
ABSTRACT

SIMON, LILLIAN FAYE PASLEY. Determinantal Representations, Invariance, and the Numerical
Range. (Under the direction of Cynthia Vinzant).

We study properties of plane curves that may be certified with a determinantal representation. A

well known result due to Helton and Vinnikov relates hyperbolicity of plane curves to definiteness of

their representations. We are interested in the properties of hyperbolicity as well as invariance under

finite groups. In particular, we guarantee these properties with the structure of its representation.

In Chapter 1 we introduce relevant background information from convex algebraic geometry

and group theory. Then we motivate our work with these main questions: 1) what properties of a

curve can be guaranteed with a determinantal representation, and 2) how does the geometry of the

numerical range relate to properties of its defining plane curve?

In Chapters 2 and 3 we modify a construction of Dixon to produce structured determinantal

representations of smooth, invariant hyperbolic plane curves. Moreover, if a plane curve is invariant

under the dihedral group, then its representation also has real, linear entries. Plaumann and Vinzant

showed to get Hermitian structure, one should use not only the hyperbolic curve, but an interlacing

curve as well. Here we describe the explicit polynomial form of a hyperbolic, invariant curve and its

interlacing polynomials. The existence of the determinantal representation relies on the geometry

of their intersection.

We take a different approach in each of these chapters. In Chapter 2, we examine a special case

and choose a specific interlacer. This allows us to prove existence of a structured representation

by studying the geometry of their intersection. In Chapter 3, we instead pick any interlacer which

satisfies a few additional assumptions to guarantee existence of the representation. We later deal

with degenerate cases by discussing topology of curves and their interlacers in general. Finally we

discuss hidrances to generalizing the construction to curves of any degree.

By duality, a convex set called the numerical range can be defined in terms of a hyperbolic

plane curve. It turns out that the structure of the representation for an invariant, hyperbolic curve

is directly related to a matrix whose numerical range is also invariant under rotation. In Chapter

4 we discuss the implications of our result on the geometry of the numerical range. In particular,

any numerical range which has rotational symmetry has to coincide with the numerical range of a

matrix of certain structure.
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Chapter 1

Introduction

The purpose of this dissertation is to study properties of plane curves that may be certified with a

determinantal representation. More specifically, plane curves satisfying hyperbolicity and invariance

under finite group actions. The interesting part is examining the underlying structure and symmetry

of these representations. Moreover, duality then gives us a way to study the geometry of a related

convex set called the numerical range.

This chapter serves as an overview for the keywords mentioned above. The definitions with

respect to plane curves included in this chapter generalize to polynomials in any number of variables.

Our main focus in this work will be on projective plane curves, so we restrict the definitions to just

three variables for this reason.

1.1 Determinantal Representations and Hyperbolicity

1.1.1 Background

Varieties whose defining equation is the determinant of some matrix, called determinantal hyper-

surfaces, are classically studied [4, 14]. These are defined by polynomials that are the determinant

of a matrix with linear entries.

Definition 1.1.1. A Hermitian determinantal representation of f ∈ R[t, x, y]d is an ex-

pression f = det(M) where M = tM0 + xM1 + yM2 for some Hermitian Mj ∈ Cd×d. If the

matrices Mj are instead (real) symmetric, then f = det(M) is a (real) symmetric representation.

The representation is definite if M(e) is positive definite for some e ∈ R3.

Example 1.1.2. The curve f = t2−x2−y2 has a definite Hermitian determinantal representation
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f = det(M) where

M =

(
5t+ 4y 3it+ x+ 3iy

−3it+ x− 3iy 2t+ 2y

)
=

(
5 3i

−3i 2

)
t+

(
0 1

1 0

)
x+

(
4 3i

−3i 2

)
y.

This is definite because M(1, 0, 0) = M0 is positive definite.

In convex algebraic geometry, the aim is to study algebraic structure and underlying geome-

try of convex sets. This area works to synthesize objects and related information studied within

algebraic geometry, optimization, and convex geometry. For more see [5]. Definite determinantal

representations are of particular interest in the fields of convex algebraic geometry and optimiza-

tion [3, 24]. In particular, polynomials with definite determinantal representations satisfy a property

called hyperbolicity.

Definition 1.1.3. A polynomial f ∈ R[t, x, y]d is hyperbolic with respect to e ∈ R3 if f(e) 6= 0

and the univariate polynomial f(λe − z) ∈ R[λ] has all real roots for any z 6= λe. If all roots of

f(λe− z) are also simple for every z ∈ R3, then f is strictly hyperbolic with respect to e ∈ R3.

Strict hyperbolicity is equivalent to the condition that VR(f) is smooth.

Notice that f(λe− z) = f(e− (1/λ)z) for λ 6= 0 by homogeneity. If the roots of f(λe− z) are

all real, then so are the roots of f(e − λz). Any line through e ∈ R3 is parametrized by e − λz
for λ ∈ R and hence intersects the hypersurface VC(f) in d real points. Topologically, if VC(f) is

smooth, then f is hyperbolic if and only if VR(f) has bd/2c nested ovals as well as a psuedoline

when d is odd.

Figure 1.1: A quartic hyperbolic hypersurface in R3 and P2(R).

Denote the set of hyperbolic and strictly hyperbolic forms of degree d by Hd and (H◦)d respec-
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tively. Nuij [31] showed that (H◦)d is open and dense in Hd in the Euclidean topology on R[t, x, y]

meaning that every hyperbolic polynomial is the limit of strictly hyperbolic polynomials.

Hyperbolic polynomials first appeared in the area of partial differential equations due to the work

of G̊arding [19]. Hyperbolicity has more recently been of interest within convex optimization. Güler

[24] and Renegar [33] developed a generalization of semidefinite programming called hyperbolic

programming whose feasible sets are hyperbolicity cones. The hyperbolicity cone C(f, e) is the

connected component of R3 \ VR(f) containing e. This is a convex cone and f is hyperbolic with

respect to any point contained within it [19].

Remark 1.1.4. If f ∈ R[t, x, y]d has a definite determinantal representation f = det(M) with M0

positive definite, then M0 = UU∗ for some U ∈ Cd×d and f = det(M ′) where

M ′ = (U)−1M(U∗)−1

and M0 = I. This means f is hyperbolic with respect to e0 = (1, 0, 0) since the roots of f(λe0−z) ∈
R[λ] are eigenvalues of the Hermitian matrix M ′(z) which are all real for every z ∈ R3.

Example 1.1.5. From Example 1.1.5, we have f = t2−x2−y2 has the determinantal representation

f = det(M) where

M =

(
5 3i

−3i 2

)
t+

(
0 1

1 0

)
x+

(
4 3i

−3i 2

)
y.

The coefficient matrix M0 is positive definite so we can write M0 = UU∗ where U =

(
1 −i
i 2

)
.

Then f = det(M ′) where

M ′ = (U)−1M(U∗)−1 =

(
1 0

0 1

)
t+

(
0 1

1 0

)
x+

(
−2 3i

−3i −4

)
y.

One may ask if the converse statement is true. For which hyperbolic polynomials do there exist

definite determinantal representations? The case for plane curves is a well-known result previously

conjectured by Lax in 1958. The analogous statement is not true for polynomials in a higher number

of variables.

Theorem 1.1.6 (Helton-Vinnikov [28]). Every hyperbolic plane curve has a real, symmetric deter-

minantal representation.

Dixon gave a construction for symmetric determinantal representations of smooth hyperbolic

curves in 1902. Dubrovin and Vinnikov [15, 38] later studied real symmetric and Hermitian de-

terminantal representations of real curves. Definiteness of a representation certifies hyperbolicity,

which motivates the following question in a broader context.

3



Figure 1.2: A quartic hyperbolic hypersurface and a cubic interlacer in R3 and P2(R).

Question 1.1.7. What properties of a curve can be certified with a determinantal representation?

1.1.2 Dixon’s Construction for Hermitian Determinantal Representations

In order to produce the desired symmetric representation, Dixon’s approach was to first produce a

matrix of forms of degree d−1 satisfying certain properties. In particular, he observed the structure

of a determinantal representation’s adjugate and utilized this structure within his construction.

Plaumann and Vinzant [32] later extended Dixon’s construction to produce definite Hermitian

determinantal representations of smooth hyperbolic forms. Below we define the adjugate matrix

and identify some useful properties for the adjugate of a determinantal representation.

Definition 1.1.8. The adjugate of a d×d matrix M is a matrix of (d−1)×(d−1) minors defined

adj(M) :=
(

(−1)i+jMT
ij

)d
i,j=1

where Mij is the minor obtained by deleting row i and column j from A.

Definition 1.1.9. Let f and g be real-rooted univariate polynomials of degrees d and d− 1 where

α1 ≤ α2 ≤ . . . ≤ αd and β1 ≤ β2 ≤ . . . ≤ βd−1 are the roots of each respectively. The polynomial g

interlaces f if αj ≤ βj ≤ αj+1 for every j ∈ [n− 1]. If f ∈ R[t, x, y]d is hyperbolic with respect to

e ∈ R3 we say g ∈ R[t, x, y]d−1 interlaces f if g(λe+ z) interlaces f(λe+ z) in R[λ] for every z ∈ R3.

Proposition 1.1.10. Let f ∈ R[t, x, y]d and f = det(M) be a definite Hermitian determinantal

representation. Then

(i) adj(M) is Hermitian.

4



(ii) each diagonal entry of adj(M) interlaces f .

(iii) the 2× 2 minors of adj(M) lie in the ideal generated by f [32].

(iv) adj(adj(M)) = fd−2M .

By constructing a d × d matrix of forms of degree d − 1 that satisfy properties (i)–(iv) above,

Plaumann and Vinzant were able to prove the following theorem.

Theorem 1.1.11 (Plaumann-Vinzant [32]). Given f ∈ Hd with interlacer g ∈ R[t, x, y]d−1, there

exists a definite Hermitian determinantal representation of f such that f = det(M) and g is the

leading (d− 1)× (d− 1) diagonal minor of M .

We later modify this construction in Sections 2.3, 3.1, and 3.2 to address Question 1.1.7 and

produce representations with certain structure.

1.2 The Numerical Range

1.2.1 Background

Now we introduce a convex set called the numerical range of a matrix. Also called the field of

values, this object originates from functional analysis and gained more popularity in the 1950’s due

to Kippenhahn [29]. The set is useful in applications related to engineering, numerical analysis,

and differential equations [1, 6, 16, 17, 23]. The numerical range can also be defined in terms of a

hyperbolic plane curve, so we are also able to examine the convex object by studying this plane

curve instead. There exist generalizations of this set, but for simplicity we hold off defining one

such generalization until later in Chapter 4.

Definition 1.2.1. The numerical range of A ∈ Cd×d is

W(A) := {z∗Az ∈ C | z ∈ Cd, z∗z = 1}.

Proposition 1.2.2. [29] The set W(A)

(i) is compact,

(ii) contains the eigenvalues of A,

(iii) is invariant under unitary transformations of A, and

(iv) is convex in C ' R2 (Toeplitz-Hausdorff [27, 36]).

5



Proof. (i) The set W(A) is the image of the unit sphere, which is compact, under the continuous

map z 7→ z∗Az.

(ii) If Az = λz with z∗z = 1 for some λ ∈ C, then λ = z∗Az ∈ W(A).

(iii) Suppose B = U∗AU for U∗U = I, so A and B are unitarily equivalent. This implies z∗Bz =

(Uz)∗A(Uz) where (Uz)∗Uz = 1.

1.2.2 The Boundary Generating Curve

Definition 1.2.3. Let X = VC(f) be an algebraic plane curve. The dual curve (variety) is the

set of lines tangent to X defined by

X ∗ :=
{
q ∈ P2(C) | q = ∇f(p) for some smooth point p ∈ X

}Zar
.

Remark 1.2.4. The dual curve is the union of dual curves to each irreducible component of X .

However, calling X ∗ a “curve” is a bit misleading. If f has a linear factor, then its dual has a point

as a corresponding component. Hence if X is a union of lines, then X ∗ is a finite set of points rather

than what we traditionally think of as a curve.

For a matrix A ∈ Cd×d, define

fA(t, x, y) := det

(
tI + x

(
A+A∗

2

)
+ y

(
A−A∗

2i

))
. (1.1)

Definition 1.2.5. The boundary generating curve of W(A) is the dual variety to VC(fA).

Theorem 1.2.6 (Kippenhahn [29]). Let X ∗ be the dual variety to X = VC(fA). The numerical

range of A ∈ Cd×d is the convex hull of the real, affine part of X ∗. That is,

W(A) = conv
({

(x, y) ∈ R2 | [1 : x : y] ∈ X ∗
})
.

Notice that given any matrixA ∈ Cd×d, its numerical range is a convex, semialgebraic set and the

plane curve fA is hyperbolic with respect to (1, 0, 0). Theorem 1.1.6 gives us a converse statement.

Let S be a convex semialgebraic set in P2(C) whose boundary is defined by some variety X . If the

dual X ∗ is hyperbolic with respect to (1, 0, 0), then Theorem 1.1.6 implies that S is the numerical

range of some matrix. Here we aim to find determinantal representations for f ∈ R[t, x, y]d such

that f = fA for A ∈ Cd×d with particular structure. Then we can use this to study the geometry

of W(A).

Question 1.2.7. What does the geometry of W(A) imply about fA? Conversely, if f is hyperbolic

with respect to (1, 0, 0) and satisfies some additional property, then can we recover a determinantal

representation such that f = fA where W(A) has the same underlying geometry?

6
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Figure 1.3: The variety X = VC(fA) which is generated from A ∈ C5×5 in the plane t = 1 with a
slice of hyperbolicity cone C(fA, (1, 0, 0)) shaded (left); The dual variety X ∗ in the plane t = 1 with
W(A) shaded (right).

1.3 Invariant Theory of Finite Groups

1.3.1 Background

Let Γ ⊆ GL
(
C3
)

be a finite group. A set of points X ∈ P2(C) is invariant under Γ if γ ·p = pγT ∈ X
for all p ∈ X . This matrix group acts on elements of C[t, x, y] where

(γ · f)(t, x, y) = f((t, x, y)γT ) for γ ∈ Γ. (1.2)

The set

C[t, x, y]Γ := {f ∈ C[t, x, y] | γ · f = f for all γ ∈ Γ} (1.3)

is the subset of elements of C[t, x, y] fixed under the action of Γ, so the ring C[t, x, y]Γ is invariant

under the group Γ. The next proposition shows that invariance is preserved by duality.

Proposition 1.3.1. If X = VC(f) where f ∈ R[t, x, y]Γ, then X ∗ is invariant under Γ.

Proof. Let a ∈ X ∗. Then f(p) = 0 and a = ∇f(p) for some smooth p ∈ X . We want to show there

exists q ∈ X such that f(q) = 0 and aγT = ∇f(q) for any γ ∈ Γ. Take q = pγ−T for arbitrary

γ ∈ Γ. First q ∈ X and f(q) = γ−1 · f(p) = 0 since f is invariant. By Chain Rule,

∇
(
f
(
pγT

))
= ∇f

(
pγT

)
· γT .

Then a = ∇(f(p)) = ∇
(
f
(
pγ−T

))
= ∇f(pγ−T ) · γ−T , meaning aγT = ∇f(q) and γ · a ∈ X ∗.

7



In this work we are not only interested in C[t, x, y]Γ, but its set of generators as well. Hilbert

proved that the invariant polynomial ring of a finite group in any number of variables always has

a finite set of generators.

Corollary 1.3.2 (of Hilbert [35]). The invariant ring C[t, x, y]Γ is finitely generated.

One way to check you have a generating set is to use the Hilbert series since its coefficients give

the dimension of C[t, x, y]Γd for each d. More specifically, we can write the invariant ring as a graded

ring

C[t, x, y]Γ =
⊕
d≥0

C[t, x, y]Γd

where C[t, x, y]Γd is the space of invariant polynomials that are homogeneous of degree d. The next

corollary helps enumerate the dimension of each graded piece. In fact, this result follows from a

stronger, analogous statement for an invariant ring in any number of variables.

Corollary 1.3.3 (of Molien [35]). The Hilbert series of C[t, x, y]Γ is given by

∑
d≥0

dim
(
C[t, x, y]Γd

)
zd =

1

|Γ|
∑
γ∈Γ

1

det(I − zγ)
.

Example 1.3.4. Let Γ =
〈
R | R2 = I

〉
for R =

(
1 0 0
0 −1 0
0 0 −1

)
. The Hilbert series of C[t, x, y]Γ is

1

|Γ|
∑
γ∈Γ

1

det(I − zγ)
=

1

2

(
1

det(I − zR)
+

1

det(I − zI)

)

=
1

2(1− z)

(
1

(1 + z)2
+

1

(1− z)2

)
= 1 + z + 4z2 + 4z3 + 9z4 + 9z5 . . .

=
∑
j≥0

(j + 1)2(z2j + z2j+1).

The monomial t is fixed by R, so C[t, x, y]2d+1 = spanC
{
t · h | h ∈ C[t, x, y]Γ2d

}
since

dim(C[t, x, y]Γ2d) = dim(C[t, x, y]Γ2d+1).

The invariant ring C[t, x, y]Γ2d is spanned by monomials t2d−j−kxjyk such that j + k is even and

0 ≤ j+k ≤ 2d. For each d ≥ 0, we can verify this spans C[t, x, y]Γ2d by counting exactly (d+1)2 mono-

mials which satisfy these constraints. Additionally, C[t, x, y]Γ = C[t, xy, x2, y2] since {t, xy, x2, y2}
generates each graded part of C[t, x, y]Γ.

