
ABSTRACT

ROGERS, ELYSE SUZANNE. Multipliers and Covers of Leibniz Algebras. (Under the direction of Dr.

Kailash Misra and Dr. Ernest Stitzinger).

Leibniz algebras are a generalization of Lie algebras in which the anti-commutative property is no longer

required. A Leibniz algebra is simply a vector space over a field in which all elements must satisfy the Leibniz

identity. Imposing anti-commutativity on the Leibniz identity, gives the Jacobi identity, showing that a Lie

algebra is a particular type of Leibniz algebra. A common theme in algebra research is extension theory.

The dimension of a maximal central extension, called the cover, of a given algebra is found by looking at

the dimension of the multiplier, the subset of the center that is added on to algebra in order to find the

central extension. The covers and Schur multiplier have been studied in both group theory and Lie theory.

In this research, we determine the structure and dimension of the multiplier for a Leibniz algebra. Although

the algebras of matrices in the lower central series of the n × n strictly upper triangular matrices can be

considered as Lie algebras, we have instead treated them as Leibniz algebras satisfying the Leibniz identity,

hence we have considered the algebraic structure of both the cover and the multiplier of this algebra to

also be Leibniz. We have determined the dimension of the multiplier for the n× n strictly upper triangular

matrices, the n × n upper triangular matrices, and the general formula for the dimension of the multiplier

of each algebra in the lower central series of the strictly upper triangular matrices. Finally the dimension

of the multiplier of the Heisenberg algebra and each of the Leibniz variations of the Heisenberg algebra are

found. From each of these, the dimension of the cover is found in each case. It is known in Lie theory that

the covers of a particular algebra are isomorphic and the same has been determined in this research for

Leibniz algebras. This is not the case for group theory.
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Chapter 1

Introduction

From [1] and [2], a Leibniz algebra, A, is a vector space over a field F equipped with the bilinear map

[ , ] : A×A→ A

such that all x, y, z ∈ A satisfy the Leibniz identity

[x, [y, z]] = [[x, y], z] + [y, [x, z]]

For a Leibniz algebra, the left multiplication operator is defined by Lx : A → A where Lx(y) = [x, y], ∀
y ∈ A and the right multiplication operator is defined by Rx : A → A where Rx(y) = [y, x], ∀ y ∈ A. A

Leibniz algebra is a generalization of a Lie algebra. As the left and right multiplication by an element in a

Leibniz algebra are not necessarily related, this gives many more brackets of elements to consider. However,

if we were to allow [x, y] = −[y, x] for all elements x, y ∈ A, then the Leibniz identity would become the

Jacobi identity and A would be a Lie algebra. This shows that a Lie algebra is a particular type of Leibniz

algebra.

For a finite dimensional Leibniz algebra A generated by a set, X, let α : X → A be a mapping. Then there

is a free Leibniz algebra F and a homomorphism π : F → A that is an extension of α. Taking R = Ker(π),

then by definition, R is an ideal of F and so we have the following free presentation of the Leibniz algebra

A.

0 −→ R −→ F
π−−→ L −→ 0

The ideas established for multipliers and covers were first discovered by Schur in group theory, as seen

in [3] and [4]. He said, that for a group G, there is a pair (H,A) such that

1. G ∼= H/A

2. A ⊆ Z(H) ∩ [H,H]

He found that the second members of the defining pairs for groups were bounded. Taking the H of

maximal order for a group G gives a second member A that is isomorphic to a group that was defined as
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the multiplier of G. In group theory, he went on to show that all the second members of maximal defining

pairs of the group G are isomorphic and are defined to be the second cohomology group.

This is also the case in Lie and Leibniz algebra as the second members of the maximal defining pairs of

the algebra are abelian Lie algebras and therefore they are unique up to isomorphism. The first thing that

is seen in this research is the fact that the first members of the maximal defining pairs of a Leibniz algebra

are isomorphic. The same was found in the Lie algebra case by Peggy Batten in [8] and [9]. This is in fact

not the case in group theory. This is one of several things that has been discovered to be different in group

theory compared to Lie and Leibniz algebras.

Following this theory, we will study examples of covers and multipliers of different Lie algebras and

non-Lie, Leibniz algebras. Taking A to be the particular algebra in question, we will denote K to be its

cover and M to be its multiplier. From the above free presentation of a Leibniz algebra, we know there exists

a homomorphism π : K → A and therefore a section µ can be used to take the basis elements of A back

into the cover K. Using these basis elements of K, the Leibniz identity, and a particular Leibniz bracket

structure, we will be able to find linear relations between the basis elements of M , hence finding its structure

and dimension. From this, the dimension of K can be found.

In chapter 3, we will discuss the cover and multiplier of the n × n strictly upper triangular matrices.

This is followed by chapter 4 where this idea is extended to establish a general formula for the dimension of

the multiplier of each algebra in the lower central series of the n × n strictly upper triangular matrices. In

[5] and [6], the dimension of the multiplier of each of these algebras was found when a Lie cover was used,

however we will now look at the dimension of the Leibniz cover of each algebra. In chapter 5, the cover and

multiplier of the n× n upper triangular matrices is studied.

Finally in chapter 6, we look at 3 different types of Heisenberg algebra, the first of which is the regular

Lie Heisenberg algebra and the second and third types are Leibniz algebras that each take on a slightly

different structure and hence are non-Lie Leibniz algebras. The covers and multipliers are studied for these

algebras and as we will see, the dimension of each of the multipliers is the same in all 3 cases.

2



Chapter 2

The Uniqueness of the Cover and

Multiplier

Definition 2.0.1. A pair of algebras (K,M) is said to be a defining pair for the Leibniz algebra L, if:

1. L ∼= K/M

2. M ⊆ Z(K) ∩K2

Lemma 2.0.2. If dim(K/Z(K)) = n then dim([K,K]) ≤ n2.

Proof. Letting {x1, ..., xn} be a basis for K/Z(K), then the generating set of [K,K] is

{[xi, xj ] : 1 ≤ i, j ≤ n} as the elements within Z(K) are central by definition and therefore

[K/Z(K),K/Z(K)] = [K,K]. Hence, dim([K,K]) ≤ n2.

Lemma 2.0.3. If L is a finite dimensional Leibniz algebra, with dimension m, and K is the first term in

the defining pair for L then dim(K) ≤ m(m+ 1).

Proof. As we know that dim(K/Z(K)) ≤ dim(K/M) = dim(L) = m, then from the previous lemma,

dim(M) ≤ dim([K,K]) ≤ m2. Therefore, dim(K) = dim(L) + dim(M) ≤ m+m2 = m(m+ 1).

This shows that for a finite dimensional algebra L ∼= K/M , both members of the defining pair, K and

M must be bounded. Therefore, the pair (K.M) is a maximal defining pair if K is of maximal dimension,

and satisfies the above conditions. In this case, K is called the cover of L and M is the multiplier of L. As

M is central, it is an abelian algebra. Hence, it is a unique Lie algebra while K is a Leibniz algebra.

Just as in the case with Lie algebras, but unlike the case in group theory, the covers of L can be shown

to be isomorphic.

The following definition is found in [8] and the same definition can be used for Leibniz algebras.

Definition 2.0.4. For the following set

C(L) = {(J, λ) : λ ∈ Hom(J, L), λ surjective, Ker(λ) ⊆ Z(J) ∩ [J, J ]}

an element (H,π) is a universal element in the set if for every (J, λ) ∈ C(L), there is a homomorphism

β ∈ Hom(H,J) such that λ ◦ β = π.

This can be seen in the following diagram:

3



J

H L

λβ

π

Figure 2.1 Showing λ ◦ β = π

It can be seen that defining pairs of L are directly related to the elements of the set C(L). Taking an

element (J, λ) ∈ C(L), then from the definition of C(L) that Ker(λ) ⊆ J2∩Z(J) and from the isomorphism

theorem, L ∼= J/Ker(λ). This is the exact definition for (J,Ker(λ)) to be a defining pair for L. Then

looking at it the other way around, if (J,M) is a defining pair for L, then by the isomorphism theorems,

there is a surjective homomorphism λ : J → L where M = Ker(λ) ⊆ Z(J)∩ J2. This is the exact definition

of (J, λ) ∈ C(L).

Using the idea that the elements of C(L) and the defining pairs of L are directly related to each other,

we will show that the element (K,λ) in C(L) is a universal element of C(L) if and only if K is actually a

cover of L. This will be the strategy to show that all covers of L are isomorphic. The following lemmas have

been adapted from the Lie case in [8] having been modified to satisfy Leibniz algebras.

Lemma 2.0.5. If K is a finite dimensional Leibniz algebra, then Z(K)∩K2 is contained in every maximal

subalgebra of K.

Proof. If A is a maximal subalgebra of K, then (Z(K) ∩K2) + A is also a subalgebra of K. However, as A

is maximal, then either (Z(K) ∩K2) + A = A or (Z(K) ∩K2) + A = K. If (Z(K) ∩K2) + A = K, then

[K,K] = [(Z(K)∩K2) +A, (Z(K)∩K2) +A] = [A,A] ⊂ A. This says [K,K] ⊂ A but this contradicts that

(Z(K)∩K2) +A 6= A. Therefore, (Z(K)∩K2) +A = A and (Z(K)∩K2) ⊂ A, so (Z(K)∩K2) is contained

in every maximal subalgebra of K.

Lemma 2.0.6. Let (J, λ) ∈ C(L) and let π ∈ Hom(K,L), where π(K) = L. Suppose that β ∈ Hom(K,J)

such that λ ◦ β = π. Then β(K) = J , so β is surjective.

J

K L

λβ

π

Figure 2.2 Showing λ ◦ β = π

Proof. As λ takes J to L and π takes K to L, we know that for some j ∈ J and some k ∈ K, λ(j) = π(k).

Then π(k) = λ ◦ β(k) = λ(j) by definition. Therefore, β(k)− j ∈ Ker(λ) and J = Ker(λ) + Im(β) as β(k)

is in the image of β, and j ∈ J . Then by definition, Ker(λ) ⊆ Z(J) ∩ J2 and from the previous lemma,

Z(J)∩J2 is contained in every maximal subalgebra of J . Suppose Im(β) 6= J , then as it is a subalgebra of J ,

it must be contained in some maximal subalgebra A of J where A 6= J . Therefore, Im(β)+(Z(J)∩J2) ⊆ A.

But Ker(λ) ⊆ Z(J) ∩ J2, therefore this would mean J = A which is a contradiction. Therefore Im(β) = J ,

meaning that β is surjective.

Bringing together these lemmas and definitions, if (K,π) ∈ C(L) is such that for every (J, λ) ∈ C(L)

there is a homomorphism β ∈ Hom(K,J) such that λ ◦ β = π, then from the previous lemmas, β is a

4



surjective homomorphism and dim(J) ≤ dim(K). Therefore, K has maximal dimension and hence it is a

cover of L. All covers are therefore isomorphic to one another as each cover must have the same dimension

and must be the homomorphic image of of K. So it has been shown that as long as a universal element

(K,π) exists, it will lead to the covers, K of L, to be isomorphic to each other. Therefore, it is left to show

the existence of a universal element in the Leibniz case.

We use the following free presentation for the Leibniz algebra L:

0 −→ R −→ F
π−−→ L −→ 0

where R = Ker(π).

For the Leibniz algebra, we must be aware that when factoring out Leibniz brackets of algebras, both

the left and right brackets must be factored out in order to not get a one sided ideal.

So let

B = R/([F,R] + [R,F ])

C = F/([F,R] + [R,F ])

D = (F 2 ∩R)/([F,R] + [R,F ])

We can see that [B,C] = 0 as [B,C] = [R,F ]/([F,R] + [R,F ]) = 0 and in the same way [C,B] = 0 as

[C,B] = [F,R]/([F,R] + [R,F ]) = 0. Furthermore, D is a central ideal of C as it is contained within the

center of C and is an ideal.

We will show that there exists a central ideal E of C where E is complementary to D in B such that

(C/E, π̄) ∈ C(L) and then for (K,λ) ∈ C(L), there is a σ̄ ∈ Hom(C/E,K) such that π̄ = λ ◦ σ̄. In order

to show this, we will show that the following diagrams will commute where π̄ is induced from π1 and π1 is

induced from π. Furthermore, σ̄ is induced from σ1 and σ1 is induced from σ.

K

F L

λσ

π

K

C L

λσ1

π1

K

C/E L

λσ̄

π̄

Figure 2.3 π̄ is induced from π1 and π1 is induced from π

σ̄ is induced from σ1 and σ1 is induced from σ

Lemma 2.0.7. (C/E,B/E) is a defining pair for L where E is a central ideal of C and a complementary

subspace to D in B.

Proof. In order to show that (C/E,B/E) is a defining pair for L, both parts of the definition of a defining pair

need to hold. Therefore, it needs to be shown that L ∼= (C/E)/(B/E) and B/E ⊆ Z(C/E) ∩ [C/E,C/E].

First, it is noted that (C/E)/(B/E) ∼= C/B ∼= (F/([F,R] + [R,F ]))/(R/([F,R] + [R,F ])) ∼= F/R ∼= L by

definition from the free presentation.

5



Next, it is noted that as [B,C] = 0 and [C,B] = 0, B ⊆ Z(C) which implies that B/E ⊆ Z(C/E). Also,

D = ([F, F ]∩R/([F,R]+[R,F ])) ⊆ [F, F ]/([F,R]+[R,F ]) ∼= [F/([F,R]+[R,F ]), F/([F,R]+[R,F ])] = [C,C]

and therefore, using the fact that E is complementary to D in B, B/E ∼= (D
⊕
E)/E ⊆ ([C,C] + E)/E ∼=

[C/E,C/E]. So B/E ⊆ Z(C/E) ∩ [C/E,C/E]. Therefore, (C/E,B/E) is a defining pair for L.

From [8], the following lemma for the Lie algebra case, also carries into the Leibniz case.

Lemma 2.0.8. For an element x ∈ F , then x ∈ R if and only if σ(x) ∈ Ker(λ).

Using this lemma, the following lemma can be proved.

Lemma 2.0.9. [R,F ] + [F,R] ⊆ Ker(σ) and therefore, σ induces the surjective homomorphism σ1 ∈
Hom(C,M) where λ ◦ σ1 = π1.

Proof. Take an element [r1, f1] + [f2, r2] ∈ [R,F ] + [F,R], then σ([r1, f1] + [f2, r2]) = [σ(r1), σ(f1)] +

[σ(f2), σ(r2)] = 0 as from the previous lemma, σ(r1), σ(r2) ∈ Ker(λ) and from the definition of C(L),

Ker(λ) ⊆ Z(M) ∩ [M,M ] with σ(f) ∈ M . Therefore, σ induces σ1 ∈ Hom(C,M) where, for an element

c = f+[R,F ]+[F,R] ∈ C, λ◦σ1(c) = λ◦σ1(f+[R,F ]+[F,R]) = λ◦σ(f) = π(f) = π1(f+[R,F ]+[F,R]) =

π1(c). So, λ ◦ σ1 = π1 where σ1 is surjective as σ is surjective.

The following lemmas correspond to the Lie algebra case in [8] and [9].

Lemma 2.0.10. σ1(B) = Ker(λ) and σ1(D) = Ker(λ). So B = D +Ker(σ1).

Taking E to be a complementary subspace of D in B, such that, from the above lemma, E ⊆ Ker(σ1).

Then (C/E,B/E) is a defining pair for L and σ̄ is induced by σ1 such that λ ◦ σ̄ = π̄.

Lemma 2.0.11. If K is a cover of L, then C/E is a cover of L and the multiplier, M = D.

Proof. By definition of the cover of L, dim(K) ≥ dim(C/E), but also as K is the homomorphic image of

C/E under a surjective mapping, dim(C/E) ≥ dim(K) and therefore, dim(C/E) = dim(K) and C/E is a

cover of L. Then as L ∼= C/B and by definition, B/E ∼= D with (C/E,B/E) being a defining pair for L,

the multiplier, M of L is M = D

= ([F, F ] ∩R)/[F,R] + [R,F ].

So for any (J, λ) ∈ C(L) with the free presentation as given previously, there is an E complementary to

D in B such that C/E is the cover of L and there is a homomorphism σ̄ induced from σ1 which is itself

induced from σ. It has already been shown that E ⊆ Ker(σ1) and therefore, E depends on J . Using this

information, a C/E needs to be found that satisfies the property of a universal element. This is done by

showing that the algebras, C/E, are isomorphic to each other.

In order to show that the algebras C/E are isomorphic to one another, a specific form of F is found.

Take the dim(L) = n. As L is the homomorphic image of F this means that F is also generated by n

elements. Then as E is the complementary subspace to D in B and using the second isomorphism theorem,

E ∼= B/D ∼= R/([F, F ] ∩R) ∼= ([F, F ] +R)/[F, F ] ⊆ F/[F, F ]. This is abelian and generated by n elements.

Therefore E is a finite dimensional abelian algebra. Then in a similar way as seen for the Lie algebra

case, take an element (J, λ) ∈ C(L). If E1 is a complementary subspace to D in B, then σ1 ∈ Home(C, J)

can be induced from σ, with E1 ⊆ Ker(σ1) and λ ◦ σ1 = π1 such that π1 ∈ Hom(C,L).
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Then using the fact that E ⊆ F/[F, F ], F/[F, F ] ∩ [F, F ]/([F,R] + [R,F ]) = 0 =⇒ E ∩ [C,C] =

E1∩ [C,C] = 0. Because of this fact, we can take an extension G of D whereby C = E
⊕
G and we can take

an extension G1 of D whereby C = E
⊕
G1. As E and E1 have the same dimension and are both abelian,

they must be isomorphic to each other. Just as in the Lie case found in [8], from the work above it can be

seen that it is also the case in Leibniz algebras that G ∼= G1 =⇒ C/E ∼= C/E1.

In summary, for each (J, λ) ∈ C(L), there is a surjective homomorphism that has been induced from σ,

namely σ̄ ∈ (C/E, J) such that λ ◦ σ̄ = π̄. Therefore, (C/E, π̄) is a universal element in C(L) where C/E is

a cover of L and each cover is isomorphic to C/E as each one is a homomorphic image of C/E and has the

same dimension. Also for any element (J, λ) ∈ C(L) then there is a homomorphism β ∈ Hom(K,J) where

λ ◦ β = π where K is a cover of L and (K,π) ∈ C(L). So (K,π) is a universal element if and only if K is a

cover of L.

Theorem 2.0.12. Let L be a finite dimensional algebra. For the following free presentation of L,

0 −→ R −→ F
π−−→ L −→ 0

let B = R/([F,R] + [R,F ]), C = F/([F,R] + [R,F ]), and D = ([F, F ]∩R)/([F,R] + [R,F ]). Then all covers

of L are of the form C/E where E is the complement to D in B and all covers are isomorphic to each other.

The multiplier, M of L is D ∼= B/E. The universal elements in C(L) are the elements (K,λ) where K is

the cover of L.
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Chapter 3

Strictly Upper Triangular Matrices

k=0

The structure and dimension of the Lie cover and multiplier of the Lie algebra of strictly upper triangular

matrices has already been found [8] and [9]. In this chapter, the Leibniz cover and multiplier of the algebra

are found. By first finding the structure and hence the dimension of the multiplier of the algebra, the

dimension of the cover can also be established. A formula for the dimension of the multiplier can be found

in terms of n for general n× n strictly upper triangular matrices.

The elements in the Lie algebra of strictly upper triangular matrices L are each of the unit matrices Ei,j

where 1 ≤ i < j ≤ n. Let (K,M) be a defining pair for L and let F (s, t) be the image of Es,t under the

section l : L→ K. The Leibniz bracket of elements of K can then be defined as:

[F (s, t), F (a, b)] =


F (s, b) + y(s, t, a, b) when t = a

−F (a, t) + y(s, t, a, b) when s = b

y(s, t, a, b) otherwise

Using this relationship between elements of the cover, a basis for the multiplier and it’s dimension, can be

found.

As the basis elements in the algebra of n×n strictly upper triangular matrices are of the form Es,t where

1 ≤ s < t ≤ n, the elements of the multiplier must be of the form y(s, t, a, b) where s < t and a < b.

