, and (b) the spatiotemporal plan, for Case 5 with variance σ2 = 2 of
patient shifts up to two voxels from the nominal position. Each curve in the DVH “cloud” is the
curve for a single scenario in a sample of 4096 scenarios. The spatiotemporal plan exhibits more
variability in the regions of high BED, as evidenced by the greater spread of the curves, but the
two treatment plans match in the important shoulder region around a DEQ5 of 50 Gy.
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