8



1.3.2 The Cyclic and Dihedral Groups

For projective plane curves, we are particularly interested in the case when Γ = Cn or D2n. Now

we define these groups as subsets of GL(C3), discuss their actions on the polynomial ring C[t, x, y],

and their induced actions on a determinantal representation of f ∈ R[t, x, y]d.

Definition 1.3.5. Let

rot =

1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 and ref =

1 0 0

0 1 0

0 0 −1

 where θ = 2π/n.

The cyclic group of order n is

Cn := 〈rot | rotn = id〉

generated by a rotation by the angle 2π/n around the point [1 : 0 : 0]. The dihedral group of

order 2n is

D2n := 〈rot, ref | rotn = ref2 = (ref ◦ rot)2 = id〉

generated by the same rotation as well as a reflection over the line y = 0.

As defined in (1.2), these groups act on f ∈ C[t, x, y] in the following way:

(rot ·f)(t, x, y) = f(t, cos(θ)x+ sin(θ)y,− sin(θ)x+ cos(θ)y)

(ref ·f)(t, x, y) = f(t, x,−y).

The invariant ring R[t, x, y]Cn is generated by the polynomials t, x2 +y2, Re[(x+ iy)n], and Im[(x+

iy)n] [21] where

Re[(x+ iy)n] =
(x+ iy)n + (x− iy)n

2
and Im[(x+ iy)n] =

(x+ iy)n − (x− iy)n

2i
. (1.4)

Similarly, R[t, x, y]D2n = R[t, x2 + y2 + Re[(x + iy)n]]. We explicitly verify this is a generating

set for R[t, x, y]Cn≤n later in Section 2.2 using Corollary 1.3.3. For now we can at least verify these

polynomials are fixed under rot. Indeed,

rot ·(x2 + y2) = (cos(θ)x+ sin(θ)y)2 + (− sin(θ)x+ cos(θ)y)2 = x2 + y2,

rot ·Re[(x+ iy)n] = Re[(cos(θ)x+ sin(θ)y + i(− sin(θ)x+ cos(θ)y))n]

= Re[(eiθx+ ieiθy)n] = Re[(x+ iy)n],

and rot ·Im[(x− iy)n] = Re[(cos(θ)x+ sin(θ)y − i(− sin(θ)x+ cos(θ)y))n]

= Re[(eiθx− ieiθy)n] = Re[(x− iy)n].
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1.3.3 Invariance and Cyclic Weighted Shift Matrices

Definition 1.3.6. The matrix A ∈ Cd×d is a cyclic weighted shift matrix of order n if

Aij = 0 if i− j 6= n− 1 mod n. To abbreviate we say A is a CWSn matrix.

Example 1.3.7. The matrix


0 6i 0 0 1− 7i

0 0 −4 0 0

2 + 8i 0 0 5 + 9i 0

0 −5i 0 0 4i

0 0 3 + i 0 0

 is a CWS3 matrix.

Complex matrices with this structure in the case d = n, also called cyclic weighted shift matrices,

have been studied extensively especially with respect to their numerical range [10, 20, 34]. In general,

the numerical range of any CWSn matrix has nice symmetry. Define the group homomorphism

ρ : Cn → GL(Cd) such that

ρ(rot) = Ω∗ where Ω := diag
(
1, ω, ω2, . . . , ωd

)
and ω = e2πi/n. (1.5)

In general rot ·A = Ω∗AΩ and Aij 7→ ωj−iAij . If A is a CWSn matrix, then

Ω∗AΩ = rot ·A = ωA

and A is unitarily equivalent to ωA. An immediate consequence is that W(A) is invariant under

rotation by the angle 2π/n. Chien and Nakazato [9] were interested in this rotational symmetry of

the numerical range with respect to CWSn matrices, and stated the following result for which we

provide an explicit proof below.

Proposition 1.3.8. [9] If A ∈ Cd×d is a CWSn matrix, then fA ∈ R[t, x, y]Cnd . Moreover, if

A ∈ Rd×d, then fA ∈ R[t, x, y]D2n
d .

Proof. We want to check that rot ·fA = fA and if A ∈ Rd×d, then ref ·fA = fA. First applying the

rotation we have

rot ·fA(t, x, y) = fA (t, cos(θ)x+ sin(θ)y,− sin(θ)x+ cos(θ)y)

= det

(
tI + (cos(θ)x+ sin(θ)y)

(
A+A∗

2

)
+ (− sin(θ)x+ cos(θ)y)

(
A−A∗

2i

))
= det

(
tI +

(
x+ iy

2

)
(ωA)∗ +

(
x− iy

2

)
(ωA)

)
= det

(
tI +

(
x+ iy

2

)
(ΩAΩ∗)∗ +

(
x− iy

2

)
(ΩAΩ∗)

)
= det(Ω) · det

(
tI +

(
x+ iy

2

)
A∗ +

(
x− iy

2

)
A

)
· det(Ω∗) = fA(t, x, y).
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If A ∈ Rd×d, then A∗ = AT and

ref ·fA(t, x, y) = fA(t, x,−y)

= det

(
tIn +

x− iy
2

AT +
x+ iy

2
A

)
= det

((
tIn +

x+ iy

2
AT +

x− iy
2

A

)T)
= fA(t, x, y).

Chien and Nakazato asked the converse question and provided a position answer in the cases

when d = n = 3, 4. The authors of [13, 25] studied rotational symmetry of the numerical range of

matrices of size d = 3, 4. For Γ = Cn, D2n denote the set of hyperbolic, invariant forms of degree d

by

HΓ
d = {f ∈ R[t, x, y]Γd : f(1, 0, 0) = 1, f is hyperbolic with respect to (1, 0, 0)}. (1.6)

We will also be interested in hyperbolic polynomials without any real singularities, which we denote

by

(H◦)Γ
d = {f ∈ HΓ

d : VR(f) is smooth}. (1.7)

By [32, Lemma 2.4], this equals the set of invariant polynomials that are strictly hyperbolic with

respect to (1, 0, 0).

Question 1.3.9. Let f ∈ HΓ
d . Does there exist a (real) CWSn matrix A such that f = fA?

The main result of this dissertation, Theorem 3.0.1, gives a positive answer when d = qn for any

q ∈ Z+. The proof is constructive; we modify Dixon’s Hermitian construction for smooth hyperbolic

curves and provide an analogous statement of Nuij to deal with singularities.

In Chapter 2 we closely examine Question 1.3.9 in the case for d = n. We give an explicit

description of these curves and their directional derivatives (in the direction of (1, 0, 0)), compute

the dimension of C[t, x, y]Cnd , and outline the modified construction to produce a CWSn matrix. For

dihedral invariance, we give the explicit unitary transformation necessary to output a real CWSn

matrix. We extend these results to the case when d = qn in Chapter 3. For dihedral invariance

here, we describe how to appropriately modify the construction to produce a real CWSn matrix.

Then we discuss generalizing to any degree; the primary obstruction is that curves in C[t, x, y]Γd
always have multiple complex singularities when d mod n ≥ 3. In Chapter 4 we use these results to

address Question 1.2.7. Specifically, we prove Theorem 4.1.2 which states any matrix of size d = qn

for some q ∈ Z+ with a numerical range invariant under rotation has the same numerical range as

some CWSn matrix of the same size.
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Chapter 2

Invariant Curves of Degree d = n

The content of this chapter is published in the Linear Algebra and its Applications in the paper

“Determinantal representations of invariant hyperbolic plane curves” (see [30]). Some notation has

been changed to preserve consistency and we have also added Lemma 2.1.1.

Our goal in this chapter is to prove the following theorem, which answers Question 1.3.9 for

d = n.

Theorem 2.0.1. Let f ∈ R[t, x, y]Γn be hyperbolic with repect to (1, 0, 0) and f(1, 0, 0) = 1.

(a) If Γ = Cn, then there exists a CWSn matrix A ∈ Cn×n such that f = fA.

(b) If Γ = D2n, then there exists a CWSn matrix B ∈ Rn×n such that f = fB.

In Sections 2.1 and 2.2, we introduce a helpful change of variables that we use heavily in both

Chapters 2 and 3. In particular, this C-linear map diagonalizes the action of rotation. Then we

discuss generators for the invariant ring R[t, x, y]Cnd and prove some necessary facts about curves

in this new setting.

In Section 2.3 we provide a proof of Theorem 2.0.1 in the smooth case by modifying Dixon’s

Hermitian construction introduced in Section 1.1.2. Here we choose a specific interlacer, i.e., the

directional derivative of f in the direction (1, 0, 0). For the d = n case, this interlacer is a product

of circles and is easier to work with than an arbitrary interlacer.

We extend these results to the singular case in Section 2.5 by reducing the problem to a uni-

variate argument. In Section 2.5 we provide an explicit unitary transformation to produce a real

CWSn matrix in the dihedral case.

2.1 Change of Variables

First let

conj : P2(C)→ P2(C), [t : x : y] 7→ [t : x : y] (2.1)
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denote the action of conjugation with respect to the variables t, x, and y. Consider the change of

variables given by the map

ξ : P2(C)→ P2(C), [t : x : y] 7→ [t : u : v] = [t : x+ iy : x− iy] (2.2)

ξ−1 : P2(C)→ P2(C), [t : u : v] 7→
[
t :

u+ v

2
:
u− v

2i

]
.

Notice u 6= v when x, y ∈ C\R, and the action of conjugation in t, u, and v is

ξ ◦ conj : [t : x : y] 7→
[
t : v : u

]
. (2.3)

In terms of group actions of Cn and Dn on C[t, u, v], our convention is to first apply the actions of

rot or ref to points [t : x : y] and then the change of variables ξ. Oftentimes we abuse notation. For

example, by (ref ◦ conj)[t : u : v] we really mean (ξ ◦ ref ◦ conj ◦ ξ−1)[t : u : v]. Consequently, the

compositions are given by

ξ ◦ rot` : P2(C)→ P2(C), [t : x : y] 7→
[
t : ω`u : ω−`v

]
(2.4)

ξ ◦ ref : P2(C)→ P2(C), [t : x : y] 7→ [t : v : u]

for ω = e
2πi
n and some `. These actions give the following equivalent representations:

Cn = 〈ξ ◦ rot | (ξ ◦ rot)n = id〉 and Dn =
〈
ξ ◦ rot, ξ ◦ ref | (ξ ◦ rot)n = (ξ ◦ rot ◦ξ ◦ ref)2 = id

〉
(2.5)

where ξ ◦ rot =


1 0 0

0 ω 0

0 0 ω

 for ω = e
2πi
n and ξ ◦ ref =

1 0 0

0 0 1

0 1 0

 act on points [t : u : v]. Under

this change of variables, the form fA in (1.1) becomes

fA

(
t,
u+ v

2
,
u− v

2i

)
= det

(
tIn +

u

2
A∗ +

v

2
A
)

. (2.6)

Define the map

ϕ : C[t, u, v]→ C[t, u, v] where h(t, u, v) 7→ h(t, ωu, ω−1v). (2.7)

It has monomial eigenvectors tiujvk and eigenvalues 1, ω, . . . , ωn−1. Denote by Λ
(
ω`
)

the eigenspace

associated to eigenvalue ω` for each ` = 0, 1, . . . , n− 1. The restriction ϕ|d of ϕ to C[t, u, v]d has a

finite number of eigenvectors equal to dim(C[t, u, v]d) =
(
d+2

2

)
. Denote by

Λ
(
ω`
)
d

(2.8)
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the eigenspace of the restriction ϕ|d associated to eigenvalue ω`. Notice Λ
(
ω0
)
d

= C[t, u, v]Cnd .

Lemma 2.1.1. For any n, d, and `, the dimension of each eigenspace is

dim
(

Λ
(
ω`
)
d

)
=

⌊
d− `

2

⌋
+ 1 +

b d−`n c∑
m=1

(⌊
d− `−mn

2

⌋
+ 1

)
+

b d+`n c∑
m=1

(⌊
d+ `−mn

2

⌋
+ 1

)
.

Proof. Counting the dimension of each eigenspace is equivalent to counting the number of mono-

mials tiujvk such that ϕ(tiujvk) = ω`tiujvk. In other words, computing the cardinality of the set

{(j, k) | 0 ≤ j + k ≤ d, j − k ≡ ` mod n}. Either j − k = `, j − k > `, or j − k < `. Suppose

j − k = `, so j = k + `. This implies 0 ≤ 2k + ` ≤ d so 0 ≤ k ≤ d−`
2 , and there are

⌊
d−`

2

⌋
+ 1

possibilities. Suppose j − k > `, so j = k + ` + mn where 1 ≤ m ≤
⌊
d−`
n

⌋
and 0 ≤ k ≤

⌊
d−`−mn

2

⌋
.

Then for the second case, there are

b d−`n c∑
m=1

b d−`−mn2 c∑
k=0

1 =

b d−`n c∑
m=1

(⌊
d− `−mn

2

⌋
+ 1

)

possibilities. Suppose j − k < `, so k = j − `+mn for 1 ≤ m ≤
⌊
d+`
n

⌋
and 0 ≤ j ≤

⌊
d+`−mn

2

⌋
.

Thus for the third case there are

b d+`n c∑
m=1

b d+`−mn2 c∑
k=0

1 =

b d+`n c∑
m=1

(⌊
d+ `−mn

2

⌋
+ 1

)

possibilities.

2.2 Polynomial Invariants

Under the change of variables

R[t, x, y] = R
[
t,
u+ v

2
,
u− v

2i

]
. (2.9)

We often work in R[t, (u + v)/2, (u − v)/2i] for convenience. Now we only consider polynomials

invariant under the action of Cn and later examine the more specific dihedral case in Section 2.5.

Proposition 2.2.1. The degree n part of the invariant ring C[t, u, v]Cn has dimension
⌊
n
2

⌋
+ 3.

Proof. Let the Hilbert series H(C[t, u, v]Cn , z) =
∞∑
k=0

αkz
k where dim

(
C[t, u, v]Cnk

)
= αk for every k.
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By Theorem 1.3.3, the Hilbert series is given by

H(C[t, u, v]Cn , z) =
1

|Cn|
∑

Ξ∈Cn

1

det(I − z Ξ)

=
1

n

n−1∑
`=0

1

det
(
I − z Φ̃`

) =
1

n

(
1

1− z

) n−1∑
`=0

1

(1− ω`z)(1− ω−`z)
.

Expand the inner term, so

1

(1− ω`z)(1− ω−`z)
=
∞∑
i=0

(ω`z)i
∞∑
j=0

(ω−`z)j =
∞∑
i=0

i∑
j=0

ω`(i−2j)zi

and the Hilbert series is

H(C[t, u, v]Cn , z) =
1

n

(
1 + z + z2 + · · ·

) n−1∑
`=0

 ∞∑
i=0

i∑
j=0

ω`(i−2j)zi

 .

In this expansion, we want to calculate the coefficient αn. Explicitly,

αn =
1

n

n−1∑
`=0

 n∑
i=0

i∑
j=0

ω`(i−2j)


=

1

n

n−1∑
`=0

(
(1) +

(
ω` + ω−`

)
+
(
ω2` + 1 + ω−2`

)
+ · · ·+

(
ωn` + ω(n−2)` + · · ·+ ω−n`

))
=

1

n

n−1∑
`=0

1 +

n−1∑
`=0

(
ω` + ω−`

)
+

n−1∑
`=0

(
ω2` + 1 + ω−2`

)
+ · · ·+

n−1∑
`=0

(
1 + ω(n−2)` + · · ·+ 1

)
=

1

n
(n+ 0 + n+ · · ·+ (n+ 0 + · · ·+ 0 + n))

=
⌊n

2

⌋
+ 3.

Let

β1(t, u, v) = t, β2(t, u, v) = uv, β3(t, u, v) =
un + vn

2
, β4(t, u, v) =

un − vn

2i
(2.10)

where βi ∈ C[t, u, v]Cn . Then dim (C [β1, β2, β3, β4]n) =
⌊
n
2

⌋
+ 3 and

C[t, u, v]Cnn = C [β1, β2, β3, β4]n

by Proposition 2.2.1. Therefore, all polynomial invariants of Cn with degree n are generated by
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β1, β2, β3, and β4. In general, any f ∈ R[t, (u+ v)/2, (u− v)/2i]Cnn can be written

f(t, u, v) = tn +

bn2 c∑
r=1

crt
n−2r(uv)r + c0

(
un + vn

2

)
+ c̃0

(
un − vn

2i

)
(2.11)

for some coefficients ci, c̃0 ∈ R.

2.3 The Smooth Case

In this section, we describe several properties of f and ∂f
∂t using the form (2.11). We later use these

facts to prove Theorem 2.0.1. The hyperbolicity condition that f(t, cos(θ), sin(θ)) has all real roots

for all θ ∈ [0, 2π) is equivalent to

f(ξ(t, cos(θ), sin(θ))) = f̃(t, eiθ, e−iθ) (2.12)

having all real roots for all θ ∈ [0, 2π) where f ∈ R[t, x, y] and f̃ ∈ C[t, u, v]. The first lemma

states that the partial derivative ∂f
∂t is a product of circles. In the following proof we consider

f ∈ R[t, (u+ v)/2, (u− v)/2i]n and use the equivalence from (2.12).

