
ABSTRACT

WESELCOUCH, MICHAEL. The Uniqueness and Irreducibility of P -partition Generating
Functions. (Under the direction of Ricky Liu).

The (P, ω)-partition generating function of a labeled poset (P, ω) is a quasisymmetric func-

tion enumerating certain order-preserving maps from P to Z+. We aim to characterize when

two labeled posets have the same partition generating function.

We simplify the question by restricting our attention to the naturally labeled case, that is,

when ω is order preserving. In this case, a decreasing run in a linear extension corresponds to

an antichain in the poset. Using the Hopf algebras of posets and quasisymmetric functions, we

give necessary conditions for two posets to have the same generating function. In particular,

we show that they must have the same number of antichains of each size and give an explicit

formula for counting this number. This fact is a consequence of the existence of a family of

linear functions that determine the number of maximal and minimal elements in a naturally

labeled poset.

The shape of a poset is a partition that is determined by the sizes of unions of chains in P . We

show that the shape of a poset is determined by the support of its partition generating function

in the fundamental quasisymmetric function basis. We also discuss which shapes guarantee

uniqueness of the P -partition generating function. In the case that it is not uniquely determined,

we give a method of constructing pairs of non-isomorphic posets with the same generating

function.

Next, we approach our question from a new direction by expanding the (P, ω)-partition gen-

erating function in terms of the type 1 quasisymmetric power sum basis {ψα}. Using this expan-

sion, we show that connected, naturally labeled posets have irreducible P -partition generating

functions. We also show that series-parallel posets are uniquely determined by their partition

generating function. We conclude by giving a combinatorial interpretation for the coefficients of

the ψα-expansion of the (P, ω)-partition generating function akin to the Murnaghan-Nakayama

rule.
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Chapter 1

Introduction

For a finite poset P = (P,≺) with a bijective labeling ω : P → [n], the (P, ω)-partition generating

function K(P,ω)(x) is a quasisymmetric function enumerating certain order-preserving maps

from P to Z+. This generating function is of interest because many families of symmetric and

quasisymmetric functions can be expressed nicely in terms of the (P, ω)-partition generating

functions. For example, every elementary symmetric function, complete homogenous symmetric

function, and skew Schur function can be expressed as the partition generating function of

a certain labeled poset. Additionally, the chromatic quasisymmetric function of Shareshian

and Wachs [22] and the quasisymmetric functions associated to matroids of Billera, Jia, and

Reiner [4] can be expressed as a nonnegative sum of some K(P,ω)(x).

In this chapter we will motivate some of the questions that are answered in this thesis

and give an overview of what we will cover. We then discuss some preliminaries about the

main objects used in this thesis. These objects are compositions and partitions, posets, (P, ω)-

partitions, and quasisymmetric functions.

1.1 Overview

The question of when two distinct posets can have the same (P, ω)-partition generating function

has been studied extensively in the case of skew Schur functions [5, 17, 19], by McNamara and

Ward [18] for general labeled posets, and by Hasebe and Tsujie [11] for rooted trees. The

initial goal of this thesis is to consider the naturally labeled case, that is, to give necessary

and sufficient conditions for when two naturally labeled posets have the same (P, ω)-partition

generating function. We say that P is naturally labeled if x � y implies x ≤ y as integers. We

will write P instead of (P, ω) whenever P is naturally labeled.

In general, it is not true that a poset can be distinguished by its P -partition generating

function. The smallest case in which two distinct naturally labeled posets have the same parti-
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tion generating function is the two 7-element posets shown below. We will explore this example

further in Section 3.3, where we give a general construction for non-isomorphic posets with the

same generating function.

In the early chapters of this thesis, we will rely heavily on the expansion of KP (x) in the

fundamental quasisymmetric function basis. It is a famous result in the study of (P, ω)-partitions

that the expansion KP (x) in the fundamental quasisymmetric function basis depends only on

the linear extensions of P . A linear extension is a permutation that agrees with the relations

of P , that is, if x ≺ y in P , then x must appear before y in the permutation. In fact, KP (x) is

uniquely determined by the multiset of descent sets of the linear extensions of P .

The set of finite posets form a basis for a combinatorial Hopf algebra. Informally, a combi-

natorial Hopf algebra is a graded Hopf algebra with a basis consisting of combinatorial objects.

The map that sends a poset to its partition generating function is a Hopf algebra morphism

which implies that it commutes with each of the comultiplication maps. In Chapter 2, we will use

this fact and tools from the combinatorial Hopf algebra structure on posets due to Schmitt [21]

(see also [1]) to prove that if KP (x) = KQ(x), then for all triples (k, i, j), P and Q must have

the same number of k-element order ideals that have i maximal elements and whose comple-

ment has j minimal elements. In particular, they must have the same number of antichains of

each size, proving a conjecture of McNamara and Ward [18]. As a result of our proof, one can

compute certain coefficients in the fundamental quasisymmetric function expansion of KP (x)

explicitly in terms of the number of such ideals.

In Chapter 3, we will show that if KP (x) = KQ(x), then P and Q must have the same

shape. Here, the shape of a finite poset, denoted sh(P ), is the partition λ whose conjugate

partition λ′ satisfies

λ′1 + λ′2 + · · ·+ λ′i = ai,

where ai is the largest number of elements in a union of i antichains of P . In fact, we will prove

a stronger statement, namely that if the support of KP (x) and KQ(x) in the fundamental

quasisymmetric function basis is the same, then P and Q must have the same shape. The proof

of this result depends on the fact that descents in the linear extensions of P correspond to

antichains in P . Knowing that the shape of a poset is determined by its partition generation

function, we ask the following question: for which partitions λ does sh(P ) = λ guarantee that

P is uniquely determined by KP (x)?
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We show that if sh(P ) has at most two parts, is a hook shape, or has the form sh(P ) =

(λ1, 2, 1, . . . , 1), thenKP (x) = KQ(x) implies P ∼= Q. Conversely, we show that if sh(P ) contains

(3, 3, 1) or (2, 2, 2, 2), then KP (x) = KQ(x) does not necessarily imply P ∼= Q by constructing

two distinct posets of this shape with the same generating function. It remains to be answered

what happens when sh(P ) = (λ1, 2, 2, 1, . . . , 1).

In Chapter 4, we study the expansion of K(P,ω)(x) in the type 1 quasisymmetric power

sum basis {ψα} introduced by Ballantine, Daugherty, Hicks, Mason, and Niese in [3]. Such

expansions have previously been considered in the naturally labeled case by Alexandersson and

Sulzgruber in [2].

It is well known that the (P, ω)-partition generating function of a disconnected poset is

reducible since it can be expressed as a product over the connected components of P . McNa-

mara and Ward [18] asked whether the converse is true, namely whether the (P, ω)-partition

generating function of a connected poset is always irreducible in QSym. If said question is true,

then one can determine the number of connected components of P from K(P,ω)(x). We answer

this question affirmatively in the naturally labeled case. In particular, we relate part of the ψα-

expansion of KP (x) to certain zigzag labelings of P , which exist only for connected posets. We

then use this to deduce that connected, naturally labeled posets have irreducible P -partition

generating functions in Section 4.4. Unfortunately, our proof does not extend to all connected

labeled posets (P, ω). It remains open whether all connected labeled posets (P, ω) have irre-

ducible (P, ω)-partition generating functions. (See [13] for some discussion of irreducibility in

QSym.)

An important object in this thesis is a pair of linear functionals η and η̃ on QSym (called

min1 and max1 in Chapter 2) that can be used to determine if a poset has exactly 1 minimal

or 1 maximal element. These functionals also have the property that they send any reducible

element of QSym to 0. In fact, they send any element in the span of the reducible elements

of QSym to 0. In Section 4.3, we express η and η̃ in terms of the basis {ψα} and use this to

describe the action of various involutions of QSym on this basis.

Hasebe and Tsujie showed in [11] that all rooted trees are uniquely determined by their

partition generating function. Their proof relies on their result that rooted trees have irre-

ducible partition generating functions. They then asked whether series-parallel posets can be

distinguished by their partition generating functions. (A poset is series-parallel if it can be built

from one-element posets using ordinal sum and disjoint union operations.) This is a natural

question to ask since every rooted tree is series-parallel. We use the previously stated result on

irreducibility to give a complete, affirmative answer to this question in Section 4.5.

Alexandersson and Sulzgruber [2] show that when (P, ω) is naturally labeled, KP (x) =∑
α cαψα is ψ-positive, and they give a combinatorial interpretation for the coefficients cα. The

interpretation they gave depends on certain P -partitions that we call pointed P -partitions. In
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Section 4.6, we extend this work and give a (signed) combinatorial interpretation for the coef-

ficients in the ψα-expansion of K(P,ω)(x) for any labeled poset. This interpretation generalizes

the Murnaghan-Nakayama rule for computing the expansion of a skew Schur function in terms

of power sum symmetric functions.

In summary, in Chapter 1 we will discuss some background information and preliminaries;

in Chapter 2 we will use tools from the combinatorial Hopf algebra structure on posets to

count various statistics about the poset; in Chapter 3 we will study posets of a fixed shape

and see whether there exists distinct posets of that shape with the same partition generating

function; in Chapter 4 we study the combinatorics of the (P, ω)-partition generating function

when expanded in the type 1 quasisymmetric power sum basis.

1.2 Preliminaries

We begin with some preliminaries about compositions and partitions, posets, (P, ω)-partitions,

and quasisymmetric functions.

1.2.1 Compositions and partitions

A composition α = (α1, α2, . . . , αk) of n is a finite sequence of positive integers summing to n.

(When it is clear from context, we will remove the parentheses and commas when writing a

composition.) A weak composition of n is a finite sequence of nonnegative integers summing to

n. A partition of n is a composition of n whose parts are in weakly decreasing order. Given a

composition α and partition λ, we write α ∼ λ if λ is formed by rearranging the parts of α in

weakly decreasing order. We use the notation α � n if α is a composition of n and λ ` n if λ is

a partition of n.

We will use the shorthand 1n to denote the composition (1, 1, . . . , 1︸ ︷︷ ︸
n

). The reverse of α,

denoted αr, is the composition formed by reversing the order of α. The length of α, denoted

l(α), is the number of parts of α.

The compositions of n are in bijection with the subsets of [n− 1] in the following way: for

any composition α, define

D(α) = {α1, α1 + α2, . . . , α1 + α2 + · · ·+ αk−1} ⊆ [n− 1].

Likewise, for any subset S = {s1, s2, . . . , sk−1} ⊆ [n − 1] with s1 < s2 < · · · < sk−1, we can

define the composition

co(S) = (s1, s2 − s1, s3 − s2, . . . , sk−1 − sk−2, n− sk−1).
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Figure 1.1: The ribbon representation of α = (3, 1, 2, 4).

Given two nonempty compositions α = (α1, α2, . . . , αk) and β = (β1, β2, . . . , βl), their con-

catenation is

α · β = (α1, α2, . . . , αk, β1, β2, . . . , βl),

and their near-concatenation is

α� β = (α1, α2, . . . , αk + β1, β2, . . . , βm).

Observe that if α � n and β � m, then both α · β � (n+m) and α� β � (n+m).

The ribbon representation for a composition α is the diagram having rows of sizes (α1, . . . , αk)

read from bottom to top with exactly one column of overlap between adjacent rows. For exam-

ple, Figure 1.1 depicts the ribbon representation of α = (3, 1, 2, 4). Each composition can be

written as the near-concatenation of compositions of all 1s. The composition α can be expressed

as α = 1a1 � 1a2 � · · · � 1al , where ai is the number of boxes in the ith column of α’s ribbon

representation. We will refer to the expansion α = 1a1�1a2�· · ·�1al as the near-concatenation

decomposition of α.

If α and β are both compositions of n, then we say that α refines β (equivalently, β coarsens

α), denoted α � β, if

β = (α1 + · · ·+ αi1 , αi1+1 + · · ·+ αi1+i2 , . . . , αi1+···+ik−1+1 + · · ·+ αi1+···+ik),

for some i1, i2, . . . , ik summing to l(α). Equivalently, α � β if and only if D(β) ⊆ D(α).

For example, if α = (3, 1, 2, 4, 2) and β = (4, 2, 6), then α refines β.

1.2.2 Posets

We will now define “poset” as well as define some basic terminology related to posets.

Definition 1.2.1. A poset P = (P,�) is a set P with a binary relation � such that for all x,

y, and z in P , we have:

1. x � x,

2. if x � y and y � x, then x = y, and

5



1

2 3

4

5

6

Figure 1.2: The following is the Hasse diagram for the poset on the set {1, 2, 3, 4, 5, 6} with the
order relation x � y if and only if x divides y. Even though 1 ≺ 4, there is not an edge drawn
from 1 to 4 because 4 does not cover 1.

3. if x � y and y � z, then x � z.

We say that x is related to y if either x � y or y � x. We write x ≺ y if x � y, but x 6= y.

Note that the definition of a poset allows us to have elements that are not related to each other.

In this case we say that those elements are incomparable.

Definition 1.2.2. An element x is said to be covered by y if x ≺ y and there is no element z

such that x ≺ z ≺ y.

In a finite poset, all relations can be determined from the covering relations.

Definition 1.2.3. We say that an element x is maximal if there is no element y such that

x ≺ y. We say that an element x is minimal if there is no element y such that y ≺ x.

We will discuss the concept of maximal and minimal elements further in Chapter 2.

Definition 1.2.4. A poset P is said to be chain if any two elements in P are comparable.

Similarly, we say that a subset C ⊆ P is a chain if when regarded as a subposet of P , C is a

chain. The chain C of P is called maximal if it is not contained in a larger chain of P .

An example of a chain is the set of integers with the standard ≤ ordering. In this thesis, we

restrict our attention to finite posets.

Hasse diagrams and ranked posets

If P = (P,≺) is a finite poset, then the Hasse diagram of P is the graph in the plane whose

vertices are the elements of P and an edge is drawn upwards from x to y whenever y covers x

as shown in Figure 1.2. The Hasse diagram is a tool for visualizing posets.

The set of minimal elements can be seen in the Hasse diagram as they are the only elements

that are not at the top of an edge. Similarly, the set of maximal elements are the elements that

are not at the bottom of an edge. In Figure 1.2, the element 1 is the only minimal element and

{4, 5, 6} are the maximal elements.
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Definition 1.2.5. A finite poset P is said to be ranked (or graded) if every maximal chain of P

has the same length. In this case there is a rank function ρ : P → N that satisfies the following:

(i) if x is minimal, then ρ(x) = 0, and

(ii) if y covers x, then ρ(y) = ρ(x) + 1.

We say that if ρ(x) = i, then x has rank i.

We will now consider an example of a ranked poset.

Example 1.2.6. The following is the Hasse diagram of a ranked poset with the vertices labeled

with their rank.

0

1 1

2

1

2 2

Distributive lattice

If x and y are in a poset P , then we say that z is an upper bound of x and y if x � z and y � z.
The join (or least upper bound) of x and y is an upper bound z of x and y such that if w is an

upper bound of x and y, then z � w. Note that in a poset, there need not be a join of every

pair of elements. We denote the join of x and y by x ∨ y.

Similarly, we say that z is a lower bound of x and y if x � z and y � z. The meet (or

greatest lower bound) of x and y is a lower bound z of x and y such that if w is a lower bound

of x and y, then z � w. Again, there need not be a meet of every pair of elements. We denote

the meet of x and y by x ∧ y.

Definition 1.2.7. A lattice is a poset L for which every pair of elements has a join and a meet.

We say that a lattice L is a distributive lattice if for all x, y, and z in L we have:

(i) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and

(ii) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

We will see in Section 2.1.2 that every finite poset P can be associated with a unique

distributive lattice J(P ).

7



x

y

z

Figure 1.3: The following labeled poset has ω(x) > ω(y) > ω(z).

1.2.3 (P, ω)-partitions

Let P = (P,≺) be a finite poset of size n. A labeling of P is a bijection ω : P → {1, 2, . . . , n}.

Definition 1.2.8. For a labeled poset (P, ω), a (P, ω)-partition is a map θ : P → Z+ that

satisfies the following:

(a) If x � y, then θ(x) ≤ θ(y).

(b) If x � y and ω(x) > ω(y), then θ(x) < θ(y).

We say that the weight of a (P, ω)-partition θ is the weak composition

wt(θ) = (|θ−1(1)|, |θ−1(2)|, . . . ).

Definition 1.2.9. The (P, ω)-partition generating function K(P,ω)(x1, x2, . . . ) for a labeled

poset (P, ω) is given by

K(P,ω)(x1, x2, . . . ) =
∑

(P,ω)-partition θ

x
|θ−1(1)|
1 x

|θ−1(2)|
2 . . . ,

where the sum ranges over all (P, ω)-partitions θ.

If (P, ω) is disconnected, then K(P,ω)(x) is the product of the (P, ω)-partition generating

functions of the connected components of P .

Note that K(P,ω)(x1, x2, . . . ) depends only on the relative order of ω(x) and ω(y) when y

covers x. In the Hasse diagram of (P, ω), we will use a bold edge (or strict edge) to represent

when x ≺ y but ω(x) > ω(y), while we will use a plain edge (or natural edge) when x ≺ y and

ω(x) < ω(y) (see Figure 1.3).

If ω is order-preserving, then K(P,ω)(x1, x2, . . . ) depends only on the structure of P . In this

case, we call P naturally labeled and write KP (x) = K(P,ω)(x).

We will now give an example to show that K(P,ω)(x) does in fact depend on our choice of

labeling.

Example 1.2.10. Let (P, ω1) be the following naturally labeled poset.

8



1

2 3

It follows that if θ is a (P, ω1)-partition, then θ(1) ≤ θ(2) and θ(1) ≤ θ(3). One can compute

K(P,ω1)(x) as

K(P,ω)(x) = x3
1 + x3

2 + x3
3 + x3

4 · · ·

+ x1x
2
2 + x1x

2
3 + x2x

2
3 + x1x

2
4 · · ·

+ 2x2
1x2 + 2x2

1x3 + 2x2
2x3 + 2x2

1x4 · · ·

+ 2x1x2x3 + 2x1x2x4 · · · .

For clarity we will now state where each term in the expansion came from. The terms in

the top row of K(P,ω1)(x) correspond to when θ(1) = θ(2) = θ(3), the terms in the second

row correspond to when θ(1) < θ(2) = θ(3), the terms in the third row correspond to when

θ(1) = θ(2) < θ(3) or θ(1) = θ(3) < θ(2), and the terms in the bottom row correspond to when

θ(1) < θ(2) < θ(3) or θ(1) < θ(3) < θ(2).

Now let (P, ω2) be the following labeled poset.

2

1 3

It follows that if θ is a (P, ω2)-partition, then θ(2) < θ(1) and θ(2) ≤ θ(3). One can compute

K(P,ω2)(x) as

K(P,ω2)(x) = x1x
2
2 + x1x

2
3 + x2x

2
3 + x1x

2
4 · · ·

+ x2
1x2 + x2

1x3 + x2
2x3 + x2

1x4 · · ·

+ 2x1x2x3 + 2x1x2x4 · · · .

The terms in the top row of K(P,ω2)(x) correspond to when θ(2) < θ(1) = θ(3), the terms

in the second row correspond to when θ(2) = θ(3) < θ(1), and the terms in the bottom row

correspond to when θ(2) < θ(1) < θ(3) or θ(2) < θ(3) < θ(1).

We see that even though the underlying structure of (P, ω1) and (P, ω2) are equivalent,

K(P,ω1)(x) 6= K(P,ω2)(x) because of our choice of labeling.

In this thesis, we will usually restrict our attention to the case when (P, ω) is naturally labeled,

that is, when ω is an order-preserving map. In this case, KP (x) does not depend on our choice

of natural labeling but only on the underlying structure of P .
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Linear extensions

A linear extension of a labeled poset (P, ω) with ground set [n] is a permutation π of [n]

that respects the relations in P , that is, if x � y, then π−1(x) ≤ π−1(y). The set of all linear

extensions of P is denoted L(P, ω). Note that |L(P, ω)| is the coefficient of x1x2 · · ·xn in KP (x).

For example, the set of linear extensions of (P, ω2) from Example 1.2.10 is {213, 231}.

1.2.4 Quasisymmetric functions

A quasisymmetric function in the variables x1, x2, . . . (with coefficients in C) is a formal power

series f(x) ∈ C[[x]] of bounded degree such that, for any composition α, the coefficient of

xα1
1 xα2

2 · · ·x
αk
k equals the coefficient of xα1

i1
xα2
i2
· · ·xαkik whenever i1 < i2 < · · · < ik. We denote

the algebra of quasisymmetric functions by QSym =
⊕

n≥0 QSymn, graded by degree.

We will begin by considering two natural bases for QSym, the monomial basis and the

fundamental basis. In Chapter 4, we will consider a third basis, the type 1 quasisymmetric

power sum basis. The monomial quasisymmetric function basis {Mα}, indexed by compositions

α, is given by

Mα =
∑

1≤i1<i2<···<ik

xα1
i1
xα2
i2
· · ·xαkik .

For example, M(2,1) =
∑

i<j x
2
ixj .

The fundamental quasisymmetric function basis {Lα} is also indexed by compositions α and

is given by

Lα =
∑

i1≤···≤in
is<is+1 if s∈D(α)

xi1xi2 · · ·xin .