Theorem 3.0.1. If b ≥ a+ 4 or t ≥ s+ 4, then y(s, t, a, b) = 0. So y(s, t, a, b) 6= 0 only has the potential to

occur if both b ≤ a+ 3 and t ≤ s+ 3.

Proof. To show that this is the case, take an element of the multiplier, y(s, t, a, b). It is known that

t ≥ s+ (k + 1) =⇒ t ≥ s+ 1 and similarly b ≥ a+ (k + 1) =⇒ b ≥ a+ 1. It can be seen that for some c

such that 0 < c < t− s, the following Leibniz identity holds:

[F (s, s+ c), [F (s+ c, t), F (a, b)]] = [[F (s, s+ c), F (s+ c, t)], F (a, b)]

+ [F (s+ c, t), [F (s, s+ c), F (a, b)]]
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Now assume that t = s + 4. As long as a 6= s + 1 and b 6= s + 1, we can take c = 1 for the above Leibniz

identity to hold, otherwise, take c = 2. This will always make the element y(s, t, a, b) = 0 no matter what

gap is between a and b. The same theory applies when taking b = a+ 4 and letting the gap between s and

t be whatever is desired. This can be extended to consider the cases where t > s+ 4 and b > a+ 4 and the

same theory applies.

3.1 Elements of the multiplier that arise from [F(s,t),F(a,b)] where

t 6= a and s 6= b

As the non-zero elements of the basis of the multiplier must satisfy t < s + 4 and b < a + 4, this gives 9

remaining cases to consider for the elements y(s, t, a, b):

1. (a) t = s+ 1 and b = a+ 1

(b) t = s+ 1 and b = a+ 2

(c) t = s+ 1 and b = a+ 3

2. (a) t = s+ 2 and b = a+ 1

(b) t = s+ 2 and b = a+ 2

(c) t = s+ 2 and b = a+ 3

3. (a) t = s+ 3 and b = a+ 1

(b) t = s+ 3 and b = a+ 2

(c) t = s+ 3 and b = a+ 3

We begin by going through each case, first where t 6= a and s 6= b, to see which elements y(s, t, a, b) of

the multiplier can be eliminated depending on the placement of the values of s, t, a, b in relation to one

another.

Theorem 3.1.1. The only cases that will give non-zero elements of the multiplier are cases 1.(a), 1.(b),

and 2.(a).

Proof. This is proved in a similar manner to the previous theorem. It can be seen that the cases 2.(c), 3.(b),

and 3.(c) have no elements to consider and will always give all 0 elements of the multiplier. In case 2.(c),

the elements of the multiplier are of the form y(s, s+ 2, a, a+ 3). By taking a value c such that 0 < c < 3,

the following Leibniz identity can be created:

[F (s, s+ 2), [F (a, a+ c), F (a+ c, a+ 3)]] = [[F (s, s+ 2), F (a, a+ c)], F (a+ c, a+ 3)]

+ [F (a, a+ c), [F (s, s+ 2), F (a+ c, a+ 3)]]

If c = 1 then this identity will equal 0 as long as s 6= a+ 1 and s 6= a− 1. In each of these cases, let c = 2

and the identity will once again equal 0. The spacing of these values can be seen on the following 2 number

lines:

9



a
s s+ 2

a+ 3

Figure 3.1 y(s, s+ 2, a, a+ 3) where a < s < t = b

s
a

s+ 2
a+ 3

Figure 3.2 y(s, s+ 2, a, a+ 3) where s < a < t < b

It therefore follows, no matter what the values of s and a are in the identity above, a value c can always

be chosen that will make y(s, s+ 2, a, a+ 3) = 0.

In a very similar way, for the case 3.(b) the elements of the multiplier are of the form y(s, s+ 3, a, a+ 2).

By taking a value c such that 0 < c < 3, the following Leibniz identity can be created:

[F (s, s+ c), [F (s+ c, s+ 3), F (a, a+ 2)]] = [[F (s, s+ c), F (s+ c, s+ 3)], F (a, a+ 2)]

+ [F (s+ c, s+ 3), [F (s, s+ c), F (a, a+ 2)]]

If c = 1 then this identity will equal 0 as long as s 6= a + 1 and s 6= a − 1. In each of these cases, by

letting c = 2, the identity will again equal 0. The spacing of these values can be seen on the following 2

number lines:

a
s

a+ 2
s+ 3

Figure 3.3 y(s, s+ 3, a, a+ 2) where a < s < b < t

s
a

s+ 3
a+ 2

Figure 3.4 y(s, s+ 3, a, a+ 2) where s < a < b = t

In the same way, for the case 3.(c) where elements of the multiplier are of the form

y(s, s+ 3, a, a+ 3), the following Leibniz identity can be created

[F (s, s+ c), [F (s+ c, s+ 3), F (a, a+ 3)]] = [[F (s, s+ c), F (s+ c, s+ 3)], F (a, a+ 3)]

+ [F (s+ c, s+ 3), [F (s, s+ c), F (a, a+ 3)]]

Once more, we can again take c = 1 as long as s 6= a+ 2 and s 6= a− 1, in which case we can take c=2

as can be seen from the spacing of the values on the following number lines:
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a
s

a+ 3
s+ 3

Figure 3.5 y(s, s+ 3, a, a+ 3) where a < s < b < t

s
a

s+ 3
a+ 3

Figure 3.6 y(s, s+ 3, a, a+ 3) where s < a < t < b

Therefore, as every multiplier element from these cases is equal to 0, this leaves 6 cases to consider.

For the case 1.(c), the elements of the multiplier are of the form y(s, s+ 1, a, a+ 3). By taking a c such

that 0 < c < 3, we find:

[F (s, s+ 1), [F (a, a+ c), F (a+ c, a+ 3)]] = [[F (s, s+ 1), F (a, a+ c)], F (a+ c, a+ 3)]

+ [F (a, a+ c), [F (s, s+ 1), F (a+ c, a+ 3)]]

As long as s 6= a+ 1, c can always be taken to be c = 1 or c = 2 in order for the above identity to reveal

that y(s, s+ 1, a, a+ 3) = 0. We can see from the number line below that there would not be sufficient space

for the value a+ c in order to reveal that elements of this form would equal 0.

a
s s+ 1

a+ 3

Figure 3.7 y(s, s+ 1, a, a+ 3) where a < s < t < b

However, from taking the Leibniz identity on 2 different sets of elements from the cover, the following is

found:

1.

[F (s, s+ 1), [F (s− 1, s), F (s, s+ 2)]] = [[F (s, s+ 1), F (s− 1, s)], F (s, s+ 2)]

+ [F (s− 1, s), [F (s, s+ 1), F (s, s+ 2)]]

=⇒ [F (s, s+ 1), F (s− 1, s+ 2) + y(s− 1, s, s, s+ 2)]

= [−F (s− 1, s+ 1) + y(s, s+ 1, s− 1, s), F (s, s+ 2)]

=⇒ [F (s, s+ 1), F (s− 1, s+ 2)] = −[F (s− 1, s+ 1), F (s, s+ 2)]

=⇒ y(s, s+ 1, s− 1, s+ 2) = −y(s− 1, s+ 1, s, s+ 2)
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2.

[F (s, s+ 1), [F (s− 1, s+ 1), F (s+ 1, s+ 2)]] = [[F (s, s+ 1), F (s− 1, s+ 1)], F (s+ 1, s+ 2)]

+ [F (s− 1, s+ 1), [F (s, s+ 1), F (s+ 1, s+ 2)]]

=⇒ [F (s, s+ 1), F (s− 1, s+ 2) + y(s− 1, s+ 1, s+ 1, s+ 2)]

= [F (s− 1, s+ 1), F (s, s+ 2) + y(s, s+ 1, s+ 1, s+ 2)]

=⇒ [F (s, s+ 1), F (s− 1, s+ 2)] = [F (s− 1, s+ 1), F (s, s+ 2)]

=⇒ y(s, s+ 1, s− 1, s+ 2) = y(s− 1, s+ 1, s, s+ 2)

It can be seen that y(s, s+ 1, a, a+ 3) = y(s, s+ 1, s− 1, s+ 2) is equal to both −y(s− 1, s+ 1, s, s+ 2)

and y(s−1, s+ 1, s, s+ 2). Therefore, these elements must equal 0 and can also be eliminated from the basis

of the multiplier.

In case 2.(b) the elements of the multiplier are of the form y(s, s+2, a, a+2). Using the following Leibniz

identity where s 6= a+ 1 and s 6= a− 1, it can be seen that the elements of this form are equal to 0.

[F (s, s+ 2), [F (a, a+ 1), F (a+ 1, a+ 2)]] = [[F (s, s+ 2), F (a, a+ 1)], F (a+ 1, a+ 2)]

+ [F (a, a+ 1), [F (s, s+ 2), F (a+ 1, a+ 2)]]

=⇒ [F (s, s+ 2), F (a, a+ 2) + y(a, a+ 1, a+ 1, a+ 2)] = 0

=⇒ [F (s, s+ 2), F (a, a+ 2)] = 0

=⇒ y(s, s+ 2, a, a+ 2) = 0

Accordingly, the only types of elements that need to be considered in this case are those of the form

y(s, s + 2, s + 1, s + 3) and y(s, s + 2, s − 1, s + 1). For elements of the form y(s, s + 2, s + 1, s + 3) , the

Leibniz identity of 2 different sets of elements of the cover will give 2 separate relations involving elements

of this form:

1.

[F (s, s+ 1), [F (s+ 1, s+ 2), F (s+ 1, s+ 3)]] = [[F (s, s+ 1), F (s+ 1, s+ 2)], F (s+ 1, s+ 3)]

+ [F (s+ 1, s+ 2), [F (s, s+ 1), F (s+ 1, s+ 3)]]

=⇒ 0 = [F (s, s+ 2) + y(s, s+ 1, s+ 1, s+ 2), F (s+ 1, s+ 3)]

+ [F (s+ 1, s+ 2), F (s, s+ 3) + y(s, s+ 1, s+ 1, s+ 3)]

=⇒ 0 = [F (s, s+ 2), F (s+ 1, s+ 3)] + [F (s+ 1, s+ 2), F (s, s+ 3)]

=⇒ y(s, s+ 2, s+ 1, s+ 3) = −y(s+ 1, s+ 2, s, s+ 3)

2.

[F (s, s+ 2), [F (s+ 1, s+ 2), F (s+ 2, s+ 3)]] = [[F (s, s+ 2), F (s+ 1, s+ 2)], F (s+ 2, s+ 3)]

+ [F (s+ 1, s+ 2), [F (s, s+ 2), F (s+ 2, s+ 3)]]

=⇒ [F (s, s+ 2), F (s+ 1, s+ 3) + y(s+ 1, s+ 2, s+ 2, s+ 3)]
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= [F (s+ 1, s+ 2), F (s, s+ 3) + y(s, s+ 2, s+ 2, s+ 3)]

=⇒ [F (s, s+ 2), F (s+ 1, s+ 3)] = [F (s+ 1, s+ 2), F (s, s+ 3)]

=⇒ y(s, s+ 2, s+ 1, s+ 3) = y(s+ 1, s+ 2, s, s+ 3)

So we see that the elements y(s, s+2, s+1, s+3) are equal the positive and negative of y(s+1, s+2, s, s+3)

and therefore they must also equal 0 and as such there are no elements of the multiplier that arise from this

case.

The same applies for the case y(s, s + 2, s − 1, s + 1). Using the same type of calculation, we find that

these elements are equal to the elements y(s, s+ 1, s− 1, s+ 2) found in case 1.(c) and therefore can also be

eliminated.

In case 3.(a) the elements are of the form y(s, s + 3, a, a + 1). This will follow symmetrically from the

case 1.(c). By taking c such that 0 < c < 3, we find:

[F (s, s+ c), [F (s+ c, s+ 3), F (a, a+ 1)]] = [[F (s, s+ c), F (s+ c, s+ 3)], F (a, a+ 1)]

+ [F (s+ c, s+ 3), [F (s, s+ c), F (a, a+ 1)]]

As long as s 6= a− 1, c can always be taken to be c = 1 or c = 2 in order for the above identity to reveal

that y(s, s+ 3, a, a+ 1) = 0. We can see from the number line below that there is insufficient space for the

value s+ c in order to reveal that elements of this form would equal 0.

s
a a+ 1

s+ 3

Figure 3.8 y(s, s+ 3, a, a+ 1) where s < a < b < t

If we now consider the case where s = a− 1, a Leibniz identity of 2 different sets of elements of the cover

can be taken in order to get relations involving elements of the form y(s, s + 3, s + 1, s + 2). These are the

following:

1.

[F (s, s+ 1), [F (s+ 1, s+ 3), F (s+ 1, s+ 2)]] = [[F (s, s+ 1), F (s+ 1, s+ 3)], F (s+ 1, s+ 2)]

+ [F (s+ 1, s+ 3), [F (s, s+ 1), F (s+ 1, s+ 2)]]

=⇒ 0 = [F (s, s+ 3) + y(s, s+ 1, s+ 1, s+ 3), F (s+ 1, s+ 2)]

+[F (s+ 1, s+ 3), F (s, s+ 2) + y(s, s+ 1, s+ 1, s+ 2)]

=⇒ 0 = [F (s, s+ 3), F (s+ 1, s+ 2)] + [F (s+ 1, s+ 3), F (s, s+ 2)]

=⇒ y(s, s+ 3, s+ 1, s+ 2) = −y(s+ 1, s+ 3, s, s+ 2)

2.

[F (s, s+ 2), [F (s+ 2, s+ 3), F (s+ 1, s+ 2)]] = [[F (s, s+ 2), F (s+ 2, s+ 3)], F (s+ 1, s+ 2)]

+ [F (s+ 2, s+ 3), [F (s, s+ 2), F (s+ 1, s+ 2)]]
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=⇒ [F (s, s+ 2),−F (s+ 1, s+ 3) + y(s+ 2, s+ 3, s+ 1, s+ 2)]

= [F (s, s+ 3) + y(s, s+ 2, s+ 2, s+ 3), F (s+ 1, s+ 2)]

=⇒ −[F (s, s+ 2), F (s+ 1, s+ 3)] = [F (s, s+ 3), F (s+ 1, s+ 2)]

=⇒ −y(s, s+ 2, s+ 1, s+ 3) = y(s, s+ 3, s+ 1, s+ 2)

It was found in case 2.(b) that both y(s+ 1, s+ 3, s, s+ 2) and y(s, s+ 2, s+ 1, s+ 3) are 0. Therefore,

y(s, s+ 3, s+ 1, s+ 2) = 0 and no elements for the basis of the multiplier are found in this case.

Therefore, by eliminating the possibility of any of these 6 cases contributing elements to the multiplier,

it can be seen that the only possibilities are those in cases 1.(a), 1.(b), and 2.(a).

Now we must consider the remaining 3 cases to discover the elements that will remain in the basis of the

multiplier.

Case 1. (a) t = s+1 and b = a+1

This corresponds to elements of the form y(s, s + 1, a, a + 1). The Leibniz identity cannot be used to

uncover these elements within the multiplier when a > s+ 1 or when s > a+ 1 as there is insufficient space

between s and t or a and b in order to find a value c to create a Leibniz identity involving elements of the

cover. Therefore, there is no way for these to be eliminated and these elements are included in the basis of

the multiplier.

When a > s+ 1, there are (n−2)(n−3)
2 elements in the multiplier of the form

y(s, s + 1, a, a + 1). Similiarly, we can see that there are (n−2)(n−3)
2 elements in the multiplier of the form

y(s, s+ 1, a, a+ 1) when s > a+ 1. We know that this is the case for a > s+ 1 because the minimum value

of s is 1 so the minimum value of a is therefore 3. Furthermore, the maximum value of a is n − 1 as the

maximum value of a+1 is n. Therefore a can range in value from 3 to n−1. This gives n−3 possible values

for a when s = 1. When s increases by 1 to become s = 2, the value of a can then range in value from 4 to

n− 1. This gives n− 4 possible values of a for this value of s. Continuing with this idea, for s = 3 there are

n− 5 possible values of a and so on. This carries on until there is only one value that each a and a+ 1 can

take. Therefore there are (n − 3) + (n − 4) + ... + 1 different values of a for different values of s. This can

be written as (n−2)(n−3)
2 . The same applies to the case where s > a + 1 and by following exactly the same

steps, we find that there are also (n−2)(n−3)
2 elements in the multiplier of the form y(s, s+ 1, a, a+ 1) under

this restriction.

The only other form that we must look at in this case, such that t 6= a and s 6= b, is y(s, s+ 1, s, s+ 1).

There are n−1 different values that s can take in this case, and we cannot take a Leibniz bracket of elements

from the cover in order to eliminate elements of this form. Therefore, there are n− 1 elements of this type

in the basis of the multiplier.

Case 1. (b) t = s+1 and b = a+2

This corresponds to elements of the form y(s, s+ 1, a, a+ 2). First we look at the cases where a > s+ 1

or s > a+ 2. Taking the following Leibniz bracket it can be shown that these elements are in fact 0 in both
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of these cases and therefore can be eliminated from the basis of the multiplier.

[F (s, s+ 1), [F (a, a+ 1), F (a+ 1, a+ 2)]] = [[F (s, s+ 1), F (a, a+ 1)], F (a+ 1, a+ 2)]

+ [F (a, a+ 1), [F (s, s+ 1), F (a+ 1, a+ 2)]]

As we know that none of s, s + 1, a, a + 1 are equal to one another in the cases where a > s + 1 and

s > a+ 2, and y(s, a+ 1, a+ 1, a+ 2) ∈ Z(K), the above reduces to the following brackets:

[F (s, s+ 1), F (a, a+ 2) + y(a, a+ 1, a+ 1, a+ 2)] = 0

=⇒ [F (s, s+ 1), F (a, a+ 2)] = 0

=⇒ y(s, s+ 1, a, a+ 2) = 0

Therefore, as y(s, s + 1, a, a + 2) = 0, elements of this form can be eliminated from the basis of the

multiplier.

In order to make it easier to visualize the placement of values for the remaining elements in this case,

the number lines are drawn below to show their positions. The first set of elements to consider in this case

are those of the form y(s, s+ 1, a, a+ 2) = y(s, s+ 1, s− 1, s+ 1).

a
s s+ 1

a+ 2

Figure 3.9 y(s, s+ 1, a, a+ 2) where a < s < b = t

Taking a Leibniz identity involving elements in the cover, we are able to find a relationship between

elements in the multiplier:

[F (s, s+ 1), [F (s− 1, s), F (s, s+ 1)]] = [[F (s, s+ 1), F (s− 1, s)], F (s, s+ 1)]

+ [F (s− 1, s), [F (s, s+ 1), F (s, s+ 1)]]

=⇒ [F (s, s+ 1), F (s− 1, s+ 1) + y(s− 1, s, s, s+ 1)]

= [−F (s− 1, s+ 1) + y(s, s+ 1, s− 1, s), F (s, s+ 1)]

=⇒ [F (s, s+ 1), F (s− 1, s+ 1)] = −[F (s− 1, s+ 1), F (s, s+ 1)]

=⇒ y(s, s+ 1, s− 1, s+ 1) = −y(s− 1, s+ 1, s, s+ 1)

As such, the elements found in this case correspond to the elements that will arise in case 2.(a). The

minimum value of s − 1 is 1 and the maximum value of s + 1 to be n. So the minimum value that s can

take is 2 and the maximum value it can achieve is n− 1. Hence, s can take n− 2 different values, therefore

giving n− 2 different possibilities for this element of the multiplier.

