
 

ABSTRACT 
 

LOZADA SOTO, EMMANUEL A. Breeding and Management Applications of the Milk 
Leukocyte Differential. (Under the direction of Dr. Francesco Tiezzi). 
 

Mastitis is by far one of the most economically devastating diseases in dairy 

cattle. In both its subclinical and clinical form, it is associated with costs related to 

diagnosis, treatment, production losses, etc. The immune response of the cow is the 

primary defense against intramammary infections. Associated with the immune response 

is the recruitment of leukocytes such as neutrophils, macrophages, and lymphocytes that 

have specific roles for elimination of pathogens and resolution of infection event. The 

importance of the recruitment of these leukocytes has prompted the development of the 

milk leukocyte differential (MLD) method to determine the quantity and proportion of 

the different cells and use this information to diagnose infection events. The primary 

objective in this dissertation was to examine traits derived from this method for use in 

everyday mastitis detection and in selection programs for increased mastitis resistance. 

Our results demonstrated the diagnostic ability of cell thresholds and MLD diagnostic 

thresholds, significant differences in one or more traits for breed, lactation, day of sample 

collection, time of sample collection, and quarter position, and the usefulness of MLD 

traits for use in selection programs highlighted by estimates of heritability and genetic 

correlations, and results for the relative efficiency of selection against infection using 

MLD traits as correlated traits.  
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INTRODUCTION 

Mastitis 

Mastitis is a disease that is well known in the dairy industry for its frequency and 

for the adverse effects on economic return and animal welfare (Jamrozik and Schaeffer, 

2012). Mastitis is caused by the entrance of microorganisms into the mammary gland via 

the teat canal and initiation of an intramammary infection (IMI) (Jashari et al., 2016). 

Most mastitis cases are classified as either clinical mastitis or subclinical mastitis. 

Clinical mastitis can vary in severity but it is characterized by observable symptoms such 

as swelling, edema, and firmness of the infected quarter(s), and may also cause fever, loss 

of appetite, changes in color of milk, and abnormal secretions from the infected 

quarter(s), such as clots, flakes, and blood (Divers et al., 2007; Hammer et al., 2012). 

Apart from the obvious discomfort and loss of welfare of the cow associated with clinical 

mastitis of any severity, the visibility of affected cows within the herd with this condition 

makes quick intervention and initiation of management decisions possible. Animals in 

early lactation and in higher parity lactations are at special risk for contracting clinical 

mastitis, although first parity animals have higher incidence of clinical mastitis in early 

lactation than multiparous animals (Compton et al., 2007; Hammer et al., 2012). 

Subclinical mastitis on the other hand is characterized by a lack of observable symptoms 

or clinical signs in the milk and udder that can be identified by visual inspection or 

palpation of the udder, while the mammary gland is inflamed and/or infected and changes 

in milk composition are occurring (Hammer et al., 2012; Damm et al., 2017; Jaeger et al., 

2017). Subclinical mastitis in early lactation has been linked to decreased reproductive 

performance, which may worsen if infection progresses to clinical stage (Schrick et al., 

2001). Some risk factors for subclinical mastitis are geographical location, season, and 
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term of pregnancy of heifers (Fox, 2009). The costs related with this disease both clinical 

and subclinical are related to diagnostics, treatment, production losses (loss in milk yield, 

product quality, discarded milk, and reduction in milk price due to high SCC), labor, 

culling, and risk of other diseases (Carlén et al., 2004; Halasa et al., 2007). The costs 

associated with mastitis warrant the development of improved detection of intramammary 

infections. 

 

Pathogen specific infections 

The underlying cause of mastitis, more often than not is bacterial proliferation 

within the udder, occurring up to 90% of cases in one estimate (Burvenich et al., 1994; 

Gonçalves et al., 2018). Pathogens responsible for infection have been classified by their 

pathogenicity as major or minor pathogens, and by their means of proliferation as 

contagious or environmental pathogens. Contagious pathogens thrive in infected 

mammary glands and are spread between cows and between mammary quarters of the 

same cow, while environmental pathogens are present in the environment and infection 

occurs by contamination of the teats (Oviedo-Boyso et al., 2007). Risk factors for 

infection with contagious and environmental major pathogens include high herd milk 

SCC, contact with lactating cows prior to calving, and udder edema for contagious major 

pathogens, and lack of heifer hygiene and lack of supplementation with vitamins and 

minerals, for environmental major pathogens (Piepers et al., 2011). The existence of 

differences among pathogens for changes in milk production (milk loss), quality, and 

composition related to an IMI has been well established. Gröhn et al. (2004) found 

differences in milk loss between pathogens, and those responsible for the greatest amount 

of loss were S. aureus, E. coli, and Klebsiella spp. for first parity animals and 
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Streptococcus spp., Staph aureus, E. coli, Klebsiella spp., and A. pyogenes for second 

parity animals. Other studies have found differences between healthy quarters and those 

infected with contagious and/or gram negative pathogens in daily milk production and 

total milk loss (Schukken et al., 2009; Bobbo et al., 2017; Gonçalves et al., 2018). 

Mastitis caused by environmental or contagious major pathogens increases milk SCC 

values, total protein, total fat, and coagulation time (Sargeant et al., 2001; Bobbo et al., 

2017; Gonçalves et al., 2018). S. aureus is one of the most commonly isolated contagious 

major pathogens responsible for subclinical infections due to high prevalence and 

pathogenicity. The virulence of S. aureus is partially due to its use of an extracellular 

polysaccharide around the cell wall that affects host defense and its mechanism of 

altering secretory tissue for fibrotic one that affects response to treatment (Baselga et al., 

1994; Botaro et al., 2015). Infections with environmental pathogens such as CNS, S. 

uberis, and coliform bacteria are responsible for many cases of mastitis, being prevalent 

at high levels during calving and decreasing through lactation (Compton et al., 2007; Fox, 

2009; Pilla et al., 2012). 

 

Immune response and somatic cells 

Mammary gland immunity is a function of the effectiveness of the immune 

system of a cow. The immune system serves various purposes as it relates to the 

mammary glands, including prevention of bacterial entrance into the glands, recognition 

and discrimination between pathogens, elimination of existing infections, and restoration 

of tissue function (Oviedo-Boyso et al., 2007; Sordillo, 2018). Defense against infection 

in the bovine mammary gland consists of an anatomical barrier (teat canal and secretions) 

against pathogens and the immune response (Burvenich et al., 1994; Thompson-Crispi et 
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al., 2014). Immune response consisting of innate and adaptive immunity plays a key role 

in the elimination of causal pathogens and quick resolution of an infection event to avoid 

the immunopathology of mastitis (van den Borne et al., 2011). When exposure to a 

pathogen occurs the first line of defense for the mammary gland is innate immunity. It is 

characterized by its rapid activation following exposure and recruitment of somatic cells 

that have unique functions related to immunity, such as neutrophils (also called PMN), 

macrophages, lymphocytes, and epithelial cells (Olde Riekerink et al., 2007; Pilla et al., 

2012; Sordillo, 2018). The functions of these cells in innate immunity are: phagocytosis 

(neutrophils and macrophages), intracellular killing of bacteria (neutrophils and 

macrophages), production of immunoregulatory cytokines and oxylipids (macrophages), 

removal of debris (macrophages), pathogen recognition (epithelial cells), elimination of 

infected cells (lymphocytes), and production of antimicrobial proteins (lymphocytes) 

(Sordillo, 2018). One of the main roles of the innate response is to stimulate the adaptive 

immune response (Oviedo-Boyso et al., 2007). The adaptive immunity is pathogen 

specific and regulates or eliminates the signal produced by pathogen recognition, and 

uses an array of mechanisms to eliminate pathogens (Thompson-Crispi et al., 2014). 

Macrophages and lymphocytes also have functions in adaptive immunity, involving 

antigen presentation (macrophages and lymphocytes), production of cytokines 

(macrophages and lymphocytes) and antigen specific antibodies (lymphocytes) (Sordillo, 

2018). The number and distribution of somatic cells has been found to vary between 

cisternal and alveolar milk (Damm et al., 2017), pathogen specific infections (Leitner et 

al., 2000), stage of lactation, age of cow, seasons, days, and time of day (Olde Riekerink 

et al., 2007). In udders free of infection lymphocytes and macrophages are typically the 

predominant cell types, with higher proportions of macrophages serving as an indicator 
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of udder health (Leitner et al., 2000; Damm et al., 2017; Sordillo, 2018). In an infected 

quarter the proportion of neutrophils increases dramatically, forming the first line of 

defense, in fact the effectiveness of intramammary defense is dependent on this increase 

(Paape et al., 2003). Leitner et al. (2000) found that neutrophils were the main cell type in 

udders infected with acute E. coli and S. aureus. Overall, studying the immune response 

is a way to understand the inflammatory processes that are occurring, helping us identify 

which cows are undergoing an infection event and expediting treatment.  

 

MASTITIS DETECTION METHODS 

Many methods have been developed in recent decades to detect and diagnose an 

intramammary infection. Among the most popular and readily available are the California 

Mastitis Test (CMT), Somatic Cell Count (SCC), and bacteriological culturing. Recently 

a new tool has been developed, called Milk Leukocyte Differential (MLD), which 

quantifies somatic cells by type, opening up new avenues into mastitis monitoring and 

mastitis resistant research. 

 

California Mastitis Test 

The CMT is a qualitative measurement of the somatic cell count in the milk that 

has been used in fresh cow udder health monitoring as a screening test for subclinical 

mastitis (Dingwell et al., 2003; Anderson et al., 2010). It consists of adding a reagent to a 

quarter milk sample that disrupts the walls of somatic cells in the milk causing a 

thickening reaction that is scored indicating severity of infection (Leach et al., 2008). The 

subjective nature of the CMT scoring makes this method lack in accuracy. Dingwell et al. 

(2003) found that CMT has less than ideal sensitivity and specificity, which limits 
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effectiveness of use in individuals but might serve to develop herd level udder health 

profiles. Sargeant et al. (2001) found that increasing CMT threshold for infection, 

decreased the sensitivity and increased the specificity for identifying infected quarters. 

Anderson et al. (2010) found that CMT was not associated with significant mean 

differences in production which indicates limited use of CMT to predict milk loss 

associated with an IMI. 