In terms of the monomial basis,

Lα =
∑
β�α

Mβ,

where the sum runs over all refinements β of α. By Möbius inversion, this implies that

Mα =
∑
β�α

(−1)l(β)−l(α)Lβ.

For any labeled poset (P, ω) (on the ground set [n]), K(P,ω)(x) is a quasisymmetric function,

and we can express it in terms of the fundamental basis {Lα} using the linear extensions of

(P, ω). For any linear extension π ∈ L(P, ω), define the descent set of π to be des(π) = {i |
π(i) > π(i+ 1)}. Abbreviating co(des(π)) by co(π), we then have the following result.

10



Theorem 1.2.11 ([24]). Let P be a (labeled) poset on [n]. Then

K(P,ω)(x) =
∑

π∈L(P,ω)

Lco(π).

This result is Corollary 7.19.5 from [24]; we sketch a proof here for completeness.

Proof. Let π ∈ L(P, ω) and let des(π) be the descent set of π. We say a (P, ω)-partition θ is

π-compatible if

θ(π1) ≤ θ(π2) ≤ · · · ≤ θ(πn), and

θ(πi) < θ(πi+1) if i ∈ des(π).

It follows that the set of π-compatible (P, ω)-partitions contribute to the Lco(π) term in the

fundamental basis expansion of K(P,ω)(x). In fact, every (P, ω)-partition is π-compatible for

exactly one π ∈ L(P, ω). To find said π from θ, read off the entries set to 1 by θ in order, then

entries sent to 2, etc.

In other words, the descent sets of the linear extensions of (P, ω) determine its (P, ω)-

partition generating function. We will use this fact later when showing that two naturally

labeled posets P and Q have different P -partition generating functions. In some cases we can

just show that a linear extension of P has a descent set that no linear extension of Q has, thus

implying that KP (x) 6= KQ(x). For completeness, we will now express K(P,ω)(x) in terms of

the monomial basis {Mα}.

Theorem 1.2.12. Let P be a (labeled) poset on [n]. Then

K(P,ω)(x) =
∑
θ

Mwt(θ),

where the sum runs over all (P, ω)-partitions θ that are surjective onto some [k].

Example 1.2.13. We will reconsider the naturally labeled poset (P, ω1) from Example 1.2.10.

1

2 3

We computed K(P,ω1)(x) as

K(P,ω1)(x) = x3
1 + x3

2 + x3
3 + x3

4 · · ·

+ x1x
2
2 + x1x

2
3 + x2x

2
3 + x1x

2
4 · · ·

+ 2x2
1x2 + 2x2

1x3 + 2x2
2x3 + 2x2

1x4 · · ·

11



+ 2x1x2x3 + 2x1x2x4 · · · .

The following are the P -partitions that contribute to the monomial basis expansion of

K(P,ω1)(x).

1

1 1

1

1 2

1

2 1

1

2 2

1

2 3

1

3 2

In terms of the monomial basis, K(P,ω1)(x) = M3 +M12 + 2M21 + 2M111. The set of linear

extension of (P, ω1) is L(P, ω1) = {123, 132}. Therefore by Theorem 1.2.11

K(P,ω1)(x) = L3 + L21.

This also follows from the fact that L3 = M3 +M12 +M21 +M111 and L21 = M21 +M111.

Note that the set of partition generating functions for naturally labeled posets is not a

linearly independent set. We can see this in the following example.

Example 1.2.14. Let P1, P2, Q1, and Q2 be the posets show below.

1

2 3

P1

3

1 2
P2

1

2

3

Q1

1

2

3
Q2

The partition generating functions for the four posets above are:

KP1(x) = L3 + L21,

KP2(x) = L3 + L12,

KQ1(x) = L3,

KQ2(x) = L3 + L21 + L12.

It follows that KP1(x) +KP2(x) = KQ1(x) +KQ2(x).

12



In the next chapter, we will show the existence of linear functions on QSym that can de-

termine information about a poset from its partition generating function. If the set of partition

generating functions for naturally labeled posets was a linearly independent set, then the ex-

istence of these linear functions would be trivial. This set was studied recently by Féray [7],

where he gives a combinatorial description of the linear dependence relations of the set. The

description given relies on a combinatorial operation called cyclic inclusion-exclusion. We will

use an operation similar to this in Section 3.3, when we construct two posets with the same

partition generating function.
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Chapter 2

Antichains and combinatorial Hopf

algebras

We begin this chapter by giving some background on posets and combinatorial Hopf algebras.

We then use the connection between the combinatorial Hopf algebra structure of posets and

quasisymmetric functions to count certain properties of a poset from its partition generating

function. In particular, for all triples (k, i, j), we will count the number of k-element order ideals

that have i maximal elements and whose complement has j minimal elements. This is to say

that two posets can have the same partition generating function only if they have the same

number of such ideals for all values of k, i, and j. Summing over all values of k, i, and j, we

count the number of antichains in P .

We conclude the chapter by stating results that will be used in Chapter 3. These results will

later be used to show that certain posets are uniquely determined by their partition generating

function.

Throughout this chapter, we take P to be a naturally labeled poset with ground set [n].

The results in this chapter can also be found in [14].

2.1 Poset background

In this section we will discuss background on antichains, the poset of order ideals, and the flag

f -vector and flag h-vector.

2.1.1 Antichains

An antichain is a subset A of a poset P such that any two elements of A are incomparable.

The antichain structure of a naturally labeled poset P plays an important role in determining

14



which sets can appear as descent sets for linear extensions of P . Since P is naturally labeled,

elements i < j form an antichain in P if and only if there exists a linear extension of P in

which j appears immediately before i. This means that every descent in a linear extension of

P is formed by a 2-element antichain. Similarly, if there is a linear extension of P that has i

consecutive descents, then these elements form an (i + 1)-element antichain in P . This shows

that the sizes of some of the antichains of P can be obtained from KP (x).

Example 2.1.1. Let P be the following poset.

1

5

7

2

6

8

3

4

Note that A = {3, 6, 7} is an antichain in P and π = 12457638 is a linear extension of P .

The elements of A appear consecutively and in decreasing order in π.

2.1.2 Poset of order ideals

An order ideal, or ideal for short, is a subset I ⊆ P such that if x ∈ I and y ≺ x, then

y ∈ I. There is a one-to-one correspondence between ideals and antichains, namely, the maximal

elements of an ideal form an antichain. A principal order ideal is an ideal with a unique maximal

element. The dual notion of an order ideal is a filter : it is a subset J ⊆ P such that if x ∈ J
and y � x, then y ∈ J .

The set of all order ideals of P , ordered by inclusion, forms a poset that we will denote

J(P ). In fact, J(P ) is a finite (graded) distributive lattice. The rank of an element of J(P ) is

the number of elements in the corresponding ideal of P . See Figure 2.1 for an example.

If J(P ) has a unique element of some rank k, then P can be expressed as an ordinal sum

P = Q⊕R with |Q| = k. Here, the ordinal sum Q⊕R is the poset on the disjoint union of Q

and R with relations x � y if and only if x �Q y, x �R y, or x ∈ Q and y ∈ R. For an example

of an ordinal sum, see Figure 2.2.

Definition 2.1.2. A finite poset P is irreducible if P = Q ⊕ R implies that either Q = ∅ or

R = ∅.

Each poset has a unique ordinal sum decomposition P = P1⊕P2⊕· · ·⊕Pk with Pi irreducible.

If |Pi| = ni, then J(P ) has exactly one element in ranks 0, n1, n1 + n2, . . . , n1 + n2 + · · ·+ nk.

We will now show that the partition generating functions of the irreducible components of

P can be determined from KP (x).
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P

1 2

3 4

5

J(P )

∅

1 2

3 12

32 4

5 34

54

Figure 2.1: A poset P and its poset of order ideals J(P ). The labels of the elements in J(P )
correspond the the maximal elements of the corresponding order ideal in P .

Q R Q⊕R

Figure 2.2: The posets Q and R can be combined to make a new poset Q⊕R. The only order
ideal of Q⊕R with five elements is the order ideal containing only the elements of Q.
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Lemma 2.1.3. Suppose P and Q have ordinal sum decompositions P = P1⊕P2⊕· · ·⊕Pk and

Q = Q1⊕Q2⊕· · ·⊕Qj. If KP (x) = KQ(x), then k = j, and KPi(x) = KQi(x) for i = 1, . . . , k.

Proof. Since P is naturally labeled, if elements a and b form a descent in a linear extension of

P , then a and b must both lie in the same Pi for some i. This means that no linear extension of

P has a descent in the locations n1, n1 + n2, . . . , n1 + n2 + · · ·+ nk−1. For any other possible

descent location r, let I be an ideal of P of size r containing an element whose label x is as

large as possible. Since I is not an ordinal summand of P , some minimal element y of P \ I is

not greater than x in P . Then (I ∪ {y}) \ {x} is also an ideal of P of size r, so we must have

y < x by our choice of I. Hence there is a linear extension of P with a descent in location r

(that begins with the elements of I ending with x, followed by y). Since we can determine all

possible descent sets of linear extensions of P from the expansion of KP (x) in the fundamental

basis by Theorem 1.2.11, we can thereby determine k and all ni = |Pi| from KP (x).

To get KPi(x) from KP (x), note that linear extensions of P can be broken up into k parts:

the first n1 elements form a linear extension of P1, the next n2 elements form a linear extension

of P2, and so on. Then define πi : QSymn → QSymni by

πi(Lα) =

Lβ if α = (n1 + · · ·+ ni−1)� β � (ni+1 + · · ·+ nk),

0 otherwise.

extended linearly. It follows that KPi(x) = πi(KP (x)).

2.1.3 Flag f-vector and flag h-vector

For any S ⊆ [n], define the subposet J(P )S = {I ∈ J(P ) | |I| ∈ S}. Let f(S) denote the

number of maximal chains in J(P )S . The function f : 2[n] → Z is called the flag f -vector of

J(P ). Also define h(S) by

h(S) =
∑
T⊆S

(−1)|S−T |f(T ).

This function h is called the flag h-vector of J(P ).

In the case when P is naturally labeled, the flag f -vector and flag h-vector appear in the

expansion of KP (x) as follows:

KP (x) =
∑
α

fD(α)Mα =
∑
α

hD(α)Lα.

Here fS and hS are the flag f -vector and flag h-vector of J(P ), respectively.

The L-support of KP (x) is defined by

suppL(KP (x)) = {α | hD(α) 6= 0}.
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A⊗A A

A⊗A⊗A A⊗A

∇
id⊗∇

∇⊗ id

∇

A⊗A A A⊗A

A⊗K A K⊗A

∇ ∇
idid⊗1A 1A ⊗ id

Figure 2.3: The commutative diagrams for Definition 2.2.1.

A⊗A A

A⊗A⊗A A⊗A

∆

id⊗∆

∆⊗ id

∆

A⊗A A A⊗A

A⊗K A K⊗A

∆ ∆

idid⊗ε ε⊗ id

Figure 2.4: The commutative diagrams for Definition 2.2.2.

2.2 Combinatorial Hopf algebra

The ring of quasisymmetric functions is well known to be a combinatorial Hopf algebra. Addi-

tionally, the set of isomorphism classes of finite posets forms the basis of a combinatorial Hopf

algebra. In order to discuss the connection between isomorphism classes of finite posets and the

ring of quasisymmetric functions fully, we must first give a formal definition of what it means

to be a combinatorial Hopf algebra. This will require a few preliminary definitions. Throughout

these definitions, we take K to be a field and 1K to be multiplicative identity in K.

Definition 2.2.1. A unital associative algebra (A,∇, 1A) is a vector space A over a field K
with linear maps (multiplication) ∇ : A ⊗ A → A and (unit) 1A : K → A which satisfy the

commutative diagrams in Figure 2.3. In the diagrams, the map id denotes the identity map on

A, the map A→ A⊗K sends a 7→ a⊗ 1K, and the map A→ K⊗A sends a 7→ 1K ⊗ a.

Definition 2.2.2. A counital coassociative algebra (A,∆, ε) is a vector space A over a field K
with linear maps (comultiplication) ∆: A → A ⊗ A and (counit) ε : A → K which satisfy the

commutative diagrams in Figure 2.4. In these diagrams, the map A⊗K→ A sends a⊗ 1K 7→ a

and the map K⊗A→ A sends 1K ⊗ a 7→ a.

We see in the left diagram of Figure 2.3 that the multiplication is associative, that is,

∇ ◦ (∇ ⊗ id) = ∇ ◦ (id⊗∇). The left diagram of Figure 2.4 shows a similar property for the

comultiplication.

Definition 2.2.3. A morphism of coalgebras (A,∆A, εA) and (B,∆B, εB) is a linear map

φ : A→ B such that the diagrams in Figure 2.5 commute.
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A⊗A

B ⊗B

A

B

∆A

φ φ⊗ φ
∆B

K

A B

εA

φ

εB

Figure 2.5: The commutative diagrams for Definition 2.2.3.

The diagram on the left of Figure 2.5 shows that a morphism of coalgebras commutes with

the coproduct, whereas the diagram on the right shows that a morphism of coalgebras commutes

with the counit as well.

The following definition relies heavily on the coalgebra structure of K and A⊗A where A is

a coalgebra. Before stating the next definition, we will first show that K and A⊗A are indeed

coalgebras. We take ∆K to be the canonical isomorphism from K → K ⊗ K and εK to be the

identity id : K→ K. It follows that (K,∆K, εK) is a coalgebra. Let the function τ : A⊗B → B⊗A
be the linear function defined by τ(x⊗ y) = y ⊗ x for all x in A and y in B. For all coalgebras

(A,∆A, εA) and (B,∆B, εB), we can construct a new coalgebra (A⊗B,∆A⊗B, εA⊗B) using the

linear function τ . We define the comultiplication ∆A⊗B by first applying ∆A⊗∆B to an element

of A⊗B. This results in an element in A⊗A⊗B⊗B. We then apply the map id⊗τ ⊗ id to get

an element in A⊗ B ⊗ A⊗ B as desired. The counit εA⊗B is composition of εA ⊗ εB with the

canonical isomorphism from K ⊗ K → K. That is, first apply εA ⊗ εB resulting in an element

in K ⊗ K, and then apply the canonical isomorphism K ⊗ K → K. It follows that A ⊗ B is a

coalgebra for all coalgbras A and B.

Definition 2.2.4. A bialgebra (A,∇, 1A,∆, ε) over a field K satisfies the following:

• A is a vector space over K,

• (A,∇, 1A) is a unital associative algebra,

• (A,∆, ε) is a counital coassociative algebra; and

• the compatibility conditions expressed by the commutative diagrams in Figure 2.6.

We now have the required background to state the definition of a Hopf algebra.

Definition 2.2.5. A Hopf algebra H = (A,∇, 1A,∆, ε, S) is a bialgebra (A,∇, 1A,∆, ε) with a

K-linear map S : A→ A, called the antipode, such that the diagram in Figure 2.7 commutes.

A vector space A is a graded vector space if A =
⊕

n≥0An. If A is a graded vector space,

then we can obtain a natural grading on A ⊗ A by taking each element of Ai ⊗ Aj to be an
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A⊗A⊗A⊗A A⊗A⊗A⊗A

A⊗A A A⊗A

id⊗τ ⊗ id
∆⊗∆

∇ ∆

∇⊗∇

K⊗K ∼= K

A⊗A A

ε⊗ ε

∇

ε

K⊗K ∼= K

A⊗A A

1A ⊗ 1A
∆

1A

A

K K
id

1A ε

Figure 2.6: The commutative diagrams for Definition 2.2.4.

A

A⊗A

A⊗A

K A

A⊗A

A⊗A

∆
ε

∆

S ⊗ id

id⊗S

∇
1A

∇

Figure 2.7: The commutative diagram for Definition 2.2.5.
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element of the i+ j graded component of A⊗ A. We say a graded vector space A =
⊕

n≥0An

over a field K is connected if A0
∼= K. It should be noted that every graded, connected bialgebra

is a Hopf algebra [10].

Definition 2.2.6. A combinatorial Hopf algebra H is a graded connected Hopf algebra over a

field K equipped with a character (multiplicative linear function) ζ : H → K.

See [1] for more details on the formal definition of a combinatorial Hopf algebra. Informally,

a combinatorial Hopf algebra is a Hopf algebra whose basis elements are combinatorial objects.

The multiplication gives a way to combine these objects, and the comultiplication gives a way

to decompose these objects.

2.2.1 Reduced incidence Hopf algebra

Let J denote the set of all finite distributive lattices up to isomorphism. The free C-module

C[J ], whose basis consists of isomorphism classes of distributive lattices [J ] ∈ J , can be given

a Hopf algebra structure known as the reduced incidence Hopf algebra. The multiplication, unit,

comultiplication, and counit are defined as follows:

∇([J1]⊗ [J2]) := [J1 × J2],

1C[J ] := [o],

∆([J ]) :=
∑
x∈J

[0̂, x]⊗ [x, 1̂],

ε([J ]) :=

1 if |J | = 1,

0 otherwise.

Here [o] is the isomorphism class of the one-element lattice, and 0̂ and 1̂ are the minimum and

maximum elements of a lattice.

In fact, the reduced incidence Hopf algebra can be made into a combinatorial Hopf algebra

after choosing an appropriate character. We define the character of the reduced incidence Hopf

algebra to be the map ζ : C[J ] → C defined on basis elements by ζ([J ]) = 1 for all J and

extended linearly.

These functions can likewise be defined on the free C-module C[P] whose basis consists of

isomorphism classes of finite posets. Explicitly:

∇([P1]⊗ [P2]) := [P1 t P2],

1C[P] := ∅,

∆([P ]) :=
∑

ideal I⊆P
[I]⊗ [P \ I],
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ε([P ]) :=

1 if |P | = 0,

0 otherwise.

The corresponding character of C[P] is ζP : C[P] → C defined by ζ([P ]) = 1 for all P ,

extended linearly. These functions are all compatible with the map J that sends [P ] to [J(P )],

so J is a Hopf isomorphism between C[P] and C[J ].

We define the graded comultiplication ∆k,n−k([P ]) to be the part of ∆([P ]) of bidegree

(k, n− k), that is,

∆k,n−k([P ]) :=
∑
I⊆P
|I|=k

[I]⊗ [P \ I].

Example 2.2.7. Let P be the poset shown below.

It follows that ∆([P ]) is

∆( )= (1⊗ )+( ⊗ )+2( ⊗ )+( ⊗1).

The comultiplication allows us to work with the order ideals of a poset.

2.2.2 Hopf algebra of quasisymmetric functions

The ring of quasisymmetric functions QSym is also a Hopf algebra. The Hopf algebra struc-

ture of QSym has been studied extensively in [10]. For the purposes of this chapter, we will

only need to consider the comultiplication. The comultiplication is defined on the fundamental

quasisymmetric function basis by

∆(Lα) :=
∑
(β,γ)

α=β·γ or β�γ

Lβ ⊗ Lγ .

The graded comultiplication ∆k,n−k(Lα) is given by

∆k,n−k(Lα) :=
∑
(β,γ)

α=β·γ or β�γ
|β|=k

Lβ ⊗ Lγ .

We omit the multiplication, unit, and counit for now. We will discuss multiplication in

QSym in Section 4.4.
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P

KP (x)

∑
I ⊗ P\I

∑
KI(x)⊗KP\I(x)

K

∆

∆

K ⊗K

Figure 2.8: A commutative diagram connecting P with QSym. The sums run over all order
ideals I ⊆ P .

The map K : P → QSym that sends P to the P -partition generating function KP (x) is the

unique Hopf morphism that satisfies ζP = ζQ ◦ K, where the character ζQ for QSym is the

linear function that sends L(n) to 1 for all n and all other Lα to 0. It follows that the diagram

in Figure 2.8 is a commutative diagram.

2.3 Necessary conditions

In this section, we will describe various necessary conditions for two naturally labeled posets to

have the same partition generating function.

2.3.1 Order ideals and antichains

Let antik,i,j be the function that sends a poset P to the number of k-element ideals I of P such

that I has i maximal elements and P \ I has j minimal elements. This is equal to the number

of rank k elements of J(P ) that cover i elements and are covered by j elements. We will show

that if KP (x) = KQ(x), then antik,i,j(P ) = antik,i,j(Q) for all k, i, and j.

First we will need the following lemmas.

Lemma 2.3.1. Let P be a naturally labeled finite poset.

(a) If P has exactly j maximal elements, then there are
(
j−1
k

)
linear extensions of P whose

descent set is {n− k, n− k + 1, . . . , n− 1}.

(b) If P has exactly j minimal elements, then there are
(
j−1
k

)
linear extensions of P whose

descent set is {1, 2, . . . , k}.

Proof. Let σ = σ1σ2 · · ·σn be a linear extension of P , and suppose des(σ) = {n − k, n − k +

1, . . . , n− 1}. It follows that

σ1 < σ2 < · · · < σn−k > σn−k+1 > · · · > σn.
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This implies that σn−k = n and {σn−k+1, . . . , σn} must be maximal elements, for if σi is not

maximal, then there is some σj � σi in P (with j > i > n − k since σ is a linear extension).

But since P is naturally labeled, this would imply σi < σj , which is impossible. Therefore

{σn−k+1, . . . , σn} is a k-element subset of the maximal elements of P other than n. There are(
j−1
k

)
such subsets, and each corresponds to a linear extension with the desired descent set.