The following number line corresponds to the elements y(s, s+ 1, a, a+ 2) = y(s, s+ 1, s, s+ 2).
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s
a

s+ 1
a+ 2

Figure 3.10 y(s, s+ 1, a, a+ 2) where a = s < t < b

Taking a Leibniz identity involving elements in the cover, we are able to find a relation between elements

in the multiplier:

[F (s, s+ 1), [F (s, s+ 1), F (s+ 1, s+ 2)]] = [[F (s, s+ 1), F (s, s+ 1)], F (s+ 1, s+ 2)]

+ [F (s, s+ 1), [F (s, s+ 1), F (s+ 1, s+ 2)]]

=⇒ [F (s, s+ 1), F (s, s+ 2) + y(s, s+ 1, s+ 1, s+ 2)]

= [F (s, s+ 1), F (s, s+ 2) + y(s, s+ 1, s, s+ 2)]

=⇒ [F (s, s+ 1), F (s, s+ 2)] = [F (s, s+ 1), F (s, s+ 2)]

However, this gives us no new relation, but it does show that elements of the multiplier of this form

cannot be eliminated and so they must be counted as elements of the basis of the multiplier. The minimum

value that s can take is 1 and the maximum value that s + 2 can take is n. Therefore the maximum value

that s can take is n− 2. So there are n− 2 different values that s can take, hence there are n− 2 elements

of the multiplier of this type. Any other element in this case has either s = b or t = a.

Case 2. (a) t = s+2 and b = a+1

This corresponds to elements of the form y(s, s+ 2, a, a+ 1). First, we consider the case where a > s+ 2

or s > a + 1. Taking the following Leibniz identity of elements of the cover, it can be shown that these

elements are 0 in both of these cases and therefore can be eliminated from the basis of the multiplier.

[F (s, s+ 1), [F (s+ 1, s+ 2), F (a, a+ 1)]] = [[F (s, s+ 1), F (s+ 1, s+ 2)], F (a, a+ 1)]

+ [F (s+ 1, s+ 2), [F (s, s+ 1), F (a, a+ 1)]]

=⇒ [F (s, s+ 2) + y(s, s+ 1, s+ 1, s+ 2), F (a, a+ 1)] = 0

=⇒ [F (s, s+ 2), F (a, a+ 1)] = 0

=⇒ y(s, s+ 2, a, a+ 1) = 0

The following number line corresponds to elements of the form y(s, s+ 2, a, a+ 1) = y(s, s+ 2, s, s+ 1).

s
a a+ 1

s+ 2

Figure 3.11 y(s, s+ 2, a, a+ 1) where a = s < b < t

Taking the following Leibniz identity of elements from the cover, a relation involving elements of this
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form can be established:

[F (s, s+ 1), [F (s+ 1, s+ 2), F (s, s+ 1)]] = [[F (s, s+ 1), F (s+ 1, s+ 2)], F (s, s+ 1)]

+ [F (s+ 1, s+ 2), [F (s, s+ 1), F (s, s+ 1)]]

=⇒ [F (s, s+ 1),−F (s, s+ 2) + y(s+ 1, s+ 2, s, s+ 1)]

= [F (s, s+ 2) + y(s, s+ 1, s+ 1, s+ 2), F (s, s+ 1)]

=⇒ −[F (s, s+ 1), F (s, s+ 2)] = [F (s, s+ 2), F (s, s+ 1)]

=⇒ −y(s, s+ 1, s, s+ 2) = y(s, s+ 2, s, s+ 1)

The elements y(s, s+ 1, s, s+ 2) were accounted for in case 1.(b), so there are no new elements that arise

in this situation.

The following number line corresponds to the elements y(s, s+ 2, a, a+ 1) =

y(s, s+ 2, s+ 1, s+ 2).

s
a

s+ 2
a+ 1

Figure 3.12 y(s, s+ 2, a, a+ 1) where s < a < b = t

Taking the following Leibniz identity of elements from the cover, a relationship involving elements of this

form can be established:

[F (s, s+ 1), [F (s+ 1, s+ 2), F (s+ 1, s+ 2)]] = [[F (s, s+ 1), F (s+ 1, s+ 2)], F (s+ 1, s+ 2)]

+ [F (s+ 1, s+ 2), [F (s, s+ 1), F (s+ 1, s+ 2)]]

=⇒ 0 = [F (s, s+ 2) + y(s, s+ 1, s+ 1, s+ 2), F (s+ 1, s+ 2)]

+ [F (s+ 1, s+ 2), F (s, s+ 2) + y(s, s+ 1, s+ 1, s+ 2)]

=⇒ 0 = [F (s, s+ 2), F (s+ 1, s+ 2)] + [F (s+ 1, s+ 2), F (s, s+ 2)]

=⇒ y(s, s+ 2, s+ 1, s+ 2) = −y(s+ 1, s+ 2, s, s+ 2)

The elements y(s+1, s+2, s, s+2) were already accounted for in case 1.(b) and therefore, we have shown

that in this case there are no new elements that appear in the basis of the multiplier.

3.2 Elements of the multiplier that arise from [F(s,t),F(a,b)] where

t = a or s = b

The only cases left to investigate are the elements of the cover such that t = a or where s = b. First we will

consider those where t = a. A change of basis within the cover can be used in order to eliminate elements

in the basis of the multiplier. The following change of basis is used:

G(s, t) = F (s, t) + y(s, t− 1, t− 1, t)
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As the multiplier is within the center of the cover, the elements G(s, t) multiply in the same way as the

elements F (s, t). Using this change of basis and the Leibniz identity, we will find the elements that remain

in the basis.

Theorem 3.2.1. Every element in the multiplier of the form y(s, s+c, s+c, b) where c ≥ 1 and s+c ≤ b−1

can be eliminated from the basis of the multiplier. Therefore there are no elements of the form y(s, t, a, b)

where t = a in the basis of the multiplier.

Proof. If s+ c = b− 1 this corresponds to elements within the basis of the form y(s, b− 1, b− 1, b) and from

the above change of basis, these elements can be eliminated. If s+ c < b− 1 then the following relationship

can be found using the Leibniz identity:

[F (s, s+ c), [F (s+ c, b− 1), F (b− 1, b)]] = [[F (s, s+ c), F (s+ c, b− 1)], F (b− 1, b)]

+ [F (s+ c, b− 1), [F (s, s+ c), F (b− 1, b)]]

=⇒ [F (s, s+ c), F (s+ c, b) + y(s+ c, b− 1, b− 1, b)] =

[F (s, b− 1) + y(s, s+ c, s+ c, b− 1), F (b− 1, b)]

=⇒ [F (s, s+ c), F (s+ c, b)] = [F (s, b− 1), F (b− 1, b)]

=⇒ F (s, b) + y(s, s+ c, s+ c, b) = F (s, b) + y(s, b− 1, b− 1, b)

=⇒ y(s, s+ c, s+ c, b) = y(s, b− 1, b− 1, b)

It has already been found from the change of basis formula that the elements y(s, b − 1, b − 1, b) can

be eliminated from the basis of the multiplier and consequently, every element y(s, s + c, s + c, b) where

s+ c < b− 1 can be eliminated.

This means that every element of the form y(s, s + c, s + c, b) can be eliminated from the basis of the

multiplier and therefore there are no elements of the form t = a in the basis.

The next case that needs to be considered are the elements where s = b in y(s, t, a, b). These elements

can also be written in the form y(s+ c, s+ d, s, s+ c) where d > c ≥ 1. If c > 1 then the following elements

can be placed into a Leibniz identity to uncover a relationship between the elements:

[F (s+ c, s+ d), [F (s, s+ 1), F (s+ 1, s+ c)]] = [[F (s+ c, s+ d), F (s, s+ 1)], F (s+ 1, s+ c)]

+ [F (s, s+ 1), [F (s+ c, s+ d), F (s+ 1, s+ c)]]

=⇒ [F (s+ c, s+ d), F (s, s+ c) + y(s, s+ 1, s+ 1, s+ c)] =

[F (s, s+ 1),−F (s+ 1, s+ d) + y(s+ c, s+ d, s+ 1, s+ c)]

=⇒ [F (s+ c, s+ d), F (s, s+ c)] = [F (s, s+ 1),−F (s+ 1, s+ d)]

=⇒ −F (s, s+ d) + y(s+ c, s+ d, s, s+ c) = −F (s, s+ d)− y(s, s+ 1, s+ 1, s+ d)

=⇒ y(s+ c, s+ d, s, s+ c) = −y(s, s+ 1, s+ 1, s+ d)

It was found in the case where t = a that the elements y(s, s+ 1, s+ 1, s+ d) can be eliminated from the

basis of the multiplier. Therefore the elements y(s+ c, s+d, s, s+ c) where d > c > 1 can also be eliminated.

If c = 1 and d > 2 then the following elements can be placed into a Leibniz identity to uncover a
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relationship between the elements:

[F (s+ 1, s+ 2), [F (s+ 2, s+ d), F (s, s+ 1)]] = [[F (s+ 1, s+ 2), F (s+ 2, s+ d)], F (s, s+ 1)]

+ [F (s+ 2, s+ d), [F (s+ 1, s+ 2), F (s, s+ 1)]]

=⇒ 0 = [F (s+ 1, s+ d) + y(s+ 1, s+ 2, s+ 2, s+ d), F (s, s+ 1)]

+ [F (s+ 2, s+ d),−F (s, s+ 2) + y(s+ 1, s+ 2, s, s+ 1)]

=⇒ 0 = [F (s+ 1, s+ d), F (s, s+ 1)] + [F (s+ 2, s+ d),−F (s, s+ 2)]

=⇒ 0 = −F (s, s+ d) + y(s+ 1, s+ d, s, s+ 1) + F (s, s+ d)− y(s+ 2, s+ d, s, s+ 2)

=⇒ y(s+ 1, s+ d, s, s+ 1) = y(s+ 2, s+ d, s, s+ 2)

It was found previously that the elements y(s+ 2, s+ d, s, s+ 2) can be eliminated from the basis of the

multiplier and therefore the elements y(s+ 1, s+ d, s, s+ 1) where d > 2 can also be eliminated.

As can be seen from the above calculations, the only elements of the multiplier that cannot be eliminated

from the basis are those of the form y(s+ 1, s+ 2, s, s+ 1). There are n−2 possible values of s and therefore

there are n− 2 elements of the multiplier of this form.

From looking at the cases where t 6= a, s 6= b and t = a or s = b, the total number of elements in the

basis of the Leibniz multiplier of the algebra of strictly upper triangular matrices is:

(n− 2)(n− 3) + (n− 1) + 3(n− 2) = n2 − n− 1

where n ≥ 3.

3.3 Comparison between the Lie and Leibniz multipliers of the

strictly upper triangular matrices

It was found in [9] that the dimension of the Lie multiplier of the strictly upper triangular matrices is:

(n− 2)(n+ 1)

2

Table 3.1 Counting multiplier elements for the strictly upper triangular matrices

n Lie Multiplier Lie Cover Leibniz Multiplier Leibniz Cover

3 2 5 5 8

4 5 11 11 17

5 9 19 19 29

10 44 89 89 134

20 189 379 379 569

This table shows the comparison of the Lie and Leibniz cases in the dimension of the cover and multiplier

for the n×n strictly upper triangular matrices where n ≥ 3. The size of the cover was determined by adding
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the dimension of the algebra, in this case n(n−1)
2 , to the dimension of the multiplier. It can be seen from the

values in the table that the Leibniz cover and multiplier are always greater than the Lie cover and multiplier

for this algebra.
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Chapter 4

The General Form

In this chapter, we will establish the general formula for the number of elements in the multiplier for each

algebra in the lower central series. The lower central series is the series of algebras of matrices

L0 ⊆ L1.... ⊆ Ln−2 such that the Lie bracket [L0, Lk] = Lk+1 for each 0 ≤ k ≤ n− 2. We take k to be the

number of diagonals of zeros above the main diagonal in the matrices within the algebra. Therefore, the

strictly upper triangular matrices correspond to k = 0, their derived algebra corresponds to k = 1 etc.

4.1 Finding the General Form

Before looking at the general form of the dimension formula for the multiplier, there are a few things that

need to be noted. Firstly, we know F (c, d) is the image of Ec,d under the section µ : L→ K. It can be seen

that c+ (k+ 1) ≤ d for each k due to the basis elements Ec,d for each algebra Lk. Accordingly, the smallest

space that there can be between s and t or a and b in each element y(s, t, a, b) of the multiplier is k + 1.

It can also be seen that c + (2k + 2) ≥ d. Therefore, the largest space between s and t or a and b in each

element y(s, t, a, b) of the multiplier is 2k+ 2. This is useful when looking at elements in the general case as

it eliminates many elements of the basis.

Theorem 4.1.1. For elements of the multiplier of the form y(s, t, a, b), the largest space between s and t

and the largest space between a and b is 2k+ 2. If t ≥ s+ (2k+ 3) or b ≥ a+ (2k+ 3), then y(s, t, a, b) = 0.

Proof. We know that the smallest space between s and t and the smallest space between a and b is k + 1.

Taking a space of 2k + 3 between a and b and some space that is greater than or equal to k + 1 between s

and t, this gives a multiplier element of the form y(s, t, a, a + (2k + 3)) where t ≥ s+ (k + 1). In order to

eliminate elements of this form, the Leibniz identity of the following elements in performed:

[F (s, t), [F (a, a+ x), F (a+ x, a+ (2k + 3))]] = [[F (s, t), F (a, a+ x)], F (a+ x, a+ (2k + 3))]

+ [F (a, a+ x), [F (s, t), F (a+ x, a+ (2k + 3))]]

If t 6= a+ (k + 1), then take x = (k + 1). Otherwise, take x = (k + 2). From the above Leibniz identity,

this will then give y(s, t, a, a+ (2k + 3)) = 0. Therefore, as long as t ≥ s + (k + 1), the multiplier elements

y(s, t, a, a+ (2k + 3)) = 0 and they may be eliminated. The same theory applies for any multiplier element

of the form y(s, t, a, a+ x) where x ≥ 2k + 3.
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If t = s+(2k+3) and b ≥ a+(k+1), this leads to elements of the multiplier of the form y(s, s+(2k+3), a, b).

In order to eliminate these elements, the Leibniz identity of the following elements is taken:

[F (s, s+ x), [F (s+ x, s+ (2k + 3)), F (a, b)]] = [[F (s, s+ x), F (s+ x, s+ (2k + 3))], F (a, b)]

+ [F (s+ x, s+ (2k + 3)), [F (s, s+ x), F (a, b)]]

If b 6= s + (k + 1), then take x = k + 1. If not, take x = k + 2. From the above Leibniz identity, this

will then give y(s, s + (2k + 3), a, b) = 0. Consequently, as long as b ≥ a + (k + 1), the multiplier elements

y(s, s+ (2k + 3), a, b) = 0 and can be eliminated. The same theory applies for any multiplier element of the

form y(s, s+ x, a, b) where x ≥ 2k + 3.

The cases where t = s+ (2k + 2) or where b = a+ (2k + 2) are looked at separately below.

Theorem 4.1.2. When t = s+ (2k+ 2) or b = a+ (2k+ 2), the only elements of the multiplier that remain

are those of the form y(s, s + (2k + 2), s, s + (k + 1)) and y(s, s + (2k + 2), s + (k + 1), s + (2k + 2)) up to

isomorphism.

Proof. First consider the case where t = s + (2k + 2). This gives an element of the multiplier of the form

y(s, s+ (2k + 2), a, b). This element arises from taking the following Leibniz identity:

[F (s, x), [F (x, s+ (2k + 2)), F (a, b)]] = [[F (s, x), F (x, s+ (2k + 2))], F (a, b)]

+ [F (x, s+ (2k + 2)), [F (s, x), F (a, b)]]

When a 6= s+ (k + 1) and b 6= s+ (k + 1), then take x = s+ (k + 1) in the above identity and simplify

to get y(s, s + (2k + 2), a, b) = 0. So the only cases that need to be considered are those of the form

y(s, s+ (2k + 2), s+ (k + 1), b) and y(s, s+ (2k + 2), a, s+ (k + 1)).

First consider the elements y(s, s + (2k + 2), s + (k + 1), b). If b = s + (2k + 2), then the element

y(s, s+ (2k + 2), s+ (k + 1), s+ (2k + 2)) can be uncovered using:

[F (s, s+ (k + 1)), [F (s+ (k + 1), s+ (2k + 2)), F (s+ (k + 1), s+ (2k + 2))]]

= [[F (s, s+ (k + 1)), F (s+ (k + 1), s+ (2k + 2))], F (s+ (k + 1), s+ (2k + 2))]+

[F (s+ (k + 1), s+ (2k + 2)), [F (s, s+ (k + 1)), F (s+ (k + 1), s+ (2k + 2))]]

This gives:

y(s, s+ (2k + 2), s+ (k + 1), s+ (2k + 2)) = −y(s+ (k + 1), s+ (2k + 2), s, s+ (2k + 2))

If b > s+ (2k + 2), then from the Leibniz identity:

[F (s, s+ (k + 1)), [F (s+ (k + 1), s+ (2k + 2)), F (s+ (k + 1), b)]]

= [[F (s, s+ (k + 1)), F (s+ (k + 1), s+ (2k + 2))], F (s+ (k + 1), b)]+

[F (s+ (k + 1), s+ (2k + 2)), [F (s, s+ (k + 1)), F (s+ (k + 1), b)]]

=⇒ y(s, s+ (2k + 2), s+ (k + 1), b) = −y(s+ (k + 1), s+ (2k + 2), s, b)
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However, we can see from the right hand side of the equation, b ≥ a+ (2k+ 3), which from the previous

theorem will eliminate these elements from the basis of the multiplier. The only elements that cannot be

eliminated are those of the form y(s, s+ (2k + 2), s+ (k + 1), s+ (2k + 2)).

Now consider elements of the form y(s, s+ (2k + 2), a, s+ (k + 1)). If a = s then the element

y(s, s+ (2k + 2), s, s+ (k + 1)) can be uncovered using:

[F (s, s+ (k + 1)), [F (s+ (k + 1), s+ (2k + 2)), F (s, s+ (k + 1))]] =

[[F (s, s+ (k + 1)), F (s+ (k + 1), s+ (2k + 2))], F (s, s+ (k + 1))]+

[F (s+ (k + 1), s+ (2k + 2)), [F (s, s+ (k + 1)), F (s, s+ (k + 1))]]

This gives:

y(s, s+ (2k + 2), s, s+ (k + 1)) = −y(s, s+ (k + 1), s, s+ (2k + 2))

If a < s, then the Leibniz identity:

[F (s, s+ (k + 1)), [F (s+ (k + 1), s+ (2k + 2)), F (a, s+ (k + 1))]] =

[[F (s, s+ (k + 1)), F (s+ (k + 1), s+ (2k + 2))], F (a, s+ (k + 1))]+

[F (s+ (k + 1), s+ (2k + 2)), [F (s, s+ (k + 1)), F (a, s+ (k + 1))]]

=⇒ y(s, s+ (2k + 2), a, s+ (k + 1)) = −y(s, s+ (k + 1), a, s+ (2k + 2))

However, on the right hand side of the equation a ≤ s+ (2k+ 3) and these elements are eliminated from

the basis of the multiplier by the previous theorem. The only elements that cannot be eliminated from the

basis of the multiplier are those of the form

y(s, s+ (2k + 2), s, s+ (k + 1)).

When b = a+(2k+2), by the same theory as above and using the same Leibniz identity, it is found that:

y(s, s+ (k + 1), s, s+ (2k + 2)) = −y(s, s+ (2k + 2), s, s+ (k + 1))

and

y(s+ (k + 1), s+ (2k + 2), s, s+ (2k + 2)) = −y(s, s+ (2k + 2), s+ (k + 1), s+ (2k + 2))

Therefore, as these elements have already been accounted for, these are the only 2 forms of this type of

element in the basis of the multiplier.

By counting the number of elements of the multiplier that have the form y(s, s+ (2k+ 2), s, s+ (k+ 1))

or y(s, s+ (2k + 2), s+ (k + 1), s+ (2k + 2)) it can be seen that there are n− (2k + 2) values of s for each

type, hence there are n− (2k+ 2) elements of the multiplier of each type, giving 2(n− (2k+ 2)) elements in

total.

Therefore, the elements y(s, t, a, b) still remain to be examined where s+ (k + 1) ≤ t ≤ s+ (2k + 1) and

a+ (k + 1) ≤ b ≤ a+ (2k + 1).
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4.1.1 Elements of the multiplier y(s, t, a, b) such that s+ (k + 1) ≤ t ≤ s+ (2k + 1)

and a+ (k + 1) ≤ b ≤ a+ (2k + 1) and s 6= a and t 6= b

We begin by looking at the case where s < a < t < b and t < s + (2k + 2), b < a + (2k + 2) in y(s, t, a, b).