 

Somatic Cell Count 

Somatic cell count has become the premier tool for mastitis monitoring and 

detection worldwide (Damm et al., 2017). SCC is a measurement of the total number of 

somatic cells in milk (cells/mL). It is used to evaluate udder health (presence and severity 

of infection and/or inflammation) and milk quality, where increased SCC indicates 

increased infection and/or inflammation and worsening milk quality (Leitner et al., 2000; 

Hand et al., 2012). The most widely used SCC threshold to distinguish between infected 

and uninfected quarters is a threshold of 100,000 cells/mL (Schwarz et al., 2010, 2011; 

Bobbo et al., 2017), though other thresholds have been identified and studied. For 

example, Jaeger et al. (2017) conducted a study where the optimal threshold for IMI 

detection was 150,000 cells/ml, meanwhile Jashari et al. (2016) stated that threshold 

values for detection of subclinical mastitis should be tailored to pathogen groups of 

interests. Increase in SCC threshold has been found to decrease the sensitivity and 

increase the specificity of identifying infected quarters (Sargeant et al., 2001) , which 

indicates that a preference of minimizing false positives over false negatives and vice 

versa might be a factor to consider when selecting an appropriate SCC threshold. 

Significant differences in SCC have been found between different times of day, 
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specifically between milkings, and vary between quarters (Olde Riekerink et al., 2007). 

Research into the relationship between SCC and cow production traits such as milk yield 

and milk components has been abundant. Anderson et al. (2010) found that for SCC in 4 

categories in respect to number of infected quarters (0, 1, 2, 3 or 4), SCC thresholds of 

200,000 cells/mL, 300,000 cells/mL, and 400,000 cells/mL were significantly associated 

with differences in summit milk, and the SCC threshold of 400,000 cells/mL was 

significantly associated with differences in 150d milk production. Hand et al. (2012) 

found number of test days with increased SCC to be a major risk factor for milk loss. 

With respect to the effect of SCC on milk composition, Malek dos Reis et al. (2013) 

found that increased SCC negatively affected the lactose and nonfat solids content of 

milk, while at the same time having the opposite effect on protein, total solids content, 

and fat yield. Similar results for effect of SCC on fat yield were found by Botaro et al. 

(2015). Milk loss because of high SCC has been linked to the parity of the animal and 

stage of lactation. Multiparous cows have increased milk loss as compared to their 

primiparous counterparts when SCC increases and have a higher risk of developing 

clinical mastitis than primiparous cows when both groups have low composite SCC 

(Carlén et al., 2004; Hagnestam-Nielsen et al., 2009; van den Borne et al., 2011). Stage of 

lactation has been found to be associated with production losses related to increased SCC, 

with animals in the latter stages of lactation suffering from the biggest production losses 

related to milk yield, with a possible explanation being lessening of compensatory ability 

of uninfected quarters as lactation progresses (Hagnestam-Nielsen et al., 2009). In 

summary, SCC is an invaluable tool for identifying quarters that are inflamed either by 

infection or other reasons. It has been reported to aid in fresh cow monitoring and 
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identification of animals with subclinical mastitis and animals at risk for clinical mastitis, 

possibly indicating level of production in later stages of lactation (Anderson et al., 2010). 

 

Bacteriological Culturing 

Bacteriological culturing is the standard method to diagnose intramammary 

infections. It is the most reliable method and the only one that elucidates the 

microbiological etiology of mastitis (Sargeant et al., 2001; Anderson et al., 2010). Since 

defining infection status is one of the biggest challenges in mastitis research, triplicate 

sampling for bacteriological culturing has been used as the gold standard to which the 

accuracy of other methods is measured against (Piepers et al., 2011). Since mastitis is 

caused by many pathogens that differ in pathogenesis, epidemiology, and symptoms 

caused, bacteriological culturing is used to identify the pathogens responsible so 

appropriate management decisions are implemented (proper antibiotic treatment) (Gröhn 

et al., 2004; Jaeger et al., 2017). The limitations of bacteriological culturing include high 

cost of sampling compared to other methods and the logistics involved if triplicate 

sampling of all quarters at calving for development of a herd pathogen profile is desired 

(Sargeant et al., 2001; Anderson et al., 2010). Nevertheless, if used in combination with 

other methods that accurately identify quarters in need of culturing, it is highly useful for 

mastitis monitoring. 

 

Milk Leukocyte Differential 

The MLD, which is used interchangeably with differential somatic cell count 

(DSCC), is a relatively new method of mastitis detection. It has only been used recently 

for dairy cattle mastitis monitoring. It consists of analysis of a milk sample where the 
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quantity of the different leukocytes is determined and expressed as cells per mL of milk. 

MLD analysis is focused on determining the number of neutrophils, macrophages, and 

lymphocytes, and their proportions. The two main methods for obtaining cell differentials 

are microscopy and flow cytometry. Microscopy was the preferred method in the past for 

being simple and cost effective, but it suffers from not being especially fast and having 

wide variation in results and poor repeatability due to differences in materials for 

sampling, differences in preparation, and differences between technicians (Redelman et 

al., 1988). Flow cytometry on the other hand has higher accuracy and is faster to perform 

(Pilla et al., 2013). Use of cell differentiation can reveal underlying inflammatory 

processes in mammary glands that have SCC levels below the usual threshold of 100x103 

cells/mL (Schwarz et al., 2010, 2011; Pilla et al., 2013). The use of cell differential 

methods extends to early lactation cow monitoring, where determination of the leukocyte 

proportions can help us assess udder health in this critical period and give us indications 

of future lactation production measures (Anderson et al., 2010). Anderson et al. (2010) 

found that for day 3 post calving, milk neutrophil percentage thresholds of 35% and 40% 

were associated with significant differences in 150-day milk when considered in 2 

categories (cows with no quarter above threshold and cows with at least 1 quarter above 

threshold), neutrophil percentage threshold of 30% was associated with significant 

differences for summit milk when considered in 4 categories (in respect to amount of 

quarters above threshold), and total absolute neutrophil thresholds of 150x103 cells/mL, 

200x103 cells/mL, and 250x103 cells/mL were significantly associated with summit milk 

when considered in 2 categories, and with both 150-day milk and summit milk when 

considered in 4 categories. One drawback of cell differentiation methods is that they were 

primarily developed for analysis of individual cow milk samples which precludes the 
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development of composite and herd average parameters (Damm et al., 2017).  

Nevertheless, cell differential methods are useful in helping detect initial phases of 

inflammation, define the stage of infection, select quarters for further analysis with 

bacteriological culturing, determine the success of antibiotic treatments, and monitor 

recovery among other things (Redelman et al., 1988; Koess and Hamann, 2008).  

 

GENETIC SELECTION FOR MASTITIS RESISTANCE 

Mastitis resistance is a highly complex trait involving genetic, physiological, and 

environmental factors (Rupp and Boichard, 2003). At its core resistance to any malady 

implies the ability to avoid factors causing disease.  Understanding the underlying genetic 

architecture of resistance has been a driver of research in this area. Selection for 

resistance is possible due to the existence of variability related to additive genetic effect 

of mastitis resistance, even though the consensus is that it makes up a small part of total 

phenotypic variance (Rupp and Boichard, 2003; Neuenschwander et al., 2012). 

Phenotype measures to evaluate and improve mastitis resistance include direct methods 

(infection diagnosis by bacteriological culturing), indirect methods (such as SCC, udder 

conformation, and milking speed), and combinations of both (Rupp and Boichard, 2003; 

Bloemhof et al., 2009; Thompson-Crispi et al., 2014).  

 

Direct Selection 

Genetic progress using direct selection against infection requires extremely 

accurate recording of health events during an animals life and repeatability of the data 

recorded, which has not been the case in the United States and most of the world, except 

in Scandinavia where direct selection for resistance has been taking place successfully for 
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decades (Neuenschwander et al., 2012; Parker Gaddis et al., 2014). When studied, 

estimates of the heritability of mastitis tend to be low. Examples of published estimates 

for unspecified, clinical and subclinical mastitis are presented in table 1. Overall, 

unspecified mastitis, clinical mastitis, and subclinical mastitis have similar estimates of 

heritability in the literature ranging from 0.02 to 0.09, 0.02 to 0.07, and 0.03 to 0.04 

respectively. Mastitis incidence from animals of different parity can be thought of as 

distinct traits, with some published estimates of heritability also appearing in table 1. In 

the literature, first parity animals had heritability estimates ranging from 0.03 to 0.08 for 

clinical mastitis, of 0.17 for subclinical mastitis, and from 0.06 to 0.10 for unspecified 

mastitis, while animals with more than one parity had estimates ranging from 0.03 to 0.10 

for clinical mastitis, 0.07 to 0.08 for subclinical mastitis, and from 0.05 to 0.06 for 

unspecified mastitis. Genetic correlation between mastitis incidence at different parities 

seems to increase with proximity of the lactations. Heringstad et al. (2005) estimated 

genetic correlations of 0.73, 0.67, and 0.73 between clinical mastitis at 1st parity and 

clinical mastitis at 2nd parity, clinical mastitis at 1st parity and clinical mastitis at 3rd 

parity, and clinical mastitis at 2nd parity and clinical mastitis at 3rd parity respectively. 