The proof for (b) follows similarly.

We will now show the existence of a family of linear functions that can be used to count

the number of maximal or minimal elements in a poset.

Lemma 2.3.2. (a) There exists a linear function maxi : QSym→ C satisfying

maxi(KP (x)) =

1 if P has exactly i maximal elements,

0 otherwise.

(b) There exists a linear function mini : QSym→ C satisfying

mini(KP (x)) =

1 if P has exactly i minimal elements,

0 otherwise.

Proof. We claim that the following function defined on the basis {Lα} of QSymn, extended

linearly, satisfies this condition.

maxi(Lα) =

(−1)(k−i+1)
(
k
i−1

)
if α = α(k) := (n− k − 1)� 1k+1 for i− 1 ≤ k < n,

0 otherwise.

By Theorem 1.2.11, KP (x) =
∑

α cαLα, where cα is the number of linear extensions of P with

descent set D(α). Evaluating maxi on KP (x), we have

maxi(KP (x)) = maxi

(∑
α

cαLα

)
=
∑
α

cα maxi(Lα) =

n∑
k=0

cα(k)(−1)(k−i+1)

(
k

i− 1

)
.

Suppose P has exactly j maximal elements. By Lemma 2.3.1, cα(k) =
(
j−1
k

)
becauseD(α(k)) =

{n− k, n− k + 1, . . . , n− 1}. Substituting this equality into the summation we have:

maxi(KP (x)) =

n∑
k=0

(−1)(k−i+1)

(
j − 1

k

)(
k

i− 1

)
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=

(
j − 1

i− 1

) n∑
k=0

(−1)(k−i+1)

(
j − i

k − i+ 1

)
=

(
j − 1

i− 1

)
δi,j

= δi,j .

The proof of (b) follows similarly.

Example 2.3.3. We now compute max2 on the partition generating functions of all 3-element

posets. From Lemma 2.3.2, we have max2(L3) = 0, max2(L21) = 1, max2(L12) = 0, and

max2(L111) = −2.

P KP (x) max2(KP (x))

L3 max2(KP (x)) = 0

L3 + L21 + L12 max2(KP (x)) = 0 + 1 + 0 = 1

L3 + L12 max2(KP (x)) = 0 + 0 = 0

L3 + L21 max2(KP (x)) = 0 + 1 = 1

L3 + 2L21 + 2L12 + L111 max2(KP (x)) = 0 + 2 + 0− 2 = 0

We get 1 whenever P has exactly 2 maximal elements and 0 otherwise.

As a simple application of Lemma 2.3.2, we can apply maxi along with the coproduct to

see the following result, which will be used later as a tool to show that two posets do not have

the same partition generating function.

Corollary 2.3.4. Suppose that for some k and i, P has a unique ideal I of size k with i

maximal elements. Then KP\I(x) can be determined from KP (x).

Proof. The partition generating function for P\I is

KP\I(x) = (maxi⊗id)∆k,n−kKP (x).

A similar result can be stated when there is a unique filter I such that |I| = k and I has i

minimal elements.

It follows from Lemma 2.3.2 that maxi(KP (x)) and mini(KP (x)) can be expressed as a

linear combination of the coefficients of the fundamental basis expansion of KP (x). Observe
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P
∑
P(1) ⊗ P(2)

KP (x)
∑
KP(1)

(x)⊗KP(2)
(x) antik,i,j(P )

∆k,n−k

K

∆k,n−k

K ⊗K

maxi⊗minj

max∗i ⊗min∗j

Figure 2.9: The commutative diagram used in computing antik,i,j(P ).

that if we order the compositions in lexicographic order, then the leading term in the expansion

of maxi(KP (x)) is (n−i)�1i, and the leading term in the expansion of mini(KP (x)) is 1i�(n−i).
We will now use these linear functions along with the coproduct to express antik,i,j(P ) as a linear

combination of the coefficients of the fundamental basis expansion of KP (x).

Theorem 2.3.5. If KP (x) = KQ(x), then antik,i,j(P ) = antik,i,j(Q) for all triples (k, i, j).

Proof. We will prove this result by finding a linear function that takes KP (x) to antik,i,j(P ).

Recall that there is a Hopf morphism K : P → QSym that sends P to KP (x). It follows

that K is compatible with comultiplication, (K⊗K)◦∆ = ∆◦K, and graded comultiplication,

(K ⊗K) ◦∆k,n−k = ∆k,n−k ◦K.

Define max∗i : C[P]→ C by max∗i = maxi ◦K. Thus max∗i (P ) = 1 if P has exactly i maximal

elements, otherwise max∗i (P ) = 0. Similarly define min∗i = mini ◦K.

Consider the commutative diagram in Figure 2.9.

We can compute antik,i,j(P ) by evaluating the composition of the top row of functions on

P as

antik,i,j(P ) = ((max∗i ⊗min∗j ) ◦∆k,n−k)(P ),

or equivalently we can compute antik,i,j(P ) by evaluating the composition of the bottom row

of functions to KP (x) as

antik,i,j(P ) = ((maxi⊗minj) ◦∆k,n−k)(KP (x)).

This shows that antik,i,j(P ) only depends on KP (x). Therefore if two posets, P and Q, have

the same partition generating function, then antik,i,j(P ) = antik,i,j(Q).

In particular, by summing over k and j, we arrive at the following corollary, conjectured by

McNamara and Ward [18].

Corollary 2.3.6. If KP (x) = KQ(x), then P and Q have the same number of antichains of

each size.
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J(P ) J(Q)

Figure 2.10: Above are the poset of order ideals for two posets P and Q with the same partition
generating function. Since antik,i,j(P ) = antik,i,j(Q), J(P ) and J(Q) have same number of rank
k elements that cover i elements and are covered by j elements.

The number antik,i,j(P ) can be interpreted in terms of the poset of order ideals as antik,i,j(P )

counts the number of rank k elements of J(P ) that cover i elements and are covered by j

elements. Figure 2.10 shows the poset of order ideals of distinct posets with the same partition

generating function.

We just showed that antik,i,j(P ) can be expressed as a linear combination of certain coeffi-

cients of the fundamental basis expansion of KP (x). In fact, ((maxi⊗minj) ◦∆k,n−k)(Lα) = 0

unless α is of the form α = (a) � 1b � 1c � (n − a − b − c), so antik,i,j(P ) only depends on

the coefficients for these compositions in KP (x). If we order the compositions in lexicographic

order, then the leading coefficient of antik,i,j(P ) is cα(k,i,j)(P ), where

α(k, i, j) = (k − i)� 1i � 1j � (n− k − j).

One can then deduce the following result.

Corollary 2.3.7. Let cα(P ) and cα(Q) denote the coefficent of Lα in KP (x) and KQ(x),

respectively. If antik,i,j(P ) = antik,i,j(Q) for all k, i, j, then cα(P ) = cα(Q) for all compositions

α of the form α = (a)� 1b � 1c � (n− a− b− c).

Proof. Let C = {α | α = (a)� 1b � 1c � (n− a− b− c)}. We showed in Theorem 2.3.5 that for

all triples (k, i, j), antik,i,j(P ) can be expressed as a linear combination of cα for α ∈ C. Each

of these cα appear as the leading coefficient in the expansion of some antik,i,j(P ). In particular,

cα(a,b,c) is the leading coefficient of the expansion for antia+b,b,c(P ). Therefore the matrix that
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P Q

Figure 2.11: The jump sequences of P and Q are equal, jump(P ) = jump(Q) = (2, 2, 1),
however KP (x) 6= KQ(x).

expresses antik,i,j(P ) as a linear combination of cα(a,b,c) has full rank, so the coefficient of Lα

in KP (x) is determined by the values of antik,i,j(P ) for all α ∈ C.

In other words, some easily counted statistics on J(P ) determine a number of the coefficients

in the fundamental basis expansion of KP (x).

2.3.2 Jump

Let the jump of an element be the maximum number of relations in a saturated chain from the

element down to a minimal element. We define the jump sequence to be jump(P ) = (j0, . . . , jk),

where ji equals the number of elements with jump i, and k is the maximum jump of an element.

McNamara and Ward prove in [18] that if two posets have the same P -partition generating

function, then they must have the same jump sequence. The converse, however, is not true (see

Figure 2.11). The jump sequence of a naturally labeled poset can be interpreted in terms of

minimal elements. Let Pi denote the subposet of P that consists of elements of P with jump

greater than or equal to i. Then ji is equal to the number of minimal elements of Pi, and Pi+1 is

obtained from Pi by removing its minimal elements. McNamara and Ward prove the following

result.

Lemma 2.3.8 ([18], Corollary 5.3). If P and Q have the same partition generating function,

then so do Pi and Qi, the induced subposets consisting of elements of jump at least i.

We prove a similar result on the L-support of KP (x).

Lemma 2.3.9. If KP (x) and KQ(x) have the same L-support, then so do KPi(x) and KQi(x),

the partition generating functions for the induced subposets consisting of elements of jump at

least i.

Proof. Any linear extension of P that begins with j0 − 1 descents must start with the minimal

elements of P in descending order followed by a linear extension of P1, and no linear extension

can start with more descents. Thus α ∈ suppL(KP1(x)) if and only if 1j0 � α ∈ suppL(KP (x)),
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where j0 is the maximum value for which some such α exists. We can repeat this i times to see

that β ∈ suppL(KPi(x)) if and only if (1j0 � 1j1 � · · · � 1ji−1 � β) ∈ suppL(KP (x)).

A similar proof can be used to give an alternate argument for Lemma 2.3.8.

We define the upward jump of an element to be the maximum number of relations in a

saturated chain from the element up to a maximal element. We define the upward jump sequence

to be up-jump(P ) = (j′0, . . . , j
′
k), where j′i equals the number of elements with upward jump i,

and k is the maximum up-jump of an element. We then let the jump pair of an element x be

jumppair(x) = (jump(x), up-jump(x)).

Lemma 2.3.10. If suppL(KP (x)) = suppL(KQ(x)), then P and Q have the same number of

elements with jump pair (i, j) for all i and j.

Proof. Let Pi,j be the induced subposet of P consisting of all elements with jump at least i and

up-jump at least j. By the previous lemma and its dual, suppL(Pi,j) is determined by KP (x),

hence so is |Pi,j |. This implies the result since the number of elements with jump pair (i, j) is

|Pi,j | − |Pi+1,j | − |Pi,j+1|+ |Pi+1,j+1|.

Another similar result is given in the following lemma.

Lemma 2.3.11. If KP (x) = KQ(x), then P and Q have the same number of elements with

principal order ideal size i and up-jump j.

Proof. Let P0,j be the induced subposet consisting of elements with up-jump at least j. From the

dual of Lemma 2.3.9, the generating function for P0,j is determined by KP (x). The number of

elements with principal order ideal size i and up-jump j in P is the same as the number of maxi-

mal elements with principal order ideal size i in P0,j . The function (max1⊗ζ)∆i,|P0,j |−i evaluated

on KP0,j (x) gives us the number of elements in P0,j whose principal order ideal has i elements.

We can count the number of these that are maximal by evaluating (max1⊗ζ)∆i,|P0,j+1|−i on

KP0,j+1(x) and taking the difference.

We will use the previous four lemmas to prove the main results in Chapter 3.

2.4 Discussion and open questions

In this chapter, we showed that much of the order ideal structure of a poset can be determined

by its partition generating function. This helps when doing a computer search to find posets

with the same generating function. It is much quicker to count antik,i,j(P ) than it is to compute

the entire generating function.

Another statistic on the structure of a poset that is of interest is the number of connected

components. It is natural to ask if the number of connected components of P is determined
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by KP (x). At this point in the thesis, we still do not have the tools to count the number of

connected components. We will discuss this further in Chapter 4. One question to consider is

stated below.

Question 2.4.1. Do the functions maxi and mini tell us anything about the structure of a

general labeled poset?

In Section 4.3.1, we investigate this question when i = 1.

In a naturally labeled poset, the minimal elements are the elements with jump 0. McNamara

and Ward [18] extended the definition of jump to define the jump of an element in a labeled

poset. With their definition, an element in a labeled poset can have jump 0 and not be minimal.

However, every minimal element has jump 0 in the new definition. They showed that the number

of elements with jump 0 can be determined from the monomial basis support ofK(P,ω)(x). Unlike

in the naturally labeled case, we know that there is no linear function that can determine this

number. If said function existed, it would have to be mini for some i. This is because the

partition generating functions of naturally labeled posets span QSym and only the minimal

elements in a naturally labeled poset have jump 0. The following example shows that these

functions cannot determine the number of jump 0 elements in a labeled poset.

Example 2.4.2. Let (P, ω) be the following chain. This labeled poset has 1 element with jump

0.

1

3

2

4

It follows that K(P,ω)(x) = L22 and mini(K(P,ω)(x)) = 0 for all i.
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Chapter 3

Shape

In this chapter, we will assign to each poset a partition that is determined by the antichain

structure of the poset. This partition is known as the shape of a poset and was introduced

by Greene [9] in 1976. We will show that the shape of a poset P is uniquely determined by

the support of KP (x) in the fundamental quasisymmetric function basis. We then consider

naturally labeled posets of a fixed shape and ask whether they are uniquely determined by

their partition generating function. We show that every poset whose shape is two rows, hook

shaped, or nearly hook shaped is uniquely determined by its partition generating function. The

proofs of these results rely heavily on work done in Chapter 2.

We then show that for every partition λ that contains either (3, 3, 1) or (2, 2, 2, 2), there

exist distinct posets of shape λ that have the same partition generating function. We first show

that the result holds when λ = (3, 3, 1) or λ = (2, 2, 2, 2) by giving an example of a pair of

posets with shape λ that have the same partition generating function. We build off of these

examples to prove the result.

It is not clear whether or not the shape of a not naturally labeled poset (P, ω) can be

determined from its partition generating function, but we do know that the results in Section

3.2 do not hold for all labeled posets.

Throughout this chapter, we take P to be a naturally labeled poset with ground set [n],

unless stated otherwise. The results from this chapter can also be found in [14].

3.1 Background

A famous result in the theory of posets is the theorem of Dilworth [6] which states that the

maximal size of an antichain in a poset P is equal to the minimal number of chains into which

P can be partitioned. This theorem also holds when “chain” and “antichain” are interchanged.

Greene [9] gave the following generalization of Dilworth’s theorem which considers the maximal
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size of a union of antichains in P .

For k = 0, 1, . . . , let ak (resp. ck) denote the maximum cardinality of a union of k antichains

(resp. chains) in P . Let λk = ck − ck−1 and λ′k = ak − ak−1 for all k ≥ 1.

Theorem 3.1.1 (The Duality Theorem for Finite Partially Ordered Sets, [9]). For any finite

poset P , the sequences λ = (λ1, λ2, . . . ) and λ′ = (λ′1, λ
′
2, . . . ) are weakly decreasing and form

conjugate partitions of the number n = |P |.

Definition 3.1.2. The shape of a finite poset, denoted sh(P ), is the partition λ that satisfies

λ′1 + · · ·+ λ′i = ai for all i, where ai is the largest number of elements in a union of i antichains

of P .

To illustrate, consider the following example.

Example 3.1.3. The following is a poset P and its shape.

1

23

45

6

We have c1 = 4, c2 = c3 = · · · = 6, implying that λ = (4, 2). Similarly, a1 = 2, a2 = 4, a3 = 5,

a4 = a5 = · · · = 6, implying that λ′ = (2, 2, 1, 1). These partitions are conjugates.

The width of a poset P is the length of its longest antichain. If sh(P ) = λ, then the width

of P is λ′1.

In the previous chapter we showed that the number of antichains of a fixed size is determined

by KP (x). It is natural to ask if the size of a union of antichains can also be determined. We

will now show that the shape of the poset P is determined by KP (x), or more specifically, by

its support in the fundamental basis.

Theorem 3.1.4. If suppL(KP (x)) = suppL(KQ(x)), then sh(P ) = sh(Q).

Proof. Let α = (α1, α2, . . . , αk) be a composition of n, and let sh(P ) = λ. Define B(α) = #{a |
a ∈ D(α) and a− 1 /∈ D(α)}, that is, B(α) is the number of decreasing runs (with at least two

elements) in a permutation with descent set D(α). We also define Li(α) = i+ |D(α)|.
We will prove that the shape of P is determined by its support by showing that, for i ≤ λ1,

λ′1 + · · ·+ λ′i = max{Li(α) | α ∈ suppL(KP (x)) and B(α) ≤ i}.
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First, let β be the composition for which this maximum occurs. There is a linear extension of

P with descent set D(β) that has at most i decreasing runs. These decreasing runs (together

with possibly some single elements) correspond to i antichains of P , and the total number of

elements in the union of these antichains is Li(β). Since λ′1 + · · ·+λ′i is by definition the largest

number of elements in a union of i antichains of P ,

max{Li(α) | α ∈ suppL(KP (x)) and B(α) ≤ i} ≤ λ′1 + · · ·+ λ′i.

Conversely, let A1, A2, . . . , Ai be antichains such that |A1|+ |A2|+ · · ·+ |Ai| = λ′1 + · · ·+λ′i.

Without loss of generality, we can take Aj ≤ Aj+1 for j = 1, . . . i − 1, meaning that for

each y ∈ Aj+1, there exists x ∈ Aj with x � y. We can do this because in the subposet

A1 ∪ A2 ∪ · · · ∪ Ai, the longest chain has at most i elements, so we can redefine A1 to be the

elements with jump 0 in this subposet, A2 to be the elements with jump 1, and so on.

For j = 1, . . . , i, let Ij denote the order ideal generated by A1, . . . , Aj . Then let Bj =

Ij\(Aj ∪ Ij−1), and let Bi+1 = P \ Ii. There is a linear extension π of P of the form π =

B1A1B2A2 . . . AiBi+1, where the entries in each Bi appear in increasing order and the entries

in each Ai appear in decreasing order. It follows that

Li(co(π))− i = |des(π)| ≥
i∑

j=1

(|Aj | − 1) = λ′1 + · · ·+ λ′i − i.

Therefore Li(co(π)) ≥ λ′1 + · · ·+ λ′i, which implies that

λ′1 + · · ·+ λ′i ≤ max{Li(α) | α ∈ suppL(KP (x)) and B(α) ≤ i}.

Therefore the shape of a poset P is determined by the compositions that appear with a

nonzero coefficient in the fundamental quasisymmetric function expansion of KP (x).

Example 3.1.5. Let P be the following poset.

1 2

3 4 5

The partition generating function for P is:

KP (x) = L5 + 2L41 + 2L32 + L311 + L14 + 2L131 + 2L122 + L1211.
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It follows that the support of KP (x) in the fundamental basis is:

suppL(KP (x)) = {5, 41, 32, 311, 14, 131, 122, 1211}.

From the composition 311 we see that λ′1 = 3, and from the composition 1211 we see that

λ′1 + λ′2 = 5. Therefore sh(P ) = (2, 2, 1).

Corollary 3.1.6. If KP (x) = KQ(x), then sh(P ) = sh(Q).

Proof. This result follows directly from the previous theorem.

We should note that Theorem 3.1.4 and Corollary 3.1.6 rely on the fact that we have

naturally labeled posets. However, the shape of a poset is independent of the labeling. In

Figure 3.1, we have four examples of labeled posets that have the same partition generating

function. Each pair also has the same shape. This gives some evidence that the shape of a not

naturally labeled poset may be determined by its partition generating function.

3.2 Uniqueness from shape

Since Theorem 3.1.4 shows that posets with the same generating function must have the same

shape, one can ask for which shapes is a naturally labeled poset of that shape uniquely deter-

mined by its generating function. In other words, for which λ do all nonisomorphic posets of

shape λ have distinct partition generating functions?

We will prove that this holds for three cases below: width two posets, hook shaped posets,

and nearly hook shaped posets.

3.2.1 Width two posets

In this section we consider posets whose shape has at most two parts, that is to say, the width

of the poset is at most two. Dilworth’s theorem [6] states that if the width of P is 2, then P

can be partitioned into 2 chains, C1 and C2. We will use the notation

P = C1 ] C2

to denote our choice of partition. In the case when P is irreducible, the minimal elements of

C1 and C2 are the minimal elements of P . We can embed J(P ) into N2 by mapping an ideal

I to the point (a1, a2) where ai = |I ∩ Ci|. Hence when referring to J(P ) we will treat it as a

sublattice of N2.

Example 3.2.1. The following is a width 2 poset along with its poset of order ideals embedded

in N2.
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1 3

4 2

5

2

1 3

4 5

2 4

3 5 1 2 4

5 1 3

4 2

3 5

1

1 3

2 5

4

1 5

2 4

3 1 5

2 4

3

Figure 3.1: Each pair of labeled posets has the same partition generating function and shape.
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J(P ′)

(0,0)

(1,1)

Figure 3.2: The subposet of elements greater than or equal to (1, 1) is isomorphic to J(P ′).

P J(P )

We will show that any poset of width two is uniquely determined by its partition generating

function. We will first need several useful lemmas about the structure of P .

Lemma 3.2.2. Let P ′ be the induced subposet of P consisting of all elements that are not

minimal. The generating function for P ′ is determined by KP (x).

Proof. This follows immediately from Lemma 2.3.8 when i = 1.