We need to look at the possible values of s, t, a, and b, starting with b. The smallest value of b is (smallest

value of t) + 1. The smallest value of t is s+ (k + 1), therefore, the smallest value of b is s+ (k + 2). The

largest value of b is (largest value of a) + (2k+1). The largest value of a in this situation is (largest value

of t) - 1. The largest value of t is s+ (2k + 1) and therefore the largest value of a is s+ 2k. So the largest

value of b is s+ (4k + 1). This gives 3k different values of b. Just as in the Lie case as found in [5], we look

at the first k values of b, then the second k values of b, and subsequently the third k values of b.

The first k cases include b = s+ (k + 2), up to b = s+ (2k + 1). When b =(smallest value of t) + 1 =

s + (k+2), this is where t takes on its minimum value, t = s + (k + 1). There are no other values that

t can take that would satisfy the inequality s < a < t < b. The number of values that a can take when

b = s + (k + 2) also needs to be found. It is known that b ≥ a + (k + 1) as the smallest space between a

and b is k + 1. Therefore when b = s+ (k + 2), a ≤ s+ 1. But as s < a, this implies that the only value of

a in this case is a = s + 1. So when s < a < t < b, and b = s + (k + 2), there is only one possible type of

multiplier element, y(s, s+ (k + 1), s+ 1, s+ (k + 2)).

Now we look at the case where b = (smallest value of t) + 2 = s + (k + 3). In order to still satisfy the

inequality s < a < t < b, and taking into account that the smallest difference between s and t is k + 1, the

possible values of t in this case are t = s+(k+1) and t = s+(k+2). When t = s+(k+1) or t = s+(k+2),

and b = s+(k+3), the possible values of a are a = s+1, and a = s+2 in order to still satisfy the inequality.

With 2 possible values of a and 2 possible values of t, this gives 22 = 4 possible types of multiplier element in

this case, y(s, s+(k+1), s+1, s+(k+3)), y(s, s+(k+1), s+2, s+(k+3)), y(s, s+(k+2), s+1, s+(k+3))

and y(s, s+ (k + 2), s+ 2, s+ (k + 3)).

We then carry on in this fashion until the k-th value of b which is b = (smallest value of t) + k =

s + (2k + 1). For this value of b, the possible values of t are t = s+ (k + 1), t = s+ (k + 2), ...., t = s+ 2k.

The possible values of a are a = s + 1, a = s + 2, ...., a = s + k. It is known these are the possible values

of a because we have shown above that the first possible value of a is a = s + 1. The largest value of a is

a = s+ k as b = s+ (2k+ 1) and the smallest space between a and b is (k+ 1). It should also be noted that

s < a < t < b is also satisfied here. As there are k different values for t and k different values for a, there

are k2 different types of multiplier element with this particular value of b in this case.

This means that when b = s+ (k + 1) + i for 1 ≤ i ≤ k, there are i2 types of multiplier elements in each

case. Then for each case of b = s+ (k + 1) + i, with s < a < t < b where b takes on the highest value, there

are (n− ((k+ 1) + i)) different elements of the multiplier as s varies and when i is fixed. Therefore in total,

when b = s+ (k + 1) + i for 1 ≤ i ≤ k there are:

k∑
i=1

i2 · (n− ((k + 1) + i))

elements of the multiplier.

Now looking at the second k values of b. The smallest value of b in this case is b = s + (2k + 2). The

smallest value that t can take is t = s + (k + 1). The largest value of t is t = s + (2k + 1). This is the
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largest value of t as the largest space between s and t is 2k+ 1 and this shows that in this case, t will always

be smaller than b, which satisfies the inequality s < a < t < b. The possible values of a are a = s + 1,

a = s + 2, ...., a = s + (k + 1) as the smallest space between a and b is k + 1 and the largest space that

we are considering is 2k + 1. However, if a = s + (k + 1), then t = a if t equals its lowest possible value,

so t = s + (k + 1). This does not satisfy the inequality s < a < t < b. Therefore, this possibility must be

eliminated from this case. As such, there are k+ 1 possible values of t and k+ 1 possible values of a however

the case where t = a = s+ (k+ 1) must be eliminated. So there are (k+ 1)2− 1 elements in the basis of the

multiplier with s < a < t < b with b = s+ (2k + 2).

The next value of b to consider is b = s + (2k + 3). The possible values of t in this case are once again

t = s+ (k + 1), t = s+ (k + 2), ...., t = s+ (2k + 1). The possible values of a are a = s+ 2, a = s+ 3, ....,

a = s+ (k + 2) as a+ (k + 1) ≤ b ≤ a+ (2k + 1). However, we must consider the inequality s < a < t < b.

When a = s + (k + 1), the value t = s + (k + 1) cannot be used in order to satisfy the inequality. When

a = s + (k + 2), the values t = s + (k + 1) or t = s + (k + 2) can also not be used. This takes out 3

possibilities of types of element in the multiplier. Therefore, there are k + 1 possible values of t and k + 1

possible values of a, and 3 possibilities that do not need to be considered here, leaving (k + 1)2 − 3 types of

multiplier element in this case.

Carrying on in this fashion up to b = s+ (3k+ 1), the possible values of t in this case are t = s+ (k+ 1),

t = s+(k+2), ....., t = s+(2k+1). It can be found that the possible values of a are a = s+k, a = s+(k+1),

...., a = s + 2k. This gives k + 1 possible values of t and k + 1 possible values of a. However, looking at

the inequality s < a < t < b, if a = s + (k + 1), then t = s + (k + 1) which is not possible in this case. If

a = s + (k + 2), the values of t that are not possible are t = s + (k + 1) or t = s + (k + 2). Continuing on

until a = s+ 2k, for this value, we find that the cases that are not possible are t = s+ (k+ 1), t+ s+ (k+ 2),

...., t = s+ 2k. This means 1 + 2 + ...+ k types of element in the multiplier must be eliminated as they do

not fit into this case. This gives (k + 1)2 − (1 + 2 + ...+ k) = (k + 1)2 − k(k+1)
2 elements in this case.

Now adding up all types of elements in the multiplier that satisfy b = s+ (2k+ 1) + i for 1 ≤ i ≤ k with

s < a < t < b, we have found that for each i there are (k + 1)2 − i(i+1)
2 types of multiplier elements. Then

in each case, as i stays fixed and s varies and where b is the largest value with s < a < t < b, there are

n− ((2k + 1) + i) elements of the multiplier of each form. Therefore in total, when b = s+ (2k + 1) + i for

1 ≤ i ≤ k with s < a < t < b, there are:

k∑
i=1

(
(k + 1)2 − i(i+ 1)

2

)
· (n− ((2k + 1) + i))

elements of the multiplier.

When considering the last k values of b that satisfy this inequality, the first value of b that needs to be

considered is b = s+(3k+2). The possible values of t are t = s+(k+1), t = s+(k+2), ...., t = s+(2k+1).

The possible values of a are a = s + (k + 1), a = s + (k + 2), ..., a = s + (2k + 1) as the smallest space

between a and b is k + 1 and the largest space is 2k + 1. However, the value a = s + (2k + 1) cannot be

used as it is greater than or equal to every possible value of t. Therefore there are k + 1 possible values of

t and k possible values of a. When a = s + (k + 1), t = s + (k + 1) is not possible as t = a in this case,

however, the other k values of t are possible. When a = s+ (k+ 2), t = s+ (k+ 1) or t = s+ (k+ 2) are not

possible, so there are 2 possibilities that have to be eliminated. Continuing on with this case in this fashion
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until a = s+ 2k, it is found that the only possibility for t is t = s+ (2k + 1), which eliminates k values for

t. Thus, the total number of types of multiplier elements in this case for this value of b is k(k + 1)− k(k+1)
2

= k(k+1)
2 .

The next value of b to consider is b = s+(3k+3). The possible values of t are t = s+(k+1), t = s+(k+2),

...., t = s+ (2k + 1). The possible values of a are a = s+ (k + 2), a = s+ (k + 2), ..., a = s+ (2k + 2). The

values a = s + (2k + 1) and a = s + (2k + 2) cannot be used because these values of a are greater than or

equal to all of the possible values of t. This gives k + 1 possible values for t and k − 1 possible values for a.

When a = s+(k+2), t = s+(k+1) or t = s+(k+2) these values are not possible as these do not satisfy the

inequality s < a < t < b. This eliminates 2 possibilities for values of t with this particular a, but the other

k − 1 values for t are still possible. When a = s+ (k + 3), t = s+ (k + 1), t = s+ (k + 2) or t = s+ (k + 3)

again, these are not possible, which eliminates 3 possible values of t for this value of a. Carrying on in this

way, when a = s + 2k, the only value of t that can be used is t = s + (2k + 1), which eliminates k possible

values of t for this a. Accordingly, for this particular value of b, there are 1 + 2 + ... + (k − 1) = (k−1)k
2

possible elements of this form in the multiplier.

We carry on in this fashion until the final value of b which is b = s + (4k + 1). The possible values of t

are again t = s + (k + 1), t = s + (k + 2), ...., t = s + (2k + 1). The possible values of a are a = s + 2k,

a = s + (2k + 1), ...., a = s + 3k. The only value of a that can be used in this case is a = s + 2k as all

other values of a are greater than or equal to the other values of t and therefore do not satisfy the inequality

s < a < t < b. When a = s+ 2k, the only possible value of t is t = s+ (2k + 1). This gives only 1 possible

type of element of the multiplier.

The next task is to find the number of elements of this form. The elements satisfy b = s+ (3k+ 1) + i for

1 ≤ i ≤ k with s < a < t < b. For each i there are (k+1−i)(k+2−i)
2 types of multiplier element. Then in each

case, as i stays fixed and s varies, where b is the largest value with s < a < t < b, there are n− ((3k+ 1) + i)

elements of the multiplier of each form. Therefore in total, when b = s + (3k + 1) + i for 1 ≤ i ≤ k with

s < a < t < b, there are:
k∑
i=1

(k + 1− i)(k + 2− i)
2

· (n− ((3k + 1) + i))

elements of the multiplier.

Adding these together, it can be seen that the total number of elements of the multiplier of the form

y(s, t, a, b) with s < a < t < b where b is of the form b = s+ (k + 1) + i where 1 ≤ i ≤ 3k, is:

k∑
i=1

[
i2 · (n− ((k + 1) + i)) +

(
(k + 1)2 − i(i+ 1)

2

)
· (n− ((2k + 1) + i))

+
(k + 1− i)(k + 2− i)

2
· (n− ((3k + 1) + i))

]
The case where a < s < b < t such that a+ (k+ 1) ≤ b ≤ a+ (2k+ 1) and s+ (k+ 1) ≤ t ≤ s+ (2k+ 1)

actually yields the same result as the above. This time, each of s, t, a and b will depend on a in each case

instead of s this time, as a will have the smallest value. It can be seen by symmetry that this case will

26



actually yield the same result as the above and because of this there are:

k∑
i=1

[
i2 · (n− ((k + 1) + i)) +

(
(k + 1)2 − i(i+ 1)

2

)
· (n− ((2k + 1) + i))

+
(k + 1− i)(k + 2− i)

2
· (n− ((3k + 1) + i))

]
elements of the multiplier that satisfy this condition.

The next case for consideration is where s < a < b < t for the multiplier elements y(s, t, a, b). We have

shown before that a+ (k + 1) ≤ b ≤ a+ (2k + 1) and s+ (k + 1) ≤ t ≤ s+ (2k + 1). If s < a < b < t, this

means that t will have the largest value among s, t, a, b. We will let a, b, t depend on the smallest value of

these, s, just as before.

We begin by looking at the case where t takes on its smallest value, t = s+ (k + 1). Then let a take on

its smallest possible value, in this case a = s+ 1. This means that the smallest value that b can take here is

b = s+ (k + 2) which does not satisfy s < a < b < t. Therefore, t 6= s+ (k + 1) when s < a < b < t.

Next, look at the case where t = s+ (k+ 2). If a = s+ 1, then again the smallest value of b is s+ (k+ 2)

which again does not satisfy s < a < b < t. Therefore t 6= s+ (k + 2) for s < a < b < t.

When t = s + (k + 3), take a to be its smallest possible value a = s + 1. Then the smallest value b can

take is again b = s + (k + 2). This is the only possible value for b in order for the inequality s < a < b < t

to be satisfied.

When t = s + (k + 4), then if a = s + 1, b = s + (k + 2) and b = s + (k + 3) are both possibilities that

satisfy the inequality in this case. If a = s + 2 then b = s + (k + 3) is another possibility. Therefore, there

are 3 different types of multiplier elements in this case that satisfy the inequality s < a < b < t.

Continuing on in this way, it can be seen that the highest value that t can take in this case is t = s+(2k+1).

Because of the inequality, s < a < b < t, together with the relationships between s and t and a and b, the

smallest possible value of a is a = s + 1 while the largest value of a is a = s + (k − 1). The smallest value

of b in this case is b = s + (k + 2) while the largest value of b is b = s + 2k. When a = s + 1, any of the

above values of b are possible, therefore there are k − 1 possible values of b. When a = s + 2, the smallest

possible value of b is b = s + (k + 3) and the largest value of b is b = s + 2k, giving k − 2 possible values

for b. Continuing in this fashion, when a = s + (k − 1), the only possible value of b is b = s + 2k, giving

just 1 possibility. As such, there are 1 + 2 + .... + (k − 1) types of multiplier that satisfy these values and

inequalities.

Therefore, if s < a < b < t and t = s+ (k+ 2) + i for 1 ≤ i ≤ k− 1, then there are 1 + 2 + ...+ i types of

multiplier for each i. This means there are:

i∑
j=1

j =
i(i+ 1)

2

types of multiplier elements for each 1 ≤ i ≤ k − 1. Now looking at how many of each type of multiplier

element there are. If t = s+ (k + 2) + i with t being the largest value in the inequality s < a < b < t, then
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there must be n− ((k + 2) + i) elements in the multiplier for each value of t. Therefore, there are:

k−1∑
i=1

i(i+ 1)

2
· (n− ((k + 2) + i))

different multiplier elements that satisfy the inequality s < a < b < t.

By symmetry, the above theory can be taken and applied to the case where a < s < t < b. The

calculations above will be the same, except that this time each value will depend on the smallest value a

instead of s and we would go through the possible values to identify the largest possible value of b. By doing

this, the number of different multiplier elements that satisfy the inequality a < s < t < b is:

k−1∑
i=1

i(i+ 1)

2
· (n− ((k + 2) + i))

The next case for consideration are elements of the multiplier y(s, t, a, b) where s < t < a < b. Again, we

must remember that a+ (k+ 1) ≤ b ≤ a+ (2k+ 1) and s+ (k+ 1) ≤ t ≤ s+ (2k+ 1). Therefore, the smallest

value of b is a+ (k + 1) and the smallest value of t is s+ (k + 1), so the multiplier element should take the

form y(s, s+ (k + 1) + i, a, a+ (k + 1) + j). The largest value of t is s+ (2k + 1) and the largest value of b

is a + (2k + 1), so 0 ≤ i, j ≤ k. These elements of the multiplier can also be written as y(s, s + x, a, a + y)

where k + 1 ≤ x ≤ 2k + 1, k + 1 ≤ y ≤ 2k + 1, and s+ x < a.

When a+ y = n and at the same time keeping a fixed, the largest value of t = s+ x is n− y − 1, so the

value of s can go from 1 to n− x− y− 1 = n− (x+ y+ 1). This gives n− (x+ y+ 1) possible values of s in

this case.

When a+y = n−1 and at the same time keeping a fixed, the largest value of s+x is n−y−2. Therefore

the values of s go from 1 to n− x− y − 2 = n− (x+ y + 2). This gives n− (x+ y + 2) possible values of s

in this case.

The smallest value of s is 1, so the smallest value of b = a+ y is x+ y+ 2. When a+ y = x+ y+ 2, then

the value of a is x+ 2. The only value of t in this case that satisfies t < a is x+ 1, giving the value of s as 1.

Accordingly, the total number of different values of s in this case will give the total number of multiplier

elements for a fixed x and y. This gives 1 + 2 + ...+n− (x+ y+ 1) = (n−(x+y+1))(n−(x+y))
2 total values of s.

This can also be written as 1 + 2 + ...+n− ((k+ 1) + i+ (k+ 1) + j+ 1) = 1 + 2 + ...+n− (2k+ 3 + i+ j) =
(n−(2k+3+i+j))(n−(2k+2+i+j))

2 different multiplier elements for a fixed i and j.

Adding together the number of elements of the multiplier that satisfy s < t < a < b as i and j vary, there

are:
k∑
j=0

k∑
i=0

(n− (2k + 3 + i+ j))(n− (2k + 2 + i+ j))

2

different elements of the multiplier satisfying this inequality.

The case such that a < b < s < t also needs to be considered. By symmetry, there will be the same

number of elements in the multiplier that satisfy this inequality as those that satisfy s < t < a < b, so there
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are:
k∑
j=0

k∑
i=0

(n− (2k + 3 + i+ j))(n− (2k + 2 + i+ j))

2

that satisfy this inequality. So in total, there are:

k∑
j=0

k∑
i=0

(n− (2k + 3 + i+ j))(n− (2k + 2 + i+ j))

elements of the multiplier that satisfy either s < t < a < b or a < b < s < t.

Ideally, we would like to write this as a single summation over i so that we can add all of the summations

together for the total number of elements in the multiplier. For the summation:

k∑
j=0

k∑
i=0

(n− (2k + 3 + i+ j))(n− (2k + 2 + i+ j))

If we sum the elements form i = 0 up to i = k this would just give a summation over j with k + 1 terms

within the summation. This would give us:

k∑
j=0

[(n− (2k + 3 + j))(n− (2k + 2 + j)) + (n− (2k + 4 + j))(n− (2k + 3 + j))

+...+ (n− (3k + 3 + j))(n− (3k + 2 + j))]

The next step is to sum each of these terms from j = 0 up to j = k. This can be written in matrix

format so that each of the elements in the matrix can be summed together at the end, with the first row

corresponding to the first term being summed from j = 0 up to j = k, the second row corresponding to the

second term etc. This will give us a (k + 1)x(k + 1) matrix.



(n− (2k + 3))(n− (2k + 2)) (n− (2k + 4))(n− (2k + 3)) . . . (n− (3k + 3))(n− (3k + 2))

(n− (2k + 4))(n− (2k + 3)) (n− (2k + 5))(n− (2k + 4)) . . . (n− (3k + 4))(n− (3k + 3))

(n− (2k + 5))(n− (2k + 4)) (n− (2k + 6))(n− (2k + 5)) . . . (n− (3k + 5))(n− (3k + 4))

..

.
..
.

. . .
...

(n− (3k + 3))(n− (3k + 2)) (n− (3k + 4))(n− (3k + 3)) . . . (n− (4k + 3))(n− (4k + 2))



It can be seen that the terms on each of the diagonals starting from the top left corner, are the terms

repeated 1, 2, 3, up to k+1 times. By looking at the pattern that has emerged here, the double summation

from before can be written as the sum of 2 single summations over i in the following way:

k+1∑
i=1

i · (n− ((2k + 1) + i))(n− ((2k + 2) + i))+

k∑
i=1

(k − (i− 1)) · (n− ((3k + 2) + i))(n− ((3k + 3) + i))
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Another set of elements that need to be examined are those where s = a or b = t. When s = a and b 6= t,

there are 2 possibilities; either s = a < b < t or s = a < t < b. Looking first at the case where s = a < t < b.

The smallest possible value of t is s + (k + 1) and therefore the smallest possible value of b is s + (k + 2).

The largest possible value of b is s+ (2k + 1) and the largest value of t is s+ 2k.

By examining each of these cases, it can be seen that the summation of the number of terms of this form

can be found. When b = s + (k + 2), the only possible value of t is t = s + (k + 1). When b = s + (k + 3)

there are 2 possible values of t, t = s + (k + 1) and t = s + (k + 2). Carrying on in this fashion up to

b = s+ (2k + 1) this gives k possible values for t; t = s+ (k + 1), t = s+ (k + 3), ..., t = s+ 2k. Therefore,

for b = s+ (k+ 1) + i, where 1 ≤ i ≤ k there are i possible values of t and as such, there are i different types

of multiplier element for each b = s+ (k + 1) + i.

