
ABSTRACT

YADAVALLI, ANILA. Darboux Transformations and Fay Identities of the Extended Bigraded
Toda Hierarchy. (Under the direction of Bojko Bakalov).

An integrable hierarchy is an infinite set of nonlinear evolution equations that can be

solved simultaneously. They arise by starting with a base differential equation that models a

physical process and then adding evolution equations that are symmetries of it and each other.

Some classical examples are the Kadomstev-Petviashvili (KP), Korteweg-de Vries (KdV), and

Toda hierarchies. The extended Toda hierarchy (ETH), was introduced as a hierarchy that

governs the Gromov-Witten invariants of CP 1. Its generalization, the extended bigraded Toda

hierarchy (EBTH), was introduced as a hierarchy that would encode the relations between the

Gromov-Witten invariants of some CP 1 orbifolds.

A special feature of integrable hierarchies is that there exist soliton solutions, or solutions

whose motion can be described by (solitary) waves that maintain their shape as they travel

through a narrow channel. An n-soliton solution is expressed as a polynomial in exponentials

with n distinct exponents. Darboux transformations were introduced in 1882 as an algebraic

method of generating new solutions to nonlinear evolution equations from existing ones, and

can be used to find soliton solutions to integrable hierarchies.

We begin by reviewing some standard but nontrivial facts about integrable hierarchies in

general. In particular we will review the KP hierarchy and its Darboux transformations and

Fay identities. Next, we introduce the EBTH in Lax form. We write a bilinear equation for the

EBTH in terms of the tau function using notation that is more convenient than that of the

existing bilinear equation and requires a shorter proof. We use the bilinear equation to write

two Fay identities for the EBTH. We then review Darboux transformations on the EBTH and

show that the action of the Darboux transformations on a tau function of the EBTH is given

by certain vertex operators. Finally, we use the aforementioned vertex operators and bilinear

equation to provide generalized Fay identities for the EBTH.
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CHAPTER 1

INTRODUCTION AND

PRELIMINARIES

1.1 Introduction

Integrable hierarchies arise by starting with a differential equation that models a physical process

and constructing a system of infinitely many symmetries of the equation. They admit soliton

solutions, or solutions whose motion can be described by a (solitary) wave that maintains its shape

as it travels through a narrow canal. Some classical examples of integrable hierarchies are the

KP, KdV and Toda hierarchies. Such systems can be studied using methods from representation

theory [34], combinatorics [6, 48], and algebraic geometry [48]. Studying integrable hierarchies

has led to algebraic methods of finding soliton solutions to nonlinear differential equations and

has also led to numerous applications in other areas of mathematics such as random matrices

and representation theory.

The main focus of this thesis is the use of Darboux transformations to generate soliton

solutions of the extended Toda hierarchy (ETH) and the extended bigraded Toda hierarchy

(EBTH). The Toda hierarchies arise from the Lax form of the Toda lattice equation [59] which

describes the motion of charged particles on an infinite lattice. In 1984, Ueno and Takasaki

introduced the 2D Toda hierarchy and its reduction, the 1D Toda hierarchy [60]. In 1986, ten

Kroode and Bergvelt used the representation theory of sl2(C) to show that the KdV and 1D

Toda hierarchies were closely related on an algebraic level [57].

The extended Toda hierarchy (ETH) was originally introduced by Getzler [30] and Zhang

[63] in its bihamiltonian form, and later in its Lax form by Carlet, Dubrovin and Zhang [16].
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It is obtained by adding an extra set of commuting flows to the 1D Toda hierarchy, which are

given in terms of a “logarithm” of the Lax operator. It was shown in [30, 24, 45, 50] that the

Gromov–Witten total descendant potential of CP1 is a tau-function of the ETH.

The extended bigraded Toda hierarchy (EBTH) was introduced by Carlet [15] as a gener-

alization of the extended Toda hierarchy related to the Frobenius manifolds from [23]. The

EBTH is defined for every pair (k,m) of positive integers, and it coincides with the ETH for

k = m = 1. The total descendant potential of CP1 with two orbifold points of orders k and m is

a tau-function of the EBTH (see [47, 18]). The EBTH contains the bigraded Toda hierarchy,

which is a reduction of the 2D Toda hierarchy (see [54, 60]).

Various applications of the Toda hierarchies, including matrix factorization problems for

Z×Z matrices and a connection between solutions to the Toda hierarchies and partition functions

for melting crystal models are discussed in [55].

In this thesis, we investigate how Darboux transformations of the EBTH affect the tau-

function. We start by using the approach of Takasaki [54] to derive a bilinear equation for the

EBTH, which is equivalent to the one from [18] after a change of variables. From this we obtain

a difference Fay identity, similar to what was done in [53, 58] for the the 2D Toda hierarchy.

Some Fay identities for the EBTH were given in [41], but writing the Fay identity in our notation

allows us to study the action of Darboux transformations on the tau-function. In [14], Carlet

defined Darboux transformations on the wave functions for the ETH, and in [42], Li and Song

generalized them to the EBTH.

Our main result is that the action of Darboux transformations on the tau-function is given

by applying the vertex operators

Γ+(z) = e−∂s exp
( ∞∑
j=1

tjz
j
)

exp
(
−
∞∑
j=1

∂tj
j
z−j
)

and

Γ−(z) = zse∂s exp
(
−
∞∑
j=1

t̄jz
−j
)

exp
( ∞∑
j=1

∂t̄j
j
zj
)
.

Thus, new tau-functions for the EBTH can be obtained from existing ones by applying a product

of Γ+ and Γ− evaluated at different values zi ∈ C∗. As an application, we derive generalized Fay

identities for the EBTH.

The outline of this thesis is as follows.

In the remainder of Chapter 1, we provide some background on vertex operators and Darboux

transformations which will be important for stating the main results of this thesis.

In Chapter 2, we define pseudo-differential operators and use the KP and KdV hierarchies as

examples to introduce the concept of an integrable hierarchy. We define the wave function, wave
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operators, and tau function for the KP hierarchy. Then, following [61], we review Fay identities

and Darboux transformations for the KP hierarchy.

In Chapter 3, we define the main subject of this thesis, the extended bigraded Toda hierarchy

(EBTH). We give an explicit bilinear equation for the EBTH that is equivalent to the one from

[18], in the notation introduced by Takasaki. We provide a shorter proof than what was done

in [18]. From the bilinear equation written in this form, we get two difference Fay identities

satisfied by the tau function of the EBTH (cf. [53]). This is similar to what was done in [41],

but we are following Takasaki’s notation, and our proof is shorter.

In Chapter 4 we review the Darboux transformations on L and ψ from [42]. We apply

results from [13] to factoring difference operators, and use this to provide an alternate proof

of [42], Theorem 3.4. Then we show the main result of this thesis: the action of the Darboux

transformations on the tau-function is given by the vertex operators Γ+(z) and Γ−(z). This

result is new even in the case k = m = 1 corresponding to the extended Toda hierarchy. We use

it to conclude that new tau-functions can be found by acting on an existing tau-function τ with

a product of Γ+(zi) and Γ−(zi) for certain zi ∈ C∗. As an application, we derive generalized Fay

identities for the EBTH.

Finally, Chapter 5 contains concluding remarks and future directions.

1.2 Vertex Operators

The main results presented in this thesis rely on the use of vertex operators to produce new

solutions to integrable hierarchies starting from known ones. Vertex operators were discovered by

physicists in string theory, but they appear in the representation theory of infinite dimensional

Lie algebras and as an application, the theory of integrable hierarchies (see [34, Chapter 14]). In

general, a vertex operator is an operator of the form

Γ(a, b) = exp

 ∞∑
j=1

ajxj

 exp

− ∞∑
j=1

bj∂xj


where a = (a1, a2, a3 . . .), b = (b1, b2, b3, . . .) and ∂xj =

∂

∂xj
. Using the property that

ec∂xf(x) = f(x+ c),

we have that the action of the vertex operator Γ(a, b) above on a function f(x) = f(x1, x2, x3, . . .)

is

Γ(a, b)f(x) = exp

 ∞∑
j=1

ajxj

 f(x1 − b1, x2 − b2, x3 − b3, . . .).
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The product of two vertex operators is itself a vertex operator. To multiply two vertex operators,

we will use the well known Campbell-Baker-Hausdorff formula

eAeB = eBeAe[A,B]

for operators A and B such that [A,B] commutes with A and B. Here, [A,B] refers to the

commutator bracket

[A,B] = AB −BA.

We will also use the property of formal power series

∞∑
n=1

(−1)n+1a
n

n
= log(1 + a)

to write

exp

− ∞∑
j=1

aj

j

 = exp(log(1− a)) = 1− a. (1.2.1)

Example 1.2.1. Let

Γ+(z) = exp

 ∞∑
j=1

zjxj

 exp

−2
∞∑
j=1

z−j

j
∂xj


Γ−(z) = exp

− ∞∑
j=1

zjxj

 exp

2
∞∑
j=1

∂xj
j
z−j

 .

The product Γ−(z1)Γ+(z2) is defined for z1 6= z2 and is given by

Γ−(z1)Γ+(z2)

= exp

− ∞∑
j=1

zj1xj

 exp

2
∞∑
j=1

∂xj
j
z−j1


× exp

 ∞∑
j=1

zj2xj

 exp

−2

∞∑
j=1

∂xj
j
z−j2


=

(
1

1− z2z
−1
1

)2

exp

− ∞∑
j=1

zj1xj

 exp

 ∞∑
j=1

zj2xj


× exp

2
∞∑
j=1

∂xj
j
z−j1

 exp

−2
∞∑
j=1

∂xj
j
z−j2
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We can see that because of the appearance of the term

(
1

1− z2z
−1
1

)2

, this product is not

defined when z1 = z2.

When writing vertex operators, or differential operators in general, we use normal ordering,

in which all differentiation operators appear on the right and multiplication operators appear

on the left. The notation : p : is used to denote the normal product. For example,

: xn∂xn : = : ∂xnxn : = xn∂xn

Normal ordering is important in ensuring that a product of operators is well defined. For instance,

consider the Euler operator
∑∞

n=1 nxn∂xn acting on weighted homogenous polynomials f(x),

where deg(xn) = n. Then ( ∞∑
n=1

nxn∂xn

)
f(x) = deg(f)f(x).

However, if we apply instead the operator
∑∞

n=1 n∂xnxn to f(x), using the product rule from

calculus, we get ( ∞∑
n=1

n∂xnxn

)
f(x) =

( ∞∑
n=1

n (1 + xn∂xn)

)
f(x).

In the case, of f(x) = 1, this gives ∞, so we see that this operator is not well defined.

1.3 Darboux Transformations

Another important tool used in this thesis are Darboux transformations. Darboux transformations

were originally introduced by Darboux in 1882 and later generalized by Crum. Matveev and

Salle realized that Darboux’s theorem could be applied to nonlinear differential equations as a

completely algebraic tool to generate new solutions starting from known ones. In this section,

we provide an overview of Darboux transformations and then review the original Darboux

transformations and its generalization following [44].

1.3.1 Darboux transformations for a differential operator

Classically, a Darboux transformation for a differential operator L is defined by factoring L = QR

and defining a new differential operator L[1] by switching the two factors: L[1] = RQ. Notice

that if Ψ is an eigenfunction for L, then

L[1](RΨ) = RQ(RΨ) = R(QRΨ) = RλΨ = λRΨ

so that the new function Ψ[1] = RΨ is an eigenfunction for L[1].
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The following lemma gives a condition for when such a factorization is possible (see e.g. [38]).

Lemma 1.3.1. A differential operator L can be factorized as L = QR if and only if ker(R) ⊂
ker(L).

We provide a sketch of the proof here since it will be useful in later sections. For more details,

see [38, Section 5.4].

Proof. If L = QR and Rψ = 0, then clearly Lψ = QRψ = Q(0) = 0. On the other hand, we will

suppose Rψ = 0 implies Lψ = 0. Suppose the order of L is n and the order of R is m (where

m < n). Then we can find some Q and P such that

L = QR+ P

where Q is of order n − m and P is of order at most m − 1. Suppose P is not identically

zero. By assumption, every ψ ∈ ker(R) must also satisfy Pψ = 0, so that P has at least m

linearly independent solutions. This is a contradiction since P can have at most m− 1 linearly

independent solutions.

Such an R can be found using the Wronskian determinant

Wr(f1, f2, · · · , fn) =

∣∣∣∣∣∣∣∣∣∣
f1 f2 · · · fn

f ′1 f ′2 · · · f ′n
...

... · · ·
...

f
(n−1)
1 f

(n−1)
2 · · · f

(n−1)
n

∣∣∣∣∣∣∣∣∣∣
.

Suppose Ψ is a function satisfying LΨ = λΨ. Then letting Ψ1 = Ψ(x, λ)
∣∣∣
λ=λ1

for some fixed λ1,

we define R by

Rf =

∣∣∣∣∣Ψ1 f

Ψ′1 f ′

∣∣∣∣∣ = Wr(Ψ1, f).

Since Ψ1 ∈ kerR and Ψ1 ∈ ker(L−λ1I), we can write L−λ1I = QR, where Q = (L−λ1I)R−1.

Switching these two factors, we get

RQ = R(L− λ1I)R−1 = RLR−1 − λ1I = L[1] − λ1I,

and

L[1]Ψ[1] = RLR−1RΨ = RλΨ = λΨ[1].

This process can by repeated N times to obtain a new L[N ] and Ψ[N ] satisfying L[N ]Ψ[N ] = λΨ[N ].

A formula for L[N ] and Ψ[N ] can be found in terms of the Wronskian of the original solution Ψ

6



evaluated at various values λi (see Theorem 1.3.4 below).

1.3.2 The Original Darboux Transformation

We continue using the notation from the previous subsection, and will let ux =
∂u

∂x
. Suppose

u(x) and Ψ(x, λ) satisfy the Sturm-Liouville equation

−Ψxx + u(x)Ψ = λΨ, (1.3.1)

for some constant λ. The equation (1.3.1) is equivalent to the eigenvalue problem LΨ = λΨ if L

is the Schrödinger operator

L = −∂2
x + u(x). (1.3.2)

Remark 1.3.2. The coefficients of ∂x and u(x) in L can be made arbitrary by rescaling. Later,

we will take both coefficients to be 1.

The Darboux transformation on L and Ψ is defined explicitly by:

Ψ 7→ Ψ[1] =

(
∂

∂x
− Ψ1x

Ψ1

)
Ψ =

Wr(Ψ1,Ψ)

Ψ1
,

u 7→ u[1] = u− 2
d2

dx2
ln Ψ1,

L 7→ L[1] = −∂2
x + u[1].

We can now state Darboux’s theorem.

Theorem 1.3.3. The function Ψ[1] satisfies the differential equation

−Ψ[1]
xx + u[1]Ψ[1] = λΨ[1]. (1.3.3)

The proof is by direct computation and can be found in [44]. A generalization of Darboux’s

theorem is obtained by applying the Darboux transformation to (1.3.1) N times for any N ∈ Z>0.