Similarly Bloemhof et al. (2009) estimated genetic correlations of 0.88, 0.63, and 0.91 

between clinical mastitis at 1st parity and clinical mastitis at 2nd parity, clinical mastitis at 

1st parity and clinical mastitis at 3rd parity, and clinical mastitis at 2nd parity and clinical 

mastitis at 3rd parity respectively. Even though direct selection for resistance is feasible 

and has been done, it is hindered by low heritability of mastitis, inaccurate health 

recording, higher cost of phenotyping, and potential inadvertent increase in susceptibility 

to other diseases (Thompson-Crispi et al., 2012).  
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Indirect Selection 

Indirect selection for mastitis resistance is more commonly done and can use 

genetically correlated traits related to inflammation, immune response, other diseases, 

conformation, and production measures (Jamrozik and Schaeffer, 2012). To improve 

disease resistance, (Thompson-Crispi et al., 2012) studied traits related to immune 

response, including cell mediated and antibody mediated response. These measures were 

found to have low to medium heritability and positive correlation with reproductive and 

conformational traits. Indirect selection can also be performed while trying to increase 

resistance to other diseases, such as ketosis, lameness, cystic ovaries, displaced 

abomasum, retained placenta. Parker Gaddis et al. (2014) estimated that mastitis has low 

to moderate and positive genetic correlations with cystic ovaries, displaced abomasum, 

ketosis, lameness, and retained placenta in first parity animals in both pedigree and 

genomic based analysis, while having low to moderate positive genetic correlations with 

cystic ovaries, displaced abomasum, and retained placenta in later parity animals in both 

pedigree and genomic based analysis. A similar study done by Zwald et al. (2004) found 

low positive genetic correlations between mastitis and displaced abomasum, ketosis, 

lameness, and cystic ovaries. Both studies found that mastitis and metritis share a low 

negative genetic correlation, which implies that selection for resistance to either trait 

might lead to susceptibility to the other.  Selection for reproductive and production traits 

can also have an impact in mastitis phenotype. Parker Gaddis et al. (2014) estimated low 

and negative genetic correlations between daughter pregnancy rate, productive life, and 

net merit, and mastitis, as well as positive correlations with milk yield and somatic cell 

score. The genetic relationship between conformation traits in dairy cattle and mastitis 

has also been heavily studied. The consensus is that mastitis has a low to moderate and 
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negative genetic correlation with traits such as udder depth, udder balance, fore udder 

attachment, and body conditioning score (Lassen et al., 2003; Govignon-Gion et al., 

2012; Koeck et al., 2012b). Govignon-Gion et al. (2012) found the following genetic 

correlations between clinical mastitis and conformation traits: udder depth (ranges from -

0.54 to -0.30 depending on breed), udder balance (ranges from -0.18 to -0.15 depending 

on breed), fore udder attachment (-0.13 for Holsteins), and body conditioning score (-

0.32 for Holsteins). Koeck et al. (2012b) found similar estimates for udder depth (-0.36) 

and fore udder attachment (-0.24). Results like these indicate that selection for improved 

conformation would be beneficial for decreasing mastitis incidence. Nevertheless, the 

most important correlated traits used in dairy producing countries are somatic cell count 

traits. Lactation average somatic cell count (LASCC), lactation average somatic cell 

score (LASCS), standard deviation of somatic cell count (SCC SD), standard deviation of 

somatic cell score (SCS SD), and number of test day records above a certain threshold 

(TD) are some of the traits that have been used as indicators of mastitis for selection. A 

few of the published estimates for the heritability of somatic cell count traits can be found 

in table 2. Genetic correlations of somatic cell count traits with mastitis were similar 

between studies, with correlations with clinical mastitis typically ranging from 0.50 to 

0.83 and with subclinical mastitis ranging from 0.67 to 0.98. No studies involving 

estimation of genetic parameters for traits derived from cell differentiation methods for 

genetic evaluation of mastitis were found. Therefore, further research in this area is 

needed to determine usefulness of such traits. Overall, indirect selection for mastitis 

resistance using genetically correlated traits has been proven effective due to lower cost 

of phenotyping, availability of records, higher heritability, and high genetic correlations 

with infection. 
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Table 1. Heritability estimates for mastitis traits. 

Trait Breed Country Heritability Reference 

 

Unspecified mastitis 

 

Holstein 

 

Canada 

 

0.02 

 

(Koeck et al., 2012a) 

Unspecified mastitis Not specified USA 0.09 (Zwald et al., 2004) 

Clinical mastitis Holstein Canada 0.05 (Neuenschwander et al., 2012) 

Clinical mastitis Not specified Netherlands 
0.03 (dataset A) and 0.02 (dataset 

B) 
(de Haas et al., 2008) 

Subclinical mastitis Not specified Netherlands 
0.04 (dataset A) and 0.03 (dataset 

B) 
(de Haas et al., 2008) 

Clinical mastitis 

Montbeliarde 

Normande 

Holstein 

 

France 

 

0.02 

0.02 

0.02 

(Govignon-Gion et al., 2012) 

Clinical mastitis Norwegian Red Norway 0.07 (Holtsmark et al., 2008) 

Unspecified mastitis Not specified Canada 0.07 (Koeck et al., 2012b) 

Unspecified mastitis Holstein Denmark 0.04 (Lassen et al., 2003) 

Clinical mastitis 
Swedish Red and Swedish 

Holstein 
Sweden 

0.04 (weekly records) 

0.04 (monthly records) 

 

(Urioste et al., 2010) 

Clinical mastitis Swedish Holstein Sweden 

0.08 (parity 1) 

0.08 (parity 2) 

0.07 (parity 3) 

(Urioste et al., 2012) 

Subclinical mastitis Swedish Holstein Sweden 

0.17 (parity 1) 

0.16 (parity 2) 

0.13 (parity 3) 

(Urioste et al., 2012) 

Clinical mastitis Holstein Czech Republic 

0.10 (parity 1) 

0.10 (parity 2) 

0.09 (parity 3) 

(Zavadilová et al., 2015) 

Clinical mastitis Norwegian Red Norway 

0.08 (parity 1) 

0.07 (parity 2) 

0.07 (parity 3) 

(Heringstad et al., 2005) 

Clinical mastitis 
Holstein, Dutch-Friesian, and 

Meuse-Rhine-Yssel 
Netherlands 

0.03 (parity 1) 

0.03 (parity 2) 

0.04 (parity 3) 

(Bloemhof et al., 2009) 

Unspecified mastitis Not specified USA 

0.06 (first parity, pedigree 

analysis) 

0.10 (first parity, genomic 

analysis) 

0.06 (later parities, pedigree 

analysis) 

0.05 (later parities, genomic 

analysis) 

(Parker Gaddis et al., 2014) 
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Table 2. Heritability estimates for somatic cell count traits. 

Trait1 Breed Country Heritability Reference 

 

LASCC (5-170) 

 

Danish Holsteins 

 

Denmark 

 

0.20 

 

(Sørensen et al., 2009) 

 

LASCC (5-300) 

 

Danish Holsteins 

 

Denmark 

 

0.23 

 

(Sørensen et al., 2009) 

LASCS Holstein Sweden 

 

0.14 (parity 1) 

0.13 (parity 2) 

0.10 (parity 3) 

(Carlén et al., 2004) 

 

LASCS (0-150) 

 

Holstein 

 

Canada 

 

0.11 

 

(Koeck et al., 2012c) 

 

LASCS (151-250) 

 

Holstein 

 

Canada 

 

0.11 

 

(Koeck et al., 2012c) 

 

LASCS 

 

Not specified 

 

Netherlands 

 

0.08 to 0.13 

 

(de Haas et al., 2008) 

 

LASCS 

 

Norwegian Red 

 

Norway 

 

0.12 

 

(Holtsmark et al., 2008) 

 

LASCS (0-150) 

 

Not specified 

 

Canada 

 

0.10 

 

(Koeck et al., 2012b) 

SCS SD 
 

Not specified 

 

Canada 

 

0.04 

 

(Koeck et al., 2012b) 

 

TD (>500) 

 

Not specified 

 

Canada 

 

0.06 

 

(Koeck et al., 2012b) 

 

TD (41-80) 

 

Swedish Red and Swedish Holstein 

 

Sweden 

 

0.15 (weekly records) 

0.08 (monthly records) 

 

(Urioste et al., 2010) 

 

TD (151-500) 

 

Swedish Red and Swedish Holstein 

 

Sweden 

 

0.16 (weekly records) 

0.22 (monthly records) 

(Urioste et al., 2010) 

TD (>500) Swedish Red and Swedish Holstein Sweden 
0.16 (weekly records) 

0.22 (monthly records) 
(Urioste et al., 2010) 

SCC SD Swedish Red and Swedish Holstein Sweden 
0.10 (weekly records) 

0.13 (monthly records) 
(Urioste et al., 2010) 

1
LASCC = lactation average somatic cell count (days averaged in parenthesis); LASCS= lactation average somatic cell score (days averaged in 

parenthesis); SCC SD = Somatic cell count standard deviation; SCS SD = Somatic cell score standard deviation; TD (41-80, 151-500, >500) = number of 
test days with SCC above threshold (in parenthesis). 
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ABSTRACT 

 The aim of this study was to assess the viability of traits derived from milk 

leukocyte differential (MLD) for inclusion in selection programs focused on decreased 

mastitis susceptibility and for use in fresh cow mastitis monitoring. Quarter milk samples 

were collected from Holstein and Jersey cows on day 4 and 11 post calving. Samples 

were analyzed using MLD where cell counts for total leukocytes, neutrophils, 

macrophages, and lymphocytes were obtained, as well as a quarter infection diagnosis. 

Traits derived from MLD included cell scores (total leukocyte score (TLS), neutrophil 

score (NS), macrophage score (MS), and lymphocyte score (LS)), cell proportions 

(neutrophil percentage (NP), macrophage percentage (MP), and lymphocyte percentage 

(LP)), cell thresholds (total leukocyte count threshold (tTLC), neutrophil threshold (tN), 

macrophage threshold (tM), and lymphocyte threshold (tL)), and MLD diagnostic 

thresholds (diagnosis at threshold setting A (diagA), threshold seting B (diagB), and 

threshold setting C (diagC)). Microbiological culturing was conducted to determine 

infection status to compare our MLD diagnosis, serve as an indicator of infection, and to 

determine pathogen occurrence. Traits derived from the microbiological analysis 

included occurrence of major pathogens (MaP), occurrence of minor pathogens (MiP), 

and infection (INF). Data analysis was done using two linear mixed models, the first one 

(Model I) was used on all traits for the estimation of the fixed effects of breed, lactation 

number, day of sample collection, time of sampling and quarter location, and the random 

effects of animal and week of sampling. The second model (Model II) was used for the 

estimation of variance components and genetic parameters, and included the fixed effects 

in Model I, and the random effects of additive genetic effect and permanent 

environmental effect. Results show all fixed effects were significant for one or more of 
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the analyzed traits. Heritability estimates include low to moderate heritability estimates 

for cell score and cell percentage traits, and moderate to high estimates for cell threshold, 

MLD diagnosis, and infection traits. Phenotypic and genetic correlations among and 

between cell score and cell percentage traits were as expected due to their shared genetic 

determination related to immune response. Phenotypic and genetic correlations between 

all traits and infection and calculated relative efficiency of selection for infection using 

the correlated traits showed that most traits analyzed in this study have value for 

inclusion in decreased mastitis susceptibility breeding programs, specially MLD 

diagnostic traits.  