In the case when P has width 2 and is irreducible (and hence has two minimal elements),

we can explicitly find the partition generating function for P ′ as

KP ′(x) = (max2⊗id) ◦∆2,n−2KP (x).

In terms of J(P ), the subposet of elements greater than or equal to (1, 1) is isomorphic to J(P ′),

see Figure 3.2.

It is not true that P ′ must be irreducible if P is irreducible, but there are some restrictions

for what the ordinal sum decomposition of P ′, or indeed of any filter of P , can be.

Lemma 3.2.3. If P = C1 ] C2 is irreducible, then for all filters F ⊆ P , F can be expressed

as F = C ⊕ R, where C is a (possibly empty) chain satisfying C ⊆ C1 or C ⊆ C2, and R is

irreducible.

Proof. Let F be a filter of P . We can express F as F = C⊕R, where R is irreducible. It remains

to be shown that C is a chain contained in either C1 or C2.
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Suppose that C is not a chain. This means that the width of C is 2. Every element in P\F
must be less than an element of C or else the width of P would be at least 3. Therefore every

element of R is greater than every element of P\R implying that P is reducible. Therefore C

is a chain.

We conclude the proof by showing that either C ⊆ C1 or C ⊆ C2. Suppose the minimal

element of C is an element of C1. If C contained an element c2 ∈ C2, then c2 would be related

to all of the elements in P , which cannnot happen if P is irreducible.

We say that an ideal I of P is a chain ideal if I is a chain. If P is irreducible, let a and b

(assume a ≤ b) be the sizes of the two maximal chain ideals of P . One of these chain ideals will

be contained in C1 and the other in C2. If, say, the largest chain ideal in C1 has a elements, then

the (a+ 1)th element of C1 is the smallest element of C1 greater than the minimum element of

C2. The value of b can be described similarly.

Lemma 3.2.4. Let P = C1 ] C2 be irreducible. Then the values of a and b are determined by

KP (x), and if a 6= b, then there exists exactly one (a + 1)-element chain ideal. If Ia+1 is this

chain ideal and P ′′ = P \ Ia+1, then KP ′′(x) is determined by KP (x).

Proof. When the width of P is at most 2, P has at most 2 chain ideals of any given size. Also,

since P is irreducible, the only way for an ideal to have exactly one minimal element is if it is

a chain ideal. Since a ≤ b, the value of a is the largest number such that P has two a-element

chain ideals, and b is the smallest number such that P has no (b+ 1)-element chain ideals.

The number of k-element ideals in P is counted by rankk(KP (x)) =
∑

i,j antik,i,j(KP (x)).

The k-element chain ideals are exactly the k-element ideals in P that do not contain both

minimal elements. We can count the number of k-elements ideals of P that contain both min-

imal elements by counting the number of (k − 2)-element ideals in P ′. This is counted by

rankk−2(KP ′(x)). Therefore the number of k-element chain ideals in P is counted by rankk(KP (x))−
rankk−2(KP ′(x)). Thus the value of a is the largest number such that

ranka(KP (x))− ranka−2(KP ′(x)) = 2,

while the value of b is smallest number such that

rankb+1(KP (x))− rankb−1(KP ′(x)) = 0.

We will now show that if a 6= b, then KP ′′(x) is determined by KP (x). Since there is a

unique (a+ 1)-element chain ideal and P is irreducible, there is a unique (a+ 1)-element ideal

with exactly one minimal element. Therefore the result follows as in Corollary 2.3.4:

KP ′′(x) = (min1⊗id)∆a+1,n−a−1KP (x).
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Note that if the width of P is at most two, then the width of any induced subposet is also

at most two. In particular, the widths of P ′ and P ′′ are both at most two.

We are now ready to prove the main result of this section.

Theorem 3.2.5. If the width of P is at most 2, then P is uniquely determined by KP (x). If

P is irreducible, then P has a unique decomposition P = C1 ] C2 (up to reordering).

Proof. We prove this by induction on the size of P . The case when P has one element is trivial.

By Lemma 2.1.3, we can assume that P is irreducible.

Now suppose that P is an irreducible width two poset, and assume that the theorem holds

for all smaller width two posets. By Lemma 3.2.2, we can determine the generating function

for P ′, and by induction, KP ′(x) uniquely determines P ′. Therefore, if Q is a poset such that

KP (x) = KQ(x), then P ′ ∼= Q′.

Case 1: P ′ is irreducible.

By induction, there is a unique decomposition P ′ = C ′1 ]C ′2 into two chains (up to reorder-

ing). Let |C ′1| = l−1 and |C ′2| = m−1. If P = C1]C2, then C ′1 and C ′2 must be obtained from C1

and C2 by removing their minimal elements. Since KP (x) determines a and b by Lemma 3.2.4,

there are at most two possibilities for how these minimal elements can compare to the elements

in the other chain, depending on whether the maximal chain ideal in C1 has a elements or b

elements. Let P and Q be the two posets obtained in this way, and suppose KP (x) = KQ(x).

In terms of J(P ), J(Q) ⊂ N2, the principal filter generated by (1, 1) in either is J(P ′) ∼= J(Q′),

and

J(P ) = J(P ′) ∪ [(0, 0), (a, 0)] ∪ [(0, 0), (0, b)],

J(Q) = J(P ′) ∪ [(0, 0), (b, 0)] ∪ [(0, 0), (0, a)].

(0,0)

(a,0)
(0,b)

(l,m)
J(P )

(0,0)

(0,a)
(b,0)

(l,m)
J(Q)

If a = b, then clearly P ∼= Q. Otherwise, Lemma 3.2.4 states that we can determine the

generating functions for P ′′ and Q′′ from KP (x) = KQ(x), so by induction P ′′ ∼= Q′′. In terms
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of J(P ) and J(Q), we have that

J(P ) ⊃ [(0, a+ 1), (l,m)] ∼= [(a+ 1, 0), (l,m)] ⊂ J(Q).

By Lemma 3.2.3, these subposets have the form P ′′ ∼= Q′′ = C ⊕ R where C is a (possibly

empty) chain contained in one of the two chains of P or Q, and R is an irreducible width 2

poset. Let c = |C|. (Note c = 0 unless b = a+ 1.) Since R is a subposet of both P and Q,

J(R) ∼= [(c, a+ 1), (l,m)] ⊂ J(P ),

J(R) ∼= [(a+ 1, c), (l,m)] ⊂ J(Q).

(a, 0)
(0,a+ 1)

(c,a+ 1)

(l,m)

J(R)

J(P )

(a, 0)
(a+ 1,0)

(a+ 1,c)

(l,m)

J(R)

J(Q)

Both of these embeddings of J(R) correspond to a partition of R into two chains. By

induction, since R is irreducible, the partition of R into two chains is unique up to reordering,

which corresponds to a reflection of J(R).

If J(R) is embedded in the same way in both J(P ) and J(Q), then c = a+ 1. But then in

J(P ′) ∼= J(Q′), (a+ 1, a+ 1) is the only element in its rank, contradicting irreducibility.

Otherwise the embeddings of J(R) in J(P ) and J(Q) are reflections of one another, that

is, the isomorphism between [(c, a + 1), (l,m)] ⊂ J(P ) and [(a + 1, c), (l,m)] ⊂ J(Q) must be

(x, y)↔ (y, x). But this implies that J(P ′) is symmetric, so we can extend this isomorphism to

get J(P ) ∼= J(Q). Hence P ∼= Q, and the isomorphism corresponds to a reordering of the two

chains.

Case 2: P ′ is reducible.

By Lemma 3.2.3, P ′ = C ⊕ R where C is a nonempty chain and R is irreducible. Since R

is irreducible it can be partitioned uniquely into two chains A and B. Suppose |A| = j − 1,

|B| = k− 1, and |C| = c ≥ 1. If P = C1 ]C2, with A ⊂ C1 and B ⊂ C2, then by Lemma 3.2.3,

either C ⊂ C1 or C ⊂ C2. Again, by Lemma 3.2.4, a and b are determined. In fact, we must

have a = 1 (the maximal chain ideal in the chain not containing C can only have size 1) and

b > 1.

There are again two possibilities, so let P be the poset where C ⊂ C1, and let Q be
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the poset where C ⊂ C2. The subposet J(R) must be isomorphic to both of the intervals

[(c+ 1, 1), (c+ j, k)] ⊂ J(P ) and [(1, c+ 1), (j, c+ k)] ⊂ J(Q).

J(P )

J(R)

(0,0)

(2,0)

(c+ j,k)

(c+ 1,1)

J(Q)

J(R)

(0,0)

(0,2)
(1,c+ 1)

(j,c+ k)

By Lemma 3.2.4, we have that J(P ′′) ∼= J(Q′′), that is to say,

J(P ) ⊃ [(2, 0), (c+ j, k)] ∼= [(0, 2), (j, c+ k)] ⊂ J(Q).

Also P ′′ and Q′′ must be irreducible. (If they were reducible, then there would be only one rank

3 element of J(P ) and J(Q), namely, (2, 1) and (1, 2), respectively.) This can only happen if

the isomorphism is a translation or if it is a reflection.

If the isomorphism is a translation, then c = 2, and the translation is (x, y)↔ (x−2, y+2).

However, J(P ′′) and J(Q′′) are not translations of each other. We know this because (3, 1) ∈
J(P ) and P is irreducible, so we must also have the rank 4 element (4, 0) ∈ J(P ′′), but (2, 2) /∈
J(Q′′). Therefore this possibility cannot happen.

If the isomorphism is a reflection, then j = k, and the isomorphism is (x, y)↔ (y, x). Since

J(P ) = J(P ′′) ∪ {(0, 0), (1, 0), (0, 1), (1, 1)},

J(Q) = J(Q′′) ∪ {(0, 0), (1, 0), (0, 1), (1, 1)},

the isomorphism between J(P ′′) and J(Q′′) can be extended to J(P ) and J(Q). This isomor-

phism corresponds to a reordering of the chains C1 and C2.

Theorem 3.2.5 tells us that any poset P whose shape λ has at most two parts has a unique

P -partition generating function.

3.2.2 Hook shaped posets

A partition λ is said to be hook shaped if λ2 ≤ 1. Hook shaped partitions are therefore of the

form λ = (λ1, 1, 1, . . . , 1). In this section, we will show that a poset whose shape is a hook is

determined not just by KP (x) but by suppL(KP (x)).
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Theorem 3.2.6. If sh(P ) is hook shaped, then P is determined by suppL(KP (x)), that is, if

suppL(KP (x)) = suppL(KQ(x)), then P ∼= Q.

Proof. If sh(P ) is hook shaped, then P can be expressed as the union of a chain C and an

antichain A where |C∩A| = 1. The jump pair of each element in C is determined by its position

in the chain. Each element of A can cover at most one element of C and is covered by at most one

element of C. For each a ∈ A, jumppair(a) is determined by the element that a covers and the

element that covers a. This implies that hook shaped posets are determined by the jump pairs

of their elements. Since the multiset of jumppair(a) for all a is determined by suppL(KP (x))

by Lemma 2.3.10, it follows that if sh(P ) is hook shaped and suppL(KP (x)) = suppL(KQ(x)),

then P ∼= Q.

Corollary 3.2.7. If sh(P ) is hook shaped and KP (x) = KQ(x), then P ∼= Q.

Example 3.2.8. Consider the following two hook shaped posets.

P

1

2

3

4 5 6 7 8 9

10

11

12

13

Q

1

2

3

4 5 6 7 8 9

10

11

12

13

The partition generating functions for these posets do not have the same L-support because

the element 9 ∈ P has jump 1 and up-jump 3, but no element in Q has this jump pair.

3.2.3 Nearly hook shaped posets

In this section, we will show that if the shape of a poset P is nearly hook shaped, that is, if

sh(P ) = (λ1, 2, 1, . . . , 1), then P is uniquely determined by KP (x).

Lemma 3.2.9. Any finite poset P has a unique antichain A of maximum size such that any

other antichain of maximum size is contained in the order ideal I(A) generated by A.

Proof. By Dilworth’s theorem, the minimum number of chains into which P can be partitioned

is the maximum size of an antichain of P . Hence in any such partition, each chain must contain

one element from every antichain of maximum size. Then let A consist of the largest element

in each chain that is contained in some antichain of maximum size.

41



12

3

4

56 7 8

9 98

7

6

54 3 2

1 1

2 3 4

5 6 7

8

9

Figure 3.3: The three posets above each have shape (5, 2, 1, 1). The poset on left is Type 1
with maximal antichain {5, 6, 7, 8}. The poset in the center is Type 2 with maximal antichain
{2, 3, 4, 5}. The poset on the right is Type 3 with maximal antichain {3, 4, 5, 6}.

Let A be the unique maximum antichain of P as described above. By Theorem 2.3.5, both

|A| = λ′1 and |I(A)| = m are determined by KP (x). Let P− be the subposet of P consisting of

elements less than A in P , so that P− = I(A)\A. The partition generating function for P− is

KP−(x) = (id⊗minλ′1)(∆m−λ′1,n−(m−λ′1)(KP (x))).

When λ = sh(P ) is nearly hook shaped, P− must either be a chain, or it can be partitioned

into a chain and a single element x. Since the width of P− is less than or equal to 2, P− is

determined by KP−(x) and hence by KP (x).

Similarly, let P+ be the subposet of P consisting of elements greater than an element of A

in P . As with P−, the width of P+ is less than or equal to 2, so P+ is determined by KP+(x),

which is also determined by KP (x) by Corollary 2.3.4.

Since λ is nearly hook shaped, it cannot be the case that both P− and P+ have width two.

We will say that:

(i) P is Type 1 if width(P−) = 2 and width(P+) ≤ 1,

(ii) P is Type 2 if width(P−) ≤ 1 and width(P+) = 2,

(iii) P is Type 3 if width(P−) ≤ 1 and width(P+) ≤ 1.

Since we can determine the widths of P− and P+ from KP−(x) and KP+(x), the type of P

is determined by KP (x). Note that the dual of a Type 2 poset is Type 1, so if we can show that

Type 1 posets are determined by their P -partition generating functions, then Type 2 posets will

be as well. (To get the generating function for the dual of a poset P , reverse each composition

in the expansion of KP (x) in the {Mα}-basis.) See Figure 3.3 for examples of Type 1, Type 2,

and Type 3 posets.

Lemma 3.2.10. If P is a Type 1 poset, then I(A) is determined by KP (x) up to isomorphism.
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P−

1
2

i∗ − 1
i∗ x

j∗
l

Figure 3.4: The element x covers i∗ − 1 and is covered by j∗ in P−.

Moreover, if x ∈ P− does not lie in a maximum length chain of P , then the number of

elements in A that only cover x is determined by KP (x).

Proof. Suppose that P is Type 1 and that the result holds for all Type 1 posets with fewer

elements that P . Since P is Type 1, a maximum length chain in P intersects P− in an l-element

chain C, with a single element x ∈ P− remaining. Label the elements of C by 1, 2, . . . , l from

bottom to top. Suppose that x covers i∗− 1 and x is covered by j∗. If x is minimal, then we let

i∗ = 1, while if x is maximal in P−, then we let j∗ = l + 1. See Figure 3.4.

For each antichain S ⊆ P−, define B(S) to be the set of elements in A that cover the

elements of S and no other elements. (By convention, B({0}) = B(∅).) Determining I(A) is

equivalent to finding the values b(S) = |B(S)| for all S.

Lemma 2.3.10 and Theorem 2.3.5 state that the following statistics on P are determined

by KP (x): (i) the number of elements of P whose jump is i for all i; and (ii) the number of

elements of P whose principal order ideal has i + 1 elements. These statistics can be counted

in the following way for i ≤ l:

(i)

#{p ∈ P | jump(p) = i} =



b({i}) + 1 if i < i∗ − 1,

b({i∗ − 1}) + 2 if i = i∗ − 1,

b({i∗}) + b({i∗, x}) + b({x}) + 1 if i = i∗,

b({i}) + b({i, x}) + 1 if i∗ < i < j∗,

b({i}) + 1 if j∗ ≤ i ≤ l.
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(ii)

∑
j

antii+1,1,j(P ) =



b({i}) + 1 if i < i∗ − 1,

b({i∗ − 1}) + 2 if i = i∗ − 1,

b({i∗}) + b({x}) + 1 if i = i∗,

b({i}) + b({i− 1, x}) + 1 if i∗ < i < j∗,

b({i− 1}) + 1 if j∗ ≤ i ≤ l.

Since these statistics are all determined by KP (x), we can use these to find the values of

b({i}) for all i 6= i∗, b({i, x}) for all i, and the value of b({i∗}) + b({x}). It remains to be shown

that b({i∗}) and b({x}) can be determined by KP (x).

Case 1: j∗ > i∗ + 1.

Let P̂ be the poset formed by removing all elements with jump less than i∗ − 1 from

P . By Lemma 2.3.8, KP̂ (x) is determined by KP (x). The set of minimal elements of P̂ is

{i∗, x}∪B({i∗−1}). By Theorem 2.3.5, we can determine the values of j such that anti1,1,j(P̂ ) 6=
0. Such j (counted with multiplicity anti1,1,j(P̂ )) are the number of minimal elements remaining

when one of the minimal elements of P̂ is removed. These values are b({i∗−1})+1 for removing

an element of B({i∗− 1}), b({i∗− 1}) + b({x}) + 1 for removing x, and b({i∗− 1}) + b({i∗}) + 2

for removing i∗. Since we have already determined the value of b({i∗−1}), we can determine the

set {b({x}), b({i∗}) + 1}. If these values are equal, then we can determine b({x}) and b({i∗}).
We will now assume that these values are not equal.

Let M = max{b({x}), b({i∗})+1}, and consider the ideal I ⊆ P̂ that has b({i∗−1})+M+2

elements, b({i∗ − 1}) + M + 1 of which are maximal. It is either the case that the maximal

elements of I are B({i∗−1})∪B({x})∪{i∗}, or B({i∗−1})∪B({i∗})∪{i∗+1, x}. Since there is

no other ideal with the same cardinality and number of maximal elements as I, Corollary 2.3.4

says that KP̂\I(x) is determined by KP̂ (x). Observe that P̂\I is hook shaped, so by Theorem

3.2.6 it is uniquely determined by KP̂\I(x).

If the maximal elements of I are B({i∗− 1})∪B({x})∪{i∗}, then the length of the longest

chain in P̂\I is λ1− i∗. Similarly, if the maximal elements of I are B({i∗−1})∪B({i∗})∪{i∗+

1, x}, then the length of the longest chain in P̂\I is λ1 − i∗ − 1. Since P̂\I is determined, we

can find the length of its longest chain, which allows us to distinguish b({x}) and b({i∗}) + 1.

Case 2: j∗ = i∗ + 1.

This case follows similarly to Case 1, but the set we can determine is {b({x}), b({i∗})}.
Since there is an automorphism of P− that switches x and i∗, this is enough to determine

I(A) up to isomorphism. However, if i∗ = l, then x and i∗ are both maximal in P−, so x may

not lie in a maximum length chain of P . In this case, we need to determine b({x}), so assume

b({x}) 6= b({i∗}), and let M = max{b({x}), b({i∗})}.
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Again, as in Case 1, let P̂ be the poset of elements of P of jump at least i∗−1. Then there is

a unique ideal I ⊆ P̂ with b({i∗−1})+M+2 elements, b({i∗−1})+M+1 of which are maximal:

either the maximal elements are B({i∗ − 1}) ∪ B({x}) ∪ {i∗} or B({i∗ − 1}) ∪ B({i∗}) ∪ {x}.
As in Case 1, KP̂\I(x) is determined by KP (x), so we can determine the length of the longest

chain in P̂ \ I. When x does not lie in a maximum length chain of P , we must have b({x}) = M

if the longest chain in P̂ \ I has λ′1− i∗ elements, while b({i∗}) = M if the longest chain in P̂ \ I
has λ′1 − i∗ − 1 elements.

Note that in Lemma 3.2.10, we chose the element i∗ to lie in the longest chain of P , so

up-jump(i∗) = λ1− i∗ ≥ up-jump(x) in P . While x must be smaller than some element of A (by

maximality of A), it may be maximal in P−. In this case, we need to determine the smallest

element of the chain P+ that is greater than x (if there is one).

We use the notation |Va| to denote the cardinality of the principal filter whose minimum

element is a.

Lemma 3.2.11. If P is a Type 1 poset, and x ∈ P− is not contained in a maximum length

chain of P , then the smallest element of P+ that is greater than x is determined by KP (x).

Proof. We will prove this by induction on the size of P . Suppose the statement holds for all

Type 1 posets with fewer elements than P . If x is not maximal in P−, then the statement is

trivial, so we will assume that x is maximal in P−.

Recall from Lemma 2.3.10 and Lemma 2.3.11 that the multiset of up-jump values of the

elements with a fixed jump is determined by KP (x), as is the multiset of |Va| of the elements

a with a fixed jump. Using the notation of Lemma 3.2.10, this implies that we can determine

from KP (x) the multisets

S1 = {up-jump(a) + 1 | a ∈ B({i∗ − 1})} ∪ {up-jump(i∗) + 1,up-jump(x) + 1},

S2 = {|Va| | a ∈ B({i∗ − 1})} ∪ {|Vi∗ |, |Vx|}.