For example, when N = 2, we obtain

Ψ[2] =

(
d

dx
− Ψ2

[1]
x

Ψ
[1]
2

)(
d

dx
− Ψ1x

Ψ1

)
Ψ

where Ψ
[1]
2 = Ψ[1](x, λ)

∣∣∣
λ=λ2

for some fixed λ2, and

u[2] = u[1] − 2
d2

dx2
ln (Wr(Ψ1,Ψ2)) .
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Then Ψ[2] and u[2] satisfy the differential equation

−Ψ[2]
xx + u[2]Ψ[2] = λΨ[2].

An important fact about such Darboux transformations is that a formula for Ψ[N ] can be

obtained completely in terms of the initial solution Ψ evaluated at various values λ1, λ2, . . . , λN

(see e.g. [44]).

Theorem 1.3.4. The function

Ψ[N ] =
Wr(Ψ1,Ψ2, · · · ,ΨN ,Ψ)

Wr(Ψ1,Ψ2, · · ·ΨN )

satisfies the differential equation

−Ψ[N ]
xx + u[N ]Ψ[N ] = λΨ[N ], (1.3.4)

with

u[N ] = u− 2
d2

dx2
ln(Wr(Ψ1,Ψ2, · · · ,ΨN )).

Proof. Let R[k] be the differential operator

(
d

dx
−

Ψ′k
[k−1]

Ψ
[k−1]
k

)
, where prime denotes the derivative

with respect to x. Then

Ψ[N ] = R[N ] · · ·R[2]R[1]Ψ

= Ψ(N) + sN−1Ψ(N−1) + · · ·+ s0Ψ. (1.3.5)

Observe that R[k] · · ·R[2]R[1]Ψk = 0; for example, when N = 2, we have

R[2]R[1]Ψ2 = R[2](R[1]Ψ2)

= R[2]

(
Ψ[1]

∣∣∣
λ=λ2

)
= R[2]Ψ

[1]
2

= 0.

Thus, we have that R[N ] · · ·R[2]R[1]Ψk = 0 for every k = 1, 2, . . . N . This fact, along with (1.3.5)

can be used to obtain a system of linear algebraic equations of the form

Ψ
(N)
k + sN−1Ψ

(N−1)
k + · · ·+ s1Ψ′ + s0Ψ = 0

for k = 1 . . . N .

8



Cramer’s rule can be used to explicitly find each coefficient si. The rest of the theorem is

proved by substituting the expression (1.3.5) into (1.3.4) with the explicit si and solving for

u[N ].

1.3.3 Lax Pairs and the KdV Equation

To illustrate an application of how Darboux transformations can be applied to finding solutions

to nonlinear differential equations, we consider the Korteweg-de Vries (KdV) equation which

describes the motion of water waves in a narrow canal. For u = u(x, t) and any constants c1 and

c2, the KdV equation is defined by:

∂u

∂t
= c1u

∂u

∂x
+ c2

∂3u

∂x3
.

Again, we note that the constants can be rescaled arbitrarily, but for convenience, we will

take c1 = 3
2 and c2 = 1

4 . Direct computation shows that the KdV equation is equivalent to the

Lax equation
∂L

∂t
= [B,L] (1.3.6)

where B and L are the operators

B = ∂3
x +

3

2
u∂x +

3

4
ux

L = ∂2
x + u

(1.3.7)

(see [48, Chapter 1]). We call B and L a Lax pair for the KdV equation. Again we can show

through direct calculation that a solution φ to the system of equations

Lφ = λφ

φt = Bφ
(1.3.8)

satisfies (φxx)t = (φt)xx if and only if

∂u

∂t
=

3

2
uux +

1

4
u3x

(cf. [33, 48]). In other words, the KdV equation is the compatibility condition for the system

(1.3.8). Observing that the first equation of (1.3.8) is equivalent to the Sturm-Liouville equation

(1.3.1) for which we defined Darboux transformations, we can conclude that if one knows

a solution u to the KdV equation and therefore a solution φ to (1.3.8), then the Darboux
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transformation can be applied successively to produce new solutions to the KdV equation [33]:

(u, φ) 7→ (u[1], φ[1]) 7→ (u[2], φ[2]) 7→ · · ·

As a further application, we consider the following question posed in 1986 by Duistermaat

and Grünbaum [25]: for which linear ordinary differential operators L(x, ∂x) does there exist a

non-zero family of eigenfunctions Ψ(x, z) such that

L(x, ∂x)Ψ(x, z) = f(z)Ψ(x, z),

M(z, ∂z)Ψ(x, z) = g(x)Ψ(x, z)
(1.3.9)

for some other differential operator M(z, ∂z)? This question was initially studied due to its

applications to “limited angle tomography” [31], but eventually was shown to be connected to

integrable hierarchies and soliton mathematics [8, 9, 10]. When L is of order 2, the question can

be answered using the Darboux transformations discussed for the KdV equation. In this case, L

can be written in the Shrödinger form (1.3.2) and the potentials u(x) are found according to

the following theorem.

Theorem 1.3.5 ([25]). The potentials u(x) for which the equations 1.3.9 hold (for non-zero Ψ

and M of positive order) are given by:

1. u(x) = ax+ b, a, b ∈ C,

2. u(x) =
c

(x− a)2
+ b, a, b, c,∈ C,

3. u(x) obtained from finitely many Darboux transformations starting from u(x) = 0,

4. u(x) obtained from finitely many Darboux transformations starting from u(x) = − 1

4x2
.

The first two cases correspond to the Airy and Bessel functions respectively. These results

were generalized in [10].
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CHAPTER 2

THE KP HIERARCHY

In this chapter, we will introduce integrable hierarchies by presenting known results for the KP

hierarchy following [61, 48]. We start by defining the hierarchy in Lax form. We then introduce

the concepts of wave functions, wave operators, and tau functions, and finally show how Darboux

transformations can be used to generate soliton solutions to the KP Hierarchy.

2.1 Definition of the KP hierarchy

2.1.1 Pseudo-differential operators

If L is a differential operator, we can define L1/n for any n ∈ Z in terms of pseudo-differential

operators. Such operators contain negative powers of ∂ = ∂x, and their action is defined on

functions of the form f(x) = ekx using

∂n(ekx) = knekx

for n ∈ Z.

Definition 2.1.1. A pseudo-differential operator (of order n ∈ Z) is an operator of the

form

A =

n∑
i=−∞

ai∂
i.

for ai = ai(x) and an 6= 0.

11



We will let D− denote the space of pseudo-differential operators of the form

A =
−1∑
−∞

ai∂
i.

For any pseudo-differential operator A =

n∑
i=−∞

ai∂
i we define the decomposition of A into its

“plus” and “minus” parts by

A+ =

n∑
i=0

ai∂
i, A− =

−1∑
i=−∞

ai∂
i.

Multiplication of pseudo-differential operators is defined according to the Leibniz rule:

∂n ◦ f =

∞∑
i=0

(
n

i

)
(∂if)∂n−i.

If A is a pseudo-differential operator of the form A =

n∑
i=−∞

ai∂
i, then there exists a unique A−1

of the form
−n∑

i=−∞
ãi∂

i such that A ◦A−1 = A−1 ◦A = I. We also define the symbol of A by

Â =

n∑
i=−∞

aiz
i,

or equivalently,

Âexz = Aexz.

Finally, the formal adjoint of A is given by

A∗ =
n∑

i=−∞
(−∂)i ◦ ai

and satisfies the properties

(AB)∗ = B∗A∗, (A∗)−1 = (A−1)∗, (A∗)∗ = A

(here, B is some other pseudo-differential operator).
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2.1.2 The KdV hierarchy

We can use pseudo-differential operators to compute the square root of the Shrödinger operator

L = ∂2 + u that appears in the Sturm-Liouville equation (1.3.1). If we let P = ∂ +

−1∑
i=∞

pi∂
i for

some unknown pi = pi(x), we can set P 2 = ∂2 + u and compare coefficients to determine the pi

(see [48]). Notice we can use this to determine (∂2 + u)n/2 = Ln/2 for any positive, odd integer

n. One can show that the operator B from (1.3.7) can be expressed as

B = ∂3
x +

3

2
u+

3

4
ux∂x = (L3/2)+.

Thus, we can rewrite the Lax representation for the KdV equation as

∂L

∂t
= [(L3/2)+, L]. (2.1.1)

In general, we have that

[L, (Ln/2)+] = [L,Ln/2 − (Ln/2)−] = −[L, (Ln/2)−]. (2.1.2)

To define the KdV hierarchy, we will introduce an infinite sequence of variables (t1, t3, t5, . . .).

Definition 2.1.2. The system of Lax equations

∂L

∂tn
= [(Ln/2)+, L], n = 1, 3, 5 . . . (2.1.3)

is known as the KdV hierarchy.

All of the equations in the KdV hierarchy are pairwise compatible, or can be solved simulta-

neously. When n = 1, we have

∂L

∂t1
= [(L1/2)+, L] = [∂, L] =

∂L

∂x

so we can identify x with t1. Similarly when n = 3, using (2.1.1), we can identify t with t3.

2.1.3 Lax form of the KP hierarchy

We can now proceed with the definition of the KP Hierarchy. Instead of the Schrödinger operator,

we start with a pseudo-differential operator L = ∂ + a−1∂
−1 + a−2∂

−2 + · · · , where each

ai = ai(x, t1, t2, . . .).
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Definition 2.1.3. The system of Lax equations

∂L

∂tn
= [(Ln)+, L], n = 1, 2, . . . (2.1.4)

is known as the KP hierarchy.

Observe that

[(Ln)+, L] = [Ln − (Ln)−] = −[(Ln)−, L] ∈ ∂ +D−

since [Ln, L] = 0. If we impose the restriction that L2 is a strictly differential operator, then the

system of equations (2.1.3) reduces to the KdV hierarchy. In this case L2 = ∂2 + u and

∂L

∂t2n
=
[
(L2n)+, L

]
=
[
L2n, L

]
= 0.

If we consider the equation of the KP hierarchy corresponding to n = 1 and use

[∂, aj∂
j ]f =

(
∂ ◦ aj∂j − aj∂j ◦ ∂

)
f

=
∂aj
∂x

(∂jf) + aj∂
j+1f − aj∂j+1f

=
∂aj
∂x

(∂jf),

we have
∂L

∂t1
= [L+, L] = [∂, L] =

−1∑
j=−∞

∂aj
∂x

∂j .

On the other hand, direct computation shows that

∂L

∂t1
=

−1∑
j=−∞

∂aj
∂t1

∂j ,

so we can identify t1 with x and write

aj(x, t1, t2, . . .) = aj(t1 + x, t2, . . .) = aj(t1, t2, . . .).

From now on, we will use boldface notation to refer to the infinite sequence of variables indexed

by the integers; for instance, t = (t1, t2, t3, . . .).

2.1.4 Wave functions and bilinear equation

If L is a Lax operator for the KP hierarchy, there exists a wave operator W ∈ I +D− and a

wave function ψ = We
∑∞

j=1 tjz
j

on which the equations (2.1.4) induce actions. The following
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theorem summarizes these actions and gives an explicit definition of W and ψ in terms of L.

First, we introduce the notation

ξ(t, z) =
∞∑
i=1

tiz
i.

Theorem 2.1.4 ([61]). The following are equivalent:

(a)
∂L

∂tn
= [(Ln)+, L] for n = 1, 2, . . .

(b) There exists a wave operator

W = 1 +
∞∑
j=1

wj∂
−j ∈ I +D−, wj = wj(t)

such that L = W∂W−1 and

∂W

∂tn
= −(Ln)−W, n = 1, 2, 3, . . . (2.1.5)

(c) There exists a wave function

ψ = ψ(t, z) = Weξ(t,z)

satisfying

Lψ = zψ,

∂ψ

∂tn
= (Ln)+ψ, n = 1, 2, 3, . . .

(2.1.6)

The wave function can be used to write a single bilinear equation that encodes the entire

system (2.1.4) into a single equation. First, we define the adjoint wave function ψ∗ by

ψ∗(t, z) = (W ∗)−1e−
∑∞

j=1 tjz
j

.

Following Theorem 1.1 from [61], we can determine if ψ is a wave function for the KP hierarchy

from the following bilinear equation. Here we use the notation∮
dz

2πi

(∑
aiz

i
)

= Resz
∑

aiz
i = a−1

to denote the residue of a formal power series (see e.g. [19]).

Theorem 2.1.5. A function ψ is a wave function for the KP hierarchy if and only if∮
dz

2πi
ψ(t′, z)ψ∗(t, z) = 0 (2.1.7)
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for all t and t′.

The proof of this theorem uses the Taylor expansion of ψ(t′, z) about t′i = ti along with the

following lemma (cf. [22, 61]).

Lemma 2.1.6. If A and B are two pseudo-differential operators, then

Resz
(
(Aexz) · (Be−xz)

)
= Res∂ AB

∗.

2.1.5 Tau function

The final object that will be of use for us when studying integrable hierarchies is the tau function.

As defined, the KP hierarchy is an equation in infinitely many variables t1, t2, . . . for infinitely

many functions w1, w2, . . ..

Sato showed that the system (2.1.4) can be expressed in terms of a single unknown function

τ = τ(t), called the tau function [51].

Theorem 2.1.7. There exists a function τ(t) such that the wave functions ψ and ψ∗ can be

represented as

ψ(t, z) = We
∑∞

i=1 tjz
j

=
τ(t− [z−1])

τ(t)
eξ(t,z) (2.1.8)

and

ψ∗(t, z) =
τ(t + [z−1])

τ(t)
e−ξ(t,z) (2.1.9)

where

[z] =

(
z,
z2

2
,
z3

3
, . . .

)
.

Based on this definition, it is helpful to define the vertex operator Γ(z) by

Γ(z) = eξ(t,z) exp

(
−
∞∑
i=1

z−i

i
∂ti

)
(2.1.10)

and write

ψ =
Γ(z)τ

τ
. (2.1.11)

This allows us to explicitly solve for the first few coefficients of Ŵ in terms of τ by expanding

(2.1.11) and comparing coefficients. For example,

w1 =
−∂t1τ
τ

,

w2 =
1

2

(
∂2
t1τ − ∂t2τ

τ

)
.
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Using the equations (2.1.8) and (2.1.9), we can rewrite the bilinear equation (2.1.7) in terms

of only the tau function: ∮
dz

2πi
τ(t− [z−1])τ(t′ + [z−1])eξ(t−t

′,z) = 0, (2.1.12)

giving us a single equation in a single function that is equivalent to the KP hierarchy. As with

the wave functions ψ and ψ∗, we can state the following theorem.

Theorem 2.1.8 ([61]). A function τ is a tau function for the KP hierarchy if and only if it

satisfies the bilinear equation (2.1.12) for all t, t′.