Key words: mastitis susceptibility, somatic cells, milk leukocyte differential, genetic 

parameters 

INTRODUCTION 

 Mastitis is well known as a cause of economic loss, due to reduced production, 

diagnostic and treatment costs, and premature culling of cows (Halasa et al., 2007). This 

includes both clinical mastitis (CM) as well as subclinical mastitis (SM). Mastitis has 

profound effects on many aspects of dairy production; having been associated with 

decreased yields and changes in milk quality and composition (Bobbo et al., 2017). SM is 

especially concerning because it oftentimes remains undetected due to the lack of 

external symptoms; meanwhile, the underlying infection and its effects persist. Somatic 

cell count (SCC) is a measurement that has been adopted as one of the most widely used 

monitoring tools for mastitis (Damm et al., 2017). SCC measures the total number of 

somatic cells in milk (cells/mL) and is used to evaluate udder health, milk quality, and 

severity of infection, with cell count levels at or above 100x103 cells/mL generally 

indicating inflammation (Schwarz et al., 2011; Hand et al., 2012; Bobbo et al., 2017). 
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However, quantification of the different cell types and their proportions is not possible 

using SCC alone. For this purpose, the milk leukocyte differential (MLD) has been 

developed. MLD is a tool that separates and quantifies the somatic cells in the milk 

responsible for the immune response in the mammary gland. It is useful in monitoring 

changes in cell proportions, which can be used to detect inflammation in the early stages 

of infection before SCC levels become alarming (Pilla et al., 2012; 2013).  

 Progress due to genetic selection towards decreased susceptibility to mastitis has 

not advanced at a rate equal to yield traits. Current research has focused on exploring the 

genetic relationships between mastitis and SCC. Mastitis and SCC traits have been found 

to share low heritability estimates and moderate positive genetic correlations between 

them (Koeck et al., 2012). This relationship has resulted in the routine inclusion of 

predictor traits such as SCC in mastitis resistance breeding programs (Martin et al., 

2018). However, similar research with MLD traits to determine their merit and possible 

advantage over SCC traits as tools for both diagnosis and selection has been so far scarce. 

Therefore, the objective of this study was to determine the variance components and 

genetic parameters of indicator traits derived from MLD and of intramammary infection 

(INF) diagnosed via bacteriological culturing, and to examine the feasibility of inclusion 

of MLD traits in decreased mastitis susceptibility breeding programs. Additionally, we 

sought to evaluate the use of MLD as a tool for subclinical mastitis screening in early 

lactation. 
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MATERIALS AND METHODS 

Animals 

 Animal use was approved by the North Carolina State University Institutional 

Animal Care and Use Committee. Quarter milk samples were collected from enrolled 

recently calved dairy cows on both days 4 and 11 post-calving (calving date treated as 

day 0) from December 2016 to November 2017. The study included a total of 127 

animals from the Holstein (HO, n=82) and Jersey (JE, n=45) breeds ranging from 

lactation 1 to 6. Cows were housed at the Dairy Education Unit at North Carolina State 

University (NCSU). The herd had an average milk yield of 11,762 kg/yr and an average 

bulk tank SCC of 177,000 cells/mL during the study.  Animals were fed a TMR of corn 

silage, sorghum silage, grass hay, soy hulls, citrus pulp, and grain mix. Dry cows had free 

access to pastures or free stalls at their discretion, while the milking herd had limited 

access to pastures and were milked twice a day at a 12-hour interval in a parallel milking 

parlor. Cows treated with antibiotics from the period of a month before calving to day 4 

post calving or treated between day 4 and 11 post calving were not eligible for the study. 

 

Sample Collection and Analysis 

 Quarter milk samples (N=987) were collected either during the morning or 

evening milking in quarter-based sampling chambers (Q4, Advanced Animal 

Diagnostics, Inc., Morrisville, NC) for determination of MLD and aseptically collected 

quarter milk samples (N=973) in 13mL vials for microbiological culturing. Prior to 

collection, quarters were aseptically prepared using steps outlined in the Laboratory and 

Field Handbook on Bovine Mastitis (National Mastitis Council (U.S.), 1987). Samples 

for microbiological culturing were collected from the foremilk after expression of 2-3 
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streams of milk, after which the samples for MLD analysis were collected. Samples were 

then transported to the NCSU Veterinary College, where samples underwent MLD 

analysis and duplicate samples were frozen at -20°C for subsequent microbiological 

analysis. 

 

Microbiological Analysis 

 In total 973 sterile milk samples were collected from both day 4 (N=511) and day 

11(N=462) post calving. A total of 95 samples were found to be contaminated and are not 

reported on further. Samples were analyzed within 1 week of collection. 

Procedures for bacteriologic culture and identification were consistent with 

those previously published (Hogan et al., 1999). Milk samples were 

quickly thawed and shaken for 15 seconds and 0.1 mL of milk was plated on trypticase 

soy agar (TSA) with 5% sheep blood (BBL TSA II 5% SB agar; Becton, Dickinson and 

Co., Sparks MD). Plates were incubated at 36°C and examined after 24 and 48 hours of 

incubation. A culture was classified as contaminated if growth of 3 or more microbial 

species was observed (Dohoo et al., 2011). Non-contaminated cultures were classified as 

containing major pathogens, minor pathogens, or no growth. The major pathogens 

cultured included: Staphylococcus aureus, Streptococcus spp., Trueperella pyogenes, 

Enterococcus spp., Pantoea spp., coliform bacteria (e.g., Enterobacter aerogenes, 

Escherichia coli, Klebsiella spp.), Serratia marcescens, and miscellaneous fungal 

species. Minor pathogens included: Corynebacterium spp., Actinomyces spp., 

Acinetobacter spp., and CNS. Infection classification criteria followed previously 

published methods (Anderson et al., 2010). Quarters were classified as infected if they 

contained any major pathogen species (MaP) at any concentration or minor pathogens 
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(MiP) at a concentration of 100 colonies/mL. Quarters containing both major and minor 

pathogens were classified as containing major pathogens and counted towards total 

number of infected quarters. 

 

Milk Leukocyte Differential 

 Samples were analyzed using the AAD QScout Farm Lab (Advanced Animal 

Diagnostics, Inc., Morrisville, NC). Cell counts were reported as total leukocyte counts 

(TLC), which represented the sum of neutrophils (N), macrophages (M), and 

lymphocytes (L). This differs from the SCC in that epithelial cells are not included. The 

instrument also provides a “diagnosis” for each quarter, reported as “positive”, 

“negative” or “borderline”. To achieve normality of the data, transformation of cell 

counts was performed using the same equation used to convert SCC to somatic cell score 

(SCS = log base 2 (SCC /100,000) + 3), resulting in scores for each cell type (NS =  

neutrophil score, MS =  macrophage score, and LS =  lymphocyte score) and total 

leukocytes (TLS =  total leukocyte score). Percentage of each cell type over the total 

leukocyte count was calculated and neutrophil percentage (N%), macrophage percentage 

(M%), and lymphocyte percentage (L%) were obtained.   

 Evaluation of the AAD QScout Farm Lab was done by comparison of diagnosis 

given by the machine with infection status according to microbiological culturing. 

Samples were analyzed using the early lactation setting of the AAD QScout Farm Lab 

which includes 18 diagnostic settings (1-18). Estimates of sensitivity (Se), specificity 

(Sp), and accuracy (Ac) were calculated for all settings and three threshold diagnostic 

settings were chosen for further analysis based on: default factory setting (setting 12, 

diagA), highest specificity (setting 18, diagB), and highest sensitivity (setting 2, diagC). 
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Cell thresholds that best represent infection status were obtained according to published 

methods (Youden, 1950), where a receiver operating characteristic curve was used to plot 

the true positive rate (TPR, sensitivity) and false positive rate (FPR, 1-specificity) of 

different cell thresholds for every cell type (tTLC, tN, tM, and tL).    

 

Statistical Analyses 

 To estimate the effects of breed, lactation, day of sample collection, time of 

sampling, quarter location, animal, and week of sampling on cell score (TLS, NS, MS, 

LS), cell percentage (N%, M%, L%), MLD diagnosis setting (diagA, diagB, diagC), 

pathogen type occurrence (MaP, MiP), infection (INF), and infection according to cell 

thresholds the following model (Model I) was used: 

I)	yijklmno=µ+Breedi+	Lactationj+Dayk+TODl+Quarterm+IDn(i)+Weeko+e	ijklmno 

Where yijklmno is the investigated trait; µ is the overall mean; Breedi is the fixed 

effect of the ith class of breed (i=HO, JE); Lactationj is the fixed effect of the jth class of 

lactation number (j= 1, ³2); Dayk is the fixed effect of the kth class of day of sample 

collection (k=4, 11); TOD> is the fixed effect of the lth class of time of day (l= AM, PM); 

Quarterm is the fixed effect of the mth class of quarter location (m= left rear (LR), right 

rear (RR), left front (LF), right front (RF)); IDn(i) is the random effect of the nth class of 

animal within the ith class of breed [ac ~ N(0, s2
c)]; Weeko is the random effect of the oth 

class of week of sampling (1-48 weeks) [uw ~ N(0, s2
w)]; e	ijklmno is the random residual 

[e ~N(0, s2
e)]. Model I was fitted using PROC GLIMMIX in SAS (SAS Version 9.4, 

SAS Institute Inc., Cary, NC), F values and P values for all effects, as well as least square 

means estimates were determined using the same procedure, where categorical traits were 
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transformed from the underlying liability scale to probability scale using previously 

published methods (Zwald et al., 2006). Statistical significance for all effects was 

considered present at a = 0.05. Similar procedures were followed to estimate the additive 

genetic effect of the animal on the same traits listed previously. Data was analyzed using 

the following model (Model II):  

II)	yijklmno=µ+Breedi+	Lactationj+Dayk+	TODl+Quarterm+	an+Epo+e	ijklmno 

 Where yijklmno is the investigated trait; µ is the overall mean; Breedi is the fixed 

effect of the ith class of breed (i=HO, JE); Lactationj is the fixed effect of the jth class of 

lactation number (j= 1, ³2); Dayk is the fixed effect of the kth class of day of sample 

collection (k=4, 11); TODl is the fixed effect of the lth class of time of day (l= AM, PM); 

Quarterm is the fixed effect of the mth class of quarter location (m= left rear (LR), right 

rear (RR), left front (LF), right front (RF));  AB is the random additive genetic effect n of 

the animal  following ac ~ N(0, As2
a)]; CDE is the random permanent environmental 

effect o of each quarter in an individual animal, up ~ N(0, Is2
pe); e	ijklmno is the random 

residual, which follows e ~ N(0, Is2
e), where I is an identity matrix and A is the 

numerator relationship matrix build on a pedigree traced back nineteen generations. 