Lemma 2.3.1. The partial derivative is ∂f
∂t = ntkq1q2 · · · qbn−1

2
c where k =

0 if n is odd

1 if n is even
for

qj = t2 − sjuv and sj ∈ R≥0.

Proof. First write ∂f
∂t = ntn−1 +

bn
2
c∑

r=1
(n− 2r)crt

n−2r−1(uv)r. Assume n is odd. Then n− 1 = 2m for

some integer m, so

∂f

∂t
= n

(
t2
)m

+

bn
2
c∑

r=1

(n− 2r)cr
(
t2
)m−r

(uv)r ∈ R[t2, uv]

and factor over C as ∂f
∂t = nq1q2 · · · qn−1

2
where qj = t2−sjuv for some sj ∈ C. Since f is hyperbolic

with respect to (1, 0, 0), this means ∂f
∂t is hyperbolic with respect to (1, 0, 0) and ∂f

∂t (t, eiθ, e−iθ) has

all real roots for each θ ∈ [0, 2π). Thus qj(t, e
iθ, e−iθ) = t2 − sj has two real roots for every j, so

sj ∈ R≥0 for every j. If n is even, we can factor out t and proceed with the remaining polynomial

of odd degree as before.

The next lemma shows generic VC
(
f, ∂f∂t

)
cannot contain points with t = 0 when n is odd.

Specifically, we require at least one of c0, c̃0 to be nonzero for genericity. The case where c0 = c̃0 = 0

occurs when VC(f) has singularities and is considered in Section 2.4. With this condition, we

establish an explicit description for the points VC
(
f, ∂f∂t

)
.
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Lemma 2.3.2. If n is odd and f ∈ R[t, (u+v)/2, (u−v)/2i]Cnn is hyperbolic with respect to (1, 0, 0)

with at least one of c0, c̃0 nonzero, then all points in VC
(
f, ∂f∂t

)
have t 6= 0

Proof. When n is odd, deg
(∂f
∂t

)
= n− 1 is even. By Lemma 2.3.1, we can write ∂f

∂t = nq1q2 · · · qn−1
2

where qj = t2 − sjuv for some sj ∈ R≥0. If ∂f
∂t vanishes when t = 0, then either u = 0 or v = 0

as well. Suppose ∂f
∂t (0, 1, 0) = 0 or ∂f

∂t (0, 0, 1) = 0. Then, f(0, 1, 0) = c0−ic̃0
2 or f(0, 0, 1) = c0+ic̃0

2 ,

which are both nonzero under assumption. Therefore, f does not vanish in either case.

Notice f , ∂f
∂t ∈ R[t, x, y]Cn , so if p ∈ VC

(
f, ∂f∂t

)
, then so is rot`(p) and (rot` ◦ conj)(p) for

each `. Now, if VR
(
f, ∂f∂t

)
is empty, and in particular, f has no real singularities, then the complex

intersection points are distinct.

Proposition 2.3.3. If VR
(
f, ∂f∂t

)
is empty and at least one of c0, c̃0 is nonzero, then VC

(
f, ∂f∂t

)
consists of n(n− 1) distinct points.

Proof. Suppose ξ(f) and ξ(∂f∂t ) have a common factor. By Lemma 2.3.1 and since f has no factor

of t by assumption, the common factor must be t2 − sjuv for some sj ∈ R≥0. Then

ξ−1
([√

sj : 1 : 1
])

=
[√
sj : 1 : 0

]
∈ VR

(
f,
∂f

∂t

)
,

which is a contradiction. Therefore, f and ∂f
∂t have no common factors and by Bézout’s theorem,∣∣∣VC(f, ∂f∂t )∣∣∣ = n(n − 1). For distinctness, we need to show for any point in VC

(
f, ∂f∂t

)
, each orbit

under the action of conjugation and rotation is distinct. Suppose for some fixed ` ∈ {1, . . . , n− 1}
that [1 : u : v] = [1 : ω`u : ω−`v] ∈ ξ

(
VC
(
f, ∂f∂t

))
. This implies ω`u = u and ω−`v = v for ` 6= 0,

so u = v = 0 and [1 : 0 : 0] ∈ VR
(
f, ∂f∂t

)
, which is a contradiction. Now suppose [1 : u : v] = [1 :

ω`v : ω−`u] ∈ ξ
(
VC
(
f, ∂f∂t

))
for some ` ∈ {0, . . . , n − 1}. These equivalences imply ω2`u = u and

ω−2`v = v, so either u = v = 0, ` = 0 or ` = n
2 . If u = v = 0, this is a contradiction as in the

previous case. If ` = 0, then [1 : x : y] = ξ−1 ([1 : u : v]) = ξ−1 ([1 : v : u]) = [1 : x : y], so x, y ∈ R
and [1 : x : y] ∈ VR

(
f, ∂f∂t

)
, which is a contradiction. The case ` = n

2 can only happen when n is

even since ` ∈ Z. Assume n be even. If ` = n
2 , then u = −v and uu = vv. By Proposition 2.3.1, we

can write ∂f
∂t = tq1q2 · · · qn−2

2
for qj = t2 − sjuv. For some j this means 0 = qj(1,−v, v) = 1 + sjvv,

which is a contradiction. Lastly, suppose [0 : u : v] = [0 : ω`u : ω−`v] for some ` ∈ {1, . . . , n − 1}.
This gives ω`u = u and ω−`v = v, so u = v = 0 and this is a contradiction as before.

Now suppose p ∈ VC
(
f, ∂f∂t

)
with multiplicity mp ≥ 2. Then rot`(p) and (rot` ◦ conj)(p) are also

in VC
(
f, ∂f∂t

)
each with multiplicity mp. By Lemma 2.3.1, qj(p) = 0 for some factor qj of ∂f

∂t . Then

|VC(f, qj)| = 2n < 2n ·mp,

which is a contradiction. Therefore, each point in VC
(
f, ∂f∂t

)
is distinct.
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Lemma 2.3.2 and Lemma 2.3.3 give an explicit description of the points of intersection which

have the form VC
(
f, ∂f∂t

)
= S ∪ S where

ξ
(
S̃
)

=


{

[1 : ui : vi] | 1 ≤ i ≤ n−1
2

}
, n odd{

[1 : ui : vi], [0 : u0 : v0] | 1 ≤ i ≤ n−2
2

}
, n even

(2.13)

is a set of orbit representatives for ξ(S). That is, if p ∈ S̃, then rot`(p) ∈ S for any `.

Corollary 2.3.4. If VR
(
f, ∂f∂t

)
is empty and at least one of c0, c̃0 is nonzero, then VC(f) has no

singularities.

Proof. Assume VR
(
f, ∂f∂t

)
is empty and suppose VC(f) has a singularity at the point p. Then the

intersection multiplicity of p at f and ∂f
∂t is at least 2 [18]. By Proposition 2.3.3, VC

(
f, ∂f∂t

)
consists

of n(n− 1) distinct points, which gives a contradiction.

Corollary 2.3.4 implies we need only consider two cases in order to prove Theorem 2.0.1: the case

when VC(f) is smooth and the case when VC(f) has at least one real singularity (Section 2.4). In

either case, we consider the map ϕ|n−1 as in (2.7). Dixon’s idea was to recover M , the determinantal

representation of f , by first constructing adj(M) as discussed in 1.1.2. Our desired representation

is Hermitian with added structure, so our goal is to modify the Hermitian construction to reflect

this structure. In particular, we require the entries of adj(M) to lie in the eigenspaces of ϕ|n−1. In

the next lemma gives the dimension of these eigenspaces.

Lemma 2.3.5. For any `, the dimension of each eigenspace is

dim
(

Λ
(
ω`
)
n−1

)
=


n+1

2 if n is odd

n
2 if n and ` are even

n
2 + 1 if n is even and ` is odd.

Proof. Computing the dimension of eigenspace Λ
(
ω`
)
n−1

is equivalent to counting the number of

monomials tiujvk ∈ C[t, u, v]n−1 so that ϕ|n−1(tiujvk) = ω`tiujvk. On the other hand, applying ϕ

here gives ϕ(tiujvk) = ωj−ktiujvk. Therefore, we must compute the cardinality of the set {(j, k) |
j − k ≡ ` mod n, 0 ≤ j, k, j + k ≤ n− 1}. Let n be odd. Therefore, to prove dim(Λ

(
ω`
)
n−1

) = n+1
2 ,

we must really show that for some fixed ` where 0 ≤ ` ≤ n − 1, we have #{(j, k) | j − k ≡
` mod n, 0 ≤ j, k, j + k ≤ n− 1} = n+1

2 . Let ` be even. Then if j − k ≥ 0, we have j − k = `. Since

0 ≤ j+ k ≤ n− 1, this implies 0 ≤ 2k+ ` ≤ n− 1, so − `
2 ≤ k ≤

n−1−`
2 . We also have 0 ≤ k and ` is

even, so this means 0 ≤ k ≤ n−1−`
2 . Therefore, there are n−1−`

2 − 0 + 1 = n+1−`
2 possibilites when

j− k ≥ 0. If j− k < 0, then j− k = `−n which implies k− j = n− ` and k+ j = n− `+ 2j. Since

0 ≤ j + k ≤ n− 1, we have 0 ≤ n− `+ 2j ≤ n− 1, so `−n
2 ≤ j ≤

`−1
2 . We also have 0 ≤ j and `− 1
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is odd, so these inequalities imply 0 ≤ j ≤ `−2
2 . Therefore, there are `−2

2 + 1 = `
2 possibilities when

j − k < 0. In total, we have counted n+1
2 pairs (j, k) when ` is even.

Now let ` be odd. Then if j − k ≥ 0, we have j − k = `. Since 0 ≤ j + k ≤ n − 1, this implies

0 ≤ 2k + ` ≤ n − 1, so − `
2 ≤ k ≤ n−1−`

2 . We also have 0 ≤ k and ` is odd, so this means

0 ≤ k ≤ n−2−`
2 . Therefore, there are n−2−`

2 − 0 + 1 = n−`
2 possibilites when j − k ≥ 0. If j − k < 0,

then j − k = ` − n which implies k − j = n − ` and k + j = n − ` + 2j. Since 0 ≤ j + k ≤ n − 1,

we have 0 ≤ n − ` + 2j ≤ n − 1, so `−n
2 ≤ j ≤ `−1

2 . We also have 0 ≤ j and ` is even, so these

inequalities imply 0 ≤ j ≤ `−1
2 . Therefore, there are `−1

2 + 1 = `+1
2 possibilities when j − k < 0. In

total, we have counted n+1
2 pairs (j, k) when ` is odd. Thus, we have shown this set has cardinality

n+1
2 whether ` is even or odd. A similar counting argument follows for the case when n is even.

Let

I (S)d and I
(
S̃
)
d

(2.14)

denote the space of all degree d forms vanishing on the points ξ(S) in (3.2) and ξ
(
S̃
)

in (2.13)

respectively. The next proposition shows there must always exist an eigenvector h ∈ Λ
(
ω`
)
n−1

for

every ` which vanishes on points of ξ(S).

Proposition 2.3.6. For all ` = 0, . . . , n− 1, dim
(
Λ
(
ω`
)
n−1
∩ I (S)n−1

)
≥ 1.

Proof. First we show Λ
(
ω`
)
n−1
∩ I (S)n−1 = Λ

(
ω`
)
n−1
∩ I
(
S̃
)
n−1

. Let h ∈ I (S)n−1. This means

h vanishes on all point of ξ(S), and since ξ
(
S̃
)
⊂ ξ(S), h vanishes on all points of ξ

(
S̃
)
. Therefore,

h ∈ I
(
S̃
)
n−1

and we have Λ
(
ω`
)
n−1
∩ I (S)n−1 ⊆ Λ

(
ω`
)
n−1
∩ I
(
S̃
)
n−1

. For the other direction,

suppose h ∈ I
(
S̃
)
n−1
∩ Λ

(
ω`
)
n−1

, we need to show that h(t, u, v) = 0, for all [t : u : v] ∈ ξ(S).

Every [t : u : v] ∈ ξ(S) belongs to an orbit under the action of rotation, meaning that there

exists [t̃ : ũ : ṽ] ∈ S̃ with [t : u : v] = [t̃ : ωµũ : ω−µṽ] for some integer µ. Then we have

h(t, u, v) = h(t̃, ωµũ, ω−µṽ) = ωµ`h(t̃, ũ, ṽ) = 0, so Λ
(
ω`
)
n−1
∩ I
(
S̃
)
n−1
⊆ Λ

(
ω`
)
n−1
∩ I (S)n−1.

Therefore, Λ
(
ω`
)
n−1
∩I (S)n−1 = Λ

(
ω`
)
n−1
∩I
(
S̃
)
n−1

. More importantly, these sets have the same

dimension. When n is odd, dim(Λ
(
ω`
)
n−1

) = n+1
2 from Lemma 2.3.5 and |S̃| = n−1

2 . Then

dim(Λ
(
ω`
)
n−1
∩ I (S)n−1) = dim(Λ

(
ω`
)
n−1
∩ I
(
S̃
)
n−1

)

≥ dim(Λ
(
ω`
)
n−1

)− |S̃|

=
n+ 1

2
− n− 1

2
= 1.

When n is even and ` is odd, dim(Λ
(
ω`
)
n−1

) = n
2 + 1 from Lemma 2.3.5 and |S̃| = n

2 . This implies

dim(Λ
(
ω`
)
n−1
∩ I (S)n−1) ≥ dim(Λ

(
ω`
)
n−1

)− |S̃| = n

2
+ 1− n

2
= 1.
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Now consider the case when n and ` are both even. We have dim(Λ
(
ω`
)
n−1

) = n
2 from Lemma

2.3.5, but the monomials tiujvk so that j − k = ` and i + j + k = n − 1 also satisfy i ≥ 1 since

j − k is even and n − 1 is odd. This means all of the monomials in each eigenspace Λ
(
ω`
)

in this

case must have a factor of t. So in this case we need not consider the points with t = 0. Thus

|ξ
(
S̃
)
\{[0 : u : v]}| = n

2 − 1 and

dim(Λ
(
ω`
)
n−1
∩ I (S)n−1) ≥ dim(Λ

(
ω`
)
n−1

)−
(
|S̃| − 1

)
=
n

2
−
(n

2
− 1
)

= 1.

Another requirement for the Hermitian construction is that the 2×2 minors of adj(M) must lie

in the ideal 〈f〉. To ensure this is possible in addition to the eigenspace requirement, we use a fact

due to Max Noether. This fact is developed mainly in the language of divisors. For information on

divisors, see [18]. The next lemma not only allows us to write the 2× 2 minors as elements of 〈f〉,
but also to choose each entry of adj(M) in an appropriate eigenspace of ϕ|n−1.

Lemma 2.3.7. Suppose f ∈ Λ
(
ω0
)
, g ∈ Λ

(
ω0
)

and h ∈ Λ
(
ω`
)

are homogeneous with VC(f) smooth,

deg(h) > deg(f), deg(g), and f has no irreducible components in common with g. If VC(f, g)

consists of distinct points and VC(f, g) ⊆ VC(f, h), then there exists homogeneous polynomials

â, b̂ ∈ Λ
(
ω`
)

so that h = âf + b̂g where deg
(
â
)

= deg(h)− deg(f) and deg
(
b̂
)

= deg(h)− deg(g).

Additionally, if f, g, and h are real, then â and b̂ can be chosen real.

Proof. By Max Noether’s fundamental theorem [18], there exists homogeneous a, b ∈ C[t, u, v] so

that h = af + bg where deg(a) = deg(h) − deg(f) and deg(b) = deg(h) − deg(g) since V(f, g) ⊆
V(f, h) and V(f, g) consists of distinct points. Next, h ∈ Λ

(
ω`
)

implies h = ω−`ϕ(h). Then

h =
1

n

n−1∑
i=0

ω−`iϕi(h) = f ·

(
1

n

n−1∑
i=0

ω−`iϕi(a)

)
+ g ·

(
1

n

n−1∑
i=0

ω−`iϕi(b)

)
.

Let b̂ =
1

n

n−1∑
i=0

ω−`iϕi(b). Now we show that ϕ(b̂) = ω`b̂. Applying the map, we have

ϕ
(
b̂
)

= ϕ

(
1

n

n−1∑
i=0

ω−`iϕi(b)

)
=

1

n

n−1∑
i=0

ω−`iϕi+1(b)

=
1

n

n∑
i=1

ω−`(i−1)ϕi(b)

=
ω`

n

n∑
i=1

ω−`iϕi(b)
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=
ω`

n

n−1∑
i=1

(
ω−`iϕi(b)

)
+ ω−`nϕn(b)

=
ω`

n

n−1∑
i=1

(
ω−`iϕi(b)

)
+ ω0ϕ0(b)

= ω`b̂.

This means ϕ
(
b̂
)

= ω`b̂ and b̂ ∈ Λ
(
ω`
)

deg(b)
. The polynomial â is chosen in a similar fashion.

If f , g, and h = âf + ĝ are real, then h = (1/2)(â+ ˆ̄a)f + (1/2)(b̂+ ˆ̄b)g where â+ ˆ̄a and b̂+ ˆ̄b

are also real.

Now, with proper choices, we can recover a determinantal representation and its associated

cyclic weighted shift matrix for a given curve invariant under Cn. Below we describe the modified

construction and prove Theorem 2.0.1 in the case of smooth curves.