2.2 Fay identity for the KP Hierarchy

Using the bilinear equation (2.1.12), we can arrive at certain identities satisfied by any tau

function for the KP hierarchy, known as the Fay identities [6].

Shifting the variables t and t′ in the bilinear equation and computing the residue, we obtain

the following Fay identity for the KP hierarchy, originally proved by Shiota [52].

Theorem 2.2.1. Any tau function for the KP hierarchy satisfies the identity

(s0 − s1)(s2 − s3)τ(t + [s0] + [s1])τ(t + [s2] + [s3])

+(s0 − s2)(s3 − s1)τ(t + [s0] + [s2])τ(t + [s3] + [s1])

+(s0 − s3)τ(t + [s0] + [s3])τ)τ(t + [s1] + [s2]) = 0.

(2.2.1)

Proof. We start by letting t = t− [s1]− [s2]− [s3] and t′ = t + [s0] in (2.1.12). Then by (1.2.1),

the bilinear equation becomes∮
dz

2πi

(1− zs0)

(1− zs1)(1− zs2)(1− zs3)

× τ(t + [s1] + [s2] + [s3]− [z−1])τ(t + [s0] + [z−1]) = 0.

(2.2.2)

To compute this residue, we use partial fractions to write

(1− zs0)g(z)

(1− zs1)(1− zs2)(1− zs3)
=

(s0 − s1)s1

(s1 − s2)(s3 − s1)
· g(z)

1− zs1
+

(s0 − s2)s2

(s1 − s2)(s2 − s3)
· g(z)

1− zs2

+
(s0 − s3)s3

(s3 − s1)(s2 − s3)
· g(z)

1− zs3
,
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and then use the property that if g(z) =

∞∑
i=0

giz
−i, then

Resz
g(z)

1− zλ
= Resz

∞∑
i,j=0

giλ
jz−i+j

=
∞∑
i=0

giλ
i−1

= λ−1g(λ).

(2.2.3)

Doing so, we get

(s1 − s2)−1(s2 − s3)−1(s3 − s1)−1 × left hand side of (2.2.1) = 0,

so we have proved the theorem.

Differentiating both sides of (2.2.1) and making a certain reduction, we can also prove the

following differential Fay identity satisfied by any tau function for the KP hierarchy [61].

Theorem 2.2.2. Any tau function τ(t) for the KP hierarchy satisfies

Wr(τ(t− [s1]), τ(t− [s2])) = (s−1
1 −s

−1
2 ) (τ(t− [s1])τ(t− [s2])− τ(t)τ(t− [s1]− [s2])) . (2.2.4)

Conversely, the differential Fay identity was shown to be equivalent to the bilinear equation

(2.1.12) in [56].

2.3 Darboux Transformations of the KP Hierarchy

In this section, we use the ideas from Section 1.3.1 to define Darboux transformations for the

KP hierarchy. Further details and proofs of the theorems stated in this section can be found in

[6] (see also [61, 8]).

Recall that any wave function ψ for the KP hierarchy satisfies

Lψ = zψ.

For a function φ, let Aφ be the operator defined by

Aφ = ∂ − φx
φ
.

18



A Darboux transformation on a wave function ψ for the KP hierarchy and its corresponding

Lax operator L is defined by

L[1] = AφLA
−1
φ , ψ[1] = Aφψ =

Wr(φ, ψ)

φ
.

Then just as with any classical Darboux transformation, we have

L[1]ψ[1] = AφLA
−1
φ Aφψ = AφLψ = Aφ(zψ) = zAφψ = zψ[1],

so that ψ[1] is an eigenfunction for L[1]. If we pick φ = ψ1 = ψ
∣∣
z=z1

for some known wave

function ψ of the KP hierarchy, we have

ψ[1] = Aψ1ψ =
Wr (ψ,ψ1)

ψ
(2.3.1)

also satisfies the equations (2.1.6), and is itself a wave function for the KP hierarchy. Furthermore,

one can show using the Fay identity (2.2.1) that the action of the above Darboux transformation

on the tau function is given by the vertex operator

X(t, λ) = exp

( ∞∑
i=1

tiλ
i

)
exp

(
−
∞∑
i=1

λ−i

i
∂ti

)
.

In other words, we have the following theorem.

Theorem 2.3.1 ([6]). If ψ is a known solution to the KP hierarchy with corresponding tau

function τ , and ψ[1] is found as in (2.3.1), then

ψ[1] =
τ [1](t− [z−1])

τ [1](t)

where τ [1](t) = X(t, z1)τ(t).

That τ [1] is a tau function for the KP hierarchy can be verified by plugging

X(t, z1)τ(t) = exp

( ∞∑
i=1

tiz
i
1

)
τ(t− [z−1

1 ])

into (2.1.12).

Since Darboux transformations can be repeated, we can explicitly find τ [N ], the tau func-

tion corresponding to the wave function ψ[N ] obtained from N iterations of the Darboux
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transformation:

τ [N ](t) = X(t, zN )X(t, zN−1) · · ·X(t, z1)τ(t)

=
∏

1≤i<j≤N

(
1− zj

zi

)
exp

( ∞∑
i=1

ti
(
z−i1 + z−i2 + · · ·+ z−iN

))
τ (t− [z1]− [z2]− · · · − [zN ]) .

2.3.1 Generalized Fay identities

As a consequence of Theorem 2.3.1, we obtain the generalized Fay identities satisfied by any tau

function for the KP hierarchy. To state the theorem, we will use the notation consistent with [6]:

∆(s1, . . . sn) =
∏

1≤j<i≤n
(s−1
i − s

−1
j ).

Theorem 2.3.2 ([6]). Any tau function for the KP hierarchy satisfies the generalized Fay

identities

τ(t− [s1]− [s2]− · · · − [sn])∆(s1, . . . sn)(τ(t− [r1]− [r2]− · · · − [rn])∆(r1, . . . , rn))n−1

= det[τ(t−
n∑
l=1

[rl] + [ri]− [sj ])∆(r1, . . . , ri−1, sj , ri+1, . . . rn)]1≤i,j≤n.

We also state the differential version of the generalized Fay identities.

Theorem 2.3.3 ([6]). Any tau function for the KP hierarchy satisfies the generalized differential

Fay identities

Wr
(
ψ(t, z−1

1 ), . . . ψ(t, z−1
N )
)

= ∏
1≤j≤i≤n

(z−1
i − z

−1
j )

 exp

( ∞∑
i=1

ti(z
−i
1 + · · · z−iN )

)
τ(t− [z1]− [z2]− · · · − [zN ])

τ(t)
. (2.3.2)

It is also useful to consider the vertex operator

X̃(t, µ) = exp

(
−
∞∑
i=1

tiµ
i

)
exp

( ∞∑
i=1

µ−i

i
∂ti

)
,

often referred to as an “inverse” of the X. However it is not exactly an inverse since we see that

the expression X̃(t, µ)X(t, λ) has a singularity at λ = µ (cf. Example 1.2.1). The function X̃τ

is also a tau function for the KP hierarchy. Furthermore, for some tau function τ(t) of the KP
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hierarchy we have

X̃(t, λ)X(t, µ)τ =
λ

λ− µ
exp

( ∞∑
i=1

ti(µ
i − λi)

)
τ(t + [λ−1]− [µ−1])

=
λ

λ− µ
exp

( ∞∑
i=1

ti(µ
i − λi)

)
exp

( ∞∑
i=1

(λ−i − µ−i)∂ti
i

)
τ(t).

If we expand the last line about positive powers of (µ− λ) and all powers of λ, we get

λ

λ− µ

∞∑
k=0

(µ− λ)k

k!

( ∞∑
l=−∞

λ−l−kW
(k)
l (τ)

)
(2.3.3)

where the operators W
(k)
l are defined recursively with the first few given by

W (1)
n = J (1)

n = ∂tn + (−n)t−n, t−n = 0 for n > 0,

W (2)
n = J (2)

n − (n+ 1)J (1)
n ,

W (3)
n = J (3)

n −
3

2
(n+ 2)J (2)

n + (n+ 1)(n+ 2)J (1)
n ,

W (4)
n = J (4)

n − 2(n+ 3)J (3)
n + (2n2 + 9n+ 11)J (2)

n − (n+ 1)(n+ 2)(n+ 3)J (1)
n ,

where

J (k)
n =

∑
i1+i2+...+ik=n

: J
(1)
i1
J

(1)
i2
· · · J (1)

ik
: .

To illustrate an application of Theorems 2.3.1 and 2.3.2, we introduce the Lie algebra

w∞ = span{zα∂βz | α, β ∈ Z, β ≥ 0}

of differential operators on the circle S1, equipped with the commutator bracket. The central

extension of w∞ is known as the Lie algebra W1+∞, and the operators W
(k)
l above are generators

for it. The Fay identities can be used to show that the action of w∞ on the Lax operator

corresponds to the action of W1+∞ on the tau function for the KP hierarchy [6, 3, 21].

The Fay identities can also be used to connect the theory of the KP hierarchy to Jacobian

varieties of smooth curves (see [52]).

21



CHAPTER 3

THE EXTENDED BIGRADED

TODA HIERARCHY (EBTH)

3.1 Definition of the EBTH

The extended bigraded Toda hierarchy (EBTH) was introduced by Carlet in 2006 [15], and is

the main subject of this thesis. In this chapter, we introduce the EBTH following [12] and using

the notation from [54]. While this notation differs from the one originally presented in [15, 18],

that version can be obtained from a change of variables which we discuss below.

We begin this chapter by discussing the spaces of difference and differential-difference

operators. Then we present a definition of the EBTH, its Lax operator, wave operators, wave

functions, and tau-function. Next, we derive a bilinear equation for the EBTH using Takasaki’s

approach from [54]. Our equation is equivalent to the bilinear equation from [18], but we

provide a shorter proof. As a consequence, we obtain two difference Fay identities satisfied by

tau-functions of the EBTH.

3.1.1 Spaces of difference and differential-difference operators

Consider functions of a variable s, and the shift operator Λ = e∂s defined by (Λf)(s) = f(s+ 1).

The space A of (formal) difference operators consists of all expressions of the form

A =
∑
i∈Z

ai(s)Λ
i.
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We have A = A+ ⊕A− where A+ (respectively, A−) consists of A ∈ A such that ai = 0 for all

i < 0 (respectively, i ≥ 0). For A ∈ A, we define its projections

A+ =
∑
i≥0

ai(s)Λ
i ∈ A+, A− =

∑
i<0

ai(s)Λ
i ∈ A−.

We let A++ be the space of difference operators A ∈ A such that ai = 0 for i � 0 (i.e.,

the powers of Λ are bounded from below), and A−− be the space of A ∈ A such that ai = 0

for i� 0 (i.e., the powers of Λ are bounded from above). Both A++ and A−− are associative

algebras, where the product is defined by linearity and

(a(s)Λi)(b(s)Λj) = a(s)b(s+ i)Λi+j .

Let Afin = A++ ∩ A−−. The product of a difference operator A ∈ A by an element of Afin is

defined, but in general, the product of an element of A++ and an element of A−− is not well

defined.

We will also consider the space A[∂s] of (formal) differential-difference operators, where

Λ∂s = ∂sΛ. Note that such operators depend polynomially on ∂s. Again, there is a splitting

A[∂s] = A+[∂s]⊕A−[∂s], and we have the associative algebras A++[∂s] and A−−[∂s], where the

product is defined by linearity and

(a(s)Λi∂ns )(b(s)Λj∂ms ) =

n∑
k=0

(
n

k

)
a(s)

∂kb

∂sk
(s+ i)Λi+j∂m+n−k

s .

Differential-difference operators can be applied to zs so that

(a(s)Λi∂ns )zs = a(s)zi(log z)nzs.

3.1.2 Definition of the EBTH

The EBTH is defined similarly to the KP hierarchy, but in terms of difference operators instead

of pseudo-differential operators.

For fixed, positive integers k and m, consider a Lax operator of the form

L = Λk + uk−1(s)Λk−1 + · · ·+ u−m(s)Λ−m ∈ Afin, u−m(s) 6= 0.
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There exist wave operators (also called dressing operators):

W = 1 +
∞∑
i=1

wi(s)Λ
−i ∈ 1 +A− ⊂ A−−,

W̄ =
∞∑
i=0

w̄i(s)Λ
i ∈ A+, w̄0(s) 6= 0,

(3.1.1)

such that

L = WΛkW−1 = W̄Λ−mW̄−1. (3.1.2)

This allows us to define fractional powers of L for any integer n by

L
n
k = WΛnW−1 ∈ A−−, L

n
m = W̄Λ−nW̄−1 ∈ A++, (3.1.3)

which commute with L and satisfy

(
L

n
k
)k

=
(
L

n
m
)m

= Ln, n ∈ Z≥0.

However, observe that L
n
k 6= L

p
m , unless n

k = p
m ∈ Z≥0. We define logL ∈ A by

logL =
1

2
W∂sW

−1 − 1

2
W̄∂sW̄

−1 = −1

2

∂W

∂s
W−1 +

1

2

∂W̄

∂s
W̄−1.

Then logL commutes with all Ln for n ∈ Z≥0, but the composition of logL with a fractional

power of L is not well defined in general.

Definition 3.1.1 ([15]). The extended bigraded Toda hierarchy (abbreviated EBTH) in Lax

form is given by:

∂tnL = [(L
n
k )+, L], n ≥ 1,

∂t̄nL = [(L
n
m )+, L], n ≥ 1,

∂xnL = [(2Ln logL)+, L], n ≥ 0.

(3.1.4)

The first two equations in (3.1.4) describe the bigraded Toda hierarchy, which is a reduction

of the 2D Toda hierarchy (see [54, 60]). For k = m = 1, the EBTH is equivalent to the extended

Toda hierarchy (ETH) [16, 54].

The flows of the EBTH induce flows on the dressing operators:

∂tnW = −(L
n
k )−W, ∂tnW̄ = (L

n
k )+W̄ ,

∂t̄nW = −(L
n
m )−W, ∂t̄nW̄ = (L

n
m )+W̄ ,

∂xnW = −(2Ln logL)−W, ∂xnW̄ = (2Ln logL)+W̄ .

(3.1.5)
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Remark 3.1.2. Since ∂x0 − ∂s and ∂tnk
− ∂t̄nm

act trivially on L, W and W̄ , it follows that L,

W and W̄ depend on x0 + s and tnk + t̄nm for n ≥ 1. Without loss of generality, we can assume

x0 = s and tnk = t̄nm.

Remark 3.1.3. To compare our version of the EBTH to the one from [18], we need to change

there ε 7→ −ε, which leads to Λ 7→ Λ−1 and ζ 7→ ζ−1 (z here), and then apply the following

change of variables:

x = εs,

qk−αn = εk
(
n+

α

k

)
n+1

tnk+α, α = 1, 2, . . . , k − 1,

qk+β
n = εm

(
n+

β

m

)
n+1

t̄nm+β, β = 1, 2, . . . ,m− 1,

qk+m
n = εm(n+ 1)!