Parameters s2
a, s2

pe and s2
e were estimated using the THRGIBBS1F90 program (Tsuruta 

and Misztal, 2006) from the BLUPF90 family of programs. The random effect of week of 

sampling which served as our contemporary group explained none of the total phenotypic 

variance and therefore was excluded from the analysis in model II. Proportion of variance 

due the additive genetic effect, otherwise known as the narrow sense heritability (h2) was 

calculated by dividing the variance component s2
a over the total phenotypic variance s2

a 

+ s2
pe + s2

e. Data visualization was done with R Studio (v.0.99.903) (RStudio Team, 
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2015). Relative efficiency of selection for reduced INF using correlated traits, was 

calculated using the following equation: 

DGG/DG	 = 	
hJ		rK
hL

 

Where hx is the heritability of the correlated trait, rx.y is the genetic correlation 

between the correlated trait and the trait for which genetic progress is desired (INF in our 

case), and hy is the heritability of the trait for which genetic progress is desired. 

 

RESULTS AND DISCUSSION 

Microbiological Analysis 

            Culture classification and organism prevalence results for the remaining samples 

after removal of contaminated samples are reported in Table 1. After incubation of the 

samples, 197 (22.44%) cultures had growth of one or more microbial species, while 681 

(77.56%) showed no growth (NG). This proportion of growth positive cultures to 

negative is higher than those reported in most studies with similar methodology, but is 

lower than values found in other studies (Jashari et al., 2016; Gonçalves et al., 2017). 

This may be due to a multitude of factors including: differences in sampling strategy, 

amount of quarters sampled, stage of lactation of sampled animals, criteria for growth 

classification, herd specific risk factors, etc. Of those samples that resulted in growth, 110 

(55.84%) were classified as containing major pathogens (MaP). Staphylococcus aureus 

was the most prevalent major pathogen, followed by Streptococcus dysgalactiae. The 

remaining major pathogens were less prevalent and included: Streptococcus uberis, 

Klebsiella spp., Escherichia coli, Enterobacter aerogenes, Enterococcus spp., 

Trueperella pyogenes, Pantoea spp., and Serratia marcescens. Minor pathogens (MiP) 

were present in 87 (44.16%) of growth positive cultures. CNS were the most prevalent 
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minor pathogens found, followed by Corynebacterium spp. Other minor pathogens found 

were Actinomyces spp. and Acinetobacter spp. Gonçalves et al. (2017) observed similar 

results for species of microorganisms isolated, frequency of specific pathogens and 

proportion of major pathogens to minor. Based upon our definition of infection, a total of 

167 quarters (19.02%) were classified as infected (INF), while 711 (80.98%) were 

classified as not infected. Of those samples that were classified as infected (INF), 108 

(64.67%) samples belonged to animals at day 4 of sample collection and 59 (35.33%) 

samples to animals at day 11 of sample collection, while 89 (53.29%) samples belonged 

to animals in their first lactation and 78 (46.71%) samples belonged to animals with 2 or 

more lactations. The comparability of our infection classification results with other 

studies is complicated by the fact that there is no widespread consensus of the 

pathogenicity of certain microorganisms, sampling and culturing methodology, and 

culture classification in mastitis research, therefore our classified scheme is one of 

several that could be used. 

 

Milk Leukocyte Differential 

  Descriptive statistics for cell counts, cell scores, cell percentages, cell thresholds, 

and MLD diagnosis thresholds are given in Table 2. MLD diagnosis was obtained for all 

987 quarter milk samples, but records for 111 samples were not kept due to incomplete 

information, these samples were classified as unknown and disregarded from diagnosis 

analyses. The results for the evaluation of the AAD QScout Farm Lab using the 

microbiological culturing infection status as the gold standard, were the following: the 

first threshold setting (diagA) had 44.72% Se, 92.69% Sp, and 84.55% Ac, the second 

threshold setting (diagB) had 34.93% Se, 95.40% Sp, and 84.63% Ac, and the third 



 

36 
 

threshold setting (diagC) had 60.27% Se, 83.60% Sp, and 79.46% Ac. Our estimates for 

Se are higher and for Sp are similar to those obtained by Godden et al. (2017) (Se = 12.7 

to 39.1, Sp = 82.1 to 95.2), who performed a similar study evaluating the milk leukocyte 

differential test using the same machine and duplicate sampling for early lactation 

animals. Based on the values for sensitivity and specificity of the three settings the “best” 

threshold depends on whether your objective lies in decreasing the amount of quarters 

that are given treatment without having a true IMI (false positives) or the amount of 

quarters that are not treated while being infected (false negatives). This is the first study 

to obtain cell thresholds that maximize both Se and Sp and evaluate their use in mastitis 

detection and breeding applications as traits. The values for cell concentration that 

maximize the Se and Sp, and therefore best represent the difference between a positive or 

negative diagnosis were obtained by calculating the Youden’s index (Youden, 1950) for 

various thresholds of every cell type. The selected cell concentration threshold was 

162x103 cells/mL (Se=61.00%, Sp=80.03%) for TLC, 93 x103 cells/mL (Se=59.14%, 

Sp=83.48%) for N, 56 x103 cells/mL (Se=47.56%, Sp=89.06%) for M, and 47 x103 

cells/mL (Se=56.70%, Sp=84.08%) for L. Estimates of Se and Sp among cell thresholds 

are very similar with tTLC having the highest Se (61.00%) and tM the highest Sp 

(89.06%). The ROC curve for each cell type thresholds is illustrated in Figure 1. 

 

Estimation of F values, significance, and least square means 

 F value and P value results, as well as least square means estimates from model I 

are presented in Tables 3 and 4, respectively. The effect of breed was significant for all 

cell score traits considered, and for all cell threshold traits except tL. Jersey animals had 

on average higher cell scores and cell threshold infection rates; TLS (JE=3.24, HO=2.68, 
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P=0.012), NS (JE=2.23, HO=1.64, P=0.015), MS(JE=1.06, HO=0.64, P=0.033), LS 

(JE=1.02, HO=0.42, P=0.009), tTLC(JE=0.28, HO=0.15, P=0.020), tN (JE=0.25, 

HO=0.13, P=0.025), and tM(JE=0.16, HO=0.08, P=0.020). One possible explanation for 

this phenomenon is the difference in milk volume produced by these two breeds, which 

would cause higher concentration of somatic cells in Jerseys. Breed has previously been 

found to be a significant factor for milk yield, milk and protein composition traits, and 

milk coagulation properties (Bobbo et al., 2017; Stocco et al., 2017). The effect of 

lactation was significant for MaP occurrence and INF. Similar to our study, Pilla et al. 

(2012) found that lactation number was not significant for any of the cell percentages 

studied (N%, M%, or L%). Animals in their first lactation had a higher MaP (1=0.14, 

³2=0.03, P=0.0002) and INF (1=0.26, ³2=0.11, P=0.0007) when compared to animals 

with multiple lactations. These results are in accordance with findings by Compton et al. 

(2007), who found that the risk of CM in heifers is three times that of older cows in the 

early stages of lactation, and also in accordance with Barkema et al. (1998), who found 

that the incidence rate of CM was higher in heifers than in cows. The effect of day of 

sample collection was significant for all traits considered in this study except for N%, 

MiP, and a positive diagnosis using diagB. Animals in the 4th day of sample collection 

had on average higher cell scores, L%, cell threshold infection rate, MaP, INF, and rate of 

positive diagnosis at diagA and diagC, than animals at the 11th day of sample collection; 

TLS (4=3.36, 11=2.56, P<0.0001), NS (4=2.35, 11=1.51, P<0.0001), MS (4=1.21, 

11=0.49, P<0.0001), LS (4=1.19, 11=0.26, P<0.0001), L% (4=0.23, 11=0.22, P=0.0150), 

tTLC (4=0.30, 11=0.14, P<0.0001), tN (4=0.25, 11=0.13, P<0.0001), tM (4=0.16, 

11=0.08, P=0.0034), tL (4=0.24, 11=0.12, P<0.0001), MaP (4=0.09, 11=0.05, P=0.0256), 

INF (4=0.21, 11=0.14, P=0.0095), diagA (4=0.09, 11=0.06, P=0.0498), and diagC 
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(4=0.25, 11=0.12, P=0.0022).  These results for cell score, cell threshold, and diagnosis 

traits are expected as it is widely known that the level of somatic cells, specifically 

neutrophils, is high at parturition and declines gradually during the first weeks of 

lactation, even for non-infected animals (Dohoo, 1993). The elevated occurrence of major 

pathogens and infection might be due to the persistence of dry period infections and/or an 

increased risk of infection in fresh animals by opportunistic pathogens. Animals in the 

11th day of sample collection had higher M% than those at the 4th day; M% (4=0.25, 

11=0.28, P=0.0017). The changes in cell proportions as they relate to SCC increase have 

been heavily investigated, Pilla et al. (2012) found that macrophage percentage was lower 

in early lactation and found the effect of day of sample collection to be significant for 

macrophage percentage, meanwhile Damm et al. (2017) found decreasing trend of 

macrophage percentage as SCC increased. Therefore, our results can be due to an 

increase in macrophage percentage as a factor of the previously mentioned decline of N 

and L after the first days of lactation. The effect of time of sampling was significant for 

NS, N%, and M%. Samples taken in the morning resulted in a higher M%, meanwhile 

sampling in the evening resulted in higher NS and N%; M% (AM=0.28, PM=0.25, 

P=0.0130), NS (AM=1.73, PM=2.13, P=0.0315), and N% (AM=0.49, PM=0.52, 

P=0.0026). These results reflect changes in cell proportion that occur during the day and 

are consistent with the observed diurnal variation of cells by Riekerink et al. (2007), 

specifically changes in proportions of neutrophils and macrophages post milking. Finally, 

the effect of quarter position was significant for M%, L%, MiP, and INF. For these traits, 

at least one quarter had an estimate that differed significantly from one or more quarters; 

M% (LF=0.29, LR=0.25, RF=0.27, RR=0.25, P=0.0009), L% (LF=0.21, LR=0.24, 

RF=0.22, RR=0.24, P<0.0001), MiP (LF=0.08, LR=0.10, RF=0.05, RR=0.17, P=0.0030), 
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and INF (LF=0.15, LR=0.17, RF=0.14, RR=0.24, P=0.0419). Quarter position has been 

found in previous studies not to be significantly associated with cell percentages (Pilla et 

al., 2012, 2013) or with clinical mastitis occurrence (Hammer et al., 2012). Our results 

seem to indicate that there is some effect, although its implications for mastitis research 

and possible biological explanations are yet to be elucidated.  