We know up-jump(i∗)+1 = λ1− i∗+1, and |Vi∗ | is determined by Lemma 3.2.10. Moreover,

for all elements a ∈ B({i∗ − 1}), |Va| = up-jump(a) + 1. Therefore, if we compare S1 and S2,

we will be able to determine |Vx| (and therefore the number of elements of P+ that are greater

than x) in all cases except when |Vx| = up-jump(x) + 1.

In this exceptional case, the principal filter of {x} is a chain. Then we can determine

up-jump(x) by considering the poset P̂ formed by removing the maximal elements from P .

We can determine KP̂ (x) from KP (x) (by the dual of Lemma 3.2.2), and the shape of P̂ is

either hook shaped or it is nearly hook shaped.

If sh(P̂ ) is hook shaped, then x is covered by exactly one element in A and that element is

maximal in P . This implies that x is not related to any element in P+.
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If sh(P̂ ) is nearly hook shaped, then by induction we know the smallest element in P̂+ that

is greater than x. This is the same element that x is less than in P+.

If every element of P− is contained in a maximum length chain of P , then there is an

automorphism of P− switching i∗ and x. In this case, we will need a way of distinguishing the

elements i∗ and x in Lemma 3.2.10 if b({i∗}) 6= b({x}).

Lemma 3.2.12. Suppose there is an automorphism of P− that switches i∗ and x, and b({i∗}) >
b({x}). Then the multiset {up-jump(a) | a ∈ B({x}) ∪B({i∗, x})} is determined by KP (x).

Proof. The ideal I whose maximal elements are B(∅) ∪ B({1}) ∪ · · · ∪ B({i∗}) ∪ {x} has∑i∗

i=0 b({i}) + i∗ + 1 elements, all but i∗ of which are maximal. Suppose there were another

ideal in P whose set of maximal elements S had the same size. It must be the case that S

contains an element greater than i∗ and an element greater than x, but this would imply that

the ideal has at least i∗ + 1 elements that are not maximal.

Now from Corollary 2.3.4, KP\I(x) is determined by KP (x). In particular, the up-jumps of

the minimal elements of P \I are determined. Since the minimal elements are B({x})∪B({i∗, x})
and i∗ + 1 if it exists (which has up-jump λ1 − i∗ − 1), the result follows.

We are now ready to prove the main theorem of this section.

Theorem 3.2.13. If sh(P ) = λ = (λ1, 2, 1, 1, . . . , 1) is nearly hook shaped, then P is uniquely

determined by KP (x).

Proof. First we will assume that P is Type 1. We will induct on the size of P+. If |P+| = 0,

then Lemma 3.2.10 implies the result.

Now suppose the statement holds for all Type 1 posets with smaller P+. Let P̂ be P with

its maximal elements removed, which we can determine from KP (x). We will show that there

is a unique way to recover P from P̂ given KP (x). In order to show this, we need to consider

the case when sh(P̂ ) is hook shaped and when it is nearly hook shaped.

If sh(P̂ ) is hook shaped, then every element that covers x in A must be maximal in P . Given

P− and Lemma 3.2.11, we know which element of the chain must cover and be covered by x in

P , so we can find an element in P̂ that corresponds to x in P . Since we know P−, and Lemma

3.2.10 tells us the number of elements in P that cover any ideal in P−, there is a unique way

to add the missing elements of A to P̂ . We also add a new maximal element to the top of the

chain that covers all the maximal elements of P̂ (except possibly x). The only other relation

that can occur in P is that x may also be covered by this final maximal element at the top of

P+, which we can again determine from Lemma 3.2.11.

If sh(P̂ ) is nearly hook shaped, then to get P from P̂ , we must add a maximal element that

covers all of the maximal elements of P̂ , then add elements to the longest antichain of P̂ until
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Lemma 3.2.10 is satisfied. However, there may be some ambiguity if there is an automorphism of

P− that switches i∗ and x that does not extend to an automorphism of P̂ , and b({i∗}) 6= b({x})
in P . In this case, the multiset of up-jump values of elements of B({i∗}) must differ from that

of B({x}), so Lemma 3.2.12 is enough to distinguish x from i∗.

Therefore, the result holds when P is Type 1, as well as for Type 2 since the dual of a Type

2 poset is Type 1. Finally, if P is Type 3, then P can be expressed as a union of a chain and an

antichain A (which do not intersect). As in the proof of Theorem 3.2.6, P is then determined by

the jump pairs of its elements, which can be determined from KP (x) by Theorem 2.3.10.

Example 3.2.14. Suppose b({i∗}) = 4 and b({x}) = 3 and the poset P̂ is shown below.

P̂

Note that there is an automorphism of P− that switches the two minimal elements. In order to

determine P from P̂ , we need to determine which of the minimal elements is x and which one

is i∗. The following two posets are both formed by adding maximal elements to P̂ , and they

both satisfy b({i∗}) = 4, b({x}) = 3.

P1

x i∗

P2

i∗ x

However, in P1, the up-jump values for elements of B({x}) are {0, 1, 1}, while in P2, they are

{1, 2, 2}. Thus we can distinguish these two cases by Lemma 3.2.12.

In summary, we have shown that if sh(P ) = (λ1, λ2), sh(P ) = (λ1, 1, . . . , 1) or sh(P ) =

(λ1, 2, 1, . . . , 1), then P is uniquely determined by its P -partition generating function.

For most of the remaining shapes, we present a negative result in the next section.

3.3 Posets with the same P -partition generating function

In this section, we give a method for constructing distinct posets with the same partition

generating function.

Definition 3.3.1. Suppose that P and Q are finite posets. If KP (x) = KQ(x), then we say

that P and Q are K-equivalent.
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P

1 2

3 4 5

6 7 P + (2 ≺ 3)

1 2

3 4 5

6 7

Figure 3.5: The posets P (left) and P + (2 ≺ 3) (right).

Given a poset P and a pair of incomparable elements (x, y), write P + (x ≺ y) for the poset

obtained by adding the relation x ≺ y to P (and taking the transitive closure). See Figure 3.5

for an example.

Lemma 3.3.2. Suppose R is a finite poset and φ : R→ R is an automorphism. Let e = (e1, e2)

and f = (f1, f2) be two pairs of incomparable elements in R such that in R + (f2 ≺ f1), both

e1 ≺ e2 and φ−1(e1) ≺ φ−1(e2). If m > 0 is the smallest positive integer such that φm+1(e) = e,

then

P = R+ (f1 ≺ f2) + (e1 ≺ e2) + (φ(e1) ≺ φ(e2)) + · · ·+ (φm−1(e1) ≺ φm−1(e2)),

Q = R+ (f1 ≺ f2) + (φ(e1) ≺ φ(e2)) + (φ2(e1) ≺ φ2(e2)) + · · ·+ (φm(e1) ≺ φm(e2)).

are K-equivalent (assuming both are naturally labeled).

Proof. Let

S = R+ (e1 ≺ e2) + (φ(e1) ≺ φ(e2)) + · · ·+ (φm−1(e1) ≺ φm−1(e2)).

Every partition of S is either a partition of P or a partition of S + (f2 ≺ f1) (which is not

naturally labeled), so KS(x) = KP (x) +KS+(f2≺f1)(x). Solving for KP (x) gives

KP (x) = KS(x)−KS+(f2≺f1)(x).

Similarly, let

S′ = R+ (φ(e1) ≺ φ(e2)) + · · ·+ (φm(e1) ≺ φm(e2)).

The partitions of Q are the partitions of S′ with the partitions of S′ + (f2 ≺ f1) removed, so

KQ(x) = KS′(x)−KS′+(f2≺f1)(x).

Observe that S ∼= S′ since S′ = φ(S), so S and S′ are trivially K-equivalent.
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By assumption, (e1 ≺ e2) and (φm(e1) ≺ φm(e2)) in R+ (f2 ≺ f1). It follows that

S + (f2 ≺ f1) = R+ (f2 ≺ f1) + (e1 ≺ e2) + (φ(e1) ≺ φ(e2)) + · · ·+ (φm−1(e1) ≺ φm−1(e2))

= R+ (f2 ≺ f1) + (φ(e1) ≺ φ(e2)) + · · ·+ (φm−1(e1) ≺ φm−1(e2))

and

S′ + (f2 ≺ f1) = R+ (f2 ≺ f1) + (φ(e1) ≺ φ(e2)) + · · ·+ (φm(e1) ≺ φm(e2))

= R+ (f2 ≺ f1) + (φ(e1) ≺ φ(e2)) + · · ·+ (φm−1(e1) ≺ φm−1(e2)).

These are the same poset, so KS+(f2≺f1)(x) = KS′+(f2≺f1)(x). Therefore P and Q are K-

equivalent.

We will now give some examples of posets that can be shown to be K-equivalent by using

the previous lemma.

Example 3.3.3. Consider the following 7-element posets. These posets are not isomorphic but

they are K-equivalent.

P

1 2

3 4 5

6 7

Q

1 2

3 4 5

6 7

We can express P and Q in terms of a subposet R with a nontrivial automorphism along

with some additional covering relations.

R

1 2

3 4 5

6 7

The automorphism φ is the map that fixes 3 and swaps the two chains. Let e = (3, 6), φ(e) =

(3, 7), and f = (1, 3). Below we have the poset R+ (3 ≺ 1).
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R+ (3 ≺ 1)

1 2

3

4 5

6 7

Since both 3 ≺ 6 and 3 ≺ 7 in R+(3 ≺ 1), it follows from Lemma 3.3.2 that KP (x) = KQ(x).

Example 3.3.4. Consider the following nonisomorphic 8-element posets.

P

1 2 3 4

5 6 7 8

Q

1 2 3 4

5 6 7 8

The poset R shown below has an automorphism φ given by the permutation (1234)(5678).

R

1 2 3 4

5 6 7 8

Let e = (1, 6), φ(e) = (2, 7), and f = (3, 5). Below we have the poset R+ (5 ≺ 3).

R+ (5 ≺ 3)

12

3 4

5

6 7 8

Since both 1 ≺ 6 and 2 ≺ 7 in R+(5 ≺ 3), it follows from Lemma 3.3.2 that KP (x) = KQ(x).

Observe that the posets in Example 3.3.3 have shape (3, 3, 1) and the posets in Example

3.3.4 have shape (2, 2, 2, 2). We can generalize these examples to construct pairs of posets of

any larger shape that are K-equivalent.
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P ′

λ3 λ2

λ1 − λ2

Q′

λ3 λ2

λ1 − λ2

Figure 3.6: The posets P ′ and Q′ from the proof of Theorem 3.3.5.

Theorem 3.3.5. For all partitions λ with λ ⊃ (3, 3, 1) or λ ⊃ (2, 2, 2, 2), there exist posets P

and Q such that P � Q, sh(P ) = sh(Q) = λ, and KP (x) = KQ(x).

Proof. We will prove this result by building off of the posets from Example 3.3.3 and Example

3.3.4. Observe that if sh(P ) = µ = (µ1, . . . , µk) and sh(Q) = ν = (ν1, . . . , νl), then

sh(P ⊕Q) = µ+ ν = (µ1 + ν1, µ2 + ν2, . . . ).

Also observe that

sh(P tQ) = µ ∪ ν = (µ′1 + ν ′1, µ
′
2 + ν ′2, . . . )

′.

Let λ = (λ1, λ2, . . . , λk) be a partition that contains either (3, 3, 1) or (2, 2, 2, 2). If λ contains

(3, 3, 1) then we will first form two K-equivalent posets that have shape (λ1, λ2, λ3) and then

take the disjoint union with the poset of disjoint chains of sizes λ4, λ5, . . . , λk.

Consider the following posets P ′ and Q′ depicted in Figure 3.6 of shape (λ1, λ2, λ3).

Since λ2 ≥ 3, P ′ � Q′. As in Example 3.3.3, it follows from Lemma 3.3.2 that P ′ and Q′ are

K-equivalent. Now let R be the poset of disjoint chains of sizes λ4, λ5, . . . , λk, and let P = P ′tR
and Q = Q′ tR. These posets have the desired shape λ, and since KP ′(x) = KQ′(x), it follows

that KP (x) = KQ(x).

Now suppose λ ⊃ (2, 2, 2, 2) but it does not contain (3, 3, 1), so λ has the form λ = (λ1, 2
j , 1l).

Let C be a (λ1 − 2)-element chain, and let R be the poset with j − 3 disjoint 2-element chains

and l disjoint single elements. Let P8 and Q8 be the 8-element posets from Example 3.3.4. If

we let P = (P8 ⊕ C) t R and Q = (Q8 ⊕ C) t R, then P and Q have the desired shape. Since

P8 and Q8 are K-equivalent, KP (x) = KQ(x).

The only remaining shapes for which it is not known whether there exists non-isomorphic

K-equivalent posets are those of the form (λ1, 2, 2, 1, 1, . . . , 1).
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3.4 Discussion and open questions

In this chapter we asked for which partitions λ is a naturally labeled poset of that shape

uniquely determined by its generating function. We showed that if sh(P ) = (λ1, λ2), sh(P ) =

(λ1, 1, . . . , 1), or if sh(P ) = (λ1, 2, 1, . . . , 1), then P is uniquely determined by KP (x). We then

showed that for all partitions λ that contain (3, 3, 1) or (2, 2, 2, 2), there exists distinct posets

of shape λ that are K-equivalent.

Question 3.4.1. Are all posets of shape (λ1, 2, 2, 1, 1, . . . , 1) uniquely determined by their

partition generating function?

The techniques used in the proof of Theorem 3.2.13 may be useful if there is a positive

answer to Question 3.4.1. The following question considers posets like those in Example 3.3.3.

Question 3.4.2. What can be said about K-equivalent posets of shape (λ1, λ2, 1)?

If P and Q are K-equivalent posets of shape (λ1, λ2, 1), we expect that P and Q must be

posets that are related by Lemma 3.3.2. That is, P and Q must contain a subposet R that has

a nontrivial automorphism, and there must be a cover relation in both P and Q that behaves

nicely with this automorphism. We believe this to be the case, because there are not many

nontrivial automorphisms of posets of shape (λ1, λ2, 1).

A final question to consider follows.

Question 3.4.3. Can the shape of a labeled poset (P, ω) be determined from K(P,ω)(x)?

It may be difficult to answer this question using the fundamental basis expansion ofK(P,ω)(x)

because a linear extension of (P, ω) can have a descent formed by elements in a chain. It is

possible that the cyclic inclusion-exclusion operation of Féray [7] will help answer this question;

however, we have not considered this approach yet.
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Chapter 4

Quasisymmetric power sums

In this chapter, we study the expansion of K(P,ω)(x) in the type 1 quasisymmetric power sum

basis {ψα} introduced in [3]. We begin by studying the Hopf algebra structure of QSym in this

basis. We then see that the min1 function plays an important role in the expansion of K(P,ω)(x)

in the ψα-basis. In Section 4.3, we express the functions min1 and max1 in terms of the basis

{ψα} and use this to describe the action of various involutions of QSym on this basis.

The ψα-basis has the advantage that multiplication can be expressed easily in this basis.

We aim to answer whether one can determine the number of connected components of P from

K(P,ω)(x). Recall that K(P,ω)(x) factors into a product of the partition generating functions of

the connected components of P . If we can show that K(P,ω)(x) is irreducible whenever P is

connected, then this will imply that we can count the number of connected components, as the

number of irreducible factors of K(P,ω)(x) would equal the number of connected components.

We answer this question in the naturally labeled case in Section 4.4.

We relate part of the ψα-expansion of KP (x) to certain zigzag labelings of P , which exist

only for connected posets. We use this to show that connected, naturally labeled posets have

irreducible P -partition generating functions. We will see, however, that our proof does not

extend to all connected labeled posets.

A poset is series-parallel if it can be built from one-element posets using ordinal sum and dis-

joint union operations. In Section 4.5, we use the result on irreducibility to show that naturally

labeled, series-parallel posets are uniquely determined by their partition generating function.

This answers the question asked by Hasebe and Tsujie in [11]. They asked this question as a way

to generalize their results on rooted trees since every rooted tree is series-parallel. They showed

that all naturally labeled, rooted trees are uniquely determined by their partition generating

function.

We conclude by giving a (signed) combinatorial interpretation for the coefficients in the ψα-

expansion of K(P,ω)(x) for any labeled poset. Our interpretation generalizes the interpretation
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of the naturally labeled case given by Alexandersson and Sulzgruber [2]. We will discuss this

in detail in Section 4.6, but in short the interpretation they gave depends on so-called pointed

P -partitions. In fact, our interpretation also generalizes the Murnaghan-Nakayama rule for com-

puting the expansion of a skew Schur function in terms of the power sum symmetric functions.

The results in this chapter can also be found in [15].

4.1 Composition functions

The following function will be important in a number of combinatorial formulas.

Definition 4.1.1. Given a refinement α of β, let α(i) be the composition consisting of the parts

of α that combine to form βi, so α(i) � βi. We then define

π(α) =

l(α)∏
i=1

i∑
j=1

αj and π(α, β) =

l(β)∏
i=1

π(α(i)).

Observe that π(α) = π(α, (n)).

Example 4.1.2. If α = (2, 1, 4, 2, 1) and β = (3, 7), then α � β, and

π(α, β) = (2 · (2 + 1))(4 · (4 + 2) · (4 + 2 + 1)) = 1008.

This function has the following combinatorial interpretation. Given compositions α, β � n

with α � β, let

D(α) = {s1, s2, . . . , sl−1}, 0 = s0 < s1 < s2 < · · · < sl−1 < sl = n,

D(β) = {si1 , si2 , . . . , sik−1
}, 0 = i0 < i1 < i2 < · · · < ik−1 < ik = l.

Let Π(α, β) (denoted Consα�β in [3]) be the set of permutations σ ∈ Sn such that σj ≤ σsi for

all sim−1 < j ≤ si ≤ sim .

Example 4.1.3. Let α = (1, 1, 4, 2, 1) and β = (2, 7). It follows that D(α) = {1, 2, 6, 8} and

D(β) = {2}. Then

σ = 236417589 ∈ Π(α, β),

but

σ = 142738569 /∈ Π(α, β)

because σ6 > σ8.

The following result is Lemma 3.7 from [3]; we sketch a proof here for completeness.
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Lemma 4.1.4. For compositions α � β,

|Π(α, β)| = n!

π(α, β)
.

Proof. Choose im−1 < i ≤ im. For a random permutation σ ∈ Sn, the probability that σsi =

maxj∈(sim−1
,si] σj is

1

si − sim−1

=
1

α
(m)
1 + · · ·+ α

(m)
i−im−1

.

It is easy to check that these probabilities are independent, and taking the product over all i

gives 1
π(α,β) .

Using Lemma 4.1.4, one can prove the following identity, which we will need later.

Lemma 4.1.5. Let α be a composition of n. Then

n!

π(αr)
=
∑
β�α

(−1)l(α)−l(β) n!

π(α, β)
.

Proof. The left hand side counts the number of permutations σ such that for all i = 1, . . . , l,

max{σsi−1+1, . . . , σn} = σsi . In other words, out of the last αi + · · ·+αl values of σ, the largest

of those values is in position si. Observe that these are the permutations in Π(α, α) such that

σs1 > σs2 > · · · > σsl .

The right hand side counts pairs (σ, β) such that σ ∈ Π(α, β) ⊆ Π(α, α) with a sign de-

pending on the length of β. We will describe a sign-reversing involution whose fixed points are

the permutations that are counted by the left hand side. Let j be the smallest positive number

such that σsj < σsj+1 . Then σ ∈ Π(α, β′), where

D(β′) =

D(β) ∪ {sj} if sj /∈ D(β),

D(β) \ {sj} if sj ∈ D(β).

In either case, l(β′) = l(β)±1, so (σ, β) 7→ (σ, β′) is a sign-reversing involution. The fixed points

are exactly the permutations in Π(α, α) where σs1 > σs2 > · · · > σsl , which are counted by the

left hand side.

For a composition α, define zα = 1m1m1! · 2m2m2! · · · , with mi being the multiplicity of i in

α. This number is the size of the centralizer of a group element g ∈ Sn whose cycle type is α.
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4.1.1 Shuffles

An important notion when working with compositions and quasisymmetric functions is that of

shuffles.

Definition 4.1.6. Let α = (α1, α2, . . . , αk) and β = (β1, β2, . . . , βl). The multiset of shuffles of

α and β is defined by

α� β = {(γσ1 , γσ2 , . . . , γσk+l) : σ ∈ Shk,l}

where γ = (γ1, γ2, . . . , γk+l) is the concatenation α · β, and Shk,l is the subset of permutations

Shk,l = {σ ∈ Sk+l : σ−1
1 < σ−1

2 < · · · < σ−1
k ; σ−1

k+1 < σ−1
k+2 < · · · < σ−1

k+l}.

Example 4.1.7. Let α = (4, 2, 1) and β = (3, 1), then the multiset of shuffles of α and β is:

(4, 2, 1, 3, 1), (4, 2, 3, 1, 1), (4, 2, 3, 1, 1), (4, 3, 2, 1, 1), (4, 3, 2, 1, 1),

(4, 3, 1, 2, 1), (3, 4, 2, 1, 1), (3, 4, 2, 1, 1), (3, 4, 1, 2, 1), (3, 1, 4, 2, 1).

The shuffle operator � is commutative, meaning α� β = β � α as multisets.