(
t(n+1)k + t̄(n+1)m + cn+1

(1

k
+

1

m

)
xk+1

)
,

qkn = εn!xn, n ≥ 0.

Here cn are the harmonic numbers

c0 = 0, cn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
,

and (p)n denotes the Pochhammer symbol,

(p)0 = 1,

(p)n =

n∏
i=1

(p− i+ 1), n ≥ 1,

(p)−n =
0∏

i=−n+1

(p− i+ 1)−1 =
1

(p+ n)n
.

Due to Remark 3.1.2, from now on we will always assume x0 = s and tnk = t̄nm for n ≥ 1.

Recall that in our notation,

t = (t1, t2, . . . ), t̄ = (t̄1, t̄2, . . . ), x = (x1, x2, . . . ),

and

ξ(t, z) =

∞∑
i=1

tiz
i.
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We will also introduce the new notation

ξk(t, z) =
∞∑
n=1

tnkz
nk =

∞∑
n=1

t̄nmz
nk.

Then

ξm(t̄, z−1) =
∞∑
n=1

t̄nmz
−nm =

∞∑
n=1

tnkz
−nm.

We let

χ = zs+ξ(x,z
k)eξ(t,z)−

1
2
ξk(t,z),

χ̄ = zs+ξ(x,z
−m)e−ξ(t̄,z

−1)+ 1
2
ξm(t̄,z−1).

(3.1.6)

Observe that, by definition,

∂tiχ = ziχ, ∂t̄j χ̄ = −z−jχ̄ if k - i, m - j,

∂tnk
χ = ∂t̄nm

χ =
1

2
znkχ, ∂tnk

χ̄ = ∂t̄nm
χ̄ = −1

2
z−nmχ̄.

(3.1.7)

The wave functions ψ and ψ̄ of the EBTH are defined by:

ψ = ψ(s, t, t̄,x, z) = Wχ = wχ,

ψ̄ = ψ̄(s, t, t̄,x, z) = W̄ χ̄ = w̄χ̄,
(3.1.8)

where

w = 1 +
∞∑
i=1

wi(s)z
−i, w̄ =

∞∑
i=0

w̄i(s)z
i (3.1.9)

are the (left) symbols of W and W̄ respectively. Here we view w and w̄ as formal power series

of z−1 and z; however, when we state our results, we will assume that w(z) is convergent for z

in some domain U ⊂ C.

The wave functions satisfy

Lψ = zkψ, Lψ̄ = z−mψ̄. (3.1.10)
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We have:
∂tnψ = (L

n
k )+ψ, n ∈ Z≥1 \ kZ,

∂t̄nψ = −(L
n
m )−ψ, n ∈ Z≥1 \mZ,

∂tnk
ψ = ∂t̄nm

ψ = Anψ, n ∈ Z≥1,

∂xnψ = (Ln∂s + Pn)ψ, n ∈ Z≥0,

(3.1.11)

and exactly the same equations hold for ψ̄, where

An =
1

2
(Ln)+ −

1

2
(Ln)− = (Ln)+ −

1

2
Ln =

1

2
Ln − (Ln)− (3.1.12)

and

Pn = −
(
Ln

∂W

∂s
W−1

)
+
−
(
Ln

∂W̄

∂s
W̄−1

)
−

= LnW∂sW
−1 − (2Ln logL)− − Ln∂s

= LnW̄∂sW̄
−1 + (2Ln logL)+ − Ln∂s.

(3.1.13)

Observe that, due to (3.1.1) and (3.1.3), we have

(L
n
k )+, (L

n
m )−, An, Pn ∈ Afin, P0 = 0.

Finally, by [18, 41], there exists a tau-function τ such that

ψ(s, t, t̄,x, z) =
τ(s, t− [z−1], t̄,x)

τ(s, t, t̄,x)
χ, (3.1.14)

ψ̄(s, t, t̄,x, z) =
τ(s+ 1, t, t̄ + [z],x)

τ(s, t, t̄,x)
χ̄. (3.1.15)

Remark 3.1.4. Since tnk = t̄nm, we need to specify how to do the shifts t− [z−1] in (3.1.14)

and t̄+ [z] in (3.1.15). Here and further, our convention is that in (3.1.14), t− [z−1] includes all

variables t1, t2, . . . , while t̄ only includes t̄i such that m - i. Similarly, in (3.1.15), all t̄1, t̄2, . . .

are shifted, while t only includes ti such that k - i.
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3.2 Bilinear equation for the EBTH

3.2.1 Dual wave functions

Just as in the case of pseudo-differential operators, we can define the formal adjoint of a difference

operator A =
∑

i∈Z ai(s)Λ
i ∈ A by

A∗ =
∑
i∈Z

Λ−i ◦ ai(s) =
∑
i∈Z

ai(s− i)Λ−i.

It satisfies the properties:

(AB)∗ = B∗A∗, (A∗)∗ = A, (A−1)∗ = (A∗)−1. (3.2.1)

For given wave operators W and W̄ , we define the dual wave functions ψ∗ and ψ̄∗ by:

ψ∗ = (W ∗)−1χ−1 = (W ∗)−1z−s−ξ(x,z
k)e−ξ(t̄,z)+

1
2
ξk(t,z),

ψ̄∗ = (W̄ ∗)−1χ̄−1 = (W̄ ∗)−1z−s−ξ(x,z
−m)eξ(t̄,z

−1)− 1
2
ξm(t̄,z−1).

(3.2.2)

If W and W̄ satisfy (3.1.2), (3.1.5), then it is easy to derive equations satisfied by ψ∗ and ψ̄∗.

For example, observing that

L∗ = (WΛkW−1)∗

= (W−1)∗(Λk)∗W ∗

= (W ∗)−1Λ−kW ∗,

we have

L∗ψ∗ = (W ∗)−1Λ−k(W ∗)(W ∗)−1χ−1

= (W ∗)−1Λ−kχ−1

= zkψ∗.

Doing the same for ψ̄∗, we have (cf. (3.1.10)):

L∗ψ∗ = zkψ∗, L∗ψ̄∗ = z−mψ̄∗. (3.2.3)

We will not list all the other equations, which are similar to (3.1.11), but we will need the

following lemma.
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Lemma 3.2.1. For every solution of the EBTH, the dual wave functions satisfy

(
∂xn − znk∂s

)
ψ∗ = −P ∗nψ∗,(

∂xn − z−nm∂s
)
ψ̄∗ = −P ∗n ψ̄∗,

for all n ∈ Z≥1, where Pn is given by (3.1.13).

Proof. First, since (∂xn − znk∂s)χ = 0, we have

(
∂xn − znk∂s

)
ψ∗ =

((
∂xn − znk∂s

)
(W ∗)−1

)
χ−1. (3.2.4)

Using (3.1.5) and the product rule on WW−1 = 1, we find

∂xnW
−1 = −W−1(∂xnW )W−1 = W−1(2Ln logL)−,

∂sW
−1 = ∂x0W

−1 = W−1(2 logL)−.

Note that taking formal adjoint commutes with taking derivative with respect to xn, because

the latter is done coefficient by coefficient. Hence,

(
∂xn − znk∂s

)
(W ∗)−1 = (2Ln logL)∗−(W ∗)−1 − znk(2 logL)∗−(W ∗)−1.

Using (3.2.4) and (3.2.3), we can write

(
∂xn − znk∂s

)
ψ∗ = (2Ln logL)∗− − znk(2 logL)∗−ψ

∗

= (2Ln logL)∗−ψ
∗ − (2 logL)∗−z

nkψ∗

= (2Ln logL)∗−ψ
∗ − (2 logL)∗−(Ln)∗ψ∗

= (2Ln logL)∗−ψ
∗ − (2Ln(logL)−)∗ ψ∗

= ((2Ln logL)− − 2Ln(logL)−)∗ ψ∗. (3.2.5)

Finally, using (3.1.13) and observing that P0 = 0 we get

−(2 logL)− = −W∂sW
−1 + ∂s,

so that (3.2.5) becomes

(
(2Ln logL)− − LnW∂sW

−1 + Ln∂s
)∗
ψ∗ = −P ∗nψ∗.

The equation for ψ̄∗ is proved in the exact same way.
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3.2.2 Bilinear equation for the wave functions

The next result provides bilinear equations satisfied by the wave functions and dual wave

functions of the EBTH.

Theorem 3.2.2. The wave functions ψ = Wχ and ψ̄ = W̄ χ̄ solve the EBTH if and only if

they satisfy the bilinear equation∮
dz

2πi
znkψ(s′ − ξ(a, zk), t′, t̄′,x + a, z)ψ∗(s− ξ(b, zk), t, t̄,x + b, z)

=

∮
dz

2πi
z−nmψ̄(s′ − ξ(a, z−m), t′, t̄′,x + a, z) (3.2.6)

× ψ̄∗(s− ξ(b, z−m), t, t̄,x + b, z)

for all a = (a1, a2, . . . ), b = (b1, b2, . . . ), n ∈ Z≥0 and s− s′ ∈ Z.

Remark 3.2.3. By Taylor expansions of ψ and ψ̄ about t′ = t, t̄′ = t̄, the bilinear equation

(3.2.6) is equivalent to:∮
dz

2πi

(
∂αt ∂

β
t̄
ψ(s′ − ξ(a, zk), t, t̄,x + a, z)

)
ψ∗(s− ξ(b, zk), t, t̄,x + b, z)

=

∮
dz

2πi

(
∂αt ∂

β
t̄
ψ̄(s′ − ξ(a, z−m), t, t̄,x + a, z)

)
× ψ̄∗(s− ξ(b, z−m), t, t̄,x + b, z)

for all multi-indices α, β, where ∂αt = ∂α1
t1
∂α2
t2
· · · and ∂β

t̄
= ∂β1

t̄1
∂β2
t̄2
· · · .

Remark 3.2.4. By taking a linear combination of equations (3.2.6) for different n ∈ Z≥0, we

can replace znk by f(zk) on the left side of (3.2.6) and z−nm by f(z−m) on the right side, for

any formal power series f(z) ∈ C[[z]].

The following lemma from [49] will be useful in the proof of the above theorem. In this

lemma and below, we will use the notation (A)j = aj(s) for the coefficient of Λj in a difference

operator A =
∑

j∈Z aj(s)Λ
j .

Lemma 3.2.5. Let A and B be difference operators such that the product BA∗ is well defined.

Then

(BA∗)j =

∮
dz

2πi
(ΛjAzs)(Bz−s), j ∈ Z.

In particular, suppose that Ā, B̄ are two other difference operators such that B̄Ā∗ is well defined.

Then ∮
dz

2πi
(ΛjAzs)(Bz−s) =

∮
dz

2πi
(ΛjĀzs)(B̄z−s)
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for all j ∈ Z, if and only if BA∗ = B̄Ā∗.

Proof of Theorem 3.2.2. First, following the approach of [54], we will prove that the equations

of the EBTH imply the bilinear equation (3.2.6). By (3.1.8), (3.2.2) and Lemma 3.2.5, we have∮
dz

2πi

(
Λjψ(s, t, t̄,x, z)

)
ψ∗(s, t, t̄,x, z)

=

∮
dz

2πi

(
Λjψ̄(s, t, t̄,x, z)

)
ψ̄∗(s, t, t̄,x, z)

(3.2.7)

for all j ∈ Z. Therefore, ∮
dz

2πi
ψ(s′, t, t̄,x, z)ψ∗(s, t, t̄,x, z)

=

∮
dz

2πi
ψ̄(s′, t, t̄,x, z)ψ̄∗(s, t, t̄,x, z)

(3.2.8)

for all s, s′ with s− s′ ∈ Z.

Now applying Ln as a difference operator with respect to s′ to both sides of (3.2.8) and

using (3.1.10), we obtain∮
dz

2πi
znkψ(s′, t, t̄,x, z)ψ∗(s, t, t̄,x, z)

=

∮
dz

2πi
z−nmψ̄(s′, t, t̄,x, z)ψ̄∗(s, t, t̄,x, z)

(3.2.9)

for all n ∈ Z≥0 and s−s′ ∈ Z. Recall that the action of the derivatives with respect to t and t̄ on

the wave functions is given by difference operators (see (3.1.11)). We can apply the generating

function exp
(∑∞

i=1 ci∂ti
)

to ψ and ψ̄ in the above equation, thus shifting t by a constant c. Let

us denote t + c by t′. Doing the same for t̄, we get∮
dz

2πi
znkψ(s′, t′, t̄′,x, z)ψ∗(s, t, t̄,x, z)

=

∮
dz

2πi
z−nmψ̄(s′, t′, t̄′,x, z)ψ̄∗(s, t, t̄,x, z). (3.2.10)

Notice that, by (3.1.10) and (3.1.11),

(
∂x` − z

`k∂s
)
ψ = Q`ψ,(

∂x` − z
−`m∂s

)
ψ̄ = Q`ψ̄, Q` = P` −

∂(L`)

∂s
,

where P` is given by (3.1.13). We can apply the difference operator Q` to the variable s′ on
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both sides of (3.2.10) to obtain∮
dz

2πi
znk
((
∂x` − z

`k∂s′
)
ψ(s′, t′, t̄′,x, z)

)
ψ∗(s, t, t̄,x, z)

=

∮
dz

2πi
z−nm

((
∂x` − z

−`m∂s′
)
ψ̄(s′, t′, t̄′,x, z)

)
ψ̄∗(s, t, t̄,x, z)

for all n ≥ 0, ` ≥ 1. Using the generating function

exp
( ∞∑
`=1

a`
(
∂x` − z

`k∂s′
))
ψ(s′, t′, t̄′,x, z)

= ψ(s′ − ξ(a, zk), t′, t̄′,x + a, z),

we get ∮
dz

2πi
znkψ(s′ − ξ(a, zk), t′, t̄′,x + a, z)ψ∗(s, t, t̄,x, z)

=

∮
dz

2πi
z−nmψ̄(s′ − ξ(a, z−m), t′, t̄′,x + a, z)ψ̄∗(s, t, t̄,x, z).

Similarly, by acting with −P ∗` on s in both sides of this equation and using Lemma 3.2.1, we

obtain the bilinear equation (3.2.6).

Conversely, we have to prove that if ψ and ψ̄ satisfy the bilinear equation (3.2.6), then they

obey the equations of the EBTH. More precisely, suppose that the functions

ψ = Wχ, ψ∗ = Tχ−1, ψ̄ = W̄ χ̄, ψ̄∗ = T̄ χ̄−1

satisfy (3.2.6), where W , W̄ , T , T̄ are difference operators such that

W, T ∗ ∈ 1 +A−, W̄ , T̄ ∗ ∈ A+

(cf. (3.1.1), (3.1.6), (3.1.8), (3.2.2)). Then we will prove that ψ, ψ̄ are the wave functions and

ψ∗, ψ̄∗ are the dual wave functions of a solution of the EBTH.