Construction 2.3.8. Suppose f ∈ R[t, x, y]Cnn is hyperbolic with respect to (1, 0, 0) where VC(f)

is smooth and f(1, 0, 0) = 1.

1. Write f ∈ R[t, (u+ v)/2, (u− v)/2i]Cnn as in (2.11) and let g11 = ∂f
∂t be of degree n− 1.

2. Split the n(n − 1) points of VC(f, g11) into two conjugate sets of points S ∪ S according to

Cn-orbits such that rot(S) = S.

3. Extend g11 to a linearly independent set {g11, g12, . . . , g1n} of forms in C[t, u, v]n−1 vanishing

on all points of S with ξ(g1j) ∈ Λ
(
ω1−j)

n−1
for all j ∈ [n].

4. For 1 < i ≤ j, let gij be a form for which g11gij − g1ig1j lies in the ideal generated by f , with

ξ(gij) ∈ Λ
(
ωi−j

)
n−1

and ξ(gii) ∈ R[t, (u+ v)/2, (u− v)/2i].

5. For i < j, set gji = gij and define G = (gij) to be the resulting n× n complex matrix.

6. Define M = (1/fn−2) · adj(G) such that ξ(M) ∈ (C[t, u, v]1)n×n.

7. Normalize M so all diagonal entries are monic in t.

Proof of Theorem 2.0.1(a) (Smooth case). Assume VC(f) is smooth. The goal is to show there ex-
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ists cyclic weighted shift matrix A ∈ Cn×n such that

f(t, u, v) = fA(t, u, v) = det



t a1
2 v 0 · · · 0 an

2 u

a1
2 u t

. . . 0 · · · 0

0
. . .

. . .
. . .

. . .
...

... 0
. . .

. . .
. . . 0

0
...

. . .
. . .

. . . an−1

2 v
an
2 v 0 · · · 0 an−1

2 u t


. (2.15)

We will construct a matrix G of forms of degree n − 1 and recover the desired representation by

taking the adjugate. Let g11 = ∂f
∂t . Split VC(f, g11) into S ∪ S so S consists of the appropriate

number of Cn-orbits of points for odd and even n as in (3.2). Then rot(S) = S and all of these

points are distinct by Proposition 2.3.3. For Step 3, Proposition 2.3.5 allows us to choose g1j such

that ξ(g1j) ∈ Λ
(
ω1−j) which vanishes on all points of S for each j ∈ [n]. Now let gj1 = g1j . These

entries vanish on all points in S and VC(f, g11) ⊆ VC(f, g1jgj1). By Lemma 2.3.7, we can choose

gij for 1 < i < j such that ξ(gij) ∈ Λ
(
ωi−j

)
and g11gij − g1ig1j = af for some homogeneous

ξ(a) ∈ C[t, u, v] to complete Step 4. Let gij = gji for i > j and let G = (gij) be the n× n matrix of

forms of degree n − 1. Next consider the restriction ϕ|1 of ϕ to C[t, u, v]1. The eigenvalues of this

restriction are 1, ω, and ωn−1 with associated eigenspaces Λ
(
ω0
)
n−1

, Λ
(
ω1
)
n−1

, and Λ
(
ωn−1

)
n−1

.

Since each 2× 2 minor of G lies in the ideal 〈f〉, each entry of adj(G) will be divisible by fn−2 by

Theorem 4.6 of [32] and Step 6 is valid. Let M = (1/fn−2) · adj(G). The entries in G have degree

n− 1, so the entries of adj(G) have degree (n− 1)2. Then fn−2 has degree n(n− 2) and entries of

M satisfy ξ(Mij) ∈ C[t, u, v]1. Let Ω = diag(1, ω, . . . , ωn−1. Applying the map ϕ to the ij-th entry

of M , we have

ϕ(M)ij = f2−nϕ(adj(G))ij

= (1/fn−2)adj(ϕ(G))ij

= (1/fn−2)adj(ΩGΩ∗)ij

= (1/fn−2)(adj(Ω∗)adj(G)adj(Ω))ij

= (ΩMΩ∗)ij

= ωj−1ωi−1Mij

= ωi−jMij .

Therefore, Mij ∈ Λ
(
ωi−j

)
1

for each i, j. This implies Mij = 0 if |i − j| 6= 0, 1. Now consider the

entries of M so that i − j = 0 or 1. These are the entries in the main and upper diagonals of M

as well as the M1n entry. For Mij such that j = i + 1 and i = 1, j = n, we have Mij ∈ Λ
(
ωn−1

)
1
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so these are multiples of v. Since M is Hermitian, this implies Mji ∈ Λ
(
ω1
)

1
, so these entries

are multiples of u. Also, Mii ∈ Λ
(
ω0
)

1
, so the diagonal elements must be multiples of t. More

explicitly, Mii = cit for some scalars ci. To normalize as in Step 7, replace M by DMD where

D = diag
(
1/
√
c1, . . . , 1/

√
cn
)

so the coefficients of t are 1. Thus the matrix M can be reduced to

the form (2.15).

Example 2.3.9 (d = n = 5). We will work entirely in C[t, u, v] to compute a determinantal

representation of

f
(
t,
u+ v

2
,
u− v

2i

)
= t5− 25

2
t3uv+

135

4
t(uv)2−3

√
3
(
1+
√

2
)(u5 + v5

2

)
+3
√

3
(
1−
√

2
)(u5 − v5

2i

)
and then identify the associated cyclic weighted shift matrix. Let

g11 =
∂f

∂t
= 5t4 − 75

2
t2uv +

135

4
(uv)2

and compute the points of VC(f, g11). Write VC(f, g11) = S ∪ S where

ξ
(
S̃
)

=

{[
1 : −57012547

88716765
+

248168479i

571386778
;−62642599

61332566
− 44957882i

65129167

]
,

[
1 : − 58884041

140365813
− 5556049i

389575851
: − 41172728

111605995
+

6957859i

554773523

]}

is a set of orbit representatives of S as in (2.13). Choose

g12 = −t3v + 3tuv2 − 3
√

3

2
(1− i)

(√
2 + i

)
u4

which lies in Λ
(
ω−1

)
4

and vanishes on ξ(S). Now for j ≤ 5, choose g1j ∈ Λ
(
ω1−j)

4
so g1j vanishes

on the points of ξ(S) and set gj1 = g1j . Write

g12g21 =
(
−t3 + 3tuv

)
f +

(
t4 − 7t2uv + 6(uv)2

)
g11 ∈ 〈f, g11〉

and let g22 = t4 − 7t2uv + 6(uv)2 ∈ Λ
(
ω0
)

4
. For every other i ≤ j, write g1igj1 = af + bg11 for

a, b ∈ C[t, u, v] where b ∈ Λ
(
ωi−j

)
4

and set gij = b, gji = b. Let G be the matrix with gij entries,

take the adjugate of G to get a matrix with entries in C[t, u, v]16, and divide each entry by f3. One
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such representation is 10000 · f(t, u, v) = det(M) where

M =



2t 2
√

5v 0 0 −4i
√

5u

2
√

5u 10t 15+15i√
2
v 0 0

0 15−15i√
2
u 5t 5

√
3v 0

0 0 5
√

3u 10t 5(
√

2 + 2i)v

4i
√

5v 0 0 5(
√

2− 2i)u 10t


.

Finally, let D = diag
(
1/
√

2, 1/
√

10, 1/
√

5, 1/
√

10, 1/
√

10
)
, and normalize M so that

f(t,
u+ v

2
,
u− v

2i
) = det(DMD) = det (tI5 + uA∗ + vA)

where A is the cyclic weighted shift matrix with entries 2, 3 + 3i,
√

6,
√

2 + 2i, and −4i.

2.4 The Singular Case

We have shown this construction holds when VC(f) is smooth, but it still remains valid if VC(f)

is singular. In particular, the case of real singularities may be solved by reducing to a univariate

argument. The next lemma is essential in this reduction.

Lemma 2.4.1. Let p ∈ R[t] and a < b for a, b ∈ R. If p(t) + a and p(t) + b have all real roots, then

p(t) + c has all real, distinct roots for c ∈ (a, b).

Proof. Suppose p(t)+a and p(t)+b have all real roots. This implies p′(t) must have n−1 real roots

r1, . . . , rn−1. Suppose n is even. Then we have lim
t→−∞

p(t) + a =∞. This means that there must be

a local minimum at r1 due to the shape of the graph of p(t) +a. We also know p(r1) +a ≤ 0 or else

p(t) + a has imaginary roots. Similarly, there must be a local maximum at r2 and p(r2) + a ≥ 0.

Continuing in this fashion, p(rk) + a ≤ 0 is a local minimum for all odd k and p(rk) + a ≥ 0 is a

local maximum for all even k where k = 1, . . . n− 1. The same argument holds for p(t) + b, so we

have p(rk) + a < p(rk) + b ≤ 0 for all odd k and p(rk) + b > p(rk) + a ≥ 0 for all even k where

k = 1, . . . n− 1 because a < b. More importantly, we have c ∈ (a, b), so p(rk) + c < 0 for all odd k

and p(rk) + c > 0 for all even k. We have lim
t→−∞

p(t) + c = ∞ and p(r1) + c < 0. By Intermediate

Value Theorem, there exists s1 ∈ (−∞, r1) such that p(s1)+c = 0. Similarly, since p(r1)+c < 0 and

p(r2) + c > 0, there exists s2 ∈ (r1, r2) such that p(s2) + c = 0. Continue in this fashion. We have

p(rn−1) + c < 0 and lim
t→∞

p(t) + c = ∞. Then there exists sn ∈ (rn−1,∞) such that p(sn) + c = 0.

We have p(si) + c = 0 for i = 1, . . . , n, so p(t) + c has n real roots.

Now suppose n is odd. Since lim
t→−∞

p(t)+c = −∞, we have p(rk)+a ≥ 0 is a local maximum for

odd k and p(rk) + a ≤ 0 is a local minimum for even k where k = 1, . . . , n− 1. A similar argument
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follows in the same way as the even case. Therefore, p(t) + c has all real roots for c ∈ (a, b). The

roots of p(t) + c are s1, s2, . . . , sn such that s1 < r1 < s2 < r2 < . . . < rn−1 < sn and, more

importantly, are distinct.

The hyperbolicity of f ∈ R[t, x, y]Cnn is equivalent to real rootedness of two univariate polyno-

mials and any real singularities of VC(f) are related to repeated roots of these polynomials.

Proposition 2.4.2. The polynomial f is hyperbolic with respect to (1, 0, 0) if and only if

tn +

bn2 c∑
r=1

crt
n−2r ±

√
c2

0 + c̃0
2

both have all real roots.

Proof. By definition, f is hyperbolic with respect to (1, 0, 0) if and only if f(t, cos(θ), sin(θ)) has

all real roots for all θ ∈ [0, 2π). Then

f(t, cos(θ), sin(θ)) = tn +

bn2 c∑
r=1

crt
n−2r + c0 cos(nθ) + c̃0 sin(nθ)

= tn +

bn2 c∑
r=1

crt
n−2r +

√
c2

0 + c̃0
2 (cos(α) cos(nθ) + sin(α) sin(nθ))

= tn +

bn2 c∑
r=1

crt
n−2r +

√
c2

0 + c̃0
2 cos(α− nθ)

where c0√
c20+c̃0

2
= cos(α) and c̃0√

c20+c̃0
2

= sin(α) for some α ∈ [0, 2π). By Lemma 2.4.1 and since

−1 ≤ cos(α − nθ) ≤ 1, it is enough to check if tn +
∑bn2 c

r=1 crt
n−2r ±

√
c2

0 + c̃0
2 each have all real

roots to show f(t, cos(θ), sin(θ)) has all real roots for every θ ∈ [0, 2π).

Lemma 2.4.3. If f is hyperbolic with respect to (1, 0, 0) where VC(f) has a real singularity, then

at least one of tn +
∑bn2 c

r=1 crt
n−2r ±

√
c2

0 + c̃0
2 has a repeated root.

Proof. Suppose tn+
∑bn2 c

r=1 crt
n−2r±

√
c2

0 + c̃0
2 have all distinct real roots. By Lemma 2.4.1, this im-

plies f (t, cos(θ), sin(θ)) has all distinct real roots for every θ ∈ [0, 2π). Therefore f (t, cos(θ), sin(θ))

and ∂f
∂t (t, cos(θ), sin(θ)) have no common roots in t. This holds for every θ ∈ [0, 2π), so f (t, x, y)

and ∂f
∂t (t, x, y) have no real intersection points. In other words, VR

(
f, ∂f∂t

)
= ∅, but

VR
(
f,
∂f

∂t
,
∂f

∂x
,
∂f

∂y

)
⊆ VR

(
f,
∂f

∂t

)
.
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Therefore, f has no real singularities.

Equivalently, if neither of these univariate polynomials have a repeated root, then VC(f) contains

no real singularities. Now we may prove the remaining singular case of Theorem 2.0.1(a) and again

use the equivalent hyperbolicity condition for f ∈ R[t, (u + v)/2, (u − v)/2i] as in (2.12) to our

advantage.

Proof of Theorem 2.0.1(a) (Singular case). We dealt with the case VC(f) smooth in Section 2.3.

Suppose VC(f) has a singularity and at least one of c0, c̃0 are nonzero. Write

f = tn +

bn2 c∑
r=1

crt
n−2r(uv)r + c0

(
un + vn

2

)
+ c̃0

(
un − vn

2i

)

as in (2.11). Let p(t) = tn+
∑bn2 c

r=1 crt
n−2r and s =

√
c2

0 + c̃0
2. Then by Lemma 2.4.2 and Proposition

2.4.3, each of p(t)± s has all real roots and at least one has a repeated root. Either s 6= 0 or s = 0.

If s 6= 0 (i.e., at least one of c0, c̃0 are nonzero), define

fε = tn +

bn2 c∑
r=1

crt
n−2r(uv)r + (c0 − sign(c0)ε)

(
un + vn

2

)
+ (c̃0 − sign(c̃0)ε)

(
un − vn

2i

)
,

so the limit of fε at s = 0 is f and by Lemma 2.4.1, fε(t, e
iθ, e−iθ) = p(t) + sε has all real distinct

roots for

sε =
√

(c0 − sign(c0)ε)2 + (c̃0 − sign(c̃0)ε)2.

If s = 0, perturb the nonzero coefficients of the univariate polynomial p(t) to get pε(t) with all real

distinct roots and lim
ε→0

pε = p. Let pε(t)
hom be the homogenization of pε(t) with respect to uv and

define

fε(t, u, v) = pε(t)
hom + ε

(
un + vn

2

)
.

Then by Proposition 2.4.1, fε(t, e
iθ, e−iθ) = pε(t) + ε cos(nθ) has all real distinct roots for every

θ ∈ [0, 2π). In either case, this means VC (fε) is smooth and for every ε > 0 there exists cyclic

weighted shift matrix Wε ∈ Cn×n such that fε = fWε by Lemma 2.4.3. Now fε(t,−1,−1) and

fε(t,−i, i) are the characteristic polynomials of <(Wε) and =(Wε) and converge to the roots of

f(t,−1,−1) or f(t,−i, i) respectively. Therefore, the eigenvalues of <(Wε) and =(Wε) are bounded,

which bounds the sequences (<(Wε))ε and (=(Wε))ε. Then

(<(Wε))ε + i(=(Wε))ε = (<(Wε) + i=(Wε))ε = (Wε)ε
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which is also bounded. By passing to a convergent subsequence, this means lim
ε→0

(Wε)ε = W and

f = det
(

lim
ε→0

(tIn + (u/2)W ∗ε + (v/2)Wε)
)

= det (tIn + (u/2)W ∗ + (v/2)W ) .

This proof provides an analogue to the result of Nuij [31] which states every hyperbolic polyno-

mial is the limit of strict hyperbolic polynomials. More specifically, we have the following corollary.

Corollary 2.4.4. The space of smooth, hyperbolic forms of degree n invariant under Cn is dense

in the space of all hyperbolic forms of degree n invariant under Cn. That is, HCnn is the closure of

(H◦)Cnn .

2.5 Dihedral Invariance

Recall that in addition to rotation about the point [1 : 0 : 0], the dihedral group of order n is also

generated by a reflection such that (ξ ◦ ref)[t : x : y] = [t : v : u]. Since the polynomial generator
un−vn

2i of Cn is not fixed under the action of reflection, polynomials with dihedral invariance have

the form

f

(
t,
u+ v

2
,
u− v

2i

)
= tn +

bn2 c∑
r=1

crt
n−2r(uv)r + c0

(
un + vn

2

)
. (2.16)

Now we can prove Theorem 2.0.1(b) which gives a positive answer to Chien and Nakazato’s main

question in [9].

Proof of Theorem 2.0.1(b). Note f ∈ R[t, x, y]Dn ⊆ R[t, x, y]Cn , so by Theorem 2.0.1(a) there exists

cyclic weighted shift matrix A ∈ Cn×n where f
(
t, u+v

2 , u−v2i

)
= det (tIn + (u/2)A∗ + (v/2)A). The

polynomial f has the form (2.16), so

tn + 2n−1c0 = f(t, 1, i) = fA(t, 1, i) = det(tI +A) = tn − a1a2 · · · an,

which implies a1a2 · · · an ∈ R since c0 ∈ R. Write aj = rje
iαj with rj ∈ R for each j, so a1a2 · · · an ∈

R and α1 +α2 + . . .+αn = 0. Let U = diag
(
eiθ1 , eiθ2 , . . . , eiθn

)
for some θi ∈ [0, 2π). Since UU∗ = I,

we say A is unitarily equivalent to B = UAU∗, so f = fA = fB. The matrix B is the cylic weighted

shift matrix with entries r1e
i(θ1−θ2+α1), r2e

i(θ2−θ3+α2), . . . , rne
i(θn−θ1+αn). Choose

θj = −αj − αj+1 − . . .− αn−1 for 1 ≤ j < n

θn = −α1 − α2 − . . .− αn = 0.
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This gives θj − θj+1 = −αj for 1 ≤ j < n and θn − θ1 = −αn, so the entries of B are r1, . . . , rn ∈
R.