4.2 Type 1 Quasisymmetric power sum background

In this section, we will describe a third basis for the ring of quasisymmetric functions, the type

1 quasisymmetric power sum basis. We will first give the formal definition of the basis, as well

as a way to expand the basis elements in terms of the monomial basis. We will then see that

we can use this basis to refine QSym. We conclude the section by discussing the Hopf algebra

structure of QSym in terms of the type 1 quasisymmetric power sum basis.

4.2.1 Quasisymmetric power sums

Formally, the type 1 quasisymmetric power sum basis, as defined in [3], is the basis {Ψα} of

QSym that satisfies 〈Ψα,Ψβ〉 = zαδα,β, where Ψβ is the noncommutative power sum of the

first kind (introduced in [8]).

The type 1 quasisymmetric power sum basis refines the power sum symmetric functions (see

Section 4.6.3) as

pλ =
∑
α∼λ

Ψα,

where the sum runs over all compositions α that rearrange to the partition λ. We will consider

the unnormalized version of the type 1 quasisymmetric power sum basis with basis elements
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{ψα}, given by ψα = Ψα
zα

. From now on, when we refer to the type 1 quasisymmetric power sum

basis, we are referring to the unnormalized version ψα unless stated otherwise.

We can express ψα in terms of the monomial basis:

ψα =
∑
β�α

1

π(α, β)
Mβ,

where the sum runs over all coarsenings β of α. This was proven in [3], but for the purposes of

this thesis, this can be taken as the definition of ψα.

If f =
∑

α cαψα, then we say that the ψ-support of f is the set of compostions α such that

cα 6= 0.

For more information on the type 1 quasisymmetric power sum basis, see [2, 3].

4.2.2 Length

The type 1 quasisymmetric power sum basis has the following multiplicative property as shown

in [3]:

ψαψβ =
∑

γ∈α�β
ψγ .

Every composition γ in the ψ-support of ψαψβ satisfies l(γ) = l(α) + l(β). We can then use the

ψ-basis to refine QSymn:

QSymn =
⊕
λ`n

QSymλ,

where QSymλ is spanned by {ψα : α ∼ λ}. Observe that if f ∈ QSymλ and g ∈ QSymµ, then

f · g ∈ QSymν , where ν is the partition formed by combining and rearranging the parts of λ

and µ.

We define QSymn,m to be

QSymn,m :=
⊕
λ`n

l(λ)=m

QSymλ.

If f ∈ QSymn,m, then we say the length of f is m. This gives a grading for QSymn,

QSymn =
⊕
m≥0

QSymn,m.

If f ∈ QSymn1,m1
and g ∈ QSymn2,m2

, then f · g ∈ QSymn1+n2,m1+m2
.
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4.2.3 Hopf Algebra

Recall that the ring of quasisymmetric functions is a Hopf algebra; in particular, it is equipped

with a coproduct. The coproduct on the type 1 quasisymmetric power sum basis is defined as

follows:

∆(ψα) =
∑
β·γ=α

ψβ ⊗ ψγ .

This follows from the results of [3].

We define the graded comultiplication ∆α(ψβ) to be

∆α(ψβ) :=
∑

γ(1)···γ(l)=β
γ(i)�αi

ψγ(1) ⊗ · · · ⊗ ψγ(l) ,

where each γ(i) is a composition of αi. (Therefore ∆α(ψβ) = 0 unless α � β.) In other words,

the graded coproduct gives one graded component of the iterated coproduct.

Applying the comultiplication to a (P, ω)-partition generating function gives

∆α(K(P,ω)(x)) =
∑

K(P1,ω)(x)⊗ · · · ⊗K(Pl,ω)(x),

where for each i, |Pi| = αi; P1, P2, . . . , Pl partition P ; and P1 ∪ · · · ∪ Pi is an order ideal of P

(see, for instance [10]). Note that we abuse notation slightly by writing K(Pi,ω)(x) since the ω

that appears in K(Pi,ω)(x) is actually the restriction of ω to Pi.

4.3 Operations on QSym

In this section, we will express some useful linear functionals in terms of the type 1 quasisym-

metric power sum basis. We will then see how some well known automorphisms of QSym act

on this basis.

4.3.1 The min1 and max1 functionals on QSym

In Section 2.3, we showed the existence of linear functionals min1 and max1 on QSym that

satisfy

min1(KP (x)) =

1 if P has exactly 1 minimal elements,

0 otherwise,

and

max1(KP (x)) =

1 if P has exactly 1 maximal elements,

0 otherwise.
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whenever P is a naturally labeled poset. In this chapter, to simplify notation, we denote min1

by η and max1 by η̃. On the fundamental quasisymmetric function basis, these functions act as

follows:

η(Lα) =

(−1)k if α = (1k, n− k) for 0 ≤ k < n,

0 otherwise,

and

η̃(Lα) =

(−1)k if α = (n− k, 1k) for 0 ≤ k < n,

0 otherwise.

These functions can do more than just determine if a poset has exactly one minimal element

or one maximal element: they can be used to test if a quasisymmetric function is irreducible.

Lemma 4.3.1. For all non-constant homogeneous f, g ∈ QSym, η(f · g) = η̃(f · g) = 0.

Proof. The P -partition generating functions of naturally labeled posets span QSym [25]. There-

fore we can express f and g as a linear combination of these partition generating functions. The

product of the partition generating functions of any two naturally labeled posets gets sent to 0

by η since no disconnected poset has exactly 1 minimal element.

A similar proof shows that η̃(f · g) = 0.

(One can also easily prove this result using the fundamental basis.)

Note that if f is a (homogeneous, non-constant) quasisymmetric function and η̃(f) 6= 0 (or

similarly if η(f) 6= 0), then Lemma 4.3.1 tells us that f is irreducible (and in fact does not lie

in the span of homogeneous reducible elements of QSym).

It is straightforward to evaluate η and η̃ on the monomial basis.

Lemma 4.3.2. On the monomial basis {Mα},

η̃(Mα) = (−1)l(α)−1α1 and η(Mα) = (−1)l(α)−1αl(α).

Proof. Expanding Mα in the {Lα} basis and applying η̃ gives

η̃(Mα) =
∑
β�α

(−1)l(β)−l(α) η̃(Lβ).

Since η̃(Lβ) = 0 unless β = (n− k, 1k) we have

η̃(Mα) =

α1−1∑
i=0

(−1)n−α1+i+1−l(α) η̃(L(α1−i,1n−α1+i)).

But η̃(L(α1−i,1n−α1+i)) = (−1)n−α1+i, therefore η̃(Mα) = (−1)l(α)−1α1 as desired.
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A similar argument shows that η(Mα) = (−1)l(α)−1αl(α).

We can now evaluate the functions η̃ and η on the type 1 quasisymmetric power sum basis.

Lemma 4.3.3. On the type 1 quasisymmetric power sum basis {ψα},

η̃(ψα) =

l(α)∑
i=1

(−1)l(α)−i

π(α1 · · ·αi−1) · π((αi+1 · · ·αl(α))r)
,

and

η(ψα) =

1 if α = (n),

0 otherwise.

Proof. We first calculate η̃(ψα). Expanding ψα in the monomial basis and applying η̃ using

Lemma 4.3.2 gives

η̃(ψα) =
∑
β�α

1

π(α, β)
η̃(Mβ) =

∑
β�α

(−1)l(β)−1β1

π(α, β)
.

Let l(α) = l. For each β that coarsens α, β1 = α1 + · · · + αi for some value of i, and the

composition γ = (β2, . . . , βl(β)) coarsens α(i) := (αi+1, . . . , αl). We can then group together the

compositions β by their first component:

η̃(ψα) =
l∑

i=1

∑
γ�α(i)

(−1)l(γ)(α1 + · · ·+ αi)

π(α, (α1 + · · ·+ αi) · γ)

=

l∑
i=1

∑
γ�α(i)

(−1)l(γ)

π(α1 · · ·αi−1) · π(α(i), γ)

By Lemma 4.1.5, we have that, for all i,

∑
γ�α(i)

(−1)l(γ)

π(α1 · · ·αi−1) · π(α(i), γ)
=

(−1)l(α
(i))

π(α1 · · ·αi−1)

∑
γ�α(i)

(−1)l(α
(i))−l(γ)

π(α(i), γ)

=
(−1)l−i

π(α1 · · ·αi−1) · π((αi+1 · · ·αl)r)

as desired.

We will now show that η(ψα) = 0 unless α = (n), in which case η(ψ(n)) = 1. As before, we

will express ψα in terms of the monomial basis, and evaluate η on both sides. This gives

η(ψα) =
∑
β�α

1

π(α, β)
η(Mβ) =

∑
β�α

(−1)l(β)−1βl(β)

π(α, β)
.
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When l(α) > 1, for each γ that coarsens (α1, . . . , αl−1), both β = γ · (αl) and β′ = γ � (αl) are

coarsenings of α. Therefore

∑
β�α

(−1)l(β)−1βl(β)

π(α, β)
=

∑
γ�(α1,...,αl−1)

(
(−1)l(γ)αl
π(α, γ · (αl))

+
(−1)l(γ)−1(γl(γ) + αl)

π(α, γ � (αl))

)
.

But for all γ,

π(α, γ · (αl)) = π((α1, . . . , αl−1), γ) · αl,

and

π(α, γ � (αl)) = π((α1, . . . αl−1), γ) · (γl(γ) + αl).

Therefore each term in the sum vanishes, so η(ψα) = 0 when l(α) > 1. When α = (n), we have

η(ψ(n)) =
n

π((n), (n))
= 1.

Example 4.3.4. Let α = 2314. We have

η̃(ψ2314) =
(−1)3

(4 · 5 · 8)
+

(−1)2

(2)(4 · 5)
+

(−1)1

(2 · 5)(4)
+

(−1)0

(2 · 5 · 6)
=

1

96
.

Due to the simplicity of the behavior of η on ψα, we can now compute the coefficients in

the ψα-expansion of any quasisymmetric function.

Theorem 4.3.5. Suppose f ∈ QSym and f =
∑

α cαψα. Then

cα = η⊗l(α)(∆αf).

Proof. Since η is linear, we can prove this by showing that η⊗l(α)(∆αψβ) = δα,β. Recall that

∆α(ψβ) =
∑

γ(1)···γ(l)=β
|γ(i)|=αi

ψγ(1) ⊗ · · · ⊗ ψγ(l)

and η(ψα) = δl(α),1. The only way compositions with length 1 can concatenate to β is if the

compositions are (β1), (β2), . . . . Since βi = αi for all i, it follows that η⊗l(α)(∆αψβ) = δα,β.

It should be noted that Theorem 4.3.5 follows immediately from the combinatorial de-

scription of the coefficient of ψα in KP (x) given by Alexandersson and Sulzgruber [2]. Indeed,

consider the following definition of a pointed P -partition.

Definition 4.3.6. Let P be a naturally labeled poset. A P -partition θ is pointed if θ is surjective

onto [k] for some k, and θ−1(i) has a unique minimal element for all i ∈ [k].
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It is shown in [2] that the coefficient of ψα in KP (x) is the number of pointed P -partitions

with weight α. This is the same as evaluating η on each factor in the graded coproduct of

KP (x). We will state this as a corollary to Theorem 4.3.5.

Corollary 4.3.7 ([2], Theorem 5.4). Let P be a naturally labeled poset. Then

KP (x) =
∑
θ

ψwt(θ),

where the sum runs over all pointed P -partitions θ.

Proof. Suppose KP (x) =
∑

α cαψα. By Theorem 4.3.5, cα = η⊗l(α)(∆αKP (x)). Recall that

η(KP (x)) = 1 if P has exactly one minimal element and η(KP (x)) = 0 otherwise. This means

that η⊗l(α)(∆αKP (x)) is the number of ways to partition P into P1, P2, . . . , Pl(α) where for all

i, |Pi| = αi, P1 ∪ · · · ∪ Pi is an order ideal of P , and Pi has exactly one minimal element. This

is exactly the number of pointed P -partitions with weight α.

Example 4.3.8. Let P be the following poset.

The P -partitions that are surjective onto some [k] are:

1

1

1 1

1

1

1 2

1

1

2 1

1

1

2 2

1

2

2 2

1

2

2 3

1

2

3 2

1

2

3 3

1

2

3 4

1

2

4 3
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It follows that the monomial basis expansion of KP (x) is

KP (x) = M4 + 2M31 +M22 +M13 + 2M121 +M112 + 2M1111.

However, the rightmost P -partitions in the first and second row are not pointed P -partitions,

so they do not contribute to the type 1 quasisymmetric power sum basis expansion of KP (x).

Therefore the expansion of KP (x) in the ψα-basis is

KP (x) = ψ4 + 2ψ31 + ψ13 + 2ψ121 + 2ψ1111.

In Section 4.6 we will extend this result to all labeled posets.

4.3.2 Automorphisms

For this section, suppose that (P,w) is a labeled poset. Let P ∗ be the poset formed by reversing

the relations of P , that is x �P y ⇐⇒ y �P ∗ x. Let w∗ be the labeling of P or P ∗ defined by

w∗(x) = n− w(x) + 1.

We will consider three well known automorphisms of QSym: ω, ρ, and ψ. These automor-

phisms act as follows on the fundamental basis {Lα}:

ω(Lα) = L(αc)r ,

ρ(Lα) = Lαr ,

ψ(Lα) = Lαc .

Here αc is the composition such that D(α) and D(αc) are complementary subsets of [n− 1].

These automorphisms perform the following actions on K(P,ω)(x):

ω(K(P,w)(x)) = K(P ∗,w)(x),

ρ(K(P,w)(x)) = K(P ∗,w∗)(x),

ψ(K(P,w)(x)) = K(P,w∗)(x).

Informally, in terms of the Hasse diagram of P , ρ flips P upside down, ψ switches natural edges

with strict edges, and ω does both. This is shown in Figure 4.1. Each of these automorphism can

be expressed as the composition of the other two. Since we are using the letter ψ for basis ele-

ments, to avoid confusion, we will use the notation ωρ for ψ. For more on these automorphisms,

see Section 3.6 in [16].

The authors of [3] show that ω(ψα) = (−1)|α|−l(α)ψαr (though they do not give an expansion

for the other two automorphisms). This result is easy to deduce given the earlier results in this
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(P,w)

1

4 3

2

(P,w∗)

4

1 2

3

(P ∗, w)

1

4 3

2

(P ∗, w∗)

4

1 2

3

Figure 4.1: The Hasse diagrams for (P,w), (P,w∗), (P ∗, w), and (P ∗, w∗). Their partition gen-
erating functions are related as follows: ω(K(P,w)(x)) = K(P ∗,w)(x), ρ(K(P,w)(x)) = K(P ∗,w∗)(x),
ψ(K(P,w)(x)) = K(P,w∗)(x).

section.

Theorem 4.3.9 ([3]). For any composition α, ω(ψα) = (−1)|α|−l(α)ψαr .

Proof. If α = (1k, n−k), then (αc)r = (1n−k−1, k+1). Hence, for all compositions α, η ◦ω(Lα) =

(−1)|α|−1 η(Lα). In other words, η ◦ω acts like (−1)n−1 η on QSymn. By Theorem 4.3.5, the

coefficient of ψβ in ω(ψα) is

η⊗l(β) ∆β(ω(ψα)) = (η ◦ω)⊗l(β)∆βr(ψα).

This is only nonzero if β = αr, in which case it equals
∏
i(−1)|αi|−1 = (−1)|α|−l(α).

Since η(Lα) = η̃(Lαr), it follows that η ◦ρ = η̃. This allows us to give an expansion for

ωρ(ψα) in the type 1 quasisymmetric power sum basis.

Theorem 4.3.10. Let ρ(ψα) =
∑

β cβψβ. Then

cβ = η̃⊗l(β) ∆βr(ψα).

Proof. Using the fact that η ◦ρ = η̃, we have from Theorem 4.3.5 that

cβ = η⊗l(β) ∆β(ρ(ψα)) = (η ◦ρ)⊗l(β)∆βr(ψα) = η̃⊗l(β) ∆βr(ψα).

Combining these results immediately gives the following theorem.

Theorem 4.3.11. Let ωρ(ψα) =
∑

β cβψβ. Then

cβ = (−1)|β|−l(β) η̃⊗l(β) ∆β(ψα).

64



In particular, ψβ can only appear in the expansion of ρ(ψα) if βr coarsens α, and likewise

ψβ can only appear in the expansion of ωρ(ψα) if β coarsens α. Of course, these coefficients can

be computed explicitly using Lemma 4.3.3.

Example 4.3.12. By the previous theorem, the expansion of ωρ(ψ3421) in the ψα basis is

ωρ(ψ3421) = ψ3421 +
1

2
ψ343 +

1

4
ψ361 +

1

8
ψ37 −

1

12
ψ721 −

1

24
ψ73 −

1

28
ψ91 −

4

189
ψ10.

4.4 Irreducibility of KP (x)

In this section, we will restrict our attention to the case when P is naturally labeled. We will

show that in this case, KP (x) is irreducible whenever P is connected, which partially answers

a question from [18].

As a remark, it was shown in [13] that a homogeneous quasisymmetric function is reducible

in QSym if and only if it is reducible in the ring C[[x1, x2, . . . ]] of formal power series of bounded

degree.

4.4.1 Minimal length

Let τm : QSymn → QSymn,m be the projection map onto the length m part; in other words,

τm(ψα) =

ψα if l(α) = m,

0 otherwise.

Given a poset P , let K̃P (x) := τm(KP (x)), where m is the minimum length composition in the

ψα-expansion of KP (x). In other words, K̃P (x) consists of the terms in the expansion of KP (x)

in the ψα-basis of minimal length. As we will see shortly, m will equal the number of minimal

elements of P .

Example 4.4.1. Let P be the following 5-element poset.

Then

KP (x) = ψ23 + ψ14 + 2ψ221 + 2ψ131 + 2ψ122 + ψ113

+ 2ψ2111 + 4ψ1211 + 4ψ1121 + 2ψ1112 + 8ψ11111,
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K̃P (x) = ψ23 + ψ14.

Just as with the usual notion of degree, we can check for irreducibility of a quasisymmetric

function by checking irreducibility on the part of minimal length.

Lemma 4.4.2. If KP (x) is reducible, then K̃P (x) is also reducible.

Proof. Recall that multiplication in terms of the type 1 quasisymmetric power sum basis is the

shuffle product, so length gives a grading on QSym. If KP (x) is reducible, then KP (x) can be

expressed as KP (x) = f · g for some nonconstant homogeneous f, g ∈ QSym. If f̃ and g̃ are the

terms of shortest length in f and g, respectively, then K̃P (x) = f̃ · g̃.

It follows that if K̃P (x) is irreducible, then KP (x) must also be irreducible.

We now give a combinatorial interpretation for K̃P (x) in terms of certain special pointed

P -partitions. Let {z1, . . . , zm} be the set of minimal elements of P . For any subset {i1, . . . , il} ⊆
[m], we will denote by V (zi1 , . . . , zil) the filter of P whose minimal elements are {zi1 , . . . , zil}.

Definition 4.4.3. Suppose P has m minimal elements and σ ∈ Sm. The σ-partition θσ is the

pointed P -partition that sends any element x ∈ P to the largest number j such that zσj � x.

In other words, θ−1
σ (i) = V (zσi) \ V (zσi+1 , . . . , zσm) for i = 1, . . . ,m.

Denote by α(σ) the weight of θσ. Explicitly,

α(σ)i = |V (zσi) \ V (zσi+1 , . . . , zσm)|

= |V (zσi , . . . , zσm)| − |V (zσi+1 , . . . , zσm)|.

Lemma 4.4.4. Let P be a poset with m minimal elements. Then

K̃P (x) =
∑
σ∈Sm

ψα(σ).

Proof. This follows from Corollary 4.3.7. Note that in any pointed P -partition, the minimal

elements of P must be sent to different values. Hence the minimum length part of K̃P (x) has

length (at least) m.

If θ : P → [m] is a pointed P -partition, then there exists some permutation σ such that

θ(zσi) = i. Since θ−1(m) must be a principal filter of P , it must be V (zσm). Similarly, θ−1(m−1)

must be a principal filter of P \ V (zσm), so it must be V (zσm−1) \ V (zσm). Continuing in this

manner, we see that we must have θ = θσ, and the result follows.

Example 4.4.5. Let P be the poset shown below (on the left). On the right is the σ-partition
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of P when σ = 312 with weight α(σ) = (1, 2, 5).

z2 z3z1 3

3

3

1

3

2

2

3

Similarly, one can compute for all σ ∈ S3:

α(123) = 233, α(132) = 215, α(213) = 143,

α(231) = 125, α(312) = 125, α(321) = 125.

It follows from Lemma 4.4.4 that

K̃P (x) = ψ233 + ψ215 + ψ143 + 3ψ125.

4.4.2 Evaluating functions in ψα-basis

We will now give a combinatorial interpretation for the value of η̃ when applied to some term

ψα(σ) appearing in K̃P (x). To do this, we will need the following technical notion.

Definition 4.4.6. Let π, σ ∈ Sm. We say that a bijection φ : P → [n] is a (π, σ)-labeling if the

following are true:

1. φ(zπ1) > φ(zπ2) > · · · > φ(zπm); and

2. for all y ∈ P , φ(y) ≥ φ(z), where z is the minimal element such that θσ(z) = θσ(y).

Denote by TP (π, σ) the set of all (π, σ)-labelings of P .