If b = s+ (k+ 1) + i, with b being the largest value in s = a < t < b, there are (n− ((k+ 1) + i)) different

values for s and hence there are (n− ((k+ 1) + i)) different multiplier elements for each i. As such, the total

number of multiplier elements y(s, t, a, b) that satisfy s = a < t < b is:

k∑
i=1

i · (n− ((k + 1) + i))

In a similar way, by symmetry, it can also be seen that in the second case where s = a < b < t, there are

also:
k∑
i=1

i · (n− ((k + 1) + i))

multiplier elements, y(s, t, a, b), that satisfy this inequality.

We must also look at the elements of the multiplier y(s, t, a, b) such that b = t and s 6= a. There are 2

possibilities; either s < a < b = t or a < s < b = t. We will first consider s < a < b = t. The smallest value

of a is a = s + 1 and therefore the smallest value of b and t is b = t = s + (k + 2). The largest value of b

and t is b = t = s+ (2k + 1), therefore the largest value of a is a = s+ k. Going through each of these case,

the summation of the number of terms of this form can be found. When b = s + (k + 2), the only possible

value of a is s+ 1. When b = s+ (k+ 3), there are 2 possible values of a, a = s+ 1 and a = s+ 2. Carrying

on in this fashion up to b = s+ (2k + 1), it can be seen that there are k possible values of a; a = s+ 1, ...,

a = s + k. Therefore, for b = s + (k + 1) = i, for 1 ≤ i ≤ k, there are i possible values of a and therefore

there are i different types of multiplier element for each b = s+ (k + 1) = i.

If b = s+ (k+ 1) + i, with b being the largest value in s < a < b = t, there are (n− ((k+ 1) + i)) different

values for s and hence there are (n− ((k + 1) + i)) different multiplier elements for each i. Hence, the total

number of multiplier elements y(s, t, a, b) that satisfy s < a < b = t is:

k∑
i=1

i · (n− ((k + 1) + i))

In a similar way, by symmetry, we can also see that in the second case where a < s < b = t, there are also

k∑
i=1

i · (n− ((k + 1) + i))
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multiplier elements, y(s, t, a, b), that satisfy this inequality.

Finally, consider the case where s = a < b = t. This corresponds to elements of the form y(s, s+x, s, s+x)

where k + 1 ≤ x ≤ 2k + 1. For each value of x we get 1 type of element of the multiplier. Then when

t = b = s + (k + i) for 1 ≤ i ≤ k + 1 there are n − (k + i) different elements of the multiplier of the form

y(s, s+ x, s, s+ x). Therefore, there are:
k+1∑
i=1

(n− (k + i))

different elements of the multiplier that satisfy s = a < b = t.

4.1.2 Elements y(s, t, a, b) such that s+ (k + 1) ≤ t ≤ s+ (2k + 1) and a+ (k + 1) ≤
b ≤ a+ (2k + 1) and s = b or t = a

The last set of cases that need to considered are those where s = b or t = a. First we will consider those

with t = a. These will therefore be multiplier elements of the form y(s, a, a, b).

We will split this into 2 separate cases. We will look at the elements of the multiplier

y(s, a, a, s + (2k + 2 + i)) where 1 ≤ i ≤ k and then look at y(s, a, a, s + (2k + 2 + i)) where i ≥ k + 1.

First looking at those elements where 1 ≤ i ≤ k. It can been seen that we do not need to look at the case

where i = 0 as the elements y(s, a, a, s + (2k + 2)) can be eliminated from the multiplier. This is because

the only value that a can take in this case is s + (k + 1) in order for the spaces between s and a and a

and b to be sufficiently large enough. However in this case, this type of element can also be written as

y(s, b− (k+ 1), b− (k+ 1), b), which we have already stated is eliminated using a change of basis. Therefore

we do not need to consider the case where i = 0. It can also seen that if b < s+ 2k + 2 there is not a large

enough space between s and b in order to have a value for a so this case does not need to be considered.

Now considering 1 ≤ i ≤ k for y(s, a, a, s+ (2k + 2 + i)).

When i = 1, there is a space of 2k + 3 between s and b. In order for the spaces between s and a and a

and b to be sufficiently large enough, the only type of multiplier element in this case is

y(s, s+ (k + 1), s+ (k + 1), s+ (2k + 3)). We cannot have y(s, s+ (k + 2), s+ (k + 2), s+ (2k + 3)) as this

would give the multiplier element of the form y(s, b − (k + 1), b − (k + 1), b) which can be eliminated by a

change of basis. So when i = 1, there is 1 type of multiplier element.

When i = 2, there is a space of 2k + 4 between s and b. By the same reasoning as above, the only types

of multiplier element in this case are y(s, s+ (k + 1), s+ (k + 1), s+ (2k + 4)) and

y(s, s+ (k + 2), s+ (k + 2), s+ (2k + 4)). So when i = 2, there are 2 different types of multiplier element.

We carry on in this fashion until i = k in which there is a space of 3k + 2 between s and b. In this case,

there are k possible types of multiplier element, y(s, s+ (k + 1), s+ (k + 1), s+ (3k + 2)),

y(s, s+ (k + 2), s+ (k + 2), s+ (3k + 2)), ..., y(s, s+ 2k, s+ 2k, s+ (3k + 2)).

Therefore, it can be seen that for each i such that 1 ≤ i ≤ k, there are i different types of multiplier

elements that are of the form y(s, a, a, s + (2k + 2 + i)). Keeping i fixed and now allowing s to vary, there

are (n− (2k + 2 + i)) different elements in the multiplier for each i as b is the largest value among s, a and

b in these cases. So there are:
k∑
i=1

i · (n− (2k + 2 + i))
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different elements of the multiplier that satisfy y(s, a, a, s+ (2k + 2 + i)) for 1 ≤ i ≤ k.

We must now look at the elements of the multiplier y(s, a, a, s+(2k+2+ i)) such that i ≥ k+1. Another

way of writing this is y(s, a, a, s + (3k + 2) + i) where i ≥ 1. The largest space between s and a is 2k + 1

and the largest space between a and b is 2k + 1. The smallest gap between these elements is k + 1. This

means that the largest value of a is a = s+ (2k + 1) and therefore the largest value of b is b = s+ (4k + 2).

Therefore 1 ≤ i ≤ k.

When i = 1, the multiplier is of the form y(s, a, a, s + (3k + 3)). The possible types of element for the

multiplier in this case are y(s, s+(k+2), s+(k+2), s+(3k+3)), y(s, s+(k+3), s+(k+3), s+(3k+3)), ...,

y(s, s+ (2k+ 1), s+ (2k+ 1), s+ (3k+ 3)). The elements of the form y(s, s+ (k+ 1), s+ (k+ 1), s+ (3k+ 3))

are not possible as this gives a space of 2k+ 2 between a and b. Therefore there are k possibilities for types

of multiplier element when i = 1.

When i = 2, the multiplier is of the form y(s, a, a, s + (3k + 4)). The possible types of element for the

multiplier in this case are y(s, s+ (k+ 3), s+ (k+ 3), s+ (3k+ 4)), y(s, s+ (k+ 4), s+ (k+ 4), s+ (3k+ 4)),

..., y(s, s+ (2k+ 1), s+ (2k+ 1), s+ (3k+ 4)). Again, the elements y(s, s+ (k+ 1), s+ (k+ 1), s+ (3k+ 4))

or y(s, s+ (k+ 2), s+ (k+ 2), s+ (3k+ 4)) are not possible because there is too large a space between a and

b. This gives k − 1 possible types of element for the multiplier when i = 2.

We carry on in this fashion until i = k where the multiplier is of the form y(s, a, a, s + (4k + 2)). The

only possible type of multiplier element in this case is y(s, s+ (2k+ 1), s+ (2k+ 1), s+ (4k+ 2)). Therefore

there is only 1 possible type of multiplier element when i = k.

Therefore we can see that for each i such that 1 ≤ i ≤ k, there are (k−(i−1)) different types of multiplier

element that are of the form y(s, a, a, s+ (3k + 2) + i). Keeping i fixed and now allowing s to vary, we can

see that there are (n − (3k + 2 + i)) different elements in the multiplier for each i as b is the largest value

among s, a and b in these cases. We can therefore see that there are:

k∑
i=1

(k − (i− 1)) · (n− (3k + 2 + i))

different elements of the multiplier that satisfy y(s, a, a, s + (3k + 2) + i) for 1 ≤ i ≤ k. We can now put

these 2 separate cases together. We have that there are:

k∑
i=1

i · (n− (2k + 2 + i)) +

k∑
i=1

(k − (i− 1)) · (n− (3k + 2 + i))

different elements of the multiplier when t = a in y(s, t, a, b).

Now we need to look at the case where s = b. This gives multiplier elements of the form y(s, t, a, s). We

can therefore see that a < t but the relationship between a and t needs to be found. The smallest space

between s and t is k + 1 and the same goes for the space between a and b = s. The largest space between

these elements is 2k + 1. Therefore, t ≥ s+ (k + 1), t ≤ s+ (2k + 1) and s ≥ a+ (k + 1), s ≤ a+ (2k + 1).

Putting these together, a+(2k+2) ≤ t ≤ a+(4k+2), a+(k+1) ≤ s ≤ a+(2k+1) and therefore, a ≤ s ≤ t.

As a will have the smallest value, let s and t depend on a. We will look at the different values that t can

have and for each value of t, look at the number of different types of multiplier element are possible.
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First look at the elements of the multiplier y(s, a+ (2k + 1) + i, a, s) for 1 ≤ i ≤ k + 1, then look at the

elements of the form y(s, a+ (3k+ 2) + i, a, s) for 1 ≤ i ≤ k. So for the elements y(s, a+ (2k+ 1) + i, a, s) for

1 ≤ i ≤ k + 1, look at each value of t and see how many different types of multiplier element are possible.

When i = 1, this means t = a + (2k + 2). The only possible value of s in this case that will satisfy the

above inequalities is s = a + (k + 1). If s is any larger then the space between s and t would be too small.

Therefore, when i = 1, there is only 1 possible type of multiplier element.

When i = 2, this means t = a+ (2k + 3). By the same theory as above, the only possible values of s in

this case are s = a+ (k+ 1) and s = a+ (k+ 2). Therefore, when i = 2 there are 2 possible types of element

in the multiplier.

Carrying on in this fashion, when i = k+ 1, this means that t = a+ (3k+ 2). The possible values of s in

this case are s = a+ (k + 1), s = a+ (k + 2), ..., s = a+ (2k + 1). We cannot take any s larger than this or

the space between s and a would be too large and the space between s and t would be too small. Therefore,

when i = k + 1 there are k + 1 different types of multiplier element in this case.

So for multiplier elements of the form y(s, a + (2k + 1) + i, a, s) for 1 ≤ i ≤ k + 1, there are i different

types of multiplier element for each i. Now keeping i fixed and letting a vary, there are (n− ((2k + 1) + i))

different elements of the multiplier for each i as t is the largest value out of s, a and t. Putting this together

we can see that there are:
k+1∑
i=1

i · (n− ((2k + 1) + i))

elements of the multiplier of the form y(s, a+ (2k + 1) + i, a, s) for 1 ≤ i ≤ k + 1.

Now looking at the second case where s = b which looks at elements of the multiplier of the form

y(s, a + (3k + 2) + i, a, s) for 1 ≤ i ≤ k. When i = 1, so t = a + (3k + 3), the possible values of s are

s = a + (k + 2), s = a + (k + 3), ...., s = a + (2k + 1). s cannot take ant smaller value than this as there

would be too large a space between s and t and if s is any larger then the space between s and a would be

too large and the space between s and t would be too small. Therefore, when i = 1, there are k different

types of multiplier element in this case.

When i = 2, so t = a + (3k + 4), the possible values of s are s = a + (k + 3), s = a + (k + 4), ...,

s = a + (2k + 1). Again if s is any smaller, the gap between s and t would be too large. Therefore, when

i = 2, there are k − 1 types of multiplier element in this case.

We carry on in this fashion up to i = k, so t = a+ (4k + 2). The only possible value of s in this case is

s = a+ (2k + 1) and therefore when i = k there is only 1 type of multiplier element.

So for multiplier elements of the form y(s, a+(3k+2)+i, a, s) for 1 ≤ i ≤ k, there are (k−(i−1)) different

types of multiplier element for each i. Now keeping i fixed and letting a vary, there are (n− ((3k + 2) + i))

different elements of the multiplier for each i as t is the largest value out of s, a and t. Putting this together,

there are:
k∑
i=1

(k − (i− 1)) · (n− ((3k + 2) + i))

elements of the multiplier of the form y(s, a+ (3k+ 2) + i, a, s) for 1 ≤ i ≤ k. Putting these 2 separate cases
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together, there are:

k+1∑
i=1

i · (n− ((2k + 1) + i)) +

k∑
i=1

(k − (i− 1)) · (n− ((3k + 2) + i))

different elements of the multiplier when s = b in y(s, t, a, b).

4.1.3 The sum of all elements of the multiplier

Adding together the total number of elements of the multiplier, we will end up with the following formula

which can then be simplified:

k∑
i=1

2i2 · (n− ((k + 1) + i)) +

k∑
i=1

(2(k + 1)2 − i(i+ 1)) · (n− ((2k + 1) + i))

+

k∑
i=1

(k − (i− 1))(k − (i− 2)) · (n− ((3k + 1) + i)) +

k−1∑
i=1

i(i+ 1) · (n− ((k + 2) + i))

+

k+1∑
i=1

i · (n− ((2k + 1) + i))(n− ((2k + 1) + (i+ 1)))

+

k∑
i=1

(k − (i− 1)) · (n− ((3k + 2) + i))(n− ((3k + 2) + (i+ 1)))

+

k∑
i=1

4i · (n− ((k + 1) + i)) +

k+1∑
i=1

(n− (k + i))

+

k∑
i=1

i · (n− ((2k + 2) + i)) +

k∑
i=1

(k − (i− 1)) · (n− ((3k + 2) + i))

+

k+1∑
i=1

i · (n− ((2k + 1) + i)) +

k∑
i=1

(k − (i− 1)) · (n− ((3k + 2) + i))

+2(n− (2k + 2))

The first step to simplifying this formula is to make any summation term a sum from i = 1 up to i = k.

We can then combine them into one sum from i = 1 up to i = k with some other added terms.

1.

k−1∑
i=1

i(i+ 1) · (n− ((k + 2) + i)) =

[
k∑
i=1

i(i+ 1) · (n− ((k + 2) + i))

]
− [k(k + 1) · (n− (2k + 2))]

2.
k+1∑
i=1

i · (n− ((2k + 1) + i))(n− ((2k + 1) + (i+ 1)))
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=

[
k∑
i=1

i · (n− ((2k + 1) + i))(n− ((2k + 1) + (i+ 1)))

]
+ [(k + 1) · (n− (3k + 2))(n− (3k + 3))]

3.
k+1∑
i=1

(n− (k + i)) =

[
k∑
i=1

(n− (k + i))

]
+ (n− (2k + 1))

4.
k+1∑
i=1

i · (n− ((2k + 1) + i)) =

[
k∑
i=1

i · (n− ((2k + 1) + i))

]
+ [(k + 1) · (n− (3k + 2))]

Therefore, the above summation can be written as:

(n− (2k + 1)) + [(2− k(k + 1)) · (n− (2k + 2))] + [(k + 1) · (n− (3k + 2))]

+ [(k + 1) · (n− (3k + 2))(n− (3k + 3))] +

k∑
i=1

[(n− (k + i)) + 2i(i+ 2) · (n− ((k + 1) + i)) + [i(i+ 1) · (n− ((k + 2) + i))]

+
[
(2(k + 1)2 − i2) · (n− ((2k + 1) + i))

]
+ i(n− ((2k + 2) + i))

+ [(k − (i− 1))(k − (i− 2)) · (n− ((3k + 1) + i))]

+ [2(k − (i− 1)) · (n− ((3k + 2) + i))]

+i(n− ((2k + 1) + i))(n− ((2k + 2) + i))

+ [(k − (i− 1)) · (n− ((3k + 2) + i))(n− ((3k + 3) + i))]]

All of the terms in the final 4 lines of this equation are summed over i from 1 to k. The highest power

of i is i3. By multiplying out each of the 9 terms that are within summations over i and using the following

summation formulas:

k∑
i=1

i =
k(k + 1)

2

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6

k∑
i=1

i3 =
k2(k + 1)2

4

the summations can then be eliminated in this formula to get a formula for the general case in terms of

just k and n.
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Simplifying the formula term by term:

1.
k∑
i=1

(n− (k + i))

=
k∑
i=1

(n− k)−
k∑
i=1

i

= k(n− k)− k(k+1)
2

= nk − k2 − 1
2k

2 − 1
2k

= nk − 1
2k −

3
2k

2

2.
k∑
i=1

2i(i+ 2) · (n− ((k + 1) + i))

=
k∑
i=1

(2i2 + 4i) · ((n− k − 1)− i)

= 2(n− k − 1)
k∑
i=1

i2 + 4(n− k − 1)
k∑
i=1

i− 2
k∑
i=1

i3 − 4
k∑
i=1

i2

= 2(n− k − 1)k(k+1)(2k+1)
6 + 4(n− k − 1)k(k+1)

2 − k2(k+1)2

2 − 2k(k+1)(2k+1)
3

= 1
3 (n− k − 1)(2k3 + 3k2 + k) + 2(n− k − 1)(k2 + k)− 1

2 (k4 + 2k3 + k2)

− 2
3 (2k3 + 3k3 + k)

= 1
3 (2nk3 + 3nk2 + nk − 2k3 − 3k2 − k − 2k4 − 3k3 − k2) + (− 1

2k
4 − k3 − 1

2k
2)

+2(nk2 + nk − k3 − k2 − k2 − k) + (− 4
3k

3 − 2k2 − 2
3k)

= n( 2
3k

3 + k2 + 1
3k)− 2

3k
4 − 5

3k
3 − 4

3k
2 − 1

3k + n(2k2 + 2k)− 2k3 − 4k2 − 2k

− 1
2k

4 − k3 − 1
2k

2 − 4
3k

3 − 2k2 − 2
3k

= n( 2
3k

3 + 3k2 + 7
3k)− 7

6k
4 − 6k3 − 47

6 k
2 − 3k

3.
k∑
i=1

i(i+ 1) · (n− ((k + 2) + i))

=
k∑
i=1

(i2 + i) · ((n− k − 2)− i)

= (n− k − 2)
k∑
i=1

i2 + (n− k − 2)
k∑
i=1

i−
k∑
i=1

i3 −
k∑
i=1

i2

= (n− k − 2)k(k+1)(2k+1)
6 + (n− k − 2)k(k+1)

2 − k2(k+1)2

2 − k(k+1)(2k+1)
6
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= 1
6 (n− k − 2)(2k3 + 3k2 + k) + 1

2 (n(k2 + k)− k3 − k2 − 2k2 − 2k)

− 1
4 (k4 + 2k3 + k2)− 1

6 (2k3 + 3k2 + k)

= 1
6 (n(2k3 + 3k2 + k)− 2k4 − 3k3 − k2 − 4k3 − 6k2 − 2k) + n( 1

2k
2 + 1

2k)

− 1
2k

3 − 3
2k

2 − k − 1
4k

4 − 1
2k

3 − 1
4k

2 − 1
3k

3 − 1
2k

2 − 1
6k

= n( 1
3k

3 + 1
2k

2 + 1
6k + 1

2k
2 + 1

2k)− 1
3k

4 − 7
6k

3 − 7
6k

2 − 1
3k −

1
2k

3

− 3
2k

2 − k − 1
4k

4 − 1
2k

3 − 1
4k

2 − 1
3k

3 − 1
2k

2 − 1
6k

= n( 1
3k

3 + k2 + 2
3k)− 7

12k
4 − 5

2k
3 − 41

12k
2 − 3

2k

4.
k∑
i=1

(2(k + 1)2 − i2) · (n− ((2k + 1) + i))

=
k∑
i=1

(2(k + 1)2 − i2)((n− 2k − 1)− i)

=

[
k∑
i=1

2(k + 1)2(n− 2k − 1)