First, setting a = b = 0, t = t′, t̄ = t̄′ in (3.2.6), we obtain (3.2.9) as a special case. Then

putting n = 0 gives (3.2.8), and equivalently, (3.2.7). By Lemma 3.2.5, equation (3.2.7) implies

that TW ∗ = T̄ W̄ ∗. Since (TW ∗)∗ = WT ∗ ∈ 1 +A− and (T̄ W̄ ∗)∗ = W̄ T̄ ∗ ∈ A+, we conclude

that

T = (W ∗)−1, T̄ = (W̄ ∗)−1,

and (3.2.2) holds.

Second, we define L = WΛkW−1 and want to prove (3.1.2). Notice that Lψ = WΛkW−1Wχ =
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zkψ. Applying L with respect to s′ to both sides of (3.2.8) and using (3.2.9) for n = 1, we get∮
dz

2πi

(
Lψ̄(s′, t, t̄,x, z)

)
ψ̄∗(s, t, t̄,x, z)

=

∮
dz

2πi
z−mψ̄(s′, t, t̄,x, z)ψ̄∗(s, t, t̄,x, z).

For s′ = s+ j with j ∈ Z, we have:

L
∣∣
s=s′

ψ̄(s′, t, t̄,x, z) = ΛjLW̄ χ̄,

z−mψ̄(s′, t, t̄,x, z) = ΛjW̄Λ−mχ̄.

From Lemma 3.2.5, it follows that

(W̄ ∗)−1(LW̄ )∗ = (W̄ ∗)−1(W̄Λ−m)∗,

from which we can conclude

(LW̄ )∗ = (W̄Λ−m)∗.

By (3.2.1), this is equivalent to

W̄ ∗L∗ = (Λ−m)∗W̄ ∗,

which simplifies to

L = W̄Λ−mW̄−1,

thus proving (3.1.2) and (3.1.10).

Next, we will show that we can identify tnk with t̄nm in L, W and W̄ for n ∈ Z≥1 (cf. Remark

3.1.2). Observe that, by (3.1.7) and (3.1.8),

∂ψ

∂tnk
=
∂W

∂tnk
χ+

1

2
znkWχ,

∂ψ̄

∂tnk
=
∂W̄

∂tnk
χ̄− 1

2
z−nmW̄ χ̄,

∂ψ

∂t̄nm
=

∂W

∂t̄nm
χ+

1

2
znkWχ,

∂ψ̄

∂t̄nm
=

∂W̄

∂t̄nm
χ̄− 1

2
z−nmW̄ χ̄;

hence, ( ∂

∂tnk
− ∂

∂t̄nm

)
ψ =

( ∂W
∂tnk

− ∂W

∂t̄nm

)
χ,( ∂

∂tnk
− ∂

∂t̄nm

)
ψ̄ =

( ∂W̄
∂tnk

− ∂W̄

∂t̄nm

)
χ̄.
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By Remark 3.2.3, we can apply ∂tnk
− ∂t̄nm

to ψ and ψ̄ in the bilinear equation (3.2.8) to obtain∮
dz

2πi

(( ∂W
∂tnk

− ∂W

∂t̄nm

)
χ(s′)

)
(W ∗)−1χ−1(s)

=

∮
dz

2πi

(( ∂W̄
∂tnk

− ∂W̄

∂t̄nm

)
χ̄(s′)

)
(W̄ ∗)−1χ̄−1(s)

for s− s′ ∈ Z. Using Lemma 3.2.5 as before, we get

(W ∗)−1

(
∂W

∂tnk
− ∂W

∂t̄nm

)∗
= (W̄ ∗)−1

(
∂W̄

∂tnk
− ∂W̄

∂t̄nm

)∗
,

or equivalently, (
∂W

∂tnk
− ∂W

∂t̄nm

)
W−1 =

(
∂W̄

∂tnk
− ∂W̄

∂t̄nm

)
W̄−1.

By (3.1.1), the left-hand side of this equation lies in A−, while the right-hand side in A+.

Therefore, both sides vanish.

To finish the proof of the theorem, it is left to show that if ψ and ψ̄ satisfy the bilinear

equation (3.2.6), then they satisfy (3.1.11). First, consider the derivatives with respect to tnk

and t̄nm for n ∈ Z≥1. As above, we have

∂ψ

∂tnk
=
∂W

∂tnk
χ+

1

2
znkWχ =

∂W

∂tnk
χ+

1

2
LnWχ,

which implies ( ∂

∂tnk
−An

)
ψ =

( ∂W
∂tnk

+ (Ln)−W
)
χ,

where An is given by (3.1.12). Similarly,

( ∂

∂tnk
−An

)
ψ̄ =

( ∂W̄
∂tnk

− (Ln)+W̄
)
χ̄.

We can apply the operator ∂tnk
− An to ψ and ψ̄ in the bilinear equation (3.2.8). By Lemma

3.2.5 again, we obtain

∂W

∂tnk
=

∂W

∂t̄nm
= −(Ln)−W,

∂W̄

∂tnk
=

∂W̄

∂t̄nm
= (Ln)+W,

as claimed.
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Next, let n be such that k does not divide n. Using (3.1.10), we get( ∂

∂tn
− (L

n
k )+

)
ψ =

(∂W
∂tn

χ+ znWχ− (L
n
k )+Wχ

)
=
(∂W
∂tn

+ (L
n
k )−W

)
χ,

and similarly,

( ∂

∂tn
− (L

n
k )+

)
ψ̄ =

(∂W̄
∂tn
− (L

n
k )+W̄

)
χ̄.

Applying the operator ∂tn − (L
n
k )+ to ψ and ψ̄ in (3.2.8) and using Lemma 3.2.5 gives

∂W

∂tn
+ (L

n
k )−W =

∂W̄

∂tn
− (L

n
k )+W̄ = 0.

Finally, consider the derivatives with respect to the logarithmic variables xn. By (3.1.13)

and ψ = Wχ, we see that( ∂

∂xn
− (Ln∂s + Pn)

)
ψ

=
∂W

∂xn
χ+W

∂χ

∂xn
−
(
LnW∂sW

−1 − (2Ln logL)−
)
ψ

=
∂W

∂xn
χ+ znk log(z)Wχ− znk log(z)Wχ+ (2Ln logL)−Wχ

=
(∂W
∂xn

+ (2Ln logL)−W
)
χ.

Similarly, ( ∂

∂xn
− (Ln∂s + Pn)

)
ψ̄ =

(∂W̄
∂xn

− (2Ln logL)+W̄
)
χ̄.

Applying the operator ∂xn − (Ln∂s + Pn) to ψ and ψ̄ in (3.2.8) gives∮
dz

2πi

((∂W
∂xn

+ (2Ln logL)−W
)
χ(s′)

)
(W ∗)−1χ−1(s)

=

∮
dz

2πi

((∂W̄
∂xn

− (2Ln logL)+

)
χ̄(s′)

)
(W̄ ∗)−1χ̄−1(s).

By Lemma 3.2.5, this implies(
∂W

∂xn
+ (2Ln logL)−W

)
W−1 =

(
∂W̄

∂xn
− (2Ln logL)+W̄

)
W̄−1.

Since the left side is in A− and the right side is in A+, both sides must vanish. This completes
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the proof of Theorem 3.2.2.

3.2.3 Bilinear equation for the tau-function

In this subsection, we will derive a bilinear equation satisfied by the tau-function τ of the EBTH.

Recall that the wave functions ψ and ψ̄ can be expressed in terms of τ by (3.1.14), (3.1.15).

Next, we do it for the dual wave functions defined by (3.2.2).

Proposition 3.2.6. The dual wave functions ψ∗ and ψ̄∗ of the EBTH can be expressed in

terms of the tau-function τ as follows:

ψ∗(s, t, t̄,x, z) =
τ(s, t + [z−1], t̄,x)

τ(s, t, t̄,x)
χ−1, (3.2.11)

ψ̄∗(s, t, t̄,x, z) =
τ(s− 1, t, t̄− [z],x)

τ(s, t, t̄,x)
χ̄−1, (3.2.12)

where we use the convention of Remark 3.1.4.

Proof. Let us write

ψ = wχ, ψ̄ = w̄χ̄, ψ∗ = w∗χ−1, ψ̄∗ = w̄∗χ̄−1,

for some functions w, w̄, w∗, w̄∗ (cf. (3.1.8), (3.2.2)). Then we can rewrite the bilinear equation

(3.2.6) as ∮
dz

2πi
znk+s′−seξ(t

′−t,z)− 1
2
ξk(t′−t,z)

× w(s′ − ξ(a, zk), t′, t̄′,x + a, z)

× w∗(s− ξ(b, zk), t, t̄,x + b, z)

=

∮
dz

2πi
z−nm+s′−se−ξ(t̄

′−t̄,z−1)+ 1
2
ξm(t̄′−t̄,z−1)

× w̄(s′ − ξ(a, z−m), t′, t̄′,x + a, z)

× w̄∗(s− ξ(b, z−m), t, t̄,x + b, z)

(3.2.13)

for all a = (a1, a2, . . . ), b = (b1, b2, . . . ), n ∈ Z≥0 and s− s′ ∈ Z. Setting s′ = s, a = b = 0 in

(3.2.13), we get∮
dz

2πi
znkeξ(t

′−t,z)− 1
2
ξk(t′−t,z)w(s′, t′, t̄′,x, z)w∗(s, t, t̄,x, z)

=

∮
dz

2πi
z−nme−ξ(t̄

′−t̄,z−1)+ 1
2
ξm(t̄′−t̄,z−1)w̄(s′, t′, t̄′,x, z)w̄∗(s, t, t̄,x, z).

According to Remark 3.2.4, we can replace znk in the left-hand side by f(zk), and z−nm in the
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right-hand side by f(z−m), for any f(z) ∈ C[[z]]. If we do it for

f(zk) = e
1
2
ξk(t′−t,z) = exp

1

2

∞∑
n=1

(t′nk − tnk)znk = exp
1

2

∞∑
n=1

(t̄′nm − t̄nm)znk,

then f(z−m) = e
1
2
ξm(t̄′−t̄,z−1), and we obtain∮
dz

2πi
eξ(t

′−t,z)w(s′, t′, t̄′,x, z)w∗(s, t, t̄,x, z)

=

∮
dz

2πi
exp
(
−
∑
m-i

(t̄′i − t̄i)z−i
)
w̄(s′, t′, t̄′,x, z)w̄∗(s, t, t̄,x, z).

Now setting t̄′i = t̄i for m - i, t′ = t + [u−1] and using

ξ([u−1], z) =
∞∑
i=1

u−i

i
zi = − log

(
1− z

u

)
, (3.2.14)

(cf. (1.2.1)), we get ∮
dz

2πi

(
1− z

u

)−1
w(s, t + [u−1], t̄,x, z)w∗(s, t, t̄,x, z)

=

∮
dz

2πi
w̄(s, t + [u−1], t̄,x, z)w̄∗(s, t, t̄,x, z).

Notice that w̄ and w̄∗ are formal power series of z, while w − 1 and w∗ − 1 are formal power

series of z−1 (see (3.1.9)). Hence, the right-hand side of this equation vanishes. For the left-hand

side, we can use Cauchy’s formula: for f(z) =
∑
i∈Z

fiz
i,

Resz
f(z)

1− zu−1
= Resz

∑
k≥0

∑
i∈Z

fiu
−kzk+i =

∑
k≥0

f−k−1u
−k = uf(u)−.

Applying this formula, we obtain

u
(
w(s, t + [u−1], t̄,x, u)w∗(s, t, t̄,x, u)− 1

)
= 0.

From this and (3.1.14), we can derive (3.2.11). Equation (3.2.12) is proved similarly; we start
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by setting s′ = s− 1,a = b = 0 in (3.2.13) and get∮
dz

2πi
znk−1eξ(t

′−t,z)− 1
2
ξk(t′−t,z)w(s− 1, t′, t̄′,x, z)w∗(s, t, t̄,x, z)

=

∮
dz

2πi
z−nm−1e−ξ(t̄

′−t̄,z−1)+ 1
2
ξm(t̄′−t̄,z−1)w̄(s− 1, t′, t̄′,x, z)w̄∗(s, t, t̄,x, z).

We then replace znk on the left hand side with

f(zk) = e−
1
2
ξk(t′−t,z) = exp−1

2

∞∑
n=1

(t′nk − tnk)znk = exp−1

2

∞∑
n=1

(t̄′nm − t̄nm)znk,

then f(z−m) = e−
1
2
ξm(t̄′−t̄,z−1), so we get

∮
dz

2πi
exp

∑
k-i

(t′i − ti)zi
 z−1w(s− 1, t′, t̄′,x, z)w∗(s, t, t̄,x, z)

=

∮
dz

2πi
e−ξ(t̄

′−t̄,z−1)z−1w̄(s− 1, t′, t̄′,x, z)w̄∗(s, t, t̄,x, z).

Finally, setting t′i = ti for k - i, and t̄′ = t̄− [u] gives∮
dz

2πi
z−1w(s− 1, t, t̄− [u],x, z)w∗(s, t, t̄,x, z)

=

∮
dz

2πi
z−1

(
1

1− uz−1

)
w̄(s− 1, t, t̄− [u],x, z)w̄∗(s, t, t̄,x, z).

The residue to of the left-hand side is 1. We apply a second version of Cauchy’s formula for

f(z) =
∑
i∈Z

fiz
i to compute the residue of the right-hand side:

Resz
f(z)

z − u
= f(u)+.

Using this, we get

w̄(s− 1, t′, t̄′,x, z)w̄∗(s, t, t̄,x, z) = 1,

from which (3.2.12) follows.

Theorem 3.2.7. A function τ is a tau-function of the EBTH if and only if it satisfies the
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following bilinear equation:∮
dz

2πi
znk+s′−seξ(t

′−t,z)− 1
2
ξk(t′−t,z)

× τ(s′ − ξ(a, zk), t′ − [z−1], t̄′,x + a)

× τ(s− ξ(b, zk), t + [z−1], t̄,x + b)

=

∮
dz

2πi
z−nm+s′−seξ(t̄−t̄

′,z−1)− 1
2
ξm(t̄−t̄′,z−1)

× τ(s′ + 1− ξ(a, z−m), t′, t̄′ + [z],x + a)

× τ(s− 1− ξ(b, z−m), t, t̄− [z],x + b),

(3.2.15)

for all a = (a1, a2, . . . ), b = (b1, b2, . . . ), n ∈ Z≥0 and s− s′ ∈ Z.

Proof. First, we plug in (3.2.6) the expressions for ψ, ψ̄, ψ∗, ψ̄∗ in terms of τ (see (3.1.14),

(3.1.15), (3.2.11), (3.2.12)). Then, by Remark 3.2.4, we can replace znk on the left-hand side of

(3.2.6) by

znkτ(s′ − ξ(a, zk), t′, t̄′,x + a)τ(s− ξ(b, zk), t, t̄,x + b),

and z−nm on the right-hand side by

z−nmτ(s′ − ξ(a, z−m), t′, t̄′,x + a)τ(s− ξ(b, z−m), t, t̄,x + b).