Example 4.4.7. Shown below are the 1423-partition θ of a poset P (left), and an example of

a (2314, 1423)-labeling φ (right). Here z1, z2, z3, z4 are taken to be the minimal elements from

left to right.

1 3 4 2

1 4 3 2

2 7 5 1

3 6 8 4

It is clear that condition (1) holds since φ(z2) > φ(z3) > φ(z1) > φ(z4).

For condition (2), consider, for instance, the element x that covers z2 and z4. Since θ(x) =

θ(z2) = 3, we must have φ(x) ≥ φ(z2).
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Consider the operations fi, gi : Sm → Sm for i = 1, . . . ,m− 1 defined by

fi(π) = π1 · · · π̂i · · ·πmπi,

gi(π) = π1 · · ·πi−1πmπi · · ·πm−1.

Observe that fi and gi are inverses of each other. For any subset S = {s1, . . . , sl} ⊆ [m − 1]

with s1 < · · · < sl, define

fS = fs1 ◦ fs2 ◦ · · · ◦ fsl ,

gS = gsl ◦ gsl−1
◦ · · · ◦ gs1 .

Explicitly,

fS(π) = π1 · · · π̂s1 · · · π̂s2 · · · π̂sl · · ·πmπslπsl−1
· · ·πs1 .

We can now give the following description of η̃(ψα(σ)).

Lemma 4.4.8. Let P be a poset of size n with m minimal elements, and let σ ∈ Sm. Then

(n− 1)! η̃(ψα(σ)) =
∑

S⊆[m−1]

(−1)|S||TP (gS(σ), σ)|.

Proof. Note that for fixed σ, the permutations gS(σ) are distinct for distinct sets S, so the sets

TP (gS(σ), σ) are all disjoint.

Fix a value of i with 1 ≤ i ≤ m. Every labeling φ of P in the union⋃
S⊆[m−1]
|S|=m−i

TP (gS(σ), σ)

must satisfy the following two conditions:

1. φ(zσ1) > φ(zσ2) > · · · > φ(zσi−1) > φ(zσi) < φ(zσi+1) < · · · < φ(zσm−1) < φ(zσm); and

2. for all y ∈ P , φ(y) ≥ φ(z), where z is the minimal element such that θσ(z) = θσ(y).

These conditions are equivalent to the following:

• φ(zσi) = 1 (which of course is the smallest label among all n elements of P );

• for j = i− 1, i− 2, . . . , 1, zσj has the smallest label among P \ V (σzj+1 , . . . , σzm), and

• for j = i+ 1, i+ 2, . . . ,m, zσj has the smallest label among V (σzj , . . . , σzm).
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It is easy to check that for a random bijection from P to [n], these events are all independent

of one another. If we let α = α(σ), then

|P \ V (σzj+1 , . . . , σzm)| = α1 + · · ·+ αj ,

|V (σzj , . . . , σzm)| = αj + · · ·+ αm.

Hence the number of such labelings φ is

n!

n ·
∏i−1
j=1(α1 + · · ·+ αj) ·

∏m
j=i+1(αj + · · ·+ αm)

=
(n− 1)!

π(α1 · · ·αi−1) · π((αi+1 · · ·αm)r)
.

When we include the (−1)|S| and sum over all values of i, we find that the right hand side

equals
m∑
i=1

(−1)m−i(n− 1)!

π(α1 · · ·αi−1) · π((αi+1 · · ·αm)r)
.

This value is exactly (n− 1)! η̃(ψα(σ)) by Lemma 4.3.3, as desired.

The following two lemmas about TP (π, σ) will be helpful for giving a combinatorial inter-

pretation for η̃(K̃P (x)). This is because many of the terms on the right hand side of Lemma

4.4.8 for different σ will cancel out due to the principle of inclusion-exclusion.

Lemma 4.4.9. Let P be a poset with m minimal elements. For all S ⊆ [m−1] and all π ∈ Sm,

TP (π, fS(π)) =
⋂
s∈S

TP (π, fs(π)).

Proof. We will show that the two sets above are equivalent by showing that the inequalities that

φ must satisfy are the same in both sets. Clearly, a labeling φ must satisfy φ(zπ1) > φ(zπ2) >

· · · > φ(zπm) to be in either of the sets. Since this determines the inequalities that must be

satisfied among minimal elements of P , we will turn our attention to some non-minimal element

y ∈ P . Define a = θπ(y), where θπ is the π-partition of P .

For the left hand side, if φ ∈ TP (π, fS(π)), then we must have that φ(y) > φ(zπs′ ), where s′

is the image of y in the fS(π)-partition of P . Let Sy = {s ∈ S : y � zπs}. If Sy is nonempty, then

s′ is the minimum element of Sy, while if Sy is empty, then s′ = a. Note that by the definition

of θπ, a ≥ s for all s ∈ Sy. Thus s′ is the minimum element of Sy ∪ {a}.
For the right hand side, φ ∈ TP (π, fs(π)) implies φ(y) > φ(zπs) if s ∈ Sy; otherwise φ(y) >

φ(zπa). Thus φ will lie in the intersection of all of these sets if φ(y) is larger than the maximum

of φ(zπs) for all s ∈ Sy∪{a}. But by condition (1) on φ, this maximum is attained at φ(zπs′ ).

We will now see that for all i, any (π, fi(π))-labeling is also a (π, π)-labeling.
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Lemma 4.4.10. Let P be a poset with m minimal elements. For all π ∈ Sm,

m−1⋃
i=1

TP (π, fi(π)) ⊆ TP (π, π).

Proof. Let φ ∈
⋃m−1
i=1 TP (π, fi(π)). This means that φ is a (π, fi(π))-labeling for some value of

i. No matter the value of i, φ must satisfy φ(zπ1) > φ(zπ2) > · · · > φ(zπm), which also must be

satisfied to be in TP (π, π).

It remains to show that for all y ∈ P , φ(y) ≥ φ(zπa), where a = θπ(y), and θπ is the

π-partition of P . If y � zπi , then φ(y) ≥ φ(zπa). If instead y � zπi , then φ(y) ≥ φ(zπi), but

φ(zπi) ≥ φ(zπa) since i ≤ a by the definition of θπ. Therefore φ ∈ TP (π, π).

Note that a (π, π)-labeling φ appears on the right hand side of Lemma 4.4.10 but not the

left hand side if and only if, for all i = 1, . . . ,m − 1, there exists y � zπi with φ(y) < φ(zπi).

We will describe such labelings more thoroughly in the next section.

4.4.3 Zigzag labelings

In this section, we introduce the notion of a zigzag labeling, which will allow us to give a

combinatorial interpretation for η̃(K̃P (x)).

Definition 4.4.11. A bijection φ : P → [n] is a zigzag labeling if the following conditions hold:

1. if x is minimal and φ(x) 6= 1, then there exists y � x with φ(y) < φ(x); and

2. if x is not minimal, then there exists a minimal element y ≺ x with φ(y) < φ(x).

We say that a zigzag labeling φ has type π if φ(zπ1) > φ(zπ2) > · · · > φ(zπm).

Example 4.4.12. The following is an example of a zigzag labeling of P of type 4231. (We take

z1, z2, z3, z4 to be the minimal elements drawn from left to right.)

1 5 4 7

2 3 6 8

Zigzag labelings can be used to determine whether or not a poset is connected.

Lemma 4.4.13. A poset P has a zigzag labeling if and only if it is connected.

Proof. Suppose P is connected and has m minimal elements. Since P is connected, there exists

a permutation π′ ∈ Sm such that V (zπ′1 , . . . , zπ′i−1
)∩ V (zπ′i) 6= ∅ for all i. Indeed, if it were not
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possible to find π′i given π′1, . . . , π
′
i−1, then V (zπ′1 , . . . , zπ′i−1

) would be a connected component

of P , which contradicts the fact that P is connected.

An example of a zigzag labeling φ of P is as follows: label zπ′1 with 1, and label the rest of

V (zπ′1) with 2, 3, . . . . Then label zπ′2 with the lowest number available, and label the elements

of V (zπ′1 , zπ′2) \ V (zπ′1) with the next lowest remaining labels. Continue this process until all

elements of P are labeled. For all i > 1, there exists an element x ∈ V (zπ′1 , . . . , zπ′i−1
) ∩ V (zπ′i),

and this element satisfies x � zπ′i and φ(x) < φ(zπ′i). Therefore φ is a zigzag labeling. (One can

check that φ has type π, where π is the reverse of π′.)

Now suppose P is disconnected, and let φ : P → [n] be any bijection. Let x be the element

with the smallest label that is not in the same connected component as the element labeled

1. Then x is not comparable to any element y with a smaller label, so φ cannot be a zigzag

labeling.

We will now use the lemmas in the previous section to show that we can count zigzag

labelings of a fixed type by an alternating sum.

Lemma 4.4.14. Let P be a finite poset with m minimal elements, and let π ∈ Sm. The set of

zigzag labelings of P of type π is

TP (π, π) \
m−1⋃
i=1

TP (π, fi(π)),

and the number of such labelings is∑
S⊆[m−1]

(−1)|S||TP (π, fs(π))|.

Proof. First note that for a labeling φ of type π, condition (2) for being a (π, π)-labeling is

equivalent to condition (2) for being a zigzag labeling. Indeed, for any non-minimal x ∈ P , if

there exists a minimal element zπi ≺ x with φ(zπi) < φ(x), then certainly we can take i to be

the maximum value such that zπi ≺ x since that will only decrease the value of φ(zπi).

A labeling φ ∈ TP (π, π) does not lie in TP (π, fi(π)) if there exists some element y � zπi
with φ(y) < φ(zπi). Hence this occurs for all i < m when φ satisfies condition (1) of being a

zigzag labeling, which completes the proof of the first claim.

From the principle of inclusion-exclusion and Lemma 4.4.9,

∑
S⊆[m−1]

(−1)|S||TP (π, fs(π))| = |TP (π, π)| −

∣∣∣∣∣
m−1⋃
i=1

TP (π, fi(π))

∣∣∣∣∣ .
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By Lemma 4.4.10, we have that

|TP (π, π)| −

∣∣∣∣∣
m−1⋃
i=1

TP (π, fi(π))

∣∣∣∣∣ =

∣∣∣∣∣TP (π, π) \
m−1⋃
i=1

TP (π, fi(π))

∣∣∣∣∣ .
This is exactly the number of zigzag labelings of type π.

We now have the required tools to prove that the number of zigzag labelings of P can be

determined from KP (x).

Theorem 4.4.15. The number of zigzag labelings of P is counted by (n− 1)! η̃(K̃P (x)).

Proof. By Lemmas 4.4.4 and 4.4.8,

(n− 1)! η̃(K̃P (x)) = (n− 1)!
∑
σ∈Sm

η̃(ψα(σ))

=
∑
σ∈Sm

∑
S⊆[m−1]

(−1)|S||TP (gS(σ), σ)|

For all π ∈ Sm, we can group together the terms for which gS(σ) = π, meaning σ = fS(π) since

gS and fS are inverses. It follows that∑
σ∈Sm

∑
S⊆[m−1]

(−1)|S||TP (gS(σ), σ)| =
∑
π∈Sm

∑
S⊆[m−1]

(−1)|S||TP (π, fs(π))|.

By Lemma 4.4.14, this counts the number of zigzag labelings of P (of any type).

Example 4.4.16. Let P be the following naturally labeled poset.

One can compute

KP (x) = 4ψ122 + 2ψ113 + 4ψ1211 + 8ψ1121 + 4ψ1112 + 16ψ11111.

It follows that

K̃P (x) = 4ψ122 + 2ψ113.

Applying η̃ and multiplying by 4!, we have

4! · η̃(K̃P (x)) = 24(−1
6 + 1

2) = 8.
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The following are the 8 zigzag labelings of P :

1

2

3

4

5 5

4

3

2

1 4

2

1

3

5 4

3

1

2

5

5

3

1

2

4 5

2

1

3

4 3

2

1

4

5 5

4

1

2

3

Now that we have this combinatorial interpretation, it is easy to show our main result about

the irreduciblity of KP (x).

Theorem 4.4.17. A poset P is connected if and only if KP (x) is irreducible over QSym.

Proof. This is an immediate consequence of Theorem 4.4.15 and Lemma 4.4.13. If P is con-

nected, then (n− 1)! η̃(K̃P (x)) > 0, so it follows from Lemma 4.3.1 that K̃P (x) is irreducible.

Therefore by Lemma 4.4.2, KP (x) is irreducible.

In fact, this result implies that if P is connected, then KP (x) does not even lie in the span

of the homogeneous, reducible elements of QSym.

This result also tells us how KP (x) factors as a product of irreducible partition generating

functions. It is well known that QSym is isomorphic to a polynomial ring and hence is a unique

factorization domain (see [12]).

Corollary 4.4.18. Let P be a naturally labeled poset. Then the irreducible factorization of

KP (x) is given by KP (x) =
∏
iKPi(x), where Pi are the connected components of P .

Proof. This follows from the fact that KP (x) factors into a product of the partition generation

functions of its connected components, and each of these is irreducible by Theorem 4.4.17.

This result also gives a condition on when two posets can have the same partition generating

function based on their connected components.

Corollary 4.4.19. Let P and Q be naturally labeled posets. Let P1, . . . , Pk be the connected

components of P , and Q1, . . . , Ql the connected components of Q. If KP (x) = KQ(x), then

k = l, and there exists a permutation π ∈ Sk such that KPi(x) = KQπi
(x) for all i.

Proof. This follows immediately from Corollary 4.4.18 and the fact that QSym is a unique fac-

torization domain. (There are no scalar factors since Theorem 1.2.11 implies that the coefficient

of Ln in the expansion of any KPi(x) or KQj (x) in the Lα-basis is 1.)
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It is still open whether there exists a connected labeled poset (P, ω) whose partition generat-

ing function K(P,ω)(x) is reducible. Our approach will not work in this more general setting: for a

general labeled poset (P, ω), it is possible for K(P,ω)(x) to be irreducible even when K̃(P,ω)(x) is

reducible. (Moreover, K(P,ω)(x) may be irreducible yet lie in the span of homogeneous, reducible

elements of QSym.)

Example 4.4.20. Let (P, ω) be the the following labeled poset with the generating function

shown.

1

2

3

4

5

K(P,ω)(x) =− ψ32 − ψ23 − ψ311 − ψ221 − 3ψ212 + ψ122

+ ψ113 + 3ψ2111 + ψ1211 + ψ1121 + 3ψ1112 + 3ψ11111.

If we define K̃(P,ω)(x) = τ2(K(P,ω)(x)), then we have

K̃(P,ω)(x) = −ψ32 − ψ23

= −ψ3 · ψ2.

Since K̃(P,ω)(x) is reducible, it follows that η̃(K̃(P,ω)(x)) = 0 even though P is connected.

However, one can check that K(P,ω) is itself irreducible.

4.5 Series-parallel posets

We will now turn our attention to a collection of naturally labeled posets known as series-parallel

posets. We will use the results of the previous section to show that distinct series-parallel posets

have distinct partition generating functions.

Definition 4.5.1. The class SP of series-parallel posets is the smallest collection of posets

that satisfies the following:

• the one-element poset 1P lies in SP;

• if P ∈ SP and Q ∈ SP, then P tQ ∈ SP; and
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• if P ∈ SP and Q ∈ SP, then P ⊕Q ∈ SP.

Recall that the ordinal sum P ⊕ Q is the poset on the disjoint union of P and Q with

relations x � y if and only if x �P y, x �Q y, or x ∈ P and y ∈ Q.

It is well known that P ∈ SP if and only if P is N -avoiding [26]. (A poset is N -avoiding if

there does not exist an induced poset on four elements {a, b, c, d} ⊆ P with relations a ≺ b �
c ≺ d.)

Note that if a series-parallel poset is disconnected, then it can be expressed as the disjoint

union of series-parallel posets. If it is connected (and has more than one element), then it can

be expressed as an ordinal sum of series-parallel posets.

In [11], Hasebe and Tsujie show that if a poset P is a finite rooted tree, then it can be

distinguished by its P -partition generating function. A finite rooted tree is a special type of a

series-parallel poset. They then ask if the same can be said about series-parallel posets. We will

now give an answer to this question.

Theorem 4.5.2. Let P be a series-parallel poset. Then P is uniquely determined (up to iso-

morphism) by KP (x).

Proof. We will prove this by induction on the size of P . If P has a single element, then the

result holds trivially since there is a unique single-element poset. Now suppose that the results

holds for all series-parallel posets with fewer than |P | elements.

If P is disconnected, then P = P1tP2t· · ·tPk, where each Pi is a connected series-parallel

poset. By Lemma 4.4.18, the irreducible factors of KP (x) are the partition generating functions

of the connected components of P . By induction, we can determine the connected components

from their partition generating functions.

We will now assume that P is connected and series-parallel. We can express P as P =

P1 ⊕ P2 ⊕ · · · ⊕ Pk, where each Pi is series-parallel. By Lemma 2.1.3, we can determine KPi(x)

from KP (x) for all i. Since each Pi is series-parallel, it follows by induction that it is uniquely

determined by KPi(x).

It should be noted that Theorem 4.5.2 does not hold when (P, ω) is not naturally labeled.

Example 4.5.3. The following labeled series-parallel posets have the same partition generating

functions.

1

2

3

1

2

3

Although the labeled posets in Example 4.5.3 are not isomorphic, they are both series-

parallel.
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4.6 A combinatorial description of the coefficients

In this section, we will give a combinatorial interpretation for the coefficients in the ψα-expansion

of K(P,ω)(x) akin to the Murnaghan-Nakayama rule.

4.6.1 Generalized ribbons

We will begin by considering the following question: for which labeled posets (P, ω) does

η(K(P,ω)(x)) 6= 0? By Lemma 4.3.3, this is equivalent to asking when the composition (n)

lies in the ψ-support of K(P,ω)(x).

In the fundamental quasisymmetric function basis {Lα},

η(Lα) =

(−1)k if α = (1k, n− k),

0 otherwise.

This means that we must only consider linear extensions of (P, ω) whose descent set is {1, . . . , k}
for some value of k when computing η(K(P,ω)(x)).

Lemma 4.6.1. Suppose (P, ω) is a labeled poset. If there exists a chain a ≺ b ≺ c such that

ω(a) < ω(b) > ω(c), then η(K(P,ω)(x)) = 0.

Proof. Every linear extension of (P, ω) has an ascent at some point between the appearance of

ω(a) and ω(b), as well as a descent between the appearance of ω(b) and ω(c). Therefore K(P,ω)(x)

has no compositions of the form α = (1k, n− k) in its L-support, so η(K(P,ω)(x)) = 0.

We say that a labeled poset (P, ω) is a generalized ribbon if (P, ω) does not contain a chain

a ≺ b ≺ c such that ω(a) < ω(b) > ω(c). Note that any generalized ribbon has a maximum

order ideal I containing only strict edges, in which case P \ I is naturally labeled (i.e., contains

only natural edges).

Denote by J the set of elements in I such that (P \ I) ∪ J is naturally labeled and I \ J
is an order ideal. In other words, J is the set of elements j such that the principal order ideal

generated by j contains only strict edges, while the principal filter generated by j contains only

natural edges. Then J must be a subset of the maximal elements of I. Note that for all j ∈ J
and x ∈ P , if j and x share an edge in the Hasse diagram of (P, ω), then ω(x) > ω(j). Observe

that J is nonempty since the element labeled 1 (which we denote by 1) must be a maximal

element in I, and (P \ I) ∪ {1} is naturally labeled, so 1 ∈ J .
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Example 4.6.2. Suppose that (P, ω) is the following generalized ribbon.

7 3 1

6 2 4

5

The ideal I has maximal elements {1, 3, 6}, while J = {1}.

This set J can be used to compute the value of η(K(P,ω)(x)) for generalized ribbons.

Lemma 4.6.3. Suppose (P, ω) is a generalized ribbon, and let I and J be defined as above.

Then

η(K(P,ω)(x)) =

(−1)|I|−1 if |J | = 1,

0 otherwise.

Proof. We only need to consider the linear extensions of (P, ω) whose descent set is {1, . . . , k}
for some value of k. The only linear extensions of (P, ω) with a descent set of this form must

begin with, for some subset A ⊆ J \ {1}, the elements of I \A in decreasing order and end with

the elements of (P \ I) ∪A in increasing order. Therefore we can express η(K(P,ω)(x)) as

η(K(P,ω)(x)) =
∑

A⊆J\{1}

(−1)|I|−|A|−1.

This value is 0 unless |J | = 1, in which case η(K(P,ω)(x)) = (−1)|I|−1.

Observe that if P is naturally labeled, then η(KP (x)) = 1 if and only if P has a unique

minimal element. (In this case, I and J are both just the set of minimal elements of P .)

We say that (P, ω) is rooted if η(K(P,ω)(x)) 6= 0. In other words, (P, ω) is rooted if it is a

generalized ribbon and |J | = 1, that is, 1 is the unique element whose principal ideal contains

only strict edges and whose principal filter contains only natural edges.

Corollary 4.6.4. If (P, ω) is rooted, then it is connected.

Proof. If (P, ω) is disconnected, then K(P,ω)(x) is the product of the (P, ω)-partition generating

functions of the connected components of P . By Lemma 4.3.1, η(K(P,ω)(x)) = 0.