]
−
[
(n− 2k − 1)

k∑
i=1

i2
]
−
[
2(k + 1)2

k∑
i=1

i

]
+

k∑
i=1

i3

= 2k(k + 1)2(n− 2k − 1)− (n−2k−1)k(k+1)(2k+1)
6 − k(k + 1)3 + k2(k+1)2

4

= (2k3 + 4k2 + 2k)(n− 2k − 1)− 1
6 (n− 2k − 1)(k2 + k)(2k + 1)

−k(k3 + 3k2 + 3k + 1) + 1
4k

2(k2 + 2k + 1)

= n(2k3 + 4k2 + 2k)− 4k4 − 8k3 − 4k2 − 2k3 − 4k2 − 2k

+ 1
6 (n− 2k − 1)(−2k3 − 3k2 − k)− k4 − 3k3 − 3k2 − k + 1

4k
4 + 1

2k
3 + 1

4k
2

= n(2k3 + 4k2 + 4k)− 4k4 − 10k3 − 8k2 − 2k − k4 − 3k3 − 3k2 − k + 1
4k

4 + 1
2k

3 + 1
4k

2

+ 1
6 (n(−2k3 − 3k2 − k) + 4k4 + 8k3 + 5k2 + k)

= n(2k3 + 4k2 + 2k − 1
3k

3 − 1
2k

2 − 1
6k)− 4k4 − 10k3 − 8k2 − 2k + 2

3k
4

+ 4
3k

3 + 5
6k

2 + 1
6k − k

4 − 3k3 − 3k2 − k + 1
4k

4 + 1
2k

3 + 1
4k

2

= n( 5
3k

3 + 7
2k

2 + 11
6 k)− 49

12k
4 − 67

6 k
3 − 119

12 k
2 − 17

6 k

5.
k∑
i=1

i · (n− ((2k + 2) + i))

=
k∑
i=1

i((n− 2k − 2)− i)

= (n− 2k − 2)
k∑
i=1

i−
k∑
i=1

i2
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= (n− 2k − 2)k(k+1)
2 − k(k+1)(2k+1)

6

= 1
2 (n− 2k − 2)(k2 + k) + 1

6 (−k2 − k)(2k + 1)

= 1
2 (n(k2 + k)− 2k3 − 2k2 − 2k2 − 2k) + 1

6 (−2k3 − k2 − 2k2 − k)

= n( 1
2k

2 + 1
2k)− k3 − 2k2 − k − 1

3k
3 − 1

2k
2 − 1

6k

= n( 1
2k

2 + 1
2k)− 4

3k
3 − 5

2k
2 − 7

6k

6.
k∑
i=1

(k − (i− 1))(k − (i− 2)) · (n− ((3k + 1) + i))

=
k∑
i=1

((k + 1)− i)((k + 2)− i)((n− 3k − 1)− i)

=
k∑
i=1

((k + 1)(k + 2)− i(k + 1)− i(k + 2) + i2)((n− 3k − 1)− i)

=
k∑
i=1

((k + 1)(k + 2)− 2ik − 3i+ i2)((n− 3k − 1)− i)

=
k∑
i=1

((k + 1)(k + 2)− i(2k + 3) + i2)((n− 3k − 1)− i)

=

[
k∑
i=1

(k + 1)(k + 2)(n− 3k − 1)

]
−
[
(2k + 3)(n− 3k − 1)

k∑
i=1

i

]
+

[
(n− 3k − 1)

k∑
i=1

i2
]
−
[
(k + 1)(k + 2)

k∑
i=1

i

]
+

[
(2k + 3)

k∑
i=1

i2
]
−

k∑
i=1

i3

= k(k + 1)(k + 2)(n− 3k − 1)− (2k + 3)(n− 3k − 1)k(k+1)
2 + (n− 3k − 1)k(k+1)(2k+1)

6

−k(k+1)2(k+2)
2 + k(k+1)(2k+1)(2k+3)

6 − k2(k+1)2

4

= (n− 3k − 1)(k3 + 3k2 + 2k) + 1
2 (−2k3 − 5k2 − 3k)(n− 3k − 1)

+(n− 3k − 1)( 1
3k

3 + 1
2k

2 + 1
6k) + 1

2 (−k4 − 2k3 − k2 − 2k3 − 4k2 − 2k)

+ 1
6 (4k4 + 8k3 + 3k2 + 4k3 + 8k2 + 3k)− 1

4 (k4 + 2k3 + k2)

= n(k3 + 3k2 + 2k)− 3k4 − 9k3 − 6k2 − k3 − 3k2 − 2k + n(−k3 − 5
2k

2 − 3
2k)

+ 1
2 (6k4 + 15k3 + 9k2 + 2k3 + 5k2 + 3k) + n( 1

3k
3 + 1

2k
2 + 1

6k)

−k4 − 3
2k

3 − 1
2k

2 − 1
3k

3 − 1
2k

2 − 1
6k −

1
2k

4 − 2k3 − 5
2k

2 − k
+ 2

3k
4 + 2k3 + 11

6 k
2 + 1

2k −
1
4k

4 − 1
2k

3 − 1
4k

2

= n(k3 + 3k2 + 2k)− 3k4 − 10k3 − 9k2 − 2k + n(−k3 − 5
2k

2 − 3
2k) + 3k4 + 17

2 k
3

+7k2 + 3
2k + n( 1

3k
3 + 1

2k
2 + 1

6k)− k4 − 11
6 k

3 − k2 − 1
6k −

1
2k

4 − 2k3 − 5
2k

2 − k
+ 2

3k
4 + 2k3 + 11

6 k
2 + 1

2k −
1
4k

4 − 1
2k

3 − 1
4k

2
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= n( 1
3k

3 + k2 + 2
3k)− 13

12k
4 − 23

6 k
3 − 47

12k
2 − 7

6k

7.
k∑
i=1

2(k − (i− 1)) · (n− ((3k + 2) + i))

=
k∑
i=1

(2k − 2i+ 2)(n− ((3k + 2) + i))

=
k∑
i=1

((2k + 2)− 2i)((n− 3k − 2)− i)

=

[
k∑
i=1

(2k + 2)(n− 3k − 2)

]
−
[
(2k + 2)

k∑
i=1

i

]
−
[
2(n− 3k − 2)

k∑
i=1

i

]
+ 2

k∑
i=1

i2

= k(2k + 2)(n− 3k − 2)− k(k + 1)2 − k(k + 1)(n− 3k − 2) + k(k+1)(2k+1)
3

= (n− 3k − 2)(2k2 + 2k)− k(k2 + 2k + 1) + (n− 3k − 2)(−k2 − k) + 1
3 (2k3 + 3k2 + k)

= n(2k2 + 2k)− 6k3 − 10k2 − 4k − k3 − 2k2 − k + n(−k2 − k) + 3k3 + 5k2 + 2k + 2
3k

3 + k2 + 1
3k

= n(k2 + k)− 10
3 k

3 − 6k2 − 8
3k

8.
k∑
i=1

i · (n− ((2k + 1) + i))(n− ((2k + 2) + i))

=
k∑
i=1

i · ((n− 2k − 1)− i)((n− 2k − 2)− i)

=
k∑
i=1

i(n− 2k − 1)(n− 2k − 2)−
k∑
i=1

i2(n− 2k − 1)−
k∑
i=1

i2(n− 2k − 2) +
k∑
i=1

i3

= (n− 2k − 1)(n− 2k − 2)
k∑
i=1

i− (2n− 4k − 3)
k∑
i=1

i2 +
k∑
i=1

i3

= (n− 2k − 1)(n− 2k − 2)k(k+1)
2 + k2(k+1)2

4 − (2n− 4k − 3)k(k+1)(2k+1)
6

= 1
2 (k2 + k)(n2 + n(−2k − 2) + n(−2k − 1) + (−2k − 1)(−2k − 2)) + 1

4k
2(k2 + 2k + 1)

+ 1
6 (2n− 4k − 3)(−2k3 − 3k2 − k)

= 1
2 (k2 + k)(n2 + n(−4k − 3) + 4k2 + 6k + 2) + 1

4k
4 + 1

2k
3 + 1

4k
2

+ 1
3n(−2k3 − 3k2 − k) + 1

6 (−4k − 3)(−2k3 − 3k2 − k)

= n2( 1
2k

2 + 1
2k) + n( 1

2 (−4k3 − 7k2 − 3k)) + 2k4 + 3k3 + k2 + 2k3 + 3k2 + k

+ 1
4k

4 + 1
2k

3 + 1
4k

2 + n(− 2
3k

3 − k2 − 1
3k) + 1

6 (8k4 + 18k3 + 13k2 + 3k)

39



= n2( 1
2k

2 + 1
2k) + n(−2k3 − 7

2k
2 − 3

2k −
2
3k

3 − k2 − 1
3k)

+ 4
3k

4 + 3k3 + 13
6 k

2 + 1
2k + 1

4k
4 + 1

2k
3 + 1

4k
2 + 2k4 + 5k3 + 4k2 + k

= n2( 1
2k

2 + 1
2k) + n(− 8

3k
3 − 9

2k
2 − 11

6 k) + 43
12k

4 + 17
2 k

3 + 77
12k

2 + 3
2k

9.
k∑
i=1

(k − (i− 1)) · (n− ((3k + 2) + i))(n− ((3k + 3) + i))

=
k∑
i=1

((k + 1)− i) · (n− ((3k + 2) + i))(n− ((3k + 3) + i))

=
k∑
i=1

((k + 1)− i)((n− 3k − 2)(n− 3k − 3) + i2 − i(n− 3k − 2)− i(n− 3k − 3))

=
k∑
i=1

((k + 1)− i)((n− 3k − 2)(n− 3k − 3) + i2 − i(2n− 6k − 5))

=

[
k∑
i=1

(k + 1)(n− 3k − 2)(n− 3k − 3)

]
+

[
(k + 1)

k∑
i=1

i2
]

−
[
(k − 1)(2n− 6k − 5)

k∑
i=1

i

]
−
[
(n− 3k − 2)(n− 3k − 3)

k∑
i=1

i

]
−

k∑
i=1

i3 +

[
(2n− 6k − 5)

k∑
i=1

i2
]

= k(k + 1)(n− 3k − 2)(n− 3k − 3) + k(k+1)2(2k+1)
6 − (2n− 6k − 5)k(k+1)2

2

−(n− 3k − 2)(n− 3k − 3)k(k+1)
2 − k2(k+1)2

4 + (2n− 6k − 5)k(k+1)(2k+1)
6

= (k2 + k)(n2 + n(−3k − 2) + n(−3k − 3) + (−3k − 2)(−3k − 3)) + 1
6 (2k4 + 5k3 + 4k2 + k)

+ 1
2 (−k3 − 2k2 − k)(2n− 6k − 5) + 1

2 (−k2 − k)(n2 + n(−3k − 2) + n(−3k − 3)

+(−3k − 2)(−3k − 3))− 1
4k

4 − 1
2k

3 − 1
4k

2 + 1
6 (2n− 6k − 5)(2k3 + 3k2 + k)

= (k2 + k)(n2 + n(−6k − 5) + 9k2 + 15k + 6) + 1
3k

4 + 5
6k

3 + 2
3k

2 + 1
6k + n(−k3 − 2k2 − k)

+ 1
2 (6k4 + 17k3 + 16k2 + 5k) + 1

2 (−k2 − k)(n2 + n(−6k − 5) + 9k2 + 15k + 6)− 1
4k

4 − 1
2k

3

− 1
4k

2 + 1
3n(2k3 + 3k2 + k) + 1

6 (−6k − 5)(2k3 + 3k2 + k)

= n2(k2 + k) + n(−6k3 − 11k2 − 5k) + 9k4 + 24k3 + 21k2 + 6k + 1
3k

4 + 5
6k

3 + 2
3k

2

+ 1
6k + n(−k3 − 2k2 − k) + 3k4 + 17

2 k
3 + 8k2 + 5

2k + n2(− 1
2k

2 − 1
2k)

+n(3k3 + 11
2 k

2 + 5
2k)− 9

2k
4 − 12k3 − 21

2 k
2 − 3k − 1

4k
4 − 1

2k
3 − 1

4k
2

+n( 2
3k

3 + k2 + 1
3k)− 2k4 − 14

3 k
3 − 7

2k
2 − 5

6k

= n2( 1
2k

2 + 1
2k) + n(− 10

3 k
3 − 13

2 k
2 − 19

6 k) + 67
12k

4 + 97
6 k

3 + 185
12 k

2 + 29
6 k

Adding these 9 parts together, we will get:

n2(k2 + k) + n(−3k3 − k2 + 3k) +
9

4
k4 − 7

2
k3 − 53

4
k2 − 13

2
k

40



The part of the formula that was outside of the summation also needs to be simplified. Simplifying these

terms:

(n− (2k + 1)) + (2− k(k + 1)) · (n− (2k + 2)) + (k + 1) · (n− (3k + 2))

+(k + 1) · (n− (3k + 2))(n− (3k + 3))

= n− 2k − 1 + 2n− 4k − 4− nk2 − nk + 2k3 + 4k2 + 2k + nk + n− 3k2 − 5k − 2

+(k + 1)(n2 − n(6k + 5) + 9k2 + 15k + 6)

= n− 2k − 1 + 2n− 4k − 4− nk2 − nk + 2k3 + 4k2 + 2k + nk + n− 3k2 − 5k − 2 + n2k − n(6k2 + 5k)

+9k3 + 15k2 + 6k + n2 − n(6k + 5) + 9k2 + 15k + 6

= n2(k + 1) + n(−7k2 − 11k − 1) + 11k3 + 25k2 + 12k − 1

Adding this formula to the simplified summation formula, we get the total number of elements of the

multiplier in terms of n and k:

n2(k2 + 2k + 1) + n(−3k3 − 8k2 − 8k − 1) +
9

4
k4 +

15

2
k3 +

47

4
k2 +

11

2
k − 1

This formula works for n ≥ 4k + 3.

4.2 Specific Cases

4.2.1 k=1

This case corresponds to the derived algebra of the n×n strictly upper triangular matrices. Substituting in

k = 1 into the general formula for the dimension of the multiplier in the Leibniz case, this gives:

4n2 − 20n+ 26

This is the case for n ≥ 7. However, it was found in [5] in the Lie case that the dimension of the multiplier

for k = 1 is:

2n2 − 11n+ 16

Therefore, taking some values for n, we are able to compare the dimension of the multipliers in the Lie and

Leibniz case.

Table 4.1 Counting multiplier elements for k=1

n Leibniz Multiplier Dimension Lie Multiplier Dimension

7 82 37

8 122 56

9 170 79

10 226 106

11 290 137
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4.2.2 k=2

Substituting in k = 2 into the general formula for the dimension of the multiplier in the Leibniz case, this

gives:

9n2 − 73n+ 160

This is the case for n ≥ 11. However, it was found in the Lie case in [5] that the dimension of the multiplier

for k = 2 is:

9

2
n2 − 77

2
n+ 93

Therefore, taking some values for n, we are able to compare the dimension of the multipliers in the Lie and

Leibniz case.

Table 4.2 Counting multiplier elements for k=2

n Leibniz Multiplier Dimension Lie Multiplier Dimension

11 446 214

12 580 279

13 732 353

14 902 436

15 1090 528

This again reveals that the Leibniz multiplier and hence the cover always has a greater dimension than the

multiplier and cover found in the Lie case.
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Chapter 5

Upper Triangular Matrices - The

Solvable Case

The dimension of the Leibniz multiplier has been found for all algebras within the lower central series of

the strictly upper triangular matrices. The next algebra that needs to be considered is the Lie algebra of

upper triangular matrices. The elements in the basis of this algebra are the unit matrices Es,t for s ≤ t.

Let (K,M) be a defining pair for L and let F (s, t) be the image of Es,t under the section µ : L → K. The

Leibniz bracket of elements of K can then be defined as:

[F (s, t), F (a, b)] =


F (s, b) + y(s, t, a, b) when t = a

−F (a, t) + y(s, t, a, b) when s = b

y(s, t, a, b) otherwise

Using this relationship between elements of K, a basis for the multiplier and therefore it’s dimension, can

be found. The following theorem can be used to eliminate many elements of the multiplier.

Theorem 5.0.1. If b ≥ a+ 3 or t ≥ s+ 3, then y(s, t, a, b) = 0. So y(s, t, a, b) 6= 0 only has the potential to

occur if both b ≤ a+ 2 and t ≤ s+ 2.

Proof. To show that this is the case, take an element of the multiplier, y(s, t, a, b). It is known that t ≥ s

and b ≥ a. It can be seen that for some c such that 0 ≤ c ≤ t− s, the following Leibniz identity holds:

[F (s, s+ c), [F (s+ c, t), F (a, b)]] = [[F (s, s+ c), F (s+ c, t)], F (a, b)]

+ [F (s+ c, t), [F (s, s+ c), F (a, b)]]

Now assume that t = s+ 3. As long as a 6= s+ 1 and b 6= s+ 1, we can take c = 1 for the above Leibniz

identity to hold, otherwise, take c = 2. This will always make the element y(s, t, a, b) = 0 no matter what

gap is between a and b. The same theory applies when taking b = a+ 3 and letting the gap between s and

t be whatever is desired. This can be extended to consider the cases where t > s+ 3 and b > a+ 3 and the

same theory applies.

Now consider the elements y(s, t, a, b) such that t = a. By using the following change of basis:
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G(s, t) = F (s, t) + y(s, t, t, t)

the elements G(s, t) multiply in the same way as the elements F (s, t) as the multiplier is within the center

of the cover. Using this change of basis and the Leibniz identity, we will find the elements that remain in

the basis.

Theorem 5.0.2. Every element in the multiplier of the form y(s, s+ c, s+ c, b) where c ≥ 0 and s+ c ≤ b

can be eliminated from the basis of the multiplier. Therefore there are no elements of the form y(s, t, a, b)

where t = a in the basis of the multiplier.

Proof. From the above change of basis, the elements y(s, t, t, t) can be eliminated from the basis of the

multiplier. Using the Leibniz identity on the following elements of the cover such that c ≥ 0, s+ c ≤ t, but

t 6= s, a relationship between elements of the cover is found:

[F (s, s+ c), [F (s+ c, t), F (t, t)]] = [[F (s, s+ c), F (s+ c, t)], F (t, t)]

+ [F (s+ c, t), [F (s, s+ c), F (t, t)]]

=⇒ [F (s, s+ c), F (s+ c, t) + y(s+ c, t, t, t)] = [F (s, t) + y(s, s+ c, s+ c, t), F (t, t)]

+ [F (s+ c, t), y(s, s+ c, t, t)]

=⇒ [F (s, s+ c), F (s+ c, t)] = [F (s, t), F (t, t)]

=⇒ F (s, t) + y(s, s+ c, s+ c, t) = F (s, t) + y(s, t, t, t)

=⇒ y(s, s+ c, s+ c, t) = y(s, t, t, t)

Therefore all elements of the form y(s, s+ c, s+ c, t) are equal to the elements y(s, t, t, t) and so they can

also be eliminated from the basis of the multiplier. The elements such that s = t correspond to the elements

y(s, s, s, s) and can be eliminated using the change of basis. Accordingly, all elements of the multiplier

y(s, t, a, b) such that t = a can be eliminated from the basis of the multiplier.

Next, consider the elements of the multiplier of the form y(s, t, a, b) such that s = b. These elements can

be rewritten in the form y(s+ c, s+ d, s, s+ c).

Theorem 5.0.3. Every element in the multiplier of the form y(s+ c, s+ d, s, s+ c) such that 0 ≤ c ≤ d can

be eliminated from the basis of the multiplier.