Therefore, (3.2.6) is equivalent to (3.2.15).

If we apply the change of variables from Remark 3.1.3, we get the bilinear equation from

[18] (see (85)–(87) there) as a special case of (3.2.15) after setting x = 0, a = x′, b = x′′ in

(3.2.15). Conversely, we can obtain (3.2.15) from the bilinear equation of [18] by observing that

if τ(s, t, t̄,x) is a tau-function for the EBTH, then so is τ(s, t, t̄,x + c) for any constant c.

3.3 Two difference Fay identities for the EBTH

From Theorem 3.2.7, we can derive the following difference Fay identities for the EBTH (cf.

[53]). We will again use the shift convention of Remark 3.1.4.

Theorem 3.3.1. If τ is a tau-function of the EBTH, then for any λ, µ ∈ C∗, we have

(λ− µ)τ(s, t, t̄,x)τ(s− 1, t− [λ−1]− [µ−1], t̄,x)

= λ τ(s, t− [λ−1], t̄,x)τ(s− 1, t− [µ−1], t̄,x)

− µ τ(s, t− [µ−1], t̄,x)τ(s− 1, t− [λ−1], t̄,x)

(3.3.1)
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and

(λ− µ)τ(s+ 1, t, t̄ + [λ] + [µ],x)τ(s, t, t̄,x)

= λ τ(s+ 1, t, t̄ + [λ],x)τ(s, t, t̄ + [µ],x)

− µ τ(s+ 1, t, t̄ + [µ],x)τ(s, t, t̄ + [λ],x).

(3.3.2)

Proof. Using the same trick as in the proof of Proposition 3.2.6, we can rewrite the bilinear

equation (3.2.15) as∮
dz

2πi
znk+s′−seξ(t

′−t,z)

τ(s′ − ξ(a, zk), t′ − [z−1], t̄′,x + a)τ(s− ξ(b, zk), t + [z−1], t̄,x + b)

=

∮
dz

2πi
z−nm+s′−s exp

(
−
∑
m-i

(t̄′i − t̄i)z−i
)

× τ(s′ + 1− ξ(a, z−m), t′, t̄′ + [z],x + a)τ(s− 1− ξ(b, z−m), t, t̄− [z],x + b).

Then setting

n = 0, s′ − s = 1, a = b = 0, t′ = t + [λ−1] + [µ−1], t̄′i = t̄i,

for m - i gives∮
dz

2πi

z

(1− zλ−1)(1− zµ−1)

× τ(s+ 1, t + [λ−1] + [µ−1]− [z−1], t̄,x)τ(s, t + [z−1], t̄,x)

=

∮
dz

2πi
z τ(s+ 2, t̄ + [λ−1] + [µ−1] + [z], t̄,x)τ(s− 1, t− [z], t̄,x)

= 0.

To compute the residue in the left side, we use

z

(1− zλ−1)(1− zµ−1)
=

(1− µz−1)− (1− λz−1)

(1− λz−1)(1− µz−1)

=
z−1(λ− µ)

(1− λz−1)(1− µz−1)

=
1

λ−1 − µ−1

(
1

1− zλ−1
− 1

1− zµ−1

) (3.3.3)
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and the property that if

f(z) =
∞∑
i=0

fiz
−i,

then

Resz
f(z)

1− zλ−1
= Resz

∞∑
i,j=0

zjλ−ifiz
−1

=
∞∑
i=0

fi+1λ
−i

= λ
∞∑
i=0

fi+1λ
−i−1

= λ(f(λ)− f0).

(3.3.4)

We obtain

(λ− µ)τ(s+ 1, t + [λ−1] + [µ−1], t̄,x)τ(s, t, t̄,x)

− λ τ(s+ 1, t + [λ−1], t̄,x)τ(s, t + [µ−1], t̄,x)

+ µ τ(s+ 1, t + [µ−1], t̄,x)τ(s, t + [λ−1], t̄,x) = 0,

which gives (3.3.1) after the shift s 7→ s− 1, t 7→ t− [λ−1]− [µ−1].

Similarly, to prove (3.3.2), we begin by multiplying the left side of the bilinear equation

(3.2.15) by f(zk) = −1
2ξk(t′ − t, z) and equivalently, the right side by f(z−m) = 1

2ξm(t̄− t̄′, z−1)

and rewrite it as∮
dz

2πi
znk+s′−s exp

(∑
k-i

(t′i − ti)zi
)

τ(s′ − ξ(a, zk), t′ − [z−1], t̄′,x + a)τ(s− ξ(b, zk), t + [z−1], t̄,x + b)

=

∮
dz

2πi
z−nm+s′−seξ(t̄−t̄

′,z−1)

× τ(s′ + 1− ξ(a, z−m), t′, t̄′ + [z],x + a)τ(s− 1− ξ(b, z−m), t, t̄− [z],x + b).

Next we set

n = 0, s− s′ = 1, a = b = 0, t̄′ = t̄− [λ]− [µ] t′i = ti
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for k - i in (3.2.15) to obtain∮
dz

2πi
z−1τ(s− 1, t− [z−1], t̄− [λ]− [µ], x)τ(s, t + [z−1], t̄, x)

=

∮
dz

2πi
z−1 1

(1− λz−1)(1− µz−1)
τ(s, t, t̄− [λ]− [µ] + [z], x)τ(s− 1, t, t̄− [z], x).

The residue on the left hand side is computed using

Resz z
−1f(z) = f0, if f(z) =

∞∑
i=0

fiz
−i

and the residue on the right side is computed by applying (3.3.3) and using

Resz
g(z)

(1− λz−1)
= λg(λ), if g(z) =

∑
i≥0

giz
i

(cf. (3.3.4)) to obtain

τ(s− 1, t, t̄− [λ]− [µ], x)τ(s, t, t̄, x) =

λ

λ− µ
τ(s, t, t̄− [µ], x)τ(s− 1, t, t̄− [λ], x)

− µ

λ− µ
τ(s− 1, t, t̄− [λ], x)τ(s− 1, t, t̄− [µ], x).

This gives (3.3.2) if we make the shift s 7→ s+ 1, t̄ 7→ t̄ + [λ] + [µ].
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CHAPTER 4

DARBOUX TRANSFORMATIONS

OF THE EBTH

In this chapter, we begin by reviewing results from [13], which can be applied to factoring

difference operators, and will be useful for understanding Darboux transformations of the

EBTH. Next, we will review results from [15, 42] which state explicitly how to do Darboux

transformations for a Lax operator and wave function of the EBTH. We will use this to obtain

our first main result, which states that the action of a Darboux transformation on a wave

function for the EBTH amounts to acting on the corresponding tau function with a vertex

operator.

4.1 Darboux Transformations of the EBTH

4.1.1 Factoring difference operators

Let R be a unital ring, and σ an endomorphism of R. Following [13], we define the skew

polynomial ring R[x;σ] as the set of polynomials

f(x) = a0 + a1x+ · · ·+ anx
n,

where a0, . . . , an ∈ R. We use the usual definition of addition, and define multiplication by

xa = σ(a)x
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for all a ∈ R.

Definition 4.1.1. If f(x) is a skew-polynomial, then its σ-evaluation is defined by

f(t;σ) = an(tσ(t) · · ·σn−1(t)) + an−1(tσ(t) · · ·σn−2(t)) + · · ·+ a2(tσ(t)) + a1t+ a0

for t ∈ R.

The following theorem from [13] provides a way to factor skew polynomials.

Theorem 4.1.2. Let R be a ring and f(x) ∈ R[x;σ]. Then for some q(x), f(x) = q(x)(x− t)
if and only if f(t;σ) = 0.

The theorem is originally stated for a K[x;σ] where K is a field, for later results. However,

because the proof relies on the division algorithm to write f(x) = q(x)(x− t) + r(x), for our

purposes, we do not require R to be a field as we would only need to divide the leading coefficient

of f(x) by 1.

Let R be the ring of functions in the variable s, and σ = Λ = e∂s , then any A ∈ Afin ∩A+ is

a skew polynomial over R. The following corollary is a special case of Theorem 4.1.2 (cf. Lemma

1.3.1).

Corollary 4.1.3. Let a = a(s) ∈ R and R = (Λ− aI). Suppose φ is some function in R such

that φ ∈ ker(R). A difference operator A =

n∑
i=0

aiΛ
i can be factored as A = QR if and only if

φ ∈ ker(A).

Proof. If φ ∈ kerR and A = QR, then Aφ = Q(Rφ) = 0. On the other hand, suppose that

φ ∈ ker(R) and φ ∈ ker(A). Then since

Rφ = (Λ− aI)φ = 0,

we can write a =
(Λφ)

φ
. We first evaluate, for any n ∈ Z≥0,

a(Λa) · · · (Λn−1a) =
(Λφ)

φ

(Λ2φ)

(Λφ)
· · · (Λ

n−1φ)

(Λn−2φ)

(Λnφ)

(Λn−1φ)

=
(Λnφ)

φ
.

44



Next, letting σ = Λ and f(Λ) = A =

n∑
i

aiΛ
i, we see that

f(a; Λ) =
n∑
i=1

ai(a(Λa) · · · (Λi−1a))

=
n∑
i=0

ai
(Λiφ)

φ

=
1

φ

n∑
i=0

ai(Λ
iφ)

=
1

φ
Aφ

= 0

since we assumed φ ∈ ker(A). Hence, by Theorem 4.1.2 we can conclude that A = Q(Λ− aI) =

QR.

Remark 4.1.4. If A ∈ Afin is of the form A = a1Λ−n + a2Λ−n+1 + · · ·+ an+mΛm, the result

still holds. Observe that ΛnA ∈ A+ and for φ ∈ ker(A),

(ΛnA)φ = Λn(Aφ) = 0.

Thus, by Corollary 4.1.3, if R = (Λ − aI) with φ ∈ ker(R), we can write ΛnA = QR, and

A = (Λ−nQ)R. By similar reasoning, we can use an operator R of the form R = (1− ãΛ−1).

4.1.2 Darboux transformations of L and ψ

Darboux transformations for the ETH were first considered by G. Carlet in [14], and a gen-

eralization to the EBTH was given in [42]. The following theorem is equivalent to Theorem

3.4 from [42] and gives a formula for the wave function, ψ[N ], and Lax operator, L[N ], after N

iterations of the Darboux transformation. In order to state the theorem, we need to introduce

some notation.

We will suppose that U ⊂ C is an open set such that the wave function ψ(s, t, t̄,x, z) is

defined for z ∈ U , i.e., the formal power series w(z) from (3.1.9) is convergent for z ∈ U . Then

for zi ∈ U , we will denote ψi = ψ|z=zi . We define the discrete Wronskian of functions fi = fi(s)
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by

WrΛ(f1, f2, . . . , fn) =

∣∣∣∣∣∣∣∣∣∣
f1 f2 · · · fn

Λ−1(f1) Λ−1(f2) · · · Λ−1(fn)
...

... · · ·
...

Λ−n+1(f1) Λ−n+1(f2) · · · Λ−n+1(fn)

∣∣∣∣∣∣∣∣∣∣
.

We would like to establish a few facts about the discrete Wronskian for later use.

Lemma 4.1.5. The functions f1, f2, . . . , fN (where fi = fi(s)) are linearly independent if and

only if WrΛ(f1, f2, . . . fn) 6= 0.

Proof. Suppose f1, f2, . . . , fN are linearly independent. Then for every s, the equation

c1f1(s) + c2f2(s) + · · ·+ cNfN (s) = 0

has only the trivial solution c1 = c2 = · · · = cN = 0. In particular, the system
f1(s) f2(s) · · · fN (s)

f1(s− 1) f2(s− 1) · · · fN (s− 1)
...

... · · ·
...

f1(s−N + 1) f2(s−N + 1) · · · fN (s−N + 1)



c1

c2

...

cN

 =


0

0
...

0

 (4.1.1)

has only the trivial solution. Since the N ×N matrix in (4.1.1) is the discrete Wronskian matrix,

we have shown that its determinant, WrΛ(f1, f2, · · · , fN ), is nonzero. On the other hand, we

suppose that WrΛ(f1, f2, · · · , fN ) 6= 0 for every s, but the equation

c1f1(s) + c2f2(s) + · · · cNfN (s) = 0

holds for every s. Then the system (4.1.1) has a solution other than the trivial solution, which

contradicts our assumption.

The following theorem provides an explicit formulation for Darboux transformations on any

wave function ψ and Lax operator L of the EBTH.

Theorem 4.1.6 ([42]). Let ψ be a wave function for the EBTH and L its corresponding Lax

operator. For fixed N ≥ 1 and z1, . . . , zN ∈ U , consider the difference operator R[N ] defined by

R[N ]f = (−1)N
WrΛ(ψ1, . . . , ψN , f)

WrΛ(Λ−1(ψ1), . . . ,Λ−1(ψN ))
,
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where ψi = ψ|z=zi. Then

L[N ] = R[N ]L(R[N ])−1, ψ[N ] = R[N ]ψ

are a Lax operator and wave function for the EBTH, which are obtained from L and ψ after N

Darboux transformations.

To illustrate the theorem, consider the case of a single Darboux transformation. Then

ψ[1] = − WrΛ(ψ1, ψ)

WrΛ(Λ−1(ψ1))
= − 1

Λ−1(ψ1)

∣∣∣∣∣ ψ1 ψ

Λ−1(ψ1) Λ−1(ψ)

∣∣∣∣∣
= ψ − ψ1

Λ−1(ψ1)
Λ−1(ψ), where ψ1 = ψ|z=z1 .

(4.1.2)

Hence,

R[1] = I − ψ1

Λ−1(ψ1)
Λ−1,

where I denotes the identity operator (cf. [14]). Notice that Lψ1 = z1ψ1 and R[1]ψ1 = 0. Hence,

by Corollary 4.1.3, the difference operator L− z1I factors as

L− z1I = Q[1]R[1]

for some difference operator Q[1]. Then the new Lax operator L[1] is obtained from the Darboux

transformation

L[1] − z1I = R[1]Q[1],

and will have a wave function ψ[1]. The next Darboux transformation is done the same way, by

starting from L[1], ψ[1] and z2 in place of L, ψ and z1, respectively. The significance of Theorem

4.1.6 is that, after N steps, the Lax operator L[N ] and wave function ψ[N ] can be expressed only

in terms of the initial L and ψ.

Lemma 4.1.7. If L and ψ are solutions to the EBTH, then L[1] and ψ[1] defined as in Theorem

4.1.6 are also solutions to the EBTH.