Example 2.5.1 (d = n = 4). In this example, we work completely in C[t, u, v]. We will compute

a determinantal representation of f(t, u, v) = t4 − 26t2uv + 72(uv)2 − 36(u4 + v4) and identify an

associated cyclic weighted shift matrix. Let g11 = ∂f
∂t = 4t3 − 52tuv and compute the points of

VC(f, g). Split the points into S ∪ S so

S̃ =

{[
1 :

1 + i√
39

:

√
3

2
√

13
(1− i)

]
, [0 : 1 : 1]

}

is a set of orbit representatives for S as in (2.13). Choose g12 = −4t2v− 36u3 + 36uv2 which lies in

Λ
(
ω−1

)
3

and vanishes on S. Now for j ≤ 4, choose g1j ∈ Λ
(
ω1−j)

3
so g1j vanishes on the points of

S and set gj1 = g1j . Write

g12g21 =
(
−4t2 + 36uv

)
f +

(
t3 − 18tuv

)
g11 ∈ 〈f, g11〉

and let g22 = t3−18tuv ∈ Λ
(
ω0
)

3
. For every other i ≤ j, write g1igj1 = af+bg11 for a, b ∈ C[t, u, v]

where b ∈ Λ
(
ωi−j

)
3

and set gij = b, gji = b. Denote by G the matrix with gij entries, take the

adjugate of G to get a matrix with entries in C[t, u, v]9, and divide each entry by f2. One such

representation is 16 · f(t, u, v) = det(M) where

M =


4t

(
2 + 2

√
3i
)
v 0 4

√
2u(

2− 2
√

3i
)
u t

(
3
√

3+3i√
2

)
v 0

0
(

3
√

3−3i√
2

)
u 2t −6iv

4
√

2v 0 6iu 2t

 .

Finally, let D = diag
(
1/2, 1, 1/

√
2, 1/
√

2
)
, and normalize M so that

f(t, u, v) = det(DMD) = det (tI4 + uA∗ + vA)

where

A = S
(

2 + 2
√

3i, 3
√

3 + 3i,−6i, 4
)

= S
(

4e
πi
3 , 6e

πi
6 , 6e

πi
2 , 4e0

)
is the associated cyclic weighted shift matrix. Let U = diag

(
e0, e

πi
3 , e

πi
2 , e0

)
. Then A is unitarily

equivalent to B = UAU∗ with all real entries 4, 6, 6, and 4.
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Chapter 3

Invariant Curves of Degree d = qn

In this chapter our goal is to answer Question 1.3.9 in the case d = qn by proving the following

theorem. We choose to focus on this case rather than any d because in the more general case, curves

in (H◦)Γ
d and their set of interlacers are often not well-behaved. We discuss the obstructions to the

general case in Section 3.4.

Theorem 3.0.1. Let d = qn for some q ∈ Z+ and suppose f ∈ HΓ
d .

(a) If Γ = Cn, then there exists a CWSn matrix A ∈ Cd×d so that f = fA.

(b) If Γ = D2n, then there exists a CWSn matrix A ∈ Rd×d so that f = fA.

The proof of Theorem 3.0.1 involves extending Construction 2.3.8 by generalizing results from

Section 2.3 to higher degree. Now we also do not necessarily choose the directional derivative of f

as our interlacer for the construction. In general, f and its directional derivative ∂f/∂t may have

common components. This means our analogue of Max Noether’s af + bg Theorem (Lemma 2.3.7)

does not hold and we cannot follow through with the construction. In Section 3.2 we also take a

different approach to the dihedral case. We alter Construction 3.1.8 to produce a real CWSn matrix

rather than completing the construction to give a complex matrix and applying an explicit unitary

transformation.

We later deal with our added assumptions by studying the topology of invariant forms in Section

3.3. We again prove an appropriate analogue of Nuij [31] to handle degenerate curves and their

interlacers. Finally we briefly discuss obstructions to completing the construction for curves of any

degree in Section 3.4 as previously mentioned.

3.1 The Smooth Case

In this section we aim to prove Theorem 3.0.1, but with some added assumptions about of a curve in

HΓ
d and an interlacer. We prove higher degree analogues of statements from Section 2.3 and modify
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Dixon’s construction mentioned in Section 1.1.2 to produce a structured definite determinantal

representation. Throughout Sections 3.1 and 3.2 we will assume that

A1. f ∈ (H◦)Γ
d and VC(f) is smooth,

A2. g ∈ R[t, x, y]Γd−1 interlaces f ,

A3. VC(f) and VC(g) intersect transversely, and

A4.
∣∣VC(f, g, t)

∣∣ =

0 if n is odd,

d if n is even.

Specifically, we prove the following theorem.

Theorem 3.1.1. Let d = qn for some q ∈ Z+. Let f and g satisfy (A1)–(A4).

(a) If Γ = Cn, then there exists a CWSn matrix A ∈ Cd×d so that f = fA.

(b) If Γ = D2n, then there exists a CWSn matrix A ∈ Rd×d so that f = fA.

The next lemma is a general statement about complex points. This will allow us to split the

intersection points of f ∈ HCnd and an interlacer into disjoint sets determined by orbits under the

action of rotation.

Lemma 3.1.2. If |x+ iy| = |x− iy| for some (x, y) ∈ C2, then x/y ∈ R.

Proof. By assumption, x+ iy = z(x− iy) with |z| = 1. Then

x

y
=
−i(1 + z)

1− z
· (1− z)

(1− z)
=
−i(1− z + z − zz)

|1− z|2
=
−i(−z + z)

|1− z|2
=

2 · Im(z)

|1− z|2
∈ R.

Corollary 3.1.3. Let f and g satisfy Assumptions (A1)–(A4). Then each Cn-orbit in VC(f, g) is

disjoint from its image under conjugation.

Proof. Let O be a Cn-orbit of points in VC(f, g) and suppose

[t : x+ iy : x− iy] ∈ ξ(O) ∩ (ξ ◦ conj)(O)

with t = 1 or 0. Then

[t : x+ iy : x− iy] =
[
t : ω`

(
x+ iy

)
: ω−`

(
x− iy

)]
(3.1)

for some fixed ` ∈ [n]. If t = 1, (3.1) implies x+ iy = ω`
(
x+ iy

)
which means |x+ iy| = |x− iy|, so

x/y ∈ R by Lemma 3.1.2. If f(1, x, y) = 0, then by homogeneity, f(1/y, x/y, 1) = 0, meaning that
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1/y is a root of the polynomial f(t, x/y, 1) ∈ R[t] where x/y ∈ R is fixed. The hyperbolicity of f

then implies that 1/y ∈ R. Since both x/y and 1/y are real, both x and y must be real. Then the

point [1 : x : y] ∈ VR(f, g) which is a contradiction to the assumption VR(f, g) = ∅.
If t = 0, (3.1) implies (x + iy)(x+ iy) = ω2`(x − iy)(x− iy) for some fixed ` ∈ [n] which means

|x + iy| = |x − iy|, so x/y ∈ R by Lemma 3.1.2. The point [0 : x : y] ∈ VR(f, g) which is again a

contradiction. Since ξ(O) ∩ (ξ ◦ conj)(O) is empty, so is O ∩ conj(O).

As before, we have the same restriction map

ϕ : C[t, u, v]→ C[t, u, v] where h(t, u, v) 7→ h(t, ωu, ωv)

with eigenspaces Λ
(
ω`
)

as in (2.8) and we can write C[t, u, v]d as a decomposition of eigenspaces

C[t, u, v]d =

n−1⊕
`=0

Λ
(
ω`
)
d
.

Hence we can compute the dimension of each eigenspace using Lemma 2.1.1. In particular, for

d = qn, we want at least q elements in each eigenspace Λ
(
ω`
)
d−1

in order to choose linearly

independent set of elements in C[t, u, v]d−1 for the first row of the adjugate matrix we wish to

construct.

Lemma 3.1.4. Let d = qn for some q ∈ Z+. The dimension of each eigenspace is

dim
(

Λ
(
ω`
)
d−1

)
=


dq
2 + q

2 if n is odd

dq
2 + q if n is even and ` is odd

dq
2 if n is even and ` is even.

Proof. Consider the case when ` = 0. Then by Lemma 2.1.1 the dimension is

dim
(
Λ
(
ω0
)
d−1

)
=

⌊
d− 1

2

⌋
+ 2q − 1 + 2

q−1∑
m=1

(⌊
d− 1−mn

2

⌋)
.

Let n be odd, so the parity of d− 1−mn depends on the parity of m. Suppose d is odd. Then q is

odd and the dimension is

dim(Λ
(
ω0
)
d−1

) =
d− 1

2
+ 2q − 1 + (d− 1)(q − 1)− n

(
q

2

)
− 2

(
1

2

)(
q − 1

2

)
.
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Suppose d is even. Then q is even and the dimension is

dim(Λ
(
ω0
)
d−1

) =
d− 2

2
+ 2q − 1 + (d− 1)(q − 1)− n

(
q

2

)
− 2

(
1

2

)(
q − 2

2

)
.

Let n be even, so d is even and the parity of d− 1−mn is always odd. Here d must be even. Then

the dimension is

dim(Λ
(
ω0
)
d−1

) =
d− 2

2
+ 2q − 1 + (d− 1)(q − 1)− n

(
q

2

)
− 2

(
1

2

)
(q − 1).

Now consider the case ` > 0. By Lemma 2.1.1 the dimension is

dim
(

Λ
(
ω`
)
d−1

)
=

⌊
d− 1− `

2

⌋
+

⌊
`− 1

2

⌋
+ 2q +

q−1∑
m=1

(⌊
d− 1− `−mn

2

⌋
+

⌊
d− 1 + `−mn

2

⌋)
.

Let n be odd and suppose d is odd, so q is odd. If ` is odd, then the dimension is

dim(Λ
(
ω`
)
d−1

) =
d− `− 2

2
+
`− 1

2
+ 2q + (d− 1)(q − 1)− n

(
q − 1

2

)
− 2

(
1

2

)
(q − 1).

If ` is even, then the dimension is

dim(Λ
(
ω`
)
d−1

) =
d− `− 1

2
+
`− 2

2
+ 2q + (d− 1)(q − 1)− n

(
q − 1

2

)
− 2

(
1

2

)
(q − 1).

Let n be even, so d is even. If ` is odd, then the dimension is

dim(Λ
(
ω`
)
d−1

) =
d− `− 1

2
+
`− 1

2
+ 2q + (d− 1)(q − 1)− n

(
q − 1

2

)
.

If ` is even, then the dimension is

dim(Λ
(
ω`
)
d−1

) =
d− `− 2

2
+
`− 2

2
+ 2q + (d− 1)(q − 1)− n

(
q − 1

2

)
− 2

(
1

2

)
(q − 1).

Each of these counts gives the desired result.

For f and g that satisfy (A1)–(A4), we will again split the points of VC(f, g) into S ∪ S based

on orbits under rotation. The next lemma helps enumerate conditions imposed by the set of orbit

representatives, and accurately count dimensions later in Lemma 3.1.7.

Lemma 3.1.5. Let d = qn for some q ∈ Z+. If n, d, and ` are even, then each monomial in

Λ
(
ω`
)
d−1

has a factor of t.

Proof. Let tiujvk be an arbitrary monomial in Λ
(
ω`
)
d−1

. Then i, j, k ≥ 0, i + j + k = d − 1, and
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j − k ≡ ` mod n. Since n and ` are even, j − k is even. Thus j − k + 2k = j + k is also even, so

i = d− 1− (j + k) is odd and i ≥ 1.

By Corollary 3.1.3, VC(f, g) may be split into two disjoint sets according to orbits invariant under

the action of Cn. More explicitly, write VC(f, g) = S∪S as the union of two disjoint conjugate sets.

Define S̃ to be a minimal set of orbit representatives from S so that

S =
{

rot` · p | p ∈ S̃, ` ∈ [n]
}

. (3.2)

The next proposition gives the maximum number of possible conditions imposed by S̃ on an element

of Λ
(
ω`
)
d−1

.

Proposition 3.1.6. Let d = qn for some q ∈ Z+ and suppose f and g satisfy (A1)–(A4). Then

the number of distinct orbits in S is

∣∣S̃∣∣ =

q(d− 1)/2 if n is odd

qd/2 if n is even.

Proof. The number of orbits in S may be counted as follows. Each point of VC(f, g, t−1) generates

a Cn-orbit of size n since rot` fixes a point when ` ≡ 0 mod n. Otherwise, the image of rot` is a

point distinct from p. When n is odd, dividing the d(d − 1)/2 total points of S the size of a Cn

orbit gives q(d− 1)/2 orbits in S. When n is even, the d(d− 2) total points in VC(f, g, t− 1) gives

q(d− 2)/2 orbits in S. Each point in VC(f, g, t) generates a Cn-orbit of size n/2 since the action of

rotn/2 fixes a point. Thus the d total points of VC(f, g, t) contribute (d/2)/(n/2) = q orbits to S

which means S has a total of qd/2 Cn-orbits.

Denote the space of forms in C[t, u, v]d−1 vanishing on points ξ(S) and ξ
(
S̃
)

from (3.2) by

I (S)d−1 and I(S̃)d−1 (3.3)

respectively. Now we can show there are enough elements in each eigenspace to choose a linearly

independent set of forms in C[t, u, v]d−1 for the first row in our desired adjugate matrix.

Lemma 3.1.7. Let d = qn for some q ∈ Z+. There exist at least q polynomials which vanish on

the points of S in each eigenspace. That is, dim
(

Λ
(
ω`
)
d−1
∩ I(S)d−1

)
≥ q.

Proof. For any `,

dim
(

Λ
(
ω`
)
d−1
∩ I(S)d−1

)
= dim

(
Λ
(
ω`
)
d−1
∩ I
(
S̃
)
d−1

)
≥ dim

(
Λ
(
ω`
)
d−1

)
−
∣∣∣S̃∣∣∣ .
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In the cases when n is odd or n is even with ` odd, this count is straightforward due to Lemmas

3.1.4 and 3.1.6. By Lemma 3.1.5, when n and ` are even, every monomial in Λ
(
ω`
)
d−1

has a factor

of t. Thus every element of Λ
(
ω`
)
d−1

will already vanish at points with t = 0 without adding

additional constraints from those in VC(f, g, t). In this case we do not take into account the q orbits

at infinity and using Lemmas 3.1.4 and 3.1.6 we have

dim
(

Λ
(
ω`
)
d−1
∩ I(S)d−1

)
≥ dim

(
Λ
(
ω`
)
d−1

)
−
∣∣∣S̃∣∣∣+ q ≥ q.

The construction below is similar to Construction 2.3.8 for the d = n case. For normalization

of the coefficient matrix of t, however, we must be more careful. Now the variable t appears in

off-diagonal entries of the determinantal representation, so we must first block diagonalize the

coefficient matrix of t, then normalize with respect to each block separately in order to preserve

CWSn matrix structure.

Construction 3.1.8. Let d = qn for some q ∈ Z+ and Γ = Cn.

Input: Two plane curves f and g satisfying (A1)–(A4).

Output: CWSn matrix A ∈ Cd×d such that f = fA.

1. Set g11 = g.

2. Split up the distinct d(d − 1) points of VC(f, g11) into two disjoint, conjugate sets S ∪ S of

Cn-orbits such that rot(S) = S.

3. Extend g11 to a linearly independent set {g11, g12, . . . , g1d} ⊂ C[t, x, y]d−1 vanishing on all

points of S with ξ(g1j) ∈ Λ
(
ω1−j)

d−1
for all j ∈ [n] and set gj1 = g1j for each j.

4. For 1 < i ≤ j, choose ξ(gij) ∈ Λ
(
ωi−j

)
d−1

so that g11gij − g1ig1j ∈ 〈f〉 and gii ∈ R[t, x, y].

5. For i < j, set gji = gij and define G = (gij)i,j ∈ Cd×d.

6. Define M = (1/fd−2) · adj(G).

7. For ` ∈ [d], write `− 1 = an+ b for some integers a and b with 0 ≤ b ≤ n− 1. Let P be the

permutation matrix that takes ` = an+ b+ 1 to bq+ a+ 1. Define M ′ = PMP T as a matrix

with q × q blocks M ′ = (M ′kl)
n
k,l=1

ξ
((
M ′kl

)
ij

)
∈ Λ

(
ωk−l

)
1

for k, l ∈ [n] and i, j ∈ [q].

8. For each k compute the Cholesky decomposition of each diagonal block M ′kk and write

(M ′)−1
kk = UkU

∗
k for some Uk ∈ Cq×q.
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9. Define U = diag(U1, U2, . . . , Uk) and output A =
(
P TU∗M ′UP

)
(0, 1, i).