Alternatively, the elements with the minimum label in each connected component of P lie

in the set J .
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4.6.2 Enriched (P, ω)-partitions

We will now give an alternate combinatorial description of rooted posets in terms of enriched

(P, ω)-partitions. We will then use this to give a combinatorial formula (with signs) for the

coefficient of ψα in K(P,ω)(x).

Let P′ be the nonzero integers with the total order

−1 < 1 < −2 < 2 < · · · .

For k ∈ P′, we define the absolute value of k by |k| = i ∈ Z+ if k ∈ {−i, i}, and we say k < 0 if

k = −|k|.
The following definition is due to Stembridge [27].

Definition 4.6.5. Let (P, ω) be a labeled poset. An enriched (P, ω)-partition is a map f : P →
P′ such that |f | is surjective onto [k] for some k, and if x is covered by y, then we have

(i) f(x) ≤ f(y),

(ii) if |f(x)| = |f(y)| and ω(x) < ω(y), then f(y) > 0,

(iii) if |f(x)| = |f(y)| and ω(x) > ω(y), then f(x) < 0.

It should be noted that if x ≺ y ≺ z is a chain with ω(x) < ω(y) > ω(z), then for all

enriched (P, ω)-partitions f , |f(x)| < |f(z)|. It follows that for each i, the subposet Pi = {x ∈
P | |f(x)| = i} is a generalized ribbon.

Suppose that f is an enriched (P, ω)-partition and we know the value of |f(x)| for all x. Is

this enough information to determine the value of f(x) for all x? The answer to this question

is no.

Example 4.6.6. Let (P, ω) be the following poset. Suppose f is an enriched (P, ω)-partition,

and |f(x)| = 1 for all x.

−1 −1 ±1

−1 1 1

1

The element in the bottom right can either be sent to −1 or 1 by f .

For each x ∈ P and enriched (P, ω)-partition f , define the map fx : P → P′ by

fx(y) =

−f(x) if x = y,

f(y) otherwise.
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We say that an element x ∈ P is ambiguous with respect to f if fx is still an enriched (P, ω)-

partition.

Let P∗ = P′ ∪ {1∗, 2∗, . . . }, where each i∗ satisfies −i < i∗ < i and |i∗| = i. For an enriched

(P, ω)-partition f , consider the map f∗ : P → P∗ defined by

f∗(x) =

|f(x)|∗ if x is ambiguous with respect to f ,

f(x) otherwise.

The map f∗ is called a starred (P, ω)-partition. Note that f∗ is uniquely determined by the

generalized ribbons Pi.

The ambiguity of f∗ is the sequence amb(f∗) = (a1, a2, . . . , ak), where ai = |(f∗)−1(i∗)|, the

number of elements labeled i∗ by f∗, The sign of f∗ is

sign(f∗) = (−1)|{x|f
∗(x)<0}|,

and the weight of f∗ is comp(f∗) = (b1, b2, . . . , bk), where bi is the total number of elements

labeled −i, i∗, or i by f .

Example 4.6.7. Let f be the enriched (P, ω)-partition from Example 4.6.6. Then the starred

(P, ω)-partition f∗ is shown below.

−1 −1 1∗

−1 1 1

1

Here, amb(f∗) = (1), sign(f∗) = (−1)3, and comp(f∗) = (7).

We say that a starred (P, ω)-partition f∗ is a pointed (P, ω)-partition if amb(f∗) = (1, 1, . . . , 1).

For instance, if f : P → [n] is any linear extension of (P, ω), then f∗ is a pointed (P, ω)-partition.

The following lemma is equivalent to Lemma 4.6.3.

Lemma 4.6.8. Let (P, ω) be a labeled poset. Then there exists a pointed (P, ω)-partition f∗ with

comp(f∗) = (n) if and only if (P, ω) is rooted. In this case, η(K(P,ω)(x)) = sign(f∗); otherwise

η(K(P,ω)(x)) = 0.

Proof. We know from Lemma 4.6.1 that in order for η(K(P,ω)(x)) 6= 0, there cannot be a chain

a ≺ b ≺ c with ω(a) < ω(b) > ω(c). If there are no such chains, then there exists a starred

(P, ω)-partition f∗ with comp(f∗) = (n). Explicitly, f∗ labels the elements of P is as follows:

79



if an element lies at the bottom of a strict edge, then it gets sent to −1; if it lies at the top of

a natural edge, then it gets sent to 1; otherwise, it gets sent to 1∗. There are no elements that

lie both at the bottom of a strict edge and at the top of a natural edge.

The elements that get sent to 1∗ are what we called J in Lemma 4.6.3, and the elements

that get sent to −1 or 1∗ are what we called I. Therefore the result holds by Lemma 4.6.3.

A pointed (P, ω)-partition f∗ can be interpreted as a partitioning of (P, ω) such that each

part is rooted. Specifically, each subposet Pi = {x ∈ P | |f∗(x)| = i} is a rooted poset, and the

weight of f∗ is the composition (|P1|, |P2|, . . . ). This allows us to give a combinatorial description

of the coefficient of ψα in K(P,ω)(x).

Theorem 4.6.9. Let (P, ω) be a labeled poset. Then

K(P,ω)(x) =
∑
f∗

sign(f∗)ψcomp(f∗),

where the sum ranges over all pointed (P, ω)-partitions f∗.

Proof. Recall that Theorem 4.3.5 states that the coefficient of ψα in K(P,ω)(x) can be computed

by η⊗l(∆αK(P,ω)(x)), and that

∆αK(P,ω)(x) =
∑

K(P1,ω)(x)⊗ · · · ⊗K(Pl,ω)(x),

where |Pi| = αi, P1 ∪ · · · ∪ Pi is an order ideal of P , and P1, P2, . . . , Pl(α) partition P .

Therefore the coefficient of ψα in K(P,ω)(x) is given by

η⊗l(∆αK(P,ω)(x)) =
∑

η(K(P1,ω)(x))⊗ · · · ⊗ η(K(Pl,ω)(x)).

By Lemma 4.6.8, a term in this summation is 0 unless each (Pi, ω) is rooted, meaning there

exists a pointed (Pi, ω)-partition f∗i with weight (αi). These can be combined to form a unique

pointed (P, ω)-partition f∗ with comp(f∗) = α. Since η(K(Pi,ω)(x)) = sign(f∗i ), it follows that

η(KP1(x))⊗ · · · ⊗ η(KPl(x)) = sign(f∗).

Example 4.6.10. Let (P, ω) be the following poset.
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The following are the pointed (P, ω)-partitions.

−1

1

1∗ 1∗

2

2∗ −2

2∗

1∗ 2∗

3∗

1∗ 1∗

3∗

2∗

Therefore K(P,ω)(x) = −ψ3 + ψ12 − ψ12 + 2ψ111 = −ψ3 + 2ψ111.

Observe that although the labeled poset in the previous example has a pointed (P, ω)-

partition with weight (1, 2), the composition (1, 2) is not in the ψ-support of K(P,ω)(x).

One should note that the combinatorial interpretation given in Theorem 4.6.9 is consistent

with the description given in [2] (or Corollary 4.3.7 above) when (P, ω) in naturally labeled.

The only pointed (P, ω)-partitions in the naturally labeled case are when each Pi has a unique

minimal element.

4.6.3 Murnaghan-Nakayama rule

In this section, we will compare Theorem 4.6.9 to the Murnaghan-Nakayama rule, which ex-

presses a Schur symmetric function in terms of power sum symmetric functions.

We begin with some background on symmetric functions and tableaux. (For more informa-

tion, see [20, 24].) A symmetric function in the variables x1, x2, . . . (with coefficients in C) is

a formal power series f(x) ∈ C[[x]] of bounded degree such that, for any composition α, the

coefficient of xα1
1 xα2

2 · · ·x
αk
k equals the coefficient of xα1

i1
xα2
i2
· · ·xαkik whenever i1, i2, . . . , ik are

distinct. We denote the algebra of symmetric functions by Λ. Clearly every symmetric function

is also quasisymmetric.

The power sum symmetric function basis {pλ}, indexed by partitions λ, is given by pn =

xn1 + xn2 + · · · and pλ = pλ1pλ2 · · · . In [3], it was shown that

pλ
zλ

=
∑
α∼λ

ψα,

where the sum runs over all compositions α that rearrange to the partition λ.

For any partition λ, the Young diagram of shape λ is a collection of boxes arranged in

left-justified rows such that row i has λi boxes. If λ and µ are partitions such that µi ≤ λi for

all i, then the Young diagram of the (skew) shape λ/µ is the set-theoretic difference between

the Young diagram of shape λ and the Young diagram of shape µ.

A semistandard (Young) tableau (SSYT) of (skew) shape λ/µ is a labeling of the boxes of

the Young diagram of shape λ/µ such that the entries in the rows are weakly increasing from
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Figure 4.2: The Young diagram of shape 652/21.

left to right, and the entries in the columns are strictly increasing from top to bottom. If T is

an SSYT of shape λ/µ, then we write λ/µ = sh(T ). We say that T has type α = (α1, α2, . . . ),

denoted α = type(T ), if T has αi = αi(T ) parts equal to i. For any SSYT T of type α, we write

xT = x
α1(T )
1 x

α2(T )
2 · · · . The skew Schur function sλ/µ is the formal power series

sλ/µ(x) =
∑
T

xT ,

where the sum runs over all SSYT T of shape λ/µ. The Schur functions {sλ} for partitions λ

form a basis for Λ.

Example 4.6.11. The following is a SSYT of shape 652/21 and type (3, 3, 3, 1).

1 1 2 3
1 2 3 3

2 4

Define Pλ/µ to be the poset whose elements are the squares (i, j) of λ/µ, partially ordered

componentwise. Define a labeling ωλ/µ : Pλ/µ → [n] as follows: the bottom square of the first

column of Pλ/µ is labeled 1. The labeling then proceeds in order up the first column, then up

the second column, and so forth.

Example 4.6.12. The following is (Pλ/µ, ωλ/µ) when λ = 652 and µ = 21.

5 7 9 10
3 4 6 8

1 2 1

2

3

4

5

6

7

8

9

10

It follows immediately from the definition of K(P,ω)(x) that

K(Pλ/µ,ωλ/µ)(x) =
∑
T

xT = sλ/µ(x),

where the sum runs over all SSYT T of shape λ/µ.

We can express sλ/µ in terms of the power sum symmetric function basis using the following

combinatorial rule, known as the Murnaghan-Nakayama rule.
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A border strip is a connected skew shape with no 2 × 2 square. Define the height ht(B) of

a border strip B to be one less than its number of rows.

A border-strip tableau of shape λ/µ and type α = (α1, α2, . . . ) is an assignment of positive

integers to the squares of λ/µ such that

• every row and column is weakly increasing,

• the integer i appears αi times, and

• the set of squares occupied by i forms a border strip.

The height of a border-strip tableau T , denoted ht(T ), is the sum of the heights of the border

strips that make up T .

Theorem 4.6.13 (Murnaghan-Nakayama rule). For partitions λ, µ, and ν,

sλ/µ =
∑
ν

χλ/µ(ν)
pν
zν
.

Here χλ/µ(ν) =
∑

T (−1)ht(T ), where the sum ranges over all border-strip tableaux of shape λ/µ

and type ν.

When µ = ∅, Theorem 4.6.13 gives a change of basis formula for expressing Schur functions

in terms of the power sum symmetric functions.

Since the quasisymmetric power sums refine the symmetric power sums, the Murnaghan-

Nakayama rule also gives a description of the ψα-expansion of sλ/µ. Since χλ/µ(ν) also does not

depend on the order of the parts of ν, we find that the Murnaghan-Nakayama rule is equivalent

to

sλ/µ =
∑
α

χλ/µ(α)ψα,

where the sum ranges over all compositions α.

In fact, this description agrees with the one obtained by Theorem 4.6.9 above.

Proposition 4.6.14. When (P, ω) = (Pλ/µ, ωλ/µ), η(K(P,ω)(x)) = 0 unless λ/µ is a border

strip, in which case η(K(P,ω)(x)) = (−1)ht(λ/µ).

Proof. If λ/µ contains a 2 × 2 square, then (Pλ/µ, ωλ/µ) contains a chain a ≺ b ≺ c with

ω(a) < ω(b) > ω(c). It follows from Lemma 4.6.1 that η(K(P,ω)(x)) = 0. Similarly, if (Pλ/µ, ωλ/µ)

is disconnected, then by Corollary 4.6.4, we have η(K(P,ω)(x)) = 0. Therefore the only way to

have η(K(P,ω)(x)) 6= 0 is if λ/µ is connected and contains no 2 × 2 square, that is, if it is a

border strip.
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Using the terminology of Lemma 4.6.3, when λ/µ is a border strip, the elements of (Pλ/µ, ωλ/µ)

that lie in I are the leftmost boxes in the rows of the Young diagram with shape λ/µ. Therefore

|I| is equal to the number of rows of λ/µ. The only element of J is the box in the southwest

corner. By Lemma 4.6.3, we have that η(K(P,ω)(x)) = (−1)ht(λ/µ).

Example 4.6.15. The following is (Pλ/µ, ωλ/µ) when λ = 6332 and µ = 221.

6 7 8 9
5

3 4
1 2

1

2

3

4

5

6

7

8

9

Since λ/µ is a border strip, it follows that η(K(Pλ/µ,ωλ/µ)(x)) = (−1)3. We see that I = {1, 3, 5, 6}
and J = {1}.

Corollary 4.6.16. For partitions λ and µ and compositions α,

sλ/µ =
∑
α

χλ/µ(α)ψα.

Here χλ/µ(α) =
∑

T (−1)ht(T ), where the sum ranges over all border-strip tableaux of shape λ/µ

and type α.

Proof. By Proposition 4.6.14, a pointed (Pλ/µ, ωλ/µ)-partition f∗ is equivalent to a border-strip

tableau T of shape λ/µ. In this case, wt(f∗) = type(T ) and sign(f∗) = (−1)ht(T ), so the result

follows immediately from Theorem 4.6.9.

Example 4.6.17. Let λ = (6, 4, 4, 4, 2) and µ = (3, 2, 1, 1). The following is a border strip

tableau of shape λ/µ and the pointed (Pλ/µ, ωλ/µ)-partition f∗ that corresponds to it.

2 2 2
1 2

1 1 2
1 3 3

4 4

4∗

4

1∗

−1

3∗

1

3

−1

2∗

−2

−2

2

2

4.7 Discussion and open questions

In this chapter, we showed that connected, naturally labeled posets have irreducible partition

generating functions. We did this by finding a linear function that sends all reducible elements
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of QSym to 0. The kernel of this function also contains some irreducible elements of QSym so

we were not able to use it to show that all connected labeled posets have irreducible partition

generating functions. This question is still open.

Question 4.7.1. If P is a connected, labeled poset, is K(P,ω)(x) always irreducible over QSym?

At this point, we are far from giving a complete answer to this question. We may want

to simplify the question by considering the case when (P, ω) is a generalized ribbon. We see

in Example 4.4.20 that the techniques used in the naturally labeled case do not extend to

generalized ribbons.

In Section 4.5, we showed that naturally labeled, series-parallel posets are uniquely deter-

mined by their partition generating functions. We also gave an example of two distinct labeled

series-parallel posets with the same partition generating function.

Question 4.7.2. Let (P, ω1) and (Q,ω2) be labeled posets, and suppose that P is series-parallel.

If K(P,ω1)(x) = K(Q,ω2)(x), does this imply that Q is series-parallel?

As with Question 3.4.3, the cyclic inclusion-exclusion operation of Féray [7] may be helpful

in answering this question.

Another question to consider follows.

Question 4.7.3. What is the ψ-support of K(P,ω)(x)?

This question may be difficult, but even a partial answer can be useful in determining

whether or not K(P,ω)(x) is a symmetric function. Suppose α and β are both compositions that

rearrange to the partition λ. If one can show that α is in the ψ-support of K(P,ω)(x), but β is

not, then that is enough to show that K(P,ω)(x) is not symmetric.

This leads us to the question asked by Stanley in [23].

Question 4.7.4. For what labeled posets (P, ω) is K(P,ω)(x) symmetric?

Stanley conjectures that K(P,ω)(x) is symmetric only when (P, ω) corresponds to some skew

Young diagram and proves this conjecture in the naturally labeled case. The only way a naturally

labeled poset can correspond to a skew Young diagram is if it is a disjoint union of chains. The

combinatorial interpretation given in Theorem 4.6.9 may be useful in answering Question 4.7.4.

A natural direction to begin with is when (P, ω) is a generalized ribbon. In this case, if (P, ω)

corresponds to a skew Young diagram, then the skew shape must be a disjoint union of ribbons.
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[7] Valentin Féray. Cyclic inclusion-exclusion. SIAM J. Discrete Math., 29(4):2284–2311,

2015.

[8] Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Retakh, and

Jean-Yves Thibon. Noncommutative symmetric functions. Adv. Math., 112(2):218–348,

1995.

[9] Curtis Greene. Some partitions associated with a partially ordered set. J. Combinatorial

Theory Ser. A, 20(1):69–79, 1976.

[10] Darij Grinberg and Victor Reiner. Hopf Algebras in Combinatorics. arXiv e-prints, Sep

2014. Available at arXiv:1409.8356.

86



[11] Takahiro Hasebe and Shuhei Tsujie. Order quasisymmetric functions distinguish rooted

trees. Journal of Algebraic Combinatorics, 46(3-4):499–515, 2017.

[12] Michiel Hazewinkel. The algebra of quasi-symmetric functions is free over the integers.

Adv. Math., 164(2):283–300, 2001.

[13] Thomas Lam and Pavlo Pylyavskyy. P -partition products and fundamental quasi-

symmetric function positivity. Adv. in Appl. Math., 40(3):271–294, 2008.

[14] Ricky Ini Liu and Michael Weselcouch. P -Partition Generating Function Equivalence of

Naturally Labeled Posets. arXiv e-prints, Jul 2018. Available at arXiv:1807.02865.

[15] Ricky Ini Liu and Michael Weselcouch. P -Partitions and Quasisymmetric Power Sums.

arXiv e-prints, Mar 2019. Available at arXiv:1903.00551.

[16] Kurt Luoto, Stefan Mykytiuk, and Stephanie van Willigenburg. An introduction to qua-

sisymmetric Schur functions. SpringerBriefs in Mathematics. Springer, New York, 2013.

Hopf algebras, quasisymmetric functions, and Young composition tableaux.

[17] Peter R. W. McNamara and Stephanie van Willigenburg. Towards a combinatorial classi-

fication of skew Schur functions. Trans. Amer. Math. Soc., 361(8):4437–4470, 2009.

[18] Peter R. W. McNamara and Ryan E. Ward. Equality of p-partition generating functions.

Annals of Combinatorics, 18(3):489–514, 2014.

[19] Victor Reiner, Kristen M. Shaw, and Stephanie van Willigenburg. Coincidences among

skew Schur functions. Adv. Math., 216(1):118–152, 2007.

[20] Bruce E. Sagan. The symmetric group, volume 203 of Graduate Texts in Mathematics.

Springer-Verlag, New York, second edition, 2001. Representations, combinatorial algo-

rithms, and symmetric functions.

[21] William R. Schmitt. Incidence Hopf algebras. J. Pure Appl. Algebra, 96(3):299–330, 1994.

87



[22] John Shareshian and Michelle L. Wachs. Chromatic quasisymmetric functions. Adv. Math.,

295:497–551, 2016.

[23] Richard P. Stanley. Ordered structures and partitions. American Mathematical Society,

Providence, R.I., 1972. Memoirs of the American Mathematical Society, No. 119.

[24] Richard P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in

Advanced Mathematics. Cambridge University Press, Cambridge, 1999. With a foreword

by Gian-Carlo Rota and appendix 1 by Sergey Fomin.

[25] Richard P. Stanley. The descent set and connectivity set of a permutation. J. Integer Seq.,

8(3):Article 05.3.8, 9, 2005.

[26] Richard P. Stanley. Enumerative combinatorics. Vol. 1, volume 49 of Cambridge Studies

in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2012.

[27] John R. Stembridge. Enriched P -partitions. Trans. Amer. Math. Soc., 349(2):763–788,

1997.

88


	LIST OF FIGURES
	Introduction
	Overview
	Preliminaries
	Compositions and partitions
	Posets
	(P, )-partitions
	Quasisymmetric functions


	Antichains and combinatorial Hopf algebras
	Poset background
	Antichains
	Poset of order ideals
	Flag f-vector and flag h-vector

	Combinatorial Hopf algebra
	Reduced incidence Hopf algebra
	Hopf algebra of quasisymmetric functions

	Necessary conditions
	Order ideals and antichains
	Jump

	Discussion and open questions

	Shape
	Background
	Uniqueness from shape
	Width two posets
	Hook shaped posets
	Nearly hook shaped posets

	Posets with the same P-partition generating function
	Discussion and open questions

	Quasisymmetric power sums
	Composition functions
	Shuffles

	Type 1 Quasisymmetric power sum background
	Quasisymmetric power sums
	Length
	Hopf Algebra

	Operations on QSym
	The min1 and max1 functionals on QSym
	Automorphisms

	Irreducibility of KP(x)
	Minimal length
	Evaluating functions in -basis
	Zigzag labelings

	Series-parallel posets
	A combinatorial description of the coefficients
	Generalized ribbons
	Enriched (P, )-partitions
	Murnaghan-Nakayama rule

	Discussion and open questions

	References