Proof. We prove this lemma using Corollary 4.1.3 and the product rule from calculus. Since

ψ is assumed to be a solution to the EBTH, it must satisfy the equations (3.1.11). To show

that ψ[1] = R[1]ψ is also a solution to the EBTH, as was shown in the proof of Theorem 3.2.6

it suffices to show that ψ[1] also satisfies these equations for some difference operators. For

n ∈ Z≥1 \ kZ, we have
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∂ψ[1]

∂tn
= ∂tn(R[1]ψ)

=
∂R[1]

∂tn
ψ +R[1] ∂ψ

∂tn

=
∂R[1]

∂tn
ψ +R[1](Ln/k)+ψ

=

(
∂R[1]

∂tn
+R[1](Ln/k)+

)
ψ. (4.1.3)

Since the operator being applied to ψ in (4.1.3) is an element of Afin, we also check that(
∂R[1]

∂tn
+R[1](Ln/k)+

)
ψ1 = ∂tn(R[1]ψ1) = 0.

By Corollary 4.1.3 we can conclude that (4.1.3) can be rewritten as

B[1]R[1]ψ

for some difference operator B[1] ∈ Afin. Specifically, we have shown that

∂ψ[1]

∂tn
= B[1]ψ[1].

Similarly, we have that

∂ψ[1]

∂tnk
= R[1] ∂ψ

∂tnk
+
∂R[1]

∂tnk
ψ

=

(
R[1]An +

∂R[1]

∂tnk

)
ψ

= A[1]
n R

[1]ψ

= A[1]
n ψ

[1]

for some difference operator A
[1]
n , using the same argument as above. Finally, we check that the

derivative with respect to the xn variables amounts to acting on ψ[1] with a differential-difference
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operator (cf. (3.1.11)):

∂ψ[1]

∂xn
= R[1] ∂ψ

∂xn
+
∂R[1]

∂xn
ψ

= R[1](Ln∂s + Pn)ψ +
∂R[1]

∂xn
ψ

= R[1]Ln(R[1])−1R[1]∂sψ +R[1]Pnψ +
∂R[1]

∂xn
ψ

= R[1]Ln(R[1])−1

(
∂s(R

[1]ψ)− ∂R[1]

∂s
ψ

)
+R[1]Pnψ +

∂R[1]

∂xn
ψ

= (L[1])n∂s(R
[1]ψ)−R[1]Ln(R[1])−1∂R

[1]

∂s
ψ +R[1]Pnψ +

∂R[1]

∂xn
ψ.

If we let ψ = ψ1 above, we get from the the last line that

(L[1])n∂s(R
[1]ψ1)−R[1]Ln(R[1])−1∂R

[1]

∂s
ψ1 +R[1]Pnψ1 +

∂R[1]

∂xn
ψ1 = 0.

Clearly, (L[1])n∂s(R
[1]ψ1) = 0, so that(
−R[1]Ln(R[1])−1∂R

[1]

∂s
+R[1]Pn +

∂R[1]

∂xn

)
ψ1 = 0.

Again, by Corollary 4.1.3 we can conclude that the operator

−R[1]Ln(R[1])−1∂R
[1]

∂s
+R[1]Pn +

∂R[1]

∂xn

can be factored as P
[1]
n R[1] for some difference operator P

[1]
n , giving us the desired result,

∂ψ[1]

∂xn
=
(

(L[1])n∂s + P [1]
n

)
ψ[1].

This completes the proof of the lemma.

Before we proceed with our proof of Theorem 4.1.6, we introduce the following lemmas.

Lemma 4.1.8. Let ψ1, ψ2, . . . , ψN be such that Lψi = ziψi for i = 1, 2, . . . N . Let h(L) =

(L−z1I)(L−z2I) · · · (L−zNI). Then h(L) = QR for some R = I+a1Λ−1+a2Λ−2+· · ·+aNΛ−N .

Proof. Construct a difference operator R1 = I + ã1Λ−1 with ψ1 ∈ kerR1. Then h(L) = Q1R1

by Corollary 4.1.3. Similarly, construct an operator R2 = I + ã2Λ−1 such that R1ψ2 ∈ ker(R2).

Then since h(L)ψ2 = Q1(R1ψ2) = 0, using Corollary 4.1.3, we can write Q1 = Q2R2 for some
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other difference operator Q2. It follows that h(L) = Q2R2R1. Repeating this process for each

remaining ψi, we get that h(L) = QNRN · · ·R2R1 = QR where

R =
N∏
i=1

(I + ãiΛ
−1) = I + a1Λ−1 + a2Λ−2 + · · ·+ aNΛ−N .

Lemma 4.1.9. The operator R from Lemma 4.1.8 is unique and is given by

Rf = (−1)N
WrΛ(ψ1, ψ2, . . . , ψN , f)

WrΛ((Λ−1ψ1), (Λ−1ψ2), . . . , (Λ−1ψN ))
. (4.1.4)

Proof. Using the fact that Rψi = 0 for each i, we have N equations of the form

ψi + a1Λ−1ψi + · · ·+ aNΛ−Nψi = 0

yielding the matrix equation
Λ−1ψ1 Λ−2ψ1 . . . Λ−Nψ1

Λ−1ψ2 Λ−2ψ2 . . . Λ−Nψ2

...
... . . .

...

Λ−1ψN Λ−2ψN . . . Λ−NψN



a1

a2

...

an

 =


−ψ1

−ψ2

...

−ψN

 . (4.1.5)

Since the ψi were eigenfunctions of L corresponding to distinct eigenvalues, they are linearly

independent. Hence by Lemma 4.1.5, the N ×N matrix in (4.1.5) is invertible, and we can find

unique ai satisfying the system. Observe that the operator in (4.1.4) is also an operator of the

form 1 + b1Λ−1 + b2Λ−2 + · · ·+ bNΛ−N with kernel span(ψ1, ψ2, · · · , ψN ), so by uniqueness, it

is equal to R.

Now we are in a position to prove Theorem 4.1.6. Our proof differs from the one originally

presented in [42] and resembles what is done in [8].

Proof of Theorem 4.1.6. We will use induction on N . For N = 1, let R1 = (I + aΛ−1) be such

that R1ψ1 = 0. Then

R1 = I − ψ1

(Λ−1ψ1)
Λ−1 = R[1].

Applying the Darboux transformation once gives

L[1] = R1Q1 = R[1]Q1 = R[1]L(R[1])−1

ψ[1] = R[1]ψ.
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We assume the statement is true for the first N ≥ 1 iterations of the Darboux transformation.

Then

ψ[N ] = R[N ]ψ[N−1] = RNRN−1 · · ·R2R1ψ

where Ri = I −
ψ

[i]
i+1

(Λ−1ψ
[i]
i+1)

Λ−1 and

L[N ] = R[N ]L(R[N ])−1.

Observe that Riψ
[i]
∣∣∣
z=zi+1

= 0. To complete the (N + 1)-th step of the Darboux transformation,

we use Corollary 4.1.3 and the property that L[N ]ψ[N ] = zψ[N ] to write

L[N ] − zN+1I = QN+1RN+1

where

RN+1 = I −
ψ

[N ]
N+1(

Λ−1ψ
[N ]
N+1

)Λ−1.

Then we obtain

L[N+1] − zN+1I = RN+1QN+1

= RN+1(L[N ] − zN+1I)(RN+1)−1

= RN+1RN · · ·R2R1LR
−1
1 R−1

2 · · ·R
−1
N R−1

N+1 − zN+1I

By the inductive hypothesis, we have that span{ψ1, ψ2, · · · , ψN} ⊂ ker(RN+1RN · · ·R2R1). We

also see that by construction,

0 = RN+1ψ
[N ]
∣∣∣
z=zN+1

= RN+1RN · · ·R2R1ψ
∣∣∣
z=zN+1

= RN+1RN · · ·R2R1ψN+1

so that ψN+1 ∈ ker(RN+1RN · · ·R2R1). By Lemma 4.1.9, R[N+1] is the unique operator whose

kernel is span{ψ1, ψ2, . . . , ψN+1}.

The authors of [42] also provide the following similar theorem corresponding to Darboux

transformations on ψ̄. This time, we will suppose that U ⊂ C is an open set such that the wave

function ψ̄(s, t, t̄,x, z) is defined for z ∈ U , i.e., the formal power series w̄(z) from (3.1.9) is

convergent for z ∈ U . Then for zi ∈ U , we will denote ψ̄i = ψ̄|z=zi . We also need to define a
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different analog of the Wronskian of functions fi = fi(s) by

Wr+
Λ(f1, f2, . . . , fn) =

∣∣∣∣∣∣∣∣∣∣
f1 f2 · · · fn

Λ(f1) Λ(f2) · · · Λ(fn)
...

... · · ·
...

Λn−1(f1) Λn−1(f2) · · · Λn−1(fn)

∣∣∣∣∣∣∣∣∣∣
.

Theorem 4.1.10 ([42]). Let ψ̄ be a wave function for the EBTH and L its corresponding Lax

operator. For fixed N ≥ 1 and z1, . . . , zN ∈ U , consider the difference operator R̄[N ] defined by

R̄[N ]f = (−1)N
Wr+

Λ(ψ̄1, . . . , ψ̄N , f)

Wr+
Λ(ψ̄1, . . . , ψ̄N )

,

where ψ̄i = ψ̄|z=zi. Then

L[N ] = R̄[N ]L(R̄[N ])−1, ψ̄[N ] = R̄[N ]ψ̄

are a Lax operator and wave function for the EBTH, which are obtained from L and ψ̄ after N

Darboux transformations.

In this case, we have

R̄[1] =

(
Λψ̄1

ψ̄1
− Λ

)
.

Since

L− z−1
1 ψ̄ = 0, R̄[1]ψ̄1 = 0,

by Corollary 4.1.3

L− z−1
1 I = Q̄[1]R̄[1]

for some difference operator Q̄[1], and

L[1] − z−1
1 I = R̄[1]Q̄[1], ψ̄[1] = R̄[1]ψ̄

are a new Lax operator and wave function for the EBTH. This can be verified by a process

similar to what was done in Theorem 4.1.6 for ψ.

4.1.3 Action of Darboux transformations on τ

We can now state the main results of this thesis. Using Theorem 4.1.6, Theorem 4.1.10, and the

Fay identity (3.3.1), we will prove that the actions of a Darboux transformation corresponding
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to both ψ and ψ̄ on the tau-function is given by the vertex operators

Γ+(z) = e−∂seξ(t,z) exp
(
−
∞∑
n=1

∂tn
n
z−n

)
, (4.1.6)

and

Γ−(z) = zse∂se−ξ(t̄,z
−1) exp

( ∞∑
n=1

∂t̄n
n
zn
)
, (4.1.7)

respectively. Note that exp
(
−
∑∞

n=1
∂tn
n z
−n) acts as the shift operator t 7→ t − [z−1], while

e−∂s = Λ−1 acts as the shift s 7→ s− 1.

Theorem 4.1.11. Let ψ be a wave function for the EBTH, and ψ[1] be the wave function

after one Darboux transformation on ψ (see (4.1.2)). Let τ and τ [1] be their corresponding

tau-functions. Then τ [1] = Γ+(z1)τ , i.e.,

τ [1](s, t, t̄,x) = eξ(t,z1)τ(s− 1, t− [z−1
1 ], t̄,x). (4.1.8)

Proof. Using (4.1.2), (3.1.14) and Λ−1(χ) = z−1χ, we express ψ[1] in terms of τ as follows:

ψ[1] =
χ

τ(s, t, t̄,x)τ(s− 1, t− [z−1
1 ], t̄,x)

×
(
τ(s, t− [z−1], t̄,x)τ(s− 1, t− [z−1

1 ], t̄,x)

− z−1z1 τ(s, t− [z−1
1 ], t̄,x)τ(s− 1, t− [z−1], t̄,x)

)
.

(4.1.9)

On the other hand, again by (3.1.14),

ψ[1] =
τ [1](s, t− [z−1], t̄,x)

τ [1](s, t, t̄,x)
χ.

Substituting τ [1] = Γ+(z1)τ into the right side of this equation gives

(1− z−1z1)τ(s− 1, t− [z−1]− [z−1
1 ], t̄,x)

τ(s− 1, t− [z−1
1 ], t̄,x)

χ, (4.1.10)

where we used that, by (3.2.14),

eξ(t−[z−1],z1) = eξ(t,z1)e−ξ([z
−1],z1) = eξ(t,z1)(1− z−1z1). (4.1.11)

If we set λ = z, µ = z1 in the Fay identity (3.3.1), we see that the above two expressions (4.1.9)

and (4.1.10) are equal. Therefore, τ [1] = Γ+(z1)τ .
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If we do N Darboux transformations of τ , we can apply Theorem 4.1.11 repeatedly to obtain

the tau-function

τ [N ] = Γ+(zN ) · · ·Γ+(z2)Γ+(z1)τ, (4.1.12)

which corresponds to the Lax operator L[N ] and wave function ψ[N ] from Theorem 4.1.6.

Multiplying these vertex operators, it follows that

τ [N ](s, t, t̄,x) = VNe
∑N

i=1 ξ(t,zi)τ(s−N, t− [z−1
1 ]− · · · − [z−1

N ], t̄,x), (4.1.13)

where

VN =
∏

1≤i<j≤N

(
1− zi

zj

)
. (4.1.14)

We can verify directly that, for any tau-function τ of the EBTH, the function τ [N ] given by

(4.1.13) satisfies the bilinear equations (3.2.15) and hence is a tau-function of the EBTH as well.

Here, we illustrate this for the case when N = 1. Given a solution τ to the EBTH, we have

τ [1] = Γ+(z1)τ = exp

( ∞∑
n=1

tnz
n
1

)
τ(s− 1, t− [z−1

1 ], t̄,x).

If we plug τ [1] into the bilinear equation, the left side becomes∮
dz

2πi
znk+s′−seξ(t

′−t,z)− 1
2
ξk(t′−t,z)

× exp

( ∞∑
n=1

(
t′n −

z−n

n

)
zn1

)
τ(s′ − 1− ξ(a, zk), t′ − [z−1

1 ]− [z−1], t̄′,x + a)

× exp

( ∞∑
n=1

(
tn +

z−n

n

)
zn1

)
τ(s− 1− ξ(b, zk), t− [z−1

1 ] + [z−1], t̄,x + b)

and the right side becomes∮
dz

2πi
z−nm+s′−seξ(t̄−t̄

′,z−1)− 1
2
ξm(t̄−t̄′,z−1)

× exp

( ∞∑
n=1

t′nz
n
1

)
τ(s′ − ξ(a, z−m), t′ − [z−1

1 ], t̄′ + [z],x + a)

× exp

( ∞∑
n=1

tnz
n
1

)
τ(s− 2− ξ(b, z−m), t− [z−1

1 ], t̄− [z],x + b).

We can see that these are equal if we start with the fact that τ already satisfies (3.2.15), multiply
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both sides by exp

( ∞∑
n=1

tnz
n
1

)
exp

( ∞∑
n=1

t′nz
n
1

)
, and then make the shifts s′ 7→ s′ − 1, s 7→ s− 1,

t 7→ t− [z−1
1 ], t′ 7→ t′ − [z−1

1 ]. Thus τ [1] satisfies the bilinear equation and is a solution to the

EBTH.