 

Variance components, phenotypic and genetic correlations, and correlated selection. 

 Variance component and heritability results for all traits analyzed using Model II 

are presented in Table 5. Cell score traits had moderate heritability that ranged from 0.37 

to 0.40; TLS and NS both had an estimate of 0.40, followed by estimates of 0.38 and 0.37 

for MS and LS respectively. Cell percentage traits had low to moderate heritability that 

ranged from 0.27 to 0.29; N% had an estimate of 0.27 and M% an estimate of 0.29. Due 

to poor convergence, variance component and heritability estimates could not be 

calculated for L%. Cell threshold traits had moderate to high heritability that ranged from 

0.48 to 0.57; tTLC had an estimate of 0.57, both tN and tL had an estimate of 0.51, and 

tM an estimate of 0.48. MLD diagnosis traits had moderate to high heritability, positive 

diagnosis had an estimate of 0.50, 0.48, and 0.53 for diagA, diagB, and diagC 

respectively. No previous study that we could find has looked at the estimation of genetic 

parameters for cell type traits or diagnosis derived from MLD, therefore comparison of 

our estimates with other studies is not possible. However, estimates for the heritability of 

SCS, a proxy for our TLS trait, have been previously reported to be 0.11 for early 

lactation (Koeck et al., 2012), 0.18 for general SCS (CDN, 2016), and 0.20 and 0.23 for 

lactation average SCC at 170 and 300 days respectively (Sorensen et al., 2009). Our 

estimate of 0.40 for TLS is significantly higher than most estimates in previously 
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published literature for SCS, this is most likely due to our experimental design (small 

sample size and repeated records for animals). Variance component and heritability 

estimates for MaP and MiP could not be calculated due to low convergence. Lastly, INF 

had a moderate heritability of 0.41. Comparing our INF heritability estimate is hindered 

by the scope of our study which was early lactation and our definition of infection as a 

trait. Nevertheless, our estimate is higher than those previously reported for similar traits, 

for example, Sørensen et al. (2009) reported an estimate for unspecified mastitis of 0.14. 

It is our belief that the inflated nature of the heritability estimates presented in this study 

is mainly due to low sample size.    

 Estimates for the phenotypic and genetic correlations between traits related to 

somatic cell measures are presented in Table 6.  Cell score traits (TLS, NS, MS, and LS) 

exhibited highly positive phenotypic and genetic correlations between themselves, 

ranging from 0.79 to 0.98 and from 0.81 to 0.99 respectively. This implies that all cell 

types increase jointly with an increase of TLS and that there is a shared genetic 

architecture responsible for the immunological response. Correlations between cell 

percentage traits (N%, M%, and L%) were phenotypically moderate to high and negative, 

ranging from -0.30 to -0.71, and genetically highly negative, ranging from -0.82 to -0.85. 

The estimates between N% and L% were not significant. Schwartz et al. (2011) found 

statistically significant negative phenotypic correlations between SCC and both L% and 

M%, and a significant positive phenotypic correlation between SCC and N%, all of 

which is in accordance with our results.  Phenotypic correlations between cell score and 

cell percentage traits were low to moderate and positive for N% and all cell score traits, 

ranging from 0.10 to 0.52, and for L% and LS, which had an estimate of 0.18. M% had 

moderately negative phenotypic correlations with cell score traits, ranging from -0.34 to -
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0.48. Phenotypic estimates between M% and MS, L% and TLS, and L% and NS were not 

significant. Genetic correlations were moderate to high and positive between N% and cell 

score traits, ranging from 0.53 to 0.65, and were moderate and negative between M% and 

cell score traits, ranging from -0.43 to -0.58. Genetic correlation estimates between MS 

and all cell percentage traits, and between L% and all cell score traits were not 

significant. Overall, cell score traits are very highly correlated to each other and with N% 

suggesting their interchangeable use in selection. 

Estimates for the phenotypic and genetic correlations between infection and all 

other traits, and relative efficiency of selection for reduced infection on correlated traits 

are presented in table 7. Phenotypic and genetic correlations with cell score traits were 

moderate and positive ranging from 0.41 to 0.48 phenotypically and from 0.39 to 0.46 

genetically. Correlations with cell percentage traits were low to moderate, being 

positively correlated with N% and negatively correlated with M%. Estimates were 0.30 

and -0.28 phenotypically, and 0.29 and -0.24 genetically, for N% and M% respectively. 

Correlations with all cell threshold traits were moderate and positive, ranging from 0.52 

to 0.56 phenotypically and from 0.48 to 0.50 genetically. A positive diagnosis in all three 

settings was moderate to highly and positively correlated, with estimates ranging from 

0.55 to 0.65 phenotypically and from 0.51 to 0.61 genetically. Estimates for relative 

efficiency of selection for reduced infection on correlated traits range from -0.20 for M% 

to 0.69 for diagC. These results suggest that selection using MLD traits, specifically 

MLD diagnosis traits might prove useful, considering the high cost of diagnosing mastitis 

using microbial culturing. 
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CONCLUSIONS 

 Milk leukocyte differential is a tool that has been recently developed to diagnose 

mastitis using the changes in somatic cell populations and overall proportions to do so. 

MLD has been found to have high specificity, correctly diagnosing quarters that are not 

infected, although our results and previously published studies have consistently shown 

that this method only has moderate sensitivity. This study has found that for the traits 

derived from MLD, there are significant differences at the quarter level when it comes to 

breed, lactation, day of sample collection, time of sampling, and quarter position. 

Estimates of genetic parameters such as low to moderate heritability estimates for cell 

score and cell percentage traits, and moderate to high estimates for cell threshold, MLD 

diagnosis, and infection traits are promising. Results for estimated genetic correlations 

with infection and relative efficiency of selection for reduced infection, show that the 

traits derived from MLD have merit for inclusion in selection indices for decreased 

mastitis susceptibility.  Further research must be done validating results of this study in 

different populations and with pathogen specific infection before such implementations 

are possible.  
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Table 1. Milk culture classification and organism prevalence1 

 
                            

 

 

 
 
 
 
 
 
 
 
 
  
 
                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 TLC = Total Leukocyte Count; N = Neutrophil Count; M = Macrophage Count; L = Lymphocyte Count. 
2 Percent calculated on the total amount of non-contaminated cultures (N=878). 
3 Percent calculated on the total amount of growth positive cultures (N=197). 
4 Staphylococcus aureus in combination with: Escherichia coli (1), Trueperella pyogenes (1), Corynebacterium spp. (1), and Streptococcus dysgalactiae (2). 
5 Streptococcus dysgalactiae in combination with: Escherichia coli (1), Serratia marcescens (1), Klebsiella spp. (1), and CNS (4). 
6  CNS in combination with: Acinetobacter spp. (2) and Corynebacterium spp. (2).

Classification 
 

 
# 
 
 

 
%2 

 

 

 
%3 

 

 

Mean TLC 
(cells/mL) 

 

 
Mean N (cells/mL) 

 
 

 
Mean M (cells/mL) 

 
 

 
Mean L (cells/mL) 

 
 

 
No Growth 
 

 
681 77.56 

 

  
129.80 x103 

 
70.98 x103 

 
29.53 x103 

 
29.58x103 

Major Pathogens 110 12.53 
 

55.84 
 

1,406.00 x103 988.30x103 159.30 x103 257.7 x103 

Staphylococcus aureus 47 5.35 23.86     
Staphylococcus aureus dual infections 4 5 0.57 2.54     
Streptococcus dysgalactiae 26 2.96 13.20     
Streptococcus dysgalactiae dual infections 5 7 0.80 3.55     
Streptococcus uberis 3 0.34 1.52     
Escherichia coli + Enterococcus spp. 1 0.11 0.51     
 Enterobacter aerogenes  1 0.11 0.51     
Enterococcus spp.  1 0.11 0.51     
Pantoea spp.  1 0.11 0.51     
Serratia marcescens 2 0.23 1.02     
Trueperella pyogenes + Corynebacterium spp. 1 0.11 0.51     
Enterococcus spp. + CNS  1 0.11 0.51     
Fungi 
 

14 1.59 
 

7.11 
 

    

Minor Pathogens 87 9.91 44.16 201.70 x103 105.40 x103 47.56 x103 38.05 x103 
Actinomyces spp. 1 0.11 0.51     
CNS 55 6.26 27.92     
CNS dual infections 6 4 0.46 2.03     
Corynebacterium spp. 
 

27 3.08 
 

13.71 
 

    

Total 
 

878 100.00 
 

100.00     
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Table 2.  Descriptive Statistics for milk leukocyte differential and diagnosis traits 
by day of sample collection. 