Proof of Theorem 3.0.1(a) with Assumptions (A1)–(A4). Our goal is to show each step of Con-

struction 3.1.8 can be completed and produces a CWSn matrix A ∈ Cd×d of order n such that

f = fA as in (2.11). Let g11 = g. By Corollary 3.1.3, write VC(f, g11) = S ∪ S where rot(S) = S.

All of these points are distinct by assumption. For Step 3, Lemma 3.1.4 allows us to choose linearly

independent g1j so ξ(g1j) ∈ Λ
(
ω1−j)

d−1
each vanish on S for all j ∈ [n]. Now let gj1 = g1j . By

Lemma 2.3.7, we can choose gij such that ξ(gij ∈ Λ
(
ωi−j

)
d−1

for 1 < i < j and g11gij − g1ig1j = af

for some homogeneous ξ(a) ∈ C[t, x, y] to complete Step 4. Since f , g11, g1ig1i ∈ R[t, x, y], we can

choose gii ∈ R[t, x, y] as well. Let gji = gij for i < j and define G = (gij)i,j be the d × d complex

matrix of forms of degree d−1. Since each 2×2 minor of G lies in the ideal 〈f〉, each entry of adj(G)

will be divisible by fd−2 by Theorem 4.6 of [32] and Step 6 is valid. Let M = (1/fd−2) · adj(G).

The entries in G have degree d− 1, so entries of its adjugate have degree (d− 1)2. Then fd−2 has

degree d(d− 2), so entries of ξ(M) are linear in t, u, and v. Let Ω = diag(1, ω, . . . , ωd−1). Applying

the map ϕ to the ij-th entry of M , we have

(ϕ ◦ ξ)(M)ij = (1/fd−2)(ϕ ◦ ξ)(adj(G))ij

= (1/fd−2)adj((ϕ ◦ ξ)(G))ij

= (1/fd−2)adj(ΩGΩ∗)ij

= (1/fd−2)(adj(Ω∗)adj(G)adj(Ω))ij

= (ΩMΩ∗)ij

= ωj−1ωi−1Mij

= ωi−jMij .

Therefore, ξ(Mij) ∈ Λ
(
ωi−j

)
1

for each i, j. The restriction ϕ |1 has eigenvalues 1, ω, and ωn−1

with associated eigenspaces Λ
(
ω0
)

1
, Λ
(
ω1
)

1
, and Λ

(
ωn−1

)
1
. This implies Mij = 0 if |i− j| 6= 0, 1.

For Mij such that i − j ≡ n − 1 mod n we have ξ(Mij) ∈ Λ
(
ωn−1

)
1

so these are multiples of v.

Since M is Hermitian, this implies ξ(Mji) ∈ Λ
(
ω1
)

1
and these entries are multiples of u. If i−j ≡ 0

mod n then i = j and ξ(Mij) ∈ Λ
(
ω0
)
∩ R[t, u, v] are multiples of t.

Next we will show by permuting rows and columns of M we may get the identity matrix as the

coefficient of t in our representation. Consider M as a matrix of n×n blocks. Each block is a cyclic

weighted shift matrix and there are q2 blocks in total. For ` ∈ [d], write ` − 1 = an + b for some

integers a and b with 0 ≤ b ≤ n− 1. Let P be the permutation matrix that takes ` = an+ b+ 1 to

bq + a+ 1. Define M ′ = PMP T as a matrix with q × q blocks M ′ = (M ′kl)
n
k,l=1 with

ξ
((
M ′kl

)
ij

)
∈ Λ

(
ωk−l

)
1

for k, l ∈ [n] and i, j ∈ [q]
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and M ′(1, 0, 0) is a block diagonal matrix.

By Theorem 3.3 of [32], we knowM(1, 0, 0) is definite, thusM ′(1, 0, 0) is definite. For each k ∈ [n]

we can find the decompose M ′kk(1, 0, 0) so M ′kk(1, 0, 0)−1 = U∗kUk for some Uk ∈ Cq×q. Define

U = diag(U1, U2, . . . , Un). Then M ′′ = UM ′U∗ is a desired representation of f since M ′′(1, 0, 0) = Id

and f = (1/λ) · det (UMU∗) for λ = det(U) · det(U∗). Lastly, apply the inverse permutation so

f = (1/λ) · det(P TM ′′P ) and evaluating (P TM ′′P )(0, 1, i) gives a cyclic weighted shift matrix of

order n.

Example 3.1.9 (d = 6, n = 3). We will work entirely in C[t, u, v] to compute a determinantal

representation of

68096 · f
(
t,
u+ v

2
,
u− v

2i

)
= 68096t6 − 908944t4uv + 385056t3

(
u3 + v3

)
− 189476it3

(
u3 − v3

)
+ 1227176t2(uv)2 − 234844t(uv)

(
u3 + v3

)
+ 241874it(uv)

(
u3 − v3

)
− 338630(uv)3 − 39386

(
u6 + v6

)
+ 83423i

(
u6 − v6

)
and then identify an associated 6× 6 complex CWS3 matrix. Choose the interlacer

g11 = 51072t5 − 454912t3uv + 111920t2(u3 + v3)− 63176it2(u3 − v3)

+ 264552t(uv)2 − 37276(uv)(u3 + v3)− 16758i(uv)(u3 − v3)

which is invariant under C3 and compute the points of VC(f, g11). Write VC(f, g11) = S ∪ S where

ξ
(
S̃
)

=

{[
1 :

200583326

64044257
− 285258889i

233392773
:

244352459

74607586
+

62709791i

56915525

]
,[

1 :
142597425

158926708
− 52077399i

48778709
:

48386204

51396105
+

42948826i

30888221

]
,[

1 :
90839198

98990109
+

59647715i

136443017
:

3720198458

4953135125
− 32658473i

71082138

]
,[

1 :
65813250

128179523
− 50995379i

161970078
:

108140402

101308711
− 36569392i

74258181

]
,[

1 :
25750408

63724525
+

23411858i

489095981
:

93204719

234123334
− 29029408i

605365571

]}

is a set of orbit representatives of S as in (3.2). Choose

g12 = − (14112 + 28896i)t4v + (48784 + 96848i)t3u2 + (61248− 103264i)t2uv2

+ (28612− 72316i)tu3v − (61060− 19540i)tv4 + (3184 + 42688i)u5

− (13520− 61548i)u2v3
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g13 = (37088 + 52896i)t4u− (71632 + 116880i)t3v2 + (32432− 209040i)t2u2v

+ (19992 + 68584i)tu4 − (16248− 98624i)tuv3 + (968 + 73456i)u3v2

− (55928− 29156i)v5

g14 = (−8512− 8512i)t5 + (156528 + 23312i)t3uv − (140520− 116208i)t2u3

− (83144 + 38032i)t2v3 − (35688− 42800i)tu2v2 + (68482− 35708i)u4v

+ (45962 + 24276i)uv4

g15 = (26208− 35168i)t4v + (−2832 + 87216i)t3u2 − (117504− 71216i)t2uv2

− (11280 + 93436i)tu3v + (43784− 1348i)tv4 − (12836 + 56992i)u5

+ (65468− 43444i)u2v3

g16 = (27360− 9120i)t4u+ (18128− 2032i)t3v2 − (236800− 130976i)t2u2v

− (31252 + 125404i)tu4 + (7848 + 32168i)tuv3 + (76113− 49517i)u3v2

+ (40539− 8823i)v5

which each lie in Λ
(
ω1−j)

5
and vanishes on ξ(S) for all j > 1. Now set gj1 = g1j . Write g1igj1 =

af + bg11 for a, b ∈ C[t, u, v] where b ∈ Λ
(
ωi−j

)
5

and gii ∈ R[t, (u + v)/2, (u − v)/2i]. Set gij = b

and gji = b. Explicitly, the entries can be chosen as

g22 = 35840t5 − 278384t3uv + 94672t2(u3 + v3)− 62656it2(u3 − v3)

+ 167032t(uv)2 − 49556uv(u3 + v3)− 23808iuv(u3 − v3)

g23 = (78848− 23040i)t4v + (−50544 + 31712i)t3u2 − (250384− 62928i)t2uv2

− (824 + 34576i)tu3v + (57608 + 67624i)tv4 + (14996− 44928i)u5

+ (109780 + 23160i)u2v3

g24 = (23296 + 29792i)t4u− (15056 + 24544i)t3v2 − (99216 + 125888i)t2u2v

+ (73044 + 2868i)tu4 − (17124− 2732i)tuv3 + (76164 + 39092i)u3v2

− (13856− 41892i)v5

g25 = 7168it5 + (111472 + 5984i)t3uv − (88280− 17832i)t2u3

− (76712 + 71096i)t2v3 − (88432 + 29552i)tu2v2 + (39316− 35208i)u4v

+ (25500 + 48200i)uv4

g26 = − (14336− 4096i)t4v + (−23136 + 28368i)t3u2 + (182712− 58280i)t2uv2

+ (44280 + 7948i)tu3v − (67028 + 51904i)tv4 − (29408− 42944i)u5

− (83634− 9138i)u2v3

g33 = 58368t5 − 414576t3uv + 92256t2(u3 + v3)− 95264it2(u3 − v3)
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+ 245096t(uv)2 − 3780uv(u3 + v3) + 43040iuv(u3 − v3)

g34 = (31248 + 105568i)t3u2 + (50300− 23020i)u5 − (3648 + 10336i)t4v

+ (45256− 115856i)tu3v − (5152 + 142768i)t2uv2 − (17024− 28468i)u2v3

− (19056− 51992i)tv4

g35 = (24576 + 52736i)t4u− (18160 + 69024i)t3v2 + (51856− 128096i)t2u2v

− (81384− 25488i)tu4 − (8512− 88616i)tuv3 − (72300− 81600i)u3v2

− (11028 + 16104i)v5

g36 = − 19456t5 + (254432− 12304i)t3uv − (200232− 129432i)t2u3

− (93696 + 71248i)t2v3 − (104452− 51268i)tu2v2 + (74470− 45390i)u4v

+ (29924 + 46932i)uv4

g44 = 25536t5 − 264752t3uv + 96640t2(u3 + v3) + 66840it2(u3 − v3)

+ 166512t(uv)2 − 16672uv(u3 + v3)− 38526iuv(u3 − v3)

g45 = (17024− 4704i)t4v + (−29168 + 19424i)t3u2 + (49216 + 18496i)t2uv2

− (5916 + 62672i)tu3v − (72956 + 7328i)tv4 + (1592 + 21344i)u5

− (75124 + 38408i)u2v3

g46 = (−3040 + 20672i)t4u− (1232− 11296i)t3v2 + (58304− 194960i)t2u2v

+ (10052 + 84364i)tu4 − (58336 + 21616i)tuv3 − (11613− 66879i)u3v2

− (56993 + 1749i)v5

g55 = 28672t5 − 241168t3uv + 67632t2(u3 + v3)− 23352it2(u3 − v3)

+ 217656t(uv)2 + 7940uv(u3 + v3) + 36200iuv(u3 − v3)

g56 = (11520 + 3840i)t4v + (10720 + 24144i)t3u2 − (133280 + 58208i)t2uv2

+ (11446− 27918i)tu3v + (61054 + 15442i)tv4 + (14150− 49450i)u5

+ (80744 + 30052i)u2v3

g66 = 29184t5 − 353440t3uv + 180200t2(u3 + v3)− 82420it2(u3 − v3)

+ 161460t(uv)2 − 64462uv(u3 + v3) + 25141iuv(u3 − v3).

Let G be the matrix with gij entries, take the adjugate of G to get a matrix with entries in

C[t, u, v]25, and divide each entry by f4. The definite determinantal representation we obtain is
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f = det(M) where

M = 224



6t (−2 + 4i)v (−6− 7i)u (2 + 2i)t (−6 + 7i)v (−8− 4i)u

(−2− 4i)u 8t (−10 + 5i)v (−7− 10i)u −2it (−3 + 3i)v

(−6 + 7i)v (−10− 5i)u 6t (−3 + 6i)v (−8− 8i)u 4t

(2− 2i)t (−7 + 10i)v (−3− 6i)u 12t (−4 + 8i)v (−2− 10i)u

(−6− 7i)u 2it (−8 + 8i)v (−4− 8i)u 10t (−9 + 5i)v

(−8 + 4i)v (−3− 3i)u 4t (−2 + 10i)v (−9− 5i)u 12t


.

Block diagonalize the coefficient matrix M(1, 0, 0) of t so M ′ = PMP T with

P =



0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 1 0 0


and M ′(1, 0, 0) = 224



8 −2i 0 0 0 0

2i 10 0 0 0 0

0 0 6 4 0 0

0 0 4 12 0 0

0 0 0 0 6 2 + 2i

0 0 0 0 2− 2i 12


.

Decompose each block so we can write M ′(1, 0, 0) = (U)−1(U∗)−1 where

U−1 =
1√
6



4
√

3 0 0 0 0 0

i
√

3
√

57 0 0 0 0

0 0 6 0 0 0

0 0 4 2
√

14 0 0

0 0 0 0 6 0

0 0 0 0 2− 2i 8


.

Finally, let M ′′ = UM ′U∗ and P TM ′′P = tI + (u/2)A∗ + (v/2)A is the desired determinantal

representation with 6× 6 complex CWSn matrix

A =



0 −1− 2i

2
√

3
0 0 −14− 13i

2
√

57
0

0 0 −10− 5i

4
√

3
0 0

11− i
4
√

42
−6 + 7i

6
0 0

4 + 17i

24
0 0

0 −23− 24i

16
√

3
0 0 −304− 21i

16
√

57
0

0 0
(−9 + 14i)

√
3

2
√

19
0 0 −(15 + 5i)

√
3

4
√

266

− 6 + i

3
√

14
0 0

5 + 34i

12
√

14
0 0


.
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3.2 Dihedral Invariance

Instead of finding an explicit unitary transformation to output a real CWSn matrix, we modify

Construction 3.1.8 to include the invariance under reflection. We divide the points of VC(f, g) based

on orbits under rotation, then split according to reflection. Specifically, we require not only that

VC(f, g) = S ∪ S where rot(S) = S, but also ref
(
S
)

= S meaning that if p ∈ S, then ref(p) ∈ S.

Corollary 3.2.1. Every Cn-orbit in VC(f, g) is disjoint from its image under reflection when f

and g satisfy (A1)–(A4).

Proof. Let O be a Cn-orbit in VC(f, g). Suppose [t : x+ iy : x− iy] ∈ ξ(O)∩ (ξ ◦ ref)(O) with t = 0

or 1. Then

[t : x+ iy : x− iy] =
[
t : ω`(x− iy) : ω−`(x+ iy)

]
(3.4)

for some fixed ` ∈ [n]. If t = 1, (3.4) implies x+ iy = ω`(x− iy) and [1 : x : y] ∈ VR(f) by Lemma

3.1.2 which gives a contradiction. If t = 0, then (3.4) implies

[0 : x+ iy : x− iy] =
[
0 : ω`(x− iy) : ω−`(x+ iy)

]
for some fixed ` ∈ [n]. This implies x+ iy = γ · ω`(x− iy) and x− iy = γω`(x+ iy) for some fixed

γ ∈ C. Then

x+ iy = γ · ω`(x− iy) = γ · ω`(γ · ω−`(x+ iy)) = γ2(x+ iy)

implies |γ| = 1 = |γ · ω`|. Lemma 3.1.2 again gives a contradiction. Since ξ(O) ∩ (ξ ◦ conj)(O) is

empty, so is O ∩ conj(O).

Remark 3.2.2. Corollaries 3.1.3 and 3.2.1 imply that a Cn-orbit O ∈ VC(f, g) is disjoint from

both conj(O) and ref(O). However, this tells us nothing about the intersection of orbits conj(O)

and ref(O). The intersection in this case may be nonempty, hence Dn-orbits in VC(f, g) do not

always have the same cardinality.

If a matrix has entries in R[t, u, v], then its adjugate will also have entries in R[t, u, v]. To

produce a real CWSn matrix, we also need the adjugate matrix we construct to have entries in

R[t, u, v].

Remark 3.2.3. The invariant ring C[t, u, v]
〈ref ◦ conj〉
d = R[t, u, v]d. Indeed,∑

l+j+k=d

cljkt
l(x+ iy)j(x− iy)k = h(t, x+ iy, x− iy)

= (ref ◦ conj) · h(t, x+ iy, x− iy)

=
(
ref ·h

)
(t, x+ iy, x− iy)
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= ref ·
∑

l+j+k=d

cljkt
l(x− iy)j(x+ iy)k

=
∑

l+j+k=d

cljkt
l(x+ iy)j(x− iy)k.

Lemma 3.2.4. If S ⊂ P2(C) such that (ref ◦ conj)(S) = S, then Λ
(
ω`
)
d−1
∩ I(S)d−1 has a basis

in R[t, u, v]d−1.

Proof. We will argue that each linear subspace is invariant under ref ◦ conj separately, hence so is

their intersection. The subspace Λ
(
ω`
)
d−1

is invariant under ref ◦ conj since the action conjugates

coefficients of elements in C[t, u, v], but preserves their support. The subspace I(S)d−1 is invariant

under ref ◦ conj because

I(S)d−1 = I((ref ◦ conj)(S))d−1 = (ref ◦ conj)(I(S)d−1).

Each linear subspace is contained in C[t, u, v]
〈ref ◦ conj〉
d−1 , thus the intersection Λ

(
ω`
)
d−1
∩ I(S)d−1

has a basis in R[t, u, v]d−1.