By a similar procedure, we obtain the following result for Darboux transformations done on

a wave function ψ̄.

Theorem 4.1.12. Let ψ̄ be a wave function for the EBTH and ψ̄[1] the wave function after one

Darboux transformation (see Theorem 4.1.10). Let τ and τ [1] be their corresponding tau-functions.

Then τ [1] = Γ−(z1)τ where

Γ−(z) = zse∂se−ξ(t̄,z
−1) exp

( ∞∑
n=1

∂t̄n
n
zn
)
. (4.1.15)

Proof. The proof is similar to that of Theorem 4.1.6. We use Theorem 4.1.10, (3.1.15) and

Λ(χ̄) = zχ̄, to write the wave function after a single Darboux transformation as

ψ̄[1] =
χ̄

τ(s+ 1, t, t̄,x)τ(s+ 1, t, t̄ + [z1], x)

×
(
z1τ(s+ 2, t, t̄ + [z1],x)τ(s+ 1, t, t̄ + [z],x)

− zτ(s+ 2, t, t̄ + [z], x)τ(s+ 1, t, t̄ + [z1],x
)
.

(4.1.16)

On the other hand, again by (3.1.14),

ψ̄[1] =
τ [1](s+ 1, t, t̄ + [z],x)

τ [1](s, t, t̄,x)
χ̄.

Substituting τ [1] = Γ−(z1)τ into the right side of this equation gives

(z1 − z)τ(s+ 2, t, t̄ + [z1] + [z],x)

τ(s+ 1, t, t̄ + [z1],x)
. (4.1.17)

If we set λ = z1, µ = z in the Fay identity (3.3.2), we see that the above two expressions (4.1.16)

and (4.1.17) are equal. Therefore, τ [1] = Γ−(z1)τ .

We can again use the bilinear equation (3.2.15) to show directly that if τ is a tau-function

for the EBTH, then

τ [N ] = (zN · · · z1)s
∏

1≤i<j≤N
(zi − zj)e

∑N
i=1−ξ(t̄,z

−1
i )τ(s+N, t, t̄ + [z1] + · · ·+ [zN ],x) (4.1.18)
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is also a tau-function. We will illustrate it here in the case of τ [1]. Plugging

Γ−(z1)τ = zs1 exp

(
−
∞∑
n=1

t̄nz
−n
1

)
τ(s+ 1, t, t̄ + [z1],x)

in to the left side of (3.2.15), gives∮
dz

2πi
znk+s′−seξ(t

′−t,z)− 1
2
ξk(t′−t,z)

× zs
′−ξ(a,zk)

1 exp

(
−
∞∑
n=1

t̄′nz
−n
1

)
τ(s′ + 1− ξ(a, zk), t′ − [z−1], t̄′ + [z1],x + a)

× zs−ξ(b,z
k)

1 exp

(
−
∞∑
n=1

t̄nz
−n
1

)
τ(s+ 1− ξ(b, zk), t + [z−1], t̄ + [z1],x + b).

(4.1.19)

Plugging into the right side gives∮
dz

2πi
z−nm+s′−seξ(t̄−t̄

′,z−1)− 1
2
ξm(t̄−t̄′,z−1)

× zs
′+1−ξ(a,z−m)

1 exp

(
−
∞∑
n=1

(
t̄′n +

zn

n

)
z−n1

)
× τ(s′ + 2− ξ(a, z−m), t′, t̄ + [z] + [z1],x + a)

× zs−1−ξ(b,z−m)
1 exp

(
−
∞∑
n=1

(
t̄n −

zn

n

)
z−n1

)
× τ(s− ξ(b, z−m), t, t̄− [z] + [z1],x + b).

(4.1.20)

Starting with the fact that τ already satisfies (3.2.15), we can use Remark 3.2.4 to multiply

the left side by f(zk) = z
−ξ(a,zk)−ξ(b,zk)
1 and the right side by f(z−m) = z

−ξ(a,z−m)−ξ(b,z−m)
1 .

We also multiply both sides by exp

(
−
∞∑
n=1

t̄′nz
−n
1

)
exp

(
−
∞∑
n=1

t̄nz
−n
1

)
and make the shifts

s 7→ s + 1, s′ 7→ s′ + 1, t̄ 7→ t̄ + [z1], t̄′ 7→ t̄′ + [z1], we see that (4.1.19) and (4.1.20) are equal.

Therefore τ [1] satisfies the bilinear equation and is a solution to the EBTH.

Combining the above two results, we can conclude that

ΓεN (zN ) · · ·Γε1(z1)τ

is a tau-function for the EBTH for any choice of signs εi = ± (cf. [34, Chapter 14]).
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4.2 Generalized Fay identities

In this section, as an application of Theorems 4.1.6 and 4.1.11, we derive generalized difference

Fay identities for the EBTH similar to what was done in [2] for the case of KP hierarchy.

Theorem 4.2.1. Let ψ be a wave function for the EBTH with a corresponding tau-function τ ,

and let ψi = ψ|z=zi. Then

WrΛ(ψ1, . . . , ψN ) = χ1 · · ·χN
∏

1≤i<j≤N
(z−1
j − z

−1
i )

×
τ(s−N + 1, t− [z−1

1 ]− · · · − [z−1
N ], t̄,x)

τ(s−N + 1, t, t̄,x)
,

(4.2.1)

where χi = χ|z=zi.

In this theorem, z1, . . . , zN are complex numbers in a certain domain U ⊂ C, in which ψ

is defined. Alternatively, equation (4.2.1) makes sense as an identity of formal power series in

z−1
1 , . . . , z−1

N , if we write ψ = wχ for a formal power series w in z−1 (see (3.1.9)), while the

exponentials in χ are not expanded.

Proof of Theorem 4.2.1. We will prove the claim by induction on N . The case N = 1 reduces

to (3.1.14) for z = z1, since WrΛ(ψ1) = ψ1. Now suppose that (4.2.1) holds for some N ≥ 1. By

Theorem 4.1.6, we have

ψ[N ] = (−1)N
WrΛ(ψ1, . . . , ψN , ψ)

WrΛ(Λ−1(ψ1), . . . ,Λ−1(ψN ))
.

After setting z = zN+1, we obtain

ψ[N ]
∣∣
z=zN+1

= (−1)N
WrΛ(ψ1, . . . , ψN , ψN+1)

WrΛ(Λ−1(ψ1), . . . ,Λ−1(ψN ))
.

By the inductive assumption, the denominator is given by (4.2.1) after shifting s 7→ s− 1:

WrΛ(Λ−1(ψ1), . . . ,Λ−1(ψN )) = z−1
1 · · · z

−1
N χ1 · · ·χN

∏
1≤i<j≤N

(z−1
j − z

−1
i )

×
τ(s−N, t− [z−1

1 ]− · · · − [z−1
N ], t̄,x)

τ(s−N, t, t̄,x)
.

On the other hand, again by (3.1.14),

ψ[N ](s, t, t̄,x, z) =
τ [N ](s, t− [z−1], t̄,x)

τ [N ](s, t, t̄,x)
χ.
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Let us plug here the formula (4.1.13) for τ [N ] and set z = zN+1. Using (4.1.11) as before, we see

that

τ [N ](s, t− [z−1
N+1], t̄,x) = VN

N∏
i=1

(1− ziz−1
N+1) e

∑N
i=1 ξ(t,zi)

× τ(s−N, t− [z−1
1 ]− · · · − [z−1

N+1], t̄,x).

Hence,

ψ[N ]
∣∣
z=zN+1

= χN+1

N∏
i=1

(1− ziz−1
N+1)

τ(s−N, t− [z−1
1 ]− · · · − [z−1

N+1], t̄,x)

τ(s−N, t− [z−1
1 ]− · · · − [z−1

N ], t̄,x)
.

Comparing the above two expressions for ψ[N ]|z=zN+1 , we obtain (4.2.1) with N + 1 in place of

N . This completes the proof of the theorem.

Furthermore, from Theorems 4.1.10 and 4.1.12, we obtain generalized Fay identities with

respect to t̄.

Theorem 4.2.2. Let ψ̄ be a wave function for the EBTH with a corresponding tau-function τ ,

and let ψ̄i = ψ̄|z=zi. Then

Wr+
Λ(ψ̄1, . . . , ψ̄N ) = χ̄1 · · · χ̄N

∏
1≤i<j≤N

(zj − zi)

× τ(s+N, t, t̄ + [z1] + · · ·+ [zN ],x)

τ(s, t, t̄,x)
,

(4.2.2)

where χ̄i = χ̄|z=zi.

Proof. We will prove this claim by induction on N as well. When N = 1, we have

Wr+
Λ(ψ̄1) = ψ̄1 =

τ(s+ 1, t, t̄ + [z1],x)

τ(s, t, t̄,x)
χ̄1

by (3.1.15). Next, we suppose that (4.2.2) holds for some N ≥ 1. By Theorem 4.1.10, we have

ψ̄[N ] = (−1)N
Wr+

Λ(ψ̄1, . . . , ψ̄N , ψ̄)

Wr+
Λ(ψ̄1, . . . , ψ̄N )

.

After setting z = zN+1, we obtain

ψ̄[N ]
∣∣
z=zN+1

= (−1)N
Wr+

Λ(ψ̄1, . . . , ψ̄N , ψ̄N+1)

Wr+
Λ(ψ̄1, . . . , ψ̄N )

.
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By the inductive assumption, the denominator is given by (4.2.2). On the other hand, again by

(3.1.15),

ψ̄[N ](s, t, t̄,x, z) =
τ [N ](s+ 1, t, t̄ + [z],x)

τ [N ](s, t, t̄,x)
χ̄.

We will now plug in the formula (4.1.18) for τ [N ] and set z = zN+1. Using (4.1.11) as before, we

see that

τ [N ](s+ 1, t, t̄ + [zN+1],x) =(zN+1 · · · z1)s+1
∏

1≤i<j≤N
(zi − zj)

N+1∏
i=1

(
1− zN+1z

−1
i

)
× e

∑N
i=1−ξ(t̄,z

−1
i )τ(s+N + 1, t, t̄ + [z1] + · · ·+ [zN ]).

Hence,

ψ̄[N ]
∣∣
z=zN+1

= χ̄N+1

N∏
i=1

(zi − zN+1)
τ(s+N + 1, t, t̄ + [z1] + · · ·+ [zN+1],x)

τ(s+N, t, t̄ + [z1] + · · ·+ [zN ],x)
.

Comparing these two expressions and writing

Wr+
Λ(ψ̄1, . . . , ψ̄N , ψ̄N+1) = (−1)N Wr+

Λ(ψ̄1, . . . , ψ̄N )ψ̄[N ]
∣∣
z=zN+1

,

we obtain (4.2.2) with N+1 in place of N . Thus, we have completed the proof of the theorem.
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CHAPTER 5

CONCLUSION

5.1 Conclusion

In this thesis, we proved a bilinear equation for the extended bigraded Toda hierarchy (EBTH),

which is equivalent to the bilinear equation of Carlet and van de Leur [18] after a change of

variables but uses Takasaki’s more convenient notation from [54]. Our proof is also shorter

than the one originally presented in [18]. From the bilinear equation, we derived difference Fay

identities for the EBTH and showed that the action of the Darboux transformations on the

wave functions ψ, ψ̄ corresponds to acting on the tau-function by certain vertex operators Γ+,

Γ−. As an application, we obtained generalized Fay identities for the EBTH.

5.2 Future Directions

In this section we provide an overview of possible projects to which the results presented in this

thesis can be applied.

5.2.1 Tau function for the EBTH

A natural question is to determine explicitly the initial tau-function corresponding to the

trivial Lax operator L = Λk + Λ−m, from which we can generate other solutions of the EBTH

with Darboux transformations. Wave functions for this Lax operator were given in [14, 42] in

the cases k = m = 1 and k = m = 2, but they correspond to a wave function φ satisfying

Lφ = (zk + z−m)φ, not Lψ = zkψ. We would like to determine the initial tau-function for the

version of the EBTH presented here.
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5.2.2 Equivalence of Fay identities to ETH and EBTH

In [56] it was shown that if a function satisfies certain Fay identities for the KP hierarchy, then it

is a tau function for the hierarchy; in other words, the Fay identities are equivalent to the entire

system. Analogous results for the 2D Toda hierarhcy were obtained in [58]. These results are

quite useful, because, in general, showing that a function satisfies the Fay identities is simpler

than showing that it satisfies the bilinear equation. An interesting follow up to this thesis would

be to obtain similar results for the ETH and EBTH.

5.2.3 W -Algebras

Another interesting question is whether one can generate a W-algebra from the vertex operators

Γ+ and Γ−, as was done for the KP hierarchy in [5, 6, 21]. One can construct a Virasoro algebra

based on [12, 24], but it would be interesting to try to construct a more general W-algebra of

symmetries by modifying the vertex operators Γ+ and Γ− (cf. [7, 11, 46]).

5.2.4 Bispectral problem

Recall the bispectral problem discussed in Subsection 1.3.3. An algebra A of differential operators

is called bispectral if there exists an eigenfunction Ψ(x, z) for which (1.3.9) holds for every L ∈ A.

In [8, 9, 10], the bispectral problem was considered for the eigenfunctions Ψ(x, z) corresponding

to wave functions of the KP hierarchy. Bispectral operators were obtained by applying Darboux

transformations to specific wave functions known as the Bessel and Airy wave functions. We

would like to use our results about Darboux transformations to find solutions to the bispectral

problem [25] for the EBTH (cf. [8, 9, 10]). The bispectral problem was first extended to difference

operators in the case of the discrete KP hierarchy in [37] and then expanded upon in [32].

5.2.5 Cluster Algebras

Cluster algebras were introduced in 2002 by Fomin and Zelevinsky as a method of understanding

dual canonical bases and total positivity in semisimple groups [26, 27, 28]. They have connections

to many fields, including, but not limited to, Poisson geometry [29], combinatorics [17], string

theory [1], and algebraic geometry [36]. In [29], Gekhtman, Shapiro, and Vainshtein construct

Bäcklund-Darboux transformations of the 2D Toda hierarchy in terms of cluster algebras using

standard facts about the Poisson-Lie structure of GLn. A possible future direction would be to

extend these results to the ETH and EBTH.
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5.2.6 Random Matrices

A random matrix is an N ×N matrix whose entries are random variables. They most commonly

arise in probability, statistics, and physics, but due to Jimbo, Miwa, Mori and Sato [39, 40] have

been shown to be connected to the theory of integrable hierarchies. For example, in [4], Adler,

Shiota and van Moerbeke use the vertex operator corresponding to Darboux transformations

for the KP hierarchy and some combinatorics to develop techniques in random matrix theory.

Another possible future direction would be to establish connections between the ETH and EBTH

and random matrices using some of the results presented in this thesis.
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