 

 
Cell Measure:1 

 

 
Mean 

 

 
Median 

 

 
Min value 

 

 
 

Max value 
 
 

 
Standard Deviation 

 

 Day 4 Day 11 Day 4 Day 11 Day 4 Day 11 Day 4 Day 11 Day 4 Day 11 

 
Cell Count2 

 

          

TLC 368.80 227.18 104.00 59.50 
 

15.00 7.00 12149.00 17250.00 1153.88 1019.03 

N 
 

235.73 144.24 50.00 28.00 5.00 3.00 9040.00 12750.00 851.75 747.12 

M 60.78 33.18 27.00 16.00 2.00 0.00 1614.00 984.00 135.00 72.32 

L 
 

72.43 49.71 24.00 12.00 2.00 1.00 2152.00 3517.00 189.19 211.49 

Cell Scores 
 

          

TLS 
 

3.35 2.53 3.06 2.25 0.26 -0.64 9.92 10.43 1.69 1.66 

NS 
 

2.37 1.50 2.00 1.16 -1.32 -2.05 9.50 9.99 1.83 1.83 

MS 
 

1.18 0.44 1.11 0.36 -2.64 -10.29 7.01 6.30 1.59 1.50 

LS 1.17 0.23 0.94 -0.06 -2.64 -3.64 7.43 8.13 1.72 1.85 

 
Cell Percentages 
 

          

N% 
 

51.95% 50.82 51.92% 50.65% 9.63% 13.79% 77.88% 89.09% 10.43% 11.98% 

M% 
 

25.13% 27.56% 23.75% 25.81% 4.63% 0.00% 74.13% 83.33% 12.00% 14.70% 

L% 
 

24.11% 22.02% 22.74% 21.45% 0.40% 2.22% 84.18% 63.08% 8.24% 8.45% 

Cell Thresholds3 

 
          

tTLC 
 

0.34 0.18         

tN  
 

0.30 0.17         

tM  
 

0.22 0.11         

tL 0.27 0.13         

 
MLD Diagnosis3 

 

          

DiagA 
 

0.15 0.11         

DiagB 
 

0.10 0.07         

DiagC 
 

0.27 0.16         

 
1 TLC = Total Leukocyte Count; N = Neutrophil Count; M = Macrophage Count; L = Lymphocyte Count; TLS =  Total Leukocyte 
Score; NS =  Neutrophil Score; MS =  Macrophage Score; LS =  Lymphocyte Score; N% = Neutrophil Percentage; M% = Macrophage 
Percentage; L% = Lymphocyte Percentage; tTLC = Total Leukocyte Count Threshold; tN = Neutrophil Threshold; tM = Macrophage 
Threshold; tL = Lymphocyte Threshold; DiagA= Positive Diagnosis Threshold Setting A; DiagB = Positive Diagnosis Threshold 
Setting B; DiagC= Positive Diagnosis Threshold Setting C. 
2 Unit for cell count is x103 cells/mL. 
3 Occurrence of infection according to threshold. 
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Table 3. ANOVA results for model I 
 

 

1 TLS =  Total Leukocyte Score; NS =  Neutrophil Score; MS =  Macrophage Score; LS =  Lymphocyte Score; N% = Neutrophil 
Percentage; M% = Macrophage Percentage; L% = Lymphocyte Percentage; tTLC = Total Leukocyte Count Threshold; tN = 
Neutrophil Threshold; tM = Macrophage Threshold; tL = Lymphocyte Threshold; MaP = Major Pathogen Occurrence; MiP = Minor 
Pathogen Occurrence; INF = Infection; DiagA= Positive Diagnosis Threshold Setting A; DiagB = Positive Diagnosis Threshold 
Setting B; DiagC = Positive Diagnosis Threshold Setting C. 
* P<0.05; ** P<0.01; *** P<0.001                                                                      

Trait1 

 

 
Fixed Effects 

 

Breed 
 

Day of Sample Collection 
 

Lactation 
 

 
Time of Sampling 

 
 

Quarter 
 

Cell Score      

 
TLS 
 

6.47** 
 

79.5*** 
 

0.8 
 

2.86 
 

0.68 
 

NS 
 

6.09** 
 

76.53*** 
 

0.64 
 

4.64* 
 

0.75 
 

MS 
 

4.64* 
 

71.93*** 
 

0.34 
 

0.14 
 

0.61 
 

LS 
 

7.06** 
 

90.03*** 
 

0.91 
 

2.49 
 

2.53 
 

Cell Percentages      

N% 1.41 2.88 0 9.10** 0.72 

M% 1.37 9.95** 0.48 6.20* 5.56*** 

L% 0.09 5.95* 0.21 0.07 11.39*** 

Cell Thresholds      

tTLC 
 

5.54* 
 

25.6*** 
 

1.8 
 

0.19 
 

1.0 
 

tN 
 

5.16* 
 

16.4*** 
 

2.01 
 

0.56 
 

1.41 
 

tM 
 

5.41* 
 

8.66** 
 

0.43 
 

0.71 
 

0.48 
 

tL 
 

3.8 
 

19.17*** 
 

1.28 
 

0.02 
 

2.1 
 

Microbial Culturing      

MaP 
 

1.78 
 

5.0* 
 

13.87*** 
 

0.51 
 

0.23 
 

MiP 
 

0.07 
 

0.8 
 

1.39 
 

1.97 
 

4.69** 
 

INF 
 

0.67 
 

6.75** 
 

11.71*** 
 

0 
 

2.75* 
 

MLD Diagnosis      

DiagA 1.95 3.86* 0.86 2.31 0.38 
 
DiagB 

2.98 2.30 0.27 0.51 0.15 

 
DiagC 
 

2.16 
 

18.28*** 
 

0.27 
 

0.42 
 

1.37 
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1 TLS =  Total Leukocyte Score; NS =  Neutrophil Score; MS =  Macrophage Score; LS =  Lymphocyte Score; N% = Neutrophil Percentage; M% = Macrophage Percentage; L% = Lymphocyte Percentage; tTLC = Total Leukocyte Count Threshold; tN = Neutrophil Threshold; tM = 
Macrophage Threshold; tL = Lymphocyte Threshold; MaP = Major Pathogen Occurrence; MiP = Minor Pathogen Occurrence; INF = Infection; DiagA= Positive Diagnosis Threshold Setting A; DiagB = Positive Diagnosis Threshold Setting B; DiagC = Positive Diagnosis Threshold Setting C. 
 
 
 
 
 
 
 

 
 

Table 4. Least Squares Means (LSMEANS) results for model I (SE within parentheses) 
 

  
Least Squares Means 

 

  
Breed 

 

 
Lactation 

 
Day of Sample Collection 

 
Time of Sampling 

 
Quarter 

 
Trait1 

 
Holstein 

 
Jersey 

 
1st Lactation 

 
³2 Lactations 

 
Day 4 

 
Day 11 

 
AM 

 
PM 

 
Left Front Quarter 

 
Left Rear Quarter 

 
Right Front Quarter 

 
Right Rear Quarter 

 

 
Cell Score 
 

            

TLS 2.68(0.15) 3.24(0.19) 3.06(0.19) 2.86(0.15) 3.36(0.14) 2.56(0.14) 2.81(0.18) 3.11(0.12) 2.86(0.15) 2.97(0.15) 3.01(0.15) 3.01(0.15) 

NS 1.64 (0.16) 2.23(0.20) 2.03(0.20) 1.84(0.16) 2.35(0.15) 1.51(0.15) 1.73(0.20) 2.13(0.13) 1.82(0.16) 1.93(0.16) 1.98(0.16) 2.00(0.16) 
MS 0.64(0.14) 1.06(0.17) 0.91(0.17) 0.79(0.14) 1.21(0.13) 0.49(0.13) 0.82(0.17) 0.88(0.12) 0.88(0.14) 0.78(0.14) 0.92(0.14) 0.82(0.14) 
LS 0.42(0.16) 1.02(0.20) 0.83(0.20) 0.62(0.16) 1.19(0.14) 0.26(0.15) 0.57(0.20) 0.87(0.13) 0.53(0.16) 0.80(0.16) 0.71(0.16) 0.86(0.16) 

Cell Percentages 
             
N% 0.50(0.01) 0.51(0.01) 0.51(0.01) 0.51(0.01) 0.51(0.01) 0.50(0.01) 0.49(0.01) 0.52(0.01) 0.50(0.01) 0.50(0.01) 0.51(0.01) 0.51(0.01) 
M% 0.27(0.01) 0.26(0.01) 0.26(0.01) 0.27(0.01) 0.25(0.01) 0.28(0.01) 0.28(0.01) 0.25(0.01) 0.29(0.01) 0.25(0.01) 0.27(0.01) 0.25(0.01) 
L% 0.23(0.01) 0.23(0.01) 0.23(0.01) 0.22(0.01) 0.23(0.01) 0.22(0.01) 0.23(0.01) 0.23(0.01) 0.21(0.01) 0.24(0.01) 0.22(0.01) 0.24(0.01) 
 
 
Cell Thresholds 
  

 

          
tTLC 0.15(0.03) 0.28(0.06) 0.25(0.05) 0.17(0.04) 0.3(0.04) 0.14(0.03) 0.2(0.05) 0.22(0.03) 0.17(0.04) 0.21(0.04) 0.23(0.05) 0.23(0.05) 
tN 0.13(0.03) 0.25(0.05) 0.22(0.05) 0.15(0.03) 0.25(0.04) 0.13(0.03) 0.17(0.05) 0.20(0.03) 0.14(0.03) 0.19(0.04) 0.21(0.04) 0.21(0.04) 
tM 0.08(0.02) 0.16(0.04) 0.13(0.04) 0.10(0.03) 0.16(0.03) 0.08(0.02) 0.1(0.03) 0.13(0.03) 0.10(0.03) 0.13(0.03) 0.10(0.03) 0.13(0.03) 
tL 0.13(0.03) 0.22(0.05) 0.20(0.04) 0.14(0.03) 0.24(0.03) 0.12(0.03) 0.17(0.04) 0.18(0.03) 0.12(0.03) 0.18(0.04) 0.19(0.04) 0.21(0.04) 
 
 
Microbial Culturing 
 

  

    

  

    
MaP 0.05(0.02) 0.09(0.03) 0.14(0.04) 0.03(0.01) 0.09(0.02) 0.05(0.02) 0.06(0.03) 0.08(0.02) 0.07(0.02) 0.06(0.02) 0.06(0.02) 0.08(0.03) 
MiP 0.1(0.02) 0.09(0.02) 0.11(0.03) 0.08(0.02) 0.09(0.02) 0.11(0.02) 0.12(0.03) 0.08(0.01) 0.08(0.02) 0.10(0.03) 0.05(0.02) 0.17(0.03) 
INF 0.15(0.03) 