Construction 3.2.5. Let d = qn for some q ∈ Z+ and Γ = D2n.

Input: Two plane curves f and g satisfying (A1)–(A4).

Output: CWSn matrix A ∈ Rd×d such that f = fA.

1. Set g11 = g.

2. Split up the distinct d(d − 1) points of VC(f, g11) into two disjoint, conjugate sets S ∪ S of

Cn-orbits such that rot(S) = S and (ref ◦ conj)(S) = S.

3. Extend g11 to a linearly independent set {g11, g12, . . . , g1d} ⊂ C[t, x, y]d−1 vanishing on all

points of S with ξ(g1j) ∈ Λ
(
ω1−j)

d−1
∩ R[t, u, v]d−1 and set gj1 = g1j for all j ∈ [d].

4. For 1 < i ≤ j, choose ξ(gij) ∈ Λ
(
ωi−j

)
d−1
∩ R[t, u, v]d−1 so that g11gij − g1ig1j ∈ 〈f〉 and

gii ∈ R[t, x, y].

5. For i < j, set gji = gij and define G = (gij)i,j ∈ Cd×d.

6. Define M = (1/fd−2) · adj(G).

7. For ` ∈ [d], write `− 1 = an+ b for some integers a and b with 0 ≤ b ≤ n− 1. Let P be the

permutation matrix that takes ` = an+ b+ 1 to bq+ a+ 1. Define M ′ = PMP T as a matrix

with q × q blocks M ′ = (M ′kl)
n
k,l=1

ξ
((
M ′kl

)
ij

)
∈ Λ

(
ωk−l

)
1

for k, l ∈ [n] and i, j ∈ [q].
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8. For each k compute the Cholesky decomposition of each diagonal block M ′kk and write

(M ′)−1
kk = UkU

T
k for some Uk ∈ Rq×q.

9. Define U = diag(U1, U2, . . . , Uk) and output A =
(
P TUTM ′UP

)
(0, 1, i).

Proof of Theorem 3.1.1(b). Let g11 = g. Here we follow Construction 3.1.8, but split the intersec-

tion points VC(f, g) into S ∪ S so that rot(S) = S and (ref ◦ conj)(S) = S. This is valid due to

Corollaries 3.1.3 and 3.2.1. All of these points are distinct by assumption. By Lemma 3.2.4, we can

choose linearly independent g1j so ξ(g1j) ∈ Λ
(
ω1−j)

d−1
∩I(S)d−1∩R[t, u, v]. Now let gj1 = g1j . The

polynomials f , ξ(g11), ξ(g1ig1j) ∈ R[t, u, v], so by Lemma 2.3.7, we are also able to find gij such that

ξ(gij) ∈ Λ
(
ωi−j

)
d−1
∩R[t, u, v]d for 1 < i < j. Moreover, gii ∈ R[t, x, y] since f, g11, g1ig1i ∈ R[t, x, y].

Let gji = gij for i < j and define G = (gij)i,j . Notice that ξ(G) ∈ R[t, u, v]d×d1 . Complete

the construction as before. The matrix M = (1/fd−2) · adj(G) satisfies ξ(M) ∈ R[t, u, v]d×d1 so

M(1, 0, 0) ∈ Rd×d.
Next we will show by permuting rows and columns of M we may get the identity matrix as the

coefficient of t in our representation. Consider M as a matrix of n×n blocks. Each block is a cyclic

weighted shift matrix and there are q2 blocks in total. For ` ∈ [d], write ` − 1 = an + b for some

integers a and b with 0 ≤ b ≤ n− 1. Let P be the permutation matrix that takes ` = an+ b+ 1 to

bq + a+ 1. Define M ′ = PMP T as a matrix with q × q blocks M ′ = (M ′kl)
n
k,l=1 with

ξ
((
M ′kl

)
ij

)
∈ Λ

(
ωk−l

)
1

for k, l ∈ [n] and i, j ∈ [q]

and M ′(1, 0, 0) is a real block diagonal matrix. By Theorem 3.3 of [32], we know M(1, 0, 0) is definite,

thus M ′(1, 0, 0) is definite. For each k ∈ [n] write M ′kk(1, 0, 0)−1 = UTk Uk for some Uk ∈ Rd×d. Define

U = diag(U1, U2, . . . , Un). Then M ′′ = UM ′UT is a representation of f since M ′′(1, 0, 0) = Id

and f = (1/λ) · det (M ′′) for λ = det(U) · det(UT ). Lastly, apply the inverse permutation so

f = (1/λ) ·det(P TM ′′P ). Evaluating (P TM ′′P )(0, 1, i) gives a cyclic weighted shift matrix of order

n and it is real because ξ(P TM ′′P ) ∈ R[t, u, v]d×d.

Example 3.2.6 (d = 6, n = 3). We will work entirely in C[t, u, v] to compute a determinantal

representation of

f

(
t,
u+ v

2
,
u− v

2i

)
= (1/2)

(
16456t6 − 119539t4uv + 16168t3(u3 + v3) + 105456t2(uv)2

+ 1398tuv(u3 + v3) + 162(u3 + v3)2 − 7200u3v3
)

and then identify an associated 6× 6 complex CWS3 matrix. Choose the interlacer

g11 = (1/2)
(
2904t5 − 13597t3uv + 1914t2(u3 + v3) + 9252t(uv)2 − 324uv(u3 + v3)

)
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which is invariant under C3 and compute the points of VC(f, g11). Write VC(f, g11) = S ∪ S where

ξ
(
S̃
)

=

{[
1 : −161588550

14584739
: −213306845

52721374

]
,

[
1 :

149867951

33531022
:

61111733

77661621

]
,[

1 : −164124776

127166883
: −110044775

85329829

]
,

[
1 :

51828617

65864511
:

215475740

48209919

]
,[

1 : −103050589

25470203
: −322108292

29073009
− 3373i

18607772971631

]}

is a set of orbit representatives of S as in (3.2). Choose

g12 = 1452t5 − 13597

2
uvt3 + 957t2(u3 + v3) + 4626t(uv)2 − 162uv(u3 + v3)

g12 = 2024t4v − 270t3u2 − 5553

2
t2uv2 − 375

2
tu3v − 837

2
tv4 − 9u5 + 351u2v3

g13 = 81v5 + 294tuv3 − 844t3v2 − 1899u3v2 +
4917

2
t2u2v − 165tu4 + 132t4u

g14 = − 968t5 − 799uvt3 − 176u3t2 +
2229

2
t2v3 + 1581t(uv)2 − 81uv4 + 99u4v

g15 = 36u5 +
1725

2
tvu3 + 387t3u2 + 216v3u2 + 843t2v2u− 594t4v − 783tv4

2

g16 = 81v5 − 2838tuv3 + 2661t3v2 + 261u3v2 − 3791

2
t2u2v − 33tu4 − 528t4u

which each lie in Λ
(
ω1−j)

5
∩ R[t, u, v] and vanishes on ξ(S) for all j > 1. Now set gj1 = g1j . Write

g1igj1 = af + bg11 for a, b ∈ C[t, u, v] where b ∈ Λ
(
ωi−j

)
5

and gii ∈ R[t, (u + v)/2, (u − v)/2i]. Set

gij = b and gji = b. Explicitly, the entries can be chosen as

g22 = 1122t5 − 7199

4
uvt3 − 277u3t2 − 277v3t2 +

453

2
u2v2t+

3uv4

2
+

3u4v

2

g23 =
189u5

2
− 2103

2
tvu3 + 1680t3u2 +

9v3u2

2
+

447

2
t2v2u+ 54tv4 − 476t4v

g24 =
9v5

2
− 39

2
tuv3 + 1183t3v2 − 411u3v2

2
+

7983

2
t2u2v + 36tu4 − 4092t4u

g25 = − 374t5 +
3095

4
uvt3 +

2945u3t2

2
− 257v3t2 + 138u2v2t+ 3uv4 − 87u4v

g26 = − 27u5

2
+

795

2
tvu3 − 2606t3u2 +

33v3u2

2
− 3771

2
t2v2u+ 51tv4 + 1530t4v

g33 = 2244t5 − 30451

2
uvt3 + 1584u3t2 + 1584v3t2 +

23301

2
u2v2t+ 405uv4 + 405u4v

g34 = − 1584vt4 + 1560u2t3 + 3235uv2t2 − 675u3vt− 429v4t

2
− 900u2v3
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g35 =
135v5

2
− 1815tuv3 − 54t3v2 − 765u3v2

2
− 2349

2
t2u2v − 297tu4 + 408t4u

g36 = − 748t5 +
6821

2
uvt3 + 252u3t2 + 935v3t2 − 1419

2
u2v2t+ 999uv4 − 81u4v

g44 = 3388t5 − 13679

2
uvt3 − 164u3t2 − 164v3t2 +

2141

2
u2v2t+ 45uv4 + 45u4v

g45 =
45u5

2
+ 594tvu3 − 3117t3u2

2
− 255v3u2

2
+

7029

2
t2v2u+ 72tv4 + 396t4v

g46 = − 54v5 − 631tuv3 − 4392t3v2 + 126u3v2 − 1694t2u2v + 2222t4u− 21tu4

2

g55 = 1496t5 − 36029

4
uvt3 +

2623u3t2

2
+

2623v3t2

2
+ 1248u2v2t− 105uv4

2
− 105u4v

2

g56 =
27u5

2
+ 618tvu3 + 216t3u2 − 1833v3u2

2
+

21531

2
t2v2u− 204tv4 − 2193t4v

g66 = 2992t5 − 32231

2
t3uv + 187t2u3 + 187t2v3 +

5669

2
tu2v2 − 135u4v − 135uv.

Let G be the matrix with gij entries, take the adjugate of G to get a matrix with entries in

C[t, u, v]25, and divide each entry by f4. The definite determinantal representation we obtain is

f = det(M) where

M =
1

2



14t −10v 2u 4t 2v 0

−10u 16t v 16u 4t −5v

2v u 8t 3v u 2t

4t 16v 3u 6t 4v −3u

2u 4t v 4u 12t 7v

0 −5u 2t −3v 7u 6t


.

Block diagonalize the coefficient matrix M(1, 0, 0) of t so M ′ = PMP T with

P =



0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 1 0 0


and M ′(1, 0, 0) =



8 2 0 0 0 0

2 6 0 0 0 0

0 0 4 1 0 0

0 0 1 3 0 0

0 0 0 0 7 2

0 0 0 0 2 3


.
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Decompose each block so we can write M ′(1, 0, 0) = (U)−1(U∗)−1 where

U−1 =
1

2
√

7



4
√

14 0 0 0 0 0√
14
√

154 0 0 0 0

0 0 4
√

7 0 0 0

0 0
√

7
√

77 0 0

0 0 0 0 14 0

0 0 0 0 4 2
√

17


.

Finally, let M ′′ = UM ′U∗ and P TM ′′P = tI + (u/2)A∗ + (v/2)A is the desired determinantal

representation with 6× 6 real CWSn matrix

A =



0 − 5

2
√

14
0 0

9

2
√

154
0

0 0
1

8
√

2
0 0 − 21

8
√

22
1

2
√

7
0 0

√
17

4
√

7
0 0

0
33√
238

0 0 − 9√
2618

0

0 0
3

8
√

22
0 0

129

88
√

2

− 1

2
√

77
0 0 − 101

4
√

1309
0 0



.

3.3 The Degenerate Case

Here we deal with assumptions (A1)–(A4) posed in Section 3.1. We discuss the topology of curves

in HΓ
d and interlacers and then prove an analogue of Nuij’s result concerning the closure of (H◦)Γ

d .

Proposition 3.3.1. For d = qn and Γ = Cn or D2n, a generic invariant form f ∈ C[t, x, y]Γd
defines a smooth plane curve VC(f) ⊂ P2(C).

Proof. Let {f0, . . . , fD} be a basis for the C-vector space C[t, x, y]Γd , and consider the set

X =

{
(a, p) ∈ PD(C)× P2(C) :

D∑
i=1

ai∇fi(p) = (0, 0, 0)

}

This is a subvariety of PD(C)×P2(C). By the Projective Elimination Theorem [26, Theorem 10.6],

its image under the projection π1(a, p) = a is a subvariety of PD(C). Therefore the image is either

all of PD(C), meaning that every polynomial in C[t, x, y]Γd defines a singular curve, or it belongs to
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a proper subvariety, meaning that a generic polynomial in C[t, x, y]Γd defines a smooth curve. To

finish the proof, we note that the polynomial td + (x + iy)d + (x − iy)d belongs to C[t, x, y]Γd and

defines a smooth plane curve.

Proposition 3.3.2. For d = qn and Γ = Cn or D2n and any e ∈ Z+, the plane curves defined by

generic invariant forms f, g ∈ C[t, x, y]Γ with deg(f) = d and deg(g) = e intersect transversely.

Proof. First, we argue that it suffices to produce one example of a pair of forms f, g ∈ C[t, x, y]Γ

with deg(f) = d, deg(g) = e whose plane curves intersect transversely. This is because the in-

tersecting transversely is a Zariski-open condition on f, g. More precisely, consider the subvariety

Y ⊂ P(C[t, x, y]Γd )× P(C[t, x, y]Γe )× P2(C) defined by

Y =

{
(f, g, p) : f(p) = 0, g(p) = 0, rank

(
∇f(p)

∇g(p)

)
≤ 1

}
.

By the Projective Elimination Theorem [26, Theorem 10.6], the image of Y under the projection

π(f, g, p) = (f, g) is a Zariski-closed set. By construction, it is the set of pairs (f, g) for which the

intersection VC(f)∩VC(g) is non-transverse. We need to show that this does not occur for all pairs.

First we consider the special case d = n and e = 1, 2. Note that since f is invariant under the

action of Cn, it has the form

f(t, x, y) = a(x+ iy)n + b(x− iy)n +

bn/2c∑
i=0

cit
n−i(x2 + y2)i

where a, b, c0, . . . , cbn/2c ∈ C and a = b if Γ = D2n. Note that when a, b are non-zero, the intersection

of VC(f) with VC(t) is transverse for non-zero a, b. Also if a, b are nonzero, then VC(f) and VC(x2+y2)

have no common points with t = 0. Then by Bertini’s theorem, for generic λ, µ ∈ C, the intersection

of VC(f) and VC(λ(x2 + y2) + µt2) is transverse [2].

Now we construct the desired pair f, g ∈ C[t, x, y]Γ with deg(f) = d and deg(g) = e. Let f be

the product of q generic forms in C[t, x, y]Γn of degree n, and let g be the product of b e2c generic

quadratic forms C[t, x, y]Γ2 and tδ where δ = 2( e2 − b
e
2c). Then by the argument above, VC(f) and

VC(g) intersect transversely.

Proposition 3.3.3. Let d = qn. For Γ = Cn or D2n and generic invariant forms f, g in C[t, x, y]Γ

with deg(f) = d and deg(g) = d− 1, the number of intersection points on the line t = 0 is given by

|VC(f, g, t)| =

0 if n is odd,

d if n is even.
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Proof. We first prove something slightly different. Let e ∈ Z+ be an integer satisfying e ∈ 2N+ nN
where q · e is even. Then generic invariant forms f, g ∈ C[t, x, y]Γ with deg(f) = d and deg(g) = e

satisfy VC(f, g, t) = ∅.
By the Projective Elimination Theorem [26, Theorem 10.6], the condition that VC(f, g, t) is

non-empty is closed on (f, g) ∈ C[t, x, y]Γd × C[t, x, y]Γe . Therefore it suffices to show that it is not

the whole space.

Let (a, b) ∈ N2 so that 2a + nb = e. Note that if e is even, then we may take b to be even. To

see this, note that e = 2a+ bn, implying that at least one of b and n is even. If n = 2k is even and

b is odd, then b ≥ 1 and we may replace the pair (a, b) with (a+ k, b− 1).

For an integer m ∈ Z+, let χ(m) be 0 if m is even and 1 if m is odd. Then consider polynomials

f = (un+vn)χ(q)

bq/2c∏
j=1

(un+ rjv
n)(rju

n+vn) and g = (uv)a(un+vn)χ(b)

bb/2c∏
k=1

(un+skv
n)(sku

n+vn).

where r1, . . . , rbq/2c, s1, . . . , sbb/2c ∈ C\{0, 1} are all distinct and u = x+iy, v = x−iy. We claim that

both f, g are invariant under the dihedral group and have no common roots with t = 0, so long as

χ(q)·χ(b) = 0. For invariance, note that both f , g are invariant under the map (t, u, v) 7→ (t, ωu, ωv),

when ω is an n-th root of unity, as well as the map (t, u, v) 7→ (t, v, u).

The zeros of f with t = 0 consist of the points [t : u : v] = [0 : 1 : λω] where ω is an nth root

of unity and λ = 1, rk, 1/rk for k = 1, . . . , bq/2c. Moreover there is only such a root with λ = 1 if

q is odd. Similarly, the zeros of g with t = 0 consist of the points [t : u : v] = [0 : 1 : 0], [0 : 0 : 1] if

a ≥ 1 and [t : u : v] = [0 : 1 : λω] where λ = 1, sk, 1/sk for k = 1, . . . , bb/2c, where λ = 1 gives a

root only if b is odd. Therefore so long as both q and b are not odd, VC(f, g, t) is empty.