Proof. For the elements y(s+ c, s+d, s, s+ c) such that 0 < c ≤ d, the following Leibniz identity of elements

from the cover will reveal a relationship between these elements and other elements from the multiplier:

[F (s+ c, s+ d), [F (s, s), F (s, s+ c)]] = [y(s+ c, s+ d, s, s), F (s, s+ c)]

+ [F (s, s), [F (s+ c, s+ d), F (s, s+ c)]]

=⇒ [F (s+ c, s+ d), F (s, s+ c) + y(s, s, s, s+ c)] = [y(s+ c, s+ d, s, s), F (s, s+ c)]

+ [F (s, s),−F (s, s+ d) + y(s+ c, s+ d, s, s+ c)]

=⇒ [F (s+ c, s+ d), F (s, s+ c)] = −[F (s, s), F (s, s+ d)]
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=⇒ −F (s, s+ d) + y(s+ c, s+ d, s, s+ c) = −F (s, s+ d)− y(s, s, s, s+ d)

=⇒ y(s+ c, s+ d, s, s+ c) = −y(s, s, s, s+ d)

It was seen in the previous theorem that the elements y(s, s, s, s + d) can be eliminated from the basis

and therefore the elements y(s+ c, s+ d, s, s+ c) where 0 < c ≤ d can also be eliminated.

Now consider the case where c = 0 and d > 0. This corresponds to the elements

y(s, s+d, s, s) where d > 0. These elements can be eliminated using the following Leibniz identity of elements

from the cover:

[F (s, s), [F (s, s+ d), F (s, s)]] = [[F (s, s), F (s, s+ d)], F (s, s)]

+ [F (s, s+ d), [F (s, s), F (s, s)]]

=⇒ [F (s, s),−F (s, s+ d) + y(s, s+ d, s, s)] = [F (s, s+ d) + y(s, s, s, s+ d), F (s, s)]

+ [F (s, s+ d), y(s, s, s, s)]

=⇒ −[F (s, s), F (s, s+ d)] = [F (s, s+ d), F (s, s)]

=⇒ −F (s, s+ d)− y(s, s, s, s+ d) = −F (s, s+ d) + y(s, s+ d, s, s)

=⇒ −y(s, s, s, s+ d) = y(s, s+ d, s, s)

It was previously found in the case where t = a that the elements y(s, s, s, s+ d) can be eliminated from

the basis of the multiplier and therefore, the elements y(s, s + d, s, s) can also be eliminated. In the case

where c = d = 0, this corresponds to elements of the multiplier of the form y(s, s, s, s) which have already

been eliminated using the change of basis. Therefore there are no elements of the form s = b in the basis of

the multiplier.

As the non-zero elements of the multiplier must satisfy t < s + 3 and b < a + 3, this gives 9 remaining

cases to consider for the elements y(s, t, a, b):

1. t=s

(a) b=a

(b) b=a+1

(c) b=a+2

2. t=s+1

(a) b=a

(b) b=a+1

(c) b=a+2

3. t=s+2

(a) b=a

(b) b=a+1
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(c) b=a+2

First, consider the elements such that t = s + 2. These will be elements of the form y(s, s + 2, a, a + c)

where c = 0, 1, or 2. The elements from the cases 3.(a), 3.(b), and 3.(c) can be eliminated using the following

Leibniz identity of elements from the cover:

[F (s, s+ d), [F (s+ d, s+ 2), F (a, a+ c)]] = [[F (s, s+ d), F (s+ d, s+ 2)], F (a, a+ c)]

+ [F (s+ d, s+ 2), [F (s, s+ d), F (a, a+ c)]]

where 0 ≤ d ≤ 2 and c ≥ 0.

It has already been found that the elements y(s, t, a, b) such that t = a or s = b can be eliminated from

the basis of the multiplier. Therefore, we need not consider the cases such that a = s + 2 or a + c = s as

these elements have already be eliminated. For the other cases, take d = 1. This will allow all elements of

the form y(s, s+ 2, a, a + c) to equal 0 except when a = s + 1 or when a + c = s + 1. In the above Leibniz

identity, when a = s+ 1, take d = 0 and when a+ c = s+ 1, take d = 2. These elements will then also equal

0 and can be eliminated from the basis of the multiplier. Therefore, there are no elements from 3.(a), 3.(b),

or 3.(c) in the basis of the multiplier.

We can examine cases 1.(c) and 2.(c) in a similar way. These cases give rise to elements of the form

y(s, s+ c, a, a+ 2) such that c = 0, 1. Using the following Leibniz identity of elements from the cover, these

elements can be eliminated from the basis of the multiplier:

[F (s, s+ c), [F (a, a+ d), F (a+ d, a+ 2)]] = [[F (s, s+ c), F (a, a+ d)], F (a+ d, a+ 2)]

+ [F (a, a+ d), [F (s, s+ c), F (a+ d, a+ 2)]]

where 0 ≤ d ≤ 2 and c ≥ 0.

Again, it was previously found that the elements y(s, t, a, b) such that t = a or s = b can be eliminated

from the basis of the multiplier. Therefore, we need not consider the cases such that s = a+ 2 or s+ c = a

as these elements have already been eliminated. For all the other cases, take d = 1. This will allow elements

of the form y(s, s + c, a, a + 2) to equal 0 except when s = a + 1 or s + c = a + 1. When s = a + 1, take

d = 0 and when s + c = a + 1 take d = 2 in the above Leibniz identity. These elements will then equal 0

and can be eliminated from the basis of the multiplier. Therefore, there are no elements from 1.(c) or 2.(c)

in the basis of the multiplier. This leaves 4 cases to consider.

Case 1.(a) t =s and b=a

This corresponds to elements of the multiplier of the form y(s, s, a, a). A Leibniz identity of elements

from the cover cannot be established as brackets of the form [F (s, s), F (s, s)] or [F (a, a), F (a, a)] will simply

equal an element of the multiplier. Therefore, as no Leibniz identity can be created in order to generate this

element of the multiplier, elements of the multiplier cannot be eliminated in this way. However, the elements

y(s, s, s, s) can be eliminated using the change of basis G(s, s) = F (s, s) + y(s, s, s, s). As such, this case has

n2 − n elements in the basis of the multiplier.

Case 1.(b) t=s and b=a+1

This case corresponds to elements of the form y(s, s, a, a + 1). If a ≤ s − 2, then using the following
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Leibniz identity, the elements of this form can be eliminated:

[F (s, s), [F (a, a), F (a, a+ 1)]] = [[F (s, s), F (a, a)], F (a, a+ 1)]

+ [F (a, a), [F (s, s), F (a, a+ 1)]]

=⇒ [F (s, s), F (a, a+ 1) + y(a, a, a, a+ 1)] = 0

=⇒ y(s, s, a, a+ 1) = 0

where a ≤ s− 2.

Now looking at the case where a = s− 1, this corresponds to elements of the form y(s, s, s− 1, s). These

elements can be eliminated as s = b. If a = s, then this corresponds to the elements of the form y(s, s, s, s+1)

which can also be eliminated from the basis of the multiplier as these elements are of the form t = a.

Finally for this case, we consider the elements of the form y(s, s, a, a+ 1) where a ≥ s+ 1. Again, using

the Leibniz identity:

[F (s, s), [F (a, a), F (a, a+ 1)]] = [[F (s, s), F (a, a)], F (a, a+ 1)]

+ [F (a, a), [F (s, s), F (a, a+ 1)]]

=⇒ [F (s, s), F (a, a+ 1) + y(a, a, a, a+ 1)] = 0

=⇒ y(s, s, a, a+ 1) = 0

We can now see that when a ≥ s+ 1, these elements can also be eliminated from the basis of the multiplier.

Therefore, there are no elements of the form y(s, s, a, a+ 1) in the basis of the multiplier.

Case 2.(a) t=s and b=a+1

This case corresponds to elements of the form y(s, s+ 1, a, a). If a ≤ s− 1 then elements of this form can

be eliminated using the following Leibniz identity of elements from the cover:

[F (s, s), [F (s, s+ 1), F (a, a)]] = [[F (s, s), F (s, s+ 1)], F (a, a)]

+ [F (s, s+ 1), [F (s, s), F (a, a)]]

=⇒ 0 = [F (s, s+ 1) + y(s, s, s, s+ 1), F (a, a)]

=⇒ y(s, s+ 1, a, a) = 0

If a = s this corresponds to the elements y(s, s + 1, s, s). These elements can be eliminated from the

basis of the multiplier as these elements are of the form s = b. If a = s + 1 this corresponds to the case

where t = a and therefore we know that this can be eliminated by the change of basis. If a ≥ s + 2 then

using the following Leibniz bracket, all elements of the form y(s, s + 1, a, a) that satisfy this inequality can

be eliminated from the basis of the multiplier:

[F (s, s), [F (s, s+ 1), F (a, a)]] = [[F (s, s), F (s, s+ 1)], F (a, a)]

+ [F (s, s+ 1), [F (s, s), F (a, a)]]

=⇒ 0 = [F (s, s+ 1) + y(s, s, s, s+ 1), F (a, a)]

=⇒ y(s, s+ 1, a, a) = 0
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Therefore there are no elements of the form y(s, s+ 1, a, a) in the basis of the multiplier.

Case 2.(b) t=s+1 and b=a+1

Next we must consider the case where t = s + 1 and b = a + 1 which corresponds to elements of the

multiplier of the form y(s, s + 1, a, a + 1). If a ≤ s − 2 then using the following Leibniz identity, we can

eliminate these elements from the basis of the multiplier:

[F (s, s), [F (s, s+ 1), F (a, a+ 1)]] = [[F (s, s), F (s, s+ 1)], F (a, a+ 1)]

+ [F (s, s+ 1), [F (s, s), F (a, a+ 1)]]

=⇒ 0 = [F (s, s+ 1) + y(s, s, s, s+ 1), F (a, a+ 1)]

=⇒ y(s, s+ 1, a, a+ 1) = 0

If a = s−1, this corresponds to elements of the form y(s, s+1, s−1, s). These elements can be eliminated

as this is a case such that s = b.If a = s, this corresponds to elements of the form y(s, s+ 1, s, s+ 1). Using

the following Leibniz identity, these elements can be eliminated:

[F (s, s+ 1), [F (s, s), F (s, s+ 1)]] = [[F (s, s+ 1), F (s, s)], F (s, s+ 1)]

+ [F (s, s), [F (s, s+ 1), F (s, s+ 1)]]

=⇒ [F (s, s+ 1), F (s, s+ 1) + y(s, s, s, s+ 1)] = [−F (s, s+ 1) + y(s, s+ 1, s, s), F (s, s+ 1)]

=⇒ y(s, s+ 1, s, s+ 1) = −y(s, s+ 1, s, s+ 1)

=⇒ y(s, s+ 1, s, s+ 1) = 0

If a = s + 1, then this corresponds to elements of the form y(s, s + 1, s + 1, s + 2). In this case, t = a

and therefore these can be eliminated from the basis of the multiplier. If a ≥ s+ 2, then the elements of the

form y(s, s+ 1, a, a+ 1) that satisfy this equality can also be eliminated from the basis of the multiplier by

the following Leibniz identity:

[F (s, s), [F (s, s+ 1), F (a, a+ 1)]] = [[[F (s, s), F (s, s+ 1)], F (a, a+ 1)]

+ [F (s, s+ 1), [F (s, s), F (a, a+ 1)]]

=⇒ 0 = [F (s, s+ 1) + y(s, s, s, s+ 1), F (a, a+ 1)]

=⇒ y(s, s+ 1, a, a+ 1) = 0

Therefore there are no elements of the form y(s, s+ 1, a, a+ 1) in the basis of the multiplier.

Accordingly, the only elements of the multiplier are those of the form y(s, s, a, a) such that s 6= a which

gives n2 − n = n(n− 1) elements of the multiplier.

Below is a table showing the difference in dimension of the Lie multiplier and Leibniz multiplier of the

algebra of the upper triangular matrices. The Lie case can be found in [8].
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Table 5.1 Counting multiplier elements for the upper triangular matrices

n Leibniz Multiplier Dimension Lie Multiplier Dimension

2 2 1

3 6 3

4 12 6

5 20 10

6 30 15

As such, just as we found for the dimension of the multiplier of each algebra in the lower central series,

the Leibniz multiplier has greater dimension than the Lie multiplier for each n.

49



Chapter 6

The Heisenberg Algebra

When looking at the Leibniz cover and multiplier of the Heisenberg algebra, there are 3 possible cases to

consider:

1. Where the brackets for the cover satisfy the Lie brackets in the Heisenberg algebra.

2. Where right multiplication by an element is 0, giving an algebra that is Leibniz and not Lie.

3. Where there is a mix of some brackets equal to the negative of the right multiplication and some

brackets where the right multiplication by an element is equal to 0.

In each case, the general form for the dimension of the multiplier will be found, as well as looking at

specific examples.

6.1 The Heisenberg Lie Algebra

Taking the Heisenberg algebra L of dimension 2n+1 > 3 to have the same bracket structure as the Heisenberg

Lie algebra, then for an algebra with basis, v1, v2, ..., v2n, v, the bracket structure is as follows:

[v2i−1, v2i] = v

[v2i, v2i−1] = −v

All other brackets are 0. Now letting (K,M) be the defining pair for the Lie algebra L, the task is to

find the structure of the Leibniz multiplier M . Take µ to be a section that acts as µ(vi) = xi and µ(v) = x.

This is the same section that was used in [9] but now a basis for the Leibniz multiplier of this algebra will

be found. Letting yi, zi, aij , bij , cij , dij , e, fi, gi, hi, and ki be elements of the multiplier, the brackets of

the elements in the cover will be as follows:

[x2i−1, x2i] = x+ yi, 1 ≤ i ≤ n

[x2i, x2i−1] = −x+ zi, 1 ≤ i ≤ n

[x2i−1, x2j ] = aij , 1 ≤ i 6= j ≤ n
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[x2i, x2j−1] = bij , 1 ≤ i 6= j ≤ n

[x2i−1, x2j−1] = cij , 1 ≤ i, j ≤ n

[x2i, x2j ] = dij , 1 ≤ i, j ≤ n

[x, x] = e

[x2i−1, x] = fi, 1 ≤ i ≤ n

[x, x2i−1] = gi, 1 ≤ i ≤ n

[x2i, x] = hi, 1 ≤ i ≤ n

[x, x2i] = ki, 1 ≤ i ≤ n

By using the Leibniz identity on these basis elements x1, x2, ..., x2n, x, it is possible to eliminate some

of the elements of the multiplier in order to find the number of basis elements that are independent and

non-zero, and hence we can find the dimension of this basis. From the Leibniz brackets below, the following

elements can be eliminated:

[x, [x2i−1, x2i]] = [[x, x2i−1], x2i] + [x2i−1, [x, x2i]]

=⇒ [x, x+ yi] = [gi, x2i] + [x2i−1, ki]

=⇒ [x, x] = 0

=⇒ e = 0

[x2i, [x2i−1, x2i]] = [[x2i, x2i−1], x2i] + [x2i−1, [x2i, x2i]]

=⇒ [x2i, x+ yi] = [−x+ zi, x2i] + [x2i−1, dii]

=⇒ [x2i, x] = −[x, x2i]

=⇒ hi = −ki

[x2i−1, [x2i, x2i−1]] = [[x2i−1, x2i], x2i−1] + [x2i, [x2i−1, x2i−1]]

=⇒ [x2i−1,−x+ zi] = [x+ yi, x2i−1] + [x2i, cii]

=⇒ −[x2i−1, x] = [x, x2i−1]

=⇒ −fi = gi

For the following, assume that j 6= i:

[x2j , [x2i−1, x2i]] = [[x2j , x2i−1], x2i] + [x2i−1, [x2j , x2i]]

=⇒ [x2j , x+ yi] = [bji, x2i] + [x2i−1, dji]

=⇒ [x2j , x] = 0
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=⇒ hj = 0 =⇒ kj = 0

[x2j−1, [x2i−1, x2i]] = [[x2j−1, x2i−1], x2i] + [x2i−1, [x2j−1, x2i]]

=⇒ [x2j−1, x+ yi] = [cji, x2i] + [x2i−1, aji]

=⇒ [x2j−1, x] = 0

=⇒ fj = 0 =⇒ gj = 0

Therefore, the elements e, fi, gi, hi, and ki can be eliminated from the basis of the multiplier for

1 ≤ i ≤ n. A change of basis can be performed among the yi terms in order to eliminate y1. By letting

[x1, x2] = s = x+ y1, this allows the element y1 to be eliminated and then ŷi = yi − y1 for 1 < i ≤ n. This

does not change the multiplication among the brackets and still allows each ŷi to be central and an element

of the multiplier.

As such, we can count the number of elements within the basis of the multiplier to find its dimension:

Table 6.1 Elements in the basis of the multiplier of the Heisenberg Lie algebra

Type of Multiplier Element Number of Elements

yi n− 1

zi n

aij n(n− 1)

bij n(n− 1)

cij n2

dij n2

In total, for a 2n+ 1 > 3 dimensional Heisenberg Lie algebra, there are 4n2 − 1 elements in the basis of

the multiplier. Therefore, the dimension of the cover is (4n2 − 1) + (2n+ 1) = 4n2 + 2n = 2n(2n+ 1).

6.1.1 The Heisenberg Lie Algebra of Dimension 3

The Heisenberg algebra of dimension 3 has the basis v1, v2, v. Taking the section µ, this gives µ(v1) = x1,

µ(v2) = x2, and µ(v) = x. The following brackets of elements in the cover give the 9 elements, wi, of the

multiplier. Then by looking at the Leibniz identity, we will find which elements of the multiplier can be

eliminated.

[x1, x2] = x+ w1

[x2, x1] = −x+ w2

[x1, x] = w3

[x, x1] = w4

[x2, x] = w5

[x, x2] = w6
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[x1, x1] = w7

[x2, x2] = w8

[x, x] = w9

Using the Leibniz identity, the following relationships are found:

[x, [x1, x2]] = [[x, x1], x2] + [x1, [x, x2]]

=⇒ [x, x+ w1] = [w4, x2] + [x1, w6]

=⇒ [x, x] = 0

=⇒ w9 = 0

[x1, [x2, x1]] = [[x1, x2], x1] + [x2, [x1, x1]]

=⇒ [x1,−x+ w2] = [x+ w1, x1] + [x2, w7]

=⇒ −[x1, x] = [x, x1]

=⇒ −w3 = w4

[x2, [x1, x2]] = [[x2, x1], x2] + [x1, [x2, x2]]

=⇒ [x2, x+ w1] = [−x+ w2, x2] + [x1, w8]

=⇒ [x2, x] = −[x, x2]

=⇒ w5 = −w6

A change of basis can be performed by letting [x1, x2] = y = x + w1. This then eliminates the element

w1 and ŵi = wi−w1. This will not change the multiplication of the brackets but will allow another element

to be eliminated from the basis of the multiplier.

Therefore, by taking into account the dependence between elements of the multiplier and by eliminating

the elements w1 and w9, we are left with 5 elements in the basis of the multiplier, giving a cover that has 8

elements.

It can be seen that this does not agree with the general formula (and this was to be expected) which

is stated above. This is because for the 3 dimensional Heisenberg, we must take 2n + 1 = 3 =⇒ n = 1.

Therefore, an i and j that are different from one another cannot be established in order to get the multiplier

elements aij and bij . Although this agrees with the fact that there are n(n − 1) = 0 of each type, these

elements of the multiplier need to exist in order to take Leibniz identities of elements of the cover so that

other elements may be eliminated. This can be seen in the calculations that allow hj = 0 and fj = 0 in

the general form calculation above. Accordingly, as these elements cannot be eliminated, the 3 dimensional

Heisenberg case does not satisfy the general formula.

However, it must be noted that the 3 dimensional Heisenberg Lie algebra is isomorphic to the Lie algebra
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of 3x3 strictly upper triangular matrices. Therefore, their Leibniz multiplier should have equal dimension,

as well as their covers. This is the case with both algebras having Leibniz multiplier of dimension 5 and

cover of dimension 8.

6.1.2 The Heisenberg Lie Algebra of Dimension 5

The Heisenberg algebra of dimension 5 has the basis v1, v2, v3, v4, v. Taking the section µ, this gives

µ(vi) = xi for 1 ≤ i ≤ 4 and µ(v) = x. Taking the brackets of the elements in the cover, we find that we can

establish relationships with 25 possible elements, wi in the basis of the multiplier.