 
 

0.19(0.04) 
 
 

0.26(0.05) 
 
 

0.11(0.02) 
 
 

0.21(0.03) 
 
 

0.14(0.03) 
 
 

0.17(0.04) 
 
 

0.17(0.03) 
 
 

0.15(0.03) 
 
 

0.17(0.04) 
 
 

0.14(0.03) 
 
 

0.24(0.04) 
 
 

 
MLD Diagnosis 
  

 
          

DiagA 0.06(0.02) 0.09(0.03) 0.09(0.03) 0.06(0.02) 0.09(0.02) 0.06(0.02) 0.05(0.02) 0.10(0.02) 0.06(0.02) 0.08(0.02) 0.08(0.02) 0.07(0.02) 
DiagB 0.05(0.02) 0.09(0.03) 0.08(0.03) 0.06(0.02) 0.08(0.02) 0.06(0.02) 0.06(0.03) 0.08(0.02) 0.06(0.02) 0.07(0.02) 0.08(0.03) 0.07(0.02) 
DiagC 
 
 

0.14(0.04) 
 
 

0.22(0.06) 
 
 

0.19(0.06) 
 
 

0.16(0.04) 
 
 

0.25 (0.05) 
 
 

0.12(0.03) 
 
 

0.16(0.05) 
 
 

0.19(0.04) 
 
 

0.14(0.04) 
 
 

0.17(0.05) 
 
 

0.21(0.05) 
 
 

0.21(0.05) 
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Table 5. Variance component and heritability (h2) results for model II (95% CI within parentheses) 
 

 

 
Variance Components 

 

 

Trait1 

 
 

 
Additive Variance 

 

 
Cow Quarter 

Permanent Environmental 
Variance 

 

 
Residual Variance 

 
Total Phenotypic Variance 

 
h2 

Cell Score 
     

TLS 1.16 (0.76, 1.61) 0.62 (0.43, 0.78) 1.12 (0.97, 1.26) 2.90 (2.47, 3.35) 0.40 (0.31, 0.49) 
NS 1.06 (0.71, 1.48) 0.56 (0.40, 0.73) 1.02 (0.0.87, 1.14) 2.64 (2.27, 3.06) 0.40 (0.31, 0.49) 
MS 0.50 (0.33, 0.71) 0.23 (0.17, 0.31) 0.56 (0.50, 0.65) 1.31 (1.14, 1.52) 0.38 (0.29, 0.47) 

LS 0.65 (0.42, 0.90) 0.35 (0.25, 0.46) 0.75(0.65, 0.83) 1.75 (1.52, 2.02) 0.37 (0.28, 0.46) 

Cell Percentages 

     

N% 0.39x10-2 (0.30x10-2, 0.60 x10-2) 0.25 x10-3 (0, 0.10 x10-2) 0.10x10-1 (0.90 x10-2, 0.11x10-1) 0.15x10-1 (0.13x10-1, 0.16x10-1) 0.27 (0.19, 0.35) 
M% 0.54x10-2 (0.40 x10-2, 0.80 x10-2) 0.35x10-3 (0, 0.10 x10-2) 0.13 x10-1 (0.12 x10-1, 0.14 x10-1) 0.19 x10-1 (0.16 x10-1, 0.21 x10-1) 0.29 (0.21, 0.37) 
L% Not Converged Not Converged Not Converged Not Converged Not Converged 

Cell Thresholds 

     

tTLC 2.75 (1.67, 3.98) 1.07 (0.34, 1.88) 1.00 (0.88, 1.16) 4.82 (3.37, 6.40) 0.57 (0.43, 0.70) 

tN 1.89 (1.04, 2.76) 0.78 (0.20, 1.38) 1.01 (0.87, 1.15) 3.67 (2.57, 4.78) 0.51 (0.37, 0.66) 
tM 1.58 (0.86, 2.26) 0.69 (0.15, 1.35) 1.01 (0.87, 1.16) 3.27 (2.29, 4.28) 0.48 (0.33, 0.62) 
tL 1.92 (1.14, 2.78) 0.84 (0.23, 1.53) 1.01 (0.87, 1.15) 3.77 (2.60, 4.82) 0.51 (0.37, 0.65) 
 
 
Microbial Culturing 

     

MaP Not Converged Not Converged Not Converged Not Converged Not Converged 

MiP Not Converged Not Converged Not Converged Not Converged Not Converged 
INF 1.48 (0.80, 2.29) 1.12 (0.33, 1.99) 1.01 (0.87, 1.15) 3.60 (2.58,4.94) 0.41 (0.27, 0.56) 
 
 
MLD Diagnosis 

     

DiagA 1.97 (0.99, 3.09) 0.90 (0.19, 1.69) 1.00 (0.87, 1.15) 3.90 (2.50, 5.20) 0.50 (0.32, 0.66) 
DiagB 1.71 (0.79, 2.77) 0.87 (0.03, 1.87) 1.01 (0.87, 1.15) 3.59 (2.23, 5.20) 0.48 (0.30, 0.64) 
DiagC 
 

2.42 (1.35, 3.71) 1.10 (0.35, 1.93) 1.01 (0.87, 1.16) 4.52 (3.12, 6.13) 0.53 (0.38, 0.67) 

 

1 TLS =  Total Leukocyte Score; NS =  Neutrophil Score; MS =  Macrophage Score; LS =  Lymphocyte Score; N% = Neutrophil Percentage; M% = Macrophage Percentage; L% = Lymphocyte 
Percentage; tTLC = Total Leukocyte Count Threshold; tN = Neutrophil Threshold; tM = Macrophage Threshold; tL = Lymphocyte Threshold; MaP = Major Pathogen Occurrence; MiP = Minor 
Pathogen Occurrence; INF = Infection; DiagA= Positive Diagnosis Threshold Setting A; DiagB = Positive Diagnosis Threshold Setting B; DiagC = Positive Diagnosis Threshold Setting C. 
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Table 6. Phenotypic (above diagonal) and genetic (below diagonal) correlations 
between somatic cell measures 1 2 

 
 TLS NS MS LS N% M% L% 

TLS  0.98 0.89 0.96 0.38 -0.33 -0.03 

NS 0.99  0.84 0.95 0.52 -0.44 -0.03 

MS 0.95 0.85  0.79 0.10 0.07 -0.15 

LS 0.99 0.98 0.81  0.40 -0.48 0.18 

N% 0.53 0.65 0.20 0.57  -0.71 -0.01 

M% -0.43 -0.52 -0.02 -0.58 -0.85  -0.30 

L% -0.11 -0.13 -0.38 -0.02 -0.11 -0.82  

 

1 TLS = Total Leukocyte Score; NS =  Neutrophil Score; MS =  Macrophage Score; LS =  Lymphocyte Score; N% = Neutrophil   
Percentage; M% = Macrophage Percentage; L% = Lymphocyte Percentage. 
2 Estimates in boldface are statistically significant. 
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Table 7. Phenotypic (rph) and genetic correlations (rg) with INF and relative 
efficiency of selection (DGc/DG) for INF on correlated trait. 

 
Trait rph rg 

 
aDGc/DG 2 

 

TLS 0.48 0.43 
 

0.42 
 

NS 0.48 0.43 
 

0.42 
 

MS 
 

0.41 
 

0.39  
0.38 

LS 0.46 0.46 
 

0.44 
 

N% 0.30 0.29 
 

0.24 
 

M% -0.28 -0.24 
 

-0.20 
 

tTLC 0.52 0.48 
 

0.57 
 

tN 0.54 0.50 
 

0.56 
 

tM 0.56 0.49 
 

0.53 
 

tL 0.53 0.49 
 

0.55 
 

 
DiagA 0.55 0.51 

 
0.56 

 
 

DiagB 
 

0.65 0.60  
0.65 

 
DiagC 0.63 0.61 

 
0.69 

 
 

1 TLS = Total Leukocyte Score; NS =  Neutrophil Score; MS =  Macrophage Score; LS =  Lymphocyte Score; N% = Neutrophil 
Percentage; M% = Macrophage Percentage; tTLC = Total Leukocyte Count Threshold; tN = Neutrophil Threshold; tM = Macrophage 
Threshold; tL = Lymphocyte Threshold; DiagA= Positive Diagnosis Threshold Setting A; DiagB = Positive Diagnosis Threshold 
Setting B; DiagC = Positive Diagnosis Threshold Setting C. 
			2	DG$/DG	 = 	

'(	•	)*
'+
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Figure 1. Combined ROC curves for cell concentration thresholds.
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 The importance of the research presented in this dissertation is to examine the use of 

milk leukocyte differential technology to improve mastitis detection and treatment, as well as 

serve the purpose of providing novel traits to which selection pressure can be applied to 

increase mastitis resistance. In the first chapter, we established the published literature 

relevant to the definition of intramammary infection, economic effects of mastitis, 

responsible pathogens, immune response, mastitis detection methods, and what has been 

done in terms of selection towards resistance. In the second chapter, we examined the 

viability of traits derived from MLD technology (cell score, cell percentage, cell threshold, 

and MLD diagnosis traits) for use in mastitis monitoring and in selection for resistant 

animals. Analysis of the ability of detection of infected quarters for cell and diagnostic 

thresholds showed low to moderate sensitivity and high specificity for diagnostic thresholds, 

and moderate sensitivity and high specificity for cell thresholds. For the effects analyzed we 

found differences in breed, lactation, day of sample collection, time of sample collection, and 

quarter position for one or more traits in our study. In the estimation of genetic parameters, 

we found low to moderate heritability estimates for cell score and percentage traits, and 

moderate estimates for cell threshold, MLD diagnosis, and infection traits. The strength and 

direction of the genetic correlations within and between cell score and cell percentage traits 

were in accordance with the nature of immune response. Finally, genetic correlations 

between analyzed MLD traits and infection as well as estimates for the relative efficiency of 

selection for decreased intramammary infection using MLD traits indicate the potential 

inclusion of these traits in selection programs for mastitis disease resistance. Our hope is that 

the work done in this dissertation serves to drive further research into the use of novel traits 

derived from cell differentiation for selection against intramammary infection. 