Now suppose that e = d− 1 = qn− 1 and n is odd. Then qn has the same parity as q, which is

different than the parity of e. Furthermore, e = (n− 1) + (q− 1)n. Since n− 1 is even, this belongs

to 2N + nN. The argument from above then shows that VC(f, g, t) = ∅.
If n is even, then so is d, meaning that d − 1 is odd. By Lemma 3.1.5, every polynomial

g ∈ C[t, x, y]Γ of degree d− 1 has a factor of t, meaning that it can be written as g = t · h where

h ∈ C[t, x, y]Γd−2. Taking e = d−2 above shows that VC(f, h, t) = ∅. Therefore VC(f, g, t) = VC(f, t).

Since f has degree d, this consists of d points generically.

Having dealt with the algebraic conditions of non-singularity, we address the semi-algebraic

conditions of hyperbolicity and interlacing. To understand how the sets (H◦)Γ
d and HΓ

d relate, we

introduce the following linear operator on invariant polynomials. For s ∈ R, define the linear map

Ts : R[t, x, y]d → R[t, x, y]d by

Ts(f) = f − s2(x2 + y2)
∂2f

∂t2
.
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Lemma 3.3.4. For any s ∈ R>0, the map preserves invariance under Γ and hyperbolicity. That

is, Ts(HΓ
d ) ⊂ HΓ

d . Moreover for any f ∈ HΓ
d , the polynomial T ds (f), obtained by applying Ts d times

to f , is strictly hyperbolic with respect to (1, 0, 0). That is T ds (HΓ
d ) ⊂ (H◦)Γ

d .

Proof. First, note that if f ∈ R[t, x, y]Γd , then so are x2 + y2 and ∂2f
∂t2

, meaning that Ts preserves

invariance under Γ.

For the other claims, consider the operator on univariate polynomials T : R[t] → R[t] where

T (p) = p − s2p′′. We claim that for any real-rooted polynomial p ∈ R[t], T (p) is also real rooted

and the roots of T d(p) where d = deg(p) are simple. To see this, consider the maps T± : C[t]→ C[t]

where T±(p) = p ± sp′ for some s ∈ R. The roots of T±(p) have multiplicity one less than those

of p, any repeated roots of T±(p) are also repeated roots of p and any added roots of T±(p) are

simple by Lemma of [31]. Let T = T+ ◦ T− so T (p) = p − s2p′′ for some s ∈ R. The roots of T (p)

have multiplicity two less than those of p, and any repeated roots are also repeated roots of p. Any

other roots of T (p) are simple. If d = deg(p), this implies every root of T d(p) is simple.

Since for any (a, b) ∈ R2, the restriction Ts(f)(t, a, b) equals the image of p(t) = f(t, a, b) under

the univariate operator T , the polynomial Ts(f) is hyperbolic with respect to (1, 0, 0) and T ds (f) is

strictly hyperbolic.

Proposition 3.3.5. For Γ = Cn or D2n and any d ∈ Z+, (H◦)Γ
d is a full-dimensional open subset

of R[t, x, y]Γd , and its closure equals HΓ
d .

Proof. Since strict hyperbolicity with respect to [1 : 0 : 0] is an open condition on R[t, x, y]d, it

suffices to show that (H◦)Γ
d is non-empty. An explicit example is tδ ·

∏D
i=1(x2 + y2 − rit2) where

D = bd2c, δ = 2(d2 −D), and r1 < . . . < rD ∈ R+.

The set HΓ
d is closed in R[t, x, y]Γd . To see that it is the closure of (H◦)Γ

d , let f ∈ HΓ
d . By

Lemma 3.3.4, for s > 0, T ds (f) is strictly hyperbolic with respect to (1, 0, 0), meaning that T ds (f)

belongs to (H◦)Γ
d . The limit at s = 0 is exactly f .

Theorem 3.3.6. For d = qn and Γ = Cn or D2n, every polynomial in HΓ
d is a limit of polynomials

f ∈ (H◦)Γ
d for which there exists g ∈ HΓ

d−1 such that

(i) VC(f) is smooth,

(ii) g interlaces f ,

(iii) VC(f) ∩ VC(g) is transverse, and

(iv) |VC(f, g, t)| =

0 if n is odd,

d if n is even.
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Proof. For any strictly hyperbolic f ∈ R[t, x, y]d the set of polynomials g ∈ R[t, x, y]d−1 that inter-

lace f with respect to (1, 0, 0) is a full-dimensional set semialgebraic set. Then by Proposition 3.3.5,

the set

I =
{

(f, g) ∈ (H◦d)Γ ×HΓ
d−1 : g strictly interlaces f with respect to (1, 0, 0)

}
is an open, full dimensional in R[t, x, y]Γd×R[t, x, y]Γd−1 whose image under the projection π(f, g) = f

is all of (H◦d)Γ. By Propositions 3.3.1, 3.3.2, and 3.3.3,

U =
{

(f, g) ∈ R[t, x, y]Γd × R[t, x, y]Γd−1 : conditions (i),(iii), (iv) are satisfied
}

is open and dense in the Euclidean topology on R[t, x, y]Γd × R[t, x, y]Γd−1. It follows that I ∩ U an

open set that is dense in I. Since the projection π(I) equals (H◦d)Γ, this gives that the projection

of I ∩ U is dense in (H◦d)Γ. Then, by Proposition 3.3.5, we see that

π(I ∩ U) = π(I) = (H◦d)Γ = HΓ
d .

Therefore every polynomial in HΓ
d belongs to the closure of the set of polynomials f for which there

exists g ∈ R[t, x, y]Γd−1 with (f, g) ∈ I ∩ U .

Proof of Theorem 3.0.1. Let f ∈ HΓ
d . By Theorem 3.3.6 f is the limit of some fε ∈ (H◦)Γ

d satisfying

(A1)–(A4). By Theorem 3.1.1, there exists some d× d complex (real if Γ = D2n) CWSn matrix Aε

such that fε = fAε . Now fε(t,−1, 0) and fε(t, 0,−i) are the characteristic polynomials of <(Wε) and

=(Wε) and converge to the roots of f(t,−1, 0) or f(t, 0,−i) respectively. Therefore, the eigenvalues

of <(Aε) and =(Aε) are bounded, which bounds the sequences (<(Aε))ε and (=(Aε))ε. Then

(<(Aε))ε + i(=(Aε))ε = (<(Aε) + i=(Aε))ε = (Aε)ε

which is also bounded. By passing to a convergent subsequence, this means lim
ε→0

(Aε)ε = A and

f = det

(
lim
ε→0

(
tId +

x+ iy

2
A∗ε +

x− iy
2

Aε

))
= det

(
tId +

x+ iy

2
A∗ +

x− iy
2

A

)
= fA.
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3.4 Generalizing to Any Degree

One could hope to generalize Construction 3.1.8 for a hyperbolic plane curve of any degree. The

main obstruction here is with assumption (A1), specifically the requirement that VC(f) is smooth.

For curves with d mod n ≥ 3, it seems there are always multiple singularities at infinity meaning

most of these curves do not satisfy (A1). More specifically, there are two complex singularities at

the points [t : x : y] = [0 : 1 : ±i]. We conjecture they each have multiplicity
(
d mod n

2

)
.

Figure 3.1: The support of elements in C[t, u, v]C4
7 , C[t, u, v]C5

8 , and C[t, u, v]C6
9 (left to right).

Example 3.4.1 (d = 7, n = 4). Consider f ∈ C[t, u, v]C4
7 . By homogeneity we can view the support

of f in the plane t = 1 (see Figure 3.1). We see that each monomial of f must be the monomial

t7 or contain two of the variables t, u, and v. This confirms VC(f) contains the complex points

[t : u : v] = [0 : 1 : 0], [0 : 0 : 1] and that these are singular points of VC(f).

Another way to try to construct a determinantal representation is to use Theorem 3.0.1 and

hope to further specialize its structure.

Question 3.4.2. Let d = qn + m for some q > 1 and m ∈ [n − 1] and suppose f ∈ HΓ
d . Does

there exist a determinantal representation of tn−mf such that

(i) tn−mf = fA for some CWSn matrix A ∈ C(q+1)n×(q+1)n,

(ii) A = diag(A′,0) where A′ ∈ Cd×d is a CWSn matrix and 0 ∈ C(n−m)×(n−m), and

(iii) f = fA′?

Example 3.4.3. Take f = (1/8)(8t4− 798t2uv+ 1050t(u3 + v3) + 425it(u3− v3) + 3860(uv)2). We

50



can write t2f = fA with the CWS3 matrix

A =



0 −2 + i 0 0 0 0

0 0 −10 + 5i 0 0 0

−6 + 7i 0 0 −4 + 8i 0 0

0 −2 + 10i 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

Then f has a determinantal representation f = fA′ given by the leading 4 × 4 minor of the

determinantal representation of t2f .

Returning to Question 1.1.7, we certified invariance of hyperbolic plane curves of certain degrees

under the cyclic and dihedral groups with the existence of a structured determinantal representation

in Chapters 2 and 3. A positive answer to Question 3.4.2 would give a positive answer to Question

1.3.9. In general, we conjecture that both are true.
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Chapter 4

Invariance of the Numerical Range

4.1 Results on the Classical Numerical Range

There is a lot of research dedicated to studying the geometry of numerical ranges of cyclic weighted

shift matrices. The authors of [9, 11, 37] were particularly interested in the relationship between the

numerical range and the the curve dual to its boundary generating curve. Specifically, the boundary

of the numerical range has a strong correlation with singular points of the dual curve. We will see

that this relationship also allows us to use results from Chapters 2 and 3 to characterize matrices

whose numerical range is invariant under rotation.

In this chapter, we explore Question 1.2.7 and describe the interaction between invariance

of the numerical range, its boundary generating curve, and the dual variety. Then we discuss a

generalization of the numerical range and relate back to obstructions discussed in Section 3.4. The

content of Theorem 4.1.2 and Corollary 4.2.2 appear in [30] for the case d = n.

Remark 4.1.1. Invariance of fA under rotation implies the same of W(A) as discussed in Section

1.2. However, the converse does not hold; if W(A) is invariant under Cn, then this only implies

that its boundary is invariant, rather than VC(fA) in its entirety.

However, the invariance of the boundary of W(A) still gives us information about the dual

curve VC(fA). As a result of Theorem 3.0.1 and Corollary 4.2.2, we obtain a result which answers

Question 1.2.7 in the case of matrices with CWSn structure. In particular, the minimal set of

irreducible components of the boundary generating curve containing the boundary of W(A) for

CWSn matrix A has to be invariant.

Theorem 4.1.2. Suppose W(B) is invariant under Cn for some arbitrary B ∈ Cd×d. Then there

exists a CWSn matrix A ∈ CQn×Qn such that Q ≤
⌊
d
n

⌋
+ 1 and W(B) =W(A).
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Figure 4.1: The hypersurface VC(fB) in the plane t = 1 for B ∈ C6×6 from Example 4.1.3 (right)
and W(B) (left). Although the plane curve and its dual are not invariant under rotation, the
numerical range W(B) is.

Proof. The action of rotation on W(B) ∈ Cd×d is multiplication by ω = e
2πi
n , so here we assume

W(B) = ω`W(B) =W(ω`B)

for all ` ∈ [n − 1]. If fB is irreducible, then fB = fω`B for each ` by [21, Corollary 2.4], so

fB ∈ R[t, x, y]Cnd . By Theorem 3.0.1, there exists a CWSn matrix A such that fB = fA, which gives

the result.

Now assume fB is reducible. Let X = VC(fB) and S = ∂W(B). Denote by X ∗min be the

minimal union of irreducible components of X ∗ which contains S. By assumption, S ⊆ W(B)

is invariant under the action of rotation and is Zariski dense in X ∗min since S contains an infinite

number of points in X ∗min. Together with S = ω` S ⊆ ω` X ∗min, this implies X ∗min ⊆ ω` X ∗min for

every `. The curve ω`X ∗min has the same degree as X ∗min, so X ∗min = ωkX ∗min for each ` and X ∗min is

invariant under rotation. The set X ∗min is dual to some union of irreducible components Xmin of X
and since S ⊆ X ∗min, the innermost oval of X is contained in Xmin. Additionally, Xmin is invariant

under rotation since by Proposition 1.3.1 this invariance is preserved by duality.

Write fA = f1f2 where Xmin = VC(f1). Then f1 ∈ R[t, x, y]CnD since Xmin is invariant under

rotation and 0 < D < d. If f2 ∈ R[t, x, y]Cn , then Corollary 4.2.2 gives the result. If not, we want

to find f̃2 ∈ R[t, x, y]Cn such that f1f̃2 is hyperbolic with respect to (1, 0, 0), deg(f̃2) = d − D,

and Xmin contains the innermost oval of VR(f1f̃2) since this will preserve the boundary of X ∗. Let

f̃2 = td−D, so f1f̃2 ∈ R[t, x, y]Cnd . By Theorem 3.0.1, there exists a CWSn matrix A ∈ CQn×Qn for

Q =
⌊
D
n

⌋
+ 1 such that f1f̃2 = fA, thus W(B) =W(A).
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Example 4.1.3. Take B =



0 0 0 1 0 0

0 0 −7− 6i 0 −8− 4i 0

0 0 0 0 0 −1− 2i

−12 0 0 0 0 0

0 0 0 0 0 −10− 2i

0 −5− 10i 0 0 0 0


. ThenW(B) is

invariant under rotation by the angle 2π/3 (see Figure 4.1). We can write fB = f1f2 where

f1 = (1/8)
(
8t4 − 798t2uv + 1050t(u3 + v3) + 425it(u3 − v3) + 3860(uv)2

)
,

f2 = (1/4)
(
4t2 + 12u2 − 145uv + 12v2

)
and VC(f1)∗ contains the boundary ofW(B). Notice that fB is not invariant under rotation, but the

quartic factor f1 is. By Theorem 3.0.1, we can find a CWS3 matrix A ∈ C6×6 such that t2f1 = fA

and W(A) =W(B). One such matrix is given by

A =



0 −2 + i 0 0 0 0

0 0 −10 + 5i 0 0 0

−6 + 7i 0 0 −4 + 8i 0 0

0 −2 + 10i 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

Theorem 4.1.2 gives a characterization for any matrix whose numerical range is invariant. That

is, there always exists a larger CWSn matrix with the same numerical range. If n does not divide

d, then the size of the CWSn matrix is strictly larger. However, a positive answer to Question 1.3.9

would strengthen this result and give a CWSn matrix whose size depends on the reducibility of the

boundary generating curve.

Conjecture 4.1.4. If W(B) is invariant under Cn for arbitrary B ∈ Cd×d, then there exists a

CWSn matrix A ∈ CD×D such that D ≤ d and W(A) =W(B).

4.2 Results on the k-Higher Rank Numerical Range

In this section we discuss a generalization of the numerical range called the k-higher rank numerical

range. This set is also compact and invariant under unitary transformation. Woerdeman [39] showed

that the set is convex with the help of [12].
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Definition 4.2.1. For k ∈ [d] the k-higher rank numerical range of A ∈ Cd×d is

Wk(A) :=


k∑
j=1

z∗jAzj ∈ C | {z1, z2, . . . , zk} is orthonormal in Cd
 .

The classical numerical range is defined by W1(A). Much like before, there is a relationship

between the geometry of Wk(A) and the hyperbolic plane curve fA. Chien and Nakazato described

how to computeWk(A) using fA and the boundary generating curve in [8]. They also give conditions

for which the k-higher rank numerical range is not given by the numerical range of any matrix when

k > 1.

Gau and Wu [22] showed that for arbitrary matrices A,B ∈ Cd×d, fA = fB if and only if

Wk(A) = Wk(B) for k ∈ [bd/2c + 1]. Examples from [7, 13, 25] show there exist matrices A so

fA ∈ C[t, x, y]Cnd , but A is not unitarily equivalent to any cyclic weighted shift matrix (with positive

weights). Theorem 3.0.1 proves there must exist some CWSn with the same k-higher rank numerical

range of A ∈ Cd×d, even if the two matrices are not unitarily equivalent.

Corollary 4.2.2. Suppose d = qn + m for some q ∈ Z+ and m ∈ [n − 1]. If fB ∈ C[t, x, y]Cnd for

some arbitrary B ∈ Cd×d, there exists a CWSn matrix A ∈ C(q+1)n×(q+1)n with Wk(A) = Wk(B)

for 1 ≤ k ≤ bd/2c+ 1.

Proof. By Theorem 3.0.1, there exists cyclic weighted shift matrix A ∈ C(q+1)n×(q+1)n so that

tn−mfB = fA. Then by [21], this implies Wk(A) =Wk(B) for k ∈ [bd/2c+ 1].

As before, we can strengthen this result with a positive answer to Question 1.3.9. Additionally,

Chien and Nakazato proved that for two cyclic weighted shift matrices A,B ∈ Cn×n with all

nonzero entries that W(A) = W(B) implies Wk(A) = Wk(B) for all k ∈ [d] [9]. They also showed

if the cyclic weighted shift matrix A has all nonzero entries, then the plane curve fA has no

singularities on the line y = ±ix. We conjecture that the relationship between singularities at the

points [t : x : y] = [0 : 1 : ±i] as discussed in Section 3.4 may disprove the analogous statement

that W(A) = W(B) implies Wk(A) = Wk(B) for d > n. Studying CWSn matrices for d > n in

more detail may provide insight into answering Question 1.3.9 and give more information about

the geometry of the k-higher rank numerical range in general.
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