[x1, x2] = x+ w1

[x3, x4] = x+ w2

[x2, x1] = −x+ w3

[x4, x3] = −x+ w4

[x1, x1] = w5

[x1, x3] = w6

[x1, x4] = w7

[x1, x] = w8

[x2, x2] = w9

[x2, x3] = w10

[x2, x4] = w11

[x2, x] = w12

[x3, x1] = w13

[x3, x2] = w14

[x3, x3] = w15

[x3, x] = w16

[x4, x1] = w17

[x4, x2] = w18

[x4, x4] = w19

[x4, x] = w20

[x, x1] = w21

[x, x2] = w22

[x, x3] = w23

[x, x4] = w24

[x, x] = w25

By taking the following Leibniz brackets, the following elements of the multiplier can be eliminated:

[x, [x1, x2]] = [[x, x1], x2] + [x1, [x, x2]]

=⇒ [x, x+ y1] = [w21, x2] + [x1, w22]

=⇒ [x, x] = 0

=⇒ w25 = 0

[x1, [x2, x1]] = [[x1, x2], x1] + [x2, [x1, x1]]

=⇒ [x1,−x+ w3] = [x+ w1, x1] + [x2, w5]

=⇒ −[x1, x] = [x, x1]

=⇒ −w8 = w21
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[x2, [x1, x2]] = [[x2, x1], x2] + [x1, [x2, x2]]

=⇒ [x2, x+ w1] = [−x+ w3, x2] + [x1, w9]

=⇒ [x2, x] = −[x, x2]

=⇒ w12 = −w22

[x3, [x4, x3]] = [[x3, x4], x3] + [x4, [x3, x3]]

=⇒ [x3,−x+ w4] = [x+ w2, x3] + [x4, w15]

=⇒ −[x3, x] = [x, x3]

=⇒ −w16 = w23

[x4, [x3, x4]] = [[x4, x3], x4] + [x3, [x4, x4]]

=⇒ [x4, x+ w2] = [−x+ w4, x4] + [x3, w19]

=⇒ [x4, x] = −[x, x4]

=⇒ w20 = −w24

[x1, [x3, x4]] = [[x1, x3], x4] + [x3, [x1, x4]]

=⇒ [x1, x+ w2] = [w6, x4] + [x3, w7]

=⇒ [x1, x] = 0

=⇒ w8 = 0 =⇒ w21 = 0

[x2, [x3, x4]] = [[x2, x3], x4] + [x3, [x2, x4]]

=⇒ [x2, x+ w2] = [w10, x4] + [x3, w11]

=⇒ [x2, x] = 0

=⇒ w12 = 0 =⇒ w22 = 0

[x3, [x1, x2]] = [[x3, x1], x2] + [x1, [x3, x2]]

=⇒ [x3, x+ w1] = [w13, x2] + [x1, w14]

=⇒ [x3, x] = 0

=⇒ w16 = 0 =⇒ w23 = 0
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[x4, [x1, x2]] = [[x4, x1], x2] + [x1, [x4, x2]]

=⇒ [x4, x+ w1] = [w17, x2] + [x1, w18]

=⇒ [x4, x] = 0

=⇒ w20 = 0 =⇒ w24 = 0

In a similar way to the last case for the 3 dimensional Heisenberg algebra, a change of basis can be

performed by letting [x1, x2] = y = x + w1. This then allows w1 to be eliminated and then ŵi = wi − w1.

This will not change the brackets but will allow another element to be eliminated from the basis of the

multiplier.

This leaves 15 elements in the basis of the Leibniz multiplier. Therefore, the cover will have dimension

20 for the 5 dimensional Heisenberg Lie algebra. The dimension of the Leibniz multiplier agrees with the

formula found in the general case for a 2n+ 1 dimensional Heisenberg Lie algebra by using n = 2.

6.1.3 Comparison Between the Lie and Leibniz Multiplier for the Heisenberg

Lie Algebra

For the following values of n, we can show the difference in dimension between the Lie multiplier, found in

[9], and the Leibniz multiplier found above for the Heisenberg Lie algebra. For n > 1, the Lie multiplier

has dimension 2n2 − n− 1, while when n = 1, the algebra is isomorphic to the 3x3 strictly upper triangular

matrices, as such, its Lie multiplier has the same dimension as the Lie multiplier of the 3x3 strictly upper

triangular matrices.

Table 6.2 Counting multiplier elements for the Heisenberg Lie algebra

n Dimension of Algebra Leibniz Multiplier Dimension Lie Multiplier Dimension

1 3 5 2

2 5 15 5

3 7 35 14

4 9 63 27

5 11 99 44

6.2 The Heisenberg Leibniz Algebra - Case 1

The first case of a Heisenberg Leibniz algebra is when the bracket [x2i−1, x2i] = x+ yi still remains the same

but the right multiplication in the algebra is now 0, so [x2i, x2i−1] = zi for all 1 ≤ i ≤ n. All other brackets

remain the same from the Lie case. We will now investigate what elements of the multiplier of this algebra

can be eliminated.

[x2i−1, [x2i, x2i−1]] = [[x2i−1, x2i], x2i−1] + [x2i, [x2i−1, x2i−1]]

=⇒ [x2i−1, zi] = [x+ yi, x2i−1] + [x2i, cii]
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=⇒ 0 = [x, x2i−1]

=⇒ gi = 0

[x, [x2i−1, x2i]] = [[x, x2i−1], x2i] + [x2i−1, [x, x2i]]

=⇒ [x, x+ yi] = [gi, x2i] + [x2i−1, ki]

=⇒ [x, x] = 0

=⇒ e = 0

[x2i, [x2i−1, x2i]] = [[x2i, x2i−1], x2i] + [x2i−1, [x2i, x2i]]

=⇒ [x2i, x+ yi] = [zi, x2i] + [x2i−1, dii]

=⇒ [x2i, x] = 0

=⇒ hi = 0

[x2i−1, [x2i, x2i]] = [[x2i−1, x2i], x2i] + [x2i, [x2i−1, x2i]]

=⇒ [x2i−1, dii] = [x+ yi, x2i] + [x2i, x+ yi]

=⇒ 0 = [x, x2i] + [x2i, x]

=⇒ 0 = ki + hi

=⇒ ki = −hi =⇒ ki = 0

Then assuming j 6= i:

[x2j−1, [x2i−1, x2i]] = [[x2j−1, x2i−1], x2i] + [x2i−1, [x2j−1, x2i]]

=⇒ [x2j−1, x+ yi] = [cji, x2i] + [x2i−1, aji]

=⇒ [x2j−1, x] = 0

=⇒ fj = 0

Therefore, the elements e, fi, gi, hi and ki for 1 ≤ i ≤ n can be eliminated from the basis of the multiplier.

Once again, by performing a change of basis among the yi elements in the multiplier, we are able to eliminate

the element y1. Letting [x1, x2] = s = x+ y1, we eliminate y1 and let ŷi = yi − y1 for 1 < i ≤ n. This does

not change the multiplication among the brackets and still allows the ŷi elements to be central and elements

of the multiplier.

As such, the same elements of the multiplier remain as in the case of the Heisenberg Lie algebra and so

the dimension of the Leibniz multiplier for the Leibniz Heisenberg algebra is 4n2− 1 and the cover will have

dimension 4n2 + 2n.
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6.2.1 The Heisenberg Leibniz Algebra of Dimension 3

The Heisenberg algebra of dimension 3 has the basis v1, v2, v. Taking the section µ, this gives µ(v1) = x1,

µ(v2) = x2 and µ(v) = x. Taking the brackets of the elements in the cover, we get the following relationships

with 9 possible elements, wi, in the basis of the multiplier. The task is to use the Leibniz identity to try to

eliminate some of those elements.

[x1, x2] = x+ w1

[x2, x1] = w2

[x1, x] = w3

[x, x1] = w4

[x2, x] = w5

[x, x2] = w6

[x1, x1] = w7

[x2, x2] = w8

[x, x] = w9

Using the Leibniz identity, the following elements are eliminated:

[x, [x1, x2]] = [[x, x1], x2] + [x1, [x, x2]]

=⇒ [x, x+ w1] = [w4, x2] + [x1, w6]

=⇒ [x, x] = 0

=⇒ w9 = 0

[x2, [x1, x2]] = [[x2, x1], x2] + [x1, [x2, x2]]

=⇒ [x2, x+ w1] = [w2, x2] + [x1, w8]

=⇒ [x2, x] = 0

=⇒ w5 = 0

[x1, [x2, x1]] = [[x1, x2], x1] + [x2, [x1, x1]]

=⇒ [x1, w2] = [x+ w1, x1] + [x2, w7]

=⇒ 0 = [x, x1]

=⇒ w4 = 0
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[x1, [x2, x2]] = [[x1, x2], x2] + [x2, [x1, x2]]

=⇒ [x1, w8] = [x+ w1, x2] + [x2, x+ w1]

=⇒ 0 = [x, x2] + [x2, x]

=⇒ w6 = −w5 =⇒ w6 = 0

We are unable to eliminate the element w3 in this case, however this element can be eliminated for a

higher dimensional Leibniz Heisenberg algebra. We can eliminate w1 using the change of basis. This shows

that the 3 dimensional Heisenberg gives us a special case and the Leibniz multiplier of the Leibniz Heisenberg

algebra has dimension 4, which is less than the dimension of the Leibniz multiplier of the Lie Heisenberg

algebra, which has dimension 5. In all other higher dimensional Heisenberg algebras, the dimension of the

multipliers is the same.

6.2.2 The Heisenberg Leibniz algebra of Dimension 5

The Heisenberg algebra of dimension 5 has the basis v1, v2, v3, v4, v. Taking the section µ, this gives

µ(vi) = xi for 1 ≤ i ≤ 4 and µ(v) = x. Taking the brackets of the elements in the cover, this gives 25

possible elements, wi in the basis of the multiplier. The only difference in the brackets compared to the

brackets of elements in the cover of the 5 dimensional Lie Heisenberg algebra are the following:

[x2, x1] = w3

[x4, x3] = w4

This is because unlike in the Lie case, the multiplication of elements on the right must be 0, so when

multiplying the corresponding elements in the cover, we should get an element of the multiplier.

When looking at Leibniz identity to see which elements of the multiplier can be eliminated, according to

the general case, we should find that there are 15 elements in the basis of the multiplier.

[x, [x1, x2]] = [[x, x1], x2] + [x1, [x, x2]]

=⇒ [x, x+ w1] = [w21, x2] + [x,w22]

=⇒ [x, x] = 0

=⇒ w25 = 0

[x1, [x2, x1]] = [[x1, x2], x1] + [x2, [x1, x1]]

=⇒ [x1, w3] = [x+ w1, x1] = [x2, w5]

=⇒ 0 = [x, x1]

=⇒ w21 = 0
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[x2, [x1, x2]] = [[x2, x1], x2] + [x1, [x2, x2]]

=⇒ [x2, x+ w1] = [w3, x2] + [x1, w9]

=⇒ [x2, x] = 0

=⇒ w12 = 0

[x1, [x3, x4]] = [[x1, x3], x4] + [x3, [x1, x4]]

=⇒ [x1, x+ w2] = [w6, x4] + [x3, w7]

=⇒ [x1, x] = 0

=⇒ w8 = 0

[x4, [x3, x4]] = [[x4, x3], x4] + [x3, [x4, x4]]

=⇒ [x4, x+ w2] = [w4, x4] + [x3, w19]

=⇒ [x4, x] = 0

=⇒ w20 = 0

[x3, [x1, x2]] = [[x3, x1], x2] + [x1, [x3, x2]]

=⇒ [x3, x+ w1] = [w13, x2] + [x1, w14]

=⇒ [x3, x] = 0

=⇒ w16 = 0

[x3, [x4, x3]] = [[x3, x4], x3] + [x4, [x3, x3]]

=⇒ [x3, w4] = [x+ w2, x3] + [x4, w15]

=⇒ 0 = [x, x3]

=⇒ w23 = 0

[x1, [x2, x2]] = [[x1, x2], x2] + [x2, [x1, x2]]

=⇒ [x1, w9] = [x+ w1, x2] + [x2, x+ w1]

=⇒ 0 = [x, x2] + [x2, x]

=⇒ w22 = −w12 =⇒ w22 = 0
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[x3, [x4, x4]] = [[x3, x4], x4] + [x4, [x3, x4]]

=⇒ [x3, w19] = [x+ w2, x4] + [x4, x+ w2]

=⇒ 0 = [x, x4] + [x4, x]

=⇒ w20 = −w24 =⇒ w24 = 0

Again, a change of basis can be performed by letting [x1, x2] = y = x + w1. This then allows w1 to be

eliminated and ŵi = wi −w1. This will not change the multiplication of the brackets but will allow another

element to be eliminated from the basis of the multiplier. Accordingly, 10 elements of the multiplier can be

eliminated, which gives a 15 dimensional multiplier. This is exactly the dimension of the multiplier that can

be seen from the general case using n = 2.

6.3 The Heisenberg Leibniz Algebra - Case 2

The second case of a Heisenberg Leibniz algebra is where the bracket [x2i−1, x2i] = x + yi still remains the

same but the right multiplication by an element in the algebra can either be 0 or it can be negative of the left

multiplication of the same element in the algebra. Thus, for elements in the cover, we have [x2i, x2i−1] = zi

for some values of i between 1 and n and for the other values of i between 1 and n, [x2i, x2i−1] = −x+zi. All

other brackets remain the same from the Lie case. We must now determine what elements of the multiplier

can be eliminated in this case.

Without loss of generality, we will assume that [x2i, x2i−1] = −x + zi for 1 ≤ i ≤ m for some m < n

and [x2i, x2i−1] = zi for m < i ≤ n. Let us first consider which elements can be eliminated for the index

1 ≤ i ≤ m.

[x2i, [x2i−1, x2i]] = [[x2i, x2i−1], x2i] + [x2i−1, [x2i, x2i]]

=⇒ [x2i, x+ yi] = [−x+ zi, x2i] + [x2i−1, dii]

=⇒ [x2i, x] = −[x, x2i]

=⇒ hi = −ki

[x2i−1, [x2i, x2i−1]] = [[x2i−1, x2i], x2i−1] + [x2i, [x2i−1, x2i−1]]

=⇒ [x2i−1,−x+ zi] = [x+ yi, x2i−1] + [x2i, cii]

=⇒ −[x2i−1, x] = [x, x2i−1]

=⇒ gi = −fi

[x, [x2i−1, x2i]] = [[x, x2i−1], x2i] + [x2i−1, [x, x2i]]

=⇒ [x, x+ yi] = [gi, x2i] + [x2i−1, ki]
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=⇒ [x, x] = 0

=⇒ e = 0

For j 6= i:

[x2i, [x2j−1, x2j ]] = [[x2i, x2j−1], x2j ] + [x2j−1, [x2i, x2j ]]

=⇒ [x2i, x+ yj ] = [bij , x2j ] + [x2j−1, dij ]

=⇒ [x2i, x] = 0

=⇒ hi = 0 =⇒ ki = 0

[x2i−1, [x2j−1, x2j ]] = [[x2i−1, x2j−1], x2j ] + [x2j−1, [x2i−1, x2j ]]

=⇒ [x2i−1, x+ yj ] = [cij , x2j ] + [x2j−1, aij ]

=⇒ [x2i−1, x] = 0

=⇒ fi = 0 =⇒ gi = 0

Now consider the elements that can be eliminated with the index m < i ≤ n.

[x2i, [x2i−1, x2i]] = [[x2i, x2i−1], x2i] + [x2i−1, [x2i, x2i]]

=⇒ [x2i, x+ yi] = [zi, x2i] + [x2i−1, dii]

=⇒ [x2i, x] = 0

=⇒ hi = 0

[x2i−1, [x2i, x2i−1]] = [[x2i−1, x2i], x2i−1] + [x2i, [x2i−1, x2i−1]]

=⇒ [x2i−1, zi] = [x+ yi, x2i−1] + [x2i, cii]

=⇒ 0 = [x, x2i−1]

=⇒ gi = 0

[x2i−1, [x2i, x2i]] = [[x2i−1, x2i], x2i] + [x2i, [x2i−1, x2i]]

=⇒ [x2i−1, dii] = [x+ yi, x2i] + [x2i, x+ yi]

=⇒ 0 = [x, x2i] + [x2i, x]

=⇒ ki = −hi =⇒ ki = 0
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For j 6= i:

[x2i−1, [x2j−1, x2j ]] = [[x2i−1, x2j−1], x2j ] + [x2j−1, [x2i−1, x2j ]]

=⇒ [x2i−1, x+ yj ] = [cij , x2j ] + [x2j−1, aij ]

=⇒ [x2i−1, x] = 0

=⇒ fi = 0

Therefore, for all 1 ≤ i ≤ n, the elements e, fi, gi, hi and ki can be eliminated, including y1 which is

achieved by a change of basis. As we have seen previously with the Heisenberg Lie algebra and the first type

of Heisenberg Leibniz algebra, the dimension of the multiplier is 4n2 − 1 and therefore the dimension of the

cover in this case is 4n2 + 2n.

6.3.1 The Heisenberg Leibniz Algebra of Dimension 5

The Heisenberg algebra of dimension 5 has the basis v1, v2, v3, v4, v. Taking the section µ, this gives

µ(vi) = xi for 1 ≤ i ≤ 4 and µ(v) = x. Taking the brackets of the elements in the cover, this gives 25

possible elements, wi in the basis of the multiplier. Without loss of generality, we will assume the following:

[x1, x2] = x+ w1

[x3, x4] = x+ w2

[x2, x1] = −x+ w3

[x4, x3] = w4

All other brackets remain the same as the brackets established for the cover of the 5-dimensional Lie

case. The following elements of the multiplier can be eliminated:

[x, [x1, x2]] = [[x, x1], x2] + [x1, [x, x2]]

=⇒ [x, x+ w1] = [w21, x2] + [x1, w22]

=⇒ [x, x] = 0

=⇒ w25 = 0

[x2, [x1, x2]] = [[x2, x1], x2] + [x1, [x2, x2]]

=⇒ [x2, x+ w1] = [−x+ w3, x2] + [x1, w9]

=⇒ [x2, x] = [−x, x2]

=⇒ w12 = −w22

[x3, [x1, x2]] = [[x3, x1], x2] + [x1, [x3, x2]]
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=⇒ [x3, x+ w1] = [w13, x2] + [x1, w14]

=⇒ [x3, x] = 0

=⇒ w16 = 0

[x4, [x1, x2]] = [[x4, x1], x2] + [x1, [x4, x2]]

=⇒ [x4, x+ w1] = [w17, x2] + [x1, w18]

=⇒ [x4, x] = 0

=⇒ w20 = 0

[x1, [x2, x1]] = [[x1, x2], x1] + [x2, [x1, x1]]

=⇒ [x1,−x+ w3] = [x+ w1, x1] + [x2, w5]

=⇒ −[x1, x] = [x, x1]

=⇒ −w8 = w21

[x3, [x4, x3]] = [[x3, x4], x3] + [x4, [x3, x3]]

=⇒ [x3, w4] = [x+ w2, x3] + [x4, w15]

=⇒ 0 = [x, x3]

=⇒ w23 = 0

[x3, [x4, x4]] = [[x3, x4], x4] + [x4, [x3, x4]]

=⇒ [x3, w19] = [x+ w2, x4] + [x4, x+ w2]

=⇒ 0 = [x, x4] + [x4, x]

=⇒ w24 = −w20 =⇒ w24 = 0

[x3, [x4, x1]] = [[x3, x4], x1] + [x4, [x3, x1]]

=⇒ [x3, w17] = [x+ w2, x1] + [x4, w13]

=⇒ 0 = [x, x1]

=⇒ w21 = 0 =⇒ w8 = 0

[x3, [x4, x2]] = [[x3, x4], x2] + [x4, [x3, x2]]

=⇒ [x3, w18] = [x+ w2, x2] + [x4, w14]

64



=⇒ 0 = [x, x2]

=⇒ w22 = 0 =⇒ w12 = 0

Again, as in the previous cases, a change of basis can be performed by letting

[x1, x2] = y = x + w1. This eliminates the element w1 and gives ŵi = wi − w1. This will not change the

brackets but will allow another element to be eliminated from the basis of the multiplier. Therefore, 10

elements of the multiplier can be eliminated, which gives a 15 dimensional multiplier. This is exactly the

dimension of the multiplier that can be seen from the general case using n = 2.

Clearly it can be seen that a 3-dimensional Heisenberg Leibniz algebra cannot be found in Case 2.
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